
Siemens Digital Industries Software

siemens.com/embedded

A Guide to Minimizing
Device Security
Vulnerabilities

Executive summary
The security landscape is one that is constantly changing, with new
exploits being publicized almost every day. This paper will discuss the
processes that make this information available, the mechanisms that
you should be thinking about before, during and after your product’s
development to minimize the impact of this changing landscape,
how to minimize the likelihood of your devices being the cause of
data or security breaches, and how to be prepared to swiftly respond
in the likely case that some security flaw will be discovered in your
devices after their release to the public.

White paper | A Guide to Minimizing Device Security Vulnerabilities

2

A security vulnerability is a programming error (or
defect, or bug) that opens a device up to be affected
by some external or internal application that was not
intended. Security vulnerabilities are in every product.
By following the guidelines described in this paper,
you will learn how to protect your device from issues
that are known, make it difficult for vulnerabilities
that you do not know about to be exploited, and esta-
blish processes for known issues to be discovered and
fixed.

The most important part of this process is known as
Common Vulnerabilities and Exposures, or CVEs. CVEs
were originally defined in 1999. The database is a
repository of known exploitable security issues that
exist (or existed) in products. CVEs are published and
maintained in a joint effort between the MITRE Corp-
oration and the US National Vulnerability Database
(NVD), which is maintained by the US Department of
Homeland Security. Every significant security vulne-
rability you have probably heard of has been docum-
ented as a CVE, from Heartbleed (CVE-2014-060) to
Shellshock (CVE-2014-6271) to URGENT/11 (11 CVEs
discovered in 2019).

These CVEs are discovered either as a result of dam-
age caused (a postmortem of an adverse effect dis-
covered the underlying issue), or as a result of a cons-
cientious engineer who discovers a potential exploit.
The good news is that most exploits are discovered
without causing damage, the bad news is once an

If you are responsible for the development of a
product that includes complex software and
connectivity to the Internet, you have many things
that you are concerned about. Is the quality there? Are
the features going to meet the needs of the market
and excel against your competition? After time and
effort, you and your teams solve all of those problems,
complete the product, release it to the market, and it
is a success. Congratulations! But…

Shortly after your product is deployed, you get a
midnight phone call from your company’s CEO letting
you know that the company’s product will be on the
front page of tomorrow’s Wall Street Journal because
hackers have figured out how to access customer
sensitive data from your device. How did this happen?
What do you do? How do you manage to keep your
job?

exploit is communicated to the world through the CVE
process, it can be easily exploited by hackers world-
wide, so time is of the essence. Fortunately, the CVE
process is designed to give product or software pack-
age developers time to fix the exploit and have that fix
available to customers before the exploit is announced
to the world. While it does not always happen, the
opp-ortunity is there for product developers focused
on keeping their devices secure to act rapidly.

Siemens Digital Industries Software

Some Background

When a CVE is discovered, it is assigned a CVE identi-
fication ID. If the CVE is determined to be an issue, it is
generally assigned a Vulnerability Score by the NVD.
This is a number between 1 and 10; the higher the
number, the more serious the vulnerability will be to
devices that contain the vulnerability. The NVD also
contains any other known information about the issue,
as well as links to pertinent sites that further describe
the issue, and the existing fixes available for it.

White paper | A Guide to Minimizing Device Security Vulnerabilities

3

 Exposure of customer or end-user data, which
could lead to identity theft, HIPAA violations, and
other serious consequences

 Infiltration of the device by malicious actors
which can cause loss of property, injection of
ransomware, etc.

Not only are these potential results bad for your
customers (and their customers), the impact can be
embarrassing, costly, and damaging to you and your
company’s reputation.

The main benefit of the CVE reporting process is
knowledge; knowledge of the issue, of potential fixes,
and of the severity and risk the issue might have to
your products. As you probably know, security vulne-
rabilities can expose your devices, your customers,
and yourself to several adverse consequences,
including:

 Loss of confidential business data

Security Issues and Product Design

 Keeping the Barn Door Shut – Protecting your
devices from the future

 Make the Door Hard to Open – Apply
preventative development techniques

We will look at these more closely.

When we think of how to develop devices that are as
secure as possible, it helps to think about the different
types of potential security issues, and the approaches
to prevent them:

 Closing the Barn Door - Protecting your devices
from known types of issues

Protecting your Devices from Known Types of Issues

distribution of Linux. Searching for Linux vulnera-
bilities, you will find a number of issues; as a specific
example, consider CVE-2019-11683. This is a critical
severity issue that should not be in your product, since
it is both well-known and allows remote denial of
service attacks, or “unspecified other impacts”. Look-
ing at the entry for this defect, we see that it is resol-
ved in Linux kernel version 5.0.13 or later, which
means that you should upgrade to that version in your
product if your Linux kernel is an earlier version.

As discussed above, many potential exploits that are
used by hackers to break into devices are already
known by the worldwide security community and have
already been fixed. It would be unfortunate, and car-
eer limiting, if something that is already fixed shows
up in your devices and is exploited by hackers. How do
you prevent this from happening?

First, each CVE that is shown to be an exploit is search-
able in both the NVD and CVE databases. You can
search by component name, CVE ID or any keyword of
interest. For example, assume your device uses some

White paper | A Guide to Minimizing Device Security Vulnerabilities

4

There are a number of tools available to help you ide-
ntify if important CVEs are included in your product,
the most important of which is called cve-check
(https://github.com/clearlinux/cve-check-tool). This
tool generates reports that includes which packages
contain CVEs that are not resolved in the versions you
are using, by performing version checking like we did
above in the Linux example. You can use this infor-
mation to determine if any preemptive action is req-
uired before your product images are considered
complete.

Device manufacturers do not want to do this kind of
checking and updating as a matter of course while
trying to get a product designed and developed. Most
device manufacturers would rather have their eng-
ineers solve product problems instead of managing
and maintaining a Linux distribution. However, there
is a price for the extreme capabilities, stability and
community that using open source gives to you (do
you want to write an SSL layer or use the one that is
used in devices all over the world?). Either the device
manufacturer must take this task on, or use a comm-
ercial Linux distribution and hold their vendor respo-
nsible for doing this work for them.

Note that monitoring and making sure known exploits
are addressed is not the only thing to think about at
this phase. A few other concerns that, if not addre-
ssed, can cause your device to be exploited include:

 Access Control – Have you designed in the ability
to define roles that can access various types of
data (userlevel, management level, maintenance
level, etc.), and are you certain that only autho-
rized roles access the data? Is it difficult to access
data with higher levels of access control from the
internet compared with having physical access to
the device? Linux provides at least 2 ways to ma-
nage access control; Discretionary (DAC), which
is the standard Linux access control model, and
Mandatory (MAC) which is more complex and
more secure (and is part of the SELinux package).

 Encryption – Is the data stored on your device
(both in memory and in storage), as well as that
transmitted between your device and others,
protected and encrypted so that it can only be
deciphered by those meant to see it? Many pote-
ntial exploits that allow outside actors to see
data still would need the proper keys to decrypt
it, so you need to make sure that a different
mechanism must be overcome to access the keys
than to simply access the encrypted memory.

 Hardware security assistance – Many features of
modern processors help in ensuring the security
of your devices and applications, but it is the
responsibility of the system designer to take
advantage of them. Features such as TrustZone,
Cryptographic Acceleration, Trusted Platform
Modules (TPMs), etc. are on modern micropr-
ocessors and are designed to both accelerate and
assist in the development of secure designs. But,
much like having a lock on your front door that
you forget to lock, having these features in hard-
ware is useless if you do not make use of them.

White paper | A Guide to Minimizing Device Security Vulnerabilities

5

Protecting your Devices from the Future

 are unaware that their systems are infected, and Mirai
(and derivatives of it) is still a threat today. There are
even devices made today that are susceptible to it,
even though the underlying cause, which was as sim-
ple as trying to access a root level access account with
64 well known default login/passwords such as user/
user, or user/password. As most users of these devices
were unaware or unable to change these simple def-
aults, the Mirai botnet was able to take control of
these systems.

You have released your product, and you know that at
the time it is released that it is not subject to known
exploits, and you have done everything to protect the
data on your device. Congratulations, you have alrea-
dy done more than some manufacturers to make your
device secure. However, once the product is released,
your work is not complete, just because you have pro-
tected yourself against all known exploits. The num-
ber of known exploits increases every day; in 2019,
there were 12,174 CVEs created, which is actually less
than there were in 2018. That is over 30 per day. Of
course, most of these do not turn out to be issues,
and, of the ones that are issues, many will not apply
to your device (many CVEs are reported against ver-
sions of open source components older than what you
might deploy, or will be against components you are
not using). That said, even against the Linux kernel,
there were 170 CVEs issued in 2019, and some of
them will lead to exploits against your device.

While there is no way to prevent this from happening,
you need to know that it WILL happen, and you need
to make sure your device is prepared. The time to pre-
pare your device for the future is during development,
so that you can prepare the device to be updated as
new exploits (and significant product defects) are
found and fixed.

As an example, in 2016, an exploit commonly known
as the Mirai botnet caused extensive internet outages
by taking over small IoT devices such as webcams and
routers and used them to execute Distributed Denial
of Service attacks (DDoS attacks) against both US and
French web infrastructure providers, as well as several
more targeted attacks including ones against Rutgers
University and a popular cybersecurity focused web-
site. Most of the owners of these infected devices

The considerations that should be made during develo-
pment to future-proof your device are many, but the
most important is the ability to securely update your
system. The methods and facilities to support this are
many and complex and outside the scope of this paper.

White paper | A Guide to Minimizing Device Security Vulnerabilities

6

Applying Preventative Development Techniques

 Static (and dynamic) analysis. The first static anal-
ysis you are likely to see are the warnings that
come from your compiler. It is surprising how many
organizations ignore this valuable diagnostic tool in
a misguided rush to get something released. Bey-
ond that, the open source community provides
several useful static analysis tools such cppcheck
and clang, and there are many commercial solut-
ions available. All will detect issues that are easily
missed in code reviews and, as long as the reports
from these tools are managed, you can prevent
several major classes of potential exploits in your
applications.

 Use of a coding standard. In general, the MISRA C
and C++ coding standards (https://misra.org.uk/)
are the gold standard for these, and provides many
well thought-through recommendations for secu-
ring your applications. While its genesis is from the
automotive industry, there is nothing automotive
specific about it, and can (and should) be consid-
ered by any device manufacturer looking to secure
their applications. Note that most static analysis
tools also greatly ease the checking of applications
against MISRA rules. While there are other coding
standards available, MISRA combines common
sense with good practice in a way that can be
implemented by organizations of all sizes.

 Another useful coding standard comes from the
Software Engineering Institute at Carnegie Mellon;
known as SEI CERT C
(https://wiki.sei.cmu.edu/confluence/display/
seccode). There is significant overlap between this
and MISRA, but the SEI standards extend beyond C
and C++ and into Android, Java and Perl.

There are many other useful sources of information to
consider when developing secure software, but if you
are not already employing the above techniques, start
there and consider expanding your thinking once you
have smart coding standard and static analysis
paradigm in place.

If you are using Linux and other open source software
as part of your product’s design, then there will be
vulnerabilities in your device that you don’t know
about when you release your device. As a result, you
do not only want to eliminate as many known
vulnerabilities as possible at the time you release, but
you must also assume that, at some point, some bad
actor will be able to get unauthorized access to the
device through as-yet unknown vulnerabilities in the
common open-source packages you are using.

When that happens, you will not be able to prevent
unauthorized access to the device until you fix the
underlying security flaw; consider an example where
you are building a consumer-grade device that uses a
customer’s Amazon username and password to
configure. If this is already compromised, then it may
be possible for an external entity to compromise the
device, insert malware, etc. Once the malware is
running on the device, it would be possible to attempt
to probe and attack the applications you have
included on the device.

There is no perfect defense from determined hackers
armed with the knowledge of exploits in your device,
but you want to make it as difficult as possible for
them to do so. You cannot protect yourself from
vulnerabilities in the open source modules you are
using, but you can limit potential vulnerabilities in
your own applications. Of course, you should consider
the techniques mentioned above to design in greater
protection, but what about the way your applications
are developed?

As mentioned above, most exploits in open source and
application software are due to repeated
developmental flaws that happen over and over again.
Things like NULL pointer de-references, freeing
already freed memory, overflowing a fixed length
buffer, etc. are the kinds of coding errors that can be
easily exploited by hackers to compromise your
devices. However, there are several approaches that
can be used to help. Specific techniques are
beyond the scope of this paper, but places to start
looking are:

White paper | A Guide to Minimizing Device Security Vulnerabilities

7

Given all of the above, how do you test for this large
number of issues that the community knows about at
any given time? There are several things to think
about that can help protect you from the known
issues that might stil be in your product:

 As mentioned above, most CVEs have a root
cause analysis that generally maps to issues that
can be identified with static analysis (also menti-
oned above). Besides running this analysis on
the software that your teams write, you should
also run it on any third-party software that you
acquire (either open-source or proprietary) and
see what it tells you. This is said with a word of
caution; most foundational software (such as
Linux or a proprietary RTOS) will perform activ-
ities that will be flagged by static analysis, such
as significant pointer arithmetic and accessing
data structures using offsets generated by this
arithmetic. This is likely to be acceptable; it is not
possible to write a highly-performant operating
system without doing these activities, but loo-
king at the results will also alert you of potential
issues you should ask your vendor about if it is
not clear.

Product Testing for Known Security Issues

 If you are using Linux, use a Linux vulnerability
scanner. There are many such scanners on the
market, both open-source and proprietary, and
several of the most popular embedded Linux
distributions (such as Yocto, which is the foun-
dation of Siemens Embedded Linux FlexOS) incl-
ude scanners that check your package versions
against the National Vulnerability Database, and
will inform you if there are open issues and if
they have been fixed. You should run such scan-
ners during development, while you can still up-
date the module versions in your device, and as
part of your maintenance process, so that you
can determine what must be updated when you
release your products.

 Penetration or Fuzz testing can also be used to
identify already known vulnerabilities, but since
these are your main protection against the
future, we will discuss them in detail, below

Product Testing for Unknown Security Issues

White paper | A Guide to Minimizing Device Security Vulnerabilities

8

As has been said previously, many of the challenges in
securing devices is protecting your device from vulne-
rabilities that were unknown when the product was
released. Several of the techniques mentioned above
(structured code analysis, reviews, etc.) will make
your device harder to exploit in the field, but you can
try to duplicate the techniques used by hackers before
your product is released. There are two major meth-
ods to do this:

Penetration testing – When we think of devices being
exploited, we think about them being exploited by the
“bad guys” (criminals, governmental actors, industrial
espionage, etc.) for nefarious means. However, the
techniques that these “black hat hackers” use are not
rocket science; they are well known in the community.
These techniques, along with ingenuity possessed by
all software developers are how these exploits are
found. There is nothing stopping an organization from
doing the same on their own devices; having engin-
eers or “white hat hacker” consultants attempt to ex-
ploit your devices before they are released to the mar-
ket. This process is referred to as penetration testing;
where you allow a cybersecurity attack against your
devices but, instead of the results being used against
you, the results are reported to you while you can do
something to prevent those exploits in the field.

Fuzz testing – One of the kinds of analysis that hack-
ers perform is to probe a device with a large amount
of valid and invalid Ethernet packets that they can
control and see what happens to the device. Some of
those sequences of packets will duplicate known exp-
loits, but if you have been following the guidance in
this paper, you are protected from those. However,
many of these sequences will be more random such as
malformed or semi-malformed packets, just to see
what happens. This kind of testing is known as fuzz
testing, and while not as effective as penetration
testing, fuzz testing is much easier to implement as
part of the standard testing of your product. Additio-
nally, there are several products on the market that
performed fuzz testing and can be integrated into an
automated testing framework.

Generally, penetration testing can only be performed
once or twice during a product’s development and
testing, while fuzz testing can be performed perio-
dically (for example, once a week), and as part of any
formal testing regimen.

Product Maintenance in a Constantly
Changing Security Landscape

As mentioned above, you must consider product mai-
ntenance during its development, so that the product
may be updated safely and securely when the inevit-
able issues arise. These issues can be product upgra-
des, resolutions to product functionality issues, or
resolutions to newly found exploits regardless of the
source (additional penetration testing, new CVEs, or
from other means).

You should establish a regular update frequency for
your released products (quarterly, twice a year, what-
ever makes sense for your teams and your customers).
Having a regular update frequency allows your custo-
mers to schedule predictable and minimal downtimes.
Since many devices are mission critical for your custo-
mers, striking a balance between update frequency
and downtime is a business decision between you and
your customers, but it needs to be more often than
“never.”

White paper | A Guide to Minimizing Device Security Vulnerabilities

9

What Should You be Asking Your
Operating System Provider?

Using an operating system (OS) provider such as
Siemens Embedded can be a great benefit to your
product development. There are several benefits:

 The OS provider focuses on the OS as a product
unto itself. As a result, they will develop, test and
release the product to a degree that is beyo-nd
what your teams can do themselves. You should
ask your OS provider how they test the OS and
related products and packages, including board
support packages, drivers and other soft-ware
necessary to deploy the OS on your target.

 Since the OS provider is an expert on the OS side,
they can provide services and support to you that
will accelerate your product develop-ment,
including the security of your device. Ask them
about their experience in working with customers
to secure their devices

 The OS provider will maintain their products,
providing regular updates to their customers.
Ask your OS provider about how often they up-
date their products, and what kinds of improve-
ments should you expect to see in those up-
dates. At the minimum they should include
updates for newly found issues, including CVEs.

 The OS provider should be strongly focused on
security vulnerabilities, including CVEs. Besides
the regular updates mentioned above, they
should be able to help you manage the constant
CVE load that we have talked about in this paper.
Your OS vendor should be able to provide grea-
ter service around these issues, which is espe-
cially important if your device has to undergo
regulatory approval (such as in medical or auto-
motive devices)

White paper | A Guide to Minimizing Device Security Vulnerabilities

10

At the beginning of this paper, we described a scen-
ario, where a newly released product has been succ-
essfully infiltrated by hackers at great expense to
your company, both in terms of reputation and doll-
ars. By following the guidance in this paper, your
product will be:

 More difficult to successfully exploit

 Protected against known and unknown exploits
when released

 Faster to update to close any newly found
exploits

 More secure, giving your customers confidence
that they are protected EVEN IF something goes
wrong

The last point is especially important. Customers
are aware that there is no device that is comp-
letely free of bugs. What they want to know is
how you are minimizing defects and their imp-
act, and how ready are you when something
inevitably goes wrong. The methods in this
paper will not prevent all potential future secu-
rity issues, but they will put you in a good pos-
ition to quickly resolve those issues when they
arise.

So, when your CEO calls you telling you that
your product issues will be publicized, you can
tell him that not only have you done everything
possible to limit the impact, but that the issue is
already well on its way to closure. This will not
only save your job but could get you a bonus as
well.

Author’s biography

Robert Bates is Siemens Embedded’s chief safety
officer responsible for the safety, quality and
security aspects of Siemens Embedded’s product
portfolio targeting the medical, industrial, auto-
motive, and aerospace markets. In his role, Rob
works closely with customers and certification
agencies to facilitate the safety certification of
devices to IEC 61508, IEC 62304, ISO 26262 and
other safety certifications. Before moving to
Siemens, Robert was a software development
director at Wind River, where he was responsible
for commercial and safety certified operating
system offerings, as well as both secure and
commercial hypervisors. Robert has over 30
years of experience in the embedded software
field, most of which has been spent developing
operating system and middleware components
for device makers around the world.

Conclusions

About Siemens Digital Industries Software
Siemens Digital Industries Software is driving transfor-
mation to enable a digital enterprise where engineer-
ing, manufacturing and electronics design meet tomor-
row. Xcelerator, the comprehensive and integrated
portfolio of software and services from Siemens Digital
Industries Software, helps companies of all sizes create
and leverage a comprehensive digital twin that provides
organizations with new insights, opportunities and levels
of automation to drive innovation. For more information
on Siemens Digital Industries Software products and
services, visit siemens.com/embedded or follow us on
LinkedIn, Twitter, Facebook and Instagram.

Siemens Digital Industries Software – Where today
meets tomorrow.

Siemens Digital Industries Software

Headquarters
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 972 987 3000

Americas
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 314 264 8499

Europe
Stephenson House
Sir William Siemens Square
Frimley, Camberley
Surrey, GU16 8QD
+44 (0) 1276 413200

Asia-Pacific
Unit 901-902, 9/F
Tower B, Manulife Financial Centre
223-231 Wai Yip Street, Kwun Tong
Kowloon, Hong Kong
+852 2230 3333

siemens.com/embedded
© 2021 Siemens. A list of relevant Siemens trademarks can be found here.
Other trademarks belong to their respective owners.

MGC 02-21 TECH14500-wp 5/21

https://www.siemens.com/embedded
https://www.siemens.com/embedded

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

