
Nullability in C#
JARED PARSONS

C# COMPILER LEAD



Introduction

u Member of C# Compiler and Language Design Team

u Working in C# production team for ~7 years

u Working in programming languages ~15 years



This Talk 

u Design inspiration for nullable reference types

u Overview of the nullable feature set
u Base nullable reference type feature set

u C# 9 additions and changes

u Adoption strategies

u Nullability looking forward



Designing 
Nullable 
Reference Types

THINKING ABOUT NULLABILITY 
IN THE LANDSCAPE OF C# 



C# and null references

u C# 7.3 has no null reference tracking
u Developers instead follow best practices

u Read API documentation, guard APIs they’re unsure of

u Still get unexpected nulls in prod and testing

u C# language wants to fix this
u How do you add nullable tracking to a 20 year old language?

u And maintain compat while doing so?

u And support a diverse ecosystem of libraries?



Creating vs. Extending

u Creating a language has unbounded options
u Nothing to be compatible with

u Change the type system, API focus, etc … 

u Extending a language narrows the possible solutions
u Existing features that never thought about nullability

u Existing libraries that want safety but want to remain compatible

u Must maintain the look and feel of the language



What about a perfect type solution?

u Perfectly separates nullable and non-nullable types

u C# variants exist with “perfect” null safety
u Spec#, Sing#, System C#

u Successful at implementing null safety 

u Unsuccessful at adoption because it simply wasn’t C# anymore

u Breaks lots of existing patterns
u Array creation like new string[4]

u Calling methods in constructors

u Using default(T) in generics



What about an API solution?

u Solution: Optional<T>
u Nullable<T> but for reference types

u Value cannot be used directly 

u Must do an explicit null check to get value

u Problem
u Does nothing for existing code

u Breaks binary compatibility

u It’s a yet another form of runtime null



Lots of C# code to annotate

u Code bases of varying size
u Small: < 10,000 lines

u Medium: < 100,000 lines

u Large: < 1,000,000 lines

u Jumbo: > 1,000,000 lines

u github/roslyn GitHub repository as an example has ~5,000,000 lines

u Null safety must be usable in all these code bases



Can’t enable in one change

u Cost of adopting nullability is proportional to code base size
u Medium code bases can change hundreds of files

u Large code bases can change thousands

u 1,000 file pull requests are problematic
u GitHub won’t display them well (if at all)

u Reviewing is time consuming 

u Must support incremental adoption
u Annotate a single component, file or directory

u Keep PRs managable and focused



.NET has a broad ecosystem

u Ecosystem
u NuGet.org has ~175,000 unique packages

u MyGet.org has thousands of customers

u Private companies with proprietary libraries

u Developers want better null checking now
u Can’t wait for all dependencies to move first

u Need to adopt independent of dependencies

u Developers will get nullable annotations in waves
u Every NuGet update potentially gives new annotations

u Cannot significantly increase cost of updating here



Principles for successful solution

u Embrace an imperfect solution 

u Add value to existing code without major rewrite

u Provide nullable guidance through warnings

u Support incremental adoption



Non-Nullable 
Reference Types

AKA THE LAST THREE YEARS 
OF THE C# TEAM



Nullable is biggest feature since 
Generics

u C# 8 
u Language Design 9+ months 

u Compiler 2 devs for 1 year, majority of dev team for 7 months

u .NET 5 annotated ~5,000 APIs

u C# 9
u Language Design 3+ months (while doing records)

u Compiler ~2 full time devs for the release 

u .NET 6 annotated ~11,000 APIs 



Demo: Nullable 
Reference Types



Demo: C# 9 
Additions 



Adoption 
Strategies

ADOPTING NULLABILITY IN 
YOUR CODE BASES



Which target framework to use?

Target Framework Nullability Attributes 
Defined

Core Libraries Annotated

.NET Desktop ❌ ❌

.NET Standard 2.0 (and 
before)

❌ ❌

.NET Standard 2.1 ✔ ❌

.NET Core 2.1 (and before) ❌ ❌

.NET Core 3.0 / 3.1 ✔ Mscorlib Only

.NET Core 5.0 ✔ ✔





Libraries targeting older frameworks

u Libraries still target older target frameworks
u netstandard2.0 for library breadth

u netcoreapp3.0 / 3.1 because 5.0 is too new

u How can these libraries get the full API benefits of net5.0?

u Leverage multi-targeting
u Multi-target net5.0 and netstandard2.0

u Enable nullable warnings only on net5.0 

u Continue shipping netstandard2.0 only



<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>

<TargetFrameworks>net5.0;netstandard2.0</TargetFrameworks>

</PropertyGroup>

<PropertyGroup Condition="'$(TargetFramework)' != 'net5.0'">

<NoWarn>$(NoWarn);Nullable</NoWarn>

</PropertyGroup>

</Project>



What order to annotate in?

u Annotate entire code base at once
u Annotate file when bug fixed
u Component by component
u Dependency Order

u Start root project and move outwards

u Annotate one project until done then move to next

u API to implementation
u Annotate all public APIs first and implementations after

u Annotating implementation should not impact other projects



Nullability 
Looking Forward 

WHERE ARE WE GOING 
FROM HERE? 



.NET Ecosystem

u .NET SDK
u Core Libraries are annotated (~17,000+ APIs)

u Roslyn, ASP.NET Core, EF Core, etc … in progress

u External Components 
u Increasing nullable use in the ecosystem

u Examples: vs-threading, nUnit, xUnit, Netwonsoft.Json



C# Language

u C# 8 introduced nullable reference types
u C# 9 had substantial changes

u All new features designed with nullability in mind

u New language features

u New attributes and enforcement

u Tweaked the enforcement of rules to match customer scenarios

u C# 10+
u Continue evolving nullable reference types to meet customer scenarios

u These changes will be in the margins though

u Focus is on helping reduce number of warnings



C# 10 intersection with nullability 

u Direct impact
u Additional attributes 

u More enforcement for C# 8 attributes

u Indirect impact
u Extend definite assignment for “?.”, “??”, “==“ and “!=“.

u Required properties

u Parameterless struct constructors 



Definite Assignment Change

if (map.TryGetValue(key, out var value))
{

Use(value);
}

if (map?.TryGetValue(key, out var value) == true)
{

// Error: `value` not definitely assigned
Use(value);

}



More Resources (1)

Blog posts:
u Try out Nullable Reference Types: devblogs.microsoft.com/dotnet/try-out-

nullable-reference-types
u Nullable Reference Types in C#: devblogs.microsoft.com/dotnet/nullable-

reference-types-in-csharp
u Nullable Reference Types Spec: 

https://github.com/dotnet/csharplang/blob/master/proposals/csharp-
9.0/nullable-reference-types-specification.md

https://devblogs.microsoft.com/dotnet/try-out-nullable-reference-types
https://devblogs.microsoft.com/dotnet/nullable-reference-types-in-csharp
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-9.0/nullable-reference-types-specification.md


More Resources (2)

u NRTs overview: docs.microsoft.com/dotnet/csharp/nullable-references

u Nullable attributes: https://docs.microsoft.com/en-
us/dotnet/csharp/nullable-attributes

u Update libraries to NRTs: docs.microsoft.com/dotnet/csharp/nullable-
attributes

u NRTs tutorial: docs.microsoft.com/dotnet/csharp/tutorials/nullable-
reference-types

u Migrate an app to NRTs: 
docs.microsoft.com/dotnet/csharp/tutorials/upgrade-to-nullable-
references

https://docs.microsoft.com/dotnet/csharp/nullable-references
https://docs.microsoft.com/en-us/dotnet/csharp/nullable-attributes
https://docs.microsoft.com/dotnet/csharp/nullable-attributes
https://docs.microsoft.com/dotnet/csharp/tutorials/nullable-reference-types
https://docs.microsoft.com/dotnet/csharp/tutorials/upgrade-to-nullable-references


Resources: Adoption Examples

u All at once
u vs-threading 89 files

u Divide and Conquer
u .NET SDK 3.0 annotations

u .NET SDK 5.0 annotations

u Annotate as changed
u C# compiler + IDE annotations

https://github.com/microsoft/vs-threading/pull/534
https://github.com/dotnet/corefx/pulls%3Futf8=%E2%9C%93&q=is%253Apr+annotate+milestone%253A3.0
https://github.com/dotnet/corefx/pulls%3Futf8=%E2%9C%93&q=is%253Apr+annotate+milestone%253A5.0
https://github.com/dotnet/roslyn/pulls%3Futf8=%E2%9C%93&q=is%253Apr+annotate


Q & A

u jaredpar@microsoft.com
u https://github.com/jaredpar
u https://twitter.com/jaredpar

mailto:jaredpar@microsoft.com
https://github.com/jaredpar
https://twitter.com/jaredpar

