
New Adventures
In Responsive
Web Design

Moscow, Russia @ HolyJS 
December 10, 2017

Vitaly Friedman, ex-editor-in-chief 
and co-founder of SmashingMag

Compression matters. What’s the best
strategy to compress assets/content these
days? Essentially, we want to minimize
bandwidth and speed up delivery. How?

gzip is the most common compression
format on the web; its most common
implementation is zlib, and it uses a
combination of LZ77 and Huffman
encoding algorithms (called deflate).

Each compression library (like zlib)
has preset quality settings, ranging
from fast compression (levels 1–3) to
slow compression (levels 4–9).

As developers, we care about the
transferred file size and compression /
decompression speed — for both static
and dynamic web content.

“ Zopfli can be thought of as a way to do
a “very good, but slow, deflate or zlib
compression”. High compression ratio
at the cost of a higher overhead for
compressing. Backwarts-compatible
for browsers that support only gzip.

— Cody Ray Hoeft 
https://www.quora.com/What-is-Brotli-How-is-it-different-from-Zopfli

https://www.quora.com/What-is-Brotli-How-is-it-different-from-Zopfli

“ Brotli is a whole new compression and
decompression format. For Brotli,
browser support has to be built into
the browser. Future-compatible with
the next generation of browsers.

— Cody Ray Hoeft 
https://www.quora.com/What-is-Brotli-How-is-it-different-from-Zopfli

https://www.quora.com/What-is-Brotli-How-is-it-different-from-Zopfli

“ Brotli is a whole new lossless
compression and decompression
format. For Brotli, browser support
has to be built into the browser.
Future-compatible with the next
generation of browsers.

— Cody Ray Hoeft 
https://www.quora.com/What-is-Brotli-How-is-it-different-from-Zopfli

https://www.quora.com/What-is-Brotli-How-is-it-different-from-Zopfli

Brotli and Zopfli

• Compared to gzip, Brotli is significantly slower at
compressing data, but provides much better savings.

— Brotli is an open-sourced, lossless compression format,  
— Brotli shows significant improvements for static content,  
— Brotli’s decompression is fast: comparable to zlib, 
— Brotli has an advantage for large fiels on slow connections, 
— Expect 14-39% file savings on text-based assets (level 4),  
— Ideal for HTML, CSS, JavaScript, SVG — anything text-based.  
— Brotli support is restricted to HTTPS connections.

Brotli and Zopfli

• Compared to gzip, Brotli is significantly slower at
compressing data, but provides much better savings.

— Browsers advertise support via Accept-Encoding request header: 
 Accept-Encoding: gzip, deflate, sdch, br  
— Servers can choose to use Brotli and serve Content-Encoding: br  
— You might need to recompile your server to include a Brotli  
 module (available for Apache, Nginx, IIS). 
— Zopfli often not applicable for on-the-fly compression, but a good  
 alternative for one-time compression of static content.

Brotli/Zopfli Compression
Strategy

• Compared to gzip, Brotli is significantly slower at
compressing data, but provides much better savings.

— Pre-compress static assets with Brotli+Gzip at the highest level,  
— Compress (dynamic) HTML on the fly with Brotli at level 1–4.  
— Check for Brotli support on CDNs (KeyCDN, CDN77, Fastly).  
— Server handles content negotiation for Brotli or gzip. 
— Use Zopfli if you can’t install/maintain Brotli on the server.

“Results of experimenting with Brotli for dynamic web content”, https://blog.cloudflare.com/results-experimenting-brotli/, 
Tim Kadlec, “Understanding Brotli's Potential”, https://blogs.akamai.com/2016/02/understanding-brotlis-potential.html, 
“Static site implosion with Brotli and Gzip”, https://www.voorhoede.nl/en/blog/static-site-implosion-with-brotli-and-gzip/ 
“Current state of Brotli compression”, https://samsaffron.com/archive/2016/06/15/the-current-state-of-brotli-compression

https://blog.cloudflare.com/results-experimenting-brotli/
https://blogs.akamai.com/2016/02/understanding-brotlis-potential.html
https://www.voorhoede.nl/en/blog/static-site-implosion-with-brotli-and-gzip/
https://samsaffron.com/archive/2016/06/15/the-current-state-of-brotli-compression

Images make up a large portion of
bandwidth payload. Is there any way to
optimize images beyond good ol’ image
optimization? What if a hero image has to
render fast, e.g. on landing pages?

“ What if you have a large photo that
requires a transparent shadow?
PNG is way too large in file size,
and JPEG isn’t good enough in
quality because of the gradient in
the background. What do you do?

 

 <image width="560" height="1388" xlink:href="can-top-alpha.png">  
 </image>

 </mask>

<mask id="canTopMask">

<image mask="url(#canTopMask)" id="canTop" width="560" height="1388"  
 xlink:href="can-top.jpg"></image>

• hero-image.svg: 
<svg xmlns="http://www.w3.org/2000/svg"  
xmlns:xlink="http://www.w3.org/1999/xlink" viewbox="0 0 560 1388">

<defs>

</svg>

</defs>

http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink

• HTML/CSS: 
, background: url("hero-image.svg")

 

 <image width="560" height="1388" xlink:href="can-top-alpha.png">  
 </image>

 </mask>

<mask id="canTopMask">

<image mask="url(#canTopMask)" id="canTop" width="560" height="1388"  
 xlink:href="can-top.jpg"></image>

• hero-image.svg: 
<svg xmlns="http://www.w3.org/2000/svg"  
xmlns:xlink="http://www.w3.org/1999/xlink" viewbox="0 0 560 1388">

<defs>

</svg>

</defs>

http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink

“ ...Given two identical images that
are displayed at the same size on a
website, one can be dramatically
smaller than the other in file size
if it’s highly compressed and
dramatically larger in dimensions
than it is displayed in.

— Daan Jobsis

600×400px file, 0% JPEG quality,
displayed in 600×400 (file size 7 Kb)

600×400px file, 0% JPEG quality,
displayed in 300×200 (file size 7 Kb)

600×400px file (7 Kb) 

0% JPEG quality 
displayed in 300×200

300×200px file (21 Kb)  

80% JPEG quality 
displayed in 300×200

Aftonbladet’s Images Strategy

• Design specification defined main requirements:

• Optimization of the mobile version,  
• The pages should be easy to cache, 

• Solution: Loading images with JavaScript after
HTML and CSS have fully loaded.

• A single HTML file to be served to all users,

• All images on a content delivery network (CDN),
• No complexity in the image-serving logic,
• Serving different image versions to different devices.

• Editors can select compression rates, but aggressive
compression is a default.

• 30% JPEG quality: bright-red areas don’t compress well.

• On average, the “large” screen has 650 Kb, 
“medium” — 570 Kb, “small” — 450 Kb.

• The homepage on a mobile device has 40 images.

• The original photo has 1600px width, 971 Kb.
Quality 60 brings the size down to 213 Kb.

• Blurring unimportant parts of the photo brings
the size down to 147 Kb.

Sequential JPEG Progressive JPEG

Images taken from http://www.pixelstech.net/article/1374757887-Use-progressive-JPEG-to-improve-user-experience 13 / 44

Scans

14 / 44

Default Scan Levels

Thanks to Frédéric Kayser for creating 'jsk': http://encode.ru/threads/1800-JSK-JPEG-Scan-Killer-progressive-JPEG-explained-in-slowmo 15 / 44

16 / 44

17 / 44

18 / 44

1st Scan Layer Has Small Byte Size

Ships Fast
&

Shows Soon

19 / 44

31 / 44

1

32 / 44

2

33 / 44

3

34 / 44

4

35 / 44

5

36 / 44

37 / 44

We want nice type, but performance
matters, too. You either rely on Typekit/
Google Fonts or self-host the fonts. What is
your strategy for loading web fonts?

Declaring @font-face

• We can use bulletproof @font-face syntax to
avoid common traps along the way:

• CSS: 
@font-face {  
 font-family: 'Elena Regular';  
 src: url('elena.eot?#iefix') format('embedded-opentype'),  
 url('elena.woff2') format('woff2'),  
 url('elena.woff') format('woff'),  
 url('elena.otf') format('opentype');  
}

Declaring @font-face

• If you want only smart browsers (IE9+) to
download fonts, declaration can be shorter:

• CSS: 
@font-face {  
 font-family: 'Elena Regular';  
 src: url('elena.woff2') format('woff2'),  
 url('elena.woff') format('woff'),  
 url('elena.otf') format('opentype');  
}

• CSS: 
@font-face {  
 font-family: 'Elena Regular';  
 src: url('elena.woff2') format('woff2'),  
 url('elena.woff') format('woff'),  
 url('elena.otf') format('opentype');  
}

• When a font family name is used in CSS,
browsers match it against all @font-face rules,
download web fonts, display content.

• When a font family name is used in CSS,
browsers match it against all @font-face rules,
download web fonts, display content.

• CSS: 
body {  
 font-family: 'Elena Regular',  
 AvenirNext, Avenir, /* iOS */  
 'Roboto Slab', 'Droid Serif', /* Android */  
 'Segoe UI', /* Microsoft */  
 Georgia, 'Times New Roman', serif; /* Fallback */  
}

• CSS: 
body {  
 font-family: 'Elena Regular',  
 AvenirNext, Avenir, /* iOS */  
 'Roboto Slab', 'Droid Serif', /* Android */  
 'Segoe UI', /* Microsoft */  
 Georgia, 'Times New Roman', serif; /* Fallback */  
}

• HTML: 
<link href='http://fonts.googleapis.com/css?family=Skolar_Reg'
rel='stylesheet' type='text/css'>  
 
<script type="text/javascript"  
 src="//use.typekit.net/tbb3uid.js"></script>  
<script type="text/javascript">  
 try{Typekit.load();}catch(e){}</script>

• Once DOM and CSSOM are constructed, if
@font-face matches, a font will be required.

• If fonts aren’t cached yet, they will be requested,
downloaded and applied, deferring rendering.

• FOUT (Flash Of Unstyled Text): show content in
fallback fonts first, then switch to web fonts.

• FOIT (Flash Of Invisible Text): no content
displayed until the font becomes available.

Async Data URI Stylesheet

• To eliminate FOIT, we display fallback right away, and
load web fonts async with loadCSS.

• Verdict: bare minimum for the web font loading
strategy today. Self-hosting required.

• Easy to group requests into a single repaint,
• Has a noticeable short FOIT during parsing,

• How to choose a format to load? JS loader needed.

CSS Font Loading API

• Native browser API à la Web Font Loader, with a  
FontFace object representing @font-face rules.

• JavaScript: 
var elena_reg = new FontFace( 

'Elena Regular',  
'url(elena_reg.woff) format("woff"),' +  
'url(elena_reg.otf) format("otf")',  
{ weight: 'regular', unicodeRange: 'U+0-7ff' }  

);

• JavaScript: 
document.fonts.load('1em elena_reg')  
.then(function() {  

var docEl = document.documentElement;  
docEl.className += ' elena_reg-loaded';  

}).catch(function () {  
var docEl = document.documentElement;  
docEl.className += ' elena_reg-failed';  

});

• JavaScript: 
var elena_reg = new FontFace( 

'Elena Regular',  
'url(elena_reg.woff) format("woff"),' +  
'url(elena_reg.otf) format("otf")',  
{ weight: 'regular', unicodeRange: 'U+0-7ff' }  

);

• JavaScript: 
document.fonts.load('1em elena_reg')  
.then(function() {  

var docEl = document.documentElement;  
docEl.className += ' elena_reg-loaded';  

}).catch(function () {  
var docEl = document.documentElement;  
docEl.className += ' elena_reg-failed';  

});

• CSS: 
.elena_reg-loaded h1 {  

font-family: "Elena Regular";  
}

• JavaScript: 
document.fonts.load('1em elena_reg’)  
.then(function() {  

var docEl = document.documentElement;  
docEl.className += ' elena_reg-loaded’;  

}).catch(function () {  
var docEl = document.documentElement;  
docEl.className += ' elena_reg-failed’;  

});

• CSS: 
.elena_reg-loaded h1 {  

font-family: "Elena Regular";  
font-rendering: "block 0s swap infinite"; // FOUT  
// font-rendering: "block 3s swap infinite"; // FOIT  

 }

• JavaScript: 
document.fonts.load('1em elena_reg’)  
.then(function() {  

var docEl = document.documentElement;  
docEl.className += ' elena_reg-loaded’;  

}).catch(function () {  
var docEl = document.documentElement;  
docEl.className += ' elena_reg-failed’;  

});

• CSS: 
.elena_reg-loaded h1 {  

font-family: "Elena Regular";  
// font-rendering: "block 0s swap infinite"; // FOUT  
font-rendering: "block 3s swap 3s"; // FOIT, at most 3sec  

 }

Font Load Events

• Use the CSS Font Loading API with a polyfill to apply
web font only after it has loaded successfully.

• Verdict: good option for web font loading, to integrate
with 3rd-party hosting providers.

• Toggle a class on <html>; with Sass/LESS mixins,

• Requires strict control of CSS; a single use of a web
font font-family will trigger a FOIT.

• Optimize for repeat views with sessionStorage,

• Easy to implement with 3rd-party hosts,

Flash of Faux Text

• When using multiple weights, we split web fonts into
groups: Roman / Faux content.

• Two-stage render: Roman first and rest later,
• Optimize for repeat views with sessionStorage,

• Font synthesis is a big drawback.

• Verdict: good option for great performance, but 
font synthesis might produce awkward results.

Critical FOFT

• When using multiple weights, we split web fonts into
groups: Roman / Faux content.

• Two-stage render: Roman first and rest later,

• Optimize for repeat views with sessionStorage,

• Font synthesis is a big drawback.

• Verdict: good option for great performance, but 
font synthesis might produce awkward results.

• Subset fonts to minimum (A–Z, 0–9, punctuation),

• Subset is duplicated in the full Roman font.
• Licensing issues: requires subsetting.

Critical FOFT With Data URI

• Instead of loading via a JavaScript API, we inline the
web font directly in the markup.

• Verdict: the fastest web font loading strategy as of
today. Eliminates FOIT and greatly reduces FOUT.

• Two-stage render: Roman first and rest later,

• Load full fonts with all weights and styles async,

• Subset fonts to minimum (A–Z, 0–9, punctuation),

• Load the subsetted font (Roman) first inline,

• Use sessionStorage for return visits,
• Requires self-hosting; data URI blocks rendering.

Critical 2-Stage-FOFT-Render
With Data URI/ServiceWorker
(C2SFOFTRWDURISW)

• Instead of using sessionStorage, we inline the web
font in the markup and use Service Workers cache.

• Verdict: the fastest web font loading strategy as of
today. Eliminates FOIT and greatly reduces FOUT.

• Two-stage render: Roman first and rest later,

• Load full fonts with all weights and styles async,

• Subset fonts to minimum (A–Z, 0–9, punctuation),

• Load the subsetted font (Roman) first inline,

• Use Service Workers for return visits,
• Requires self-hosting/HTTPS; data URI blocks rendering.

• When a font family name is used in CSS,
browsers match it against all @font-face rules,
download web fonts, display content.

• CSS: 
body {  
 font-family: 'Elena Regular',  
 AvenirNext, Avenir, /* iOS */  
 'Roboto Slab', 'Droid Serif', /* Android */  
 'Segoe UI', /* Microsoft */  
 Georgia, 'Times New Roman', serif; /* Fallback */  
}

• CSS: 
body {  
 font-family: 'Elena Regular',  
 AvenirNext, Avenir, /* iOS */  
 'Roboto Slab', 'Droid Serif', /* Android */  
 'Segoe UI', /* Microsoft */  
 Georgia, 'Times New Roman', serif; /* Fallback */  
}

• CSS: 
body {  
 font-family: 'Elena Regular', /* Web font */  
 AvenirNext, Avenir, /* iOS */  
 -apple-system, BlinkMacSystemFont, /* macOS San Francisco */  
 Roboto Slab', 'Droid Serif', /* Android */  
 'Segoe UI', /* Microsoft */  
 Oxygen-Sans, /* KDE */  
 Ubuntu, /* Ubuntu */  
 Cantarell, /* GNOME */  
 Georgia, 'Times New Roman', serif; /* Fallback */  
}

• CSS: 
.lowBattery {  
 font-family: /* 'Elena Regular' */ /* Web font */  
 AvenirNext, Avenir, /* iOS */  
 -apple-system, BlinkMacSystemFont, /* macOS San Francisco */  
 Roboto Slab', 'Droid Serif', /* Android */  
 'Segoe UI', /* Microsoft */  
 Oxygen-Sans, /* KDE */  
 Ubuntu, /* Ubuntu */  
 Cantarell, /* GNOME */  
 Georgia, 'Times New Roman', serif; /* Fallback */  
}

• CSS: 
@font-face {  
 font-family: 'Open Sans', Arial, serif;  
 src: local('Open Sans'),  
 url(/fonts/open-sans-latin.woff2) format('woff2');  
 unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02C6,  
 U+02DA, U+02DC, U+2000-206F, U+2074, U+20AC,  
 U+2212, U+2215, U+E0FF, U+EFFD, U+F000;  
}  
 
@font-face {  
 font-family: 'Open Sans', Arial, serif;  
 src: local('Open Sans'),  
 url(/fonts/open-sans-cyrillic.woff2) format('woff2');  
 unicode-range: U+0400–U+04FF, U+0500–U+052F;  
}

🍻

🍻

🍻
U+1F37B

“ How do you efficiently scale up /
down any UI component (e.g. a
slider or calendar) and keep all the
proportions intact—without
fiddling with width, height or
border-radius manually?

 

— @simurai

“ By sneaking a Trojan horse into
your components. We use rem for
components “root” and em for sub-
parts of the components. Then, by
adjusting the font-size of the root,
we adjust all size-related CSS
properties of a component at once.

 

— @simurai

m = slope 
x = current viewport width

b = the y-intercept 
y = resulting font size

m = slope 
x = current viewport width

b = the y-intercept 
y = resulting font size

Fluid Typography, rem

/* CSS Reset of your choice */  
body { font-size: 100%; line-height: 1.45em; }

/* 2:3 Perfect Fifth: 7.111, 10.667, 16 (i), 24, 36, 54 */  
@media screen and (max-width: 650px) {  
 h1 { font-size: 2.8125rem; } /* 2.8125 ÷ 1.875 = 1.5 /*  
 h2 { font-size: 1.875rem; } /* 1.875 ÷ 0.75 = 2.25 /*  
 h3 { font-size: 0.75rem; }  
}  
 
@media screen and (max-width: 1050px) {  
 h1 { font-size: 3.375rem; } /* 3.375 ÷ 2.25 = 1.5 /*  
 h2 { font-size: 2.25rem; } /* 2.25 ÷ 1 = 2.25 /*  
 h3 { font-size: 1rem; }  
}  

Fluid Typography, calc

/* CSS Reset of your choice */  
body { font-size: 100%; line-height: 1.45em; }

/* 2:3 Perfect Fifth: 7.111, 10.667, 16 (i), 24, 36, 54 */  
h1 { font-size: calc({slope-h1}*100vw + {y-intercept-h1}px); }  
h2 { font-size: calc({slope-h2}*100vw + {y-intercept-h2}px); }  
h3 { font-size: calc({slope-h3}*100vw + {y-intercept-h3}px); }

m = slope 
b = the y-intercept 
x = current viewport width  
y = resulting font size

Fluid Typography, calc + px

/* CSS Reset of your choice */  
body { font-size: 100%; line-height: 1.45em; }

/* 2:3 Perfect Fifth: 7.111, 10.667, 16 (i), 24, 36, 54 */  
h1 { font-size: calc({slope-h1}*100vw + {y-intercept-h1}px); }  
h2 { font-size: calc({slope-h2}*100vw + {y-intercept-h2}px); }  
h3 { font-size: calc({slope-h3}*100vw + {y-intercept-h3}px); }  
 
nav { width: calc({slope-nav}*100vw + {y-intercept-nav}px); }  
button { padding: calc({slope-btn}*100vw + {y-intercept-btn}px); }  
 
.lightbox {  
 font-size: calc({slope-lightbox}*100vw +  
 {y-intercept-lightbox}px);  
}  

Fluid Typography, calc + rem

/* CSS Reset of your choice */  
body { font-size: 100%; line-height: 1.45em; }

/* 2:3 Perfect Fifth: 7.111, 10.667, 16 (i), 24, 36, 54 */  
h1 { font-size: calc({slope-h1}*100vw + rem({y-intercept-h1})rem); }  
h2 { font-size: calc({slope-h2}*100vw + rem({y-intercept-h2})rem); }  
h3 { font-size: calc({slope-h3}*100vw + rem({y-intercept-h3})rem); }  
 
nav { width: calc({slope-nav}*100vw + rem({y-intercept-nav})rem); }  
button { padding: calc({slope-btn}*100vw + rem({y-intercept-btn})rem); }  
 
.lightbox {  
 font-size: calc({slope-lightbox}*100vw +  
 rem({y-intercept-lightbox})rem);  
}  

Fluid Typography, SCSS → CSS

 
 
 
 
h2 {  
 $map(592px: 14px, 380px: 16px, 1017px: 22px, 694px: 18px);  
 @include polyFluidSizing('font-size',$map);  
}  
 
nav {  
 $map(500px: 8px, 396px: 6px, 990px: 12px, 605px: 10px);  
 @include polyFluidSizing('padding',$map);  
}

/* 2:3 Perfect Fifth: 7.111, 10.667, 16 (i), 24, 36, 54 */  
h1 {  
 $map(576px: 22px, 320px: 18px, 992px: 34px, 768px: 24px);  
 @include polyFluidSizing('font-size',$map);  
}

Fluid Typography, SCSS → CSS

h1 { font-size: 18px; } /* Minimum font size: 18px; */  
 
@media screen and (min-width: 320px) { /* Interpolation: 18px " 22px */  
 h1 { font-size: calc(1.04166667vw + 14.2444px); }  
}  
 
@media screen and (min-width: 576px) { /* Interpolation: 22px " 24px */  
 h1 { font-size: calc(2.1821vw + 9.4621px); }  
}  

/* 2:3 Perfect Fifth: 7.111, 10.667, 16 (i), 24, 36, 54 */  
h1 {  
 $map(576px: 22px, 320px: 18px, 992px: 34px, 768px: 24px);  
 @include polyFluidSizing('font-size',$map);  
}

Fluid Typography, SCSS → CSS

/* 2:3 Perfect Fifth: 7.111, 10.667, 16 (i), 24, 36, 54 */  
h1 {  
 $map(576px: 22px, 320px: 18px, 992px: 34px, 768px: 24px);  
 @include polyFluidSizing('font-size',$map);  
}  
 
 
@media screen and (min-width: 768px) { /* Interpolation: 24px " 34px */  
 h1 { font-size: calc(4.7787vw + 21.2444px); }  
}  
 
@media screen and (min-width: 992px) { /* Maximum font size: 34px */  
 h1 { font-size: 34px; }  
}

Fluid Typography, SCSS → CSS

/* 2:3 Perfect Fifth: 7.111, 10.667, 16 (i), 24, 36, 54 */  
h1 {  
 $map(576px: 1.5rem, 320px: 1rem, 992px: 3.375rem, 768px: 2.8125rem);  
 @include polyFluidSizing('font-size',$map);  
}  
 
 
@media screen and (min-width: 768px) { /* Interpolation: 24px " 34px */  
 h1 { font-size: calc(4.7787vw + 21.2444px); }  
}  
 
@media screen and (min-width: 992px) { /* Maximum font size: 34px */  
 h1 { font-size: 34px; }  
}

Fluid Typography, SCSS → CSS

/* 2:3 Perfect Fifth: 7.111, 10.667, 16 (i), 24, 36, 54 */  
h1 {  
 $map(320px: 1rem, 576px: 1.5rem, 768px: 2.8125rem, 992px: 3.375rem);  
 @include polyFluidSizing('font-size',$map);  
}  
 
 
@media screen and (min-width: 768px) { /* Interpolation: 24px " 34px */  
 h1 { font-size: calc(4.7787vw + 21.2444px); }  
}  
 
@media screen and (min-width: 992px) { /* Maximum font size: 34px */  
 h1 { font-size: 34px; }  
}  

Media queries.

Big Bang
Redesign:
Smashing
Magazine’s
Relaunch

Problem.

You choose the min and max font-
size and the screen sizes, over which
the font should scale and plug them
into the equation. You can use any
unit type including ems, rems or px.

 

— Mike Riethmuller

Fluid Behavior, Turn OFF

html {  
 font-size: calc(100% + 8 * ((100vw - 400px) / 400);  
}  
 
.testimonial { /* Use rem to adjust font-sizes */  
 width: 4.5rem;  
 padding: 0.5rem;  
 font-size: 1.75rem;  
}  
 
/* Turn OFF fluid behavior in a fixed container */  
.fixed-container { font-size: 18px; }  
.fixed-container .testimonial { font-size: 2em; }  

Fluid Behavior, Turn ON

html {  
 font-size: 100%;  
}  
 
.testimonial { /* Use rem to adjust font-sizes */  
 width: 4.5rem;  
 padding: 0.5rem;  
 font-size: 1.75rem;  
}  
 
/* Turn ON fluid behavior in a fluid container */  
.fluid-container { font-size: calc(100% + 8 * ((100vw - 400px) / 400); }  
.fluid-container .testimonial { font-size: 2em; }  

“ With CSS Custom Properties, we
now can separate logic from
design, effectively separating
variable declarations from
property declarations. Because
logic lives above design then, I like
to call this separation logic fold.

 

— Mike Riethmueller 
https://vimeo.com/235428198

Live variables.

Big Bang
Redesign:
Smashing
Magazine’s
Relaunch

Problem.

“ All variable expressions and calc
statements that use CSS custom
properties will be recalculated when
the variable is redefined. Unlike
preprocessors, they have knowledge
of the DOM and can be scoped to
DOM elements.

 

— Jonathan Harrell 
https://jonathan-harrell.com/unlocking-benefits-css-variables/

No project is good enough. Google has
decided to penalize non-HTTPS users, so
your client asks you to switch to HTTP/2
to boost performance. What does it mean?

HTTP/1.1

• HTTP/1.1 was designed for connections and bandwidth
that are significantly different today.

— Single request per connection, 
— Max. 10 connections per domain, 
— Exclusively client-initiated requests, 
— Uncompressed request and response headers, 
— Redundant headers, 
— Optional data compression, 
— HTTP is slow, but HTTPS is even slower.

HTTP connection

DNS lookup

Initial connection 
(TCP)

SSL/TLS negotiation

TTFB

Content download

Average round trip time on UK 3G connection

Dmytrii Shchadei — http://www.slideshare.net/metrofun/reduce-mobile-latency

" # ## $
Internal latency

Firewalls, Load Balancers,
Servers

%
Internet routing latency

CDNs, ISPs, Caches, Proxies
Control plane latency

~600ms on average UK 3G connection ~200ms

Head of line blocking

$&
Client Server

TCP connection

 GET /image-1.jpg

 GET /image-1.jpg

'

Head of line blocking

$&
Client Server

 GET /image-1.jpg

 GET /image-2.jpg

 GET /image-3.jpg

 GET /image-4.jpg

 GET /image-5.jpg

 GET /image-6.jpg

Hacks: concatenation

(
React.js

(
Angular.js

(
jQuery.js

(
Bootstrap.js

(
MooTools.js

(
main.js

+ + + +

Hacks: domain sharding

Example of base64
json’ifed fonts

Hacks: inlining

Delivering The Goods, Paul Irish, https://www.youtube.com/watch?v=R8W_6xWphtw

https://www.youtube.com/watch?v=R8W_6xWphtw

HTTP/2

• HTTP/2.0 promises speed improvement, decreased
network latency and better management of assets.

— 64% reduction in page load times (23% on mobile), 
— Unlimited number of parallel requests per connection,  
— Quicker slow-start and better compression, 
— One connection per host handles all requests, 
— Developers can prioritize and push resources, 
— Browsers require the protocol to run over HTTPS,  
— Extension of HTTP/1.1; as such, falls back to HTTP/1.1.

— Requires server-side and client-side implementations. 
— In Apache httpd 2.4.17, NGINX 1.9.5, NGINX Plus R7.

— Requires server-side and client-side implementations. 
— In Apache httpd 2.4.17, NGINX 1.9.5, NGINX Plus R7.
— Used by Gmail, WordPress, Facebook, Twitter, Cloudflare.

HTTP/2

• HTTP/2.0 promises speed improvement, decreased
network latency and better management of assets.

— 64% reduction in page load times (23% on mobile), 
— Unlimited number of parallel requests per connection,  
— Quicker slow-start and better compression, 
— One connection per host handles all requests, 
— Developers can prioritize and push resources, 
— Browsers require the protocol to run over HTTPS,  
— Extension of HTTP/1.1; as such, falls back to HTTP/1.1.

HTTP/2 core features

1. Multiplexing (via streams, frames, and messages)
2. Binary data format
3. Prioritisation
4. Header compression
5. Flow control
6. Server push

&
Client

$
Server

Stream

Message

:method: GET
:path: /image-2.jpg

Frame

Message

:status 200
:version: HTTP/2.0
:vary: Accept-Encoding

Frame

… response payload …

Frame

Connection

Stream
A virtual channel within an established connection
which carries bidirectional messages.

Frame
The smallest unit of communication, which carries a
specific type of data—e.g., HTTP headers, payload,
commands e.t.c.

Message
A complete sequence of frames that map to a logical
HTTP message, such as a request.

Multiplexing: terminology

Multiplexing: Frames

HTTP/1.1 200 OK
Content-Type: text/css
Vary: Accept-Encoding
Content-Encoding: gzip
Cache-Control: max-age=6427474
Content-Length: 11740
Connection: keep-alive

@font-face{font-family:"BentonSans";src:url("http://s1.ft-
static.com/m/font/ft-velcro/bentonsans-
regular.eot");src:url("http://s1.ft-static.com/m/font/ft-velcro/
bentonsans-regular.eot?#iefix") format("embedded-

HEADERS frame

DATA frame

HTTP/1.1 HTTP/2

Binary frames

Length

Data payload…

Type

Flags

Stream Identifier

Stream 5
HEADERS

Stream 6
HEADERS

Multiplexing: Streams

HTTP/2 connection

Stream 1
HEADERS

Stream 1
DATA

Stream 1
DATA

Stream 2
HEADERS

Stream 1
DATA

Stream 1
DATA

Stream 3
HEADERS$

Server

&
Client

HTTP/1.1

HTTP/1.1 HTTP/2

HTTP/2

• HTTP/2.0 promises speed improvement, decreased
network latency and better management of assets.

— 64% reduction in page load times (23% on mobile), 
— Unlimited number of parallel requests per connection,  
— Quicker slow-start and better compression, 
— One connection per host handles all requests, 
— Developers can prioritize and push resources, 
— Browsers require the protocol to run over HTTPS,  
— Extension of HTTP/1.1; as such, falls back to HTTP/1.1.

0% PLR 2% PLR

5Mbps/1Mbps; 40ms 780Kbps/330Kbps; 200ms 5Mbps/1Mbps; 40ms 780Kbps/330Kbps; 200ms

DocComplete h2 h2 h2 h2 h1 h1 h1 h1

DCL Start h1 h1 h2 h1 h1 h1 h2 h1

Speed Index h2/h1 h2 h2 h2 h1 h1 h2 h2

Keeping score…

0% PLR 2% PLR
5Mbps/1Mbps; 40ms 780Kbps/330Kbps; 200ms 5Mbps/1Mbps; 40ms 780Kbps/330Kbps; 200ms

Site1a
(Fastly)

DocComplete h2 h2 h2 h1 h1 h1 h1 h1
DCL Start h2 h1 h2 h2 h2/h1 h1 h2 h2

Speed Index h1 h2 h2 h2 h1 h2/h1 h2/h1 h2

Site1b
DocComplete h2/h1 h2 h2 h2 h1 h2 h1 h2/h1

DCL Start h1 h2 h1 h1 h1 h2/h1 h1 h1
Speed Index h1 h2 h2 h1 h1 h2/h1 h1 h1

Site1c
DocComplete h1/h2 h2 h2 h2 h1 h1 h1 h1

DCL Start h1 h1/h2 h1 h1 h1 h2 h1 h1
Speed Index h2 h2 h1 h2 h1 h2 h1 h1

Site2a
DocComplete h2 h2 h2 h2 h1 h2/h1 h1 h1

DCL Start h2 h2 h2 h2 h1 h1 h1 h1
Speed Index h1 h2 h1 h2 h1 h2 h1 h2

Site2b
DocComplete h2 h2 h2 h2 h1 h1/h2 h1 h1

DCL Start h2 h2 h1 h2 h1 h2 h1 h2
Speed Index h2 h1/h2 h1 h1/h2 h2 h2 h1 h1

Site3a
DocComplete h2 h2 h1 h2 h2 h2 h1 h1

DCL Start h2 h2 h2 h2 h2 h2 h2 h2
Speed Index h2 h2 h1 h1 h1/h2 h1/h2 h1 h1

Site3b
DocComplete h2 h2 h2 h1/h2 h2 h2/h1 h2 h2

DCL Start h2 h2 h2 h2 h2 h2 h2 h2
Speed Index h1 h2 h1 h1 h1 h2 h1 h1

Site3c
DocComplete h1 h2 h2 h2 h1 h2 h2 h2

DCL Start h1/h2 h2 h1 h1/h2 h2/h1 h2 h1 h2/h1
Speed Index h1 h2 h2 h2 h2 h2 h2 h2

0% PLR 2% PLR
5Mbps/1Mbps; 40ms 780Kbps/330Kbps; 200ms 5Mbps/1Mbps; 40ms 780Kbps/330Kbps; 200ms

Site1a
(Fastly)

DocComplete h2 h2 h2 h1 h1 h1 h1 h1
DCL Start h2 h1 h2 h2 h2/h1 h1 h2 h2

Speed Index h1 h2 h2 h2 h1 h2/h1 h2/h1 h2

Site1b
DocComplete h2/h1 h2 h2 h2 h1 h2 h1 h2/h1

DCL Start h1 h2 h1 h1 h1 h2/h1 h1 h1
Speed Index h1 h2 h2 h1 h1 h2/h1 h1 h1

Site1c
DocComplete h1/h2 h2 h2 h2 h1 h1 h1 h1

DCL Start h1 h1/h2 h1 h1 h1 h2 h1 h1
Speed Index h2 h2 h1 h2 h1 h2 h1 h1

Site2a
DocComplete h2 h2 h2 h2 h1 h2/h1 h1 h1

DCL Start h2 h2 h2 h2 h1 h1 h1 h1
Speed Index h1 h2 h1 h2 h1 h2 h1 h2

Site2b
DocComplete h2 h2 h2 h2 h1 h1/h2 h1 h1

DCL Start h2 h2 h1 h2 h1 h2 h1 h2
Speed Index h2 h1/h2 h1 h1/h2 h2 h2 h1 h1

Site3a
DocComplete h2 h2 h1 h2 h2 h2 h1 h1

DCL Start h2 h2 h2 h2 h2 h2 h2 h2
Speed Index h2 h2 h1 h1 h1/h2 h1/h2 h1 h1

Site3b
DocComplete h2 h2 h2 h1/h2 h2 h2/h1 h2 h2

DCL Start h2 h2 h2 h2 h2 h2 h2 h2
Speed Index h1 h2 h1 h1 h1 h2 h1 h1

Site3c
DocComplete h1 h2 h2 h2 h1 h2 h2 h2

DCL Start h1/h2 h2 h1 h1/h2 h2/h1 h2 h1 h2/h1
Speed Index h1 h2 h2 h2 h2 h2 h2 h2

0% PLR 2% PLR
5Mbps/1Mbps; 40ms 780Kbps/330Kbps; 200ms 5Mbps/1Mbps; 40ms 780Kbps/330Kbps; 200ms

Site1a
(Fastly)

DocComplete h2 h2 h2 h1 h1 h1 h1 h1
DCL Start h2 h1 h2 h2 h2/h1 h1 h2 h2

Speed Index h1 h2 h2 h2 h1 h2/h1 h2/h1 h2

Site1b
DocComplete h2/h1 h2 h2 h2 h1 h2 h1 h2/h1

DCL Start h1 h2 h1 h1 h1 h2/h1 h1 h1
Speed Index h1 h2 h2 h1 h1 h2/h1 h1 h1

Site1c
DocComplete h1/h2 h2 h2 h2 h1 h1 h1 h1

DCL Start h1 h1/h2 h1 h1 h1 h2 h1 h1
Speed Index h2 h2 h1 h2 h1 h2 h1 h1

Site2a
DocComplete h2 h2 h2 h2 h1 h2/h1 h1 h1

DCL Start h2 h2 h2 h2 h1 h1 h1 h1
Speed Index h1 h2 h1 h2 h1 h2 h1 h2

Site2b
DocComplete h2 h2 h2 h2 h1 h1/h2 h1 h1

DCL Start h2 h2 h1 h2 h1 h2 h1 h2
Speed Index h2 h1/h2 h1 h1/h2 h2 h2 h1 h1

Site3a
DocComplete h2 h2 h1 h2 h2 h2 h1 h1

DCL Start h2 h2 h2 h2 h2 h2 h2 h2
Speed Index h2 h2 h1 h1 h1/h2 h1/h2 h1 h1

Site3b
DocComplete h2 h2 h2 h1/h2 h2 h2/h1 h2 h2

DCL Start h2 h2 h2 h2 h2 h2 h2 h2
Speed Index h1 h2 h1 h1 h1 h2 h1 h1

Site3c
DocComplete h1 h2 h2 h2 h1 h2 h2 h2

DCL Start h1/h2 h2 h1 h1/h2 h2/h1 h2 h1 h2/h1
Speed Index h1 h2 h2 h2 h2 h2 h2 h2

PLR in the real world

HTTP/1.1 Prioritisation

)
/index.html

/main.css

/app.js

/image-1.jpg

/image-2.jpg

Time

Delay

HTTP/2 Prioritisation

)
/index.html

Time

/main.css

/app.js

/image-1.jpg

/image-2.jpg

/hero.jpg
Stream ID: 4
Weight: 16

/data.json
Stream ID: 7
Weight: 16

/app.js
Stream ID: 2
Weight: 64

/icon.svg
Stream ID: 9
Weight: 16

/main.css
Stream ID: 1
Weight: 128

HTTP/2 Prioritisation

Header compression: HPACK

:method: GET

:scheme: https

:host: next.ft.com

:path: /main.css

Cookie

FTUserTrack=213.216.148.1.1432658066641353;
SIVISITOR=Mi45NzIuMjIzMDc2NzM2NTU0NS4x
NDMyNzI0MTE2NDc4LjZmM2U4YmFj*;
__gads=ID=0d68ab230d47cf5f:T=1432724114:S=
ALNI_MZykGfLfvkhayKSL3LXYT9YQNtRjg;
cookieconsent=accepted;

&
Client

Header compression: HPACK

2 :method: GET

3 :scheme: https

3 :host: next.ft.com

4 :path: /main.css

64 Cookie

FTUserTrack=213.216.148.1.1432658066
641353;
SIVISITOR=Mi45NzIuMjIzMDc2NzM2N
TU0NS4xNDMyNzI0MTE2NDc4LjZm
M2U4YmFj*;
__gads=ID=0d68ab230d47cf5f:T=1432

&
Client

2 :method: GET

3 :scheme: https

4 :host: next.ft.com

5 :path: /main.css

64 Cookie

FTUserTrack=213.216.148.1.1432658066
641353;
SIVISITOR=Mi45NzIuMjIzMDc2NzM2N
TU0NS4xNDMyNzI0MTE2NDc4LjZm
M2U4YmFj*;
__gads=ID=0d68ab230d47cf5f:T=1432

Static table

Dynamic table

Header compression: HPACK

2

3

4 `

5 :path: /app.js

64

65 X-Custom-Header TRUE

&
Client

Push

$&
Client Server

HTTP/2 connection

 GET /index.html

 GET /main.css

Push

$&
Client Server

 GET /index.html

 PUSH_PROMISE /imain.css '

 200 OK /index.html

HTTP/2 connection

Push

$&
Client Server

 GET /index.html

 PUSH_PROMISE /imain.css '

 RST_STREAM /main.css

HTTP/2 connection

No push – first view

No push – repeat view

Push – first view

Pushed

Push – repeat view

Pushed

Severs

https://github.com/http2/http2-spec/wiki/Implementations

Server Version Push

NGINX 1.9.5+ No

Apache 2.4.17+ Yes

IIS 10 Yes

Jetty 9.3+ Yes

CDNs

https://istlsfastyet.com/

Provider Version Push

Akamai Yes No

CloudFlare Yes No

KeyCDN Yes No

MaxCDN No No

Fastly No No

AWS CloudFront No No

HTTP/1.1 Deployment Strategy

• Ultimately, we want to deliver content fast — and we
don’t want users to re-download assets too frequently.

• A common deployment strategy is quite simple:

— Deploy changes with unique file names to invalidate cache, 
— Inline the scripts directly in HTML to avoid HTTP requests, 
— Load versioned scripts using <script> tags in HTML,  
— Alternatively, serve all assets bundled into one versioned file.

• A better way is to use a “scout” approach.

HTTP/1.1 Deployment Strategy

• A better way is to use a “scout” approach.

• JavaScript (scout.js): 
module.exports = {  
 baseUrl : 'https://mysite.com/static/',  
 resources : {  
 // 1–2 referenced files, have long cache times  
 vendor : ‘vendor-d41d8cd98f.js’,  
 application : 'application-a32e3ec23d.js'  
 }  
};  
 

• JavaScript (scout.js): 
module.exports = {  
 baseUrl : 'https://mysite.com/static/',  
 resources : {  
 // 1–2 referenced files, have long cache times  
 vendor : ‘vendor-d41d8cd98f.js’,  
 application : 'application-a32e3ec23d.js'  
 }  
};  
 

• scout.js exists to keep assets highly cacheable and 
prompt changes to these assets to take effect quickly.

• Hence, the scout file (or HTML) needs a short cache time. 
Assets updated → scout eventually triggers an update.

“ Why a “scout” approach instead of
loading the versioned files using
<script> tags directly in HTML?  
You can deploy changes in CSS and
JavaScript without requiring a re-
deploy of all HTML pages, so there is
no need to re-download HTML!

— Rebecca Murphy

HTTP/2 Deployment StrategyHTTP/1.1 Deployment Strategy

• “Scout” approach works well and is widely spread,  
but it raises issues regarding first visit vs. repeat visits:

— Should the scout load many small files or few large files? 
— First visitors have a slow experience due to HTTP requests, 
— Repeat users request large files with every minor change, 
— Even if nothing changes, repeat users request the scout.

• With HTTP/2, HTTP-requests are cheap. 
Use the “scout” approach with many small files!

“ Packaging (still) matters because
there are issues with sending many
small JavaScript files to the browser.
First, the compression of a large
package could benefit from dictionary
reuse, whereas small separate
packages will not.

— Yoav Weiss 
https://aerotwist.com/blog/when-everything-is-important-nothing-is/

Problem: frameworks typically have

https://aerotwist.com/blog/when-everything-is-important-nothing-is/

“ Secondly, browsers have not yet been
optimized for such workflows. For
example, Chrome will trigger inter-
process communications (IPCs)
linear to the number of resources, so
including hundreds of resources will
have browser runtime costs.

— Yoav Weiss 
https://aerotwist.com/blog/when-everything-is-important-nothing-is/

https://aerotwist.com/blog/when-everything-is-important-nothing-is/

HTTP/2 Deployment StrategyHTTP/1.1 Deployment Strategy

• “Scout” approach works well and is widely spread,  
but it raises issues regarding first visit vs. repeat visits:

— Should the scout load many small files or few large files? 
— First visitors have a slow experience due to HTTP requests, 
— Repeat users request large files with every minor change, 
— Even if nothing changes, repeat users request the scout.

• With HTTP/2, HTTP-requests are cheap. 
Use the “scout” approach with many small files!

HTTP/2 Deployment StrategyHTTP/1.1 Deployment Strategy

• “Scout” approach works well and is widely spread,  
but it raises issues regarding first visit vs. repeat visits:

— Should the scout load many small files or few large files? 
— First visitors have a slow experience due to HTTP requests, 
— Repeat users request large files with every minor change, 
— Even if nothing changes, repeat users request the scout.

• With HTTP/2, HTTP-requests are cheap. 
Use the “scout” approach with max. 10 packages.

Bundle by frequency of change!

Libraries Utilities Application

Bundle by frequency of change!

Libraries Utilities Application

Rarely change Frequent change

Bundle by frequency of change!

Libraries Utilities Application

Rarely change Frequent change

(
core.js

(
app.js

HTTP/1.1 Deployment StrategyHTTP/2 Deployment Strategy

• With HTTP/2, HTTP-requests are cheap. 
Use the “scout” approach with many small files!

• Inlining critical CSS is an overhead in HTTP/2 world.  
Server push is helpful but slow. Load CSS in series.

HTTP/1.1 Deployment StrategyHTTP/2 Deployment Strategy

• Inlining critical CSS is an overhead in HTTP/2 world.  
Server push is helpful but slow. Load CSS in series.

<head>  
 <link rel="stylesheet" href="combined.min.css">  
</head>  
<body>  
 …content…  
</body>

• We’ve moved away from…

HTTP/1.1 Deployment StrategyHTTP/2 Deployment Strategy

• Inlining critical CSS is an overhead in HTTP/2 world.  
Server push is helpful but slow. Load CSS in series.

<head>  
 <style> /* Critical CSS styles */ </style>  
 <link rel="preload" href=“full.css" as="style"  
 onload=“this.rel=‘stylesheet'">  
 <noscript><link rel="stylesheet" href="full.css"></noscript>  
 <script>  
 /*! loadCSS. [c] 2017 Filament Group, Inc. MIT License */  
 (function(){ … }());  
 </script>  
</head>

• …towards:

HTTP/1.1 Deployment StrategyHTTP/2 Deployment Strategy

<head>  
<!-- #if expr="$HTTP_COOKIE=/fullcss\=true/" --> 
 <link rel="stylesheet" href="full.css">  
<!-- #else -->  
 <style>  
 /* Critical CSS styles, plus: */  
 article, .comments, aside, footer { display: none; }  
 </style>  
 <script>  
 loadCSS("full.css"); /* or rest.css + critical.css */  
 </script>  
 <noscript><link rel="stylesheet" href="full.css"></noscript>  
<!-- #endif -->  
</head>

• …or alternatively:

HTTP/1.1 Deployment StrategyHTTP/2 Deployment Strategy

• A simple, “recommended” “HTTP/2” way:

<head>  
 <link rel="stylesheet" href="site-header.css">  
 <link rel="stylesheet" href="article.css">  
 <link rel="stylesheet" href="comments.css">  
 <link rel="stylesheet" href="sidebar.css">  
 <link rel="stylesheet" href="site-footer.css">  
</head>  
<body>  
 …content…  
</body>

HTTP/1.1 Deployment StrategyHTTP/2 Deployment Strategy

• But “progressive CSS” way is even better:

<head>…</head>  
<body>  
 <!-- HTTP/2 push critical or inline; whatever faster --> 
 <link rel="stylesheet" href="site-header.css">  
 <header>…</header>  
 
 <link rel="stylesheet" href="article.css">  
 <main>…</main>  
 
 <link rel="stylesheet" href="comments.css">  
 <section class="comments">…</section>  
 …content…  
</body>

HTTP/1.1 Deployment StrategyHTTP/2 Deployment Strategy

• Multi-Stage CSS loading removes the need for  
critical CSS, and provides sequential rendering.

• Browser behavior supports the technique; 
browsers block rendering when necessary.

• Render dependency tree with CSS custom 
properties can control how <link>’s are injected.

HTTP/2 Deployment StrategyGetting Infrastructure Right

• Offload static and dynamic content to CDNs, cache with
Service Workers, then enhance with minimal JS.

— Articles/comments are initially stored in Markdown, 
— Markup is generated once (table of contents, summary etc.),  
— Placeholders/skeleton screens populated into the markup,  
— All static assets are served from a service worker / CDN, 
— Minimal JavaScript modifies placeholders in the background.

• Caching: assets cacheable either for a very short time (if
they’re likely to change) or indefinitely (if they’re static).

CSS and the first meaningful paint @patrickhamann

 1 <!DOCTYPE html>
 2 <html lang="en">
 3 <head>
 4 <meta charset="UTF-8">
 5 <title>FT.com</title>
 6
 7 <link rel="stylesheet" href="main.css" />
 8
 9 Other head elements...
10
11 </head>
12 <body>
13
14 Content ...
15
16 </body>
17 </html>

HTTP/2 Strategy

• A switch to HTTP/2 isn’t just a switch — both existing
content and deployment strategy have to be revised:

— Prepare the infrastructure: HTTPS, servers and CDNs, 
— In front-end, make use of multiplexing and parallelism, 
— Load CSS progressively, grouping CSS in separate files, 
— Load versioned scripts via scout with logically grouped files, 
— Prevent and monitor mixed content issues and warnings,  
— Keep in mind server push to serve critical content faster,  
— Combine HTTP/2 with service workers to maximize perf.

Resource hints allow developers to
provide some hints to the browser to
prompt the download of assets, or
rendering, silently in the background.

— <link rel="prefetch" href="(url)">  
 

tells browsers to fetch a resource that will
probably be needed for the next navigation
(low priority).

Resource hints allow developers to
provide some hints to the browser to
prompt the download of assets, or
rendering, silently in the background.

— <link rel="prerender" href="(url)">  

— <link rel="prefetch" href="(url)">  
 

tells browsers to fetch a resource that will
probably be needed for the next navigation
(low priority).

— <link rel="prerender" href="(url)">  
 

tells browsers to render the specified page in
the background (low priority).

— <link rel="prerender" href="(url)">  
 

tells browsers to render the specified page in
the background (low priority).

— <link rel="dns-prefetch" href="(url)">  
 

gives a hint to the browser to perform a DNS
lookup in the background (low priority).

— <link rel="dns-prefetch" href="(url)">  
 

gives a hint to the browser to perform a DNS
lookup in the background (low priority).

— <link rel= "preconnect" href="(url)">  
 

gives a hint to the browser to initiate the
connection handshake (DNS, TCP, TLS) in
the background (low priority).

— <link rel= "preconnect" href="(url)">  
 

gives a hint to the browser to initiate the
connection handshake (DNS, TCP, TLS) in
the background (low priority).

— <link rel= "preload" href="(url)" as="(type)">  
 

gives a hint to the browser to prefetch resources and
set the right resource priority for loading assets.

The basic use case for preload is
loading of late-discovered critical
resources. If we omit the as attribute,
it’s just an XHR request, fetching
with a fairly low priority.

<link rel= "preload"  
 href="late-discovered.js"  
 as="script">  
 
 
 

The as attribute tells the browser what it is
downloading. E.g. audio, font, image,
script, style, track, video, document.

<link rel= "preload"  
 href="font.woff2”  
 type="font/woff2”  
 crossorigin  
 as="font">  
 
 
 

E.g. you could include preload directives
for web fonts that you know you’ll need
for rendering of the page.

var preload = document.createElement("link");  
link.href= "myscript.js"  
link.rel= "preload";  
link.as= "script";  
document.head.appendChild(link);

E.g. you could request the fetching of a
resource because you know you’ll need it, but
you don’t want to execute it yet.

var script = document.createElement("script");  
script.src= "myscript.js"  
document.body.appendChild(script);

E.g. you could request the fetching of a
resource because you know you’ll need it, but
you don’t want to execute it yet.

<link rel= "preload" as="image"  
 href="map.png" media="(max-width: 600px)">  
<link rel= "preload" as="script"  
 href="map.js" media="(min-width: 601px)">

E.g. you could load assets conditionally  
(e.g. a static map on smaller screens, and an
interactive map on large screens).

Front-End Performance Checklist 2017
1

 
Below you’ll find an overview of the front-end performance issues you might
need to consider to ensure that your response times are fast and smooth. 

Get ready and set goals 

☐ Be 20% faster than your fastest competitor. 
Measure “start rendering” (WebPageTest) and “first meaningful paint” times (Lighthouse) on
a Moto G, a mid-range Samsung device and a good middle-of-the-road device like the Nexus 4,
preferably in an open device lab — on regular 3G, 4G and Wi-Fi connections. Collect data, set
up a spreadsheet, shave off 20%, and set up your goals (performance budgets). 

☐ Share the checklist with your colleagues. 
Make sure that the checklist is familiar to every member of your team. Every decision has
performance implications, and your project would hugely benefit from front-end developers
being actively involved. Map design decisions against the performance budget.

☐ 100-millisecond response time, 60 frames per second. 
Each frame of animation should complete in less than 16 milliseconds — ideally 10
milliseconds, thereby achieving 60 frames per second (1 second ÷ 60 = 16.6 milliseconds). Be
optimistic and use the idle time wisely. For high pressure points like animation, it’s best to do
nothing else where you can and the absolute minimum where you can’t. 

☐ First meaningful paint under 1.25 seconds, SpeedIndex under 1000. 
The goal is a start rendering time under 1 second and a SpeedIndex value of under 1000
milliseconds (on a fast connection). For the first meaningful paint, count on 1250 milliseconds
at most. For mobile, a start rendering time under 3 seconds for 3G on a mobile device is
acceptable. Put your effort into getting these values as low as possible. 
 
 
 

Curated by Vitaly Friedman. Permanent URL: www.smashed.by/perf-checklist. December 21, 2016.

Define the environment

☐ Choose and set up your build tools. 
Don’t pay much attention to what’s supposedly cool. As long as you are getting results fast and
you have no issues maintaining your build process, you’re doing just fine. 

☐ Progressive enhancement. 
Design and build the core experience first, and then enhance the experience with advanced
features for capable browsers, creating resilient experiences. If your website runs fast on a
slow machine with a poor screen in a poor browser on a suboptimal network, then it will only
run faster on a fast machine with a good browser on a decent network. 

☐ Pick your battles wisely: Angular, React, Ember and co. 
Favor a framework that enables server-side rendering. Be sure to measure boot times in
server- and client-rendered modes on mobile devices before settling on a framework.
Understand the nuts and bolts of the framework you’ll be relying on. When building web
apps, look into the PRPL pattern and application shell architecture.

☐ Google’s AMP or Facebook’s Instant Articles? 
You can achieve good performance without them, but AMP does provide a solid performance
framework, with a free CDN, while Instant Articles will boost your performance on Facebook.
You could build progressive web AMPs, too.

☐ Choose your CDN wisely. 
Depending on how much dynamic data you have, you might be able to “outsource” some part
of the content to a static site generator, push it to a CDN and serve a static version from it,
thus avoiding database requests (JAMStack). Double-check that your CDN performs content
compression and conversion, smart HTTP/2 delivery and edge-side includes for you. 

Build optimizations

☐ Set your priorities right. 
Run an inventory on all of your assets (JavaScript, images, fonts, third-party scripts,
“expensive” modules on the page), and break them down in groups. Define the basic core
experience (fully accessible core content for legacy browsers), the enhanced experience (an
enriched, full experience for capable browsers) and the extras (assets that aren’t absolutely
required and that can be lazy-loaded, such as fonts, carousel scripts, video players, social
media buttons). 

☐ Use the “cutting-the-mustard” technique. 
Send the core experience to legacy browsers and an enhanced experience to modern browsers.
Be strict in the loading of assets: load the core immediately, enhancements on
DomContentLoaded and extras on the Load event.

☐ Consider micro-optimizations and progressive booting. 
You might need some time to initialize the app before you can render the page. Your goal: Use
server-side rendering to get a quick first meaningful paint, but also include some minimal
JavaScript to keep the time-to-interactive close to the first meaningful paint. Then, either on
demand or as time allows, boot non-essential parts of the app. Display skeleton screens
instead of loading indicators. Use tree-shaking, code-splitting and an ahead-of-time compiler
to offload some of the client-side rendering to the server. 

☐ Are HTTP cache headers set properly? 
Double-check that expires, cache-control, max-age and other HTTP cache headers are set
properly. In general, resources should be cacheable either for a very short time (if they are
likely to change) or indefinitely (if they are static). Use cache-control: immutable, designed for
fingerprinted static resources, to avoid revalidation. 

☐ Limit third-party libraries, and load JavaScript asynchronously. 
As developers, we have to explicitly tell the browser not to wait and to start rendering the page
with the defer and async attributes in HTML. If you don’t have to worry much about IE 9 and
below, then prefer defer to async; otherwise, use async. Use static social-sharing buttons and
static links to interactive maps, instead of relying on third-party libraries. 

☐ Are images properly optimized?  
Optimize images. As far as possible, use responsive images with srcset, sizes and the <picture>
element. Make use of the WebP format, by serving WebP images with <picture> and a JPEG
fallback or by using content negotiation (using Accept headers). For critical images, use
progressive JPEGs and blur out unnecessary parts (by applying a Gaussian blur filter). 

☐ Are web fonts optimized?  
Chances are high that the web fonts you are serving include glyphs and extra features that
aren’t really being used. Subset the fonts. Prefer WOFF2 and use WOFF and OTF as fallbacks.
Display content in the fallback fonts right away, load fonts asynchronously (e.g. loadCSS), then
switch the fonts, in that order. FOUT is better than FOIT. Consider locally installed OS fonts as
well. 
 

☐ Push critical CSS quickly. 
Collect all of the CSS required to start rendering the first visible portion of the page (“critical
CSS” or “above-the-fold” CSS), and add it inline in the <head> of the page. Consider the
conditional inlining approach. Alternatively, use HTTP/2 server push, but then you might
need to create a cache-aware HTTP/2 server-push mechanism. 

☐ Use tree-shaking and code-splitting to reduce payloads. 
Tree-shaking is a way to clean up your build process by only including code that is actually
used in production. Code-splitting splits your code base into “chunks” that are loaded on
demand. Make use of both via WebPack. Also, use Rollup as a JavaScript module bundler. 

☐ Improve rendering performance. 
Isolate expensive components with CSS containment. Make sure that there is no lag when
scrolling the page or when an element is animated, and that you’re consistently hitting 60
frames per second. If that’s not possible, then making the frames per second consistent is at
least preferable to a mixed range of 60 to 15. Use CSS will-change to inform the browser about
which elements will change.

☐ Warm up the connection to speed up delivery. 
Use skeleton screens, and lazy-load all expensive components, such as fonts, JavaScript,
carousels, videos and iframes. Use resource hints to save time on dns-prefetch, preconnect,
prefetch, pretender and preload.

HTTP/2

☐ Get ready for HTTP/2.  
HTTP/2 is supported very well and offers a performance boost. It isn’t going anywhere, and in
most cases, you’re better off with the latter. The downsides are that you’ll have to migrate to
HTTPS, and depending on how large your HTTP/1.1 user base is (users on legacy OS’ or with
legacy browsers), you’ll have to send different builds, which would require you to adapt a
different build process.  

☐ Properly deploy HTTP/2. 
You need to find a fine balance between packaging modules and loading many small modules
in parallel. Break down your entire interface into many small modules; then group, compress
and bundle them. Sending around 10 packages seems like a decent compromise (and isn’t too
bad for legacy browsers). Experiment and measure to find the right balance for your website. 

☐ Make sure the security on your server is bulletproof. 
Double-check that your security headers are set properly, eliminate known vulnerabilities,

and check your certificate. Make sure that all external plugins and tracking scripts are loaded
via HTTPS, that cross-site scripting isn’t possible and that both HTTP Strict Transport
Security headers and Content Security Policy headers are properly set. 

☐ Do your servers and CDNs support HTTP/2? 
Different servers and CDNs are probably going to support HTTP/2 differently. Use Is TLS Fast
Yet? to check your options, or quickly look up how your servers are performing and which
features you can expect to be supported. 

☐ Is Brotli or Zopfli compression in use? 
Brotli, a new lossless data format, is widely supported in Chrome, Firefox and Opera. It’s more
effective than Gzip and Deflate (HTTPS only). The catch: Brotli doesn’t come preinstalled on
most servers today, and it’s not easy to set up without self-compiling NGINX or Ubuntu.
Alternatively, you can look into using Zopfli on resources that don’t change much — it encodes
data to Deflate, Gzip and Zlib formats and is designed to be compressed once and downloaded
many times. 

☐ Is OCSP stapling enabled?  
By enabling OCSP stapling on your server, you can speed up TLS handshakes. The OCSP
protocol does not require the browser to spend time downloading and then searching a list for
certificate information, hence reducing the time required for a handshake.  

☐ Have you adopted IPv6 yet?  
Studies show that IPv6 makes websites 10 to 15% faster due to neighbor discovery (NDP) and
route optimization. Update the DNS for IPv6 to stay bulletproof for the future. Just make sure
that dual-stack support is provided across the network — it allows IPv6 and IPv4 to run
simultaneously alongside each other. After all, IPv6 is not backwards-compatible. 

☐ Is HPACK compression in use? 
If you’re using HTTP/2, double-check that your servers implement HPACK compression for
HTTP response headers to reduce unnecessary overhead. Because HTTP/2 servers are
relatively new, they may not fully support the specification, with HPACK being an example.
H2spec is a great (if very technically detailed) tool to check that. 

☐ Are service workers being used for caching and network fallbacks? 
No performance optimization over a network can be faster than a locally stored cache on the
user’s machine. If your website is running over HTTPS, then cache static assets in a service
worker cache, and store offline fallbacks (or even offline pages) and retrieve them from the
user’s machine, rather than going to the network. 

Test and monitor 

☐ Monitor mixed-content warnings. 
If you’ve recently migrated from HTTP to HTTPS, make sure to monitor both active and
passive mixed-content warnings with tools such as Report-URI.io. You can also use Mixed
Content Scan to scan your HTTPS-enabled website for mixed content. 

☐ Is your development workflow in DevTools optimized? 
Pick a debugging tool and click on every single button. Make sure you understand how to
analyze rendering performance and console output, and debug JavaScript and edit CSS styles. 

☐ Have you tested in proxy browsers and legacy browsers? 
Testing in Chrome and Firefox is not enough. Look into how your website works in proxy
browsers and legacy browsers (including UC Browser and Opera Mini). Measure average
Internet speed in your countries of interest to avoid big surprises. Test with network
throttling, and emulate a high-DPI device. BrowserStack is fantastic, but test on real devices
as well. 

☐ Is continuous monitoring set up? 
Having a private instance of WebPagetest is always beneficial for quick and unlimited tests.
Set up continuous monitoring of performance budgets with automatic alerts. Set your own
user-timing marks to measure and monitor business-specific metrics. Look into
SpeedTracker, Lighthouse and Calibre. 

 
Quick wins
 
This list is quite comprehensive, and completing all of the optimizations might take quite a while.
So if you had just 1 hour to get significant improvements, what would you do? Let’s boil it all
down to 10 low-hanging fruits. Obviously, before you start and once you finish, measure results,
including start rendering time and SpeedIndex on 3G and cable connections.

1. Your goal is a start rendering time under 1 second on cable and 3 seconds on 3G, and a
SpeedIndex value under 1000. Optimize for start rendering time and time-to-interactive.

2. Prepare critical CSS for your main templates, and include it in the <head> of the page. (Your
budget is 14 KB.)

3. Defer and lazy-load as many scripts as possible, both your own and third-party scripts —
especially social media buttons, video players and expensive JavaScript.

4. Add resource hints to speed up delivery with faster dns-lookup, preconnect, prefetch, preload and

prerender.
5. Subset web fonts, and load them asynchronously (or just switch to system fonts instead).
6. Optimize images, and consider using WebP for critical pages (such as landing pages).
7. Check that HTTP cache headers and security headers are set properly.
8. Enable Brotli or Zopfli compression on the server. (If that’s not possible, don’t forget to enable

Gzip compression.)
9. If HTTP/2 is available, enable HPACK compression, and start monitoring mixed-content

warnings. If you’re running over LTS, also enable OCSP stapling.
10. If possible, cache assets such as fonts, styles, JavaScript and images — actually, as much as

possible! — in a service worker cache. 

Huge thanks to Anselm Hannemann, Patrick Hamann, Addy Osmani, Andy Davies, Tim Kadlec, Yoav Weiss,
Rey Bango, Mariana Peralta, Jacob Groß, Tim Swalling, Bob Visser, Kev Adamson and Rodney Rehm for
reviewing, as well as our fantastic community for sharing insights for everybody to use. You are truly
smashing.

Big Bang
Redesign:
Smashing
Magazine’s
Relaunch

Problem.

