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PAR2Net: End-to-end Panoramic Image
Reflection Removal
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Abstract—In this paper, we investigate the problem of panoramic image reflection removal to relieve the content ambiguity between
the reflection layer and the transmission scene. Although a partial view of the reflection scene is attainable in the panoramic image
and provides additional information for reflection removal, it is not trivial to directly apply this for getting rid of undesired reflections due
to its misalignment with the reflection-contaminated image. We propose an end-to-end framework to tackle this problem. By resolving
misalignment issues with adaptive modules, high-fidelity recovery of the reflection layer and the transmission scenes are accomplished.
We further propose a new data generation approach that considers the physics-based formation model of mixture images and the
in-camera dynamic range clipping to diminish the domain gap between synthetic and real data. Experimental results demonstrate the
effectiveness of the proposed method and its applicability for mobile devices and industrial applications.

Index Terms—Reflection removal, panoramic image, deep learning
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1 INTRODUCTION

WHEN taking photos in front of semi-reflectors like
glass windows, photographers prevailingly attempt

to capture transmission scenes behind the glass, while re-
flection contamination often degrades the image quality.
Consequently, single-image reflection removal has become
an attractive topic in computational photography [4], [5],
[15], [22], [47], [64], which aims at removing undesirable
glass reflections and recovering the clear transmission scene
from a contaminated mixture image. The mixture image
(denoted as M) can be considered as the combination of
two components: the transmission scene (denoted as TS)
and the reflection layer (denoted as RL) [4], [22]. The major
challenge of such an ill-posed layer separation problem is
that both transmission scenes and reflection layers are from
natural scenes, whose image content can be arbitrary, arous-
ing the difficulty of differentiating the dominant content for
mixture images. We call it content ambiguity in this paper.

To address this challenging task, handcrafted content-
free priors derived from natural image statistics and image
formation models, e.g., the gradient sparsity [21], relative
smoothness [24], and ghosting effects [37], are adopted
as useful constraints by non-learning methods, while per-
formances of these methods decrease significantly when
the priors they depend on are not observed, e.g., scenar-
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Fig. 1: Illustration of different setups of the single-image
reflection removal method (we show the result from [4]
as an example) and the proposed method. (a) The single-
image method only inputs with a mixture image, and fails
in distinguishing the reflection layer and transmission scene
due to the content ambiguity. (b) The proposed method
inputs with a panoramic image and a user-specified mask,
which utilizes auxiliary reflection content information to
relieve the content ambiguity, and recovers the much clearer
reflection layer and transmission scene than (a).



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

Panoramic image

Glass

Reflection 
scene

Virtual
camera

𝐑𝐑S 𝐑𝐑L

(a) (b)Real
camera

Reflection scene Reflection layer

Geo. misalignment

Photo. misalignment

𝐑𝐑S 𝐑𝐑L

(c)

Fig. 2: (a) Illustration of photographing by a panoramic
camera in a scene containing a piece of glass. The reflection
scene RS is captured by the real camera. The reflection layer
RL can be regarded as captured by the virtual camera. (b)
The panoramic image which captures both RS and RL in a
single shot. (c) Photometric and geometric misalignments
between the reflection scene RS and reflection layer RL

(images are extracted from the panoramic image for better
visualization).

ios where reflections are with sharp edges. Thanks to the
rapid development of deep learning, the latest single-image
methods [4], [22] leverage the strong modeling capacity
of neural networks to implicitly learn priors from a large
scale of training data. However, as the image content of
transmission scenes and reflection layers can be rather irrel-
evant, existing single-image methods are still likely to fail in
distinguishing the two components. As shown in Fig. 1(a),
when reflections in the mixture image M are with high
intensities and complex textures, the single-image solution
may not correctly tell apart the reflection layer from the
transmission scene due to high content ambiguity.

To relieve the content ambiguity in a mixture image
with reflection contamination, effective constraints should
be considered to apply to reflections. A direct solution is
to introduce an additional view of the reflection scene,
since it provides partial content information about the re-
flection layer. Fortunately, a panoramic image has a 360◦

field-of-view (FoV), which naturally contains the reflection-
contaminated glass region and an additional view of the
reflection scene, providing useful cues for the relief of the
content ambiguity.

Though an additional view of the reflection scene is
attainable in a panoramic image, it is not trivial to automat-
ically and accurately identify reflections in contaminated
regions. As shown in Fig. 2, the major challenge is that the
reflection layer RL observed from glass and the reflection
scene (denoted as RS) directly captured by the camera are
not equivalent, since there exist geometric and photometric
misalignments between them. According to the law of reflec-
tion, a virtual camera can be assumed to locate at the virtual
point, which is symmetric with the real camera by the plane
of the glass. Though the real and virtual cameras both
capture the reflection scene, the captured image contents
are geometrically misaligned at the image plane since they
are viewed from different positions. Meanwhile, lights at-
tenuate when reflecting at the glass surface [67], causing the
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Fig. 3: Illustration of required user interactions of (a) our
preliminary work [12] and (b) the proposed method in
this paper. Our preliminary work [12] requires iteratively
multi-step labeling for post-processing, while the proposed
method relaxes requirements on user interactions by using a
one-time user-specified mask to handle larger glass regions
in a more complete manner.

reflection layer RL (with attenuation) to be obviously darker
than the reflection scene RS (without attenuation). As a
consequence, the geometric and photometric misalignments
between the reflection layer RL and the reflection scene
RS hinder the utilization of auxiliary reflection content
information for panoramic image reflection removal.

To address above issues, our preliminary work [12]
proposes the first two-step panoramic image-based reflection
removal method focusing on tackling the content ambiguity.
Image patches identified from user interactions are rectified
from panoramic images and utilized as mixture images M
and reflection scenes RS. By applying the coarse-to-fine
reflection alignment and learning-based transmission recov-
ery in a two-step manner, reflection layers RL and trans-
mission scenes TS are recovered. However, such a pipeline
owns several drawbacks: 1) Multi-step user interaction.
As shown in Fig. 3(a), for panoramic images where glass
occupies large regions, more than one patches need to be
iteratively rectified to cover the whole glass regions, which
increases the computational cost and requests many times of
user interaction. 2) Fragile alignment. The coarse reflection
alignment, including the photometric alignment by global
polynomial function fitting and the geometric alignment
by patch-level matching, is unstable since it is sensitive to
hyperparameters, which may degrade the performance of
the whole framework if incorrect alignment is calculated.
3) Large domain gap. The employed data generation pro-
cedure [5] lacks the consideration of the physics-based re-
flection formation model and the in-camera dynamic range
clipping, resulting in the domain gap between synthetic and
real data, which weakens the generalization capacity of the
trained model.

In this paper, we extend our preliminary work [12] to an
end-to-end PAnoramic image Reflection Removal Network
(PAR2Net) with three improved advantages: 1) One-time
user interaction. As shown in Fig. 3(b), PAR2Net takes in
a single panoramic image and a single-step user-specified
mask with an arbitrary shape, which avoids repeated user
interactions. 2) Robust alignment. We resolve photometric
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and geometric misalignment issues by elaborately improv-
ing network modules with an adaptive strategy, which en-
sures the higher stability of the proposed method. 3) Small
domain gap. From the perspective of the physics-based and
high dynamic range (HDR) image formation model, we
analyze the formation procedure of mixture images with
reflection contaminations and further propose a data gener-
ation approach for synthesizing mixture images more realis-
tically to diminish the domain gap in data and facilitate net-
work training. Experiments on real data demonstrate that
PAR2Net not only outperforms our preliminary work [12]
and state-of-the-art single-image methods (Fig. 1(b) shows
an example with [4]), but also generalizes well to limited-
FoV images captured without panoramic cameras. Our con-
tributions are summarized as follows:

• We present the first end-to-end framework to relieve
the content ambiguity for reflection removal by using
panoramic images.

• We employ an adaptive strategy to alleviate the
impact of photometric and geometric misalignments
between reflection scenes and layers, which con-
tributes to high-fidelity transmission recovery.

• We propose a realistic data generation approach by
considering the physics-based and high dynamic
range image formation model to diminish the do-
main gap in data and facilitate panoramic image
reflection removal.

The remainder of this paper is organized as follows.
In Sec. 2, we start with an introduction of existing reflection
removal methods and applications of panoramic images.
Then Sec. 3 analyzes misalignment issues between reflection
scenes and layers. Sec. 4 introduces the network architecture
with objective functions. We present details of our data gen-
eration method and our dataset in Sec. 5. Quantitative and
qualitative experiments and ablation studies are conducted
in Sec. 6. Finally, we conclude the paper in Sec. 7.

2 RELATED WORK

A panoramic image is generated by stitching multiple im-
ages from different viewpoints, but the overlap and cor-
respondence information across different viewpoints have
been lost after merging the panoramic image, so it cannot
provide motion cues [23], [27], [58], parallax cues [35], po-
larization information [17], [20], [28], [29], [56], or reflection-
free contextual information by using active light sources [3],
[11], [19] for multi-image reflection removal. Moreover, since
a panoramic image can be handily captured in a single shot,
we still focus on the discussion of single-image reflection
removal methods because they address similar technical
problems as panoramic image reflection removal. We refer
readers to [48] for a comprehensive and up-to-date survey
on reflection removal.

2.1 Reflection removal
Existing methods for single-image reflection removal rely
on the assumption of different distributions of transmission
scenes and reflection layers, i.e., reflection layers are likely
to be more blurry and with lower intensity compared with
transmission scenes [45]. Traditional methods formulate this

assumption in their optimization pipeline, e.g., gradient
sparsity priors [21], smoothness priors [23], [24], ghosting
cues [37], image content [44], and penalty on the gradient of
recovered transmission scenes [2], [60].

Learning-based methods are developed to generalize
the knowledge learned from training data. CEILNet [5]
adopts the traditional two-stage framework which predicts
edge maps and transmission scenes successively. Zhang et
al. [64] propose a neural network with perceptual loss to
emphasize the independence of transmission scenes and
reflection layers in the gradient domain. CRRN [46] and
CoRRN [47] combine the gradient inference and the image
inference in one unified mechanism to remove reflections
concurrently. ERRNet [54] embeds context modules in the
network and exploits the unaligned data to enhance the
generality of the model. Wen et al. [55] synthesize mix-
ture images with learned non-linear blending masks and
accomplish reflection removal based on such non-linearity.
LBCLN [22] proposes a cascaded refinement approach with
the convolutional LSTM network structure to refine the
estimation of transmission scenes and reflection layers it-
eratively. Kim et al. [15] generate data with physically-based
rendering and restore the transmission scenes considering
the various impacts of glass and lens. Dong et al. [4] propose
to introduce a probabilistic reflection confidence map for
telling regions to be reflection-dominated or transmission-
dominated. Wang et al. [49] consider commonly-confronted
colored glass and propose to recover transmission scenes
from mixture images taken in front of colored glass.
CGDNet [65] proposes a model-driven deep network archi-
tecture for reflection removal which unfolds the iterative
steps of the optimization algorithm into network layers.

2.2 Applications of panoramic images

Thanks to the 360◦ FoV, panoramic images are useful
in various computer vision applications. Panoramic im-
ages provide complete observation for geometry layouts of
scenes, so there are methods studying scene understand-
ing from a single panoramic image, e.g., indoor layout
estimation [42], [50], [59], indoor depth reconstruction [1],
[34], [43], and vehicle detection [18]. Panoramic images
also provide complete observation for environment maps as
lighting representation. Some research attempts to recover
the environment map only from a partial observation, e.g.,
a 3D structure and a probability distribution of semantic
labels from an RGB-D image [40], lighting represented by
an HDR panoramic image for either indoor [25], [39] or
outdoor [10], [62] scenarios. Our preliminary work [12]
proposes the first two-step solution to investigate how
partial views of the reflection scene in a single panoramic
image could be utilized to relieve the content ambiguity of
reflection removal. Han et al. [6] adopt the zero-shot learn-
ing scheme to leverage auxiliary contextual information in
reflection scenes for panoramic image reflection removal.
In this paper, we simplify user interactions compared with
our preliminary work [12] and propose a unified framework
to achieve high-fidelity reflection removal and transmission
recovery in panoramic images.
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Fig. 4: Illustration about the formation of the geometric
misalignment between the reflection scene RS and reflection
layer RL.

3 PROBLEM FORMULATION

Given a panoramic image containing a glass region with re-
flection contaminations, we denote the contaminated region
as the mixture image M, which can be formulated as [4]:

M = Ω⊙TS +RL, (1)

where ⊙ is the element-wise multiplication operator, Ω is
a spatially-varying coefficient map, and TS and RL are the
corresponding transmission scene (if there is no glass) and
reflection layer (if there is a piece of black cloth behind the
glass), respectively. Besides, thanks to the 360◦ FoV of the
panoramic camera, a view of the reflection scene is also
captured, and we denote it as RS. Intuitively, RS can be
utilized straightforward to facilitate reflection removal since
it provides contextual information about RL. However, as
shown in Fig. 2(b), there exists photometric and geometric
misalignment between RS and RL, thus bringing challenges
for the exploitation of the auxiliary content. The following
sections will introduce the causes of such geometric and
photometric misalignment between RS and RL.

3.1 Geometric misalignment
As illustrated in Fig. 4, assuming a three-dimensional point
P in a real scenario, which is captured by both the real and
virtual camera (corresponding to the reflection scene RS

and reflection layer RL), and its projected points in RS and
RL are pr and pv, respectively. The geometric misalignment
between RS and RL can be represented by spatial pixel
shifts between corresponding points like pr and pv, which
are actually caused by different viewpoints of the real and
virtual camera. Since a panoramic image can be considered
as a sphere [41], the pixel shift △x (along the horizontal axis
for example) between points pr and pv can be formulated
as:

△x = W · θr − θv
2π

= W ·
arctan[D+2d

D · tan(θv)]− θv

2π
, (2)

where W is the width of the panoramic image, D and d
denote the distance from the real camera to the real scenario
and the glass plane, and θr and θv denote the azimuthal
angle of pr and pv in the spherical coordinate, respectively.

Pixel shift ∆𝑥𝑥

0 �𝜋𝜋 2− ⁄𝜋𝜋 2

0.032W

-0.032W

𝜃𝜃v
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⁄𝐷𝐷 𝑑𝑑
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Fig. 5: Curves that plot the relationship between the pixel
shift △x (along the horizontal axis for example) with differ-
ent azimuthal angles θv of points pv in RL under different
ratios of D/d.

By assuming that the camera-scene distance D is much
larger than the camera-glass distance d (i.e., D/d ⩾ 4 as
in [12]), we plot the curves of the pixel shift △x in Fig. 5.
Since the curves are symmetric about the origin, we pick the
first quadrant for analysis. When D/d is fixed, curve tends
to increase first and then decrease. When D/d increases, the
misalignment between pr and pv becomes smaller. We select
the maximum value of the curve D/d = 4, i.e., 0.032W ,
as the maximum pixel shift between pr and pv (e.g., for a
panoramic image with the resolution of 512 × 1024 pixels,
the assumed maximum pixel shift is about 32 pixels). This
indicates the potential geometric misalignment between
corresponding points of RS and RL in panoramic images,
and is used as the reference bound for the design of our
alignment mechanism (introduced in Sec. 4.2.3).

3.2 Photometric misalignment
Suppose a situation in which the camera-scene distance
is far enough and the reflection scene RS and reflection
layer RL are perfectly aligned in geometry, then we define
the photometric misalignment as the pixel-wise discrepancy
in intensities between RS and RL. The photometric mis-
alignment is mainly caused by the intensity attenuation
when lights reflect from the glass surface [67], turning RS

much brighter than RL, and we formulate the photometric
misalignment by using a spatially-varying coefficient map
Φ [28] as follows:

RL = Φ⊙RS. (3)

4 PROPOSED METHOD

4.1 Input setting
Different from the inputs of single-image reflection removal
methods [4], [22], [65] which consider the whole images
to be reflection-contaminated, a piece of plate glass in a
panoramic image can at most occupy a half of the image
region (when the surface area of the glass is infinitely large)
due to the 360◦ FoV of panoramic cameras. Therefore, label-
ing glass regions in panoramic images is a necessary pre-
processing operation before conducting reflection removal1,
and we introduce user interaction to label the reflection-
contaminated glass regions by using the labelme toolbox2.

1. Our focus is reflection removal, and detecting the glass region (e.g.,
GDNet [30]) is beyond the scope.

2. https://github.com/wkentaro/labelme

https://github.com/wkentaro/labelme
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Fig. 6: Framework of the proposed method (PAR2Net), which is designed in an end-to-end manner. Inputting with a
panoramic image and a mask indicating the glass region (only requires one-time user interaction), PAR2Net uses the
mixture image M and the reflection scene RS to recover of the reflection layer RL and transmission scene TS via feature
extraction (in Sec. 4.2.1), initial decomposition (in Sec. 4.2.2), reflection correspondence (in Sec. 4.2.3), reflection refinement
(in Sec. 4.2.4), and transmission recovery (in Sec. 4.2.5).

For a panoramic image I ∈ RH×W×3 (where W = 2H),
a binary mask with arbitrary shapes to indicate the glass
region is generated from user interaction, then we multiply
the panoramic image with the mask and crop the result as
the mixture image M ∈ RH×H×3. Naturally, the reflec-
tion scene RS ∈ RH×H×3 locates at the rest half of the
panoramic image, so we crop RS with a horizontal flipping
operation to diminish the influence of symmetry. Note that
unlike our preliminary work [12] which requires multi-
step user interactions (in Fig. 3(a)), the proposed method
only needs one-time user interaction (in Fig. 3(b)), which
relaxes the requirement on users and tackles larger glass
regions. The design methodology of the proposed method
(in Sec. 4.2) and the optimization with complementary loss
functions (in Sec. 4.3) are as follows.

4.2 Network architecture
Considering the image formation model of mixture images
with the geometric and photometric misalignment between
reflection scenes and layers, we propose a unified frame-
work, i.e., PAR2Net, to recover reflection layers and trans-
mission scenes in an end-to-end manner. As the network
architecture shown in Fig. 6, we use M and RS as inputs
and recover the reflection layer RL and transmission scene
TS via feature extraction (in Sec. 4.2.1), initial decomposition
(in Sec. 4.2.2), reflection correspondence (in Sec. 4.2.3), re-
flection refinement (in Sec. 4.2.4), and transmission recovery
(in Sec. 4.2.5). Compared with our preliminary work [12],
the initial decomposition stage is added to facilitate its sub-
sequent stages, the reflection correspondence stage adopts
an adaptive module to replace the “coarse alignment” stage
in [12] and turns the new framework end-to-end, and other
stages are adjusted accordingly to fit the new framework.

4.2.1 Feature extraction
The multi-level image feature pyramids of inputs (i.e., the
mixture image M and the reflection scene RS) are firstly
extracted by the widely-used VGG-19 network [38], whose
last four layers (i.e., three fully connected layers and a

Softmax layer) are removed to adapt to our image-to-
image translation problem. The extracted feature pyramids
are then transformed into hypercolumn features [7], which
have been proved to be effective in aggregating contextual
information for reflection removal [54], [64]. To balance
the efficiency and effectiveness, hypercolumn features are
condensed by a convolutional block with a 1×1 kernel, and
then downsampled by another convolutional block with a
3 × 3 kernel. Each convolutional block is composed of a
convolution layer and an activation layer using the ReLU
function [31]. We denote the extracted features from mixture
images and reflection scenes as FM and FRS

, respectively.

4.2.2 Initial decomposition

Mixture images are blended with contextual information
from both two components, i.e., reflection layers and trans-
mission scenes, thus directly using mixture image features
FM and reflection scene features FRS

to seek their mutual
correspondence on reflection contents suffers from the in-
terference of transmission contents. Intuitively, it is easier to
find correspondence between RS and RL than between RS

and M. Therefore, the process for seeking reflection corre-
spondence can be facilitated by using features refined from
FM where reflection contents dominate and transmission
contents are suppressed. To conduct the initial decompo-
sition of reflection layers and transmissions scenes in the
feature domain, we apply a two-stream module composed
of YTMT blocks [13], which exploit the additive property
of two components and force communications between the
two streams.

Each YTMT block [13] is composed of two branches, one
corresponding to reflection layers and the other correspond-
ing to transmission scenes. For each branch, a convolutional
layer with a 3 × 3 kernel is first utilized to process features
from the corresponding branch of the former YTMT block.
The processed features are then passed through an activa-
tion layer with a ReLU function and another with a negative
ReLU function [13], obtaining activated features (beneficial
for the current branch) and deactivated features (will be
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, respectively.

discarded by the current branch but contain auxiliary in-
formation for the other branch), respectively. Next, the two
branches exchange deactivated features. Activated features
of a branch are merged with deactivated features from the
other branch by channel concatenation, and the merged
features are then fused and condensed by a convolutional
layer with a 1 × 1 kernel. Finally, a channel and spatial
attention module [57] is employed to re-weight the fused
features. For the first YTMT block, we use the mixture
image feature FM as the same input for both two branches,
and the following YTMT blocks are stacked successively.
After six YTMT blocks, the initial decomposition in the
feature domain is achieved, and we denote the decomposed
features of reflection layers and transmission scenes as Fini

RL

and Fini
TS

, respectively. An example that visualizes the initial
decomposition is shown in Fig. 7. As can be observed,
strong reflections are initially decomposed with transmis-
sion scenes in the feature domain, which is benefited from
the capacity of YTMT blocks [13] to exploit complementary
information between two branches.

4.2.3 Reflection correspondence
As discussed in Sec. 3, geometric and photometric misalign-
ments commonly exist between reflection scenes RS and
reflection layers RL, which can be formulated as:

RL = Φ⊙FS→L(RS), (4)

in which FS→L(·) presents a pixel-wise geometric transfor-
mation operation, and Φ is the spatially-varying coefficient
map describing the intensity attenuation when lights reflect
at the glass surface, which is the same as in Eqn. (3).
To tackle misalignment issues and exploit correspondences
between reflection scenes and layers in the feature domain,
a correspondence module [61] is employed, whose mecha-
nism is similar to the widely-used self-attention module [51]
that exploits non-local correlations inside or between im-
ages. Besides, the process of utilizing the correspondence
module to address misalignment issues exactly matches the
formulation in Eqn. (5), which will be discussed as follows.
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Fig. 8: Overview of the reflection correspondence module,
which exploits the initially decomposed features Fini

RL
and

reflection scene features FRS to achieve geometric and
photometric alignments in the feature domain.

Inputs of the correspondence module are features of
the reflection scene (i.e., FRS

) and the initially decomposed
features of the reflection layer (i.e., Fini

RL
). To narrow the

searching space for corresponding points and reduce the
computational cost, we apply the correspondence module
on patches instead of the whole features, whose mechanism
is shown in Fig. 8. FRS

and Fini
RL

are firstly divided into
N overlapped square patches, and the patches are denoted
as Pi

RS
, Pi

RL
∈ Rh×h×C , respectively, where 1 ⩽ i ⩽ N

represents the index of the current patch, h is the side length
of patches, and C is the number of channels. The overlapped
area between two adjacent patches is set as h2/2 (i.e., the
overlapped region is a rectangle of size h × h

2 ). According
to Eqn. (2) and Fig. 5 in Sec. 3.1, the maximum pixel
shift between corresponding points is 0.032W (i.e., 0.064H ,
where W , H are the width and height of the panoramic
image, respectively) under the assumtion that the camera-
scene distance is much larger than the camera-glass dis-
tance, so we set the side length of patches as h = 0.4H
to cover the potential pixels shift. Before calculating the
pixel-wise correspondence, Pi

RS
and Pi

RL
are processed by

convolutional blocks with 1 × 1 kernels for the alignment
in the feature domain [63] and converted into vectors Vi

RS
,

Vi
RL

∈ Rh2×C , respectively. Then a correspondence matrix
Ψi ∈ Rh2×h2

is calculated as follows:

Ψi(u, v) =
V̂i

RL
(u)V̂i

RS
(v)⊤

∥V̂i
RL

(u)∥∥V̂i
RS

(v)∥
, (5)

where V̂i
RL

(u) and V̂i
RS

(v) ∈ RC denote centralized vec-
tors of Vi

RL
and Vi

RS
at position u and v (a position in the

vector corresponds to a pixel in the patch), respectively.
Though the correspondence matrix Ψi integrates corre-

spondences between Vi
RL

and Vi
RS

, it cannot be utilized
directly. Intuitively, since the reflection scenes and layer
observe the same scene from different viewpoints, corre-
spondences between Vi

RL
and Vi

RS
should be sparse, i.e.,

for each position in Vi
RL

(corresponding to each pixel in
Pi

RL
), there should be only a few positions in Vi

RS
as its

correspondences (considering the defocus blur and ghosting
effects). However, Ψi describes the correspondence between
each position in Vi

RL
and all positions in Vi

RS
(i.e., all pixels
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in the image patch Pi
RS

), which generates dense while
inaccurate correspondences. Therefore, we decompose Ψi

into a geometric correspondence matrix Ψi
geo ∈ Rh2×h2

and
a photometric attenuation matrix Ψi

pho ∈ Rh2×1:

Ψi
geo(u, v) = softmax

u
(Ψi(u, v)/τ), (6)

Ψi
pho(v) = max

u
(Ψi(u, v)), (7)

where τ is set as 0.01 to ensure values of the row vector
Ψi

geo(u, ·) to be sparse, corresponding to the aforemen-
tioned sparse correspondences between Vi

RL
and Vi

RS
.

Then the geometric and photometric alignments can be
conducted through:

Ṽi
RL

(u) =
∑
v

Ψi
pho(v) ·Ψi

geo(u, v) ·Vi
RS

(v), (8)

which can also be written as:

Ṽi
RL

= Ψi
pho ⊙ (Ψi

geo ⊗Vi
RS

), (9)

where ⊙ and ⊗ denote the element-wise and matrix multi-
plication, respectively.

Coincidentally, if considering Ψi
pho as Φ and Ψi

geo as
FS→L, then Eqn. (9) can be regarded as an approxima-
tion of Eqn. (4), which shows the consistency between
the employed correspondence module and the reflection
formulation process. Finally, the transformed vectors Ṽi

RL

are reshaped to patches and merged (with the overlapped
regions being averaged) to obtain the final aligned features
of the reflection layer (denoted as Falign

RL
), which will facili-

tate the following recovery of the reflection layer.

4.2.4 Reflection refinement
The reflection correspondence stage above conducts pho-
tometric and geometric alignments in the feature domain,
exploits auxiliary information in reflection scenes, and gen-
erates aligned features of the reflection layer Falign

RL
. For the

recovery of the reflection layer RL, the initially decomposed
features of the reflection layer (i.e., Fini

RL
) is also needed

to avoid discarding contextual details. Utilizing Falign
RL

and
Fini

RL
, this stage recovers RL by feature fusion and refine-

ment.
Aligned features Falign

RL
and initially decomposed fea-

tures Fini
RL

are firstly merged by the channel concatenation
operation, and a convolutional block with a 1 × 1 kernel
is utilized to condense and fuse the concatenated features.
Then the fused features are fed into a refinement module
containing six successively connected residual blocks [9],
and we denote the output feature as FRL

. Finally, the
reflection layer RL is recovered by a recovery module which
contains a transposed convolutional block for up-sampling,
a pyramid pooling module [54] for the aggregation of multi-
scale contextual global information, and a convolutional
block with a 1 × 1 kernel for the transformation from the
feature domain to the image domain.

4.2.5 Transmission recovery
With the assistance from the refined features of the re-
flection layer (i.e., FRL

) to relieve content ambiguity, this
stage recovers the transmission scene TS from the initially
decomposed features (i.e., Fini

TS
). According to Eqn. (1), if

subtracting FRL from features of the mixture image (i.e.,
FM), the features containing contextual information of the
transmission scene TS can be obtained, which we denote
as Fsub

TS
. For the preparation of recovering the transmission

scene TS, Fsub
TS

and Fini
TS

are merged by channel concate-
nation and condensed by a 1 × 1 convolutional block to
generate FTS . However, FTS suffers from the intensity
attenuation caused by the refraction of the glass, i.e., the
coefficient map Ω in Eqn. (1).

To tackle the above issue, we feed FTS
into a 1 × 1

convolutional block to generate an attention-like weighted
map W, then element-wise multiplication is conducted on
FTS

and W for intensity enhancement. Note that we use
W to approximate the inverse of the attenuation coefficient
map (i.e., 1/Ω) for counteracting the influence of the inten-
sity attenuation from the refractive effect, and the reliability
of W is ensured by a reconstruction loss which will be
introduced in Sec. 4.3. Finally, by feeding the enhanced
features into a refinement module and a recovery module
which are with the same structure as in Sec. 4.2.4, a clean
transmission scene TS without the reflection contamination
is recovered.

4.3 Loss functions

For the high-fidelity recovery of the two components, i.e.,
reflection layers and transmission scenes, the proposed
method is optimized with several loss functions which
conduct supervision on the visual quality of estimated
images (the pixel, structural similarity, and perceptual loss)
or exploit the inherent relationship in compositing mixture
images (the reconstruction loss). We denote the estimated
reflection layers and transmission scenes as Rest

L and Test
S ,

with the corresponding ground truths as RL and TS. It
must be noted that mixture images, reflection layers, and
transmission scenes are all masked by user interaction, so
loss functions are only calculated on the masked regions.
Detailed formulations of loss functions are as follows.
Pixel loss. We apply the l1 distance to penalize the pixel-
wise discrepancy between estimated images with their
ground truths, which is formulated as:

Lpixel =
∥∥RL −Rest

L

∥∥
1
+

∥∥TS −Test
S

∥∥
1
. (10)

Structural similarity loss. Simply utilizing pixel loss results
in low-frequency artifacts [32] and degrades the image
quality. Thus the structural similarity index (SSIM) [52]
is introduced to form a loss function, which conforms to
human perception closely and measures the similarity of the
luminance, contrast, and structure between a pair of images
{X,Y}. The SSIM index is defined as follows:

SSIM(X,Y) =
(2µXµY + c1)(2σXY + c2)

(µ2
X + µ2

Y + c1)(σ2
X + σ2

Y + c2)
, (11)

where c1 and c2 are regularization constants, µX and µY are
the means of X and Y, σX and σY are the variances of X
and Y, and σXY represents their covariance. Considering
the common setting of loss functions for network training,
the structural similarity loss is defined as:

Lssim = 2− [SSIM(RL,R
est
L ) + SSIM(TS,T

est
S )]. (12)
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Feature loss. To measure the multi-level discrepancy be-
tween estimated images and their ground truths in the
feature domain, a feature loss [64] is employed. We use the
VGG-19 model [38] trained on the ImageNet dataset [36] to
extract features which contain both low-level and high-level
contextual information, and combine them to calculate the
feature loss, which is defined as follows:

Lfeat =
∑

i
λi[Li

VGG(RL,R
est
L ) + Li

VGG(TS,T
est
S )], (13)

where {λi} are the weights for equilibrium of multi-level
feature differences, and Li

VGG presents the l1 distance be-
tween features from the i-th convolutional layer in the
VGG-19 model [38]. Similar to [64], the layers as ‘conv1 2’,
‘conv2 2’, ‘conv3 2’, ‘conv4 2’, and ‘conv5 2’ are selected
in our experiments.
Reconstruction loss. In the stage of transmission recovery
(Sec. 4.2.5), after obtaining Rest

L , Test
S and the coefficient map

W, it is intuitive to follow Eqn. (1) and reconstruct a mixture
image Mest via recombining above estimated components:

Mest =
1

W
⊙Test

S +Rest
L , (14)

where W is designed to approach the inverse of the re-
fractive map (i.e., 1/Ω). If the network is trained well, the
reconstructed mixture image M̃ is supposed to approximate
the original mixture image M. Therefore, we also apply the
l1 distance to supervise the reconstruction quality:

Lrecon =
∥∥M−Mest

∥∥
1
. (15)

Overall, we train the proposed network with the follow-
ing loss function:

Ltotal = ω1Lpixel + ω2Lssim + ω3Lfeat + ω4Lrecon. (16)

Following previous methods [4], [47], [54], [64], the weights
are empirically set as ω1 = 1, ω2 = 1, ω3 = 0.1, and ω4 = 1
throughout our experiments.

We implement the proposed method with PyTorch [33]
on two Nvidia GeForce RTX 3090 GPUs. The model is
trained in an end-to-end manner for 40 epochs with
Adam [16] optimizer to update learnable parameters.
Weights are initialized as in [8]. The learning rate is set to
10−4 initially and decreases to 10−5 at epoch 30.

5 DATASET

5.1 Synthetic data

Performances of learning-based reflection removal methods
heavily rely on synthetic training data [4], [5], [22], [54], [64],
since capturing real mixtures images with ground truths
of transmission scenes and reflection layers is complicated
and time-consuming. Currently, prevalent synthetic data
generation methods mainly concentrate on simulating the
perceptual properties of mixture images by applying linear
addition and regional subtraction operations (e.g., Fan et
al. [5] and Zhang et al. [64], denoted as ‘FY17’ and ‘ZN18’,
respectively), or by employing spatially-varying blending
masks generated from specially designed networks (e.g.,
Wen et al. [55], denoted as ‘WT19’). By taking the physical
formation process of glass reflections into consideration,
Zheng et al. [67] (denoted as ‘ZC20’) synthesize mixture

images using spatially-varying reflective and refractive co-
efficient maps, which are independent from image contents
[17]. Generally, to synthesize reflection layers, intensities of
selected reflection scenes are often decreased to simulate
the attenuation of lights when they reflect from the glass
surface. However, due to the low dynamic range (LDR) of
commonly-used images (resulted from the dynamic range
clipping [26] in the camera pipeline), selected reflection
scenes may contain saturated regions which suffer from
the missing of contextual information. As shown in red
boxes of Fig. 9, saturation in LDR reflection scenes causes
reflection layers generated from them to be unrealistic in
the corresponding regions. We call such regions in synthetic
reflection layers as pseudo valid regions, since they lack valid
information despite not being saturated in intensities.

To tackle the weaknesses of existing synthetic data gen-
eration methods, we propose to synthesize more realistic
mixture images based on the physics-based and high dy-
namic range (HDR) image formation pipeline to prevent
the pseudo valid regions. Considering the misalignment be-
tween reflection scenes and layers in the setup of panoramic
image reflection removal, the image formulation model of
mixture images [17], [28], [67] can be written as:

M̂ = (1−Θ)⊙ T̂S +Θ⊙FS→L(R̂S), (17)

where Θ is the reflective amplitude coefficient map,
FS→L(·) represents the pixel-wise geometric transforma-
tion operation as Eqn. (4), M̂, T̂S, and R̂S represent the
mixture image, transmission scene, and reflection scene in
the linear image space, respectively. It has to be noted that,
different from Ω and Φ (in Sec. 3) which conduct intensity
attenuation in the non-linear image space, Θ is content-free
and only concerned with the angle of incidence and the
refractive index of the glass [17], [28], [67].

For the blending of reflection and transmission scenes,
reflective amplitude coefficient maps Θ are first generated
randomly as in ZC20 [67]. To prevent the missing of scene
information caused by the dynamic range clipping [26], we
utilize HDR images collected from Poly Heaven3 as R̂S.
The geometric transformation operation FS→L(·) includes
random translation and spatial scaling, which simulates
the geometric misalignment between reflection scenes and
layers. Then reflection layers in the linear image space
(denoted as R̂L) can be obtained by R̂L = Θ⊙FS→L(R̂S).
We randomly select a proportion of generated reflection
layers to apply Gaussian smoothing kernels with kernel
sizes in the range of 3 to 7 pixels to simulate the situation
that reflections are out of focus [5]. To obtain transmission
scenes T̂S in the linear image space, we multiply panoramic
images in the Structured3D dataset [66] with randomly
generated masks which indicate glass regions to obtain TS

first, and then conduct inverse gamma correction Γ−1(·) as
previous methods [4], [64] to transform them into linear
space: T̂S = Γ−1(TS). Afterward, mixture images M̂ in the
linear image space can be generated according to Eqn. (17).
Finally, LDR mixture images M is obtained by the dynamic
range clipping C(M) = min(M, 1) and non-linear mapping
(here we use gamma correction function Γ(·) as in [4],
[64]): M = Γ[C(M̂)]. Similarly, LDR reflection scenes RS,

3. https://polyhaven.com/hdris

https://polyhaven.com/hdris
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Fig. 9: Visual quality comparison of synthetic data from existing data generation methods (i.e., FY17 [5], ZN18 [64],
WT19 [55], and ZC20 [67]) and our method. Note that previous methods utilize LDR images as reflection scenes, generating
data with pseudo valid regions (red boxes). Our method employs HDR images (tone mapped here for visualization) to
generate LDR refection scenes, reflection layers, and mixture images, which avoids the problem of pseudo valid regions
(blue boxes).

reflection layers RL, and transmission scenes TS can also
be obtained by conducting the dynamic range clipping and
non-linear mapping to their corresponding images (i.e., R̂S,
R̂L, and T̂S) in the linear image space respectively. As
shown in blue boxes of Fig. 9, our data generation method
tackles the problem of pseudo valid regions compared with
previous methods [5], [55], [64], [67], which attributes to the
utilization of HDR images. In total, we generate 10000 sets
of synthetic data (i.e., {M,RS,RL,TS}) for the training of
the proposed method4.

5.2 Real data
Due to the insufficiency of available datasets for panoramic
image reflection removal, we collect two groups of real
panoramic images for evaluation, including 30 sets as
PORTABLE dataset and 10 sets as NATURAL dataset. Images
in PORTABLE dataset are used for both quantitative eval-
uation and visual quality comparison, which are captured
by putting a portable glass in the scene. Corresponding
transmission scenes and reflection layers are captured in the
same way as SIR2 dataset [45]. Images in NATURAL dataset
are used for visual quality comparison (due to the lack of
ground truths), which are captured with glass found in
different natural scenarios, such as office buildings. Samples
from the above two datasets are collected by a single-shot
panoramic camera, i.e., Ricoh Theta Z1. To validate the
generalization capability of the proposed method for casual
users, we further collect a real dataset named PHONE, which
only contains mixture images and reflection scenes (no
ground truths) collected by a Huawei P40 Pro+ smartphone.

6 EXPERIMENTS

6.1 Evaluation on real data
To evaluate the performance of the proposed method
(PAR2Net), we conduct quantitative and qualitative exper-

4. Note that HDR images are only required in data synthesis to
diminish the domain gap between training and testing data, while
inputs for PAR2Net are all LDR images.

TABLE 1: Comparison of quantitative results in terms of
PSNR [14] and SSIM [53] on the PORTABLE dataset for
evaluating the recovery of both transmission scenes and
reflection layers. ↑ (↓) indicates larger (smaller) values are
better. Bold numbers indicate the best performing results.

Method
Transmission Reflection

PSNR↑ SSIM↑ PSNR↑ SSIM↑

PAR2Net 26.189 0.857 22.159 0.743
HZ21 [12] 24.673 0.830 20.486 0.697

CGDNet [65] 21.178 0.772 16.573 0.535
DX21 [4] 21.445 0.793 17.091 0.603
IBCLN [22] 21.657 0.778 16.687 0.496
KH20 [15] 21.235 0.782 16.547 0.526
CoRRN [47] 20.959 0.769 16.667 0.492

iments on our real data, i.e., the PORTABLE and NATU-
RAL datasets. We compare the proposed method with our
preliminary work [12] (denoted as ‘HZ21’) and five state-
of-the-art single-image reflection removal methods, includ-
ing CGDNet [65], Dong et al. [4] (denoted as ‘DX21’),
IBCLN [22], Kim et al. [15] (denoted as ‘KH20’), and
CoRRN [47]. For fair comparisons, we finetune the above-
mentioned methods on our training data if their training
codes are provided. Since source codes of CGDNet [65] have
not been released, we sent our testing data to the authors
and obtained results of CGDNet [65].

As for the input setting, it has to be noted that our
PAR2Net can process panoramic images with masks which
can have arbitrary shapes for labeling glass regions, while
HZ21 [12] and single-image methods [4], [15], [22], [47]
need to input with rectangular images. Therefore, in our
experiments, HZ21 [12] and single-image methods [4], [15],
[22], [47], [65] are input with extracted patches (of resolu-
tion 320 × 320) from panoramic images. For PAR2Net, we
directly input panoramic images (of resolution 512 × 1024)
with non-rectangular masks and extract patches from results
for both quantitative and qualitative comparisons.
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Extracted input Ground truthPanoramic image

Mixture image Reflection scene Transmission scene Reflection layer
DX21 HZ21 PAR2Net

Transmission scene Reflection layer Transmission scene Reflection layer Transmission scene Reflection layer

Fig. 10: Qualitative results on the PORTABLE dataset. First row (from left to right): the panoramic image with the non-
rectangular mask (labeled by pink curves) as the input of the proposed method (PAR2Net), rectangular images extracted
from panoramic images as inputs of HZ21 [12] and the single-image method DX21 [4] (which only uses mixture images),
and the corresponding ground truths. Second row: results in the rectangular format, where results of PAR2Net are extracted
from its panoramic result (not shown here) for comparison. Please zoom in for details.

Our panoramic result Extracted inputPanoramic image

Mixture image Reflection scene
DX21 HZ21 PAR2Net

Transmission scene Reflection layer Transmission scene Reflection layer Transmission scene Reflection layer

Fig. 11: Qualitative results on the NATURAL dataset. First row (from left to right): the panoramic image with the non-
rectangular mask (labeled by pink curves) as the input of the proposed method (PAR2Net), the panoramic result from
PAR2Net, and rectangular images extracted from panoramic images as inputs of HZ21 [12] and the single-image method
DX21 [4] (which only uses mixture images). Second row: results in the rectangular format, where results of PAR2Net are
extracted from its panoramic result for comparison. Please zoom in for details.

In the quantitative comparison, we follow the setting
of existing reflection removal methods [4], [28] to utilize
PSNR [14] and SSIM [53] as error metrics for evaluating the
recovery of both transmission scenes and reflection layers.
Quantitative results are shown in Table 1. Comparing to
state-of-the-art single-image methods [4], [15], [22], [47],
[65], the proposed PAR2Net achieves much better perfor-
mance on both transmission and reflection recovery in all
error metrics, indicating that introducing other views of
reflection scenes in panoramic images successfully provides
auxiliary information for the relief of content ambiguity.
HZ21 [12] outperforms single-methods [4], [15], [22], [47],
[65] since it also utilizes additional reflections scenes, while
it performs worse than PAR2Net especially in recovering

reflection layers, which demonstrates the effectiveness of the
network design of PAR2Net, i.e., the initial decomposition
and the reflection correspondence stage to better handle
misalignment issues between reflection scenes and layers.

Visual quality comparisons are conducted on the
PORTABLE and NATURAL datasets with results shown
in Fig. 10 and Fig. 11, respectively5. We compare PAR2Net
with HZ21 [12] and a single-image method DX21 [4] which
is selected to represent state-of-the-art single-image meth-
ods (since it performs best among the five single-image
methods in the quantitative comparison, i.e., in Table 1).
In both Fig. 10 and Fig. 11, it can be observed that due to

5. Additional qualitative results are provided in Appendix A.
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the lack of auxiliary information, the single-image method
DX21 [4] fails to address regions with content ambiguity, i.e.,
fails to distinguish transmission scenes and reflection layers
when reflections are strong or with sharp edges. HZ21 [12]
achieves acceptable results thanks to the exploitation of
reflection scenes. However, its photometric alignment which
is based on fixed polynomial fitting results in chromatic
aberration in estimated reflection layers and further affects
the transmission recovery to generate degraded results. Be-
sides, errors in the matching-based geometric alignment ac-
cumulate through the multi-stage framework of HZ21 [12],
causing strong reflections still left in recovered transmission
scenes. Comparing to HZ21 [12], PAR2Net is able to process
larger regions in panoramic images and achieves more
precise transmission recovery in terms of image content
and color, which attributes to the new setup that inputs
panoramic images with arbitrary masks and the reflection
correspondence stage that tackles the misalignment issues.
In addition, PAR2Net outperforms all compared methods
in recovering reflection layers, which demonstrates the ef-
fectiveness of our data generation method to synthesize
realistic reflections.

6.2 Ablation study
In this section, we implement an unsupervised version6 of
the proposed method inspired by Han et al. [6] to compare
the supervised learning and unsupervised learning strategy
on the panoramic image reflection removal task. Besides, we
conduct several ablation studies to investigate the influence
of the additional reflection scene, the YTMT blocks [13],
the adaptive reflection correspondence module, and the loss
function. Note that the majority of loss functions employed
for training the proposed method are commonly used and
validated to be effective in reflection removal [4], [22], [47],
so we only evaluate the influence of the reconstruction
loss (Lrecon). In addition, we validate the influence of the
proposed data generation method by comparing to variants
trained with data which is generated from existing meth-
ods [5], [55], [64], [67] (mentioned in Sec. 5.1). In general,
we evaluate the effectiveness of the proposed method with
the following variants: ‘PAR2Net-U’ that trains the proposed
method in an unsupervised manner, ‘w/o RS’ that only
inputs with mixture images while lacking auxiliary reflec-
tion scenes, ‘w/o YTMT’ that replaces the YTMT blocks [13]
for initial decomposition with a simple two-stream module
composed of residual blocks [9], ‘w/o correspondence’ that
disables the reflection correspondence module and directly
uses features of RS, ‘w/o Lrecon’ that trains the model
without the reconstruction loss, ‘with FY17 data’, ‘with
ZN18 data’, ‘with WT19 data’, and ‘with ZC20 data’ that
trains the model with data synthesized from data generation
methods of FY17 [5] (image processing-based), ZN18 [64]
(image processing-based), WT19 [55] (learning-based), and
ZC20 [67] (physics-based), respectively.

Table 2 reports the quantitative results on the PORTABLE
dataset. As can be observed, though inferior to the model
trained with the supervised strategy, the unsupervised ver-
sion ‘PAR2Net-U’ surpasses the variant ‘w/o RS’ due to
the auxiliary contextual information in reflection scenes,

6. Details of the unsupervised version are provided in Appendix B.

TABLE 2: Quantitative results of the ablation study, in terms
of PSNR [14] and SSIM [53] on our PORTABLE dataset. ↑ (↓)
indicates larger (smaller) values are better. Bold numbers
indicate the best performing results.

Method
Transmission Reflection

PSNR↑ SSIM↑ PSNR↑ SSIM↑

PAR2Net 26.189 0.857 22.159 0.743
PAR2Net-U 22.759 0.798 18.070 0.641

w/o RS 21.793 0.789 17.102 0.606
w/o YTMT 25.332 0.851 21.178 0.731
w/o correspondence 24.521 0.815 20.008 0.672
w/o Lrecon 25.768 0.849 21.565 0.724

with FY17 [5] data 24.692 0.832 20.922 0.706
with ZN18 [64] data 24.735 0.833 20.862 0.707
with WT19 [55] data 23.432 0.801 18.195 0.632
with ZC20 [67] data 25.554 0.843 21.452 0.715

while the performance of ‘w/o RS’ is still comparable
to state-of-the-art single-image methods in Table 1, which
is benefited from our network design. The variant ‘w/o
YTMT’ performs worse than our complete model, since
the two branches in the substituted two-stream module
are independent, which lacks the capability of exploiting
the complementary information in transmission scenes and
reflection layers comparing to YTMT blocks [13]. For the
variant ‘w/o correspondence’, since the reflection corre-
spondence module is utilized for diminishing misalignment
issues between reflection scenes and layers, its absence also
affects the performance of the proposed method, especially
affecting the recovery of reflection layers. Discarding the
reconstruction loss (w/o Lrecon) also has impacts on the
performance, as the missing of constraints on the rela-
tionship between transmission scenes and reflection layers
intuitively influences their recovery.

As for the ablation study on training data, due to the
unstable learning-based synthesis, the variant ‘with WT19
data’ performs worst among the four variants. Performances
of the rest three variants, i.e., ‘with FY17 data’, ‘with ZN18
data’, and ‘with ZC20 data’ increase successively, while the
model trained on our synthetic data exceeds all of them,
indicating the necessity to consider the physics-based and
high dynamic range image formation model in data genera-
tion. Overall, the complete version of the proposed method
(i.e., PAR2Net) outperforms all variants, demonstrating the
effectiveness of the network architecture and the proposed
data generation method.

6.3 Without using panoramic cameras

This section considers more practical cases by using con-
ventional cameras with limited FoV instead of panoramic
cameras. For casual users using digital cameras or mobile
phones, after capturing mixture images, reflection scenes
can be obtained by turning over the camera for about
180◦. For industrial applications like moving platforms or
robots, by equipping with two oppositely-orientated indus-
trial cameras, mixture images and reflection scenes can be
captured simultaneously. However, under such cases, con-
straints on reflection scenes and layers are weakened com-
pared with panoramic images, which brings challenges for
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Transmission scene Reflection layerReflection sceneMixture image Transmission scene Reflection layer
PAR2Net DX21Input

Fig. 12: Qualitative results on the PHONE dataset, compared with the state-of-the-art single-image method DX21 [4]. Close-
up views are displayed at the bottom of images. Please zoom in for details.

tackling misalignment issues and recovering transmission
scenes and reflection layers. To evaluate the generalization
capacity, we conduct experiments on the PHONE dataset by
comparing PAR2Net with the typical single-image method
DX21 [4]7.

As can be observed from Fig. 12, PAR2Net recovers
clear reflection layers and suppresses most of reflection
artifacts in transmission scenes, even in regions with strong
reflections, e.g., the red box in the first example and the
blue box in the second example. The single-image method
DX21 [4] fails to suppress reflection artifacts, since it only
relies on the deep content priors learned from network
training and lacks other reliable auxiliary information to
precisely identify reflection regions. From these results, it
can be verified that the proposed end-to-end framework is
sufficiently capable of dealing with limited-FoV images, and
the partial panoramic information could be useful to relieve
the content ambiguity for reliable reflection removal, which
is potentially applicable to mobile devices and platforms.

7 CONCLUSION

This paper addresses the issue of relieving the content
ambiguity in reflection removal by using panoramic images.
The main challenge of this problem lies in the geometric
and photometric misalignments [12] between the reflection
scene and the reflection layer. An end-to-end framework is
proposed to adaptively tackle this challenge and achieves
the recovery of the transmission scene and the reflection
layer with higher fidelity than [12]. Experimental results
demonstrate that the proposed method not only achieves a
significant performance advantage over single-image meth-
ods but also generalizes well to limited-FoV images cap-
tured without panoramic cameras.
Limitations. The performance of the proposed method may
degrade if the image content in some regions of reflection
layers cannot find correspondences in reflection scenes. In
such regions, the ablation study (specifically, the variant

7. Additional qualitative results are provided in Appendix A.

‘w/o RS’) demonstrates that the proposed method can still
be comparable with state-of-the-art methods, which also
shows our robustness.
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APPENDIX A
ADDITIONAL QUALITATIVE COMPARISONS ON REAL
DATA

To evaluate the performance of the proposed method
(PAR2Net), we conduct more qualitative comparisons on
the PORTABLE and NATURAL datasets in Fig. 13 and Fig. 14.
We compare PAR2Net with our preliminary work HZ21 [3]
and a single-image method DX21 [1] which is selected
to represent state-of-the-art single-image methods (since it
performs best among the five single-image methods in the
quantitative comparison, i.e., in Table 1 of the main paper).
In addition, we display more results on the PHONE dataset
in Fig. 15 by comparing PAR2Net with DX21 [1] to show our
generalization capacity to limited-FoV images.

APPENDIX B
DETAILS OF THE UNSUPERVISED VERSION FOR AB-
LATION STUDY

In the ablation study (Sec. 6.2 in the main paper), we im-
plement an unsupervised version of the proposed method
inspired by Han et al. [2], which compares the different
learning strategies on the panoramic image reflection re-
moval task. We retain the network architecture of the pro-
posed method and employ the loss functions in [2] to adapt
the unsupervised learning strategy. We update the network
parameters with 1000 iterations for each test image.
Training recovery modules. Following Han et al. [2], we
first train recovery modules for reflection refinement and
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transmission recovery by recovering input images, i.e., re-
covering mixture images M and reflection scenes RS by
using features extracted from the feature extraction stage
(i.e., FM and FRS

in Sec. 4.2.1 of the main paper). In detail,
we utilize the auto-encoder loss LA [2] defined as follows:

LA = Lrec(M,Mest) + Lrec(RS,R
est
S ), (18)

where Mest and Rest
S denote mixture images and reflection

scenes obtained by the recovery module, and Lrec measures
the differences in the color and gradient domains between
two images [2].
Training the complete network. After training the recovery
modules, we train the complete network module as a whole.
The reconstruction loss Lrecon proposed in Sec 4.3 of the
main paper is retained to constrain the search space for es-
timating reflection layers and transmission scenes. Besides,
we adopt the gradient prior loss Lgrad in [2] to leverage the
independence of two estimated components (i.e., Rest

L and
Test

S ) in the gradient domain. For exploiting the correlations
of reflection scenes and layers, we use the reflection loss Lref
in [2] which is defined as:

Lref = Lmse(C
ref ,Rest

L ) + αLmse(G
ref ,∇Rest

L ), (19)

where Cref and Gref denote reference images in the color
domain and gradient domain (obtained by the reference
image generation method of [2]), respectively, and we set
α as 10 following [2]. In general, the total loss for training
the complete network is defined as:

Ltotal = ω1Lrecon + ω2Lgrad + ω3Lref. (20)

Following previous methods [1], [2], the weights are empir-
ically set as ω1 = 1, ω2 = 3, and ω3 = 5.
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Fig. 13: More qualitative results on the PORTABLE dataset. Inputs and results are shown in the same manner as Fig. 10 of
the main paper. Please zoom in for details.
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Fig. 14: More qualitative results on the NATURAL dataset. Inputs and results are shown in the same manner as Fig. 11 of
the main paper. Please zoom in for details.
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Fig. 15: More qualitative results on the PHONE dataset, compared with the state-of-the-art single-image method DX21 [1].
Close-up views are displayed at the bottom of images. Please zoom in for details.
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