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Abstract—Removing the undesired moiré patterns from images capturing the contents displayed on screens is of increasing research
interest, as the need for recording and sharing the instant information conveyed by the screens is growing. Previous demoiréing
methods provide limited investigations into the formation process of moiré patterns to exploit moiré-specific priors for guiding the
learning of demoiréing models. In this paper, we investigate the moiré pattern formation process from the perspective of signal aliasing,
and correspondingly propose a coarse-to-fine disentangling demoiréing framework. In this framework, we first disentangle the moiré
pattern layer and the clean image with alleviated ill-posedness based on the derivation of our moiré image formation model. Then we
refine the demoiréing results exploiting both the frequency domain features and edge attention, considering moiré patterns’ property on
spectrum distribution and edge intensity revealed in our aliasing based analysis. Experiments on several datasets show that the
proposed method performs favorably against state-of-the-art methods. Besides, the proposed method is validated to adapt well to
different data sources and scales, especially on the high-resolution moiré images.

Index Terms—Moiré pattern, signal aliasing, layer separation.

1 INTRODUCTION

OWADAYS, electronic screens have become a ubiqui-
Ntous medium for conveying visual information from
computers to users. To record and share information in-
stantly, screen capture via softwares is a popular choice, but
the control system of the screens is often not available to
observers, thus capturing the contents presented on screens
with portable cameras like smartphones is often the case in
daily life. However, such recaptured screen images tend to
be visually degraded by the moiré pattern artifacts as shown
in Figure 1. Moiré patterns originate from the aliasing effect
between the grids of the camera sensor array and screen
sub-pixels in recaptured screen images, and their existence
across the whole image plane severely deteriorates the
image’s visual quality. Therefore, screen image demoiréing,
which indicates the removal of moiré patterns for recap-
tured screen images, is of great practical interest.

Demoiréing is challenging due to moiré patterns’ com-
plex and diversified structures, and the complicated factors
influencing the pattern formation. Specifically, the pattern
within an image often spans across a wide scale range
with spatially-varying regional color distortions as shown in
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Fig. 1: A typical scenario of capturing the content on screens
with smartphones. The blue dashed boxes emphasize moiré
pattern’s spatially-varying structure. With the proposed
demoiréing framework, the moiré pattern in the recaptured
screen image can be eliminated as shown on the right.

Figure 1, making it hard to describe the pattern with several
typical degradation categories as in deraining [32]. Besides,
different from the physical model based image restoration
tasks like dehazing [16], the moiré pattern model is closely
related to cameras’ intrinsic and extrinsic parameters, which
can hardly be explicitly expressed using an analytical model
with a handful of variables. Early attempts for recaptured
screen image demoiréing include both anti-aliasing optical
filters [12], and post-processing based algorithms based
on assumptions of moiré pattern distribution like gradient
sparsity [8], [28]. However, these efforts achieve limited
success because anti-aliasing low-pass filters tend to induce
obvious over-smoothing artifacts, and signal processing
based optimization have limited modeling capability for
diversified moiré patterns.

Recent methods start to exploit deep learning techniques
to ease the difficulty in optimization in a data-driven man-



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

’ Coarse

fine ™

=

Ne

|
|
|
1
'
1
'
|
1
'
1
|

—

—

i—
I

Za )
Input Moiré Image Iy

Dual-domain Moiré
Residue Removal

Ng

Channel-wise Edge
Attention Inference e

Output Clean Image i

i
1
1
1
1
1
1
!

v
s

Multi-scale Feature Aggregation

Supervision

1
'
1
|
1
1
'
1
|
1
1
1
|
'

Moiré Pattern Layer M¢

\
1
'
1
1
'
1
|
1
1
1
|
1
1
1
|
'
1
1
1
|
|
1

===>Normalized clean edges

Fig. 2: Illustration of the proposed coarse-to-fine disentangling demoiréing framework, consisting of two stages: The coarse
layer disentanglement stage that predicts a clean content layer and a moiré pattern layer by multi-scale feature aggregation,
and the refinement stage featuring dual-domain residue removal and edge attention.

ner. Considering demoiréing as an image-to-image trans-
lation between a moiré mixture image and a corresponding
clean one, end-to-end learning based demoiréing models are
proposed and trained with paired images, featuring differ-
ent network designs such as multi-resolution processing [22]
or frequency based deep feature representations [9], [36].
Our preliminary work [3], [4] also exploit several observa-
tions on pattern appearance to design specific demoiréing
modules. In [4], we designed individual modules consid-
ering the multiple pattern scale within a moiré image,
the channel-wise edge difference, and pattern appearance
attribute classification. In [3], we designed a frequency
domain detail compensation module given the periodicity
of high-frequency moiré patterns, after the downsampling
based global demoiréing that reduces computational costs
and enlarges the network’s receptive field. Though these
methods have improved demoiréing performance on bench-
mark datasets, their model designs are generally intuitive
based on isolated observations or empirical models, without
investigating the aliasing nature behind such observations
or deriving an interpretable solution from an explicit moiré
image formation model.

In this paper, we first look into the formation of moiré-
contaminated recaptured screen images from the perspec-
tive of signal aliasing, and accordingly propose a coarse-
to-fine disentangling demoiréing framework as shown in
Figure 2. Specifically, we formulate the moiré image forma-
tion model as a combination of the signal aliasing effect and
camera imaging process, and then conduct disentanglement
based on a coarse layered model derived from the formu-
lated model, which alleviates the ill-posedness induced by
the image signal processing (ISP) pipeline. To compensate
for the inaccuracy of the coarse disentanglement, we further
conduct dual-domain refinement, exploiting moiré patterns’
frequency domain distribution to eliminate residues and
inferring edge attention to complement image details. Com-
pared to our preliminary works [3], [4], our new framework
has a different coarse-to-fine integral framework based on
our moiré image formation model, and a new layer disen-
tanglement module for coarse but less under-constrained
demoiréing. Meanwhile, we also inherit the effective de-

signs from these works, including the multi-scale feature
aggregation [4], channel-wise edge cues [4] and frequency
domain features [3], to build the complete framework.

The extended contributions in this paper can be summa-
rized as follows: First, we investigate the formation model
for recaptured screen moiré images based on the aliasing
effect, and propose a coarse-to-fine demoiréing framework
according to the derivation of the formation model. Second,
we propose a new layer disentanglement module exploiting
the self-reconstruction constraint and low-rank constraint,
for predicting the moiré pattern layer and the clean image
layer simultaneously with alleviated ill-posedness. Third,
besides more comprehensive experimental comparisons, we
validate the proposed framework’s generalization capability
across different training data scale and data sources, and
discuss about the model efficiency for high-resolution inputs
and moiré pattern extraction by disentanglement.

2 RELATED WORK

As a common degradation in digital images, moiré patterns
have been widely studied. In terms of the interference
source in the image scene, the moiré-contaminated images
can be categorized into screen moiré images and textured
moiré images, originating from sub-pixel layout of LCD
screens and natural fine-grained textures, respectively. The
moiré patterns in textured images only mingle with regions
presenting high spatial frequency. In contrast, the patterns
in recaptured screen images can emerge across the entire
image with more spatially-varying structures and a larger
scale range regardless of the image structure shown on the
screen. In this paper, we focus on the removal of moiré
patterns from screens.

Early practices on demoiréing focused on improving the
imaging process of cameras, including efforts on optical
anti-aliasing filters [12], [15], [18] and improving the sam-
pling of CFA via interpolation [11], [14]. However, such
device-focused pre-processing methods either deteriorate
image’s visual quality during filtering out high-frequency
components to be captured, or pose challenges to common
camera image signal processing pipeline.
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Fig. 3: The formation process of moiré images alongside the imaging pipeline. The lower left corner illustrates the false
pattern in signal aliasing (Equation 1). The dashed arrows reveal the relationship between moiré image formation and the

demoiréing solution.

Post-processing methods [8], [17], [19], [21], [27], [28]
were proposed for removing specific type of moiré pat-
terns like monochrome patterns or patterns in scanned
images [19], [21], and assumptions on pattern characteris-
tics were also proposed to constrain the optimization pro-
cess, such as pattern sparsity and image low-rank property
for textured moiré images [8], [28]. However, these signal
processing based methods tend to achieve limited success
when the assumptions do not hold, and suffer from high
computation cost for optimization.

Deep learning has recently facilitated demoiréing meth-
ods better modeling various appearances of moiré pat-
terns with paired training data, and such learning based
demoiréing mainly focuses on the recaptured screen images
because it is hard to provide moiré-free ground truth images
for the textured moiré images. Sun et al. [22] proposed a
multi-scale demoiréing network along with the first bench-
mark dataset that captures real LCD screens for training and
evaluating demoiréing models. He et al. [4] made additional
annotations on the data in [22] for enhancing demoiréing
model. Yue ef al. [31] proposed a multiplicative operation
based network to purse simultaneous moiré pattern removal
and image brightness improvement. Zheng et al. [36], [37]
and He et al. [3] further exploited DCT domain priors for
screen image demoiréing to boost performance, while Liu
et al. [9] exploited the wavelet domain features to sepa-
rate the frequencies of moiré patterns. Experiments also
demonstrated that frequency based demoiréing can benefit
the detail restoration in high-resolution screen images [3].
Recently, Liu et al. [10] attempted to introduce additional
input of a focused-defocused image pair for demoiréing
both texture and screen images with self-supervision.

Apart from those real data based methods, Liu et al.
[7] and Yuan et al. [29], [30] respectively proposed various
network structures for demoiréing on different synthetic
data that simulate the formation of moiré patterns. These
learning based methods have shown promising results for
demoiréing by exploiting either spatial domain proper-
ties or frequency domain features, while our preliminary
work [3] adopt a frequency based module to preserve the
fine details in high-resolution images after demoiréing the
downsampled image in sSRGB space. In this paper, by inves-

tigating the formation process of moiré patterns alongside
the in-camera imaging pipeline, we propose a coarse-to-
fine disentangling demoiréing framework for screen images
integrating the edge cues and the dual-domain features for
refining demoiréing results.

3 MOIRE IMAGE FORMATION: A DEEPER LOOK
INTO ALIASING

Previous demoiréing works [4], [22], [36] attributed the
moiré patterns in recaptured screen images to the screen-
camera interference, yet more in-depth analysis on the alias-
ing phenomenon behind such interference is missing in their
methodology, with the aliasing-related pattern properties
unexplored. In this section, we investigate the in-camera for-
mation model of moiré patterns by the clue of aliasing. The
pattern formation model guides our methodology, in terms
of the overall demoiréing pipeline, which is derived as the
inverse process of the model, and the module components
exploiting the structural and statistical pattern properties
revealed by the model.

3.1

Aliasing in signals. For signals, aliasing occurs when the
sampling rate is not high enough to provide sufficient sam-
pled points for faithful reconstruction. As the Nyquist’s the-
orem reveals, only the components with frequencies below
half the sampling rate can be reconstructed exactly, while
frequencies above that threshold become aliased, turning
into lower frequencies according to the sampling rate [13].
The aliased signal can be thereby formulated as:

R(O,f)= OxF +A(OxFy, f), @

where R (O, f) represents the reconstructed aliased signal
after sampling, given the original signal O and the sampling
frequency f. F| and F}; denote the low-pass and high-pass
filters whose cut-off frequencies are both f/2, dividing the
signal into low-frequency components O * F)| and high-
frequency components O * Fr. Thus A(O * F}, f) represents
the false components caused by the aliasing, where one fre-
quency is mapped to another lower one as shown in Figure

Aliasing-based moiré image analysis
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3. The mapping is a periodic function for one-dimensional
signals!, but is hard to be expanded analytically for two-
dimensional images.

Aliasing based moiré image formation model. Above we
only describe the aliasing for an arbitrary 1-D signal, but
for moiré-degraded images, there are many more factors in
its formation besides the aliasing in the sensor sampling.
To comprehensively describe how the screen turns into the
recaptured image, we further combine it with the imaging
process.

Before sampling, the pixelated screen content S first goes
trough a series of transforms 7 (-) according to camera pa-
rameters, and turns into the actual screen content O arriving
at the sensor array as:

0="T(S). 2)

Note that here we use bold upper case to notate the variables
in matrix format, to distinguish them from 1-D signals in
Equation 1. Considering the aliasing process in Equation 1,
we can formulate the sensor sampling for O as follows:

R:R(O,fc):O*FJ,+A(O*FTafc)v (3)

where R denotes the produced raw image, f. denotes the
sensor array’s spatial frequency. Similar to Equation 1, Fy
and F| denote two-dimensional filters with Nyquist cut-off
frequency f./2. As shown in Figure 3, the moiré patterns are
already induced to the recaptured screen image in the raw
image, and such a linear image needs to be demosaicked
and adjusted for display by the image signal processing
(ISP) pipeline. Thus the final moiré-contaminated sRGB
image should be further expressed as:

I,y = ZSP(R) = ISP (O F, + A), )

where I,/ denotes the recaptured screen image with moiré
patterns, ZSP(-) denotes the in-camera single processing
operation, and A represents the initial moiré pattern term
A(O x F4, f.) in Equation 3. The formation process of
moiré images in Equation 2, 3, and 4 includes the pre-
sampling transformation, the aliasing during sampling,
and the post-sampling image adjustment, corresponding to
Steps (1) to (3) in Figure 3. Different from the image model
Iy = ®() + Npoire in [36], which is formulated based
on empirical observations, our aliasing based moiré image
model involves the main factors influencing moiré pattern
appearance.

Moiré pattern property analysis. With the formation pro-
cess analyzed above, we can elaborate moiré patterns’ prop-
erties we observed but have not explained before [4]. Ac-
cording to Equation 3, we can see that the aliasing process is
determined by the original signal, i.e., the pixelated screen O
captured by the camera, and the camera sampling frequency
fe. Particularly, the high-frequency components of O mainly
consist of neighboring RGB subpixels’ variation and the
gaps between them, as shown in Figure 3.

We first look into the structural pattern property. Con-
sidering the non-parallel projection in Equation 2, the sub-
pixel frequency in O usually varies with the position on
the screen due to different scaling, which further results

1. https:/ /download.ni.com/evaluation/coretest/instrument-
fundamentals-complete-guide.pdf

Energy ratio of Top-10 singular values

Blended structure
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Moiré pattern structure
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Natural image structure
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Fig. 4: The higher energy ratio of Top-10 singular values
stands for higher image self-similarity, and when the ratio
is above 0.7, the low-rank approximation can well describe
the fine structures [24].
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patch-wise coefficients of different DCT subbands, where
the moiré pattern only shows evident response on band-3.

in position-specific pattern frequency in Equation 3, visu-
alized as the spatially-varying pattern scale as shown in
Figure 1. But such frequency difference in O is usually
not evident within neighboring regions, leading to locally
periodic moiré patterns with similar patches, which makes
the overall structure approximately low-rank, as shown in
Figure 4. The spatially-varying structure poses challenge to
our demoiréing solution, but the local periodicity can be
exploited as a prior.

Besides, since the pixel-camera distance, which controls
the scaling in projection, usually varies within a limited
range for one image, the subpixel frequency of O also
has a concentrated distribution. As shown in Figure 5,
it also leads to the moiré pattern’s relatively centralized
response on certain frequency bands. Also, we can explain
the channel-wise pattern intensity difference considering the
camera sampling frequency f.. In common Bayer color filter
pattern, the green filters have a higher sampling frequency
than the other ones, resulting in weaker aliasing on the G
channel as shown in the regions marked by yellow boxes
in Figure 6. These findings strengthen our understanding of
the moiré pattern’s nature, which favors more interpretable
module designs in the following methodology section.

3.2 Demoiréing solution derivation

Intuitively, solving for the moiré-free image out of the
moiré image is equivalent to disentangling the clean image
and the degradation. However, considering Equation 4, the
demoiréing target I = ZSP(0), which is the sRGB version
for the unalised screen O captured by sensors, cannot be
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naturally formulated as disentanglement owing to the exis-
tence of F| and ZSP(-). Instead the solution of I should be
expressed as:

1=ZISP(F (ISP~ ' (Iu) — A)), (5)

where Fll and ZSP~' denote the inverse mappings of
F, and ZSP. Particularly, the filter F| here is the same as
Equation 3, cutting off at half the camera sampling fre-
quency. However, this equation is overly ill-posed to directly
solve, with unknown variables A, F|, and mapping ZSP(-).
To overcome these barriers, we need to make reasonable
assumptions to constrain the solution.

First, for the low-pass filtering F|, we approximately
neglect it since the lost components higher than cut-off
frequency, which mainly consists of the screen subpixel vari-
ation, are barely visible in recaptured screen images. Thus
Equation 5 can be simplified as I = ZSP(ZSP ' (1;) — A).

As for the ISP function ZSP(-), it would be ideal to
solve Equation 5 by making the ISP function and its inverse
mapping cancel out each other, and modifying the equation
as I = Ipy — ZSP(A). However, this transformation is
precisely equivalent only when the ISP function is linear.
To compensate for the non-linearity in the ISP while still
enjoying such a simplified formulation, we approximate the
linearly-expanded equation with an offset term A, which
denotes the pixel value deviations caused by tone-mapping.
Equation 5 is then simplified as:

I=I,,—M+A, (6)

where M denotes the term ZSP(A) as an assumed moiré
pattern layer. Note that A is a pixel-wise term with suffi-
ciently high degrees of freedom for approximating Equation
5. Now we can directly involve our input I in the solution
by disentanglement.

4 COARSE-TO-FINE DISENTANGLING DEMOIREING
FRAMEWORK

In this section, in light of the layered moiré image model de-
rived in Section 3.2, we propose to build a disentanglement
based demoiréing framework. Details about how to realize
such a framework, i.e., the module designs and optimization
constraints, are introduced based on the pattern properties
we analyzed in Section 3.1.

41

From Equation 6, we can infer that the moiré image input
I5s can be divided into different layers: the clean image layer

Framework design overview

5

I, the moiré pattern layer M, and the pixel offset A, as Ip; =
I+ M — A. Among these layers, the estimation of I can
be constrained in a supervised learning manner, while the
other two remain uncertainty in optimization.

To alleviate such ill-posedness in in the disentangle-
ment of aforementioned layers, we propose a coarse-to-fine
demoiréing framework, where we first roughly disentangle
a clean image layer Ic and a moiré pattern layer Mc
regardless of the offset term, following a coarse model:

Iy =1c +Mc. )

The subscript C' in M¢ refers to a coarse estimation of
the layer M. In the coarse disentanglement, we propose
to constrain the unknown Mg with a low-rank constraint,
considering the local periodicity pattern structural property
analyzed in Section 3.1. Thereby this coarse disentanglement
can be reasonably constrained since the two layers are either
supervised or regularized in prediction.

Then, we refine the coarse demoiréing result I by fur-
ther eliminating remaining moiré residues caused by the in-
accurate layer division, guided by the implicit moiré pattern
localization in predicted M. Particularly, the refinement
is also conducted in the frequency domain, considering
moiré patterns’ centralized spectrum distribution analyzed
in Section 3.1.Besides, such refinement is also necessary to
compensate for the neglection of the offset term as well as
the image details lost in the disentanglement process, where
an edge-specific attention is exploited based on the channel-
wise pattern intensity difference analyzed in Section 3.1.

To summarize, we realize a coarse-to-fine dual-domain
demoiréing framework as follows:

{Ic, Mc } = Ne (Inr ), 8)
1=Ng(Mc, Ic, £(LIy, Mc)). )

The two equations above describe the coarse layer disentan-
glement stage, and the dual-domain refinement stage, re-
spectively. No and Ny denote the corresponding modules.
I denotes the final moiré-free output, and £(Ips, M¢) stands
for the edge attention extracted from the original input and
the estimated coarse moiré pattern layer.

4.2 Coarse self-reconstructing layer disentanglement

As demonstrated in Section 4.1, we aim to first roughly
disentangle the input moiré image as two layers, which
sacrifices the precision for reducing ill-posedness in opti-
mization. To realize such layer separation, we propose to
simultaneously predict the coarse clean image layer I and
the moiré pattern layer M¢ with a two-branch multi-scale
layer disentanglement module N¢ as shown in Figure 2.
Multi-scale feature aggregation structure. The multi-
branch structure for separating different image layers has
been proved effective in many image-related tasks such
as reflection removal [25] and intrinsic image decomposi-
tion [6]. For the demoiréing case, considering the spatially-
varying scale of the moiré pattern within a single image, we
propose to aggregate multi-scale spatial features to distin-
guish moiré patterns from image contents at different scales
in the layer disentanglement.

Specifically, the disentanglement module consists of a
shared feature extractor, and two branches to predict the im-
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Fig. 8: An example of disentanglement results. Red boxes
mark the regions containing moiré pattern residues.

age content layer and the moiré pattern layer, respectively.
The feature extractor takes the input recaptured screen
image I, and extracts feature maps from the mixture with
cascaded 3 x 3 convolutional layers. The two layer prediction
branches then take the mixture features as common input,
with identical U-Net backbone structure stacked by dense
blocks. Particularly, we make each dense block work on
different spatial scales with pooling layers between different
blocks, and further aggregate these multi-scale features by
resizing and concatenating the feature maps for Squeeze-
and-Excitation (SE) operation [5]. The SE block re-weights
the features extracted from different scales to emphasize the
dominant pattern structures. As shown in Figure 7, after
the SE operation [5] in the moiré pattern layer prediction
branch, both the response of high-frequency pattern struc-
tures from the shallow dense block and the response of
low-frequency structures in deeper block are emphasized in
the aggregated feature. Therefore, such a multi-scale feature
aggregation in the layer prediction branch helps to model
the moiré distortions with spatially-varying scales.

To properly optimize the learning of the coarse layer
disentanglement, we need to constrain both of the learning
targets, i.e., the coarse clean image layer I¢ and the moiré
pattern layer M¢. The prediction for I can be easily su-
pervised as we can get the moiré-free ground truth screen
content I in the training pairs.

Low-rank constraint. Though we cannot directly obtain
such supervision for the moiré pattern layer, we can regular-
ize the prediction with the low-rank assumption on pattern
structure as analyzed in Section 3.2 and 4.1. Specifically,
we assume the predicted moiré pattern layer to be low-
rank since moiré patterns tend to present similar periodic
structures within local regions, resulting in high internal cor-
relation within the pattern. The remaining screen contents
in M¢ would increase the low-rank penalty. As shown in
Figure 4, a recaptured screen image with pure white screen
content, which presents no other structures except the moiré
pattern, has high self-similarity. But when additional edges
from another image are added, the image rank obviously
increases, which verifies the rationality of low-rank con-
straint for Mc. We adopt the weighted nuclear norm [26]
to measure such low-rankness, which sums singular values

IDCT Filters
(64x1x1x64)

® Conv
® Deconv

l ...

Patch Rebuild
(64x8x8x1)

DCT Feature Extraction

DCT feature channel-0 Feature channel-26

Input image

Feature channel-57

Fig. 9: Top: Illustration of the convolutional IDCT layer. Bot-
tom: Visualization of different DCT domain feature channels
before the last convolutional IDCT layer.

of the matrix stacked by column vectors of image patches.
Self-reconstruction constraint. To further avoid potential
trivial solutions of M¢ constrained by the relatively loose
low-rank prior only, we impose an addition constraint based
on the coarse model in Equation 7, by re-combining the
disentangled layers to reconstruct the input image I5;. Such
a self-reconstruction constraint is reverse to the disentangle-
ment process, and can be formulated as: ||(Ic+Mc¢) —In|2,
which indirectly constraint the moiré pattern layer Mc
given that I is fully supervised.

To sum up, the overall loss Lc for the coarse layer
disentanglement module can be expressed as follows:

Lo = [lo =Tll2+Allg(Mo)l[x +[|(Ie +Mc) —Iarl[2, (10)

where the three terms correspond to the supervision on
the clean image layer, the low-rank regularization on the
moiré pattern layer, and the self-reconstruction constraint,
respectively. || - ||y denotes the weighted nuclear norm,
g(Mc) represents the matrix stacked by grayscale moiré
pattern layer patches that emphasize on pattern structure,
and A denotes the loss weight set as 0.05. The results of both
branches are involved in the self-reconstruction, also mak-
ing the two branches better collaborate in disentanglement.
With the proposed coarse layer disentanglement mod-
ule, we can obtain a coarse estimation of the clean image
and an explicit description of the moiré pattern appearance
with reduced ill-posedness. As shown in Figure 8, the moiré
pattern in I is largely suppressed, yet with some pattern
silhouettes remaining, which demands further refinement.

4.3 Dual-domain refinement with edge attention

The refinement after the coarse layer disentanglement
makes the proposed framework work in a coarse-to-fine
manner. Such refinement is necessary since the disentangle-
ment is inaccurate following a coarse image composition
model, and we aim to improve the coarse result from
two major aspects: eliminating moiré pattern residues in
the predicted clean image, and enhancing image details.
To realize that, we conduct moiré residue removal as the
backbone of the refinement stage as shown in Figure 2,
where the predicted moiré pattern layer is exploited as a
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crucial guidance as formulated in Equation 9, and introduce
the edge attention for image details.

4.3.1 Guided dual-domain moiré residue removal

In the refinement stage, different from the disentanglement,
we need to focus on the moiré pattern residue region instead
of the entire image. The estimated moiré pattern layer M¢
can serve as an ideal guide for such refinement, since it
reveals the pattern’s spatial and frequency characteristics
on the whole. Therefore, we propose to feed the refinement
module Nz with the coarse demoiréing result Ic, and
concatenate the moiré pattern layer M¢ to the inputs as the
additional guidance as expressed in Equation 9.

To better capture the moiré residues, we propose to build
a Discrete Cosine Transform (DCT) based dual-domain net-
work for the refinement module. The reason for exploiting
frequency domain features lies in that moiré patterns tend to
have more centralized responses on certain frequency bands
as shown in Figure 5. Thanks to such a distribution property,
the spectrum of disentangled moiré pattern layer M¢c can
shed light on the potential frequency bands that might con-
tain moiré residues. To localize the residues simultaneously
in both the spatial and frequency domains, we realize dual-
domain collaboration among patch-wise DCT features that
preserves the spatial relationships between patches.

As for the specific network structure, we build a dense
block based U-Net featuring convolutional inverse DCT
(IDCT) layers [35]. The convolutional IDCT layer is com-
posed of 64 x 64 filters with 1 x 1 kernel, whose weights are
fixed as the 64 x 64 IDCT matrix elements. These kernels
transform the frequency components from 64 bands to 64
pixels within an 8 x 8 image patch, as shown in Figure 9.
Such an IDCT layer enforces the features that it takes to rep-
resent an image patch with DCT coefficients, as visualized
in Figure 9, there shows a correspondence between feature
channels and frequency bands of the image. Specifically,
we can observe that channel-26 focuses on the relatively
smooth variations, and channel-57 mainly captures the high-
frequency textures over the entire image. It should be noted
that compared to the explicit feature domain transform in
our preliminary work [3], which demands an additional
DCT translation beforehand [2], the adopted implicit trans-
form with IDCT layer can better boost demoiréing perfor-
mance. We suppose this advantage benefits from higher
degrees of freedom for the filters to learn frequency domain
priors in terms of eliminating moiré residues.

4.3.2 Channel-wise edge attention inference

Besides the moiré pattern residues, another issue we aim
to address in refinement is the edge detail loss in coarse
disentanglement. As shown in Figure 8, the moiré pattern
layer M wrongly contains some contours of the screen con-
tent, and the edges of its counterpart I are correspondingly
weakened. To compensate for such edge deterioration, we
propose to introduce an edge attention in the refinement,
exploiting the channel-wise moiré pattern intensity differ-
ence as shown in Figure 6.

The attention (I, M) is learned from original input
Iy and the predicted moiré pattern layer M¢, as notated
in Equation 9, using M¢ to distinguish the image details
from moiré stripes in the original moiré image. We enforce

Non-local Correlation

Input image Reference

Fig. 10: Top: Non-local block helps the weak edge (red
point) obtain a stronger response by strengthening its cor-
relations with other edges. Bottom: Visualization of the
predicted edge attention extracted from channel-wise input
edge maps, supervised by normalized clean edges.

the attention to focus on moiré-free edges in the spatial
features, by supervising the attention inference with nor-
malized ground truth edges.

Specifically, the channel-wise attention inference first
extracts separate edge maps in R, G, and B channels from
the inputs by a fixed convolution layer with Sobel kernel,
instead of the one-channel grayscale edge map. The differ-
ence among the channels can potentially reveal the moiré
pattern regions, where the edge intensity in the G channel
is weaker than the other two. The channel-wise features
are then passed through several non-local blocks, which re-
weight the feature maps based on the correlation between
the feature response at one position and all other positions.
Such an operation can help strengthen weak edges’ long-
distance dependency on other stronger edges as shown in
Figure 10. Also, the predicted edge attention can emphasize
the regions where the image edges are dense while filtering
out most of the moiré pattern edges, and even strengthen
some blurred edges in the input. It can collaborate with
the dual-domain refinement well as the edges can also be
interpreted as high-frequency image components.

4.3.3 Refinement process

As shown in Figure 2, the dual-domain residue removal
constitutes the backbone of the refinement process, and
the edge attention is used to re-weight the features on the
decoder side of the IDCT-based U-Net. Then, after removing
residues and emphasizing edges, we attempt to additionally
adjust the tonemap offset with a residual block. We expect
that the residual term predicted from the refined result can
compensate for the ignored offset term A in Equation 6 to
some extent. The final demoiréing result I is then output by
the residual learning.

The learning constraint in the refinement stage includes
the optimization objective on the final result and the super-
vision of the attention learning, and can be summarized as:

Lr = |[1=1||1+0| V@)= V(D)2 +|€(Tar, Mc) —Eil|1, (11)

where the first two terms impose supervision on whole
refinement process, and the last term is meant for the
edge attention learning. Particularly, V(-) denotes feature
extraction by the ImageNet [1] pre-trained VGG-19 model
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TABLE 1: Quantitative comparison on TIP-2018 dataset [22]
adopting the training setup in [4]. Larger values (1) indicate
better image quality for PSNR and SSIM, and smaller values
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TABLE 2: Qualitative model performance comparisons
when DMCNN [22] (0.3M parameters), MBCNN [36] (14.9M
parameters), and the proposed model (15.4M parameters)

(J) denote higher similarity for LPIPS. Red and denote are trained with data of different quantities and tested on
the best and second-best methods respectively. the same testing set.
PSNR? SSIM? LPIPS| PSNRt1 SSIMt LPIPS]
Input 19.461 0.726 0.256 DMCNN [22] 26.770  0.871 0.112
AMNet [31] 25.473 0.833 0.171 TIP-100% | MBCNN [35]  30.030  0.893 0.087
DMCNN [22] 26.101 0.844 0.125 Ours 30939 0914 0.060
WDNet [9] 27.120 0.854 0.130 DMCNN [22] 26.164  0.850 0.121
MopNet [4] 27.483 0.861 TIP-10% | MBCNN [35] 28406  0.877  0.109
FHD?eNet [3] 27.794 0.867 0.103 Ours 28.869  0.892 0.087
MBCNN [36] 0.109 DMCNN [22] 22241 0.711 0.127
Ours 28.867 0.894 0.088 TIP-5% | MBCNN [35] 23.405  0.781 0.116
Ours 24211  0.832 0.095
[20] for the perceptual loss whose coefficient ¢ is set as 0.1, TIP-3% DMCNN [22] - 20701 0.653 0.130
and E; denotes the normalized edges of the ground truth I MBCNN [35]  22.585  0.761 0.123
' Ours 23.598  0.814 0.107
4.4 Implementation details
Combining Equation 10 and 11, the complete loss function 5 1.1 Quantitative comparison

for our coarse-to-fine dual-domain demoiréing framework
can be expressed as follows:

L=Lc+Lp. (12)

Particularly, we empirically set the coefficients for all loss
terms except for the low-rank constraint and perceptual loss
as 1, after comparing model performances during training
among a few sets of weight values.

We implement the proposed framework with PyTorch
on an NVIDIA 1080 Ti GPU. The standard training of the
entire framework is progressively conducted with the Adam
optimizer and images sized as 256 x 256. We train the
framework for 200 epochs, and empirically set the batch
size at 2, initial learning rate at 0.0002 with linear decrease,
weight decay at 0.0001, and momentum at 0.9.

5 EXPERIMENTS
5.1

In this section, to evaluate the performance of our
method, we conduct quantitative and qualitative compar-
isons against state-of-the-art demoiréing methods on the
benchmark screen image demoiréing dataset TIP-2018 [22].
The TIP-2018 dataset consists of 135,000 screen-shot images
with moire artifacts collected from the ImageNet dataset [1],
with the original image shown on the screen serving as the
moiré-free ground truth. The training data pairs are aligned
using homography registration based on image corners.
We compare the proposed coarse-to-fine disentangling
demoiréing framework with our preliminary works Mop-
Net [4] and FHDe?Net [3], and previous methods including
multi-scale model DMCNN [22], multiplicative operation
based network AMNet [31], wavelet based mehotd WDNet
[9], and learnable bandpass filter method MBCNN [36]°.

Comparison with the state-of-the-arts

2. We report MBCNN’s performance using the model in [36] as
the codes for [37] have not been released. The multiple-image based
method FDN [10] is not included for fair comparison among single-
image methods.

For quantitative evaluation, apart from the widely used
measurements PSNR and SSIM in image restoration tasks,
we also adopt a perceptual image similarity metric LPIPS
[33], which correlates well with human perception and
evaluates the image quality using a pre-trained deep model.

The quantitative comparison results are shown in Table
1. It should be noted that all the models in the table are
retrained with a 10% subset (12000 out of 121500 pairs) of
the complete TIP-2018 training set [22] as our preliminary
work MopNet [4], which adopts such a setup due to the
limit of available attribute labels. We follow this setup to
make a fair comparison among all methods and reduce the
time cost of training model considering the relatively large
data scale of TIP-2018 [22].

From the results, we can first notice that the PSNR
and SSIM values of the inputs are at a low level, which
demonstrates that moiré patterns severely affect the vi-
sual quality of recaptured screen images. The demoiréing
methods evidently enhance the moiré images quantitatively.
Particularly, MBCNN [36] achieves the second-best place
in the comparison with a frequency based network, vali-
dating the effectiveness of the frequency based priors for
demoiréing. Also, we can find that the proposed coarse-to-
fine framework consistently outperforms all other methods
in terms of pixel-wise similarity (PSNR), global appearance
indices (SSIM), and visual perception (LPIPS). The perfor-
mance gains compared to our preliminary methods [3], [4]
also verify the contributions of our extensions on network
designs.

Impact of training data quantity. As demonstrated above,
the proposed framework can perform favorably with lim-
ited training data. Considering the high costs of collecting
large-scale data for adapting the model to specific applica-
tion scenarios, we further investigate the influence of cutting
down on training data scale on model performance. For
experimental setup, besides the TIP-10% training set (12K
images) adopted in the comparison across all methods, we
investigate the performance of several methods on the full-
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WDNet

Fig. 11: Examples of demoiréing results on TIP-2018 dataset [22]. The corresponding PSNR and SSIM values are displayed
below each image. Red boxes mark the regions with noticeable differences, please zoom in to view details.

size training set, the 5% quantity (6K images), and the 3%
quantity (3K images) from the TIP-2018 training set. To
avoid potential bias in sampling the subsets, we conduct
image reshuffling and random sampling for 6 times for each
data quantity, and report the average model performances
in Table 2. The rationality of the sampling based experiment
setup can be guaranteed, as the average TIP-10% results in
Table 2 are consistent with those in Table 1 that follow the
training setup of [4]. We also compare the model perfor-
mances to further validate that the subset difference caused
by random sampling show no evident effects on our model,
which is presented in the supplementary material.

From the results in Table 2, we can observe that the
quantity of training data undoubtedly affects the perfor-
mance of the trained models with a positive correlation.
The performance of the proposed framework is consistently
superior to the previous state-of-the-art method MBCNN
[36] and DMCNN [22] regardless of different training data
scales. Particularly, when the training data quantity is re-
duced from 5% (6K) to 3% (3K), our method can still restrict
the performance drop to be small, indicating our method’s
potential to work on scenarios where the annotated training

data is much less than the testing data. Our model also has
a higher performance upper bound than MBCNN [36] that
has a similar model size to ours, which implies the effec-
tiveness of our module designs. On the contrary, DMCNN's
performance does not see a leap when the training data
scale is largely expanded from 12K to 120K, while showing a
drastic drop when the data quantity further decreases below
12k, even inferior to the original moiré image inputs. We
assume that DMCNN’s limited success in dealing with the
variation of training data quantity might be attributed to its
weaker data modeling capability caused by its lightweight
and simple network structure.

5.1.2 Visual quality comparison

We present the qualitative comparisons against other meth-
ods in Figure 11. As we can observe, the input images
are contaminated with obvious moiré patterns with various
appearances, and all competing learning based demoiréing
methods are able to suppress moiré patterns to some extent.
Our proposed method provides better results in terms of
eliminating diversely shaped moiré patterns, and maintain-
ing edge details in image contents.
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TIP-2018
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FHDMi Dataset

DMCNN

FHD2eNet

Reference

Fig. 12: Top: Visual comparison among images from TIP-2018 dataset [22] and the high-resolution moiré image dataset
FHDMIi [3]. Bottom: Visual comparisons among different demoiréing results for regions marked by the blue boxes.

Specifically, from the top two rows in Figure 11, we
can observe that previous methods fail to thoroughly wipe
out the strong color distortion of the moiré stripes in
the red boxes, while our method more successfully sup-
presses the color distortion, which might benefit from the
disentanglement of the moiré pattern layer. In the third
row of Figure 11, we can observe that when confronted
with the spatially-varying pattern, most methods tend to
only remove the high-frequency lines, leaving obvious low-
frequency pattern residues as marked by the red box. The
proposed coarse-to-fine framework can better handle such
cases with the dual-domain refinement stage. And in terms
of preserving image details, the bottom row shows a case
with subtle edges on the volleyball net as marked by the
red box, the proposed method effectively alleviates the blur
to the edges in demoiréing process with the edge attention,
compared to other competing methods.

5.2 Adaptation for high-resolution images

The growing resolution of camera phones raises new chal-
lenges for demoiréing. On the one hand, the high image
resolution expands the range of pattern scales, which can ex-
ceed the entire receptive field of common networks (around
100 x 100), and demands high computing costs. On the
other hand, inputs with higher resolution can capture more
subtle details, which are subject to over-smoothing during
demoiréing. The naive solution of directly downsampling
the inputs for demoiréing and scaling it back to the original
resolution will inevitably cause the loss of image details.

To address the above issues, following our previ-
ous work [3], we can adapt the proposed coarse-to-fine
demoiréing framework for high-resolution inputs, by train-

ing it module by module with different resolutions. Specifi-
cally, we first downsample the high-resolution moiré image
to a fixed size of 384 x 384 before feeding it into the coarse
disentanglement module. Thereby we can greatly enlarge
the network receptive field on the original-sized image to
globally capture large-scale moiré color distortions while
keeping the computational burden low. Then, to focus on
restoring the image details lost in downsampling, we train
the refinement module with cropped local patches from
high-resolution inputs. Particularly, to cooperate with the
refinement stage, the clean image layer predicted from the
rescaled input is upsampled back to the original size. In
the testing phase, the coarse disentanglement module still
takes the downsampled version of a high-resolution moiré
image as the input, while the refinement module takes the
entire high-resolution input to realize the efficient coarse-
to-fine adaptation. In addition, to alleviate the nonlinear
lens distortions issue in high-resolution training pairs, we
also adopt the contextual bilateral loss [34], which conducts
feature vector matching between the prediction and the
target image, to tolerate the inevitable misalignment.

Full high definition moiré image dataset. To validate the
effectiveness of such an adaptation, we conduct experi-
ments on Full High Definition Moiré Image Dataset named
FHDMi, which is collected in our preliminary work [3].
Different from the TIP-2018 dataset [22] that only crops
384 x 384 ~ 700 x 700 regions from the screen, the images
in FHDMIi cover the whole screen with FHD resolution
(1920 x 1080) as shown in Figure 12. Besides, the 12000
moiré images in FHDMIi not only cover natural images, but
also screen-specific scenarios like webpages or documents.
Experimental comparisons. Most existing demoiréing
methods cannot directly handle high-resolution inputs due
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TABLE 3: Quantitative comparison and model efficiency analysis on FHDMi dataset [3]. Red and blue denote the first
and second-best method, respectively. The inference time and peak memory are measured for processing a single FHD
resolution image. The prefix ¢ denotes the patch-based processing, which causes significant processing time increase.

PSNR?T SSIM LPIPS| Parameters Memory Inference time
Input 17.974 0.703 0.284 N. A. N. A. N. A.
DMCNN [22] 21.538 0.773 0.248 0.3M 2.9 GB 0.015s
© MopNet [4] 22.756 0.796 0.179 58.6M 1.7 GB 10.780s
FHD?e [3] 22.930 0.789 0.169 13.6M 5.9 GB 0.040s
o MBCNN [36] 22.847 0.805 0.203 14.9M 1.6 GB 3.800s
Ours 23.627 0.804 0.161 15.4M 5.9 GB 0.025s

MBCNN

]
In-the-wild textured image [27]

Synthetic data [29] Our result

Our result

& e I L*ﬁ ‘
|
L L a U Lz | -~ d

Color-shifted image [31] our result Reference

Fig. 13: Visual result comparisons on different data sources:
Synthetic screen moiré images [29] (top left), in-the-wild
textured image [27] (top right), and moiré images with
obvious color shift [31] .

to excessive memory occupation. Therefore, for a fair com-
parison, such methods [4], [22], [36] are all re-trained with
high-resolution regions cropped from the FHDMi dataset,
whose sizes are determined according to the input size used
in their works. In testing, MopNet [4] and MBCNN [36] are
fed with patch inputs whose demoiréing results are stitched
back together because their memory demand to process a
high-resolution image in the inference stage is still larger
than an NVIDIA 1080Ti GPU.

The quantitative comparisons on the FHDMi dataset [3]
are presented in Table 3. Note that with moderate mis-
alignment caused by lens distortions, the pixel-wise metrics
are basically fair, since most regions of the images are
marginally affected by the distortions except the corners
[34]. First, comparing the input column of Table 1 and
Table 3 as a whole, we can infer that the high-resolution
recaptured screen images are more challenging to restore
than the smaller ones in TIP-2018 [22], considering the lower
demoiréing quantitative performances in Table 3.

The proposed method obtains the best performance on
PSNR and LPIPS, and also achieves the second best result
by a very narrow margin to MBCNN [36] on SSIM. These
results validate that our framework can be well adapted for
the application of high-resolution image demoiréing. The
reason for MBCNN'’s decent high SSIM value is that, to
concentrate on the comparison of demoiréing and reduce
the influence of the boundary artifacts in stitching patches
for the patch based methods we compute PSNR and SSIM
for patch based results by averaging the patch-wise indices.

The visual comparison on the FHDMi dataset is shown

in Figure 12, where we can observe that DMCNN [22]
cannot adapt well to high-resolution inputs, leaving intense
moiré residues in the bottom row. MBCNN [36] suffers from
both pattern residues and boundary artifacts derived from
the patch-based processing. FHD?*eNet can largely suppress
moiré patterns, but still with minor residues in textureless
regions like the neck and the phone screen. Our method can
realize more thorough elimination thanks to the improved
coarse-to-fine framework structure.

Model efficiency for high-resolution inputs. Apart from
the demoiréing performance, the model efficiency is also a
big concern in real applications. To analyze the demoiréing
models’ efficiency when dealing with the FHD inputs, we
also report their model parameter number, reference time,
and the memory occupation for processing one image from
the FHDMIi dataset [3], and the results are shown in Table
3. We can find that DMCNN [22] has the highest operating
efficiency due to its light-weighted structure. However, its
demoiréing performance is obviously inferior to other meth-
ods as demonstrated above. MopNet [4] and MBCNN [36]
compensate for its memory overrun with patch partitioning,
leading to a remarkable inference time increase (over 90x)
that degenerates the model applicability. Particularly, their
patch based demoiréing results also suffer from notice-
able boundary artifacts. The proposed coarse-to-fine frame-
work and FHD?eNet [3] realize a more reasonable trade-off
among the demoiréing performance, memory occupation,
and inference time, and keep the peak memory within the
capacity of one NVIDIA 1080Ti GPU with improved model
performance compared to DMCNN [22]. Thus we suppose
that the adaptation for high-resolution inputs featuring
image rescaling and detail compensation is beneficial for
making the model more efficient in real applications.

5.3 Generalization capability analysis

To further evaluate our model’s generalization potential,
we investigate the proposed coarse-to-fine framework on
different data sources, including synthetic data, in-the-wild
textured moiré image, and recaptured screen images with
obvious color shifts.

Fine-tuning results on synthetic data. We fine-tune our
model on synthetic demoiréing dataset LCDMoire [29] that
simulates moiré patterns from screens for generating moiré
images. Since the authors only release the testing inputs
without corresponding ground truth, we only present the
PSNR value of our demoiréing results on such synthetic
data, as measured by their demoiréing challenge website®.

3. https://data.vision.ee.ethz.ch/cvl/aim19/
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TABLE 4: Model generalization analysis on different data
sources (measured by PSNR on [29], and PSNR/SSIM on
[31].

Synthetic [29] Cross-domain [31]

DMCNN [22] 35.48 16.71/0.79
MBCNN [36] 44.04 17.01/0.75
Ours 44.10 18.33/0.82

TABLE 5: Quantitative results of different model variants
trained on TIP-2018-10% subset [22]. DE, FR, EA, SRC,
and LRC stand for the proposed disentanglement for the
moiré pattern layer, the frequency domain based moiré
residue removal, the edge attention, the self-reconstruction
constraint, and the low-rank constraint, respectively.

PSNRT SSIM 1 LPIPS| Time
w/o DE 27.815 0.867 0.102  14.9ms
w/o FR 28.387 0.878 0.098 11.5ms
w/o EA 28.594 0.882 0.093 10.7ms
w/0SRC  27.925 0.871 0.100 16.0ms
w/oLRC  28.628 0.879 0.090 16.0ms
Full model 28.867 0.894 0.088  16.0ms

Our methods shows comparable performance with the
state-of-the-art MBCNN [36], as presented in Table 4 (“Syn-
thetic”). Particularly, the high PSNR values imply that the
synthetically generated moiré patterns are easier to capture
and remove than the real-world ones. Visual comparison in
Figure 13 also verifies that our fine-tuned model can adapt
well to the synthetic data and even better suppress moiré
color distortions than MBCNN in some cases.
In-the-wild textured moiré images. We also test our
model’s generalization capability on moiré images captured
in uncontrolled conditions from [27], where moiré pat-
terns are mainly derived from highly textured surfaces like
clothes. Since in-the-wild images are usually not paired with
a moiré-free reference image, we only present the qualitative
results as shown in Figure 13 (top right), using the pre-
trained model of our method and MBCNN [36] on TIP-2018
dataset [22]. The visual comparison between two learning
based demoiréing methods shows that the proposed frame-
work can effectively suppress the moiré pattern on the bag’s
texture, demonstrating our method’s better generalization
for in-the-wild textured moiré images.
Cross-domain test against color shifts. Due to different
display settings and various camera color retouching im-
plementations, recaptured screen images that are captured
with different combinations of display devices and cameras
often present different degrees of color shifts compared to
the original moiré-free images. Such color shifts can also
be observed in the TIP-2018 dataset [22], but are not very
conspicuous in most cases, and can be well tolerated by our
layered moiré image model given the offset compensation
in the refinement stage.

To investigate the robustness of learning based
demoiréing methods against such color shifts, we conduct a
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cross-domain test with models pre-trained on TIP-2018 [22]
on a small dataset MRBI [31], which features diverse device
combinations and apparent color shifts within data pairs for
joint brightness correction and demoiréing. The reason for
the overall low numerical performances in Table 4 (“Cross-
domain”) mainly lies in that the global color shifts aggravate
the difficulty of faithfully recovering the screen contents,
given the severely degraded inputs in MRBI [31] compared
to reference images. But all learning based demoiréing
methods manage to realize obvious quality enhancement
for such inputs despite the domain gap. Particularly, our
model obviously outperforms other methods in this cross-
domain generalization test. And such superiority can also be
validated by the qualitative results at the bottom of Figure
13, where our result better suppresses the aberrant moiré
color distortions, though the global color shifts cannot be
precisely corrected. Such color shift artifacts are far more
prominent on the MRBI dataset [31] than TIP-2018 bench-
mark [22], because the color shifts in MRBI [31] are much
more drastic and derived from more diverse capture setup.
We can also infer from our results that the color shifts have
limited influence on the proposed model to discover and
remove moiré patterns. We suppose that better color shift
compensation can be realized by color rescaling for further
enhancing image restoration results [23].

5.4 Ablation study

In this section, we conduct ablation studies with different
model variants to testify to the effectiveness of the proposed
module components and constraints. Specifically, for the
layer disentanglement design, we change the double-branch
module Mg in the framework to be a single-branch one
predicting the clean image I only, which is denoted as w/o
DE. As for the dual-domain refinement, we first construct a
framework variant that skips the frequency domain based
moiré residue removal process and attaches the edge atten-
tion to the final offset adjustment block, denoted as w/o FR,
and build another model without the edge attention, no-
tated as w/o EA. Additionally, to evaluate the contributions
of the proposed new constraints for disentangling the moiré
pattern layer, we also train model variants without the
self-reconstruction constraint and the low-rank constraint,
denoted as w/o SRC and w/o LRC, respectively. We also
look into different choices of the implementation of dual-
domain moiré residue removal, which is presented in the
supplementary materials.

From the numerical results in Table 5, we can see that
the full model achieves the best performance among model
variants, and all proposed components contribute to a per-
formance gain, among which the layer disentanglement
scheme (w/o DE) most evidently influences the model
performance. We assume that its significance in boosting
demoiréing performance lies in that the extra branch ex-
pands the network capacity, and the proposed constraints
for the moiré pattern layer alleviate the ill-posedness in
optimization. Besides, we can conclude that the layer dis-
entanglement is also time-efficient, requiring only a little
additional inference time, since the two disentanglement
branches work in parallel. As for the two proposed con-
straints, the self-reconstruction constraint is obviously more
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Fig. 14: Visual quality comparison among different model variants. Red boxes mark regions contain slight differences that

need a close-up check.

dominant for constraining the disentanglement, because the
low-rank constraint only may cause trivial solutions for the
moiré pattern layer.

We further investigate the impact of each module com-
ponent from the perspective of visual results. As shown in
the top row of Figure 14, the layer disentanglement is more
crucial for suppressing severe color distortions among the
proposed components. In the second row, we can observe
that without the channel-wise edge attention, the subtle
edges of the numbers in the demoiréing result tend to be
over-smoothed compared to other ones. Besides, the DCT
domain features seem to contribute more to eliminating the
periodic high-frequency moiré stripes. In the bottom row,
we can see that by aggregating all proposed components,
the full model can more thoroughly remove the spatially-
varying moiré pattern in the image. But comparing the
demoiréing result with the input and reference, we infer
that if the recaptured screen image is blurry itself due to
unsatisfactory capturing conditions, i.e., the transformation
T(-) to the screen content in Equation 2, the proposed
demoiréing framework cannot fully recover the blurred tex-
tures, since this is beyond our optimization target of solving
for the clean image I in Section 3.2. In addition, from the
right column in Figure 14, we can also see the influence of
the proposed low-rank constraint on disentangling a moiré
pattern layer with less image textures.

Low-rank constraint on periodic image structures. The
proposed low-rank constraint supports the optimization of
coarse disentanglement between the image content and the
moiré pattern layer, yet there can be special cases where the
image itself contains obvious periodic structures, especially
in the textured moiré images. In such cases, the low-rank
constraint might confront with image texture loss as shown
in the bottom row of Figure 15. Similar artifacts also occur
in previous non-disentangling methods such as [36], as they
tend to smooth the image. But our framework can effectively
reduce such unsatisfactory cases by complementing the
coarse disentanglement with the refinement stage, as shown

MBCNN

I

Textured moiré image Low-rank structure region Coarse disentanglement Full proposed method

Top-10 singular value
in grayscale: 0.908

Top
in grayscale: 0.757

Fig. 15: Two examples of moiré images whose structures
contain periodic lines.

in Figure 15, the fabric lines are mostly restored through the
edge attention.

Disentanglement for moiré pattern extraction. Though the
predicted moiré pattern layer in Figure 8 is not exactly
precise, as the low-rank and self-reconstruction constraints
cannot fully supervise model learning without the ground
truth moiré distortions, the proposed coarse layer disentan-
glement has shown the capability to describe the moiré pat-
tern’s distribution within an image. To further investigate
the disentanglement module’s potential of explicitly mod-
eling moiré patterns’ appearance with more supervision,
we additionally capture 3000 image pairs composed of two
recaptured screen images {In;,M, } taken with identical
capturing conditions. Within such a pair, only the contents
{I,1,} shown on the screen are different, with I,, set as a
pure white image and I set as an arbitrary Internet image.
Thereby M,, can be considered to show pure moiré pattern,
which has the same contour as the pattern in I, as shown
in Figure 16. We choose a pure white image as the screen
content to highlight the pattern, because moiré patterns are
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Extracted moiré pattern from lM Pure pattern M,,,

%

Demoiréing result of T

Moiré —free image I Extracted pattern from I

Fig. 16: Top: From left to right are a recaptured screen image
I, the moiré pattern extracted by the moiré pattern layer
disentanglement branch, and the corresponding pure moiré
pattern image M,, paired with I,;, respectively. Bottom:
From left to right are the ground truth image I for I, the
moiré pattern extraction result, and the demoiréing result
for this moiré-free image.

more salient with higher region brightness®.

To adapt the disentanglement branch to direct pattern
extraction, we fine-tune the pre-trained branch for predict-
ing moiré color distortion layer with the newly collected
data above. As shown in Figure 16, we can observe that
the disentanglement based moiré pattern extraction can suc-
cessfully depict the prominent pattern structures, as shown
in the regions marked by red boxes in Figure 16, which
are consistent with the reference pure moiré pattern M,,.
Yet different from the pure moiré pattern M,, that reveals
the complete pattern structure, the extracted moiré pattern
only focuses on visible color distortions, while tends not to
complement the unnoticeable structures according to visible
contours. Therefore, it is improper to directly compare the
extracted pattern with pure pattern M,, quantitatively.

The proposed coarse layer disentanglement module is
validated to be effective in perceiving the visible moiré
patterns from recaptured screen images, which can help it
to distinguish the moiré-degraded images from moiré-free
ones, i.e., deciding whether to modify the input. We fur-
ther find that benefiting from such capability, the proposed
framework can keep the moiré-free input barely modified,
along with a near-blank response in moiré pattern extraction
as shown in Figure 16, which demonstrates the reliability of
disentanglement based demoiréing.

6 CONCLUSION

In this paper, we investigate the formation process of moiré
patterns from the perspective of signal aliasing, and embody
our knowledge on moiré pattern properties in a coarse-
to-fine disentangling demoiréing framework for recaptured
screen images, which achieves better performance than
state-of-the-art methods both quantitatively and qualita-
tively. The proposed disentanglement based demoiréing
shows considerable success on improving model adaptation
capability for different data quantities and sources, and we
suppose that its advantages comes from the exploitation of
moiré pattern related constraints for jointly learning both

4. The statistical relationship between moiré pattern intensity and
image brightness is presented in the supplementary materials
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layers instead of the clean image alone. Thus we believe
the coarse disentanglement scheme can be reinforced in
future demoiréing works, where more insights on moiré
patterns’ frequency domain distribution can be proposed
to strengthen the learning constraint for the moiré pattern
layer. By such means, we would be able to further reduce
the dependence on the ground truth images in the training
set, and try weakly-supervised learning setups for better
generalization across different data sources. Moreover, the
coarse-to-fine demoiréing pipeline can also potentially be
adapted for similar image restoration tasks such as retinex
based low-light image enhancement, considering their com-
monality in the approximation for layered image model.
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1. Residue Removal Implementation Choice

In this paper, we propose a DCT based dual-domain refinement backbone featuring the implicit domain transform by the
IDCT layer. To further validate our choices of such designs, we compare different variants of the residue removal backbone
on the TTIP-2018 dataset [5].

The modifications include changing the implicit domain transform to an explicit one [I], [2], with an additional
convolutional DCT layer, and using DFT features or spatial features by changing the IDCT layers to dilated convolutional
layer or IDFT layer to substitute the DCT features. Particularly, the DFT transform involves complex computation, the
feature channels consist of both the real part and the imaginary part of the coefficients transformed by two sets of kernels
separately. The numerical comparison results are shown in Table 1. First, we can see that, compared to the explicit transform
that fixes more layer weights, the adopted implicit domain transform yields better results, possibly because of the higher
degree of freedom in learning priors in the frequency domain. In terms of the dual-domain refinement, the DCT features
boosts the demoiréing performance better than its substitutes using FFT and spatial features. We infer that the advantage of
DCT and FFT features over pure spatial features originates from their implicit focus across different frequency subbands,
and DCT features achieve higher performance possibly because of their better energy compaction without the imaginary
part [8].

TABLE 1: Performance comparison among different implementations of feature domain transform on TIP-2018 dataset [5].

Explicit DCT  FFT  Spatial Proposed (Implicit DCT)
PSNR 27.468 27.513  27.030 27.805
SSIM 0.862 0.861  0.857 0.863

2. Capturing Moiré Pattern Extraction Data

The setup for capturing moiré pattern extraction data is shown in Figure 2. In capture, a clean Internet image and a pure

white image are sequentially shown in full-screen size on the monitor screen, with the camera phone fixed on a tripod. Thus
we can consider the moiré patterns in these two captured screen images have the same structural distribution, since only the
screen contents are changed in the capture for a data pair {M, M,, }. For the visibility of moiré patterns in captured image
pairs, the distance and viewing angle between the screen and the tripod are adjusted before capturing, to guarantee the
clarity of the patterns captured and the whole screen within the viewfinder. The capture is conducted after the parameters
are fixed according to current imaging condition, including exposure and focal length. The viewpoint and camera parameters
are changed to diversify the data. The viewpoints are slightly moved every five shots within the camera’s depth of field,
while exposure and focal length are changed every 100 shots.
Moiré pattern intensity and image brightness. We choose a pure white image as the screen content to highlight the
pattern contours, considering the saliency of moiré patterns against brighter screen. Such an observation can be validated as
a statistical relationship between the moiré pattern’s intensity, evaluated by its regional color variation and edge intensity,
and the screen content’s brightness, as shown in 1.
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Figure 1: Top: Moiré patterns present different color variation intensity in image regions with different brightness. Bottom:
The observed intensity of moiré patterns at the upper part, indicated by color variation and edge intensity, shows a strong
positive correlation to the screen contents’ brightness.
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Figure 2: The data capture setup for moiré pattern extraction (Left), and an additional example of captured image pairs
(Middle and Right).



3. Qualitative Results on the TIP-2018 Benchmark
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Figure 3: Qualitative results on the TIP-2018 benchmark dataset [5] (Part 1, zoom-in for details).
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Figure 4: Qualitative results on the TIP-2018 benchmark dataset [5] (Part 2, zoom-in for details).



(a) Input (b) DMCNN [5] (c) AMNet [6] (d) WDNet [4]

- i \ \

Ny '." R | Ngy JH
J ) T TeN | J ) . e \

(f) MBCNN [7] (g) Ours (h) Reference

(a) Input l (b) DMCNN [5] . (c) AMNet [6] (d) WDNet [4]

(e) FHD?eNet [2] (f) MBCNN [7] (g) Ours

(a) Input

i

(e) FHD?eNet [2] . (g) Ours '

Figure 5: Qualitative results on the TIP-2018 benchmark dataset [5] (Part 3, zoom-in for details).
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Figure 6: Qualitative results on the TIP-2018 benchmark dataset [5] (Part 4, zoom-in for details).
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Figure 7: Qualitative results on the TIP-2018 benchmark dataset [5] (Part 5, zoom-in for details).



4. Detailed Network Architectures
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