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Shape from Polarization with
Distant Lighting Estimation

Youwei Lyu, Lingran Zhao, Si Li, and Boxin Shi*, Senior Member, IEEE

Abstract—This paper presents a new approach for surface normal recovery from polarization images under an unknown distant light.
Polarization provides rich cues of object geometry and material, but it is also influenced by different lighting conditions. Different from
previous Shape-from-Polarization (SfP) methods, which rely on handcrafted or data-driven priors, we analytically investigate the
benefits of estimating distant lighting for resolving the ambiguity in normal estimation from SfP using the polarimetric Bidirectional
Reflectance Distribution Function (pBRDF) based image formation model. We then propose a two-stage learning framework that first
effectively exploits polarization and shading cues to estimate the reflectance and lighting information and then optimizes the initial
normal as the geometric prior. Leveraging the normal prior with the polarization cues from the input images, our network further
generates the surface normal with more details in the second stage. We also present a data generation pipeline derived from the
pBRDF model enabling model training and create a real dataset for evaluation of SfP approaches. Extensive ablation studies show the
effectiveness of our designed architecture, and our approach outperforms existing methods in quantitative and qualitative experiments
on real data.

Index Terms—Shape from polarization, lighting, physics-based vision
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1 INTRODUCTION

CHANGES in the polarization status during light propa-
gation provide useful cues for estimating shapes and

material information of objects. Shape-from-polarization
(SfP) methods aim to recover the surface normal from
single-view polarization images by utilizing the angle of
polarization (AoP) and degree of polarization (DoP) of the
incident light. Shape cues explored from polarization inher-
ently contain pixel-wise geometric information, which could
be much higher resolution than consumer-level 3D sensors,
such as the Kinect [1]. However, they also introduce ambigu-
ities in normal prediction. The polarizer can distinguish the
oscillating orientation of light, but it produces the azimuth
angle with π-ambiguity [2]. Moreover, the coexisting diffuse
and specular reflections have divergent polarization prop-
erties, introducing additional π/2 deviation of the phase
angle [3]. These two primary ambiguities in SfP make the
problem under-determined, and extensive research has been
conducted to deal with this challenging task.

To relieve the ill-posedness of SfP, researchers tend to
assume that the reflectance is dominated by a single com-
ponent or can be classified as the diffuse component and
specular component, and they tackle each one separately.
The dichromatic reflectance model [2], [4] and heuristic prior
of intensities and DoP [5], [6] are adopted to tell the two
types of polarization apart. By investigating only the diffuse
dominant case, the difficulty of handling mixed polarization
could be partly circumvented [7], [8]. Disambiguation is the
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next challenge after determining the type of polarization.
Based on observations and properties of common objects,
the convex prior and boundary constraints of the shape [2],
[5], [6], [7], [8], smoothness priors [6], and shading clues [9]
are popular choices to disambiguate the azimuth angle
of normal. Formulating the polarization constraints as a
linear system of equations, the least squares method [6]
is presented to solve the ambiguity in a global manner.
However, the results of these methods are easily affected
by deviation from ideal conditions in real-world scenarios
when handcrafted priors are poorly observed.

The lighting condition could significantly influence the
polarization properties of the illuminated objects according
to the microfacet theory [10]. Recent SfP works attempt to
acquire quality appealing normal under specified lighting
setups. The special polarization distribution of the sky, such
as sunny weather, could provide extra constraints to facili-
tate the normal recovery [11]. Researchers find polarimetric
diffuse reflectance dominates most of the regions under
the frontal flash illumination [12] except for the directly lit
regions, which simplifies the polarization imaging model.
Thus, the frontal flash setup is used in pBRDF (polarimet-
ric BRDF) acquisition and normal recovery [12], [13], [14].
When the frontal flash is altered to illuminate the object from
a different direction, the position of specular reflection part
changes, but the diffuse reflection is still dominant in the
rest of the lit regions. Therefore, it is interesting to explore
how a frontal flash setup or a single distant light will benefit
the disambiguation of normal azimuth angles.

As deep learning achieves great success in vision tasks,
the first deep learning-based SfP solution (DeepSfP) [15] has
been introduced to address the limitation of handcrafted pri-
ors and robustness issue of optimization methods. Instead
of solving the normal ambiguity explicitly, DeepSfP directly
predicts the normal map by taking in polarization images
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Fig. 1: The overview of our framework, which has a two-stage architecture consisting of pLTNet and pNENet. Taking
in four polarization images and the mask as input, pLTNet estimates distant lighting and texture information; with the
lighting and albedo prior, the optimized normal could be computed from the initial normal. Then we introduce pNENet
as well as the diffuse-rendering error map to further refine the optimized normal and obtain the final results.

and ambiguous normals calculated from polarization. De-
spite taking priors of ambiguous normals into account,
DeepSfP mainly relies on the data-driven prior for dis-
ambiguation without considering physics constraints from
lighting and shading. A more recent work [12] additionally
takes the Stokes maps and normalized color maps as a com-
plement for estimating object normals and textures, which
also resorts to the network for normal optimization instead
of explicitly exploiting constraints for disambiguation. The
remaining challenges in disambiguation of SfP normal es-
timation inspire us to take mutual benefits of physics and
data-driven priors to complementarily narrow down the
ambiguous solution space.

In this paper, we exploit polarization images to estimate
the lighting information, textures, and surface normal of
objects under an unknown single distant light. The adopted
lighting setup has merits in two aspects: 1) We could com-
pute the initial normal map from input polarization images
with the approximation of dominant diffuse reflection; 2)
as a spatially uniform vector regardless of pixel locations,
such a lighting model makes it much easier to be estimated
compared to the normal map. Analytically investigating the
relationship between lighting and normal, we derive the
formula that integrates distant lighting and surface albedo
for normal disambiguation. With the explicit constraints,
we could solve the π-ambiguity of azimuth angles and
generate the optimized normal map, which prompts further
refinement. Based on the above analysis, we design a two-
stage learning framework to estimate the surface normal by
combining the polarimetric cues and the shading constraint,
which consists of two sub-networks, i.e., polarization Light-
ing and Texture Network (pLTNet) and polarization Normal
Estimation Network (pNENet), as shown in Fig. 1.

In the first stage, we present pLTNet to simultane-
ously predict the lighting parameters and object appearance
(Fig. 1-pLTNet), which play a crucial role in the polarization
imaging model. Then we design a non-learning scheme
to optimize the ambiguous normal computed from polar-

ization properties with the predicted lighting and albedo
(Fig. 1-Normal optimization). In addition, the estimation
error of pLTNet could affect the optimized results, so we
carefully compare different lighting representations and se-
lect the best to boost the performance.

Despite the fact that the normal ambiguities are re-
stricted in the normal optimization, the optimized results
may be unsatisfactory for several reasons. First of all, we
only take account of the diffuse reflection in the optimiza-
tion step. However, the reflection can be a diffuse-specular
mixture or dominated by the specular component (even
if in a small region), which breaks our diffuse dominant
assumption. On the other hand, part of normal is hardly
constrained by the light direction due to the trivial solution
of the optimization formula. To address this issue, we design
a diffuse-rendering error to mark the pixels regarding spec-
ular reflection or inaccurate normals with large values and
reweigh the training loss to enforce the network focusing
on the local normal recovery of the specular regions. Thus,
we further propose pNENet to overcome the limitation
of the physical constraint and refine the normal map by
integrating the polarization priors and shading information
(Fig. 1-pNENet).

Overall, the main contributions of this paper are sum-
marized as:

• We explicitly analyze distant lighting constraints for
normal disambiguation in SfP under a clear obser-
vation of diffuse dominant phenomenon for the first
time.

• We propose a two-stage deep neural network for
joint shape and appearance acquisition from polar-
ization, demonstrating the benefits of incorporating
distant lighting estimation.

• We show the proposed method produces more ac-
curate normal estimates, which quantitatively out-
performs both optimization and learning-based ap-
proaches on the synthetic and real-world data.
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The structure of this paper is organized as follows. In
Sec. 2, we first introduce the related work of SfP, polari-
metric BRDF, and distant lighting estimation. In Sec. 3, we
then briefly revisit the basics of SfP and elaborate on our
disambiguation method using the shading constraint. In
Sec. 4 and Sec. 5, we introduce the proposed learning-based
framework and the real dataset for evaluation, respectively.
The experimental results, including ablation studies and
comparison experiments, are presented in Sec. 6. At last,
we discuss the limitations and conclude our paper in Sec. 7
and Sec. 8, respectively.

2 RELATED WORK

2.1 Shape from Polarization
Shape-from-polarization methods tend to resort to the sep-
aration of specular and diffuse compositions and prior
knowledge of surface shape for determining the surface
normals. Handcrafted priors such as the convexity prior
and boundary constraints [2], [7], [8] are popular choices to
facilitate the disambiguation in earlier works. Researchers
attempt to characterize the reflection as linear equations [6]
or PDEs [16] and solve the normal via optimization. As deep
learning flourishes in these years, learning-based methods
are proposed to take in the normal priors from polarization
and utilize CNN to produce more robust normal maps [12],
[15]. The polarimetric information can be integrated with
additional constraints to compensate for the limitation of
relying on polarization cues only. Jointly formulating shape
from shading and SfP in linear equations enables direct
depth estimation of the surface [5], [6], [17], [18], [19].
The polarization properties could change drastically with
regard to the surface roughness and lighting conditions, and
SfP under specified illumination is explored for more com-
pelling results. The SVBRDF (spatially varying BRDF) and
shape acquisition approaches under a projector light [13],
a polarized frontal light [20], or a frontal flash light [12],
[14] have been proposed. The polarization patterns derived
from the sky lighting model are investigated to include
useful constraints on normal predictions [11]. Traditional
SfP works focus on object shape recovery, and researchers
attempt to handle the scene-level SfP by introducing a
viewing encoding and a more effective polarization repre-
sentation [21].

SfP could be solved by integrating additional constraints
from various aspects. Multi-spectral measurements [22], in-
troducing the material dispersion constraint, assist in pre-
dicting the refractive index and recover the shape simul-
taneously. In addition, coarse depth maps acquired by the
RGBD camera [23], [24] could provide normal priors for
SfP disambiguation. Stereo polarization cues have also been
used for depth estimation [25], [26] and dense SLAM recon-
struction [27]. In multi-view stereo, polarization methods
help in enabling transparent surface modeling [28], solving
normal vector for accurate correspondence [29], recovery
of surface shape in featureless regions [30], [31], and nor-
mal estimate from specular reflection [32] and polarimetric
cost volume [10]. Incorporated with Helmholtz stereopsis,
polarization clues also benefit surface reconstruction with
reciprocal image pairs [33]. Most of the SfP methods are
proposed based on the orthographic camera model, e.g., [6],

[7], [12], while recent work [34] presents to determine plane
normal by imposing the perspective projection constraint on
the phase angle. Our method explicitly considers the image
formation model in normal optimization, and the perspec-
tive projection can be applied in our framework given the
intrinsic matrix of the camera. Some approaches propose
to estimate epipolar geometry by phase information [35]
or geometric information available from polarization cam-
eras [36].

The pBRDF model describes the interaction of normal,
reflectance, and lighting under the polarization context. The
polarization properties of specular reflection are well ex-
plored, while the diffuse component is often modeled as un-
polarized light to reduce the computational complexity [37],
[38], [39].To improve the accuracy of pBRDF, Baek et al. [13]
propose a diffuse-specular pBRDF by additionally modeling
the polarization state changes in the light transmission pro-
cess. Kondo et al. [20] further introduce the depolarization
component into the BRDF model for depicting a wider range
of real-world materials.

2.2 Distant Lighting Estimation

Distant lighting information could be inferred by inversely
analyzing the photometric image formation model. Early
methods assume known geometric and reflectance prop-
erties in the scene and estimate illumination from shad-
ing [40], [41], [42]. Estimation of distant lighting is neces-
sary for solving uncalibrated photometric stereo, e.g., SDPS-
Net [43] determines both shape and distant lighting infor-
mation of an object with unknown arbitrary reflectance us-
ing a lighting and normal estimation network, respectively.
Thanh et al. [44] incorporate photometric stereo and polar-
ization constraints to simultaneously estimate the surface
normals and light directions.

Distant lighting estimation could be extended to deal
with distant environment maps (usually represented as a
panoramic HDR image) rather than a single point of distant
light by relying on geometric priors. Given a single image
and geometry of an object, Weber et al. [45] propose a
framework to estimate the environmental map surrounding
the object. Yi et al. [46] use faces as light probes and estimate
the environment map via diffuse and specular components
separation. Gardner et al. [47] propose to use discrete lights
and the ambient term to represent the lighting conditions.
More recent lighting estimation approaches directly predict-
ing outdoor (e.g., [48]) or indoor (e.g., [49]) environment
maps (without inferring shape) using deep learning are
beyond the scope of this paper.

We adopt the setup of a single distant light and predict
the lighting information from polarization images. We later
use the estimated lighting and shading information to facil-
itate SfP normal disambiguation.

3 POLARIMETRIC BRDF MODEL UNDER DISTANT
LIGHTING FOR SFP
In this section, we first review the basis of polarized light
and SfP and then describe the relationship between the
distant lighting and normal estimation based on polarimet-
ric Bidirectional Reflectance Distribution Function (pBRDF),
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TABLE 1: The lighting setup, camera model, and assump-
tions made in our method.

Lighting A single distant light
Unpolarized light source

Object Dielectric material
Camera model Orthographic/perspective
Assumption No inter-reflections

which inspires us to disambiguate normals with the help
of the direction of a distant light and object albedo. Our
method is based on the specific lighting setup and several
assumptions, which are summarized in Table 1.

3.1 Polarization of Light and Stokes Vector

As an electromagnetic wave, the oscillating orientation of
the light is perpendicular to the propagation direction, and
we conventionally use polarization to describe the oscillat-
ing status of a light ray. For acquisitions of the polarization
images, a polarizer can be mounted in front of the camera
under different polarizer angles ϑ, as shown in Fig. 2. We
denote the intensity of polarization images as I(ϑ).

To describe the polarization formation model in detail,
we adopt Stokes vectors to measure the polarization status
of received light. A Stokes vector consists of four compo-
nents: s = [s(0), s(1), s(2), s(3)]⊤, s(0) is the total inten-
sity of the light, s(1), s(2) represent the intensity of linear
polarization at ϑ = 0◦, 45◦, respectively, and s(3) denotes
the intensity of circular polarization [50]. Concentrating on
the linear polarization properties for normal estimation,
we use the first three entries of Stokes vectors and omit
the circular polarization term s(3) like previous SfP meth-
ods [12], [15], [21]. Then the observed Stokes vector can be
computed via four polarization images I(0◦), I(45◦), I(90◦)
and I(135◦) [50],

so =

(I(0◦) + I(45◦) + I(90◦) + I(135◦)) /2
I(0◦)− I(90◦)
I(45◦)− I(135◦)

 , (1)

where I(0◦), I(45◦), I(90◦) and I(135◦) are easily obtained
by a DSLR camera attaching a rotating polarizer or by a
quad-Bayer polarization camera [51].

Given the observed Stokes vector so, we could also com-
pute polarization images taken under different polarizer
angles,

I(ϑ) =
1

2

[
1 cos 2ϑ sin 2ϑ

]
so, (2)

which enables the synthetic data creation.

3.2 SfP and Its Ambiguities

To make this paper self-contained, we briefly review the
SfP method and its relevant ambiguity issues. Previous
SfP methods [2], [6], [7], [9] attempt to predict the zenith
angle θo and azimuth angle ϕo of the surface normal
by assuming dominant diffuse or specular polarization.
The degree of linear polarization (DoLP) ρ is related to
the zenith angle θo and can be derived from the Stokes
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Fig. 2: A diagram for illustration of the symbols defined in
our paper. The mesh model of Stanford bunny [52] is used
as an example.

vector:ρ =
√
so(1)2 + so(2)2/so(0). When the diffuse com-

ponent dominates in the reflection, the closed-form solution
of θo could be computed by [6]:

cos θo=

√
η4(1−ρ2)+2η2(2ρ2+ρ−1)+ρ2+2ρ−4η3ρ

√
1−ρ2+1

(ρ+1)2 (η4+1) + 2η2 (3ρ2+2ρ−1) ,

(3)
where η denotes the refractive index. The azimuth angle is
given by

ϕo =
1

2
arctan2

so(2)

so(1)
or ϕo =

1

2
arctan2

so(2)

so(1)
+ π. (4)

With the calculated zenith and azimuth angle (with ambi-
guity), the normal vector can be obtained by

n =
[
sin θo cosϕo sin θo sinϕo cos θo

]⊤
. (5)

Eq. (3), (4), and (5) are derived based on orthographic
projection. Due to the complicated expression, we leave
the derivation of the ambiguous normal under perspective
projection in Sec. 2 of the supplementary material. To resolve
the π-ambiguity in Eq. (4), previous work relies on hand-
crafted [2], [5], [6], [9] or data-driven priors [15], without
explicitly considering the shading or lighting constraints.

3.3 Polarimetric BRDF and Lighting Constraint
The observed Stokes vector of exitant light can be expressed
by matrix multiplication of a Mueller matrix M and an
incident Stokes vector si, and this formulation can be split
into diffuse and specular components:

so = (Md(l) +Ms(l)) si, (6)

where l is the direction of the incident light. si denotes
the Stokes vector of the incident light from direction l.
The Mueller matrices Md,s correspond to the diffuse and
specular reflections, respectively, which inherently contain
information about shape geometry, lighting conditions, and
BRDF of the surface.

To reveal the relationship between surface normals and
the light direction, we replace the Mueller matrix according
to the diffuse-specular pBRDF model [13]:

so=

 T+
o

T−
o cos 2ψo

−T−
o sin 2ψo

aT+
i +

D(l,n;σ)G(θi,θo;σ)

4 cos θo cos θi

 R+

R−cos 2φo

−R−sin 2φo

(n·l)e,

(7)

in which T±
i,o and R± are Fresnel terms, and T±

i,o with the
subscripts {i, o} are short for T±(θo), T

±(θi), respectively;
a denotes diffuse albedo; n is the surface normal vector;
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Fig. 3: We render the images of spheres with ranging rough-
ness parameters under different lights in (a), based on the
adopted pBRDF [13]. The diffuse-specular ratios in (b) show
that the diffuse component dominates most of the regions
when the object surface is smooth and the intensity of values
the diffuse is 10 times greater than those of the specular
when the surface is very rough (roughness>0.8).

θi denotes the angle between the surface normal and the
incident light direction; ψo is the rotation angle regarding
azimuth of surface normal, and φo is the rotation angle
about azimuth of the incident light; D describes the nor-
mal distribution function (NDF) of microgeometry [53] and
G is the geometry function [54]; σ denotes the specular
roughness and e is the light intensity1. The definitions of
the symbols are illustrated in Fig. 2.

Precisely modeling real-world environment illumination
requires an HDR panoramic image [55], which is far too
complicated for inverse problems. On the other hand, the
polarization properties of the same object could change
dramatically under varying illumination conditions [10],
[12], which is one of the key factors that makes SfP problems
intractable. For shape recovery or spatially-varying BRDF
acquisition, researchers tend to restrict the lighting setup,
such as sunny/cloudy sky [11] or a frontal projector/flash
light [12], [13], [14]. We further study SfP by extending the
frontal light to a distant light from an unknown and arbi-
trary direction and propose to estimate the lighting infor-
mation for facilitating normal map prediction. The distant
lighting setup also has been widely adopted in photometric
stereo [56] and data capture in SfP (e.g., SONY dataset [44]).

Under the distant lighting setup, diffuse polarization
will dominate a majority of the regions, and the specular
reflection is distributed on a small patch in the directly
illuminated regions [12]. As a visualization, we plot the log
ratio of the diffuse to specular components on a sphere in
Fig. 3 with regard to the distant light directions varying
along the horizontal axis and the roughness parameter
in Eq. (7) ranging from 0.1 to 1 in the vertical axis.

Under the diffuse dominant assumption, the observed
Stokes vector in Eq. (7) can be approximated by omitting

1. Please refer to the supplementary material for details about the
pBRDF model and formulation of the Fresnel terms.

the specular term, which is given by

sdiff = a

 T+
o

T−
o cos 2ψo

−T−
o sin 2ψo

 cos θiT
+
i e. (8)

Then the intensity of received light is approximated by

sdiff(0) = aT+
o cos θiT

+
i e. (9)

In Eq. (9), the ambiguous azimuth angle of surface
normal ϕo is inherently contained in cos θi:

cos θi(ϕo)=cos θl cos θo+sin θl sin θo cos(ϕo − ϕl), (10)

where θl and ϕl represent the zenith angle and the az-
imuth angle of a distant light, respectively. To relieve the
π-ambiguity of the normal azimuth angle, we introduce the
shading related term s denoted as

s = cos θiT
+
i , (11)

where T+
i is a function regarding cos θi, and the magnitude

curves of T+
i and s are shown in the supplement.

Investigating Eq. (9), the zenith angle of the normal θo
can be computed by Eq. (3), and the azimuth angle ϕo is
estimated by Eq. (4) with π-ambiguity. We find the lighting
terms contain much fewer unknowns compared to spatially
varying normal vectors, and albedo is close to the observed
image intensities, which are expected to be much easier
to estimate. Assuming the lighting conditions and object
albedo could be predicted, the shading term s provides
reliable constraints on removing the azimuth ambiguity of
the surface normal by optimizing

ϕ̂o = argmin
ϕo

∣∣∣∣s (cos θi(ϕo))− so(0)

aeT+
o

∣∣∣∣ . (12)

This objective function regarding normal azimuth is easy
to solve since Eq. (4) has restricted the solution space to two
feasible points. The disambiguation process is illustrated in
Fig. 4. Note that the disambiguation method may fail in the
trivial solutions according to Eq. (10): When sin θo = 0, the
zenith angle of normal equals zero, and there is no ambi-
guity; when cos(ϕo − ϕl) = 0, the direction of the azimuth
angle of normal is orthogonal to that of the distant light,
and lighting provides no azimuth cues of normal (Fig. 4(c));
sin θl = 0 is the special case of cos(ϕo − ϕl) = 0, where the
view direction and the light direction are collinear (this may
happen in real capture). Except for these degenerated cases,
Eq. (12) facilitates the normal disambiguation for the object
pixels.

Therefore, we propose to predict the lighting conditions
and albedo map from the polarimetric images first, which
will assist in distinguishing the ambiguity in azimuth angles
of normal from SfP. By applying diffuse dominant assump-
tion, the specular component is omitted for deriving the
objective function for normal estimation. However, specular
reflections still exist in real data, which affects the accuracy
of the optimized normal map; then, we design a neural net-
work to generate ambiguity-free normal maps by incorpo-
rating the lighting constraint and polarization information.
Note that Eq. (12) is obtained based on the orthographic
camera projection. We also derive the objective function
under perspective projection (a slight variant of Eq. (12)) and
further analyze the influence of different camera models on
the performance of our method in Sec. 2 of the supplement.
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Fig. 4: Illustration of the disambiguation process. (a) Two possible normals computed from DoLP and AoLP. (b) Normal
ambiguity resolved under the constraint of the light direction. (c) The light direction fails to constrain the optimization
when cos (ϕo − ϕl) = 0.

4 LEARNING TO PREDICT LIGHTING, TEXTURE
AND NORMAL FROM POLARIZATION

In this section, we introduce our two-stage framework for
distant lighting, albedo and roughness estimation, and sur-
face normal recovery, which takes advantage of SfP under a
single distant light.

4.1 Network Architecture

As shown in Fig. 1, our network takes a two-stage ar-
chitecture for surface normal reconstruction, consisting of
polarization Lighting and Texture Network (pLTNet) and
polarization Normal Estimation Network (pNENet).

4.1.1 Polarization Lighting and Texture Network (pLTNet)
pLTNet is targeted at predicting the lighting (L), the albedo
map (A) and the roughness map (R) by taking four polariza-
tion images (Ipol) and the corresponding mask (M ) as input.
The network structure is composed of independent decoder
branches for the three sub-tasks, and the three branches
share the same encoder since the lighting information and
texture are coupled in object appearance. The architecture of
pLTNet is illustrated in Fig. 1-pLTNet.

The lighting branch is adopted to estimate the distant
light direction and intensities in RGB. The light direction
can be either represented as a unit vector in the Cartesian
coordinate or denoted by a pair of zenith and azimuth
angles in the spherical coordinates. However, predicting the
zenith and azimuth angle separately may be inefficient: The
azimuth angle contributes less to the accuracy of the light di-
rection as the zenith angle approaches zero. We find it more
effective to regress the light direction vector in the Cartesian
coordinate rather than estimating the direction angles in the
spherical space, which is attributed to the representation
continuity of solution space [57]. The light direction is
assumed within the hemisphere of the view direction, so the
light direction vector satisfies: |l| = 1, l = [lx, ly, lz]

⊤, lz > 0.
For the light intensity, we empirically cast the estimation as
a classification problem with Cint categories.

The architecture of the shared feature extractor consists
of five residual blocks [58], which down-sample the input
tensor in the height-width dimension and dilate the planes
of encoded features to 1024. In the lighting estimate branch,
the encoder is followed by two fully connected layers to
produce the light direction vector and softmax probabilities
of the light intensity. We then convert the output to a unit
vector of the light direction and RGB color of the light by

taking the middle value of the category with the highest
probability.

Learning the object albedo enables extracting the shad-
ing term for normal disambiguation, and estimating spec-
ular roughness helps with the acquisition of complete
SVBRDF parameters. In line with the encoder architecture,
we utilize five convolutional blocks with bilinear interpola-
tion for upsampling for each branch. Also, skip connections
between the encoder and decoder are adopted to preserve
more details from the extracted features. We denote the
pLTNet as

l̂, ê, â, σ̂ = FpLTNet(Ipol,M). (13)

Loss function The cosine loss is widely adopted in the
direction estimation,

Lcos(z, ẑ) = 1− z⊤ẑ, (14)

where z and ẑ denote the reference vector and the predicted
vector, respectively. We employ this function to supervise
distant light direction estimates. For light intensity supervi-
sion, we use the multi-class cross-entropy loss denoted as
LCE. We supervise the albedo and roughness branches by
measuring L1 and L2 distance between the predicted map
with the corresponding ground truth. In summary, the total
loss function of pLTNet is given by

LpLTNet = λdirLcos(l, l̂) + λintLCE(e, ê) + λa1L1(a, â)

+ λa2L2(a, â) + λσ1L1(σ, σ̂) + λσ2L2(σ, σ̂),
(15)

in which {λdir, λint, λa1, λa2, λσ1, λσ2} are weighting param-
eters to balance each loss.

4.1.2 Normal Optimization
The initial normal with ambiguity (ninit) can be calculated
via Eq. (3) and (4). We could derive the shading-related term
s from Eq. (11). Given the light intensities and object albedo
estimated from the preceding stage, the ambiguous azimuth
angle is constrained by the distant light direction (Eq. (10)).
It is easy to solve azimuth angles by evaluating only two
alternative values in Eq. (12) for each pixel, and we could
then derive the optimized normal (nw/lt) to facilitate the
final estimate.

4.1.3 Polarization Normal Estimate Network (pNENet)
To tolerate errors in lighting estimation and mitigate trivial
solutions in Eq. (12), we build pNENet for integrating the
physical constraint from polarization and shading clues
from captured images, as shown in Fig. 1-pNENet. The
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optimized normal also suffers from artifacts in the directly
illuminated regions since the observed light is approximated
as the diffuse reflection in the normal optimization step.
We propose to compute the rendering error map for loss
function reweighing at the training stage, which further
benefits the normal detail recovery.

We employ a widely adopted encoder-decoder architec-
ture to refine the normal map, which consists of ResNet [58]
blocks with the SPADE [59] normalization layers. pNENet
concatenates the input polarization images, the object
albedo, and the corresponding mask as one input stream
and feeds it into the encoding layers for extracting high-
level shape features from appearance information. The op-
timized normal map is simultaneously taken as another
stream to utilize the polarimetric constraint. Each encoder
consists of five convolutional layers for extracting high-
level features of polarization and normal information. For
integrating features from two different sources, we fuse the
latent features from two streams through an addition oper-
ation. The following decoder, fed with the fused features,
has five upsampling layers with skip connections from the
same hierarchical level encoding blocks. The final output is
normalized to unit vectors. We denote the pNENet as

n̂ = FpNENet(nw/lt, Ipol,M, â). (16)

There still remains a global convex/concave ambiguity in
lighting estimate and normal recovery [6]. We adopt the
convexity prior to objects in this paper, and one could retrain
the model to apply it to concave objects.

Loss function pNENet exploits the shape prior knowl-
edge to generate final results by taking in the optimized nor-
mal. However, the optimized normal is computed under the
dominant diffuse reflection, which in the specular/specular-
diffuse-mixed regions can be inaccurate. We further propose
the diffuse-rendering error, which measures the discrepancy
between the observed image intensities and the re-rendered
diffuse ones:

E =
∣∣so(0)− âT+

o cos θiT
+
i ê

∣∣ , (17)

of which large values correspond to the specular regions
(green bounding box) and inter-reflections in concave re-
gions (red bounding box), as shown in Fig. 6. We re-render
the diffuse components, i.e., âT+

o cos θiT
+
i ê, instead of the

total intensity, because the optimized normal only correlates
with the diffuse reflection. At the training stage, we reweigh
the cosine loss with the error map penalizing more on the
normal without the reliable prior, which is expressed as

Lerr-rw =
1∑N
k Ek

N∑
k

EkLcos(nk, n̂k), (18)

where N is the number of valid pixels in the image, nk and
n̂k denote the reference normal vector and the estimated
normal vector at pixel k, respectively, and Ek is the value of
the error map at pixel k. Besides, the regular cosine loss is
also adopted to guarantee the overall quality of the normal
map:

Lnormal =
1

N

N∑
k

Lcos(nk, n̂k), (19)

and the total loss function of pNENet is given by

LpNENet = Lerr-rw + Lnormal. (20)

4.2 Implementation Details
We implemented our model with the PyTorch frame-
work [60], used Adam solver [61] with default param-
eters, and set the weighting parameters of pLTNet loss
{λdir, λint, λa1, λa2, λσ1, λσ2}={1, 0.01, 1, 1, 1, 1}. We exper-
imentally set Cint = 40 for categories of light intensity of
each RGB channel. In the normal optimization stage, the
refractive index was fixed to 1.5. We discuss the selection of
the refractive index in Sec. 6.1. We first trained the pLTNet
with the initial learning rate at 8 × 10−4 for 65 epochs and
multiplied the learning rate by 0.5 every 20 epochs, and then
successively trained pNENet with the lighting and albedo
estimated by pLTNet, allowing pNENet to learn to better
tolerate error in the first stage. The base learning rate was
set to 1.6 × 10−4 and halved at the 20th epoch, and the
model was trained for 30 epochs. To test our method on the
grayscale dataset like SONY [44], we expand the channel of
grayscale images to 3 and take the expanded tensor as input
in our network.

5 SFP DATASET UNDER DISTANT LIGHTING

5.1 Real Data Acquisition
Though DeepSfP [15] provides polarization images of var-
ious objects and their corresponding ground truth normal
maps, the data are collected under indoor/natural outdoor
environment, which is different from ours. Deschaintre
et al. [12] create a test set consisting of RGB polarization
images of 12 objects without ground truth normal, and these
data only can be used for qualitative comparison. SONY
dataset [44] is proposed for polarization-photometric shape
recovery, which contains 8 sets of polarization images under
8 different distant lights corresponding to each object. In
addition, the ground truth of the light directions and object
normal is provided in the SONY set [44], and we could
adopt it for quantitative evaluation of our lighting and
normal estimation model. However, polarization images in
SONY dataset [44] is captured in grayscale. To complement
the existing real-world SfP dataset, we collect a set of RGB
polarization images under the distant lighting setup and
provide the ground truth normal maps. The data acqui-
sition setup is shown in Fig. 5. We adopt a Lucid Vision
Triton polarization camera (with Sony IMX250MYR CMOS
and a 16mm lens) to take four polarization images under
polarizer angles of 0◦, 45◦, 90◦, and 135◦ at a single shot.
For acquisition of ground truth normal, we first scan the
objects with the Shining 3D EinScan–SP scanner2 to obtain
the point cloud. Based on structured light technology, this
scanner produces 3D point cloud with a point spacing about
0.2mm and automatically generates the complete mesh.
After getting the mesh model of the objects, we follow
the method proposed in [62] to conduct the shape-to-image
alignment and then render the “ground truth” normal with
Mitsuba2 [63]. We employ an LED flashlight with a lens in
the front to radiate a near-parallel beam of light towards the

2. https://www.einscan.com/einscan-sp/einscan-sp-specs/
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Fig. 5: Illustration of our data acquisition setup. For better
visualization, the setup image is taken with ceiling lights on,
while real data are captured only with an LED flashlight on.

object, which was placed 120cm away to mimic a distant
light like [56]. This dataset consists of 40 RGB polarization
images of 4 objects with a resolution of 1024×1224, and we
take images of each object under 10 different light directions.
It supports quantitative evaluation of existing SfP methods
under distant lighting.

5.2 Synthetic Data Generation

Due to the fact that there is no large-scale SfP dataset
collected under a distant light, we resort to the pBRDF
model [13] for training and validation data synthesis. We
use 43 object shapes provided by [12], [15], [44] and generate
the normal maps by random rotation. To simulate different
distant lights, we randomly sample light directions within
the hemisphere of the view direction. We collect publicly
available SVBRDFs from [64], which contains 1064 high-
quality SVBRDFs covering a large range of materials. We
further augment the BRDF maps by randomly changing
RGB in the HSV color space, rotating, scaling, and finally
cropping to the desired size. We randomly choose the value
of the refractive index from U(1.4, 1.6) to mimic typical
dielectric materials. With the parameters above prepared,
we acquire the output Stokes vector via Eq. (6) and generate
a rendering for polarization images by Eq. (2). We further
augment the synthetic images by adding Gaussian noise
to simulate the capturing process in a realistic manner. We
simulate polarization images with 512×512 resolution for
training and validation.

In the training stage, we render a total of 43,520 sets
of images by 25 object shapes from the training set of [15]
and 862 materials from [64] and randomly crop them into
256×256 patches for data augmentation. To avoid obtain-
ing blank patches, we pre-compute the indices of feasible
patches, which consist of over 25% valid pixels for each
set of data. During training, we randomly select a feasible
index to crop the original images for each set of data. Our
test set consists of 7,800 sets of data simulated with the
remaining 18 shapes (8 from the test set of [15], 8 from [44],
and 2 from [12]) and 202 materials from [64]. Examples of
rendered polarization images and corresponding DoLP and
angle of linear polarization (AoLP) maps are provided in
the supplementary material.

TABLE 2: Ablation studies of the lighting branch of pLTNet.
We conduct the experiment on SONY [44] and our synthetic
dataset. The estimated light directions (Dir.) and intensities
(Int.) are evaluated by MAngE and MSE, respectively.

Model Dir. on SONY ↓ Dir. on Sync. ↓ Int. Sync. ↓

pLTNet-Light 6.226 6.559 .09105
pLTNet-Lightangle-cls 7.429 6.881 .10261
pLTNet-Lightangle-reg 13.70 14.70 .09983
pLTNet-Lightint-reg 7.017 6.760 .09544
pLTNet-Lightw/ unpol 16.09 15.85 .09340

TABLE 3: Ablation studies of pNENet. Quantitative evalua-
tion is conducted on SONY [44], the synthetic dataset, and
our real-world dataset.

Angular error ↓ Accuracy ↑
Mean Median ARMSE 11.25◦ 22.5◦ 30.0◦

SO
N

Y
[4

4]

ninit 41.98 29.66 57.02 .3266 .4500 .5052
nw/lt (ours, η=1.5) 25.56 12.63 38.42 .4979 .6600 .7139
nw/lt (η=1.4) 29.37 15.17 42.73 .4368 .6306 .6852
nw/lt (η=1.6) 25.06 12.83 37.52 .4947 .6672 .7222
pNENet 8.868 5.682 13.32 .7853 .9181 .9505
pNENetw/o nw/lt

10.46 6.904 15.20 .7398 .8922 .9330
pNENetw/ ninit

10.28 6.375 15.44 .7505 .8921 .9305
pNENetsgl branch 9.661 6.123 14.50 .7626 .9018 .9404
pNENetconcat fuse 9.294 5.832 13.97 .7697 .9086 .9450
pNENetw/o err-rw loss 9.638 6.294 14.21 .7664 .9071 .9433
pNENetw/o albedo 9.550 6.014 14.39 .7670 .9040 .9407
pNENetw/o mask 9.218 5.947 13.72 .7724 .9104 .9459

Sy
nc

.

ninit 47.58 37.03 61.25 .2433 .3694 .4370
nw/lt (ours, η=1.5) 31.76 21.85 44.30 .3729 .5383 .6162
nw/lt (η=1.4) 34.24 24.26 46.49 .3272 .5093 .5887
nw/lt (η=1.6) 31.15 20.91 43.63 .3780 .5533 .6317
pNENet 4.924 3.981 6.573 .9294 .9873 .9940
pNENetw/o nw/lt

5.946 4.896 7.740 .8950 .9814 .9915
pNENetw/ ninit

5.812 4.599 7.896 .8979 .9801 .9902
pNENetsgl branch 5.396 4.395 7.146 .9142 .9843 .9927
pNENetconcat fuse 5.017 4.055 6.680 .9267 .9871 .9938
pNENetw/o err-rw loss 5.275 4.302 6.931 .9175 .9858 .9934
pNENetw/o albedo 5.336 4.327 7.043 .9150 .9854 .9933
pNENetw/o mask 5.147 4.187 6.823 .9219 .9864 .9936

O
ur

R
ea

l

ninit 53.28 44.56 66.19 .1331 .3003 .3806
nw/lt (ours, η=1.5) 41.81 31.58 53.15 .1466 .3773 .4969
nw/lt (η=1.4) 44.03 33.51 55.45 .1200 .3373 .4638
nw/lt (η=1.6) 40.74 30.54 51.96 .1552 .3995 .5147
pNENet 15.58 12.65 19.64 .4387 .8275 .9111
pNENetw/o nw/lt

16.68 13.38 21.19 .4199 .8037 .8900
pNENetw/ ninit

16.57 13.29 20.91 .4035 .7968 .8899
pNENetsgl branch 16.22 13.16 20.75 .4099 .8252 .9078
pNENetconcat fuse 15.81 12.90 19.76 .4264 .8217 .9106
pNENetw/o err-rw loss 16.17 13.19 20.21 .4063 .8149 .9044
pNENetw/o albedo 16.20 13.21 20.37 .4087 .8119 .9029
pNENetw/o mask 16.08 13.11 20.23 .4137 .8193 .9033

6 EXPERIMENTAL RESULTS

First, we conduct the ablation study on the simulated/real
dataset to show the effectiveness of the proposed frame-
work. Then we quantitatively and qualitatively evaluate
our approach using both synthetic and real-world data
by comparing it with state-of-the-art methods. We adopt
mean/median angular error, angular root-mean-square er-
ror (ARMSE) (↓ denotes lower is better), and angular accu-
racy percentage (↑ denotes higher is better) to quantitatively
evaluate the quality of estimated surface normal maps. For
distant light directions, mean angular error (MAngE) is
utilized for evaluation. Mean squared error (MSE) and mean
absolute error (MAE) are adopted to measure the predicted
albedo and roughness.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Input â σ̂ l ninit nw/lt Err map n̂ GT n
Pred
GT

Pred
GT

Pred

Fig. 6: Qualitative evaluation of our method on synthetic data, SONY [44], and our real data. We show the texture maps
(â, σ̂) and light directions predicted by pLTNet, the initial normal (ninit) obtained from Eq. (3) and Eq. (4), the normal
optimized (nw/lt) under the distant lighting constraint, the diffuse-rendering error map (rescaled for better visualization),
and the normal predicted by pNENet (n̂). In the error map, part of the specular and inter-reflection regions is marked with
the green and red bounding boxes, respectively.

Input Ours W/o nw/lt W/ ninit Sgl branch

GT n Concat fuse W/o err-rw loss W/o albedo W/o mask
Fig. 7: Qualitative evaluation results in ablation studies of
pNENet.

6.1 Ablation Studies and Analyses

To evaluate how manual settings in each model influence
the final performance, we analyze our framework by chang-
ing or disabling each component respectively. The quantita-
tive ablation study of the lighting module is included in Ta-
ble 2. We further ablate pNENet on the synthetic dataset,
SONY [44], and our real-world dataset. The quantitative
evaluation is listed in Table 3, and visual results are shown
in Fig. 6 and Fig. 7.

Effectiveness of the lighting branch We analyze the
effectiveness of light direction estimation in pLTNet by
comparing the vector and angle representations, as shown
in Table 2. Modeling a light direction as a pair of the zenith
and azimuth angles, we discretize the space of the two
angles into 60 and 90 categories, respectively, and sepa-
rately estimate the two parameters (Lightangle-cls). Besides,
we directly predict the zenith and azimuth angle values
(Lightangle-reg). As shown in Table 2, the lighting branches
perform better with the vector representation of light di-
rections, in accordance with the contiguous representation
of 2D rotations [57]. We compare the classification method
against the regression method for light intensity estimate.
We train the classification model, which has the same archi-
tecture except for the number of neurons in output linear

TABLE 4: Quantitative evaluation on the synthetic data,
SONY [44], and our real-world data, compared to the state-
of-the-art methods. DeepSfP [15] and SfP-wild [21] are re-
trained on our synthetic data for a fair comparison.

Methods Angular error ↓ Accuracy ↑
Mean Median ARMSE 11.25◦ 22.5◦ 30.0◦

Sy
nc

.

Miyazaki [2] 43.79 39.70 50.86 .0857 .2432 .3631
Mahmoud [9] 44.81 39.36 52.22 .0653 .2338 .3620
Smith [6] 54.59 53.65 59.15 .0663 .1814 .2673
Li [65] 42.62 35.37 51.70 .1158 .3187 .4440
DeepSfP [15] 12.09 9.178 17.31 .6543 .8903 .9324
Deschaintre [12] 15.07 10.29 23.21 .6243 .7866 .8409
SfP-wild [21] 5.690 3.927 10.59 .9337 .9744 .9793
Ours 4.924 3.981 6.573 .9294 .9873 .9940

SO
N

Y
[4

4]

Miyazaki [2] 39.21 35.57 45.74 .1058 .2919 .4191
Mahmoud [9] 43.22 37.70 51.47 .1006 .2811 .3973
Smith [6] 40.52 38.50 46.06 .0714 .2311 .3618
Li [65] 22.34 17.12 32.68 .2766 .6910 .8426
DeepSfP [15] 11.26 8.328 15.65 .6887 .8868 .9334
Deschaintre [12] 12.45 8.288 17.79 .6653 .8576 .9056
SfP-wild [21] 10.49 8.126 14.29 .7427 .9153 .9488
Ours 8.868 5.682 13.32 .7853 .9181 .9505

O
ur

R
ea

l

Miyazaki [2] 45.80 41.63 52.76 .0610 .2054 .3233
Mahmoud [9] 45.30 38.46 53.36 .0490 .2214 .3631
Smith [6] 61.28 59.94 65.01 .0377 .1270 .2050
Li [65] 28.19 21.62 37.96 .1786 .5280 .7180
DeepSfP [15] 16.88 13.16 22.07 .4082 .7985 .8846
Deschaintre [12] 21.24 17.54 26.64 .2695 .6587 .7993
SfP-wild [21] 17.62 14.47 21.47 .3144 .7934 .8900
Ours 15.58 12.65 19.64 .4387 .8275 .9111

layers, until convergence. The quantitative evaluation in
“Light” and “Lightint-reg” of Table 2 shows the classification
method produces more accurate intensities. For intensity
estimation, carefully converting regression to the multi-
category classification problem could narrow down the
solution space of intensities and balance the quantization
error. Further, we train our network to take in a single
unpolarized image instead of four polarization images, and
the result of “Light” compared to “Lightw/ unpol” indicates
polarization cues benefit light direction estimate.

Effectiveness of the normal optimization Comparing
ninit and nw/lt in Table 3 and Fig. 6, we find that the azimuth
ambiguities in initial normals are greatly relieved with
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TABLE 5: Quantitative comparison between our model and
the state-of-the-art SVBRDF methods, evaluated on syn-
thetic data.

Methods Albedo Roughness Rendering
MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓

Li [65] .0954 .2053 .1047 .2477 .0834 .3452
Deschaintre [12] .0727 .1963 .1162 .2783 .1228 .4398
Ours .0174 .0870 .0347 .1195 .0289 .1907

predicted lighting and albedo information. For evaluation
of the influence of refractive indices in the normalization
optimization, we compute the optimized normal on the
SONY dataset [44] and our synthetic data with η ranging
from 1.4 to 1.6. As shown in Table 3, the angular errors of
optimized normal are close between η=1.5 and η=1.6, and
we fix η of 1.5 in the optimization process of our framework.

Effectiveness of pNENet Quantitative and qualitative
results are shown in Table 3 and Fig. 7. We first verify
the contribution of the normal optimization module by 1)
removing nw/lt from the input of the network; 2) using ninit
as a substitute for nw/lt. Angular error and accuracy metrics
averaged over 7,800 samples are listed in “pNENetw/o nw/lt ”
and “pNENetw/ninit ”, respectively. pNENet produces more
reliable results under the guidance of optimized normal
maps, and the initial normal also contributes to the final
results but does not work well as the optimized one. We
compare our two-branch architecture to a network with a
single stream, i.e., we remove the branch fed with nw/lt and
stack nw/lt with the albedo map and polarization images
as input. The results in the “pNENetsgl branch” demonstrate
the effectiveness of the two-branch design of pNENet. We
also train pNENet with the concatenation fusion method
instead of the addition operation. Our network performs
slightly better with less number of parameters (20.4M) than
“pNENetconcat fuse” (22.7M).

Moreover, the adopted diffuse-rendering error loss is
evaluated in “pNENetw/o err-rw loss” row of Table 3. By giving
additional weight to the loss function on pixels of inaccurate
normal prior, the diffuse-rendering term helps the network
to concentrate more on the local normal recovery in the
specular regions. We then investigate the benefit of the
predicted albedo to final normal estimations. pNENet is
trained without the object albedo as input, and the results
are in “pNENetw/o albedo”, showing that more prior knowl-
edge encoded in the network further improves the model
performance. Additionally, we find that concatenating the
mask into input tensors also enables better estimation of
surface normals, as listed in “pNENetw/o mask”.

Overall, it is the additional input nw/lt, the designed
architecture and the loss functions that contribute most to
the final normal. By introducing nw/lt as input, our pNENet
can generate results slightly better than SfP-wild [21]. Then
the two-branch network structure is designed to effectively
utilize the optimized normal, and the loss function helps
further improve the normal accuracy.

6.2 Evaluation on Synthetic Data

We use 7,800 rendered polarization images and their
corresponding ground-truth normal maps and texture maps
as the test set to quantitatively evaluate our method against

the SfP and SVBRDF approaches. Miyazaki et al. [2], Mah-
moud et al. [9], and Smith et al. [6] are non-learning meth-
ods, which predict the surface normal based on polarization
cues and other priors. Li et al. [65] take a single image for
SVBRDF recovering and Deschaintre et al. ’s method [12] is
based on a deep network utilizing the polarization images.
DeepSfP [15] is proposed to exploit a network to solve
the ambiguity in traditional SfP. For a fair comparison, we
retrain the model of DeepSfP [15] using our dataset with the
same strategy as stated in their paper. Recently presented
SfP-wild [21] aims at estimating the normal of the scene. To
make their method applicable on the object level, we also
retrained the model on our dataset until it gets converged.

Qualitative evaluation of our method on the synthetic
data is shown in the first row of Fig. 6. Quantitative com-
parisons of normal predictions among these methods are
listed in Table 4. DeepSfP [15], Deschaintre et al. [12], SfP-
wild [21], and our method performs significantly better
than other methods. Compared to Li et al. [65], which
only relies on a single image, SfP methods produce more
reliable normal maps with less angular error. With the assis-
tance of the lighting information, our method outperforms
DeepSfP [15], Deschaintre et al. [12], and SfP-wild [21]. We
quantitatively compare our method to Deschaintre et al. [12]
and Li et al. [65] regarding albedo, roughness, and re-
rendered images. The results are shown in Table 5. Our
framework also generates compelling results as the state-
of-the-art approaches.

6.3 Evaluation on Real Dataset
We take SONY dataset [44] and our collected real dataset

as the benchmark to evaluate SfP methods. Table 2 con-
tains the quantitative evaluation of pLTNet, and Fig. 6
shows some visual results of our method. More intermediate
results (e.g., albedo) on our real dataset are provided in
the supplement. pNENet is quantitatively and qualitatively
compared with previous state-of-the-art methods on SONY
dataset [44], as shown in Fig. 8 and Table 4. Since the non-
learning methods [2], [6], [9] show large errors on the real-
world images, only the visual results of [9] are displayed in
Fig. 8. All the listed methods fail to accurately recover the
normals near the edge of DOLL’s handbag. pBRDF changes
with the albedo near the handbag contour, which makes
the polarimetric information unstable and also affects the
predictions of SfP methods. We conduct further analysis on
this phenomenon in Sec. 4.2 of the supplement. SfP-wild [21]
also produces comparable normal maps as our method.
However, the “sharper” results of SfP-wild [21] suffer from
more artifacts near the edges, such as the SPARROW tail and
the SWAN feather. Our model generalizes well on real-world
images and produces reliable normal maps on a majority of
these objects. More qualitative comparisons on the rest of
the objects are provided in the supplementary material.

We also conduct qualitative evaluation on the real data
released by Deschaintre et al. [12], as shown in Fig. 9. Our
method generates quality reliable normal maps with fewer
artifacts, such as normals at the edge of the raspberryPi.
The images re-rendered by our method are also closer to
the original input than the rendered results of Deschain-
tre et al. [12] and Li et al. [65]. The rest of the results are
provided in the supplementary material.
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Input GT Ours SfP-wild [21] Deschaintre [12] DeepSfP [15] Li [65] Mahmoud [9]

BEAR

CUP

DOLL

SPARROW

SWAN

Fig. 8: Qualitative comparisons among the state-of-the-art approaches, SfP-wild [21], Deschaintre et al. [12], DeepSfP [15],
Li et al. [65], and Mahmoud et al. [9], evaluated on SONY dataset [44] and our captured real data.

TABLE 6: Model parameters, FLOPs, and inference time
comparison between our method and learning-based ap-
proaches. N, A, R, S, D, and L are abbreviations for normal,
albedo, roughness, specular reflection, depth, and lighting,
respectively.

Ours Deschaintre Li DeepSfP SfP-wild

Output N, A, R, L N, A, R, S, D N, A, R, L, D N N
# Parameters 35.7M 188.3M 74.6M 10.8M 42.5M
FLOPs 113.5G 176.3G 225.4G 77.78G 195.4G
Time (sec/iter) 0.733 0.882 2.106 0.720 0.806

6.4 Model Complexity and Inference Time

We compare the computational costs of Deschain-
tre et al. [12] (a single-stage model), Li et al. [65] (a multi-
stage model, iterative refinement), DeepSfP [15] (a single-
stage model), SfP-wild [21] (a single-stage model for scene-
level SfP), and our framework (a two-stage model) on
Manjaro Linux with an AMD Ryzen9 5950X CPU and an
NVIDIA GeForce RTX 3090. The FLOPs of each method are
measured by processing a single test sample with a size of
512×512. For testing running time, we set the batch size to
32 and run the five models on 8,000 samples, and the results
are listed in Table 6. Our method has advantages over [12],
[21], [65] in inference time, and also achieves comparable
performance compared to [15]. Thanks to the integration
of shading and polarimetric information, our framework
predicts normal map as well as texture information and
consists of moderate model parameters like SfP approaches.

7 LIMITATIONS AND DISCUSSIONS

Since our model is designed under the setup of a sin-
gle distant light, it will degenerate when dealing with
images captured under different lighting conditions, such
as outdoor lighting (polarization of the sky should be
considered) and indoor scenes with multiple light sources
(specular reflection cannot be ignored, which makes the
diffuse dominant basis invalid). To evaluate the robust-
ness of the method in more complex environments, we
take polarization images under a distant light along with
different ceiling lights (mimic ambient lighting), as shown
in Fig. 10. Our method still performs well under distant
and ambient lighting (Fig. 10(a)(b)), but we find that the
estimated normal quality downgrades as the intensity of
ambient lighting increases (Fig. 10(b)). Without the distant
lighting, the normal maps shown in Fig. 10(c) suffer from
artifacts due to the influence of specular reflection. This ex-
periment qualitatively demonstrates that our method works
reliably in the scenarios where distant light dominates
and also echoes our analysis that distant lighting causes
stronger diffuse reflectance. Moreover, our framework does
not model global illumination such as inter-reflection, which
causes the artifacts near the leg of BEAR in Fig. 8. To further
analyze this issue, we test our method on a statue with
a concave shape under a single distant light, as shown
in Fig. 10(d). The cast-shadow area marked by the green
box and the concave surface marked by the red box are
mainly illuminated by the reflected light from other surface
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Fig. 9: Qualitative comparisons between learning-based SfP/SVBRDF approaches and our method, evaluated on the real
data released by [12].

points. The intricate inter-reflection violates the assumption
of unpolarized incident light and consequently degrades the
quality of the estimated normal map.

Like previous SfP methods, our model is designed for
dielectric objects but may not work on very rough surfaces
or conductors. We test SfP methods on three challenging
materials, i.e., fabric, rough clay, and brass, as shown in
Fig. 113. The inter-reflection and scattering in microfacets of
the rough surface of fabric and clay depolarize the exitant
light making polarization information (like AoLP) invalid,
so SfP methods hardly recover the normal azimuth angle
of MONKEY and BUDDHA1. The refractive index of metallic
material like brass is a complex number and the pBRDF is
also different from that of dielectric [66], so AoLP of BUD-
DHA2 seems to be affected by noise. SfP of these challenging
materials is still an open problem and remains to be solved.

8 CONCLUSION

In this paper, we propose a learning-based model consisting
of a polarimetric lighting and texture estimate module and

3. Qualitative results of other methods and quantitative evaluation
are provided in Sec. 4.3 of the supplement.

a normal recovery model for surface normal reconstruction.
Since the polarization properties of objects vary with the
lighting conditions, we investigate the SfP problem under
distant lighting. We derive the shading constraints from
polarimetric BRDF and exploit the lighting and albedo cues
to enable disambiguation of the azimuth angle. Overall, we
derive the two-stage network to achieve shape recovery
from polarization: in the first stage, pLTNet takes polar-
ization images to predict lighting conditions and object
texture; in the second stage, pNENet makes full use of
polarization cues, physical priors calculated by SfP, and
lighting information from pLTNet to generate compelling
normal maps. By introducing the lighting constraint in SfP,
the network uses shading information to assist in resolving
normal estimation ambiguity. Experimental results show
our approach has superior performance over previous work.
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✦

1 POLARIMETRIC BRDF AND FRESNEL EQUA-
TIONS

In this section, we provide more details about the adopted
polarimetric Bidirectional Reflectance Distribution Function
(pBRDF) and related notation definitions of the symbols in
this paper. We then derive that the Fresnel term T+

i is a
function regarding cos θi, as mentioned in Sec. 3.2 of the
main paper.

1.1 Stokes Vector and Rotation Matrix

The Stokes vector is applied to describe the polarization
status of the light for better illustration of the pBRDF model,
which should be defined in a specific coordinate frame.
In this paper, we assume the z-axis of the local frame is
aligned with the propagation direction of the light, and the
y-axis of the local frame is always in the plane of incidence
(PoI) or in the plane of exitant (PoE). The PoI is the plane
consisting of the surface normal vector and the incident
lighting direction vector, and the PoE is the plane containing
the surface normal vector and the exitant lighting direction
vector.

Then we employ the Mueller matrix to describe changes
in polarization states of light, which operates on the Stokes
vectors. Before applying the transformation on the Stokes
vector, different coordinates of the incident and exitant
vectors should be aligned to the same one. Thus, the rotation
matrix is introduced to convert the two coordinates frames,

C(ϕ) =

1 0 0
0 cos 2ϕ sin 2ϕ
0 − sin 2ϕ cos 2ϕ

 , (1)

where ϕ denotes the counter-clockwise rotation angle.

*Corresponding author.

• Youwei Lyu and Si Li are with School of Artificial Intelligence, Beijing
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• Lingran Zhao and Boxin Shi are with National Key Laboratory for Multi-
media Information Processing and National Engineering Research Center
of Visual Technology, School of Computer Science, Peking University,
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1.2 Fresnel Matrix

Fresnel Matrices [1] are widely used to formulate the trans-
mission and reflection process of polarized light, which are
denoted as

F =

F+ F− 0
F− F+ 0

0 0
√
F⊥F ∥ cos δ

 , F ∈ {R,T} ,
F ∈ {R, T} , (2)

in which δ represents the retardation phase shift between
the perpendicular and parallel waves. In dielectric materi-
als, δ = π for any incident angle less than the Brewster
angle, and δ = 0 otherwise. R, T denotes Fresnel Ma-
trices corresponding to the reflected light and transmitted
light, and R, T are relative strength of reflected light and
transmitted light, respectively, regarding the incident angle
θ1 and exitant angle θ2 in the transmission process. We let
F+ = F⊥+F∥

2 , F− = F⊥−F∥

2 , F ∈ {R, T} for conciseness.
The superscripts ⊥, ∥ correspond to the perpendicular and
parallel components of the light. Specifically,

T⊥=
sin 2θ1 sin 2θ2

sin2 (θ1 + θ2)
, T ∥=

sin 2θ1 sin 2θ2

sin2 (θ1+θ2) cos2 (θ1−θ2)
, (3)

R⊥ = 1− T⊥, R∥ = 1− T ∥, (4)

and we could calculate the exitant angle with the known
incident angle and the refractive indices of the two types of
medium by Snell’s law [1],

cos θ2=

√
1−

(
η1
η2

sin θ1

)2

=
1

η2

√
η22−η21+η21 cos2 θ1. (5)

Also, the incident angle can be computed with the known
exitant angle and the refractive indices η1,2.

1.3 Diffuse and Specular Reflection

The observed Stokes vector so of exitant light can be ex-
pressed by matrix multiplication of a Mueller matrix M and
the incident Stokes vector si [2]:

so = Msi, (6)

where the Mueller matrix M is concerning the surface
normal, the light direction, and the BRDF of the surface.
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We adopt the diffuse-specular pBRDF [3] for analysis
of distant lighting constraints and simulation of training
data. According to the polarimetric model [3], the observed
polarization light is the sum of the diffuse component and
specular component, i.e., we could split the Mueller matrix
into two parts: M = Md + Ms, and Eq. (6) could also be
rewritten as:

so = so,d + so,s = (Md(l) +Ms(l))si, (7)

in which we denote the Muller matrix regarding the light di-
rection l for brevity. We then elaborate the two components
as follows.

Diffuse reflection The incident light first penetrates
into the object’s surface, gets depolarized inside the mate-
rial, transmits back to the air, and becomes polarized. The
Mueller matrix describing the diffuse reflection process is
given by

Md=Cn→o(ψo)T(θo;η)D(a)T(θi;η)Ci→n(−ψi)(n·l), (8)

in which n is the unit vector of the surface normal. θi
denotes the angle between n and l, and θo is the zenith
angle of surface normal. Cn→o(ψo) denotes the rotation
transformation with ψo from the PoI coordinate to the
imaging coordinate, and Ci→n(−ψi) denotes the rotation
matrix of the angle −ψi from the incident coordinate to the
PoI coordinate; the rotation angles ψo can be calculated with
known surface normals,

ϕo =
π

2
− arctan

ny
nx
, (9)

where (nx, ny) is the projection of n on the imaging coordi-
nate. In Eq. (8), D(a) is a depolarization matrix with diffuse
albedo a:

D(a) =

a 0 0
0 0 0
0 0 0

 . (10)

Specular reflection For specular reflection, the incident
light hits the object’s surface and then is directly reflected
back to the air, which can be described by the half vector h
between the direction of incident light l and the view direc-
tion v. Under orthographic projection, we set v = [0, 0, 1]⊤.
The Mueller matrix of specular reflection is given by

Ms=
D(θh;σ)G(θi,θo;σ)

4 cos θi cos θo
Ch→o(φo)R(θd;η)Ci→h(−φi)(n·l),

(11)
where D(θh;σ) is the normal distribution function (NDF)
of microsurface [4] with regard to θh, the angle between the
halfway vector and surface normal, and σ, the roughness of
the surface. θh can be computed from n and l, and we could
write this term as D(l,n;σ), as mentioned in the main paper.
G(θi,θo;σ) is a function corresponding to D for geometric
consistency. We adopt the Trowbridge-Reitz NDF (GGX
distribution [4]) and its corresponding geometry function
in the paper. Ch→o(φo) is the rotation matrix of the angle
φo from the PoI coordinate to the imaging coordinate, while
Ci→h(−φi) denotes the rotation matrix of angle −φi from
the incident coordinate to the PoI coordinate; the rotating
angles φo can be calculated from the halfway vector h,

φo =
π

2
− arctan

hy
hx
, (12)

where (hx, hy) is the projection of h on the imaging coordi-
nate.

Moreover, R(θd; η) is the reflection Fresnel term in re-
lation to θd, the angle between the halfway vector h and
direction of incident light l. The incident light is assumed
to be unpolarized, i.e., si = [e, 0, 0]⊤, in which e is the light
intensity. Replacing the diffuse and specular Mueller matrix
terms in Eq. (7) by Eq. (8) and Eq. (11), we finally derive the
observed Stokes vector:

so =

 T+(θo)
T−(θo) cos 2ψo

−T−(θo) sin 2ψo

 aT+(θi)(n · l)e+

D(θh;σ)G(θi, θo;σ)

4 cos θo cos θi

 R+(θd)
R−(θd) cos 2φo

−R−(θd) sin 2φo

 (n · l)e.

(13)

For brevity, we replace T±(θo) with T±
o , substitute

D(l,n;σ) for D(θd, θh;σ), substitute R± for R±(θd), and
then obtain Eq. (7) in the main paper.

1.4 Proof of Fresnel Functions
We state in the main paper that T+

i is a function regarding
cos θi, the proof is given as follows. According to Sec. 1.2,

T+
i =

T⊥(θi) + T ∥(θi)

2
. (14)

For the incident process, the light ray penetrates the object
medium with the refractive index η2 = η from the air with
η1 = 1, and we write Eq. (3) as

T⊥(θi)=
4η cos θi cos θ

′
i

(cos θi+η cos θ′i)
2 , T

∥(θi)=
4η cos θi cos θ

′
i

(cos θ′i+η cos θi)
2 ,

(15)
in which cos θ′i can be calculated via Eq. (5):

cos θ′i =
1

η

√
η2 − 1 + cos2 θi. (16)

Thus, T⊥, T ∥, and T+ are functions about cos θi, since cos θ′i
in Eq. (15) could be replaced by Eq. (16). In addition, we
plot the magnitude curves of the shading term s and T+

i

regarding cos θi, as shown in Fig. 1.

0.0 0.2 0.4 0.6 0.8 1.0
cosθi

0.0

0.2

0.4

0.6

0.8

1.0

s= cosθiT
+
i

T +
i

Fig. 1: The magnitude curves of the shading term s and the
Fresnel term T+

i .
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2 APPLYING OUR METHOD UNDER PERSPECTIVE
PROJECTION

In the main paper, we calculate initial normal ninit and
optimize nw/lt under the orthographic assumption. Our
method can be applied under the perspective projection
model without retraining the network. As suggested, we
verify the accuracy of our method under different camera
models.

Under the perspective model, the orientation of the angle
of linear polarization (AoLP) is parallel to the line where
xOy and the plane of exitance (PoE) intersect, as shown in
Fig. 2. We denote the AoLP as ϕp, which is given by

[cosϕp, sinϕp, 0]
⊤ =

z× (n× v)

||z× (n× v)|| , (17)

where z is the direction of the camera optical axis, and we
set z = [0, 0, 1]⊤. The view direction v is varying over the
image plane, which can be obtained by

v =
K−1x

||K−1x|| , (18)

in which K denotes the intrinsic matrix of the camera,
and x = [u, v, 1]⊤ represents the pixel position on the
image plane. To acquire the initial normal ninit, we solve
the equations:

[cosϕp, sinϕp, 0]
⊤ =

z× (n× v)

||z× (n× v)|| , (19)

n·v=
√
η4(1−ρ2)+2η2(2ρ2+ρ−1)+ρ2+2ρ−4η3ρ

√
1−ρ2+1

(ρ+1)2 (η4+1) + 2η2 (3ρ2+2ρ−1) ,

(20)
||n||22 = 1. (21)

Eq. (20) is derived from Eq. (3) of the main paper. There
are two possible solutions for the three equations regarding
the normal vector. We derive the closed-form solutions of
the three equations by Wolfram Mathematica, which are de-
noted as np-init1 and np-init2. To resolve the normal ambiguity
and obtain nw/lt, we could resort to minimizing

θ̂o, ϕ̂o = argmin
θo,ϕo

∣∣∣∣s (θo, ϕo)− so(0)

aeT+
o

∣∣∣∣ , (22)

which is a slight variant of Eq. (12) in the main paper.
Under the perspective projection, there is an ambiguity in
the normal zenith angle as well as in the azimuth angle,
which is the only difference between Eq. (22) and Eq. (12) in
the main paper. It is easy to optimize Eq. (22) by respectively
introducing np-init1 and np-init2 into the objective function
and comparing the values.

Then we evaluate how the camera model contributes
to the accuracy of the shape normal estimation. First, we
conduct camera calibration by Camera Calibrator in MAT-
LAB to get camera focal length, then calculate the intrinsic
matrix K, and compute normal maps estimated under the
perspective projection model. We additionally take polar-
ization images of 3 objects under 6 different light directions
and generate their corresponding ground truth normal for

quantitative evaluation.1 The results of quantitative evalua-
tion are listed in Table 1 and qualitative results are displayed
in Fig. 3. As shown in Table 1, we find that our method still
performs well under the perspective camera model without
retraining the network. For nw/lt, the perspective model
greatly improves the prediction accuracy but lags in MAngE
and ARMSE. Also, using the perspective model marginally
improves the final normal maps. However, applying the
perspective model on SfP requires additional camera cali-
bration to get K and object position in the image, which
may restrict its application scope. Utilizing the orthographic
projection model also generates comparable results, which
indicates the validation of the orthographic assumption
in our camera setup. In brief, these two camera models
excel in different application scenarios, and our proposed
framework can be easily adjusted to both models.

PoE
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Fig. 2: Illustration of the perspective projection model.

TABLE 1: Quantitative evaluation of our method using or-
thographic projection and perspective projection, conducted
on the newly collected real-world data.

Methods Angular error ↓ Accuracy ↑
Mean Median ARMSE 11.25◦ 22.5◦ 30.0◦

ninit-orthographic 51.77 42.50 64.29 .1251 .3134 .3972
ninit-perspective 51.71 43.02 65.32 .1728 .3352 .4057

nw/lt-orthographic 37.99 27.29 48.38 .1361 .4245 .5515
nw/lt-perspective 38.91 26.12 51.53 .2118 .4564 .5548

Ours-orthographic 17.76 14.51 22.47 .3702 .7668 .8781
Ours-perspective 16.75 13.36 21.77 .4201 .7841 .8836

3 EFFECTIVENESS OF NORMAL OPTIMIZATION
MODULE

To further validate the contribution and generalization abil-
ity of the normal optimization module, we retrain two
learning-based SfP methods (DeepSfP [7] and SfP-wild [8])
with nw/lt as the additional input on our synthetic data.
Note that the same training strategies are applied in the
training process as proposed in their original papers. We
test the two retrained models on the synthetic test dataset,
SONY dataset [5], and our real dataset, and the quantitative
results are shown in Table 2. The quantitative results demon-
strate that simply taking the optimized normal as input also

1. SONY dataset [5] and data released by Deschaintre et al. [6] cannot
be used for the evaluation, since the camera calibration information is
not provided.
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Fig. 3: Qualitative results of our method using orthographic projection and perspective projection, evaluated on the newly
collected real-world data.

boosts network performance, which also indicates the ef-
fectiveness of light estimation and our normal optimization
algorithm.
TABLE 2: Quantitative evaluation on the synthetic data,
SONY [5], and our real-world data, compared to the state-of-
the-art SfP methods retrained with nw/lt as additional input.

Methods Angular error ↓ Accuracy ↑
Mean Median ARMSE 11.25◦ 22.5◦ 30.0◦

Sy
nc

.

DeepSfP [7] 12.09 9.178 17.31 .6543 .8903 .9324
DeepSfP w/ nw/lt 8.872 7.545 11.75 .7728 .9517 .9752
SfP-wild [8] 5.690 3.927 10.59 .9337 .9744 .9793
SfP-wild w/ nw/lt 5.436 3.820 10.24 .9361 .9762 .9809
Ours 4.924 3.981 6.573 .9294 .9873 .9940

SO
N

Y
[5

] DeepSfP [7] 11.26 8.328 15.65 .6887 .8868 .9334
DeepSfP w/ nw/lt 10.62 7.441 15.62 .7321 .8980 .9373
SfP-wild [8] 10.49 8.126 14.29 .7427 .9153 .9488
SfP-wild w/ nw/lt 9.480 6.423 13.89 .7737 .9163 .9490
Ours 8.868 5.682 13.32 .7853 .9181 .9505

O
ur

R
ea

l DeepSfP [7] 16.88 13.16 22.07 .4082 .7985 .8846
DeepSfP w/ nw/lt 16.21 12.69 21.22 .4374 .8104 .8926
SfP-wild [8] 17.62 14.47 21.47 .3144 .7934 .8900
SfP-wild w/ nw/lt 17.28 13.71 22.01 .3907 .7870 .8854
Ours 15.58 12.65 19.64 .4387 .8275 .9111

4 FURTHER ANALYSIS ON OUR MODEL AND SFP
METHODS

4.1 Influence of Image Format
To validate how RGB/grayscale affects the performance, we
generate 7,800 sets of test data in grayscale for quantitative
evaluation. The results evaluated on the synthetic data are
listed in Table 3. The estimated normal on the RGB data
are slightly better than (no more than 0.2◦) the results on
the grayscale data, which may result from the fact that our
model is trained on RGB data and color information prob-
ably benefit normal recovery. To further verify performance
on the real data, we set up a two-camera rig, placing a
grayscale polarization camera (Lucid Phoenix 5.0 MP2 with

2. https://thinklucid.com/product/phoenix-5-0-mp-polarized-model/

Sony IMX250MZR CMOS) and an RGB polarization camera
(Lucid Triton TRI050S-QC3 with Sony IMX250MYR CMOS)
side by side that reduces the baseline to the minimum.
The two cameras are equipped with lens of 16mm focal
length, and we simultaneously take images of the same
object with the same exposure time and gain. We capture
in total 32 sets of grayscale/RGB polarization images of two
objects, and each object is illuminated under eight different
distant lights. For a fair comparison, we save grayscale/RGB
images in 8-bit format. Also, we acquire the ground truth
normal for quantitative evaluation. Quantitative evaluation
results are listed in Table 3 and visual results are shown
in Fig. 4. The advantage of using grayscale or RGB data
does not reach a consensus for this test. Our method still
performs better on DUCK (Fig. 4 right) by taking RGB
images, while the results on SPARROW (Fig. 4 left) estimated
from grayscale data are better. We cannot conclude for now
whether using RGB data could consistently benefit normal
estimation, because the performance differences here are
related to two issues that favor either grayscale or RGB
images: 1) The noise of Bayer color filter and information
loss in the demosaicing may influence the results (grayscale
images have higher SNR, which might improve the accu-
racy of SfP). 2) RGB images do encode richer information
in spectrum than the grayscale ones [9], but the spectral
polarization properties are not explicitly considered in our
current model design (taking such an advantage is beyond
the scope of our paper). It is also an intriguing research
direction to exploit spectral information in SfP.

4.2 Analysis on the Degenerated Cases

Our model, as well as other SfP methods, fails to produce
good normal on CAT, CUP1, and DOLL of SONY [10]
dataset. Thus, we show more immediate normal results and
polarization properties in Fig. 5 to illustrate this issue. DoLP

3. https://thinklucid.com/product/triton-5-mp-polarization-camera/
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Fig. 4: Qualitative evaluation of our method on the RGB/grayscale polarization images.
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Fig. 5: Visualization of the polarization properties and the qualitative comparison between our method and the state-of-
the-art approaches, SfP-wild [8], Deschaintre et al. [6], and DeepSfP [7].

TABLE 3: Quantitative evaluation of our method conducted
on the RGB/grayscale polarization images.

Data Format Angular error ↓ Accuracy ↑
Mean Median ARMSE 11.25◦ 22.5◦ 30.0◦

Sync Grayscale 5.090 4.116 6.760 .9229 .9862 .9935
RGB 4.924 3.981 6.573 .9294 .9873 .9940

SPARROW
Grayscale 14.00 10.65 18.02 .5300 .8306 .9153

RGB 14.92 12.59 18.34 .4267 .8481 .9276

DUCK
Grayscale 18.39 17.58 20.33 .1921 .7351 .9143

RGB 16.45 15.23 18.57 .2902 .7983 .9311

and AoLP maps generated from the polarization images
should provide cues about the surface normal and are inde-
pendent from the albedo according to the polarimetric BRDF
(Eq. (7) in the main paper). However, we find DoLP and
AoLP on the CAT belly, the text of CUP1, and the handbag of
DOLL simultaneously change with the albedo. We think the
reason for the abrupt change of polarization properties lies

in the different BRDFs in regions with black/white albedo.
The varying BRDF may be caused by the material of the
black paints on the object. Since the basic polarization cues
are affected, the computed ninit also suffers from artifacts
in these regions. That is why all of the polarization-based
methods [6], [7], [8] hardly produce satisfactory normal
on part of regions of CAT, CUP1, and DOLL. Though our
synthetic dataset consists of spatially-varying albedo, the
data generation pipeline cannot simulate this kind of BRDF
change. It is also difficult for our method to output accurate
normal on these samples. The polarization properties of
REDBALL1 and GREENBALL are independent of the varying
albedo, so our model could handle such albedo, as shown
in Fig. 13 and Fig. 15.

4.3 Test SfP Methods on Challenging Materials

We conduct quantitative evaluation of the SfP methods
on three challenging materials, i.e., fabric, rough clay, and
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brass. The quantitative results are listed in Table 4 and
visual comparison is displayed in Fig. 6. From the DoLP
and AoLP maps, we could see that fabric (MONKEY) and
the rough clay (BUDDHA1) depolarize most of the exitant
light and make the azimuth angle cues lost in the AoLP
map; polarization state of the light reflected from BUDDHA2
seems to be noisy and unstable since the refractive index
of brass is a complex number and the pBRDF of the con-
ductor is completely different from that of the dielectric.
The contaminated polarization information makes all of the
SfP methods fail to produce reliable normal maps on these
objects.

5 NETWORK DETAILS

The detailed network architectures of pLTNet and pNENet
are illustrated in Fig. 7 and Fig. 8, respectively. pLTNet is de-
signed for predicting lighting conditions and object texture
information, which takes in four polarization images and a
mask and predicts albedo, roughness, and the direction and
intensity of the distant light. The feature extractor consists
of five down-sampling ResNet blocks [11] and a feature
output block. In each block, the down-sampling layer has a
convolutional filter with a 3×3 kernel size and a stride of 2,
and the vanilla convolutional layer has a filter with a kernel
size of 3 and a stride of 1. We use the Leaky ReLU (α=0.1)
as the activation function and instance normalization in
the encoder blocks. The features then are processed by the
feature output block, which consists of two standard 3×3
convolutional layers with a stride of 1. To predict the light
direction and intensities, we conduct Adapted Max Pooling
on the extracted feature map to produce a 512-dimensional
latent vector. Then we use the two-layer classifier to regress
the light direction vector and output categories of intensity
values. For estimating the albedo and roughness, we adopt
five up-sampling blocks in the decoder, each of which has
a skip connection to the encoder at the same hierarchical
level. Fed with the decoded features, the image output layer
produces the texture maps of the object.

pNENet is fed with the optimized normal, four polariza-
tion images, albedo, and mask, which produces refined nor-
mal maps as the final results. We employ a widely adopted
encoder-decoder architecture to build pNENet. The encoder
consists of five ResNet blocks [11] and a feature output
block, which takes a down-sampling convolutional filter
with a kernel size of 3 and a stride of 2, and a convolutional
layer with a 3×3 kernel size and a stride of 1. Also, the
Leaky ReLU activation (α=0.1) and instance normalization
are used between the two layers. Corresponding to the
encoder blocks, the decoder has five ResNet blocks as well,
and each block consists of a bilinear interpolation module
and two convolutional layers with a kernel size of 3 and
a stride of 1. We use the SPADE [7], [12] blocks between
two layers and adopt the bilinear interpolation to interpolate
the feature maps instead of the transposed convolution. To
preserve the high-frequency information, we connect the
encoder and the decoder blocks at the same hierarchical
level with skip connections. Finally, the output layer takes
the preceding features and produces the estimated normal
maps.

6 ADDITIONAL QUALITATIVE COMPARISONS ON
REAL DATA

In this section, we first show the additional results of
SfP methods on SONY dataset [5] (additionally including
BEAR1, CUP1, EGG, CAT, and SQUIRREL compared to Fig. 8
of the main paper) and our real-world dataset in Fig. 9. More
intermediate results (including albedo, roughness, and light
directions) of our method compared to Deschaintre et al. [6]
on our real dataset are displayed in Fig. 10. Table 5 contains
quantitative results on each object of SONY [5]. Also, we
qualitatively evaluate our method against the state-of-the-
art approaches on the rest real data released by Deschaintre
et al. [17], as shown in Fig. 11, Fig. 12, Fig. 13, Fig. 14, and
Fig. 15.

7 SYNTHETIC DATA GENERATION

The data generation pipeline is elaborated in Sec. 5.2 of the
main paper. In this section, we show an example of our sim-
ulated polarization images, the corresponding polarization
properties, i.e., DoLP and AoLP, and the computed initial
normal ninit as shown in Fig. 16. The visual comparisons be-
tween the real captured image EGG from SONY dataset [5]
and the simulated data demonstrate the validity of our data
simulation method.
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Fig. 6: Qualitative results and polarization properties of the objects made from fabric, rough clay, and brass.

TABLE 4: Quantitative evaluation on the objects made from fabric, rough clay, and brass, compared with the state-of-the-art
methods. MAngE is adopted to measure the estimated normal maps.

Method MONKEY-FABRIC BUDDHA1-CLAY BUDDHA2-BRASS Avg.

DeepSfP [7] 36.01 30.64 42.81 36.49
Deschaintre [6] 35.77 38.00 52.00 41.92
SfP-wild [8] 35.13 41.96 50.37 42.49
Ours 34.28 34.80 42.05 37.04

TABLE 5: Quantitative evaluation on SONY dataset [5] compared with the state-of-the-art methods. MAngE is adopted to
measure the estimated normal maps.

Method BEAR1 BEAR2 CAT CUP1 CUP2 DOLL EGG SQUIRREL Avg.

Miyazaki [15] 36.71 42.58 46.886 36.51 37.08 44.99 32.46 36.43 39.21
Mahmoud [14] 37.41 42.07 43.48 45.62 46.79 49.32 43.24 37.88 43.22
Smith [16] 36.43 42.98 45.44 38.12 36.39 44.35 47.35 33.09 40.52
Li [13] 30.17 27.09 22.06 17.73 16.72 22.02 18.93 24.01 22.34
DeepSfP [7] 14.31 10.72 10.58 9.543 8.653 16.21 7.086 13 11.26
Deschaintre [6] 18.26 11.44 12.34 8.63 7.287 20.32 6.267 15.02 12.45
SfP-wild [8] 13.52 10.05 9.612 7.855 7.66 15.32 7.026 12.9 10.49
Ours 11.63 9.059 7.873 6.43 5.586 13.6 5.617 11.15 8.868

[16] W. A. Smith, R. Ramamoorthi, and S. Tozza, “Height-from-
polarisation with unknown lighting or albedo,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2018.

[17] V. Deschaintre, M. Aittala, F. Durand, G. Drettakis, and
A. Bousseau, “Single-image SVBRDF capture with a rendering-
aware deep network,” ACM Transactions on Graphics, 2018.
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Fig. 9: Additional qualitative comparisons among the state-of-the-art approaches, SfP-wild [8], Deschaintre et al. [6],
DeepSfP [7], Li et al. [13], and Mahmoud et al. [14], evaluated on the rest of the objects of SONY dataset [5] and our
real dataset.
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Fig. 10: Visualization of the intermediate results of our method on the real-world dataset, compared to the results from the
SVBRDF approach Deschaintre et al. [6].
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Fig. 11: Qualitative comparisons among the learning-based approaches, SfP-wild [8], Deschaintre et al. [6], DeepSfP [7] and
Li et al. [13], evaluated on the real data, ARTICHOKE and CLEMENTINE, released by Deschaintre et al. [6].
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Fig. 12: Qualitative comparisons among the learning-based approaches, SfP-wild [8], Deschaintre et al. [6], DeepSfP [7] and
Li et al. [13], evaluated on the real data, LEMON and PIBALL, released by Deschaintre et al. [6].
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Fig. 13: Qualitative comparisons among the learning-based approaches, SfP-wild [8], Deschaintre et al. [6], DeepSfP [7] and
Li et al. [13], evaluated on the real data, REDBALL1 and REDBALL2, released by Deschaintre et al. [6].
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Fig. 14: Qualitative comparisons among the learning-based approaches, SfP-wild [8], Deschaintre et al. [6], DeepSfP [7] and
Li et al. [13], evaluated on the real data, SWAN1 and SWAN2, released by Deschaintre et al. [6].
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Fig. 15: Qualitative comparisons among the learning-based approaches, SfP-wild [8], Deschaintre et al. [6], DeepSfP [7] and
Li et al. [13], evaluated on the real data, GREENBALL and PYRAMID, released by Deschaintre et al. [6].
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Fig. 16: An example of synthetic data. (a) The rendered polarization image I(0◦) compared to the real one from SONY
dataset [5]. (b) The DoLP calculated from the polarization images. (c) The AoLP calculated from the polarization images.
(d) The initial normal calculated from the corresponding DoLP and AoLP.


