
Mutation Testing atMutation Testing at
ScaleScale @giorgionatili1 . 1

$ $ whoamiwhoami
Engineering leader at Amazon (Kindle rendering)
Organizer of Droidcon Boston (and maybe Seattle)
Organizer of SwiftFest Boston (and Seattle)
Meetups and community enthusiast
Lead of the System Architecture & Design learning
track in Amazon

@giorgionatili1 . 2

DisambiguateDisambiguate
Software QualitySoftware Quality

@giorgionatili2 . 1

QQualityuality
starts withstarts with
cclean lean ccodeode

2 . 2

int d; // elapsed time in days1

int elapsedTimeInDays;1

VS

2 . 3

Measuring Code QualityMeasuring Code Quality

2 . 4

CClean lean ccodeode
is is ttestableestable

2 . 5

- If you understand what the code is doing, you can also tets its intentions.

Speaker notes

AAddingdding
tests tests ccleanlean
the the ccodeode

2 . 6

Do you ever tried TDD?Do you ever tried TDD?

2 . 7

Tests as First-ClassTests as First-Class
CitizensCitizens

@giorgionatili3 . 1

Anatomy of a Good TestAnatomy of a Good Test
Self-descriptive
Simple
SOLID

3 . 2

Evert simple test should satisfy at least two principles:
S — Single responsibility principle
O — Open for extensions, but closed for modification

More sophisticated tests should satisfy also other principles:
L — Liskov substitution principle

Speaker notes

namespace stringutil {

 std::string tail(const std::string& word) {
 if (word.length() == 0) return "";
 return word.substr(1);
 }
}

1
2
3
4
5
6
7

What to test?What to test?

3 . 3

What conditions do you want to test here?

- Given a string, when it's empty, then the tail is empty as well
- Given a string, when it contains only one character, then the tail is empty
- Given a string, when it contains more than one character, then the tail should contain the rest of the string after
the head

Speaker notes

TEST(AString, AllTheLettersAfterTheHeadAsShlouldBeTheTail) {
 ASSERT_THAT(tail("xyz"), Eq("yz"));
}

TEST(AString, TheTailOfAnEmptyStringShouldBeEmpty) {
 ASSERT_THAT(tail(""), Eq(""));
}

TEST(AString, TheTailOfASingleCharacterStringShouldBeEmpty) {
 ASSERT_THAT(tail("X"), Eq(""));
}

1
2
3
4
5
6
7
8
9
10
11

3S Based Tests3S Based Tests

3 . 4

A Good Test SuiteA Good Test Suite
Reliable
Accurate
Fast

3 . 5

Potential Test Suite QualityPotential Test Suite Quality
MetricsMetrics

Line coverage
Tests reliability
Execution speed

3 . 6

Which are the rightWhich are the right
metrics?metrics?

3 . 7

Automate QualityAutomate Quality
ChecksChecks

@giorgionatili4 . 1

Is beneficialIs beneficial
aaddingdding
ttests?ests?

4 . 2

If you add more tests, does this mean your tests suite is stronger? Or is it just causing an exaggerated overhead on
adding functionality?

Speaker notes

WWhat is thehat is the
rright testight test
ccoverage?overage?

4 . 3

There are some pitfalls in pursuing a random coverage index:

* It's not possible to determine if the areas under test are in the critical path of your software (should we say
product?)
* Until a real bug is not found, it's not easy to be sure to test the boundaries of your software
* Specs and real use cases are often pretty different, how many times do you implement an API that then was used

Speaker notes

TEST(AString, AllTheLettersAfterTheHeadAsShlouldBeTheTail) {
 ASSERT_THAT(tail("xyz"), Eq("yz"));
}

TEST(AString, TheTailOfAnEmptyStringShouldBeEmpty) {
 ASSERT_THAT(tail(""), Eq(""));
}

TEST(AString, TheTailOfASingleCharacterStringShouldBeEmpty) {
 tail("X");
}

1
2
3
4
5
6
7
8
9
10
11

What is the test coverage?What is the test coverage?

4 . 4

TThehe
OOracleracle
PProblemroblem

4 . 5

Coverage misses one important aspect: The Oracle Problem. A test oracle is an entity that decides whether a test
case passed or failed.

Speaker notes

Different ApproachDifferent Approach
Learning from earlier mistakes to prevent them from
happening again
Simulate earlier mistakes and see whether the
resulting defects are found

4 . 6

FFaultault
BBasedased
TTestingesting

4 . 7

Zebra ExistsZebra Exists

4 . 8

Because it's not always black or white

Speaker notes

Fuzzing All theFuzzing All the
ThingsThings

@giorgionatili5 . 1

GoalsGoals
Measure the degree to which a system, component, or
function can work with an invalid or stressful input
Deviate from the normal expected input of a program
to analyze the consequences

5 . 2

bool checkEvenOdd(int num){
 return num % 2 == 0 ? true : false;
}

1
2
3

Input ValidationInput Validation

bool isDigit(char *c_array){
 for (int k = 0; k < strlen(c_array); k++) {
 if ((int)c_array[k]<(int)'0' ||
 (int)c_array[k]>(int)'9') {
 return false;
 }
 }
 return true;
}

1
2
3
4
5
6
7
8
9

5 . 3

YYetet
PPrettyretty
OOpenpen

5 . 4

The Heart bleed bugThe Heart bleed bug

heartbleed.com

5 . 5

http://heartbleed.com/

* The heartbeat extension provides a way to test and keep alive secure communication links without the need to
renegotiate the connection each time
* The affected versions of OpenSSL allocate a memory buffer for the message to be returned based on the length
field in the requesting message, without regard to the actual size of that message's payload
* As a result, a malicious user can steal the servers' private keys and users' session cookies and passwords

Speaker notes

BenefitsBenefits
Early bugs finding
Discover security issues
Discover fragile areas of the codebase

5 . 6

ApproachesApproaches
Dumb fuzzers (mutation)
Intelligent fuzzers (generation)

5 . 7

* Dumb fuzzers (mutation)
 ** Here, it’s all about mutating the existing input values (blindly). That’s why it is known as “dumb” fuzzers, as in
lacking understanding of the format/structure of the data
* Intelligent fuzzers (generation)
 ** In contrast to Dumb Fuzzers, here an understanding of the file format/protocol is very important. It’s about
“generating” the inputs from the scratch based on the specification/format.

Speaker notes

DrawbacksDrawbacks
Fuzz testing alone cannot provide a complete picture
of an overall security threat or bugs
Fuzz testing can detect only simple faults or threats.
To perform effectively, it will require significant time.
Setting a boundary value condition with random
inputs is very problematic

5 . 8

ToolsTools
Fuzzing Frameworks

Boofuz
BDFuzz

Mutational Fuzzers (alter existing data samples to
create new test data)

AFL / libFuzzer
Radamsa

5 . 9

libFuzzer can be checked out from LLVM’s Subversion repository and built using their directions. You supply a test
driver as a function called LLVMFuzzerTestOneInput with C linkage. The result is a standalone program that
exercises the code inside that function. It uses some Clang compiler-supplied instrumentation, via the -fsanitize-
coverage option, to monitor which paths are exercised, so gcc is not an option.

AFL is a standalone tool that uses binary rewriting to instrument the code being tested. It supplies wrapper

Speaker notes

Fuzzing Doesn't ListenFuzzing Doesn't Listen

5 . 10

Fuzzing doesn't cover complex scenarios, mutation listen because it uses the tests as a driver for creating mutants.

Speaker notes

Mutation TestingMutation Testing

@giorgionatili6 . 1

Unexpected ProgramUnexpected Program
MutationsMutations

6 . 2

What Is It?What Is It?
Mutation testing evaluates the quality of existing
software tests
The idea is to modify (mutate) code covered by tests in
a small way and check whether the existing test set
detects or rejects the change

6 . 3

MutantsMutants
Each transformation results in a new program, called
mutant, that differs slightly from the original

Detecting and rejecting such a modification by the
existing tests is denoted as killing a mutant

6 . 4

* The process of creating a mutant from the original program is called mutagenesis

Speaker notes

Killing MutantsKilling Mutants

6 . 5

MetricsMetrics
Test suite effectiveness is measured by its ability to
detect those mutants

The mutation score is the ratio of killed mutants to the
total number of mutants

6 . 6

* Mutation score is therefore the measurement of the test suite effectivness

Speaker notes

What About Test Coverage?What About Test Coverage?

6 . 7

* Full coverage alone testifies nothing about the quality of the underlying tests! It is pretty useless from the quality
assurance point of view
* Mutation Testing is a type of Software Testing that is performed to design new software tests and also evaluate
the quality of already existing software tests

Speaker notes

“
 This is whereThis is where

mutation testingmutation testing
comes into play!comes into play!

6 . 8

Different MutationsDifferent Mutations
Statement mutation
Value mutation
Decision mutation

6 . 9

In Software Engineering, Mutation testing could be fundamentally categorized into 3 types– statement mutation,
decision mutation, and value mutation.

* Statement Mutation — cut and pastes a part of a code of which the outcome may be a removal of some lines
* Value Mutation — values of primary parameters are modified
* Decision Mutation — control statements are changed

Speaker notes

// Initial code:
if(a < b) {
 c = 10;
 } else {
 c = 20;
}

// Changed code:
if(a < b) {
 d = 10;
 } else {
 d = 20;
}

1
2
3
4
5
6
7
8
9
10
11
12
13

Statement MutationStatement Mutation

6 . 10

* In statement mutations, a statement is deleted or it is replaced by some other statement

Speaker notes

// Initial code:
int mod = 1000000007;
int a = 12345678;
int b = 98765432;
int c = (a + b) % mod;

// Mutated code:
int mod = 1007;
int a = 12345678;
int b = 98765432;
int c = (a + b) % mod;

1
2
3
4
5
6
7
8
9
10
11

Value MutationValue Mutation

6 . 11

* Basically a small value is changed to a larger value or a larger value is changed to a smaller value. In this testing
basically constants are changed

Speaker notes

// Initial code:
if(a < b) {
 c = 10;
} else {
 c = 20;
}

// Mutated code:
if(a > b) {
 c = 10;
 } else {
 c = 20;
}

1
2
3
4
5
6
7
8
9
10
11
12
13

Decision MutationDecision Mutation

6 . 12

* In decision mutations, the logical or arithmetic operators are changed to detect errors in the program

Speaker notes

DDedicatededicated
mmutationutation
ooperatorsperators

6 . 13

int greatestCommonDenominator(int x, int y) {

 int tmp;
 while(y != 0) {
 tmp = x % y; // The % operator can be replaced
 x = y; // with +,-,*,/,%,**
 y = tmp;
 }
 return x;
}

1
2
3
4
5
6
7
8
9
10

AArithmetic rithmetic OOperatorperator
RReplacementeplacement

6 . 14

int greatestCommonDenominator(int x, int y) {

 int tmp;
 while(y != 0) { // The != operator can be
 tmp = x % y; // replaced by <,>,<=,>=,=, !=
 x = y;
 y = tmp;
 }
 return x;
}

1
2
3
4
5
6
7
8
9
10

RRelational elational OOperatorperator
RReplacementeplacement

6 . 15

if(a && b)
// Potential mutations
if(a || b)
if(a & b)
if(a | b)
if(a ^ b)
if(false)
if(true)
if(a)
if(b)

1
2
3
4
5
6
7
8
9
10

CConditional onditional OOperatorperator
RReplacementeplacement

6 . 16

Many OthersMany Others
Assignment Operator Replacement
Unary Operator Insertion
Scalar Variable Replacement
Absolute Value Insertion

6 . 17

Object Oriented Muation:

* AMC - Access Modifier Change
* HVD - Hiding Variable Deletion
* HVI - Hiding Variable Insertion
* OMD - Overriding Method Deletion

Speaker notes

Mutation Testing Mutation Testing
Identifies areas of code that are not tested properly
Identifies hidden defects that can’t be detected using
other testing methods
Assesses the quality of the test cases
Assesses error propagation in the program

6 . 18

Infinite loops and runtime errors can happen with a mutant and this can be useful to build the code to better
manage errors during the normal workflow.

Speaker notes

Mutation TestingMutation Testing

++
Mutation AnalysisMutation Analysis

6 . 19

* In a nutshell:
 * Mutation analysis: Assessing the quality of a test suite
 * Mutation analysis inserts systematic faults (mutations) into the source code under test producing mutants of
the original code and judges the effectiveness of the test suite by its ability to detect those faults
 * Mutation testing: Improving the test suite using mutants
 * Mutants resemble real-world bugs, and that the test suite effectiveness in detecting mutants is correlated to

Speaker notes

A Lot of DataA Lot of Data

6 . 20

Mutation testingMutation testing
based on LLVM based on LLVM

@giorgionatili7 . 1

Supported LanguagesSupported Languages

Java, JVM

C, C++

Javascript

Rust

SwiftRuby

PHP

C#

Closure Python
Scala

7 . 2

Let's Focus OnLet's Focus On

Java, JVM

C, C++

Javascript

Rust

SwiftRuby

PHP

C#

Closure Python
Scala

7 . 3

LLVMLLVM

7 . 4

* The LLVM Project is a collection of a modular and reusable compiler and toolchain technologies. Despite its
name, LLVM has little to do with traditional virtual machines. The name "LLVM" itself is not an acronym; it is the full
name of the project
* LLVM makes it easier to not only create new languages but to enhance the development of existing ones
* C is sometimes described as a portable, high-level assembly language, LLVM’s IR was designed from the
beginning to be a portable assembly

Speaker notes

Available ToolsAvailable Tools
Dextool Mutate, plugin based on Dextool
MuCPP, based on source code mutants generation
Mull, an LLVM-based tool with a focus on C and C++
CCMutator, based on higher-order mutation operators
implemented as opt passes on LLVM IR
Xemu, based on QEMU software emulator

7 . 5

* Dextool Mutate https://github.com/joakim-brannstrom/dextool/blob/master/plugin/mutate/README.md (SEMBRA
FICO)
* MuCPP https://ucase.uca.es/mucpp/download.html (Test suite independent, but it seems outdated)
* MULL https://arxiv.org/pdf/1908.01540.pdf (Supports multiple languages, works well with GoogleTest)
* CCMutator https://cpb-us-e1.wpmucdn.com/sites.usc.edu/dist/c/321/files/2019/03/Kusano13CCmutator-
1dgag3o.pdf (7 years that the repo is not updated)

Speaker notes

What is MullWhat is Mull
An open-source tool for mutation testing based on
LLVM
An extendable tool to analyze the effectiveness of
your test suite
A command-line tool that produces a SQLite database
or an HTML report of the tested program

7 . 6

* It works with LLVM IR, a low-level intermediate representation, to perform mutations, and uses LLVM JIT for just-
in-time compilation; for this reason, Mull is:
 * Language independent (any language that supports LLVM IR -> C, C++, Rust, Swift)
 * Fast (fine-grained control over compilation and execution of the program and its mutants)
* Direct manipulation of LLVM IR allows Mull to do less work to generate mutations: only modified fragments of IR
code are recompiled, and this results in faster processing of mutated programs

Speaker notes

mull-cxx -test-framework=GoogleTest -mutators=conditional
\
 -reporters=Elements -report-dir=./report \
 -report-name=MULL-TEST-ONE \
 -workers=4 -compdb-path compile_commands \
 -disable-cache=0 \

/bin/core test

1

2
3
4
5
6

How to Run MullHow to Run Mull

7 . 7

Steps: before running Mull:

* git clone https://github.com/mull-project/mull.git --recursive
* cd mull
* mkdir build.dir && cd $_
* cmake -DPATH_TO_LLVM=path/to/llvm DCMAKE_CXX_FLAGS=-D_GLIBCXX_USE_CXX11_ABI=0 ..

Speaker notes

Why MullWhy Mull
Efficiency in generating a mutation
Support for dry-run mode
Effective sandbox model
Support for failing fast

7 . 8

* Direct manipulation of LLVM IR allows Mull to do less work to generate mutations: only modified fragments of IR
code are recompiled, and this results in faster processing of mutated programs
* When in dry-run mode, Mull collects information about mutants but doesn’t run the tests against them
* Mutations can impact the code behavior and make the program crash, timeout or exit prematurely; Mull uses a
parent/child process isolation
* Mull has an option to decrease the number of test runs that is _fail fast mode_

Speaker notes

Supported MutatorsSupported Mutators
Mathematical
Conditional negator
Remove void function
Replace call
Scalar value replacement
Many others! :)

7 . 9

Supported Mutators (also known as operators)

* Math: Add, Sub, Mul, Div; this group of operators performs mutations of basic arithmetic operators such as "+" to
"-", "-" to "+", "*" to "/", "/" to "*", and so on
* Conditional negator, this group of operators negate a condition such as "lt" to "gt", "eq" to "ne", and so on
* Remove void function mutator, it removes the calls to a function returning void from LLVM IR code

Speaker notes

$./mull-cxx --help1

Explore the MutatorsExplore the Mutators

--mutators=<value> - Choose mutators:
 =all - default, experimental
 =arithmetic - cxx_arithmetic_add_to_sub, cxx_arithmetic_add_assign_to_sub
 =bitwise - cxx_bitwise_lshift_to_rshift, cxx_bitwise_lshift_assign_to_
 =conditional - and_or_replacement_mutator, negate_mutator, conditionals_bo
 =conditionals_boundary_mutator - cxx_relational_le_to_lt, cxx_relational_lt_to_le, cxx_relat
 =constant - scalar_value_mutator
 =cxx - conditionals_boundary_mutator, negate_relational, arithmet
 =default - cxx_arithmetic_add_to_sub, negate_mutator, remove_void_func
 =experimental - and_or_replacement_mutator, numbers, replace_call_mutator,
 =functions - replace_call_mutator, remove_void_function_mutator
 =math - cxx_arithmetic_add_to_sub, cxx_arithmetic_sub_to_add, cxx_
 =negate_relational - cxx_relational_gt_to_le, cxx_relational_ge_to_lt, cxx_relat
 =numbers - cxx_number_init_const, cxx_number_assign_const
 =and_or_replacement_mutator - Replaces && with ||, || with &&
 =cxx_arithmetic_add_assign_to_sub_assign - Replaces += with -=
 =cxx_arithmetic_add_to_sub - Replaces + with -
 =cxx_arithmetic_div_assign_to_mul_assign - Replaces /= with *=

=cxx arithmetic div to mul - Replaces / with *

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19 7 . 10

Mull's ApproachMull's Approach
Mutations can be done either at a high level (i.e.,
source code) or at a lower level (i.e., bitcode)
Mull applies mutations at a lower level because:

The same engine can be used to support any
LLVM-based language
The execution time for each mutation is lower

7 . 11

* Mutating at the LLVM link
 ** Same mutation in IR syntax
 ** Use JIT to compile and link all the small mutation
 ** Faster but not all the mutation at this level have representation in code
* Mutate at binary
 ** Even faster feedback loop

Speaker notes

Under the HoodUnder the Hood

Loads LLVM Bitcode into memory
Inserts instrumentation code into each function
Compiles instrumented LLVM Bitcode to machine code
Prepares the machine code for execution by the LLVM
JIT engine
At an IR code level, it finds the matching tests
Runs each test using the LLVM JIT engine and collects
code coverage information

7 . 12

* Step 1: Mull loads LLVM Bitcode into memory.
* Step 2: Mull inserts instrumentation code into each function. This code is used to collect code coverage
information. We describe our approach to instrumentation in III.A.
* Step 3: Mull compiles instrumented LLVM Bitcode to machine code and prepares the machine code for execution
by LLVM JIT engine.
* Step 4: In the LLVM IR code Mull finds the tests according to a test framework specified in the configuration file.

Speaker notes

DrawbacksDrawbacks
Compiling with bitode enabled is straightforward for a
small project but painful for big projects
 Mutating the bitcode generates noise because not all
the mutations have a representation in code
Some mutations generate the same behavior
Mutation testing is time-consuming and requires brain
power
It is not a solution for black-box testing

7 . 13

* Unfortunately, lots of the low-level 3P code has custom build systems (e.g. ICU, Boost).
* Faster but not all the mutation at this level have representation in code; more noise because not all the mutations
have a representation in code
* Not all mutations are interesting because some will result in the exact same behavior (i.e., Equivalent Mutations)

Speaker notes

@giorgionatili

What?!?What?!?

7 . 14

Then Why?Then Why?
To identify potential areas of improvement
To find bugs behind the usual human interaction
To optimize error handling strategies
To asses quality and health status of the codebase

7 . 15

How is it possible?How is it possible?

7 . 16

Reports and MetricsReports and Metrics

@giorgionatili8 . 1

DDiscoveriscover
IInspectnspect
IImprovemprove

 8 . 2

sdfsdfsd

Speaker notes

mull-cxx -test-framework=GoogleTest -mutators=math \
 -reporters=Elements -report-dir=./report -report-name=TEST \
 -workers=4 -compdb-path compile_cmd.json -disable-cache=0 \
 -compilation-flags="\
 -isystem /opt/clang+llvm-9.0.0/include/c++/v1 \
 -isystem /opt/clang+llvm-9.0.0/lib/clang/9.0.0/include \
 -isystem /usr/include" \
 ./bin/core-test

1
2
3
4
5
6
7
8

Generate ReportsGenerate Reports

8 . 3

Math mutators cxx_arithmetic_add_to_sub, cxx_arithmetic_sub_to_add, cxx_arithmetic_mul_to_div,
cxx_arithmetic_div_to_mul

Speaker notes

Loading bitcode files (threads: 4): 4/4. Finished in 267ms.
Compiling instrumented code (threads: 4): 4/4. Finished in 11ms.
Loading dynamic libraries (threads: 1): 1/1. Finished in 0ms.
Searching tests (threads: 1): 1/1. Finished in 2ms.
Preparing original test run (threads: 1): 1/1. Finished in 145ms.
Running original tests (threads: 4): 30/30. Finished in 187ms.
Applying function filter: no debug info (threads: 4): 3496/3496. Finished in 14ms.
Applying function filter: file path (threads: 4): 3313/3313. Finished in 22ms.
Instruction selection (threads: 4): 3313/3313. Finished in 23ms.
Searching mutants across functions (threads: 4): 3313/3313. Finished in 369ms.
Applying filter: no debug info (threads: 4): 12355/12355. Finished in 12ms.
Applying filter: file path (threads: 4): 12355/12355. Finished in 35ms.
Applying filter: junk (threads: 4): 12355/12355. Finished in 3657ms.
Prepare mutations (threads: 1): 1/1. Finished in 0ms.
Cloning functions for mutation (threads: 4): 4/4. Finished in 769ms.
Removing original functions (threads: 4): 4/4. Finished in 194ms.
Redirect mutated functions (threads: 4): 4/4. Finished in 11ms.
Applying mutations (threads: 1): 409/409. Finished in 11ms.
Compiling original code (threads: 4): 4/4. Finished in 3625ms.
Running mutants (threads: 4): 409/409. Finished in 4586ms.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Exploring LogsExploring Logs

8 . 4

Mutation ScoreMutation Score
(fmt / include / fmt / core.h with math mutators)

8 . 5

Survived MutantSurvived Mutant
(fmt / include / fmt / core.h with math mutators)

8 . 6

Math mutators cxx_arithmetic_add_to_sub, cxx_arithmetic_sub_to_add, cxx_arithmetic_mul_to_div,
cxx_arithmetic_div_to_mul

Speaker notes

Compiling instrumented code (threads: 4): 4/4. Finished in 4612ms.
Loading dynamic libraries (threads: 1): 1/1. Finished in 0ms.
Searching tests (threads: 1): 1/1. Finished in 1ms.
Preparing original test run (threads: 1): 1/1. Finished in 86ms.
Running original tests (threads: 4): 30/30. Finished in 203ms.
Applying function filter: no debug info (threads: 4): 3496/3496. Finished in 15ms.
Applying function filter: file path (threads: 4): 3313/3313. Finished in 23ms.
Instruction selection (threads: 4): 3313/3313. Finished in 21ms.
Searching mutants across functions (threads: 4): 3313/3313. Finished in 608ms.
Applying filter: no debug info (threads: 4): 20586/20586. Finished in 15ms.
Applying filter: file path (threads: 4): 20586/20586. Finished in 58ms.
Applying filter: junk (threads: 4): 20586/20586. Finished in 3969ms.
Prepare mutations (threads: 1): 1/1. Finished in 1ms.
Cloning functions for mutation (threads: 4): 4/4. Finished in 1040ms.
Removing original functions (threads: 4): 4/4. Finished in 204ms.
Redirect mutated functions (threads: 4): 4/4. Finished in 13ms.
Applying mutations (threads: 1): 446/446. Finished in 10ms.
Compiling original code (threads: 4): 4/4. Finished in 3808ms.
Running mutants (threads: 4): 446/446. Finished in 5704ms.

Total execution time: 21046ms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Time ConstraintsTime Constraints

8 . 7

Running all the mutators with the cache disabled (i.e., a first-run) on a relatively small package takes more than 20
seconds.

Speaker notes

EEstimatestimate
RRemainingemaining
BBugsugs

8 . 8

Switching PerspectivesSwitching Perspectives
Count how many open bugs are in your backlog
Label or categorize 30% of them
Run mull, then categorize and count the bugs
Calculate the ratio between categorized and not
categorized bugs

8 . 9

total = 300 known bugs

labeled = 100 categorized bugs

found = 100 total bugs discovered with mutation

labeledFound = 30 existing bugs discovered with mutation

Existing DataExisting Data

8 . 10

labeled

 unknown

labeledFound

notLabeledFound

=

unknown > 200 potential unknown bugs

Simple RatioSimple Ratio

8 . 11

Don't PanicDon't Panic

8 . 12

Scaling MutationScaling Mutation
TestingTesting

@giorgionatili9 . 1

Cultural ChangesCultural Changes

Code quality is essential to release a successful product
It's possible to objectively evaluate code quality
Automating quality checks is keen for effective teams
Tests are code and should be implemented with the
same criteria

9 . 2

Technical ChallengesTechnical Challenges
Everyone worked with obsolete compilers
Integrate the checks in your build tools
Minimize the junk in your data
Support every operating system

9 . 3

Compilers OutdatedCompilers Outdated
Compilers can be updated
Software architecture can simplify compilers update
Updates are like a fresh start

9 . 4

Pipeline IntegrationPipeline Integration
Build infrastructure can integrate any tool
Be thoughtful on when trigger mutation testing
Analyze your data early in the process and often
Modularize your pipeline

9 . 5

Dev EnvironmentDev Environment
Invest time to simplify the usage of the tools
Be inclusive, support all the dev platforms
Write exhaustive documentation

9 . 6

Report Analysis Report Analysis
Review the data in isolation and share your finding
Collect the findings and learn from them
Implement a data model to learn from errors

9 . 7

* Review the report
* Collect the Equivalent Mutations and Junk mutations to learn from them

Speaker notes

Get ready for a newGet ready for a new
challengechallenge

9 . 8

Final RemarksFinal Remarks

10 . 1

* Fun fact, you got exposed to more than 20 new acronyms and you survived
* Extreme mutation: Extreme mutation is another mutation testing strategy to simplify and to increase MT speed. It
characterizes itself by replacing the whole method logic by a nullable block: in java, we would have no code on void
methods, a simple return null; statement on methods returning objects, or returning some constants.
 * a method is a good level of abstraction to reason about the code and the test suite;
 * extreme mutation generates much fewer mutants than the default/classic strategy;

Speaker notes

@giorgionatili

Thank you!Thank you!

10 . 2

