
From Four
Wheels to Two
Launching Lyft Scooters,
Engineering principles for fast paced,
wheel spinning product development

Mobius Moscow 2019
RJ Marsan @rjmarsan1

I’m RJ

I’m a hacker

2

Build cool stuff, fast.

- A hacker’s motto, circa 2010

3

In 2010, I picked up Android development for the first time

The ultimate hacker platform

So I made a career out of it...

4

After years of building stuff that never shipped,

I got burnt out

So I’ve come up with a new motto

5

Waste less precious time

Make more meaningful stuff

6

Product Engineering:
(and this talk’s takeaways)

1. Maximize your effort
2. Own what you code
3. Ship meaningful stuff

7

Yes, there will be code.

Story time

8

“We want to build a scooter sharing service

… do you want to join?”

9

Lyft is a major rideshare service in
North America, launched in 2012.

Our mission is to improve people's lives through
the world's best transportation, and our vision is
to reinvent cities around people, not cars.

10

As scooters became popular around American
cities in 2018, we saw it as a natural extension
of our company vision and mission.

In June 2018, we had an opportunity to expand
Lyft’s transportation options in an exciting way.

11

The proposal

Provide a scooter sharing service for Lyft users

Client, server, firmware, hardware, operations from scratch

Three Two month deadline

12

The constraint

We are a rideshare
company, built for efficiency
getting you a car, not a
scooter

We can't risk our core
experience in pursuit of a
new feature

13

This could be fun…
or a disaster

14

I’m RJ
(@rjmarsan)

SF based, 9 years of Android
@ Lyft, Google & Hulu
You’ll find me brewin’ pour-over coffee, snowboarding, cooking,
hiking, and sometimes writing Android code

15

If we want to succeed,
every moment counts.

16

Pause and step back

17

What is success?
What is not-success?

• Too Slow: Not building fast enough to meet our deadlines
• Too Fast: Rushing to release a non-functional product
• Too Disruptive: Interfering with our company’s core business or infrastructure
• Not Useful: Creating a product our users don’t want

18

What is success?
• Balancing speed and reliability in our code to meet critical deadlines

Speed Reliability

19

What is success?
• Balancing speed and reliability in our code to meet critical deadlines
• Confidence that what we launch will be engaging and useful

Speed Reliability

Useful

20

What is success?
• Balancing speed and reliability in our code to meet critical deadlines
• Confidence that what we launch will be engaging and useful

Speed Reliability

Useful?

21

Useful = Solving people problems
Building apps is a human process, intended to
solve problems for humans.

People problems are solved with technical
solutions.

This is the foundation of every engineering
decision we make, embracing ambiguity,
uncertainty, and subjectivity.

22

This is a talk on
product engineering

Building and shipping meaningful
products for real humans

23

Product engineering

24

Speed Reliability

Useful

Product engineering principles
For fast-paced mobile product development (and hopefully many other things)

1. Stay simple, stay lean

2. Reimagine over reinventing

3. Listen, learn, and launch what matters

25

Stay Simple,
Stay Lean

Effectively building as little as possible

26

We have an existing
ride-sharing experience we
can't risk

We need a 💪 rock solid 💪
foundation that we can trust
and build from at rocket speed““ 27

Safe & Solid Foundation
Safeguarding it behind a Feature Flag is a great way to prevent
users from seeing your feature.

 if (featuresProvider.isEnabled(Features.LYFT_SCOOTERS)) {
 return lastMileStepMapper.mapToStep(lastMileRide);
 }

But what about all the other places that feature might live?

Stay Simple, Stay Lean

28

Safe & Solid Foundation
Stay Simple, Stay Lean

29

Scooters

Scheduled
Rides

Shared
Rides

Request
Flow

Transit
Info

Background
Services

Local
Datastore

Client
Verification

Features Frameworks

Safe & Solid Foundation
Stay Simple, Stay Lean

30

Scooters

Scheduled
Rides

Shared
Rides

Request
Flow

Transit
Info

Background
Services

Local
Datastore

Client
Verification

.gradle

.gradle

.gradle

.gradle

.gradle

.gradle

.gradle

.gradle

Safe & Solid Foundation
Stay Simple, Stay Lean

31

Scooters
API

Scheduled
Rides

Shared
Rides

Request
Flow

Transit
Info

Background
Services

Local
Datastore

Client
Verification

.gradle

.gradle

.gradle

.gradle

.gradle

.gradle

.gradle

.gradle

Scooters
Impl

.gradle

Dependency
Injection

Safe & Solid Foundation
Feature modules minimize surface area and gave us confidence:

in the root scooter module …
package com.lyft.android.passenger.lastmile.core;

public interface ILastMileRouter {
 PassengerStep getLastMileStep();
}

… in a separate gradle module …

@Provides
ILastMileRouter provideLastMileRouter() {
 return new EnabledLastMileRouter();
}

… and a no-op module

Stay Simple, Stay Lean

32

Safe & Solid Foundation
FlavorModules let us be confident that prod builds simply didn’t
have our code:

 implementation project(':instant-features:passenger-x:last-mile:core:api')

 implementation project(':instant-features:passenger-x:last-mile:ride')

 // Include scooters in dev and alpha

 devImplementation project(':instant-features:passenger-x:last-mile:core:impl')

 alphaImplementation project(':instant-features:passenger-x:last-mile:core:impl')

 // Do not include in beta and production

 betaImplementation project(':instant-features:passenger-x:last-mile:core:no-op')

 prodImplementation project(':instant-features:passenger-x:last-mile:core:no-op')

Stay Simple, Stay Lean

33

Safe & Solid Foundation
Our original code became:

 if (featuresProvider.isEnabled(Features.LYFT_SCOOTERS) && !lastMileRide.isNull()) {
 PassengerStep lastMileStep = lastMileStepMapper.mapToStep(lastMileRide);
 if (lastMileStep != null) {
 return lastMileStep;
 }
 }

Stay Simple, Stay Lean

34

Safe & Solid Foundation
Stay Simple, Stay Lean

35

Scooters
API

Scheduled
Rides

Shared
Rides

Request
Flow

Transit
Info

Background
Services

Local
Datastore

Client
Verification

.gradle

.gradle

.gradle

.gradle

.gradle

.gradle

.gradle

.gradle

 🛴💨

.gradle

Kill-switch - the big red button
Kill-switches let us remove every interaction with our feature in real-time if something
goes dramatically wrong:

 return killSwitchProvider.observableEnabled(KillSwitches.LYFT_SCOOTERS)
 .switchMap { killSwitchValue ->
 when (killSwitchValue) {
 KillSwitchValue.FEATURE_ENABLED -> {
 authenticationScopeService.doWhenAuthenticated(rideUpdateService.observeAndUpdateLastMileRide())
 }
 KillSwitchValue.FEATURE_DISABLED -> Observable.never()
 }
 }

Stay Simple, Stay Lean

36

Staying within this foundation,
we focused on building
exactly what we needed to,
and nothing more.

37

Balancing usefulness
& technical difficulty

38

Speed Reliability

Useful

Define a Product North Star
“Empower users with a convenient, easy-to-use and
affordable way to get around their city”

1. What people problem are we trying to solve?
2. How will our product help the user through that

problem?

This north star remained constant through all our twists
and turns as we decided what was important to build.

Stay Simple, Stay Lean

39

Define a Golden path
The central user experience to
solve the core people problem
under optimal conditions

Stay Simple, Stay Lean

40

Lyft Scooter’s Golden Path

41

Lyft Scooter’s Golden Path

42

Golden Path
Very clearly outlined what
our feature would and
would not be

Easily evaluate if we’re
building towards our north
star

Stay Simple, Stay Lean

43

Limit your features
It was tempting to have all the features of our existing
rideshare service, but realistically we couldn’t launch
in time with all of that.

Stay Simple, Stay Lean

44

Limit your features
Extra feature ideas:

• Sharing ETA with friends
• Setting a destination
• Coupons & promotions

With our north star and our golden path, we can balance
usefulness with technical difficulty.

“Does sharing an ETA get us closer to our product north star?”

We ended up leaving all extra features out of our first release.

Stay Simple, Stay Lean

45

Design the simplest architecture
Now that we have a north star, a solid foundation and a limited feature set,
we need an overall architecture to make the golden path a reality.

What’s the most straightforward and easy-to-reason architecture that gives
us enough wiggle room to handle changes?

Stay Simple, Stay Lean

46

The bigger the feature,

the more likely it'll take shape
in unexpected ways.

47

Reviewing the golden path
Once the user selected a scooter, it would go from
Reserved, to Locked, to Unlocked, to In Progress

Stay Simple, Stay Lean

48

Reviewing the golden path
When the user submitted a photo to end their ride, they
would arrive at a post-ride screen, then rate their ride

Stay Simple, Stay Lean

49

InRide

A potential architecture
We were tempted to represent the in-ride and post-ride experiences as a
separate set of states, building in future-proof flexibility.

Stay Simple, Stay Lean

PostRide

Locked Unlocked Active Parking Dropped Off Ride Rating

50

InRide

The hidden complexity
What edge cases might be triggered when we transition?
What hidden complexity is this generating?

Stay Simple, Stay Lean

PostRide

Locked Unlocked Active Parking Dropped Off Ride Rating

51

InRide

The hidden complexity
Are we optimizing for a path our product might not take?

Stay Simple, Stay Lean

PostRide

Locked Unlocked Active Parking Dropped Off Ride Rating

52

InRide

The hidden complexity
We want something we can easily reason about in any
circumstance and through any sequence of states

Stay Simple, Stay Lean

PostRide

Locked Unlocked Active Parking Dropped Off Ride Rating

53

RideStatus

ActiveReserved

Single-state architecture

Dropoff

Instead we modeled it as a single state machine with different UI flows
corresponding to a single unique server-driven state

Stay Simple, Stay Lean

54

Single-state architecture
We polled a single endpoint and felt confident that we could reasonably
predict what the app would do in any given situation.

Stay Simple, Stay Lean

55

Get everyone involved

Everyone from designers to firmware engineers was involved in this architecture.

Making sure everyone knew how it worked was critical to keeping our varying features
aligned with our capabilities, and let us easily explain trade offs.

Stay Simple, Stay Lean

56

Reimagine
Over
Reinventing

Treating the codebase like 🧱 lego blocks

57

Should this be a separate
app?““
We should be ready for
10 million users at launch!

58

It’s natural when…
You have tight timelines – start from scratch and stay small

You are expecting to scale – reuse everything to leverage
existing infrastructure

For us, the optimal path focus on creative reuse of existing
infrastructure while reducing dependence on changing it

Reimagine Over Reinventing

59

Leverage everything you can
Build systems, Network stack, Authentication, Databases, Localization

Release process, Testing infrastructure, etc.

Tight timelines aren’t possible without building off the great work of your
coworkers! 🏋🏽♀

Reimagine Over Reinventing

60

Don’t let it slow you down
In our experience, often the biggest roadblocks happen when you
depend on another team to change something for you.

Remember: you have options, especially if you can explore and
communicate them!

Reimagine Over Reinventing

61

Communicate what you can’t change
We were frequently asked if we could push scooter state changes to the client:

private Observable<LastMileRideDTO> pollLastMileRide() {

 return activeRideApi.streamReadLastMileActiveRideAsync(new ReadLMATOBuilder().build());

}

It was on the roadmap for our networking team, but wouldn’t be ready in our timeline.

Reimagine Over Reinventing

62

Communicate what you can’t change
We explained the tradeoffs to our team and found middle ground, restarting
our polling at important moments:

private Observable<Unit> observeStatusChangesTriggeringRepolling() {
 return observeRideStatusChangesThatTriggerRepolling()
 .mergeWith(observeDeviceChangesThatTriggerRepolling())
 .debounce(200, TimeUnit.MILLISECONDS);
}

Reimagine Over Reinventing

63

Encapsulate what you can
PM: Can we put a drivers license scanner in the app?

Me: Uhhh, that sounds hard, maybe?

PM: I think we already have it in our driver app

… research, study, find BarcodeView ...

Reimagine Over Reinventing

64

DriversLicenseComponent

DriversLicenseController

Composition over Inheritance
Reimagine Over Reinventing

BarcodeView
(Driver team’s code, untouched)

CameraOverlay

DriversLicenseInteractor

65

Encapsulate what you can
PM: Can we put a drivers license scanner in the app?

Me: Uhhh, that sounds hard, maybe?

PM: I think we already have it in our driver app

… research, study, make a new DriversLicenseComponent ...

Me: Done!

Reimagine Over Reinventing

66

I’ve spent many, many hours making
minor adjustments to UI.

This is what I want to reuse the most.

67

68

LPL: Lyft’s Product Language

69

LPL: Lyft’s Product Language
Comprehensive library of UI
elements, designed and developed
for usability, consistency and
accessibility

We could just glance at mocks and
know exactly what size, font, and
colors we’re using

Reimagine Over Reinventing

70

LPL: Lyft’s Product Language
What we got for free:

• Loading states
• Disabled states
• I18n & A11y
• Consistent UX across app
• Pixel-Polished UI
• Well documented APIs

Reimagine Over Reinventing

71

Possibly the best part of LPL…
Our designers are passionate about making sure our product
language works within and innovates on both Android and iOS.

Reimagine Over Reinventing

72

Possibly the best part of LPL…
And iOS mocks totally worked for Android!

Reimagine Over Reinventing

73

Lyft Product Language in action
The common language was key to communicating
tradeoffs between design and engineering

Being involved early and often helped avoid the
“unimplementable mocks” scenario

Reimagine Over Reinventing

74

Lyft Product Language in action
Me: *glancing at mocks* is this button in the LPL?

Designer: No I kinda did my own thing

Me: I love it, it’ll take me a week or so to get it nailed
down, what do you think about going with the LPL version?
It’ll only take me 20 minutes.

Designer: Oh, totally cool. Thanks for asking

Reimagine Over Reinventing

75

It’s important to pause here and say

Thank you, Lyft design team 💜

76

When you can’t reuse...
Eventually we had to write some custom UI components.

For us it was the map bubbles.

Reimagine Over Reinventing

77

Bubbles & Clusters
Lyft hadn’t extensively used the map enough to include
any clustering libraries, and we abstracted away the map
implementation so we didn’t have access to Google’s.

The map clusters were part of our core Golden Path
experience, so this was worth the tradeoff.

Reimagine Over Reinventing

78

Readable, predictable,
and works well
enough for our
expected dataset

Complex but with
optimal asymptotic
runtime under all
conditions

>>

When I’m in a time crunch, I optimize my code for...

79

O(n2) time! 🏆
What do I do with my degree in computer science?

Write a map clustering algorithm in O(n2) time.

Reimagine Over Reinventing

 public static List<RidableCluster> fromRidables(List<Ridable> ridables, IMapPosition mapPosition) {
 double metersPerPixel = zoomToMetersPerPixel(mapPosition);
 double metersGridSize = metersPerPixel * CLUSTER_SIZE_DP;
 List<ClusterAndAverage> ridableClusters = new ArrayList<>();
 Iterables.forEach(ridables, ridable -> addToClusterList(ridable, ridableClusters, metersGridSize));
 //TODO move to google maps ClusterManager
 return Iterables.map(ridableClusters, ridableList -> makeRidablesCluster(ridableList, selectedRidable));
 }

80

Why? 😭 → 😁
1. It’s easy to read, and easy to reason that it’ll work in all cases
2. Our dataset was reasonably small enough where the added

performance wasn’t worth it for the time it would take

Reimagine Over Reinventing

 public static List<RidableCluster> fromRidables(List<Ridable> ridables, IMapPosition mapPosition) {
 double metersPerPixel = zoomToMetersPerPixel(mapPosition);
 double metersGridSize = metersPerPixel * CLUSTER_SIZE_DP;
 List<ClusterAndAverage> ridableClusters = new ArrayList<>();
 Iterables.forEach(ridables, ridable -> addToClusterList(ridable, ridableClusters, metersGridSize));
 //TODO move to google maps ClusterManager
 return Iterables.map(ridableClusters, ridableList -> makeRidablesCluster(ridableList, selectedRidable));
 }

81

Listen, Learn &
Launch What
Matters

🚀 Preparing to enter the real world 🚀

82

Are we sure we’re
building the right thing?““
Are we ready for launch
day?

83

Are we sure we’re
building the right thing?““
Are we ready for launch
day?

84

What matters to our user?
We had a zillion questions about what, when and how
our users were going to use Lyft scooters.

Would they…

• Use the “reserve” feature?
• Understand how to lock and unlock it?
• Feel natural to get a scooter within the Lyft app?

Listen, Learn & Launch What Matters

85

When your feature is already live
For established products, we iteratively release and roll out, A/B testing
along the way. This helps us understand user behavior and preferences,
and guards against major issues.

Since we had never done something like this before, we couldn’t use any
of these processes.

Listen, Learn & Launch What Matters

86

How to learn when you aren’t live
We relied on
📚foundational research and
🔬usability testing,
guided by our research team

Listen, Learn & Launch What Matters

87

It’s important to pause here and say

Thank you, Lyft research team 💜
88

Are we sure we’re
building the right thing?““
Are we ready for launch
day?

89

How we built in parallel

Client

Server

Firmware

Hardware

We mocked every layer until it
was ready

Listen, Learn & Launch What Matters

90

Client

Server

Firmware

Hardware

91

Client-only testability
We buried the mocks down our client stack as far as possible

Listen, Learn & Launch What Matters

public Single<Result<LastMileRide, IError>> reserve(Ridable ridable) {
 return doReserveApi(ridable).flatMap(result -> {
 if (Results.isSuccess(result)) {
 return lastMileRideProvider.updateRide(this::mapReserve(ridable));
 } else { return handleError(result); }});
}

private Single<Result<Object, IError>> doReserveApi(Ridable ridable) {
 // TODO: Actually do the api call.
 return Single.just(Results.success(ridable));
}

92

Client-only testability
We buried the mocks down our client stack as far as possible

(don’t forget to remove them later!)

Listen, Learn & Launch What Matters

public Single<Result<LastMileRide, IError>> reserve(Ridable ridable) {
 return doReserveApi(ridable).flatMap(result -> {
 if (Results.isSuccess(result)) {
 return lastMileRideProvider.updateRide(this::mapReserve(ridable));
 } else { return handleError(result); }});
}

private Single<Result<Object, IError>> doReserveApi(Ridable ridable) {
 // TODO: Actually do the api call.
 return Single.just(Results.success(ridable));
}

93

Client

Server

Firmware

Hardware

94

Client<>Server
testing
As we got farther along,
scripting and field testing.

Listen, Learn & Launch What Matters

95

My only python contribution at Lyft:

Listen, Learn & Launch What Matters

Client<>Server
testing

96

Client

Server

Firmware

Hardware

97

Getting the last
pieces ready
We also knew no matter how
careful we were, not all the pieces
would fit on the first try:

• Tweaks to app logic were
necessary

• Integration required lots of
patience

Listen, Learn & Launch What Matters

98

Client

Server

Firmware

Hardware

🎉 🎉 🎉 🎉

99

But are we ready for launch?

100

Build for flexibility
Client code is inflexible. Your APK is live. Where do you add flexibility?

Server side!

• Feature flagging different aspects
• Configuration flags
• Server-driven resource overrides

Listen, Learn & Launch What Matters

101

Build for flexibility
public class DynamicResourcesWrapper extends Resources {

 @Override
 public String getString(int id) throws NotFoundException {
 final String stringId = getStringKey(id);
 final String override = constantsProvider.get(stringConstant(stringId))
 if (override != null) {
 return override
 }
 return originalResources.getString(id);
 }
}

Listen, Learn & Launch What Matters

102

Listen & learn on launch day

Seeing real users on launch day is both emotionally rewarding,
and important to debug issues. We were able to ask questions
and gather feedback.

Listen, Learn & Launch What Matters

103

Listen & learn on launch day

Over time, these learnings helped us better understand our users,
refine our north star vision, prioritize our backlog, and formalize our
launch process for future cities and releases.

Listen, Learn & Launch What Matters

104

Key
Takeaways

105

To Recap

Waste less precious time

Build more meaningful stuff

106

To Recap

Product Engineering:

1. Maximize your effort
2. Own what you code
3. Ship meaningful stuff

107

To Recap

Engineering Principles:

1. Stay simple and lean
2. Reimagine over reinventing
3. Listen, learn, launch what matters

108

Thanks!
Try a Lyft bike or scooter! lyft.com/scooters

Read more on eng.lyft.com

Follow me on social: @rjmarsan

Lyft is hiring all sorts of talented engineers
around the world!

109

https://www.lyft.com/scooters
https://eng.lyft.com/from-four-wheels-to-two-403bcf1cbf59

