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SPLiT: Single Portrait Lighting Estimation
via a Tetrad of Face Intrinsics
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Abstract—This paper proposes a novel pipeline to estimate a non-parametric environment map with high dynamic range from a single
human face image. Lighting-independent and -dependent intrinsic images of the face are first estimated separately in a cascaded
network. The influence of face geometry on the two lighting-dependent intrinsics, diffuse shading and specular reflection, are further
eliminated by distributing the intrinsics pixel-wise onto spherical representations using the surface normal as indices. This results in two
representations simulating images of a diffuse sphere and a glossy sphere under the input scene lighting. Taking into account the
distinctive nature of light sources and ambient terms, we further introduce a two-stage lighting estimator to predict both accurate and
realistic lighting from these two representations. Our model is trained supervisedly on a large-scale and high-quality synthetic face
image dataset. We demonstrate that our method allows accurate and detailed lighting estimation and intrinsic decomposition,
outperforming state-of-the-art methods both qualitatively and quantitatively on real face images.

Index Terms—Lighting Estimation, Intrinsic Image Decomposition, Face Modeling.
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1 INTRODUCTION

L IGHTING estimation from a single image is a significant
area of interest in computer vision [1], [2], [3], [4], [5],

[6], [7], [8], as it enables applications such as realistic 3D
object insertion. Estimating lighting from a single, ordinary
photograph of a general scene presents a highly ill-posed
problem, given that infinite combinations of scene illumina-
tion and underlying objects can produce the same captured
image. Nonetheless, the ubiquity and prominence of faces
in real-life photographs offer an opportunity to exploit
explicit priors on face geometry or reflectance properties [9],
[10], [11], as well as implicit priors derived from extensive
human face datasets [12], [13], [14] to address this issue. By
employing these rich priors, an essential alternative to the
original problem involves estimating high dynamic range
(HDR) scene lighting from a single, low dynamic range
(LDR) face image (i.e., a portrait) [15], [16], [17], [18], [19],
[20], [21], [22], [23].

A task closely related to lighting estimation is intrinsic
image decomposition [24], which decomposes an image into
a set of images, each representing an intrinsic characteristic
and aligned with the input. Classical intrinsic image decom-
position task assumes a Lambertian world and separates
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the input image into diffuse albedo (A, also known as
reflectance) and diffuse shading (D) [25], [26], [27]. More
recent works additionally estimate surface normal (N) and
scene lighting (L, which is not an intrinsic component)
through inverse rendering of a scene [4], [28], [29], [30].
Specular reflection (S) has also been considered an intrinsic
component and isolated in highlight removal methods [23],
[31], [32]. These four intrinsic components – {A,N,D,S}
– form a tetrad, and can be classified as either lighting-
independent (A and N) or lighting-dependent (D and S).
In this work, we estimate this tetrad of face intrinsics first
because separating these components could reveal crucial
cues for lighting estimation from a single image [4], [7], [33].

In the context of single portrait lighting estima-
tion, where face properties (geometry and reflectance)
can be approximately estimated using classical methods
(e.g., 3DMM [9]), a popular solution is the reproduction-
by-rendering (also known as analysis-by-synthesis [9])
pipeline [15], [17], [18], [20], [21], [22]. This pipeline con-
currently estimates scene components (including geometry,
reflectance, and lighting) necessary for re-rendering the
scene by a differentiable renderer, and constrains the re-
rendered image to be close to the input image to find a
plausible combination of scene components that well ex-
plains the input image. For example, SfSNet [20] estimates
surface normal map N as geometry, the diffuse albedo
map A as reflectance, and 2nd-order spherical harmonics
(SH) L as lighting, then try to reproduce the input image
Ĩ = R(A,N,L) using a differentiable renderer R under
Lambertian reflectance. This kind of method relies on the
backpropagation of the gradient of the reconstruction error
to estimate the scene components or to train the estimator
network, thus the quality of estimation heavily depends on
the accuracy of the involved forward rendering process that
reconstructs the input image. However, it is difficult to in-
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Fig. 1. SPLiT (ours) and state-of-the-art methods that use different
sets of intrinsics in different manners for lighting estimation from a
single portrait I. SPLiT first estimates a tetrad of face intrinsics (diffuse
albedo A, surface normal N, diffuse shading D, and specular reflection
S), and uses spherically distributed D◦ and S◦ to estimate lighting.
LIDP [34] does not involve any intrinsic. HyFRIS [22] employs A and
N to estimate hybrid parametric lighting in a reproduction-by-rendering
manner. FaceProbe [23] deconvolves S◦ into an environment map.
SPLiT produces the most accurate and realistic lighting estimation.

corporate a both differentiable and accurate (i.e., physically-
based) renderer. Differentiable physically-based rendering
(PBR) remains a challenging problem due to the biased
estimation of gradients caused by discontinuities in ray
visibility [35] and the high demand of memory and compu-
tation time [36]. To make things worse, using a single image
as input leaves unobserved regions to be dealt with when
using PBR, which requires the full 3D reconstruction of
the entire scene, including its invisible parts [5], [7]. Facing
these challenges, previous reproduction-by-rendering meth-
ods sacrifice accuracy and use over-simplified renderers to
reconstruct the input image, often assuming Lambertian
reflectance and ignoring effects such as cast shadows [15],
[17], [18], [20], [21], [22]. As a consequence, they often only
estimate face intrinsics of limited quality and low-frequency
scene lighting (Fig. 1, HyFRIS [22]).

Recent works circumvent the usage of a differentiable
renderer and the mentioned challenges coming with it by
predicting high-frequency lighting from a single portrait
in an end-to-end manner, training “black-box” deep lighting
estimators on synthetic face images [37], [38] or Light Stage-
captured One-Light-At-a-Time (OLAT) images [39] with
lighting labels (Fig. 1, the method proposed by LeGendre
et al. [34], abbreviated as LIDP). However, for the end-to-
end methods, an estimator may face increasing difficulty
due to the enlarged dimensionality of output, as it can
be easily distracted by scene components independent of
lighting (i.e., A,N). Another way to avoid the usage of a
renderer is to trace the extracted facial highlight back to
the scene and deconvolve it, which is sensitive to error and
unable to produce realistic LDR textures in the environment
map (Fig. 1, the method proposed by Yi et al. [23], abbrevi-
ated as FaceProbe). But these preceding lighting estimation

methods [22], [23], [34] do not fully explore the interactions
among the tetrad of face intrinsics. In Fig. 1, our method
produces the most accurate and realistic lighting estimation
compared to these methods, thanks to the proposed pipeline
utilizing the full tetrad of face intrinsics to facilitate lighting
estimation, without using an in-network renderer.

In this paper, we propose the Single Portrait Lighting
estimation via a Tetrad of face intrinsics (SPLiT). Taking as
input a single LDR face image with the face region mask, we
“split” the input into a tetrad of face intrinsic components
under a non-Lambertian reflectance model, which we then
fully leverage to estimate an HDR environment map L,
represented as an image of a mirror sphere light probe.
Given the mentioned challenges faced by reproduction-
by-rendering or end-to-end methods, SPLiT informs the
lighting estimator by first removing irrelevant and distract-
ing lighting-independent scene components from the input,
turning the human face into standard spheres with simpler
reflective characteristics (i.e., diffuse only / specular only)
to facilitate the subsequent lighting estimation. To achieve
this, we design a cascaded network that first estimates
lighting-independent {A,N} and subsequently estimates
lighting-dependent {D,S} by incorporating {A,N} into
the input. The inherently constrained {A,N} restricts the
plausible space of {D,S}, based on which we can eliminate
the influence of complex face geometry by distributing D
and S pixel-wise onto spherical representations using the
surface normal (from N) as indices. During this process, cast
shadows are largely suppressed by retaining the maximum.
The distributed spherical D◦ and S◦ are BRDF-convolved
and degraded versions of L and are used as input by a
lighting estimator to recover L, which should approximately
reproduce D◦ and S◦ if used to render a diffuse and a
specular sphere. This visual affinity between {D◦,S◦} and
L reduces the difficulty faced by a deep lighting estimator
(such as [34]). Taking into account the distinctive nature
of light sources and the ambient environment, we further
incorporate a two-stage lighting estimation module that first
estimates high-dynamic-range light sources and then fills
in realistic textures, inspired by recent works [6], [8], [40],
to qualify our estimation for rendering mirror-like objects
in the object insertion application. SPLiT does not im-
pose an in-network differentiable rendering process, thereby
avoiding potential issues arising from an over-simplified
rendering model [22]. The entire network is trained un-
der supervision using a large-scale, high-quality synthetic
dataset rendered on a 3D face scan dataset [13] and real
HDR panoramas [1], [3]. SPLiT outperforms state-of-the-art
methods employing either a reproduction-by-rendering [22]
or an end-to-end [34] pipeline.

In summary, we contribute a face-to-lighting pipeline,
characterized by the discriminative usage of estimated and
distributed lighting-(in)dependent face intrinsics for accu-
rate and realistic lighting inference. We build a test dataset
consisting of real images of human faces with environment
lighting and conduct extensive experiments to demonstrate
that our method outperforms previous single-portrait light-
ing estimation methods both qualitatively and quantita-
tively.
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TABLE 1
Summary of methods for lighting estimation that apply to a single portrait. Notations: input face image (I), output lighting (L); diffuse albedo (A),

surface normal (N), diffuse shading (D), and specular reflection (S), with variants in face-like forms (∗) or spherical forms (∗◦), inferred directly (∗)
or via reproduction-by-rendering with inferred components (∗̃), estimated by 3DMM [9] and constraint within its parameter space (∗MM) or not (∗).

Lambertian reflectance model: Yes, No, or N/A (lighting estimation module trained in an end-to-end manner). Estimated lighting representation:
general or parametric outdoor environment map, 2nd-order spherical harmonics (SH), or SH + pre-defined distant lights, each annotated with sizes

of output parameters or image.

Method Lambert. Estimated intrinsics Usage of intrinsics in estimating L Lighting representation
(1) MoFA [18] Yes 3: AMM,NMM, D̃(NMM,L) Make Ĩ(AMM,NMM,L) approach I 2nd-order SH (27)
(2) NeuralFace [21] Yes 3: A,N, D̃(N,L) Make Ĩ(A,N,L) approach I 2nd-order SH (27)
(3) MLFace [17] Yes 3: A,N, D̃(N,L) Make Ĩ(A,N,L) approach I 2nd-order SH (27)
(4) SfSNet [20] Yes 3: A,N, D̃(N,L) Make Ĩ(A,N,L) approach I 2nd-order SH (27)
(5) FML [19] Yes 3: A,N, D̃(N,L) Make Ĩ(A,N,L) approach I 2nd-order SH (27)
(6) OA3DMM [16] No 2: AMM,NMM Make Ĩ approach I on consensus points 2nd-order SH (27)
(7) FFOLP [15] Yes 3: Ā,NMM, D̃(N,L) Make Ĩ(Ā,NMM,L) approach I Env. map (65, outdoor)
(8) HyFRIS [22] No 4: A,N, {D̃, S̃}(N,L) Make Ĩ(A,N,L) approach I SH + distant lights (27 + 66)
(9) SIPR [41] N/A 0: end-to-end inference Not involved Env. map (32× 16)
(10) HDRLE [37] N/A 0: end-to-end inference Not involved Env. map (21, outdoor)
(11) LIDP [34] N/A 0: end-to-end inference Not involved Env. map (32× 32)
(12) FaceProbe [23] No 2: NMM,S Deconvolve S◦(NMM,S) into L Env. map (unfixed)
(13) Ours No 4: A,N,D,S Learn L from {D◦,S◦}(N, {D,S}) Env. map (64× 64)

2 RELATED WORK

Lighting estimation from general scenes. The lighting
estimation problem aims at taking as input one or more LDR
images with a limited field of view (LFoV) of a general scene
and estimating the HDR scene lighting as an output. The
estimated lighting can be in the form of a parametric repre-
sentation (such as low-order spherical harmonics (SH) [42],
[43], multi-lobe spherical Gaussians (SG) [4], [40], [44], sky
lighting models [45], [46], and 3D parametric lights [2], [7]),
non-parametric environment maps [6], [8], or coordinate-
based multilayer perceptrons (MLPs) [47], [48]. We adopt as
our lighting representation the non-parametric environment
map for its capability of modeling general-purpose and
high-frequency incoming lighting. Within the single-image
input category, non-learning-based [45] and deep learning-
based [3], [33], [46], [49], [50], [51] methods often rely on
a low-dimensional parametric lighting model for predict-
ing outdoor lighting. Estimating indoor scene lighting [2],
[6], [8], [29], [30], [52] is generally more challenging due
to diverse light sources and near-field illumination effects
such as occlusions and inter-reflections from nearby objects.
These effects require spatially-varying lighting representa-
tions [4], [5], [7], [53], [54]. After the introduction of Neural
Radiance Fields (NeRF) [55], holistic inverse rendering of a
3D scene into geometry, reflectance, and lighting from multi-
view images has also become prevalent [44], [47], [56], [57].

Our method takes a single image as input. Many recent
single-image methods utilize decomposed intrinsic compo-
nents (e.g., surface normal, depth, albedo, roughness) of the
input scene to facilitate lighting estimation for indoor [4],
[5], [7], [29], [30], [54] and outdoor [30], [33] scenes. Our task
is related to, but distinct from, these methods, as they focus
on predicting lighting from single or multi-view images of a
specific type of scene without a particular class of objects. In
contrast, this paper focuses on predicting lighting from an
image containing a human face that can be captured both
indoors and outdoors.
Intrinsic image decomposition of face images. Since this

paper focuses on face images as input, we only discuss
the intrinsic image decomposition of faces here. For gen-
eral intrinsic image decomposition, we refer readers to the
comprehensive survey [58].

Face intrinsic components are widely used in lighting
estimation [15], [17], [18], [19], [20], [21], [22], [59] and re-
lighting [38], [41], [60], [61] methods taking as input an face
image. The seminal work of 3DMM [9] enables the recovery
of 3D shape and reflectance from a face image. Two intrinsic
components, the diffuse albedo A and the surface normal
N, can be rendered from the recovered 3D mesh and pose.
However, 3DMM-generated intrinsics are often inaccurate
and have limited variations due to the model’s capability,
leading many methods [17], [20], [21], [22], [59] to refine
these estimations using deep networks. Recently, the usage
of 3DMM [9] has been circumvented by directly learning
from labels obtained by photometric stereo (PS) methods on
real data [60] or rendered alongside synthetic face images
using 3D faces [38]. Many methods, usually assuming a
Lambertian world, further estimate the diffuse shading D
by predicting the scene lighting L and rendering shading
D̃(N,L) as a function of geometry and lighting [15], [17],
[18], [19], [20], [21]. Specular reflection S has also been
separated by highlight removal approaches [23], [32] or
reproduced as S̃(N,L) using the Blinn-Phong model [22].
Our method accounts for non-Lambertian reflectance and
separates a tetrad of face intrinsics {A,N,D,S} from the
input image to facilitate lighting estimation without using
3DMM [9], achieved by incorporating implicit priors from
large-scale and high-quality face images and intrinsic labels.

Lighting estimation from faces. We summarize recent
works on the problem of estimating lighting from a sin-
gle portrait in Table 1. Previous works predominantly use
3DMM [9] to obtain an initial estimation of {A,N}, either
maintaining it within the space of 3DMM [15], [16], [18],
[23] or using it as a prior to constrain predictions of deep
networks [17], [20], [21], [22]. With these estimations neces-
sary for re-rendering the face image, the lighting estimation
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Fig. 2. The pipeline of SPLiT. The tetrad intrinsic decomposition module predicts the tetrad of face intrinsics {A,N,D,S} from the input image
I by cascaded networks, fAN and fDS. The lighting-dependent shading {D,S} are distributed onto spherical representations {D◦,S◦} using N
as per-pixel indices. The spherical lighting estimation module takes {D◦,S◦} and the constant normal map N◦ as input. Taking into account the
different nature of HDR light sources and ambient lights, it first estimates light sources and the ambient lights by the light source network fsrc, then
enriches realistic textures into the ambient environment by the ambient texture network famb and the discriminator fdisc via a generative adversarial
network (GAN) framework.

problem could be simplified by assuming a Lambertian re-
flectance model with low-frequency lighting (e.g., 2nd-order
SH) and solved in a reproduction-by-rendering framework
by minimizing the difference between the rendered image
and the input image [16], [17], [18], [20], [21]. However, the
assumption of diffuse reflectance prevents these methods
from predicting high-frequency lighting. More recent meth-
ods in this framework supplement the low-frequency light-
ing with a sparse basis of distant lights while adding a spec-
ular term into rendering [22], or replace the lighting with
a parametric outdoor lighting model [15]. Nevertheless,
the reproduction-by-rendering framework (rows 1-8) may
have reached a bottleneck in dealing with more complex
lighting with higher frequency due to the limited capability
and accuracy of the rendering process. Efforts have been
made to move away from this framework and to predict
high-frequency lighting in an end-to-end approach (rows
9-11) by training networks on face images with lighting
labels generated by rendering scanned face meshes [38] or
relighting OLAT basis of human subjects [34], [41]. This
approach achieves the state of the art [34] but risks los-
ing interpretability. An alternative approach [23] (row 12)
that retains high-frequency lighting information involves
extracting facial highlights and tracing them back onto the
environment map before performing color correction and
deconvolution. Our SPLiT (row 13) gains advantages from
both separated and simplified scene representations (i.e.,
the spherically distributed intrinsics) and learned priors
on scene components, lighting, and their correlations, thus
outperforming the aforementioned approaches.

3 PROPOSED METHOD

Given an LDR input image containing a human face, the
tightly cropped face image I and the face region mask
M can be automatically generated by off-the-shelf face
detectors [62] and semantic segmentation models [63] if not
provided. As illustrated in Fig. 2, the proposed network
takes I (whose image formation model is introduced in
Sec. 3.1) and M as input, and consists of three parts: the
tetrad intrinsic decomposition module (Sec. 3.2), the normal-

indexed distributing onto spheres (Sec. 3.3), and the two-
stage lighting estimation module (Sec. 3.4). Implementation
details are elaborated in Sec. 3.5.

3.1 Image Formation Model
Assuming distant and uniform lighting, we adopt a non-
Lambertian reflectance model and separate the reflection
of light into surface reflection, which produces specular
highlights, and body reflection, which produces the diffuse
image. The intrinsic decomposition of the input can thus be
formulated as

I = A⊙D+ S, (1)

where I is the input face image1, A is the diffuse albedo
that scales the diffuse shading D at every pixel according to
the spatially-varying skin reflectance, and S is the specular
reflection. We do not specify a BRDF model and associated
parametrization here, only requiring the diffuse albedo and
the division of diffuse and specular reflection to be present
in the chosen BRDF, so the intrinsic components A,D, and
S can be correctly generated by the renderer as labels used
in training.

We represent lighting L(x, y) (x2 + y2 ≤ 1) as a mirror
ball environment map, i.e., an HDR orthographic capture
of a mirror ball, where each position (x, y) stands for
the incident radiance from the direction of the reflection
vector r = v − 2(v · n)n of view vector v = (0, 0, 1)⊤

regarding the surface normal n = (x, y,
√
1− x2 − y2)⊤ of

the ball. Among the two types of projection of environment
maps commonly used in lighting estimation methods, the
spherical projection [34], [52], [64] and the equirectangular
projection [1], [3], [8], we choose the former in favor of
its perceptual friendliness for qualitative evaluation [34],
[52], [65], [66] and that its discontinuous edge is in front
of the camera when projected back to 3D (in contrast to
the equirectangular mapping whose vertical edge is usually
placed behind the camera [6], [8], [40], [65], [67]), thus there

1. We assume all input images are radiometrically calibrated (inten-
sity linearly relates to scene radiance) throughout this paper. All images
for display purposes, except normal maps, are gamma-corrected with
γ = 2.2.
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will not be visible vertical edges reflected by a mirror-
like object in the virtual object relighting application. For a
more elaborate discussion, please check the supplementary
material.

3.2 Tetrad Intrinsic Decomposition Module
Since properly separated and physically meaningful rep-
resentations of the input image can facilitate lighting es-
timation [22], [23] and enhance the interpretability of a
method compared to end-to-end methods [34], we first
perform intrinsic image decomposition using a cascaded
module, inspired by prior works [38], [60], [68] using similar
architectures for better decomposition. This module consists
of two deep networks designed to estimate the tetrad of
intrinsic components {A,N,D,S} (Fig. 2, Tetrad intrinsic
decomposition). The first network in the cascade, fAN, takes
concatenated I and M, and simultaneously estimates the
lighting-independent component {A,N}, where N is the
unit-length surface normal map:

{A,N} = fAN(I,M). (2)

The second network, fDS, attempts to leverage the estimated
{A,N} to split apart {D,S} from I, where the intrinsic
components A,D, and S are entangled together:

{D,S} = fDS(I,M, fAN(I,M)). (3)

We restrict fDS to predict direct shading (both D and S)
since our goal of decomposition is to obtain clean represen-
tations independent of face properties for lighting estima-
tion, rather than re-rendering realistic portraits that include
effects like inter-reflection or subsurface scattering. This is
achieved by generating labels of {D,S} that are free of
indirect reflections in our synthetic training dataset (see
Sec. 4.1) and using them as targets in supervised training.
Combining these two networks in a cascade, this module
estimates the tetrad of intrinsics {A,N,D,S}.

Both fAN and fDS share a modified U-Net [69] architec-
ture and are trained in a supervised manner. They minimize
the following supervised loss terms:

Lintrinsic = λAL1(A,Agt) + λAvgg
L2(vgg(A), vgg(Agt))

+ λNL1(N,Ngt) + λDL1(D,Dgt) + λSL1(S,Sgt)

+ λDvgg
L2(vgg(D), vgg(Dgt)) + λrecL1(I,A⊙D+ S),

(4)

where we follow previous work [60] to compute L2 loss on
the extracted features vgg(∗) by a VGG-net [70] pre-trained
on the ImageNet [71], and apply L1 supervision to the tetrad
{A,N,D,S} and the reconstructed image based on Eq. (1).

The insight behind this cascaded design is that lighting-
dependent and -independent components should be treated
separately. Although D and S depend on the unknown
environment lighting, which can be quite arbitrary, the
plausible space of reflectance A and geometry N of a
human face is inherently constrained and can be learned
in a data-driven manner. The predicted {A,N} in turn
restrict {D,S} since they should approximately reproduce
the input. In this manner, the color ambiguity between A
and D is alleviated, although it can not be fully resolved. We
further experimentally show (see Sec. 5.2) that the proposed
one performs the best among decomposition pipelines with
different individual networks and combinations, and can be

further improved if the oracle of A is given which resolves
the color ambiguity.

3.3 Normal-Indexed Distributing onto Sphere
The reflective properties of the face are simplified in the
previous step since the estimated {D,S} can be seen as
captured images of an object with the same shape as the
input face but with more spatially-uniform and simpler
materials. However, their appearances are still determined
by the interaction between the face’s shape and the incident
lighting. More specifically, in the absence of cast shadows,
the value of a pixel in D equals the integral of the dot prod-
uct of the surface normal and incoming lighting over the
space of the visible hemisphere. That value in S, though its
precise number depends on the unknown underlying BRDF,
is largely influenced by the proximity between incoming
lighting direction and the reflection vector of the view vector
with respect to the surface normal. The cast shadows in the
input image are also fully preserved in the decomposed
{D,S}. Thus, the dependency of {D,S} on shape may
complicate and impair subsequent lighting estimation while
leading to data redundancy (e.g., pixels with similar surface
normal are very likely to have similar intensities in D or S).

To exclude this undesirable dependency and to condense
lighting information, inspired by the reflectance map [72],
we employ the surface normal N to distribute lighting-
dependent {D,S} onto a spherical representation (Fig. 2,
Sph. distribute). This process is implemented via a pixel-
wise operation on the face image coordinate system. For
a pixel (p, q) with surface normal N(p, q) = (x, y, z),
the normalized position (p◦, q◦) after distribution onto
sphere coordinate system can be computed as (p◦, q◦) =(
1
2 (1− y), 1

2 (1 + x)
)
. This process is performed on dis-

cretized pixels in practice. We assign the pixel intensities
D(p, q) and S(p, q) to D◦(p◦, q◦) and S◦(p◦, q◦), respec-
tively, while simultaneously generating the occupancy mask
M◦ that indicates the per-pixel state of being assigned. If
multiple values are assigned to the same pixel, we retain
the maximum value assuming it has a higher chance to
belong to a face point free of cast shadows. This operation
effectively eliminates cast shadows on {D,S} as with high
probability at least one of all occurrences of an orientation
is unaffected by cast shadows. In this way, values in the
estimated N are used as per-pixel indices to distribute
{D,S}. This process can be summarized as:

{D◦,S◦,M◦} = distribute(D,S,N,M). (5)

By performing this normal-indexed distributing, the con-
densed versions of {D,S} (in our setting of 512× 512 faces
and 64 × 64 spheres, the latter is 64 times smaller in size)
in a spherical form {D◦,S◦} are obtained, each imitating
an image of a standard ball with simple reflection lit by the
scene lighting L. Thus, the difficulty of subsequent lighting
estimation has been reduced to almost the same level as
inferring lighting from two light probe images [52].

3.4 Spherical Lighting Estimation Module
With the intrinsic module and the distribute operation, we
obtain the occupancy mask M◦ and two spherical represen-
tations {D◦,S◦}. These representations simulate light probe
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images, but the probes are diffuse and glossy balls instead
of the perfect mirror. Moreover, these representations may
contain errors, such as skin color bleeding into diffuse shad-
ing due to imperfect decomposition (A ) D ) D◦ in Fig. 2)
or deviated highlight directions resulting from inaccurate
surface normal estimation (N ) S ) S◦). Furthermore,
many pixel values are missing due to the incomplete surface
normal coverage of human faces.

To predict scene lighting from these degraded versions,
we introduce a two-stage lighting estimation module by first
estimating light sources, then hallucinating realistic textures,
which is required if our estimated lighting is eventually
employed to render highly glossy objects [67]. The rationale
behind this two-stage design is that light sources with
high dynamic ranges and ambient lights differ significantly:
Light sources, or emitters, such as sun and sky in outdoor
scenes or lamps and windows in indoor scenes, provide
most of the scene’s energy, but often lack visible textures.
On the other hand, lights from other parts of the environ-
ment are often modeled as a whole as ambient lights [2],
[6]. They contribute less to the appearance of illuminated
objects but contain many details that can be reflected and
directly seen when rendering mirror-like objects, in which
case a realistic texture is required. This ambient term is
conceptually closer to a daily LDR photograph rather than
to an HDR record of lighting intensity and direction. As
a result, some recent lighting estimation methods [6], [40],
[65] treat these two types of incident radiance in distinct
ways by using a generative adversarial network (GAN) [8],
[14], [73], fed with a first estimated parametric lighting, to
imagine a highly detailed environment map [6], [40], [65].
Inspired by this, we employ a two-stage network to estimate
the entire environment map: a light source network that
estimates HDR light sources with the overall intensity of the
ambient term, and an ambient texture network that enriches
realistic textures in the ambient environment.
Light source network. The first network, fsrc, aims to reason
about spatial distributions and intensities of the HDR light
sources in the scene and accurately recover these properties
by integrating information revealed by D◦ and S◦) while
correcting errors introduced in previous steps (potentially
by using learned priors of these aberrations):

Lsrc = fsrc(D
◦,S◦,N◦,M◦), (6)

where, in addition to the spherical representations
{D◦,S◦,M◦}, we also add the constant spherical surface
normal map N◦ into the input to inform the network
about the relationship between pixel position and surface
orientation. The network employs an encoder-decoder ar-
chitecture and is trained in a supervised manner by min-
imizing several photometric losses computed on rendered
images under the predicted lighting Lsrc and the GT lighting
Lgt. We achieve this by rendering images L{d,s} of two
spheres [52], each with reflectance properties similar to the
diffuse (Ld) or specular (Ls) part of human faces. We use
image-based rendering [39] by linearly combining images
in the 4D reflectance field R{d,s}(θ, ϕ, x, y) using either
lighting as weights:

L
{d,s}
{src,gt}(x, y) =

∑
θ,ϕ

R{d,s}(θ, ϕ, x, y)L{src,gt}(θ, ϕ). (7)

The loss function is

Lsrc = λmL1(Lsrc,Lgt)+λdL1(L
d
src,L

d
gt)+λsL1(L

s
src,L

s
gt).
(8)

The loss terms encourage the module to produce a lighting
estimation close to Lgt in the sense that their rendered
light probe images are close. In practice, we find that the
light source network tends to output several high-intensity
light sources with a fairly uniform ambient environment.
This environment map, functionally similar to a parametric
representation, can produce the same facial appearance as
the GT environment map because ambient details do not
manifest on faces that are not as highly specular as mirrors.
Ambient texture network. The environment map estimated
in the previous step suffices for the majority of situations.
However, when there is a need for rendering mirror-like ob-
jects, high-frequency and realistic texture are desired instead
of a uniform ambient environment [67]. We then use the
second network famb, which is a conditional GAN, to enrich
the detailed texture into the ambient part of the previously
estimated Lsrc:

T = famb(tonemap(Lsrc)). (9)

Here, tonemap(·) transforms the environment map into a
gamma-corrected LDR image, as seen in daily photographs.
The output texture T is also an LDR image with light
source positions aligned with the input Lsrc. This enables
the network to operate on a scale close to human perception,
making it easier to produce realistic images. We then replace
the ambient part of the Lsrc with the texture T without
changing its overall intensity:

L = Msrc ⊙ Lsrc +Msrc ⊙ adjust(tonemap−1(T)). (10)

Here, Msrc is the mask of light sources (i.e., pixels with
values above a threshold) and · is logical negation. We
first inversely tonemap the texture T back to the lin-
ear space, then retain the overall ambient light intensity
predicted by fsrc by adjusting the colored mean inten-
sity of tonemap−1(T) ⊙ (1 − Msrc) to the same level as
Lsrc ⊙ (1−Msrc) using per-channel scaling coefficients.

The input of the discriminator fdisc is the concate-
nated tonemap(Lsrc) and fake texture T (or real texture
tonemap(Lgt)) to discern the consistency of spatial distri-
bution of light sources. The generator famb and the discrim-
inator fdisc are trained using losses in pix2pixHD [74]. famb

tries to minimize the following losses:

Lamb =λadvL2(fdisc(tonemap(Lsrc),T), 1)

+λfeatL1(feature(fdisc,T), feature(fdisc, tonemap(Lgt))

+λvggL2(vgg(T), vgg(tonemap(Lgt))), (11)

Here, feature(fdisc, ·) represents intermediate features of the
input texture, extracted by fdisc. The loss function of fdisc is

Ldisc =L2(fdisc(tonemap(Lsrc),T), 0)

+L2(fdisc(tonemap(Lsrc), tonemap(Lgt)), 1).
(12)

3.5 Implementation Details
The two sub-networks in our tetrad intrinsic decomposition
module, fAN and fDS, share a modified U-Net [69] archi-
tecture. The light source network fsrc is implemented as a
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Data groups rendered under HDR environment lighting 

Fig. 3. The generation process of our synthetic face image dataset. we
first clip the face meshes in FACESCAPE [13] to exclude bath caps on
the head and ears. The face images are then rendered using varying
head poses, camera, and BRDFs. This results in our synthetic dataset
with full labels of face region masks, lighting, and the tetrad of intrinsics.

T-network [37], [75] consisting of two parts: an autoencoder
and an estimator. For the implementation details including
weights of loss terms, network architecture diagrams, and
training schemes, please check the supplementary material.

4 DATASET

In this section, we introduce our synthetic face image
dataset (Sec. 4.1), our captured real face image dataset
(Sec. 4.2), and an in-the-wild face image dataset (Sec. 4.3)
used for training and evaluation.

4.1 Synthetic Dataset Generation
To train and validate our network for estimating face intrin-
sics and scene lighting without resorting to a reproduction-
by-rendering approach, a face image dataset with full la-
bels of intrinsics and lighting is needed. However, real
image datasets generated from OLAT sequences captured
by the expensive Light Stage [39] can hardly meet these
conditions [34], [60], [76] due to difficulties in obtaining
high-quality labels of diffuse shading and specular reflec-
tions. Existing synthetic datasets satisfying the requirements
are either rendered using 3DMM-generated human head
meshes without rich details and variations [20], [23] or using
scanned head meshes but are not available in large quanti-
ties [38]. Therefore, we construct a large-scale, high-quality

synthetic dataset for training (SYNTRAIN2) and validation
(SYNVALID), as illustrated in Fig. 3.
Base head mesh pre-processing. Our dataset contains ren-
dered images of 3D face scans from the publicly available
FACESCAPE [13] 3D face dataset3, each consisting of a base
mesh, displacement map, and texture map. We select face
scans of the first 359 subjects without mosaic in the eye
region (otherwise deliberately added for privacy protection
of subjects as they required), using 320 for training and
the remaining 39 for validation. Each subject is scanned
under 20 different expressions, resulting in 6.3K meshes for
SYNTRAIN and 775 for SYNVALID. We clip the face meshes
to exclude bath caps on the head and ears, leveraging dense
correspondence between meshes for automation.
Environment map pre-processing. We use the LAVAL IN-
DOOR, OUTDOOR, and SKY HDR database [1], [3] and
select 2.2K indoor and 1.2K outdoor HDR panoramas as
our environment lighting. We adjust their mean intensities
to the same level and spin them horizontally by random
angles for each rendered image group. We use 5/6 of these
panoramas for SYNTRAIN and the remaining for SYNVALID
and generate the same amount of image groups under
indoor and outdoor lighting.
Physically-based rendering of face images. Our synthetic
dataset contains 253K groups of face images with face region
masks, labels of lighting, and the tetrad of intrinsics for
SYNTRAIN and 23.2K groups in SYNVALID. Images are
rendered using the Blender Cycles ray-tracing engine [77]
and a physically-based microfacet BRDF [78] with varying
specular intensity, and roughness. We randomly set the
pose, specular intensity, and roughness of the face and
camera focal length to improve network robustness and
generalization.
Auxiliary dataset for broader skin tone. To address the
limited skin tone in SYNTRAIN, we create an additional
dataset for skin tone augmentation. Although SYNTRAIN is
large-scale, high-quality, and contains GT of all intrinsics,
its skin tone range is restricted due to FACESCAPE [13]
dataset containing predominantly light to medium skin
tones. This limitation could hinder our method’s applica-
bility to diverse populations. To make our method suitable
for a diverse population, we generate a face image dataset
using OLAT images of subjects with a broader range of skin
tones, obtained from DataTang4. Importantly, this dataset
includes a significant proportion of images featuring indi-
viduals with darker skin tones, effectively complementing
the previously limited scope of light to medium skin tones.
This generated dataset, comprising 30K face images with
inferred pseudo-labels of {A,N}, is utilized to train the
intrinsic decomposition module alongside SYNTRAIN, with
supervision on D and S disabled. This dataset is not used
in ablation studies.
Data augmentation. During training, we augment the train-
ing sets through various transformations, including random
flipping, resized cropping, random exposure and white bal-
ance adjustments, and random Gaussian noise. We ensure

2. All dataset names are noted using small capitals throughout this
paper.

3. In this paper, we only show publishable data specified in the
FACESCAPE [13] dataset license agreement.

4. https://www.datatang.ai/datasets/4

https://www.datatang.ai/datasets/4
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Fig. 4. Examples from our LIGHTTEST dataset. GT lighting L and the
rendered Ls, Ld (Eq. (7)) are shown to the left of the face images.
Images are captured in indoor scenes (the first row), outdoor scenes
(the second row), or directly from the LAVAL FACE&LIGHTING HDR
Database [15] (the third row).

that the correctness of intrinsic labels is maintained, e.g.,
applying the same exposure change to D and S when
adjusting I, and negating the X-axis of N when flipping
I and the intrinsics.

4.2 Real Test Dataset Capture
We capture real images of human subjects with diverse
skin tones and HDR environment lighting in various in-
door and outdoor scenes to quantitatively evaluate different
methods for lighting estimation from a single face image.
These captured image-lighting pairs, combined with pairs
from the LAVAL FACE&LIGHTING Database [15], form our
LIGHTTEST dataset. We use a Ricoh Z1 camera with dual
fish eyes to capture HDR environment maps, while the face
images are captured with a Sony α7R III camera. Following
the guidelines in [79], we capture the full dynamic range
of the scenes using sequences of 7 LDR images taken
with different exposures, each at most 3 stops apart, and
a 3.0 neutral density (ND) filter to additionally capture
the sun without saturation. To eliminate the color differ-
ence between the two cameras, we calibrate a 3 × 3 color
correction matrix on their raw responses of a color panel
under the same lighting. The color change introduced by
the ND filter is also eliminated in a similar way. By using
the color-corrected raw image and the same ISP pipeline,
we obtain face-lighting pairs with consistent colors. Our
captured data contains 66 pairs of 9 human subjects in 11
outdoor scenes and 84 pairs of 10 human subjects in 9
indoor scenes5. We also select 18 best-aligned pairs from
the LAVAL FACE&LIGHTING Database [15], resulting in the
LIGHTTEST dataset containing 84 outdoor and 84 indoor
pairs in total. Examples from the LIGHTTEST are shown in
Fig. 4.

4.3 In-the-wild Face Images
Additionally, we use face images from the FFHQ [14]
dataset for qualitative evaluations only. We call this
dataset INTHEWILD. Note that besides the availability
of GT HDR environment lighting, another difference be-
tween INTHEWILD and LIGHTTEST is that portraits in
INTHEWILD are processed by completely unknown ISPs,

5. We have obtained the written consent for scientific usage of sub-
jects’ portraits.

including tone reproduction (or camera response function),
making linear images inaccessible. In this case, we assume a
γ = 2.2 during tone reproduction and apply inverse gamma
corrections accordingly to obtain approximately linear im-
ages as input to the methods.

5 EXPERIMENTAL RESULTS

In this section, we conduct ablation studies and comparisons
among methods on datasets introduced in Sec. 4.

5.1 Evaluation Protocol and Comparing Methods
Quantitative evaluation on intrinsic decomposition. We
perform an ablation study of our tetrad intrinsic de-
composition module and a quantitative comparison with
HyFRIS [22] using our synthetic validation dataset SYN-
VALID in Sec. 5.2 (Table 2). HyFRIS [22] is the state-of-the-
art method for simultaneously estimating shape, reflectance,
and illumination from a single portrait. We use their code to
obtain their results. We employ the root mean squared error
(RMSE), structural similarity (SSIM [80]), learned perceptual
image patch similarity (LPIPS [71]), and mean angular error
in degrees (MAngE) as error metrics. LPIPS and SSIM are
computed after gamma correction, while RMSE is computed
in linear space. Due to the inherent scale ambiguity between
diffuse albedo A and diffuse shading D [58], we also use
scale-invariant (SI-) versions of RMSE by adjusting the mean
value of estimated components to match the label.
Quantitative evaluation on lighting estimation. We con-
duct an ablation study of our spherical lighting estima-
tion module using SYNVALID in Sec. 5.2 (Table 3), and a
quantitative comparison using the real dataset LIGHTTEST
in Sec. 5.3 (Table 4). We compare our SPLiT with 4 state-
of-the-art methods on single portrait lighting estimation,
which include FaceProbe [23], LIDP [34], the method pro-
posed by Sztrajman et al. [37] abbreviated as HDRLE, and
HyFRIS [22]. For FaceProbe [23], we run their released
code to obtain their results. The authors of LIDP [34]
kindly provided their results on LIGHTTEST6. The authors
of HDRLE [37] kindly provided their results on the LAVAL
FACE&LIGHTING Database [15], which is part of our test
dataset LIGHTTEST. Due to the lighting representation of
HyFRIS [22], we use the rendered diffuse sphere under
their SH lighting and the specular sphere under their 22
pre-defined distant light basis. Following prior work [34],
[52], we evaluate lighting estimation by rendering 3 spheres
(diffuse Ld, glossy Ls, and mirror L) under the predicted
lighting and computing errors on them. As in [34], the
mirror sphere is clipped to [0, 1] to focus on the perceivable
LDR appearance of the environment map. Note that this
approach allows for the evaluation of both the ambient
texture of the environment map through the mirror sphere
and the light source quality by comparing the other 2
spheres. We use RMSE, SI-RMSE, Fréchet Inception Distance
(FID) [81], and mean angular error of the dominant light di-
rection in degrees7 (MAngE) as error metrics. The FID score,

6. The results of LIDP do not contain those on the LAVAL
FACE&LIGHTING [15] dataset and photos of some of our captured
subjects, because we are not allowed to redistribute them.

7. We exclude cloudy panoramas when computing the dominant
light direction error of outdoor scenes.
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TABLE 2
Ablation study on the design of our tetrad intrinsic decomposition module (Sec. 3.2) and comparison with HyFRIS [22] on intrinsic image

decomposition performance. The metrics are computed on SYNVALID. Each “ )” represents an individual network, with input on the left side and
output on the right side. The best results are marked in bold, separately among rows with GT (only compare rows 4-6) and without GT in the input.

Pipeline/Method Diffuse albedo A Normal N Diffuse shading D Specular S
LPIPS↓ RMSE↓ SI-RMSE↓ MAngE↓ SSIM↑ RMSE↓ SI-RMSE↓ RMSE↓

(1) I ) A,N 0.0821 0.0392 0.0288 7.0325 – – – –
(2) I ) A 0.0887 0.0430 0.0320 – – – – –
(3) I ) N – – – 7.7027 – – – –
(4) I,Agt,Ngt ) D,S – – – – 0.9792 0.0547 0.0425 0.0103
(5) I,Agt ) D,S – – – – 0.9747 0.0532 0.0470 0.0095
(6) I,Ngt ) D,S – – – – 0.9707 0.1067 0.0713 0.0136
(7) I ) D,S – – – – 0.9583 0.1138 0.0784 0.0148
(8) {I ) A,N} ) D,S † 0.0821 0.0392 0.0288 7.0325 0.9697 0.0882 0.0572 0.0131
(9) {I ) A,N} ) D,S 0.0800 0.0371 0.0278 6.9958 0.9715 0.0799 0.0536 0.0110

(10) I ) A,N,D,S 0.0847 0.0396 0.0292 7.5034 0.9699 0.0844 0.0580 0.0112
(11) HyFRIS [22] 0.1764 0.0957 0.0524 20.476 0.9177 0.3297 0.1249 0.0340

† Without combined fine-tuning described in Sec. 3.5.

TABLE 3
Ablation study on the inputs and design of our spherical lighting estimation module (Sec. 3.4). The first column shows the input of the light source
network fsrc. The ambient texture network famb is used only in row 6. The best results are marked in bold. Each entry shows measurements of

indoor (left) and outdoor (right) data, separated by a “/”.

Input Environment map L Specular sphere Ls Diffuse sphere Ld

FID↓ RMSE↓ MAngE↓ RMSE↓ SI-RMSE↓ RMSE↓ SI-RMSE↓
(1) I 172.2/166.4 0.220/0.160 26.53/17.90 0.036/0.042 0.036/0.024 0.128/0.099 0.092/0.058
(2) N,D,S 154.8/170.6 0.208/0.144 25.69/6.935 0.032/0.025 0.031/0.023 0.106/0.090 0.060/0.048
(3) N◦,D◦ 157.8/158.8 0.211/0.137 25.97/5.854 0.033/0.021 0.033/0.020 0.090/0.060 0.057/0.037
(4) N◦,S◦ 151.8/160.9 0.199/0.132 24.73/5.838 0.031/0.022 0.031/0.021 0.094/0.069 0.058/0.041
(5) N◦,D◦,S◦ 154.6/159.5 0.197/0.129 24.26/5.024 0.030/0.019 0.030/0.018 0.079/0.055 0.053/0.034
(6) N◦,D◦,S◦ (+famb) 98.70/106.4 0.247/0.192 24.26/4.946 0.031/0.021 0.034/0.021 0.108/0.066 0.065/0.042

like LPIPS, is computed on gamma-corrected images. The
LAVAL SKY HDR database [3] is not used in training famb or
computing FID scores because the lower hemisphere of en-
vironment maps in this dataset is not recorded. Comparing
methods do not necessarily predict the same absolute level
of lighting due to different training datasets or rendering
specifications, as the pixel values of lighting are not defined
according to an absolute unit (e.g., W·sr−1 ·m−2) or a shared
reference. For example, the mean value of unadjusted results
of LIDP [34] on LIGHTTEST is 17.5× on average compared
to the captured lighting. Thus, for a more informative and
fair comparison, we adjust the mean value of all lighting to
a fixed level before qualitative or quantitative comparison
on LIGHTTEST and INTHEWILD.
Qualitative evaluation. Qualitative evaluations on both in-
trinsic decomposition (Fig. 5) and lighting estimation (Fig. 6)
are performed on datasets LIGHTTEST and INTHEWILD,
which contain real portrait images.

5.2 Analysis Using Synthetic Images
We conduct a comprehensive validation of both intrinsic
decomposition and lighting estimation performances on our
SYNVALID dataset. Additionally, we quantitatively compare
our intrinsic module against HyFRIS [22].
Regarding the intrinsic module. We aim to demonstrate the
effectiveness of the cascaded design of the tetrad intrinsic
decomposition module, which enhances our method’s per-
formance on both intrinsic decomposition and subsequent
lighting estimation. We maintain the loss functions for each
intrinsic component, the training scheme, and individual
network architectures, only modifying the combination of

networks and the input and output of each individual
network. Our proposed design (row 9) is compared with
other variants in Table 2. Row 8 is the cascade of row 1 and
row 4, replacing GT in input with estimations, and row 9
is the fine-tuned version of row 8. The parameter amount
of row 10 is enlarged by approximately 2×. We make the
following observations:

1) A conjunctive estimation of {A,N} outperforms
separated estimations (rows 1-3). This seemingly counter-
intuitive phenomenon may arise from the correlation be-
tween A and N, which could guide the network to correctly
attribute local discontinuities to facial features or light trans-
fer and expand the scope of loss terms applied to a single
component (e.g., we observe that VGG loss applied on A
also sharpens N).

2) Compared to directly estimating {D,S} from I (row
7), providing the estimated lighting-independent intrinsics
{A,N} (rows 9) significantly improves the performance on
estimating {D,S}, which is more crucial for our lighting
estimation task. This improvement may stem from the in-
herently constrained space of {A,N}, which is easier to
learn in a data-driven manner from our SYNTRAIN dataset.
This constrained space alleviates the color ambiguity be-
tween A and D. Furthermore, comparing row 4 and row
9, we observe that when GT of A is provided, which
completely resolves the ambiguity between A and D, the
decomposition performance can be further enhanced.

3) Comparison using different intrinsics as inputs of fDS

in rows 4-7 shows that directly incorporating N into the
input may not be as beneficial as A. This is reasonable
because instead of directly appearing in Eq. (1), N affects the
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shading in a more obscure and implicit way for the network.
As a consequence, the proposed cascade (row 9) sur-

passes all other practical pipelines, including the previous
state-of-the-art method HyFRIS [22] (row 11), quantitatively
on intrinsic decomposition.
Regarding the lighting estimation module. Our light
source network fsrc takes the constant N◦ and spherically
distributed {D◦,S◦} as input. To validate the advantages
of individual intrinsics and the normal-indexed distribute
operation in lighting estimation, we compare the proposed
pipeline with fsrc taking different inputs in Table 3. The
loss functions and architectures are identical, and all models
use the fixed decoder trained on GT lighting. The difference
lies in the input of fsrc. To accommodate varying amounts
and sizes of inputs, we perform average pooling on codes
of different sizes before feeding them into the decoder. We
make the following observations:

1) The model in row 1, which takes only the face image I
as input (therefore is an end-to-end lighting estimator), has
an increment of the same parameter amount as our intrin-
sic module. However, it performs the worst against other
input settings, highlighting that excluding the lighting-
independent A from I and decomposing it into {D,S} (as
in the model in row 2) could significantly facilitate lighting
estimation.

2) The effect of distributing intrinsics for improving
lighting estimation accuracy is also demonstrated. Com-
pared to non-distributed inputs (row 2), the distributed
components (row 5) yield better results using 64 times
smaller input. This indicates that the spherical {D◦,S◦} are
condensed versions that are easier to learn lighting from and
are more computationally efficient compared to {D,S}.

3) The comparison using different spherical intrinsics
(rows 3-5) further demonstrates that both {D,S} reveal
useful clues for lighting estimation, and the model with
all the {D,S} as inputs (row 5) outperforms the other two
models.

4) Comparing row 5 (without famb) and row 6 (with
famb), we observe that although the inclusion of famb results
in a slight decrease in the accuracy of Ls and Ld, there is a
significant improvement in the FID score. The worsening of
RMSE on L is reasonable because this metric prefers an av-
erage image when estimating details is difficult. Moreover,
as shown by the visual results in Fig. 6, the famb contributes
to a substantial enhancement in visual quality compared
to the model without famb, thus revealing its usefulness.
For more qualitative evaluations regarding our ambient
texture network, including comparisons of rendered mirror-
like objects and using randomly picked real panoramas as
textures, please check the supplementary material.

5.3 Analysis Using Real Images

Qualitative evaluation on intrinsic decomposition. On
LIGHTTEST and INTHEWILD we qualitatively compare
the intrinsic decomposition between our method and
HyFRIS [22]. Fig. 5 shows that our model produces more
reasonable and detailed predictions on all four intrinsics
compared to HyFRIS [22]. Our A is free of highlights and
the detailed N faithfully follows the face shape in I. Addi-
tionally, our model can produce sharp estimations on both
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Fig. 5. Intrinsic decomposition results from our model and HyFRIS [22]
on INTHEWILD and LIGHTTEST.

TABLE 4
Comparison among methods on lighting estimation using LIGHTTEST.
The best results are marked in bold. Each entry shows measurements

on indoor (left) and outdoor (right) data, separated by a “/”.

Method Env. map L Specular Ls Diffuse Ld

SI-RMSE↓ SI-RMSE↓ SI-RMSE↓
HyFRIS [22] – / – 0.060/0.055 0.119/0.139
HDRLE [37] – /0.318 – /0.034 – /0.145
FaceProbe [23] 0.336/0.338 0.077/0.046 0.231/0.195
LIDP [34] 0.307/0.258 0.043/0.042 0.121/0.135
Ours 0.268/0.180 0.029/0.018 0.073/0.069

D and S, while those from HyFRIS [22] tend to be smooth
due to their low-frequency lighting representation. Never-
theless, on images from INTHEWILD (the upper two groups
in Fig. 5), the diffuse reflection color sometimes bleeds into
our S. We believe this is caused by the unknown ISP of
these in-the-wild images, making linear images inaccessible
and breaking our assumption of linear inputs (Eq. (1)).
Comparison on lighting estimation. We compare our
model with LIDP [34], FaceProbe [23], HDRLE [37], and
HyFRIS [22] concerning lighting estimation both qualita-
tively on LIGHTTEST and INTHEWILD (see Fig. 6) and quan-
titatively on LIGHTTEST (see Table 4). Quantitative results
in Table 4 show that our method outperforms all these
methods on lighting estimation. Qualitative results in Fig. 6
also demonstrate that our method can recover accurate light
sources with correct amounts and positions and realistic
ambient textures in the estimated environment map. For
example, our SPLiT succeeds in recovering two lights in row
1 col 1 (where LIDP [34] produces a blurry halo) and more
accurate sun positions in row 2, probably because SPLiT
extracts lighting-dependent intrinsics and condenses them
into more friendly representations to lighting estimation.
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Fig. 6. Comparison among methods on lighting estimation using LIGHTTEST and INTHEWILD. For each set of results, we show from top to bottom
L, Ls, and Ld. Lighting estimates from left to right: (a) ground truth, (b) Ours, (c) Ours w/o famb, (d) LIDP [34], (e) FaceProbe [23], (f) HDRLE [37],
and (g) HyFRIS [22]. Some entries (indicated as “⊖”) are unavailable (see Sec. 5.1). Please zoom-in in the electronic version for details.

Fig. 7. We use the estimated lighting (shown in the top-right corner
alongside each rendered object) to relight virtual objects. The first 3 rows
are indoor scenes, while the last 3 rows are outdoor scenes. Please
zoom-in in the electronic version for details.

6 APPLICATIONS

We show potential applications enabled by our lighting
estimations in this section, including virtual object insertion
and lighting transfer.

6.1 Virtual Object Relighting
As a prevalent application for lighting estimation, we
present virtual object relighting results on INTHEWILD in
Fig. 7. We employ the lighting estimations derived from
our model to render three objects with varying shapes
and reflective properties: a matte BUNNY, a plastic-like
ARMADILLO, and a glossy DRAGON. The rendered objects
can then be realistically blended into the original image by

𝐈𝐈𝑖𝑖 𝐋𝐋𝑖𝑖

Fig. 8. We transfer the lighting Li estimated from one input face image
Ii to other face images. The leftmost column shows the input face
images, while the uppermost row shows the estimated lighting in the
same order. For each lighting, we show from left to right L, Ls, and
Ld. The remaining space shows a grid of relit or reproduced (on the
diagonal) face images. For the input face image, we show the estimated
albedo A and surface normal N at the top-left and top-right corner,
respectively. For the relit face image, we show the rendered diffuse
shading D̃ and specular reflection S̃ at the top-left and top-right corner,
respectively. Please zoom-in in the electronic version for details.

alpha compositing. As illustrated in Fig. 7, our SPLiT model
is applicable to a diverse array of portraits, encompassing
various poses, skin tones, and lighting conditions. Both the
BUNNY and the ARMADILLO reflect the accurately estimated
light source characteristics, including direction, intensity,
and color. For instance, near-frontal lights with distinct
colors are observed in row 1, column 1, and row 3, column
1, while a potent white light emanates from the rear left in
row 2, column 2. Sun directions are also correctly estimated
in row 5, column 1, and row 5, column 2, as evidenced by the
cast shadows on the ground. Moreover, the glossy DRAGON
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exhibits rich ambient textures, such as the trees in row 5,
column 3. Notably, our model is capable of handling facial
accessories, like hats in row 6, column 1, and sunglasses in
row 6, column 2, despite their absence in the training set.

6.2 Lighting Transfer
To illustrate another potential application, we present the
results of lighting transfer using our estimated A,N, and
L. It is crucial to emphasize that the primary objective of
displaying the lighting transfer results is to provide an in-
tuitive demonstration of the accuracy and detail of our esti-
mated intrinsic components and lighting. Our method does
not include a neural rendering layer to photo-realistically
render the same individual under novel lighting conditions.
Furthermore, it does not recover complete 3D shapes and
facial BRDF parameters, which are necessary in a non-neural
rendering process, as they are not employed in lighting
estimation. We use normal integration [82] to acquire the
approximate depth (we do not guarantee the correctness of
its scale) to show shadowing effects due to lighting changes
and use empirical BRDF parameters during the relighting
process. Consequently, our method is unsuitable for com-
parison with other automatic portrait relighting techniques,
such as [38], [41], [60], which incorporate dedicated neural
rendering layers to generate realistic relit portraits.

For two input images I1, I2, we initially apply our
method to obtain their surface normal N1,N2, diffuse
albedo A1,A2, and lighting L1,L2. Subsequently, we re-
light face I1 under lighting L2 (and vice versa) using the
following non-neural rendering process. We maintain the
estimated A1 and N1 constant while modifying D and S
under the non-Lambertian reflectance model I = A⊙D+S.
The relit shading D̃2 and S̃2 are rendered by Blender Cy-
cles [77] using the new lighting L2 and the depth obtained
via normal integration [82] of N1. We employ the same
BRDF model used when generating our SYNTRAIN dataset.
The relit image Ĩ2 is achieved by computing (A1⊙D̃2+S̃2).
This procedure can also be employed to reproduce the input
image by using L1 instead of L2. The results are displayed
in Fig. 8, illustrating that our estimated intrinsic components
and lighting can be utilized to transfer lighting to another
portrait with a completely different illumination condition.

7 CONCLUSION

We present a method to estimate lighting from an input
human face image, by estimating a tetrad of face intrinsics
and predicting an environment map from two spherically
distributed lighting-dependent intrinsics. Our method is
physically interpretable and gives accurate and detailed
results on lighting estimation and intrinsic decomposition.
Limitation. As a lighting estimation method, SPLiT assumes
distant and uniform illumination on the whole face, so that
near field illumination, and occlusions or interreflections
from non-face objects (e.g., hats, clothes with strong hue) are
not modeled. Also, since our focus is lighting estimation,
we do not either estimate a 3D face model for novel view
synthesis, or spatially-varying BRDF parameters such as
roughness for re-rendering. Our method depends on a face
mask and will produce false light sources if the mask is over-
sized and bright background pixels are recognized as strong

specularities. But this can be automatically eliminated by
aggressively eroding the mask since we experimentally find
our method robust to undersized masks (see supplementary
material).
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[16] B. Egger, S. Schönborn, A. Schneider, A. Kortylewski, A. Morel-
Forster, C. Blumer, and T. Vetter, “Occlusion-aware 3D morphable
models and an illumination prior for face image analysis,” in
International Journal of Computer Vision, 2018.
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A PROJECTION TYPES OF ENVIRONMENT MAPS

Our method adopts the spherical projection rather than the
equirectangular projection as the type of environment map.
Here we discuss different types of projection for environ-
ment maps that can be used in lighting-related computer
vision problems.

The three most popular types of environment mapping
may have been cube mapping, equirectangular mapping,
and spherical mapping. While cube mapping using the six
faces of a cube as the map shape is a frequently used type
in computer graphics, we find that it has not been used
much as lighting representations in computer vision. This
could be a consequence of its enormous seams, i.e., the
paired edges separated in the flattened 2D image space
but are instead connected when projected back onto 3D
space. Such seams present a significant challenge to the
convolutional neural networks, as their receptive field is
forced to terminate on these seams, causing undesirable
discontinuities on different sides of the seams in the 3D
space when projected back [5]. The seams are still present
in the equirectangular mapping and spherical mapping, but
are much less – these two mappings have only one seam
each (the horizontal edge of the equirectangular mapping
corresponding to a line in 3D space, and the circular edge
of the spherical mapping corresponding to a point), while
cube mappings have seven seams corresponding to seven
lines in 3D space. It may be the above fact that has led to
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the preference for equirectangular environment maps [2],
[6], [7] and sphere maps [8], [9], [10] over cube maps in
lighting estimation works, despite that cube maps suffer less
from image distortion. Furthermore, it is worth noting that
most lighting estimation methods that use equirectangular
mapping choose to place the LFoV input image (which
contains the region in front of the camera) at the center of the
panoramic environment map [1], [2], [3], [4], thus the verti-
cal edge of the environment map is behind the camera when
projected back to 3D. This leads to the manifestation of the
strong vertical edge when rendering mirror-like objects. In
contrast, the distortion caused by the seams in the spherical
mapping is in front of the camera, so the distortion will not
be reflected on the rendered mirror-like object. As examples
of the discontinuities caused by seams, in Fig. A we show
the equirectangular environment maps estimated by four
state-of-the-art lighting estimation methods [1], [2], [3], [4]
and the rendered highly glossy objects. Undesirable strong
vertical edges can be easily seen in the rendered teapot with
a mirror-like surface.

With cube mapping no longer in our consideration, we
believe that the remaining two types of mapping are both
acceptable. We finally choose the sphere mapping rather
than the equirectangular mapping, taking into account the
characteristics of our pipeline. After the normal-indexed
distribute operation (Sec 3.3), the input of our lighting esti-
mation module (Sec 3.4) should be the lighting-dependent
intrinsic components projected onto a predefined geometry,
either a standard sphere or the equirectangular coordinate
system. We find that the spherical form is more friendly
for human perception, and probably for neural networks as
well, than the equirectangular form (similar to prefiltered
irradiance maps and reflection maps [11]), as the spherically
distributed components are identical to images of diffuse
or glossy balls illuminated by the scene lighting (ignoring
noises and missing pixels). The {D◦,S◦} components in Fig.
2 in the manuscript give a good example. This perceptional
friendliness of the sphere mapping may have inspired some
recent illumination estimation methods [4], [8], [9], [12]
to provide visual comparisons on their estimations using
three different balls (mirror, glossy, diffuse) rendered under
lighting to be compared, which we also perform in Sec. 5.3.
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Fig. A. Seams in the estimated equirectangular environment map cause strong vertical edges in the rendered mirror-like objects. Left: the estimated
environment map (LDR versions copied from each paper), repeat twice to show the discontinuity at the vertical edge. Right: teapot with a mirrored
surface rendered under the environment map (note that LDR environment maps basically suffice to render LDR images of a mirror-like object). We
show the results of four recent lighting estimation methods: EnvMapNet [1], StyleLight [2], EditableIndoor [3], and EverLight [4]. We show no cube
environment map results as we do not find a lighting estimation method using the cube map representation.

B IMPLEMENTATION DETAILS

In this section, we elaborate on the implementation details,
including loss weights, network architectures, and training
schemes, of our intrinsic decomposition module and light-
ing estimation module. The network architectures are also
shown in Fig. B. We also recommend that readers check
our released code if they have any questions about the
architecture.

B.1 Tetrad Intrinsic Decomposition Module

Loss function weights are set as λA = λN = λD = λrec1 =
1, λAvgg

= λDvgg
= 0.1, λS = 10 to balance different loss

terms to be of similar scales. Both fAN and fDS share
a modified U-Net [13] architecture, comprising a 6-layer
encoder, a bottleneck layer, and a 6-layer decoder with base
filter number = 48. The encoder and decoder layers con-
sist of down-sampling by blur-pooling [14] or bilinear up-
sampling, followed by a 3× 3 convolution of stride 1. Every
convolution operation, except the final one, is succeeded by
a batch normalization [15], a SiLU non-linearity [16], and
a channel-wise dropout [17] of rate 0.1. To transform the
unbounded output values of networks into feasible intrinsic
components, sigmoid, vector normalization, and softplus

functions are applied to A, N, and D/S components, re-
spectively.

fAN and fDS are initially trained separately, followed
by combined training without freezing layers. This training
process, using the Adam optimizer [18], involves a linear
learning-rate warm-up stage, reaching a base learning rate
of 10−3 after the first epoch. The learning rate is then mul-
tiplied by 0.1× after each subsequent epoch. The training
lasts for a total of 10 epochs, with the first 5 epochs for
separate training and the last 5 for combined training. The
networks are trained with a batch size of 8, and the entire
training process takes approximately 30 hours on a single
NVIDIA GeForce RTX 3090 GPU.

B.2 Spherical Lighting Estimation Module
Loss function weights are set as λm = 0.6, λd = λs =
0.2, λfeat = 10, λadv = λvgg = 1 to balance different loss
terms. All spherical lighting representations and distributed
components are sized 64 × 64. We train this module sep-
arately on indoor and outdoor data using the same archi-
tecture and training scheme. The light source network fsrc,
implemented as a T-network [19], [20], consists of two parts:
an autoencoder and an estimator. The autoencoder takes
GT HDR environment maps as input and is trained using
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Fig. B. The architecture diagrams of our intrinsic decomposition module (upper) and our lighting estimation module (lower).

Lsrc in Eq. (8), while the estimator takes D◦,S◦,N◦,M◦} as
input and generates a latent code close to the code generated
by the encoder. After training, the encoder is discarded, and
the estimator is combined with the decoder to form fsrc.
The autoencoder comprises a 5-layer encoder and a 4-layer
decoder with base filter number = 16. Blur pooling and
bilinear up-sampling are used in the encoder and decoder,
respectively, and every convolution is followed by a batch
normalization and a leakyReLU [21]. The encoder generates
a latent code with the size 42 × 64 = 1024. The estimator,
employing the HRNet-w18 [22] architecture with a 3 × 3
convolutional head, produces a latent code of the same size.
For the ambient texture network, we use the local enhancer
architecture in pix2pixHD [23] with base filter number = 16
as the backbone of the generator famb, while the multi-scale
discriminator with three scales and base filter number = 32

serves as discriminator fdisc.

We use Adam [18] optimizer for training. The autoen-
coder is trained for 200 epochs, while the estimator is first
trained for 200 epochs taking distributed GT components
as input, then fine-tuned for another 200 epochs taking
distributed estimations from the trained intrinsic module as
input, with an initial learning rate of 10−3 and step learning
rate decay. The ambient texture network is trained for 70
epochs on the output of the autoencoder with an initial
learning rate of 2 × 10−4 and a linear learning rate decay.
The networks are trained with a batch size of 256, and the
entire training process takes approximately 30 hours on a
single NVIDIA GeForce RTX 3090 GPU.
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Input With Texture W/o Texture Input With Texture W/o Texture

Fig. C. We use the estimated lighting (shown in the top-right corner alongside each rendered object) with texture (L in Eq. (10)) and without texture
(Lsrc in Eq. (10)) to relight mirror-like virtual objects. The first 3 rows are indoor scenes, while the last 3 rows are outdoor scenes.

C MORE EVALUATION OF THE TEXTURE NETWORK

In Sec. 3.4 in the main paper, we introduce the ambient
texture network to fill in high-frequency and realistic tex-
tures in case that the estimated lighting will be used to
render mirror-like objects in applications. In this section,
we provide more qualitative evaluations of this network to
show its effectiveness.

C.1 Comparison on Mirror-like Objects

In Fig. C, we show side-by-side mirror-like objects rendered
using environment maps either with the texture (L) halluci-
nated by the texture network or without the texture (Lsrc).
We can observe that the rendered objects using the textured
environment maps manifest more clear and realistic appear-
ances, while those rendered using the environment maps
without texture are more blurry.

C.2 Comparison with Random Real Textures

A seemingly plausible substitute for our ambient texture
network is randomly picking a real panorama in the training
lighting dataset, and using it as T in Eq. (10). We experiment
with this strategy, and as expected, using randomly picked
real panoramas yields a huge improvement in FID score
(from 98.7/106.4 to 18.27/29.55 for indoor/outdoor), since
the details are now as fine as real panoramas, but with the
unfair advantage of using an additional database instead of
only the trained neural network in the test. Moreover, in the
qualitative comparison of the generated environment maps
using different strategies in Fig. D, we find that although
using random real texture leads to a more detailed texture,
the texture does not fit the light source since the randomly
picked texture is light source-agnostic. For example, in out-
door scenes (the right half of Fig. D), the bright part in the
random texture is usually not collocated with the sun posi-
tion in the light source image, resulting in two visible suns in



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5
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Fig. D. Comparison between filling light source Lsrc with texture T generated by our ambient texture network famb and with random real texture
Trand

gt from randomly picked real panorama. The left part shows indoor scenes, while the right part shows outdoor scenes.
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Fig. E. We show the robustness of SPLiT to undersized input masks. Compared to the results estimated using normal-sized masks as an input
(upper row), in the results using the undersized mask (lower row), although the estimated face intrinsics {A,N,D,S} are shrunk accordingly, the
distributed intrinsics {D◦,S◦} are barely affected. Therefore, the estimated lighting (w/o famb) is also unaffected.

the sky (rows 1, 2); light sources and textures for sunny and
cloudy days are sometimes mistakenly interleaved (rows 3,
4). These phenomena are not that obvious in indoor scenes
(the left half of Fig. D), but still render the occurrence of the
light sources more abrupt and unnatural.

D ROBUSTNESS TO UNDERSIZED MASKS

One limitation of our method is that it depends on a face
mask and will produce false light sources if the mask
is oversized and bright background pixels are recognized
as strong specularities (i.e., background leaking into the
estimated light sources). However, we show in Fig. E that
our method is robust to undersized masks, thus the above
leaking problem can be automatically eliminated by aggres-
sively eroding the mask.
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