Metabolic Surgery for Prevention and Treatment of Type 2 Diabetes

Oliver Varban, MD FACS FASMBS Bariatric Surgery and Weight Management Henry Ford Hospital, Detroit

Disclosures:

"I receive an honorarium from Blue Cross Blue Shield of Michigan for leadership and participation in the Michigan Bariatric Surgery Collaborative."

URGERY FOR OBESITY ND RELATED DISEASES

Original article

2022 American Society for Metabolic and Bariatric Surgery (ASMBS) and International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO): Indications for Metabolic and Bariatric Surgery Dan Eisenberg, M.D.^{a,*}, Scott A. Shikora, M.D.^b, Edo Aarts, M.D., Ph.D.^c,

Ali Aminian, M.D.^d, Luigi Angrisani, M.D.^e, Ricardo V. Cohen, M.D., Ph.D.^f, Maurizio De Luca, M.D.^g, Silvia L. Faria, Ph.D.^h, Kasey P. S. Goodpaster, Ph.D.^d,
Ashraf Haddad, M.D.ⁱ, Jacques M. Himpens, M.D., Ph.D.^j, Lilian Kow, B.M.B.S., Ph.D.^k, Marina Kurian, M.D.¹, Ken Loi, M.B.B.S., B.Sc. (Med)^m,
Kamal Mahawar, M.B.B.S., M.Sc.ⁿ, Abdelrahman Nimeri, M.D., M.B.B.Ch.^o, Mary O'Kane, M.Sc., R.D.^p, Pavlos K. Papasavas, M.D.^q, Jaime Ponce, M.D.^r,
Janey S. A. Pratt, M.D.^{a,s}, Ann M. Rogers, M.D.^t, Kimberley E. Steele, M.D., Ph.D.^u, Michel Suter, M.D.^{v,w}, Shanu N. Kothari, M.D.^x Major updates to 1991 National Institutes of Health guidelines for bariatric surgery

- Metabolic and bariatric surgery (MBS) is recommended for individuals with a body mass index (BMI) ≥35 kg/m², regardless
 of presence, absence, or severity of co-morbidities.
- MBS should be considered for individuals with metabolic disease and BMI of 30-34.9 kg/m².
- BMI thresholds should be adjusted in the Asian population such that a BMI ≥25 kg/m² suggests clinical obesity, and individuals with BMI ≥27.5 kg/m² should be offered MBS.
- Long-term results of MBS consistently demonstrate safety and efficacy.
- Appropriately selected children and adolescents should be considered for MBS.

(Surg Obes Relat Dis 2022; ■:1–12.) © 2022 The Author(s). Published by Elsevier Inc on behalf of American Society for Metabolic & Bariatric Surgery (ASMBS) and Springer Nature on behalf of International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO) This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

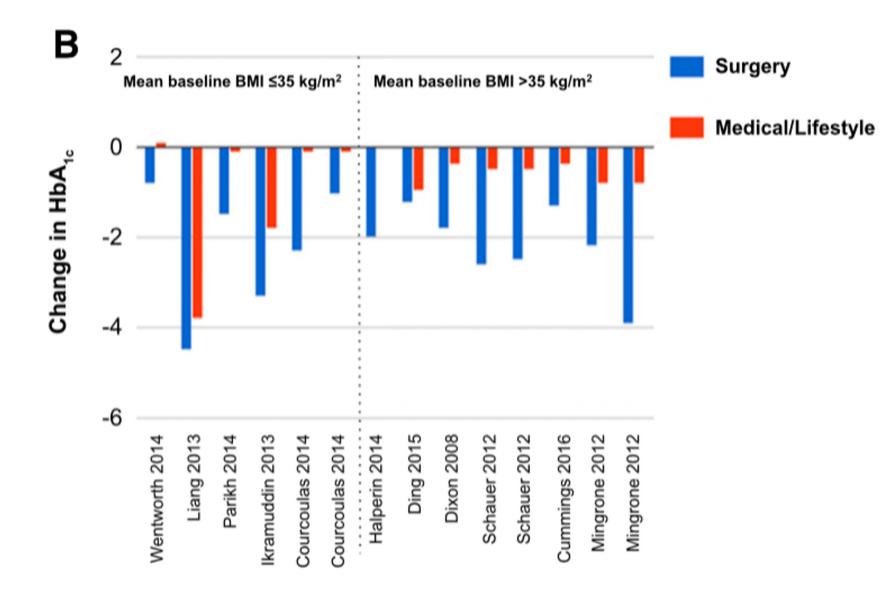
Keywords: Obesity; Metabolic and bariatric surgery; IFSO; ASMBS; Criteria; Indications

Audience Survey Question

What percentage of your patients who qualify for surgery do you refer to a surgery program?

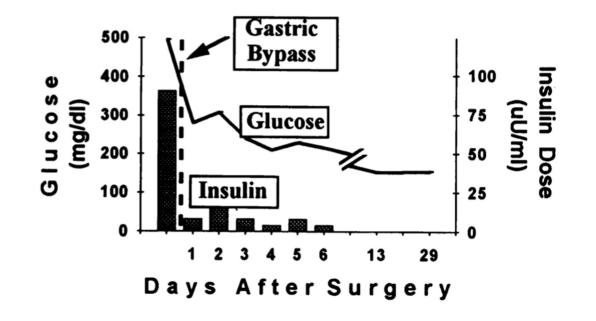
Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations

Diabetes Care 2016;39:861-877 | DOI: 10.2337/dc16-0236



Francesco Rubino,¹ David M. Nathan,² Robert H. Eckel,³ Philip R. Schauer,⁴ K. George M.M. Alberti,⁵ Paul Z. Zimmet,⁶ Stefano Del Prato,⁷ Linong Ji,⁸ Shaukat M. Sadikot,⁹ William H. Herman,¹⁰ Stephanie A. Amiel,¹ Lee M. Kaplan,² Gaspar Taroncher-Oldenburg,¹¹ and David E. Cummings,¹² on behalf of the Delegates of the 2nd Diabetes Surgery Summit*

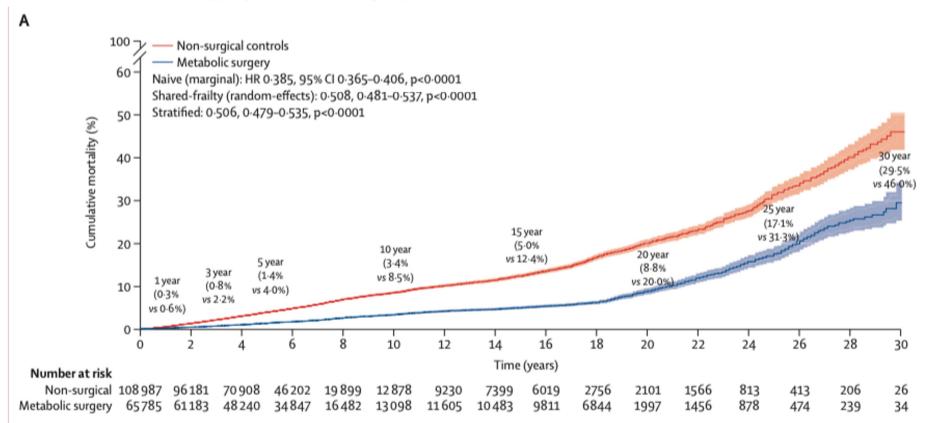
Α	Surger	У	Medic Lifesty					
Study (Operation) [Follow-up; HbA _{te} end point]	Glyc. Endp.	N	Glyc. Endp	. N	Weight	Peto, Fixed, 95% CI	Peto Odd	Is Ratios
Wentworth 2014 (LAGB) [24 mo; ≤7.0%] (17)	12	23	2	25	4.9%	8.11 [2.37, 27.84]		
Liang 2013 (RYGB) [12 mo; ≤7.0% off meds] (16)	28	31	0	70	8.4%	86.76 [33.89, 222.08]		I
Parikh 2014 (RYGB/LAGB/SG) [6 mo; ≤6.5% off meds] (18)	13	20	0	24	4.5%	21.15 [5.85, 76.51]		As
Ikramuddin 2013 (RYGB) [12 mo; ≤7.0%] (13)	28	57	11	57	12.5%	3.72 [1.72, 8.04]		Ascending
Ikramuddin 2015 (RYGB) [24 mo; ≤7.0%] (21)	26	60	8	59	11.8%	4.25 [1.92, 9.38]		Iă
Courcoulas 2014 (RYGB/LAGB) [12 mo; ≤6.5% off meds](14	4) 18	41	0	17	5.1%	7.51 [2.24, 25.21]	Mean BMI ≤35	—— ₫
Courcoulas 2015 (RYGB/LAGB) [36 mo; ≤6.5% off meds] (24 Halperin 2014 (RYGB) [12 mo; ≤6.5% off meds] (15)	4) . 14	.37 19		.14	4.0%	6.44 [1.65, 25.21] 5.82 [1.59, 21.39]		Mean
Ding 2015 (LAGB) [12 mo; $\leq 6.5\%$] (22)	6	18		22	3.9%	1.68 [0.42, 6.66]	Mean BMI >35 —	
Dixon 2008 (LAGB) [24 mo; $\leq 6.2\%$ off meds] (10)	22	29	_	26	6.7%	10.83 [3.79, 30.96]		Baseline
Schauer 2012 (RYGB/SG) [12 mo; $\leq 6.0\%$] (12)	34	99		41	10.4%	6.39 [2.74, 14.88]		
Schauer 2012 (RYGB/SG) [36 mo; $\leq 6.0\%$] (12)	27	97	ő	40	8.7%	5.73 [2.28, 14.42]		
Cummings 2016 (RYGB) [12 mo; $\leq 6.5\%$ off meds] (23)	9	15	1	17	3.4%	11.48 [2.63, 50.13]		
Mingrone 2012 (RYGB/BPD) [24 mo; $\leq 6.5\%$ off meds] (11)	34	40		20	6.4%	30.08 [10.28, 88.06]		−
Mingrone 2015 (RYGB/BPD) [60 mo; ≤6.5% off meds] (20)	19	38	0	15	4.9%	8.44 [2.46, 29.01]		│ ▼
Fixed-Effects Model		624		466	100.0%	8.45 [6.44, 11.10]		•
Heterogeneity: $Chi^2 = 45.43$, $df = 14$ ($P < 0.0001$); $I^2 = 69$	9%						b	
Test for overall effect: $Z = 15.36 (P < 0.00001)$							0.001 0.1	1 10 1000'
							Favors Medical/Lifestyle	Favors Surgery



Who Would Have Thought It?

An Operation Proves to Be the Most Effective Therapy for Adult-Onset Diabetes Mellitus

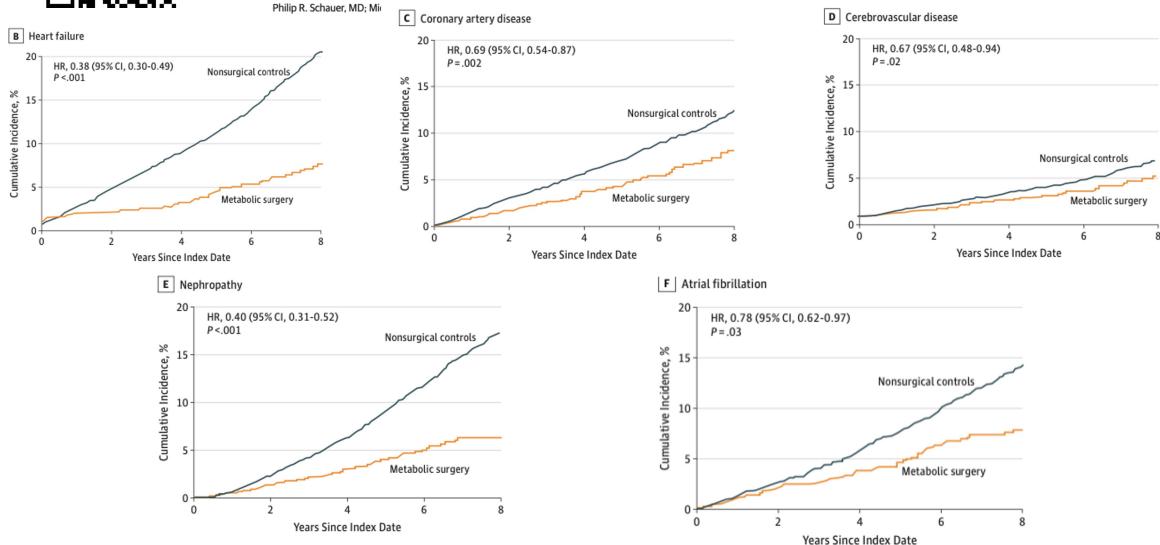
Walter J. Pories, M.D., Melvin S. Swanson, Ph.D., Kenneth G. MacDonald, M.D., Stuart B. Long, B.S., Patricia G. Morris, B.S.N., Brenda M. Brown, M.R.A., Hisham A. Barakat, Ph.D., Richard A. deRamon, M.D., Gay Israel, Ed.D., Jeanette M. Dolezal, Ph.D., and Lynis Dohm, Ph.D.



ANNALS OF SURGERY Vol. 222, No. 3, 339–352 © 1995 Lippincott-Raven Publishers

Association of metabolic-bariatric surgery with long-term survival in adults with and without diabetes: a one-stage meta-analysis of matched cohort and prospective controlled studies with 174772 participants

Nicholas L Syn*, David E Cummings*, Louis Z Wang*, Daryl J Lin*, Joseph J Zhao, Marie Loh, Zong Jie Koh, Claire Alexandra Chew, Ying Ern Loo, Bee Choo Tai, Guowei Kim, Jimmy Bok-Yan So, Lee M Kaplan, John B Dixon, Asim Shabbir


Findings Among 1470 articles identified, 16 matched cohort studies and one prospective controlled trial were included in the analysis. 7712 deaths occurred during 1.2 million patient-years. In the overall population consisting 174772 participants, metabolic-bariatric surgery was associated with a reduction in hazard rate of death of 49.2% (95% CI 46·3-51·9, p<0·0001) and median life expectancy was 6·1 years (95% CI 5·2-6·9) longer than usual care. In subgroup analyses, both individuals with (hazard ratio 0.409, 95% CI 0.370-0.453, p<0.0001) or without (0.704, 0.588–0.843, p<0.0001) baseline diabetes who underwent metabolic-bariatric surgery had lower rates of all-cause mortality, but the treatment effect was considerably greater for those with diabetes (between-subgroup I^2 95.7%, p<0.0001). Median life expectancy was 9.3 years (95% CI 7.1–11.8) longer for patients with diabetes in the surgery group than the non-surgical group, whereas the life expectancy gain was 5.1 years (2.0-9.3) for patients without diabetes. The numbers needed to treat to prevent one additional death over a 10-year time frame were 8.4 (95% CI 7.8–9.1) for adults with diabetes and 29.8 (21.2–56.8) for those without diabetes. Treatment effects did not appear to differ between gastric bypass, banding, and sleeve gastrectomy ($I^2 3 \cdot 4\%$, p=0.36). By leveraging the results of this meta-analysis and other published data, we estimated that every 1.0% increase in metabolic-bariatric surgery utilisation rates among the global pool of metabolic-bariatric candidates with and without diabetes could yield 5.1 million and 6.6 million potential life-years, respectively.

JAMA | Original Investigation

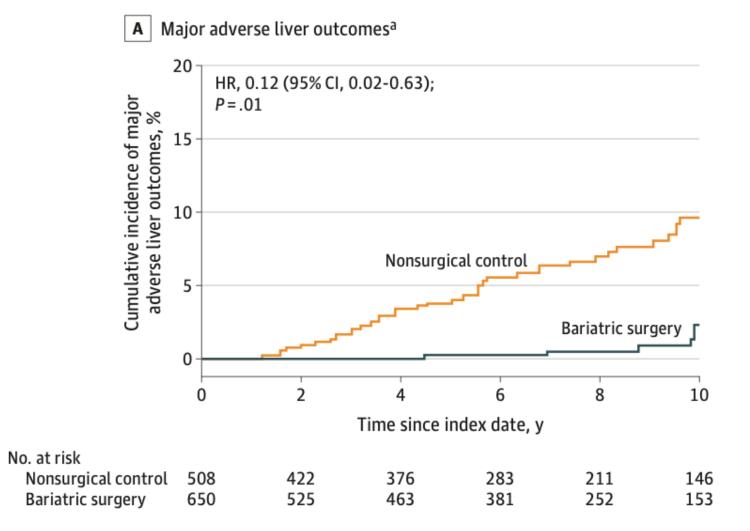
Association of Metabolic Surgery With Major Adverse Cardiovascular Outcomes in Patients With Type 2 Diabetes and Obesity

Ali Aminian, MD; Alexander Zajichek, MS; David E. Arterburn, MD, MPH; Kathy E. Wolski, MPH; Stacy A. Brethauer, MD;

JAMA | Original Investigation

Association of Bariatric Surgery With Major Adverse Liver and Cardiovascular Outcomes in Patients With Biopsy-Proven Nonalcoholic Steatohepatitis

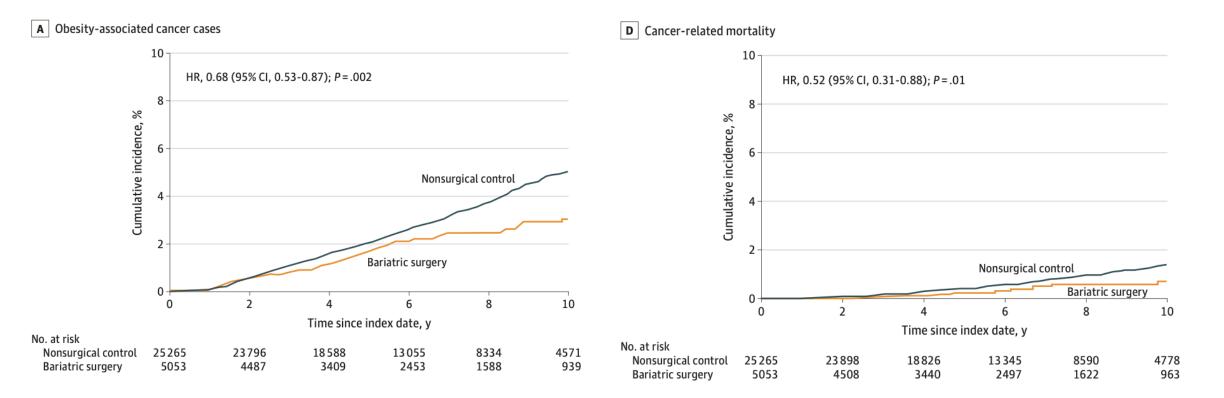
Ali Aminian, MD; Abbas Al-Kurd, MD; Rickesha Wilson, MD; James Bena, MS; Hana Fayazzadeh, MD; Tavankit Singh, MD; Vance L. Albaugh, MD, PhD; Faiz U. Shariff, MD; Noe A. Rodriguez, MD; Jian Jin, MS; Stacy A. Brethauer, MD, MBA; Srinivasan Dasarathy, MD; Naim Alkhouri, MD; Philip R. Schauer, MD; Arthur J. McCullough, MD; Steven E. Nissen, MD


OBJECTIVE To investigate the long-term relationship between bariatric surgery and incident major adverse liver outcomes and major adverse cardiovascular events (MACE) in patients with obesity and biopsy-proven fibrotic NASH without cirrhosis.

DESIGN, SETTING, AND PARTICIPANTS In the SPLENDOR (Surgical Procedures and Long-term Effectiveness in NASH Disease and Obesity Risk) study, of 25 828 liver biopsies performed at a US health system between 2004 and 2016, 1158 adult patients with obesity were identified who fulfilled enrollment criteria, including confirmed histological diagnosis of NASH and presence of liver fibrosis (histological stages 1-3). Baseline clinical characteristics, histological disease activity, and fibrosis stage of patients who underwent simultaneous liver biopsy at the time of bariatric surgery were balanced with a nonsurgical control group using overlap weighting methods. Follow-up ended in March 2021.

EXPOSURES Bariatric surgery (Roux-en-Y gastric bypass, sleeve gastrectomy) vs nonsurgical care.

MAIN OUTCOMES AND MEASURES The primary outcomes were the incidence of major adverse liver outcomes (progression to clinical or histological cirrhosis, development of hepatocellular carcinoma, liver transplantation, or liver-related mortality) and MACE (a composite of coronary artery events, cerebrovascular events, heart failure, or cardiovascular death), estimated using the Firth penalized method in a multivariable-adjusted Cox regression analysis framework.



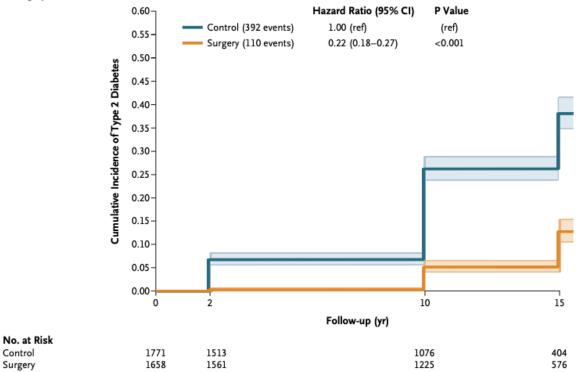
JAMA | Original Investigation

Association of Bariatric Surgery With Cancer Risk and Mortality in Adults With Obesity

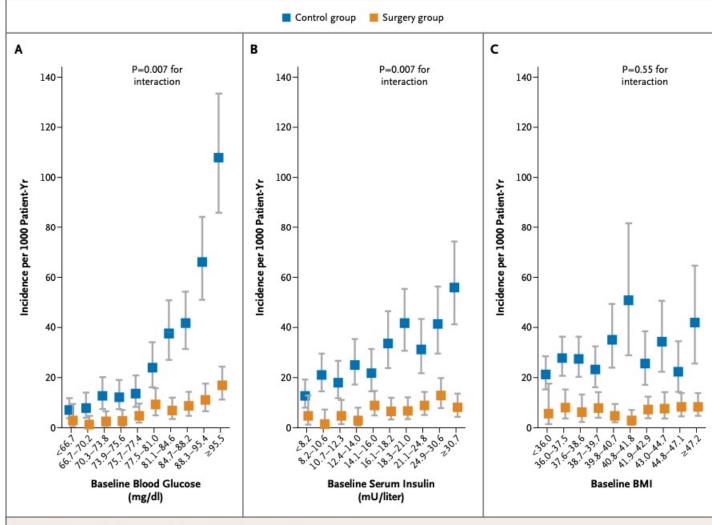
Ali Aminian, MD; Rickesha Wilson, MD; Abbas Al-Kurd, MD; Chao Tu, MS; Alex Milinovich, BA; Matthew Kroh, MD; Raul J. Rosenthal, MD; Stacy A. Brethauer, MD; Philip R. Schauer, MD; Michael W. Kattan, PhD; Justin C. Brown, PhD; Nathan A. Berger, MD; Jame Abraham, MD; Steven E. Nissen, MD

The NEW ENGLAND JOURNAL of MEDICINE

AUGUST 23, 2012


VOL. 367 NO. 8

Bariatric Surgery and Prevention of Type 2 Diabetes in Swedish Obese Subjects


Lena M.S. Carlsson, M.D., Ph.D., Markku Peltonen, Ph.D., Sofie Ahlin, M.D., Åsa Anveden, M.D., Claude Bouchard, Ph.D., Björn Carlsson, M.D., Ph.D., Peter Jacobson, M.D., Ph.D., Hans Lönroth, M.D., Ph.D., Cristina Maglio, M.D., Ingmar Näslund, M.D., Ph.D., Carlo Pirazzi, M.D., Stefano Romeo, M.D., Ph.D., Kajsa Sjöholm, Ph.D., Elisabeth Sjöström, M.D, Hans Wedel, Ph.D., Per-Arne Svensson, Ph.D., and Lars Sjöström, M.D., Ph.D.

A Surgery vs. Control

ESTABLISHED IN 1812

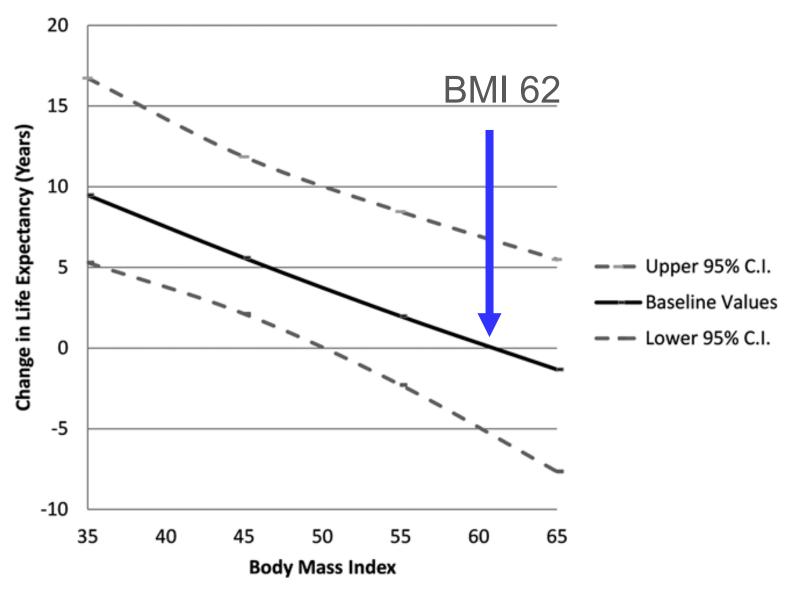


Figure 2. Interaction between Selected Risk Factors and Treatment.

The incidence of type 2 diabetes per 1000 person-years in the bariatric-surgery and control groups is shown according to deciles of baseline blood glucose levels (Panel A), serum insulin levels (Panel B), and body-mass index (BMI; the weight in kilograms divided by the square of the height in meters) (Panel C). In Panel A, P=0.002 for the interaction of treatment with the presence or absence of impaired fasting glucose. All incidence rates are adjusted for age and sex. The P values for interaction are unadjusted. For complete information on all calculated P values for interaction, see Table S7 in the Supplementary Appendix. To convert the values for glucose to millimoles per liter, multiply by 0.5551. I bars indicate 95% confidence intervals.

45 y/o Women with Diabetes

JAMA Surgery | Original Investigation

Factors Associated With Achieving a Body Mass Index of Less Than 30 After Bariatric Surgery

Oliver A. Varban, MD; Ruth B. Cassidy, MA; Aaron Bonham, MS; Arthur M. Carlin, MD; Amir Ghaferi, MD, MS; Jonathan F. Finks, MD; for the Michigan Bariatric Surgery Collaborative

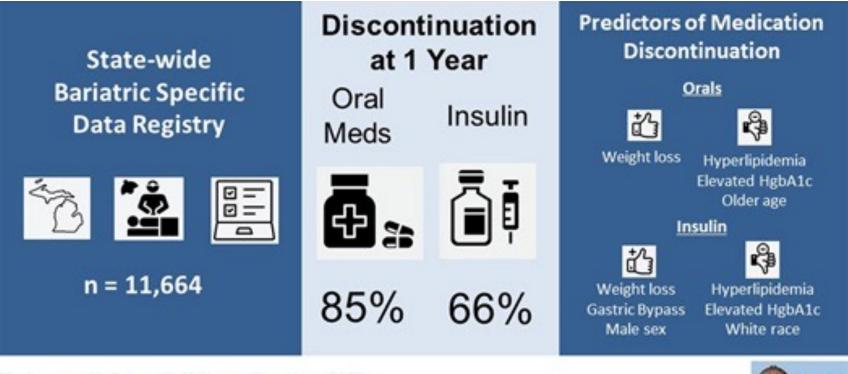
RESULTS A total of 9713 patients (36%; mean [SD] age, 46.9 [11.3] years; 16.6% male) achieved a BMI of less than 30 at 1 year after bariatric surgery. A significant predictor for achieving this goal was a preoperative BMI of less than 40 (odds ratio [OR], 12.88; 95% CI, 11.71-14.16; *P* < .001). Patients who had a sleeve gastrectomy, gastric bypass, or duodenal switch were more likely to achieve a BMI of less than 30 compared with those who underwent adjustable gastric banding (OR, 8.37 [95% CI, 7.44-9.43]; OR, 21.43 [95% CI, 18.98-24.19]; and OR, 82.93 [95% CI, 59.78-115.03], respectively; *P* < .001). Only 8.5% of patients with a BMI greater than 50 achieved a BMI of less than 30 after bariatric surgery. Patients who achieved a BMI of less than 30 had significantly higher reported rates of medication discontinuation for hyperlipidemia (60.7% vs 43.2%, *P* < .001), diabetes (insulin: 67.7% vs 50.0%, *P* < .001), as well as a significantly higher rate of sleep apnea remission (72.5% vs 49.3%, *P* < .001) and higher satisfaction rate (92.8% vs 78.0%, *P* < .001) compared with patients who did not.

JAMA Surgery November 2017 Volume 152, Number 11

Effect of Laparoscopic Roux-En Y Gastric Bypass on Type 2 Diabetes Mellitus

Philip R. Schauer, MD,* Bartolome Burguera, MD,† Sayeed Ikramuddin, MD,‡ Dan Cottam, MD,* William Gourash, CRNP,* Giselle Hamad, MD,* George M. Eid, MD,* Samer Mattar, MD,* Ramesh Ramanathan, MD,* Emma Barinas-Mitchel, PhD,§ R. Harsha Rao, MD,† Lewis Kuller, MD DrPH,§ and David Kelley, MD†

TABLE 3.	Resolution of T2DM According to Preoperative	
Severity ar	d Duration (n = 191)	


	Number	Improved 33	Resolved 158
	Severity*		
Impaired Fasting Gluc	ose IFG $(n = 14)$	0	100%
Diabetes - Diet Contro	lled DC-T2DM (n = 32)	3%	97%
Diabetes - Oral Agents	OA-T2DM $(n = 93)$	13%	87%
Diabetes - Insulin	I-T2DM (n = 52)	38%	62%
	Duration*		
	\leq 5 years (n = 119)	5%	95%
	6 to 10 years $(n = 44)$	25%	75%
	>10 years (n = 28)	46%	54%
	* Indicates <i>P</i> < 0.001.		

Annals of Surgery • Volume 238, Number 4, October 2003

Independent Predictors of Discontinuation of Diabetic Medication after Sleeve Gastrectomy and Gastric Bypass

Oliver A Varban, MD, FACS, FASMBS, Aaron J Bonham, MS, Arthur M Carlin, MD, FACS, Amir A Ghaferi, MD, MS, FACS, Jonathath F Finks, MD, FACS, Anne P Ehlers, MD, MPH, FACS

Varban et al. J Am Coll Surg, October 2022

Obesity and Metabolic Disease

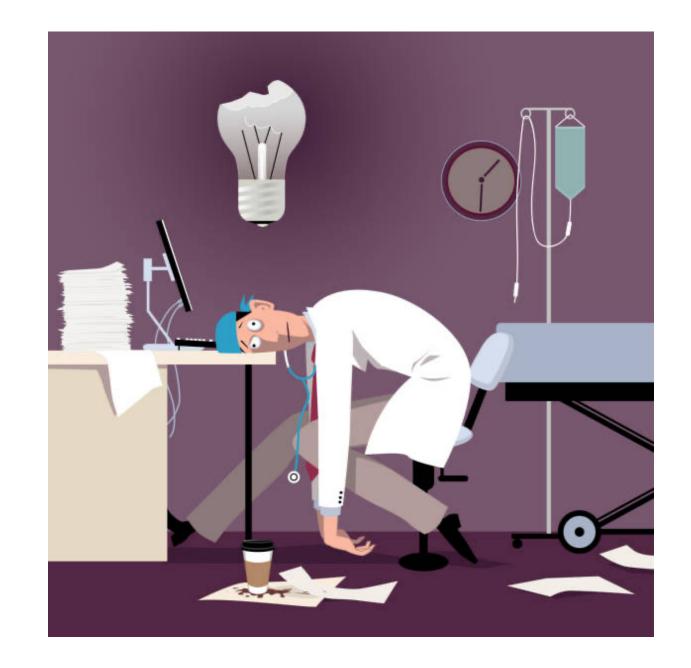
Improving Outcomes with Surgery

Better:

- Weight loss
- Comorbidity reduction
- Mortality benefit
- Less complications

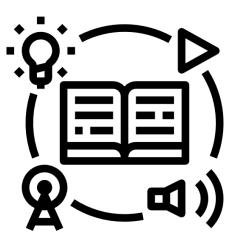
Oral meds to insulin Diabetes > 5 years Strong family history Prevention BMI >50

Improving Outcomes with Surgery



Better:

- Weight loss
- Comorbidity reduction
- Mortality benefit
- Less complications


Max? • Age

• BMI

Metabolic Surgery Referral

Evaluation

Metabolic Surgery Team

Intake Specialists Program Coordinator Surgeons Dietitians **Psychologist Nurses** APP/NP **Exercise Physiologists** Weight Management **Obesity Medicine**

Metabolic Surgery Evaluation

Routine:

Seminar/Video Education

Medical Evaluation Dietary Evaluation Psychological Evaluation

Exercise Class Endoscopy Labs/Drug screen Sleep apnea screening Smoking cessation

<u>Selective:</u> Sleep Study Imaging

Evaluations: Cardiology Pulmonology Nephrology Hepatology Hematology Calculate Individualized Risks and Benefits

MBSC Outcomes Calculator

Outcomes Calculator

Decondura *			
Procedure *			
Lap Band Sleeve Gast	rectomy RYGB -Ope	en RYGB - Lap	BDP/DS
Demographics			
Weight (pounds) *		Height (feet) *	
		Feet	-
Height (inches) *		Private Insurance	
Inches -		No	-
Age *		Gender *	
Age		Choose only one	-
Number of Days After Surgery			

Outcomes Calculator

B

Procedure *

RYGB - Open 🗹 RYGB - Lap 📃 Lap Band 🗹 Sleeve Gastrectomy 📃

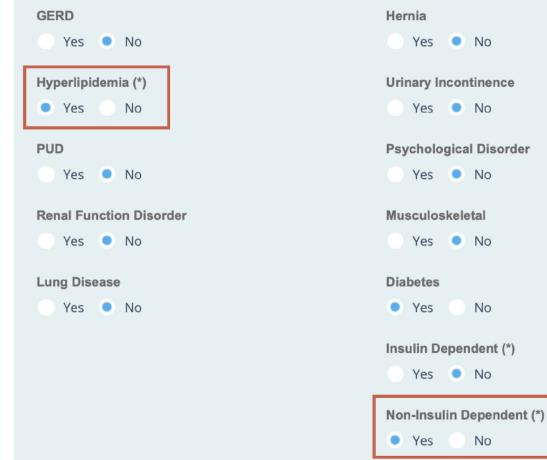
Demographics

Note: The calculator is not reliable for patients with a BMI >90

Weight (pounds) *	
225.00	
Private Insurance	
Yes	-
Race *	
Non-Hispanic White	-

Height (feet) *	
5	-
Age *	
35	

BDP/DS


BMI = 37 kg/m2

Height (inches) *

Comorbidities

WEIGHT LOSS					
	RYGB - LAP	SLEEVE GASTRECTOMY			
WEIGHT (LOST) AT YEAR 1	150 (75)	163 (62)			
WEIGHT (LOST) AT YEAR 2	150 (75)	167 (58)			
WEIGHT (LOST) AT YEAR 3	154 (71)	172 (53)			

COMORBIDITY RESOLUTION AT 1 YEAR POST-OP

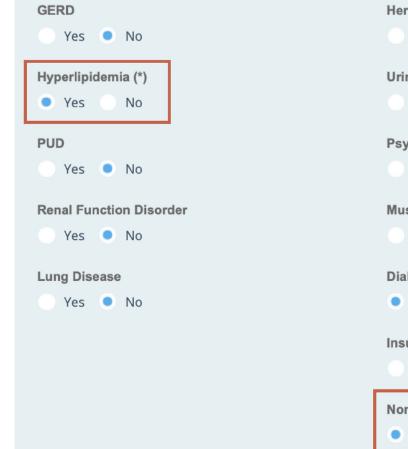
	RYGB - LAP	SLEEVE GASTRECTOMY
NON-INSULIN DEPENDENT	88 %	85 %
HYPERCHOLESTEROLEMIA	85 %	75 %
SLEEP APNEA	83 %	74 %

COMPLICATIONS AT 30 DAYS POST-OP

	RYGB - LAP	SLEEVE GASTRECTOMY
ANY	7.01 %	3.40 %
SEVERE	2.05 %	0.99 %
DEATH	0.05 %	0.02 %

Procedure *

RYGB - Open 🗹 RYGB - Lap 📃 Lap Band 🗹 Sleeve Gastrectomy 📃 BDP/DS


- Demographics

Note: The calculator is not reliable for patients with a BMI >90

Weight (pounds) *		Height (feet) *		Height (inches) *	
375.00		5	-	5	•
Private Insurance		Age *		Gender *	
Yes		55		Male	
Race *					
Non-Hispanic Black	•	BN	1I = 62	kg/m2	

- Comorbidities

Liver Disorder Yes No
Cholelithiasis Yes No
Sleep Apnea (*) Yes No
Cardiovascular Disease

Outcomes Calculator					
WEIGHT LOSS					
RYGB - LAP SLEEVE GASTRECTOMY					
WEIGHT (LOST) AT YEAR 1	257 (118)	278 (97)			
WEIGHT (LOST) AT YEAR 2	243 (132)	272 (103)			
WEIGHT (LOST) AT YEAR 3 246 (129) 278 (97)					

	RYGB - LAP	SLEEVE GASTRECTOMY
NON-INSULIN DEPENDENT	75 %	71 %
HYPERCHOLESTEROLEMIA	68 %	52 %
SLEEP APNEA	41 %	30 %

COMPLICATIONS AT 30 DAYS POST-OP

	RYGB - LAP	SLEEVE GASTRECTOMY
ANY	9.34 %	4.59 %
SEVERE	3.48 %	1.69 %
DEATH	0.18 %	0.09 %

Personalized Outcomes

Shared:

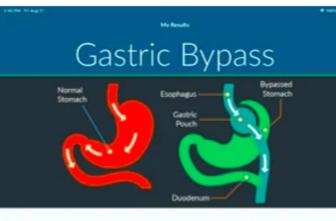
- Goals
- Expectations
- Decision-making

Screenshots iPad iPhone

Who developed My Weight Loss Journey?

This project was developed by the University of Michigan, with funding from the Patient Centered Outcomes Research Institute.

How was the information developed?


The contents of this program were developed in collaboration with:

- Former weight loss treatment patients they helped us decide what to talk about and how
- · Physicians who practice each of the treatments featured in the program
- Data from a database with more than 90,000 patients who have been through weight loss treatment

What is included in My Weight Loss Journey?

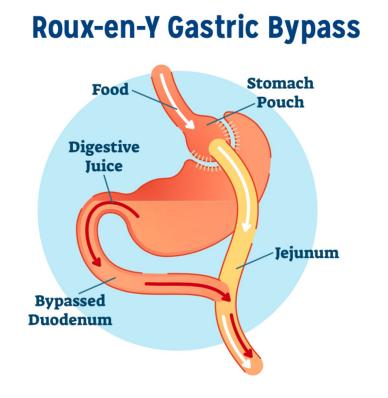
After completing an initial questionnaire, you will receive:

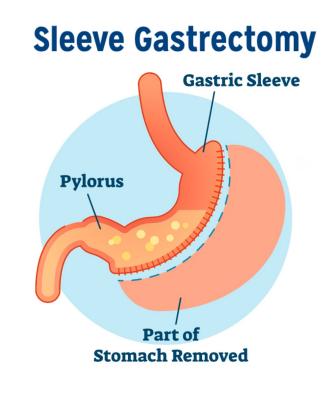
- Personalized information about the benefits, risks and potential weight loss related to your weight loss surgery.
- Information about how manage life after surgery.
- Access to video testimonials from former patients on their lives both before and after surgery.
- Email messages encouraging you to return to My Weight Loss Journey at various

Know your surgery

Description	•
Benefits	>
Surgical Risks	>
Compare	>

<	Gastric Bypans	• ****
Description		
Treatment details	: how gastric bypass works and recovery	•
Treatment timeline: before and after surgery		•


Hear Tricia's Story



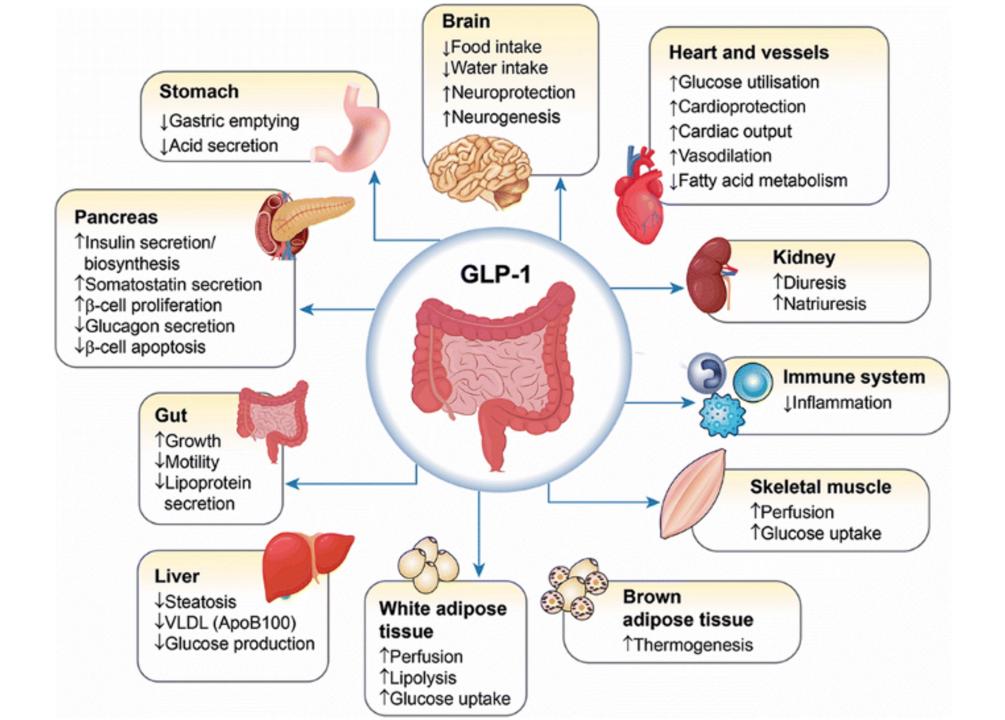
Audience Survey Question

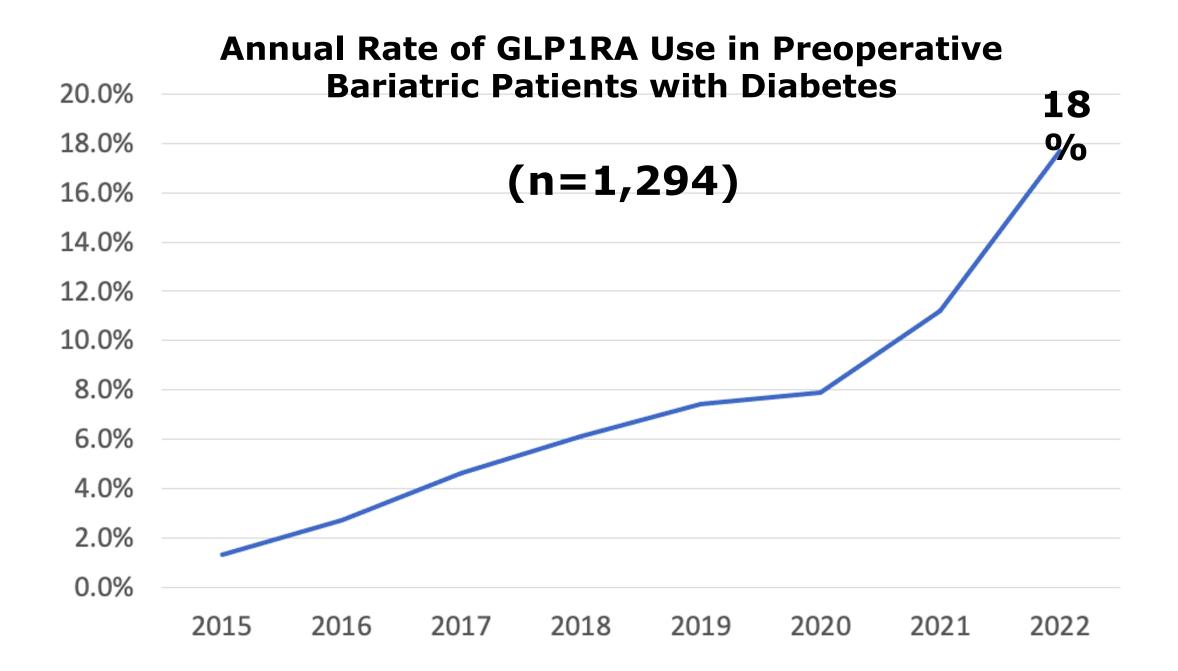
Would you use a one-page hand-out in your clinic? (Yes/No)

Total Body Weight Loss: 30-35%

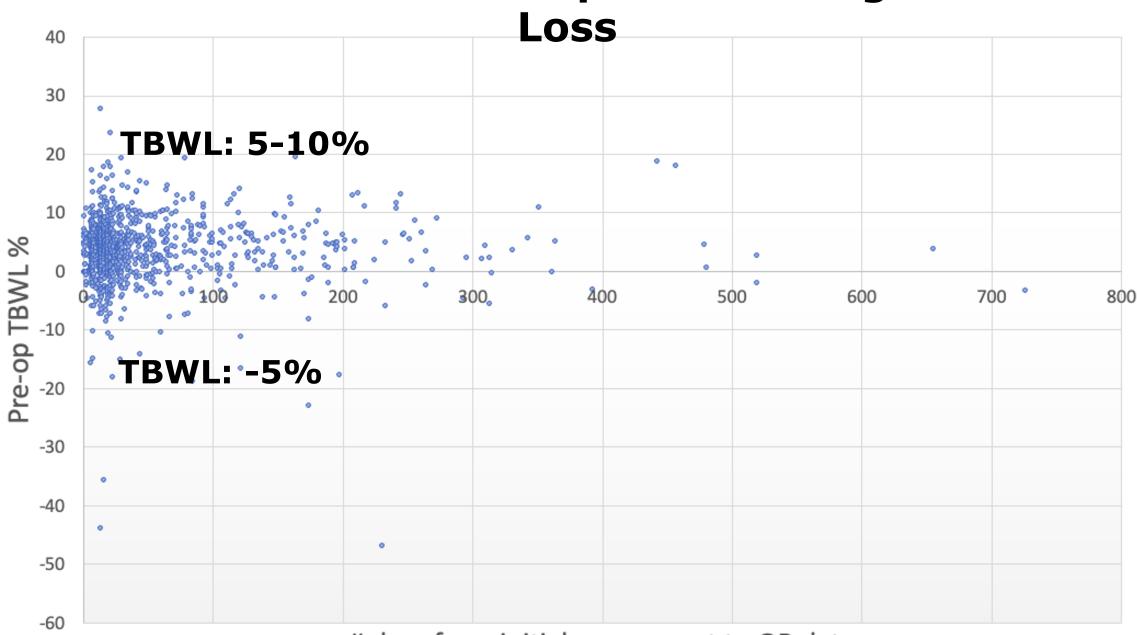
Complications: 2-5%

Total Body Weight Loss: 25-30%


Complications: 1-3%


Postoperative Care

1-2 days hospital stay 2-4 weeks return to work 1, 3, 6, 9-month and annual follow up Diet: Liquid => soft/puree => regular Multivitamin, Iron, Vit D, Calcium, B12



JUST ONE more THING !

Variation in Preoperative Weight

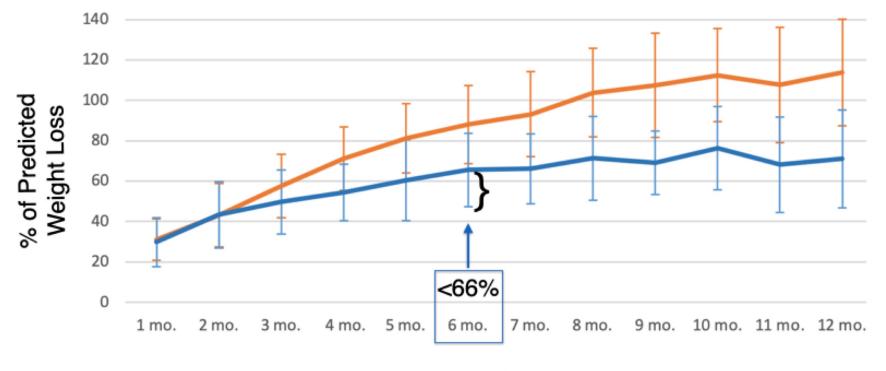
days from initial assessment to OR date

Summary of Observations

- Use of GLP1RAs have increased over time: **<u>18% in 2022</u>**
- Patients on a GLP1RA prior to bariatric surgery:
 - More likely to have <u>higher rates of metabolic disease</u> (HTN, HLD, IDDM)
 - Mean preop weight loss (<u>3.6% TBWL</u>)
- Variation in preoperative weight loss exists:
 - Top tercile: <u>8% TBWL</u> vs Bottom tercile: <u>- 2.3% TBWL</u>
 - Top tercile: <u>Higher BMI but lower rates of IDDM</u>

Future Considerations

Neoadjuvant


> Obes Surg. 2021 Jul;31(7):3210-3217. doi: 10.1007/s11695-021-05397-8. Epub 2021 Apr 6.

Am I on Track? Evaluating Patient-Specific Weight Loss After Bariatric Surgery Using an Outcomes Calculator

Oliver A Varban¹, Aaron J Bonham², Amanda L Stricklen², Rachel Ross², Arthur M Carlin³, Jonathan F Finks⁴, Amir A Ghaferi⁴²

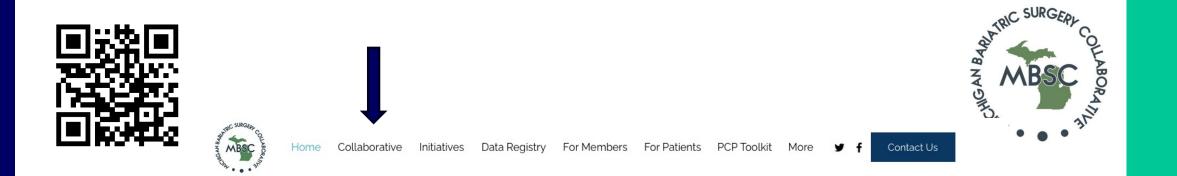
Affiliations + expand

PMID: 33825152 DOI: 10.1007/s11695-021-05397-8

Met predicted weight loss

Did not meet predicted weight loss

Final Thoughts...

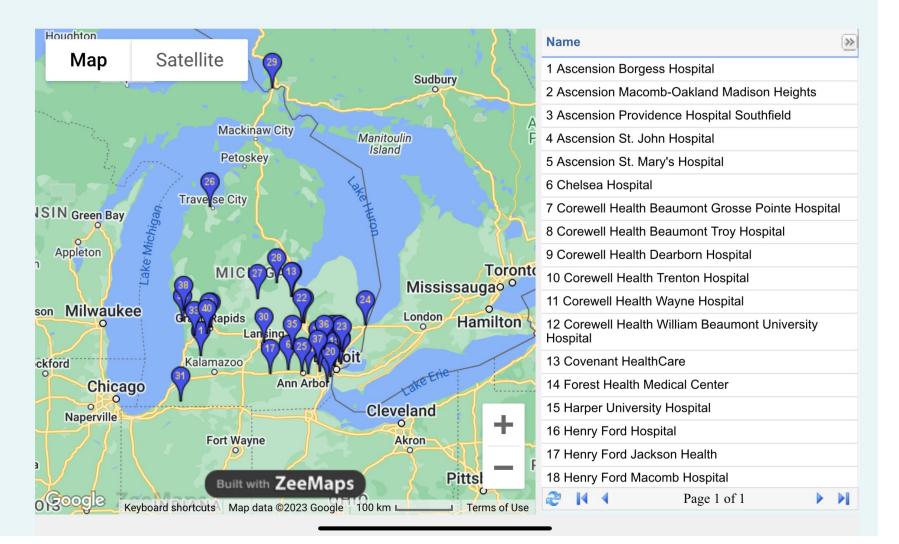

Multimodal treatment of metabolic disease

through

Multidisciplinary collaboration

Oliver Varban, MD, FACS, FASMBS <u>ovarban1@hfhs.org</u>

MICHIGAN BARIATRIC SURGERY COLLABORATIVE


Advancing the Science and Practice of Bariatric Surgery

The Michigan Bariatric Surgery Collaborative is a regional group of hospitals and surgeons that perform bariatric surgery in Michigan. Formed in 2005, MBSC aims to innovate the science and practice of metabolic and bariatric surgery through comprehensive, lifelong, patient-centered obesity care-in Michigan and across the United States.

MBSC Fact Sheet

https://www.mbscsurgery.org

MBSC PARTICIPATING SITES

https://www.mbscsurgery.org/collaborative