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Abstract—Neuromorphic cameras are emerging imaging technology that has advantages over conventional imaging sensors in several
aspects including dynamic range, sensing latency, and power consumption. However, the signal-to-noise level and the spatial resolution
still fall behind the state of conventional imaging sensors. In this paper, we address the denoising and super-resolution problem for
modern neuromorphic cameras. We employ 3D U-Net as the backbone neural architecture for such a task. The networks are trained
and tested on two types of neuromorphic cameras: a dynamic vision sensor and a spike camera. Their pixels generate signals
asynchronously, the former is based on perceived light changes and the latter is based on accumulated light intensity. To collect
the datasets for training such networks, we design a display-camera system to record high frame-rate videos at multiple resolutions,
providing supervision for denoising and super-resolution. The networks are trained in a noise-to-noise fashion, where the two ends of the
network are unfiltered noisy data. The output of the networks has been tested for downstream applications including event-based visual
object tracking and image reconstruction. Experimental results demonstrate the effectiveness of improving the quality of neuromorphic
events and spikes, and the corresponding improvement to downstream applications with state-of-the-art performance.

Index Terms—Neuromorphic camera, vidar camera, high-quality imaging
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1 INTRODUCTION

EUROMORPHIC computer vision is an emerging re-
Nsearch field that executes visual tasks using neuro-
morphic sensory data and algorithms [1]-[3]. Neuromor-
phic sensors are designed to imitate biological neurons
and synapses, which only perform work when there are
events/spikes to process [4]. Such a sensor has high effi-
ciency, low latency and high dynamic range (HDR) [1], [5]-
[7]. However, the output events/spikes are asynchronous
spatio-temporal “point clouds” (Fig. 1) that are funda-
mentally different from conventional images. The novel
modality brings novel challenges from a signal processing
perspective. Restoration and enhancement of neuromorphic
signals are fundamental problems yet are different from
their image-based counterparts. Previous works address
the denoising and super resolution problem of events and
demonstrate the effectiveness for downstream applications
[8], [9]. In this work, we propose a framework for Neuromor-
phic signal Denoising and Super-Resolution (NDSR).

There are two types of neuromorphic cameras, namely
differential-based [5], [7] and integral-based [2] types, ac-
cording to how their signals relate with scene radiance.
Differential-based neuromorphic sensors, also known as
event cameras or Dynamic Vision Sensors (DVS) [6], [7],
enable each pixel to only compare current and last light
intensity states in log-scale and fire a binary-signed event
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Figure 1: 3D spatial-temporal views of real event/spike
data, which have unconventional forms that differ from tra-
ditional frame-based RGB images. Blue/red points indicate
positive/negative events, gray points indicate spikes.

whenever the log-intensity variation exceeds the preset
thresholds [1], [7], [10]. This type of cameras is suitable
for dynamic visual scenarios thanks to their high speed (~
10us), and avoidance of absolute intensity values for static
scenes (Fig. 1(a)). Integral-based neuromorphic sensors, also
named spike cameras or the Vidar [2], enable each pixel to
continuous exposure and fire a binary-signed spike when-
ever the intensity accumulation exceeds a threshold [11].
Spike cameras record the light intensity in spatial-temporal
domain at high speed (25u5). High-frequency spike trigger-
ing corresponds to high intensity, and vice versa (Fig. 1(b)).
Neuromorphic cameras have shown promising potential
in solving video restoration [12]-[15], 3D vision [16], and
robotics [17] tasks due to the low latency and HDR charac-
teristics.

In spite of the popularity of neuromorphic-based vision,
current event and spike sensor prototypes still bear low
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Figure 2: We propose a framework that uses a display-camera system to collect real-captured multi-resolution event/spike
datasets, which enables the proposed NeuroZoom-ev/-sp networks to learn to perform event/spike denoising and super
resolution. The architecture of both two networks is shared. 1x data show that raw neuromorphic data suffer from low

spatial resolution, noise, and data loss.

spatial resolution (e.g., DAVIS346 [6] is 346 x 260 and the
first generation of Vidar [2] is 400 x 250) and nonnegligible
sensor noise, event sensors even suffer from event loss due
to their special response and transmission mechanisms [1]
(Fig. 2). A particular body of literature has attended to
event-to-image [8], [18], [19] or spike-to-image reconstruc-
tion [14], [20], and shown that image-based visual algorithm
can perform well on event- or spike-reconstructed images.
Nonetheless, the gap between the spatial resolution of im-
ages captured by a modern camera and the spatial reso-
lution of neuromorphic signals affects the practicability of
the methods, and the severe noise of neuromorphic signals
brings inevitable errors to their downstream tasks. Gehrig
et al. [21] also verifies that directly increasing the spatial
resolution of event sensors will lead to the inevitable event
missing and the increase of pixel response delay. Therefore,
a “compact” restoration and enhancement algorithm as the
post-processing of NDSR is desired.

For event cameras, state-of-the-art event restoration solu-
tions rely on the intensity signal [22]-[24]. In EDnCNN [22],
same-resolution images are used to label events for training
dataset collection, and a classification network is further
used for event denoising. However, event labeling can only
remove wrongly-fired events and cannot recover unfired
events, even with previous event removal filters [25]-[27].
Guided Event Filtering (GEF) [23], [24] retrieves missing
events and provides super-resolution (SR) but requires high-
quality, high-resolution (HR) images synchronized with
events. Its performance is highly dependent on accurate
optical flow estimation, which is computationally expen-
sive. For spike cameras, existing methods [14], [20], [28]
reconstruct images without specifically dealing with noise.
Learning-based methods [29], [30] train the networks with
simulated datasets where the real-simulation gap cannot be
ignored. MGSR [31] enables image SR for spike cameras,
but has a minute-level runtime per frame. In short, the
bottlenecks of current NDSR methods include 1) reliance on
high-quality images and lack of available learning datasets;
2) lack of reliable methods to integrate denoising and SR
into a unified framework; 3) the expensive running cost.

Real-data driven is an available approach to study signal
degradation avoiding the real-simulation gap, which has
been verified in the field of image restoration [32], [33]. Our
preliminary work EventZoom [9] introduced this fashion

into event-based NDSR for the first time. We implemented
a display-camera system to collect a multi-resolution event
dataset, and trained a network building upon 3D U-Net [34]
in a noise-to-noise fashion without ground truth annotation,
while preserving computational efficiency.

However, the preliminary solution [9] has several limita-
tions: 1) Network. Due to the lack of multi-scale constraint
and cross-scale feature fusion to handle large-scale upsam-
pling, the network can’t handle 4x event SR, and it does
not support handling spikes. 2) Dataset. Low resolution of
DAVIS346 and low quality of source videos limit the 4x
event SR capability, and a multi-resolution spike dataset is
not yet available. 3) Validation. EventZoom [9] is evaluated
by qualitative tests and downstream applications, because
obtaining noise-free references for real events is challenging.

Overview of this work: This paper extends [9] to address
above limitations and makes the following contributions:

e We propose a unified framework NeuroZoom to
solve the NDSR problem for both events and spikes,
the proposed 3D U-Net backbone is able to exploit
temporal coherence which is especially important to
achieve NDSR and even edge-filling. The network
in [9] has been updated with a pyramid architecture
and cross-scale feature fusion enabling both 2x and
4x SR jointly, bringing performance improvement.

e« We upgrade our display-camera system to spike
cameras and collect a multi-resolution spike dataset.
The multi-resolution event dataset is expanded with
newly captured source videos with high quality and
an event camera with larger resolution (Prophesee
Gen4.0 [35]), enabling to directly learn 4x event SR.

e We collect a full-reference test dataset for events
by a controllable camera system, and quantitatively
benchmark the restoration performance for existing
NDSR methods. The quantitative and qualitative
analyses for downstream applications are updated
with new datasets and state-of-the-art methods.

2 RELATED WORKS

Event denoising and super resolution. Existing works
were mainly concerned with background activity noise pro-
duced by temporal noise and junction leakage currents [7],
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[22], [25]-[27]. Liu et al. [27] proposed a denoising filter
based on spatiotemporal correlation. Wang et al. [36] pro-
posed to filter events by their motion association likelihood.
This is based on an assumption that events are triggered by
edge motion and therefore shall follow the same spatiotem-
poral motion projection within a local window if valid [23],
[37], [38]. GEF [23], [24] uses motion compensation (MC) to
align image and event signals, and employs guided image
filtering to optimize the mutual structure between the low-
resolution (LR) event and HR image signals. By leveraging
this approach, GEF can perform super-resolution on the
event signal up to the image resolution when the image
signal has higher spatial resolution than the event signal.
Although MC is highly useful for event processing [37], [39],
[40], the computational complexity is beyond practical for
downstream visual tasks. Another pathway for event-based
NDSR is first by means of event-to-intensity conversion [8],
[41]. The generated high quality images can then be con-
verted back to events via video-to-events simulators [42]-
[44]. The runtime and the real-simulation gap [45] are the
main limitations. We introduce a learning-based and real-
data driven strategy to enhance and restore event signals
with computational efficiency.

Spike camera imaging. Spike cameras asynchronously
record the intensity accumulation by spike streams at a
high speed and high dynamic range . Due to these unique
characteristics, the spikes are naturally useful to reconstruct
high frame rate videos [14], [20], [28]-[31] or HDR images
[15]. Two basic restoration models are the Texture From
inter-spike Interval (TFI) [28] and the Texture From Playback
(TEP) [28]. TFI infers the light intensity by calculating inter-
spike intervals and TFP restores it by accumulating the spike
numbers of a brief period. Both basic methods are not robust
to noise. To improve the reconstruction quality, Zhu et al.
[20] used a retina-like framework (i.e., SNN) to match the
characteristic of spike signals, they also proposed NeuSpike-
Net [30] that combined events and spike to reconstruct HDR
images like bio-inspired sampling. Zhao et al. [31] proposed
a multi-frame based method MGSR to handle the challenges
of both noise and high-speed motion. Nonetheless, these
methods are computationally expensive and are not spe-
cially designed to consider unavoidable noise with spikes.
We propose a compact spike restoration and enhancement
method with both denoising and SR.

Neuromorphic camera systems and datasets. While the
majority of existing datasets have addressed various visual
tasks, very few of them focused on event-based NDSR,
let alone spike-based NDSR. DVSNOISE20 [22] proposed a
noise annotation approach by deriving an event probability
mask using APS frames and IMU motion data. The dataset
in [18] used HR smartphone videos as reference but did
not convert them back to raw data form to obtain intensity
information required for event-based NDSR. Both MVSEC
[46] and RGB-DAVIS [23] have provided HR machine vision
images up to 2x and 8x respectively. Particularly, RGB-
DAVIS leveraged a beam splitter to collocate an HR RGB
camera and LR DAVIS event camera [23]. There has not been
a multi-resolution event dataset provided in the literature
due to the significant challenges in camera calibration and
the lack of HR event camera prototypes. In event datasets
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Figure 3: An illustration of different sensing mechanisms
(intensity, events, and spikes) and the corresponding visual
signal outputs. Given a latent intensity signal, frame-based
sensors sample the average intensity over the exposure time
at a fixed frame rate, while neuromorphic sensors record
intensity differences (events) or intensity integrals (spikes)
asynchronously with binary-signed neuromorphic signals.

from [47], a display-camera system was used to convert
existing video datasets to event datasets. We use a similar
setup with upgraded hardware in both the display and
event cameras, and collect a high frame-rate video dataset
to minimize temporal aliasing caused by large motion.

Neuromorphic neural models. Neuromorphic signals are
bio-inspired visual signals resembling the form of asyn-
chronous neural spike trains. Several bio-inspired learning
architectures have been proposed for event- and spike-
based learning, including SNNs [20], [48], LSTM/RNNs
[49], [50], and MLPs [51], [52]. CNNs are widely adopted for
event-based NDSR-related tasks. Wang et al. [53] proposed
to use the sigmoid function to approximate the intensity-
event relation, and employed a residual net for image
enhancement. Before performing convolutions, the input
events were first binned or stacked into event frames which
induced temporal interruptions [41], [53], [54]. This issue
was alleviated by explicitly incorporating inter-stack flow
estimation modules [41], [55]. As shown in GEF [23], [24], 2D
convolutional SR nets did not perform well on binned event
frames as the activation sites are sparse. Messikommer et
al. [56] adopted sparse convolutions with an asynchronous
activation mechanism for high-level visual tasks. Gehrig et
al. [57] proposed volumetric spatio-temporal tensors to form
an event feature space that is trained w.r.t. specific tasks.
For NDSR, we employ 3D U-Net [34] as it has a volumetric
encoder-decoder structure and performs 3D convolutions.

3 NEUROZOOM APPROACH
3.1 Neuromorphic signal formation model

We first demonstrate the event/spike formation model and
its relationship to the image-based counterpart. In image
denoising and super resolution, the basic formation model
assumes that the LR image I™R s the result of a downscaling
operation from a degraded HR image I''® added by noise:

)

where k denotes a degradation for isotropic Gaussian blur
[58], which can be ignored since the latent clear image is
needed to formulate neuromorphic signals. | is a downscal-
ing operation with a scale factor of s, and Nimage TEPresents

jLR = (IHR * k) \I/s +nimag67
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Figure 4: (a) We build a display-camera system to investigate the formation and degradation of events and spikes. (b) RGB
video source views and corresponding calibrated event views. The display is divided into 6 segments and 4 resolution-
levels. (c) Video source and calibrated spike views. The display is divided into 3 segments and 2 resolution-levels.

the additive image noise. We use I'® to denote I'™® has been
noise corrupted. We formulate the generation of events and
spikes via latent images in spatiotemporal field as follows:

Event formation. For the case of events, the event sensor
output at time ¢y can be described as (refer to Fig. 3(c)):

Ly +b
Itofl + b)7€}’

where I'{0, €} represents the conversion function from log-
intensity to events, and b is an offset value to prevent
log(0). I'{f, e} = 1 when 6 > ¢, indicating a positive event;
I'{0,e} = —1 when 0 < —¢, indicating a negative event;
and I'{6, e} = 0 when |0| < ¢, indicating that no event has
been fired. The dead pixels can be interpreted as € being
significantly low or high.

Equation (6) is the noise-free model of the intensity-to-
event conversion. The event formation model considering
both the downscaling and noise can be represented as:

(I{®) Js +b
(IggR—l) J/s +b

where nevent represents the perturbation noise pivoted at
the firing threshold. According to previous studies [6], [7],
TNevent Can be viewed as a Gaussian random process with a
mean value of 0. Note that this model does not consider
all the event sensor noise types but can be used to explain
several experimental observations [7] and has been adopted
in previous event simulator for generating noise-corrupted

events [42]. Our §oal is to recover the latent HR event signal
R

Iy
EiR = I‘{log(iltﬂ;“
®

E,, =T{log( )

B =1 log ( )i+ eent)s O

+b); €} from the LR noisy signal E}OR.
1

Spike formation. For the case of spikes, the spike sensor
output at time ¢ can be described as (refer to Fig. 3(d)):

So=| ([ na)se] - [([ nae]

K fot o Itdt) / cpJ denotes that whenever the integral of latent

images fg(’ Idt exceeds the threshold ¢, the spike count
betweent = 0 and t = ¢, for each pixel can be recorded by a
round-down process. In this way, the matrix S;, represents
the difference of spike count between time ¢y and 9 — 1,
indicating whether each pixel has a spike triggered at time
t = to (values of 1 in the matrix Sy, represents a spike, and

0 represents that no spike is triggered).
The intensity-to-spike model considering both the down-
scaling and noise degradation can be expressed as:

SLR _
S =

([0 10 )+ )
_ K /Otol(ItHR) s dt) /(o + nspike)J .

Here, ngpike is the perturbation noise pivoted at ¢, which
can also be viewed as a Gaussian random process [28].
The aim of spike-based NDSR is to recover Sj® =
K Oto ItHRdt) /@J - K Oto_l IFRdt)/ng from the StLOR

The relationship between events and spikes. According
to Huang et al. [2], the intensity I;,(x,y) of a pixel (z,y)
can be estimated by taking the reciprocal of the time length
between the two adjacent spikes that occur closest to the
time point ¢y on the timeline. This time length is also known
as the inter-spike interval. We define 7 (-) as the process for
obtaining the inter-spike intervals from spikes. Then, the
matrix T (Sy,) records the inter-spike-intervals for all pixels
at time point ¢y. The intensity image at ¢y can be calculated
as I, = ¢/T (S, ), where ¢ refers to the maximum dynamic
range of the reconstruction [2], [28]. Putting I;, = ¢/T (S4,)
into Equation (2), we can convert spikes to events as follows:

C/T(Sto)+b )6}
¢/T(St—1) +b7 7

which establishes the mathematical relationship between
the events and spikes. Using the real-captured spike-event
calibrated data [30], we test the effectiveness of the spike-
to-event transformation on real data. The conversion results
showed in the supplementary material demonstrate that the
spike-converted events are highly similar to the real events.

©)

E,, = F{ log( (6)

3.2 Display-camera system for NDSR

The recovery from EtLOR to E;® and from StLOR to SR are
ill-posed problems as there are many unknown parameters
that need to be estimated, including the image degradation
kernel k, the threshold value ¢ (for event) and ¢ (for spike),
and the noise nNevent, Nspike- Even when all the unknown
parameters are correctly estimated, the surjective property
of I'(-) mapping from intensity to event and module process
from intensity to spike make NDSR a difficult problem.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5
o~ 1 >
* positive event
pixel * negative event I (
fleoele se e I
S Q : : : = Q : : B : ........ Zoom-block ====== P | seesssenaad Zoom-block k=essssas »
N 51273  sTsToTely ime | 1 Event/Spike (h, w, 16) (2h, 2w, 16) A (4h, 4w, 16) |
0 s 1 representation l T Event/Spike
eventstack time resolution:~10us | | Zoom-block redistribution
pixel position: alblc|d|e|f 1 c=4 c=4 c=22 c=22
positiveframe: | 0|3 |6 |4 2|1 | :
tive frame: |0 0|0 |2[3 |3 =
negalive frame , | Event/Spike input 4(: 84
Event representation 1 T
v | spike | |==> GT constraint = _ _
pixel c=8 c=12 c=36 c=58
R I [ : —> conv3D &—> ( ( &—>
o |—|_—| I | ! I 1 deconv3D c=124
c - |
b I—|_—| | time | | concat T
0 = 1 ; c=16 =24 =4 =84
? time point  time resolution:25us 1 = conv3D twice O —> ﬁ € ﬁ cd8 D> c=8
pixel position: [ a [b [c[d[e]f] 1 +max pool c=132
Tematane (155 56 14 3] 1| — doconvaD | t )
_ : 1 ) c=32 c=48 c=48 =% ) Event/Spike
Spike representation 1 +conv3D twice S—> (7 &—> g output

(G

Figure 5: (a) An illustration of event and spike representation we used. For events, we stack events of a time interval into
a positive frame and a negative frame, which correspondingly record the integral per pixel for positive/negative events.

The time interval is not fixed and depends on the different clip strategies. For spikes, we employ TFI [

] (i.e., use spike

interval) to represent features of each time point. The length of the red line segment (the number of time units it spans)
represents the time interval between two adjacent spikes. (b) NeuroZoom architecture for both 2x and 4x NDSR. The
input LR neuromorphic signals are first represented into a 3D tensor and then fed into two cascaded Zoom-block. Finally,

the HR tensor is redistributed to spatiotemporal point clouds.

We develop a display-camera system to observe real-
world neuromorphic data at multiple scales to approach
NDSR. The system setup is presented in Fig. 4(a), consisting
mainly of a display and a neuromorphic camera. We choose
the Prophesee Gen 4.0 [35] (1280 720) to capture events and
the VidarOne camera [2] to capture spikes. Note the event
camera we used has a larger resolution than the DAVIS346
mono camera (346 x 260) [6] used in [9]. An F/1.4 lens is
mounted on the cameras. The camera is placed at a distance
of ~180cm away from the display to avoid lens distortion.
To calibrate the alignment between the camera plane and the
display plane, we use a gradienter to limit one rotational
degree of freedom. The other two degrees of freedom are
limited by the collinearity of the camera view center, aiming
device and the crosshair on display center. The influence
from other light sources is minimized during recording.

For collecting event dataset, we use a HUAWEI P40 pro+
mobile phone to shot 45 high resolution (1280 x 720) and
high frame-rate (240FPS) video clips as source videos and
play them on an AUOS80ed display (1920 x 1080, 144Hz).
Compared with the Need-for-Speed (NES) dataset [59] used
in [9], our new source videos do not contain scenes with
low-light, flickering and severe noise, which avoids intro-
ducing noise and artifacts to neuromorphic signals from
source videos. As Fig. 4(b) shows, the display view is
divided into 6 segments and 4 levels with 2 extra-low (1x), 2
low (2x), 1 medium (4x) and 1 high (8 ) resolution scales.
The original frames are bicubically downsized to alleviate
spatial aliasing. The new videos are played at 90FPS to
avoid exceeding the highest refresh rate of the display.

For spikes, in order to improve the compatibility of
the dataset for ultra-high-speed motion scenes that spike
cameras are mainly used to shoot, we select 25 videos with
slow motion (i.e., Slo-mo) effect (shooting high-speed scenes
such as water polo bursting or propeller rotation) from

the Internet as video sources. We set them back to 240FPS
to simulate real high-speed motion on a display with the
refresh rate of 360Hz (ASUS PG259QNR, 1920 x 1080). As
Fig. 4(c) shows, the view is divided into 3 segments and 2
levels with 2 low (1x) and 1 high (2x) resolution scales.

With this setup, we obtain 45 multi-resolution event
clips with a total time length of 20 minutes and 25 multi-
resolution spike clips with a total time length of 12 minutes.
We refer to these newly captured multi-resolution datasets
as “Multi-E” and “Multi-S” respectively. The comparison of
the differences between events generated by real captured,
display-camera system captured, and simulator-simulated
ways, and the quantitative comparison for our display-
camera training dataset and V2E-simulated training dataset,
have been added to the supplementary material.

3.3 Noise-corrupted HR-LR correspondence

Figure 4(b) and Fig. 4(c) show multi-resolution event frame
and spike frame examples. It is clear that, despite represent-
ing the same motion, LR frames have different appearance
due to noise, either events or spikes. For event frames, some
edges are missing due to the increase of the event firing
threshold caused by 7eyent, while some noisy events are fired
at non-edge positions due to the delayed response of the
sensor. For spike frames, severe noise covering the full field
of view is also caused by ngpike. Such randomness make the
ground truth data annotation difficult because both the HR
and LR signals have been noise-corrupted.

Inspired by [32], we use the noise-to-noise fashion to
learn the denoising and SR mappings for neuromorphic
signals. For event-based NDSR, we obtain a series of noise-
corrupted HR-LR event signal pairs, i.e. (E(Lg, E%{Z?) Here,
the timestamp ¢ is omitted and replaced by the sample index
i. According to our image formation model in Eq. (3), the
event data have an expectation of E [E8§<|EA(L1I§} = Ef}} as the
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noise-corrupted event signal has a zero-mean noise model
[32]. This enables us to train a regressor (g that learns a
mapping from noise-corrupted LR event data E™ to noise-
free HR event data EMR without ground truth supervision:

ar%min ﬁ{QE(Eb§)7E8$}’ @)

where £ denotes a loss function. In our case, we use the
mean squared error loss. In the same way, the regressor ()
of spikes can be represented as:

ar%_zmin £{Qs(§8§),§5§} ®
S

3.4 Representation of neuromorphic signals

Figure 5(a) shows the data perprocessing we used, i.e., neu-
romorphic signal representation. For events, we divide both
LR and HR raw event stream into 3D tensors (R*w>2en)
as event stacks and feed them as pairs into the network
sequentially, where 2cn means the corresponding events
of one 3D tensor are divided into cn channels and each
part events are summed pixel-wisely corresponding to their
polarities (i.e., positive/negative) within two sub-channels.
In the training stage, there are two event stream-dividing
strategies, i.e., fixing the time interval of each channel and
fixing the event number of each channel. We conduct an
ablation study on the above strategies and find that the best
performance is obtained when the event number of each
channel is fixed and cn = 16. In the test stage, to ensure
consistent channel durations for easy downstream connec-
tion, we choose to fix the time interval of each channel.
Different channel numbers are also tested by the ablation
study and we find setting cn = 16/32 and the time interval
of each event stack covering a duration of about 11ms in the
test stage gives reasonable results. The output event stack is
rounded to integer values and then redistributed in each
channel by assigning a timestamp for each event. We have
experimentally analyzed the impact of this redistribution
strategy on downstream tasks at different channel time
intervals. The redistribution strategy analysis and ablation
study are included in the supplementary material.

For spike, we choose TFI [28] to preprocess the raw
spike stream. TFI [28] restores intensity value per pixel from
the reciprocal of inter-spike-intervals, which can roughly
reconstruct the image corresponding to each time point
without losing temporal accuracy, despite the image suffers
from severe noise. Both LR and HR spikes have a time
resolution of 25us, so we first reconstruct 40000FPS frame
sequences by TFI, and then clip each 16 frames into a 16-
channel spike stack to perform supervision. By inverting the
output frame, the interval between two adjacent spikes per
pixel at one time point can be obtained, and a binary spike
stream can be easily reconverted to be further adapted for
downstream applications.

3.5 NeuroZoom network architecture

The network takes as input a spatiotemporal 3D point cloud
and outputs its HR enhanced version. The captured neuro-
morphic signals are mostly sparse in space but dense over
time. Inspired by previous study [23] where quantitative
results showed 2D-CNN-based SR networks are not suitable

6

for event-based NDSR, we employ 3D convolutions for the
purpose of learning spatiotemporal features. The neural
network is built upon 3D U-Net [34], as shown in Fig. 5(b)
for 4x event-based SR. Compared to other multi-channel
2D-CNN-based approaches, 3D U-Net takes more channels
in the time dimension to better exploit temporal coherence.

Inspired by the single image SR method LapSRN [60],
we design NeuroZoom as a two-level pyramid architecture
with two Zoom-block cascades to learn both the 2x and
4x mappings for event-based NDSR. Two different scales
of HR events at the corresponding level are used as the
mutli-scale supervision, which enables the network to learn
to predict both 2x and 4x SR events in a feed-forward
step. Each Zoom-block is built up by a modified 3D U-
Net [34] architecture, where we incorporate additional 3D
de-convolution layers for each scale of skip connections,
as well as add a cross-scale feature fusion that features
of each level are concatenated to the lower level. We use
the NeuroZoom architecture for both events (NeuroZoom-
ev) and spikes (NeuroZoom-sp), which are constrained by
the corresponding Mutli-E/-S dataset. To avoid blocking
artifacts for the output of NeuroZoom-sp, we replace the 3D
de-convolution layer of the third last to second last output
layer of each Zoom-block with a bicubic upsampling layer.

EventZoom [9] introduces an event-to-image (E2I) con-
version to leverage HR information from images. But re-
constructing 4x image from noisy 1x image restored by
E2VID [61] is challenging and would yield less benefit for
the event SR. For NeuroZoom, we discard this module and
introduce high-quality dataset and Zoom-block module to
handle texture restoration of event SR. During training,
we randomly select 40 multi-resolution event clips from
the Mutli-E and generate 7500 {1x, 2x, 4x} LR-HR event
pairs as the training set of NeuroZoom-ev, and select 20
multi-resolution spike clips from the Mutli-S and generated
24000 {1x, 2x} LR-HR spike pairs as the training set of
NeuroZoom-sp. We use a batch size of 8 and train for
100 epochs. The Adam optimizer is used with an initial
learning rate of 0.001, decayed by a factor of 0.5 every
50 epochs. By ablation experiments, we choose MSE loss
for NeuroZoom-ev, and Charbonnier loss [62] and TV loss
[63] for NeuroZoom-sp with a weight of [1,0.005]. Both
networks are implemented using PyTorch 1.6, with a time
cost of about 12 hours on an NVIDIA 2080 Ti GPU.

4 NDSR EVALUATION
4.1

To evaluate the performance of event-based NeuroZoom,
the experimental results are organized as follows: 1)
NeuroZoom-ev are compared with state-of-the-art denois-
ers on our real-captured ten samples. 2) For event SR,
NeuroZoom-ev are compared with EventZoom [9].

Results of NeuroZoom-ev

Denoising. NeuroZoom-ev are compared with two types
of event denoisers. The first type includes three basic
methods that have been embedded in the software of the
Prophesee camera, i.e., activity noise filter (ACT) [64], trail
noise filter (TRA), and spatial-temporal-contrast noise filter
(STC). The second type of denoiser includes two state-of-
the-art methods, EV-gait [36] and EDnCNN [22]. To evaluate
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Figure 6: Same-resolution denoising comparison results on the real-captured dataset. (a) Event frames clipped from four
raw event streams which are captured by a Prophesee Gen 4.0 camera at a spatial resolution of 1280 x 720. (b)-(d) Denoising
results of (a), processed by three basic noise filters provided by Prophesee [35]. (e)-(g) Denoising results of (a), processed
by EV-gait [36], EDnCNN [22] and the proposed NeuroZoom-ev respectively. Closed-up views of green and orange boxes
are shown below the results. Additional denoising results are included in the supplementary video.

Table 1: Denoising runtime comparison on real-captured data (unit: second)

‘ bike  building car_fast car_slow cat leaf  person  sign  tower ‘ Average
ACT [64] \ \ | 0.012 0013 0.011 0010 0.015 0.009 0013 0018 0016 | 0.013
STC \ \ | 0.009 0010  0.011 0.008 0.011 0.007 0012 0013 0012 | 0.010
TRA | Matlab | | 0.009 0.010  0.011 0.008 0011 0007 0012 0013 0012 | 0.010
EV-gait [36] | | CPU | 44784 126479  59.193 90412 53.025 23.031 113586 48357 88.104 | 71.886
EDnCNN [22] | \ | 24637 31019 25743 34144 31360 21.346 28000 33558 38471 | 29.809
Ours \ \ | 0226 0253  0.242 0217 0222 0234 0233 0217 0223 | 0.230
Ours | Pytorch | "Gpy | 0.013 0014 0013 0012 0012 0013 0014 0013 0011 | 0013

whether the NeuroZoom-ev enables to handle real event
data, we collect ten real-captured event streams by a Prophe-
see event camera as the test dataset. The test scenarios cover
common situations like indoor/outdoor settings, fast/slow
motion and far/close scenes. In the denoising case, the
NeuroZoom-ev 1x are trained with same-resolution input-
output pairs. The 3D de-convolution layers for skip connec-
tions shown in Fig. 5(b) are not used so that the output can
keep the original size. The denoising results are shown in
Fig. 6. As can be seen, NeuroZoom-ev is able to reveal and
enhance the scene structures and effectively remove noisy
events. ACT [64] and EV-gait [36] mainly focuses on remov-
ing background noises, STC pays attention to retain events
where have high spatial-temporal-contrast, and TRA majors
on eliminating trails of events. The effects of EDnCNN
[22] seem not obvious because it is designed for DAVIS346
[6] and the network is trained on small resolution data
labeled with the corresponding APS images. The qualitative
results also show that NeuroZoom-ev hallucinate excessive
events beyond the raw data, our method fills the missing
information on edges, such as the car in the 2nd row and
the trumpet sign in the 3rd row.

The runtime of all the denoisers is benchmarked in

Table 1. We record the coding language, processor type, and
runtime of each denoiser for processing an 11ms-duration
event stream per sample. Both EV-gait and EDnCNN re-
quire long run time compared to others. Ours method runs
slowly than three basic denoisers on a CPU, but achieves
the same speed when running on a GPU.

In summary, NeuroZoom-ev provides a fast event en-
hancement solution for event denoising and edge comple-
tion. We will further quantitatively compare the perfor-
mance of all denoisers by a controlled experiment in Sec. 4.2.

Super resolution. We compare NeuroZoom-ev with
EventZoom [9] for 2x and 4x event SR. Unlike Event-
Zoom that uses image information as the auxiliary (E2I
module) and performing EventZoom-2x twice to achieve
4x SR, NeuroZoom-ev achieve 4x SR directly, without
help from images. It benefits from the improved network
with a pyramid architecture and cross-scale feature fusion,
and the upgraded Multi-E dataset in which the resolution
of 1x-scale data is large enough to train the 4x model
effectively. We use the test data splitted from our Multi-
E dataset. The SR results are shown in Fig. 7. Compared
with EventZoom, the proposed NeuroZoom-ev reconstructs
sharper and cleaner edges in 2x event SR. For 4x SR, our
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Figure 7: Comparison of 2x and 4x event SR performance between EventZoom [9] and our method.

Figure 8: The experiment setting of the full-reference evalu-
ation dataset collecting.

method can recover edges and textures even without any LR
priors in the input event frames. This is due to the relatively
longer time window it process. We will further verify the
effectiveness through downstream applications in Sec. 5.

4.2 Full-reference evaluation for NeuroZoom-ev

Over the past decades, we have experienced the success of
full-reference image quality assessments (e.g., PSNR, FSIM
[65], 2stepQA [66]) for objectively evaluating and bench-
marking image processing methods. However, there are no
such full-reference assessments for NDSR yet. EventZoom
[9] is only evaluated by qualitative tests and downstream
applications. It motivates us to quantitatively evaluate the
performance of event enhancement methods with a full-
reference fashion. To this end, we explore collecting a test
dataset that includes raw event samples and their cor-
responding ground truth, then all methods process raw
event samples and their performance are benchmarked by
calculating the errors between the outputs and ground truth.

0.10 4 Method %
= ACT
[ STC
1 TRA @
0.08 - [0 Evgait % @ é
= EDnCNN % X
[0 Ours @ % CHH
£ 0.06 - 1 '
& %‘f é
LY
0.04 A é%
0.02 4

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Sample
Figure 9: A boxplot to show the comparison results of
the denoising performance in full reference evaluation. We
compare existing denoisers with our proposed NeuroZoom-
ev on our collected full reference test dataset Ref-E.

However, it is challenging to obtain the ground truth of raw
events because existing DVS prototypes suffer from severe
noise. An intuitive approach is to use an event simulator
to simulate noisy and texture-missing events and corre-
sponding noise-free and no missing texture events. Never-
theless, the published event simulators [42], [43] generate
the corresponding event stream based on the interpolation
of input videos, where the input videos lack microsecond-
level temporal information, and the errors introduced by
frame interpolation lead to an obvious gap between real and
simulation. To deal with these problems, we design a con-
trolled experiment where the intensity frame at the starting
time and the motion speed at any time are known, which
means that the intensity frame at any time is available, so
that corresponding events can be calculated by the event
formation model Eq. (6).
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Reference events generation. We select uniform linear,
uniform circular, and uniform circular linear motion as three
basic motions, which are easy to realize in the controlled
experiment. For uniform linear motion, suppose one pixel

X0 = [z0,%0]" moves at linear velocity v = [v;,v,] ", the
position transformation matrix of at any time ¢ is given by:
1 0 vt
T(v,t)=| 0 1 oyt )
0 0 1

Similarly, for uniform circular motion, suppose the pixel xg
rotates around the pixel x. = [z.,y.] " with angular velocity
w, the position transformation matrix of at any time ¢ can be

given by:

R(xc,w,t) =
1 0 =z coswt —sinwt 0 1 0 —=z.
0 1 wye sinwt coswt 0 0 1 —yc
0 0 1 0 0 1 0 O 1
(10)

For uniform circular linear motion, the position transforma-
tion matrix is a fusion of two motions:

M(v,xc,w,t) = T(v,t)R(xc, w, ). (11)
For an event stream sample S;, we use the starting point
intensity frame I, ¢, to calculate the intensity frame of any
time point ¢ using Eq. (8-10), and synchronously simulate
the event stream E according to Eq. (6). The spatial
resolution of E*! is available by downsampling I, .

Settings of the controlled experiment. We design a con-
trolled experiment to collect a full-reference event test
dataset, named Ref-E. Figure 8(a) shows our experiment
setting. We use a photo studio to create a lighting envi-
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ronment without external interference, by evenly placing
four LED light strips on the inner wall of the photo studio
to approximate uniform illumination. In addition, we use
a linear slideway and a turntable to combine three basic
motion types. The camera is fixed at the top of the studio
with its field of view plane parallel to the bottom plane of
the studio. Here we choose a machine vision camera (Point
Grey Chameleon3) and an event camera (DAVIS346 mono)
to capture samples. As the examples shown in Fig. 8(b), we
choose high-quality images as simulated shooting scenes,
which are printed at high DPI and glued on a white flatbed.
These static scenes will become dynamic by placing them
on the running slideway or turntable. Since the motion of
the slideway in an entire stroke includes three parts: accel-
eration, uniform, and deceleration motion phases, we use
a high frame-rate camera to shoot strokes of the slideway
multiple times to determine the start and end points of the
uniform motion in one stroke.

We collect ten samples by this setting. For each sample,
the collection process is: i) Selecting one picture as the sim-
ulated scene; ii) Selecting one movement form; iii) Placing
the picture on the chosen machine; iv) Moving the picture
to the marked point (e.g., the uniform motion starting points
of the slideway). We shoot images with the machine vision
camera centered above the studio, and then take ten images
in succession and average them to avoid image noise. v)
Replacing the machine vision camera with the event camera,
and use a gradienter and reference points to keep the field
of view of the two cameras overlapping. vi) Turning on the
event camera shooting mode, then start motors, the event
camera records the entire movement of the simulated scene.
vii) Turning off the camera and motors, and clip events
within a uniform motion stroke. To the end, we integrate

(a) Spike frame

(b) TFP (c) TFI

(d) MGSR (e) NeuroZoom-sp (1x) (f) NeuroZoom-sp (2x)

Figure 10: Spike denoising and SR (spike-based NDSR) comparison results. Closed-up views of green and blue boxes are
shown below the results. Additional results are included in the supplementary video.
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Table 2: Quantitative comparison results based on NIQE [

] and 2D-entropy [

10
] metrics. Red/blue: 1st/2nd best values.

Class A \ Class B \
Metrics \ Methods | doll | car | train | railway | clock | keyboard | fruits | \ Average
TFP [28] 820 | 7.64 | 10.62 6.57 7.84 8.61 9.00 8.15 8.32
TFI [28] 796 | 13.02 | 649 8.14 22.60 14.73 24.05 | 10.18 13.42
NIQE(]) TVS [20] 748 | 9.31 6.78 7.01 13.42 11.36 12.34 | 8.23 9.50
MGSR [31] | 451 3.14 6.28 6.14 6.22 6.51 5.25
Ours (1x) 477 | 4.79 6.44 4.29 4.26 3.85
Ours (2x) 411 421 4.65 4.13 4.43
TFP [28] 497 | 6.04 6.16 5.04 4.49 4.05 4.76 5.54 5.13
TFI [28] 3.10 | 3.70 2.85 3.44 1.90 2.85 2.22 2.78 2.86
2D-entropy(1) | MGSR [31] | 5.88 | 6.53 6.53 6.11 5.10 5.17 5.10 6.12 5.82
Ours (1x) 6.99 | 7.65 6.02 6.51 7.20 7.01
Ours (2x) 7.69 7.52 6.62

the collected raw event EZ™ and the reference events Esrff
as the i-th sample.

Results. We input £ into denoisers, and compare their
outputs with ECT to evaluate the performance of each de-
noiser. We choose to stack the output and “ground truth” to
form a sequence of event frames at 90FPS, and then indicate
the difference between the two by computing the frame-
to-frame RMSE. We have tried direct event-level compar-
isons without stacking preprocessing, but the comparisons
are meaningless due to the large quantitative difference
between them. By calculating RMSE values, we benchmark
each denoisers as Fig. 9 shows. In this boxplot figure, for
each box, the median line (horizontal line in box) denotes
the average error of the event frame sequence between out-
puts and EST, the span between lower and upper quartiles
(length of the box) denotes the central interval of the error
distribution. Therefore, the lower the median line, the better
the denoising performance of the denoiser. As can be seen,
the proposed NeuroZoom-ev gets smaller denoising errors
than other methods in this full-reference evaluation.

4.3 Results of NeuroZoom-sp

We compare the image reconstruction performance of the
proposed NeuroZoom-sp, the current main application of
spike cameras, with existing methods, i.e., Texture From
Playback (TFP) [28], Texture From Interval (TFI) [28], Tex-
ture via Spiking neural model (TVS) [20], and MGSR [31].
We choose the real captured spike dataset released by [31] as
the test dataset. As the authors described, this dataset is cap-
tured with 20000/40000Hz and at a resolution of 400 x 250.
All test samples record high speed scenes (e.g., sample train
records a high speed train traveling at 350km/h) and are
divided into two classes based on motion types, where Class
A corresponds to object motion and Class B corresponds
to ego-motion. For qualitative comparison, we compare the
image restoration quality for two Class A samples and two
Class B samples, and the results of all methods are shown
in Fig. 10. The results of MGSR [31] are provided by the
authors, and others are from our implemented code. As can
be seen, the results of TFP suffer from severe motion blur,
TFI clearly restores image textures but introduces undesired
noise, MGSR [31] significantly eliminates noise and motion

blurry, but there are still obvious artifacts. In contrast,
NeuroZoom-sp (1x) restores textures without introducing
artifacts. With the increase of resolution, NeuroZoom-sp
(2x) further restores the details, e.g., the car mirror in the
first sample and the clock hand in the third sample.

Our method also achieves a trade-off between restora-
tion quality and runtime. For this test dataset, our imple-
mentation uses an NVIDIA 2080 Ti GPU, and the average
runtime per spike frame of TFP is less than 0.5ms, TFI is
2ms, NeuroZoom-sp (1x) is 7ms and NeuroZoom-sp (2x)
is 48ms. MGSR [31] is implemented using Matlab on CPU,
with an average runtime of about 2min per spike frame.

For quantitative comparison, we use two no-reference
image quality assessments as the metrics (i.e., naturalness
image quality evaluator (NIQE) [67] and 2D-entropy [68])
to evaluate the spike-based NDSR quality for compared
methods. As recorded in Table 2, NeuroZoom-sp achieves
the best performance for both 1x and 2x SR.

5 APPLICATIONS

Event cameras have shown promising capability in auxil-
iary dealing with high-level as well as low-level computer
vision tasks, we show two applications of the proposed
NeuroZoom-ev to benefit event-based visual object tracking
Sec. 5.1 and SR image reconstruction Sec. 5.2.

5.1

We evaluate the performance improvement that our
NeuroZoom-ev can bring to the task of event-based vi-
sual object tracking. STNet [70] is chosen as the bench-
mark tracker, which is an efficient event-based tracking
method that uses a spiking transformer architecture for
single object tracking from event frames. We respectively
input raw events, 2x and 4x enhanced by NeuroZoom-
ev into STNet [70], and compare the object tracking accu-
racy to evaluate the effectiveness of NeuroZoom-ev. The
event-based object tracking dataset VisEvent [69] allows
us to benchmark each type of input. The test dataset of
VisEvent consists of 172 samples, each of which includes
a real-captured video, a synchronized event stream, and
corresponding ground truth bounding boxes. The captured
scenes cover diverse scenes such as low illumination, high

Event-based visual object tracking
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Figure 11: Examples for the tracking results. Red/Green bounding boxes represent the prediction/ground truth. Larger
IoU and smaller DIS correspond to better performance. Additional results are included in the supplementary video.
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Figure 12: Success plot (left) and precision plot on the
VisEvent [09] test datasets. We compare three situations:
tracking from raw event data, and from processed event
data enhanced by 2x and 4x NeuroZoom-ev.

speed, and background clutter. Similar to the preprocessing
process described in STNet [70], we remove samples that
miss events or bounding boxes misaligned with timestamps,
and finally choose 82 samples as our test dataset.

Each sequence is tested on three resolution scales. The
1x scale represents a resolution of 346 x 260, the 2x rep-
resents 692 x 520, and the 4x is 1384 x 1040. We show six
comparison examples with the tracking results in Fig. 11,
and record intersection over union (IoU) and center point
distance (DIS) values below each results. IoU and DIS are
used as evaluation metrics between predicted bounding
boxes and the ground truth, where IoU represents the
overlap ratio of the two boxes and DIS records the distance
between the center points of the two boxes. We normalize
the result values to 1x scale to ensure fair comparisons. It
can be seen that, for these examples, with the increased reso-
lution through our method, the event frame becomes clearer
and the predicted bounding box gets closer to coincide with
the ground truth, which means that the object is tracked
more accurately. Values of IoU and DIS also verify that our
event enhancement method obtains tracking improvements.

In order to comprehensively show the performance of

the proposed method on all 82 test samples, we record all
tracking accuracy results and show the success plot and
precision plot in Fig. 12. Curves of the success plot denote
the proportion of samples with IoU greater than the x-
coordinate value, and curves of the precision plot denote the
proportion of samples whose DIS value is less than the x-
coordinate value. It can be seen that event samples enhanced
through NeuroZoom-ev outperform the raw event data on
the object tracking task.

5.2 Event-based SR image reconstruction

We use NeuroZoom-ev for event-based SR image recon-
struction. The E2VID [61] is chosen as the benchmark event-
to-image reconstruction algorithm [18], [61]. For 2x SR
image reconstruction, we compare with 1) 1x E2VID +
image SR using DCLS [71], 2) E2SRI [41], one of the state-
of-the-art algorithms that performs super resolved image re-
construction directly from raw 1x event data, 3) EventZoom
[9], 4) our proposed NeuroZoom-ev (2x). For 3) and 4),
we first feed raw 1x events into two methods respectively
to restore SR event data, and then employ E2VID [61] to
reconstruct 2x images. E2VID [18], EventZoom 2x [9], and
E2SRI 2x /4x [41] are all retrained with 32 samples of the
training data of Mutli-E dataset. The results are shown in
Fig. 13. As can be seen in the figure, NeuroZoom-ev achieves
the best image reconstruction quality at 2x. For 4x SR,
we also compare with first 1x E2VID then 4x DCLS [71]
and direct 4x E2SRI [41]. The 4x results in Fig. 13 show
our strategy effectively recovers text and texture of images
without introducing obvious artifacts, which with only 1x
event frames as input. For quantitative analysis, we bench-
mark the reconstruction performance on 13 test samples of
the Multi-E dataset and calculate several measures includ-
ing LPIPS, MSE, SSIM, and PSNR between reconstructed
images and corresponding APS frames in Table 3. Our
results show that NeuroZoom-ev outperforms E2SRI [41]
and DCLS [71] across all metrics on average.
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Figure 13: Comparison of event-based image reconstruction on our Multi-E dataset. The caption of each subfigure is
labeled on the first sample and applies to all samples: (a) Input event frame. (b) Reconstruct 1x image with E2VID [61]. (c)
Reconstruct 1x image with E2VID [61] and then 2x upsample image with DCLS [71]. (d) Reconstruct 2x image directly
with E2SRI [41]. (e) Reconstruct 2x event with EventZoom [9] and then reconstruct 2x image with E2VID [61]. (f) 2x
NeuroZoom-ev + E2VID [61]. (g) E2VID [61] + 4x DCLS [71]. (h) Reconstruct 4x image directly with E2SRI [41]. (i) 4x

NeuroZoom-ev + E2VID [61]. (j) An APS frame.

Table 3: Image reconstruction performance.

| LPIPS (}) | MSE (1) | SSIM (1) | PSNR (1)

DCLS (2x) [71] 0343| 0023 0709] 16.760
E2SRI (2x) [41] 0254| 0020| 0746| 18333
EventZoom (2x) [9] 0253| 0013| 0.750| 19.828
Ours (2x) 0228| 0012| 0760| 20.048
DCLS (4x) [71] 0456 | 0023 0750| 16.781
E2SRI (4x) [41] 0335| 0025| 0747| 16938
Ours (4x) 0320 0016| 0792| 18380

6 CONCLUSION

This paper presents a novel neural framework to address
NDSR for both event and spike camera, referred as Neu-
roZoom. NeuroZoom uses a 3D U-Net as the backbone
architecture with a pyramid architecture and cross-scale
feature fusion that enable to implement both 2x and 4x
SR together. NeuroZoom-ev and NeuroZoom-sp share same
architecture to perform event/spike denoising and super
resolution. In order to learn the mapping from LR to HR
neuromorphic data, we propose a display-camera system
for multi-resolution event and spike data collection. The
system is used to convert the high framerate RGB videos to
an event version (Mutli-E) at four scales and a spike version
(Mutli-S) at two scales. By training with the provided noise-
corrupted HR-LR pairs, the network is able to effectively
perform NDSR up to 4x SR. We also collect a full-reference
test dataset for events by a controllable camera system, and
benchmark the restoration performance for existing event-
based NDSR methods. NeuroZoom achieves state-of-the-art
results with improved time efficiency, and the enhanced
events also contribute to improved visual task performance.

There are several limitations for this work. The dataset
quality is compromised by the display, which has relatively
low refresh rate and dynamic range. Interestingly, we do
not find much generalization issue for the trained models
after testing on external datasets, which means our method

is compatible with real-captured event and spike data.
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7 RELATIONSHIP BETWEEN EVENTS AND SPIKES

We use the real-captured spike-event calibrated data [1] to
test whether spike-to-event transformation can be imple-
mented in real data. Figure 14 shows the transformation
results and the spike-transformed events tend to be the same
as the real events. The corresponding videos are also added
to the video of the supplementary material.

8 NEUROZOOM-EV SR PROCESSING RESULTS ON
DAVIS240 DATASET

To further illustrate the compatibility of the proposed al-
gorithm for different series of event cameras, we show the
processing results on the dataset [2] captured by a DAVIS240
event camera in Fig. 15. The corresponding videos are also
added to the video of the supplementary material.

9 ABLATION STUDY ON THE EVENT STREAM-
DIVIDING STRATEGY

There are two event stream dividing strategies, i.e., fixing the
time interval of each channel and fixing the event number

(a) Shooting scene (b) Real captured spike frame

of each channel, we conduct an ablation study to find the
appropriate dividing strategy. Event denoising is chosen as
the basic task for this ablation. We experiment with different
strategies and choose the optimal one based on denoising
performance comparisons.

In the training stage, there are six cases: (1) The fixing-
event-number strategy divides every 3000 events of LR data
into one channel, with the corresponding HR events from
the same period also stacked into that channel. Each channel
is further divided into two sub-channels corresponding to
event polarities. (2-6) For the fixing-time-duration strategy,
each 3D tensor covers a fixed duration of 1/90s, and we
set five different channel numbers of 4, 8, 16, 32, and 64,
respectively. Each channel further divides events at equal
time intervals, which implies that the smaller the number of
channels, the more temporal information is lost for events,
and vice versa. We use the above six cases to train the
network with an equal number of epochs.

In the test stage, we apply the fixing-time-duration
strategy with the same 5 channel numbers as used in the

(c) Real captured event rame (d) Event frame transformed from spikes

Figure 14: Two examples to show the relationship between event and spike.
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(a) Reference image (b) Input

(c) NeuroZoom-ev (2x) (d) NeuroZoom-ev (4x)

Figure 15: 2x and 4x event SR processing on DAVIS240 dataset [2].

training stage. We test different cases on our collected real
event data which are captured by a Prophesee Gen 4.0.
Several representative results are shown in Fig. 16 to Fig. 20.
Specifically, Fig. 16 and Fig. 17 show two indoor scenes with
slow and fast motion, respectively; while Fig. 18, Fig. 19,
and Fig. 20 show the same outdoor scene at slow, moderate,
and fast movement speeds. To ensure a fair comparison,
all event frames in the figures cover the same time interval.
Specifically, the event frames extracted from the result corre-
sponding to a 4-channel case cover one channel, those from
an 8-channel result are stacked from two channels, and so
on.

From the results shown in Fig. 16 to Fig. 20, we observe
that the choice of testing strategy has a more significant
impact on the denoising performance compared to the train-
ing strategy. In the test stage, using a smaller number of

channels may lead to blurred edges in the denoised event
frame due to the loss of more temporal information, while a
larger number of channels may not be able to effectively
learn the denoising mapping because there are too few
events allocated in each channel. In the training stage, the
performance of the fixing-event-number strategy is more
stable than others. Even if the extreme 4-channel and 64-
channel cases are selected during the test, or in the face of
various scene motion speeds, this strategy can reconstruct
better results than other cases. Therefore, we suggest fixing
the event number in the training stage, and cn = 16 in the
test stage.
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Test strategy

Fix duration: every event stream in 1/90s is corresponding to an input 3D tensor.
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Fix duration: every event stream in 1/90s is corresponding to an input 3D tensor.

64, channel

3000

Fix the event
number of each
channel:

Figure 16: Ablation study on different channel division strategies. (Indoor slow motion)

Test strategy

Fix duration: every event stream in 1/90s is corresponding to an input 3D tensor.
The channel number are:
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Fix duration: every event stream in 1/90s is corresponding to an input 3D tensor.

64, channel

Fix the event
number of each
channel:
3000

Figure 17: Ablation study on different channel division strategies. (Indoor fast motion)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

18

Test strategy

Fix duration: every event stream in 1/90s is corresponding to an input 3D tensor.
The channel number are:

32, channel duration: 347us
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Input

Training strategy

Fix duration: every event stream in 1/90s is corresponding to an input 3D tensor.
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Figure 18: Ablation study on different channel division strategies. (Outdoor slow motion)
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Figure 19: Ablation study on different channel division strategies. (Outdoor moderate motion)
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Fix duration: every event stream in 1/90s is corresponding to an input 3D tensor.

The channel number are:

4, channel duration:2778us

4, channel

8, channel duration: 1389us \ 16, channel duration: 694us
» W s ey 5 |5

32, channel duration: 347us | 64, channel duration: 174us

o i

e

4]
) “gd

8, channel

16, channel

The number of 3D tensor channels are:

Training strategy

32, channel

Fix duration: every event stream in 1/90s is corresponding to an input 3D tensor.

64, channel
‘duration: 174us | duration: 347us du(ation: 694us |duration: 1389us| duration:2778us

channel:
3000

Fix the event
number of each

Figure 20: Ablation study on different channel division strategies. (Outdoor fast motion)

10 ANALYSIS OF WHY NEUROZOOM FILLS IN
MISSING INFORMATION ON EDGES

Event signals carry rich time information but limited spatial
information (most areas are blank), besides, the bandwidth
limitation of the event sensor (i.e., bus congestion [3]) and
the response delay of event pixels (i.e., refractory period
[4]) will lead to some events be discarded or ignored [4],
[5]. Fortunately, due to the low-latency response charac-
teristics of the event camera, even if some log brightness
changes don’t trigger any events at a certain moment or
have been discarded before storage, these log brightness
changes trigger events in their time neighborhood. We use
this temporal information redundancy to recover discarded
or ignored events. Figure 21 shows six adjacent event
channels extracted from a single event 3D tensor and their
corresponding results after NeuroZoom-ev processing. The
raw event data are obtained from EDnCNN [6] and captured
by a DAVIS346 camera. In the input line, an obvious event
missing can be seen in channels 2, 3, and 5, but not in
channels 1, 4, and 6, probably caused by the bus congestion
or the refractory period of event sensors. The 3D U-Net [7]
backbone of NeuroZoom-ev enables the network to extract
not only spatial domain features but also temporal domain
features, thereby exploiting temporal information redun-
dancy to complement the missing edges of event frames.
The output of NeuroZoom-ev shows that the event edges of
the chessboard have been successfully reconstructed, with
proper event polarity.

We conduct a test to show the performance when
NeuroZoom-ev handles dense or specialized textures. As

shown in Fig. 22 (a), we design two special pictures and
paste them on the plane: Picture 1 (Fig. 22 top row) contains
multiple disconnected line segments, with disconnections
occurring gradually and clearly, and an elephant-shaped toy
is pasted to occlude line segment texture; Picture 2 (Fig. 22
bottom row) is a specially designed checkboard, in which
some black blocks are deleted (as red blocks marked). We
use a DAVIS346 camera to capture these stationary pictures
on the plane and shake the camera to trigger events. The
collected events are shown in Fig. 22 (b). The SR processing
results from NeuroZoom-ev are shown in Fig. 22 (c). As
can be seen, the disconnected line segments in Picture 1 are
properly connected and the original messy dense textures
are restored to clear textures, thanks to the redundant in-
formation provided by the temporal neighbors. Similarly,
the textures in Picture 2 are correctly restored, and there is
no error to complement the area without black blocks. Note
that there are no samples in our training dataset that contain
a checkboard.

11 ABLATION STUDY OF EVENT RE-DISTRIBUTION

To further validate the effectiveness of event re-distribution,
we conduct an ablation study with different time precisions.
Specifically, we simulate the event re-distribution process
by first clipping the raw event stream and stacking each
clip into one event frame. Then we randomly distribute
the clips to the corresponding time periods. E2VID [8] is
chosen as a downstream task to verify the effectiveness
of event re-distribution. As shown in Fig. 23, we choose
(10, 30, 50, 70, 90, 110, 130, 150, 170] as the candidate clip
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Figure 21: A set of raw event frames of adjacent channels in one event 3D tensor and the corresponding results after

NeuroZoom-ev processing.
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Figure 22: Examples of SR restoration results when NeuroZoom-ev handles dense or specialized textures.

rates for event streams and execute E2VID [8] to reconstruct
videos at each rate. The 1x and 2x test datasets of our
Mutli-E are used to evaluate the reconstruction quality, and
five samples are shown in Fig. 23.

The qualitative comparison shows that as the clip rate
increases, the quality of image reconstruction tends to be
stable, and artifacts are significantly reduced. This result is
consistent with our intuition, as the larger the clip rate, the
less time information is lost, and the better the reconstruc-
tion result is. We also report the quantitative result in Table 4
and present the corresponding boxplot figures in Fig. 24.
The comparison results on all metrics (LPIPS, MSE, SSIM,
and PSNR) indicate that when the clip rate is larger than 30,
the numerical results tend to be stable, and the difference
is negligible, which means at least for this task, the event
re-distribution with an appropriate time duration does not
significantly lead to performance degradation.

12 COMPARISON OF THE SR RESULTS OF DIRECT
SR STRATEGY AND DOISE+SR STRATEGY.

In the Sec. 3.1, we formulate the basic image degradation
model as follows:
IR = ([HR

k') Is +TNimage (11)

where the LR image /'R is assumed the result of a down-
scaling operation from a degraded HR image I'™® added
by noise. k£ denotes a degradation for isotropic Gaussian
blur [9], |s is a downscaling operation with a scale factor
of s, and Njmage Tepresents the additive image noise. Note
that when we use this degradation to formulate events and
spikes, the blur kernel k can be ignored due to the low
latency requirement of neuromorphic signals. Hence, the
degradation model is simplified to /'R = (IMR) | +Nimage-
Let’s first analyze the correlation between image denoising
and SR. If we first denoise and then SR for 'R by an SR
function Fsp(-), and output an estimated HR image I'R,
ie, 'R = Fgp (IL — TNimage), and let nyss represents the
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Figure 23: Event re-distribution effectiveness verification: Image reconstruction
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Table 4: Event re-distribution effectiveness verification: Image reconstruction quantitative comparison for different clip
rates of event streams.

LPIPS () MSE (]) SSIM (T) PSNR (1) LPIPS (]) MSE (]) SSIM (1) PSNR ()
10 0.2621 0.0221 0.6901 16.9302 10 0.3320 0.0198 0.7428 17.2811
30 | 0.2245 0.0231 0.6967 16.8177 30 | 0.2263 0.0198 0.7588 17.4683
50 | 0.2233 0.0231 0.6964 16.8091 50 | 0.2189 0.0204 0.7581 17.4271
70 0.2227 0.0232 0.6962 16.7999 70 0.2166 0.0203 0.7580 17.4415
1x | 90 0.2217 0.0233 0.6960 16.7905 2x | 90 0.2126 0.0202 0.7579 17.4495
110 | 0.2220 0.0233 0.6960 16.7900 110 | 0.2147 0.0205 0.7574 17.4120
130 | 0.2220 0.0233 0.6960 16.7895 130 | 0.2138 0.0200 0.7583 17.4603
150 | 0.2218 0.0233 0.6960 16.7877 150 | 0.2140 0.0204 0.7576 17.4259
170 | 0.2218 0.0233 0.6960 16.7888 170 | 0.2137 0.0202 0.7579 17.4443
LPIPS MSE
11X o 1X
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Figure 24: A boxplot to show the comparison results of the event re-distribution effectiveness verification




IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

23

e -

{

(a) Reference image (b) Input (c) Direct 2x SR

(d) Direct 4x SR

(e) Denoise (f) Denoise + 2x SR (g) Denoise + 4x SR

Figure 25: Comparison of the SR results of direct SR strategy and denoise+SR strategy.

error between ™R and the ground truth I HR then,
IHR = FSR(jLR - nimage) + Noss
= FSR(ILR) - ﬁimage + Moss
= FSR(ILR) + ﬁlossa

where the 7ijmage denotes the new additive noise after the
SR process, and the Noss = 7ioss — Mimage. It's interesting
to note that the Fgp(I'™R) means the direct SR process for
I'™R and the Tioss 18 additive noise that can be eliminated
by a denoising mapping. In other words, the strategy of
“input — denoise — SR — output” can also be conducted
as the “input —+ SR — denoise — output” processing. In
fact, image SR can be viewed as a denoising process of
the initially upsampled image until it approaches the HR
ground truth. It has become a consensus among researchers
in this field to combine additive noise removal with SR
as a single process [9], [10]. The classic image SR method
IBP [11] and its upgraded version [12] achieve image SR
and denoising synchronously by iterative back-projection.
FSRCNN [13] simplifies the network in SRCNN [14], which
initially upsamples and then denoises the image, into a uni-
fied network and achieves better performance. The merging
of SR and denoise has also been adopted by the field of
super-resolution microscopy [15], [16].

(12)

For neuromorphic signals, we also choose to combine SR
and denoising for unified processing because the spikes and
events are obtained by integrating or logarithmic domain
differencing the potential image sequences. The integration
and difference in the time domain will not affect the proper-
ties of additive noise, making it possible to apply the above
analysis in the image field to the neuromorphic signals field.
For intance, eSL-NET++ [17] plugs dual sparse learning
module into SR network to remove noise and artifacts, while
E2SRI [18] utilizes optical flow to enhance the noisy event
stacks in the SR processing. Furthermore, the difficulty of
obtaining noise-free HR events forces us to deal with noise

simultaneously when learning SR mapping. NeuroZoom
uses the noise-to-noise [19] fashion to deal with the absence
of noise-free ground truth. This strategy has also been used
in fluorescence image SR [20] and OCT image SR [21].

To experimentally compare the performance of “de-
noise+SR” and “direct SR” approaches, we compare the
2x and 4x SR on the DAVIS240 dataset [2], and record
the results in Fig. 25. The corresponding videos are also
added to the video of the supplementary material. As can be
observed, despite the additional computing power and time
consumption required, the “denoise+SR” approach does not
achieve significantly improved performance compared to
the “direct SR” approach, and the results of the two are
almost the same. This experimental result provides evidence
for the effectiveness of the “direct SR” strategy.

13 HOW CLOSE IS THE DATASET CAPTURED IN
THIS PAPER TO REAL WORLD

To compare the difference between the events captured by
the real camera, display-camera system, and simulators, we
set up an RGB-Event hybrid imaging system to collect three
types of event data from the same scene. We built an RGB-
Event hybrid camera system (Fig. 26) consisting of an event
camera (Prophesee Gen4.1, with a resolution of 1280 x 720),
a machine vision camera (MV-CA016-10UC, with a resolu-
tion of 1440 x 1080 at a frame rate of 150 FPS), and a beam
splitter (Thorlabs CCM1-BS013) mounted in front of the
two cameras, providing 50% optical splitting. To perform
spatial calibration, we place a screen displaying a flashing
checkboard directly in front of the imaging system, and
the two cameras then capture the flashing checkboard and
calculate the homography between their respective views in
order to calibrate them. As for temporal synchronization, we
use a signal generator to send a stable square wave signal to
both cameras at the same time, ensuring their synchronous
capture. The parameters of the two lenses remain consistent.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

24

Table 5: Image reconstruction quantitative comparison for different types of training dataset. The green block marks the

better value of V2E [22] and ours.
V2E [22] Our
Sequence LPIPS MSE SSIM PSNR | LPIPS MSE SSIM PSNR
bridge_lake 01 0572  0.055 0.583 12.641 | 0464 0.048 0.686 13.261
bridge_lake 03 0.614  0.048 0.583 13.176 | 0463  0.088 0.686 10.596
candle 0.845 0.191 0.246 7.283 0.823 0.170 0.265 7.978
fountain_schaffhauserplatz_02 0.641 0.144 0362 8.420 0.651 0.139 0.380 8.592
kornhausbruecke_letten_random_04 | 0.666 0.149 0501 8351 0.631 0.129 0.522 9.010
lake_01 0.623  0.056 0.570 12499 | 0.505 0.056 0.704 12.517
lake_03 0572  0.065 0.548 11.874 | 0.566  0.060 0.615 12.228
sihl_03 0.613  0.115 0.501 9512 | 0.616  0.133 0.507 8.910
Average 0.643  0.103 0487 10470 | 0.590 0.103 0.546 10.386
We use this system to collect a single sample, which Beam Spiire,

concludes a real-captured event stream and a correspond-
ing 150FPS video. Next, we play this video on the display
(ASUS PG259QNR, 1920 x 1080) with a refresh rate of
360H z and collect a display-camera event stream using the
method in Sec. 3.2. Then, we select V2E [22], one of the most
widely used event simulators, to generate simulated events.
In the first step of using V2E [22], we interpolate the video
to a frame rate of 360F PS to match the refresh rate of the
display, and then generate the V2E-simulated event stream
with a threshold setting of 0.2. We select clips of these three
event data over the same time period (0.01s) and show their
different 3D views in Fig. 27.

The comparison results clearly indicate that although
display-camera events can capture the periodic flow of
events caused by the display refreshing, they are more simi-
lar to the event distribution of the real-captured events com-
pared to the V2E-simulated events, which exhibit obvious
slicing characteristics. In the front view, the V2E-simulated
and display-camera events have fewer texture details than
the real-captured events, which is due to the low dynamic
range and spatial resolution of the video source. However,
this does not affect the impact of our proposed dataset for
the NDSR tasks, as both LR and HR event data are captured
from the same video source playing on the same display.

We further use image reconstruction application E2VID
[23] to qualitatively and quantitatively compare whether
our dataset is closer to real-captured data than simulated
data. We collect two training datasets: our 2x Mutli-E
dataset and the simulation dataset generated from V2E [22]
using the video sources of Mutli-E. We train the E2VID [23]
with the same number of epochs and test its performance
on the HS-ERGB dataset [24], which includes real-captured
events and the corresponding calibrated ground truth high
frame-rate videos. The visual results are shown in Fig. 28
and the corresponding videos are also added to the video
of the supplementary material. The visual comparison be-
tween the results shows that the model trained by V2E [22]
data reconstructs obvious artifacts, while the model trained
with our dataset recovers clear details that are closer to
the reference image. For quantitative comparison, we select
samples from the HS-ERGB dataset [24] to calculate perfor-
mance metrics, which are recorded in Table 5. In order to
avoid invalid evaluations, we exclude the scenes with only
local motion since the background regions with no event

Figure 26: RGB-Event hybrid imaging system.

triggered can cause failure in reconstructing background
textures, such as the two examples on the left of Fig. 28.
The results demonstrate that models trained on our display-
camera data perform better on most samples and metrics,
indicating that our data better match the characteristics of
the real events and better facilitate NDSR tasks.

14 ADDITIONAL RESULTS

We show some additional results of event denoising, spike
denoising and SR, Event-based SR image reconstruction in
Fig. 29, Fig. 30, Fig. 31 respectively.
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Figure 29: Same-resolution denoising comparison results on the real-captured dataset. (a) Event frames clipped from four
raw event streams which are captured by a Prophesee Gen 4.0 camera at a spatial resolution of 1280 x 720. (b)-(d) Denoising
results of (a), processed by three basic noise filters provided by Prophesee [26]. (e)-(g) Denoising results of (a), processed
by EV-gait [27], EDnCNN [6] and the proposed NeuroZoom-ev respectively. Closed-up views of green and orange boxes
are shown below the results. Additional denoising results are included in the supplementary video.
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Figure 30: Spike denoising and SR (spike-based NDSR) comparison results. Closed-up views of green and blue boxes are
shown below the results. Additional results are included in the supplementary video.
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Figure 31: Comparison of event-based image reconstruction on our Multi-E dataset. The caption of each subfigure is
labeled on the first sample and applies to all samples: (a) Input event frame. (b) Reconstruct 1x image with E2VID [8]. (c)
Reconstruct 1x image with E2VID [8] and then 2x upsample image with DCLS [28]. (d) Reconstruct 2x image directly
with E2SRI [29]. (e) Reconstruct 2x event with EventZoom [30] and then reconstruct 2x image with E2VID [8]. (f) 2x
NeuroZoom-ev + E2VID [8]. (g) E2VID [8] + 4x DCLS [28]. (h) Reconstruct 4x image directly with E2SRI [29]. (i) 4x
NeuroZoom-ev + E2VID [8]. (j) An APS frame.
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