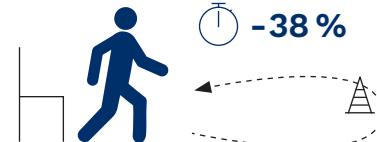


ottobock.

C-Leg.
Main clinical
takeaways.

Information for professionals


Main clinical takeaways.

More than 70 clinical studies, reports, and reviews investigated the **C-Leg** micro-processor controlled prosthetic knee. Compared with non-microprocessor knees (NMPKs), the **C-Leg** was shown to enhance safety, improve mobility, and increase patient confidence and satisfaction. The following paragraphs outline the clinical proven outcomes for **C-Leg** use compared to (NMPKs).

Safety.

Nearly 9 out of 10 **C-Leg** users reported reduced fear of falling. This confidence is well placed, considering **C-Leg** users experience up to 59 % fewer stumbles, up to 80 % fewer falls, and are up to 65 % less likely to be injured by a fall.

Mobility needs or deficient of the patient	Evidence for benefits of the C-Leg compared to NMPKs
Patient stumbles repeatedly	<ul style="list-style-type: none">Reduced number of stumbles ^(2, 12) <p>Number of stumbles: Up to 59 % less stumbles</p>
Patient falls repeatedly	<ul style="list-style-type: none">Reduced falls ^(1-4, 7, 12) <p>Number of falls: Up to 80 % reduction in falls</p>
Patients stumbles and falls repeatedly and has fear of falling	<ul style="list-style-type: none">Reduced injurious falls with C-Leg ⁽¹³⁾ <p>Injurious falls: Up to 65 % reduction in users with injurious falls, C-Leg was the best of the 4 MPKs tested</p>

Mobility needs or deficient of the patient	Evidence for benefits of the C-Leg compared to NMPKs
<p>Patients stumbles and falls repeatedly and has fear of falling</p>	<p>● Significant improvements in balance and indicators for a reduced risk of falling, such as TUG, ABC, forces perturbations in gait lab (3, 10, 14)</p> <div data-bbox="590 1173 967 1315"> <p>-38 %</p> </div> <p>Risk of falls: Up to 38 % reduction in completion time for the TUG</p> <div data-bbox="693 1387 847 1553"> </div> <p>Balance and risk of falls: Up to 52 % increased Activity specific Balance Confidence scores</p> <p>● Decreased fear of falling (6, 14)</p> <div data-bbox="693 1671 847 1837"> </div> <p>Fear of falling: Up to 89 % of subjects reported decreased fear of falling</p>

Functions and activities – level walking, stairs and ramps.

Compared to NMPKs, **C-Leg** users walk up to 25 % faster on level ground, up to 21% faster on uneven ground, and up to 40 % faster descending ramps. Most **C-Leg** users (95 %) improved their overall gait symmetry and 67% of users showed improvements in the quality of stair descending.

Level walking

Mobility needs or deficit of the patient	Evidence for benefits of the C-Leg compared to NMPKs
Patient has limited mobility	<ul style="list-style-type: none">Increased mobility level ⁽¹⁻⁴⁾ <p>Mobility grade: Up to 50 % of subjects improved to MG3 from MG2 with MPKs (including C-Leg)</p> <p>Mobility grade: Up to 22 % of subjects improved to MG4 from MG3 with MPKs (including C-Leg)</p>
	<ul style="list-style-type: none">Improved walking velocity ⁽²⁻⁴⁾ <p>Walking speed level ground: Up to 25 % faster walking speed on level ground</p> <ul style="list-style-type: none">Up to 14% increase in walking distance during 2-min walking test in MFCL2 subjects ⁽⁵⁾
Patient has gait asymmetry	<ul style="list-style-type: none">Improved gait symmetry ⁽⁶⁾ <p>Gait pattern: Up to 95 % of subjects improved gait symmetry</p>

Stairs

Mobility needs or deficient of the patient	Evidence for benefits of the C-Leg compared to NMPKs
<p>Patient has difficulties descending stairs with reciprocal gait (step-over-step)</p>	<ul style="list-style-type: none"> Improved mobility ⁽¹⁾ and quality of stair descent ^(1-3, 7, 8) <p>Quality stair descent: Up to 67 % of subjects improved their stair descent quality</p> <p>↓</p> <p>Improvements in quality of stair descent towards natural reciprocal gait pattern (from step-to to step-over-step)</p>

Ramps

Mobility needs or deficient of the patient	Evidence for benefits of the C-Leg compared to NMPKs
<p>Patient has difficulties negotiating slopes/hills</p>	<ul style="list-style-type: none"> Improved walking velocity on ramps ^(1, 3, 7, 9, 10) <p>Walking speed ramp: Up to 40 % faster walking speed for ramp descent</p>

Uneven Terrain/ Obstacles

Mobility needs or deficient of the patient	Evidence for benefits of the C-Leg compared to NMPKs
<p>Patient has difficulties negotiating uneven terrain and obstacles</p>	<ul style="list-style-type: none"> Improved walking velocity on uneven ground ^(2, 3, 7, 11) <p>Velocities uneven ground: Up to 21 % faster walking speed on uneven ground</p>

Functions and activities – cognitive demand and energy.

With **C-Leg**, most users (94 %) reported increased capability for divided attention and up to 88 % of users experienced less effort during walking.

Cognitive demand

Mobility needs or deficient of the patient	Evidence for benefits of the C-Leg compared to NMPKs
Patient has difficulties with dual task while walking	<ul style="list-style-type: none">Improved multitasking while walking ⁽⁶⁾Up to 28% decreased difficulty of multitasking ⁽⁷⁾Less cortical brain activity while walking with MPK (including C-Leg) ⁽¹⁵⁾ <p>Multitasking: Up to 94% of users reported increased capability to divide attention while walking</p>

Energy

Mobility needs or deficient of the patient	Evidence for benefits of the C-Leg compared to NMPKs
Patient has limitations with walking effort and energy consumption	<ul style="list-style-type: none">Reduced walking effort ⁽⁶⁾Up to 7 % reduced oxygen consumption with various speeds (slow, medium and fast walking speed) ^(11, 16, 17) <p>Walking effort: Up to 88 % of C-Leg users reported reduced walking effort</p>

Functions and activities – activity, mobility and ADLs.

Up to 23 % of the **C-Leg** users reported a reduced use of walking aids.

Further **C-Leg** users were able to complete ADLs 11 % faster and improved the performance by 33 %.

Mobility needs or deficient of the patient	Evidence for benefits of the C-Leg compared to NMPKs
Patient needs walking aids	<ul style="list-style-type: none">Up to 23 % of subjects reported reduction in walking aid use ⁽⁶⁾
Difficulties with performing activities of daily living	<ul style="list-style-type: none">Up to 11 % decreased time needed to complete ADLs including standing ⁽¹⁸⁾Up to 33 % improved performance in ADLs (including standing, sitting down ...) ^(3, 18)

Participation – preference and satisfaction.

The **C-Leg** was preferred by 90 % of users over NMPKs.

Mobility needs or deficient of the patient	Evidence for benefits of the C-Leg compared to NMPKs
Patient is not satisfied with fitting	<ul style="list-style-type: none">Up to 38 % increased Prosthetic Evaluation Questionnaire (PEQ) satisfaction score in MFCL3 and up to 21 % improved in MFCL2 ⁽¹⁾Increased preference for C-Leg ^(7, 18–20) <p>Preference: Up to 90 % of subjects prefer C-Leg over NMPKs</p>

More details can be found in the study summaries

References

1. Hafner BJ, Smith DG. Differences in function and safety between Medicare Functional Classification Level-2 and -3 transfemoral amputees and influence of prosthetic knee joint control. *J Rehabil Res Dev* 2009;46(3):417-434.
2. Kahle JT, Highsmith MJ, Hubbard SL. Comparison of non-microprocessor knee mechanism versus C-Leg on Prosthesis Evaluation Questionnaire, stumbles, falls, walking tests, stair descent, and knee preference. *J Rehabil Res Dev* 2008;45(1):1-14. doi: 10.1682/jrrd.2007.04.0054.
3. Kannenberg A, Zacharias B, Pröbsting E. Benefits of microprocessor prosthetic knees to limited community ambulators: A systematic review. *J Rehabil Res Dev* 2014;51 (10):1469-1495. doi: 10.1682/jrrd.2014.05.0118.
4. Davie-Smith F, Carse B. Comparison of patient-reported and functional outcomes following transition from mechanical to microprocessor knee in the low-activity user with a unilateral transfemoral amputation. *Prosthet Orthot Int* 2021;45(3):198-204. DOI: 10.1097/PXR.0000000000000017
5. Hahn A, Lang M. Effects of mobility grade, age, and etiology on functional benefit and safety of subjects evaluated in more than 1200 C-Leg trial fittings in Germany. *J Prosthet Orthot* 2015;27(3):86-95.
6. Hafner BJ, Willingham LL, Buell NC, Allyn KJ, Smith DG: Evaluation of Function, Performance, and Preference as Transfemoral Amputees Transition from Mechanical to Microprocessor Control of the Prosthetic Knee. *Arch Phys Med Rehabil* 2007;88(2):207-17. doi: 10.1016/j.apmr.2006.10.030.
7. Berry D, Olson MD, Larntz K. Perceived stability, function, and satisfaction among transfemoral amputees using microprocessor and non-microprocessor controlled prosthetic knees: a multicenter survey. *J Prosthet Orthot* 2009;21(1):32-42.
8. Highsmith MJ, Kahle JT, Miro RM, Mengelkoch, MJ. Ramp descent performance with the C-leg and interrater reliability of the Hill Assessment Index. *Prosthet Orthot Int* 2013;37(5):362-368. doi: 10.1177/0309364612470482. Epub 2013 Jan 17.
9. Burnfield JM, Eberly VJ, Gronely JK, Perry J, Yule WJ, Mulroy SJ. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees. *Prosthet Orthot Int* 2012;36(1):95-104. doi: 10.1177/0309364611431611. Epub 2012 Jan 5.
10. Seymour R, Engbretson B, Kott K, Ordway N, Brooks G, Crannell J, Hickernell E, Wheller K. Comparison between the C-leg(R) microprocessor-controlled prosthetic knee and non-microprocessor control prosthetic knees: A preliminary study of energy expenditure, obstacle course performance, and quality of life survey. *Prosthet Orthot Int* 2007;31(1):51-61. doi: 10.1080/03093640600982255.
11. Highsmith MJ, Kahle JT, Bongiorni DR, Sutton BS, Groer S, Kaufman KR. Safety, energy efficiency, and cost efficacy of the C-leg for transfemoral amputees. *Prosthet Orthot Int* 2010;34(4):362-377. doi: 10.3109/03093646.2010.520054. Epub 2010 Oct 24.
12. Campbell JH, Stevens PM, Wurdeman SR. OASIS I: Retrospective analysis of four different microprocessor knee types. *Journal Rehabil Assist Technol Eng* 2020;7: 1-10. <https://journals.sagepub.com/doi/10.1177/2055668320968476>
13. Wong CK, Rheinstein J, Stern MA. Benefits for adults with transfemoral amputation and peripheral artery disease using microprocessor compared with nonmicroprocessor prosthetic knees. *Am J Phys Med Rehabil* 2015 Oct;94(10):804-10. doi: 10.1097/PHM.0000000000000265.
14. Möller S, Rusaw D, Hagberg K, Ramstrand N. Reduced cortical brain activity with the use of microprocessor-controlled prosthetic knees during walking. *Prosthet Orthot Int* 2019 Jun;43(3):257-265. doi: 10.1177/0309364618805260. Epub 2018 Oct 30.
15. Schmalz T, Blumentritt S, Jarasch R. Energy Expenditure and Biomechanical Characteristics of Lower Limb Amputee Gait. Influence of Prosthetic Alignment and Different Prosthetic Components. *Gait Posture* 2002;16(3):255-263. doi: 10.1016/s0966-6362(02)00008-5.
16. Wong CK, Benoy S, Blackwell W, Jones S, Rahal R: A comparison of energy expenditure in people with transfemoral amputation using microprocessor and nonmicroprocessor knee prostheses: a systematic review. *J Prosthet Orthot* 2012; 24(4):202-208.
17. Theeven P, Hemmen B, Rings F, Meys G, Brink P, Smeets R, Seelen H. Functional added value of microprocessor-controlled knee joints in daily life performance of Medicare Functional Classification Level-2 amputees. *J Rehabil Med* 2011;43(10):906-915. doi: 10.2340/16501977-0861.
18. Orendurff MS, Segal AD, Klute GK, McDowell ML, Pecoraro JA, Czerniecki JM. Gait efficiency using the C-Leg. *J Rehabil Res Dev* 2006;43(2):239-246. DOI: 10.1682/jrrd.2005.06.0095
19. Bellmann M, Schmalz T, Blumentritt S. Comparative biomechanical analysis of current microprocessor-controlled prosthetic knee joints. *Arch Phys Med Rehabil* 2010; 1(4):644-652. doi: 10.1016/j.apmr.2009.12.014.
20. Seelen HAM, Hemmen B, Schmeets AJ, Ament AJHA, Evers SMAA. Costs and consequences of a prosthesis with an electronic stance and swing phase controlled knee joint. *Technol Disabil* 2009;21:25-34.
21. Gerzeli S, Torbica A, Fattore G. Cost utility analysis of knee prosthesis with complete microprocessor control (C-leg) compared with mechanical technology in trans-femoral amputees. *Eur J Health Econ* 2009;10(1):47-55. DOI: 10.1007/s10198-008-0102-9.
22. Cutti AG, Lettieri E, Del Maestro M, Radaelli G, Luchetti M, Verni G, Masella C. Stratified cost-utility analysis of C-Leg versus mechanical knees: Findings from an Italian sample of transfemoral amputees. *Prosthet Orthot Int* 2017 Jun;41(3):227-236. doi: 10.1177/0309364616637955. Epub 2016 Mar 29.
23. Chen C, Hanson M, Chaturvedi R, Mattke S, Hillestad R, Liu HH. Economic benefits of microprocessor controlled prosthetic knees: a modeling study. *J NeuroEng Rehabil* 2018 Sep 5;15(Suppl 1):62. doi: 10.1186/s12984-018-0405-8.