
Diagnosing 
async C# 
code
Sergey Teplyakov

Principal software engineer

Microsoft

1



Debugging is easy! Right?



Stack traces for the rescue!



Diagnosing blocking synchronous call



Diagnosing blocking synchronous call



Diagnosing blocking synchronous call



Diagnosing blocking synchronous call



Diagnosing blocking synchronous call





Let’s look at a very simple async case

Sync 2 async



Debugging async code



Where is our code?!?!?



Async Main: the new feature in C# 7
• Async entry points are very common

• Starting with C# 7.1 the main method can be asynchronous
Async main

Translated code



TLDR; the async flow: TODO: fix



And how we should debug it?



“Call Stacks” to “Async Call Stacks”



Async call stack



Async call stack



Async call stack



Sync vs. Async Call stacks
Async versionSync version



Async code is viral!



Is sync over async dangerous?
• A simple file system cache

• Initialized lazily to avoid unnecessary work

• Used in many synchronous paths

• Used only on the backend



Let’s try it out!



Regular stack trace is not very helpful!



Async stack trace & Parallel Tasks



SynchronizationContext is not a purely UI thing...
• Xunit relies on SynchronizationContext for limiting the number of running 

tests!



Detaching the sync context



How to fix the issue properly?
• Stop using blocking operations.

� Preferred, but not always possible.

• Stop using xUnit J (not really!) or change its concurrency limits!
� The same issue may happen elsewhere as well.

• Use ConfigureAwait(false)
� Won't fix all the possible issues.
� A reasonable first step.



What is going on at runtime?



Lessons learned
• This is based on a real issue.

• Parallel Tasks is an invaluable tool for figuring out issues in async code.

• Understanding of how async works is very important.

• Always use ‘ConfigureAwait(false)’ in the library code.

• Always use ‘ConfigureAwait(false)’ if the code will be used with Sync 
Contexts.

• Consider using ‘ConfigureAwait(false)’ for service code as well.

• Sync Contexts can be used outside
the UI world.



What is TaskCompletionSource?
• TCS allows controlling Task’s lifetime manually

• A tool for implementing async API based on non-task-based 
implementations

• Core building block for producer-consumer queues, communication protocols 
etc.



A classical usage of TaskCompletionSource
• A simple work item queue

• Based on BlockingCollection<T>
and TaskCompletionSource<T>



Debugging an issue with TaskCompletionSource



Async stacks to the rescue! (Again!)



Let’s debug it! Stack traces are not helpful;)



Let’s add one more test! Shall we?



Production after deploying a new version



Why the tests were fine?





What is going on at runtime?



Parallel Stacks to the rescue!



Parallel Stacks to the rescue!



How to solve the problem?
• Don’t block async code (maybe easier said then done!)

• Run TaskCompletionSource’s continuations 
asynchronously (.NET Framework 4.6+)!

• Consider using a wrapper or a helper
for running continuations asynchronously



Let’s check it!



Lessons learned
• Synchronous behavior of TaskCompletionSource.SetResult is quite 

dangerous.

• Blocking can be hidden. ‘GetConsumingEnumerable’ is a blocking call.

• Always force async continuations when using TaskCompletionSource.
� This will detach the caller from synchronously calling unknown code.

• Consider using a helper or a wrapper for that.



Thanks a lot, everyone!



[Bonus] Deadlock with two tasks



[Bonus] Deadlock a semaphore



[Bonus] Deadlock with yield return and lock


