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Faculty shape the academic ecosystem
• make discoveries [science & scholarship] 
• teach courses [education]  
• train students [research ecosystem & workforce] 
• communicate science [media & public] 
• advocate for research priorities [policy]

Research Goal: understand the forces & 
flows shaping the population of US faculty.
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Caplow & McGee, 1958

The general purpose of the study was to develop a 
body of systematic knowledge about the academic 
labor market.  We began with the assumption that 
what “everybody knows” about it would probably turn 
out to be inaccurate or incomplete. Hence it seemed 
well to approach the subject as naively as possible, 
trusting the data to make us more sophisticated. 

Review: 😍 😍 😍 😂 🤦



• Complete tenure-track faculty rosters

• 10 years (2011-2020) of rosters, collected annually

• All PhD-granting US universities

• All departments, clustered into 107 fields and 8 domains

• Each professor's PhD* institution & year


In total: 295,089 faculty  in  10,612 departments  at  368 universities.

Ten years of comprehensive faculty data

Academic Analytics Research Center* we treated all doctorates as equivalent



years since PhD

The value of longitudinal data
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existing 
faculty

new hires

attritions

all faculty

We’ll use these 4 badges as simple 
cues as we unpack the patterns 

highlighted in the this talk.



Does it matter where you trained?
• 11% of US faculty* have non-US doctorates  — 123 countries! 

• 2% for Education profs -vs- 19% for Natural Sciences profs

* tenure-track faculty at PhD-granting US institutions

Those non-US doctorates?  
• 35.5% from Canada & the UK alone. 
• 5.4% from Africa and the Americas (minus 🇨🇦, 🇺🇸) combined.

• What are the processes shaping these numbers?

all faculty

all faculty

new hires

attritions

existing 
faculty risk =

n events
N at risk

=
+

risk =
n events
N at risk

= =
5

24 + 5
≈ 17.2 %



Does it matter where you trained?
population A
population B



Does it matter where you trained?

Each colored point is a field (107) 
Each big grey point is a domain (8)

US professors with PhDs from Canada or U.K. 
are not at significantly higher/lower annual risk 
of attrition, except at the all-of-academia level. 



Does it matter where you trained?

US professors with PhDs from non-{US, Canada, UK} 
are at significantly higher annual risk of attrition in 39 
fields, 8 domains, and overall.

US professors with PhDs from Canada or U.K. 
are not at significantly higher/lower annual risk 
of attrition, except at the all-of-academia level. 

Does it matter where you trained?  yes.



Where do U.S.-trained profs come from?

equal production: 0.26% from each of the 387 producing institutions

all faculty



Where do U.S.-trained profs come from?

In total, 80% of faculty come from 
just 20.4% of institutions.

20% of sitting U.S. profs  
got PhDs from just 8 institutions. 

The next 20% have PhDs  
from another 13 institutions. 

Over 1 in 8 faculty were trained at just five places:  
Berkeley, Harvard, Michigan, 


Stanford, or Wisconsin.


These five train more US faculty [13.8%] than all non-
US doctoral programs combined [11%]. 

all faculty



Where do U.S.-trained profs come from?

Pareto principle (80/20 rule) roughly applies across domains, 
from 80/19 in the Humanities to 80/28 in Education. 

It’s easier to summarize production inequality via 
the Gini coefficient. 

GUS income, post−tax, 2021 = 0.43

https://www.census.gov/library/publications/2022/demo/p60-276.html

GUS income, pre−tax, 2021 = 0.49

all faculty

GUS TT faculty production, PhD−granting inst′ s, 2011−2020 = 0.75



Have inequalities changed over 2011-2020?

 are all large across domains.  

They do not appear to be growing or 
shrinking over the decade 2011-2020.

G

all faculty



Have inequalities changed over 2011-2020?
all faculty

In every field, domain, and overall, faculty 
production inequality is lower for new faculty, 
and higher for sitting faculty! 
What might explain these patterns?

existing 
facultyvsnew 

faculty



Driver: differential attrition risk by PhD origin
all faculty existing 

faculty
new 

faculty vs

attritions

Faculty with the “rarest” PhDs show 
nearly 2× the attrition rates of their 
colleagues with the most common PhDs.

This means that there’s substantial 
inequality in faculty hiring and that this 
inequality is then exacerbated by attrition. 

This process makes cohorts less diverse by doctoral origin as they age.



Reflections…
all faculty existing 

faculty
new 

faculty vs

attritions

1. Examining just one of these plots by itself might lead 
us to an incorrect understanding. 

2. Longitudinal analyses are critical to understanding 
this system — snapshot data won’t do.



Faculty hiring networks
MIT

Stanford

UC Berkeley

Carnegie Mellon

Cornell

Washington

Caltech

Harvard

Yale
Princeton

Premises:  
1. Each hiring committee wants to hire the best.* 
2. Each hire  is an endorsement of  by . 
3. Network reveals collective mutual endorsements.

u → v u v

* of course “the best” is ill defined! Yet surely no hiring 
committee is seeking the 65th best of the applicants!

Spence, 1978 [Nobel 2001 with Akerloff & Stiglitz]

Podolny, 1993

Domen & Thronson, 1988
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Premises:  
1. Each hiring committee wants to hire the best.* 
2. Each hire  is an endorsement of  by . 
3. Network reveals collective mutual endorsements.

u → v u v

* of course “the best” is ill defined! Yet surely no hiring 
committee is seeking the 65th best of the applicants!

Caplow & McGee, 1958

“…the present study, which was not originally 
oriented to prestige as a central variable; our 
findings, however, forced us to…”



Faculty hiring networks
MIT

Stanford

UC Berkeley

Carnegie Mellon

Cornell

Washington

Caltech

Harvard

Yale
Princeton

De Bacco*, Larremore*, Moore. Science Advances, 2018. 
Clauset, Arbesman, Larremore. Science Advances, 2015.

Premises:  
1. Each hiring committee wants to hire the best. 
2. Each hire  is an endorsement of  by . 
3. Network reveals collective mutual endorsements.

u → v u v

A recursive notion of prestige: 

One becomes prestigious when one is 
endorsed by someone prestigious.

Infer prestige scores directly from the 
structural patterns in faculty hiring networks. 
[SpringRank — cf. RUMs & Discrete Choice]

Convert prestige scores to ranks/percentiles.

Note:  to “game” such a ranking, you’d have 
to convince departments more prestigious 
than yours to hire your graduates!



Faculty hiring networks
MIT

Stanford

UC Berkeley

Carnegie Mellon

Cornell

Washington

Caltech

Harvard

Yale
Princeton

MIT

Stanford

UC Berkeley

Carnegie Mellon

Cornell

Washington

Caltech

Harvard

Yale

Princeton

1

2

3

De Bacco*, Larremore*, Moore. Science Advances, 2018. 
Clauset, Arbesman, Larremore. Science Advances, 2015.

Premises:  
1. Each hiring committee wants to hire the best. 
2. Each hire  is an endorsement of  by . 
3. Network reveals collective mutual endorsements.

u → v u v



Help! What am I looking at? [Open tutorial in new window]Show faculty hiring network from:    

         Read the OpenAccess paper on Science Advances here.       |       Read Aaron Clauset's companion page or download the data here
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© Clauset, Arbesman & Larremore, 2015100% up the hierarchy
2 up per 1 down
balanced
2 down per 1 up
100% down the hierarchy

Faculty hiring networks
low upward mobility
5%↑ Classics 
6%↑ Econ, Finance 
7%↑ Art History, Stats 
 ⋮ 
12%↑ CS, Epidemiology 
 ⋮ 
20%↑ Horticulture 
21%↑ Agronomy, Entomology 
23%↑ Animal Sci, Pathology

average hire moves down by
↓28% Econ 
↓22% CS 
↓14% Agronomy 
of each field-specific prestige ranking

all faculty



Core & periphery

• Core nodes connect to other core nodes 
directly, or are just a few hops away over 
the network. 

• Periphery nodes connect to core nodes, 
but not to other periphery nodes. 

• How many hops to get from one node to 
each of the others in a network?  

 [mean geodesic distance; smaller=closer]

Faculty hiring networks — The research agenda

Data: Adamic & Glance, 2005. “Divided They Blog” 
Fig: Sadamori Kojaku. https://skojaku.github.io/research/core-periphery-structure/
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• Core nodes connect to other core nodes 
directly, or are just a few hops away over 
the network. 

• Periphery nodes connect to core nodes, 
but not to other periphery nodes. 

• How many hops to get from one node to 
each of the others in a network?  

 [mean geodesic distance; smaller=closer]

Faculty hiring networks — The research agenda
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Core & periphery

Faculty hiring networks — The research agenda
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Prestigious departments sit in the core.


Core departments:

• mutually exchange graduates 
• export graduates to periphery departments 

Periphery departments: 

• import graduates from the core 
• rarely export their graduates to other departments

This structure has epistemic & cultural consequences:

• New hires bring their ideas & norms with them. 
• Departments in the core: setting the research agenda 

for the broader network.

See also: Wellmon & Piper (2017).   Morgan, Economou, Way, Clauset (2018).



Institutions are in the core — not just departments

All but 116 (of 12,024) pairwise correlations in this heatmap are positive. 
Pathology has the least correlated rankings with any other field.

Of the 1070 possible top-10 slots (107 fields): 
• 248 (23.2%) slots are taken by just 5 institutions. 
• Full 252 universities (64%) have 0 top-10s.

Systematic patterns



Explore: Larremore Lab.github.io/us-faculty



Women’s representation in the academy

From 2011-2020:  
Women’s representation significantly 
increased in academia overall, all 8 
domains, and 80/107 fields.  
It decreased in only 1 field (nursing).

all faculty



Women’s representation in the academy
all faculty

Women’s representation is systematically 
higher among new hires and lower 
among attritions in 103/107 fields. 

new 
hires vs

attritions



Women’s representation in the academy
all faculty new 

hires vs

attritions

all faculty

Demographic curves show why: 
representation slides downward for 
cohorts hired in the past. 

Women’s representation is systematically 
higher among new hires and lower 
among attritions in 103/107 fields. 



Women’s representation in the academy
all faculty new 

hires vs

attritions
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There were no upward trends in women’s 
representation among new faculty from 
2011-2020 in any field.



There were no upward trends in women’s 
representation among new faculty from 
2011-2020 in any field.

New hires remain predominantly men 
in 75 of 107 fields, particularly in STEM

Women’s representation in the academy



There were no upward trends in women’s 
representation among new faculty from 
2011-2020 in any field.

New hires remain predominantly men 
in 75 of 107 fields, particularly in STEM

Without continued efforts toward parity in hiring, the changes in 
women’s overall representation from 2011-2020 will soon plateau.







Literature: deep, complicated, contradictory
No gendered differences

Research in Higher Education (2004)

Psych. Science in the Public Interest (2004)

It’s complicated…

American Economic Association (2004)

PLOS One (2012)

Science (2012)

Yes gendered differences

Academic Medicine (2018)

Academic Medicine (2019)

American Geophysical Union (2021)

Why? Some possible limitations:

• Most studies are done at a single institution or small group of institutions

• Most studies are done at a single point in time

• Most studies are done on a specific academic field or small group of fields



Attrition — stratified by career age



We can clearly see the up-or-out filter 
of tenure (t=3 to 6), and the gradual 
onset of retirements from year t=25 
onward.

Attrition — stratified by career age

Spoon et al. Under Review (2022).



Tenure and retirement persist as 
patterns, yet women leave 
academia at higher per-capita 
rates for every career age.

Attrition — stratified by career age & gender

Spoon et al. Under Review (2022).
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Gender differences in attrition & promotion

Academia-level gendered attrition/promotion patterns 
hold often [but not always!] within domains of study.

Spoon et al. Under Review (2022).



Inequality. 

• Most U.S. faculty come 
from a small number of 
U.S. institutions. ~80/20


• The hierarchy of prestige is 
strong; little upward 
mobility. [5% move “up” in 
Classics; 6% in Econ.]


• Women’s representation is 
increasing — but due to 
efforts of generations past. 
Forecasting a slow plateau.

Attrition. 

• Higher attrition rates for those

• who are self-hires [see paper]

• trained outside the U.S, U.K., 

and Canada 

• graduating from less 

prestigious institutions.


• Substantially higher per-capita 
annual attrition for women at 
every career age/stage.


• Inequalities are often 
instantiated during hiring but 
exacerbated by attrition.

Methods & Data. 

• Longitudinal data provides 
texture & surprises. Cross-
sectional analyses are valuable, 
but limiting.


• Humans are complex and 
fascinating, and survey 
responses are an irreplaceable 
gift of time. THANK YOU!


• Interdisciplinarity is wonderful: 
math, complex networks, 
demography, econometrics, 
and epidemiology. 

Trends in US faculty hiring & retention from 10 years 
of data: a study of prestige, diversity & inequality 



Discussion
1. What new data would be most valuable to future work?


Depth. Self-reported gender/R&E. Undergrad, postdoc, or PhD department.  
Breadth. Liberal arts or non-PhD granting institutions; non-tenure track faculty.


2. Is this prestige-oriented system bad? Good? What should change?

We rely too much on prestige heuristics. Still, those heuristics remain valuable in 
decision-making under uncertainty and time constraints. Understanding where 
prestige comes from, and when/how we rely on it will be valuable. Experiments?!


3. What are key weaknesses of this work?

We observe hiring outcomes, but not key processes. Who applies where? What 
are the short lists? Who got offers where? Why were some accepted by not others?


4. Can my institution use this work to grow its prestige or prominence?

Prestige is an emergent consensus. Changing the minds of an entire community 
is a difficult task. We advocate more attention paid to equity in hiring & retention. 
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