
The	Performance	Investigator’s	
Field Guide

Sasha	Goldshtein
CTO,	Sela Group

goldshtn
goldshtn

The	Plan

• I	want	to	share	with	you	my	strategy,	tactics,	and	vision	for	
performance	investigations	in	the	field
• You’ll	learn:
qWhat	a	performance	investigation	looks	like
qMethods	and	anti-patterns	for	performance	investigations
qTools	for	production	profiling	and	monitoring	.NET	applications
qHow	to	avoid	getting	lied	to	by	tools,	dashboards,	and	reports

Structure of a Performance
Investigation
1. Obtain the problem description
2. Build a system diagram
3. Run a quick performance checklist
4. Understand which component is exhibiting the problem
5. Investigate thoroughly
6. Find the root cause
7. Resolve the issue
8. Verify resolution
9. Conduct and document post-mortem

From: Cust McCustomer <custmcc@acme.com>
Subject: URGENT PERFORMANCE PROBLEM!!!1
Priority: High

The application feels SLOW. Users can’t
really put their finger on it but it’s bad.
Mind taking a look?

- C

From: Cust McCustomer <custmcc@acme.com>
Subject: Quote for performance work

We have a 2-day budget for some performance
work, can you take a look at our production
environment and see what you can find?

- C

From: Monitor McMonitor <noreply@acme.com>
Subject: Latency increase in NYC-FE-003
Date: 30 Apr 2017 07:35 AM

Since 4:25am, 95th percentile latency to the
frontend ASP.NET instance increased to 1400ms
(from 60ms). This is consistent across
geographies and hasn’t gone down. Auto-
scaling has kicked in but didn’t help.

Do not reply to this email, it was sent from an unmonitored account.

From: Boss McBoss <boss@acme.com>
Subject: URGENT Performance of CT screen
Priority: High

In the latest beta, clicking from the patient
details to the CT screen takes 11 seconds in
certain hospitals. This is unacceptable and
needs to be under 2s. Please send quote.

- B

<me> What are your latency requirements?
<customer> We need an avg response of 20ms.
<me> What’s the worst case requirement?
<customer> We don’t have one.
<me> So some requests can take more than 5 minutes?
<customer> What?! No. Nothing worse than 100ms.
<me> Even if it’s just 2 requests/day?
<customer> Fine. Nothing worse than 2 seconds.
<me> How often is a 500ms response acceptable? E.g.
96% 1ms, 4% 500ms works out to ~21ms mean.
* customer has left the chat

Rephrased	from	“How	Not	To	Measure	Latency”,	Azul	Systems

Performance	Metrics,	Goals,	And	Monitoring

• Performance	metric/goal:
90% of full-text queries should complete under 200ms
99% of full-text queries should complete under 600ms

100% of full-text queries should complete under 2000ms

• Performance	metrics	don’t	live	in	a	vacuum
• Derive	performance	metrics	from	business	goals
• Monitor	these	metrics	in	your	APM	solution,	home-made	dashboard	
or	collection	script,	and	get	alerts

Investigation Anti-Methods

1. Make assumptions
2. Trust “instincts” and irrational beliefs
3. Look under the street light
4. Use random tools
5. Blame the tools

How	I	Failed	to	Diagnose	a	Slow	Document	
Management	System
• Customer	reported	load	and	save	operations	on	certain	documents	
caused	a	timeout
• Linked	to	network	storage	access	(NetApp	through	SMB	on	LAN)
• I	asked	to	investigate	network	latency	and	storage	latency

Application	
Server

NetApp	
Storage	
Appliance

Client
Client
Client

WCF

SMB

Perfmon

tshark ???

From: Sasha Goldshtein
Subject: Network latency to DOC-FILER01

After processing 24 hours of network traces
with tshark, the mean SMB latency to storage
was 11ms, but peak values of up to 1200ms
were observed! Need to look at network traces
from the NetApp appliance, and at storage
latency counters.

- Sasha

From: Network McNetwork
Subject: RE: Network latency to DOC-FILER01

> Need to look at network traces from the
> NetApp appliance.

PFA the network traces from the NetApp
appliance. If I’m not mistaken, the peak
network latency was 10ms, with a mean <1ms.

From: Cust McCustomer
Subject: RE: FW: Re: Fwd: Perf investigation

The NetApp consultant who knows how to
monitor NetApp latency will be in next week.
Our local sysadmin says NetApp latency is
under 5μs, so there’s no way it’s the storage.

- C

From: Cust McCustomer
Subject: RE: FW: Re: Fwd: Perf investigation

The NetApp consultant was here. He says it’s
5ms, not 5μs. Almost the same thing. So, it’s
not the storage either?!

- C

From: Sasha Goldshtein
Subject: RE: FW: Re: Fwd: Perf investigation

> The NetApp consultant was here. He says
> it’s 5ms, not 5μs. Almost the same thing.

Is that an _average_ or the _peak_ value?

From: Cust McCustomer
Subject: RE: FW: Re: Fwd: Perf investigation

>> The NetApp consultant was here. He says
>> it’s 5ms, not 5μs. Almost the same thing.
>
> Is that an _average_ or the _peak_ value?

He says it’s the maximum average value over
60 second intervals.

https://commons.wikimedia.org/wiki/File:Paris_Tuileries_Garden_Facepalm_statue.jpg under	CC-BY-2.0

maximum average
value over 60
second intervals

From: Sasha Goldshtein
Subject: RE: FW: Re: Fwd: Perf investigation

OK, can we at least see the raw values from
the following NetApp counters? It’s still
averages, but updated every second.

From	NetApp	documentation

From: Cust McCustomer
Subject: RE: FW: Re: Fwd: Perf investigation

> OK, can we at least see the raw values
> from the following NetApp counters?

We don’t have the budget to bring the NetApp
consultant again. I’ll keep you posted.

From: Cust McCustomer
Subject: RE: FW: Re: Fwd: Perf investigation

So I talked to the NetApp guy and he says in
our configuration, there is _no way_ the peak
value is above 5ms. It is just not possible.

Investigation Anti-Methods

1. Make assumptions
2. Trust “instincts” and irrational beliefs
3. Look under the street light
4. Use random tools
5. Blame the tools

Let’s	Run	a	CPU	Profiler	Because	We	Just	
Bought	an	Expensive	License
• Profiling	a	web	crawler,	we	get	the	following	results.	Clearly,	
Console.WriteLine is	slow	and	has	a	bug.

This	Application	Doesn’t	Have	a	Memory	Leak

This	Tool	Must	Be	Broken

The USE Method

• USE: Utilization, Saturation, Errors
1. Build a functional diagram of the system, including

hardware/software resources
2. For each resource, identify utilization, saturation, and

errors
3. Understand, resolve, and verify errors, excessive

saturation/utilization, under-utilization

USE	For	Hardware	Resources
CPU

Core Core

LLC

RAM

Memory	
controllerGFX I/O	

controller SSD

E1000

FSB

PCIe

%	hits

%	idle

tx/rx/sMB	available

USE	For	Software	Resources

ASP.NET	
Web	API

ASP.NET	
Web	API

ASP.NET	
Web	API

Nginx

Redis

Node	BEWCF	BE

SQL	Server
q/s,	tx/s locks

exc/s

%	hits

req latency

req/s

USE Checklist For Windows Systems
(1/2)
Component Type Performance Counter or Other Tool
CPU Utilization Processor(_Total)\% Processor Time, % User Time

Process(MyApp)\% Processor Time
CPU Saturation System\Processor Queue Length
CPU Errors Intel Processor Diagnostic Tool (and others)
Memory Utilization Memory\Available Mbytes

Process\Virtual Size, Private Bytes, Working Set
.NET CLR Memory\# Bytes in all Heaps
VMMap, RAMMap

Memory Saturation Memory\Pages/sec
Memory\Committed Bytes vs. Commit Limit

Memory Errors Windows Memory Diagnostic Utility (and others)

USE Checklist For Windows Systems
(2/2)
Component Type Performance Counter/Tool
Network Utilization Network Interface\Bytes Received/sec, Bytes Sent/sec
Network Saturation Network Interface\Output Queue Length,

Packets Outbound Discarded, Packets Received Discarded
Network Errors Network Interface\Packets Outbound Errors,

Packets Received Errors
Disk Utilization Physical Disk\% Disk Time, % Idle Time,

Disk Reads/sec, Disk Writes/sec
Disk Saturation Physical Disk\Current Disk Queue Length
Disk Errors Chkdisk (and other tools)
Application Errors .NET CLR Exceptions\# of Exceps Thrown/sec

ASP.NET\Error Events Raised
…and many others

Automating	The	Checklist

• Typeperf can	generate	a	
simple	CSV	file	with	
performance	counter	
values	(easily	scriptable)
• Perfmon can	collect	
performance	counter	logs	
continuously,	or	when	
triggered	by	an	alert
• Plenty	of	third-party	
monitoring	agents	exist

How	I	Found	a	Bug	in	CLR	2.0’s	GC

• I	was	asked	to	help	with	a	soft	real-time	packet	processing	system	
that	would	occasionally	miss	thousands	of	packets
• Logs	indicated	this	only	happened	when	processing	a	very	particular,	
fairly	exotic	protocol

14:03:44.057 DEBUG Start parsing TCP header seq #1778112
14:03:44.057 DEBUG End parsing TCP header seq #1778112, protocol 0x448
14:03:44.057 DEBUG Start parsing packet protocol 0x448 size 0x90
14:03:44.559 DEBUG Finished parsing packet protocol 0x448
14:03:44.557 DEBUG Start parsing TCP header seq #177811
14:03:44.558 WARN Receive buffer was full, dropped 11891 packets
…

From: Eng McEngineer <engmce@acme.com>
Subject: CPU performance counter logs

We’ve run the checklist for 24 hours and
looked for correlations with the log data on
missed packets. It seems that there is a
considerable CPU spike towards _the end_ of
these windows, take a look at one example:

From: Eng McEngineer <engmce@acme.com>
Subject: CPU performance counter logs

And here’s another funny thing. These delay
windows are _always_ close to a multiple of
250ms. I’ve seen 252ms, 503ms, 751ms, 1005ms,
and even 1252ms.

From: Sasha Goldshtein
Subject: Re: CPU performance counter logs

Oh, that looks suspicious! Can you share the
GC counters around these times? This looks
like a full server GC on 4 cores with full
application suspension.

From: Eng McEngineer <engmce@acme.com>
Subject: Re: CPU performance counter logs

Yeah it does correlate with GC, but we have
such a tiny heap, it doesn’t make sense!
Also, what do you make of the 250ms thing?

From: Sasha Goldshtein
Subject: Re: CPU performance counter logs

> such a tiny heap, it doesn’t make sense!

OK, let’s grab a stack dump around these
windows to see what the GC threads and the
application threads are doing.

From: Eng McEngineer <engmce@acme.com>
Subject: Re: CPU performance counter logs

Here goes a stack dump from the start of a
delay window:

ParseMultiple
448Packets SuspendEE WaitFor

GCEvent
WaitFor

GCEvent
WaitFor

GCEvent
WaitFor

GCEvent
ParseProto GCForAlloc GCThreadProc GCThreadProc GCThreadProc GCThreadProc

ProcessPkt JIT_NewArr

ProcessLoop ProcessPkt

Main ProcessLoop

ThreadPool

From: Sasha Goldshtein
Subject: Re: CPU performance counter logs

Right! So we have one thread in a hot loop
parsing packets, and another thread trying to
suspend it for GC. What is it doing there in
SuspendEE? Is it waiting for something?

From: Eng McEngineer <engmce@acme.com>
Subject: Re: CPU performance counter logs

Yes! Looks like something like this:

while (!GCSuspensionComplete && !gaveUp) {
WaitForSingleObject(GCSuspensionEvent, 250);

}
if (!GCSuspensionComplete && gaveUp) {
SuspendThread(targetThread);

}

Turned	Out,	It’s	a	Bug

• CLR	2.0	had	a	bug	around	codegen for	tight	loops	with	no	safepoints,	
and	suspension	logic	waiting	with	250ms	intervals

Full	story:	http://blogs.microsoft.co.il/sasha/2009/07/31/garbage-collection-thread-suspension-delay-250ms-multiples/

Qualities of Good Performance Tools

• Three kinds of tools:
• How often is this happening? (Counting)
• How much time is this taking? (Latency)
• What is causing this thing to happen? (Stacks)

1. Low overhead
2. Accurate
3. Quick turnaround
4. Production-ready (non-invasive)
5. Focusable

⚠	Mind	The	Overhead

• Any	observation	can	change	the	state	of	the	system,	but	some	
observations	are	worse	than	others
• Check	the	docs
• Try	on	a	test	system	first
• Measure	the	degradation	introduced	by	the	tool

OVERHEAD
The	tool's	overhead	mostly	depends	on	the	number	of	events	traced.	For	example,	CPU	sampling	with	default	settings	
across	the	system	runs	at	virtually	0%	CPU	overhead	during	collection.	System	call	collection	on	an	idle	system	was	
observed	at	1-2%	CPU	usage,	spiking	to	5-10%	when	heavy	I/O	processes	(issuing	approximately	100K	system	calls	per	
second)	were	running.	[…] Additionally,	processing	symbols	to	display	call	stacks	can	lead	to	spikes	of	CPU,	disk,	and	
network	activity	as	symbols	are	downloaded,	loaded	from	disk,	parsed	in	memory,	and	then	cached.	During	heavy	
symbol	processing,	LiveStacks will	routinely	exhibit	100%	CPU	utilization	for	short	time	periods.	To	address	this,	you	can	
limit	the	number	of	stacks	displayed	with	the -T switch.	

— From	LiveStacks README.md

Accuracy:	The	Safepoints Story

• Most	Java	profilers	lie	(VisualVM,	jstack, YourKit,	JProfiler,	…)
• Most	Java	profilers	use	a	documented	JVMTI	API	called	
GetAllStackTraces,	which	gets	a	stack	sample	of	all	the	threads
• But:	the	stack	sample	is	captured	only	at	a	safepoint
• Result:	you	get	totally	bogus	stacks	with	a	strong	bias	towards	
safepoints,	and	no	idea	about	the	rest	of	the	code
• The	same	problem	applies	to	.NET	Core	profilers	on	Linux	that	use	
signals	and	the	CLR	stack	walking	API

Evaluating	The	Accuracy	of	Java	Profilers
Mytkowicz,	Diwan,	Hauswirth,	Sweeney

Appendix A: Sanity Test Your Profiler

1. Build an artificial benchmark, 50% CPU bound, 50% sleep
or I/O, with deep stacks

2. Run CPU profiler and verify that the results make sense
3. While you are at it, look at the overhead

Quick	Turnaround
***** HOW TO USE THIS SCRIPT *****
This script can be used to collect and view performance data collected with perf_event on Linux.
Its job is to make it simple to collect performance traces.
How to collect a performance trace:
1. Prior to starting the .NET process, set the environment variable COMPlus_PerfMapEnabled=1.
This tells the runtime to emit information that enables perf_event to resolve JIT-compiled code symbols.
2. Setup your system to reproduce the performance issue you'd like to capture. Data collection can be
started on already running processes.
2. Run this script: sudo ./perfcollect collect samplePerfTrace
This will start data collection.
3. Let the repro run as long as you need to capture the performance problem.
4. Hit CTRL+C to stop collection.
When collection is stopped, the script will create a trace.zip file matching the name specified on the
command line. This file will contain the trace, JIT-compiled symbol information, and all debugging
symbols for binaries referenced by this trace that were available on the machine at collection time.

Open the Trace File
1. Copy the trace.zip file from Linux to a Windows machine.
2. Download PerfView from http://aka.ms/perfview.
3. Run PerfView.exe

https://github.com/dotnet/corefx-tools/blob/master/src/performance/perfcollect/perfcollect
https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/linux-performance-tracing.md

Quick	Turnaround

$./dotnet-mapgen.py generate 4118
$./dotnet-mapgen.py merge 4118
perf record -p 4118 -F 97 -g
perf script | ./stackcollapse-perf.pl > stacks
$./flamegraph.pl stacks > stacks.svg

Flame	Graphs

• A	visualization	method	(adjacency	graph),	very	
useful	for	stack	traces,	invented	by	Brendan	
Gregg
• http://www.brendangregg.com/flamegraphs.html

• Turns	thousands	of	stack	trace	pages	into	a	
single	interactive	graph
• Example	scenarios:
• Identify	CPU	hotspots	on	the	system/application
• Show	stacks	that	perform	heavy	disk	accesses
• Find	threads	that	block	for	a	long	time	and	the	stack	
where	they	do	it

Reading	a	Flame	Graph

• Each	rectangle	is	a	function
• Y-axis:	stack	depth
• X-axis:	sorted	stacks	(not	time)

• Wider	frames	are	more	common
• Supports	zoom,	find
• Filter	with	grep😎

Invasiveness

• Invasive	tools	are	bad	for	performance,	reliability,	responsiveness
• Visual	Studio	instrumenting	profiler	and	IntelliTrace	require	an	
application	restart	and	attach	code	to	every	method	enter/exit
• The	CLR	Profiling	API	is	based	on	injecting	a	DLL	into	the	profiled	
application
• Extreme	example:	Linux	SystemTap,	LTTng,	SysDig tracing	frameworks	
requires	loading	a	custom	kernel	module

Event	Tracing	For	Windows

• High-performance	facility	for	emitting	100K+	log	events	per	second	
with	rich	payloads	and	stack	trace	support
• File	accesses,	image	loads,	GC	events,	JIT,	interop,	allocs,	threads,	…

ProvidersProvidersProviders
ProvidersProvidersConsumers

ProvidersControllers

Event	tracing	sessions

events
Log	files

events
real-time

logged	
events

buffers

Quick ETW	Collection	Turnaround	With	
PerfView (From	Log)
[Starting collection at 5/1/2017 12:36:15 PM]
[Collecting 10 sec: Size= 15.6 MB.]
[Manually Stopped (Gui)]
Stopping tracing for sessions 'NT Kernel Logger' and 'PerfViewSession'.
[Sending rundown command to CLR providers...]
...
CLR Rundown took 12.744 sec.
Heap events were active for this trace.
Insuring .NET Allocation profiler not installed.
Stop Completed at 5/1/2017 12:36:43 PM
[Conversion complete 91,988 events. Conversion took 4 sec.]
...
Completed: Opening PerfViewData.etl (unmerged) (Elapsed Time: 4.311 sec)
Started: Opening PerfViewData.etl (unmerged)
Completed: Opening PerfViewData.etl (unmerged) (Elapsed Time: 0.209 sec)

Announcing:	etrace

• etrace:	a	real-time,	command-line	frontend	for	ETW	events
https://github.com/goldshtn/etrace

> etrace --help

...
Examples:
etrace --clr GC --event GC/AllocationTick
etrace --kernel Process,Thread,FileIO,FileIOInit --event File/Create
etrace --file trace.etl --stats
etrace --clr GC --event GC/Start --field PID,TID,Reason[12],Type
etrace --kernel Process --event Process/Start --where ImageFileName=myapp
etrace --clr GC --event GC/Start --duration 60
etrace --other Microsoft-Windows-Win32k --event QueuePostMessage
etrace --list CLR,Kernel

Announcing:	LiveStacks

• LiveStacks:	a	real-time,	command-line	stack	collector	and	resolver
https://github.com/goldshtn/LiveStacks

> LiveStacks --help

...
Examples:
LiveStacks
LiveStacks -p 7408
LiveStacks -e clr:gc:gc/triggered
LiveStacks -e kernel:imageload -i 1 -T 5
LiveStacks -c 1 -f

> LiveStacks -P JackCompiler -f > stacks.txt
^C
> perl flamegraph.pl stacks.txt > stacks.svg

Designing Systems For
Instrumentation
1. Make it easy to get call stacks for samples and events
2. Embed static instrumentation (tracepoints)
3. Ensure important events are easy to turn on and have a

low overhead
4. Account for dynamic instrumentation (probes)
5. Have examples and documentation on file

Sampling	vs.	Tracing

• Sampling works	by	getting	a	snapshot	or	a	call	stack	every	N	
occurrences	of	an	interesting	event
• For	most	events,	implemented	in	the	PMU	using	overflow	counters	and	
interrupts

• Tracing works	by	getting	a	message	or	a	call	stack	at	every	occurrence	
of	an	interesting	event

CPU	timepid 121 pid 121 pid 408 pid 188

system	timepid 121 pid 408

CPU	sample

disk	write

Well-Thought-Out:	Full	.NET	on	Windows

• The	CLR	has	dozens	of	ETW	events:	
GC,	JIT,	exceptions,	interop,	
assembly	loading,	threads,	…
• Events	are	associated	with	a	call	stack

• Arbitrary	CPU	sampling	is	possible	
with	ETW	(kernel	mechanism)
• Integrated	experience	in	PerfView,	
WPA,	VS	Concurrency	Visualizer,	and	
other	tools
• On	by	default

MyApp!Booplication.Bar JIT
MyApp!Application.Foo JIT
MyApp!Program.Main JIT
mscorlib!ThreadPool… NGen
mscorlib!ThreadPool… NGen
clr!Thread::intermediate… Native
clr!Thread::intermediate… Native
kernel32!BaseThreadInit… Native
ntdll!RtlUserThreadStart Native

N
ative	PDB

N
Gen
PDB

CLR	
rundow

n

Not	So	Good:	.NET	Core	1.0	on	Linux

• CoreCLR produces	events	through	LTTng
• Off	by	default,	need	environment	variable	to	turn	on
• No	stack	support

• Arbitrary	CPU	sampling	possible	with	perf_events (kernel	mechanism)
• To	resolve	symbols:
• Maps	for	JITted code	are	emitted	if	started	with	an	environment	variable
• Maps	for	NGen code	are	emitted	using	crossgen tool	(not	in-box),	and	can’t	
be	parsed	by	any	standard	Linux	performance	tools
• CoreCLR native	symbols	not	always	available	if	not	building	from	source

Even	Better:	Linux	Tracepoints And	Probes

kernel

Collector	tool

user

application

USDT	(static)
node:http_server_request

application

uprobes	(dynamic)
mysqld:…mysql_parse…

kprobes	(dynamic)
tcp_sendmsg

tracepoints	(static)
sched:sched_switch

perf_events (static)
cpu-clocks

Be Careful With Statistics

• Averages are meaningless
• Medians are almost meaningless
• Percentiles are OK if you know what you’re doing
• Find good visualizations for your performance data
• Beware coordinated omission

Statistics	Lie

• “The	average	response	time	is	29ms”
• Is	this	good?	Does	it	mean	anything?

Same	Stats,	Different	Graphs:	Generating	Datasets	with	Varied	Appearance	and	
Identical	Statistics	through	Simulated	Annealing,	Matejka and	Fitzmaurice

1. This	is	awesome
2. But	you	can’t	

really	see it

Yes,	I	know	about	RPlotExporter

Hiccups

• Hiccups	are	important:	
these	are	the	odd	
conditions	you’re	often	
investigating
• μ =	35.75ms
• σ =	50.95ms
• μ +	3σ	=	188.60ms
• 99th percentile	still	
looks	fine!

Plotting	Percentiles	(Cumulative	Distribution)

To	create	your	own	percentile	charts,	try	HdrHistogram Plotter

From: Cust McCustomer <custmcc@acme.com>
Subject: Latest latency measurements

I’m happy to report that over the last 24
hours, the average 90th percentile latency
across all instances was 57ms, well within
the SLA.

Congrats!

- C

Server	A:	90%	percentile	is	92ms Server	B:	90%	percentile	is	22ms

It	is	not	true	that	90%	of	requests	are	getting	a	response	in	under	57ms
90%	percentile	of	all	requests	is	in	fact	68ms

Who	Cares	About	The	99th Percentile?

• Amazon.com made	328	requests
• Probability	for	at	least	one	99th
percentile	request,	assuming	all	
requests	are	independent:
𝑃 = 1 − 0.99()* ≈ 0.96

Coordinated	Omission

• Basically:	hiccups	make	your	latency	data	too	optimistic!
• Request	latency	measurements	often	do	not	include	queueing	time

var sw = Stopwatch.StartNew();
DoShowCart();
ReportTime("ShowCart", sw.Elapsed.Ticks);

• Benchmarking	tools	often	wait	for	a	slow	request	to	complete	before	
issuing	the	next	one	(rather	than	N requests/sec	no	matter	what)

Coordinated	Omission,	Illustrated
Arrival	Rate:	100	Requests/Sec

Adapted	from	“How	Not	To	Measure	Latency”,	Azul	Systems

La
te
nc
y	
(m

s)

Time

1ms

100s

100s
1	request	took	100s

10,000	requests	took	1ms

Option	1😀
μ =	11ms
99.99%	=	1ms

Option	2😟
10,000	requests	were	
stalled	during	hiccup	
and	took	1ms	to	100s	
to	complete!
μstalled =	50s
99.99%	=	100s

Large Systems Need Large Tools

• Collect performance metrics from a large fleet
• Associate user activities with a session or transaction id
• Visualize using a dashboard
• Allow drilling-in and running single-machine performance

tools with a single click

Conduct a Postmortem

1. Document the steps taken to identify, diagnose, resolve,
and verify the problem

2. Which tools did you use? Can they be improved?
3. Where were the bottlenecks in your investigation?
4. Can you add monitoring for sysadmins/ops?
5. Can you add instrumentation for investigators?
6. How do we triage this problem automatically next time it

happens?

Summary

• We	have	learned:
üWhat	a	performance	investigation	looks	like
üMethods	and	anti-patterns	for	performance	investigations
üTools	for	production	profiling	and	monitoring	.NET	applications
üHow	to	avoid	getting	lied	to	by	tools,	dashboards,	and	reports

References	And	Further	Reading

• Methodology
• Systems	Performance:	Enterprise	and	The	Cloud
• The	USE	method

• Event	Tracing	for	Windows
• My	PerfView talk
• Dina	Goldshtein’s ETW	talk

• Visualization
• Flame	graphs
• Histograms	and	percentiles

• Tools
• etrace
• LiveStacks

• Statistics
• Statistics	Tutorial	for	IT	Operations	Engineers
• How	Not	To	Measure	Latency

• System	internals
• Windows	Internals,	6th edition
• Windows	Memory	Usage,	Demystified
• Pro	.NET	Performance
• Understanding	the	Linux	Kernel

https://s.sashag.net/dotnext17
✁

Sasha	Goldshtein
CTO,	Sela Group

goldshtn
goldshtn

Thank	You!

