
Contents

 C Run-Time Library Reference
 CRT Library Features

 Compatibility
 UWP Apps, the Windows Runtime, and the C Run-Time
 ANSI C Compliance
 UNIX
 Windows Platforms (CRT)
 Backward Compatibility

 Required and Optional Header Files
 Files and Streams

 Text and Binary Streams
 Byte and Wide Streams
 Controlling Streams
 Stream States

 Recommendations for Choosing Between Functions and Macros
 Type Checking (CRT)
 Direction Flag
 Security Features in the CRT

 Security-Enhanced Versions of CRT Functions
 Parameter Validation
 Secure Template Overloads

 SAL Annotations
 Multithreaded Libraries Performance
 Link Options
 Potential Errors Passing CRT Objects Across DLL Boundaries
 CRT Initialization

 Universal C runtime routines by category
 Argument Access
 Buffer Manipulation

 Byte Classification
 Character Classification
 Complex math support
 Data Alignment
 Data Conversion
 Debug Routines
 Directory Control
 Error Handling (CRT)
 Exception Handling Routines
 File Handling
 Floating-Point Support
 Input and Output

 Text and Binary Mode File I-O
 Unicode Stream I-O in Text and Binary Modes
 Stream I-O
 Low-Level I-O
 Console and Port I-O
 _nolock Functions

 Internationalization
 Locale
 Code Pages
 Interpretation of Multibyte-Character Sequences
 ISO646 Operators
 Single-Byte and Multibyte Character Sets
 SBCS and MBCS Data Types
 Unicode: The Wide-Character Set
 Using Generic-Text Mappings
 A Sample Generic-Text Program
 Using TCHAR.H Data Types with _MBCS

 Memory Allocation
 Process and Environment Control
 Robustness

 Run-Time Error Checking
 Searching and Sorting
 String Manipulation (CRT)
 System Calls
 Time Management
 Windows Runtime Unsupported CRT Functions
 Internal CRT Globals and Functions

 _abnormal_termination
 _acmdln, _tcmdln, _wcmdln
 _CIatan
 _CIatan2
 _CIcos
 _CIexp
 _CIfmod
 _CIlog
 _CIlog10
 _CIpow
 _CIsin
 _CIsqrt
 _CItan
 __crtLCMapStringW
 __CxxFrameHandler
 __dllonexit
 _except_handler3
 _execute_onexit_table, _initialize_onexit_table, _register_onexit_function
 __getmainargs, __wgetmainargs
 ___lc_codepage_func
 ___lc_collate_cp_func
 ___lc_locale_name_func
 _local_unwind2
 ___mb_cur_max_func, ___mb_cur_max_l_func, __p___mb_cur_max, __mb_cur_max
 __p__commode

 __p__fmode
 __pctype_func
 __RTDynamicCast
 __set_app_type
 _set_app_type
 _setjmp3
 ___setlc_active_func, ___unguarded_readlc_active_add_func
 __setusermatherr

 Global Variables and Standard Types
 Global Variables

 __argc, __argv, __wargv
 _daylight, _dstbias, _timezone, and _tzname
 errno, _doserrno, _sys_errlist, and _sys_nerr
 _environ, _wenviron
 _fmode
 _iob
 _pctype, _pwctype, _wctype, _mbctype, _mbcasemap
 _pgmptr, _wpgmptr

 Control Flags
 _CRTDBG_MAP_ALLOC
 _DEBUG
 _crtDbgFlag

 Standard Types
 Global Constants

 32-Bit Windows Time-Date Formats
 BUFSIZ
 CLOCKS_PER_SEC, CLK_TCK
 Commit-To-Disk Constants
 _CRT_DISABLE_PERFCRIT_LOCKS
 Data Type Constants
 Environmental Constants
 EOF, WEOF

 errno Constants
 Exception-Handling Constants
 EXIT_SUCCESS, EXIT_FAILURE
 File Attribute Constants
 File Constants
 File Permission Constants
 File Read-Write Access Constants
 File Translation Constants
 FILENAME_MAX
 FOPEN_MAX, _SYS_OPEN
 _FREEENTRY, _USEDENTRY
 fseek, _lseek Constants
 Heap Constants
 _HEAP_MAXREQ
 HUGE_VAL, _HUGE
 Locale Categories
 _locking Constants
 Math Constants
 Math Error Constants
 _MAX_ENV
 MB_CUR_MAX
 NULL (CRT)
 Path Field Limits
 RAND_MAX
 setvbuf Constants
 Sharing Constants
 signal Constants
 signal Action Constants
 spawn Constants
 _stat Structure st_mode Field Constants
 stdin, stdout, stderr
 TMP_MAX, L_tmpnam

 Translation Mode Constants
 _TRUNCATE
 TZNAME_MAX
 _WAIT_CHILD, _WAIT_GRANDCHILD
 WCHAR_MAX
 WCHAR_MIN

 Generic-Text Mappings
 Data Type Mappings
 Constant and Global Variable Mappings
 Routine Mappings

 Locale Names, Languages, and Country-Region Strings
 Language Strings
 Country-Region Strings

 Function Family Overviews
 _exec, _wexec Functions
 Filename Search Functions
 Format Specification Syntax: printf and wprintf Functions
 Format Specification Fields: scanf and wscanf Functions
 is, isw Routines
 _ismbb Routines
 _ismbc Routines
 operator new(CRT)
 operator new (CRT)
 operator delete(CRT)
 operator delete (CRT)
 printf_p Positional Parameters
 scanf Type Field Characters
 scanf Width Specification
 _spawn, _wspawn Functions
 strcoll Functions
 String to Numeric Value Functions
 to Functions

 vprintf Functions
 Obsolete Functions

 _cgets, _cgetws
 _get_output_format
 gets, _getws
 _heapadd
 _heapset
 inp, inpw
 _inp, _inpw, _inpd
 _lock
 outp, outpw
 _outp, _outpw, _outpd
 _set_output_format
 _unlock

 Alphabetical Function Reference
 CRT Alphabetical Function Reference

 abort
 abs, labs, llabs, _abs64
 access (CRT)
 _access, _waccess
 _access_s, _waccess_s
 acos, acosf, acosl
 acosh, acoshf, acoshl
 _aligned_free
 _aligned_free_dbg
 _aligned_malloc
 _aligned_malloc_dbg
 _aligned_msize
 _aligned_msize_dbg
 _aligned_offset_malloc
 _aligned_offset_malloc_dbg
 _aligned_offset_realloc

 _aligned_offset_realloc_dbg
 _aligned_offset_recalloc
 _aligned_offset_recalloc_dbg
 _aligned_realloc
 _aligned_realloc_dbg
 _aligned_recalloc
 _aligned_recalloc_dbg
 _alloca
 _amsg_exit
 and
 and_eq
 asctime, _wasctime
 asctime_s, _wasctime_s
 asin, asinf, asinl
 asinh, asinhf, asinhl
 assert Macro, _assert, _wassert
 _ASSERT, _ASSERTE, _ASSERT_EXPR Macros
 atan, atanf, atanl, atan2, atan2f, atan2l
 atanh, atanhf, atanhl
 atexit
 _atodbl, _atodbl_l, _atoldbl, _atoldbl_l, _atoflt, _atoflt_l
 atof, _atof_l, _wtof, _wtof_l
 atoi, _atoi_l, _wtoi, _wtoi_l
 _atoi64, _atoi64_l, _wtoi64, _wtoi64_l
 atol, _atol_l, _wtol, _wtol_l
 atoll, _atoll_l, _wtoll, _wtoll_l
 _beginthread, _beginthreadex
 Bessel Functions: _j0, _j1, _jn, _y0, _y1, _yn
 bitand
 bitor
 bsearch
 bsearch_s

 btowc
 _byteswap_uint64, _byteswap_ulong, _byteswap_ushort
 c16rtomb, c32rtomb
 cabs, cabsf, cabsl
 _cabs
 cacos, cacosf, cacosl
 cacosh, cacoshf, cacoshl
 _callnewh
 calloc
 _calloc_dbg
 carg, cargf, cargl
 casin, casinf, casinl
 casinh, casinhf, casinhl
 catan, catanf, catanl
 catanh, catanhf, catanhl
 cbrt, cbrtf, cbrtl
 _Cbuild, _FCbuild, _LCbuild
 ccos, ccosf, ccosl
 ccosh, ccoshf, ccoshl
 ceil, ceilf, ceill
 _cexit, _c_exit
 cexp, cexpf, cexpl
 cgets
 _cgets_s, _cgetws_s
 chdir
 _chdir, _wchdir
 _chdrive
 _chgsign, _chgsignf, _chgsignl
 chmod
 _chmod, _wchmod
 chsize
 _chsize

 _chsize_s
 cimag, cimagf, cimagl
 _clear87, _clearfp
 clearerr
 clearerr_s
 clock
 clog, clogf, clogl
 clog10, clog10f, clog10l
 _close
 close
 _Cmulcc, _FCmulcc, _LCmulcc
 _Cmulcr, _FCmulcr, _LCmulcr
 _commit
 compl
 _configthreadlocale
 conj, conjf, conjl
 _control87, _controlfp, __control87_2
 _controlfp_s
 copysign, copysignf, copysignl, _copysign, _copysignf, _copysignl
 cos, cosf, cosl
 cosh, coshf, coshl
 _countof Macro
 cpow, cpowf, cpowl
 cprintf
 _cprintf, _cprintf_l, _cwprintf, _cwprintf_l
 _cprintf_p, _cprintf_p_l, _cwprintf_p, _cwprintf_p_l
 _cprintf_s, _cprintf_s_l, _cwprintf_s, _cwprintf_s_l
 cproj, cprojf, cprojl
 cputs
 _cputs, _cputws
 creal, crealf, creall
 creat

 _creat, _wcreat
 _create_locale, _wcreate_locale
 _CrtCheckMemory
 _CrtDbgBreak
 _CrtDbgReport, _CrtDbgReportW
 _CrtDoForAllClientObjects
 _CrtDumpMemoryLeaks
 _CrtGetAllocHook
 _CrtGetDumpClient
 _CrtGetReportHook
 _CrtIsMemoryBlock
 _CrtIsValidHeapPointer
 _CrtIsValidPointer
 _CrtMemCheckpoint
 _CrtMemDifference
 _CrtMemDumpAllObjectsSince
 _CrtMemDumpStatistics
 _CrtReportBlockType
 _CrtSetAllocHook
 _CrtSetBreakAlloc
 _CrtSetDbgFlag
 _CrtSetDebugFillThreshold
 _CrtSetDumpClient
 _CrtSetReportFile
 _CrtSetReportHook
 _CrtSetReportHook2, _CrtSetReportHookW2
 _CrtSetReportMode
 cscanf
 _cscanf, _cscanf_l, _cwscanf, _cwscanf_l
 _cscanf_s, _cscanf_s_l, _cwscanf_s, _cwscanf_s_l
 csin, csinf, csinl
 csinh, csinhf, csinhl

 csqrt, csqrtf, csqrtl
 ctan, ctanf, ctanl
 ctanh, ctanhf, ctanhl
 ctime, _ctime32, _ctime64, _wctime, _wctime32, _wctime64
 ctime_s, _ctime32_s, _ctime64_s, _wctime_s, _wctime32_s, _wctime64_s
 cwait
 _cwait
 _CxxThrowException
 difftime, _difftime32, _difftime64
 div
 dup, dup2
 _dup, _dup2
 _dupenv_s, _wdupenv_s
 _dupenv_s_dbg, _wdupenv_s_dbg
 ecvt
 _ecvt
 _ecvt_s
 _endthread, _endthreadex
 eof
 _eof
 erf, erff, erfl, erfc, erfcf, erfcl
 execl
 _execl, _wexecl
 execle
 _execle, _wexecle
 execlp
 _execlp, _wexeclp
 execlpe
 _execlpe, _wexeclpe
 execv
 _execv, _wexecv
 execve

 _execve, _wexecve
 execvp
 _execvp, _wexecvp
 execvpe
 _execvpe, _wexecvpe
 exit, _Exit, _exit
 exp, expf, expl
 exp2, exp2f, exp2l
 _expand
 _expand_dbg
 expm1, expm1f, expm1l
 fabs, fabsf, fabsl
 fclose, _fcloseall
 _fclose_nolock
 fcloseall
 fcvt
 _fcvt
 _fcvt_s
 fdim, fdimf, fdiml
 fdopen
 _fdopen, _wfdopen
 feclearexcept
 fegetenv
 fegetexceptflag
 fegetround, fesetround
 feholdexcept
 feof
 feraiseexcept
 ferror
 fesetenv
 fesetexceptflag
 fetestexcept

 feupdateenv
 fflush
 _fflush_nolock
 fgetc, fgetwc
 _fgetc_nolock, _fgetwc_nolock
 fgetchar
 _fgetchar, _fgetwchar
 fgetpos
 fgets, fgetws
 filelength
 _filelength, _filelengthi64
 fileno
 _fileno
 _findclose
 _findfirst, _findfirst32, _findfirst32i64, _findfirst64, _findfirst64i32, _findfirsti64,

_wfindfirst, _wfindfirst32, _wfindfirst32i64, _wfindfirst64, _wfindfirst64i32, _wfindfirsti64
 _findnext, _findnext32, _findnext32i64, _findnext64, _findnext64i32, _findnexti64,

_wfindnext, _wfindnext32, _wfindnext32i64, _wfindnext64, _wfindnext64i32,
_wfindnexti64
 Floating-point primitives
 floor, floorf, floorl
 flushall
 _flushall
 fma, fmaf, fmal
 fmax, fmaxf, fmaxl
 fmin, fminf, fminl
 fmod, fmodf
 fopen, _wfopen
 fopen_s, _wfopen_s
 _fpclass, _fpclassf
 fpclassify
 _fpieee_flt
 _fpreset

 fprintf, _fprintf_l, fwprintf, _fwprintf_l
 _fprintf_p, _fprintf_p_l, _fwprintf_p, _fwprintf_p_l
 fprintf_s, _fprintf_s_l, fwprintf_s, _fwprintf_s_l
 fputc, fputwc
 _fputc_nolock, _fputwc_nolock
 fputchar
 _fputchar, _fputwchar
 fputs, fputws
 fread
 fread_s
 _fread_nolock
 _fread_nolock_s2
 free
 _free_dbg
 _free_locale
 _freea
 freopen, _wfreopen
 freopen_s, _wfreopen_s
 frexp
 fscanf, _fscanf_l, fwscanf, _fwscanf_l
 fscanf_s, _fscanf_s_l, fwscanf_s, _fwscanf_s_l
 fseek, _fseeki64
 _fseek_nolock, _fseeki64_nolock
 fsetpos
 _fsopen, _wfsopen
 _fstat, _fstat32, _fstat64, _fstati64, _fstat32i64, _fstat64i32
 ftell, _ftelli64
 _ftell_nolock, _ftelli64_nolock
 _ftime, _ftime32, _ftime64
 _ftime_s, _ftime32_s, _ftime64_s
 _fullpath, _wfullpath
 _fullpath_dbg, _wfullpath_dbg

 _futime, _futime32, _futime64
 fwide
 fwrite
 _fwrite_nolock
 gcvt
 _gcvt
 _gcvt_s
 _get_current_locale
 _get_daylight
 _get_doserrno
 _get_dstbias
 _get_errno
 _get_FMA3_enable, _set_FMA3_enable
 _get_fmode
 _get_heap_handle
 _get_invalid_parameter_handler, _get_thread_local_invalid_parameter_handler
 _get_osfhandle
 _get_pgmptr
 _get_printf_count_output
 _get_purecall_handler, _set_purecall_handler
 _get_terminate
 _get_timezone
 _get_tzname
 _get_unexpected
 _get_wpgmptr
 getc, getwc
 _getc_nolock, _getwc_nolock
 getch
 _getch, _getwch
 _getch_nolock, _getwch_nolock
 getchar, getwchar
 _getchar_nolock, _getwchar_nolock

 getche
 _getche, _getwche
 _getche_nolock, _getwche_nolock
 getcwd
 _getcwd, _wgetcwd
 _getcwd_dbg, _wgetcwd_dbg
 _getdcwd, _wgetdcwd
 _getdcwd_dbg, _wgetdcwd_dbg
 _getdcwd_nolock, _wgetdcwd_nolock
 _getdiskfree
 _getdrive
 _getdrives
 getenv, _wgetenv
 getenv_s, _wgetenv_s
 _getmaxstdio
 _getmbcp
 getpid
 _getpid
 gets_s, _getws_s
 getw
 _getw
 gmtime, _gmtime32, _gmtime64
 gmtime_s, _gmtime32_s, _gmtime64_s
 _heapchk
 _heapmin
 _heapwalk
 hypot, hypotf, hypotl, _hypot, _hypotf, _hypotl
 ilogb, ilogbf, ilogbl2
 imaxabs
 imaxdiv
 _initterm, _initterm_e
 _invalid_parameter, _invalid_parameter_noinfo, _invalid_parameter_noinfo_noreturn,

_invoke_watson

 isalnum, iswalnum, _isalnum_l, _iswalnum_l
 isalpha, iswalpha, _isalpha_l, _iswalpha_l
 isascii, __isascii, iswascii
 isatty
 _isatty
 isblank, iswblank, _isblank_l, _iswblank_l
 iscntrl, iswcntrl, _iscntrl_l, _iswcntrl_l
 _isctype, iswctype, _isctype_l, _iswctype_l
 iscsym, iscsymf, __iscsym, __iswcsym, __iscsymf, __iswcsymf, _iscsym_l, _iswcsym_l,

_iscsymf_l, _iswcsymf_l
 isdigit, iswdigit, _isdigit_l, _iswdigit_l
 isfinite, _finite, _finitef
 isgraph, iswgraph, _isgraph_l, _iswgraph_l
 isgreater, isgreaterequal, isless, islessequal, islessgreater, isunordered
 isinf
 isleadbyte, _isleadbyte_l
 islower, iswlower, _islower_l, _iswlower_l
 _ismbbalnum, _ismbbalnum_l
 _ismbbalpha, _ismbbalpha_l
 _ismbbblank, _ismbbblank_l
 _ismbbgraph, _ismbbgraph_l
 _ismbbkalnum, _ismbbkalnum_l
 _ismbbkana, _ismbbkana_l
 _ismbbkprint, _ismbbkprint_l
 _ismbbkpunct, _ismbbkpunct_l
 _ismbblead, _ismbblead_l
 _ismbbprint, _ismbbprint_l
 _ismbbpunct, _ismbbpunct_l
 _ismbbtrail, _ismbbtrail_l
 _ismbcalnum, _ismbcalnum_l, _ismbcalpha, _ismbcalpha_l, _ismbcdigit, _ismbcdigit_l
 _ismbcgraph, _ismbcgraph_l, _ismbcprint, _ismbcprint_l, _ismbcpunct, _ismbcpunct_l,

_ismbcblank, _ismbcblank_l, _ismbcspace, _ismbcspace_l
 _ismbchira, _ismbchira_l, _ismbckata, _ismbckata_l

 _ismbcl0, _ismbcl0_l, _ismbcl1, _ismbcl1_l, _ismbcl2, _ismbcl2_l
 _ismbclegal, _ismbclegal_l, _ismbcsymbol, _ismbcsymbol_l
 _ismbclower, _ismbclower_l, _ismbcupper, _ismbcupper_l
 _ismbslead, _ismbstrail, _ismbslead_l, _ismbstrail_l
 isnan, _isnan, _isnanf
 isnormal
 ispunct, iswpunct, _ispunct_l, _iswpunct_l
 isprint, iswprint, _isprint_l, _iswprint_l
 isspace, iswspace, _isspace_l, _iswspace_l
 isupper, _isupper_l, iswupper, _iswupper_l
 isxdigit, iswxdigit, _isxdigit_l, _iswxdigit_l
 itoa, _itoa, ltoa, _ltoa, ultoa, _ultoa, _i64toa, _ui64toa, _itow, _ltow, _ultow, _i64tow,

_ui64tow
 _itoa_s, _ltoa_s, _ultoa_s, _i64toa_s, _ui64toa_s, _itow_s, _ltow_s, _ultow_s, _i64tow_s,

_ui64tow_s
 j0, j1, jn
 kbhit
 _kbhit
 ldexp
 ldiv, lldiv
 lfind
 _lfind
 _lfind_s
 lgamma, lgammaf, lgammal
 localeconv
 localtime, _localtime32, _localtime64
 localtime_s, _localtime32_s, _localtime64_s
 _lock_file
 locking
 _locking
 log, logf, log10, log10f
 log1p, log1pf, log1pl2
 log2, log2f, log2l

 logb, logbf, logbl, _logb, _logbf
 longjmp
 lrint, lrintf, lrintl, llrint, llrintf, llrintl
 lround, lroundf, lroundl, llround, llroundf, llroundl
 _lrotl, _lrotr
 lsearch
 _lsearch
 _lsearch_s
 lseek
 _lseek, _lseeki64
 _makepath, _wmakepath
 _makepath_s, _wmakepath_s
 malloc
 _malloc_dbg
 _malloca
 _matherr
 __max
 _mbbtombc, _mbbtombc_l
 _mbbtype, _mbbtype_l
 _mbccpy, _mbccpy_l
 _mbccpy_s, _mbccpy_s_l
 _mbcjistojms, _mbcjistojms_l, _mbcjmstojis, _mbcjmstojis_l
 _mbclen, mblen, _mblen_l, _mbclen_l
 _mbctohira, _mbctohira_l, _mbctokata, _mbctokata_l
 _mbctolower, _mbctolower_l, _mbctoupper, _mbctoupper_l
 _mbctombb, _mbctombb_l
 mbrlen
 mbrtoc16, mbrtoc323
 mbrtowc
 _mbsbtype, _mbsbtype_l
 mbsinit
 _mbsnbcat, _mbsnbcat_l

 _mbsnbcat_s, _mbsnbcat_s_l
 _mbsnbcmp, _mbsnbcmp_l
 _mbsnbcoll, _mbsnbcoll_l, _mbsnbicoll, _mbsnbicoll_l
 _mbsnbcpy, _mbsnbcpy_l
 _mbsnbcpy_s, _mbsnbcpy_s_l
 _mbsnbicmp, _mbsnbicmp_l
 _mbsnbset, _mbsnbset_l
 _mbsnbset_s, _mbsnbset_s_l
 mbsrtowcs
 mbsrtowcs_s
 mbstowcs, _mbstowcs_l
 mbstowcs_s, _mbstowcs_s_l
 mbtowc, _mbtowc_l
 memccpy
 _memccpy
 memchr, wmemchr
 memcmp, wmemcmp
 memcpy, wmemcpy
 memcpy_s, wmemcpy_s
 memicmp
 _memicmp, _memicmp_l
 memmove, wmemmove
 memmove_s, wmemmove_s
 memset, wmemset
 __min
 mkdir
 _mkdir, _wmkdir
 _mkgmtime, _mkgmtime32, _mkgmtime64
 mktemp
 _mktemp, _wmktemp
 _mktemp_s, _wmktemp_s
 mktime, _mktime32, _mktime64

 modf, modff, modfl
 _msize
 _msize_dbg
 nan, nanf, nanl
 nearbyint, nearbyintf, nearbyintl
 nextafter, nextafterf, nextafterl, _nextafter, _nextafterf, nexttoward, nexttowardf,

nexttowardl
 norm, normf, norml
 not
 not_eq
 offsetof Macro
 _onexit, _onexit_m
 open
 _open, _wopen
 _open_osfhandle
 or_eq
 or
 _pclose
 perror, _wperror
 _pipe
 _popen, _wpopen
 pow, powf, powl
 printf, _printf_l, wprintf, _wprintf_l
 _printf_p, _printf_p_l, _wprintf_p, _wprintf_p_l
 printf_s, _printf_s_l, wprintf_s, _wprintf_s_l
 _purecall
 putc, putwc
 _putc_nolock, _putwc_nolock
 putch
 _putch, _putwch
 _putch_nolock, _putwch_nolock
 putchar, putwchar
 _putchar_nolock, _putwchar_nolock

 putenv
 _putenv, _wputenv
 _putenv_s, _wputenv_s
 puts, _putws
 putw
 _putw
 _query_new_handler
 _query_new_mode
 quick_exit
 qsort
 qsort_s
 raise
 rand
 rand_s
 read
 _read
 realloc
 _realloc_dbg
 _recalloc
 _recalloc_dbg
 remainder, remainderf, remainderl
 remove, _wremove
 remquo, remquof, remquol
 rename, _wrename
 _resetstkoflw
 rewind
 rint, rintf, rintl
 rmdir
 _rmdir, _wrmdir
 rmtmp
 _rmtmp
 _rotl, _rotl64, _rotr, _rotr64

 round, roundf, roundl
 _RPT, _RPTF, _RPTW, _RPTFW Macros
 _RTC_GetErrDesc
 _RTC_NumErrors
 _RTC_SetErrorFunc
 _RTC_SetErrorFuncW
 _RTC_SetErrorType
 _scalb
 scalbn, scalbnf, scalbnl, scalbln, scalblnf, scalblnl
 scanf, _scanf_l, wscanf, _wscanf_l
 scanf_s, _scanf_s_l, wscanf_s, _wscanf_s_l
 _scprintf, _scprintf_l, _scwprintf, _scwprintf_l
 _scprintf_p, _scprintf_p_l, _scwprintf_p, _scwprintf_p_l
 _searchenv, _wsearchenv
 _searchenv_s, _wsearchenv_s
 __security_init_cookie
 _seh_filter_dll, _seh_filter_exe
 _set_abort_behavior
 setbuf
 _set_controlfp
 _set_doserrno
 _set_errno
 _set_error_mode
 _set_fmode
 _set_invalid_parameter_handler, _set_thread_local_invalid_parameter_handler
 setjmp
 setlocale, _wsetlocale
 _setmaxstdio
 _setmbcp
 setmode
 _setmode
 _set_new_handler

 _set_new_mode
 _set_printf_count_output
 _set_se_translator
 _set_SSE2_enable
 set_terminate (CRT)
 set_unexpected (CRT)
 setvbuf
 signal
 signbit
 sin, sinf, sinl
 sinh, sinhf, sinhl
 snprintf, _snprintf, _snprintf_l, _snwprintf, _snwprintf_l
 _snprintf_s, _snprintf_s_l, _snwprintf_s, _snwprintf_s_l
 _snscanf, _snscanf_l, _snwscanf, _snwscanf_l
 _snscanf_s, _snscanf_s_l, _snwscanf_s, _snwscanf_s_l
 sopen
 _sopen, _wsopen
 _sopen_s, _wsopen_s
 spawnl
 _spawnl, _wspawnl
 spawnle
 _spawnle, _wspawnle
 spawnlp
 _spawnlp, _wspawnlp
 spawnlpe
 _spawnlpe, _wspawnlpe
 spawnv
 _spawnv, _wspawnv
 spawnve
 _spawnve, _wspawnve
 spawnvp
 _spawnvp, _wspawnvp

 spawnvpe
 _spawnvpe, _wspawnvpe
 _splitpath, _wsplitpath
 _splitpath_s, _wsplitpath_s
 sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
 _sprintf_p, _sprintf_p_l, _swprintf_p, _swprintf_p_l
 sprintf_s, _sprintf_s_l, swprintf_s, _swprintf_s_l
 sqrt, sqrtf, sqrtl
 srand
 sscanf, _sscanf_l, swscanf, _swscanf_l
 sscanf_s, _sscanf_s_l, swscanf_s, _swscanf_s_l
 _stat, _stat32, _stat64, _stati64, _stat32i64, _stat64i32, _wstat, _wstat32, _wstat64,

_wstati64, _wstat32i64, _wstat64i32
 _STATIC_ASSERT Macro
 _status87, _statusfp, _statusfp2
 strcat, wcscat, _mbscat
 strcat_s, wcscat_s, _mbscat_s, _mbscat_s_l
 strchr, wcschr, _mbschr, _mbschr_l
 strcmp, wcscmp, _mbscmp, _mbscmp_l
 strcmpi
 strcoll, wcscoll, _mbscoll, _strcoll_l, _wcscoll_l, _mbscoll_l
 strcpy, wcscpy, _mbscpy
 strcpy_s, wcscpy_s, _mbscpy_s, _mbscpy_s_l
 strcspn, wcscspn, _mbscspn, _mbscspn_l
 _strdate, _wstrdate
 _strdate_s, _wstrdate_s
 _strdec, _wcsdec, _mbsdec, _mbsdec_l
 strdup, wcsdup
 _strdup, _wcsdup, _mbsdup
 _strdup_dbg, _wcsdup_dbg
 strerror, _strerror, _wcserror, __wcserror
 strerror_s, _strerror_s, _wcserror_s, __wcserror_s
 strftime, wcsftime, _strftime_l, _wcsftime_l

 stricmp, wcsicmp
 _stricmp, _wcsicmp, _mbsicmp, _stricmp_l, _wcsicmp_l, _mbsicmp_l
 _stricoll, _wcsicoll, _mbsicoll, _stricoll_l, _wcsicoll_l, _mbsicoll_l
 _strinc, _wcsinc, _mbsinc, _mbsinc_l
 strlen, wcslen, _mbslen, _mbslen_l, _mbstrlen, _mbstrlen_l
 strlwr, wcslwr
 _strlwr, _wcslwr, _mbslwr, _strlwr_l, _wcslwr_l, _mbslwr_l
 _strlwr_s, _strlwr_s_l, _mbslwr_s, _mbslwr_s_l, _wcslwr_s, _wcslwr_s_l
 strncat, _strncat_l, wcsncat, _wcsncat_l, _mbsncat, _mbsncat_l
 strncat_s, _strncat_s_l, wcsncat_s, _wcsncat_s_l, _mbsncat_s, _mbsncat_s_l
 strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
 _strncnt, _wcsncnt, _mbsnbcnt, _mbsnbcnt_l, _mbsnccnt, _mbsnccnt_l
 _strncoll, _wcsncoll, _mbsncoll, _strncoll_l, _wcsncoll_l, _mbsncoll_l
 strncpy, _strncpy_l, wcsncpy, _wcsncpy_l, _mbsncpy, _mbsncpy_l
 strncpy_s, _strncpy_s_l, wcsncpy_s, _wcsncpy_s_l, _mbsncpy_s, _mbsncpy_s_l
 _strnextc, _wcsnextc, _mbsnextc, _mbsnextc_l
 strnicmp, wcsnicmp
 _strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
 _strnicoll, _wcsnicoll, _mbsnicoll, _strnicoll_l, _wcsnicoll_l, _mbsnicoll_l
 _strninc, _wcsninc, _mbsninc, _mbsninc_l
 strnlen, strnlen_s, wcsnlen, wcsnlen_s, _mbsnlen, _mbsnlen_l, _mbstrnlen, _mbstrnlen_l
 strnset, wcsnset
 _strnset, _strnset_l, _wcsnset, _wcsnset_l, _mbsnset, _mbsnset_l
 _strnset_s, _strnset_s_l, _wcsnset_s, _wcsnset_s_l, _mbsnset_s, _mbsnset_s_l
 strpbrk, wcspbrk, _mbspbrk, _mbspbrk_l
 strrchr, wcsrchr, _mbsrchr, _mbsrchr_l
 strrev, wcsrev
 _strrev, _wcsrev, _mbsrev, _mbsrev_l
 strset, wcsset
 _strset, _strset_l, _wcsset, _wcsset_l, _mbsset, _mbsset_l
 _strset_s, _strset_s_l, _wcsset_s, _wcsset_s_l, _mbsset_s, _mbsset_s_l
 strspn, wcsspn, _mbsspn, _mbsspn_l

 _strspnp, _wcsspnp, _mbsspnp, _mbsspnp_l
 strstr, wcsstr, _mbsstr, _mbsstr_l
 _strtime, _wstrtime
 _strtime_s, _wstrtime_s
 strtod, _strtod_l, wcstod, _wcstod_l
 strtof, _strtof_l, wcstof, _wcstof_l
 _strtoi64, _wcstoi64, _strtoi64_l, _wcstoi64_l
 strtoimax, _strtoimax_l, wcstoimax, _wcstoimax_l
 strtok, _strtok_l, wcstok, _wcstok_l, _mbstok, _mbstok_l
 strtok_s, _strtok_s_l, wcstok_s, _wcstok_s_l, _mbstok_s, _mbstok_s_l
 strtol, wcstol, _strtol_l, _wcstol_l
 strtold, _strtold_l, wcstold, _wcstold_l
 strtoll, _strtoll_l, wcstoll, _wcstoll_l
 _strtoui64, _wcstoui64, _strtoui64_l, _wcstoui64_l
 strtoul, _strtoul_l, wcstoul, _wcstoul_l
 strtoull, _strtoull_l, wcstoull, _wcstoull_l
 strtoumax, _strtoumax_l, wcstoumax, _wcstoumax_l
 strupr, wcsupr
 _strupr, _strupr_l, _mbsupr, _mbsupr_l, _wcsupr_l, _wcsupr
 _strupr_s, _strupr_s_l, _mbsupr_s, _mbsupr_s_l, _wcsupr_s, _wcsupr_s_l
 strxfrm, wcsxfrm, _strxfrm_l, _wcsxfrm_l
 swab
 _swab
 system, _wsystem
 tan, tanf, tanl
 tanh, tanhf, tanhl
 tell
 _tell, _telli64
 tempnam
 _tempnam, _wtempnam, tmpnam, _wtmpnam
 _tempnam_dbg, _wtempnam_dbg
 terminate (CRT)

 tgamma, tgammaf, tgammal
 time, _time32, _time64
 timespec_get, _timespec32_get, _timespec64_get
 tmpfile
 tmpfile_s
 tmpnam_s, _wtmpnam_s
 toascii, __toascii
 tolower, _tolower, towlower, _tolower_l, _towlower_l
 toupper, _toupper, towupper, _toupper_l, _towupper_l
 towctrans
 trunc, truncf, truncl
 tzset
 _tzset
 umask
 _umask
 _umask_s
 __uncaught_exception
 unexpected (CRT)
 ungetc, ungetwc
 _ungetc_nolock, _ungetwc_nolock
 ungetch
 _ungetch, _ungetwch, _ungetch_nolock, _ungetwch_nolock
 unlink
 _unlink, _wunlink
 _unlock_file
 _utime, _utime32, _utime64, _wutime, _wutime32, _wutime64
 va_arg, va_copy, va_end, va_start
 _vcprintf, _vcprintf_l, _vcwprintf, _vcwprintf_l
 _vcprintf_p, _vcprintf_p_l, _vcwprintf_p, _vcwprintf_p_l
 _vcprintf_s, _vcprintf_s_l, _vcwprintf_s, _vcwprintf_s_l
 vfprintf, _vfprintf_l, vfwprintf, _vfwprintf_l
 _vfprintf_p, _vfprintf_p_l, _vfwprintf_p, _vfwprintf_p_l

 vfprintf_s, _vfprintf_s_l, vfwprintf_s, _vfwprintf_s_l
 vfscanf, vfwscanf
 vfscanf_s, vfwscanf_s
 vprintf, _vprintf_l, vwprintf, _vwprintf_l
 _vprintf_p, _vprintf_p_l, _vwprintf_p, _vwprintf_p_l
 vprintf_s, _vprintf_s_l, vwprintf_s, _vwprintf_s_l
 vscanf, vwscanf
 vscanf_s, vwscanf_s
 _vscprintf, _vscprintf_l, _vscwprintf, _vscwprintf_l
 _vscprintf_p, _vscprintf_p_l, _vscwprintf_p, _vscwprintf_p_l
 vsnprintf, _vsnprintf, _vsnprintf_l, _vsnwprintf, _vsnwprintf_l
 vsnprintf_s, _vsnprintf_s, _vsnprintf_s_l, _vsnwprintf_s, _vsnwprintf_s_l
 vsprintf, _vsprintf_l, vswprintf, _vswprintf_l, __vswprintf_l
 _vsprintf_p, _vsprintf_p_l, _vswprintf_p, _vswprintf_p_l
 vsprintf_s, _vsprintf_s_l, vswprintf_s, _vswprintf_s_l
 vsscanf, vswscanf
 vsscanf_s, vswscanf_s
 wcrtomb
 wcrtomb_s
 wcsrtombs
 wcsrtombs_s
 wcstombs, _wcstombs_l
 wcstombs_s, _wcstombs_s_l
 wctob
 wctomb, _wctomb_l
 wctomb_s, _wctomb_s_l
 wctrans
 wctype
 write
 _write
 wcsicoll
 xor

 xor_eq
 y0, y1, yn

C Run-Time Library Reference
10/31/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

The Microsoft run-time library provides routines for programming for the Microsoft Windows operating system.
These routines automate many common programming tasks that are not provided by the C and C++ languages.

Sample programs are included in the individual reference topics for most routines in the library.

C Run-Time Libraries
Discusses the .lib files that comprise the C run-time libraries.

Universal C runtime routines by category
Provides links to the run-time library by category.

Global Variables and Standard Types
Provides links to the global variables and standard types provided by the run-time library.

Global Constants
Provides links to the global constants defined by the run-time library.

Alphabetical Function Reference
Provides a table of contents entry point into an alphabetical listing of all C run-time library functions.

Generic-Text Mappings
Provides links to the generic-text mappings defined in Tchar.h.

Language and Country/Region Strings
Describes how to use the setlocale function to set the language and Country/Region strings.

Debug Routines
Provides links to the debug versions of the run-time library routines.

Run-Time Error Checking
Provides links to functions that support run-time error checks.

DLLs and Visual C++ run-time library behavior
Discusses the entry point and startup code used for a DLL.

Debugging
Provides links to using the Visual Studio debugger to correct logic errors in your application or stored procedures.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/c-run-time-library-reference.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/crt-library-features
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/run-time-routines-by-category
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/global-variables-and-standard-types
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/global-constants
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/crt-alphabetical-function-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/generic-text-mappings
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/locale-names-languages-and-country-region-strings
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/debug-routines
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/run-time-error-checking
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/run-time-library-behavior
https://docs.microsoft.com/visualstudio/debugger/debugging-in-visual-studio

CRT Library Features
4/1/2019 • 8 minutes to read • Edit Online

C Run-Time Libraries (CRT)

LIBRARY ASSOCIATED DLL CHARACTERISTICS OPTION
PREPROCESSOR
DIRECTIVES

libucrt.lib None Statically links the
UCRT into your
code.

/MT _MT

libucrtd.lib None Debug version of
the UCRT for static
linking. Not
redistributable.

/MTd _DEBUG, _MT

ucrt.lib ucrtbase.dll DLL import library
for the UCRT.

/MD _MT, _DLL

ucrtd.lib ucrtbased.dll DLL import library
for the Debug
version of the
UCRT. Not
redistributable.

/MDd _DEBUG, _MT,
_DLL

This topic discusses the various .lib files that comprise the C run-time libraries as well as their
associated compiler options and preprocessor directives.

The C Run-time Library (CRT) is the part of the C++ Standard Library that incorporates the ISO
C99 standard library. The Visual C++ libraries that implement the CRT support native code
development, and both mixed native and managed code. All versions of the CRT support multi-
threaded development. Most of the libraries support both static linking, to link the library directly
into your code, or dynamic linking to let your code use common DLL files.

Starting in Visual Studio 2015, the CRT has been refactored into new binaries. The Universal CRT
(UCRT) contains the functions and globals exported by the standard C99 CRT library. The UCRT is
now a Windows component, and ships as part of Windows 10. The static library, DLL import
library, and header files for the UCRT are now found in the Windows 10 SDK. When you install
Visual C++, Visual Studio setup installs the subset of the Windows 10 SDK required to use the
UCRT. You can use the UCRT on any version of Windows supported by Visual Studio 2015 and
later versions. You can redistribute it using vcredist for supported versions of Windows other than
Windows 10. For more information, see Redistributing Visual C++ Files.

The following table lists the libraries that implement the UCRT.

The vcruntime library contains Visual C++ CRT implementation-specific code, such as exception
handling and debugging support, runtime checks and type information, implementation details and
certain extended library functions. This library is specific to the version of the compiler used.

This table lists the libraries that implement the vcruntime library.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/crt-library-features.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/redistributing-visual-cpp-files

LIBRARY ASSOCIATED DLL CHARACTERISTICS OPTION
PREPROCESSOR
DIRECTIVES

libvcruntime.lib None Statically linked
into your code.

/MT _MT

libvcruntimed.lib None Debug version for
static linking. Not
redistributable.

/MTd _MT, _DEBUG

vcruntime.lib vcruntime<versio
n>.dll

DLL import library
for the vcruntime.

/MD _MT, _DLL

vcruntimed.lib vcruntime<versio
n>d.dll

DLL import library
for the Debug
vcruntime. Not
redistributable.

/MDd _DEBUG, _MT,
_DLL

NOTE

LIBRARY CHARACTERISTICS OPTION
PREPROCESSOR
DIRECTIVES

libcmt.lib Statically links the native
CRT startup into your
code.

/MT _MT

libcmtd.lib Statically links the
Debug version of the
native CRT startup. Not
redistributable.

/MTd _DEBUG, _MT

msvcrt.lib Static library for the
native CRT startup for
use with DLL UCRT and
vcruntime.

/MD _MT, _DLL

msvcrtd.lib Static library for the
Debug version of the
native CRT startup for
use with DLL UCRT and
vcruntime. Not
redistributable.

/MDd _DEBUG, _MT, _DLL

When the UCRT refactoring occurred, the Concurrency Runtime functions were moved into concrt140.dll,
which was added to the C++ redistributable package. This DLL is required for C++ parallel containers and
algorithms such as concurrency::parallel_for . In addition, the C++ Standard Library requires this DLL
on Windows XP to support synchronization primitives, because Windows XP does not have condition
variables.

The code that initializes the CRT is in one of several libraries, based on whether the CRT library is
statically or dynamically linked, or native, managed, or mixed code. This code handles CRT startup,
internal per-thread data initialization, and termination. It is specific to the version of the compiler
used. This library is always statically linked, even when using a dynamically linked UCRT.

This table lists the libraries that implement CRT initialization and termination.

msvcmrt.lib Static library for the
mixed native and
managed CRT startup
for use with DLL UCRT
and vcruntime.

/clr

msvcmrtd.lib Static library for the
Debug version of the
mixed native and
managed CRT startup
for use with DLL UCRT
and vcruntime. Not
redistributable.

/clr

msvcurt.lib Deprecated Static
library for the pure
managed CRT.

/clr:pure

msvcurtd.lib Deprecated Static
library for the Debug
version of the pure
managed CRT. Not
redistributable.

/clr:pure

LIBRARY CHARACTERISTICS OPTION
PREPROCESSOR
DIRECTIVES

If you link your program from the command line without a compiler option that specifies a C run-
time library, the linker will use the statically linked CRT libraries: libcmt.lib, libvcruntime.lib, and
libucrt.lib.

Using the statically linked CRT implies that any state information saved by the C runtime library
will be local to that instance of the CRT. For example, if you use strtok, _strtok_l, wcstok, _wcstok_l,
_mbstok, _mbstok_l when using a statically linked CRT, the position of the strtok parser is
unrelated to the strtok state used in code in the same process (but in a different DLL or EXE) that
is linked to another instance of the static CRT. In contrast, the dynamically linked CRT shares state
for all code within a process that is dynamically linked to the CRT. This concern does not apply if
you use the new more secure versions of these functions; for example, strtok_s does not have this
problem.

Because a DLL built by linking to a static CRT will have its own CRT state, it is not recommended to
link statically to the CRT in a DLL unless the consequences of this are specifically desired and
understood. For example, if you call _set_se_translator in an executable that loads the DLL linked to
its own static CRT, any hardware exceptions generated by the code in the DLL will not be caught by
the translator, but hardware exceptions generated by code in the main executable will be caught.

If you are using the /clr compiler switch, your code will be linked with a static library, msvcmrt.lib.
The static library provides a proxy between your managed code and the native CRT. You cannot use
the statically linked CRT (/MT or /MTd options) with /clr. Use the dynamically-linked libraries
(/MD or /MDd) instead. The pure managed CRT libraries are deprecated in Visual Studio 2015
and unsupported in Visual Studio 2017.

For more information on using the CRT with /clr, see Mixed (Native and Managed) Assemblies.

To build a debug version of your application, the _DEBUG flag must be defined and the application
must be linked with a debug version of one of these libraries. For more information about using the
debug versions of the library files, see CRT Debugging Techniques.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/mixed-native-and-managed-assemblies
https://docs.microsoft.com/visualstudio/debugger/crt-debugging-techniques

C++ Standard Library

C++ STANDARD LIBRARY CHARACTERISTICS OPTION
PREPROCESSOR
DIRECTIVES

libcpmt.lib Multithreaded, static
link

/MT _MT

msvcprt.lib Multithreaded, dynamic
link (import library for
MSVCPversion.dll)

/MD _MT, _DLL

libcpmtd.lib Multithreaded, static
link

/MTd _DEBUG, _MT

msvcprtd.lib Multithreaded, dynamic
link (import library for
MSVCPversionD.DLL)

/MDd _DEBUG, _MT, _DLL

#include <ios>

What problems exist if an application uses more than one CRT
version?

This version of the CRT is not fully conformant with the C99 standard. In particular, the <tgmath.h>
header and the CX_LIMITED_RANGE/FP_CONTRACT pragma macros are not supported. Certain
elements such as the meaning of parameter specifiers in standard IO functions use legacy
interpretations by default. You can use /Zc compiler conformance options and specify linker options
to control some aspects of library conformance,

When you build a release version of your project, one of the basic C run-time libraries (libcmt.lib,
msvcmrt.lib, msvcrt.lib) is linked by default, depending on the compiler option you choose
(multithreaded, DLL, /clr). If you include one of the C++ Standard Library header files in your code,
a C++ Standard Library will be linked in automatically by Visual C++ at compile time. For example:

For binary compatibility, more than one DLL file may be specified by a single import library.
Version updates may introduce dot libraries, separate DLLs that introduce new library functionality.
For example, Visual Studio 2017 version 15.6 introduced msvcp140_1.dll to support additional
standard library functionality without breaking the ABI supported by msvcp140.dll. The msvcprt.lib
import library included in the toolset for Visual Studio 2017 version 15.6 supports both DLLs, and
the vcredist for this version installs both DLLs. Once shipped, a dot library has a fixed ABI, and will
never have a dependency on a later dot library.

Every executable image (EXE or DLL) can have its own statically linked CRT, or can dynamically link
to a CRT. The version of the CRT statically included in or dynamically loaded by a particular image
depends on the version of the tools and libraries it was built with. A single process may load
multiple EXE and DLL images, each with its own CRT. Each of those CRTs may use a different
allocator, may have different internal structure layouts, and may use different storage
arrangements. This means that allocated memory, CRT resources, or classes passed across a DLL
boundary can cause problems in memory management, internal static usage, or layout
interpretation. For example, if a class is allocated in one DLL but passed to and deleted by another,
which CRT deallocator is used? The errors caused can range from the subtle to the immediately
fatal, and therefore direct transfer of such resources is strongly discouraged.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-header-files

See also

You can avoid many of these issues by using Application Binary Interface (ABI) technologies
instead, as they are designed to be stable and versionable. Design your DLL export interfaces to
pass information by value, or to work on memory that is passed in by the caller rather than
allocated locally and returned to the caller. Use marshalling techniques to copy structured data
between executable images. Encapsulate resources locally and only allow manipulation through
handles or functions you expose to clients.

It's also possible to avoid some of these issues if all of the images in your process use the same
dynamically loaded version of the CRT. To ensure that all components use the same DLL version of
the CRT, build them by using the /MD option, and use the same compiler toolset and property
settings.

Some care is needed if your program passes certain CRT resources (such as file handles, locales
and environment variables) across DLL boundaries, even when using the same version of the CRT.
For more information on the issues involved and how to resolve them, see Potential Errors Passing
CRT Objects Across DLL Boundaries.

C Run-Time Library Reference

Compatibility
5/8/2019 • 2 minutes to read
• Edit Online

The Universal C Run-Time Library
(UCRT) supports most of the C
standard library required for C++
conformance. It implements the
C99 (ISO/IEC 9899:1999) library,
with the exceptions of the type-
generic macros defined in
<tgmath.h>, and strict type
compatibility in <complex.h>. The
UCRT also implements a large
subset of the POSIX.1 (ISO/IEC
9945-1:1996, the POSIX System
Application Program Interface) C
library, but is not fully conformant
to any specific POSIX standard. In
addition, the UCRT implements
several Microsoft-specific functions
and macros that are not part of a
standard.

Functions specific to the Microsoft
implementation of Visual C++ are
found in the vcruntime library.
Many of these functions are for
internal use and cannot be called
by user code. Some are
documented for use in debugging
and implementation compatibility.

The C++ standard reserves names
that begin with an underscore in
the global namespace to the
implementation. Because the
POSIX functions are in the global
namespace, but are not part of the
standard C runtime library, the
Microsoft-specific implementations
of these functions have a leading
underscore. For portability, the
UCRT also supports the default
names, but the Microsoft C++
compiler issues a deprecation
warning when code that uses them
is compiled. Only the default
POSIX names are deprecated, not
the functions. To suppress the

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/compatibility.md

Related Articles

warning, define
_CRT_NONSTDC_NO_WARNINGS before

including any headers in code that
uses the original POSIX names.

Certain functions in the standard C
library have a history of unsafe
usage, because of misused
parameters and unchecked buffers.
These functions are often the
source of security issues in code.
Microsoft created a set of safer
versions of these functions that
verify parameter usage and invoke
the invalid parameter handler when
an issue is detected at runtime. By
default, the Microsoft C++
compiler issues a deprecation
warning when a function is used
that has a safer variant available.
When you compile your code as
C++ , you can define
_CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES

as 1 to eliminate most warnings.
This uses template overloads to call
the safer variants while maintaining
portable source code. To suppress
the warning, define
_CRT_SECURE_NO_WARNINGS before

including any headers in code that
uses these functions. For more
information, see Security Features
in the CRT.

Except as noted within the
documentation for specific
functions, the UCRT is compatible
with the Windows API. Certain
functions are not supported in
Windows 8 Store apps or in
Universal Windows Platform
(UWP) apps on Windows 10. These
functions are listed in CRT
functions not supported in
Universal Windows Platform apps,
which enumerates the functions
not supported by the Windows
Runtime and UWP.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps
https://docs.microsoft.com/uwp

TITLE DESCRIPTION

UWP Apps, the
Windows
Runtime, and the
C Run-Time

Describes when
UCRT routines
are not
compatible with
Universal
Windows apps or
Microsoft Store
apps.

ANSI C
Compliance

Describes
standard-
compliant
naming in the
UCRT.

UNIX Provides
guidelines for
porting
programs to
UNIX.

Windows
Platforms (CRT)

Lists the
operating
systems that are
the CRT
supports.

Backward
Compatibility

Describes how to
map old CRT
names to the
new ones.

CRT Library
Features

Provides an
overview of the
CRT library (.lib)
files and the
associated
compiler options.

UWP Apps, the Windows Runtime, and the C Run-
Time
3/11/2019 • 2 minutes to read • Edit Online

See also

Universal Windows Platform (UWP) apps are programs that run in the Windows Runtime that executes on
Windows 8. The Windows Runtime is a trustworthy environment that controls the functions, variables, and
resources that are available to a UWP app. However, by design, Windows Runtime restrictions prevent the use of
most C Run-Time Library (CRT) features in UWP apps.

The Windows Runtime does not support the following CRT features:

Most CRT functions that are related to unsupported functionality.

For example, a UWP app cannot create a process by using the exec and spawn families of routines.

When a CRT function is not supported in a UWP app, that fact is noted in its reference article.

Most multibyte character and string functions.

However, both Unicode and ANSI text are supported.

Environment variables.

The concept of a current working directory.

UWP apps and DLLs that are statically linked to the CRT and built by using the /MT or /MTd compiler
options.

That is, an app that uses a multithread, static version of the CRT.

An app that's built by using the /MDd compiler option.

That is, a debug, multithread, and DLL-specific version of the CRT. Such an app is not supported on the
Windows Runtime.

For a complete list of CRT functions that are not available in a UWP app and suggestions for alternative functions,
see CRT functions not supported in Universal Windows Platform apps.

Compatibility
Windows Runtime Unsupported CRT Functions
Universal C runtime routines by category
Create a Universal Windows Platform console app

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/windows-store-apps-the-windows-runtime-and-the-c-run-time.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/md-mt-ld-use-run-time-library
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/md-mt-ld-use-run-time-library
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps
https://docs.microsoft.com/windows/uwp/launch-resume/console-uwp

ANSI C Compliance
3/11/2019 • 2 minutes to read • Edit Online

See also

The naming convention for all Microsoft-specific identifiers in the run-time system (such as functions, macros,
constants, variables, and type definitions) is ANSI-compliant. In this documentation, any run-time function that
follows the ANSI/ISO C standards is noted as being ANSI compatible. ANSI-compliant applications should only
use these ANSI compatible functions.

The names of Microsoft-specific functions and global variables begin with a single underscore. These names can
be overridden only locally, within the scope of your code. For example, when you include Microsoft run-time
header files, you can still locally override the Microsoft-specific function named _open by declaring a local variable
of the same name. However, you cannot use this name for your own global function or global variable.

The names of Microsoft-specific macros and manifest constants begin with two underscores, or with a single
leading underscore immediately followed by an uppercase letter. The scope of these identifiers is absolute. For
example, you cannot use the Microsoft-specific identifier _UPPER for this reason.

Compatibility

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/ansi-c-compliance.md

UNIX
3/11/2019 • 2 minutes to read • Edit Online

See also

If you plan to port your programs to UNIX, follow these guidelines:

NOTE

Do not remove header files from the SYS subdirectory. You can place the SYS header files elsewhere only if
you do not plan to transport your programs to UNIX.

Use the UNIX-compatible path delimiter in routines that take strings representing paths and filenames as
arguments. UNIX supports only the forward slash (/) for this purpose, whereas Win32 operating systems
support both the backslash (\) and the forward slash (/). Thus this documentation uses UNIX-compatible
forward slashes as path delimiters in #include statements, for example. (However, the Windows operating
system command shell, CMD.EXE, does not support the forward slash in commands entered at the
command prompt.)

Use paths and filenames that work correctly in UNIX, which is case sensitive. The file allocation table (FAT)
file system in Win32 operating systems is not case sensitive; the NTFS file system preserves case for
directory listings but ignores case in file searches and other system operations.

In this version of Visual C++, UNIX compatibility information has been removed from the function descriptions.

Compatibility

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/unix.md

Windows Platforms (CRT)
10/31/2018 • 2 minutes to read • Edit Online

NOTE

See also

The C run-time libraries for Visual Studio support current versions of Windows and Windows Server, Windows 8,
Windows Server 2012, Windows 7, Windows Server 2008, and Windows Vista, and optionally support Windows
XP Service Pack 3 (SP3) for x86, Windows XP Service Pack 2 (SP2) for x64, and Windows Server 2003 Service
Pack 2 (SP2) for both x86 and x64. All of these operating systems support the Windows desktop API (Win32) and
provide Unicode support. In addition, any Win32 application can use a multibyte character set (MBCS).

The default installation of the Desktop development with C++ workload in Visual Studio 2017 does not include support
for Windows XP and Windows Server 2003 development. You must install the optional component Windows XP support
for C++ to enable a Windows XP platform toolset.

Compatibility

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/windows-platforms-crt.md

Backward Compatibility
3/11/2019 • 2 minutes to read • Edit Online

See also

For compatibility between product versions, the library OLDNAMES.LIB maps old names to new names. For
instance, open maps to _open . You must explicitly link with OLDNAMES.LIB only when you compile with the
following combinations of command-line options:

/Zl (omit default library name from object file) and /Ze (the default — use Microsoft extensions)

/link (linker-control), /NOD (no default-library search), and /Ze

For more information about compiler command-line options, see Compiler Reference.

Compatibility

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/backward-compatibility.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/compiler-options

Required and Optional Header Files
3/11/2019 • 2 minutes to read • Edit Online

DEFINITION EXAMPLE

Macro definition If a library routine is implemented as a macro, the macro
definition may be in a header file other than the header file for
the original routine. For instance, the _toupper macro is
defined in the header file CTYPE.H, while the function
toupper is declared in STDLIB.H.

Predefined Constant Many library routines refer to constants that are defined in
header files. For instance, the _open routine uses constants
such as _O_CREAT , which is defined in the header file
FCNTL.H.

Type definition Some library routines return a structure or take a structure as
an argument. For example, stream input/output routines use a
structure of type FILE , which is defined in STDIO.H.

See also

The description of each run-time routine includes a list of the required and optional include, or header (.H), files for
that routine. Required header files need to be included to obtain the function declaration for the routine or a
definition used by another routine called internally. Optional header files are usually included to take advantage of
predefined constants, type definitions, or inline macros. The following table lists some examples of optional header
file contents:

The run-time library header files provide function declarations in the ANSI/ISO C standard recommended style.
The compiler performs type checking on any routine reference that occurs after its associated function declaration.
Function declarations are especially important for routines that return a value of some type other than int , which
is the default. Routines that do not specify their appropriate return value in their declaration will be considered by
the compiler to return an int , which can cause unexpected results. See Type Checking for more information.

CRT Library Features

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/required-and-optional-header-files.md

Files and Streams
3/11/2019 • 2 minutes to read • Edit Online

See also

A program communicates with the target environment by reading and writing files. A file can be:

A data set that you can read and write repeatedly.

A stream of bytes generated by a program (such as a pipeline).

A stream of bytes received from or sent to a peripheral device.

The last two items are interactive files. Files are typically the principal means by which to interact with a program.
You manipulate all these kinds of files in much the same way — by calling library functions. You include the
standard header STDIO.H to declare most of these functions.

Before you can perform many of the operations on a file, the file must be opened. Opening a file associates it with
a stream, a data structure within the Standard C Library that glosses over many differences among files of various
kinds. The library maintains the state of each stream in an object of type FILE.

The target environment opens three files before program startup. You can open a file by calling the library
function fopen, _wfopen with two arguments. (The fopen function has been deprecated, use fopen_s, _wfopen_s
instead.) The first argument is a filename. The second argument is a C string that specifies:

Whether you intend to read data from the file or write data to it or both.

Whether you intend to generate new contents for the file (or create a file if it did not previously exist) or
leave the existing contents in place.

Whether writes to a file can alter existing contents or should only append bytes at the end of the file.

Whether you want to manipulate a text stream or a binary stream.

Once the file is successfully opened, you can then determine whether the stream is byte oriented (a byte stream) or
wide oriented (a wide stream). A stream is initially unbound. Calling certain functions to operate on the stream
makes it byte oriented, while certain other functions make it wide oriented. Once established, a stream maintains
its orientation until it is closed by a call to fclose or freopen.

© 1989-2001 by P.J. Plauger and Jim Brodie. All rights reserved.

Text and Binary Streams
Byte and Wide Streams
Controlling Streams
Stream States

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/files-and-streams.md

Text and Binary Streams
3/11/2019 • 2 minutes to read • Edit Online

See also

A text stream consists of one or more lines of text that can be written to a text-oriented display so that they can be
read. When reading from a text stream, the program reads an NL (newline) at the end of each line. When writing
to a text stream, the program writes an NL to signal the end of a line. To match differing conventions among target
environments for representing text in files, the library functions can alter the number and representations of
characters transmitted between the program and a text stream.

Thus, positioning within a text stream is limited. You can obtain the current file-position indicator by calling fgetpos
or ftell. You can position a text stream at a position obtained this way, or at the beginning or end of the stream, by
calling fsetpos or fseek. Any other change of position might well be not supported.

For maximum portability, the program should not write:

Empty files.

Space characters at the end of a line.

Partial lines (by omitting the NL at the end of a file).

characters other than the printable characters, NL, and HT (horizontal tab).

If you follow these rules, the sequence of characters you read from a text stream (either as byte or multibyte
characters) will match the sequence of characters you wrote to the text stream when you created the file.
Otherwise, the library functions can remove a file you create if the file is empty when you close it. Or they can alter
or delete characters you write to the file.

A binary stream consists of one or more bytes of arbitrary information. You can write the value stored in an
arbitrary object to a (byte-oriented) binary stream and read exactly what was stored in the object when you wrote
it. The library functions do not alter the bytes you transmit between the program and a binary stream. They can,
however, append an arbitrary number of null bytes to the file that you write with a binary stream. The program
must deal with these additional null bytes at the end of any binary stream.

Thus, positioning within a binary stream is well defined, except for positioning relative to the end of the stream.
You can obtain and alter the current file-position indicator the same as for a text stream. Moreover, the offsets used
by ftell and fseek count bytes from the beginning of the stream (which is byte zero), so integer arithmetic on these
offsets yields predictable results.

A byte stream treats a file as a sequence of bytes. Within the program, the stream looks like the same sequence of
bytes, except for the possible alterations described above.

Files and Streams

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/text-and-binary-streams.md

Byte and Wide Streams
3/11/2019 • 2 minutes to read • Edit Online

See also

A byte stream treats a file as a sequence of bytes. Within the program, the stream is the identical sequence of
bytes.

By contrast, a wide stream treats a file as a sequence of generalized multibyte characters, which can have a broad
range of encoding rules. (Text and binary files are still read and written as previously described.) Within the
program, the stream looks like the corresponding sequence of wide characters. Conversions between the two
representations occur within the Standard C Library. The conversion rules can, in principle, be altered by a call to
setlocale that alters the category LC_CTYPE . Each wide stream determines its conversion rules at the time it
becomes wide oriented, and retains these rules even if the category LC_CTYPE subsequently changes.

Positioning within a wide stream suffers the same limitations as for text steams. Moreover, the file-position
indicator may well have to deal with a state-dependent encoding. Typically, it includes both a byte offset within the
stream and an object of type mbstate_t . Thus, the only reliable way to obtain a file position within a wide stream is
by calling fgetpos, and the only reliable way to restore a position obtained this way is by calling fsetpos.

Files and Streams
setlocale, _wsetlocale

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/byte-and-wide-streams.md

Controlling Streams
3/11/2019 • 2 minutes to read • Edit Online

See also

fopen returns the address of an object of type FILE . You use this address as the stream argument to several
library functions to perform various operations on an open file. For a byte stream, all input takes place as if each
character is read by calling fgetc, and all output takes place as if each character is written by calling fputc. For a
wide stream, all input takes place as if each character is read by calling fgetwc, and all output takes place as if each
character is written by calling fputwc.

You can close a file by calling fclose, after which the address of the FILE object is invalid.

A FILE object stores the state of a stream, including:

An error indicator set nonzero by a function that encounters a read or write error.

An end-of-file indicator set nonzero by a function that encounters the end of the file while reading.

A file-position indicator specifies the next byte in the stream to read or write, if the file can support
positioning requests.

A stream state specifies whether the stream will accept reads and/or writes and whether the stream is
unbound, byte oriented, or wide oriented.

A conversion state remembers the state of any partly assembled or generated generalized multibyte
character, as well as any shift state for the sequence of bytes in the file).

A file buffer specifies the address and size of an array object that library functions can use to improve the
performance of read and write operations to the stream.

Do not alter any value stored in a FILE object or in a file buffer that you specify for use with that object. You
cannot copy a FILE object and portably use the address of the copy as a stream argument to a library function.

Files and Streams

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/controlling-streams.md

Stream States
3/11/2019 • 2 minutes to read • Edit Online

See also

The valid states, and state transitions, for a stream are shown in the following figure.

Each of the circles denotes a stable state. Each of the lines denotes a transition that can occur as the result of a
function call that operates on the stream. Five groups of functions can cause state transitions.

Functions in the first three groups are declared in <stdio.h>:

The byte read functions — fgetc, fgets, fread, fscanf, getc, getchar, gets, scanf, and ungetc

The byte write functions — fprintf, fputc, fputs, fwrite, printf, putc, putchar, puts, vfprintf, and vprintf

The position functions — fflush, fseek, fsetpos, and rewind

Functions in the remaining two groups are declared in <wchar.h>:

The wide read functions — fgetwc, fgetws, fwscanf, getwc, getwchar, ungetwc, and wscanf,

The wide write functions — fwprintf, fputwc, fputws, putwc, putwchar, vfwprintf, vwprintf, and wprintf,

The state diagram shows that you must call one of the position functions between most write and read operations:

You cannot call a read function if the last operation on the stream was a write.

You cannot call a write function if the last operation on the stream was a read, unless that read operation set
the end-of-file indicator.

Finally, the state diagram shows that a position operation never decreases the number of valid function calls that
can follow.

Files and Streams

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/stream-states.md

Recommendations for Choosing Between Functions
and Macros
3/11/2019 • 2 minutes to read • Edit Online

See also

Most Microsoft run-time library routines are compiled or assembled functions, but some routines are
implemented as macros. When a header file declares both a function and a macro version of a routine, the macro
definition takes precedence, because it always appears after the function declaration. When you invoke a routine
that is implemented as both a function and a macro, you can force the compiler to use the function version in two
ways:

#include <ctype.h>
a = _toupper(a); // Use macro version of toupper.
a = (_toupper)(a); // Force compiler to use
 // function version of toupper.

#include <ctype.h>
#undef _toupper

Enclose the routine name in parentheses.

"Undefine" the macro definition with the #undef directive:

If you need to choose between a function and a macro implementation of a library routine, consider the following
trade-offs:

Speed versus size The main benefit of using macros is faster execution time. During preprocessing, a
macro is expanded (replaced by its definition) inline each time it is used. A function definition occurs only
once regardless of how many times it is called. Macros may increase code size but do not have the
overhead associated with function calls.

Function evaluation A function evaluates to an address; a macro does not. Thus you cannot use a macro
name in contexts requiring a pointer. For instance, you can declare a pointer to a function, but not a pointer
to a macro.

Type-checking When you declare a function, the compiler can check the argument types. Because you
cannot declare a macro, the compiler cannot check macro argument types; although it can check the
number of arguments you pass to a macro.

CRT Library Features

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/recommendations-for-choosing-between-functions-and-macros.md

Type Checking (CRT)
3/11/2019 • 2 minutes to read • Edit Online

FUNCTION CALL TYPE-CHECKED ARGUMENTS

_cprintf_s , _cscanf_s , printf_s , scanf_s First argument (format string)

fprintf_s , fscanf_s , sprintf_s , sscanf_s First two arguments (file or buffer and format string)

_snprintf_s First three arguments (file or buffer, count, and format string)

_open First two arguments (path and _open flag)

_sopen_s First three arguments (path, _open flag, and sharing mode)

_execl , _execle , _execlp , _execlpe First two arguments (path and first argument pointer)

_spawnl , _spawnle , _spawnlp , _spawnlpe First three arguments (mode flag, path, and first argument
pointer)

See also

The compiler performs limited type checking on functions that can take a variable number of arguments, as
follows:

The compiler performs the same limited type checking on the wide-character counterparts of these functions.

CRT Library Features

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/type-checking-crt.md

Direction Flag
3/11/2019 • 2 minutes to read • Edit Online

See also

The direction flag is a CPU flag specific to all Intel x86-compatible CPUs. It applies to all assembly instructions that
use the REP (repeat) prefix, such as MOVS, MOVSD, MOVSW, and others. Addresses provided to applicable
instructions are increased if the direction flag is cleared.

The C run-time routines assume that the direction flag is cleared. If you are using other functions with the C run-
time functions, you must ensure that the other functions leave the direction flag alone or restore it to its original
condition. Expecting the direction flag to be clear upon entry makes the run-time code faster and more efficient.

The C Run-Time library functions, such as the string-manipulation and buffer-manipulation routines, expect the
direction flag to be clear.

CRT Library Features

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/direction-flag.md

Security Features in the CRT
3/11/2019 • 3 minutes to read • Edit Online

Eliminating deprecation warnings

char szBuf[10];
strcpy(szBuf, "test"); // warning: deprecated

Additional Security Features

Many old CRT functions have newer, more secure versions. If a secure function exists, the older, less
secure version is marked as deprecated and the new version has the _s ("secure") suffix.

In this context, "deprecated" just means that a function's use is not recommended; it does not indicate
that the function is scheduled to be removed from the CRT.

The secure functions do not prevent or correct security errors; rather, they catch errors when they occur.
They perform additional checks for error conditions, and in the case of an error, they invoke an error
handler (see Parameter Validation).

For example, the strcpy function has no way of telling if the string that it is copying is too big for its
destination buffer. However, its secure counterpart, strcpy_s , takes the size of the buffer as a parameter,
so it can determine if a buffer overrun will occur. If you use strcpy_s to copy eleven characters into a
ten-character buffer, that is an error on your part; strcpy_s cannot correct your mistake, but it can
detect your error and inform you by invoking the invalid parameter handler.

There are several ways to eliminate deprecation warnings for the older, less secure functions. The
simplest is simply to define _CRT_SECURE_NO_WARNINGS or use the warning pragma. Either will disable
deprecation warnings, but of course the security issues that caused the warnings still exist. It is far better
to leave deprecation warnings enabled and take advantage of the new CRT security features.

In C++, the easiest way to do that is to use Secure Template Overloads, which in many cases will
eliminate deprecation warnings by replacing calls to deprecated functions with calls to the new secure
versions of those functions. For example, consider this deprecated call to strcpy :

Defining _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES as 1 eliminates the warning by changing the strcpy

call to strcpy_s , which prevents buffer overruns. For more information, see Secure Template
Overloads.

For those deprecated functions without secure template overloads, you should definitely consider
manually updating your code to use the secure versions.

Another source of deprecation warnings, unrelated to security, is the POSIX functions. Replace POSIX
function names with their standard equivalents (for example, change access to _access), or disable
POSIX-related deprecation warnings by defining _CRT_NONSTDC_NO_WARNINGS . For more information, see
Compatibility.

Some of the security features include the following:

Parameter Validation . Parameters passed to CRT functions are validated, in both secure
functions and in many preexisting versions of functions. These validations include:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/security-features-in-the-crt.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/warning

See also

Checking for NULL values passed to the functions.

Checking enumerated values for validity.

Checking that integral values are in valid ranges.

For more information, see Parameter Validation.

A handler for invalid parameters is also accessible to the developer. When an encountering an
invalid parameter, instead of asserting and exiting the application, the CRT provides a way to
check these problems with the _set_invalid_parameter_handler,
_set_thread_local_invalid_parameter_handler function.

Sized Buffers . The secure functions require that the buffer size be passed to any function that
writes to a buffer. The secure versions validate that the buffer is large enough before writing to it,
helping to avoid dangerous buffer overrun errors that could allow malicious code to execute.
These functions usually return an errno type of error code and invoke the invalid parameter
handler if the size of the buffer is too small. Functions that read from input buffers, such as gets ,
have secure versions that require you to specify a maximum size.

Null termination . Some functions that left potentially non-terminated strings have secure
versions which ensure that strings are properly null-terminated.

Enhanced error reporting . The secure functions return error codes with more error information
than was available with the preexisting functions. The secure functions and many of the
preexisting functions now set errno and often return an errno code type as well, to provide
better error reporting.

Filesystem security . Secure file I/O APIs support secure file access in the default case.

Windows security . Secure process APIs enforce security policies and allow ACLs to be specified.

Format string syntax checking . Invalid strings are detected, for example, using incorrect type
field characters in printf format strings.

Parameter Validation
Secure Template Overloads
CRT Library Features

Security-Enhanced Versions of CRT Functions
3/11/2019 • 5 minutes to read • Edit Online

Secure functions
CRT FUNCTION SECURITY ENHANCED FUNCTION USE

_access, _waccess _access_s, _waccess_s Determine file-access permission

_alloca _malloca Allocate memory on the stack

asctime, _wasctime asctime_s, _wasctime_s Convert time from type struct tm to
character string

bsearch bsearch_s Perform a binary search of a sorted
array

_cgets, _cgetws _cgets_s, _cgetws_s Get a character string from the console

_chsize _chsize_s Change the size of a file

clearerr clearerr_s Reset the error indicator for a stream

_control87, _controlfp, __control87_2 _controlfp_s Get and set the floating-point control
word

_cprintf, _cprintf_l, _cwprintf, _cwprintf_l _cprintf_s, _cprintf_s_l, _cwprintf_s,
_cwprintf_s_l

Format and print to the console

_cscanf, _cscanf_l, _cwscanf, _cwscanf_l _cscanf_s, _cscanf_s_l, _cwscanf_s,
_cwscanf_s_l

Read formatted data from the console

ctime, _ctime32, _ctime64, _wctime,
_wctime32, _wctime64

_ctime_s, _ctime32_s, _ctime64_s,
_wctime_s, _wctime32_s, _wctime64_s

Convert time from type time_t ,
__time32_t or __time64_t to

character string

_ecvt _ecvt_s Convert a double number to a string

_fcvt _fcvt_s Converts a floating-point number to a
string

fopen, _wfopen fopen_s, _wfopen_s Open a file

fprintf, _fprintf_l, fwprintf, _fwprintf_l fprintf_s, _fprintf_s_l, fwprintf_s,
_fwprintf_s_l

Print formatted data to a stream

fread fread_s Read from a file

More secure versions of run-time library routines are available. For further information concerning security
enhancements in the CRT, see Security Features in the CRT.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/security-enhanced-versions-of-crt-functions.md

_fread_nolock _fread_nolock_s Read from a file without using a multi-
thread write lock

freopen, _wfreopen freopen_s, _wfreopen_s Reopen the file

fscanf, _fscanf_l, fwscanf, _fwscanf_l fscanf_s, _fscanf_s_l, fwscanf_s,
_fwscanf_s_l

Read formatted data from a stream

_ftime, _ftime32, _ftime64 _ftime_s, _ftime32_s, _ftime64_s Get the current time

_gcvt _gcvt_s Convert a floating-point value to a
string, and store it in a buffer

getenv, _wgetenv getenv_s, _wgetenv_s Get a value from the current
environment.

gets, getws gets_s, _getws_s Get a line from the stdin stream

gmtime, _gmtime32, _gmtime64 _gmtime32_s, _gmtime64_s Convert time from type time_t to
struct tm or from type __time64_t

to struct tm

itoa, _itoa, ltoa, _ltoa, ultoa, _ultoa,
_i64toa, _ui64toa, _itow, _ltow, _ultow,
_i64tow, _ui64tow

_itoa_s, _ltoa_s, _ultoa_s, _i64toa_s,
_ui64toa_s, _itow_s, _ltow_s, _ultow_s,
_i64tow_s, _ui64tow_s

Convert an integral type to a string

_lfind _lfind_s Perform a linear search for the specified
key

localtime, _localtime32, _localtime64 localtime_s, _localtime32_s,
_localtime64_s

Convert time from type time_t to
struct tm or from type __time64_t

to struct tm with local correction

_lsearch _lsearch_s Perform a linear search for a value; adds
to end of list if not found

_makepath, _wmakepath _makepath_s, _wmakepath_s Create a path name from components

_mbccpy, _mbccpy_l _mbccpy_s, _mbccpy_s_l Copy a multibyte character from one
string to another string

_mbsnbcat, _mbsnbcat_l _mbsnbcat_s, _mbsnbcat_s_l Append, at most, the first n bytes of
one multibyte character string to
another

_mbsnbcpy, _mbsnbcpy_l _mbsnbcpy_s, _mbsnbcpy_s_l Copy n bytes of a string to a
destination string

_mbsnbset, _mbsnbset_l _mbsnbset_s, _mbsnbset_s_l Set the first n bytes of a string to a
specified character

mbsrtowcs mbsrtowcs_s Convert a multibyte character string to
a corresponding wide character string

CRT FUNCTION SECURITY ENHANCED FUNCTION USE

mbstowcs, _mbstowcs_l mbstowcs_s, _mbstowcs_s_l Convert a sequence of multibyte
characters to a corresponding sequence
of wide characters

memcpy, wmemcpy memcpy_s, wmemcpy_s Copy characters between buffers

memmove, wmemmove memmove_s, wmemmove_s Move one buffer to another

_mktemp, _wmktemp _mktemp_s, _wmktemp_s Create a unique filename

printf, _printf_l, wprintf, _wprintf_l printf_s, _printf_s_l, wprintf_s,
_wprintf_s_l

Print formatted output to the standard
output stream

_putenv, _wputenv _putenv_s, _wputenv_s Create, modify, or remove environment
variables

qsort qsort_s Perform a quick sort

rand rand_s Generate a pseudorandom number

scanf, _scanf_l, wscanf, _wscanf_l scanf_s, _scanf_s_l, wscanf_s, _wscanf_s_l Read formatted data from the standard
input stream

_searchenv, _wsearchenv _searchenv_s, _wsearchenv_s Search for a file using environment
paths

snprintf, _snprintf, _snprintf_l,
_snwprintf, _snwprintf_l

_snprintf_s, _snprintf_s_l, _snwprintf_s,
_snwprintf_s_l

Write formatted data to a string

_snscanf, _snscanf_l, _snwscanf,
_snwscanf_l

_snscanf_s, _snscanf_s_l, _snwscanf_s,
_snwscanf_s_l

Read formatted data of a specified
length from a string.

_sopen, _wsopen _sopen_s, _wsopen_s Open a file for sharing

_splitpath, _wsplitpath _splitpath_s, _wsplitpath_s Break a path name into components

sprintf, _sprintf_l, swprintf, _swprintf_l,
__swprintf_l

sprintf_s, _sprintf_s_l, swprintf_s,
_swprintf_s_l

Write formatted data to a string

sscanf, _sscanf_l, swscanf, _swscanf_l sscanf_s, _sscanf_s_l, swscanf_s,
_swscanf_s_l

Read formatted data from a string

strcat, wcscat, _mbscat strcat_s, wcscat_s, _mbscat_s Append a string

strcpy, wcscpy, _mbscpy strcpy_s, wcscpy_s, _mbscpy_s Copy a string

_strdate, _wstrdate _strdate_s, _wstrdate_s Return current system date as string

strerror, _strerror, _wcserror, __wcserror strerror_s, _strerror_s, _wcserror_s,
__wcserror_s

Get a system error message (
strerror , _wcserror) or print a

user-supplied error message (
_strerror , __wcserror)

CRT FUNCTION SECURITY ENHANCED FUNCTION USE

_strlwr, _wcslwr, _mbslwr, _strlwr_l,
_wcslwr_l, _mbslwr_l

_strlwr_s, _strlwr_s_l, _mbslwr_s,
_mbslwr_s_l, _wcslwr_s, _wcslwr_s_l

Convert a string to lowercase

strncat, _strncat_l, wcsncat, _wcsncat_l,
_mbsncat, _mbsncat_l

strncat_s, _strncat_s_l, wcsncat_s,
_wcsncat_s_l, _mbsncat_s, _mbsncat_s_l

Append characters to a string

strncpy, _strncpy_l, wcsncpy, _wcsncpy_l,
_mbsncpy, _mbsncpy_l

strncpy_s, _strncpy_s_l, wcsncpy_s,
_wcsncpy_s_l, _mbsncpy_s,
_mbsncpy_s_l

Copy characters of one string to
another

_strnset, _strnset_l, _wcsnset,
_wcsnset_l, _mbsnset, _mbsnset_l

_strnset_s, _strnset_s_l, _wcsnset_s,
_wcsnset_s_l, _mbsnset_s, _mbsnset_s_l

Set the first n characters of a string to
the specified character

_strset, _strset_l, _wcsset, _wcsset_l,
_mbsset, _mbsset_l

_strset_s, _strset_s_l, _wcsset_s,
_wcsset_s_l, _mbsset_s, _mbsset_s_l

Set all the characters of a string to the
specified character

_strtime, _wstrtime _strtime_s, _wstrtime_s Return current system time as string

strtok, _strtok_l, wcstok, _wcstok_l,
_mbstok, _mbstok_l

strtok_s, _strtok_s_l, wcstok_s,
_wcstok_s_l, _mbstok_s, _mbstok_s_l

Find the next token in a string, using
the current locale or a locale passed in

_strupr, _strupr_l, _mbsupr, _mbsupr_l,
_wcsupr_l, _wcsupr

_strupr_s, _strupr_s_l, _mbsupr_s,
_mbsupr_s_l, _wcsupr_s, _wcsupr_s_l

Convert a string to uppercase

tmpfile tmpfile_s Create a temporary file

_tempnam, _wtempnam, tmpnam,
_wtmpnam

tmpnam_s, _wtmpnam_s Generate names you can use to create
temporary files

_umask _umask_s Set the default file-permission mask

_vcprintf, _vcprintf_l, _vcwprintf,
_vcwprintf_l

_vcprintf_s, _vcprintf_s_l, _vcwprintf_s,
_vcwprintf_s_l

Write formatted output to the console
using a pointer to a list of arguments

vfprintf, _vfprintf_l, vfwprintf, _vfwprintf_l vfprintf_s, _vfprintf_s_l, vfwprintf_s,
_vfwprintf_s_l

Write formatted output using a pointer
to a list of arguments

vfscanf, vfwscanf vfscanf_s, vfwscanf_s Read formatted data from a stream

vprintf, _vprintf_l, vwprintf, _vwprintf_l vprintf_s, _vprintf_s_l, vwprintf_s,
_vwprintf_s_l

Write formatted output using a pointer
to a list of arguments

vscanf, vwscanf vscanf_s, vwscanf_s Read formatted data from the standard
input stream

vsnprintf, _vsnprintf, _vsnprintf_l,
_vsnwprintf, _vsnwprintf_l

vsnprintf_s, _vsnprintf_s, _vsnprintf_s_l,
_vsnwprintf_s, _vsnwprintf_s_l

Write formatted output using a pointer
to a list of arguments

vsprintf, _vsprintf_l, vswprintf,
_vswprintf_l, __vswprintf_l

vsprintf_s, _vsprintf_s_l, vswprintf_s,
_vswprintf_s_l

Write formatted output using a pointer
to a list of arguments

vsscanf, vswscanf vsscanf_s, vswscanf_s Read formatted data from a string

CRT FUNCTION SECURITY ENHANCED FUNCTION USE

wcrtomb wcrtomb_s Convert a wide character into its
multibyte character representation

wcsrtombs wcsrtombs_s Convert a wide character string to its
multibyte character string
representation

wcstombs, _wcstombs_l wcstombs_s, _wcstombs_s_l Convert a sequence of wide characters
to a corresponding sequence of
multibyte characters

wctomb, _wctomb_l wctomb_s, _wctomb_s_l Convert a wide character to the
corresponding multibyte character

CRT FUNCTION SECURITY ENHANCED FUNCTION USE

See also
CRT Library Features

Parameter Validation
3/11/2019 • 2 minutes to read • Edit Online

Invalid Parameter Handler Routine

See also

Most of the security-enhanced CRT functions and many of the
preexisting functions validate their parameters. This could include
checking pointers for NULL, checking that integers fall into a valid
range, or checking that enumeration values are valid. When an invalid
parameter is found, the invalid parameter handler is executed.

When a C Runtime Library function detects an invalid parameter, it
captures some information about the error, and then calls a macro that
wraps an invalid parameter handler dispatch function, one of
_invalid_parameter, _invalid_parameter_noinfo, or
_invalid_parameter_noinfo_noreturn. The dispatch function called
depends on whether your code is, respectively, a debug build, a retail
build, or the error is not considered recoverable.

In Debug builds, the invalid parameter macro usually raises a failed
assertion and a debugger breakpoint before the dispatch function is
called. When the code is executed, the assertion may be reported to the
user in a dialog box that has "Abort", "Retry", and "Continue" or similar
choices, depending on the operating system and runtime library version.
These options allow the user to immediately terminate the program, to
attach a debugger, or to let the existing code continue to run, which calls
the dispatch function.

The invalid parameter handler dispatch function in turn calls the
currently assigned invalid parameter handler. By default, the invalid
parameter calls _invoke_watson which causes the application to "crash,"
that is, terminate and generate a mini-dump. If enabled by the operating
system, a dialog box asks the user if they want to load the crash dump to
Microsoft for analysis.

This behavior can be changed by using the functions
_set_invalid_parameter_handler or
_set_thread_local_invalid_parameter_handler to set the invalid
parameter handler to your own function. If the function you specify does
not terminate the application, control is returned to the function that
received the invalid parameters. In the CRT, these functions will
normally cease function execution, set errno to an error code, and
return an error code. In many cases, the errno value and the return
value are both EINVAL , indicating an invalid parameter. In some cases, a
more specific error code is returned, such as EBADF for a bad file pointer
passed in as a parameter. For more information on errno , see errno,
_doserrno, _sys_errlist, and _sys_nerr.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/parameter-validation.md

Security Features in the CRT
CRT Library Features

Secure Template Overloads
3/11/2019 • 2 minutes to read • Edit Online

char szBuf[10];
strcpy(szBuf, "test"); // warning: deprecated

char szBuf[10];
strcpy_s(szBuf, 10, "test"); // security-enhanced _s function

#define _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES 1

// ...

char szBuf[10];
strcpy(szBuf, "test"); // ==> strcpy_s(szBuf, 10, "test")

Microsoft has deprecated many C Runtime library (CRT) functions in favor of security-enhanced versions.
For example, strcpy_s is the more secure replacement for strcpy . The deprecated functions are
common sources of security bugs, because they do not prevent operations that can overwrite memory. By
default, the compiler produces a deprecation warning when you use one of these functions. The CRT
provides C++ template overloads for these functions to help ease the transition to the more secure
variants.

For example, this code snippet generates a warning because strcpy is deprecated:

The deprecation warning is there to tell you that your code may be unsafe. If you have verified that your
code can't overwrite memory, you have several choices. You can choose to ignore the warning, you can
define the symbol _CRT_SECURE_NO_WARNINGS before the include statements for the CRT headers to
suppress the warning, or you can update your code to use strcpy_s :

The template overloads provide additional choices. If you define _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES

to 1, this enables template overloads of standard CRT functions that call the more secure variants
automatically. If _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES is 1, then no changes to your code are
necessary. Behind the scenes, the call to strcpy is changed to a call to strcpy_s with the size argument
supplied automatically.

The macro _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES does not affect the functions that take a count, such
as strncpy . To enable template overloads for the count functions, define
_CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES_COUNT to 1. Before doing so, however, make sure that your code

passes the count of characters, not the size of the buffer (a common mistake). Also, code that explicitly
writes a null terminator at the end of the buffer after the function call is unnecessary if the secure variant is
called. If you need truncation behavior, see _TRUNCATE.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/secure-template-overloads.md

NOTE

#define _CRT_SECURE_CPP_OVERLOAD_SECURE_NAMES 1

// ...

char szBuf[10];
strcpy_s(szBuf, "test"); // ==> strcpy_s(szBuf, 10, "test")

#define _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES 1

// ...

char *szBuf = (char*)malloc(10);
strcpy(szBuf, "test"); // still deprecated; you have to change it to
 // strcpy_s(szBuf, 10, "test");

#define _CRT_SECURE_CPP_OVERLOAD_SECURE_NAMES 1

// ...

char *szBuf = (char*)malloc(10);
strcpy_s(szBuf, "test"); // doesn't compile; you have to change it to
 // strcpy_s(szBuf, 10, "test");

See also

The macro _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES_COUNT requires that
_CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES is also defined as 1. If
_CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES_COUNT is defined as 1 and
_CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES is defined as 0, the application will not perform any template

overloads.

When you define _CRT_SECURE_CPP_OVERLOAD_SECURE_NAMES to 1, it enables template overloads of the secure
variants (names ending in "_s"). In this case, if _CRT_SECURE_CPP_OVERLOAD_SECURE_NAMES is 1, then one small
change must be made to the original code:

Only the name of the function needs to be changed (by adding "_s"); the template overload takes care of
providing the size argument.

By default, _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES and _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES_COUNT

are defined as 0 (disabled) and _CRT_SECURE_CPP_OVERLOAD_SECURE_NAMES is defined as 1 (enabled).

Note that these template overloads only work for static arrays. Dynamically allocated buffers require
additional source code changes. Revisiting the above examples:

And this:

Security Features in the CRT
CRT Library Features

SAL Annotations
3/11/2019 • 2 minutes to read • Edit Online

See also

If you examine the library header files, you may notice some unusual annotations, for example, _In_z and
_Out_z_cap_(_Size) . These are examples of the Microsoft source-code annotation language (SAL), which provides

a set of annotations to describe how a function uses its parameters, for example, the assumptions it makes about
them and the guarantees it makes on finishing. The header file <sal.h> defines the annotations.

For more information about using SAL annotations in Visual Studio, see Using SAL Annotations to Reduce C/C++
Code Defects.

CRT Library Features

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/sal-annotations.md
https://docs.microsoft.com/visualstudio/code-quality/using-sal-annotations-to-reduce-c-cpp-code-defects

Multithreaded Libraries Performance
3/11/2019 • 2 minutes to read • Edit Online

Maximizing performance

See also

The single-threaded CRT is no longer available. This topic discusses how to get the maximum performance from
the multithreaded libraries.

The performance of the multithreaded libraries has been improved and is close to the performance of the now-
eliminated single-threaded libraries. For those situations when even higher performance is required, there are
several new features.

Independent stream locking allows you to lock a stream and then use _nolock Functions that access the
stream directly. This allows lock usage to be hoisted outside critical loops.

Per-thread locale reduces the cost of locale access for multithreaded scenarios (see _configthreadlocale).

Locale-dependent functions (with names ending in _l) take the locale as a parameter, removing substantial
cost (for example, printf, _printf_l, wprintf, _wprintf_l).

Optimizations for common codepages reduce the cost of many short operations.

Defining _CRT_DISABLE_PERFCRIT_LOCKS forces all I/O operations to assume a single-threaded I/O
model and use the _nolock forms of the functions. This allows highly I/O-based single-threaded applications
to get better performance.

Exposure of the CRT heap handle allows you to enable the Windows Low Fragmentation Heap (LFH) for
the CRT heap, which can substantially improve performance in highly scaled scenarios.

CRT Library Features

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/multithreaded-libraries-performance.md

Link Options
10/31/2018 • 2 minutes to read • Edit Online

NATIVE AND /CLR PURE MODE DESCRIPTION

binmode.obj pbinmode.obj Sets the default file-translation mode to
binary. See _fmode.

chkstk.obj n/a Provides stack-checking and alloca
support when not using the CRT.

commode.obj pcommode.obj Sets the global commit flag to
"commit". See fopen, _wfopen and
fopen_s, _wfopen_s.

exe_initialize_mta.lib n/a Initializes the MTA apartment during
EXE startup, which allows the use of
COM objects in global smart pointers.
Because this option leaks an MTA
apartment reference during shutdown,
do not use it for DLLs. Linking to this is
equivalent to including combase.h and
defining _EXE_INITIALIZE_MTA.

fp10.obj n/a Changes the default precision control
to 64 bits. See Floating-Point Support.

invalidcontinue.obj pinvalidcontinue.obj Sets a default invalid parameter handler
that does nothing, meaning that invalid
parameters passed to CRT functions will
just set errno and return an error result.

loosefpmath.obj n/a Ensures that floating point code
tolerates denormal values.

newmode.obj pnewmode.obj Causes malloc to call the new handler
on failure. See _set_new_mode,
_set_new_handler, calloc, and realloc.

noarg.obj pnoarg.obj Disables all processing of argc and argv.

nochkclr.obj n/a Does nothing. Remove from your
project.

noenv.obj pnoenv.obj Disables the creation of a cached
environment for the CRT.

The CRT lib directory includes a number of small object files that enable specific CRT features without any code
change. These are called "link options" since you just have to add them to the linker command line to use them.

CLR pure mode versions of these objects are deprecated in Visual Studio 2015 and unsupported in Visual Studio
2017. Use the regular versions for native and /clr code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/link-options.md

nothrownew.obj pnothrownew.obj Enables the non-throwing version of
new in the CRT. See new and delete
Operators.

setargv.obj psetargv.obj Enables command-line argument
wildcard expansion. See Expanding
Wildcard Arguments.

threadlocale.obj pthreadlocale.obj Enables per-thread locale for all new
threads by default.

wsetargv.obj pwsetargv.obj Enables command-line argument
wildcard expansion. See Expanding
Wildcard Arguments.

NATIVE AND /CLR PURE MODE DESCRIPTION

See also
CRT Library Features

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-and-delete-operators
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/expanding-wildcard-arguments
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/expanding-wildcard-arguments

Potential Errors Passing CRT Objects Across DLL
Boundaries
5/8/2019 • 3 minutes to read • Edit Online

Causes

Example
Description

When you pass C Run-time (CRT) objects such as file handles, locales, and environment variables into or out of a
DLL (function calls across the DLL boundary), unexpected behavior can occur if the DLL, as well as the files calling
into the DLL, use different copies of the CRT libraries.

A related problem can occur when you allocate memory (either explicitly with new or malloc , or implicitly with
strdup , strstreambuf::str , and so on) and then pass a pointer across a DLL boundary to be freed. This can cause

a memory access violation or heap corruption if the DLL and its users use different copies of the CRT libraries.

Another symptom of this problem can be an error in the output window during debugging such as:

HEAP[]: Invalid Address specified to RtlValidateHeap(#,#)

Each copy of the CRT library has a separate and distinct state, kept in thread local storage by your app or DLL. As
such, CRT objects such as file handles, environment variables, and locales are only valid for the copy of the CRT in
the app or DLL where these objects are allocated or set. When a DLL and its app clients use different copies of the
CRT library, you cannot pass these CRT objects across the DLL boundary and expect them to be picked up
correctly on the other side. This is particularly true of CRT versions before the Universal CRT in Visual Studio 2015
and later. There was a version-specific CRT library for every version of Visual Studio built with Visual Studio 2013
or earlier. Internal implementation details of the CRT, for example, its data structures and naming conventions,
were different in each version. Dynamically linking code compiled for one version of the CRT to a different version
of the CRT DLL has never been supported, though occasionally it would work, more by luck than by design.

Also, because each copy of the CRT library has its own heap manager, allocating memory in one CRT library and
passing the pointer across a DLL boundary to be freed by a different copy of the CRT library is a potential cause
for heap corruption. If you design your DLL so that it passes CRT objects across the boundary or allocates
memory and expects it to be freed outside the DLL, you restrict the app clients of the DLL to use the same copy of
the CRT library as the DLL. The DLL and its clients normally use the same copy of the CRT library only if both are
linked at load time to the same version of the CRT DLL. Because the DLL version of the Universal CRT library used
by Visual Studio 2015 and later on Windows 10 is now a centrally deployed Windows component, ucrtbase.dll, it is
the same for apps built with Visual Studio 2015 and later versions. However, even when the CRT code is identical,
you can't hand off memory allocated in one heap to a component that uses a different heap.

This example passes a file handle across a DLL boundary.

The DLL and .exe file are built with /MD, so they share a single copy of the CRT.

If you rebuild with /MT so that they use separate copies of the CRT, running the resulting test1Main.exe results in
an access violation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/potential-errors-passing-crt-objects-across-dll-boundaries.md

// test1Dll.cpp
// compile with: cl /EHsc /W4 /MD /LD test1Dll.cpp
#include <stdio.h>
__declspec(dllexport) void writeFile(FILE *stream)
{
 char s[] = "this is a string\n";
 fprintf(stream, "%s", s);
 fclose(stream);
}

// test1Main.cpp
// compile with: cl /EHsc /W4 /MD test1Main.cpp test1Dll.lib
#include <stdio.h>
#include <process.h>
void writeFile(FILE *stream);

int main(void)
{
 FILE * stream;
 errno_t err = fopen_s(&stream, "fprintf.out", "w");
 writeFile(stream);
 system("type fprintf.out");
}

this is a string

Example
Description

// test2Dll.cpp
// compile with: cl /EHsc /W4 /MT /LD test2Dll.cpp
#include <stdio.h>
#include <stdlib.h>

__declspec(dllexport) void readEnv()
{
 char *libvar;
 size_t libvarsize;

 /* Get the value of the MYLIB environment variable. */
 _dupenv_s(&libvar, &libvarsize, "MYLIB");

 if(libvar != NULL)
 printf("New MYLIB variable is: %s\n", libvar);
 else
 printf("MYLIB has not been set.\n");
 free(libvar);
}

This example passes environment variables across a DLL boundary.

// test2Main.cpp
// compile with: cl /EHsc /W4 /MT test2Main.cpp test2dll.lib
#include <stdlib.h>
#include <stdio.h>

void readEnv();

int main(void)
{
 _putenv("MYLIB=c:\\mylib;c:\\yourlib");
 readEnv();
}

MYLIB has not been set.

New MYLIB variable is: c:\mylib;c:\yourlib

See also

If both the DLL and .exe file are built with /MD so that only one copy of the CRT is used, the program runs
successfully and produces the following output:

CRT Library Features

CRT Initialization
5/8/2019 • 2 minutes to read • Edit Online

Initializing a Global Object

int func(void)
{
 return 3;
}

int gi = func();

int main()
{
 return gi;
}

This topic describes how the CRT initializes global states in native code.

By default, the linker includes the CRT library, which provides its own startup code. This startup code initializes the
CRT library, calls global initializers, and then calls the user-provided main function for console applications.

Consider the following code:

According to the C/C++ standard, func() must be called before main() is executed. But who calls it?

One way to determine this is to set a breakpoint in func() , debug the application, and examine the stack. This is
possible because the CRT source code is included with Visual Studio.

When you browse the functions on the stack, you will find that the CRT is looping through a list of function
pointers and calling each one as it encounters them. These functions are either similar to func() or constructors
for class instances.

The CRT obtains the list of function pointers from the Microsoft C++ compiler. When the compiler sees a global
initializer, it generates a dynamic initializer in the .CRT$XCU section (where CRT is the section name and XCU is the
group name). To obtain a list of those dynamic initializers run the command dumpbin /all main.obj, and then
search the .CRT$XCU section (when main.cpp is compiled as a C++ file, not a C file). It will be similar to the
following:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/crt-initialization.md

SECTION HEADER #6
.CRT$XCU name
 0 physical address
 0 virtual address
 4 size of raw data
 1F2 file pointer to raw data (000001F2 to 000001F5)
 1F6 file pointer to relocation table
 0 file pointer to line numbers
 1 number of relocations
 0 number of line numbers
40300040 flags
 Initialized Data
 4 byte align
 Read Only

RAW DATA #6
 00000000: 00 00 00 00

RELOCATIONS #6
 Symbol Symbol
Offset Type Applied To Index Name
-------- ---------------- ----------------- -------- ------
00000000 DIR32 00000000 C ??__Egi@@YAXXZ (void __cdecl `dynamic initializer for
'gi''(void))

.CRT$XCA
 __xc_a
.CRT$XCU
 Pointer to Global Initializer 1
 Pointer to Global Initializer 2
.CRT$XCZ
 __xc_z

See also

The CRT defines two pointers:

__xc_a in .CRT$XCA

__xc_z in .CRT$XCZ

Both groups do not have any other symbols defined except __xc_a and __xc_z .

Now, when the linker reads various .CRT groups, it combines them in one section and orders them alphabetically.
This means that the user-defined global initializers (which the Microsoft C++ compiler puts in .CRT$XCU) will
always come after .CRT$XCA and before .CRT$XCZ .

The section will resemble the following:

So, the CRT library uses both __xc_a and __xc_z to determine the start and end of the global initializers list
because of the way in which they are laid out in memory after the image is loaded.

CRT Library Features

Universal C runtime routines by category
10/31/2018 • 2 minutes to read • Edit Online

UCRT library routine categories

Argument Access Buffer Manipulation

Byte Classification Character Classification

Complex math support

Data Alignment Data Conversion

Debug Routines Directory Control

Error Handling Exception Handling Routines

File Handling Floating-Point Support

Input and Output Internationalization

Memory Allocation Process and Environment Control

Robustness Run-Time Error Checking

Searching and Sorting String Manipulation

System Calls Time Management

See also

This section lists and describes Universal C runtime (UCRT) library routines by category. For reference
convenience, some routines are listed in more than one category. Multibyte-character routines and wide-
character routines are grouped with single-byte character counterparts, where they exist.

The main categories of UCRT library routines are:

C Run-Time Library Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/run-time-routines-by-category.md

Argument access
10/31/2018 • 2 minutes to read • Edit Online

Argument-access macros
MACRO USE

va_arg Retrieve argument from list

va_end Reset pointer

va_start Set pointer to beginning of argument list

See also

The va_arg, va_end, and va_start macros provide access to function arguments when the number of arguments is
variable. These macros are defined in <stdarg.h> for ANSI/ISO C compatibility and in <varargs.h> for
compatibility with UNIX System V.

Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/argument-access.md

Buffer manipulation
10/31/2018 • 2 minutes to read • Edit Online

Buffer-manipulation routines
ROUTINE USE

_memccpy Copy characters from one buffer to another until given
character or given number of characters has been copied

memchr, wmemchr Return pointer to first occurrence, within specified number of
characters, of given character in buffer

memcmp, wmemcmp Compare specified number of characters from two buffers

memcpy, wmemcpy, memcpy_s, wmemcpy_s Copy specified number of characters from one buffer to
another

_memicmp, _memicmp_l Compare specified number of characters from two buffers
without regard to case

memmove, wmemmove,memmove_s, wmemmove_s Copy specified number of characters from one buffer to
another

memset, wmemset Use given character to initialize specified number of bytes in
the buffer

_swab Swap bytes of data and store them at specified location

See also

Use these routines to work with areas of memory on a byte-by-byte basis.

When the source and target areas overlap, only memmove is guaranteed to copy the full source properly.

Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/buffer-manipulation.md

Byte classification
10/31/2018 • 2 minutes to read • Edit Online

NOTE

Multibyte-character byte-classification routines
ROUTINE BYTE TEST CONDITION

isleadbyte, _isleadbyte_l Lead byte; test result depends on LC_CTYPE category
setting of current locale

_ismbbalnum, _ismbbalnum_l isalnum || _ismbbkalnum

_ismbbalpha, _ismbbalpha_l isalpha || _ismbbkalnum

_ismbbgraph, _ismbbgraph_l Same as _ismbbprint, but _ismbbgraph does not include
the space character (0x20)

_ismbbkalnum, _ismbbkalnum_l Non-ASCII text symbol other than punctuation. For example,
in code page 932 only, _ismbbkalnum tests for katakana
alphanumeric

_ismbbkana, _ismbbkana_l Katakana (0xA1 - 0xDF), code page 932 only

_ismbbkprint, _ismbbkprint_l Non-ASCII text or non-ASCII punctuation symbol. For
example, in code page 932 only, _ismbbkprint tests for
katakana alphanumeric or katakana punctuation (range:
0xA1 - 0xDF).

_ismbbkpunct, _ismbbkpunct_l Non-ASCII punctuation. For example, in code page 932 only,
_ismbbkpunct tests for katakana punctuation.

_ismbblead, _ismbblead_l First byte of multibyte character. For example, in code page
932 only, valid ranges are 0x81 - 0x9F, 0xE0 - 0xFC.

_ismbbprint, _ismbbprint_l isprint || _ismbbkprint. ismbbprint includes the space
character (0x20)

Each of these routines tests a specified byte of a multibyte character for satisfaction of a condition. Except where
specified otherwise, the output value is affected by the setting of the LC_CTYPE category setting of the locale;
see setlocale for more information. The versions of these functions without the _l suffix use the current locale for
this locale-dependent behavior; the versions with the _l suffix are identical except that they use the locale
parameter passed in instead.

By definition, the ASCII characters between 0 and 127 are a subset of all multibyte-character sets. For example, the
Japanese katakana character set includes ASCII as well as non-ASCII characters.

The predefined constants in the following table are defined in <ctype.h>.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/byte-classification.md

_ismbbpunct, _ismbbpunct_l ispunct || _ismbbkpunct

_ismbbtrail, _ismbbtrail_l Second byte of multibyte character. For example, in code
page 932 only, valid ranges are 0x40 - 0x7E, 0x80 - 0xEC.

_ismbslead, _ismbslead_l Lead byte (in string context)

ismbstrail, _ismbstrail_l Trail byte (in string context)

_mbbtype, _mbbtype_l Return byte type based on previous byte

_mbsbtype, _mbsbtype_l Return type of byte within string

mbsinit Tracks the state of a multibyte character conversion.

ROUTINE BYTE TEST CONDITION

See also

The MB_LEN_MAX macro, defined in <limits.h>, expands to the maximum length in bytes that any multibyte
character can have. MB_CUR_MAX, defined in <stdlib.h>, expands to the maximum length in bytes of any
multibyte character in the current locale.

Universal C runtime routines by category

Character Classification
3/11/2019 • 2 minutes to read • Edit Online

if ((c >= 'A') && (c <= 'Z')) || ((c >= 'a') && (c <= 'z'))
 return TRUE;

Character-Classification Routines
ROUTINE CHARACTER TEST CONDITION

isalnum, iswalnum, _isalnum_l, _iswalnum_l, _ismbcalnum,
_ismbcalnum_l, _ismbcalpha, _ismbcalpha_l, _ismbcdigit,
_ismbcdigit_l

Alphanumeric

_ismbcalnum, _ismbcalnum_l, _ismbcalpha, _ismbcalpha_l,
_ismbcdigit, _ismbcdigit_l

Multibyte alphanumeric

isalpha, iswalpha, _isalpha_l, _iswalpha_l, _ismbcalnum,
_ismbcalnum_l, _ismbcalpha, _ismbcalpha_l, _ismbcdigit,
_ismbcdigit_l

Alphabetic

isascii, __isascii, iswascii ASCII

isblank, iswblank, _isblank_l, _iswblank_l, _ismbcsblank,
_ismbcsblank_l

Blank (space or horizontal tab)

iscntrl, iswcntrl, _iscntrl_l, _iswcntrl_l Control

iscsym, iscsymf, __iscsym, __iswcsym, __iscsymf, __iswcsymf,
_iscsym_l, _iswcsym_l, _iscsymf_l, _iswcsymf_l

Letter, underscore, or digit

iscsym, iscsymf, __iscsym, __iswcsym, __iscsymf, __iswcsymf,
_iscsym_l, _iswcsym_l, _iscsymf_l, _iswcsymf_l

Letter or underscore

isdigit, iswdigit, _isdigit_l, _iswdigit_l, _ismbcalnum,
_ismbcalnum_l, _ismbcalpha, _ismbcalpha_l, _ismbcdigit,
_ismbcdigit_l

Decimal digit

Each of these routines tests a specified single-byte character, wide character, or multibyte character for
satisfaction of a condition. (By definition, the ASCII character set between 0 and 127 are a subset of all
multibyte-character sets. For example, Japanese katakana includes ASCII as well as non-ASCII characters.)

The test conditions are affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for
more information. The versions of these functions without the _l suffix use the current locale for this locale-
dependent behavior ; the versions with the _l suffix are identical except that they use the locale parameter
passed in instead.

Generally these routines execute faster than tests you might write and should be favored over. For example, the
following code executes slower than a call to isalpha(c) :

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/character-classification.md

isgraph, iswgraph, _isgraph_l, _iswgraph_l, _ismbcgraph,
_ismbcgraph_l, _ismbcprint, _ismbcprint_l, _ismbcpunct,
_ismbcpunct_l, _ismbcblank, _ismbcblank_l, _ismbcspace,
_ismbcspace_l

Printable other than space

islower, iswlower, _islower_l, _iswlower_l, _ismbclower,
_ismbclower_l, _ismbcupper, _ismbcupper_l

Lowercase

_ismbchira, _ismbchira_l, _ismbckata, _ismbckata_l Hiragana

_ismbchira, _ismbchira_l, _ismbckata, _ismbckata_l Katakana

_ismbclegal, _ismbclegal_l, _ismbcsymbol, _ismbcsymbol_l Legal multibyte character

_ismbcl0, _ismbcl0_l, _ismbcl1, _ismbcl1_l, _ismbcl2,
_ismbcl2_l

Japan-level 0 multibyte character

_ismbcl0, _ismbcl0_l, _ismbcl1, _ismbcl1_l, _ismbcl2,
_ismbcl2_l

Japan-level 1 multibyte character

_ismbcl0, _ismbcl0_l, _ismbcl1, _ismbcl1_l, _ismbcl2,
_ismbcl2_l

Japan-level 2 multibyte character

_ismbclegal, _ismbclegal_l, _ismbcsymbol, _ismbcsymbol_l Non-alphanumeric multibyte character

isprint, iswprint, _isprint_l, _iswprint_l, _ismbcgraph,
_ismbcgraph_l, _ismbcprint, _ismbcprint_l, _ismbcpunct,
_ismbcpunct_l, _ismbcblank, _ismbcblank_l, _ismbcspace,
_ismbcspace_l

Printable

ispunct, iswpunct, _ispunct_l, _iswpunct_l, _ismbcgraph,
_ismbcgraph_l, _ismbcprint, _ismbcprint_l, _ismbcpunct,
_ismbcpunct_l, _ismbcblank, _ismbcblank_l, _ismbcspace,
_ismbcspace_l

Punctuation

isspace, iswspace, _isspace_l, _iswspace_l, _ismbcgraph,
_ismbcgraph_l, _ismbcprint, _ismbcprint_l, _ismbcpunct,
_ismbcpunct_l, _ismbcblank, _ismbcblank_l, _ismbcspace,
_ismbcspace_l

White-space

isupper, iswupper, _ismbclower, _ismbclower_l, _ismbcupper,
_ismbcupper_l

Uppercase

_isctype, iswctype, _isctype_l, _iswctype_l Property specified by desc argument

isxdigit, iswxdigit, _isxdigit_l, _iswxdigit_l Hexadecimal digit

_mbclen, mblen, _mblen_l Return length of valid multibyte character; result depends
on LC_CTYPE category setting of current locale

ROUTINE CHARACTER TEST CONDITION

See also
Universal C runtime routines by category

C complex math support
5/15/2019 • 3 minutes to read • Edit Online

Types used in complex math

STANDARD TYPE MICROSOFT TYPE

float complex or float _Complex _Fcomplex

double complex or double _Complex _Dcomplex

long double complex or long double _Complex _Lcomplex

Complex constants and macros

Trigonometric functions
FUNCTION DESCRIPTION

cacos, cacosf, cacosl Compute the complex arc cosine of a complex number

The Microsoft C Runtime library (CRT) provides complex math library functions, including all of those required by
ISO C99. The compiler does not directly support a complex or _Complex keyword, therefore the Microsoft
implementation uses structure types to represent complex numbers.

These functions are implemented to balance performance with correctness. Because producing the correctly
rounded result may be prohibitively expensive, these functions are designed to efficiently produce a close
approximation to the correctly rounded result. In most cases, the result produced is within +/-1 ulp of the correctly
rounded result, though there may be cases where there is greater inaccuracy.

The complex math routines rely on the floating point math library functions for their implementation. These
functions have different implementations for different CPU architectures. For example, the 32-bit x86 CRT may
have a different implementation than the 64-bit x64 CRT. In addition, some of the functions may have multiple
implementations for a given CPU architecture. The most efficient implementation is selected dynamically at run-
time depending on the instruction sets supported by the CPU. For example, in the 32-bit x86 CRT, some functions
have both an x87 implementation and an SSE2 implementation. When running on a CPU that supports SSE2, the
faster SSE2 implementation is used. When running on a CPU that does not support SSE2, the slower x87
implementation is used. Because different implementations of the math library functions may use different CPU
instructions and different algorithms to produce their results, the functions may produce different results across
CPUs. In most cases, the results are within +/-1 ulp of the correctly rounded result, but the actual results may vary
across CPUs.

The Microsoft implementation of the complex.h header defines these types as equivalents for the C99 standard
native complex types:

The math.h header defines a separate type, struct _complex, used for the _cabs function. The struct _complex
type is not used by the equivalent complex math functions cabs, cabsf, cabsl.

I is defined as the float complex type _Fcomplex initialized by { 0.0f, 1.0f } .

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/complex-math-support.md

casin, casinf, casinl Compute the complex arc sine of a complex number

catan, catanf, catanl Compute the complex arc tangent of a complex number

ccos, ccosf, ccosl Compute the complex cosine of a complex number

csin, csinf, csinl Compute the complex sine of a complex number

ctan, ctanf, ctanl Compute the complex tangent of a complex number

FUNCTION DESCRIPTION

Hyperbolic functions
FUNCTION DESCRIPTION

cacosh, cacoshf, cacoshl Compute the complex arc hyperbolic cosine of a complex
number

casinh, casinhf, casinhl Compute the complex arc hyperbolic sine of a complex
number

catanh, catanhf, catanhl Compute the complex arc hyperbolic tangent of a complex
number

ccosh, ccoshf, ccoshl Compute the complex hyperbolic cosine of a complex number

csinh, csinhf, csinhl Compute the complex hyperbolic sine of a complex number

ctanh, ctanhf, ctanhl Compute the complex hyperbolic tangent of a complex
number

Exponential and logarithmic functions
FUNCTION DESCRIPTION

cexp, cexpf, cexpl Compute the complex base-e exponential of a complex
number

clog, clogf, clogl Compute the complex natural (base-e) logarithm of a complex
number

clog10, clog10f, clog10l Compute the complex base-10 logarithm of a complex
number

Power and absolute-value functions
FUNCTION DESCRIPTION

cabs, cabsf, cabsl Compute the complex absolute value (also called the norm,
modulus, or magnitude) of a complex number

cpow, cpowf, cpowl Compute the complex power function x

csqrt, csqrtf, csqrtl Compute the complex square root of a complex number

FUNCTION DESCRIPTION

Manipulation functions
FUNCTION DESCRIPTION

_Cbuild, _FCbuild, _LCbuild Construct a complex number from real and imaginary parts

carg, cargf, cargl Compute the argument (also called the phase angle) of a
complex number

cimag, cimagf, cimagl Compute the imaginary part of a complex number

conj, conjf, conjl Compute the complex conjugate of a complex number

cproj, cprojf, cprojl Compute a projection of a complex number onto the Riemann
sphere

creal, crealf, creall Compute the real part of a complex number

norm, normf, norml Compute the squared magnitude of a complex number

Operation functions

FUNCTION DESCRIPTION

_Cmulcc, _FCmulcc, _LCmulcc Multiply two complex numbers

_Cmulcr, _FCmulcr, _LCmulcr Multiply a complex and a floating-point number

See also

y

Because complex numbers are not a native type in the Microsoft compiler, the standard arithmetic operators are
not defined on complex types. For convenience, these complex math library functions are provided to enable
limited manipulation of complex numbers in user code:

Universal C runtime routines by category

Data Alignment
3/11/2019 • 2 minutes to read • Edit Online

Data-Alignment Routines
ROUTINE USE

_aligned_free Frees a block of memory that was allocated with
_aligned_mallocor _aligned_offset_malloc.

_aligned_free_dbg Frees a block of memory that was allocated with
_aligned_malloc or _aligned_offset_malloc (debug only).

_aligned_malloc Allocates memory on a specified alignment boundary.

_aligned_malloc_dbg Allocates memory on a specified alignment boundary with
additional space for a debugging header and overwrite
buffers (debug version only).

_aligned_msize Returns the size of a memory block allocated in the heap.

_aligned_msize_dbg Returns the size of a memory block allocated in the heap
(debug version only).

_aligned_offset_malloc Allocates memory on a specified alignment boundary.

_aligned_offset_malloc_dbg Allocates memory on a specified alignment boundary (debug
version only).

_aligned_offset_realloc Changes the size of a memory block that was allocated with
_aligned_malloc or _aligned_offset_malloc.

_aligned_offset_realloc_dbg Changes the size of a memory block that was allocated with
_aligned_malloc or _aligned_offset_malloc (debug version
only).

_aligned_offset_recalloc Changes the size of a memory block that was allocated with
_aligned_malloc or _aligned_offset_malloc and initializes the
memory to 0.

_aligned_offset_recalloc_dbg Changes the size of a memory block that was allocated with
_aligned_malloc or _aligned_offset_malloc and initializes the
memory to 0 (debug version only).

_aligned_realloc Changes the size of a memory block that was allocated with
_aligned_malloc or _aligned_offset_malloc.

_aligned_realloc_dbg Changes the size of a memory block that was allocated with
_aligned_malloc or _aligned_offset_malloc (debug version
only).

The following C run-time functions support data alignment.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/data-alignment.md

_aligned_recalloc Changes the size of a memory block that was allocated with
_aligned_malloc or _aligned_offset_malloc and initializes the
memory to 0.

_aligned_recalloc_dbg Changes the size of a memory block that was allocated with
_aligned_malloc or _aligned_offset_malloc and initializes the
memory to 0 (debug version only).

ROUTINE USE

See also
Universal C runtime routines by category

Data Conversion
3/5/2019 • 2 minutes to read • Edit Online

Data-conversion routines
ROUTINE USE

abs Find absolute value of integer

atof, _atof_l Convert string to float

atoi, _atoi_l Convert string to int

_atoi64, _atoi64_l Convert string to __int64 or long long

atol, _atol_l Convert string to long

c16rtomb, c32rtomb Convert UTF-16 or UTF-32 character to equivalent
multibyte character

_ecvt, _ecvt_s Convert double to string of specified length

_fcvt, _fcvt_s Convert double to string with specified number of digits
following decimal point

_gcvt, _gcvt_s Convert double number to string; store string in buffer

_itoa, _ltoa, _ultoa, _i64toa, _ui64toa, _itow, _ltow, ultow,
_i64tow, _ui64tow, _itoa_s, _ltoa_s, _ultoa_s, _i64toa_s,
_ui64toa_s, _itow_s, _ltow_s, _ultow_s, _i64tow_s,
_ui64tow_s

Convert integer types to string

labs Find absolute value of long integer

llabs Find absolute value of long long integer

_mbbtombc, _mbbtombc_l Convert 1-byte multibyte character to corresponding 2-
byte multibyte character

_mbcjistojms, _mbcjistojms_l, _mbcjmstojis, _mbcjmstojis_l Convert Japan Industry Standard (JIS) character to Japan
Microsoft (JMS) character

_mbcjistojms, _mbcjistojms_l, _mbcjmstojis, _mbcjmstojis_l Convert JMS character to JIS character

_mbctohira, _mbctohira_l, _mbctokata, _mbctokata_l Convert multibyte character to 1-byte hiragana code

These routines convert data from one form to another. Generally these routines execute faster than
conversions you might write. Each routine that begins with a to prefix is implemented as a function and as
a macro. See Choosing Between Functions and Macros for information about choosing an implementation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/data-conversion.md

_mbctohira, _mbctohira_l, _mbctokata, _mbctokata_l Convert multibyte character to 1-byte katakana code

_mbctombb, _mbctombb_l Convert 2-byte multibyte character to corresponding 1-
byte multibyte character

mbrtoc16, mbrtoc32 Convert multibyte character to equivalent UTF-16 or UTF-
32 character

mbstowcs, _mbstowcs_l, mbstowcs_s, _mbstowcs_s_l Convert sequence of multibyte characters to
corresponding sequence of wide characters

mbtowc, _mbtowc_l Convert multibyte character to corresponding wide
character

strtod, _strtod_l, wcstod, _wcstod_l Convert string to double

strtol, wcstol, _strtol_l, _wcstol_l Convert string to long integer

strtoul, _strtoul_l, wcstoul, _wcstoul_l Convert string to unsigned long integer

strxfrm, wcsxfrm, _strxfrm_l, _wcsxfrm_l Transform string into collated form based on locale-
specific information

toascii, __toascii Convert character to ASCII code

tolower, _tolower, towlower, _tolower_l, _towlower_l,
_mbctolower, _mbctolower_l, _mbctoupper, _mbctoupper_l

Test character and convert to lowercase if currently
uppercase

tolower, _tolower, towlower, _tolower_l, _towlower_l Convert character to lowercase unconditionally

toupper, _toupper, towupper, _toupper_l, _towupper_l,
_mbctolower, _mbctolower_l, _mbctoupper, _mbctoupper_l

Test character and convert to uppercase if currently
lowercase

toupper, _toupper, towupper, _toupper_l, _towupper_l Convert character to uppercase unconditionally

wcstombs, _wcstombs_l, wcstombs_s, _wcstombs_s_l Convert sequence of wide characters to corresponding
sequence of multibyte characters

wctomb, _wctomb_l, wctomb_s, _wctomb_s_l Convert wide character to corresponding multibyte
character

_wtof, _wtof_l Convert wide-character string to a double

_wtoi, _wtoi_l Convert wide-character string to int

_wtoi64, _wtoi64_l Convert wide-character string to __int64 or long long

_wtol, _wtol_l Convert wide-character string to long

ROUTINE USE

See also
Universal C runtime routines by category

Debug routines
11/8/2018 • 4 minutes to read • Edit Online

Debug versions of the C runtime library routines

ROUTINE USE

_ASSERT Evaluate an expression and generates a debug report when
the result is FALSE

_ASSERTE Similar to _ASSERT, but includes the failed expression in
the generated report

_CrtCheckMemory Confirm the integrity of the memory blocks allocated on
the debug heap

_CrtDbgBreak Sets a break point.

_CrtDbgReport, _CrtDbgReportW Generate a debug report with a user message and send
the report to three possible destinations

_CrtDoForAllClientObjects Call an application-supplied function for all
_CLIENT_BLOCK types on the heap

_CrtDumpMemoryLeaks Dump all of the memory blocks on the debug heap when a
significant memory leak has occurred

_CrtIsMemoryBlock Verify that a specified memory block is located within the
local heap and that it has a valid debug heap block type
identifier

_CrtIsValidHeapPointer Verifies that a specified pointer is in the local heap

_CrtIsValidPointer Verify that a specified memory range is valid for reading
and writing

_CrtMemCheckpoint Obtain the current state of the debug heap and store it in
an application-supplied _CrtMemState structure

The debug version of the C runtime library supplies many diagnostic services that make debugging
programs easier and allow developers to:

Step directly into run-time functions during debugging

Resolve assertions, errors, and exceptions

Trace heap allocations and prevent memory leaks

Report debug messages to the user

To use these routines, the _DEBUG flag must be defined. All of these routines do nothing in a retail build of
an application. For more information on how to use the new debug routines, see CRT Debugging Techniques.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/debug-routines.md
https://docs.microsoft.com/visualstudio/debugger/crt-debugging-techniques

_CrtMemDifference Compare two memory states for significant differences and
return the results

_CrtMemDumpAllObjectsSince Dump information about objects on the heap since a
specified checkpoint was taken or from the start of
program execution

_CrtMemDumpStatistics Dump the debug header information for a specified
memory state in a user-readable form

_CrtReportBlockType Returns the block type/subtype associated with a given
debug heap block pointer.

_CrtSetAllocHook Install a client-defined allocation function by hooking it into
the C run-time debug memory allocation process

_CrtSetBreakAlloc Set a breakpoint on a specified object allocation order
number

_CrtSetDbgFlag Retrieve or modify the state of the _crtDbgFlag flag to
control the allocation behavior of the debug heap manager

_CrtSetDumpClient Install an application-defined function that is called every
time a debug dump function is called to dump
_CLIENT_BLOCK type memory blocks

_CrtSetReportFile Identify the file or stream to be used as a destination for a
specific report type by _CrtDbgReport

_CrtSetReportHook Install a client-defined reporting function by hooking it into
the C run-time debug reporting process

_CrtSetReportHook2, _CrtSetReportHookW2 Installs or uninstalls a client-defined reporting function by
hooking it into the C run-time debug reporting process.

_CrtSetReportMode Specify the general destination(s) for a specific report type
generated by _CrtDbgReport

_RPT[0,1,2,3,4] Track the application's progress by generating a debug
report by calling _CrtDbgReport with a format string and
a variable number of arguments. Provides no source file
and line number information.

_RPTF[0,1,2,3,4] Similar to the _RPTn macros, but provides the source file
name and line number where the report request originated

_calloc_dbg Allocate a specified number of memory blocks on the heap
with additional space for a debugging header and
overwrite buffers

_expand_dbg Resize a specified block of memory on the heap by
expanding or contracting the block

_free_dbg Free a block of memory on the heap

ROUTINE USE

_fullpath_dbg, _wfullpath_dbg Create an absolute or full path name for the specified
relative path name, using _malloc_dbg to allocate memory.

_getcwd_dbg, _wgetcwd_dbg Get the current working directory, using _malloc_dbg to
allocate memory.

_malloc_dbg Allocate a block of memory on the heap with additional
space for a debugging header and overwrite buffers

_msize_dbg Calculate the size of a block of memory on the heap

_realloc_dbg Reallocate a specified block of memory on the heap by
moving and/or resizing the block

_strdup_dbg, _wcsdup_dbg Duplicates a string, using _malloc_dbg to allocate memory.

_tempnam_dbg, _wtempnam_dbg Generate names you can use to create temporary files,
using _malloc_dbg to allocate memory.

ROUTINE USE

C runtime routines that are not available in source code form

acos acosh asin

asinh atan, atan2 atanh

Bessel functions _cabs ceil

_chgsign _clear87, _clearfp _control87, _controlfp

copysign cos cosh

Exp fabs _finite

floor fmod _fpclass

_fpieee_flt _fpreset frexp

_hypot _isnan ldexp

log _logb log10

longjmp _matherr modf

The debugger can be used to step through the source code for most of the C runtime routines during the
debugging process. However, Microsoft considers some technology to be proprietary and, therefore, does
not provide the source code for a subset of these routines. Most of these routines belong to either the
exception handling or floating-point processing groups, but a few others are included as well. The following
table lists these routines.

_nextafter pow printf_s

printf _scalb scanf_s

scanf setjmp sin

sinh sqrt _status87, _statusfp

tan tanh

Routines that behave differently in a debug build of an application

C abort routine C++ delete operator

C assert routine C++ new operator

See also

Although source code is available for most of the printf and scanf routines, they make an internal call to
another routine for which source code is not provided.

Some C run-time functions and C++ operators behave differently when called from a debug build of an
application. (Note that a debug build of an application can be done by either defining the _DEBUG flag or by
linking with a debug version of the C run-time library.) The behavioral differences usually consist of extra
features or information provided by the routine to support the debugging process. The following table lists
these routines.

Universal C runtime routines by category
Run-Time Error Checking

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/delete-operator-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-operator-cpp

Directory Control
3/11/2019 • 2 minutes to read • Edit Online

Directory-Control Routines
ROUTINE USE

_chdir, _wchdir Change current working directory

_chdrive Change current drive

_getcwd, _wgetcwd Get current working directory for default drive

_getdcwd, _wgetdcwd Get current working directory for specified drive

_getdiskfree Populates a _diskfree_t structure with information about a
disk drive.

_getdrive Get current (default) drive

_getdrives Returns a bitmask representing the currently available disk
drives.

_mkdir, _wmkdir Make new directory

_rmdir, _wrmdir Remove directory

_searchenv, _wsearchenv, _searchenv_s, _wsearchenv_s Search for given file on specified paths

See also

These routines access, modify, and obtain information about the directory structure.

Universal C runtime routines by category
File Handling
System Calls

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/directory-control.md

Error handling (CRT)
10/31/2018 • 2 minutes to read • Edit Online

Error-handling routines
ROUTINE USE

assert macro Test for programming logic errors; available in both the
release and debug versions of the run-time library.

_ASSERT, _ASSERTE macros Similar to assert, but only available in the debug versions of
the run-time library.

clearerr Reset error indicator. Calling rewind or closing a stream also
resets the error indicator.

_eof Check for end of file in low-level I/O.

feof Test for end of file. End of file is also indicated when _read
returns 0.

ferror Test for stream I/O errors.

_RPT, _RPTF macros Generate a report similar to printf, but only available in the
debug versions of the run-time library.

_set_error_mode Modifies __error_mode to determine a non-default location
where the C run time writes an error message for an error
that will possibly end the program.

_set_purecall_handler Sets the handler for a pure virtual function call.

See also

Use these routines to handle program errors.

Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/error-handling-crt.md

Exception Handling Routines
3/11/2019 • 2 minutes to read • Edit Online

Exception-Handling Functions
FUNCTION USE

_set_se_translator Handle Win32 exceptions (C structured exceptions) as C++
typed exceptions

set_terminate Install your own termination routine to be called by
terminate

set_unexpected Install your own termination function to be called by
unexpected

terminate Called automatically under certain circumstances after
exception is thrown. The terminate function calls abort or a
function you specify using set_terminate

unexpected Calls terminate or a function you specify using
set_unexpected. The unexpected function is not used in
current Microsoft C++ exception-handling implementation

See also

Use the C++ exception-handling functions to recover from unexpected events during program execution.

Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/exception-handling-routines.md

File Handling
3/11/2019 • 2 minutes to read • Edit Online

File-Handling Routines (File Descriptor)

ROUTINE USE

_chsize,_chsize_s Change file size

_filelength, _filelengthi64 Get file length

_fstat, _fstat32, _fstat64, _fstati64, _fstat32i64, _fstat64i32 Get file-status information on descriptor

_get_osfhandle Return operating-system file handle associated with existing
C run-time file descriptor

_isatty Check for character device

_locking Lock areas of file

_open_osfhandle Associate C run-time file descriptor with existing operating-
system file handle

_setmode Set file-translation mode

File-Handling Routines (Path or Filename)

ROUTINE USE

_access, _waccess, _access_s, _waccess_s Check file-permission setting

_chmod, _wchmod Change file-permission setting

_fullpath, _wfullpath Expand a relative path to its absolute path name

_makepath, _wmakepath, _makepath_s, _wmakepath_s Merge path components into single, full path

_mktemp, _wmktemp, _mktemp_s, _wmktemp_s Create unique filename

Use these routines to create, delete, and manipulate files and to set and check file-access permissions.

The C run-time libraries have a 512 limit for the number of files that can be open at any one time. Attempting
to open more than the maximum number of file descriptors or file streams causes program failure. Use
_setmaxstdio to change this number.

These routines operate on files designated by a file descriptor.

These routines operate on files specified by a path or filename.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/file-handling.md

remove, _wremove Delete file

rename, _wrename Rename file

_splitpath, _wsplitpath, _splitpath_s, _wsplitpath_s Parse path into components

_stat, _stat64, _stati64, _wstat, _wstat64, _wstati64 Get file-status information on named file

_umask, _umask_s Set default permission mask for new files created by
program

_unlink, _wunlink Delete file

ROUTINE USE

File-Handling Routines (Open File)

ROUTINE USE

fopen, _wfopen, fopen_s, _wfopen_s Opens a file and returns a pointer to the open file.

_fsopen, _wfsopen Open a stream with file sharing and returns a pointer to the
open file.

_open, _wopen Opens a file and returns a file descriptor to the opened file.

_sopen, _wsopen, _sopen_s, _wsopen_s Open a file with file sharing and returns a file descriptor to
the open file.

_pipe Creates a pipe for reading and writing.

freopen, _wfreopen, freopen_s, _wfreopen_s Reassign a file pointer.

ROUTINE USE

_fdopen, _wfdopen Associates a stream with a file that was previously opened
for low-level I/O and returns a pointer to the open stream.

_fileno Gets the file descriptor associated with a stream.

_get_osfhandle Return operating-system file handle associated with existing
C run-time file descriptor

_open_osfhandle Associates C run-time file descriptor with an existing
operating-system file handle.

These routines open files.

These routines provide a way to change the representation of the file between a FILE structure, a file
descriptor, and a Win32 file handle.

The following Win32 functions also open files and pipes:

CreateFile

https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-createfilea

See also

CreatePipe

CreateNamedPipe

Universal C runtime routines by category
Directory Control
System Calls

https://msdn.microsoft.com/library/windows/desktop/aa365152.aspx
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-createnamedpipea

Math and floating-point support
2/4/2019 • 6 minutes to read • Edit Online

Supported math and floating-point routines
ROUTINE USE

abs, labs, llabs, _abs64 Computes the absolute value of an integer type

acos, acosf, acosl Computes the arc cosine

acosh, acoshf, acoshl Computes the hyperbolic arc cosine

asin, asinf, asinl Computes the arc sine

asinh, asinhf, asinhl Computes the hyperbolic arc sine

atan, atanf, atanl, atan2, atan2f, atan2l Computes the arc tangent

atanh, atanhf, atanhl Computes the hyperbolic arc tangent

_atodbl, _atodbl_l Converts a locale-specific string to a double

The Universal C Runtime library (UCRT) provides many integral and floating-point math library
functions, including all of those required by ISO C99. The floating-point functions are implemented to
balance performance with correctness. Because producing the correctly rounded result may be
prohibitively expensive, these functions are designed to efficiently produce a close approximation to
the correctly rounded result. In most cases, the result produced is within +/-1 ulp of the correctly
rounded result, though there may be cases where there is greater inaccuracy.

Many of the floating point math library functions have different implementations for different CPU
architectures. For example, the 32-bit x86 CRT may have a different implementation than the 64-bit
x64 CRT. In addition, some of the functions may have multiple implementations for a given CPU
architecture. The most efficient implementation is selected dynamically at run-time depending on the
instruction sets supported by the CPU. For example, in the 32-bit x86 CRT, some functions have both
an x87 implementation and an SSE2 implementation. When running on a CPU that supports SSE2,
the faster SSE2 implementation is used. When running on a CPU that does not support SSE2, the
slower x87 implementation is used. Because different implementations of the math library functions
may use different CPU instructions and different algorithms to produce their results, the functions
may produce different results across CPUs. In most cases, the results are within +/-1 ulp of the
correctly rounded result, but the actual results may vary across CPUs.

Previous 16-bit versions of Microsoft C/C++ and Microsoft Visual C++ supported the long double
type as an 80-bit precision floating-point data type. In later versions of Visual C++, the long double
data type is a 64-bit precision floating-point data type identical to the double type. The compiler
treats long double and double as distinct types, but the long double functions are identical to their
double counterparts. The CRT provides long double versions of the math functions for ISO C99
source code compatibility, but note that the binary representation may differ from other compilers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/floating-point-support.md

atof, _atof_l Converts a string to a double

_atoflt, _atoflt_l, _atoldbl, _atoldbl_l Converts a locale-specific string to a float or long
double

cbrt, cbrtf, cbrtl Computes the cube root

ceil, ceilf, ceill Computes the ceiling

_chgsign, _chgsignf, _chgsignl Computes the additive inverse

_clear87, _clearfp Gets and clears the floating-point status register

_control87, __control87_2, _controlfp Gets and sets the floating-point control word

_controlfp_s Secure version of _controlfp

copysign, copysignf, copysignl, _copysign, _copysignf,
_copysignl

Returns a value that has the magnitude of one
argument and the sign of another

cos, cosf, cosl Computes the sine

cosh, coshf, coshl Computes the hyperbolic sine

div, ldiv, lldiv Computes the quotient and the remainder of two
integer values

_ecvt, ecvt Converts a double to a string

_ecvt_s Secure version of _ecvt

erf, erff, erfl Computes the error function

erfc, erfcf, erfcl Computes the complementary error function

exp, expf, expl Computes the exponential e

exp2, exp2f, exp2l Computes the exponential 2

expm1, expm1f, expm1l Computes e -1

fabs, fabsf, fabsl Computes the absolute value of a floating-point type

_fcvt, fcvt Converts a floating-point number to a string

_fcvt_s Secure version of _fcvt

fdim, fdimf, fdiml Determines the positive difference between two values

feclearexcept Clears specified floating-point exceptions

ROUTINE USE

x

x

x

fegetenv Stores the current floating-point environment

fegetexceptflag Gets the specified floating-point exception status

fegetround Gets the floating-point rounding mode

feholdexcept Sets non-stop floating-point exception mode

feraiseexcept Raises the specified floating-point exceptions

fesetenv Sets the current floating-point environment

fesetexceptflag Sets the specified floating-point status flags

fesetround Sets the specified floating-point rounding mode

fetestexcept Determines which floating-point exception status flags
are set

feupdateenv Restores a floating-point environment then raises
previous exceptions

floor, floorf, floorl Computes the floor

fma, fmaf, fmal Computes a fused multiply-add

fmax, fmaxf, fmaxl Computes the maximum of the arguments

fmin, fminf, fminl Computes the minumum of the arguments

fmod, fmodf, fmodl Computes the floating-point remainder

_fpclass, _fpclassf Returns the classification of a floating-point value

fpclassify Returns the classification of a floating-point value

_fpieee_flt Sets a handler for floating-point exceptions

_fpreset Resets the floating-point environment

frexp, frexpf, frexpl Gets the mantissa and exponent of a floating-point
number

_gcvt, gcvt Converts a floating-point number to a string

_gcvt_s Secure version of _gcvt

_get_FMA3_enable, _set_FMA3_enable Gets or sets a flag for use of FMA3 instructions on x64

hypot, hypotf, hypotl, _hypot, _hypotf, _hypotl Computes the hypotenuse

ROUTINE USE

ilogb, ilogbf, ilogbl Computes the integer base-2 exponent

imaxabs Computes the absolute value of an integer type

imaxdiv Computes the quotient and the remainder of two
integer values

isfinite, _finite, _finitef Determines whether a value is finite

isgreater, isgreaterequal, isless, islessequal,
islessgreater, isunordered

Compare the order of two floating point values

isinf Determines whether a floating-point value is infinite

isnan, _isnan, _isnanf Tests a floating-point value for NaN

isnormal Tests whether a floating-point value is both finite and
not subnormal

_j0, _j1, _jn Computes the Bessel function

ldexp, ldexpf, ldexpl Computes x*2

lgamma, lgammaf, lgammal Computes the natural logarithm of the absolute value
of the gamma function

llrint, llrintf, llrintl Rounds a floating-point value to the nearest long
long value

llround, llroundf, llroundl Rounds a floating-point value to the nearest long
long value

log, logf, logl, log10, log10f, log10l Computes the natural or base-10 logarithm

log1p, log1pf, log1pl Computes the natural logarithm of 1+x

log2, log2f, log2l Computes the base-2 logarithm

logb, logbf, logbl, _logb, _logbf Returns the exponent of a floating-point value

lrint, lrintf, lrintl Rounds a floating-point value to the nearest long
value

_lrotl, _lrotr Rotates an integer value left or right

lround, lroundf, lroundl Rounds a floating-point value to the nearest long
value

_matherr The default math error handler

__max Macro that returns the larger of two values

ROUTINE USE

n

__min Macro that returns the smaller of two values

modf, modff, modfl Splits a floating-point value into fractional and integer
parts

nan, nanf, nanl Returns a quiet NaN value

nearbyint, nearbyintf, nearbyintl Returns the rounded value

nextafter, nextafterf, nextafterl, _nextafter, _nextafterf Returns the next representable floating-point value

nexttoward, nexttowardf, nexttowardl Returns the next representable floating-point value

pow, powf, powl Returns the value of x

remainder, remainderf, remainderl Computes the remainder of the quotient of two
floating-point values

remquo, remquof, remquol Computes the remainder of two integer values

rint, rintf, rintl Rounds a floating-point value

_rotl, _rotl64, _rotr, _rotr64 Rotates bits in integer types

round, roundf, roundl Rounds a floating-point value

_scalb, _scalbf Scales argument by a power of 2

scalbn, scalbnf, scalbnl, scalbln, scalblnf, scalblnl Multiplies a floating-point number by an integral
power of FLT_RADIX

_set_controlfp Sets the floating-point control word

_set_SSE2_enable Enables or disables SSE2 instructions

signbit Tests the sign bit of a floating-point value

sin, sinf, sinl Computes the sine

sinh, sinhf, sinhl Computes the hyperbolic sine

sqrt, sqrtf, sqrtl Computes the square root

_status87, _statusfp, _statusfp2 Gets the floating-point status word

strtof, _strtof_l Converts a string to a float

strtold, _strtold_l Converts a string to a long double

tan, tanf, tanl Computes the tangent

ROUTINE USE

y

tanh, tanhf, tanhl Computes the hyperbolic tangent

tgamma, tgammaf, tgammal Computes the gamma function

trunc, truncf, truncl Truncates the fractional part

_wtof, _wtof_l Converts a wide string to a double

_y0, _y1, _yn Computes the Bessel function

ROUTINE USE

See also
Universal C runtime routines by category
Floating-point primitives

Input and Output
3/11/2019 • 2 minutes to read • Edit Online

See also

The I/O functions read and write data to and from files and devices. File I/O operations take place in text mode or
binary mode. The Microsoft run-time library has three types of I/O functions:

NOTE

Stream I/O functions treat data as a stream of individual characters.

Low-level I/O functions invoke the operating system directly for lower-level operation than that provided
by stream I/O.

Console and port I/O functions read or write directly to a console (keyboard and screen) or an I/O port
(such as a printer port).

Because stream functions are buffered and low-level functions are not, these two types of functions are generally
incompatible. For processing a particular file, use either stream or low-level functions exclusively.

Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/input-and-output.md

Text and Binary Mode File I/O
3/11/2019 • 2 minutes to read • Edit Online

See also

File I/O operations take place in one of two translation modes, text or binary, depending on the mode in which
the file is opened. Data files are usually processed in text mode. To control the file translation mode, one can:

Retain the current default setting and specify the alternative mode only when you open selected files.

Use the function _set_fmode to change the default mode for newly opened files. Use _get_fmode to find
the current default mode. The initial default setting is text mode (_O_TEXT).

Change the default translation mode directly by setting the global variable _fmode in your program. The
function _set_fmode sets the value of this variable, but it can also be set directly.

When you call a file-open function such as _open, fopen, fopen_s, freopen, freopen_s, _fsopen or _sopen_s, you
can override the current default setting of _fmode by specifying the appropriate argument to the function
_set_fmode. The stdin, stdout, and stderr streams always open in text mode by default; you can also override
this default when opening any of these files. Use _setmode to change the translation mode using the file
descriptor after the file is open.

Input and Output
Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/text-and-binary-mode-file-i-o.md

Unicode Stream I/O in Text and Binary Modes
3/11/2019 • 2 minutes to read • Edit Online

See also

When a Unicode stream I/O routine (such as fwprintf, fwscanf, fgetwc, fputwc, fgetws, or fputws) operates on
a file that is open in text mode (the default), two kinds of character conversions take place:

Unicode-to-MBCS or MBCS-to-Unicode conversion. When a Unicode stream-I/O function operates in text
mode, the source or destination stream is assumed to be a sequence of multibyte characters. Therefore, the
Unicode stream-input functions convert multibyte characters to wide characters (as if by a call to the
mbtowc function). For the same reason, the Unicode stream-output functions convert wide characters to
multibyte characters (as if by a call to the wctomb function).

Carriage return - linefeed (CR-LF) translation. This translation occurs before the MBCS - Unicode
conversion (for Unicode stream input functions) and after the Unicode - MBCS conversion (for Unicode
stream output functions). During input, each carriage return - linefeed combination is translated into a
single linefeed character. During output, each linefeed character is translated into a carriage return - linefeed
combination.

However, when a Unicode stream-I/O function operates in binary mode, the file is assumed to be Unicode, and no
CR-LF translation or character conversion occurs during input or output. Use the _setmode(_fileno(stdin),
_O_BINARY); instruction in order to correctly use wcin on a UNICODE text file.

Universal C runtime routines by category
Input and Output

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/unicode-stream-i-o-in-text-and-binary-modes.md

Stream I/O
3/11/2019 • 4 minutes to read • Edit Online

Stream I/O Routines
ROUTINE USE

clearerr, clearerr_s Clear error indicator for stream

fclose Close stream

_fcloseall Close all open streams except stdin, stdout, and
stderr

_fdopen, wfdopen Associate stream with file descriptor of open file

feof Test for end of file on stream

ferror Test for error on stream

fflush Flush stream to buffer or storage device

fgetc, fgetwc Read character from stream (function versions of getc
and getwc)

_fgetchar, _fgetwchar Read character from stdin (function versions of
getchar and getwchar)

fgetpos Get position indicator of stream

fgets, fgetws Read string from stream

_fileno Get file descriptor associated with stream

_flushall Flush all streams to buffer or storage device

fopen, _wfopen, fopen_s, _wfopen_s Open stream

fprintf, _fprintf_l, fwprintf, _fwprintf_l, fprintf_s,
_fprintf_s_l, fwprintf_s, _fwprintf_s_l

Write formatted data to stream

fputc, fputwc Write a character to a stream (function versions of
putc and putwc)

These functions process data in different sizes and formats, from single characters to large data
structures. They also provide buffering, which can improve performance. The default size of a stream
buffer is 4K. These routines affect only buffers created by the run-time library routines, and have no
effect on buffers created by the operating system.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/stream-i-o.md

_fputchar, _fputwchar Write character to stdout (function versions of
putchar and putwchar)

fputs, fputws Write string to stream

fread Read unformatted data from stream

freopen, _wfreopen, freopen_s, _wfreopen_s Reassign FILE stream pointer to new file or device

fscanf, fwscanf, fscanf_s, _fscanf_s_l, fwscanf_s,
_fwscanf_s_l

Read formatted data from stream

fseek, _fseeki64 Move file position to given location

fsetpos Set position indicator of stream

_fsopen, _wfsopen Open stream with file sharing

ftell, _ftelli64 Get current file position

fwrite Write unformatted data items to stream

getc, getwc Read character from stream (macro versions of fgetc
and fgetwc)

getchar, getwchar Read character from stdin (macro versions of
fgetchar and fgetwchar)

_getmaxstdio Returns the number of simultaneously open files
permitted at the stream I/O level.

gets_s, _getws_s Read line from stdin

_getw Read binary int from stream

printf, _printf_l, wprintf, _wprintf_l,printf_s, _printf_s_l,
wprintf_s, _wprintf_s_l

Write formatted data to stdout

putc, putwc Write character to a stream (macro versions of fputc
and fputwc)

putchar, putwchar Write character to stdout (macro versions of fputchar
and fputwchar)

puts, _putws Write line to stream

_putw Write binary int to stream

rewind Move file position to beginning of stream

_rmtmp Remove temporary files created by tmpfile

ROUTINE USE

scanf, _scanf_l, wscanf, _wscanf_l,scanf_s, _scanf_s_l,
wscanf_s, _wscanf_s_l

Read formatted data from stdin

setbuf Control stream buffering

_setmaxstdio Set a maximum for the number of simultaneously
open files at the stream I/O level.

setvbuf Control stream buffering and buffer size

_snprintf, _snwprintf, _snprintf_s, _snprintf_s_l,
_snwprintf_s, _snwprintf_s_l

Write formatted data of specified length to string

_snscanf, _snwscanf, _snscanf_s, _snscanf_s_l,
_snwscanf_s, _snwscanf_s_l

Read formatted data of a specified length from the
standard input stream.

sprintf, swprintf, sprintf_s, _sprintf_s_l, swprintf_s,
_swprintf_s_l

Write formatted data to string

sscanf, swscanf, sscanf_s, _sscanf_s_l, swscanf_s,
_swscanf_s_l

Read formatted data from string

_tempnam, _wtempnam Generate temporary filename in given directory

tmpfile, tmpfile_s Create temporary file

tmpnam, _wtmpnam, tmpnam_s, _wtmpnam_s Generate temporary filename

ungetc, ungetwc Push character back onto stream

_vcprintf, _vcwprintf, _vcprintf_s, _vcprintf_s_l,
_vcwprintf_s, _vcwprintf_s_l

Write formatted data to the console.

vfprintf, vfwprintf, vfprintf_s, _vfprintf_s_l, vfwprintf_s,
_vfwprintf_s_l

Write formatted data to stream

vprintf, vwprintf, vprintf_s, _vprintf_s_l, vwprintf_s,
_vwprintf_s_l

Write formatted data to stdout

_vsnprintf, _vsnwprintf, vsnprintf_s, _vsnprintf_s,
_vsnprintf_s_l, _vsnwprintf_s, _vsnwprintf_s_l

Write formatted data of specified length to buffer

vsprintf, vswprintf, vsprintf_s, _vsprintf_s_l, vswprintf_s,
_vswprintf_s_l

Write formatted data to buffer

ROUTINE USE

When a program begins execution, the startup code automatically opens several streams: standard
input (pointed to by stdin), standard output (pointed to by stdout), and standard error (pointed to
by stderr). These streams are directed to the console (keyboard and screen) by default. Use freopen
to redirect stdin, stdout, or stderr to a disk file or a device.

Files opened using the stream routines are buffered by default. The stdout and stderr functions are
flushed whenever they are full or, if you are writing to a character device, after each library call. If a
program terminates abnormally, output buffers may not be flushed, resulting in loss of data. Use

See also

fflush or _flushall to ensure that the buffer associated with a specified file or all open buffers are
flushed to the operating system, which can cache data before writing it to disk. The commit-to-disk
feature ensures that the flushed buffer contents are not lost in the event of a system failure.

There are two ways to commit buffer contents to disk:

Link with the file COMMODE.OBJ to set a global commit flag. The default setting of the
global flag is n, for "no-commit."

Set the mode flag to c with fopen or _fdopen.

Any file specifically opened with either the c or the n flag behaves according to the flag, regardless
of the state of the global commit/no-commit flag.

If your program does not explicitly close a stream, the stream is automatically closed when the
program terminates. However, you should close a stream when your program finishes with it, as the
number of streams that can be open at one time is limited. See _setmaxstdio for information on this
limit.

Input can follow output directly only with an intervening call to fflush or to a file-positioning
function (fseek, fsetpos, or rewind). Output can follow input without an intervening call to a file-
positioning function if the input operation encounters the end of the file.

Input and Output
Universal C runtime routines by category

Low-Level I/O
3/11/2019 • 2 minutes to read • Edit Online

STREAM FILE DESCRIPTOR

stdin 0

stdout 1

stderr 2

Low-Level I/O Functions
FUNCTION USE

_close Close file

_commit Flush file to disk

_creat, _wcreat Create file

_dup Return next available file descriptor for given file

_dup2 Create second descriptor for given file

_eof Test for end of file

_lseek, _lseeki64 Reposition file pointer to given location

_open, _wopen Open file

_read Read data from file

_sopen, _wsopen, _sopen_s, _wsopen_s Open file for file sharing

_tell, _telli64 Get current file-pointer position

_umask, _umask_s Set file-permission mask

These functions invoke the operating system directly for lower-level operation than that provided by stream I/O.
Low-level input and output calls do not buffer or format data.

Low-level routines can access the standard streams opened at program startup using the following predefined
file descriptors.

Low-level I/O routines set the errno global variable when an error occurs. You must include STDIO.H when you
use low-level functions only if your program requires a constant that is defined in STDIO.H, such as the end-of-
file indicator (EOF).

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/low-level-i-o.md

_write Write data to file

FUNCTION USE

See also

_dup and _dup2 are typically used to associate the predefined file descriptors with different files.

Input and Output
Universal C runtime routines by category
System Calls

Console and Port I/O
3/11/2019 • 2 minutes to read • Edit Online

Console and Port I/O Routines
ROUTINE USE

_cgets, _cgetws, _cgets_s, _cgetws_s Read string from console

_cprintf, _cwprintf, _cprintf_s, _cprintf_s_l, _cwprintf_s,
_cwprintf_s_l

Write formatted data to console

_cputs Write string to console

_cscanf, _cwscanf, _cscanf_s, _cscanf_s_l, _cwscanf_s,
_cwscanf_s_l

Read formatted data from console

_getch, _getwch Read character from console

_getche, _getwche Read character from console and echo it

_inp Read one byte from specified I/O port

_inpd Read double word from specified I/O port

_inpw Read 2-byte word from specified I/O port

_kbhit Check for keystroke at console; use before attempting to
read from console

_outp Write one byte to specified I/O port

_outpd Write double word to specified I/O port

_outpw Write word to specified I/O port

_putch, _putwch Write character to console

_ungetch, _ungetwch "Unget" last character read from console so it becomes next
character read

See also

These routines read and write on your console or on the specified port. The console I/O routines are not
compatible with stream I/O or low-level I/O library routines. The console or port does not have to be opened or
closed before I/O is performed, so there are no open or close routines in this category. In the Windows
operating systems, the output from these functions is always directed to the console and cannot be redirected.

Input and Output

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/console-and-port-i-o.md

Universal C runtime routines by category

_nolock Functions
3/11/2019 • 2 minutes to read • Edit Online

No lock routines

See also

These are functions that do not perform any locking. They are provided for users requiring maximum performance.
For more information, see Multithreaded Libraries Performance.

Use _nolock functions only if your program is truly single-threaded or if it does its own locking.

_fclose_nolock

_fflush_nolock

_fgetc_nolock, _fgetwc_nolock

_fread_nolock

_fseek_nolock, _fseeki64_nolock

_ftell_nolock, _ftelli64_nolock

_fwrite_nolock

_getc_nolock, _getwc_nolock

_getch_nolock, _getwch_nolock

_getchar_nolock, _getwchar_nolock

_getche_nolock, _getwche_nolock

_getdcwd_nolock, _wgetdcwd_nolock

_putc_nolock, _putwc_nolock

_putch_nolock, _putwch_nolock

_putchar_nolock, _putwchar_nolock

_ungetc_nolock, _ungetwc_nolock

_ungetch_nolock, _ungetwch_nolock

Input and Output
Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/nolock-functions.md

Internationalization
3/11/2019 • 2 minutes to read • Edit Online

See also

The Microsoft run-time library provides many routines that are useful for creating different versions of a program
for international markets. This includes locale-related routines, wide-character routines, multibyte-character
routines, and generic-text routines. For convenience, most locale-related routines are also categorized in this
reference according to the operations they perform. In this section and in the alphabetic reference, multibyte-
character routines and wide-character routines are described with single-byte-character counterparts, where they
exist.

Also included are the ISO646 operator alternatives.

Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/internationalization.md

Locale
3/11/2019 • 3 minutes to read • Edit Online

Locale-Dependent Routines

ROUTINE USE
SETLOCALE CATEGORY
SETTING DEPENDENCE

atof, _atof_l, _wtof, _wtof_l Convert character to
floating-point value

LC_NUMERIC

atoi, _atoi_l, _wtoi, _wtoi_l Convert character to integer
value

LC_NUMERIC

_atoi64, _atoi64_l, _wtoi64,
_wtoi64_l

Convert character to 64-bit
integer value

LC_NUMERIC

atol, _atol_l, _wtol, _wtol_l Convert character to long
value

LC_NUMERIC

_atodbl, _atodbl_l, _atoldbl,
_atoldbl_l, _atoflt, _atoflt_l

Convert character to
double-long value

LC_NUMERIC

is Routines Test given integer for
particular condition.

LC_CTYPE

isleadbyte, _isleadbyte_l Test for lead byte LC_CTYPE

localeconv Read appropriate values for
formatting numeric
quantities

LC_MONETARY, LC_NUMERIC

Locale refers to country/region and language settings that you can use to customize
your program. Some locale-dependent categories include the display formats for
dates and monetary values. For more information, see Locale Categories.

Use the setlocale function to change or query some or all of the current program or
thread locale information while using functions without the _l suffix. The functions
with the _l suffix will use the locale parameter passed in for their locale information
during the execution of that specific function only. To create a locale for use with a
function with a _l suffix, use _create_locale. To free this locale, use _free_locale. To get
the current locale, use _get_current_locale.

Use _configthreadlocale to control whether each thread has its own locale, or all
threads in a program share the same locale. For more information, see Locales and
Code Pages.

More secure versions of the functions in the following table are available, indicated
by the _s ("secure") suffix. For more information, see Security Features in the CRT.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/locale.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/text/locales-and-code-pages

MB_CUR_MAX Maximum length in bytes of
any multibyte character in
current locale (macro defined
in STDLIB.H)

LC_CTYPE

_mbccpy,
_mbccpy_l,_mbccpy_s,
_mbccpy_s_l

Copy one multibyte
character

LC_CTYPE

_mbclen, mblen, _mblen_l Validate and return number
of bytes in multibyte
character

LC_CTYPE

strlen, wcslen, _mbslen,
_mbslen_l, _mbstrlen,
_mbstrlen_l

For multibyte-character
strings: validate each
character in string; return
string length

LC_CTYPE

mbstowcs,
_mbstowcs_l,mbstowcs_s,
_mbstowcs_s_l

Convert sequence of
multibyte characters to
corresponding sequence of
wide characters

LC_CTYPE

mbtowc, _mbtowc_l Convert multibyte character
to corresponding wide
character

LC_CTYPE

printf functions Write formatted output LC_NUMERIC (determines
radix character output)

scanf functions Read formatted input LC_NUMERIC (determines
radix character recognition)

setlocale, _wsetlocale Select locale for program Not applicable

strcoll, wcscoll, _mbscoll,
_strcoll_l, _wcscoll_l,
_mbscoll_l

Compare characters of two
strings

LC_COLLATE

_stricmp, _wcsicmp,
_mbsicmp, _stricmp_l,
_wcsicmp_l, _mbsicmp_l

Compare two strings
without regard to case

LC_CTYPE

_stricoll, _wcsicoll, _mbsicoll,
_stricoll_l, _wcsicoll_l,
_mbsicoll_l

Compare characters of two
strings (case insensitive)

LC_COLLATE

_strncoll, _wcsncoll,
_mbsncoll, _strncoll_l,
_wcsncoll_l, _mbsncoll_l

Compare first n characters of
two strings

LC_COLLATE

_strnicmp, _wcsnicmp,
_mbsnicmp, _strnicmp_l,
_wcsnicmp_l, _mbsnicmp_l

Compare characters of two
strings without regard to
case.

LC_CTYPE

ROUTINE USE
SETLOCALE CATEGORY
SETTING DEPENDENCE

_strnicoll, _wcsnicoll,
_mbsnicoll, _strnicoll_l,
_wcsnicoll_l, _mbsnicoll_l

Compare first n characters of
two strings (case insensitive)

LC_COLLATE

strftime, wcsftime,
_strftime_l, _wcsftime_l

Format date and time value
according to supplied
format argument

LC_TIME

_strlwr, _wcslwr, _mbslwr,
_strlwr_l, _wcslwr_l,
_mbslwr_l,_strlwr_s,
_strlwr_s_l, _mbslwr_s,
_mbslwr_s_l, _wcslwr_s,
_wcslwr_s_l

Convert, in place, each
uppercase letter in given
string to lowercase

LC_CTYPE

strtod, _strtod_l, wcstod,
_wcstod_l

Convert character string to
double value

LC_NUMERIC (determines
radix character recognition)

strtol, wcstol, _strtol_l,
_wcstol_l

Convert character string to
long value

LC_NUMERIC (determines
radix character recognition)

strtoul, _strtoul_l, wcstoul,
_wcstoul_l

Convert character string to
unsigned long value

LC_NUMERIC (determines
radix character recognition)

_strupr, _strupr_l, _mbsupr,
_mbsupr_l, _wcsupr_l,
_wcsupr,_strupr_s,
_strupr_s_l, _mbsupr_s,
_mbsupr_s_l, _wcsupr_s,
_wcsupr_s_l

Convert, in place, each
lowercase letter in string to
uppercase

LC_CTYPE

strxfrm, wcsxfrm, _strxfrm_l,
_wcsxfrm_l

Transform string into
collated form according to
locale

LC_COLLATE

tolower, _tolower, towlower,
_tolower_l,
_towlower_l,_mbctolower,
_mbctolower_l,
_mbctoupper,
_mbctoupper_l

Convert given character to
corresponding lowercase
character

LC_CTYPE

toupper, _toupper,
towupper, _toupper_l,
_towupper_l,_mbctolower,
_mbctolower_l,
_mbctoupper,
_mbctoupper_l

Convert given character to
corresponding uppercase
letter

LC_CTYPE

wcstombs,
_wcstombs_l,wcstombs_s,
_wcstombs_s_l

Convert sequence of wide
characters to corresponding
sequence of multibyte
characters

LC_CTYPE

ROUTINE USE
SETLOCALE CATEGORY
SETTING DEPENDENCE

wctomb,
_wctomb_l,wctomb_s,
_wctomb_s_l

Convert wide character to
corresponding multibyte
character

LC_CTYPE

ROUTINE USE
SETLOCALE CATEGORY
SETTING DEPENDENCE

NOTE

See also

For multibyte routines, the multibyte code page must be equivalent to the locale set with
setlocale. _setmbcp, with an argument of _MB_CP_LOCALE makes the multibyte code page
the same as the setlocale code page.

Internationalization
Universal C runtime routines by category

Code Pages
3/11/2019 • 2 minutes to read • Edit Online

See also

A code page is a character set, which can include numbers, punctuation marks, and other glyphs. Different
languages and locales may use different code pages. For example, ANSI code page 1252 is used for English and
most European languages; OEM code page 932 is used for Japanese Kanji.

A code page can be represented in a table as a mapping of characters to single-byte values or multibyte values.
Many code pages share the ASCII character set for characters in the range 0x00 - 0x7F.

The Microsoft run-time library uses the following types of code pages:

setlocale (LC_ALL, "");

System-default ANSI code page. By default, at startup the run-time system automatically sets the
multibyte code page to the system-default ANSI code page, which is obtained from the operating system.
The call:

also sets the locale to the system-default ANSI code page.

Locale code page. The behavior of a number of run-time routines is dependent on the current locale
setting, which includes the locale code page. (For more information, see Locale-Dependent Routines.) By
default, all locale-dependent routines in the Microsoft run-time library use the code page that corresponds
to the "C" locale. At run-time you can change or query the locale code page in use with a call to setlocale.

Multibyte code page. The behavior of most of the multibyte-character routines in the run-time library
depends on the current multibyte code page setting. By default, these routines use the system-default
ANSI code page. At run-time you can query and change the multibyte code page with _getmbcp and
_setmbcp, respectively.

The "C" locale is defined by ANSI to correspond to the locale in which C programs have traditionally
executed. The code page for the "C" locale ("C" code page) corresponds to the ASCII character set. For
example, in the "C" locale, islower returns true for the values 0x61 - 0x7A only. In another locale, islower
may return true for these as well as other values, as defined by that locale.

Internationalization
Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/code-pages.md

Interpretation of Multibyte-Character Sequences
3/11/2019 • 2 minutes to read • Edit Online

Locale-Dependent Multibyte Routines
ROUTINE USE

_mbclen, mblen, _mblen_l Validate and return number of bytes in multibyte
character

strlen, wcslen, _mbslen, _mbslen_l, _mbstrlen, _mbstrlen_l For multibyte character strings: validate each character in
string; return string length. For wide character strings:
return string length.

mbstowcs, _mbstowcs_l, mbstowcs_s, _mbstowcs_s_l Convert sequence of multibyte characters to
corresponding sequence of wide characters

mbtowc, _mbtowc_l Convert multibyte character to corresponding wide
character

wcstombs, _wcstombs_l, wcstombs_s, _wcstombs_s_l Convert sequence of wide characters to corresponding
sequence of multibyte characters

wctomb, _wctomb_l, wctomb_s, _wctomb_s_l Convert wide character to corresponding multibyte
character

mbrtoc16, mbrtoc32 Convert multibyte character to equivalent UTF-16 or UTF-
32 character

c16rtomb, c32rtomb Convert UTF-16 or UTF-32 character to equivalent
multibyte character

See also

Most multibyte-character routines in the Microsoft run-time library recognize multibyte-character
sequences relating to a multibyte code page. The output value is affected by the setting of the LC_CTYPE
category setting of the locale; see setlocale for more information. The versions of these functions without
the _l suffix use the current locale for this locale-dependent behavior; the versions with the _l suffix are
identical except that they use the locale parameter passed in instead.

Internationalization
Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/interpretation-of-multibyte-character-sequences.md

ISO646 Operators
3/11/2019 • 2 minutes to read • Edit Online

Macros

and An alternative to the && operator.

and_eq An alternative to the &= operator.

bitand An alternative to the & operator.

bitor An alternative to the | operator.

compl An alternative to the ~ operator.

not An alternative to the ! operator.

not_eq An alternative to the != operator.

or An alternative to the || operator.

or_eq An alternative to the |= operator.

xor An alternative to the ^ operator.

xor_eq An alternative to the ^= operator.

See also

Provides readable alternatives to certain operators or punctuators. The standard header <iso646.h> is available
even in a freestanding implementation.

Internationalization
Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/iso646-operators.md

Single-Byte and Multibyte Character Sets
3/11/2019 • 2 minutes to read • Edit Online

NOTE

See also

The ASCII character set defines characters in the range 0x00 - 0x7F. There are a number of other character sets,
primarily European, that define the characters within the range 0x00 - 0x7F identically to the ASCII character set
and also define an extended character set from 0x80 - 0xFF. Thus an 8-bit, single-byte-character set (SBCS) is
sufficient to represent the ASCII character set as well as the character sets for many European languages. However,
some non-European character sets, such as Japanese Kanji, include many more characters than can be represented
in a single-byte coding scheme, and therefore require multibyte-character set (MBCS) encoding.

Many SBCS routines in the Microsoft run-time library handle multibyte bytes, characters, and strings as appropriate. Many
multibyte-character sets define the ASCII character set as a subset. In many multibyte character sets, each character in the
range 0x00 - 0x7F is identical to the character that has the same value in the ASCII character set. For example, in both ASCII
and MBCS character strings, the one-byte null character ('\0') has value 0x00 and indicates the terminating null character.

A multibyte character set may consist of both one-byte and two-byte characters. Thus a multibyte-character string
may contain a mixture of single-byte and double-byte characters. A two-byte multibyte character has a lead byte
and a trail byte. In a particular multibyte-character set, the lead bytes fall within a certain range, as do the trail
bytes. When these ranges overlap, it may be necessary to evaluate the particular context to determine whether a
given byte is functioning as a lead byte or a trail byte.

Internationalization
Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/single-byte-and-multibyte-character-sets.md

SBCS and MBCS Data Types
3/11/2019 • 2 minutes to read • Edit Online

C a u t i o n

See also

Any Microsoft MBCS run-time library routine that handles only one multibyte character or one byte of a multibyte
character expects an unsigned int argument (where 0x00 <= character value <= 0xFFFF and 0x00 <= byte value
<= 0xFF). An MBCS routine that handles multibyte bytes or characters in a string context expects a multibyte-
character string to be represented as an unsigned char pointer.

Each byte of a multibyte character can be represented in an 8-bit char. However, an SBCS or MBCS single-byte
character of type char with a value greater than 0x7F is negative. When such a character is converted directly to an
int or a long, the result is sign-extended by the compiler and can therefore yield unexpected results.

Therefore it is best to represent a byte of a multibyte character as an 8-bit unsigned char . Or, to avoid a negative
result, simply convert a single-byte character of type char to an unsigned char before converting it to an int or a
long.

Because some SBCS string-handling functions take (signed) char* parameters, a type mismatch compiler warning
will result when _MBCS is defined. There are three ways to avoid this warning, listed in order of efficiency:

1. Use the type-safe inline functions in TCHAR.H. This is the default behavior.

2. Use the direct macros in TCHAR.H by defining _MB_MAP_DIRECT on the command line. If you do this,
you must manually match types. This is the fastest method but is not type-safe.

3. Use the type-safe statically linked library functions in TCHAR.H. To do so, define the constant
_NO_INLINING on the command line. This is the slowest method, but the most type-safe.

Internationalization
Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/sbcs-and-mbcs-data-types.md

Unicode: The Wide-Character Set
3/11/2019 • 2 minutes to read • Edit Online

See also

A wide character is a 2-byte multilingual character code. Any character in use in modern computing worldwide,
including technical symbols and special publishing characters, can be represented according to the Unicode
specification as a wide character. Developed and maintained by a large consortium that includes Microsoft, the
Unicode standard is now widely accepted.

A wide character is of type wchar_t. A wide-character string is represented as a wchar_t[] array and is pointed to
by a wchar_t* pointer. You can represent any ASCII character as a wide character by prefixing the letter L to the
character. For example, L'\0' is the terminating wide (16-bit) null character. Similarly, you can represent any ASCII
string literal as a wide-character string literal simply by prefixing the letter L to the ASCII literal (L"Hello").

Generally, wide characters take up more space in memory than multibyte characters but are faster to process. In
addition, only one locale can be represented at a time in multibyte encoding, whereas all character sets in the world
are represented simultaneously by the Unicode representation.

Internationalization
Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/unicode-the-wide-character-set.md

Using Generic-Text Mappings
3/11/2019 • 2 minutes to read • Edit Online

Preprocessor Directives for Generic-Text Mappings

#DEFINE COMPILED VERSION EXAMPLE

_UNICODE Unicode (wide-character) _tcsrev maps to _wcsrev

_MBCS Multibyte-character _tcsrev maps to _mbsrev

None (the default: neither _UNICODE

nor _MBCS defined)
SBCS (ASCII) _tcsrev maps to strrev

Generic-Text Data Type Mappings

GENERIC-TEX T DATA TYPE
NAME

SBCS (_UNICODE, _MBCS NOT
DEFINED) _MBCS DEFINED _UNICODE DEFINED

_TCHAR char char wchar_t

_TINT int int wint_t

_TSCHAR signed char signed char wchar_t

_TUCHAR unsigned char unsigned char wchar_t

_TXCHAR char unsigned char wchar_t

_T or _TEXT No effect (removed by
preprocessor)

No effect (removed by
preprocessor)

L (converts following
character or string to its
Unicode counterpart)

Microsoft Specific

To simplify code development for various international markets, the Microsoft run-time library provides
Microsoft-specific "generic-text" mappings for many data types, routines, and other objects. These mappings are
defined in TCHAR.H. You can use these name mappings to write generic code that can be compiled for any of the
three kinds of character sets: ASCII (SBCS), MBCS, or Unicode, depending on a manifest constant you define
using a #define statement. Generic-text mappings are Microsoft extensions that are not ANSI compatible.

For example, the generic-text function _tcsrev , defined in TCHAR.H, maps to mbsrev if MBCS has been defined
in your program, or to _wcsrev if _UNICODE has been defined. Otherwise _tcsrev maps to strrev .

The generic-text data type _TCHAR , also defined in TCHAR.H, maps to type char if _MBCS is defined, to type
wchar_t if _UNICODE is defined, and to type char if neither constant is defined. Other data type mappings are

provided in TCHAR.H for programming convenience, but _TCHAR is the type that is most useful.

For a complete list of generic-text mappings of routines, variables, and other objects, see Generic-Text Mappings.

The following code fragments illustrate the use of _TCHAR and _tcsrev for mapping to the MBCS, Unicode, and
SBCS models.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/using-generic-text-mappings.md

_TCHAR *RetVal, *szString;
RetVal = _tcsrev(szString);

char *RetVal, *szString;
RetVal = _mbsrev(szString);

wchar_t *RetVal, *szString;
RetVal = _wcsrev(szString);

char *RetVal, *szString;
RetVal = strrev(szString);

See also

If MBCS has been defined, the preprocessor maps the preceding fragment to the following code:

If _UNICODE has been defined, the preprocessor maps the same fragment to the following code:

If neither _MBCS nor _UNICODE has been defined, the preprocessor maps the fragment to single-byte ASCII code,
as follows:

Thus you can write, maintain, and compile a single source code file to run with routines that are specific to any of
the three kinds of character sets.

END Microsoft Specific

Generic-Text Mappings
Data Type Mappings
Constant and Global Variable Mappings
Routine Mappings
A Sample Generic-Text Program

A Sample Generic-Text Program
3/11/2019 • 2 minutes to read • Edit Online

// GENTEXT.C
// use of generic-text mappings defined in TCHAR.H

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <direct.h>
#include <errno.h>
#include <tchar.h>

int __cdecl _tmain(int argc, _TCHAR **argv, _TCHAR **envp)
{
 _TCHAR buff[_MAX_PATH];
 _TCHAR *str = _T("Astring");
 char *amsg = "Reversed";
 wchar_t *wmsg = L"Is";

#ifdef _UNICODE
 printf("Unicode version\n");
#else /* _UNICODE */
#ifdef _MBCS
 printf("MBCS version\n");
#else
 printf("SBCS version\n");
#endif
#endif /* _UNICODE */

 if (_tgetcwd(buff, _MAX_PATH) == NULL)
 printf("Can't Get Current Directory - errno=%d\n", errno);
 else
 _tprintf(_T("Current Directory is '%s'\n"), buff);
 _tprintf(_T("'%s' %hs %ls:\n"), str, amsg, wmsg);
 _tprintf(_T("'%s'\n"), _tcsrev(_tcsdup(str)));
 return 0;
}

Microsoft Specific

The following program, GENTEXT.C, provides a more detailed illustration of the use of generic-text mappings
defined in TCHAR.H:

If _MBCS has been defined, GENTEXT.C maps to the following MBCS program:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/a-sample-generic-text-program.md

// crt_mbcsgtxt.c

/*
 * Use of generic-text mappings defined in TCHAR.H
 * Generic-Text-Mapping example program
 * MBCS version of GENTEXT.C
 */

#include <stdio.h>
#include <stdlib.h>
#include <mbstring.h>
#include <direct.h>

int __cdecl main(int argc, char **argv, char **envp)
{
 char buff[_MAX_PATH];
 char *str = "Astring";
 char *amsg = "Reversed";
 wchar_t *wmsg = L"Is";

 printf("MBCS version\n");

 if (_getcwd(buff, _MAX_PATH) == NULL) {
 printf("Can't Get Current Directory - errno=%d\n", errno);
 }
 else {
 printf("Current Directory is '%s'\n", buff);
 }

 printf("'%s' %hs %ls:\n", str, amsg, wmsg);
 printf("'%s'\n", _mbsrev(_mbsdup((unsigned char*) str)));
 return 0;
}

If _UNICODE has been defined, GENTEXT.C maps to the following Unicode version of the program. For more
information about using wmain in Unicode programs as a replacement for main , see Using wmain in C Language
Reference.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/using-wmain

// crt_unicgtxt.c

/*
 * Use of generic-text mappings defined in TCHAR.H
 * Generic-Text-Mapping example program
 * Unicode version of GENTEXT.C
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <direct.h>

int __cdecl wmain(int argc, wchar_t **argv, wchar_t **envp)
{
 wchar_t buff[_MAX_PATH];
 wchar_t *str = L"Astring";
 char *amsg = "Reversed";
 wchar_t *wmsg = L"Is";

 printf("Unicode version\n");

 if (_wgetcwd(buff, _MAX_PATH) == NULL) {
 printf("Can't Get Current Directory - errno=%d\n", errno);
 }
 else {
 wprintf(L"Current Directory is '%s'\n", buff);
 }

 wprintf(L"'%s' %hs %ls:\n", str, amsg, wmsg);
 wprintf(L"'%s'\n", wcsrev(wcsdup(str)));
 return 0;
}

If neither _MBCS nor _UNICODE has been defined, GENTEXT.C maps to single-byte ASCII code, as follows:

// crt_sbcsgtxt.c
/*
 * Use of generic-text mappings defined in TCHAR.H
 * Generic-Text-Mapping example program
 * Single-byte (SBCS) Ascii version of GENTEXT.C
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <direct.h>

int __cdecl main(int argc, char **argv, char **envp)
{
 char buff[_MAX_PATH];
 char *str = "Astring";
 char *amsg = "Reversed";
 wchar_t *wmsg = L"Is";

 printf("SBCS version\n");

 if (_getcwd(buff, _MAX_PATH) == NULL) {
 printf("Can't Get Current Directory - errno=%d\n", errno);
 }
 else {
 printf("Current Directory is '%s'\n", buff);
 }

 printf("'%s' %hs %ls:\n", str, amsg, wmsg);
 printf("'%s'\n", strrev(strdup(str)));
 return 0;
}

See also

END Microsoft Specific

Generic-Text Mappings
Data Type Mappings
Constant and Global Variable Mappings
Routine Mappings
Using Generic-Text Mappings

Using TCHAR.H Data Types with _MBCS
3/12/2019 • 2 minutes to read • Edit Online

Microsoft Specific

As the table of generic-text routine mappings indicates (see Generic-Text Mappings), when the manifest constant
_MBCS is defined, a given generic-text routine maps to one of the following kinds of routines:

An SBCS routine that handles multibyte bytes, characters, and strings appropriately. In this case, the string
arguments are expected to be of type char*. For example, _tprintf maps to printf; the string arguments to
printf are of type char*. If you use the _TCHAR generic-text data type for your string types, the formal and
actual parameter types for printf match because _TCHAR* maps to char*.

An MBCS-specific routine. In this case, the string arguments are expected to be of type unsigned char*. For
example, _tcsrev maps to _mbsrev, which expects and returns a string of type unsigned char*. Again, if
you use the _TCHAR generic-text data type for your string types, there is a potential type conflict because
_TCHAR maps to type char.

Following are three solutions for preventing this type conflict (and the C compiler warnings or C++ compiler
errors that would result):

char *_tcsrev(char *);

#define _USE_INLINING

__inline char *_tcsrev(char *_s1)
{return (char *)_mbsrev((unsigned char *)_s1);}

#define _MB_MAP_DIRECT

Use the default behavior. TCHAR.H provides generic-text routine prototypes for routines in the run-time
libraries, as in the following example.

In the default case, the prototype for _tcsrev maps to _mbsrev through a thunk in L IBC.L IB. This changes
the types of the _mbsrev incoming parameters and outgoing return value from _TCHAR * (such as char *)
to unsigned char *. This method ensures type matching when you are using _TCHAR, but it is relatively
slow because of the function call overhead.

Use function inlining by incorporating the following preprocessor statement in your code.

This method causes an inline function thunk, provided in TCHAR.H, to map the generic-text routine directly
to the appropriate MBCS routine. The following code excerpt from TCHAR.H provides an example of how
this is done.

If you can use inlining, this is the best solution, because it guarantees type matching and has no additional
time cost.

Use "direct mapping" by incorporating the following preprocessor statement in your code.

This approach provides a fast alternative if you do not want to use the default behavior or cannot use

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/using-tchar-h-data-types-with-mbcs.md

See also

#define _tcschr _mbschr

inlining. It causes the generic-text routine to be mapped by a macro directly to the MBCS version of the
routine, as in the following example from TCHAR.H.

When you take this approach, you must be careful to ensure that appropriate data types are used for string
arguments and string return values. You can use type casting to ensure proper type matching or you can use the
_TXCHAR generic-text data type. _TXCHAR maps to type char in SBCS code but maps to type unsigned char in
MBCS code. For more information about generic-text macros, see Generic-Text Mappings.

END Microsoft Specific

Internationalization
Universal C runtime routines by category

Memory Allocation
3/11/2019 • 2 minutes to read • Edit Online

Memory-Allocation Routines
ROUTINE USE

_alloca, _malloca Allocate memory from stack

calloc Allocate storage for array, initializing every byte in allocated
block to 0

_calloc_dbg Debug version of calloc; only available in the debug
versions of the run-time libraries

operator delete Free allocated block

operator delete[] Free allocated block

_expand Expand or shrink block of memory without moving it

_expand_dbg Debug version of _expand; only available in the debug
versions of the run-time libraries

free Free allocated block

_free_dbg Debug version of free; only available in the debug versions
of the run-time libraries

_freea Free allocated block from stack

_get_heap_handle Get Win32 HANDLE of the CRT heap.

_heapadd Add memory to heap

_heapchk Check heap for consistency

_heapmin Release unused memory in heap

_heapset Fill free heap entries with specified value

_heapwalk Return information about each entry in heap

malloc Allocate block of memory from heap

_malloc_dbg Debug version of malloc; only available in the debug
versions of the run-time libraries

Use these routines to allocate, free, and reallocate memory.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/memory-allocation.md

_msize Return size of allocated block

_msize_dbg Debug version of _msize; only available in the debug
versions of the run-time libraries

new Allocate block of memory from heap

new[] Allocate block of memory from heap

_query_new_handler Return address of current new handler routine as set by
_set_new_handler

_query_new_mode Return integer indicating new handler mode set by
_set_new_mode for malloc

realloc Reallocate block to new size

_realloc_dbg Debug version of realloc; only available in the debug
versions of the run-time libraries

_set_new_handler Enable error-handling mechanism when new operator fails
(to allocate memory) and enable compilation of C++
Standard Libraries

_set_new_mode Set new handler mode for malloc

ROUTINE USE

See also
Universal C runtime routines by category

Process and Environment Control
3/11/2019 • 4 minutes to read • Edit Online

Process and Environment Control Functions
ROUTINE USE

abort Abort process without flushing buffers or calling functions
registered by atexit and _onexit

assert Test for logic error

_ASSERT, _ASSERTE macros Similar to assert, but only available in the debug versions
of the run-time libraries

atexit Schedule routines for execution at program termination

_beginthread, _beginthreadex Create a new thread on a Windows operating system
process

_cexit Perform exit termination procedures (such as flushing
buffers), then return control to calling program without
terminating process

_c_exit Perform _exit termination procedures, then return control
to calling program without terminating process

_cwait Wait until another process terminates

_endthread, _endthreadex Terminate a Windows operating system thread

_execl, _wexecl Execute new process with argument list

_execle, _wexecle Execute new process with argument list and given
environment

_execlp, _wexeclp Execute new process using PATH variable and argument
list

_execlpe, _wexeclpe Execute new process using PATH variable, given
environment, and argument list

_execv, _wexecv Execute new process with argument array

_execve, _wexecve Execute new process with argument array and given
environment

Use the process-control routines to start, stop, and manage processes from within a program. Use the
environment-control routines to get and change information about the operating-system environment.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/process-and-environment-control.md

_execvp, _wexecvp Execute new process using PATH variable and argument
array

_execvpe, _wexecvpe Execute new process using PATH variable, given
environment, and argument array

exit Call functions registered by atexit and _onexit, flush all
buffers, close all open files, and terminate process

_exit Terminate process immediately without calling atexit or
_onexit or flushing buffers

getenv, _wgetenv, getenv_s, _wgetenv_s Get value of environment variable

_getpid Get process ID number

longjmp Restore saved stack environment; use it to execute a
nonlocal goto

_onexit Schedule routines for execution at program termination;
use for compatibility with Microsoft C/C++ version 7.0 and
earlier

_pclose Wait for new command processor and close stream on
associated pipe

perror, _wperror Print error message

_pipe Create pipe for reading and writing

_popen, _wpopen Create pipe and execute command

_putenv, _wputenv, _putenv_s, _wputenv_s Add or change value of environment variable

raise Send signal to calling process

setjmp Save stack environment; use to execute non local goto

signal Handle interrupt signal

_spawnl, _wspawnl Create and execute new process with specified argument
list

_spawnle, _wspawnle Create and execute new process with specified argument
list and environment

_spawnlp, _wspawnlp Create and execute new process using PATH variable and
specified argument list

_spawnlpe, _wspawnlpe Create and execute new process using PATH variable,
specified environment, and argument list

ROUTINE USE

_spawnv, _wspawnv Create and execute new process with specified argument
array

_spawnve, _wspawnve Create and execute new process with specified
environment and argument array

_spawnvp, _wspawnvp Create and execute new process using PATH variable and
specified argument array

_spawnvpe, _wspawnvpe Create and execute new process using PATH variable,
specified environment, and argument array

system, _wsystem Execute operating-system command

ROUTINE USE

_spawn and _exec Function Families

FUNCTIONS
USE PATH VARIABLE TO
LOCATE FILE

ARGUMENT-PASSING
CONVENTION ENVIRONMENT SETTINGS

_execl, _spawnl No List Inherited from calling
process

_execle, _spawnle No List Pointer to environment
table for new process
passed as last argument

_execlp, _spawnlp Yes List Inherited from calling
process

_execvpe, _spawnvpe Yes Array Pointer to environment
table for new process
passed as last argument

_execlpe, _spawnlpe Yes List Pointer to environment
table for new process
passed as last argument

In the Windows operating system, the spawned process is equivalent to the spawning process. Any process
can use _cwait to wait for any other process for which the process ID is known.

The difference between the _exec and _spawn families is that a _spawn function can return control from the
new process to the calling process. In a _spawn function, both the calling process and the new process are
present in memory unless _P_OVERLAY is specified. In an _exec function, the new process overlays the
calling process, so control cannot return to the calling process unless an error occurs in the attempt to start
execution of the new process.

The differences among the functions in the _exec family, as well as among those in the _spawn family,
involve the method of locating the file to be executed as the new process, the form in which arguments are
passed to the new process, and the method of setting the environment, as shown in the following table. Use a
function that passes an argument list when the number of arguments is constant or is known at compile time.
Use a function that passes a pointer to an array containing the arguments when the number of arguments is
to be determined at run time. The information in the following table also applies to the wide-character
counterparts of the _spawn and _exec functions.

_execv, _spawnv No Array Inherited from calling
process

_execve, _spawnve No Array Pointer to environment
table for new process
passed as last argument

_execvp, _spawnvp Yes Array Inherited from calling
process

FUNCTIONS
USE PATH VARIABLE TO
LOCATE FILE

ARGUMENT-PASSING
CONVENTION ENVIRONMENT SETTINGS

See also
Universal C runtime routines by category

Robustness
3/11/2019 • 2 minutes to read • Edit Online

Run-Time Robustness Functions
FUNCTION USE

_set_new_handler Transfers control to your error-handling mechanism if the new
operator fails to allocate memory.

_set_se_translator Handles Win32 exceptions (C structured exceptions) as C++
typed exceptions.

set_terminate Installs your own termination function to be called by
terminate.

set_unexpected Installs your own termination function to be called by
unexpected.

See also

Use the following C run-time library functions to improve the robustness of your program.

Universal C runtime routines by category
SetUnhandledExceptionFilter

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/robustness.md
https://msdn.microsoft.com/library/windows/desktop/ms680634.aspx

Run-Time Error Checking
3/11/2019 • 2 minutes to read • Edit Online

Run-Time Error Checking Functions
FUNCTION USE

_RTC_GetErrDesc Returns a brief description of a run-time error check type.

_RTC_NumErrors Returns the total number of errors that can be detected by
run-time error checks.

_RTC_SetErrorFunc Designates a function as the handler for reporting run-time
error checks.

_RTC_SetErrorType Associates an error that is detected by run-time error checks
with a type.

See also

The C run-time library contains the functions that support run-time error checks (RTC). Run-time error checking
allows you to build your program such that certain kinds of run-time errors are reported. You specify how the
errors are reported and which kinds of errors are reported. For more information, see How to: Use Native Run-
Time Checks.

Use the following functions to customize the way your program does run-time error checking.

Universal C runtime routines by category
/RTC (Run-Time Error Checks)
runtime_checks
Debug Routines

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/run-time-error-checking.md
https://docs.microsoft.com/visualstudio/debugger/how-to-use-native-run-time-checks
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/rtc-run-time-error-checks
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/runtime-checks

Searching and Sorting
3/11/2019 • 2 minutes to read • Edit Online

Searching and Sorting Functions
FUNCTION SEARCH OR SORT

bsearch Binary search

bsearch_s A more secure version of bsearch

_lfind Linear search for given value

_lfind_s A more secure version of _lfind

_lsearch Linear search for given value, which is added to array if not
found

_lsearch_s A more secure version of _lsearch

qsort Quick sort

qsort_s A more secure version of qsort

See also

Use the following functions for searching and sorting.

Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/searching-and-sorting.md

String Manipulation (CRT)
3/11/2019 • 3 minutes to read • Edit Online

String-Manipulation Routines
ROUTINE USE

strcoll, wcscoll, _mbscoll, _strcoll_l, _wcscoll_l, _mbscoll_l,
_stricoll, _wcsicoll, _mbsicoll, _stricoll_l, _wcsicoll_l,
_mbsicoll_l, _strncoll, _wcsncoll, _mbsncoll, _strncoll_l,
_wcsncoll_l, _mbsncoll_l, _strnicoll, _wcsnicoll, _mbsnicoll,
_strnicoll_l, _wcsnicoll_l, _mbsnicoll_l

Compare two character strings using code page
information (_mbsicoll and _mbsnicoll are case-
insensitive)

_strdec, _wcsdec, _mbsdec, _mbsdec_l Move string pointer back one character

_strinc, _wcsinc, _mbsinc, _mbsinc_l Advance string pointer by one character

_mbsnbcat, _mbsnbcat_l, _mbsnbcat_s, _mbsnbcat_s_l Append, at most, first n bytes of one character string to
another

_mbsnbcmp, _mbsnbcmp_l Compare first n bytes of two character strings

_strncnt, _wcsncnt, _mbsnbcnt, _mbsnbcnt_l, _mbsnccnt,
_mbsnccnt_l

Return number of character bytes within supplied
character count

_mbsnbcpy, _mbsnbcpy_l, _mbsnbcpy_s, _mbsnbcpy_s_l Copy n bytes of string

_mbsnbicmp, _mbsnbicmp_l Compare n bytes of two character strings, ignoring case

_mbsnbset, _mbsnbset_l Set first n bytes of character string to specified character

_strncnt, _wcsncnt, _mbsnbcnt, _mbsnbcnt_l, _mbsnccnt,
_mbsnccnt_l

Return number of characters within supplied byte count

_strnextc, _wcsnextc, _mbsnextc, _mbsnextc_l Find next character in string

_strninc, _wcsninc, _mbsninc, _mbsninc_l Advance string pointer by n characters

_strspnp, _wcsspnp, _mbsspnp, _mbsspnp_l Return pointer to first character in given string that is not
in another given string

_scprintf, _scprintf_l, _scwprintf, _scwprintf_l Return the number of characters in a formatted string

_snscanf, _snscanf_l, _snwscanf, _snwscanf_l, _snscanf_s,
_snscanf_s_l, _snwscanf_s, _snwscanf_s_l

Read formatted data of a specified length from the
standard input stream.

These routines operate on null-terminated single-byte character, wide-character, and multibyte-character
strings. Use the buffer-manipulation routines, described in Buffer Manipulation, to work with character
arrays that do not end with a null character.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/string-manipulation-crt.md

sscanf, _sscanf_l, swscanf, _swscanf_l, sscanf_s, _sscanf_s_l,
swscanf_s, _swscanf_s_l

Read formatted data of a specified length from the
standard input stream.

sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l,
sprintf_s, _sprintf_s_l, swprintf_s, _swprintf_s_l, _sprintf_p,
_sprintf_p_l, _swprintf_p, _swprintf_p_l

Write formatted data to a string

strcat, wcscat, _mbscat, strcat_s, wcscat_s, _mbscat_s Append one string to another

strchr, wcschr, _mbschr, _mbschr_l Find first occurrence of specified character in string

strcmp, wcscmp, _mbscmp Compare two strings

strcoll, wcscoll, _mbscoll, _strcoll_l, _wcscoll_l, _mbscoll_l,
_stricoll, _wcsicoll, _mbsicoll, _stricoll_l, _wcsicoll_l,
_mbsicoll_l, _strncoll, _wcsncoll, _mbsncoll, _strncoll_l,
_wcsncoll_l, _mbsncoll_l, _strnicoll, _wcsnicoll, _mbsnicoll,
_strnicoll_l, _wcsnicoll_l, _mbsnicoll_l

Compare two strings using current locale code page
information (_stricoll, _wcsicoll, _strnicoll, and
_wcsnicoll are case-insensitive)

strcpy, wcscpy, _mbscpy, strcpy_s, wcscpy_s, _mbscpy_s Copy one string to another

strcspn, wcscspn, _mbscspn, _mbscspn_l Find first occurrence of character from specified character
set in string

_strdup, _wcsdup, _mbsdup, _strdup_dbg, _wcsdup_dbg Duplicate string

strerror, _strerror, _wcserror, __wcserror, strerror_s,
_strerror_s, _wcserror_s, __wcserror_s

Map error number to message string

strftime, wcsftime, _strftime_l, _wcsftime_l Format date-and-time string

_stricmp, _wcsicmp, _mbsicmp, _stricmp_l, _wcsicmp_l,
_mbsicmp_l

Compare two strings without regard to case

strlen, wcslen, _mbslen, _mbslen_l, _mbstrlen, _mbstrlen_l,
strnlen, strnlen_s, wcsnlen, wcsnlen_s, _mbsnlen,
_mbsnlen_l, _mbstrnlen, _mbstrnlen_l

Find length of string

_strlwr, _wcslwr, _mbslwr, _strlwr_l, _wcslwr_l, _mbslwr_l,
_strlwr_s, _strlwr_s_l, _mbslwr_s, _mbslwr_s_l, _wcslwr_s,
_wcslwr_s_l

Convert string to lowercase

strncat, _strncat_l, wcsncat, _wcsncat_l, _mbsncat,
_mbsncat_l, strncat_s, _strncat_s_l, wcsncat_s,
_wcsncat_s_l, _mbsncat_s, _mbsncat_s_l

Append characters of string

strncmp, wcsncmp, _mbsncmp, _mbsncmp_l Compare characters of two strings

strncpy, _strncpy_l, wcsncpy, _wcsncpy_l, _mbsncpy,
_mbsncpy_l, strncpy_s, _strncpy_s_l, wcsncpy_s,
_wcsncpy_s_l, _mbsncpy_s, _mbsncpy_s_l

Copy characters of one string to another

_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l,
_wcsnicmp_l, _mbsnicmp_l

Compare characters of two strings without regard to case

ROUTINE USE

_strnset, _strnset_l, _wcsnset, _wcsnset_l, _mbsnset,
_mbsnset_l

Set first n characters of string to specified character

strpbrk, wcspbrk, _mbspbrk, _mbspbrk_l Find first occurrence of character from one string in
another string

strrchr, wcsrchr, _mbsrchr, _mbsrchr_l Find last occurrence of given character in string

_strrev, _wcsrev, _mbsrev, _mbsrev_l Reverse string

_strset, _strset_l, _wcsset, _wcsset_l, _mbsset, _mbsset_l Set all characters of string to specified character

strspn, wcsspn, _mbsspn, _mbsspn_l Find first occurrence in a string of a character not found in
another string

strstr, wcsstr, _mbsstr, _mbsstr_l Find first occurrence of specified string in another string

strtok, _strtok_l, wcstok, _wcstok_l, _mbstok, _mbstok_l,
strtok_s, _strtok_s_l, wcstok_s, _wcstok_s_l, _mbstok_s,
_mbstok_s_l

Find next token in string

_strupr, _strupr_l, _mbsupr, _mbsupr_l, _wcsupr_l, _wcsupr,
_strupr_s, _strupr_s_l, _mbsupr_s, _mbsupr_s_l, _wcsupr_s,
_wcsupr_s_l

Convert string to uppercase

strxfrm, wcsxfrm, _strxfrm_l, _wcsxfrm_l Transform string into collated form based on locale-
specific information

vsprintf, _vsprintf_l, vswprintf, _vswprintf_l, __vswprintf_l,
vsprintf_s, _vsprintf_s_l, vswprintf_s, _vswprintf_s_l,
_vsprintf_p, _vsprintf_p_l, _vswprintf_p, _vswprintf_p_l

Write formatted output using a pointer to a list of
arguments

vsnprintf, _vsnprintf, _vsnprintf_l, _vsnwprintf,
_vsnwprintf_l, vsnprintf_s, _vsnprintf_s, _vsnprintf_s_l,
_vsnwprintf_s, _vsnwprintf_s_l

Write formatted output using a pointer to a list of
arguments

ROUTINE USE

See also
Universal C runtime routines by category

System Calls
3/11/2019 • 2 minutes to read • Edit Online

System Call Functions
FUNCTION USE

_findclose Release resources from previous find operations

_findfirst, _findfirst32, _findfirst64, _findfirsti64, _findfirst32i64,
_findfirst64i32, _wfindfirst, _wfindfirst32, _wfindfirst64,
_wfindfirsti64, _wfindfirst32i64, _wfindfirst64i32

Find file with specified attributes

_findnext, _findnext32, _findnext64, _findnexti64,
_findnext32i64, _findnext64i32, _wfindnext, _wfindnext32,
_wfindnexti64, _wfindnext64, _wfindnexti64

Find next file with specified attributes

See also

The following functions are Windows operating system calls.

Universal C runtime routines by category
File Handling
Directory Control
Low-Level I/O

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/system-calls.md

Time Management
5/8/2019 • 2 minutes to read • Edit Online

Time Routines

FUNCTION USE

asctime, _wasctime, asctime_s, _wasctime_s Convert time from type struct tm to character string. The
versions of these functions with the _s suffix are more
secure.

clock Return elapsed wall-clock time for process.

ctime, _ctime32, _ctime64, _wctime, _wctime32, _wctime64,
_ctime_s, _ctime32_s, _ctime64_s, _wctime_s, _wctime32_s,
_wctime64_s

Convert time from type time_t, __time32_t or __time64_t
to character string. The versions of these functions with the
_s suffix are more secure.

difftime, _difftime32, _difftime64 Compute difference between two times.

_ftime, _ftime32, _ftime64,_ftime_s, _ftime32_s, _ftime64_s Store current system time in variable of type struct _timeb
or type struct __timeb64 The versions of these functions
with the _s suffix are more secure.

_futime, _futime32, _futime64 Set modification time on open file

gmtime, _gmtime32, _gmtime64, gmtime_s, _gmtime32_s,
_gmtime64_s

Convert time from type time_t to struct tm or from type
__time64_t to struct tm.The versions of these functions
with the _s suffix are more secure.

localtime, _localtime32, _localtime64, localtime_s,
_localtime32_s, _localtime64_s

Convert time from type time_t to struct tm or from type
__time64_t to struct tm with local correction. The versions
of these functions with the _s suffix are more secure.

_mkgmtime, _mkgmtime32, _mkgmtime64 Convert time to calendar value in Greenwich Mean Time.

mktime, _mktime32, _mktime64 Convert time to calendar value.

_strdate, _wstrdate, _strdate_s, _wstrdate_s Return current system date as string. The versions of these
functions with the _s suffix are more secure.

strftime, wcsftime, _strftime_l, _wcsftime_l Format date-and-time string for international use.

_strtime, _wstrtime, _strtime_s, _wstrtime_s Return current system time as string. The versions of these
functions with the _s suffix are more secure.

Use these functions to get the current time and convert, adjust, and store it as necessary. The current time is
the system time.

The _ftime and localtime routines use the TZ environment variable. If TZ is not set, the run-time library
attempts to use the time-zone information specified by the operating system. If this information is unavailable,
these functions use the default value of PST8PDT. For more information on TZ , see _tzset; also see _daylight,
timezone, and _tzname.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/time-management.md

time, _time32, _time64 Get current system time as type time_t, __time32_t or as
type __time64_t.

_tzset Set external time variables from environment time variable
TZ.

_utime, _utime32, _utime64, _wutime, _wutime32,
_wutime64

Set modification time for specified file using either current
time or time value stored in structure.

FUNCTION USE

NOTE

NOTE

See also

In all versions of Microsoft C/C++ except Microsoft C/C++ version 7.0, and in all versions of Visual C++, the time
function returns the current time as the number of seconds elapsed since midnight on January 1, 1970. In Microsoft
C/C++ version 7.0, time returned the current time as the number of seconds elapsed since midnight on December 31,
1899.

In versions of Visual C++ and Microsoft C/C++ before Visual Studio 2005, time_t was a long int (32 bits) and hence
could not be used for dates past 3:14:07 January 19, 2038, UTC. time_t is now equivalent to __time64_t by default, but
defining _USE_32BIT_TIME_T changes time_t to __time32_t and forces many time functions to call versions that take
the 32-bit time_t. For more information, see Standard Types and comments in the documentation for the individual time
functions.

Universal C runtime routines by category

Windows Runtime Unsupported CRT Functions
3/11/2019 • 2 minutes to read • Edit Online

See also

Many C run-time (CRT) APIs can’t be used in Universal Windows Platform (UWP) apps that execute in the
Windows Runtime. These apps are built by using the /ZW compiler flag. For a list of unsupported CRT functions,
see CRT functions not supported in Universal Windows Platform apps.

All CRT APIs are described in the Alphabetical Function Reference section of the documentation.

Universal C runtime routines by category
Alphabetical Function Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/windows-runtime-unsupported-crt-functions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Internal CRT Globals and Functions
3/11/2019 • 2 minutes to read • Edit Online

Internal CRT Globals and Value Macros

NAME

__badioinfo

_acmdln

_commode

_crtAssertBusy

_crtBreakAlloc

__initenv

__lconv

__mb_cur_max

__pioinfo

__unguarded_readlc_active

_wcmdln

__winitenv

Internal CRT Functions and Function Macros

NAME

__acrt_iob_func

__AdjustPointer

The C runtime (CRT) library contains functions and global variables that are used only to support the public library
interface. Some of them are exposed in public headers as implementation details. Although these functions and
global variables are accessible through public exports, they are not intended for use by your code. We recommend
that you change any code that uses these functions and variables to use public library equivalents instead. These
functions may change from version to version. They are listed here to help you identify them. Links are provided
when additional documentation exists, but in general, these implementation details are not documented.

These global variables and macro definitions are used to implement the CRT.

These functions and function macros are used to implement the CRT and the C++ Standard Library.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/internal-crt-globals-and-functions.md

_assert

__BuildCatchObject

__BuildCatchObjectHelper

__C_specific_handler

_calloc_base

_chkesp

__chkstk

_chkstk

_chvalidator

_chvalidator_l

_CIacos

_CIasin

_CIatan

_CIatan2

_CIcos

_CIcosh

_CIexp

_CIfmod

_CIlog

_CIlog10

_CIpow

_CIsin

_CIsinh

_CIsqrt

_CItan

NAME

_CItanh

__clean_type_info_names_internal

_configure_narrow_argv

_configure_wide_argv

__conio_common_vcprintf

__conio_common_vcprintf_p

__conio_common_vcprintf_s

__conio_common_vcscanf

__conio_common_vcwprintf

__conio_common_vcwprintf_p

__conio_common_vcwprintf_s

__conio_common_vcwscanf

__CppXcptFilter

__create_locale

_crt_atexit

_crt_at_quick_exit

__crtCompareStringA

__crtCompareStringEx

__crtCompareStringW

__crtCreateEventExW

__crtCreateSemaphoreExW

__crtCreateSymbolicLinkW

_crt_debugger_hook

__crtEnumSystemLocalesEx

__crtFlsAlloc

NAME

__crtFlsFree

__crtFlsGetValue

__crtFlsSetValue

_CrtGetCheckCount

__crtGetDateFormatEx

__crtGetFileInformationByHandleEx

__crtGetLocaleInfoEx

__crtGetShowWindowMode

__crtGetTickCount64

__crtGetTimeFormatEx

__crtGetUserDefaultLocaleName

__crtInitializeCriticalSectionEx

__crtIsPackagedApp

__crtIsValidLocaleName

__crtLCMapStringA

__crtLCMapStringEx

__crtLCMapStringW

_CrtSetCheckCount

_CrtSetDbgBlockType

__crtSetFileInformationByHandle

__crtSetThreadStackGuarantee

__crtSetUnhandledExceptionFilter

__crtSleep

__crtTerminateProcess

__crtUnhandledException

NAME

__CxxDetectRethrow

__CxxExceptionFilter

__CxxFrameHandler

__CxxFrameHandler2

__CxxFrameHandler3

__CxxLongjmpUnwind

__CxxQueryExceptionSize

__CxxRegisterExceptionObject

_CxxThrowException

__CxxUnregisterExceptionObject

__daylight

_dclass

__DestructExceptionObject

__dllonexit

__doserrno

_dosmaperr

_dpcomp

_dsign

__dstbias

_dtest

_EH_prolog

_errno

_except_handler2

_except_handler3

_except_handler4_common

NAME

_except1

_execute_onexit_table

_fdclass

_fdpcomp

_fdsign

_fdtest

_filbuf

_FindAndUnlinkFrame

_flsbuf

__fpe_flt_rounds

_FPE_Raise

__fpecode

__FrameUnwindFilter

_fread_nolock_s

_free_base

__free_locale

_freea_s

_freefls

_ftol

__get_current_locale

__get_flsindex

_get_initial_narrow_environment

_get_initial_wide_environment

_get_narrow_winmain_command_line

_get_stream_buffer_pointers

NAME

__get_tlsindex

_get_wide_winmain_command_line

_Getdays

__getmainargs

_Getmonths

__GetPlatformExceptionInfo

_getptd

_Gettnames

_global_unwind2

_inconsistency

_initialize_lconv_for_unsigned_char

_initialize_narrow_environment

_initialize_onexit_table

_initialize_wide_environment

_initptd

_invalid_parameter

_invoke_watson

__iob_func

_IsExceptionObjectToBeDestroyed

___lc_codepage_func

___lc_collate_cp_func

___lc_locale_name_func

__lconv_init

_ldclass

_ldpcomp

NAME

_ldsign

_ldtest

__libm_sse2_acos

_libm_sse2_acos_precise

__libm_sse2_acosf

__libm_sse2_asin

_libm_sse2_asin_precise

__libm_sse2_asinf

__libm_sse2_atan

_libm_sse2_atan_precise

__libm_sse2_atan2

__libm_sse2_atanf

__libm_sse2_cos

_libm_sse2_cos_precise

__libm_sse2_cosf

__libm_sse2_exp

_libm_sse2_exp_precise

__libm_sse2_expf

__libm_sse2_log

_libm_sse2_log_precise

__libm_sse2_log10

_libm_sse2_log10_precise

__libm_sse2_log10f

__libm_sse2_logf

__libm_sse2_pow

NAME

_libm_sse2_pow_precise

__libm_sse2_powf

__libm_sse2_sin

_libm_sse2_sin_precise

__libm_sse2_sinf

_libm_sse2_sqrt_precise

__libm_sse2_tan

_libm_sse2_tan_precise

__libm_sse2_tanf

_local_unwind2

_local_unwind4

_lock_locales

_longjmpex

_malloc_base

___mb_cur_max_func

___mb_cur_max_l_func

_mbctype

_NLG_Dispatch2

_NLG_Return

_NLG_Return2

__p___argc

__p___argv

__p___initenv

__p___mb_cur_max

__p___wargv

NAME

__p___winitenv

__p__acmdln

__p__commode

__p__crtAssertBusy

__p__crtBreakAlloc

__p__crtDbgFlag

__p__daylight

__p__dstbias

__p__environ

__p__fmode

__p__iob

__p__mbcasemap

__p__mbctype

__p__pctype

__p__pgmptr

__p__pwctype

__p__timezone

__p__tzname

__p__wcmdln

__p__wenviron

__p__wpgmptr

_pctype

__pctype_func

_pwctype

__pwctype_func

NAME

__pxcptinfoptrs

_query_app_type

_realloc_base

_register_onexit_function

_register_thread_local_exe_atexit_callback

__report_gsfailure

__RTCastToVoid

__RTDynamicCast

__RTtypeid

_seh_filter_dll

_seh_filter_exe

_seh_longjmp_unwind

_seh_longjmp_unwind4

__set_app_type

_set_malloc_crt_max_wait

_setjmp3

__setlc_active

___setlc_active_func

__setusermatherr

_SetWinRTOutOfMemoryExceptionCallback

_sopen_dispatch

__std_exception_copy

__std_exception_destroy

__std_type_info_destroy_list

__stdio_common_vfprintf

NAME

__stdio_common_vfprintf_p

__stdio_common_vfprintf_s

__stdio_common_vfscanf

__stdio_common_vfwprintf

__stdio_common_vfwprintf_p

__stdio_common_vfwprintf_s

__stdio_common_vfwscanf

__stdio_common_vsnprintf_s

__stdio_common_vsnwprintf_s

__stdio_common_vsprintf

__stdio_common_vsprintf_p

__stdio_common_vsprintf_s

__stdio_common_vsscanf

__stdio_common_vswprintf

__stdio_common_vswprintf_p

__stdio_common_vswprintf_s

__stdio_common_vswscanf

_Strftime

__STRINGTOLD

__STRINGTOLD_L

__strncnt

__sys_errlist

__sys_nerr

__threadhandle

__threadid

NAME

__timezone

__TypeMatch

__tzname

__unDName

__unDNameEx

__unDNameHelper

__unguarded_readlc_active

___unguarded_readlc_active_add_func

_unloaddll

_unlock_locales

_vacopy

_ValidateExecute

_ValidateRead

_ValidateWrite

_VCrtDbgReportA

_VCrtDbgReportW

_W_Getdays

_W_Getmonths

_W_Getnames

_wassert

_Wcsftime

__wcsncnt

__wgetmainargs

_wsopen_dispatch

_Xbad_alloc

NAME

_Xlength_error

NAME

See also
Universal C runtime routines by category

_abnormal_termination
3/11/2019 • 2 minutes to read • Edit Online

Syntax
int _abnormal_termination(
);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_abnormal_termination excpt.h

See also

Indicates whether the __finally block of a try-finally statement is entered while the system is executing an
internal list of termination handlers.

true if the system is unwinding the stack; otherwise, false.

This is an internal function used to manage unwinding exceptions, and is not intended to be called from user code.

try-finally Statement

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/abnormal-termination.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/try-finally-statement
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/try-finally-statement

_acmdln, _tcmdln, _wcmdln
3/11/2019 • 2 minutes to read • Edit Online

Syntax
char * _acmdln;
wchar_t * _wcmdln;

#ifdef WPRFLAG
 #define _tcmdln _wcmdln
#else
 #define _tcmdln _acmdln

Remarks

See also

Internal CRT global variable. The command line.

These CRT internal variables store the complete command line. They are exposed in the exported symbols for the
CRT, but are not intended for use in your code. _acmdln stores the data as a character string. _wcmdln stores the
data as a wide character string. _tcmdln can be defined as either _acmdln or _wcmdln , depending on which is
appropriate.

Global Variables

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/acmdln-tcmdln-wcmdln.md

_CIatan
3/11/2019 • 2 minutes to read • Edit Online

Syntax
void __cdecl _CIatan();

Remarks

Requirements

See also

Calculates the arctangent of the top value on the stack.

This version of the atan function has a specialized calling convention that the compiler understands. It speeds up
the execution because it prevents copies from being generated and helps with register allocation.

The resulting value is pushed onto the top of the stack.

Platform: x86

Alphabetical Function Reference
atan, atanf, atanl, atan2, atan2f, atan2l

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/ciatan.md

_CIatan2
3/11/2019 • 2 minutes to read • Edit Online

Syntax
void __cdecl _CIatan2();

Remarks

Requirements

See also

Calculates the arctangent of x / y where x and y are values on the top of the stack.

This version of the atan2 function has a specialized calling convention that the compiler understands. It speeds up
the execution because it prevents copies from being generated and helps with register allocation.

The resulting value is pushed onto the top of the stack.

Platform: x86

Alphabetical Function Reference
atan, atanf, atanl, atan2, atan2f, atan2l

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/ciatan2.md

_CIcos
2/4/2019 • 2 minutes to read • Edit Online

Syntax
void __cdecl _CIcos();

Remarks

Requirements

See also

Calculates the cosine of the top value in the floating-point stack.

This version of the cos function has a specialized calling convention that the compiler understands. It speeds up the
execution because it prevents copies from being generated and helps with register allocation.

The resulting value is pushed onto the top of the floating-point stack.

Platform: x86

Alphabetical Function Reference
cos, cosf, cosl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/cicos.md

_CIexp
3/11/2019 • 2 minutes to read • Edit Online

Syntax
void __cdecl _CIexp();

Remarks

Requirements

See also

Calculates the exponential of the top value on the stack.

This version of the exp function has a specialized calling convention that the compiler understands. It speeds up
the execution because it prevents copies from being generated and helps with register allocation.

The resulting value is pushed onto the top of the stack.

Platform: x86

Alphabetical Function Reference
exp, expf, expl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/ciexp.md

_CIfmod
3/11/2019 • 2 minutes to read • Edit Online

Syntax
void __cdecl _CIfmod();

Remarks

Requirements

See also

Calculates the floating-point remainder of the top two values on the stack.

This version of the fmod function has a specialized calling convention that the compiler understands. It speeds up
the execution because it prevents copies from being generated and helps with register allocation.

The resulting value is pushed onto the top of the stack.

Platform: x86

Alphabetical Function Reference
fmod, fmodf

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/cifmod.md

_CIlog
3/11/2019 • 2 minutes to read • Edit Online

Syntax
void __cdecl _CIlog();

Remarks

Requirements

See also

Calculates the natural logarithm of the top value in the stack.

This version of the log function has a specialized calling convention that the compiler understands. It speeds up
the execution because it prevents copies from being generated and helps with register allocation.

The resulting value is pushed onto the top of the stack.

Platform: x86

Alphabetical Function Reference
log, logf, log10, log10f

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/cilog.md

_CIlog10
3/11/2019 • 2 minutes to read • Edit Online

Syntax
void __cdecl _CIlog10();

Remarks

Requirements

See also

Performs a log10 operation on the top value in the stack.

This version of the log10 function has a specialized calling convention that the compiler understands. The
function speeds up the execution because it prevents copies from being generated and helps with register
allocation.

The resulting value is pushed onto the top of the stack.

Platform: x86

Alphabetical Function Reference
log, logf, log10, log10f

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/cilog10.md

_CIpow
3/11/2019 • 2 minutes to read • Edit Online

Syntax
void __cdecl _CIpow();

Remarks

Requirements

See also

Calculates x raised to the y power based on the top values in the stack.

This version of the pow function has a specialized calling convention that the compiler understands. It speeds up
the execution because it prevents copies from being generated and helps with register allocation.

The resulting value is pushed onto the top of the stack.

Platform: x86

Alphabetical Function Reference
pow, powf, powl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/cipow.md

_CIsin
2/4/2019 • 2 minutes to read • Edit Online

Syntax
void __cdecl _CIsin();

Remarks

Requirements

See also

Calculates the sine of the top value in the floating-point stack.

This intrinsic version of the sin function has a specialized calling convention that the compiler understands. It
speeds up the execution because it prevents copies from being generated and helps with register allocation.

The resulting value is pushed onto the top of the floating-point stack.

Platform: x86

Alphabetical Function Reference
sin, sinf, sinl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/cisin.md

_CIsqrt
3/11/2019 • 2 minutes to read • Edit Online

Syntax
void __cdecl _CIsqrt();

Remarks

Requirements

See also

Calculates the square root of the top value in the stack.

This version of the sqrt function has a specialized calling convention that the compiler understands. It speeds up
the execution because it prevents copies from being generated and helps with register allocation.

The resulting value is pushed onto the top of the stack.

Platform: x86

Alphabetical Function Reference
sqrt, sqrtf, sqrtl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/cisqrt.md

_CItan
2/4/2019 • 2 minutes to read • Edit Online

Syntax
void __cdecl _CItan();

Remarks

Requirements

See also

Calculates the tangent of the top value on the floating-point stack.

This version of the tan function has a specialized calling convention that the compiler understands. The function
speeds up the execution because it prevents copies from being generated and helps with register allocation.

The resulting value is pushed onto the top of the floating-point stack.

Platform: x86

Alphabetical Function Reference
tan, tanf, tanl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/citan.md

__crtLCMapStringW
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int __crtLCMapStringW(
 LCID Locale,
 DWORD dwMapFlags,
 LPCWSTR lpSrcStr,
 int cchSrc,
 LPWSTR lpDestStr,
 int cchDest)

Parameters

Return Value

Maps one character string to another, performing a specified locale-dependent transformation. This function can
also be used to generate a sort key for the input string.

Locale
Locale identifier. The locale provides a context for the string mapping or sort key generation. An application can
use the MAKELCID macro to create a locale identifier.

dwMapFlags
The type of transformation to be used during string mapping or sort key generation.

lpSrcStr
Pointer to a source string that the function maps or uses for sort key generation. This parameter is assumed to be a
Unicode string.

cchSrc
Size, in characters, of the string pointed to by the lpSrcStr parameter. This count can include the null terminator,
or not include it.

A cchSrc value of -1 specifies that the string pointed to by lpSrcStr is null-terminated. If this is the case, and this
function is being used in its string-mapping mode, the function calculates the string's length itself, and null-
terminates the mapped string stored into *lpDestStr .

lpDestStr
Long pointer to a buffer into which the function stores the mapped string or sort key.

cchDest
Size, in characters, of the buffer pointed to by lpDestStr .

If the value of cchDest is nonzero, the number of characters, or bytes if LCMAP_SORTKEY is specified, written to the
buffer indicates success. This count includes room for a null terminator.

If the value of cchDest is zero, the size of the buffer in characters, or bytes if LCMAP_SORTKEY is specified, required
to receive the translated string or sort key indicates success. This size includes room for a null terminator.

Zero indicates failure. To get extended error information, call the GetLastError function.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/crtlcmapstringw.md

Remarks

Requirements
ROUTINE REQUIRED HEADER

__crtLCMapStringW awint.h

If cchSrc is greater than zero and lpSrcStr is a null-terminated string, __crtLCMapStringW sets cchSrc to the
length of the string. Then __crtLCMapStringW calls the wide string (Unicode) version of the LCMapString function
with the specified parameters. For more information about the parameters and return value of this function, see
the LCMapString.

https://docs.microsoft.com/windows/desktop/api/winnls/nf-winnls-lcmapstringa

__CxxFrameHandler
10/31/2018 • 2 minutes to read • Edit Online

Syntax
EXCEPTION_DISPOSITION __CxxFrameHandler(
 EHExceptionRecord *pExcept,
 EHRegistrationNode *pRN,
 void *pContext,
 DispatcherContext *pDC
)

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

__CxxFrameHandler excpt.h, ehdata.h

Internal CRT function. Used by the CRT to handle structured exception frames.

pExcept
Exception record that is passed to the possible catch statements.

pRN
Dynamic information about the stack frame that is used to handle the exception. For more information, see
ehdata.h.

pContext
Context. (Not used on Intel processors.)

pDC
Additional information about the function entry and stack frame.

One of the filter expression values used by the try-except Statement.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/cxxframehandler.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/try-except-statement

__dllonexit
3/11/2019 • 2 minutes to read • Edit Online

Syntax
_onexit_t __dllonexit(_onexit_t func,
 _PVFV ** pbegin,
 _PVFV ** pend
)

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED FILE

__dllonexit onexit.c

See also

Registers a routine to be called at exit time.

func
Pointer to a function to be executed upon exit.

pbegin
Pointer to a variable that points to the beginning of a list of functions to execute on detach.

pend
Pointer to variable that points to the end of a list of functions to execute on detach.

If successful, a pointer to the user’s function. Otherwise, a NULL pointer.

The __dllonexit function is analogous to the _onexit function except that the global variables used by that
function are not visible to this routine. Instead of global variables, this function uses the pbegin and pend

parameters.

The _onexit and atexit functions in a DLL linked with MSVCRT.LIB must maintain their own atexit/_onexit list.
This routine is the worker that gets called by such DLLs.

The _PVFV type is defined as typedef void (__cdecl *_PVFV)(void) .

_onexit, _onexit_m

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/dllonexit.md

_except_handler3
3/11/2019 • 2 minutes to read • Edit Online

Syntax
int _except_handler3(
 PEXCEPTION_RECORD exception_record,
 PEXCEPTION_REGISTRATION registration,
 PCONTEXT context,
 PEXCEPTION_REGISTRATION dispatcher
);

Parameters

Return Value

Remarks

See also

Internal CRT function. Used by a framework to find the appropriate exception handler to process the current
exception.

exception_record
[in] Information about the specific exception.

registration
[in] The record that indicates which scope table should be used to find the exception handler.

context
[in] Reserved.

dispatcher
[in] Reserved.

If an exception should be dismissed, returns DISPOSITION_DISMISS . If the exception should be passed up a level to
the encapsulating exception handlers, returns DISPOSITION_CONTINUE_SEARCH .

If this method finds an appropriate exception handler, it passes the exception to the handler. In this situation, this
method does not return to the code that called it and the return value is irrelevant.

Alphabetical Function Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/except-handler3.md

_execute_onexit_table, _initialize_onexit_table,
_register_onexit_function
3/11/2019 • 2 minutes to read • Edit Online

Syntax
int _initialize_onexit_table(
 _onexit_table_t* table
);

int _register_onexit_function(
 _onexit_table_t* table,
 _onexit_t function
);

int _execute_onexit_table(
 _onexit_table_t* table
);

Parameters

Return Value

Remarks

Requirements

Manages the routines to be called at exit time.

table
[in, out] Pointer to the onexit function table.

function
[in] Pointer to a function to add to the onexit function table.

If successful, returns 0. Otherwise, returns a negative value.

These functions are infrastructure implementation details used to support the C runtime, and should not be called
directly from your code. The C runtime uses an onexit function table to represent the sequence of functions
registered by calls to atexit , at_quick_exit , and _onexit . The onexit function table data structure is an opaque
implementation detail of the C runtime; the order and meaning of its data members may change. They should not
be inspected by external code.

The _initialize_onexit_table function initializes the onexit function table to its initial value. This function must be
called before the onexit function table is passed to either _register_onexit_function or _execute_onexit_table .

The _register_onexit_function function appends a function to the end of the onexit function table.

The _execute_onexit_table function executes all of the functions in the onexit function table, clears the table, and
then returns. After a call to _execute_onexit_table , the table is in a non-valid state; it must be reinitialized by a call
to _initialize_onexit_table before it is used again.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/execute-onexit-table-initialize-onexit-table-register-onexit-function.md

ROUTINE REQUIRED HEADER

_initialize_onexit_table function ,
_register_onexit_function , _execute_onexit_table

C, C++: <process.h>

See also

The _initialize_onexit_table , _register_onexit_function , and _execute_onexit_table functions are Microsoft
specific. For compatibility information, see Compatibility.

atexit
exit, _Exit, _exit
_onexit, _onexit_m

__getmainargs, __wgetmainargs
11/9/2018 • 2 minutes to read • Edit Online

Syntax
int __getmainargs(
 int * _Argc,
 char *** _Argv,
 char *** _Env,
 int _DoWildCard,
_startupinfo * _StartInfo);

int __wgetmainargs (
 int *_Argc,
 wchar_t ***_Argv,
 wchar_t ***_Env,
 int _DoWildCard,
 _startupinfo * _StartInfo)

Parameters

Return Value

Remarks

Requirements

Invokes command-line parsing and copies the arguments to main() back through the passed pointers.

_Argc

An integer that contains the number of arguments that follow in argv . The argc parameter is always greater
than or equal to 1.

_Argv

An array of null-terminated strings representing command-line arguments entered by the user of the program. By
convention, argv[0] is the command with which the program is invoked, argv[1] is the first command-line
argument, and so on, until argv[argc], which is always NULL. The first command-line argument is always argv[1]

and the last one is argv[argc - 1] .

_Env

An array of strings that represent the variables set in the user's environment. This array is terminated by a NULL
entry.

_DoWildCard

An integer that if set to 1 expands the wildcards in the command line arguments, or if set to 0 does nothing.

_StartInfo

Other information to be passed to the CRT DLL.

0 if successful; a negative value if unsuccessful.

Use __getmainargs on non-wide character platforms, and __wgetmainargs on wide-character (Unicode) platforms.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/getmainargs-wgetmainargs.md

ROUTINE REQUIRED HEADER

__getmainargs internal.h

__wgetmainargs internal.h

___lc_codepage_func
3/11/2019 • 2 minutes to read • Edit Online

Syntax
UINT ___lc_codepage_func(void);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

___lc_codepage_func crt\src\setlocal.h

See also

Internal CRT function. Retrieves the current code page of the thread.

The current code page of the thread.

___lc_codepage_func is an internal CRT function that is used by other CRT functions to get the current code page
from the thread local storage for CRT data. This information is also available by using the _get_current_locale
function.

A code page is a mapping of single-byte or double-byte codes to individual characters. Different code pages
include different special characters, typically customized for a language or a group of languages. For more
information about code pages, see Code Pages.

Internal CRT functions are implementation-specific and subject to change with each release. We don't recommend
their use in your code.

_get_current_locale
setlocale, _wsetlocale
_create_locale, _wcreate_locale
_free_locale

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/lc-codepage-func.md

___lc_collate_cp_func
3/11/2019 • 2 minutes to read • Edit Online

Syntax
UINT ___lc_codepage_func(void);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

___lc_collate_cp_func crt\src\setlocal.h

See also

Internal CRT function. Retrieves the current collation code page of the thread.

The current collation code page of the thread.

___lc_collate_cp_func is an internal CRT function that is used by other CRT functions to get the current collation
code page from the thread local storage for CRT data. This information is also available by using the
_get_current_locale function.

Internal CRT functions are implementation-specific and subject to change with each release. We don't recommend
their use in your code.

_get_current_locale
setlocale, _wsetlocale
_create_locale, _wcreate_locale
_free_locale

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/lc-collate-cp-func.md

___lc_locale_name_func
3/11/2019 • 2 minutes to read • Edit Online

Syntax
wchar_t** ___lc_locale_name_func(void);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

___lc_locale_name_func crt\src\setlocal.h

See also

Internal CRT function. Retrieves the current locale name of the thread.

A pointer to a string that contains the current locale name of the thread.

___lc_locale_name_func is an internal CRT function that is used by other CRT functions to get the current locale
name from the thread local storage for CRT data. This information is also available by using the
_get_current_locale function or the setlocale, _wsetlocale functions.

Internal CRT functions are implementation-specific and subject to change with each release. We don't recommend
their use in your code.

_get_current_locale
setlocale, _wsetlocale
_create_locale, _wcreate_locale
_free_locale

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/lc-locale-name-func.md

_local_unwind2
3/11/2019 • 2 minutes to read • Edit Online

Syntax
void _local_unwind2(
 PEXCEPTION_REGISTRATION xr,
 int stop
);

Parameters

Remarks

See also

Internal CRT Function. Runs all termination handlers that are listed in the indicated scope table.

xr
[in] A registration record that is associated with one scope table.

stop
[in] The lexical level that indicates where _local_unwind2 should stop.

This method is used only by the run-time environment. Do not call the method in your code.

When this method executes termination handlers, it starts at the current lexical level and works its way up in lexical
levels until it reaches the level that is indicated by stop . It does not execute termination handlers at the level that is
indicated by stop .

Alphabetical Function Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/local-unwind2.md

___mb_cur_max_func, ___mb_cur_max_l_func,
__p___mb_cur_max, __mb_cur_max
3/11/2019 • 2 minutes to read • Edit Online

Syntax
int ___mb_cur_max_func(void);
int ___mb_cur_max_l_func(_locale_t locale);
int * __p___mb_cur_max(void);
#define __mb_cur_max (___mb_cur_max_func())

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

___mb_cur_max_func , ___mb_cur_max_l_func ,
__p___mb_cur_max

<ctype.h>, <stdlib.h>

See also

Internal CRT function. Retrieves the maximum number of bytes in a multibyte character for the current or
specified locale.

locale The locale structure to retrieve the result from. If this value is null, the current thread locale is used.

The maximum number of bytes in a multibyte character for the current thread locale or the specified locale.

This is an internal function that the CRT uses to retrieve the current value of the MB_CUR_MAX macro from
thread local storage. We recommend that you use the MB_CUR_MAX macro in your code for portability.

The __mb_cur_max macro is a convenient way to call the ___mb_cur_max_func() function. The __p___mb_cur_max

function is defined for compatibility with Visual C++ 5.0 and earlier versions.

Internal CRT functions are implementation-specific and subject to change with each release. We don't recommend
their use in your code.

MB_CUR_MAX

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/mb-cur-max-func-mb-cur-max-l-func-p-mb-cur-max-mb-cur-max.md

__p__commode
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int * __p__commode(
);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

__p__commode internal.h

Points to the _commode global variable, which specifies the default file commit mode for file I/O operations.

Pointer to the _commode global variable.

The __p__commode function is for internal use only, and should not be called from user code.

File commit mode specifies when critical data is written to disk. For more information, see fflush.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/p-commode.md

__p__fmode
2/4/2019 • 2 minutes to read • Edit Online

Syntax
int* __p__fmode(
);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

__p__fmode stdlib.h

Points to the _fmode global variable, which specifies the default file translation mode for file I/O operations.

Pointer to the _fmode global variable.

The __p__fmode function is for internal use only, and should not be called from user code.

File translation mode specifies either binary or text translation for _open and _pipe I/O operations. For more
information, see _fmode.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/p-fmode.md

__pctype_func
3/11/2019 • 2 minutes to read • Edit Online

Syntax
const unsigned short *__pctype_func(
)

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

__pctype_func ctype.h

See also

Retrieves a pointer to an array of character classification information.

A pointer to an array of character classification information.

The information in the character classification table is for internal use only, and is used by various functions that
classify characters of type char . For more information, see the Remarks section of _pctype, _pwctype, _wctype,
_mbctype, _mbcasemap.

_pctype, _pwctype, _wctype, _mbctype, _mbcasemap

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/pctype-func.md

__RTDynamicCast
10/31/2018 • 2 minutes to read • Edit Online

Syntax
PVOID __RTDynamicCast (
 PVOID inptr,
 LONG VfDelta,
 PVOID SrcType,
 PVOID TargetType,
 BOOL isReference
) throw(...)

Parameters

Return Value

Exceptions

Remarks

Requirements
ROUTINE REQUIRED HEADER

__RTDynamicCast rtti.h

Runtime implementation of the dynamic_cast operator.

inptr
Pointer to a polymorphic object.

VfDelta
Offset of virtual function pointer in object.

SrcType
Static type of object pointed to by the inptr parameter.

TargetType
Intended result of cast.

isReference
true if input is a reference; false if input is a pointer.

Pointer to the appropriate sub-object, if successful; otherwise, NULL.

bad_cast() if the input to dynamic_cast<> is a reference and the cast fails.

Converts inptr to an object of type TargetType . The type of inptr must be a pointer if TargetType is a pointer,
or an l-value if TargetType is a reference. TargetType must be a pointer or a reference to a previously defined
class type, or a pointer to void.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/rtdynamiccast.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/dynamic-cast-operator

__set_app_type
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void __set_app_type (
 int at
)

Parameters

VALUE DESCRIPTION

_UNKNOWN_APP Unknown application type.

_CONSOLE_APP Console (command-line) application.

_GUI_APP GUI (Windows) application.

Remarks

Requirements
ROUTINE REQUIRED HEADER

__set_app_type internal.h

Sets the current application type.

at
A value that indicates the application type. The possible values are:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/internal-set-app-type.md

_set_app_type
3/11/2019 • 2 minutes to read • Edit Online

Syntax
typedef enum _crt_app_type
{
 _crt_unknown_app,
 _crt_console_app,
 _crt_gui_app
} _crt_app_type;

void __cdecl _set_app_type(
 _crt_app_type appType
);

Parameters

VALUE DESCRIPTION

_crt_unknown_app Unknown application type.

_crt_console_app Console (command-line) application.

_crt_gui_app GUI (Windows) application.

Remarks

Requirements
ROUTINE REQUIRED HEADER

_set_app_type process.h

An internal function used at startup to tell the CRT whether the app is a console app or a GUI app.

appType
A value that indicates the application type. The possible values are:

Normally, you do not need to call this function. It is part of the C runtime startup code that executes before main is
called in your app.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/set-app-type.md

_setjmp3
3/11/2019 • 2 minutes to read • Edit Online

Syntax
int _setjmp3(
 OUT jmp_buf env,
 int count,
 (optional parameters)
);

Parameters

Return Value

Remarks

Requirements

See also

Internal CRT function. A new implementation of the setjmp function.

env
[out] Address of the buffer for storing state information.

count
[in] The number of additional DWORD s of information that are stored in the optional parameters .

optional parameters
[in] Additional data pushed down by the setjmp intrinsic. The first DWORD is a function pointer that is used to
unwind extra data and return to a nonvolatile register state. The second DWORD is the try level to be restored. Any
further data is saved in the generic data array in the jmp_buf .

Always returns 0.

Do not use this function in a C++ program. It is an intrinsic function that does not support C++. For more
information about how to use setjmp , see Using setjmp/longjmp.

Alphabetical Function Reference
setjmp

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/setjmp3.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/using-setjmp-longjmp

___setlc_active_func,
___unguarded_readlc_active_add_func
3/11/2019 • 2 minutes to read • Edit Online

Syntax
int ___setlc_active_func(void);
int * ___unguarded_readlc_active_add_func(void);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

___setlc_active_func ,
___unguarded_readlc_active_add_func

none

See also

OBSOLETE. The CRT exports these internal functions only to preserve binary compatibility.

The value returned is not significant.

Although the internal CRT functions ___setlc_active_func and ___unguarded_readlc_active_add_func are obsolete
and no longer used, they are exported by the CRT library to preserve binary compatibility. The original purpose of
___setlc_active_func was to return the number of currently active calls to the setlocale function. The original

purpose of ___unguarded_readlc_active_add_func was to return the number of functions that referenced the locale
without locking it.

setlocale, _wsetlocale

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/setlc-active-func-unguarded-readlc-active-add-func.md

__setusermatherr
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void __setusermatherr(
 _HANDLE_MATH_ERROR pf
)

Parameters

Remarks

Requirements
ROUTINE REQUIRED HEADER

__setusermatherr matherr.c

Specifies a user-supplied rountine to handle math errors, instead of the _matherr routine.

pf
Pointer to an implementation of _matherr that is supplied by the user.

The type of the pf parameter is declared as typedef int (__cdecl * _HANDLE_MATH_ERROR)(struct _exception *) .

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/setusermatherr.md

Global Variables and Standard Types
3/11/2019 • 2 minutes to read • Edit Online

See also

The Microsoft run-time library contains definitions for global variables, control flags, and standard types used by
library routines. Access these variables, flags, and types by declaring them in your program or by including the
appropriate header files.

C Run-Time Library Reference
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/global-variables-and-standard-types.md

Global Variables
3/11/2019 • 2 minutes to read • Edit Online

VARIABLE DESCRIPTION

__argc, __argv, __wargv Contains the command-line arguments.

_daylight, _dstbias, _timezone, and _tzname Deprecated. Instead, use _get_daylight , _get_dstbias ,
_get_timezone , and _get_tzname .

Adjusts for local time; used in some date and time functions.

errno, _doserrno, _sys_errlist, and _sys_nerr Deprecated. Instead, use _get_errno , _set_errno ,
_get_doserrno , _set_doserrno , perror and strerror .

Stores error codes and related information.

_environ, _wenviron Deprecated. Instead, use getenv_s , _wgetenv_s ,
_dupenv_s , _wdupenv_s , _putenv_s , and _wputenv_s .

Pointers to arrays of pointers to the process environment
strings; initialized at startup.

_fmode Deprecated. Instead, use _get_fmode or _set_fmode .

Sets default file-translation mode.

_iob Array of I/O control structures for the console, files, and
devices.

_pctype, _pwctype, _wctype, _mbctype, _mbcasemap Contains information used by the character-classification
functions.

_pgmptr, _wpgmptr Deprecated. Instead, use _get_pgmptr or _get_wpgmptr .

Initialized at program startup to the fully-qualified or relative
path of the program, the full program name, or the program
name without its file name extension, depending on how the
program was invoked.

See also

The Microsoft C run-time library provides the following global variables or macros. Several of these global
variables or macros have been deprecated in favor of more-secure functional versions, which we recommend you
use instead of the global variables.

C Run-Time Library Reference
Global Constants
__argc, __argv, __wargv
_get_daylight
_get_dstbias
_get_timezone

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/global-variables.md

_get_tzname
perror
strerror
_get_doserrno
_set_doserrno
_get_errno
_set_errno
_dupenv_s, _wdupenv_s
getenv, _wgetenv
getenv_s, _wgetenv_s
_putenv, _wputenv
_putenv_s, _wputenv_s
_get_fmode
_set_fmode

__argc, __argv, __wargv
3/11/2019 • 2 minutes to read • Edit Online

Syntax
extern int __argc;
extern char ** __argv;
extern wchar_t ** __wargv;

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE _UNICODE NOT DEFINED _UNICODE DEFINED

__targv __argv __wargv

Requirements
GLOBAL VARIABLE REQUIRED HEADER

__argc , __argv , __wargv <stdlib.h>, <cstdlib> (C++)

See also

The __argc global variable is a count of the number of command-line arguments passed to the program. __argv

is a pointer to an array of single-byte-character or multi-byte-character strings that contain the program
arguments, and __wargv is a pointer to an array of wide-character strings that contain the program arguments.
These global variables provide the arguments to main or wmain .

In a program that uses the main function, __argc and __argv are initialized at program startup by using the
command line that's used to start the program. The command line is parsed into individual arguments, and
wildcards are expanded. The count of arguments is assigned to __argc and the argument strings are allocated on
the heap, and a pointer to the array of arguments is assigned to __argv . In a program compiled to use wide
characters and a wmain function, the arguments are parsed and wildcards are expanded as wide-character strings,
and a pointer to the array of argument strings is assigned to __wargv .

For portable code, we recommend you use the arguments passed to main to get the command-line arguments in
your program.

__argc , __argv , and __wargv are Microsoft extensions. For compatibility information, see Compatibility.

Global Variables
main: Program Startup
Using wmain Instead of main

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/argc-argv-wargv.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/main-program-startup
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/using-wmain-instead-of-main

_daylight, _dstbias, _timezone, and _tzname
3/11/2019 • 2 minutes to read • Edit Online

GLOBAL VARIABLE FUNCTIONAL EQUIVALENT

_daylight _get_daylight

_dstbias _get_dstbias

_timezone _get_timezone

_tzname _get_tzname

Syntax
extern int _daylight;
extern int _dstbias;
extern long _timezone;
extern char *_tzname[2];

Remarks

VARIABLE VALUE

_daylight Nonzero if daylight saving time (DST) zone is specified in TZ

or determined from the operating system; otherwise, 0. The
default value is 1.

_dstbias Offset for daylight saving time.

_timezone Difference in seconds between coordinated universal time and
local time. The default value is 28,800.

_tzname[0] Time-zone name derived from the TZ environment variable.
The default value is "PST".

_daylight , _dstbias , _timezone , and _tzname are used in some time and date routines to make local-time
adjustments. These global variables have been deprecated for the more secure functional versions, which should
be used in place of the global variables.

They are declared in Time.h as follows.

On a call to _ftime , localtime , or _tzset , the values of _daylight , _dstbias , _timezone , and _tzname are
determined from the value of the TZ environment variable. If you do not explicitly set the value of TZ ,
_tzname[0] and _tzname[1] contain the default settings of "PST" and "PDT" respectively. The time-manipulation

functions (_tzset, _ftime, and localtime) attempt to set the values of _daylight , _dstbias and _timezone by
querying the operating system for the default value of each variable. The time-zone global variable values are
shown in the following table.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/daylight-dstbias-timezone-and-tzname.md

_tzname[1] DST zone name derived from the TZ environment variable.
The default value is "PDT" (Pacific daylight time).

VARIABLE VALUE

See also
Global Variables
_get_daylight
_get_dstbias
_get_timezone
_get_tzname

errno, _doserrno, _sys_errlist, and
_sys_nerr
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#define errno (*_errno())
#define _doserrno (*__doserrno())
#define _sys_errlist (__sys_errlist())
#define _sys_nerr (*__sys_nerr())

Remarks

GLOBAL MACRO FUNCTIONAL EQUIVALENTS

_doserrno _get_doserrno, _set_doserrno

errno _get_errno, _set_errno

_sys_errlist , _sys_nerr strerror_s, _strerror_s, _wcserror_s, __wcserror_s

Global macros that hold error codes that are set during program execution, and string
equivalents of the error codes for display.

Both errno and _doserrno are set to 0 by the runtime during program startup. errno is
set on an error in a system-level call. Because errno holds the value for the last call that
set it, this value may be changed by succeeding calls. Run-time library calls that set
errno on an error do not clear errno on success. Always clear errno by calling
_set_errno(0) immediately before a call that may set it, and check it immediately after

the call.

On an error, errno is not necessarily set to the same value as the error code returned by
a system call. For I/O operations, _doserrno stores the operating-system error-code
equivalents of errno codes. For most non-I/O operations, the value of _doserrno is not
set.

Each errno value is associated with an error message in _sys_errlist that can be
printed by using one of the perror functions, or stored in a string by using one of the
strerror or strerror_s functions. The perror and strerror functions use the
_sys_errlist array and _sys_nerr —the number of elements in _sys_errlist —to

process error information. Direct access to _sys_errlist and _sys_nerr is deprecated
for code-security reasons. We recommend that you use the more secure, functional
versions instead of the global macros, as shown here:

Library math routines set errno by calling _matherr. To handle math errors differently,
write your own routine according to the _matherr reference description and name it
_matherr .

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/errno-doserrno-sys-errlist-and-sys-nerr.md

CONSTANT SYSTEM ERROR MESSAGE VALUE

EPERM Operation not permitted 1

ENOENT No such file or directory 2

ESRCH No such process 3

EINTR Interrupted function 4

EIO I/O error 5

ENXIO No such device or address 6

E2BIG Argument list too long 7

ENOEXEC Exec format error 8

EBADF Bad file number 9

ECHILD No spawned processes 10

EAGAIN No more processes or not
enough memory or maximum
nesting level reached

11

ENOMEM Not enough memory 12

EACCES Permission denied 13

EFAULT Bad address 14

EBUSY Device or resource busy 16

EEXIST File exists 17

EXDEV Cross-device link 18

ENODEV No such device 19

ENOTDIR Not a directory 20

EISDIR Is a directory 21

EINVAL Invalid argument 22

ENFILE Too many files open in system 23

All errno values in the following table are predefined constants in <errno.h>, and are
UNIX-compatible. Only ERANGE , EILSEQ , and EDOM are specified in the ISO C99
standard.

EMFILE Too many open files 24

ENOTTY Inappropriate I/O control
operation

25

EFBIG File too large 27

ENOSPC No space left on device 28

ESPIPE Invalid seek 29

EROFS Read-only file system 30

EMLINK Too many links 31

EPIPE Broken pipe 32

EDOM Math argument 33

ERANGE Result too large 34

EDEADLK Resource deadlock would
occur

36

EDEADLOCK Same as EDEADLK for
compatibility with older
Microsoft C versions

36

ENAMETOOLONG Filename too long 38

ENOLCK No locks available 39

ENOSYS Function not supported 40

ENOTEMPTY Directory not empty 41

EILSEQ Illegal byte sequence 42

STRUNCATE String was truncated 80

CONSTANT SYSTEM ERROR MESSAGE VALUE

Requirements
GLOBAL MACRO REQUIRED HEADER OPTIONAL HEADER

errno <errno.h> or <stdlib.h>,
<cerrno> or <cstdlib> (C++)

_doserrno , _sys_errlist ,
_sys_nerr

<stdlib.h>, <cstdlib> (C++) <errno.h>, <cerrno> (C++)

See also

The _doserrno , _sys_errlist , and _sys_nerr macros are Microsoft extensions. For
more compatibility information, see Compatibility.

Global Variables
errno Constants
perror, _wperror
strerror, _strerror, _wcserror, __wcserror
strerror_s, _strerror_s, _wcserror_s, __wcserror_s
_get_doserrno
_set_doserrno
_get_errno
_set_errno

_environ, _wenviron
3/11/2019 • 3 minutes to read • Edit Online

IMPORTANT

Syntax
extern char **_environ;

Remarks

extern wchar_t **_wenviron;

C a u t i o n

The _environ variable is a pointer to an array of pointers to the multibyte-character strings that constitute the
process environment. This global variable has been deprecated for the more secure functional versions getenv_s,
_wgetenv_s and _putenv_s, _wputenv_s, which should be used in place of the global variable. _environ is declared
in Stdlib.h.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

In a program that uses the main function, _environ is initialized at program startup according to settings taken
from the operating-system environment. The environment consists of one or more entries of the form

ENVVARNAME =string

getenv_s and putenv_s use the _environ variable to access and modify the environment table. When _putenv is
called to add or delete environment settings, the environment table changes size. Its location in memory may also
change, depending on the program's memory requirements. The value of _environ is automatically adjusted
accordingly.

The _wenviron variable, declared in Stdlib.h as:

is a wide-character version of _environ . In a program that uses the wmain function, _wenviron is initialized at
program startup according to settings taken from the operating-system environment.

In a program that uses main , _wenviron is initially NULL because the environment is composed of multibyte-
character strings. On the first call to _wgetenv or _wputenv , a corresponding wide-character string environment is
created and is pointed to by _wenviron .

Similarly, in a program that uses wmain , _environ is initially NULL because the environment is composed of
wide-character strings. On the first call to _getenv or _putenv , a corresponding multibyte-character string
environment is created and is pointed to by _environ .

When two copies of the environment (MBCS and Unicode) exist simultaneously in a program, the run-time
system must maintain both copies, resulting in slower execution time. For example, whenever you call _putenv , a
call to _wputenv is also executed automatically, so that the two environment strings correspond.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/environ-wenviron.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

int i, j;
i = _wputenv("env_var_x=string1"); // results in the implicit call:
 // putenv ("env_var_z=string1")
j = _wputenv("env_var_y=string2"); // also results in implicit call:
 // putenv("env_var_z=string2")

See also

In rare instances, when the run-time system is maintaining both a Unicode version and a multibyte version of the
environment, these two environment versions might not correspond exactly. This is because, although any unique
multibyte-character string maps to a unique Unicode string, the mapping from a unique Unicode string to a
multibyte-character string is not necessarily unique. Therefore, two distinct Unicode strings might map to the
same multibyte string.

Polling _environ in a Unicode context is meaningless when /MD or /MDd linkage is used. For the CRT DLL, the
type (wide or multibyte) of the program is unknown. Only the multibyte type is created because that is the most
likely scenario.

The following pseudo-code illustrates how this can happen.

In the notation used for this example, the character strings are not C string literals; rather, they are placeholders
that represent Unicode environment string literals in the _wputenv call and multibyte environment strings in the
putenv call. The character placeholders ' x ' and ' y ' in the two distinct Unicode environment strings do not map

uniquely to characters in the current MBCS. Instead, both map to some MBCS character ' z ' that is the default
result of the attempt to convert the strings.

Thus, in the multibyte environment, the value of " env_var_z " after the first implicit call to putenv would be "
string1 ", but this value would be overwritten on the second implicit call to putenv , when the value of "
env_var_z " is set to " string2 ". The Unicode environment (in _wenviron) and the multibyte environment (in
_environ) would therefore differ following this series of calls.

Global Variables
getenv, _wgetenv
getenv_s, _wgetenv_s
_putenv, _wputenv
_putenv_s, _wputenv_s

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/md-mt-ld-use-run-time-library

_fmode
3/11/2019 • 2 minutes to read • Edit Online

Syntax
extern int _fmode;

Remarks

See also

The _fmode variable sets the default file-translation mode for text or binary translation. This global variable has
been deprecated for the more secure functional versions _get_fmode and _set_fmode, which should be used in
place of the global variable. It is declared in Stdlib.h as follows.

The default setting of _fmode is _O_TEXT for text-mode translation. _O_BINARY is the setting for binary mode.

You can change the value of _fmode in three ways:

Link with Binmode.obj. This changes the initial setting of _fmode to _O_BINARY , causing all files except
stdin , stdout , and stderr to be opened in binary mode.

Make a call to _get_fmode or _set_fmode to get or set the _fmode global variable, respectively.

Change the value of _fmode directly by setting it in your program.

Global Variables
_get_fmode
_set_fmode

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/fmode.md

_iob
3/11/2019 • 2 minutes to read • Edit Online

Syntax
FILE _iob[_IOB_ENTRIES];

Remarks

See also

The array of stdio control structures.

IOB_ENTRIES is defined as 20 in stdio.h.

Global Variables

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/iob.md

_pctype, _pwctype, _wctype, _mbctype, _mbcasemap
3/11/2019 • 2 minutes to read • Edit Online

Syntax
extern const unsigned short *_pctype;
extern const wctype_t *_pwctype;
extern const unsigned short _wctype[];
extern unsigned char _mbctype[];
extern unsigned char _mbcasemap[];

Remarks

Requirements

See also

These global variables contain information used by the character classification functions. They are for internal use
only.

The information in _pctype , _pwctype , and _wctype is used internally by isupper, _isupper_l, iswupper,
_iswupper_l, islower, iswlower, _islower_l, _iswlower_l, isdigit, iswdigit, _isdigit_l, _iswdigit_l, isxdigit, iswxdigit,
_isxdigit_l, _iswxdigit_l, isspace, iswspace, _isspace_l, _iswspace_l, isalnum, iswalnum, _isalnum_l, _iswalnum_l,
ispunct, iswpunct, _ispunct_l, _iswpunct_l, isgraph, iswgraph, _isgraph_l, _iswgraph_l, iscntrl, iswcntrl, _iscntrl_l,
_iswcntrl_l, toupper, _toupper, towupper, _toupper_l, _towupper_l, tolower, _tolower, towlower, _tolower_l, and
_towlower_l functions. These functions should be used instead of accessing these global variables.

The information in _mbctype and _mbcasemap is used internally by _ismbbkalnum, _ismbbkalnum_l, _ismbbkana,
_ismbbkana_l, _ismbbkpunct, _ismbbkpunct_l, _ismbbkprint, _ismbbkprint_l, _ismbbalpha, _ismbbpunct,
_ismbbpunct_l, _ismbbalnum, _ismbbalnum_l, _ismbbprint, _ismbbprint_l, _ismbbgraph, _ismbbgraph_l,
_ismbblead, _ismbblead_l, _ismbbtrail, _ismbbtrail_l, _ismbslead, _ismbstrail, _ismbslead_l, _ismbstrail_l,
_ismbslead, _ismbstrail, _ismbslead_l, and _ismbstrail_l. Use these functions instead of accessing the global
variables.

Not for public use.

is, isw Routines
__pctype_func

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/pctype-pwctype-wctype-mbctype-mbcasemap.md

_pgmptr, _wpgmptr
3/11/2019 • 2 minutes to read • Edit Online

Syntax
extern char *_pgmptr;
extern wchar_t *_wpgmptr;

Remarks

C> hello

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tpgmptr _pgmptr _pgmptr _wpgmptr

Requirements
VARIABLE REQUIRED HEADER

_pgmptr , _wpgmptr <stdlib.h>

Example

The path of the executable file. Deprecated; use _get_pgmptr and _get_wpgmptr.

When a program is run from the command interpreter (Cmd.exe), _pgmptr is automatically initialized to the full
path of the executable file. For example, if Hello.exe is in C:\BIN and C:\BIN is in the path, _pgmptr is set to
C:\BIN\Hello.exe when you execute:

When a program is not run from the command line, _pgmptr might be initialized to the program name (the file's
base name without the file name extension) or to a file name, relative path, or full path.

_wpgmptr is the wide-character counterpart of _pgmptr for use with programs that use wmain .

The following program demonstrates the use of _pgmptr .

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/pgmptr-wpgmptr.md

// crt_pgmptr.c
// compile with: /W3
// The following program demonstrates the use of _pgmptr.
//
#include <stdio.h>
#include <stdlib.h>
int main(void)
{
 printf("The full path of the executing program is : %Fs\n",
 _pgmptr); // C4996
 // Note: _pgmptr is deprecated; use _get_pgmptr instead
}

See also

You could use _wpgmptr by changing %Fs to %S and main to wmain .

Global Variables

Control Flags
3/11/2019 • 2 minutes to read • Edit Online

FLAG DESCRIPTION

_CRTDBG_MAP_ALLOC Maps the base heap functions to their debug version
counterparts

_DEBUG Enables the use of the debugging versions of the run-time
functions

_crtDbgFlag Controls how the debug heap manager tracks allocations

See also

The debug version of the Microsoft C run-time library uses the following flags to control the heap allocation and
reporting process. For more information, see CRT Debugging Techniques.

These flags can be defined with a /D command-line option or with a #define directive. When the flag is defined
with #define , the directive must appear before the header file include statement for the routine declarations.

Global Variables and Standard Types

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/control-flags.md
https://docs.microsoft.com/visualstudio/debugger/crt-debugging-techniques

_CRTDBG_MAP_ALLOC
3/11/2019 • 2 minutes to read • Edit Online

See also

When the _CRTDBG_MAP_ALLOC flag is defined in the debug version of an application, the base version of the
heap functions are directly mapped to their debug versions. The flag is used in Crtdbg.h to do the mapping. This
flag is only available when the _DEBUG flag has been defined in the application.

For more information about using the debug version versus the base version of a heap function, see Using the
Debug Version Versus the Base Version.

Control Flags

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/crtdbg-map-alloc.md
https://docs.microsoft.com/visualstudio/debugger/debug-versions-of-heap-allocation-functions

_DEBUG
3/11/2019 • 2 minutes to read • Edit Online

See also

The compiler defines _DEBUG when you specify the /MTd or /MDd option. These options specify debug
versions of the C run-time library.

For more information, see CRT Debugging Techniques.

Control Flags

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/debug.md
https://docs.microsoft.com/visualstudio/debugger/crt-debugging-techniques

_crtDbgFlag
3/11/2019 • 2 minutes to read • Edit Online

See also

The _crtDbgFlag flag consists of five bit fields that control how memory allocations on the debug version of the
heap are tracked, verified, reported, and dumped. The bit fields of the flag are set using the _CrtSetDbgFlag
function. This flag and its bit fields are declared in Crtdbg.h. This flag is only available when the _DEBUG flag has
been defined in the application.

For more information about using this flag in conjunction with other debug functions, see Heap State Reporting
Functions.

Control Flags

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/crtdbgflag.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

Standard Types
3/11/2019 • 6 minutes to read • Edit Online

Fixed-width integral types (stdint.h)

NAME EQUIVALENT BUILT-IN TYPE

int8_t, uint8_t signed char, unsigned char

int16_t, uint16_t short, unsigned short

int32_t, uint32_t int, unsigned int

int64_t, uint64_t long long, unsigned long long

int_least8_t, uint_least8_t signed char, unsigned char

int_least16_t, uint_least16_t short, unsigned short

int_least32_t, uint_least32_t int, unsigned int

int_least64_t, uint_least64_t long long, unsigned long long

int_fast8_t, uint_fast8_t signed char, unsigned char

int_fast16_t, uint_fast16_t int, unsigned int

int_fast32_t, uint_fast32_t int, unsigned int

int_fast64_t, uint_fast64_t long long, unsigned long long

intmax_t, uintmax_t long long, unsigned long long

TYPE DESCRIPTION DECLARED IN

clock_t (long) Stores time values; used by clock. TIME.H

_complex structure Stores real and imaginary parts of
complex numbers; used by _cabs.

MATH.H

_CRT_ALLOC_HOOK A type define for the user-defined
hook function. Used in
_CrtSetAllocHook.

CRTDBG.H

_CRT_DUMP_CLIENT ,

_CRT_DUMP_CLIENT_M

A type define for a call-back function
that will get called in
_CrtMemDumpAllObjectsSince.

CRTDBG.H

The Microsoft run-time library defines the following standard types and typedefs.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/standard-types.md

_CrtMemState structure Provides information about the
current state of the C run-time debug
heap.

CRTDBG.H

_CRT_REPORT_HOOK ,

_CRT_REPORT_HOOKW ,

_CRT_REPORT_HOOKW_M

A type define for a call-back function
that will get called in _CrtDbgReport.

The parameters for this function are:
report type, output message and the
return value from the call-back
function.

CRTDBG.H

dev_t , _dev_t short or unsigned
integer

Represents device handles. SYS\TYPES.H

_diskfree_t structure Contains information about a disk
drive. Used by _getdiskfree.

DOS.H and DIRECT.H

div_t , ldiv_t and lldiv_t

structures
Store values returned by div, ldiv, and
lldiv, respectively.

STDLIB.H

errno_t integer Used for a function return type or
parameter that deals with the error
codes of errno .

STDDEF.H,

CRTDEFS.H

_exception structure Stores error information for _matherr. MATH.H

_EXCEPTION_POINTERS Contains an exception record. See
EXCEPTION_POINTERS for more
information.

FPIEEE.H

FILE structure Stores information about current state
of stream; used in all stream I/O
operations.

STDIO.H

_finddata_t , _wfinddata_t ,
_finddata32_t , _wfinddata32_t ,
_finddatai64_t , _wfinddatai64_t

, __finddata64_t ,
__wfinddata64_t ,
__finddata32i64_t ,
__wfinddata32i64_t ,
__finddata64i32_t ,
__wfinddata64i32_t structures

Store file-attribute information
returned by _findfirst, _wfindfirst, and
related functions and _findnext,
_wfindnext and related functions. See
Filename Search Functions for
information on structure members.

IO.H, WCHAR.H

_FPIEEE_RECORD structure Contains information pertaining to
IEEE floating-point exception; passed
to user-defined trap handler by
_fpieee_flt.

FPIEEE.H

fpos_t (long integer, __int64 , or
structure, depending on the target
platform)

Used by fgetpos and fsetpos to record
information for uniquely specifying
every position within a file.

STDIO.H

TYPE DESCRIPTION DECLARED IN

https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_exception_pointers

_fsize_t (unsigned long integer) Used to represent the size of a file. IO.H,

WCHAR.H

_HEAPINFO structure Contains information about next heap
entry for _heapwalk.

MALLOC.H

_HFILE (void *) An operating system file handle. CRTDBG.H

imaxdiv_t The type of value that's returned by
the imaxdiv function, containing both
the quotient and the remainder.

inttypes.h

ino_t , _ino_t (unsigned short) For returning status information. WCHAR.H

intmax_t A signed integer type capable of
representing any value of any signed
integer type.

stdint.h

intptr_t (long integer or __int64 ,
depending on the target platform)

Stores a pointer (or HANDLE) on both
Win32 and Win64 platforms.

STDDEF.H and other include files

jmp_buf array Used by setjmp and longjmp to save
and restore program environment.

SETJMP.H

lconv structure Contains formatting rules for numeric
values in different countries/regions.
Used by localeconv.

LOCALE.H

_LDOUBLE ,

_LONGDOUBLE ,

_LDBL12 (long double or an
unsigned char array)

Use to represent a long double value. STDLIB.H

_locale_t structure Stores current locale values; used in all
locale specific C run-time libraries.

CRTDEF.H

mbstate_t Tracks the state of a multibyte
character conversion.

WCHAR.H

off_t , _off_t long integer Represents file-offset value. WCHAR.H, SYS\TYPES.H

_onexit_t ,

_onexit_m_t pointer

Returned by _onexit, _onexit_m. STDLIB.H

_PNH pointer to function Type of argument to
_set_new_handler.

NEW.H

TYPE DESCRIPTION DECLARED IN

ptrdiff_t (long integer or
__int64 , depending on the target

platform)

Result of subtraction of two pointers. CRTDEFS.H

_purecall_handler ,

_purecall_handler_m

A type define for a call-back function
that is called when a pure virtual
function is called. Used by
_get_purecall_handler,
_set_purecall_handler. A
_purecall_handler function should

have a void return type.

STDLIB.H

_RTC_error_fn type define A type define for a function that will
handle run-time error checks. Used in
_RTC_SetErrorFunc.

RTCAPI.H

_RTC_error_fnW type define A type define for a function that will
handle run-time error checks. Used in
_RTC_SetErrorFuncW.

RTCAPI.H

_RTC_ErrorNumber enumeration Defines error conditions for
_RTC_GetErrDesc and
_RTC_SetErrorType.

RTCAPI.H

_se_translator_function A type define for a call-back function
that translates an exception. The first
parameter is the exception code and
the second parameter is the exception
record. Used by _set_se_translator.

EH.H

sig_atomic_t integer Type of object that can be modified as
atomic entity, even in presence of
asynchronous interrupts; used with
signal.

SIGNAL.H

size_t (unsigned __int64 or
unsigned integer, depending on the
target platform)

Result of sizeof operator. CRTDEFS.H and other include files

_stat structure Contains file-status information
returned by _stat and _fstat.

SYS\STAT.H

__stat64 structure Contains file-status information
returned by _fstat64 and _stat64, and
_wstat64.

SYS\STAT.H

_stati64 structure Contains file-status information
returned by _fstati64, _stati64, and
_wstati64.

SYS\STAT.H

terminate_function type define A type define for a call-back function
that is called when terminate is called.
Used by set_terminate.

EH.H

TYPE DESCRIPTION DECLARED IN

time_t (__int64 or long integer) Represents time values in mktime,
time, ctime, _ctime32, _ctime64,
_wctime, _wctime32, _wctime64,
ctime_s, _ctime32_s, _ctime64_s,
_wctime_s, _wctime32_s, _wctime64_s,
ctime, _ctime32, _ctime64, _wctime,
_wctime32, _wctime64 and gmtime,
_gmtime32, _gmtime64. The number
of seconds since January 1, 1970, 0:00
UTC. If _USE_32BIT_TIME_T is defined,
time_t is a long integer. If not

defined, it is a 64-bit integer.

TIME.H,

SYS\STAT.H,

SYS\TIMEB.H

__time32_t (long integer) Represents time values in mktime,
_mktime32, _mktime64, ctime,
_ctime32, _ctime64, _wctime,
_wctime32, _wctime64, ctime_s,
_ctime32_s, _ctime64_s, _wctime_s,
_wctime32_s, _wctime64_s, gmtime,
_gmtime32, _gmtime64 and localtime,
_localtime32, _localtime64.

CRTDEFS.H, SYS\STAT.H,

SYS\TIMEB.H

__time64_t (__int64) Represents time values in mktime,
_mktime32, _mktime64, _ctime64,
_wctime64, ctime_s, _ctime32_s,
_ctime64_s, _wctime_s, _wctime32_s,
_wctime64_s, _gmtime64, _localtime64
and _time64.

TIME.H,

SYS\STAT.H,

SYS\TIMEB.H

_timeb structure Used by _ftime and _ftime_s,
_ftime32_s, _ftime64_s to store
current system time.

SYS\TIMEB.H

__timeb32 structure Used by _ftime, _ftime32, _ftime64
and _ftime_s, _ftime32_s, _ftime64_s
to store current system time.

SYS\TIMEB.H

__timeb64 structure Used by _ftime64 and _ftime_s,
_ftime32_s, _ftime64_s to store
current system time.

SYS\TIMEB.H

tm structure Used by asctime, _wasctime,
asctime_s, _wasctime_s, gmtime,
_gmtime32, _gmtime64, gmtime_s,
_gmtime32_s, _gmtime64_s, localtime,
_localtime32, _localtime64, localtime_s,
_localtime32_s, _localtime64_s,
mktime, _mktime32, _mktime64 and
strftime, wcsftime, _strftime_l,
_wcsftime_l to store and retrieve time
information.

TIME.H

uintmax_t An unsigned integer type capable of
representing any value of any
unsigned integer type.

stdint.h

TYPE DESCRIPTION DECLARED IN

uintptr_t (long integer or
__int64 , depending on the target

platform)

An unsigned integer or unsigned
__int64 version of intptr_t .

STDDEF.H and other include files

unexpected_function A type define for a call-back function
that is called when unexpected is
called. Used by set_unexpected.

EH.H

_utimbuf structure Stores file access and modification
times used by _utime, _wutime and
_futime, _futime32, _futime64 to
change file-modification dates.

SYS\UTIME.H

_utimbuf32 structure Stores file access and modification
times used by _utime, _utime32,
_utime64, _wutime, _wutime32,
_wutime64 and _futime, _futime32,
_futime64 to change file-modification
dates.

SYS\UTIME.H

__utimbuf64 structure Used by _utime64, _wutime64 and
_futime64 to store the current time.

SYS\UTIME.H

va_list structure Used to hold information needed by
va_arg and va_end macros. Called
function declares variable of type
va_list that can be passed as

argument to another function.

STDARG.H,

CRTDEFS.H

wchar_t wide character Useful for writing portable programs
for international markets.

STDDEF.H, STDLIB.H,

CRTDEFS.H,

SYS\STAT.H

wctrans_t integer Represents locale-specific character
mappings.

WCTYPE.H

wctype_t integer Can represent all characters of any
language character set.

WCHAR.H,

CRTDEFS.H

wint_t integer Type of data object that can hold any
wide character or wide end-of-file
value.

WCHAR.H,

CRTDEFS.H

TYPE DESCRIPTION DECLARED IN

See also
C Run-Time Library Reference

Global Constants
3/11/2019 • 2 minutes to read • Edit Online

32-Bit Windows Time/Date Formats BUFSIZ

CLOCKS_PER_SEC, CLK_TCK Commit-To-Disk Constants

_CRT_DISABLE_PERFCRIT_LOCKS Data Type Constants

Environmental Constants EOF, WEOF

errno Constants Exception-Handling Constants

EXIT_SUCCESS, EXIT_FAILURE File Attribute Constants

File Constants File Permission Constants

File Read/Write Access Constants File Translation Constants

FILENAME_MAX FOPEN_MAX, _SYS_OPEN

_FREEENTRY, _USEDENTRY fseek, _lseek Constants

Heap Constants _HEAP_MAXREQ

HUGE_VAL, _HUGE Locale Categories

_locking Constants Math Constants

Math Error Constants _MAX_ENV

MB_CUR_MAX NULL

Path Field Limits RAND_MAX

setvbuf Constants Sharing Constants

signal Constants signal Action Constants

spawn Constants _stat Structure st_mode Field Constants

stdin, stdout, stderr TMP_MAX, L_tmpnam

The Microsoft run-time library contains definitions for global constants used by library routines. To use
these constants, include the appropriate header files as indicated in the description for each constant. The
global constants are listed in the following table.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/global-constants.md

Translation Mode Constants _TRUNCATE

TZNAME_MAX _WAIT_CHILD, _WAIT_GRANDCHILD

WCHAR_MAX WCHAR_MIN

See also
C Run-Time Library Reference
Global Variables
Considerations for Writing Prolog/Epilog Code

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/considerations-for-writing-prolog-epilog-code

32-Bit Windows Time/Date Formats
3/11/2019 • 2 minutes to read • Edit Online

Time

BIT POSITION: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Length: 5 6 5

Contents: hours minutes 2-second increments

Value Range: 0-23 0-59 0-29 in 2-second intervals

Date

BIT POSITION: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Length: 7 4 5

Contents: year month day

Value Range: 0-119 1-12 1-31

(relative to 1980)

See also

The file time and the date are stored individually, using unsigned integers as bit fields. File time and date are
packed as follows:

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/32-bit-windows-time-date-formats.md

BUFSIZ
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <stdio.h>

Remarks

See also

BUFSIZ is the required user-allocated buffer for the setvbuf routine.

Stream I/O
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/bufsiz.md

CLOCKS_PER_SEC, CLK_TCK
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <time.h>

Remarks

See also

The time in seconds is the value returned by the clock function, divided by CLOCKS_PER_SEC . CLK_TCK is
equivalent, but considered obsolete.

clock
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/clocks-per-sec-clk-tck.md

Commit-To-Disk Constants
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <stdio.h>

Remarks

NOTE

Using the Commit-to-Disk Feature with Existing Code

Microsoft Specific

These Microsoft-specific constants specify whether the buffer associated with the open file is flushed to operating
system buffers or to disk. The mode is included in the string specifying the type of read/write access ("r", "w", "a",
"r+", "w+", "a+").

The commit-to-disk modes are as follows:

c

Writes the unwritten contents of the specified buffer to disk. This commit-to-disk functionality only occurs
at explicit calls to either the fflush or the _flushall function. This mode is useful when dealing with sensitive
data. For example, if your program terminates after a call to fflush or _flushall , you can be sure that
your data reached the operating system's buffers. However, unless a file is opened with the c option, the
data might never make it to disk if the operating system also terminates.

n

Writes the unwritten contents of the specified buffer to the operating system's buffers. The operating
system can cache data and then determine an optimal time to write to disk. Under many conditions, this
behavior makes for efficient program behavior. However, if the retention of data is critical (such as bank
transactions or airline ticket information) consider using the c option. The n mode is the default.

The c and n options are not part of the ANSI standard for fopen , but are Microsoft extensions and should not be used
where ANSI portability is desired.

By default, calls to the fflush or _flushall library functions write data to buffers maintained by the operating system.
The operating system determines the optimal time to actually write the data to disk. The commit-to-disk feature of
the run-time library lets you ensure that critical data is written directly to disk rather than to the operating system's
buffers. You can give this capability to an existing program without rewriting it by linking its object files with
COMMODE.OBJ.

In the resulting executable file, calls to fflush write the contents of the buffer directly to disk, and calls to
_flushall write the contents of all buffers to disk. These two functions are the only ones affected by

COMMODE.OBJ.

END Microsoft Specific

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/commit-to-disk-constants.md

See also
Stream I/O
_fdopen, _wfdopen
fopen, _wfopen
Global Constants

_CRT_DISABLE_PERFCRIT_LOCKS
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#define _CRT_DISABLE_PERFCRIT_LOCKS

Remarks

See also

Disables performance-critical locking in I/O operations.

Defining this symbol can improve performance in single-threaded I/O-bound programs by forcing all I/O
operations to assume a single-threaded I/O model. For more information, see Multithreaded Libraries
Performance.

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/crt-disable-perfcrit-locks.md

Data Type Constants
10/31/2018 • 3 minutes to read • Edit Online

Integral type constants

#include <limits.h>

NOTE

CONSTANT VALUE DESCRIPTION

CHAR_BIT 8 Number of bits in a char

SCHAR_MIN (-128) Minimum signed char value

SCHAR_MAX 127 Maximum signed char value

UCHAR_MAX 255 (0xff) Maximum unsigned char value

CHAR_MIN (-128) (0 if /J option used) Minimum char value

CHAR_MAX 127 (255 if /J option used) Maximum char value

MB_LEN_MAX 5 Maximum number of bytes in multibyte
char

SHRT_MIN -32768 Minimum signed short value

SHRT_MAX 32767 Maximum signed short value

USHRT_MAX 65535 (0xffff) Maximum unsigned short value

INT_MIN (-2147483647 - 1) Minimum signed int value

INT_MAX 2147483647 Maximum signed int value

UINT_MAX 4294967295 (0xffffffff) Maximum unsigned int value

LONG_MIN (-2147483647L - 1) Minimum signed long value

Data type constants are implementation-dependent ranges of values allowed for integral and floating-point data
types.

These constants give the ranges for the integral data types. To use these constants, include the limits.h header in
your source file:

The /J compiler option changes the default char type to unsigned.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/data-type-constants.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/j-default-char-type-is-unsigned

LONG_MAX 2147483647L Maximum signed long value

ULONG_MAX 4294967295UL (0xfffffffful) Maximum unsigned long value

LLONG_MIN (-9223372036854775807LL - 1) Minimum signed long long or __int64
value

LLONG_MAX 9223372036854775807LL Maximum signed long long or __int64
value

ULLONG_MAX 0xffffffffffffffffull Maximum unsigned long long value

_I8_MIN (-127i8 - 1) Minimum signed 8-bit value

_I8_MAX 127i8 Maximum signed 8-bit value

_UI8_MAX 0xffui8 Maximum unsigned 8-bit value

_I16_MIN (-32767i16 - 1) Minimum signed 16-bit value

_I16_MAX 32767i16 Maximum signed 16-bit value

_UI16_MAX 0xffffui16 Maximum unsigned 16-bit value

_I32_MIN (-2147483647i32 - 1) Minimum signed 32-bit value

_I32_MAX 2147483647i32 Maximum signed 32-bit value

_UI32_MAX 0xffffffffui32 Maximum unsigned 32-bit value

_I64_MIN (-9223372036854775807 - 1) Minimum signed 64-bit value

_I64_MAX 9223372036854775807 Maximum signed 64-bit value

_UI64_MAX 0xffffffffffffffffui64 Maximum unsigned 64-bit value

_I128_MIN (-
170141183460469231731687303715
884105727i128 - 1)

Minimum signed 128-bit value

_I128_MAX 170141183460469231731687303715
884105727i128

Maximum signed 128-bit value

_UI128_MAX 0xffffffffffffffffffffffffffffffffui128 Maximum unsigned 128-bit value

SIZE_MAX same as _UI64_MAX if _WIN64 is
defined, or UINT_MAX

Maximum native integer size

RSIZE_MAX same as (SIZE_MAX >> 1) Maximum secure library integer size

CONSTANT VALUE DESCRIPTION

Floating-point type constants

#include <float.h>

CONSTANT VALUE DESCRIPTION

DBL_DECIMAL_DIG 17 # of decimal digits of rounding precision

DBL_DIG 15 # of decimal digits of precision

DBL_EPSILON 2.2204460492503131e-016 Smallest such that 1.0 + DBL_EPSILON
!= 1.0

DBL_HAS_SUBNORM 1 Type supports subnormal (denormal)
numbers

DBL_MANT_DIG 53 # of bits in significand (mantissa)

DBL_MAX 1.7976931348623158e+308 Maximum value

DBL_MAX_10_EXP 308 Maximum decimal exponent

DBL_MAX_EXP 1024 Maximum binary exponent

DBL_MIN 2.2250738585072014e-308 Minimum normalized positive value

DBL_MIN_10_EXP (-307) Minimum decimal exponent

DBL_MIN_EXP (-1021) Minimum binary exponent

_DBL_RADIX 2 Exponent radix

DBL_TRUE_MIN 4.9406564584124654e-324 Minimum positive subnormal value

FLT_DECIMAL_DIG 9 Number of decimal digits of rounding
precision

FLT_DIG 6 Number of decimal digits of precision

FLT_EPSILON 1.192092896e-07F Smallest such that 1.0 + FLT_EPSILON
!= 1.0

FLT_HAS_SUBNORM 1 Type supports subnormal (denormal)
numbers

FLT_MANT_DIG 24 Number of bits in significand (mantissa)

FLT_MAX 3.402823466e+38F Maximum value

FLT_MAX_10_EXP 38 Maximum decimal exponent

FLT_MAX_EXP 128 Maximum binary exponent

The following constants give the range and other characteristics of the long double, double and float data types.
To use these constants, include the float.h header in your source file:

FLT_MIN 1.175494351e-38F Minimum normalized positive value

FLT_MIN_10_EXP (-37) Minimum decimal exponent

FLT_MIN_EXP (-125) Minimum binary exponent

FLT_RADIX 2 Exponent radix

FLT_TRUE_MIN 1.401298464e-45F Minimum positive subnormal value

LDBL_DIG 15 # of decimal digits of precision

LDBL_EPSILON 2.2204460492503131e-016 Smallest such that 1.0 +
LDBL_EPSILON != 1.0

LDBL_HAS_SUBNORM 1 Type supports subnormal (denormal)
numbers

LDBL_MANT_DIG 53 # of bits in significand (mantissa)

LDBL_MAX 1.7976931348623158e+308 Maximum value

LDBL_MAX_10_EXP 308 Maximum decimal exponent

LDBL_MAX_EXP 1024 Maximum binary exponent

LDBL_MIN 2.2250738585072014e-308 Minimum normalized positive value

LDBL_MIN_10_EXP (-307) Minimum decimal exponent

LDBL_MIN_EXP (-1021) Minimum binary exponent

_LDBL_RADIX 2 Exponent radix

LDBL_TRUE_MIN 4.9406564584124654e-324 Minimum positive subnormal value

DECIMAL_DIG same as DBL_DECIMAL_DIG Default (double) decimal digits of
rounding precision

CONSTANT VALUE DESCRIPTION

See also
Global Constants

Environmental Constants
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <stdlib.h>

Remarks

CONSTANT MEANING

_MAX_ENV Maximum string size of an environmental string.

See also

This constant defines the environmental length for strings.

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/environmental-constants.md

EOF, WEOF
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <stdio.h>

Remarks

See also

EOF is returned by an I/O routine when the end-of-file (or in some cases, an error) is encountered.

WEOF yields the return value, of type wint_t, used to signal the end of a wide stream, or to report an error
condition.

putc, putwc
ungetc, ungetwc
scanf, _scanf_l, wscanf, _wscanf_l
fflush
fclose, _fcloseall
_ungetch, _ungetwch, _ungetch_nolock, _ungetwch_nolock
_putch, _putwch
isascii, __isascii, iswascii
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/eof-weof.md

errno Constants
3/11/2019 • 6 minutes to read • Edit Online

Syntax
#include <errno.h>

Remarks

CONSTANT DESCRIPTION

ECHILD No spawned processes.

EAGAIN No more processes. An attempt to create a new process
failed because there are no more process slots, or there is not
enough memory, or the maximum nesting level has been
reached.

E2BIG Argument list too long.

EACCES Permission denied. The file's permission setting does not allow
the specified access. This error signifies that an attempt was
made to access a file (or, in some cases, a directory) in a way
that is incompatible with the file's attributes.

For example, the error can occur when an attempt is made to
read from a file that is not open, to open an existing read-
only file for writing, or to open a directory instead of a file.
Under MS-DOS operating system versions 3.0 and later,
EACCES may also indicate a locking or sharing violation.

The error can also occur in an attempt to rename a file or
directory or to remove an existing directory.

EBADF Bad file number. There are two possible causes: 1) The
specified file descriptor is not a valid value or does not refer
to an open file. 2) An attempt was made to write to a file or
device opened for read-only access.

The errno values are constants assigned to errno in the event of various error conditions.

ERRNO.H contains the definitions of the errno values. However, not all the definitions given in ERRNO.H are
used in 32-bit Windows operating systems. Some of the values in ERRNO.H are present to maintain
compatibility with the UNIX family of operating systems.

The errno values in a 32-bit Windows operating system are a subset of the values for errno in XENIX systems.
Thus, the errno value is not necessarily the same as the actual error code returned by a system call from the
Windows operating systems. To access the actual operating system error code, use the _doserrno variable, which
contains this value.

The following errno values are supported:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/errno-constants.md

EDEADLOCK Resource deadlock would occur. The argument to a math
function is not in the domain of the function.

EDOM Math argument.

EEXIST Files exist. An attempt has been made to create a file that
already exists. For example, the _O_CREAT and _O_EXCL
flags are specified in an _open call, but the named file already
exists.

EILSEQ Illegal sequence of bytes (for example, in an MBCS string).

EINVAL Invalid argument. An invalid value was given for one of the
arguments to a function. For example, the value given for the
origin when positioning a file pointer (by means of a call to
fseek) is before the beginning of the file.

EMFILE Too many open files. No more file descriptors are available, so
no more files can be opened.

ENOENT No such file or directory. The specified file or directory does
not exist or cannot be found. This message can occur
whenever a specified file does not exist or a component of a
path does not specify an existing directory.

ENOEXEC Exec format error. An attempt was made to execute a file that
is not executable or that has an invalid executable-file format.

ENOMEM Not enough core. Not enough memory is available for the
attempted operator. For example, this message can occur
when insufficient memory is available to execute a child
process, or when the allocation request in a _getcwd call
cannot be satisfied.

ENOSPC No space left on device. No more space for writing is available
on the device (for example, when the disk is full).

ERANGE Result too large. An argument to a math function is too large,
resulting in partial or total loss of significance in the result.
This error can also occur in other functions when an
argument is larger than expected (for example, when the
buffer argument to _getcwd is longer than expected).

EXDEV Cross-device link. An attempt was made to move a file to a
different device (using the rename function).

STRUNCATE A string copy or concatenation resulted in a truncated string.
See _TRUNCATE.

CONSTANT DESCRIPTION

#define E2BIG /* argument list too long */
#define EACCES /* permission denied */
#define EADDRINUSE /* address in use */
#define EADDRNOTAVAIL /* address not available */
#define EAFNOSUPPORT /* address family not supported */

The following values are supported for compatibility with Posix. They are required values on non-Posix systems.

#define EAGAIN /* resource unavailable try again */
#define EALREADY /* connection already in progress */
#define EBADF /* bad file descriptor */
#define EBADMSG /* bad message */
#define EBUSY /* device or resource busy */
#define ECANCELED /* operation canceled */
#define ECHILD /* no child process */
#define ECONNABORTED /* connection aborted */
#define ECONNREFUSED /* connection refused */
#define ECONNRESET /* connection reset */
#define EDEADLK /* resource deadlock would occur */
#define EDESTADDRREQ /* destination address required */
#define EDOM /* argument out of domain */
#define EEXIST /* file exists */
#define EFAULT /* bad address */
#define EFBIG /* file too large */
#define EHOSTUNREACH /* host unreachable */
#define EIDRM /* identifier removed */
#define EILSEQ /* illegal byte sequence */
#define EINPROGRESS /* operation in progress */
#define EINTR /* interrupted */
#define EINVAL /* invalid argument */
#define EIO /* io error */
#define EISCONN /* already connected */
#define EISDIR /* is a directory */
#define ELOOP /* too many synbolic link levels */
#define EMFILE /* too many files open */
#define EMLINK /* too many links */
#define EMSGSIZE /* message size */
#define ENAMETOOLONG /* filename too long */
#define ENETDOWN /* network down */
#define ENETRESET /* network reset */
#define ENETUNREACH /* network unreachable */
#define ENFILE /* too many files open in system */
#define ENOBUFS /* no buffer space */
#define ENODATA /* no message available */
#define ENODEV /* no such device */
#define ENOENT /* no such file or directory */
#define ENOEXEC /* executable format error */
#define ENOLCK /* no lock available */
#define ENOLINK /* no link */
#define ENOMEM /* not enough memory */
#define ENOMSG /* no message */
#define ENOPROTOOPT /* no protocol option */
#define ENOSPC /* no space on device */
#define ENOSR /* no stream resources */
#define ENOSTR /* not a stream */
#define ENOSYS /* function not supported */
#define ENOTCONN /* not connected */
#define ENOTDIR /* not a directory */
#define ENOTEMPTY /* directory not empty */
#define ENOTRECOVERABLE /* state not recoverable */
#define ENOTSOCK /* not a socket */
#define ENOTSUP /* not supported */
#define ENOTTY /* inappropriate io control operation */
#define ENXIO /* no such device or address */
#define EOPNOTSUPP /* operation not supported */
#define EOTHER /* other */
#define EOVERFLOW /* value too large */
#define EOWNERDEAD /* owner dead */
#define EPERM /* operation not permitted */
#define EPIPE /* broken pipe */
#define EPROTO /* protocol error */
#define EPROTONOSUPPORT /* protocol not supported */
#define EPROTOTYPE /* wrong protocol type */
#define ERANGE /* result out of range */
#define EROFS /* read only file system */
#define ESPIPE /* invalid seek */
#define ESRCH /* no such process */

#define ETIME /* stream timeout */
#define ETIMEDOUT /* timed out */
#define ETXTBSY /* text file busy */
#define EWOULDBLOCK /* operation would block */
#define EXDEV /* cross device link */

See also
Global Constants

Exception-Handling Constants
3/11/2019 • 2 minutes to read • Edit Online

See also

The constant EXCEPTION_CONTINUE_SEARCH , EXCEPTION_CONTINUE_EXECUTION , or EXCEPTION_EXECUTE_HANDLER is returned
when an exception occurs during execution of the guarded section of a try-except statement. The return value
determines how the exception is handled. For more information, see try-except Statement in the C++ Language
Reference.

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/exception-handling-constants.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/try-except-statement

EXIT_SUCCESS, EXIT_FAILURE
10/31/2018 • 2 minutes to read • Edit Online

Required header
#include <stdlib.h>

Remarks

CONSTANT DEFINED VALUE

EXIT_SUCCESS 0

EXIT_FAILURE 1

See also

These are arguments for the exit and _exit functions, and the return values for the atexit and _onexit functions.

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/exit-success-exit-failure.md

File Attribute Constants
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <io.h>

Remarks

CONSTANT DESCRIPTION

_A_ARCH Archive. Set whenever the file is changed, and cleared by the
BACKUP command. Value: 0x20

_A_HIDDEN Hidden file. Not normally seen with the DIR command, unless
the /AH option is used. Returns information about normal files
as well as files with this attribute. Value: 0x02

_A_NORMAL Normal. File can be read or written to without restriction.
Value: 0x00

_A_RDONLY Read-only. File cannot be opened for writing, and a file with
the same name cannot be created. Value: 0x01

_A_SUBDIR Subdirectory. Value: 0x10

_A_SYSTEM System file. Not normally seen with the DIR command, unless
the /AS option is used. Value: 0x04

See also

These constants specify the current attributes of the file or directory specified by the function.

The attributes are represented by the following manifest constants:

Multiple constants can be combined with the OR operator (|).

Filename Search Functions
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/file-attribute-constants.md

File Constants
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <fcntl.h>

Remarks

CONSTANT DESCRIPTION

_O_APPEND Repositions the file pointer to the end of the file before every
write operation.

_O_CREAT Creates and opens a new file for writing; this has no effect if
the file specified by filename exists.

_O_EXCL Returns an error value if the file specified by filename exists.
Only applies when used with _O_CREAT .

_O_RDONLY Opens file for reading only; if this flag is given, neither
_O_RDWR nor _O_WRONLY can be given.

_O_RDWR Opens file for both reading and writing; if this flag is given,
neither _O_RDONLY nor _O_WRONLY can be given.

_O_TRUNC Opens and truncates an existing file to zero length; the file
must have write permission. The contents of the file are
destroyed. If this flag is given, you cannot specify _O_RDONLY .

_O_WRONLY Opens file for writing only; if this flag is given, neither
_O_RDONLY nor _O_RDWR can be given.

See also

The integer expression formed from one or more of these constants determines the type of reading or writing
operations permitted. It is formed by combining one or more constants with a translation-mode constant.

The file constants are as follows:

_open, _wopen
_sopen, _wsopen
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/file-constants.md

File Permission Constants
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <sys/stat.h>

Remarks

CONSTANT MEANING

_S_IREAD Reading permitted

_S_IWRITE Writing permitted

_S_IREAD | _S_IWRITE Reading and writing permitted

CONSTANT MEANING

_S_IREAD Writing not permitted (file is read-only)

_S_IWRITE Reading not permitted (file is write-only)

_S_IREAD | _S_IWRITE Neither reading nor writing permitted

See also

One of these constants is required when _O_CREAT (_open , _sopen) is specified.

The pmode argument specifies the file's permission settings as follows.

When used as the pmode argument for _umask , the manifest constant sets the permission setting, as follows.

_open, _wopen
_sopen, _wsopen
_umask
Standard Types
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/file-permission-constants.md

File Read/Write Access Constants
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <stdio.h>

Remarks

ACCESS TYPE DESCRIPTION

"r" Opens for reading. If the file does not exist or cannot be
found, the call to open the file fails.

"w" Opens an empty file for writing. If the given file exists, its
contents are destroyed.

"a" Opens for writing at the end of the file (appending); creates
the file first if it does not exist. All write operations occur at the
end of the file. Although the file pointer can be repositioned
using fseek or rewind , it is always moved back to the end
of the file before any write operation is carried out.

"r+" Opens for both reading and writing. If the file does not exist
or cannot be found, the call to open the file fails.

"w+" Opens an empty file for both reading and writing. If the given
file exists, its contents are destroyed.

"a+" The same as "a" but also allows reading.

See also

These constants specify the access type ("a", "r", or "w") requested for the file. Both the translation mode ("b" or "t")
and the commit-to-disk mode ("c" or "n") can be specified with the type of access.

The access types are described in this table:

When the "r+", "w+", or "a+" type is specified, both reading and writing are allowed (the file is said to be open for
"update"). However, when you switch between reading and writing, there must be an intervening fflush , fsetpos

, fseek , or rewind operation. The current position can be specified for the fsetpos or fseek operation.

_fdopen, _wfdopen
fopen, _wfopen
freopen, _wfreopen
_fsopen, _wfsopen
_popen, _wpopen
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/file-read-write-access-constants.md

File Translation Constants
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <stdio.h>

Remarks

See also

These constants specify the mode of translation ("b" or "t"). The mode is included in the string specifying the type
of access ("r", "w", "a", "r+", "w+", "a+").

The translation modes are as follows:

NOTE

t

Opens in text (translated) mode. In this mode, carriage-return/linefeed (CR-LF) combinations are translated
into single linefeeds (LF) on input, and LF characters are translated into CR-LF combinations on output.
Also, CTRL+Z is interpreted as an end-of-file character on input. In files opened for reading or
reading/writing, fopen checks for CTRL+Z at the end of the file and removes it, if possible. This is done
because using the fseek and ftell functions to move within a file ending with CTRL+Z may cause
fseek to behave improperly near the end of the file.

The t option is not part of the ANSI standard for fopen and freopen . It is a Microsoft extension and should not
be used where ANSI portability is desired.

b

Opens in binary (untranslated) mode. The above translations are suppressed.

If t or b is not given in mode, the translation mode is defined by the default-mode variable _fmode. For more
information about using text and binary modes, see Text and Binary Mode File I/O.

_fdopen, _wfdopen
fopen, _wfopen
freopen, _wfreopen
_fsopen, _wfsopen
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/file-translation-constants.md

FILENAME_MAX
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <stdio.h>

See also

The maximum permissible length for a filename string buffer size.

Path Field Limits
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/filename-max.md

FOPEN_MAX, _SYS_OPEN
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <stdio.h>

Remarks

See also

This is the maximum number of files that can be opened simultaneously. FOPEN_MAX is the ANSI-compatible name.
_SYS_OPEN is provided for compatibility with existing code.

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/fopen-max-sys-open.md

_FREEENTRY, _USEDENTRY
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <malloc.h>

Remarks

See also

These constants represent values assigned by the _heapwalk routines to the _useflag element of the _HEAPINFO
structure. They indicate the status of the heap entry.

_heapwalk
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/freeentry-usedentry.md

fseek, _lseek Constants
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <stdio.h>

Remarks

CONSTANT MEANING

SEEK_END End of file

SEEK_CUR Current position of file pointer

SEEK_SET Beginning of file

See also

The origin argument specifies the initial position and can be one of the following manifest constants:

fseek, _fseeki64
_lseek, _lseeki64
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/fseek-lseek-constants.md

Heap Constants
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <malloc.h>

Remarks

CONSTANT MEANING

_HEAPBADBEGIN Initial header information was not found or was invalid.

_HEAPBADNODE Bad node was found, or heap is damaged.

_HEAPBADPTR _pentry field of _HEAPINFO structure does not contain valid
pointer into heap (_heapwalk routine only).

_HEAPEMPTY Heap has not been initialized.

_HEAPEND End of heap was reached successfully (_heapwalk routine
only).

_HEAPOK Heap is consistent (_heapset and _heapchk routines only).
No errors so far; _HEAPINFO structure contains information
about next entry (_heapwalk routine only).

See also

These constants give the return value indicating status of the heap.

_heapchk
_heapset
_heapwalk
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/heap-constants.md

_HEAP_MAXREQ
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <malloc.h>

Remarks

See also

The maximum size of a user request for memory that can be granted.

malloc
calloc
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/heap-maxreq.md

HUGE_VAL, _HUGE
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <math.h>

Remarks

See also

HUGE_VAL is the largest representable double value. This value is returned by many run-time math functions when
an error occurs. For some functions, - HUGE_VAL is returned. HUGE_VAL is defined as _HUGE , but run-time math
functions return HUGE_VAL . You should also use HUGE_VAL in your code for consistency.

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/huge-val-huge.md

Locale Categories
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <locale.h>

Remarks

LOCALE CATEGORY PARTS OF PROGRAM AFFECTED

LC_ALL All locale-specific behavior (all categories)

LC_COLLATE Behavior of strcoll and strxfrm functions

LC_CTYPE Behavior of character-handling functions (except isdigit ,
isxdigit , mbstowcs , and mbtowc , which are unaffected)

LC_MAX Same as LC_TIME

LC_MIN Same as LC_ALL

LC_MONETARY Monetary formatting information returned by the
localeconv function

LC_NUMERIC Decimal-point character for formatted output routines (for
example, printf), data conversion routines, and
nonmonetary formatting information returned by
localeconv function

LC_TIME Behavior of strftime function

See also

Locale categories are manifest constants used by the localization routines to specify which portion of a program's
locale information will be used. The locale refers to the locality (or Country/Region) for which certain aspects of
your program can be customized. Locale-dependent areas include, for example, the formatting of dates or the
display format for monetary values.

See setlocale, _wsetlocale for an example.

localeconv
setlocale, _wsetlocale
strcoll Functions
strftime, wcsftime, _strftime_l, _wcsftime_l
strxfrm, wcsxfrm, _strxfrm_l, _wcsxfrm_l
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/locale-categories.md

_locking Constants
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <sys/locking.h>

Remarks

_LK_LOCK Locks the specified bytes. If the bytes cannot be locked, the
function tries again after 1 second. If, after 10 attempts, the
bytes cannot be locked, the function returns an error.

_LK_RLCK Same as _LK_LOCK .

_LK_NBLCK Locks the specified bytes. If bytes cannot be locked, the
function returns an error.

_LK_NBRLCK Same as _LK_NBLCK .

_LK_UNLCK Unlocks the specified bytes. (The bytes must have been
previously locked.)

See also

The mode argument in the call to the _locking function specifies the locking action to be performed.

The mode argument must be one of the following manifest constants.

_locking
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/locking-constants.md

Math Constants
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#define _USE_MATH_DEFINES // for C++
#include <cmath>

#define _USE_MATH_DEFINES // for C
#include <math.h>

Remarks

SYMBOL EXPRESSION VALUE

M_E e 2.71828182845904523536

M_LOG2E log2(e) 1.44269504088896340736

M_LOG10E log10(e) 0.434294481903251827651

M_LN2 ln(2) 0.693147180559945309417

M_LN10 ln(10) 2.30258509299404568402

M_PI pi 3.14159265358979323846

M_PI_2 pi/2 1.57079632679489661923

M_PI_4 pi/4 0.785398163397448309616

M_1_PI 1/pi 0.318309886183790671538

M_2_PI 2/pi 0.636619772367581343076

M_2_SQRTPI 2/sqrt(pi) 1.12837916709551257390

M_SQRT2 sqrt(2) 1.41421356237309504880

M_SQRT1_2 1/sqrt(2) 0.707106781186547524401

The following symbols are defined for the values of their indicated expressions:

Math Constants are not defined in Standard C/C++. To use them, you must first define _USE_MATH_DEFINES and
then include cmath or math.h.

The file ATLComTime.h includes math.h when your project is built in Release mode. If you use one or more of the
math constants in a project that also includes ATLComTime.h, you must define _USE_MATH_DEFINES before you
include ATLComTime.h.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/math-constants.md

See also
Global Constants

Math Error Constants
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <math.h>

Remarks

CONSTANT MEANING

_DOMAIN Argument to function is outside domain of function.

_OVERFLOW Result is too large to be represented in function's return type.

_PLOSS Partial loss of significance occurred.

_SING Argument singularity: argument to function has illegal value.
(For example, value 0 is passed to function that requires
nonzero value.)

_TLOSS Total loss of significance occurred.

_UNDERFLOW Result is too small to be represented.

See also

The math routines of the run-time library can generate math error constants.

These errors, described as follows, correspond to the exception types defined in MATH.H and are returned by the
_matherr function when a math error occurs.

_matherr
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/math-error-constants.md

_MAX_ENV
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <stdio.h>

See also

The maximum permissible string length of an environmental variable.

Environmental Constants
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/max-env.md

MB_CUR_MAX
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <stdlib.h>

Remarks

See also

A macro that indicates the maximum number of bytes in a multibyte character for the current locale.

Context: ANSI multibyte- and wide-character conversion functions

The value of MB_CUR_MAX is the maximum number of bytes in a multibyte character for the current locale.

_mbclen, mblen, _mblen_l
mbstowcs, _mbstowcs_l
mbtowc, _mbtowc_l
___mb_cur_max_func, ___mb_cur_max_l_func, __p___mb_cur_max, __mb_cur_max
Standard Types
wcstombs, _wcstombs_l
wctomb, _wctomb_l
Data Type Constants
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/mb-cur-max.md

NULL (CRT)
3/11/2019 • 2 minutes to read • Edit Online

See also

NULL is the null-pointer value used with many pointer operations and functions. It is equivalent to 0. NULL is
defined in the following header files: CRTDBG.H, LOCALE.H, STDDEF.H, STDIO.H, STDLIB.H, STRING.H,
TCHAR.H, TIME.H and WCHAR.H.

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/null-crt.md

Path Field Limits
10/31/2018 • 2 minutes to read • Edit Online

Syntax
#include <stdlib.h>

Remarks

CONSTANT MEANING

_MAX_DIR Maximum length of directory component

_MAX_DRIVE Maximum length of drive component

_MAX_EXT Maximum length of extension component

_MAX_FNAME Maximum length of filename component

_MAX_PATH Maximum length of full path

NOTE

See also

These constants define the maximum length for the path and for the individual fields within the path.

The C Runtime supports path lengths up to 32768 characters in length, but it is up to the operating system, specifically the
file system, to support these longer paths. The sum of the fields should not exceed _MAX_PATH for full backwards
compatibility with FAT32 file systems. The Windows NTFS file system supports paths up to 32768 characters in length, but
only when using the Unicode APIs. When using long path names, prefix the path with the characters \\?\ and use the
Unicode versions of the C Runtime functions.

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/path-field-limits.md

RAND_MAX
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <stdlib.h>

Remarks

See also

The constant RAND_MAX is the maximum value that can be returned by the rand function. RAND_MAX is defined as
the value 0x7fff.

rand
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/rand-max.md

setvbuf Constants
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <stdio.h>

Remarks

CONSTANT MEANING

_IOFBF Full buffering: Buffer specified in call to setvbuf is used and
its size is as specified in setvbuf call. If buffer pointer is
NULL, automatically allocated buffer of specified size is used.

_IOLBF Same as _IOFBF .

_IONBF No buffer is used, regardless of arguments in call to setvbuf .

See also

These constants represent the type of buffer for setvbuf .

The possible values are given by the following manifest constants:

setbuf
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/setvbuf-constants.md

Sharing Constants
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <share.h>

Remarks

CONSTANT MEANING

_SH_DENYRW Denies read and write access to file

_SH_DENYWR Denies write access to file

_SH_DENYRD Denies read access to file

_SH_DENYNO Permits read and write access

_SH_SECURE Sets secure mode (shared read, exclusive write access).

See also

Constants for file-sharing modes.

The shflag argument determines the sharing mode, which consists of one or more manifest constants. These can
be combined with the oflag arguments (see File Constants).

The following table lists the constants and their meanings:

_sopen, _wsopen
_fsopen, _wfsopen
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/sharing-constants.md

signal Constants
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <signal.h>

Remarks

SIGABRT Abnormal termination. The default action terminates the
calling program with exit code 3.

SIGABRT_COMPAT Same as SIGABRT. For compatibility with other platforms.

SIGFPE Floating-point error, such as overflow, division by zero, or
invalid operation. The default action terminates the calling
program.

SIGILL Illegal instruction. The default action terminates the calling
program.

SIGINT CTRL+C interrupt. The default action terminates the calling
program with exit code 3.

SIGSEGV Illegal storage access. The default action terminates the calling
program.

SIGTERM Termination request sent to the program. The default action
terminates the calling program with exit code 3.

SIG_ERR A return type from a signal indicating an error has occurred.

See also

The sig argument must be one of the manifest constants listed below (defined in S IGNAL.H).

signal
raise
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/signal-constants.md

signal Action Constants
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <signal.h>

Remarks

SIG_DFL Uses system-default response. If the calling program uses
stream I/O, buffers created by the run-time library are not
flushed.

SIG_IGN Ignores interrupt signal. This value should never be given for
SIGFPE , since the floating-point state of the process is left

undefined.

SIG_SGE Indicates an error occurred in the signal.

SIG_ACK Indicates an acknowledgement was received.

SIG_ERR A return type from a signal indicating an error has occurred.

See also

The action taken when the interrupt signal is received depends on the value of func .

The func argument must be either a function address or one of the manifest constants listed below and defined in
SIGNAL.H.

signal
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/signal-action-constants.md

spawn Constants
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <process.h>

Remarks

CONSTANT MEANING

_P_OVERLAY Overlays calling process with new process, destroying calling
process (same effect as _exec calls).

_P_WAIT Suspends calling thread until execution of new process is
complete (synchronous _spawn).

_P_NOWAIT , _P_NOWAITO Continues to execute calling process concurrently with new
process (asynchronous _spawn).

_P_DETACH Continues to execute calling process; new process is run in
background with no access to console or keyboard. Calls to
_cwait against new process will fail. This is an asynchronous
_spawn .

See also

The mode argument determines the action taken by the calling process before and during a spawn operation. The
following values for mode are possible:

_spawn, _wspawn Functions
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/spawn-constants.md

_stat Structure st_mode Field Constants
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <sys/stat.h>

Remarks

CONSTANT MEANING

_S_IFMT File type mask

_S_IFDIR Directory

_S_IFCHR Character special (indicates a device if set)

_S_IFREG Regular

_S_IREAD Read permission, owner

_S_IWRITE Write permission, owner

_S_IEXEC Execute/search permission, owner

See also

These constants are used to indicate file type in the st_mode field of the _stat structure.

The bit mask constants are described below:

_stat, _wstat Functions
_fstat, _fstat32, _fstat64, _fstati64, _fstat32i64, _fstat64i32
Standard Types
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/stat-structure-st-mode-field-constants.md

stdin, stdout, stderr
3/11/2019 • 2 minutes to read • Edit Online

Syntax
FILE *stdin;
FILE *stdout;
FILE *stderr;
#include <stdio.h>

Remarks

POINTER STREAM

stdin Standard input

stdout Standard output

stderr Standard error

See also

These are standard streams for input, output, and error output.

By default, standard input is read from the keyboard, while standard output and standard error are printed to the
screen.

The following stream pointers are available to access the standard streams:

These pointers can be used as arguments to functions. Some functions, such as getchar and putchar, use stdin

and stdout automatically.

These pointers are constants, and cannot be assigned new values. The freopen function can be used to redirect the
streams to disk files or to other devices. The operating system allows you to redirect a program's standard input
and output at the command level.

Stream I/O
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/stdin-stdout-stderr.md

TMP_MAX, L_tmpnam
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <stdio.h>

Remarks

See also

TMP_MAX is the maximum number of unique filenames that the tmpnam function can generate. L_tmpnam is the
length of temporary filenames generated by tmpnam .

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/tmp-max-l-tmpnam.md

Translation Mode Constants
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <fcntl.h>

Remarks

_O_TEXT Opens file in text (translated) mode. Carriage return - linefeed
(CR-LF) combinations are translated into a single linefeed (LF)
on input. Linefeed characters are translated into CR-LF
combinations on output. Also, CTRL+Z is interpreted as an
end-of-file character on input. In files opened for reading and
reading/writing, fopen checks for CTRL+Z at the end of the
file and removes it, if possible. This is done because using the
fseek and ftell functions to move within a file ending

with CTRL+Z may cause fseek to behave improperly near
the end of the file.

_O_BINARY Opens file in binary (untranslated) mode. The above
translations are suppressed.

_O_RAW Same as _O_BINARY . Supported for C 2.0 compatibility.

See also

The _O_BINARY and _O_TEXT manifest constants determine the translation mode for files (_open and _sopen) or
the translation mode for streams (_setmode).

The allowed values are:

For more information, see Text and Binary Mode File I/O and File Translation.

_open, _wopen
_pipe
_sopen, _wsopen
_setmode
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/translation-mode-constants.md

_TRUNCATE
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <stdlib.h>

Remarks

Example

Specifies string truncation behavior.

_TRUNCATE enables truncation behavior when passed as the count parameter to these functions:

strncpy_s, _strncpy_s_l, wcsncpy_s, _wcsncpy_s_l, _mbsncpy_s, _mbsncpy_s_l

strncat_s, _strncat_s_l, wcsncat_s, _wcsncat_s_l, _mbsncat_s, _mbsncat_s_l

mbstowcs_s, _mbstowcs_s_l

mbsrtowcs_s

wcstombs_s, _wcstombs_s_l

wcsrtombs_s

_snprintf_s, _snprintf_s_l, _snwprintf_s, _snwprintf_s_l

vsnprintf_s, _vsnprintf_s, _vsnprintf_s_l, _vsnwprintf_s, _vsnwprintf_s_l

If the destination buffer is too small to hold the entire string, the normal behavior of these functions is to treat it
as an error situation (see Parameter Validation). However, if string truncation is enabled by passing _TRUNCATE ,
these functions will copy only as much of the string as will fit, leaving the destination buffer null-terminated, and
return successfully.

String truncation changes the return values of the affected functions. The following functions return 0 if no
truncation occurs, or STRUNCATE if truncation does occur :

strncpy_s, _strncpy_s_l, wcsncpy_s, _wcsncpy_s_l, _mbsncpy_s, _mbsncpy_s_l

strncat_s, _strncat_s_l, wcsncat_s, _wcsncat_s_l, _mbsncat_s, _mbsncat_s_l

wcstombs_s, _wcstombs_s_l

mbstowcs_s, _mbstowcs_s_l

The following functions return the number of characters copied if no truncation occurs, or -1 if truncation does
occur (matching the behavior of the original snprintf functions):

_snprintf_s, _snprintf_s_l, _snwprintf_s, _snwprintf_s_l

vsnprintf_s, _vsnprintf_s, _vsnprintf_s_l, _vsnwprintf_s, _vsnwprintf_s_l

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/truncate.md

// crt_truncate.c
#include <stdlib.h>
#include <errno.h>

int main()
{
 char src[] = "1234567890";
 char dst[5];
 errno_t err = strncpy_s(dst, _countof(dst), src, _TRUNCATE);
 if (err == STRUNCATE)
 printf("truncation occurred!\n");
 printf("'%s'\n", dst);
}

truncation occurred!
'1234'

See also
Global Constants

TZNAME_MAX
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <limits.h>

See also

Obsolete. The maximum permissible string length for a time zone name variable. This macro was defined in
<limits.h> in Visual Studio 2012 and earlier versions. It is not defined in Visual Studio 2013 and later versions. To
get the length required to hold the current time zone name, use _get_tzname.

Environmental Constants
Global Constants
_get_tzname

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/tzname-max.md

_WAIT_CHILD, _WAIT_GRANDCHILD
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <process.h>

Remarks

CONSTANT MEANING

_WAIT_CHILD Calling process waits until specified new process terminates.

_WAIT_GRANDCHILD Calling process waits until specified new process, and all
processes created by that new process, terminate.

See also

The _cwait function can be used by any process to wait for any other process (if the process ID is known). The
action argument can be one of the following values:

_cwait
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/wait-child-wait-grandchild.md

WCHAR_MAX
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <wchar.h>

See also

Maximum value for type wchar_t .

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/wchar-max.md

WCHAR_MIN
3/11/2019 • 2 minutes to read • Edit Online

Syntax
#include <wchar.h>

See also

Minimum value for type wchar_t .

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/wchar-min.md

Generic-Text Mappings
3/11/2019 • 2 minutes to read • Edit Online

See also

To simplify writing code for international markets, generic-text mappings are defined in TCHAR.H for:

Data types

Constants and global variables

Routine mappings

For more information, see Using Generic-Text Mappings. Generic-text mappings are Microsoft extensions that
are not ANSI compatible.

Data Type Mappings
A Sample Generic-Text Program

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/generic-text-mappings.md

Data Type Mappings
3/11/2019 • 2 minutes to read • Edit Online

Generic-Text Data Type Mappings

GENERIC-TEX T

DATA TYPE NAME

SBCS (_UNICODE,

_MBCS NOT

DEFINED)

_MBCS

DEFINED

_UNICODE

DEFINED

_TCHAR char char wchar_t

_tfinddata_t _finddata_t _finddata_t _wfinddata_t

_tfinddata64_t __finddata64_t __finddata64_t __wfinddata64_t

_tfinddatai64_t _finddatai64_t _finddatai64_t _wfinddatai64_t

_TINT int int wint_t

_TSCHAR signed char signed char wchar_t

_TUCHAR unsigned char unsigned char wchar_t

_TXCHAR char unsigned char wchar_t

_T or _TEXT No effect (removed by
preprocessor)

No effect (removed by
preprocessor)

L (converts following
character or string to its
Unicode counterpart)

See also

These data-type mappings are defined in TCHAR.H and depend on whether the constant _UNICODE or _MBCS has
been defined in your program.

For related information, see Using TCHAR.H Data Types with _MBCS Code.

Generic-Text Mappings
Constant and Global Variable Mappings
Routine Mappings
A Sample Generic-Text Program
Using Generic-Text Mappings

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/data-type-mappings.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/text/using-tchar-h-data-types-with-mbcs-code

Constant and Global Variable Mappings
3/11/2019 • 2 minutes to read • Edit Online

Generic-Text Constant and Global Variable Mappings

GENERIC-TEX T - OBJECT NAME
SBCS (_UNICODE, _MBCS NOT
DEFINED) _MBCS DEFINED _UNICODE DEFINED

_TEOF EOF EOF WEOF

_tenviron _environ _environ _wenviron

_tpgmptr _pgmptr _pgmptr _wpgmptr

See also

These generic-text constant, global variable, and standard-type mappings are defined in TCHAR.H and depend on
whether the constant _UNICODE or _MBCS has been defined in your program.

Generic-Text Mappings
Data Type Mappings
Routine Mappings
A Sample Generic-Text Program
Using Generic-Text Mappings

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/constant-and-global-variable-mappings.md

Routine Mappings
3/11/2019 • 5 minutes to read • Edit Online

Generic-Text Routine Mappings

GENERIC-TEX T ROUTINE
NAME

SBCS (_UNICODE & MBCS NOT
DEFINED) _MBCS DEFINED _UNICODE DEFINED

_cgetts _cgets _cgets _cgetws

_cgetts_s _cgets_s _cgets_s _cgetws_s

_cputts _cputs _cputs _cputws

_fgettc fgetc fgetc fgetwc

_fgettchar _fgetchar _fgetchar _fgetwchar

_fgetts fgets fgets fgetws

_fputtc fputc fputc fputwc

_fputtchar _fputchar _fputchar _fputwchar

_fputts fputs fputs fputws

_ftprintf fprintf fprintf fwprintf

_ftprintf_s fprintf_s fprintf_s fwprintf_s

_ftscanf fscanf fscanf fwscanf

_ftscanf_s fscanf_s fscanf_s fwscanf_s

_gettc getc getc getwc

_gettch _getch _getch _getwch

The generic-text routine mappings are defined in TCHAR.H. _tccpy and _tclen map to functions in the MBCS
model; they are mapped to macros or inline functions in the SBCS and Unicode models for completeness. For
information on a generic text routine, see the help topic about the corresponding SBCS -, _MBCS -, or _UNICODE -
related routine.

More specific information about individual routines listed in the left column in the following table is not available
in this documentation. However, you can easily look up the information on a corresponding SBCS -, _MBCS -, or
_UNICODE -related routine. Use the Search command on the Help menu to look up any generic-text routine listed

below.

For related information, see Generic-Text Mappings in TCHAR.H.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/routine-mappings.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/text/generic-text-mappings-in-tchar-h

_gettchar getchar getchar getwchar

_gettche _getche _getche _getwche

_getts gets gets getws

_getts_s gets_s gets_s getws_s

_istalnum isalnum _ismbcalnum iswalnum

_istalpha isalpha _ismbcalpha iswalpha

_istascii isascii isascii iswascii

_istcntrl iscntrl iscntrl iswcntrl

_istdigit isdigit _ismbcdigit iswdigit

_istgraph isgraph _ismbcgraph iswgraph

_istlead Always returns false _ismbblead Always returns false

_istleadbyte Always returns false isleadbyte Always returns false

_istlegal Always returns true _ismbclegal Always returns true

_istlower islower _ismbclower iswlower

_istprint isprint _ismbcprint iswprint

_istpunct ispunct _ismbcpunct iswpunct

_istspace isspace _ismbcspace iswspace

_istupper isupper _ismbcupper iswupper

_istxdigit isxdigit isxdigit iswxdigit

_itot _itoa _itoa _itow

_itot_s _itoa_s _itoa_s _itow_s

_ltot _ltoa _ltoa _ltow

_ltot_s _ltoa_s _ltoa_s _ltow_s

_puttc putc putc putwc

GENERIC-TEX T ROUTINE
NAME

SBCS (_UNICODE & MBCS NOT
DEFINED) _MBCS DEFINED _UNICODE DEFINED

_puttch _putch _putch _putwch

_puttchar putchar putchar putwchar

_putts puts puts _putws

_sctprintf _scprintf _scprintf _scwprintf

_sntprintf _snprintf _snprintf _snwprintf

_sntprintf_s _snprintf_s _snprintf_s _snwprintf_s

_sntscanf _snscanf _snscanf _snwscanf

_sntscanf_s _snscanf_s _snscanf_s _snwscanf_s

_stprintf sprintf sprintf swprintf

_stprintf_s sprintf_s sprintf_s swprintf_s

_stscanf sscanf sscanf swscanf

_stscanf_s sscanf_s sscanf_s swscanf_s

_taccess _access _access _waccess

_taccess_s _access_s _access_s _waccess_s

_tasctime asctime asctime _wasctime

_tasctime_s asctime_s asctime_s _wasctime_s

_tccmp Maps to macro or inline
function

_mbsncmp Maps to macro or inline
function

_tccpy Maps to macro or inline
function

_mbccpy Maps to macro or inline
function

_tccpy_s strcpy_s _mbccpy_s wcscpy_s

_tchdir _chdir _chdir _wchdir

_tclen Maps to macro or inline
function

_mbclen Maps to macro or inline
function

_tchmod _chmod _chmod _wchmod

_tcprintf _cprintf _cprintf _cwprintf

GENERIC-TEX T ROUTINE
NAME

SBCS (_UNICODE & MBCS NOT
DEFINED) _MBCS DEFINED _UNICODE DEFINED

_tcprintf_s _cprintf_s _cprintf_s _cwprintf_s

_tcreat _creat _creat _wcreat

_tcscanf _cscanf _cscanf _cwscanf

_tcscanf_s _cscanf_s _cscanf_s _cwscanf_s

_tcscat strcat _mbscat wcscat

_tcscat_s strcat_s _mbscat_s wcscat_s

_tcschr strchr _mbschr wcschr

_tcsclen strlen _mbslen wcslen

_tcsclen_s strlen_s _mbslen_s wcslen_s

_tcscmp strcmp _mbscmp wcscmp

_tcscoll strcoll _mbscoll wcscoll

_tcscpy strcpy _mbscpy wcscpy

_tcscpy_s strcpy_s _mbscpy_s wcscpy_s

_tcscspn strcspn _mbscspn wcscspn

_tcsdec _strdec _mbsdec _wcsdec

_tcsdup _strdup _mbsdup _wcsdup

_tcserror strerror strerror _wcserror

_tcserror_s strerror_s strerror_s _wcserror_s

_tcsftime strftime strftime wcsftime

_tcsicmp _stricmp _mbsicmp _wcsicmp

_tcsicoll _stricoll _mbsicoll _wcsicoll

_tcsinc _strinc _mbsinc _wcsinc

_tcslen strlen strlen wcslen

_tcslwr _strlwr _mbslwr _wcslwr

GENERIC-TEX T ROUTINE
NAME

SBCS (_UNICODE & MBCS NOT
DEFINED) _MBCS DEFINED _UNICODE DEFINED

_tcslwr_s _strlwr_s _mbslwr_s _wcslwr_s

_tcsnbcnt _strncnt _mbsnbcnt _wcsncnt

_tcsncat strncat _mbsnbcat wcsncat

_tcsncat_s strncat_s _mbsnbcat_s wcsncat_s

_tcsnccat strncat _mbsncat wcsncat

_tcsnccmp strncmp _mbsncmp wcsncmp

_tcsnccmp_s strncmp_s _mbsncmp_s wcsncmp_s

_tcsnccoll _strncoll _mbsncoll _wcsncoll

_tcsncmp strncmp _mbsnbcmp wcsncmp

_tcsnccnt _strncnt _mbsnccnt _wcsncnt

_tcsnccpy strncpy _mbsncpy wcsncpy

_tcsnccpy_s strncpy_s _mbsncpy_s wcsncpy_s

_tcsncicmp _strnicmp _mbsnicmp _wcsnicmp

_tcsncicoll _strnicoll _mbsnicoll _wcsnicoll

_tcsncpy strncpy _mbsnbcpy wcsncpy

_tcsncpy_s strncpy_s _mbsnbcpy_s wcsncpy_s

_tcsncset _strnset _mbsnset _wcsnset

_tcsnextc _strnextc _mbsnextc _wcsnextc

_tcsnicmp _strnicmp _mbsnbicmp _wcsnicmp

_tcsnicoll _strnicoll _mbsnbicoll _wcsnicoll

_tcsninc _strninc _mbsninc _wcsninc

_tcsnccnt _strncnt _mbsnccnt _wcsncnt

_tcsnset _strnset _mbsnbset _wcsnset

_tcspbrk strpbrk _mbspbrk wcspbrk

GENERIC-TEX T ROUTINE
NAME

SBCS (_UNICODE & MBCS NOT
DEFINED) _MBCS DEFINED _UNICODE DEFINED

_tcsspnp _strspnp _mbsspnp _wcsspnp

_tcsrchr strrchr _mbsrchr wcsrchr

_tcsrev _strrev _mbsrev _wcsrev

_tcsset _strset _mbsset _wcsset

_tcsspn strspn _mbsspn wcsspn

_tcsstr strstr _mbsstr wcsstr

_tcstod strtod strtod wcstod

_tcstoi64 _strtoi64 _strtoi64 _wcstoi64

_tcstok strtok _mbstok wcstok

_tcstok_s strtok_s _mbstok_s wcstok_s

_tcstol strtol strtol wcstol

_tcstoui64 _strtoui64 _strtoui64 _wcstoui64

_tcstoul strtoul strtoul wcstoul

_tcsupr _strupr _mbsupr _wcsupr

_tcsupr_s _strupr_s _mbsupr_s _wcsupr_s

_tcsxfrm strxfrm strxfrm wcsxfrm

_tctime ctime ctime _wctime

_tctime_s ctime_s ctime_s _wctime_s

_tctime32 _ctime32 _ctime32 _wctime32

_tctime32_s _ctime32_s _ctime32_s _wctime32_s

_tctime64 _ctime64 _ctime64 _wctime64

_tctime64_s _ctime64_s _ctime64_s _wctime64_s

_texecl _execl _execl _wexecl

_texecle _execle _execle _wexecle

GENERIC-TEX T ROUTINE
NAME

SBCS (_UNICODE & MBCS NOT
DEFINED) _MBCS DEFINED _UNICODE DEFINED

_texeclp _execlp _execlp _wexeclp

_texeclpe _execlpe _execlpe _wexeclpe

_texecv _execv _execv _wexecv

_texecve _execve _execve _wexecve

_texecvp _execvp _execvp _wexecvp

_texecvpe _execvpe _execvpe _wexecvpe

_tfdopen _fdopen _fdopen _wfdopen

_tfindfirst _findfirst _findfirst _wfindfirst

_tfindnext _findnext _findnext _wfindnext

_tfindnext32 _findnext32 _findnext32 _wfindnext32

_tfindnext64 _findnext64 _findnext64 _wfindnext64

_tfindnexti64 _findnexti64 _findnexti64 _wfindnexti64

_tfindnexti6432 _findnexti6432 _findnexti6432 _wfindnexti6432

_tfindnext32i64 _findnext32i64 _findnext32i64 _wfindnext32i64

_tfopen fopen fopen _wfopen

_tfopen_s fopen_s fopen_s _wfopen_s

_tfreopen freopen freopen _wfreopen

_tfreopen_s freopen_s freopen_s _wfreopen_s

_tfsopen _fsopen _fsopen _wfsopen

_tfullpath _fullpath _fullpath _wfullpath

_tgetcwd _getcwd _getcwd _wgetcwd

_tgetdcwd _getdcwd _getdcwd _wgetdcwd

_tgetenv getenv getenv _wgetenv

_tgetenv_s getenv_s getenv_s _wgetenv_s

GENERIC-TEX T ROUTINE
NAME

SBCS (_UNICODE & MBCS NOT
DEFINED) _MBCS DEFINED _UNICODE DEFINED

_tmain main main wmain

_tmakepath _makepath _makepath _wmakepath

_tmakepath_s _makepath_s _makepath_s _wmakepath_s

_tmkdir _mkdir _mkdir _wmkdir

_tmktemp _mktemp _mktemp _wmktemp

_tmktemp_s _mktemp_s _mktemp_s _wmktemp_s

_topen _open _open _wopen

_topen_s _open_s _open_s _wopen_s

_totlower tolower _mbctolower towlower

_totupper toupper _mbctoupper towupper

_tperror perror perror _wperror

_tpopen _popen _popen _wpopen

_tprintf printf printf wprintf

_tprintf_s printf_s printf_s wprintf_s

_tputenv _putenv _putenv _wputenv

_tputenv_s _putenv_s _putenv_s _wputenv_s

_tremove remove remove _wremove

_trename rename rename _wrename

_trmdir _rmdir _rmdir _wrmdir

_tsearchenv _searchenv _searchenv _wsearchenv

_tsearchenv_s _searchenv_s _searchenv_s _wsearchenv_s

_tscanf scanf scanf wscanf

_tscanf_s scanf_s scanf_s wscanf_s

_tsetlocale setlocale setlocale _wsetlocale

GENERIC-TEX T ROUTINE
NAME

SBCS (_UNICODE & MBCS NOT
DEFINED) _MBCS DEFINED _UNICODE DEFINED

_tsopen _sopen _sopen _wsopen

_tsopen_s _sopen_s _sopen_s _wsopen_s

_tspawnl _spawnl _spawnl _wspawnl

_tspawnle _spawnle _spawnle _wspawnle

_tspawnlp _spawnlp _spawnlp _wspawnlp

_tspawnlpe _spawnlpe _spawnlpe _wspawnlpe

_tspawnv _spawnv _spawnv _wspawnv

_tspawnve _spawnve _spawnve _wspawnve

_tspawnvp _spawnvp _spawnvp _wspawnvp

_tspawnvpe _spawnvpe _spawnvpe _wspawnvpe

_tsplitpath _splitpath _splitpath _wsplitpath

_tstat _stat _stat _wstat

_tstat32 _stat32 _stat32 _wstat32

_tstati32 _stati32 _stati32 _wstati32

_tstat64 _stat64 _stat64 _wstat64

_tstati64 _stati64 _stati64 _wstati64

_tstof atof atof _wtof

_tstoi atoi atoi _wtoi

_tstoi64 _atoi64 _atoi64 _wtoi64

_tstol atol atol _wtol

_tstrdate _strdate _strdate _wstrdate

_tstrdate_s _strdate_s _strdate_s _wstrdate_s

_tstrtime _strtime _strtime _wstrtime

_tstrtime_s _strtime_s _strtime_s _wstrtime_s

GENERIC-TEX T ROUTINE
NAME

SBCS (_UNICODE & MBCS NOT
DEFINED) _MBCS DEFINED _UNICODE DEFINED

_tsystem system system _wsystem

_ttempnam _tempnam _tempnam _wtempnam

_ttmpnam tmpnam tmpnam _wtmpnam

_ttmpnam_s tmpnam_s tmpnam_s _wtmpnam_s

_ttoi atoi atoi _wtoi

_ttoi64 _atoi64 _atoi64 _wtoi64

_ttol atol atol _wtol

_tunlink _unlink _unlink _wunlink

_tutime _utime _utime _wutime

_tutime32 _utime32 _utime32 _wutime32

_tutime64 _utime64 _utime64 _wutime64

_tWinMain WinMain WinMain wWinMain

_ui64tot _ui64toa _ui64toa _ui64tow

_ui64tot_s _ui64toa_s _ui64toa_s _ui64tow_s

_ultot _ultoa _ultoa _ultow

_ultot_s _ultoa_s _ultoa_s _ultow_s

_ungettc ungetc ungetc ungetwc

_ungettch _ungetch _ungetch _ungetwch

_vftprintf vfprintf vfprintf vfwprintf

_vftprintf_s vfprintf_s vfprintf_s vfwprintf_S

_vsctprintf _vscprintf _vscprintf _vscwprintf

_vsctprintf_s _vscprintf_s _vscprintf_s _vscwprintf_S

_vsntprintf _vsnprintf _vsnprintf _vsnwprintf

_vsntprintf_s _vsnprintf_s _vsnprintf_s _vsnwprintf_s

GENERIC-TEX T ROUTINE
NAME

SBCS (_UNICODE & MBCS NOT
DEFINED) _MBCS DEFINED _UNICODE DEFINED

_vstprintf vsprintf vsprintf vswprintf

_vstprintf_s vsprintf_s vsprintf_s vswprintf_s

_vtprintf vprintf vprintf vwprintf

_vtprintf_s vprintf_s vprintf_s vwprintf_s

GENERIC-TEX T ROUTINE
NAME

SBCS (_UNICODE & MBCS NOT
DEFINED) _MBCS DEFINED _UNICODE DEFINED

See also
Generic-Text Mappings
Data Type Mappings
Constant and Global Variable Mappings
A Sample Generic-Text Program
Using Generic-Text Mappings

UCRT Locale names, Languages, and
Country/Region strings
12/11/2018 • 3 minutes to read • Edit Online

The locale argument to the setlocale, _wsetlocale, _create_locale, and _wcreate_locale functions can be set by using
the locale names, languages, country/region codes, and code pages that are supported by the Windows NLS API.
The locale argument takes the following form:

locale :: "locale-name"
 | "language[_country-region[.code-page]]"
 | ".code-page"
 | "C"
 | ""
 | NULL

The locale-name form is a short, IETF-standardized string; for example, en-US for English (United States) or
bs-Cyrl-BA for Bosnian (Cyrillic, Bosnia and Herzegovina). These forms are preferred. For a list of supported

locale names by Windows operating system version, see the Language tag column of the table in Appendix A:
Product Behavior in [MS-LCID]: Windows Language Code Identifier (LCID) Reference. This resource lists the
supported language, script, and region parts of the locale names. For information about the supported locale
names that have non-default sort orders, see the Locale name column in Sort Order Identifiers. Under Windows
10 or later, locale names that correspond to valid BCP-47 language tags are allowed. For example, jp-US is a
valid BCP-47 tag, but it is effectively only US for locale functionality.

The language[_country-region[.code-page]] form is stored in the locale setting for a category when a language
string, or language string and country or region string, is used to create the locale. The set of supported language
strings is described in Language Strings, and the list of supported country and region strings is listed in
Country/Region Strings. If the specified language is not associated with the specified country or region, the
default language for the specified country or region is stored in the locale setting. We do not recommend this
form for locale strings embedded in code or serialized to storage, because these strings are more likely to be
changed by an operating system update than the locale name form.

The code-page is the ANSI/OEM code page that's associated with the locale. The code page is determined for you
when you specify a locale by language or by language and country/region alone. The special value .ACP specifies
the ANSI code page for the country/region. The special value .OCP specifies the OEM code page for the
country/region. For example, if you specify "Greek_Greece.ACP" as the locale, the locale is stored as
Greek_Greece.1253 (the ANSI code page for Greek), and if you specify "Greek_Greece.OCP" as the locale, it is

stored as Greek_Greece.737 (the OEM code page for Greek). For more information about code pages, see Code
Pages. For a list of supported code pages on Windows, see Code Page Identifiers.

If you use only the code page to specify the locale, the user's default language and country/region as reported by
GetUserDefaultLocaleName are used. For example, if you specify ".1254" (ANSI Turkish) as the locale for a user
that's configured for English (United States), the locale that's stored is English_United States.1254 . We do not
recommend this form, because it could lead to inconsistent behavior.

A locale argument value of C specifies the minimal ANSI conforming environment for C translation. The C

locale assumes that every char data type is 1 byte and its value is always less than 256. If locale points to an
empty string, the locale is the implementation-defined native environment.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/locale-names-languages-and-country-region-strings.md
https://msdn.microsoft.com/library/cc233982.aspx
https://docs.microsoft.com/windows/desktop/Intl/sort-order-identifiers
https://tools.ietf.org/html/bcp47
https://docs.microsoft.com/windows/desktop/Intl/code-page-identifiers
https://docs.microsoft.com/windows/desktop/api/winnls/nf-winnls-getuserdefaultlocalename

_wsetlocale(LC_ALL, L"de-DE");
_wsetlocale(LC_ALL, L"LC_MONETARY=en-GB;LC_TIME=es-ES");

See also

You can specify all of the locale categories at the same time for the setlocale and _wsetlocale functions by
using the LC_ALL category. The categories can all be set to the same locale, or you can set each category
individually by using a locale argument that has this form:

LC-ALL-specifier :: locale
 | [LC_COLLATE=locale][;LC_CTYPE=locale][;LC_MONETARY=locale][;LC_NUMERIC=locale]
[;LC_TIME=locale]

You can specify multiple category types, separated by semicolons. Category types that are not specified use the
current locale setting. For example, this code snippet sets the current locale for all categories to de-DE , and then
sets the categories LC_MONETARY to en-GB and LC_TIME to es-ES :

C Run-Time Library Reference
_get_current_locale
setlocale, _wsetlocale
_create_locale, _wcreate_locale
Language Strings
Country/Region Strings

Language Strings
10/31/2018 • 2 minutes to read • Edit Online

Additional supported language strings

LANGUAGE STRING EQUIVALENT LOCALE NAME

american en-US

american english en-US

american-english en-US

australian en-AU

belgian nl-BE

canadian en-CA

chh zh-HK

chi zh-SG

chinese zh

chinese-hongkong zh-HK

chinese-simplified zh-CN

chinese-singapore zh-SG

chinese-traditional zh-TW

dutch-belgian nl-BE

english-american en-US

english-aus en-AU

english-belize en-BZ

The setlocale and _create_locale functions can use the Windows NLS API supported languages on operating
systems that do not use the Unicode code page. For a list of supported languages by operating system version,
see Appendix A: Product Behavior in [MS-LCID]: Windows Language Code Identifier (LCID) Reference. The
language string can be any of the values in the Language and Language tag columns of the list of supported
languages. For an example of code that enumerates available locale names and related values, see NLS: Name-
based APIs Sample.

The Microsoft C run-time library implementation also supports these language strings:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/language-strings.md
https://msdn.microsoft.com/library/cc233982.aspx
https://docs.microsoft.com/windows/desktop/intl/nls--name-based-apis-sample

english-can en-CA

english-caribbean en-029

english-ire en-IE

english-jamaica en-JM

english-nz en-NZ

english-south africa en-ZA

english-trinidad y tobago en-TT

english-uk en-GB

english-us en-US

english-usa en-US

french-belgian fr-BE

french-canadian fr-CA

french-luxembourg fr-LU

french-swiss fr-CH

german-austrian de-AT

german-lichtenstein de-LI

german-luxembourg de-LU

german-swiss de-CH

irish-english en-IE

italian-swiss it-CH

norwegian no

norwegian-bokmal nb-NO

norwegian-nynorsk nn-NO

portuguese-brazilian pt-BR

spanish-argentina es-AR

LANGUAGE STRING EQUIVALENT LOCALE NAME

spanish-bolivia es-BO

spanish-chile es-CL

spanish-colombia es-CO

spanish-costa rica es-CR

spanish-dominican republic es-DO

spanish-ecuador es-EC

spanish-el salvador es-SV

spanish-guatemala es-GT

spanish-honduras es-HN

spanish-mexican es-MX

spanish-modern es-ES

spanish-nicaragua es-NI

spanish-panama es-PA

spanish-paraguay es-PY

spanish-peru es-PE

spanish-puerto rico es-PR

spanish-uruguay es-UY

spanish-venezuela es-VE

swedish-finland sv-FI

swiss de-CH

uk en-GB

us en-US

usa en-US

LANGUAGE STRING EQUIVALENT LOCALE NAME

See also
Locale Names, Languages, and Country/Region Strings
Country/Region Strings

setlocale, _wsetlocale
_create_locale, _wcreate_locale

Country/Region Strings
10/31/2018 • 2 minutes to read • Edit Online

Additional supported country and region strings

COUNTRY/REGION STRING ABBREVIATION EQUIVALENT LOCALE NAME

america USA en-US

britain GBR en-GB

china CHN zh-CN

czech CZE cs-CZ

england GBR en-GB

great britain GBR en-GB

holland NLD nl-NL

hong-kong HKG zh-HK

new-zealand NZL en-NZ

nz NZL en-NZ

pr china CHN zh-CN

pr-china CHN zh-CN

puerto-rico PRI es-PR

slovak SVK sk-SK

south africa ZAF af-ZA

south korea KOR ko-KR

Country and region strings can be combined with a language string to create a locale specification for the
setlocale , _wsetlocale , _create_locale , and _wcreate_locale functions. For lists of country and region names

that are supported by various Windows operating system versions, see the Language, Location, and Language
tag columns of the table in Appendix A: Product Behavior in [MS-LCID]: Windows Language Code Identifier
(LCID) Reference. For an example of code that enumerates available locale names and related values, see NLS:
Name-based APIs Sample.

The Microsoft C run-time library implementation also supports the following additional country/region strings
and abbreviations:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/country-region-strings.md
https://msdn.microsoft.com/library/cc233982.aspx
https://docs.microsoft.com/windows/desktop/intl/nls--name-based-apis-sample

south-africa ZAF af-ZA

south-korea KOR ko-KR

trinidad & tobago TTO en-TT

uk GBR en-GB

united-kingdom GBR en-GB

united-states USA en-US

us USA en-US

COUNTRY/REGION STRING ABBREVIATION EQUIVALENT LOCALE NAME

See also
Locale Names, Languages, and Country/Region Strings
Language Strings
setlocale, _wsetlocale
_create_locale, _wcreate_locale

Function Family Overviews
10/31/2018 • 2 minutes to read • Edit Online

Section Heading

Subsection Heading

Insert introduction here.

Insert section body here.

Insert subsection body here.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/function-family-overviews.md

_exec, _wexec Functions
3/11/2019 • 7 minutes to read • Edit Online

_execl, _wexecl _execv, _wexecv

_execle, _wexecle _execve, _wexecve

_execlp, _wexeclp _execvp, _wexecvp

_execlpe, _wexeclpe _execvpe, _wexecvpe

_EXEC FUNCTION SUFFIX DESCRIPTION

e envp , array of pointers to environment settings, is passed
to the new process.

l Command-line arguments are passed individually to
_exec function. Typically used when the number of

parameters to the new process is known in advance.

p PATH environment variable is used to find the file to
execute.

v argv , array of pointers to command-line arguments, is
passed to _exec . Typically used when the number of
parameters to the new process is variable.

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_texecl _execl _execl _wexecl

_texecle _execle _execle _wexecle

_texeclp _execlp _execlp _wexeclp

Each function in this family loads and executes a new process:

The letter at the end of the function name determines the variation.

Each _exec function loads and executes a new process. All _exec functions use the same operating-system
function (CreateProcess). The _exec functions automatically handle multibyte-character string arguments as
appropriate, recognizing multibyte-character sequences according to the multibyte code page currently in use.
The _wexec functions are wide-character versions of the _exec functions. The _wexec functions behave
identically to their _exec family counterparts except that they do not handle multibyte-character strings.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/exec-wexec-functions.md
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createprocessa

_texeclpe _execlpe _execlpe _wexeclpe

_texecv _execv _execv _wexecv

_texecve _execve _execve _wexecve

_texecvp _execvp _execvp _wexecvp

_texecvpe _execvpe _execvpe _wexecvpe

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

NOTE

IMPORTANT

The cmdname parameter specifies the file to be executed as the new process. It can specify a full path (from the
root), a partial path (from the current working directory), or a file name. If cmdname does not have a file name
extension or does not end with a period (.), the _exec function searches for the named file. If the search is
unsuccessful, it tries the same base name with the .com file name extension and then with the .exe, .bat, and
.cmd file name extensions. If cmdname has a file name extension, only that extension is used in the search. If
cmdname ends with a period, the _exec function searches for cmdname with no file name extension. _execlp ,
_execlpe , _execvp , and _execvpe search for cmdname (using the same procedures) in the directories specified

by the PATH environment variable. If cmdname contains a drive specifier or any slashes (that is, if it is a relative
path), the _exec call searches only for the specified file; the path is not searched.

Parameters are passed to the new process by giving one or more pointers to character strings as parameters
in the _exec call. These character strings form the parameter list for the new process. The combined length of
the inherited environment settings and the strings forming the parameter list for the new process must not
exceed 32 kilobytes. The terminating null character ('\0') for each string is not included in the count, but space
characters (inserted automatically to separate the parameters) are counted.

Spaces embedded in strings may cause unexpected behavior; for example, passing _exec the string "hi there" will
result in the new process getting two arguments, "hi" and "there" . If the intent was to have the new process open
a file named "hi there", the process would fail. You can avoid this by quoting the string: "\"hi there\"" .

Do not pass user input to _exec without explicitly checking its content. _exec will result in a call to CreateProcess so
keep in mind that unqualified path names could lead to potential security vulnerabilities.

The _exec functions validate their parameters. If expected parameters are null pointers, empty strings, or
omitted, the _exec functions invoke the invalid parameter handler as described in Parameter Validation. If
execution is allowed to continue, these functions set errno to EINVAL and return -1. No new process is
executed.

The argument pointers can be passed as separate parameters (in _execl , _execle , _execlp , and _execlpe)
or as an array of pointers (in _execv , _execve , _execvp , and _execvpe). At least one parameter, arg0 , must
be passed to the new process; this parameter is argv [0] of the new process. Usually, this parameter is a copy
of cmdname . (A different value does not produce an error.)

The _execl , _execle , _execlp , and _execlpe calls are typically used when the number of parameters is
known in advance. The parameter arg0 is usually a pointer to cmdname . The parameters arg1 through argn

https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createprocessa

Example
// crt_args.c
// Illustrates the following variables used for accessing
// command-line arguments and environment variables:
// argc argv envp
// This program will be executed by crt_exec which follows.

#include <stdio.h>

int main(int argc, // Number of strings in array argv
char *argv[], // Array of command-line argument strings
char **envp) // Array of environment variable strings
{
 int count;

 // Display each command-line argument.
 printf("\nCommand-line arguments:\n");
 for(count = 0; count < argc; count++)
 printf(" argv[%d] %s\n", count, argv[count]);

 // Display each environment variable.
 printf("\nEnvironment variables:\n");
 while(*envp != NULL)
 printf(" %s\n", *(envp++));

 return;
}

point to the character strings forming the new parameter list. A null pointer must follow argn to mark the end
of the parameter list.

The _execv , _execve , _execvp , and _execvpe calls are useful when the number of parameters to the new
process is variable. Pointers to the parameters are passed as an array, argv . The parameter argv [0] is usually
a pointer to cmdname . The parameters argv [1] through argv [n] point to the character strings forming the
new parameter list. The parameter argv [n +1] must be a NULL pointer to mark the end of the parameter
list.

Files that are open when an _exec call is made remain open in the new process. In _execl , _execlp , _execv ,
and _execvp calls, the new process inherits the environment of the calling process. _execle , _execlpe ,
_execve , and _execvpe calls alter the environment for the new process by passing a list of environment

settings through the envp parameter. envp is an array of character pointers, each element of which (except
for the final element) points to a null-terminated string defining an environment variable. Such a string usually
has the form NAME = value where NAME is the name of an environment variable and value is the string value
to which that variable is set. (Note that value is not enclosed in double quotation marks.) The final element of
the envp array should be NULL. When envp itself is NULL, the new process inherits the environment
settings of the calling process.

A program executed with one of the _exec functions is always loaded into memory as if the maximum
allocation field in the program's .exe file header were set to the default value of 0xFFFFH.

The _exec calls do not preserve the translation modes of open files. If the new process must use files
inherited from the calling process, use the _setmode routine to set the translation mode of these files to the
desired mode. You must explicitly flush (using fflush or _flushall) or close any stream before the _exec

function call. Signal settings are not preserved in new processes that are created by calls to _exec routines.
The signal settings are reset to the default in the new process.

Run the following program to execute Crt_args.exe:

// crt_exec.c
// Illustrates the different versions of exec, including
// _execl _execle _execlp _execlpe
// _execv _execve _execvp _execvpe
//
// Although CRT_EXEC.C can exec any program, you can verify how
// different versions handle arguments and environment by
// compiling and specifying the sample program CRT_ARGS.C. See
// "_spawn, _wspawn Functions" for examples of the similar spawn
// functions.

#include <stdio.h>
#include <conio.h>
#include <process.h>

char *my_env[] = // Environment for exec?e
{
 "THIS=environment will be",
 "PASSED=to new process by",
 "the EXEC=functions",
 NULL
};

int main(int ac, char* av[])
{
 char *args[4];
 int ch;
 if(ac != 3){
 fprintf(stderr, "Usage: %s <program> <number (1-8)>\n", av[0]);
 return;
 }

 // Arguments for _execv?
 args[0] = av[1];
 args[1] = "exec??";
 args[2] = "two";
 args[3] = NULL;

 switch(atoi(av[2]))
 {
 case 1:
 _execl(av[1], av[1], "_execl", "two", NULL);
 break;
 case 2:
 _execle(av[1], av[1], "_execle", "two", NULL, my_env);
 break;
 case 3:
 _execlp(av[1], av[1], "_execlp", "two", NULL);
 break;
 case 4:
 _execlpe(av[1], av[1], "_execlpe", "two", NULL, my_env);
 break;
 case 5:
 _execv(av[1], args);
 break;
 case 6:
 _execve(av[1], args, my_env);
 break;
 case 7:
 _execvp(av[1], args);
 break;
 case 8:
 _execvpe(av[1], args, my_env);
 break;
 default:
 break;
 }

 // This point is reached only if exec fails.

 // This point is reached only if exec fails.
 printf("\nProcess was not execed.");
 exit(0);
}

Requirements

See also

Header: process.h

Process and Environment Control
abort
atexit
exit, _Exit, _exit
_onexit, _onexit_m
_spawn, _wspawn Functions
system, _wsystem

Filename Search Functions
3/11/2019 • 4 minutes to read • Edit Online

Remarks

These functions search for and close searches for specified file names:

_findnext, _wfindnext

_findfirst, _wfindfirst

_findclose

The _findfirst function provides information about the first instance of a file name that matches the file
specified in the filespec argument. You can use in filespec any combination of wildcard characters that is
supported by the host operating system.

The functions return file information in a _finddata_t structure, which is defined in IO.h. Various functions in the
family use many variations on the _finddata_t structure. The basic _finddata_t structure includes the following
elements:

unsigned attrib

File attribute.

time_t time_create

Time of file creation (-1L for FAT file systems). This time is stored in UTC format. To convert to the local time, use
localtime_s.

time_t time_access

Time of the last file access (-1L for FAT file systems). This time is stored in UTC format. To convert to the local
time, use localtime_s .

time_t time_write

Time of the last write to file. This time is stored in UTC format. To convert to the local time, use localtime_s .

_fsize_t size

Length of the file in bytes.

char name [_MAX_PATH] Null-terminated name of matched file or directory, without the path.

In file systems that do not support the creation and last access times of a file, such as the FAT system, the
time_create and time_access fields are always -1L.

_MAX_PATH is defined in Stdlib.h as 260 bytes.

You cannot specify target attributes (such as _A_RDONLY) to limit the find operation. These attributes are returned
in the attrib field of the _finddata_t structure and can have the following values (defined in IO.h). Users should
not rely on these being the only values possible for the attrib field.

_A_ARCH

Archive. Set whenever the file is changed and cleared by the BACKUP command. Value: 0x20.

_A_HIDDEN

Hidden file. Not generally seen with the DIR command, unless you use the /AH option. Returns information

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/filename-search-functions.md

STRUCTURE TIME TYPE FILE SIZE TYPE

_finddata_t , _wfinddata_t __time64_t _fsize_t

_finddata32_t , _wfinddata32_t __time32_t _fsize_t

__finddata64_t , __wfinddata64_t __time64_t __int64

_finddata32i64_t ,
_wfinddata32i64_t

__time32_t __int64

about normal files and files that have this attribute. Value: 0x02.

_A_NORMAL

Normal. File has no other attributes set and can be read or written to without restriction. Value: 0x00.

_A_RDONLY

Read-only. File cannot be opened for writing and a file that has the same name cannot be created. Value: 0x01.

_A_SUBDIR

Subdirectory. Value: 0x10.

_A_SYSTEM

System file. Not ordinarily seen with the DIR command, unless the /A or /A:S option is used. Value: 0x04.

_findnext finds the next name, if any, that matches the filespec argument specified in an earlier call to
_findfirst . The fileinfo argument should point to a structure initialized by the previous call to _findfirst . If a

match is found, the fileinfo structure contents are changed as described earlier. Otherwise, it is left unchanged.
_findclose closes the specified search handle and releases all associated resources for both _findfirst and
_findnext . The handle returned by either _findfirst or _findnext must first be passed to _findclose , before

modification operations, such as deleting, can be performed on the directories that form the paths passed to them.

You can nest the _find functions. For example, if a call to _findfirst or _findnext finds the file that is a
subdirectory, a new search can be initiated with another call to _findfirst or _findnext .

_wfindfirst and _wfindnext are wide-character versions of _findfirst and _findnext . The structure argument
of the wide-character versions has the _wfinddata_t data type, which is defined in IO.h and in Wchar.h. The fields
of this data type are the same as those of the _finddata_t data type, except that in _wfinddata_t the name field is
of type wchar_t instead of type char . Otherwise _wfindfirst and _wfindnext behave identically to _findfirst

and _findnext .

_findfirst and _findnext use the 64-bit time type. If you must use the old 32-bit time type, you can define
_USE_32BIT_TIME_T . The versions of these functions that have the 32 suffix in their names use the 32-bit time

type, and those with the 64 suffix use the 64-bit time type.

Functions _findfirst32i64 , _findnext32i64 , _wfindfirst32i64 , and _wfindnext32i64 also behave identically to
the 32-bit time type versions of these functions except they use and return 64-bit file lengths. Functions
_findfirst64i32 , _findnext64i32 , _wfindfirst64i32 , and _wfindnext64i32 use the 64-bit time type but use 32-bit

file lengths. These functions use appropriate variations of the _finddata_t type in which the fields have different
types for the time and the file size.

_finddata_t is actually a macro that evaluates to _finddata64i32_t (or _finddata32_t if _USE_32BIT_TIME_T is
defined). The following table summarizes the variations on _finddata_t :

_finddata64i32_t ,
_wfinddata64i32_t

__time64_t _fsize_t

STRUCTURE TIME TYPE FILE SIZE TYPE

Example
// crt_find.c
// This program uses the 32-bit _find functions to print
// a list of all files (and their attributes) with a .C extension
// in the current directory.

#include <stdio.h>
#include <stdlib.h>
#include <io.h>
#include <time.h>

int main(void)
{
 struct _finddata_t c_file;
 intptr_t hFile;

 // Find first .c file in current directory
 if((hFile = _findfirst("*.c", &c_file)) == -1L)
 printf("No *.c files in current directory!\n");
 else
 {
 printf("Listing of .c files\n\n");
 printf("RDO HID SYS ARC FILE DATE %25c SIZE\n", ' ');
 printf("--- --- --- --- ---- ---- %25c ----\n", ' ');
 do {
 char buffer[30];
 printf((c_file.attrib & _A_RDONLY) ? " Y " : " N ");
 printf((c_file.attrib & _A_HIDDEN) ? " Y " : " N ");
 printf((c_file.attrib & _A_SYSTEM) ? " Y " : " N ");
 printf((c_file.attrib & _A_ARCH) ? " Y " : " N ");
 ctime_s(buffer, _countof(buffer), &c_file.time_write);
 printf(" %-12s %.24s %9ld\n",
 c_file.name, buffer, c_file.size);
 } while(_findnext(hFile, &c_file) == 0);
 _findclose(hFile);
 }
}

Listing of .c files

RDO HID SYS ARC FILE DATE SIZE
--- --- --- --- ---- ---- ----
N N N Y blah.c Wed Feb 13 09:21:42 2002 1715
N N N Y test.c Wed Feb 06 14:30:44 2002 312

See also

_fsize_t is a typedef for unsigned long (32 bits).

System Calls

Format specification syntax: printf and wprintf
functions
3/11/2019 • 16 minutes to read • Edit Online

IMPORTANT

Type conversion specifier

The various printf and wprintf functions take a format string and optional arguments and produce a
formatted sequence of characters for output. The format string contains zero or more directives, which are
either literal characters for output or encoded conversion specifications that describe how to format an
argument in the output. This topic describes the syntax used to encode conversion specifications in the format
string. For a listing of these functions, see Stream I/O.

A conversion specification consists of optional and required fields in this form:

%[flags][width][.precision][size]type

Each field of the conversion specification is a character or a number that signifies a particular format option
or conversion specifier. The required type field specifies the kind of conversion to be applied to an argument.
The optional flags, width, and precision fields control additional format aspects such as leading spaces or
zeroes, justification, and displayed precision. The size field specifies the size of the argument consumed and
converted.

A basic conversion specification contains only the percent sign and a type character. For example, %s
specifies a string conversion. To print a percent-sign character, use %% . If a percent sign is followed by a
character that has no meaning as a format field, the invalid parameter handler is invoked. For more
information, see Parameter Validation.

For security and stability, ensure that conversion specification strings are not user-defined. For example, consider a
program that prompts the user to enter a name and stores the input in a string variable that's named user_name . To
print user_name , do not do this:

printf(user_name); /* Danger! If user_name contains "%s", program will crash */

Instead, do this:

printf("%s", user_name);

The type conversion specifier character specifies whether to interpret the corresponding argument as a
character, a string, a pointer, an integer, or a floating-point number. The type character is the only required
conversion specification field, and it appears after any optional fields.

The arguments that follow the format string are interpreted according to the corresponding type character
and the optional size prefix. Conversions for character types char and wchar_t are specified by using c or C,
and single-byte and multi-byte or wide character strings are specified by using s or S, depending on which
formatting function is being used. Character and string arguments that are specified by using c and s are
interpreted as char and char* by printf family functions, or as wchar_t and wchar_t* by wprintf family
functions. Character and string arguments that are specified by using C and S are interpreted as wchar_t and
wchar_t* by printf family functions, or as char and char* by wprintf family functions. This behavior is

Microsoft specific.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/format-specification-syntax-printf-and-wprintf-functions.md

NOTE

Type field characters

TYPE CHARACTER ARGUMENT OUTPUT FORMAT

c Character When used with printf functions,
specifies a single-byte character;
when used with wprintf functions,
specifies a wide character.

C Character When used with printf functions,
specifies a wide character; when used
with wprintf functions, specifies a
single-byte character.

d Integer Signed decimal integer.

i Integer Signed decimal integer.

o Integer Unsigned octal integer.

u Integer Unsigned decimal integer.

x Integer Unsigned hexadecimal integer; uses
"abcdef."

X Integer Unsigned hexadecimal integer; uses
"ABCDEF."

e Floating-point Signed value that has the form [-
]d.dddde±dd[d] where d is one
decimal digit, dddd is one or more
decimal digits depending on the
specified precision, or six by default,
and dd[d] is two or three decimal
digits depending on the output
format and size of the exponent.

E Floating-point Identical to the e format except that E
rather than e introduces the
exponent.

Integer types such as short , int , long , long long , and their unsigned variants, are specified by using d, i,
o, u, x, and X. Floating-point types such as float , double , and long double , are specified by using a, A, e, E ,
f, F, g, and G. By default, unless they are modified by a size prefix, integer arguments are coerced to int type,
and floating-point arguments are coerced to double . On 64-bit systems, an int is a 32-bit value; therefore,
64-bit integers will be truncated when they are formatted for output unless a size prefix of ll or I64 is used.
Pointer types that are specified by p use the default pointer size for the platform.

Microsoft Specific The Z type character, and the behavior of the c, C, s, and S type characters when they are used
with the printf and wprintf functions, are Microsoft extensions. The ISO C standard uses c and s consistently for
narrow characters and strings, and C and S for wide characters and strings, in all formatting functions.

f Floating-point Signed value that has the form [-
]dddd.dddd, where dddd is one or
more decimal digits. The number of
digits before the decimal point
depends on the magnitude of the
number, and the number of digits
after the decimal point depends on
the requested precision, or six by
default.

F Floating-point Identical to the f format except that
infinity and nan output is capitalized.

g Floating-point Signed values are displayed in f or e
format, whichever is more compact
for the given value and precision. The
e format is used only when the
exponent of the value is less than -4
or greater than or equal to the
precision argument. Trailing zeros are
truncated, and the decimal point
appears only if one or more digits
follow it.

G Floating-point Identical to the g format, except that
E, rather than e, introduces the
exponent (where appropriate).

a Floating-point Signed hexadecimal double-precision
floating-point value that has the form
[-]0xh.hhhhp±dd, where h.hhhh are
the hex digits (using lower case
letters) of the mantissa, and dd are
one or more digits for the exponent.
The precision specifies the number of
digits after the point.

A Floating-point Signed hexadecimal double-precision
floating-point value that has the form
[-]0Xh.hhhhP±dd, where h.hhhh are
the hex digits (using capital letters) of
the mantissa, and dd are one or more
digits for the exponent. The precision
specifies the number of digits after
the point.

n Pointer to integer Number of characters that are
successfully written so far to the
stream or buffer. This value is stored
in the integer whose address is given
as the argument. The size of the
integer pointed to can be controlled
by an argument size specification
prefix. The n specifier is disabled by
default; for information see the
important security note.

TYPE CHARACTER ARGUMENT OUTPUT FORMAT

p Pointer type Displays the argument as an address
in hexadecimal digits.

s String When used with printf functions,
specifies a single-byte or multi-byte
character string; when used with
wprintf functions, specifies a wide-

character string. Characters are
displayed up to the first null character
or until the precision value is reached.

S String When used with printf functions,
specifies a wide-character string;
when used with wprintf functions,
specifies a single-byte or multi-byte
character string. Characters are
displayed up to the first null character
or until the precision value is reached.

Z ANSI_STRING or UNICODE_STRING

structure
When the address of an ANSI_STRING
or UNICODE_STRING structure is
passed as the argument, displays the
string contained in the buffer pointed
to by the Buffer field of the
structure. Use a size modifier prefix of
w to specify a UNICODE_STRING

argument—for example, %wZ . The
Length field of the structure must

be set to the length, in bytes, of the
string. The MaximumLength field of
the structure must be set to the
length, in bytes, of the buffer.

Typically, the Z type character is used
only in driver debugging functions
that use a conversion specification,
such as dbgPrint and kdPrint .

TYPE CHARACTER ARGUMENT OUTPUT FORMAT

VALUE OUTPUT

infinity inf

Quiet NaN nan

Signalling NaN nan(snan)

Indefinite NaN nan(ind)

Starting in Visual Studio 2015, if the argument that corresponds to a floating-point conversion specifier (a, A,
e, E , f, F, g, G) is infinite, indefinite, or NaN, the formatted output conforms to the C99 standard. This table
lists the formatted output:

Any of these values may be prefixed by a sign. If a floating-point type conversion specifier character is a
capital letter, then the output is also formatted in capital letters. For example, if the format specifier is %F

instead of %f , an infinity is formatted as INF instead of inf . The scanf functions can also parse these

https://docs.microsoft.com/windows/desktop/api/ntdef/ns-ntdef-_string
https://docs.microsoft.com/windows-hardware/drivers/ddi/content/wudfwdm/ns-wudfwdm-_unicode_string

VALUE OUTPUT

+ infinity 1.#INF random-digits

- infinity -1.#INF random-digits

Indefinite (same as quiet NaN) digit .#IND random-digits

NaN digit .#NAN random-digits

NOTE

NOTE

IMPORTANT

Flag directives

Flag characters

FLAG MEANING DEFAULT

- Left align the result within the given
field width.

Right align.

+ Use a sign (+ or -) to prefix the
output value if it is of a signed type.

Sign appears only for negative signed
values (-).

strings, so these values can make a round-trip through printf and scanf functions.

Before Visual Studio 2015, the CRT used a different, non-standard format for output of infinite, indefinite, and
NaN values:

Any of these may have been prefixed by a sign, and may have been formatted slightly differently depending
on field width and precision, sometimes with unusual effects. For example, printf("%.2f\n", INFINITY) would
print 1.#J because the #INF would be "rounded" to a precision of 2 digits.

If the argument that corresponds to %s or %S , or the Buffer field of the argument that corresponds to %Z , is a
null pointer, "(null)" is displayed.

In all exponential formats, the minimum number of digits of exponent to display is two, using three only if necessary.
By using the _set_output_format function, you can set the number of digits displayed to three for backward
compatibility with code written for Visual Studio 2013 and before.

Because the %n format is inherently insecure, it is disabled by default. If %n is encountered in a format string, the
invalid parameter handler is invoked, as described in Parameter Validation. To enable %n support, see
_set_printf_count_output.

The first optional field in a conversion specification contains flag directives, zero or more flag characters that
specify output justification and control output of signs, blanks, leading zeros, decimal points, and octal and
hexadecimal prefixes. More than one flag directive may appear in a conversion specification, and the flag
characters can appear in any order.

0 If width is prefixed by 0, leading zeros
are added until the minimum width is
reached. If both 0 and - appear, the 0
is ignored. If 0 is specified for an
integer format (i, u, x, X, o, d) and a
precision specification is also present
—for example, %04.d —the 0 is
ignored. If 0 is specified for the a or A
floating-point format, leading zeros
are prepended to the mantissa, after
the 0x or 0X prefix.

No padding.

blank (' ') Use a blank to prefix the output value
if it is signed and positive. The blank is
ignored if both the blank and + flags
appear.

No blank appears.

When it's used with the o, x, or X
format, the # flag uses 0, 0x, or 0X,
respectively, to prefix any nonzero
output value.

No blank appears.

When it's used with the e, E, f, F, a or
A format, the # flag forces the output
value to contain a decimal point.

Decimal point appears only if digits
follow it.

When it's used with the g or G
format, the # flag forces the output
value to contain a decimal point and
prevents the truncation of trailing
zeros.

Ignored when used with c, d, i, u, or
s.

Decimal point appears only if digits
follow it. Trailing zeros are truncated.

FLAG MEANING DEFAULT

Width specification

In a conversion specification, the optional width specification field appears after any flags characters. The
width argument is a non-negative decimal integer that controls the minimum number of characters that are
output. If the number of characters in the output value is less than the specified width, blanks are added to the
left or the right of the values—depending on whether the left-alignment flag (-) is specified—until the
minimum width is reached. If width is prefixed by 0, leading zeros are added to integer or floating-point
conversions until the minimum width is reached, except when conversion is to an infinity or NaN.

The width specification never causes a value to be truncated. If the number of characters in the output value is
greater than the specified width, or if width is not given, all characters of the value are output, subject to the
precision specification.

If the width specification is an asterisk (*), an int argument from the argument list supplies the value. The
width argument must precede the value that's being formatted in the argument list, as shown in this example:

printf("%0*f", 5, 3); /* 00003 is output */

A missing or small width value in a conversion specification does not cause the truncation of an output value.
If the result of a conversion is wider than the width value, the field expands to contain the conversion result.

Precision specification

How Precision Values Affect Type

TYPE MEANING DEFAULT

a, A The precision specifies the number of
digits after the point.

Default precision is 13. If precision is
0, no decimal point is printed unless
the # flag is used.

c, C The precision has no effect. Character is printed.

d, i, o, u, x, X The precision specifies the minimum
number of digits to be printed. If the
number of digits in the argument is
less than precision, the output value
is padded on the left with zeros. The
value is not truncated when the
number of digits exceeds precision.

Default precision is 1.

e, E The precision specifies the number of
digits to be printed after the decimal
point. The last printed digit is
rounded.

Default precision is 6. If precision is 0
or the period (.) appears without a
number following it, no decimal point
is printed.

f, F The precision value specifies the
number of digits after the decimal
point. If a decimal point appears, at
least one digit appears before it. The
value is rounded to the appropriate
number of digits.

Default precision is 6. If precision is 0,
or if the period (.) appears without a
number following it, no decimal point
is printed.

g, G The precision specifies the maximum
number of significant digits printed.

Six significant digits are printed, and
any trailing zeros are truncated.

s, S The precision specifies the maximum
number of characters to be printed.
Characters in excess of precision are
not printed.

Characters are printed until a null
character is encountered.

In a conversion specification, the third optional field is the precision specification. It consists of a period (.)
followed by a non-negative decimal integer that, depending on the conversion type, specifies the number of
string characters, the number of decimal places, or the number of significant digits to be output.

Unlike the width specification, the precision specification can cause either truncation of the output value or
rounding of a floating-point value. If precision is specified as 0 and the value to be converted is 0, the result is
no characters output, as shown in this example:

printf("%.0d", 0); /* No characters output */

If the precision specification is an asterisk (*), an int argument from the argument list supplies the value. In
the argument list, the precision argument must precede the value that's being formatted, as shown in this
example:

printf("%.*f", 3, 3.14159265); /* 3.142 output */

The type character determines either the interpretation of precision or the default precision when precision is
omitted, as shown in the following table.

Argument size specification

Size Prefixes for printf and wprintf Format-Type Specifiers

TO SPECIFY USE PREFIX WITH TYPE SPECIFIER

char

unsigned char

hh d, i, o, u, x, or X

short int

short unsigned int

h d, i, o, u, x, or X

__int32

unsigned __int32

I32 d, i, o, u, x, or X

__int64

unsigned __int64

I64 d, i, o, u, x, or X

intmax_t

uintmax_t

j or I64 d, i, o, u, x, or X

long double l (lowercase L) or L a, A, e, E, f, F, g, or G

long int

long unsigned int

l (lowercase L) d, i, o, u, x, or X

long long int

unsigned long long int

ll (lowercase LL) d, i, o, u, x, or X

ptrdiff_t t or I (uppercase i) d, i, o, u, x, or X

size_t z or I (uppercase i) d, i, o, u, x, or X

In a conversion specification, the size field is an argument length modifier for the type conversion specifier.
The size field prefixes to the type field—hh, h, j, l (lowercase L), L, ll, t, w, z, I (uppercase i), I32, and I64—
specify the "size" of the corresponding argument—long or short, 32-bit or 64-bit, single-byte character or
wide character—depending on the conversion specifier that they modify. These size prefixes are used with
type characters in the printf and wprintf families of functions to specify the interpretation of argument
sizes, as shown in the following table. The size field is optional for some argument types. When no size prefix
is specified, the formatter consumes integer arguments—for example, signed or unsigned char , short , int

, long , and enumeration types—as 32-bit int types, and float , double , and long double floating-point
arguments are consumed as 64-bit double types. This matches the default argument promotion rules for
variable argument lists. For more information about argument promotion, see Ellipses and Default
Arguments in Postfix expressions. On both 32-bit and 64-bit systems, the conversion specification of a 64-bit
integer argument must include a size prefix of ll or I64. Otherwise, the behavior of the formatter is undefined.

Some types are different sizes in 32-bit and 64-bit code. For example, size_t is 32 bits long in code
compiled for x86, and 64 bits in code compiled for x64. To create platform-agnostic formatting code for
variable-width types, you can use a variable-width argument size modifier. Alternatively, use a 64-bit
argument size modifier and explicitly promote the variable-width argument type to 64 bits. The Microsoft-
specific I (uppercase i) argument size modifier handles variable-width integer arguments, but we recommend
the type-specific j, t, and z modifiers for portability.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/postfix-expressions

Single-byte character h c or C

Wide character l (lowercase L) or w c or C

Single-byte character string h s, S, or Z

Wide-character string l (lowercase L) or w s, S, or Z

TO SPECIFY USE PREFIX WITH TYPE SPECIFIER

NOTE

See also

The ptrdiff_t and size_t types are __int32 or unsigned __int32 on 32-bit platforms, and __int64 or
unsigned __int64 on 64-bit platforms. The I (uppercase i), j, t, and z size prefixes take the correct argument

width for the platform.

In Visual C++, although long double is a distinct type, it has the same internal representation as double .

An hc or hC type specifier is synonymous with c in printf functions and with C in wprintf functions. An lc,
lC, wc or wC type specifier is synonymous with C in printf functions and with c in wprintf functions. An
hs or hS type specifier is synonymous with s in printf functions and with S in wprintf functions. An ls, lS,
ws or wS type specifier is synonymous with S in printf functions and with s in wprintf functions.

Microsoft Specific The I (uppercase i), I32, I64, and w argument size modifier prefixes are Microsoft extensions and
are not ISO C-compatible. The h prefix when it's used with data of type char and the l (lowercase L) prefix when it's
used with data of type double are Microsoft extensions.

printf, _printf_l, wprintf, _wprintf_l
printf_s, _printf_s_l, wprintf_s, _wprintf_s_l
printf_p Positional Parameters

Format Specification Fields: scanf and wscanf
Functions
3/11/2019 • 3 minutes to read • Edit Online

The information here applies to the entire scanf family of functions, including the secure versions and describes
the symbols used to tell the scanf functions how to parse the input stream, such as the input stream stdin for
scanf , into values that are inserted into program variables.

A format specification has the following form:

% [*] [width] [{h | l | ll | I64 | L}]type

The format argument specifies the interpretation of the input and can contain one or more of the following:

White-space characters: blank (' '); tab ('\t'); or newline ('\n'). A white-space character causes scanf to
read, but not store, all consecutive white-space characters in the input up to the next non-white-space
character. One white-space character in the format matches any number (including 0) and combination of
white-space characters in the input.

Non-white-space characters, except for the percent sign (%). A non-white-space character causes scanf

to read, but not store, a matching non-white-space character. If the next character in the input stream does
not match, scanf terminates.

Format specifications, introduced by the percent sign (%). A format specification causes scanf to read
and convert characters in the input into values of a specified type. The value is assigned to an argument in
the argument list.

The format is read from left to right. Characters outside format specifications are expected to match the sequence
of characters in the input stream; the matching characters in the input stream are scanned but not stored. If a
character in the input stream conflicts with the format specification, scanf terminates, and the character is left in
the input stream as if it had not been read.

When the first format specification is encountered, the value of the first input field is converted according to this
specification and stored in the location that is specified by the first argument . The second format specification
causes the second input field to be converted and stored in the second argument , and so on through the end of
the format string.

An input field is defined as all characters up to the first white-space character (space, tab, or newline), or up to the
first character that cannot be converted according to the format specification, or until the field width (if specified)
is reached. If there are too many arguments for the given specifications, the extra arguments are evaluated but
ignored. The results are unpredictable if there are not enough arguments for the format specification.

Each field of the format specification is a single character or a number signifying a particular format option. The
type character, which appears after the last optional format field, determines whether the input field is

interpreted as a character, a string, or a number.

The simplest format specification contains only the percent sign and a type character (for example, %s). If a
percent sign (%) is followed by a character that has no meaning as a format-control character, that character and
the following characters (up to the next percent sign) are treated as an ordinary sequence of characters, that is, a
sequence of characters that must match the input. For example, to specify that a percent-sign character is to be
input, use %% .

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/format-specification-fields-scanf-and-wscanf-functions.md

See also

An asterisk (*) following the percent sign suppresses assignment of the next input field, which is interpreted as a
field of the specified type. The field is scanned but not stored.

The secure versions (those with the _s suffix) of the scanf family of functions require that a buffer size
parameter be passed immediately following each parameter of type c , C , s , S or [. For more information
on the secure versions of the scanf family of functions, see scanf_s, _scanf_s_l, wscanf_s, _wscanf_s_l.

scanf Width Specification
scanf Type Field Characters
scanf, _scanf_l, wscanf, _wscanf_l
scanf_s, _scanf_s_l, wscanf_s, _wscanf_s_l

is, isw Routines
3/11/2019 • 9 minutes to read • Edit Online

isalnum, iswalnum, _isalnum_l, _iswalnum_l isgraph, iswgraph, _isgraph_l, _iswgraph_l

isalpha, iswalpha, _isalpha_l, _iswalpha_l isleadbyte, _isleadbyte_l

isascii, __isascii, iswascii islower, iswlower, _islower_l, _iswlower_l

isblank, iswblank, _isblank_l, _iswblank_l isprint, iswprint, _isprint_l, _iswprint_l

iscntrl, iswcntrl, _iscntrl_l, _iswcntrl_l ispunct, iswpunct, _ispunct_l, _iswpunct_l

iscsym, iscsymf, __iscsym, __iswcsym, __iscsymf, __iswcsymf,
_iscsym_l, _iswcsym_l, _iscsymf_l, _iswcsymf_l

isspace, iswspace, _isspace_l, _iswspace_l

_isctype, iswctype, _isctype_l, _iswctype_l isupper, _isupper_l, iswupper, _iswupper_l

isdigit, iswdigit, _isdigit_l, _iswdigit_l isxdigit, iswxdigit, _isxdigit_l, _iswxdigit_l

Remarks

C a u t i o n

These routines test characters for specified conditions.

The is routines produce meaningful results for any integer argument from -1 (EOF) to UCHAR_MAX (0xFF),
inclusive. The expected argument type is int .

For the is routines, passing an argument of type char may yield unpredictable results. An SBCS or MBCS
single-byte character of type char with a value greater than 0x7F is negative. If a char is passed, the compiler
may convert the value to a signed int or a signed long. This value may be sign-extended by the compiler,
with unexpected results.

The isw routines produce meaningful results for any integer value from - 1 (WEOF) to 0xFFFF, inclusive. The
wint_t data type is defined in WCHAR.H as an unsigned short; it can hold any wide character or the wide-
character end-of-file (WEOF) value.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for more
information. The versions of these functions without the _l suffix use the current locale for this locale-
dependent behavior ; the versions with the _l suffix are identical except that they use the locale parameter
passed in instead.

In the "C" locale, the test conditions for the is routines are as follows:

isalnum

Alphanumeric (A - Z, a - z, or 0 - 9).

isalpha

Alphabetic (A - Z or a - z).

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/is-isw-routines.md

__isascii

ASCII character (0x00 - 0x7F).

isblank

Horizontal tab or space character (0x09 or 0x20).

iscntrl

Control character (0x00 - 0x1F or 0x7F).

__iscsym

Letter, underscore, or digit.

__iscsymf

Letter or underscore.

isdigit

Decimal digit (0 - 9).

isgraph

Printable character except space ().

islower

Lowercase letter (a - z).

isprint

Printable character including space (0x20 - 0x7E).

ispunct

Punctuation character.

isspace

White-space character (0x09 - 0x0D or 0x20).

isupper

Uppercase letter (A - Z).

isxdigit

Hexadecimal digit (A - F, a - f, or 0 - 9).

For the isw routines, the result of the test for the specified condition is independent of locale. The test
conditions for the isw functions are as follows:

iswalnum

iswalpha or iswdigit .

iswalpha

Any wide character that is one of an implementation-defined set for which none of iswcntrl , iswdigit ,
iswpunct , or iswspace is nonzero. iswalpha returns nonzero only for wide characters for which iswupper or
iswlower is nonzero.

iswascii

Wide-character representation of ASCII character (0x0000 - 0x007F).

iswblank

Wide character that corresponds to the standard space character or is one of an implementation-defined set of
wide characters for which iswalnum is false. Standard blank characters are space (L' ') and horizontal tab (L'\t').

iswcntrl

Control wide character.

Equivalence of iswctype(c, desc) to Other isw Testing Routines

VALUE OF DESC ARGUMENT ISWCTYPE(C, DESC) EQUIVALENT

_ALPHA iswalpha(c)

_ALPHA | _DIGIT iswalnum(c)

_BLANK iswblank(c)

_CONTROL iswcntrl(c)

_DIGIT iswdigit(c)

_ALPHA | _DIGIT | _PUNCT iswgraph(c)

_LOWER iswlower(c)

_ALPHA | _BLANK | _DIGIT | _PUNCT iswprint(c)

_PUNCT iswpunct(c)

_BLANK iswblank(c)

_SPACE iswspace(c)

_UPPER iswupper(c)

_HEX iswxdigit(c)

__iswcsym

Any wide character for which isalnum is true, or the '_' character.

__iswcsymf

Any wide character for which iswalpha is true, or the '_' character.

iswctype

Character has property specified by the desc argument. For each valid value of the desc argument of
iswctype , there is an equivalent wide-character classification routine, as shown in the following table:

iswdigit

Wide character corresponding to a decimal-digit character.

iswgraph

Printable wide character except space wide character (L' ').

iswlower

Lowercase letter, or one of implementation-defined set of wide characters for which none of iswcntrl ,
iswdigit , iswpunct , or iswspace is nonzero. iswlower returns nonzero only for wide characters that

correspond to lowercase letters.

iswprint

Printable wide character, including space wide character (L' ').

Example
// crt_isfam.c
/* This program tests all characters between 0x0
* and 0x7F, then displays each character with abbreviations
* for the character-type codes that apply.
*/

#include <stdio.h>
#include <ctype.h>

int main(void)
{
 int ch;
 for(ch = 0; ch <= 0x7F; ch++)
 {
 printf("%.2x ", ch);
 printf(" %c", isprint(ch) ? ch : ' ');
 printf("%4s", isalnum(ch) ? "AN" : "");
 printf("%3s", isalpha(ch) ? "A" : "");
 printf("%3s", __isascii(ch) ? "AS" : "");
 printf("%3s", iscntrl(ch) ? "C" : "");
 printf("%3s", __iscsym(ch) ? "CS " : "");
 printf("%3s", __iscsymf(ch) ? "CSF" : "");
 printf("%3s", isdigit(ch) ? "D" : "");
 printf("%3s", isgraph(ch) ? "G" : "");
 printf("%3s", islower(ch) ? "L" : "");
 printf("%3s", ispunct(ch) ? "PU" : "");
 printf("%3s", isspace(ch) ? "S" : "");
 printf("%3s", isprint(ch) ? "PR" : "");
 printf("%3s", isupper(ch) ? "U" : "");
 printf("%3s", isxdigit(ch) ? "X" : "");
 printf(".\n");
 }
}

Output
00 AS C .
01 AS C .
02 AS C .
03 AS C .
04 AS C .
05 AS C .

iswpunct

Printable wide character that is neither space wide character (L' ') nor wide character for which iswalnum is
nonzero.

iswspace

Wide character that corresponds to standard white-space character or is one of implementation-defined set of
wide characters for which iswalnum is false. Standard white-space characters are: space (L' '), formfeed (L'\f'),
newline (L'\n'), carriage return (L'\r'), horizontal tab (L'\t'), and vertical tab (L'\v').

iswupper

Wide character that is uppercase or is one of an implementation-defined set of wide characters for which none
of iswcntrl , iswdigit , iswpunct , or iswspace is nonzero. iswupper returns nonzero only for wide characters
that correspond to uppercase characters.

iswxdigit

Wide character that corresponds to a hexadecimal-digit character.

05 AS C .
06 AS C .
07 AS C .
08 AS C .
09 AS C S .
0a AS C S .
0b AS C S .
0c AS C S .
0d AS C S .
0e AS C .
0f AS C .
10 AS C .
11 AS C .
12 AS C .
13 AS C .
14 AS C .
15 AS C .
16 AS C .
17 AS C .
18 AS C .
19 AS C .
1a AS C .
1b AS C .
1c AS C .
1d AS C .
1e AS C .
1f AS C .
20 AS S PR .
21 ! AS G PU PR .
22 " AS G PU PR .
23 # AS G PU PR .
24 $ AS G PU PR .
25 % AS G PU PR .
26 & AS G PU PR .
27 ' AS G PU PR .
28 (AS G PU PR .
29) AS G PU PR .
2a * AS G PU PR .
2b + AS G PU PR .
2c , AS G PU PR .
2d - AS G PU PR .
2e . AS G PU PR .
2f / AS G PU PR .
30 0 AN AS CS D G PR X.
31 1 AN AS CS D G PR X.
32 2 AN AS CS D G PR X.
33 3 AN AS CS D G PR X.
34 4 AN AS CS D G PR X.
35 5 AN AS CS D G PR X.
36 6 AN AS CS D G PR X.
37 7 AN AS CS D G PR X.
38 8 AN AS CS D G PR X.
39 9 AN AS CS D G PR X.
3a : AS G PU PR .
3b ; AS G PU PR .
3c < AS G PU PR .
3d = AS G PU PR .
3e > AS G PU PR .
3f ? AS G PU PR .
40 @ AS G PU PR .
41 A AN A AS CS CSF G PR U X.
42 B AN A AS CS CSF G PR U X.
43 C AN A AS CS CSF G PR U X.
44 D AN A AS CS CSF G PR U X.
45 E AN A AS CS CSF G PR U X.
46 F AN A AS CS CSF G PR U X.
47 G AN A AS CS CSF G PR U .
48 H AN A AS CS CSF G PR U .
49 I AN A AS CS CSF G PR U .
4a J AN A AS CS CSF G PR U .

4a J AN A AS CS CSF G PR U .
4b K AN A AS CS CSF G PR U .
4c L AN A AS CS CSF G PR U .
4d M AN A AS CS CSF G PR U .
4e N AN A AS CS CSF G PR U .
4f O AN A AS CS CSF G PR U .
50 P AN A AS CS CSF G PR U .
51 Q AN A AS CS CSF G PR U .
52 R AN A AS CS CSF G PR U .
53 S AN A AS CS CSF G PR U .
54 T AN A AS CS CSF G PR U .
55 U AN A AS CS CSF G PR U .
56 V AN A AS CS CSF G PR U .
57 W AN A AS CS CSF G PR U .
58 X AN A AS CS CSF G PR U .
59 Y AN A AS CS CSF G PR U .
5a Z AN A AS CS CSF G PR U .
5b [AS G PU PR .
5c \ AS G PU PR .
5d] AS G PU PR .
5e ^ AS G PU PR .
5f _ AS CS CSF G PU PR .
60 ` AS G PU PR .
61 a AN A AS CS CSF G L PR X.
62 b AN A AS CS CSF G L PR X.
63 c AN A AS CS CSF G L PR X.
64 d AN A AS CS CSF G L PR X.
65 e AN A AS CS CSF G L PR X.
66 f AN A AS CS CSF G L PR X.
67 g AN A AS CS CSF G L PR .
68 h AN A AS CS CSF G L PR .
69 i AN A AS CS CSF G L PR .
6a j AN A AS CS CSF G L PR .
6b k AN A AS CS CSF G L PR .
6c l AN A AS CS CSF G L PR .
6d m AN A AS CS CSF G L PR .
6e n AN A AS CS CSF G L PR .
6f o AN A AS CS CSF G L PR .
70 p AN A AS CS CSF G L PR .
71 q AN A AS CS CSF G L PR .
72 r AN A AS CS CSF G L PR .
73 s AN A AS CS CSF G L PR .
74 t AN A AS CS CSF G L PR .
75 u AN A AS CS CSF G L PR .
76 v AN A AS CS CSF G L PR .
77 w AN A AS CS CSF G L PR .
78 x AN A AS CS CSF G L PR .
79 y AN A AS CS CSF G L PR .
7a z AN A AS CS CSF G L PR .
7b { AS G PU PR .
7c | AS G PU PR .
7d } AS G PU PR .
7e ~ AS G PU PR .
7f AS C .

See also
Character Classification
Locale
setlocale, _wsetlocale
Interpretation of Multibyte-Character Sequences
to Functions

_ismbb Routines
3/11/2019 • 2 minutes to read • Edit Online

_ismbbalnum, _ismbbalnum_l _ismbbkprint, _ismbbkprint_l

_ismbbalpha, _ismbbalpha_l _ismbbkpunct, _ismbbkpunct_l

_ismbbblank, _ismbbblank_l _ismbblead, _ismbblead_l

_ismbbgraph, _ismbbgraph_l _ismbbprint, _ismbbprint_l

_ismbbkalnum, _ismbbkalnum_l _ismbbpunct, _ismbbpunct_l

_ismbbkana, _ismbbkana_l _ismbbtrail, _ismbbtrail_l

Remarks

ROUTINE BYTE TEST CONDITION

_ismbbalnum isalnum || _ismbbkalnum .

_ismbbalpha isalpha || _ismbbkalnum .

_ismbbblank isblank

_ismbbgraph Same as _ismbbprint , but _ismbbgraph does not include
the space character (0x20).

_ismbbkalnum Non-ASCII text symbol other than punctuation. For example,
in code page 932 only, _ismbbkalnum tests for katakana
alphanumeric.

_ismbbkana Katakana (0xA1 - 0xDF). Specific to code page 932.

Tests the given integer value c for a particular condition, by using the current locale or a specified LC_CTYPE
conversion state category.

Every routine in the _ismbb family tests the given integer value c for a particular condition. The test result
depends on the multibyte code page that's in effect. By default, the multibyte code page is set to the ANSI code
page that's obtained from the operating system at program startup. You can use _getmbcp to query for the
multibyte code page that's in use, or _setmbcp to change it.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; for more information,
see setlocale, _wsetlocale. The versions of these functions that don't have the _l suffix use the current locale for
this locale-dependent behavior; the versions that do have the _l suffix are identical except that instead they use
the locale parameter that's passed in.

The routines in the _ismbb family test the given integer c as follows.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/ismbb-routines.md

_ismbbkprint Non-ASCII text or non-ASCII punctuation symbol. For
example, in code page 932 only, _ismbbkprint tests for
katakana alphanumeric or katakana punctuation (range:
0xA1 - 0xDF).

_ismbbkpunct Non-ASCII punctuation. For example, in code page 932 only,
_ismbbkpunct tests for katakana punctuation.

_ismbblead First byte of multibyte character. For example, in code page
932 only, valid ranges are 0x81 - 0x9F, 0xE0 - 0xFC.

_ismbbprint isprint || _ismbbkprint . ismbbprint includes the space
character (0x20).

_ismbbpunct ispunct || _ismbbkpunct .

_ismbbtrail Second byte of multibyte character. For example, in code
page 932 only, valid ranges are 0x40 - 0x7E, 0x80 - 0xEC.

ROUTINE BYTE TEST CONDITION

ROUTINE _BLANK _DIGIT LOWER _PUNCT UPPER

NON-

ASCII

TEX T

NON-

ASCII

PUNCT

_ismbbalnum — x x — x x —

_ismbbalpha — — x — x x —

_ismbbblank x — — — — — —

_ismbbgraph — x x x x x x

_ismbbkalnum — — — — — x —

_ismbbkprint — — — — — x x

_ismbbkpunct — — — — — — x

_ismbbprint x x x x x x x

_ismbbpunct — — — x — — x

See also

The following table shows the ORed values that compose the test conditions for these routines. The manifest
constants _BLANK , _DIGIT , _LOWER , _PUNCT , and _UPPER are defined in Ctype.h.

The _ismbb routines are implemented both as functions and as macros. For more information about how to
choose either implementation, see Recommendations for Choosing Between Functions and Macros.

Byte Classification

is, isw Routines
_mbbtombc, _mbbtombc_l
_mbctombb, _mbctombb_l

_ismbc Routines
3/11/2019 • 3 minutes to read • Edit Online

_ismbcalnum, _ismbcalnum_l, _ismbcalpha, _ismbcalpha_l,
_ismbcdigit, _ismbcdigit_l

_ismbcl0, _ismbcl0_l, _ismbcl1, _ismbcl1_l, _ismbcl2, _ismbcl2_l

_ismbcgraph, _ismbcgraph_l, _ismbcprint, _ismbcprint_l,
_ismbcpunct, _ismbcpunct_l, _ismbcblank, _ismbcblank_l,
_ismbcspace, _ismbcspace_l

_ismbclegal, _ismbclegal_l, _ismbcsymbol, _ismbcsymbol_l

_ismbchira, _ismbchira_l, _ismbckata, _ismbckata_l _ismbclower, _ismbclower_l, _ismbcupper, _ismbcupper_l

Remarks

ROUTINE TEST CONDITION CODE PAGE 932 EXAMPLE

_ismbcalnum, _ismbcalnum_l Alphanumeric Returns nonzero if and only if c is a
single-byte representation of an ASCII
English letter: See examples for
_ismbcdigit and _ismbcalpha .

_ismbcalpha, _ismbcalpha_l Alphabetic Returns nonzero if and only if c is a
single-byte representation of an ASCII
English letter: See examples for
_ismbcupper and _ismbclower ; or a

katakana letter: 0xA6<= c <=0xDF.

_ismbcdigit, _ismbcdigit_l Digit Returns nonzero if and only if c is a
single-byte representation of an ASCII
digit: 0x30<= c <=0x39.

_ismbcgraph, _ismbcgraph_l Graphic Returns nonzero if and only if c is a
single-byte representation of any ASCII
or katakana printable character except a
white space (). See examples for
_ismbcdigit , _ismbcalpha , and
_ismbcpunct .

Each _ismbc routine tests a given multibyte character c for a particular condition.

The test result of each _ismbc routine depends on the multibyte code page in effect. Multibyte code pages have
single-byte alphabetic characters. By default, the multibyte code page is set to the system-default ANSI code page
obtained from the operating system at program startup. You can query or change the multibyte code page in use
with _getmbcp or _setmbcp, respectively.

The output value is affected by the LC_CTYPE category setting of the locale; see setlocale for more information.
The versions of these functions without the _l suffix use the current locale for this locale-dependent behavior; the
versions with the _l suffix are identical except that they use the locale parameter passed in instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/ismbc-routines.md

_ismbclegal, _ismbclegal_l Valid multibyte character Returns nonzero if and only if the first
byte of c is within ranges 0x81 - 0x9F
or 0xE0 - 0xFC, while the second byte is
within ranges 0x40 - 0x7E or 0x80 - FC.

_ismbclower, _ismbclower_l Lowercase alphabetic Returns nonzero if and only if c is a
single-byte representation of an ASCII
lowercase English letter: 0x61<= c

<=0x7A.

_ismbcprint, _ismbcprint_l Printable Returns nonzero if and only if c is a
single-byte representation of any ASCII
or katakana printable character
including a white space (): See
examples for _ismbcspace ,
_ismbcdigit , _ismbcalpha , and
_ismbcpunct .

_ismbcpunct, _ismbcpunct_l Punctuation Returns nonzero if and only if c is a
single-byte representation of any ASCII
or katakana punctuation character.

_ismbcblank, _ismbcblank_l, Space or horizontal tab Returns nonzero if and only if c is a
single-byte representation of a space
character or a horizontal tab character:
c =0x20 or c =0x09.

_ismbcspace, _ismbcspace_l Whitespace Returns nonzero if and only if c is a
white space character: c =0x20 or
0x09<= c <=0x0D.

_ismbcsymbol, _ismbcsymbol_l Multibyte symbol Returns nonzero if and only if
0x8141<= c <=0x81AC.

_ismbcupper, _ismbcupper_l Uppercase alphabetic Returns nonzero if and only if c is a
single-byte representation of an ASCII
uppercase English letter: 0x41<= c

<=0x5A.

ROUTINE TEST CONDITION CODE PAGE 932 EXAMPLE

ROUTINE TEST CONDITION (CODE PAGE 932 ONLY)

_ismbchira, _ismbchira_l Double-byte Hiragana: 0x829F<= c <=0x82F1.

_ismbckata, _ismbckata_l Double-byte katakana: 0x8340<= c <=0x8396.

_ismbcl0, _ismbcl0_l JIS non-Kanji: 0x8140<= c <=0x889E.

_ismbcl1, _ismbcl1_l JIS level-1: 0x889F<= c <=0x9872.

Code Page 932 Specific

The following routines are specific to code page 932.

_ismbcl2, _ismbcl2_l JIS level-2: 0x989F<= c <=0xEA9E.

ROUTINE TEST CONDITION (CODE PAGE 932 ONLY)

See also

_ismbcl0 , _ismbcl1 , and _ismbcl2 check that the specified value c matches the test conditions described in the
preceding table, but do not check that c is a valid multibyte character. If the lower byte is in the ranges 0x00 -
0x3F, 0x7F, or 0xFD - 0xFF, these functions return a nonzero value, indicating that the character satisfies the test
condition. Use _ismbbtrail, _ismbbtrail_l to test whether the multibyte character is defined.

END Code Page 932 Specific

Character Classification
is, isw Routines
_ismbb Routines

operator new(CRT)
10/31/2018 • 2 minutes to read • Edit Online

Beginning in Visual Studio 2013, the Universal C Runtime (UCRT) no longer supports the C++-specific operator
new and operator delete functions. These are now part of the C++ Standard Library. For more information, see
new and delete operators and new operator in the C++ Language Reference.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/new-operator-crt.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-and-delete-operators
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-operator-cpp

operator new (CRT)
3/11/2019 • 2 minutes to read • Edit Online

Beginning in Visual Studio 2013, the Universal C Runtime (UCRT) no longer supports the C++-specific operator
new and operator delete functions. These are now part of the C++ Standard Library. For more information, see
new and delete operators and new operator in the C++ Language Reference.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/operator-new-crt.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-and-delete-operators
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-operator-cpp

operator delete(CRT)
10/31/2018 • 2 minutes to read • Edit Online

Beginning in Visual Studio 2013, the Universal C Runtime (UCRT) no longer supports the C++-specific operator
new and operator delete functions. These are now part of the C++ Standard Library. For more information, see
new and delete operators and delete operator in the C++ Language Reference.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/delete-operator-crt.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-and-delete-operators
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/delete-operator-cpp

operator delete (CRT)
3/11/2019 • 2 minutes to read • Edit Online

Beginning in Visual Studio 2013, the Universal C Runtime (UCRT) no longer supports the C++-specific operator
new and operator delete functions. These are now part of the C++ Standard Library. For more information, see
new and delete operators and delete operator in the C++ Language Reference.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/operator-delete-crt.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-and-delete-operators
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/delete-operator-cpp

printf_p Positional Parameters
3/11/2019 • 2 minutes to read • Edit Online

NON-POSITIONAL PRINTF FUNCTIONS POSITIONAL PARAMETER EQUIVALENTS

printf, _printf_l, wprintf, _wprintf_l _printf_p, _printf_p_l, _wprintf_p, _wprintf_p_l

sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l _sprintf_p, _sprintf_p_l, _swprintf_p, _swprintf_p_l

_cprintf, _cprintf_l, _cwprintf, _cwprintf_l _cprintf_p, _cprintf_p_l, _cwprintf_p, _cwprintf_p_l

fprintf, _fprintf_l, fwprintf, _fwprintf_l _fprintf_p, _fprintf_p_l, _fwprintf_p, _fwprintf_p_l

vprintf, _vprintf_l, vwprintf, _vwprintf_l _vprintf_p, _vprintf_p_l, _vwprintf_p, _vwprintf_p_l

vfprintf, _vfprintf_l, vfwprintf, _vfwprintf_l _vfprintf_p, _vfprintf_p_l, _vfwprintf_p, _vfwprintf_p_l

vsprintf, _vsprintf_l, vswprintf, _vswprintf_l, __vswprintf_l _vsprintf_p, _vsprintf_p_l, _vswprintf_p, _vswprintf_p_l

How to specify positional parameters
Parameter indexing

_printf_p("%1$s %2$s", "November", "10");

November 10

_printf_p("%2$s %1$s", "November", "10");

Positional parameters provide the ability to specify by number which of the arguments is to be substituted into a
field in a format string. The following positional parameter printf functions are available:

By default, if no positional formatting is present, the positional functions behave identically to the non-positional
ones. You specify the positional parameter to format by using %n$ at the beginning of the format specifier,
where n is the position of the parameter to format in the parameter list. The parameter position starts at 1 for
the first argument after the format string. The remainder of the format specifier follows the same rules as the
printf format specifier. For more information about format specfiers, see Format Specification Syntax: printf

and wprintf Functions.

Here's an example of positional formatting:

This prints:

The order of the numbers used doesn't need to match the order of the arguments. For example, this is a valid
format string:

This prints:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/printf-p-positional-parameters.md

10 November

_printf_p("%1$d times %1$d is %2$d", 10, 100);

10 times 10 is 100

Width and precision

_printf_p("%1$*2$s","Hello", 10);

_printf_p("%2$*1$s", 10, "Hello");

Mixing positional and non-positional arguments

Example

Unlike traditional format strings, positional parameters may be used more than once in a format string. For
example,

This prints:

All arguments must be used at least once somewhere in the format string. The maximum number of positional
parameters allowed in a format string is given by _ARGMAX .

You can use *n$ to specify a positional parameter as a width or precision specifier, where n is the position of
the width or precision parameter in the parameter list. The position of the width or precision value must appear
immediately following the * symbol. For example,

or

Positional parameters may not be mixed with non-positional parameters in the same format string. If any
positional formatting is used, all format specifiers must use positional formatting. However, printf_p and
related functions still support non-positional parameters in format strings containing no positional parameters.

// positional_args.c
// Build by using: cl /W4 positional_args.c
// Positional arguments allow the specification of the order
// in which arguments are consumed in a formatting string.

#include <stdio.h>

int main()
{
 int i = 1,
 j = 2,
 k = 3;
 double x = 0.1,
 y = 2.22,
 z = 333.3333;
 char *s1 = "abc",
 *s2 = "def",
 *s3 = "ghi";

 // If positional arguments are unspecified,
 // normal input order is used.
 _printf_p("%d %d %d\n", i, j, k);

 // Positional arguments are numbers followed by a $ character.
 _printf_p("%3$d %1$d %2$d\n", i, j, k);

 // The same positional argument may be reused.
 _printf_p("%1$d %2$d %1$d\n", i, j);

 // The positional arguments may appear in any order.
 _printf_p("%1$s %2$s %3$s\n", s1, s2, s3);
 _printf_p("%3$s %1$s %2$s\n", s1, s2, s3);

 // Precision and width specifiers must be int types.
 _printf_p("%3$*5$f %2$.*4$f %1$*4$.*5$f\n", x, y, z, j, k);
}

1 2 3
3 1 2
1 2 1
abc def ghi
ghi abc def
333.333300 2.22 0.100

See also
Format Specification Syntax: printf and wprintf Functions

scanf Type Field Characters
3/11/2019 • 3 minutes to read • Edit Online

Type Characters for scanf functions

CHARACTER TYPE OF INPUT EXPECTED TYPE OF ARGUMENT
SIZE ARGUMENT IN SECURE
VERSION?

c Character. When used with
scanf functions, specifies

single-byte character; when
used with wscanf

functions, specifies wide
character. White-space
characters that are ordinarily
skipped are read when c is
specified. To read next non-
white-space single-byte
character, use %1s ; to read
next non-white-space wide
character, use %1ws .

Pointer to char when used
with scanf functions,
pointer to wchar_t when
used with wscanf

functions.

Required. Size does not
include space for a null
terminator.

C Opposite size character.
When used with scanf

functions, specifies wide
character; when used with
wscanf functions, specifies

single-byte character. White-
space characters that are
ordinarily skipped are read
when C is specified. To
read next non-white-space
single-byte character, use
%1s ; to read next non-

white-space wide character,
use %1ws .

Pointer to wchar_t when
used with scanf functions,
pointer to char when used
with wscanf functions.

Required. Size argument
does not include space for a
null terminator.

d Decimal integer. Pointer to int . No.

i An integer. Hexadecimal if
the input string begins with
"0x" or "0X", octal if the
string begins with "0",
otherwise decimal.

Pointer to int . No.

o Octal integer. Pointer to int . No.

The following information applies to any of the scanf family of functions, including the secure versions, such as
scanf_s .

The type character is the only required format field; it appears after any optional format fields. The type

character determines whether the associated argument is interpreted as a character, string, or number.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/scanf-type-field-characters.md

p A pointer address in
hexadecimal digits. The
maximum number of digits
read depends on the size of
a pointer (32 or 64 bits),
which depends on the
machine architecture. "0x" or
"0X" are accepted as
prefixes.

Pointer to void* . No.

u Unsigned decimal integer. Pointer to unsigned int . No.

x Hexadecimal integer. Pointer to int . No.

e , E , f , F , g , G Floating-point value
consisting of optional sign
(+ or -), series of one or
more decimal digits
containing decimal point,
and optional exponent ("e"
or "E") followed by an
optionally signed integer
value.

Pointer to float . No.

a , A Floating-point value
consisting of a series of one
or more hexadecimal digits
containing an optional
decimal point, and an
exponent ("p" or "P")
followed by a decimal value.

Pointer to float . No.

n No input read from stream
or buffer.

Pointer to int , into which
is stored number of
characters successfully read
from stream or buffer up to
that point in current call to
scanf functions or
wscanf functions.

No.

s String, up to first white-
space character (space, tab
or newline). To read strings
not delimited by space
characters, use set of square
brackets ([]), as
discussed in scanf Width
Specification.

When used with scanf

functions, signifies single-
byte character array; when
used with wscanf

functions, signifies wide-
character array. In either
case, character array must
be large enough for input
field plus terminating null
character, which is
automatically appended.

Required. Size includes space
for a null terminator.

CHARACTER TYPE OF INPUT EXPECTED TYPE OF ARGUMENT
SIZE ARGUMENT IN SECURE
VERSION?

S Opposite-size character
string, up to first white-
space character (space, tab
or newline). To read strings
not delimited by space
characters, use set of square
brackets ([]), as
discussed in scanf Width
Specification.

When used with scanf

functions, signifies wide-
character array; when used
with wscanf functions,
signifies single-byte-
character array. In either
case, character array must
be large enough for input
field plus terminating null
character, which is
automatically appended.

Required. Size includes space
for a null terminator.

CHARACTER TYPE OF INPUT EXPECTED TYPE OF ARGUMENT
SIZE ARGUMENT IN SECURE
VERSION?

char string1[11], string2[9];
scanf_s("%10s %8s", string1, 11, string2, 9);

TO READ CHARACTER AS USE THIS FUNCTION WITH THESE FORMAT SPECIFIERS

single byte scanf functions c , hc , or hC

single byte wscanf functions C , hc , or hC

wide wscanf functions c , lc , or lC

wide scanf functions C , lc , or lC

See also

The size arguments, if required, should be passed in the parameter list immediately following the argument they
apply to. For example, the following code:

reads a string with a maximum length of 10 into string1 , and a string with a maximum length of 8 into string2 .
The buffer sizes should be at least one more than the width specifications since space must be reserved for the
null terminator.

The format string can handle single-byte or wide character input regardless of whether the single-byte character
or wide-character version of the function is used. Thus, to read single-byte or wide characters with scanf

functions and wscanf functions, use format specifiers as follows.

To scan strings with scanf functions, and wscanf functions, use the above table with format type-specifiers s

and S instead of c and C .

scanf, _scanf_l, wscanf, _wscanf_l

scanf Width Specification
3/11/2019 • 5 minutes to read • Edit Online

The Width Field

char str[21];
scanf_s("%20s", str, 21);

The Size Prefix

NOTE

Size Prefixes for scanf and wscanf Format-Type Specifiers

This information applies to the interpretation of format strings in the scanf family of functions, including the
secure versions such as scanf_s . These functions normally assume the input stream is divided into a sequence
of tokens. Tokens are separated by whitespace (space, tab, or newline), or in the case of numerical types, by the
natural end of a numerical data type as indicated by the first character that cannot be converted into numerical
text. However, the width specification may be used to cause parsing of the input to stop before the natural end of
a token.

The width specification consists of characters between the % and the type field specifier, which may include a
positive integer called the width field and one or more characters indicating the size of the field, which may also
be considered as modifiers of the type of the field, such as an indication of whether the integer type is short or
long. Such characters are referred to as the size prefix.

The width field is a positive decimal integer controlling the maximum number of characters to be read for that
field. No more than width characters are converted and stored at the corresponding argument . Fewer than width
characters may be read if a whitespace character (space, tab, or newline) or a character that cannot be converted
according to the given format occurs before width is reached.

The width specification is separate and distinct from the buffer size argument required by the secure versions of
these functions (i.e., scanf_s , wscanf_s , etc.). In the following example, the width specification is 20, indicating
that up to 20 characters are to be read from the input stream. The buffer length is 21, which includes room for
the possible 20 characters plus the null terminator :

If the width field is not used, scanf_s will attempt to read the entire token into the string. If the size specified is
not large enough to hold the entire token, nothing will be written to the destination string. If the width field is
specified, then the first width characters in the token will be written to the destination string along with the null
terminator.

The optional prefixes h, l, ll, I64, and L indicate the size of the argument (long or short, single-byte character or
wide character, depending upon the type character that they modify). These format-specification characters are
used with type characters in scanf or wscanf functions to specify interpretation of arguments as shown in the
following table. The type prefix I64 is a Microsoft extension and is not ANSI compatible. The type characters and
their meanings are described in the "Type Characters for scanf functions" table in scanf Type Field Characters.

The h, l, and L prefixes are Microsoft extensions when used with data of type char .

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/scanf-width-specification.md

TO SPECIFY USE PREFIX WITH TYPE SPECIFIER

double l e, E, f, g, or G

long double (same as double) L e, E, f, g, or G

long int l d, i, o, x, or X

long unsigned int l u

long long ll d, i, o, x, or X

short int h d, i, o, x, or X

short unsigned int h u

__int64 I64 d, i, o, u, x, or X

Single-byte character with scanf h c or C

Single-byte character with wscanf h c or C

Wide character with scanf l c or C

Wide character with wscanf l c, or C

Single-byte - character string with
scanf

h s or S

Single-byte - character string with
wscanf

h s or S

Wide-character string with scanf l s or S

Wide-character string with wscanf l s or S

scanf_s("%ls", &x, 2); // Read a wide-character string
wscanf_s(L"%hC", &x, 2); // Read a single-byte character

Reading Undelimited strings

The following examples use h and l with scanf_s functions and wscanf_s functions:

If using an unsecure function in the scanf family, omit the size parameter indicating the buffer length of the
preceding argument.

To read strings not delimited by whitespace characters, a set of characters in brackets ([]) can be substituted for
the s (string) type character. The set of characters in brackets is referred to as a control string. The corresponding
input field is read up to the first character that does not appear in the control string. If the first character in the set
is a caret (^), the effect is reversed: The input field is read up to the first character that does appear in the rest of
the character set.

Reading Unterminated strings

When scanf stops reading a field

See also

Note that %[a-z] and %[z-a] are interpreted as equivalent to %[abcde...z]. This is a common scanf function
extension, but note that the ANSI standard does not require it.

To store a string without storing a terminating null character ('\0'), use the specification %nc where n is a decimal
integer. In this case, the c type character indicates that the argument is a pointer to a character array. The next n
characters are read from the input stream into the specified location, and no null character ('\0') is appended. If n
is not specified, its default value is 1.

The scanf function scans each input field, character by character. It may stop reading a particular input field
before it reaches a space character for a variety of reasons:

The specified width has been reached.

The next character cannot be converted as specified.

The next character conflicts with a character in the control string that it is supposed to match.

The next character fails to appear in a given character set.

For whatever reason, when the scanf function stops reading an input field, the next input field is considered to
begin at the first unread character. The conflicting character, if there is one, is considered unread and is the first
character of the next input field or the first character in subsequent read operations on the input stream.

scanf, _scanf_l, wscanf, _wscanf_l
scanf_s, _scanf_s_l, wscanf_s, _wscanf_s_l
Format Specification Fields: scanf and wscanf Functions
scanf Type Field Characters

_spawn, _wspawn Functions
3/11/2019 • 7 minutes to read • Edit Online

_spawnl, _wspawnl _spawnv, _wspawnv

_spawnle, _wspawnle _spawnve, _wspawnve

_spawnlp, _wspawnlp _spawnvp, _wspawnvp

_spawnlpe, _wspawnlpe _spawnvpe, _wspawnvpe

LETTER VARIANT

e envp , array of pointers to environment settings, is passed
to new process.

l Command-line arguments are passed individually to
_spawn function. This suffix is typically used when a

number of parameters to a new process is known in
advance.

p PATH environment variable is used to find the file to
execute.

v argv , array of pointers to command-line arguments, is
passed to _spawn function. This suffix is typically used
when a number of parameters to a new process is variable.

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tspawnl _spawnl _spawnl _wspawnl

_tspawnle _spawnle _spawnle _wspawnle

Each of the _spawn functions creates and executes a new process:

The letters at the end of the function name determine the variation.

The _spawn functions each create and execute a new process. They automatically handle multibyte-character
string arguments as appropriate, recognizing multibyte-character sequences according to the multibyte code
page currently in use. The _wspawn functions are wide-character versions of the _spawn functions; they do
not handle multibyte-character strings. Otherwise, the _wspawn functions behave identically to their _spawn

counterparts.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/spawn-wspawn-functions.md

_tspawnlp _spawnlp _spawnlp _wspawnlp

_tspawnlpe _spawnlpe _spawnlpe _wspawnlpe

_tspawnv _spawnv _spawnv _wspawnv

_tspawnve _spawnve _spawnve _wspawnve

_tspawnvp _spawnvp _spawnvp _wspawnvp

_tspawnvpe _spawnvpe _spawnvpe _wspawnvpe

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_P_OVERLAY Overlays a calling process with a new process, destroying
the calling process (same effect as _exec calls).

_P_WAIT Suspends a calling thread until execution of the new
process is complete (synchronous _spawn).

_P_NOWAIT or _P_NOWAITO Continues to execute a calling process concurrently with
the new process (asynchronous _spawn).

_P_DETACH Continues to execute the calling process; the new process is
run in the background with no access to the console or
keyboard. Calls to _cwait against the new process fail
(asynchronous _spawn).

Enough memory must be available for loading and executing the new process. The mode argument
determines the action taken by the calling process before and during _spawn . The following values for mode

are defined in Process.h:

The cmdname argument specifies the file that is executed as the new process and can specify a full path (from
the root), a partial path (from the current working directory), or just a file name. If cmdname does not have a
file name extension or does not end with a period (.), the _spawn function first tries the .com file name
extension and then the .exe file name extension, the .bat file name extension, and finally the .cmd file name
extension.

If cmdname has a file name extension, only that extension is used. If cmdname ends with a period, the _spawn

call searches for cmdname with no file name extension. The _spawnlp , _spawnlpe , _spawnvp , and _spawnvpe

functions search for cmdname (using the same procedures) in the directories specified by the PATH

environment variable.

If cmdname contains a drive specifier or any slashes (that is, if it is a relative path), the _spawn call searches
only for the specified file; no path searching is done.

In the past, some of these functions set errno to zero on success; the current behavior is to leave errno

untouched on success, as specified by the C standard. If you need to emulate the old behavior, set errno to
zero just before calling these functions.

NOTE

Arguments for the Spawned Process

NOTE

IMPORTANT

Environment of the Spawned Process

To ensure proper overlay initialization and termination, do not use the setjmp or longjmp function to enter or leave
an overlay routine.

To pass arguments to the new process, give one or more pointers to character strings as arguments in the
_spawn call. These character strings form the argument list for the spawned process. The combined length of

the strings forming the argument list for the new process must not exceed 1024 bytes. The terminating null
character ('\0') for each string is not included in the count, but space characters (automatically inserted to
separate arguments) are included.

Spaces embedded in strings may cause unexpected behavior; for example, passing _spawn the string "hi there" will
result in the new process getting two arguments, "hi" and "there" . If the intent was to have the new process open
a file named "hi there", the process would fail. You can avoid this by quoting the string: "\"hi there\"" .

Do not pass user input to _spawn without explicitly checking its content. _spawn will result in a call to CreateProcess
so keep in mind that unqualified path names could lead to potential security vulnerabilities.

You can pass argument pointers as separate arguments (in _spawnl , _spawnle , _spawnlp , and _spawnlpe) or
as an array of pointers (in _spawnv , _spawnve , _spawnvp , and _spawnvpe). You must pass at least one
argument, arg0 or argv [0], to the spawned process. By convention, this argument is the name of the
program as you would type it on the command line. A different value does not produce an error.

The _spawnl , _spawnle , _spawnlp , and _spawnlpe calls are typically used in cases where the number of
arguments is known in advance. The arg0 argument is usually a pointer to cmdname . The arguments arg1

through argn are pointers to the character strings forming the new argument list. Following argn , there
must be a NULL pointer to mark the end of the argument list.

The _spawnv , _spawnve , _spawnvp , and _spawnvpe calls are useful when there is a variable number of
arguments to the new process. Pointers to the arguments are passed as an array, argv . The argument argv

[0] is usually a pointer to a path in real mode or to the program name in protected mode, and argv [1]
through argv [n] are pointers to the character strings forming the new argument list. The argument argv [
n +1] must be a NULL pointer to mark the end of the argument list.

Files that are open when a _spawn call is made remain open in the new process. In the _spawnl , _spawnlp ,
_spawnv , and _spawnvp calls, the new process inherits the environment of the calling process. You can use the
_spawnle , _spawnlpe , _spawnve , and _spawnvpe calls to alter the environment for the new process by passing

a list of environment settings through the envp argument. The argument envp is an array of character
pointers, each element (except the final element) of which points to a null-terminated string defining an
environment variable. Such a string usually has the form NAME = value where NAME is the name of an
environment variable and value is the string value to which that variable is set. (Note that value is not
enclosed in double quotation marks.) The final element of the envp array should be NULL. When envp itself
is NULL, the spawned process inherits the environment settings of the parent process.

https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createprocessa

Redirecting Output

Example
// crt_spawn.c
// This program accepts a number in the range
// 1-8 from the command line. Based on the number it receives,
// it executes one of the eight different procedures that
// spawn the process named child. For some of these procedures,
// the CHILD.EXE file must be in the same directory; for
// others, it only has to be in the same path.
//

#include <stdio.h>
#include <process.h>

char *my_env[] =
{
 "THIS=environment will be",
 "PASSED=to child.exe by the",
 "_SPAWNLE=and",
 "_SPAWNLPE=and",
 "_SPAWNVE=and",
 "_SPAWNVPE=functions",
 NULL
};

int main(int argc, char *argv[])
{
 char *args[4];

 // Set up parameters to be sent:
 args[0] = "child";
 args[1] = "spawn??";
 args[2] = "two";
 args[3] = NULL;

 if (argc <= 2)
 {
 printf("SYNTAX: SPAWN <1-8> <childprogram>\n");

The _spawn functions can pass all information about open files, including the translation mode, to the new
process. This information is passed in real mode through the C_FILE_INFO entry in the environment. The
startup code normally processes this entry and then deletes it from the environment. However, if a _spawn

function spawns a non-C process, this entry remains in the environment. Printing the environment shows
graphics characters in the definition string for this entry because the environment information is passed in
binary form in real mode. It should not have any other effect on normal operations. In protected mode, the
environment information is passed in text form and therefore contains no graphics characters.

You must explicitly flush (using fflush or _flushall) or close any stream before calling a _spawn function.

New processes created by calls to _spawn routines do not preserve signal settings. Instead, the spawned
process resets signal settings to the default.

If you are calling _spawn from a DLL or a GUI application and want to redirect the output to a pipe, you have
two options:

Use the Win32 API to create a pipe, then call AllocConsole, set the handle values in the startup
structure, and call CreateProcess.

Call _popen, _wpopen which will create a pipe and invoke the app using cmd.exe /c (or
command.exe /c).

https://docs.microsoft.com/windows/console/allocconsole
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createprocessa

 exit(1);
 }

 switch (argv[1][0]) // Based on first letter of argument
 {
 case '1':
 _spawnl(_P_WAIT, argv[2], argv[2], "_spawnl", "two", NULL);
 break;
 case '2':
 _spawnle(_P_WAIT, argv[2], argv[2], "_spawnle", "two",
 NULL, my_env);
 break;
 case '3':
 _spawnlp(_P_WAIT, argv[2], argv[2], "_spawnlp", "two", NULL);
 break;
 case '4':
 _spawnlpe(_P_WAIT, argv[2], argv[2], "_spawnlpe", "two",
 NULL, my_env);
 break;
 case '5':
 _spawnv(_P_OVERLAY, argv[2], args);
 break;
 case '6':
 _spawnve(_P_OVERLAY, argv[2], args, my_env);
 break;
 case '7':
 _spawnvp(_P_OVERLAY, argv[2], args);
 break;
 case '8':
 _spawnvpe(_P_OVERLAY, argv[2], args, my_env);
 break;
 default:
 printf("SYNTAX: SPAWN <1-8> <childprogram>\n");
 exit(1);
 }
 printf("from SPAWN!\n");
}

child process output
from SPAWN!

See also
Process and Environment Control
abort
atexit
_exec, _wexec Functions
exit, _Exit, _exit
_flushall
_getmbcp
_onexit, _onexit_m
_setmbcp
system, _wsystem

strcoll Functions
3/11/2019 • 2 minutes to read • Edit Online

strcoll Functions

SBCS UNICODE MBCS DESCRIPTION

strcoll wcscoll _mbscoll Collate two strings

_stricoll _wcsicoll _mbsicoll Collate two strings (case
insensitive)

_strncoll _wcsncoll _mbsncoll Collate first count

characters of two strings

_strnicoll _wcsnicoll _mbsnicoll Collate first count

characters of two strings
(case-insensitive)

Remarks

Each of the strcoll and wcscoll functions compares two strings according to the LC_COLLATE category setting
of the locale code page currently in use. Each of the _mbscoll functions compares two strings according to the
multibyte code page currently in use. Use the coll functions for string comparisons when there is a difference
between the character set order and the lexicographic character order in the current code page and this
difference is of interest for the comparison. Use the corresponding cmp functions to test only for string equality.

The single-byte character (SBCS) versions of these functions (strcoll , stricoll , _strncoll , and _strnicoll)
compare string1 and string2 according to the LC_COLLATE category setting of the current locale. These
functions differ from the corresponding strcmp functions in that the strcoll functions use locale code page
information that provides collating sequences. For string comparisons in locales in which the character set order
and the lexicographic character order differ, the strcoll functions should be used rather than the corresponding
strcmp functions. For more information on LC_COLLATE , see setlocale.

For some code pages and corresponding character sets, the order of characters in the character set may differ
from the lexicographic character order. In the "C" locale, this is not the case: the order of characters in the ASCII
character set is the same as the lexicographic order of the characters. However, in certain European code pages,
for example, the character 'a' (value 0x61) precedes the character 'ä' (value 0xE4) in the character set, but the
character 'ä' precedes the character 'a' lexicographically. To perform a lexicographic comparison in such an
instance, use strcoll rather than strcmp . Alternatively, you can use strxfrm on the original strings, then use
strcmp on the resulting strings.

strcoll , stricoll , _strncoll , and _strnicoll automatically handle multibyte-character strings according to
the locale code page currently in use, as do their wide-character (Unicode) counterparts. The multibyte-character
(MBCS) versions of these functions, however, collate strings on a character basis according to the multibyte code
page currently in use.

Because the coll functions collate strings lexicographically for comparison, whereas the cmp functions simply
test for string equality, the coll functions are much slower than the corresponding cmp versions. Therefore, the
coll functions should be used only when there is a difference between the character set order and the

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/strcoll-functions.md

See also

lexicographic character order in the current code page and this difference is of interest for the string comparison.

Locale
String Manipulation
localeconv
_mbsnbcoll, _mbsnbcoll_l, _mbsnbicoll, _mbsnbicoll_l
setlocale, _wsetlocale
strcmp, wcscmp, _mbscmp
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
strxfrm, wcsxfrm, _strxfrm_l, _wcsxfrm_l

String to Numeric Value Functions
3/11/2019 • 3 minutes to read • Edit Online

Remarks

FUNCTION DESCRIPTION

strtod Convert string to double-precision floating point value

strtol Convert string to long integer

strtoul Convert string to unsigned long integer

_strtoi64 Convert string to 64-bit __int64 integer

_strtoui64 Convert string to unsigned 64-bit __int64 integer

strtod, _strtod_l, wcstod, _wcstod_l

strtol, wcstol, _strtol_l, _wcstol_l

strtoul, _strtoul_l, wcstoul, _wcstoul_l

_strtoi64, _wcstoi64, _strtoi64_l, _wcstoi64_l

_strtoui64, _wcstoui64, _strtoui64_l, _wcstoui64_l

Each function in the strtod family converts a null-terminated string to a numeric value. The available functions
are listed in the following table.

wcstod , wcstol , wcstoul , and _wcstoi64 are wide-character versions of strtod , strtol , strtoul , and
_strtoi64 , respectively. The string argument to each of these wide-character functions is a wide-character string;

each function behaves identically to its single-byte-character counterpart otherwise.

The strtod function takes two arguments: the first is the input string, and the second a pointer to the character
which ends the conversion process. strtol , strtoul , _strtoi64 and _strtoui64 take a third argument as the
number base to use in the conversion process.

The input string is a sequence of characters that can be interpreted as a numerical value of the specified type.
Each function stops reading the string at the first character it cannot recognize as part of a number. This may be
the terminating null character. For strtol , strtoul , _strtoi64 , and _strtoui64 , this terminating character can
also be the first numeric character greater than or equal to the user-supplied number base.

If the user-supplied pointer to an end-of-conversion character is not set to NULL at call time, a pointer to the
character that stopped the scan will be stored there instead. If no conversion can be performed (no valid digits
were found or an invalid base was specified), the value of the string pointer is stored at that address.

strtod expects a string of the following form:

[whitespace] [sign] [digits] [. digits] [{d | D | e | E}[sign] digits]

A whitespace may consist of space or tab characters, which are ignored; sign is either plus (+) or minus (-); and
digits are one or more decimal digits. If no digits appear before the radix character, at least one must appear

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/string-to-numeric-value-functions.md

FUNCTION CONDITION VALUE RETURNED

strtod Overflow +/- HUGE_VAL

strtod Underflow or no conversion 0

strtol + Overflow LONG_MAX

strtol - Overflow LONG_MIN

strtol Underflow or no conversion 0

_strtoi64 + Overflow _I64_MAX

_strtoi64 - Overflow _I64_MIN

_strtoi64 No conversion 0

_strtoui64 Overflow _UI64_MAX

_strtoui64 No conversion 0

after the radix character. The decimal digits can be followed by an exponent, which consists of an introductory
letter (d, D , e, or E) and an optionally signed integer. If neither an exponent part nor a radix character appears, a
radix character is assumed to follow the last digit in the string. The first character that does not fit this form stops
the scan.

The strtol , strtoul , _strtoi64 , and _strtoui64 functions expect a string of the following form:

[whitespace] [{+ | -}] [0 [{ x | X }]] [digits]

If the base argument is between 2 and 36, then it is used as the base of the number. If it is 0, the initial characters
referenced to by the end-of-conversion pointer are used to determine the base. If the first character is 0 and the
second character is not 'x' or 'X', the string is interpreted as an octal integer; otherwise, it is interpreted as a
decimal number. If the first character is '0' and the second character is 'x' or 'X', the string is interpreted as a
hexadecimal integer. If the first character is '1' through '9', the string is interpreted as a decimal integer. The letters
'a' through 'z' (or 'A' through 'Z') are assigned the values 10 through 35; only letters whose assigned values are
less than base are permitted. strtoul and _strtoui64 allow a plus (+) or minus (-) sign prefix; a leading minus
sign indicates that the return value is negated.

The output value is affected by the setting of the LC_NUMERIC category setting of the locale; see setlocale for more
information. The versions of these functions without the _l suffix use the current locale for this locale-dependent
behavior ; the versions with the _l suffix are identical except that they use the locale parameter passed in instead.

When the value returned by these functions would cause an overflow or underflow, or when conversion is not
possible, special case values are returned as shown:

_I64_MAX, _I64_MIN , and _UI64_MAX are defined in L IMITS.H.

wcstod , wcstol , wcstoul , _wcstoi64 , and _wcstoui64 are wide-character versions of strtod , strtol , strtoul ,
_strtoi64 , and _strtoui64 , respectively; the pointer to an end-of-conversion argument to each of these wide-

character functions is a wide-character string. Otherwise, each of these wide-character functions behaves
identically to its single-byte-character counterpart.

See also
Data Conversion
Locale
Interpretation of Multibyte-Character Sequences
Floating-Point Support
atof, _atof_l, _wtof, _wtof_l

to Functions
3/11/2019 • 2 minutes to read • Edit Online

__toascii toupper, _toupper, towupper

tolower, _tolower, towlower

Remarks

ROUTINE MACRO DESCRIPTION

__toascii __toascii Converts c to ASCII character

tolower tolower Converts c to lowercase if appropriate

_tolower _tolower Converts c to lowercase

towlower None Converts c to corresponding wide-
character lowercase letter

toupper toupper Converts c to uppercase if
appropriate

_toupper _toupper Converts c to uppercase

towupper None Converts c to corresponding wide-
character uppercase letter

Each of the to functions and its associated macro, if any, converts a single character to another character.

The to functions and macro conversions are as follows.

To use the function versions of the to routines that are also defined as macros, either remove the macro
definitions with #undef directives or do not include CTYPE.H. If you use the /Za compiler option, the compiler
uses the function version of toupper or tolower . Declarations of the toupper and tolower functions are in
STDLIB.H.

The __toascii routine sets all but the low-order 7 bits of c to 0, so that the converted value represents a
character in the ASCII character set. If c already represents an ASCII character, c is unchanged.

The tolower and toupper routines:

Are dependent on the LC_CTYPE category of the current locale (tolower calls isupper and toupper calls
islower).

Convert c if c represents a convertible letter of the appropriate case in the current locale and the
opposite case exists for that locale. Otherwise, c is unchanged.

The _tolower and _toupper routines:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/to-functions.md

Example
// crt_toupper.c
/* This program uses toupper and tolower to
 * analyze all characters between 0x0 and 0x7F. It also
 * applies _toupper and _tolower to any code in this
 * range for which these functions make sense.
 */

#include <ctype.h>
#include <string.h>

char msg[] = "Some of THESE letters are Capitals.";
char *p;

int main(void)
{
 printf("%s\n", msg);

 /* Reverse case of message. */
 for(p = msg; p < msg + strlen(msg); p++)
 {
 if(islower(*p))
 putchar(_toupper(*p));
 else if(isupper(*p))
 putchar(_tolower(*p));
 else
 putchar(*p);
 }
}

Some of THESE letters are Capitals.
sOME OF these LETTERS ARE cAPITALS.

See also

Are locale-independent, much faster versions of tolower and toupper.

Can be used only when isascii(c) and either isupper(c) or islower(c), respectively, are nonzero.

Have undefined results if c is not an ASCII letter of the appropriate case for converting.

The towlower and towupper functions return a converted copy of c if and only if both of the following
conditions are nonzero. Otherwise, c is unchanged.

c is a wide character of the appropriate case (that is, for which iswupper or iswlower, respectively, is
nonzero).

There is a corresponding wide character of the target case (that is, for which iswlower or iswupper,
respectively, is nonzero).

Data Conversion
Locale
is, isw Routines

vprintf Functions
3/11/2019 • 3 minutes to read • Edit Online

_vcprintf, _vcwprintf vfprintf, vfwprintf

_vfprintf_p, _vfprintf_p_l, _vfwprintf_p, _vfwprintf_p_l vfprintf_s, _vfprintf_s_l, vfwprintf_s, _vfwprintf_s_l

vprintf, vwprintf _vprintf_p, _vprintf_p_l, _vwprintf_p, _vwprintf_p_l

vprintf_s, _vprintf_s_l, vwprintf_s, _vwprintf_s_l vsprintf, vswprintf

_vsprintf_p, _vsprintf_p_l, _vswprintf_p, _vswprintf_p_l vsprintf_s, _vsprintf_s_l, vswprintf_s, _vswprintf_s_l

_vscprintf, _vscprintf_l, _vscwprintf, _vscwprintf_l _vsnprintf, _vsnwprintf

Remarks

FUNCTION
COUNTERPART
FUNCTION OUTPUT DESTINATION

PARAMETER
VALIDATION

POSITIONAL
PARAMETER SUPPORT

_vcprintf _cprintf console Check for null. no

_vcwprintf _cwprintf console Check for null. no

vfprintf fprintf Stream Check for null. no

vfprintf_p fprintf_p Stream Check for null and
valid format.

yes

vfprintf_s fprintf_s Stream Check for null and
valid format.

no

vfwprintf fwprintf Stream Check for null. no

vfwprintf_p fwprintf_p Stream Check for null and
valid format.

yes

Each of the vprintf functions takes a pointer to an argument list, then formats and writes the given data to a
particular destination. The functions differ in the parameter validation performed, whether the functions take
wide or single-byte character strings, the output destination, and the support for specifying the order in which
parameters are used in the format string.

The vprintf functions are similar to their counterpart functions as listed in the following table. However, each
vprintf function accepts a pointer to an argument list, whereas each of the counterpart functions accepts an

argument list.

These functions format data for output to destinations as follows.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/vprintf-functions.md

vfwprintf_s fwprintf_s Stream Check for null and
valid format.

no

vprintf printf Stdout Check for null. no

vprintf_p printf_p Stdout Check for null and
valid format.

yes

vprintf_s printf_s Stdout Check for null and
valid format.

no

vwprintf wprintf Stdout Check for null. no

vwprintf_p wprintf_p Stdout Check for null and
valid format.

yes

vwprintf_s wprintf_s Stdout Check for null and
valid format.

no

vsprintf sprintf memory pointed to
by buffer

Check for null. no

vsprintf_p sprintf_p memory pointed to
by buffer

Check for null and
valid format.

yes

vsprintf_s sprintf_s memory pointed to
by buffer

Check for null and
valid format.

no

vswprintf swprintf memory pointed to
by buffer

Check for null. no

vswprintf_p swprintf_p memory pointed to
by buffer

Check for null and
valid format.

yes

vswprintf_s swprintf_s memory pointed to
by buffer

Check for null and
valid format.

no

_vscprintf _vscprintf memory pointed to
by buffer

Check for null. no

_vscwprintf _vscwprintf memory pointed to
by buffer

Check for null. no

_vsnprintf _snprintf memory pointed to
by buffer

Check for null. no

_vsnwprintf _snwprintf memory pointed to
by buffer

Check for null. no

FUNCTION
COUNTERPART
FUNCTION OUTPUT DESTINATION

PARAMETER
VALIDATION

POSITIONAL
PARAMETER SUPPORT

The argptr argument has type va_list , which is defined in VARARGS.H and STDARG.H. The argptr variable
must be initialized by va_start, and may be reinitialized by subsequent va_arg calls; argptr then points to the
beginning of a list of arguments that are converted and transmitted for output according to the corresponding

IMPORTANT

See also

specifications in the format argument. format has the same form and function as the format argument for
printf. None of these functions invokes va_end . For a more complete description of each vprintf function, see
the description of its counterpart function as listed in the preceding table.

_vsnprintf differs from vsprintf in that it writes no more than count bytes to buffer.

The versions of these functions with the w infix in the name are wide-character versions of the corresponding
functions without the w infix; in each of these wide-character functions, buffer and format are wide-character
strings. Otherwise, each wide-character function behaves identically to its SBCS counterpart function.

The versions of these functions with _s and _p suffixes are the more secure versions. These versions validate the
format strings and will generate an exception if the format string is not well formed (for example, if invalid
formatting characters are used).

The versions of these functions with the _p suffix provide the ability to specify the order in which the supplied
arguments are substituted in the format string. For more information, see printf_p Positional Parameters.

For vsprintf, vswprintf , _vsnprintf and _vsnwprintf , if copying occurs between strings that overlap, the
behavior is undefined.

Ensure that format is not a user-defined string. For more information, see Avoiding Buffer Overruns. If using the secure
versions of these functions (either the _s or _p suffixes), a user-supplied format string could trigger an invalid parameter
exception if the user-supplied string contains invalid formatting characters.

Stream I/O
fprintf, _fprintf_l, fwprintf, _fwprintf_l
printf, _printf_l, wprintf, _wprintf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
va_arg, va_copy, va_end, va_start

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

Obsolete Functions
2/4/2019 • 2 minutes to read • Edit Online

Deprecated as obsolete in Visual Studio 2015
OBSOLETE FUNCTION ALTERNATIVE

is_wctype iswctype

_loaddll LoadLibrary, LoadLibraryEx, or LoadPackagedLibrary

_unloaddll FreeLibrary

_getdllprocaddr GetProcAddress

_seterrormode SetErrorMode

_beep Beep

_sleep Sleep

_getsystime GetLocalTime

_setsystime SetLocalTime

Removed from the CRT in Visual Studio 2015
OBSOLETE FUNCTION ALTERNATIVE

_cgets, _cgetws _cgets_s, _cgetws_s

gets, _getws gets_s, _getws_s

_get_output_format None

_heapadd None

_heapset None

inp, inpw None

_inp, _inpw, _inpd None

Certain library functions are obsolete and have more recent equivalents. We recommend you change these to the
updated versions. Other obsolete functions have been removed from the CRT. This topic lists the functions
deprecated as obsolete, and the functions removed in a particular version of Visual Studio.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/obsolete-functions.md
https://docs.microsoft.com/windows/desktop/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://docs.microsoft.com/windows/desktop/api/libloaderapi/nf-libloaderapi-loadlibraryexa
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-loadpackagedlibrary
https://docs.microsoft.com/windows/desktop/api/libloaderapi/nf-libloaderapi-freelibrary
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/getprocaddress
https://msdn.microsoft.com/library/windows/desktop/ms680621
https://docs.microsoft.com/windows/desktop/api/utilapiset/nf-utilapiset-beep
https://docs.microsoft.com/windows/desktop/api/synchapi/nf-synchapi-sleep
https://docs.microsoft.com/windows/desktop/api/sysinfoapi/nf-sysinfoapi-getlocaltime
https://docs.microsoft.com/windows/desktop/api/sysinfoapi/nf-sysinfoapi-setlocaltime

outp, outpw None

_outp, _outpw, _outpd None

_set_output_format None

OBSOLETE FUNCTION ALTERNATIVE

Removed from the CRT in earlier versions of Visual Studio
_lock

_unlock

_cgets, _cgetws
3/11/2019 • 2 minutes to read • Edit Online

IMPORTANT

IMPORTANT

Syntax
char *_cgets(
 char *buffer
);
wchar_t *_cgetws(
 wchar_t *buffer
);
template <size_t size>
char *_cgets(
 char (&buffer)[size]
); // C++ only
template <size_t size>
wchar_t *_cgetws(
 wchar_t (&buffer)[size]
); // C++ only

Parameters

Return Value

Remarks

Gets a character string from the console. More secure versions of these functions are available; see _cgets_s,
_cgetws_s.

These functions are obsolete. Beginning in Visual Studio 2015, they are not available in the CRT. The secure versions of
these functions, _cgets_s and _cgetws_s, are still available. For information on these alternative functions, see _cgets_s,
_cgetws_s.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

buffer
Storage location for data.

_cgets and _cgetws return a pointer to the start of the string, at buffer[2] . If buffer is NULL, these functions
invoke the invalid parameter handler, as described in Parameter Validation. If execution is allowed to continue,
they return NULL and set errno to EINVAL .

These functions read a string of characters from the console and store the string and its length in the location
pointed to by buffer . The buffer parameter must be a pointer to a character array. The first element of the
array, buffer[0] , must contain the maximum length (in characters) of the string to be read. The array must
contain enough elements to hold the string, a terminating null character ('\0'), and 2 additional bytes. The

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/cgets-cgetws.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_cgetts _cgets _cgets _cgetws

Requirements
ROUTINE REQUIRED HEADER

_cgets <conio.h>

_cgetws <conio.h> or <wchar.h>

Example

function reads characters until a carriage return-line feed (CR-LF) combination or the specified number of
characters is read. The string is stored starting at buffer[2] . If the function reads a CR-LF, it stores the null
character ('\0'). The function then stores the actual length of the string in the second array element, buffer[1] .

Because all editing keys are active when _cgets or _cgetws is called while in a console window, pressing the F3
key repeats the last entered entry.

In C++, these functions have template overloads that invoke the newer, secure counterparts of these functions.
For more information, see Secure Template Overloads.

For more compatibility information, see Compatibility.

// crt_cgets.c
// compile with: /c /W3
// This program creates a buffer and initializes
// the first byte to the size of the buffer. Next, the
// program accepts an input string using _cgets and displays
// the size and text of that string.

#include <conio.h>
#include <stdio.h>
#include <errno.h>

int main(void)
{
 char buffer[83] = { 80 }; // Maximum characters in 1st byte
 char *result;

 printf("Input line of text, followed by carriage return:\n");

 // Input a line of text:
 result = _cgets(buffer); // C4996
 // Note: _cgets is deprecated; consider using _cgets_s
 if (!result)
 {
 printf("An error occurred reading from the console:"
 " error code %d\n", errno);
 }
 else
 {
 printf("\nLine length = %d\nText = %s\n",
 buffer[1], result);
 }
}

 A line of input.Input line of text, followed by carriage return:
Line Length = 16
Text = A line of input.

See also
Console and Port I/O
_getch, _getwch

_get_output_format
3/11/2019 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
unsigned int _get_output_format();

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_get_output_format <stdio.h>

See also

Gets the current value of the output format flag.

This function is obsolete. Beginning in Visual Studio 2015, it is not available in the CRT.

The current value of the output format flag.

The output format flag controls features of formatted I/O. At present the flag has two possible values: 0 and
_TWO_DIGIT_EXPONENT . If _TWO_DIGIT_EXPONENT is set, the floating point numbers is printed with only two digits in the

exponent unless a third digit is required by the size of the exponent. If the flag is zero, the floating point output
displays three digits of exponent, using zeroes if necessary to pad the value to three digits.

For more compatibility information, see Compatibility in the Introduction.

Format Specification Syntax: printf and wprintf Functions
printf, _printf_l, wprintf, _wprintf_l
printf_s, _printf_s_l, wprintf_s, _wprintf_s_l
_set_output_format

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/get-output-format.md

gets, _getws
3/11/2019 • 2 minutes to read • Edit Online

IMPORTANT

IMPORTANT

Syntax
char *gets(
 char *buffer
);
wchar_t *_getws(
 wchar_t *buffer
);
template <size_t size>
char *gets(
 char (&buffer)[size]
); // C++ only
template <size_t size>
wchar_t *_getws(
 wchar_t (&buffer)[size]
); // C++ only

Parameters

Return Value

Remarks

Gets a line from the stdin stream. More secure versions of these functions are available; see gets_s, _getws_s.

These functions are obsolete. Beginning in Visual Studio 2015, they are not available in the CRT. The secure versions of
these functions, gets_s and _getws_s, are still available. For information on these alternative functions, see gets_s, _getws_s.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

buffer
Storage location for input string.

Returns its argument if successful. A NULL pointer indicates an error or end-of-file condition. Use ferror or feof
to determine which one has occurred. If buffer is NULL, these functions invoke an invalid parameter handler, as
described in Parameter Validation. If execution is allowed to continue, these functions return NULL and set errno
to EINVAL .

The gets function reads a line from the standard input stream stdin and stores it in buffer . The line consists
of all characters up to and including the first newline character ('\n'). gets then replaces the newline character
with a null character ('\0') before returning the line. In contrast, the fgets function retains the newline character.
_getws is a wide-character version of gets ; its argument and return value are wide-character strings.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/gets-getws.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_getts gets gets _getws

Requirements
ROUTINE REQUIRED HEADER

gets <stdio.h>

_getws <stdio.h> or <wchar.h>

Example
// crt_gets.c
// compile with: /WX /W3

#include <stdio.h>

int main(void)
{
 char line[21]; // room for 20 chars + '\0'
 gets(line); // C4996
 // Danger: No way to limit input to 20 chars.
 // Consider using gets_s instead.
 printf("The line entered was: %s\n", line);
}

Hello there!The line entered was: Hello there!

See also

Because there is no way to limit the number of characters read by gets, untrusted input can easily cause buffer overruns.
Use fgets instead.

In C++, these functions have template overloads that invoke the newer, secure counterparts of these functions.
For more information, see Secure Template Overloads.

For additional compatibility information, see Compatibility.

Note that input longer than 20 characters will overrun the line buffer and almost certainly cause the program to
crash.

Stream I/O
fgets, fgetws
fputs, fputws
puts, _putws

_heapadd
3/11/2019 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _heapadd(
 void *memblock,
 size_t size
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_heapadd <malloc.h> <errno.h>

See also

Adds memory to the heap.

This function is obsolete. Beginning in Visual Studio 2015, it is not available in the CRT.

memblock
Pointer to the heap memory.

size
Size of memory to add, in bytes.

If successful, _heapadd returns 0; otherwise, the function returns -1 and sets errno to ENOSYS .

For more information about this and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

Beginning with Visual C++ version 4.0, the underlying heap structure was moved to the C run-time libraries to
support the new debugging features. As a result, _heapadd is no longer supported on any platform that is based
on the Win32 API.

For more compatibility information, see Compatibility in the Introduction.

Memory Allocation
free
_heapchk
_heapmin

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/heapadd.md

_heapset
_heapwalk
malloc
realloc

_heapset
3/11/2019 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _heapset(
 unsigned int fill
);

Parameters

Return Value

_HEAPBADBEGIN Initial header information invalid or not found.

_HEAPBADNODE Heap damaged or bad node found.

_HEAPEMPTY Heap not initialized.

_HEAPOK Heap appears to be consistent.

Remarks

Requirements

Checks heaps for minimal consistency and sets the free entries to a specified value.

This function is obsolete. Beginning in Visual Studio 2015, it is not available in the CRT.

fill
Fill character.

_heapset returns one of the following integer manifest constants defined in Malloc.h.

In addition, if an error occurs, _heapset sets errno to ENOSYS .

The _heapset function shows free memory locations or nodes that have been unintentionally overwritten.

_heapset checks for minimal consistency on the heap and then sets each byte of the heap's free entries to the
fill value. This known value shows which memory locations of the heap contain free nodes and which contain

data that were unintentionally written to freed memory. If the operating system does not support _heapset (for
example, Windows 98), the function returns _HEAPOK and sets errno to ENOSYS .

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/heapset.md

ROUTINE REQUIRED HEADER OPTIONAL HEADER

_heapset <malloc.h> <errno.h>

Example
// crt_heapset.c
// This program checks the heap and
// fills in free entries with the character 'Z'.

#include <malloc.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 int heapstatus;
 char *buffer;

 if((buffer = malloc(1)) == NULL) // Make sure heap is
 exit(0); // initialized
 heapstatus = _heapset('Z'); // Fill in free entries
 switch(heapstatus)
 {
 case _HEAPOK:
 printf("OK - heap is fine\n");
 break;
 case _HEAPEMPTY:
 printf("OK - heap is empty\n");
 break;
 case _HEAPBADBEGIN:
 printf("ERROR - bad start of heap\n");
 break;
 case _HEAPBADNODE:
 printf("ERROR - bad node in heap\n");
 break;
 }
 free(buffer);
}

OK - heap is fine

See also

For more compatibility information, see Compatibility in the Introduction.

Memory Allocation
_heapadd
_heapchk
_heapmin
_heapwalk

inp, inpw
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

IMPORTANT

These POSIX functions are deprecated. Use the ISO C++ conformant _inp, _inpw, _inpd instead.

These functions are obsolete. Beginning in Visual Studio 2015, they are not available in the CRT.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/inp-inpw.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_inp, _inpw, _inpd
3/11/2019 • 2 minutes to read • Edit Online

IMPORTANT

IMPORTANT

Syntax
int _inp(
 unsigned short port
);
unsigned short _inpw(
 unsigned short port
);
unsigned long _inpd(
 unsigned short port
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_inp <conio.h>

_inpw <conio.h>

Inputs, from a port, a byte (_inp), a word (_inpw), or a double word (_inpd).

These functions are obsolete. Beginning in Visual Studio 2015, they are not available in the CRT.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

port
I/O port number.

The functions return the byte, word, or double word read from port . There is no error return.

The _inp , _inpw , and _inpd functions read a byte, a word, and a double word, respectively, from the specified
input port. The input value can be any unsigned short integer in the range 0 - 65,535.

Because these functions read directly from an I/O port, they cannot be used in user code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/inp-inpw-inpd.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_inpd <conio.h>

ROUTINE REQUIRED HEADER

Libraries

See also

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

Console and Port I/O
_outp, _outpw, _outpd

_lock
3/11/2019 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
void __cdecl _lock
 int locknum
);

Parameters

Remarks

Requirements

See also

Acquires a multi-thread lock.

This function is obsolete. Beginning in Visual Studio 2015, it is not available in the CRT.

locknum
[in] The identifier of the lock to acquire.

If the lock has already been acquired, this method acquires the lock anyway and causes an internal C run-time
(CRT) error. If the method cannot acquire a lock, it exits with a fatal error and sets the error code to _RT_LOCK .

Source: mlock.c

Alphabetical Function Reference
_unlock

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/lock.md

outp, outpw
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

IMPORTANT

These POSIX functions are deprecated. Use the ISO C++ conformant _outp, _outpw, _outpd instead.

These functions are obsolete. Beginning in Visual Studio 2015, they are not available in the CRT.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/outp-outpw.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_outp, _outpw, _outpd
3/11/2019 • 2 minutes to read • Edit Online

IMPORTANT

IMPORTANT

Syntax

 int _outp(
unsigned short port,
int databyte
);
unsigned short _outpw(
unsigned short port,
unsigned short dataword
);
unsigned long _outpd(
unsigned short port,
unsigned long dataword
);

Parameters

Return Value

Remarks

Outputs, at a port, a byte (_outp), a word (_outpw), or a double word (_outpd).

These functions are obsolete. Beginning in Visual Studio 2015, they are not available in the CRT.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

port
Port number.

databyte, dataword
Output values.

The functions return the data output. There is no error return.

The _outp , _outpw , and _outpd functions write a byte, a word, and a double word, respectively, to the specified
output port. The port argument can be any unsigned integer in the range 0 - 65,535; databyte can be any integer
in the range 0 - 255; and dataword can be any value in the range of an integer, an unsigned short integer, and an
unsigned long integer, respectively.

Because these functions write directly to an I/O port, they cannot be used in user code. For information about
using I/O ports in these operating systems, search for "Serial Communications in Win32" at MSDN.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/outp-outpw-outpd.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Requirements
ROUTINE REQUIRED HEADER

_outp <conio.h>

_outpw <conio.h>

_outpd <conio.h>

Libraries

See also

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

Console and Port I/O
_inp, _inpw, _inpd

_set_output_format
3/11/2019 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
unsigned int _set_output_format(
 unsigned int format
);

Parameters

Return value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_set_output_format <stdio.h>

Example

Customizes output formats used by formatted I/O functions.

This function is obsolete. Beginning in Visual Studio 2015, it is not available in the CRT.

format
[in] An value representing the format to use.

The previous output format.

_set_output_format is used to configure the output of formatted I/O functions such as printf_s. At present, the
only formatting convention that can be changed by this function is the number of digits displayed in exponents in
the output of floating point numbers.

By default, the output of floating point numbers by functions such as printf_s , wprintf_s , and related functions
in the Visual C++ Standard C library prints three digits for the exponent, even if three digits are not required to
represent the value of the exponent. Zeroes are used to pad the value to three digits. _set_output_format allows
you to change this behavior so that only two digits are printed in the exponent unless a third digit is required by
the size of the exponent.

To enable two-digit exponents, call this function with the parameter _TWO_DIGIT_EXPONENT , as shown in the
example. To disable two digit exponents, call this function with an argument of 0.

For more compatibility information, see Compatibility in the Introduction.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/set-output-format.md

// crt_set_output_format.c
#include <stdio.h>

void printvalues(double x, double y)
{
 printf_s("%11.4e %11.4e\n", x, y);
 printf_s("%11.4E %11.4E\n", x, y);
 printf_s("%11.4g %11.4g\n", x, y);
 printf_s("%11.4G %11.4G\n", x, y);
}

int main()
{
 double x = 1.211E-5;
 double y = 2.3056E-112;
 unsigned int old_exponent_format;

 // Use the default format
 printvalues(x, y);

 // Enable two-digit exponent format
 old_exponent_format = _set_output_format(_TWO_DIGIT_EXPONENT);

 printvalues(x, y);

 // Disable two-digit exponent format
 _set_output_format(old_exponent_format);

 printvalues(x, y);
}

1.2110e-005 2.3056e-112
1.2110E-005 2.3056E-112
1.211e-005 2.306e-112
1.211E-005 2.306E-112
1.2110e-05 2.3056e-112
1.2110E-05 2.3056E-112
 1.211e-05 2.306e-112
 1.211E-05 2.306E-112
1.2110e-005 2.3056e-112
1.2110E-005 2.3056E-112
1.211e-005 2.306e-112
1.211E-005 2.306E-112

See also
printf_s, _printf_s_l, wprintf_s, _wprintf_s_l
_get_output_format

_unlock
3/11/2019 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
void __cdecl _unlock(
 int locknum
);

Parameters

Requirements

See also

Releases a multi-thread lock.

This function is obsolete. Beginning in Visual Studio 2015, it is not available in the CRT.

locknum
[in] The identifier of the lock to release.

Source: mlock.c

Alphabetical Function Reference
_lock

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/unlock.md

UCRT alphabetical function reference
2/4/2019 • 8 minutes to read • Edit Online

A

The Universal C Runtime (UCRT, often just CRT) Library reference documentation is arranged
alphabetically by routine. To find a CRT routine based on functionality, see Universal C runtime
routines by category.

abort

abs

_abs64

access

_access

_access_s

acos

acosf

acosh

acoshf

acoshl

acosl

_aligned_free

_aligned_free_dbg

_aligned_malloc

_aligned_malloc_dbg

_aligned_msize

_aligned_msize_dbg

_aligned_offset_malloc

_aligned_offset_malloc_dbg

_aligned_offset_realloc

_aligned_offset_realloc_dbg

_aligned_offset_recalloc

_aligned_offset_recalloc_dbg

_aligned_realloc

_aligned_realloc_dbg

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crt-alphabetical-function-reference.md

_aligned_recalloc

_aligned_recalloc_dbg

_alloca

_amsg_exit

and

and_eq

asctime

asctime_s

asin

asinf

asinh

asinhf

asinhl

asinl

assert

_assert

_ASSERT

_ASSERT_EXPR

_ASSERTE

atan

atan2

atan2f

atan2l

atanf

atanh

atanhf

atanhl

atanl

atexit

_atodbl

_atodbl_l

atof

_atof_l

B

C

_atoflt

_atoflt_l

atoi

_atoi_l

_atoi64

_atoi64_l

atol

_atol_l

_atoldbl

_atoldbl_l

atoll

_atoll_l

_beginthread

_beginthreadex

bitand

bitor

bsearch

bsearch_s

btowc

_byteswap_uint64

_byteswap_ulong

_byteswap_ushort

_c_exit

c16rtomb

c32rtomb

_cabs

cabs

cabsf

cabsl

cacos

cacosf

cacosh

cacoshf

cacoshl

cacosl

_callnewh

calloc

_calloc_dbg

carg

cargf

cargl

casin

casinf

casinh

casinhf

casinhl

casinl

catan

catanf

catanh

catanhf

catanhl

catanl

cbrt

cbrtf

cbrtl

ccos

ccosf

ccosh

ccoshf

ccoshl

ccosl

ceil

ceilf

ceill

_cexit

cexp

cexpf

cexpl

cgets

_cgets_s

_cgetws_s

chdir

_chdir

_chdrive

_chgsign

_chgsignf

_chgsignl

chmod

_chmod

chsize

_chsize

_chsize_s

cimag

cimagf

cimagl

_clear87

clearerr

clearerr_s

_clearfp

clock

clog

clog10

clog10f

clog10l

clogf

clogl

close

_close

_commit

compl

_configthreadlocale

conj

conjf

conjl

_control87

__control87_2

_controlfp

_controlfp_s

copysign

_copysign

copysignf

_copysignf

copysignl

_copysignl

cos

cosf

cosh

coshf

coshl

cosl

_countof

cpow

cpowf

cpowl

cprintf

_cprintf

_cprintf_l

_cprintf_p

_cprintf_p_l

_cprintf_s

_cprintf_s_l

cproj

cprojf

cprojl

cputs

_cputs

_cputws

creal

crealf

creall

creat

_creat

_create_locale

_CrtCheckMemory

_CrtDbgBreak

_CrtDbgReport

_CrtDbgReportW

_CrtDoForAllClientObjects

_CrtDumpMemoryLeaks

_CrtGetAllocHook

_CrtGetDumpClient

_CrtGetReportHook

_CrtIsMemoryBlock

_CrtIsValidHeapPointer

_CrtIsValidPointer

_CrtMemCheckpoint

_CrtMemDifference

_CrtMemDumpAllObjectsSince

_CrtMemDumpStatistics

_CrtReportBlockType

_CrtSetAllocHook

_CrtSetBreakAlloc

_CrtSetDbgFlag

_CrtSetDebugFillThreshold

_CrtSetDumpClient

_CrtSetReportFile

_CrtSetReportHook

_CrtSetReportHook2

_CrtSetReportHookW2

_CrtSetReportMode

cscanf

_cscanf

_cscanf_l

_cscanf_s

_cscanf_s_l

csin

csinf

csinh

csinhf

csinhl

csinl

csqrt

csqrtf

csqrtl

ctan

ctanf

ctanh

ctanhf

ctanhl

ctanl

ctime

ctime_s

_ctime32

_ctime32_s

_ctime64

D

E

_ctime64_s

_cwait

cwait

_cwprintf

_cwprintf_l

_cwprintf_p

_cwprintf_p_l

_cwprintf_s

_cwprintf_s_l

_cwscanf

_cwscanf_l

_cwscanf_s

_cwscanf_s_l

_CxxThrowException

difftime

_difftime32

_difftime64

div

_dup

dup

_dup2

dup2

_dupenv_s

_dupenv_s_dbg

_ecvt

ecvt

_ecvt_s

_endthread

_endthreadex

eof

_eof

erf

erfc

erfcf

erfcl

erff

erfl

execl

_execl

execle

_execle

execlp

_execlp

execlpe

_execlpe

execv

_execv

execve

_execve

execvp

_execvp

execvpe

_execvpe

exit

_Exit

_exit

exp

exp2

exp2f

exp2l

_expand

_expand_dbg

expf

expm1

F

expm1f

expm1l

fabs

fabsf

fclose

_fclose_nolock

_fcloseall

fcloseall

_fcvt

fcvt

_fcvt_s

fdim

fdimf

fdiml

fdopen

_fdopen

feclearexcept

fegetenv

fegetexceptflag

fegetround

feholdexcept

feof

feraiseexcept

ferror

fesetenv

fesetexceptflag

fesetround

fetestexcept

feupdateenv

fflush

_fflush_nolock

fgetc

_fgetc_nolock

fgetchar

_fgetchar

fgetpos

fgets

fgetwc

_fgetwc_nolock

_fgetwchar

fgetws

filelength

_filelength

_filelengthi64

fileno

_fileno

_findclose

_findfirst

_findfirst32

_findfirst32i64

_findfirst64

_findfirst64i32

_findfirsti64

_findnext

_findnext32

_findnext32i64

_findnext64

_findnext64i32

_findnexti64

_finite

_finitef

floor

floorf

floorl

flushall

_flushall

fma

fmaf

fmal

fmax

fmaxf

fmaxl

fmin

fminf

fminl

fmod

fmodf

fopen

fopen_s

_fpclass

_fpclassf

fpclassify

_fpieee_flt

_fpreset

fprintf

_fprintf_l

_fprintf_p

_fprintf_p_l

fprintf_s

_fprintf_s_l

fputc

_fputc_nolock

fputchar

_fputchar

fputs

fputwc

_fputwc_nolock

_fputwchar

fputws

fread

_fread_nolock

_fread_nolock_s

fread_s

free

_free_dbg

_free_locale

_freea

freopen

freopen_s

frexp

fscanf

_fscanf_l

fscanf_s

_fscanf_s_l

fseek

_fseek_nolock

_fseeki64

_fseeki64_nolock

fsetpos

_fsopen

_fstat

_fstat32

_fstat32i64

_fstat64

_fstat64i32

_fstati64

ftell

_ftell_nolock

_ftelli64

_ftelli64_nolock

_ftime

G

_ftime_s

_ftime32

_ftime32_s

_ftime64

_ftime64_s

_fullpath

_fullpath_dbg

_futime

_futime32

_futime64

fwide

fwprintf

_fwprintf_l

_fwprintf_p

_fwprintf_p_l

fwprintf_s

_fwprintf_s_l

fwrite

_fwrite_nolock

fwscanf

_fwscanf_l

fwscanf_s

_fwscanf_s_l

gcvt

_gcvt

_gcvt_s

_get_current_locale

_get_daylight

_get_doserrno

_get_dstbias

_get_errno

_get_FMA3_enable

_get_fmode

_get_heap_handle

_get_invalid_parameter_handler

_get_osfhandle

_get_pgmptr

_get_printf_count_output

_get_terminate

_get_thread_local_invalid_parameter_handler

_get_timezone

_get_tzname

_get_unexpected

_get_wpgmptr

getc

_getc_nolock

getch

_getch

_getch_nolock

getchar

_getchar_nolock

getche

_getche

_getche_nolock

getcwd

_getcwd

_getcwd_dbg

_getdcwd

_getdcwd_dbg

_getdcwd_nolock

_getdiskfree

_getdrive

_getdrives

getenv

getenv_s

H

_getmaxstdio

_getmbcp

_getpid

getpid

gets_s

_getw

getw

getwc

_getwc_nolock

_getwch

_getwch_nolock

getwchar

_getwchar_nolock

_getwche

_getwche_nolock

_getws_s

gmtime

gmtime_s

_gmtime32

_gmtime32_s

_gmtime64

_gmtime64_s

_heapchk

_heapmin

_heapwalk

hypot

_hypot

hypotf

_hypotf

hypotl

_hypotl

I
_i64toa

_i64toa_s

_i64tow

_i64tow_s

ilogb

ilogbf

ilogbl

imaxabs

imaxdiv

_initterm

_initterm_e

_invalid_parameter

_invalid_parameter_noinfo

_invalid_parameter_noinfo_noreturn

_invoke_watson

isalnum

_isalnum_l

isalpha

_isalpha_l

isascii

__isascii

_isatty

isatty

isblank

_isblank_l

iscntrl

_iscntrl_l

__iscsym

iscsym

_iscsym_l

__iscsymf

iscsymf

_iscsymf_l

_isctype

_isctype_l

isdigit

_isdigit_l

isfinite

isgraph

_isgraph_l

isgreater

isgreaterequal

isinf

isleadbyte

_isleadbyte_l

isless

islessequal

islessgreater

islower

_islower_l

_ismbbalnum

_ismbbalnum_l

_ismbbalpha

_ismbbalpha_l

_ismbbblank

_ismbbblank_l

_ismbbgraph

_ismbbgraph_l

_ismbbkalnum

_ismbbkalnum_l

_ismbbkana

_ismbbkana_l

_ismbbkprint

_ismbbkprint_l

_ismbbkpunct

_ismbbkpunct_l

_ismbblead

_ismbblead_l

_ismbbprint

_ismbbprint_l

_ismbbpunct

_ismbbpunct_l

_ismbbtrail

_ismbbtrail_l

_ismbcalnum

_ismbcalnum_l

_ismbcalpha

_ismbcalpha_l

_ismbcblank

_ismbcblank_l

_ismbcdigit

_ismbcdigit_l

_ismbcgraph

_ismbcgraph_l

_ismbchira

_ismbchira_l

_ismbckata

_ismbckata_l

_ismbcl0

_ismbcl0_l

_ismbcl1

_ismbcl1_l

_ismbcl2

_ismbcl2_l

_ismbclegal

_ismbclegal_l

_ismbclower

_ismbclower_l

_ismbcprint

_ismbcprint_l

_ismbcpunct

_ismbcpunct_l

_ismbcspace

_ismbcspace_l

_ismbcsymbol

_ismbcsymbol_l

_ismbcupper

_ismbcupper_l

_ismbslead

_ismbslead_l

_ismbstrail

_ismbstrail_l

isnan

_isnan

_isnanf

isnormal

isprint

_isprint_l

ispunct

_ispunct_l

isspace

_isspace_l

isunordered

isupper

_isupper_l

iswalnum

_iswalnum_l

iswalpha

_iswalpha_l

iswascii

iswblank

J

_iswblank_l

iswcntrl

_iswcntrl_l

__iswcsym

_iswcsym_l

__iswcsymf

_iswcsymf_l

iswctype

_iswctype_l

iswdigit

_iswdigit_l

iswgraph

_iswgraph_l

iswlower

_iswlower_l

iswprint

_iswprint_l

iswpunct

_iswpunct_l

iswspace

_iswspace_l

iswupper

_iswupper_l

iswxdigit

_iswxdigit_l

isxdigit

_isxdigit_l

itoa

_itoa

_itoa_s

_itow

_itow_s

K

L

_j0

j0

_j1

j1

_jn

jn

_kbhit

kbhit

labs

ldexp

ldiv

_lfind

lfind

_lfind_s

lgamma

lgammaf

lgammal

llabs

lldiv

llrint

llrintf

llrintl

llround

llroundf

llroundl

localeconv

localtime

localtime_s

_localtime32

_localtime32_s

_localtime64

_localtime64_s

_lock_file

locking

_locking

log

log10

log10f

log1p

log1pf

log1pl

log2

log2f

log2l

logb

_logb

logbf

_logbf

logbl

logf

longjmp

lrint

lrintf

lrintl

_lrotl

_lrotr

lround

lroundf

lroundl

_lsearch

lsearch

_lsearch_s

lseek

_lseek

M

_lseeki64

ltoa

_ltoa

_ltoa_s

_ltow

_ltow_s

_makepath

_makepath_s

malloc

_malloc_dbg

_malloca

_matherr

__max

_mbbtombc

_mbbtombc_l

_mbbtype

_mbbtype_l

_mbccpy

_mbccpy_l

_mbccpy_s

_mbccpy_s_l

_mbcjistojms

_mbcjistojms_l

_mbcjmstojis

_mbcjmstojis_l

_mbclen

_mbclen_l

_mbctohira

_mbctohira_l

_mbctokata

_mbctokata_l

_mbctolower

_mbctolower_l

_mbctombb

_mbctombb_l

_mbctoupper

_mbctoupper_l

mblen

_mblen_l

mbrlen

mbrtoc16

mbrtoc32

mbrtowc

_mbsbtype

_mbsbtype_l

_mbscat

_mbscat_s

_mbscat_s_l

_mbschr

_mbschr_l

_mbscmp

_mbscmp_l

_mbscoll

_mbscoll_l

_mbscpy

_mbscpy_s

_mbscpy_s_l

_mbscspn

_mbscspn_l

_mbsdec

_mbsdec_l

_mbsdup

_mbsicmp

_mbsicmp_l

_mbsicoll

_mbsicoll_l

_mbsinc

_mbsinc_l

mbsinit

_mbslen

_mbslen_l

_mbslwr

_mbslwr_l

_mbslwr_s

_mbslwr_s_l

_mbsnbcat

_mbsnbcat_l

_mbsnbcat_s

_mbsnbcat_s_l

_mbsnbcmp

_mbsnbcmp_l

_mbsnbcnt

_mbsnbcnt_l

_mbsnbcoll

_mbsnbcoll_l

_mbsnbcpy

_mbsnbcpy_l

_mbsnbcpy_s

_mbsnbcpy_s_l

_mbsnbicmp

_mbsnbicmp_l

_mbsnbicoll

_mbsnbicoll_l

_mbsnbset

_mbsnbset_l

_mbsnbset_s

_mbsnbset_s_l

_mbsncat

_mbsncat_l

_mbsncat_s

_mbsncat_s_l

_mbsnccnt

_mbsnccnt_l

_mbsncmp

_mbsncmp_l

_mbsncoll

_mbsncoll_l

_mbsncpy

_mbsncpy_l

_mbsncpy_s

_mbsncpy_s_l

_mbsnextc

_mbsnextc_l

_mbsnicmp

_mbsnicmp_l

_mbsnicoll

_mbsnicoll_l

_mbsninc

_mbsninc_l

_mbsnlen

_mbsnlen_l

_mbsnset

_mbsnset_l

_mbsnset_s

_mbsnset_s_l

_mbspbrk

_mbspbrk_l

_mbsrchr

_mbsrchr_l

_mbsrev

_mbsrev_l

mbsrtowcs

mbsrtowcs_s

_mbsset

_mbsset_l

_mbsset_s

_mbsset_s_l

_mbsspn

_mbsspn_l

_mbsspnp

_mbsspnp_l

_mbsstr

_mbsstr_l

_mbstok

_mbstok_l

_mbstok_s

_mbstok_s_l

mbstowcs

_mbstowcs_l

mbstowcs_s

_mbstowcs_s_l

_mbstrlen

_mbstrlen_l

_mbstrnlen

_mbstrnlen_l

_mbsupr

_mbsupr_l

_mbsupr_s

_mbsupr_s_l

mbtowc

_mbtowc_l

memccpy

_memccpy

memchr

N

memcmp

memcpy

memcpy_s

memicmp

_memicmp

_memicmp_l

memmove

memmove_s

memset

__min

mkdir

_mkdir

_mkgmtime

_mkgmtime32

_mkgmtime64

mktemp

_mktemp

_mktemp_s

mktime

_mktime32

_mktime64

modf

modff

_msize

_msize_dbg

nan

nanf

nanl

nearbyint

nearbyintf

nearbyintl

nextafter

O

P

_nextafter

nextafterf

_nextafterf

nextafterl

nexttoward

nexttowardf

nexttowardl

norm

normf

norml

not

not_eq

offsetof

_onexit

_onexit_m

open

_open

_open_osfhandle

or

or_eq

_pclose

perror

_pipe

_popen

pow

powf

powl

printf

_printf_l

_printf_p

_printf_p_l

Q

R

printf_s

_printf_s_l

_purecall

putc

_putc_nolock

putch

_putch

_putch_nolock

putchar

_putchar_nolock

putenv

_putenv

_putenv_s

puts

putw

_putw

putwc

_putwc_nolock

_putwch

_putwch_nolock

putwchar

_putwchar_nolock

_putws

qsort

qsort_s

_query_new_handler

_query_new_mode

quick_exit

raise

rand

rand_s

read

_read

realloc

_realloc_dbg

_recalloc

_recalloc_dbg

remainder

remainderf

remainderl

remove

remquo

remquof

remquol

rename

_resetstkoflw

rewind

rint

rintf

rintl

rmdir

_rmdir

rmtmp

_rmtmp

_rotl

_rotl64

_rotr

_rotr64

round

roundf

roundl

_RPT

_RPTF

_RPTFW

S

_RPTW

_RTC_GetErrDesc

_RTC_NumErrors

_RTC_SetErrorFunc

_RTC_SetErrorFuncW

_RTC_SetErrorType

_scalb

scalbln

scalblnf

scalblnl

scalbn

scalbnf

scalbnl

scanf

_scanf_l

scanf_s

_scanf_s_l

_scprintf

_scprintf_l

_scprintf_p

_scprintf_p_l

_scwprintf

_scwprintf_l

_scwprintf_p

_scwprintf_p_l

_searchenv

_searchenv_s

__security_init_cookie

_seh_filter_dll

_seh_filter_exe

_set_abort_behavior

_set_controlfp

_set_doserrno

_set_errno

_set_error_mode

_set_FMA3_enable

_set_fmode

_set_invalid_parameter_handler

_set_new_handler

_set_new_mode

_set_printf_count_output

_set_purecall_handler

_set_se_translator

_set_SSE2_enable

set_terminate

_set_thread_local_invalid_parameter_handler

set_unexpected

setbuf

setjmp

setlocale

_setmaxstdio

_setmbcp

setmode

_setmode

setvbuf

signal

signbit

sin

sinf

sinh

sinhf

sinhl

sinl

snprintf

_snprintf

_snprintf_l

_snprintf_s

_snprintf_s_l

_snscanf

_snscanf_l

_snscanf_s

_snscanf_s_l

_snwprintf

_snwprintf_l

_snwprintf_s

_snwprintf_s_l

_snwscanf

_snwscanf_l

_snwscanf_s

_snwscanf_s_l

sopen

_sopen

_sopen_s

spawnl

_spawnl

spawnle

_spawnle

spawnlp

_spawnlp

spawnlpe

_spawnlpe

spawnv

_spawnv

spawnve

_spawnve

spawnvp

_spawnvp

spawnvpe

_spawnvpe

_splitpath

_splitpath_s

sprintf

_sprintf_l

_sprintf_p

_sprintf_p_l

sprintf_s

_sprintf_s_l

sqrt

sqrtf

sqrtl

srand

sscanf

_sscanf_l

sscanf_s

_sscanf_s_l

_stat

_stat32

_stat32i64

_stat64

_stat64i32

_stati64

_STATIC_ASSERT

_status87

_statusfp

_statusfp2

strcat

strcat_s

strchr

strcmp

strcmpi

strcoll

_strcoll_l

strcpy

strcpy_s

strcspn

_strdate

_strdate_s

_strdec

_strdup

strdup

_strdup_dbg

strerror

_strerror

strerror_s

_strerror_s

strftime

_strftime_l

_stricmp

stricmp

_stricmp_l

_stricoll

_stricoll_l

_strinc

strlen

_strlwr

strlwr

_strlwr_l

_strlwr_s

_strlwr_s_l

strncat

_strncat_l

strncat_s

_strncat_s_l

strncmp

_strncnt

_strncoll

_strncoll_l

strncpy

_strncpy_l

strncpy_s

_strncpy_s_l

_strnextc

_strnicmp

strnicmp

_strnicmp_l

_strnicoll

_strnicoll_l

_strninc

strnlen

strnlen_s

_strnset

strnset

_strnset_l

_strnset_s

_strnset_s_l

strpbrk

strrchr

_strrev

strrev

_strset

strset

_strset_l

_strset_s

_strset_s_l

strspn

_strspnp

strstr

_strtime

_strtime_s

strtod

_strtod_l

strtof

_strtof_l

_strtoi64

_strtoi64_l

strtoimax

_strtoimax_l

strtok

_strtok_l

strtok_s

_strtok_s_l

strtol

_strtol_l

strtold

_strtold_l

strtoll

_strtoll_l

_strtoui64

_strtoui64_l

strtoul

_strtoul_l

strtoull

_strtoull_l

strtoumax

_strtoumax_l

_strupr

strupr

_strupr_l

_strupr_s

_strupr_s_l

T

strxfrm

_strxfrm_l

swab

_swab

swprintf

_swprintf_l

__swprintf_l

_swprintf_p

_swprintf_p_l

swprintf_s

_swprintf_s_l

swscanf

_swscanf_l

swscanf_s

_swscanf_s_l

system

tan

tanf

tanh

tanhf

tanhl

tanl

tell

_tell

_telli64

tempnam

_tempnam

_tempnam_dbg

terminate

tgamma

tgammaf

tgammal

U

time

_time32

_time64

timespec_get

_timespec32_get

_timespec64_get

tmpfile

tmpfile_s

tmpnam

tmpnam_s

__toascii

toascii

tolower

_tolower

_tolower_l

toupper

_toupper

_toupper_l

towctrans

towlower

_towlower_l

towupper

_towupper_l

trunc

truncf

truncl

tzset

_tzset

_ui64toa

_ui64toa_s

_ui64tow

_ui64tow_s

V

ultoa

_ultoa

_ultoa_s

_ultow

_ultow_s

umask

_umask

_umask_s

__uncaught_exception

unexpected

ungetc

_ungetc_nolock

ungetch

_ungetch

_ungetch_nolock

ungetwc

_ungetwc_nolock

_ungetwch

_ungetwch_nolock

unlink

_unlink

_unlock_file

_utime

_utime32

_utime64

va_arg

va_copy

va_end

va_start

_vcprintf

_vcprintf_l

_vcprintf_p

_vcprintf_p_l

_vcprintf_s

_vcprintf_s_l

_vcwprintf

_vcwprintf_l

_vcwprintf_p

_vcwprintf_p_l

_vcwprintf_s

_vcwprintf_s_l

vfprintf

_vfprintf_l

_vfprintf_p

_vfprintf_p_l

vfprintf_s

_vfprintf_s_l

vfscanf

vfscanf_s

vfwprintf

_vfwprintf_l

_vfwprintf_p

_vfwprintf_p_l

vfwprintf_s

_vfwprintf_s_l

vfwscanf

vfwscanf_s

vprintf

_vprintf_l

_vprintf_p

_vprintf_p_l

vprintf_s

_vprintf_s_l

vscanf

vscanf_s

_vscprintf

_vscprintf_l

_vscprintf_p

_vscprintf_p_l

_vscwprintf

_vscwprintf_l

_vscwprintf_p

_vscwprintf_p_l

vsnprintf

_vsnprintf

_vsnprintf_l

vsnprintf_s

_vsnprintf_s

_vsnprintf_s_l

_vsnwprintf

_vsnwprintf_l

_vsnwprintf_s

_vsnwprintf_s_l

vsprintf

_vsprintf_l

_vsprintf_p

_vsprintf_p_l

vsprintf_s

_vsprintf_s_l

vsscanf

vsscanf_s

vswprintf

_vswprintf_l

__vswprintf_l

_vswprintf_p

_vswprintf_p_l

vswprintf_s

_vswprintf_s_l

W

vswscanf

vswscanf_s

vwprintf

_vwprintf_l

_vwprintf_p

_vwprintf_p_l

vwprintf_s

_vwprintf_s_l

vwscanf

vwscanf_s

_waccess

_waccess_s

_wasctime

_wasctime_s

_wassert

_wchdir

_wchmod

_wcreat

_wcreate_locale

wcrtomb

wcrtomb_s

wcscat

wcscat_s

wcschr

wcscmp

wcscoll

_wcscoll_l

wcscpy

wcscpy_s

wcscspn

_wcsdec

_wcsdup

wcsdup

_wcsdup_dbg

_wcserror

__wcserror

_wcserror_s

__wcserror_s

wcsftime

_wcsftime_l

_wcsicmp

wcsicmp

_wcsicmp_l

_wcsicoll

wcsicoll

_wcsicoll_l

_wcsinc

wcslen

_wcslwr

wcslwr

_wcslwr_l

_wcslwr_s

_wcslwr_s_l

wcsncat

_wcsncat_l

wcsncat_s

_wcsncat_s_l

wcsncmp

_wcsncnt

_wcsncoll

_wcsncoll_l

wcsncpy

_wcsncpy_l

wcsncpy_s

_wcsncpy_s_l

_wcsnextc

_wcsnicmp

wcsnicmp

_wcsnicmp_l

_wcsnicoll

_wcsnicoll_l

_wcsninc

wcsnlen

wcsnlen_s

_wcsnset

wcsnset

_wcsnset_l

_wcsnset_s

_wcsnset_s_l

wcspbrk

wcsrchr

_wcsrev

wcsrev

wcsrtombs

wcsrtombs_s

_wcsset

wcsset

_wcsset_l

_wcsset_s

_wcsset_s_l

wcsspn

_wcsspnp

wcsstr

wcstod

_wcstod_l

wcstof

_wcstof_l

_wcstoi64

_wcstoi64_l

wcstoimax

_wcstoimax_l

wcstok

_wcstok_l

wcstok_s

_wcstok_s_l

wcstol

_wcstol_l

wcstold

_wcstold_l

wcstoll

_wcstoll_l

wcstombs

_wcstombs_l

wcstombs_s

_wcstombs_s_l

_wcstoui64

_wcstoui64_l

wcstoul

_wcstoul_l

wcstoull

_wcstoull_l

wcstoumax

_wcstoumax_l

_wcsupr

wcsupr

_wcsupr_l

_wcsupr_s

_wcsupr_s_l

wcsxfrm

_wcsxfrm_l

_wctime

_wctime_s

_wctime32

_wctime32_s

_wctime64

_wctime64_s

wctob

wctomb

_wctomb_l

wctomb_s

_wctomb_s_l

wctrans

wctype

_wdupenv_s

_wdupenv_s_dbg

_wexecl

_wexecle

_wexeclp

_wexeclpe

_wexecv

_wexecve

_wexecvp

_wexecvpe

_wfdopen

_wfindfirst

_wfindfirst32

_wfindfirst32i64

_wfindfirst64

_wfindfirst64i32

_wfindfirsti64

_wfindnext

_wfindnext32

_wfindnext32i64

_wfindnext64

_wfindnext64i32

_wfindnexti64

_wfopen

_wfopen_s

_wfreopen

_wfreopen_s

_wfsopen

_wfullpath

_wfullpath_dbg

_wgetcwd

_wgetcwd_dbg

_wgetdcwd

_wgetdcwd_dbg

_wgetdcwd_nolock

_wgetenv

_wgetenv_s

_wmakepath

_wmakepath_s

wmemchr

wmemcmp

wmemcpy

wmemcpy_s

wmemmove

wmemmove_s

wmemset

_wmkdir

_wmktemp

_wmktemp_s

_wopen

_wperror

_wpopen

wprintf

_wprintf_l

_wprintf_p

_wprintf_p_l

wprintf_s

_wprintf_s_l

_wputenv

_wputenv_s

_wremove

_wrename

_write

write

_wrmdir

wscanf

_wscanf_l

wscanf_s

_wscanf_s_l

_wsearchenv

_wsearchenv_s

_wsetlocale

_wsopen

_wsopen_s

_wspawnl

_wspawnle

_wspawnlp

_wspawnlpe

_wspawnv

_wspawnve

_wspawnvp

_wspawnvpe

_wsplitpath

_wsplitpath_s

_wstat

_wstat32

_wstat32i64

X

Y

_wstat64

_wstat64i32

_wstati64

_wstrdate

_wstrdate_s

_wstrtime

_wstrtime_s

_wsystem

_wtempnam

_wtempnam_dbg

_wtmpnam

_wtmpnam_s

_wtof

_wtof_l

_wtoi

_wtoi_l

_wtoi64

_wtoi64_l

_wtol

_wtol_l

_wtoll

_wtoll_l

_wunlink

_wutime

_wutime32

_wutime64

xor

xor_eq

_y0

y0

_y1

See also

y1

_yn

yn

C Run-Time Library Reference

abort
10/31/2018 • 3 minutes to read • Edit Online

NOTE

Syntax
void abort(void);

Return Value

Remarks

Aborts the current process and returns an error code.

Do not use this method to shut down a Microsoft Store app or Universal Windows Platform (UWP) app, except in
testing or debugging scenarios. Programmatic or UI ways to close a Store app are not permitted according to the
Microsoft Store policies. For more information, see UWP app lifecycle.

abort does not return control to the calling process. By default, it checks for an abort signal handler and
raises SIGABRT if one is set. Then abort terminates the current process and returns an exit code to the
parent process.

Microsoft Specific

By default, when an app is built with the debug runtime library, the abort routine displays an error message
before SIGABRT is raised. For console apps running in console mode, the message is sent to STDERR .
Windows desktop apps and console apps running in windowed mode display the message in a message
box. To suppress the message, use _set_abort_behavior to clear the _WRITE_ABORT_MSG flag. The message
displayed depends on the version of the runtime environment used. For applications built by using the most
recent versions of Visual C++, the message resembles this:

R6010 - abort() has been called

In previous versions of the C runtime library, this message was displayed:

This application has requested the Runtime to terminate it in an unusual way. Please contact the
application's support team for more information.

When the program is compiled in debug mode, the message box displays options to Abort, Retry, or
Ignore. If the user chooses Abort, the program terminates immediately and returns an exit code of 3. If the
user chooses Retry, a debugger is invoked for just-in-time debugging, if available. If the user chooses
Ignore, abort continues normal processing.

In both retail and debug builds, abort then checks whether an abort signal handler is set. If a non-default
signal handler is set, abort calls raise(SIGABRT) . Use the signal function to associate an abort signal
handler function with the SIGABRT signal. You can perform custom actions—for example, clean up
resources or log information—and terminate the app with your own error code in the handler function. If

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/abort.md
https://docs.microsoft.com/legal/windows/agreements/store-policies
https://docs.microsoft.com/windows/uwp/launch-resume/app-lifecycle

Requirements
ROUTINE REQUIRED HEADER

abort <process.h> or <stdlib.h>

Example

// crt_abort.c
// compile with: /TC
// This program demonstrates the use of
// the abort function by attempting to open a file
// and aborts if the attempt fails.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 FILE *stream = NULL;
 errno_t err = 0;

 err = fopen_s(&stream, "NOSUCHF.ILE", "r");
 if ((err != 0) || (stream == NULL))
 {
 perror("File could not be opened");
 abort();
 }
 else
 {
 fclose(stream);
 }
}

File could not be opened: No such file or directory

See also

no custom signal handler is defined, abort does not raise the SIGABRT signal.

By default, in non-debug builds of desktop or console apps, abort then invokes the Windows Error
Reporting Service mechanism (formerly known as Dr. Watson) to report failures to Microsoft. This behavior
can be enabled or disabled by calling _set_abort_behavior and setting or masking the _CALL_REPORTFAULT

flag. When the flag is set, Windows displays a message box that has text something like "A problem caused
the program to stop working correctly." The user can choose to invoke a debugger with a Debug button, or
choose the Close program button to terminate the app with an error code that's defined by the operating
system.

If the Windows error reporting handler is not invoked, then abort calls _exit to terminate the process with
exit code 3 and returns control to the parent process or the operating system. _exit does not flush stream
buffers or do atexit / _onexit processing.

For more information about CRT debugging, see CRT Debugging Techniques.

End Microsoft Specific

The following program tries to open a file and aborts if the attempt fails.

https://docs.microsoft.com/visualstudio/debugger/crt-debugging-techniques

Using abort
abort Function
Process and Environment Control
_exec, _wexec Functions
exit, _Exit, _exit
raise
signal
_spawn, _wspawn Functions
_DEBUG
_set_abort_behavior

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/using-abort
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/abort-function-c

abs, labs, llabs, _abs64
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int abs(int n);
long labs(long n);
long long llabs(long long n);
__int64 _abs64(__int64 n);

long abs(long n); // C++ only
long long abs(long long n); // C++ only
double abs(double n); // C++ only
long double abs(long double n); // C++ only
float abs(float n); // C++ only

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED C HEADER REQUIRED C++ HEADER

abs, labs, llabs <math.h> or <stdlib.h> <cmath>, <cstdlib>, <stdlib.h> or
<math.h>

_abs64 <stdlib.h> <cstdlib> or <stdlib.h>

Calculates the absolute value of the argument.

n
Numeric value.

The abs, labs, llabs and _abs64 functions return the absolute value of the parameter n. There is no error return.

Because C++ allows overloading, you can call overloads of abs that take and return long, long long, float,
double, and long double values. These overloads are defined in the <cmath> header. In a C program, abs
always takes and returns an int.

Microsoft Specific: Because the range of negative integers that can be represented by using any integral type
is larger than the range of positive integers that can be represented by using that type, it's possible to supply an
argument to these functions that can’t be converted. If the absolute value of the argument cannot be
represented by the return type, the abs functions return the argument value unchanged. Specifically,
abs(INT_MIN) returns INT_MIN , labs(LONG_MIN) returns LONG_MIN , llabs(LLONG_MIN) returns LLONG_MIN , and
_abs64(_I64_MIN) returns _I64_MIN . This means that the abs functions cannot be used to guarantee a positive

value.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/abs-labs-llabs-abs64.md

Example

// crt_abs.c
// Build: cl /W3 /TC crt_abs.c
// This program demonstrates the use of the abs function
// by computing and displaying the absolute values of
// several numbers.

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <limits.h>

int main(void)
{
 int ix = -4;
 long lx = -41567L;
 long long llx = -9876543210LL;
 __int64 wx = -1;

 // absolute 32 bit integer value
 printf_s("The absolute value of %d is %d\n", ix, abs(ix));

 // absolute long integer value
 printf_s("The absolute value of %ld is %ld\n", lx, labs(lx));

 // absolute long long integer value
 printf_s("The absolute value of %lld is %lld\n", llx, llabs(llx));

 // absolute 64 bit integer value
 printf_s("The absolute value of 0x%.16I64x is 0x%.16I64x\n", wx,
 _abs64(wx));

 // Integer error cases:
 printf_s("Microsoft implementation-specific results:\n");
 printf_s(" abs(INT_MIN) returns %d\n", abs(INT_MIN));
 printf_s(" labs(LONG_MIN) returns %ld\n", labs(LONG_MIN));
 printf_s(" llabs(LLONG_MIN) returns %lld\n", llabs(LLONG_MIN));
 printf_s(" _abs64(_I64_MIN) returns 0x%.16I64x\n", _abs64(_I64_MIN));
}

The absolute value of -4 is 4
The absolute value of -41567 is 41567
The absolute value of -9876543210 is 9876543210
The absolute value of 0xffffffffffffffff is 0x0000000000000001
Microsoft implementation-specific results:
abs(INT_MIN) returns -2147483648
labs(LONG_MIN) returns -2147483648
llabs(LLONG_MIN) returns -9223372036854775808
_abs64(_I64_MIN) returns 0x8000000000000000

See also

To use the overloaded versions of abs in C++, you must include the <cmath> header.

This program computes and displays the absolute values of several numbers.

Data Conversion
Floating-Point Support
_cabs
fabs, fabsf, fabsl

imaxabs

access (CRT)
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _access or security-enhanced _access_s instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/access-crt.md

_access, _waccess
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _access(
 const char *path,
 int mode
);
int _waccess(
 const wchar_t *path,
 int mode
);

Parameters

Return Value

EACCES Access denied: the file's permission setting does not allow
specified access.

ENOENT File name or path not found.

EINVAL Invalid parameter.

Remarks

MODE VALUE CHECKS FILE FOR

00 Existence only

02 Write-only

Determines if a file is read-only or not. More secure versions are available; see _access_s, _waccess_s.

path
File or directory path.

mode
Read/write attribute.

Each function returns 0 if the file has the given mode. The function returns -1 if the named file does not exist or
does not have the given mode; in this case, errno is set as shown in the following table.

For more information about these and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

When used with files, the _access function determines whether the specified file or directory exists and has the
attributes specified by the value of mode. When used with directories, _access determines only whether the
specified directory exists; in Windows 2000 and later operating systems, all directories have read and write
access.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/access-waccess.md

04 Read-only

06 Read and write

MODE VALUE CHECKS FILE FOR

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_taccess _access _access _waccess

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADERS

_access <io.h> <errno.h>

_waccess <wchar.h> or <io.h> <errno.h>

Example

This function only checks whether the file and directory are read-only or not, it does not check the filesystem
security settings. For that you need an access token. For more information on filesystem security, see Access
Tokens. An ATL class exists to provide this functionality; see CAccessToken Class.

_waccess is a wide-character version of _access; the path argument to _waccess is a wide-character string.
_waccess and _access behave identically otherwise.

This function validates its parameters. If path is NULL or mode does not specify a valid mode, the invalid
parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue, the
function sets errno to EINVAL and returns -1.

The following example uses _access to check the file named crt_ACCESS.C to see whether it exists and whether
writing is allowed.

https://docs.microsoft.com/windows/desktop/SecAuthZ/access-tokens
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/reference/caccesstoken-class

// crt_access.c
// compile with: /W1
// This example uses _access to check the file named
// crt_ACCESS.C to see if it exists and if writing is allowed.

#include <io.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 // Check for existence.
 if((_access("crt_ACCESS.C", 0)) != -1)
 {
 printf_s("File crt_ACCESS.C exists.\n");

 // Check for write permission.
 // Assume file is read-only.
 if((_access("crt_ACCESS.C", 2)) == -1)
 printf_s("File crt_ACCESS.C does not have write permission.\n");
 }
}

File crt_ACCESS.C exists.
File crt_ACCESS.C does not have write permission.

See also
File Handling
_chmod, _wchmod
_fstat, _fstat32, _fstat64, _fstati64, _fstat32i64, _fstat64i32
_open, _wopen
_stat, _wstat Functions

_access_s, _waccess_s
10/31/2018 • 2 minutes to read • Edit Online

Syntax
errno_t _access_s(
 const char *path,
 int mode
);
errno_t _waccess_s(
 const wchar_t *path,
 int mode
);

Parameters

Return Value

ERRNO VALUE CONDITION

EACCES Access denied. The file's permission setting does not allow
specified access.

ENOENT File name or path not found.

EINVAL Invalid parameter.

Remarks

MODE VALUE CHECKS FILE FOR

00 Existence only.

Determines file read/write permissions. This is a version of _access, _waccess with security enhancements as
described in Security Features in the CRT.

path
File or directory path.

mode
Permission setting.

Each function returns 0 if the file has the given mode. The function returns an error code if the named file does
not exist or is not accessible in the given mode. In this case, the function returns an error code from the set as
follows and also sets errno to the same value.

For more information, see errno, _doserrno, _sys_errlist, and _sys_nerr.

When used with files, the _access_s function determines whether the specified file exists and can be accessed as
specified by the value of mode. When used with directories, _access_s determines only whether the specified
directory exists. In Windows 2000 and later operating systems, all directories have read and write access.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/access-s-waccess-s.md

02 Write permission.

04 Read permission.

06 Read and write permission.

MODE VALUE CHECKS FILE FOR

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_taccess_s _access_s _access_s _waccess_s

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_access_s <io.h> <errno.h>

_waccess_s <wchar.h> or <io.h> <errno.h>

Example

Permission to read or write the file is not enough to ensure the ability to open a file. For example, if a file is locked
by another process, it might not be accessible even though _access_s returns 0.

_waccess_s is a wide-character version of _access_s, where the path argument to _waccess_s is a wide-character
string. Otherwise, _waccess_s and _access_s behave identically.

These functions validate their parameters. If path is NULL or mode does not specify a valid mode, the invalid
parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue, these
functions set errno to EINVAL and return EINVAL .

This example uses _access_s to check the file named crt_access_s.c to see whether it exists and whether writing is
allowed.

// crt_access_s.c

#include <io.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 errno_t err = 0;

 // Check for existence.
 if ((err = _access_s("crt_access_s.c", 0)) == 0)
 {
 printf_s("File crt_access_s.c exists.\n");

 // Check for write permission.
 if ((err = _access_s("crt_access_s.c", 2)) == 0)
 {
 printf_s("File crt_access_s.c does have "
 "write permission.\n");
 }
 else
 {
 printf_s("File crt_access_s.c does not have "
 "write permission.\n");
 }
 }
 else
 {
 printf_s("File crt_access_s.c does not exist.\n");
 }
}

File crt_access_s.c exists.
File crt_access_s.c does not have write permission.

See also
File Handling
_access, _waccess
_chmod, _wchmod
_fstat, _fstat32, _fstat64, _fstati64, _fstat32i64, _fstat64i32
_open, _wopen
_stat, _wstat Functions

acos, acosf, acosl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double acos(double x);
float acosf(float x);
long double acosl(long double x);

float acos(float x); // C++ only
long double acos(long double x); // C++ only

Parameters

Return Value

INPUT SEH EXCEPTION MATHERR EXCEPTION

± ∞ INVALID _DOMAIN

± QNAN,IND none _DOMAIN

|x|>1 INVALID _DOMAIN

Remarks

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADERS

acos, acosf, acosl <math.h> <errno.h>

Example

Calculates the arccosine.

x
Value between -1 and 1, for which to calculate the arccosine (the inverse cosine).

The acos function returns the arccosine of x in the range 0 to π radians.

By default, if x is less than -1 or greater than 1, acos returns an indefinite.

Because C++ allows overloading, you can call overloads of acos that take and return float and long double
types. In a C program, acos always takes and returns a double.

This program prompts for a value in the range -1 to 1. Input values outside this range produce _DOMAIN error
messages. If a valid value is entered, the program prints the arcsine and the arccosine of that value.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/acos-acosf-acosl.md

// crt_asincos.c
// arguments: 0

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

int main(int ac, char* av[])
{
 double x,
 y;
 errno_t err;

 // argument checking
 if (ac != 2)
 {
 fprintf_s(stderr, "Usage: %s <number between -1 and 1>\n",
 av[0]);
 return 1;
 }

 // Convert argument into a double value
 if ((err = sscanf_s(av[1], "%lf", &x)) != 1)
 {
 fprintf_s(stderr, "Error converting argument into ",
 "double value.\n");
 return 1;
 }

 // Arcsine of X
 y = asin(x);
 printf_s("Arcsine of %f = %f\n", x, y);

 // Arccosine of X
 y = acos(x);
 printf_s("Arccosine of %f = %f\n", x, y);
}

Arcsine of 0.000000 = 0.000000
Arccosine of 0.000000 = 1.570796

See also
Floating-Point Support
asin, asinf, asinl
atan, atanf, atanl, atan2, atan2f, atan2l
cos, cosf, cosl
_matherr
sin, sinf, sinl
tan, tanf, tanl

acosh, acoshf, acoshl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

float acosh(float x); // C++ only
long double acosh(long double x); // C++ only

Parameters

Return Value

INPUT SEH EXCEPTION _MATHERR EXCEPTION

± QNAN, IND, INF none none

x < 1 none none

Remarks

Requirements
FUNCTION C HEADER C++ HEADER

acosh, acoshf, acoshl <math.h> <cmath>

Example

Calculates the inverse hyperbolic cosine.

x
Floating-point value.

The acosh functions return the inverse hyberbolic cosine (arc hyperbolic cosine) of x. These functions are valid
over the domain x ≥ 1. If x is less than 1, errno is set to EDOM and the result is a quiet NaN. If x is a quiet NaN,
indefinite, or infinity, the same value is returned.

When you use C++, you can call overloads of acosh that take and return float or long double values. In a C
program, acosh always takes and returns double.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/acosh-acoshf-acoshl.md

// crt_acosh.c
// Compile by using: cl /W4 crt_acosh.c
// This program displays the hyperbolic cosine of pi / 4
// and the arc hyperbolic cosine of the result.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double pi = 3.1415926535;
 double x, y;

 x = cosh(pi / 4);
 y = acosh(x);
 printf("cosh(%f) = %f\n", pi/4, x);
 printf("acosh(%f) = %f\n", x, y);
}

cosh(0.785398) = 1.324609
acosh(1.324609) = 0.785398

See also
Floating-Point Support
asinh, asinhf, asinhl
atanh, atanhf, atanhl
cosh, coshf, coshl
sinh, sinhf, sinhl
tanh, tanhf, tanhl

_aligned_free
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void _aligned_free (
 void *memblock
);

Parameters

Remarks

Requirements
ROUTINE REQUIRED HEADER

_aligned_free <malloc.h>

Example

See also

Frees a block of memory that was allocated with _aligned_malloc or _aligned_offset_malloc.

memblock
A pointer to the memory block that was returned to the _aligned_malloc or _aligned_offset_malloc function.

_aligned_free is marked __declspec(noalias) , meaning that the function is guaranteed not to modify global
variables. For more information, see noalias.

This function does not validate its parameter, unlike the other _aligned CRT functions. If memblock is a NULL
pointer, this function simply performs no actions. It does not change errno and it does not invoke the invalid
parameter handler. If an error occurs in the function due to not using _aligned functions previously to allocate the
block of memory or a misalignment of memory occurs due to some unforeseen calamity, the function generates a
debug report from the _RPT, _RPTF, _RPTW, _RPTFW Macros.

For more information, see _aligned_malloc.

Data Alignment

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/aligned-free.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/noalias

_aligned_free_dbg
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void _aligned_free_dbg(
 void *memblock
);

Parameters

Remarks

Requirements
ROUTINE REQUIRED HEADER

_aligned_free_dbg <crtdbg.h>

See also

Frees a block of memory that was allocated with _aligned_malloc or _aligned_offset_malloc (debug only).

memblock
A pointer to the memory block that was returned to the _aligned_malloc or _aligned_offset_malloc function.

The _aligned_free_dbg function is a debug version of the _aligned_free function. When _DEBUG is not defined,
each call to _aligned_free_dbg is reduced to a call to _aligned_free . Both _aligned_free and
_aligned_free_dbg free a memory block in the base heap, but _aligned_free_dbg accommodates a debugging
feature: the ability to keep freed blocks in the heap's linked list to simulate low memory conditions.

_aligned_free_dbg performs a validity check on all specified files and block locations before performing the free
operation. The application is not expected to provide this information. When a memory block is freed, the debug
heap manager automatically checks the integrity of the buffers on either side of the user portion and issues an
error report if overwriting has occurred. If the _CRTDBG_DELAY_FREE_MEM_DF bit field of the _crtDbgFlag flag
is set, the freed block is filled with the value 0xDD, assigned the _FREE_BLOCK block type, and kept in the heap's
linked list of memory blocks.

If an error occurs in freeing the memory, errno is set with information from the operating system on the nature
of the failure. For more information, see errno, _doserrno, _sys_errlist, and _sys_nerr.

For information about how memory blocks are allocated, initialized, and managed in the debug version of the base
heap, see CRT Debug Heap Details. For information about the allocation block types and how they are used, see
Types of blocks on the debug heap. For information about the differences between calling a standard heap
function and its debug version in a debug build of an application, see Debug Versions of Heap Allocation
Functions.

For more compatibility information, see Compatibility.

Debug Routines

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/aligned-free-dbg.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/debug-versions-of-heap-allocation-functions

_aligned_malloc
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void * _aligned_malloc(
 size_t size,
 size_t alignment
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_aligned_malloc <malloc.h>

Example
// crt_aligned_malloc.c

#include <malloc.h>
#include <stdio.h>

Allocates memory on a specified alignment boundary.

size
Size of the requested memory allocation.

alignment
The alignment value, which must be an integer power of 2.

A pointer to the memory block that was allocated or NULL if the operation failed. The pointer is a multiple of
alignment.

_aligned_malloc is based on malloc.

_aligned_malloc is marked __declspec(noalias) and __declspec(restrict) , meaning that the function is
guaranteed not to modify global variables and that the pointer returned is not aliased. For more information,
see noalias and restrict.

This function sets errno to ENOMEM if the memory allocation failed or if the requested size was greater than
_HEAP_MAXREQ . For more information about errno , see errno, _doserrno, _sys_errlist, and _sys_nerr. Also,

_aligned_malloc validates its parameters. If alignment is not a power of 2 or size is zero, this function
invokes the invalid parameter handler, as described in Parameter Validation. If execution is allowed to
continue, this function returns NULL and sets errno to EINVAL .

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/aligned-malloc.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/noalias
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/restrict

int main() {
 void *ptr;
 size_t alignment,
 off_set;

 // Note alignment should be 2^N where N is any positive int.
 alignment = 16;
 off_set = 5;

 // Using _aligned_malloc
 ptr = _aligned_malloc(100, alignment);
 if (ptr == NULL)
 {
 printf_s("Error allocation aligned memory.");
 return -1;
 }
 if (((unsigned long long)ptr % alignment) == 0)
 printf_s("This pointer, %p, is aligned on %zu\n",
 ptr, alignment);
 else
 printf_s("This pointer, %p, is not aligned on %zu\n",
 ptr, alignment);

 // Using _aligned_realloc
 ptr = _aligned_realloc(ptr, 200, alignment);
 if (((unsigned long long)ptr % alignment) == 0)
 printf_s("This pointer, %p, is aligned on %zu\n",
 ptr, alignment);
 else
 printf_s("This pointer, %p, is not aligned on %zu\n",
 ptr, alignment);
 _aligned_free(ptr);

 // Using _aligned_offset_malloc
 ptr = _aligned_offset_malloc(200, alignment, off_set);
 if (ptr == NULL)
 {
 printf_s("Error allocation aligned offset memory.");
 return -1;
 }
 if (((((unsigned long long)ptr) + off_set) % alignment) == 0)
 printf_s("This pointer, %p, is offset by %zu on alignment of %zu\n",
 ptr, off_set, alignment);
 else
 printf_s("This pointer, %p, does not satisfy offset %zu "
 "and alignment %zu\n",ptr, off_set, alignment);

 // Using _aligned_offset_realloc
 ptr = _aligned_offset_realloc(ptr, 200, alignment, off_set);
 if (ptr == NULL)
 {
 printf_s("Error reallocation aligned offset memory.");
 return -1;
 }
 if (((((unsigned long long)ptr) + off_set) % alignment) == 0)
 printf_s("This pointer, %p, is offset by %zu on alignment of %zu\n",
 ptr, off_set, alignment);
 else
 printf_s("This pointer, %p, does not satisfy offset %zu and "
 "alignment %zu\n", ptr, off_set, alignment);

 // Note that _aligned_free works for both _aligned_malloc
 // and _aligned_offset_malloc. Using free is illegal.
 _aligned_free(ptr);
}

This pointer, 3280880, is aligned on 16
This pointer, 3280880, is aligned on 16
This pointer, 3280891, is offset by 5 on alignment of 16
This pointer, 3280891, is offset by 5 on alignment of 16

See also
Data Alignment

_aligned_malloc_dbg
12/5/2018 • 2 minutes to read • Edit Online

Syntax
void * _aligned_malloc_dbg(
 size_t size,
 size_t alignment,
 const char *filename,
 int linenumber
);

Parameters

Return Value

Remarks

Allocates memory on a specified alignment boundary with additional space for a debugging header and overwrite
buffers (debug version only).

size
Size of the requested memory allocation.

alignment
The alignment value, which must be an integer power of 2.

filename
Pointer to the name of the source file that requested the allocation operation or NULL.

linenumber
Line number in the source file where the allocation operation was requested or NULL.

A pointer to the memory block that was allocated or NULL if the operation failed.

_aligned_malloc_dbg is a debug version of the _aligned_malloc function. When _DEBUG is not defined, each call
to _aligned_malloc_dbg is reduced to a call to _aligned_malloc . Both _aligned_malloc and
_aligned_malloc_dbg allocate a block of memory in the base heap, but _aligned_malloc_dbg offers several
debugging features: buffers on either side of the user portion of the block to test for leaks, and
filename/linenumber information to determine the origin of allocation requests. Tracking specific allocation types
with a block type parameter is not a supported debug feature for aligned allocations. Aligned allocations will
appear as a _NORMAL_BLOCK block type.

_aligned_malloc_dbg allocates the memory block with slightly more space than the requested size. The
additional space is used by the debug heap manager to link the debug memory blocks and to provide the
application with debug header information and overwrite buffers. When the block is allocated, the user portion of
the block is filled with the value 0xCD and each of the overwrite buffers are filled with 0xFD.

_aligned_malloc_dbg sets errno to ENOMEM if a memory allocation fails or if the amount of memory needed
(including the overhead mentioned previously) exceeds _HEAP_MAXREQ . For information about this and other error
codes, see errno, _doserrno, _sys_errlist, and _sys_nerr. Also, _aligned_malloc_dbg validates its parameters. If
alignment is not a power of 2 or size is zero, this function invokes the invalid parameter handler, as described in

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/aligned-malloc-dbg.md

Requirements
ROUTINE REQUIRED HEADER

_aligned_malloc_dbg <crtdbg.h>

Libraries

See also

Parameter Validation. If execution is allowed to continue, this function returns NULL and sets errno to EINVAL .

For information about how memory blocks are allocated, initialized, and managed in the debug version of the base
heap, see CRT Debug Heap Details. For information about the allocation block types and how they are used, see
Types of blocks on the debug heap. For information about the differences between calling a standard heap
function and its debug version in a debug build of an application, see Debug Versions of Heap Allocation
Functions.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

Debug Routines

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/debug-versions-of-heap-allocation-functions

_aligned_msize
10/31/2018 • 2 minutes to read • Edit Online

Syntax
size_t _msize(
 void *memblock,
 size_t alignment,
 size_t offset
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_msize <malloc.h>

Libraries

Returns the size of a memory block allocated in the heap.

memblock
Pointer to the memory block.

alignment
The alignment value, which must be an integer power of 2.

offset
The offset into the memory allocation to force the alignment.

Returns the size (in bytes) as an unsigned integer.

The _aligned_msize function returns the size, in bytes, of the memory block allocated by a call to _aligned_malloc
or _aligned_realloc. The alignment and offset values must be the same as the values passed to the function that
allocated the block.

When the application is linked with a debug version of the C run-time libraries, _aligned_msize resolves to
_aligned_msize_dbg. For more information about how the heap is managed during the debugging process, see
The CRT Debug Heap.

This function validates its parameter. If memblock is a null pointer or alignment is not a power of 2, _msize
invokes an invalid parameter handler, as described in Parameter Validation. If the error is handled, the function sets
errno to EINVAL and returns -1.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/aligned-msize.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

See also

All versions of the C run-time libraries.

Memory Allocation

_aligned_msize_dbg
10/31/2018 • 2 minutes to read • Edit Online

Syntax
size_t _aligned_msize_dbg(
 void *memblock,
 size_t alignment,
 size_t offset
);

Parameters

Return Value

Remarks

Requirements

Returns the size of a memory block allocated in the heap (debug version only).

memblock
Pointer to the memory block.

alignment
The alignment value, which must be an integer power of 2.

offset
The offset into the memory allocation to force the alignment.

Returns the size (in bytes) as an unsigned integer.

The alignment and offset values must be the same as the values passed to the function that allocated the block.

_aligned_msize_dbg is a debug version of the _aligned_msize function. When _DEBUG is not defined, each call
to _aligned_msize_dbg is reduced to a call to _aligned_msize. Both _aligned_msize and _aligned_msize_dbg
calculate the size of a memory block in the base heap, but _aligned_msize_dbg adds a debugging feature: It
includes the buffers on either side of the user portion of the memory block in the returned size.

This function validates its parameter. If memblock is a null pointer or alignment is not a power of 2, _msize
invokes an invalid parameter handler, as described in Parameter Validation. If the error is handled, the function
sets errno to EINVAL and returns -1.

For information about how memory blocks are allocated, initialized, and managed in the debug version of the
base heap, see CRT Debug Heap Details. For information about the allocation block types and how they are used,
see Types of blocks on the debug heap. For information about the differences between calling a standard heap
function and its debug version in a debug build of an application, see Debug Versions of Heap Allocation
Functions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/aligned-msize-dbg.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/debug-versions-of-heap-allocation-functions

ROUTINE REQUIRED HEADER

_aligned_msize_dbg <crtdbg.h>

Libraries

See also

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

Memory Allocation

_aligned_offset_malloc
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void * _aligned_offset_malloc(
 size_t size,
 size_t alignment,
 size_t offset
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_aligned_offset_malloc <malloc.h>

Allocates memory on a specified alignment boundary.

size
The size of the requested memory allocation.

alignment
The alignment value, which must be an integer power of 2.

offset
The offset into the memory allocation to force the alignment.

A pointer to the memory block that was allocated or NULL if the operation failed.

_aligned_offset_malloc is useful in situations where alignment is needed on a nested element; for example,
if alignment was needed on a nested class.

_aligned_offset_malloc is based on malloc; for more information, see malloc.

_aligned_offset_malloc is marked __declspec(noalias) and __declspec(restrict) , meaning that the
function is guaranteed not to modify global variables and that the pointer returned is not aliased. For more
information, see noalias and restrict.

This function sets errno to ENOMEM if the memory allocation failed or if the requested size was greater
than _HEAP_MAXREQ. For more information about errno, see errno, _doserrno, _sys_errlist, and _sys_nerr.
Also, _aligned_offset_malloc validates its parameters. If alignment is not a power of 2 or if offset is greater
than or equal to size and nonzero, this function invokes the invalid parameter handler, as described in
Parameter Validation. If execution is allowed to continue, this function returns NULL and sets errno to
EINVAL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/aligned-offset-malloc.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/noalias
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/restrict

Example

See also

For more information, see _aligned_malloc.

Data Alignment

_aligned_offset_malloc_dbg
12/5/2018 • 2 minutes to read • Edit Online

Syntax
void * _aligned_offset_malloc_dbg(
 size_t size,
 size_t alignment,
 size_t offset,
 const char *filename,
 int linenumber
);

Parameters

Return Value

Remarks

Allocates memory on a specified alignment boundary (debug version only).

size
The size of the requested memory allocation.

alignment
The alignment value, which must be an integer power of 2.

offset
The offset into the memory allocation to force the alignment.

filename
Pointer to the name of the source file that requested the allocation operation or NULL.

linenumber
Line number in the source file where the allocation operation was requested or NULL.

A pointer to the memory block that was allocated or NULL if the operation failed.

_aligned_offset_malloc_dbg is a debug version of the _aligned_offset_malloc function. When _DEBUG is not
defined, each call to _aligned_offset_malloc_dbg is reduced to a call to _aligned_offset_malloc. Both
_aligned_offset_malloc and _aligned_offset_malloc_dbg allocate a block of memory in the base heap, but
_aligned_offset_malloc_dbg offers several debugging features: buffers on either side of the user portion of the
block to test for leaks, and filename/linenumber information to determine the origin of allocation requests.
Tracking specific allocation types with a block type parameter is not a supported debug feature for aligned
allocations. Aligned allocations will appear as a _NORMAL_BLOCK block type.

_aligned_offset_malloc_dbg allocates the memory block with slightly more space than the requested size. The
additional space is used by the debug heap manager to link the debug memory blocks and to provide the
application with debug header information and overwrite buffers. When the block is allocated, the user portion of
the block is filled with the value 0xCD and each of the overwrite buffers are filled with 0xFD.

_aligned_offset_malloc_dbg is useful in situations where alignment is needed on a nested element; for example,
if alignment was needed on a nested class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/aligned-offset-malloc-dbg.md

Requirements
ROUTINE REQUIRED HEADER

_aligned_offset_malloc_dbg <crtdbg.h>

Libraries

See also

_aligned_offset_malloc_dbg is based on malloc; for more information, see malloc.

This function sets errno to ENOMEM if the memory allocation failed or if the requested size was greater than
_HEAP_MAXREQ. For more information about errno, see errno, _doserrno, _sys_errlist, and _sys_nerr. Also,
_aligned_offset_malloc validates its parameters. If alignment is not a power of 2 or if offset is greater than or
equal to size and nonzero, this function invokes the invalid parameter handler, as described in Parameter
Validation. If execution is allowed to continue, this function returns NULL and sets errno to EINVAL.

For information about how memory blocks are allocated, initialized, and managed in the debug version of the base
heap, see CRT Debug Heap Details.

For information about the allocation block types and how they are used, see Types of blocks on the debug heap.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

Debug Routines

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

_aligned_offset_realloc
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void * _aligned_offset_realloc(
 void *memblock,
 size_t size,
 size_t alignment,
 size_t offset
);

Parameters

Return Value

Remarks

Changes the size of a memory block that was allocated with _aligned_malloc or _aligned_offset_malloc.

memblock
The current memory block pointer.

size
The size of the memory allocation.

alignment
The alignment value, which must be an integer power of 2.

offset
The offset into the memory allocation to force the alignment.

_aligned_offset_realloc returns a void pointer to the reallocated (and possibly moved) memory block. The return
value is NULL if the size is zero and the buffer argument is not NULL, or if there is not enough available memory
to expand the block to the given size. In the first case, the original block is freed. In the second case, the original
block is unchanged. The return value points to a storage space that is guaranteed to be suitably aligned for storage
of any type of object. To get a pointer to a type other than void, use a type cast on the return value.

_aligned_offset_realloc is marked __declspec(noalias) and __declspec(restrict) , meaning that the function is
guaranteed not to modify global variables and that the pointer returned is not aliased. For more information, see
noalias and restrict.

Like _aligned_offset_malloc, _aligned_offset_realloc allows a structure to be aligned at an offset within the
structure.

_aligned_offset_realloc is based on malloc. For more information about using _aligned_offset_malloc, see
malloc. If memblock is NULL, the function calls _aligned_offset_malloc internally.

This function sets errno to ENOMEM if the memory allocation failed or if the requested size was greater than
_HEAP_MAXREQ. For more information about errno, see errno, _doserrno, _sys_errlist, and _sys_nerr. Also,
_aligned_offset_realloc validates its parameters. If alignment is not a power of 2 or if offset is greater than or
equal to size and nonzero, this function invokes the invalid parameter handler, as described in Parameter
Validation. If execution is allowed to continue, this function returns NULL and sets errno to EINVAL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/aligned-offset-realloc.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/noalias
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/restrict

Requirements
ROUTINE REQUIRED HEADER

_aligned_offset_realloc <malloc.h>

Example

See also

For more information, see _aligned_malloc.

Data Alignment

_aligned_offset_realloc_dbg
12/5/2018 • 2 minutes to read • Edit Online

Syntax
void * _aligned_offset_realloc_dbg(
 void *memblock,
 size_t size,
 size_t alignment,
 size_t offset,
 const char *filename,
 int linenumber
);

Parameters

Return Value

Remarks

Changes the size of a memory block that was allocated with _aligned_malloc or _aligned_offset_malloc (debug
version only).

memblock
The current memory block pointer.

size
The size of the memory allocation.

alignment
The alignment value, which must be an integer power of 2.

offset
The offset into the memory allocation to force the alignment.

filename
Pointer to the name of the source file that requested the aligned_offset_realloc operation or NULL.

linenumber
Line number in the source file where the aligned_offset_realloc operation was requested or NULL.

_aligned_offset_realloc_dbg returns a void pointer to the reallocated (and possibly moved) memory block. The
return value is NULL if the size is zero and the buffer argument is not NULL, or if there is not enough available
memory to expand the block to the given size. In the first case, the original block is freed. In the second case, the
original block is unchanged. The return value points to a storage space that is guaranteed to be suitably aligned for
storage of any type of object. To get a pointer to a type other than void, use a type cast on the return value.

_aligned_offset_realloc_dbg is a debug version of the _aligned_offset_realloc function. When _DEBUG is not
defined, each call to _aligned_offset_realloc_dbg is reduced to a call to _aligned_offset_realloc. Both
_aligned_offset_realloc and _aligned_offset_realloc_dbg reallocate a memory block in the base heap, but
_aligned_offset_realloc_dbg accommodates several debugging features: buffers on either side of the user
portion of the block to test for leaks, and filename/linenumber information to determine the origin of allocation
requests. Tracking specific allocation types with a block type parameter is not a supported debug feature for

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/aligned-offset-realloc-dbg.md

Requirements
ROUTINE REQUIRED HEADER

_aligned_offset_realloc_dbg <crtdbg.h>

Libraries

See also

aligned allocations. Aligned allocations will appear as a _NORMAL_BLOCK block type.

Like _aligned_offset_malloc, _aligned_offset_realloc_dbg allows a structure to be aligned at an offset within the
structure.

_realloc_dbg reallocates the specified memory block with slightly more space than the requested newSize.
newSize might be greater or less than the size of the originally allocated memory block. The additional space is
used by the debug heap manager to link the debug memory blocks and to provide the application with debug
header information and overwrite buffers. The reallocation might result in moving the original memory block to a
different location in the heap, as well as changing the size of the memory block. If the memory block is moved, the
contents of the original block are overwritten.

This function sets errno to ENOMEM if the memory allocation failed or if the requested size was greater than
_HEAP_MAXREQ. For more information about errno, see errno, _doserrno, _sys_errlist, and _sys_nerr. Also,
_aligned_offset_realloc_dbg validates its parameters. If alignment is not a power of 2 or if offset is greater than
or equal to size and nonzero, this function invokes the invalid parameter handler, as described in Parameter
Validation. If execution is allowed to continue, this function returns NULL and sets errno to EINVAL.

For information about how memory blocks are allocated, initialized, and managed in the debug version of the base
heap, see CRT Debug Heap Details. For information about the allocation block types and how they are used, see
Types of blocks on the debug heap. For information about the differences between calling a standard heap
function and its debug version in a debug build of an application, see Debug Versions of Heap Allocation
Functions.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

Debug Routines

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/debug-versions-of-heap-allocation-functions

_aligned_offset_recalloc
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void * _aligned_offset_recalloc(
 void *memblock,
 size_t num,
 size_t size,
 size_t alignment,
 size_t offset
);

Parameters

Return Value

Remarks

Changes the size of a memory block that was allocated with _aligned_malloc or _aligned_offset_malloc and
initializes the memory to 0.

memblock
The current memory block pointer.

number
Number of elements.

size
Length in bytes of each element.

alignment
The alignment value, which must be an integer power of 2.

offset
The offset into the memory allocation to force the alignment.

_aligned_offset_recalloc returns a void pointer to the reallocated (and possibly moved) memory block. The
return value is NULL if the size is zero and the buffer argument is not NULL, or if there is not enough available
memory to expand the block to the given size. In the first case, the original block is freed. In the second case, the
original block is unchanged. The return value points to a storage space that is guaranteed to be suitably aligned
for storage of any type of object. To get a pointer to a type other than void, use a type cast on the return value.

_aligned_offset_recalloc is marked __declspec(noalias) and __declspec(restrict) , meaning that the function is
guaranteed not to modify global variables and that the pointer returned is not aliased. For more information, see
noalias and restrict.

Like _aligned_offset_malloc, _aligned_offset_recalloc allows a structure to be aligned at an offset within the
structure.

_aligned_offset_recalloc is based on malloc. For more information about using _aligned_offset_malloc, see
malloc. If memblock is NULL, the function calls _aligned_offset_malloc internally.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/aligned-offset-recalloc.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/noalias
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/restrict

Requirements
ROUTINE REQUIRED HEADER

_aligned_offset_recalloc <malloc.h>

See also

This function sets errno to ENOMEM if the memory allocation failed or if the requested size (number * size) was
greater than _HEAP_MAXREQ. For more information about errno, see errno, _doserrno, _sys_errlist, and
_sys_nerr. Also, _aligned_offset_recalloc validates its parameters. If alignment is not a power of 2 or if offset is
greater than or equal to the requested size and nonzero, this function invokes the invalid parameter handler, as
described in Parameter Validation. If execution is allowed to continue, this function returns NULL and sets errno
to EINVAL.

Data Alignment
_recalloc
_aligned_recalloc

_aligned_offset_recalloc_dbg
12/5/2018 • 2 minutes to read • Edit Online

Syntax
void * _aligned_offset_recalloc_dbg(
 void *memblock,
 size_t num,
 size_t size,
 size_t alignment,
 size_t offset,
 const char *filename,
 int linenumber
);

Parameters

Return Value

Remarks

Changes the size of a memory block that was allocated with _aligned_malloc or _aligned_offset_malloc and
initializes the memory to 0 (debug version only).

memblock
The current memory block pointer.

number
Number of elements.

size
Length in bytes of each element.

alignment
The alignment value, which must be an integer power of 2.

offset
The offset into the memory allocation to force the alignment.

filename
Pointer to the name of the source file that requested the realloc operation or NULL.

linenumber
Line number in the source file where the realloc operation was requested or NULL.

_aligned_offset_recalloc_dbg returns a void pointer to the reallocated (and possibly moved) memory block. The
return value is NULL if the size is zero and the buffer argument is not NULL, or if there is not enough available
memory to expand the block to the given size. In the first case, the original block is freed. In the second case, the
original block is unchanged. The return value points to a storage space that is guaranteed to be suitably aligned for
storage of any type of object. To get a pointer to a type other than void, use a type cast on the return value.

_aligned_offset_realloc_dbg is a debug version of the _aligned_offset_recalloc function. When _DEBUG is not
defined, each call to _aligned_offset_recalloc_dbg is reduced to a call to _aligned_offset_recalloc. Both

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/aligned-offset-recalloc-dbg.md

Requirements
ROUTINE REQUIRED HEADER

_aligned_offset_recalloc_dbg <malloc.h>

See also

_aligned_offset_recalloc and _aligned_offset_recalloc_dbg reallocate a memory block in the base heap, but
_aligned_offset_recalloc_dbg accommodates several debugging features: buffers on either side of the user
portion of the block to test for leaks, and filename/linenumber information to determine the origin of allocation
requests. Tracking specific allocation types with a block type parameter is not a supported debug feature for
aligned allocations. Aligned allocations will appear as a _NORMAL_BLOCK block type.

_aligned_offset_realloc_dbg reallocates the specified memory block with slightly more space than the requested
newSize. newSize might be greater or less than the size of the originally allocated memory block. The additional
space is used by the debug heap manager to link the debug memory blocks and to provide the application with
debug header information and overwrite buffers. The reallocation might result in moving the original memory
block to a different location in the heap, as well as changing the size of the memory block. If the memory block is
moved, the contents of the original block are overwritten.

This function sets errno to ENOMEM if the memory allocation failed or if the requested size (number * size) was
greater than _HEAP_MAXREQ. For more information about errno, see errno, _doserrno, _sys_errlist, and
_sys_nerr. Also, _aligned_offset_recalloc_dbg validates its parameters. If alignment is not a power of 2 or if
offset is greater than or equal to the requested size and nonzero, this function invokes the invalid parameter
handler, as described in Parameter Validation. If execution is allowed to continue, this function returns NULL and
sets errno to EINVAL.

For information about how memory blocks are allocated, initialized, and managed in the debug version of the base
heap, see CRT Debug Heap Details. For information about the allocation block types and how they are used, see
Types of blocks on the debug heap. For information about the differences between calling a standard heap
function and its debug version in a debug build of an application, see Debug Versions of Heap Allocation
Functions.

Data Alignment

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/debug-versions-of-heap-allocation-functions

_aligned_realloc
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void * _aligned_realloc(
 void *memblock,
 size_t size,
 size_t alignment
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_aligned_realloc <malloc.h>

Example

Changes the size of a memory block that was allocated with _aligned_malloc or _aligned_offset_malloc.

memblock
The current memory block pointer.

size
The size of the requested memory allocation.

alignment
The alignment value, which must be an integer power of 2.

_aligned_realloc returns a void pointer to the reallocated (and possibly moved) memory block. The return value
is NULL if the size is zero and the buffer argument is not NULL, or if there is not enough available memory to
expand the block to the given size. In the first case, the original block is freed. In the second, the original block is
unchanged. The return value points to a storage space that is guaranteed to be suitably aligned for storage of any
type of object. To get a pointer to a type other than void, use a type cast on the return value.

It is an error to reallocate memory and change the alignment of a block.

_aligned_realloc is based on malloc. For more information about using _aligned_offset_malloc, see malloc.

This function sets errno to ENOMEM if the memory allocation failed or if the requested size was greater than
_HEAP_MAXREQ. For more information about errno, see errno, _doserrno, _sys_errlist, and _sys_nerr. Also,
_aligned_realloc validates its parameters. If alignment is not a power of 2, this function invokes the invalid
parameter handler, as described in Parameter Validation. If execution is allowed to continue, this function returns
NULL and sets errno to EINVAL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/aligned-realloc.md

See also

For more information, see _aligned_malloc.

Data Alignment

_aligned_realloc_dbg
12/5/2018 • 2 minutes to read • Edit Online

Syntax
void * _aligned_realloc_dbg(
 void *memblock,
 size_t size,
 size_t alignment,
 const char *filename,
 int linenumber
);

Parameters

Return Value

Remarks

Changes the size of a memory block that was allocated with _aligned_malloc or _aligned_offset_malloc (debug
version only).

memblock
The current memory block pointer.

size
The size of the requested memory allocation.

alignment
The alignment value, which must be an integer power of 2.

filename
Pointer to the name of the source file that requested the realloc operation or NULL.

linenumber
Line number in the source file where the realloc operation was requested or NULL.

_aligned_realloc_dbg returns a void pointer to the reallocated (and possibly moved) memory block. The return
value is NULL if the size is zero and the buffer argument is not NULL, or if there is not enough available memory
to expand the block to the given size. In the first case, the original block is freed. In the second, the original block is
unchanged. The return value points to a storage space that is guaranteed to be suitably aligned for storage of any
type of object. To get a pointer to a type other than void, use a type cast on the return value.

It is an error to reallocate memory and change the alignment of a block.

_aligned_realloc_dbg is a debug version of the _aligned_realloc function. When _DEBUG is not defined, each call
to _aligned_realloc_dbg is reduced to a call to _aligned_realloc. Both _aligned_realloc and
_aligned_realloc_dbg reallocate a memory block in the base heap, but _aligned_realloc_dbg accommodates
several debugging features: buffers on either side of the user portion of the block to test for leaks, and
filename/linenumber information to determine the origin of allocation requests. Tracking specific allocation types
with a block type parameter is not a supported debug feature for aligned allocations. Aligned allocations will
appear as a _NORMAL_BLOCK block type.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/aligned-realloc-dbg.md

Requirements
ROUTINE REQUIRED HEADER

_aligned_realloc_dbg <crtdbg.h>

Libraries

See also

_aligned_realloc_dbg reallocates the specified memory block with slightly more space than the requested
newSize. newSize might be greater or less than the size of the originally allocated memory block. The additional
space is used by the debug heap manager to link the debug memory blocks and to provide the application with
debug header information and overwrite buffers. The reallocation might result in moving the original memory
block to a different location in the heap, as well as changing the size of the memory block. If the memory block is
moved, the contents of the original block are overwritten.

_aligned_realloc_dbg sets errno to ENOMEM if a memory allocation fails or if the amount of memory needed
(including the overhead mentioned previously) exceeds _HEAP_MAXREQ. For information about this and other
error codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

Also, _aligned_realloc_dbg validates its parameters. If alignment is not a power of 2, this function invokes the
invalid parameter handler, as described in Parameter Validation. If execution is allowed to continue, this function
returns NULL and sets errno to EINVAL.

For information about how memory blocks are allocated, initialized, and managed in the debug version of the base
heap, see CRT Debug Heap Details. For information about the allocation block types and how they are used, see
Types of blocks on the debug heap. For information about the differences between calling a standard heap
function and its debug version in a debug build of an application, see Debug Versions of Heap Allocation
Functions.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

Debug Routines

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/debug-versions-of-heap-allocation-functions

_aligned_recalloc
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void * _aligned_recalloc(
 void *memblock,
 size_t num,
 size_t size,
 size_t alignment
);

Parameters

Return Value

Remarks

Requirements

Changes the size of a memory block that was allocated with _aligned_malloc or _aligned_offset_malloc and
initializes the memory to 0.

memblock
The current memory block pointer.

number
The number of elements.

size
The size in bytes of each element.

alignment
The alignment value, which must be an integer power of 2.

_aligned_recalloc returns a void pointer to the reallocated (and possibly moved) memory block. The return value
is NULL if the size is zero and the buffer argument is not NULL, or if there is not enough available memory to
expand the block to the given size. In the first case, the original block is freed. In the second case, the original block
is unchanged. The return value points to a storage space that is guaranteed to be suitably aligned for storage of
any type of object. To get a pointer to a type other than void, use a type cast on the return value.

It is an error to reallocate memory and change the alignment of a block.

_aligned_recalloc is based on malloc. For more information about using _aligned_offset_malloc, see malloc.

This function sets errno to ENOMEM if the memory allocation failed or if the requested size was greater than
_HEAP_MAXREQ. For more information about errno, see errno, _doserrno, _sys_errlist, and _sys_nerr. Also,
_aligned_recalloc validates its parameters. If alignment is not a power of 2, this function invokes the invalid
parameter handler, as described in Parameter Validation. If execution is allowed to continue, this function returns
NULL and sets errno to EINVAL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/aligned-recalloc.md

ROUTINE REQUIRED HEADER

_aligned_recalloc <malloc.h>

See also
Data Alignment
_recalloc
_aligned_offset_recalloc

_aligned_recalloc_dbg
12/5/2018 • 3 minutes to read • Edit Online

Syntax
void * _aligned_recalloc_dbg(
 void * memblock,
 size_t num,
 size_t size,
 size_t alignment,
 const char *filename,
 int linenumber
);

Parameters

Return Value

Remarks

Changes the size of a memory block that was allocated with _aligned_malloc or _aligned_offset_malloc and
initializes the memory to 0 (debug version only).

memblock
The current memory block pointer.

number
The number of elements.

size
The size in bytes of each element.

alignment
The alignment value, which must be an integer power of 2.

filename
Pointer to name of the source file that requested allocation operation or NULL.

linenumber
Line number in the source file where allocation operation was requested or NULL.

_aligned_recalloc_dbg returns a void pointer to the reallocated (and possibly moved) memory block. The return
value is NULL if the size is zero and the buffer argument is not NULL, or if there is not enough available memory
to expand the block to the given size. In the first case, the original block is freed. In the second case, the original
block is unchanged. The return value points to a storage space that is guaranteed to be suitably aligned for storage
of any type of object. To get a pointer to a type other than void, use a type cast on the return value.

It is an error to reallocate memory and change the alignment of a block.

_aligned_recalloc_dbg is a debug version of the _aligned_recalloc function. When _DEBUG is not defined, each
call to _aligned_recalloc_dbg is reduced to a call to _aligned_recalloc. Both _aligned_recalloc and
_aligned_recalloc_dbg reallocate a memory block in the base heap, but _aligned_recalloc_dbg accommodates
several debugging features: buffers on either side of the user portion of the block to test for leaks, and

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/aligned-recalloc-dbg.md

Requirements
ROUTINE REQUIRED HEADER

_aligned_recalloc_dbg <crtdbg.h>

Libraries

See also

filename/linenumber information to determine the origin of allocation requests. Tracking specific allocation types
with a block type parameter is not a supported debug feature for aligned allocations. Aligned allocations will
appear as a _NORMAL_BLOCK block type.

_aligned_recalloc_dbg reallocates the specified memory block with slightly more space than the requested size
(number * size) which might be greater or less than the size of the originally allocated memory block. The
additional space is used by the debug heap manager to link the debug memory blocks and to provide the
application with debug header information and overwrite buffers. The reallocation might result in moving the
original memory block to a different location in the heap, as well as changing the size of the memory block. The
user portion of the block is filled with the value 0xCD and the overwrite buffers are filled with 0xFD.

_aligned_recalloc_dbg sets errno to ENOMEM if a memory allocation fails; EINVAL is returned if the amount
of memory needed (including the overhead mentioned previously) exceeds _HEAP_MAXREQ. For information
about this and other error codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

Also, _aligned_recalloc_dbg validates its parameters. If alignment is not a power of 2, this function invokes the
invalid parameter handler, as described in Parameter Validation. If execution is allowed to continue, this function
returns NULL and sets errno to EINVAL.

For information about how memory blocks are allocated, initialized, and managed in the debug version of the base
heap, see CRT Debug Heap Details. For information about the allocation block types and how they are used, see
Types of blocks on the debug heap. For information about the differences between calling a standard heap
function and its debug version in a debug build of an application, see Debug Versions of Heap Allocation
Functions.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

Debug Routines

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/debug-versions-of-heap-allocation-functions

_alloca
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void *_alloca(
 size_t size
);

Parameters

Return Value

Remarks

IMPORTANT

Allocates memory on the stack. This function is deprecated because a more secure version is available; see
_malloca.

size
Bytes to be allocated from the stack.

The _alloca routine returns a void pointer to the allocated space, which is guaranteed to be suitably aligned for
storage of any type of object. If size is 0, _alloca allocates a zero-length item and returns a valid pointer to that
item.

A stack overflow exception is generated if the space cannot be allocated. The stack overflow exception is not a
C++ exception; it is a structured exception. Instead of using C++ exception handling, you must use Structured
Exception Handling (SEH).

_alloca allocates size bytes from the program stack. The allocated space is automatically freed when the calling
function exits (not when the allocation merely passes out of scope). Therefore, do not pass the pointer value
returned by _alloca as an argument to free.

There are restrictions to explicitly calling _alloca in an exception handler (EH). EH routines that run on x86-class
processors operate in their own memory frame: They perform their tasks in memory space that is not based on
the current location of the stack pointer of the enclosing function. The most common implementations include
Windows NT structured exception handling (SEH) and C++ catch clause expressions. Therefore, explicitly calling
_alloca in any of the following scenarios results in program failure during the return to the calling EH routine:

Windows NT SEH exception filter expression: __except (_alloca())

Windows NT SEH final exception handler: __finally { _alloca() }

C++ EH catch clause expression

However, _alloca can be called directly from within an EH routine or from an application-supplied callback that
gets invoked by one of the EH scenarios previously listed.

In Windows XP, if _alloca is called inside a try/catch block, you must call _resetstkoflw in the catch block.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/alloca.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/structured-exception-handling-c-cpp

Requirements
ROUTINE REQUIRED HEADER

_alloca <malloc.h>

Example
// crt_alloca.c
// This program demonstrates the use of
// _alloca and trapping any exceptions
// that may occur.

#include <windows.h>
#include <stdio.h>
#include <malloc.h>

int main()
{
 int size = 1000;
 int errcode = 0;
 void *pData = NULL;

 // Note: Do not use try/catch for _alloca,
 // use __try/__except, since _alloca throws
 // Structured Exceptions, not C++ exceptions.

 __try {
 // An unbounded _alloca can easily result in a
 // stack overflow.
 // Checking for a size < 1024 bytes is recommended.
 if (size > 0 && size < 1024)
 {
 pData = _alloca(size);
 printf_s("Allocated %d bytes of stack at 0x%p",
 size, pData);
 }
 else
 {
 printf_s("Tried to allocate too many bytes.\n");
 }
 }

 // If an exception occured with the _alloca function
 __except(GetExceptionCode() == STATUS_STACK_OVERFLOW)
 {
 printf_s("_alloca failed!\n");

 // If the stack overflows, use this function to restore.
 errcode = _resetstkoflw();
 if (errcode)
 {
 printf_s("Could not reset the stack!\n");
 _exit(1);
 }
 };
}

In addition to the above restrictions, when using the/clr (Common Language Runtime Compilation) option,
_alloca cannot be used in __except blocks. For more information, see /clr Restrictions.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-restrictions

Allocated 1000 bytes of stack at 0x0012FB50

See also
Memory Allocation
calloc
malloc
realloc
_resetstkoflw
_malloca

_amsg_exit
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void _amsg_exit (int rterrnum);

Parameters

Remarks

Requirements
ROUTINE REQUIRED HEADER

_amsg_exit internal.h

Emits a specified runtime error message and then exits your application with error code 255.

rterrnum
The identification number of a system-defined runtime error message.

This function emits the runtime error message to stderr for console applications, or displays the message in a
message box for Windows applications. In debug mode, you can choose to invoke the debugger before exiting.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/amsg-exit.md

and
11/9/2018 • 2 minutes to read • Edit Online

Syntax

#define and &&

Remarks

Example
// iso646_and.cpp
// compile with: /EHsc
#include <iostream>
#include <iso646.h>

int main()
{
 using namespace std;
 bool a = true, b = false, result;

 boolalpha(cout);

 result= a && b;
 cout << result << endl;

 result= a and b;
 cout << result << endl;
}

false
false

Requirements

An alternative to the && operator.

The macro yields the operator &&.

Header: <iso646.h>

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/and.md

and_eq
11/8/2018 • 2 minutes to read • Edit Online

Syntax
#define and_eq &=

Remarks

Example
// iso646_and_eq.cpp
// compile with: /EHsc
#include <iostream>
#include <iso646.h>

int main()
{
 using namespace std;
 int a = 3, b = 2, result;

 result= a &= b;
 cout << result << endl;

 result= a and_eq b;
 cout << result << endl;
}

2
2

Requirements

An alternative to the &= operator.

The macro yields the operator &=.

Header: <iso646.h>

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/and-eq.md

asctime, _wasctime
10/31/2018 • 2 minutes to read • Edit Online

Syntax
char *asctime(
 const struct tm *timeptr
);
wchar_t *_wasctime(
 const struct tm *timeptr
);

Parameters

Return Value

Remarks

TIMEPTR MEMBER VALUE

tm_hour Hours since midnight (0-23)

tm_isdst Positive if daylight saving time is in effect; 0 if daylight
saving time is not in effect; negative if status of daylight
saving time is unknown. The C run-time library assumes the
United States' rules for implementing the calculation of
Daylight Saving Time (DST).

tm_mday Day of month (1-31)

tm_min Minutes after hour (0-59)

tm_mon Month (0-11; January = 0)

tm_sec Seconds after minute (0-59)

tm_wday Day of week (0-6; Sunday = 0)

Convert a tm time structure to a character string. More secure versions of these functions are available; see
asctime_s, _wasctime_s.

timeptr
Time/date structure.

asctime returns a pointer to the character string result; _wasctime returns a pointer to the wide-character
string result. There is no error return value.

More secure versions of these functions are available; see asctime_s, _wasctime_s.

The asctime function converts a time stored as a structure to a character string. The timeptr value is usually
obtained from a call to gmtime or localtime, which both return a pointer to a tm structure, defined in TIME.H.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/asctime-wasctime.md

tm_yday Day of year (0-365; January 1 = 0)

tm_year Year (current year minus 1900)

TIMEPTR MEMBER VALUE

Generic-Text Routine Mapping

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tasctime asctime asctime _wasctime

Requirements
ROUTINE REQUIRED HEADER

asctime <time.h>

_wasctime <time.h> or <wchar.h>

Example

The converted character string is also adjusted according to the local time zone settings. For information about
configuring the local time, see the time, _ftime, and localtime functions and the _tzset function for information
about defining the time zone environment and global variables.

The string result produced by asctime contains exactly 26 characters and has the form
Wed Jan 02 02:03:55 1980\n\0 . A 24-hour clock is used. All fields have a constant width. The newline character

and the null character occupy the last two positions of the string. asctime uses a single, statically allocated
buffer to hold the return string. Each call to this function destroys the result of the previous call.

_wasctime is a wide-character version of asctime. _wasctime and asctime behave identically otherwise.

These functions validate their parameters. If timeptr is a null pointer, or if it contains out-of-range values, the
invalid parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue,
the function returns NULL and sets errno to EINVAL.

This program places the system time in the long integer aclock, translates it into the structure newtime and
then converts it to string form for output, using the asctime function.

// crt_asctime.c
// compile with: /W3

#include <time.h>
#include <stdio.h>

int main(void)
{
 struct tm *newTime;
 time_t szClock;

 // Get time in seconds
 time(&szClock);

 // Convert time to struct tm form
 newTime = localtime(&szClock);

 // Print local time as a string.
 printf_s("Current date and time: %s", asctime(newTime)); // C4996
 // Note: asctime is deprecated; consider using asctime_s instead
}

Current date and time: Sun Feb 03 11:38:58 2002

See also
Time Management
ctime, _ctime32, _ctime64, _wctime, _wctime32, _wctime64
_ftime, _ftime32, _ftime64
gmtime, _gmtime32, _gmtime64
localtime, _localtime32, _localtime64
time, _time32, _time64
_tzset
asctime_s, _wasctime_s

asctime_s, _wasctime_s
10/31/2018 • 3 minutes to read • Edit Online

Syntax
errno_t asctime_s(
 char* buffer,
 size_t numberOfElements,
 const struct tm *tmSource
);
errno_t _wasctime_s(
 wchar_t* buffer,
 size_t numberOfElements
 const struct tm *tmSource
);
template <size_t size>
errno_t asctime_s(
 char (&buffer)[size],
 const struct tm *tmSource
); // C++ only
template <size_t size>
errno_t _wasctime_s(
 wchar_t (&buffer)[size],
 const struct tm *tmSource
); // C++ only

Parameters

Return Value

Error Conditions

BUFFER NUMBEROFELEMENTS TMSOURCE RETURN VALUE IN BUFFER

NULL Any Any EINVAL Not modified

Convert a tm time structure to a character string. These functions are versions of asctime, _wasctime with
security enhancements as described in Security Features in the CRT.

buffer
A pointer to a buffer to store the character string result. This function assumes a pointer to a valid memory
location with a size specified by numberOfElements.

numberOfElements
The size of the buffer used to store the result.

tmSource
Time/date structure. This function assumes a pointer to a valid struct tm object.

Zero if successful. If there is a failure, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, the return value is an error code. Error codes are defined in
ERRNO.H. For more information, see errno Constants. The actual error codes returned for each error condition
are shown in the following table.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/asctime-s-wasctime-s.md

Not NULL (points to
valid memory)

0 Any EINVAL Not modified

Not NULL 0< size < 26 Any EINVAL Empty string

Not NULL >= 26 NULL EINVAL Empty string

Not NULL >= 26 Invalid time structure
or out of range
values for
components of the
time

EINVAL Empty string

BUFFER NUMBEROFELEMENTS TMSOURCE RETURN VALUE IN BUFFER

NOTE

Remarks

TIMEPTR MEMBER VALUE

tm_hour Hours since midnight (0-23)

tm_isdst Positive if daylight saving time is in effect; 0 if daylight saving
time is not in effect; negative if status of daylight saving time
is unknown. The C run-time library assumes the United
States' rules for implementing the calculation of Daylight
Saving Time (DST).

tm_mday Day of month (1-31)

tm_min Minutes after hour (0-59)

tm_mon Month (0-11; January = 0)

tm_sec Seconds after minute (0-59)

tm_wday Day of week (0-6; Sunday = 0)

tm_yday Day of year (0-365; January 1 = 0)

tm_year Year (current year minus 1900)

Error conditions for wasctime_s are similar to asctime_s with the exception that the size limit is measured in words.

The asctime function converts a time stored as a structure to a character string. The tmSource value is usually
obtained from a call to gmtime or localtime. Both functions can be used to fill in a tm structure, as defined in
TIME.H.

The converted character string is also adjusted according to the local time zone settings. See the time, _time32,
_time64, _ftime, _ftime32, _ftime64, and localtime_s, _localtime32_s, _localtime64_s functions for information
about configuring the local time and the _tzset function for information about defining the time zone
environment and global variables.

Generic-Text Routine Mapping

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tasctime_s asctime_s asctime_s _wasctime_s

Requirements
ROUTINE REQUIRED HEADER

asctime_s <time.h>

_wasctime_s <time.h> or <wchar.h>

Security

Example

The string result produced by asctime_s contains exactly 26 characters and has the form
Wed Jan 02 02:03:55 1980\n\0 . A 24-hour clock is used. All fields have a constant width. The new line character

and the null character occupy the last two positions of the string. The value passed in as the second parameter
should be at least this big. If it is less, an error code, EINVAL, will be returned.

_wasctime_s is a wide-character version of asctime_s. _wasctime_s and asctime_s behave identically
otherwise.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically, eliminating the need to specify a size argument. For more information, see Secure Template
Overloads.

If the buffer pointer is not NULL and the pointer does not point to a valid buffer, the function will overwrite
whatever is at the location. This can also result in an access violation.

A buffer overrun can occur if the size argument passed in is greater than the actual size of the buffer.

This program places the system time in the long integer aclock, translates it into the structure newtime and
then converts it to string form for output, using the asctime_s function.

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

// crt_asctime_s.c
#include <time.h>
#include <stdio.h>

struct tm newtime;
__time32_t aclock;

int main(void)
{
 char buffer[32];
 errno_t errNum;
 _time32(&aclock); // Get time in seconds.
 _localtime32_s(&newtime, &aclock); // Convert time to struct tm form.

 // Print local time as a string.

 errNum = asctime_s(buffer, 32, &newtime);
 if (errNum)
 {
 printf("Error code: %d", (int)errNum);
 return 1;
 }
 printf("Current date and time: %s", buffer);
 return 0;
}

Current date and time: Wed May 14 15:30:17 2003

See also
Time Management
ctime_s, _ctime32_s, _ctime64_s, _wctime_s, _wctime32_s, _wctime64_s
_ftime, _ftime32, _ftime64
gmtime_s, _gmtime32_s, _gmtime64_s
localtime_s, _localtime32_s, _localtime64_s
time, _time32, _time64
_tzset

asin, asinf, asinl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double asin(double x);
float asinf (float x);
long double asinl(long double x);

float asin(float x); // C++ only
long double asin(long double x); // C++ only

Parameters

Return Value

INPUT SEH EXCEPTION MATHERR EXCEPTION

± ∞ INVALID _DOMAIN

± QNAN, IND none _DOMAIN

|x|>1 INVALID _DOMAIN

Remarks

Requirements
ROUTINE REQUIRED HEADER (C) REQUIRED HEADER (C++)

asin, asinf, asinl <math.h> <cmath> or <math.h>

Example

Calculates the arcsine.

x
Value whose arcsine is to be calculated.

The asin function returns the arcsine (the inverse sine function) of x in the range -π/2 to π/2 radians.

By default, if x is less than -1 or greater than 1, asin returns an indefinite.

Because C++ allows overloading, you can call overloads of asin with float and long double values. In a C
program, asin always takes and returns a double.

For more information, see acos, acosf, acosl.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/asin-asinf-asinl.md

See also
Floating-Point Support
acos, acosf, acosl
atan, atanf, atanl, atan2, atan2f, atan2l
cos, cosf, cosl
_matherr
sin, sinf, sinl
tan, tanf, tanl

asinh, asinhf, asinhl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

float asinh(float x); // C++ only
long double asinh(long double x); // C++ only

Parameters

Return Value

INPUT SEH EXCEPTION _MATHERR EXCEPTION

± QNAN, IND, INF none none

Remarks

Requirements
FUNCTION REQUIRED C HEADER REQUIRED C++ HEADER

asinh, asinhf, asinhl <math.h> <cmath> or <math.h<

Example

Calculates the inverse hyperbolic sine.

x
Floating-point value.

The asinh functions return the inverse hyberbolic sine (arc hyperbolic sine) of x. This function is valid over the
floating-point domain. If x is a quiet NaN, indefinite, or infinity, the same value is returned.

When you use C++, you can call overloads of asinh that take and return float or long double values. In a C
program, asinh always takes and returns double.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/asinh-asinhf-asinhl.md

// crt_asinh.c
// Compile by using: cl /W4 crt_asinh.c
// This program displays the hyperbolic sine of pi / 4
// and the arc hyperbolic sine of the result.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double pi = 3.1415926535;
 double x, y;

 x = sinh(pi / 4);
 y = asinh(x);
 printf("sinh(%f) = %f\n", pi/4, x);
 printf("asinh(%f) = %f\n", x, y);
}

sinh(0.785398) = 0.868671
asinh(0.868671) = 0.785398

See also
Floating-Point Support
acosh, acoshf, acoshl
atanh, atanhf, atanhl
cosh, coshf, coshl
sinh, sinhf, sinhl
tanh, tanhf, tanhl

assert Macro, _assert, _wassert
10/31/2018 • 4 minutes to read • Edit Online

Syntax
assert(
 expression
);
void _assert(
 char const* message,
 char const* filename,
 unsigned line
);
void _wassert(
 wchar_t const* message,
 wchar_t const* filename,
 unsigned line
);

Parameters

Remarks

Evaluates an expression and, when the result is false, prints a diagnostic message and aborts the program.

expression
A scalar expression (including pointer expressions) that evaluates to nonzero (true) or 0 (false).

message
The message to display.

filename
The name of the source file the assertion failed in.

line
The line number in the source file of the failed assertion.

The assert macro is typically used to identify logic errors during program development. Use it to stop program
execution when unexpected conditions occur by implementing the expression argument to evaluate to false only
when the program is operating incorrectly. Assertion checks can be turned off at compile time by defining the
macro NDEBUG. You can turn off the assert macro without modifying your source files by using a /DNDEBUG
command-line option. You can turn off the assert macro in your source code by using a #define NDEBUG directive
before <assert.h> is included.

The assert macro prints a diagnostic message when expression evaluates to false (0) and calls abort to terminate
program execution. No action is taken if expression is true (nonzero). The diagnostic message includes the failed
expression, the name of the source file and line number where the assertion failed.

The diagnostic message is printed in wide characters. Thus, it will work as expected even if there are Unicode
characters in the expression.

The destination of the diagnostic message depends on the type of application that called the routine. Console
applications always receive the message through stderr. In a Windows-based application, assert calls the
Windows MessageBox function to create a message box to display the message along with an OK button. When

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/assert-macro-assert-wassert.md
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-messagebox

Requirements
ROUTINE REQUIRED HEADER

assert, _wassert <assert.h>

Example

the user clicks OK, the program aborts immediately.

When the application is linked with a debug version of the run-time libraries, assert creates a message box with
three buttons: Abort, Retry, and Ignore. If the user clicks Abort, the program aborts immediately. If the user
clicks Retry, the debugger is called and the user can debug the program if just-in-time (JIT) debugging is
enabled. If the user clicks Ignore, assert continues with its normal execution: creating the message box with the
OK button. Note that clicking Ignore when an error condition exists can result in undefined behavior.

For more information about CRT debugging, see CRT Debugging Techniques.

The _assert and _wassert functions are internal CRT functions. They help minimize the code required in your
object files to support assertions. We do not recommend that you call these functions directly.

The assert macro is enabled in both the release and debug versions of the C run-time libraries when NDEBUG
is not defined. When NDEBUG is defined, the macro is available but does not evaluate its argument and has no
effect. When it is enabled, the assert macro calls _wassert for its implementation. Other assertion macros,
_ASSERT, _ASSERTE and _ASSERT_EXPR, are also available, but they only evaluate the expressions passed to
them when the _DEBUG macro has been defined and when they are in code linked with the debug version of the
C run-time libraries.

The signature of the _assert function is not available in a header file. The signature of the _wassert function is
only available when the NDEBUG macro is not defined.

In this program, the analyze_string function uses the assert macro to test several conditions related to string
and length. If any of the conditions fails, the program prints a message indicating what caused the failure.

https://docs.microsoft.com/visualstudio/debugger/crt-debugging-techniques

// crt_assert.c
// compile by using: cl /W4 crt_assert.c
#include <stdio.h>
#include <assert.h>
#include <string.h>

void analyze_string(char *string); // Prototype

int main(void)
{
 char test1[] = "abc", *test2 = NULL, test3[] = "";

 printf ("Analyzing string '%s'\n", test1); fflush(stdout);
 analyze_string(test1);
 printf ("Analyzing string '%s'\n", test2); fflush(stdout);
 analyze_string(test2);
 printf ("Analyzing string '%s'\n", test3); fflush(stdout);
 analyze_string(test3);
}

// Tests a string to see if it is NULL,
// empty, or longer than 0 characters.
void analyze_string(char * string)
{
 assert(string != NULL); // Cannot be NULL
 assert(*string != '\0'); // Cannot be empty
 assert(strlen(string) > 2); // Length must exceed 2
}

Analyzing string 'abc'
Analyzing string '(null)'
Assertion failed: string != NULL, file crt_assert.c, line 25

A problem caused the program to stop working correctly. Windows will close the program and notify you if a
solution is available.

See also

The program generates this output:

After the assertion failure, depending on the version of the operating system and run-time library, you may see a
message box that contains something like the following:

If a debugger is installed, choose the Debug button to start the debugger, or Close program to exit.

Error Handling
Process and Environment Control
abort
raise
signal
_ASSERT, _ASSERTE, _ASSERT_EXPR Macros
_DEBUG

_ASSERT, _ASSERTE, _ASSERT_EXPR Macros
10/31/2018 • 4 minutes to read • Edit Online

Syntax
// Typical usage:
_ASSERT_EXPR(booleanExpression, message);
_ASSERT(booleanExpression);
_ASSERTE(booleanExpression);

Parameters

Remarks

_CrtSetReportMode(CRT_ASSERT, _CRTDBG_MODE_WNDW);

Evaluate an expression and generate a debug report when the result is False (debug version only).

booleanExpression
A scalar expression (including pointer expressions) that evaluates to nonzero (true) or 0 (false).

message
A wide string to display as part of the report.

The _ASSERT_EXPR, _ASSERT and _ASSERTE macros provide an application with a clean and simple
mechanism for checking assumptions during the debugging process. They are very flexible because they do
not need to be enclosed in #ifdef statements to prevent them from being called in a retail build of an
application. This flexibility is achieved by using the _DEBUG macro. _ASSERT_EXPR, _ASSERT and
_ASSERTE are only available when _DEBUG is defined at compile time. When _DEBUG is not defined, calls
to these macros are removed during preprocessing.

_ASSERT_EXPR, _ASSERT and _ASSERTE evaluate their booleanExpression argument and when the result
is false (0), they print a diagnostic message and call _CrtDbgReportW to generate a debug report. The
_ASSERT macro prints a simple diagnostic message, _ASSERTE includes a string representation of the failed
expression in the message, and _ASSERT_EXPR includes the message string in the diagnostic message. These
macros do nothing when booleanExpression evaluates to nonzero.

_ASSERT_EXPR, _ASSERT and _ASSERTE invoke _CrtDbgReportW, which causes all output to be in wide
characters. _ASSERTE properly prints Unicode characters in booleanExpression and _ASSERT_EXPR prints
Unicode characters in message.

Because the _ASSERTE macro specifies the failed expression, and _ASSERT_EXPR lets you specify a
message in the generated report, they enable users to identify the problem without referring to the application
source code. However, a disadvantage exists in that every message printed by _ASSERT_EXPR and every
expression evaluated by _ASSERTE is included in the output (debug version) file of your application as a
string constant. Therefore, if a large number of calls are made to _ASSERT_EXPR or _ASSERTE , these
expressions can greatly increase the size of your output file.

Unless you specify otherwise with the _CrtSetReportMode and _CrtSetReportFile functions, messages appear
in a pop-up dialog box equivalent to setting:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/assert-asserte-assert-expr-macros.md

Requirements
MACRO REQUIRED HEADER

_ASSERT_EXPR, _ASSERT, _ASSERTE <crtdbg.h>

Example

_CrtDbgReportW generates the debug report and determines its destination or destinations, based on the
current report mode or modes and file defined for the _CRT_ASSERT report type. By default, assertion
failures and errors are directed to a debug message window. The _CrtSetReportMode and _CrtSetReportFile
functions are used to define the destinations for each report type.

When the destination is a debug message window and the user clicks the Retry button, _CrtDbgReportW
returns 1, causing the _ASSERT_EXPR, _ASSERT and _ASSERTE macros to start the debugger provided that
just-in-time (JIT) debugging is enabled.

For more information about the reporting process, see the _CrtDbgReport, _CrtDbgReportW function. For
more information about resolving assertion failures and using these macros as a debugging error handling
mechanism, see Using Macros for Verification and Reporting.

In addition to the _ASSERT macros, the assert macro can be used to verify program logic. This macro is
available in both the debug and release versions of the libraries. The _RPT, _RPTF debug macros are also
available for generating a debug report, but they do not evaluate an expression. The _RPT macros generate a
simple report. The _RPTF macros include the source file and line number where the report macro was called
in the generated report. Wide character versions of these macros are available (_RPTW, _RPTFW). The wide
character versions are identical to the narrow character versions except that wide character strings are used for
all string parameters and output.

Although _ASSERT_EXPR, _ASSERT and _ASSERTE are macros and are available by including <crtdbg.h>,
the application must link with a debug version of the C run-time library when _DEBUG is defined because
these macros call other run-time functions.

In this program, calls are made to the _ASSERT and _ASSERTE macros to test the condition
string1 == string2 . If the condition fails, these macros print a diagnostic message. The _RPT and _RPTF

group of macros is also exercised in this program, as an alternative to the printf function.

https://docs.microsoft.com/visualstudio/debugger/macros-for-reporting

// crt_ASSERT_macro.c
// compile with: /D_DEBUG /MTd /Od /Zi /link /verbose:lib /debug
//
// This program uses the _ASSERT and _ASSERTE debugging macros.
//

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

int main()
{
 char *p1, *p2;

 // The Reporting Mode and File must be specified
 // before generating a debug report via an assert
 // or report macro.
 // This program sends all report types to STDOUT.
 _CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
 _CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
 _CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
 _CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
 _CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
 _CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);

 // Allocate and assign the pointer variables.
 p1 = (char *)malloc(10);
 strcpy_s(p1, 10, "I am p1");
 p2 = (char *)malloc(10);
 strcpy_s(p2, 10, "I am p2");

 // Use the report macros as a debugging
 // warning mechanism, similar to printf.
 // Use the assert macros to check if the
 // p1 and p2 variables are equivalent.
 // If the expression fails, _ASSERTE will
 // include a string representation of the
 // failed expression in the report.
 // _ASSERT does not include the
 // expression in the generated report.
 _RPT0(_CRT_WARN,
 "Use the assert macros to evaluate the expression p1 == p2.\n");
 _RPTF2(_CRT_WARN, "\n Will _ASSERT find '%s' == '%s' ?\n", p1, p2);
 _ASSERT(p1 == p2);

 _RPTF2(_CRT_WARN, "\n\n Will _ASSERTE find '%s' == '%s' ?\n",
 p1, p2);
 _ASSERTE(p1 == p2);

 _RPT2(_CRT_ERROR, "'%s' != '%s'\n", p1, p2);

 free(p2);
 free(p1);

 return 0;
}

Use the assert macros to evaluate the expression p1 == p2.
crt_ASSERT_macro.c(54) :
Will _ASSERT find 'I am p1' == 'I am p2' ?
crt_ASSERT_macro.c(55) : Assertion failed!
crt_ASSERT_macro.c(58) :

Will _ASSERTE find 'I am p1' == 'I am p2' ?
crt_ASSERT_macro.c(59) : Assertion failed: p1 == p2
'I am p1' != 'I am p2'

See also
Debug Routines
assert Macro, _assert, _wassert
_RPT, _RPTF, _RPTW, _RPTFW Macros

atan, atanf, atanl, atan2, atan2f, atan2l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double atan(double x);
float atanf(float x);
long double atanl(long double x);

double atan2(double y, double x);
float atan2f(float y, float x);
long double atan2l(long double y, long double x);

float atan(float x); // C++ only
long double atan(long double x); // C++ only

float atan2(float y, float x); // C++ only
long double atan2(long double y, long double x); // C++ only

Parameters

Return Value

INPUT SEH EXCEPTION MATHERR EXCEPTION

± QNAN, IND none _DOMAIN

Remarks

Requirements

Calculates the arctangent of x (atan, atanf, and atanl) or the arctangent of y/x (atan2, atan2f, and atan2l).

x, y
Any numbers.

atan returns the arctangent of x in the range -π/2 to π/2 radians. atan2 returns the arctangent of y/x in the
range -π to π radians. If x is 0, atan returns 0. If both parameters of atan2 are 0, the function returns 0. All
results are in radians.

atan2 uses the signs of both parameters to determine the quadrant of the return value.

The atan function calculates the arctangent (the inverse tangent function) of x. atan2 calculates the arctangent
of y/x (if x equals 0, atan2 returns π/2 if y is positive, -π/2 if y is negative, or 0 if y is 0.)

atan has an implementation that uses Streaming SIMD Extensions 2 (SSE2). For information and restrictions
about using the SSE2 implementation, see _set_SSE2_enable.

Because C++ allows overloading, you can call overloads of atan and atan2 that take float or long double
arguments. In a C program, atan and atan2 always take double arguments and return a double.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/atan-atanf-atanl-atan2-atan2f-atan2l.md

ROUTINE REQUIRED HEADER (C) REQUIRED HEADER (C++)

atan, atan2, atanf, atan2f, atanl,
atan2l

<math.h> <cmath> or <math.h>

Example
// crt_atan.c
// arguments: 5 0.5
#include <math.h>
#include <stdio.h>
#include <errno.h>

int main(int ac, char* av[])
{
 double x, y, theta;
 if(ac != 3){
 fprintf(stderr, "Usage: %s <x> <y>\n", av[0]);
 return 1;
 }
 x = atof(av[1]);
 theta = atan(x);
 printf("Arctangent of %f: %f\n", x, theta);
 y = atof(av[2]);
 theta = atan2(y, x);
 printf("Arctangent of %f / %f: %f\n", y, x, theta);
 return 0;
}

Arctangent of 5.000000: 1.373401
Arctangent of 0.500000 / 5.000000: 0.099669

See also
Floating-Point Support
acos, acosf, acosl
asin, asinf, asinl
cos, cosf, cosl
_matherr
sin, sinf, sinl
tan, tanf, tanl
_CIatan
_CIatan2

atanh, atanhf, atanhl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

float atanh(float x); // C++ only
long double atanh(long double x); // C++ only

Parameters

Return Value

INPUT SEH EXCEPTION MATHERR EXCEPTION

± QNAN,IND none none

X ≥ 1; x ≤ -1 none none

Remarks

Requirements
FUNCTION C HEADER C++ HEADER

atanh, atanhf, atanhl <math.h> <cmath> or <math.h>

Example

Calculates the inverse hyperbolic tangent.

x
Floating-point value.

The atanh functions return the inverse hyberbolic tangent (arc hyperbolic tangent) of x. If x is greater than 1, or
less than -1, errno is set to EDOM and the result is a quiet NaN. If x is equal to 1 or -1, a positive or negative
infinity is returned, respectively, and errno is set to ERANGE .

Because C++ allows overloading, you can call overloads of atanh that take and return float or long double
values. In a C program, atanh always takes and returns double.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/atanh-atanhf-atanhl.md

// crt_atanh.c
// This program displays the hyperbolic tangent of pi / 4
// and the arc hyperbolic tangent of the result.
//

#include <math.h>
#include <stdio.h>

int main(void)
{
 double pi = 3.1415926535;
 double x, y;

 x = tanh(pi / 4);
 y = atanh(x);
 printf("tanh(%f) = %f\n", pi/4, x);
 printf("atanh(%f) = %f\n", x, y);
}

tanh(0.785398) = 0.655794
atanh(0.655794) = 0.785398

See also
Floating-Point Support
acosh, acoshf, acoshl
asinh, asinhf, asinhl
cosh, coshf, coshl
sinh, sinhf, sinhl
tanh, tanhf, tanhl

atexit
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int atexit(
 void (__cdecl *func)(void)
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

atexit <stdlib.h>

Example

Processes the specified function at exit.

func
Function to be called.

atexit returns 0 if successful, or a nonzero value if an error occurs.

The atexit function is passed the address of a function func to be called when the program terminates
normally. Successive calls to atexit create a register of functions that are executed in last-in, first-out (L IFO)
order. The functions passed to atexit cannot take parameters. atexit and _onexit use the heap to hold the
register of functions. Thus, the number of functions that can be registered is limited only by heap memory.

The code in the atexit function should not contain any dependency on any DLL which could have already been
unloaded when the atexit function is called.

To generate an ANSI-compliant application, use the ANSI-standard atexit function (rather than the similar
_onexit function).

This program pushes four functions onto the stack of functions to be executed when atexit is called. When the
program exits, these programs are executed on a last in, first out basis.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/atexit.md

// crt_atexit.c
#include <stdlib.h>
#include <stdio.h>

void fn1(void), fn2(void), fn3(void), fn4(void);

int main(void)
{
 atexit(fn1);
 atexit(fn2);
 atexit(fn3);
 atexit(fn4);
 printf("This is executed first.\n");
}

void fn1()
{
 printf("next.\n");
}

void fn2()
{
 printf("executed ");
}

void fn3()
{
 printf("is ");
}

void fn4()
{
 printf("This ");
}

This is executed first.
This is executed next.

See also
Process and Environment Control
abort
exit, _Exit, _exit
_onexit, _onexit_m

_atodbl, _atodbl_l, _atoldbl, _atoldbl_l, _atoflt,
_atoflt_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _atodbl(_CRT_DOUBLE * value, char * str);
int _atodbl_l (_CRT_DOUBLE * value, char * str, locale_t locale);
int _atoldbl(_LDOUBLE * value, char * str);
int _atoldbl_l (_LDOUBLE * value, char * str, locale_t locale);
int _atoflt(_CRT_FLOAT * value, const char * str);
int _atoflt_l(_CRT_FLOAT * value, const char * str, locale_t locale);

Parameters

Return Value

Remarks

Requirements
ROUTINES REQUIRED HEADER

_atodbl, _atoldbl, _atoflt

_atodbl_l, _atoldbl_l, _atoflt_l

<stdlib.h>

Converts a string to a double (_atodbl), long double (_atoldbl), or float (_atoflt).

value
The double, long double, or float value that's produced by converting the string to a floating-point value. These
values are wrapped in a structure.

str
The string to be parsed to convert into a floating-point value.

locale
The locale to use.

Returns 0 if successful. Possible error codes are _UNDERFLOW or _OVERFLOW, which are defined in the
header file <math.h>.

These functions convert a string to a floating-point value. The difference between these functions and the atof
family of functions is that these functions do not generate floating-point code and do not cause hardware
exceptions. Instead, error conditions are reported as error codes.

If a string does not have a valid interpretation as a floating-point value, value is set to zero and the return value
is zero.

The versions of these functions that have the _l suffix are identical the versions that don't have the suffix, except
that they use the locale parameter that's passed in instead of the current thread locale.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/atodbl-atodbl-l-atoldbl-atoldbl-l-atoflt-atoflt-l.md

Example
// crt_atodbl.c
// Uses _atodbl to convert a string to a double precision
// floating point value.

#include <stdlib.h>
#include <stdio.h>

int main()
{
 char str1[256] = "3.141592654";
 char abc[256] = "abc";
 char oflow[256] = "1.0E+5000";
 _CRT_DOUBLE dblval;
 _CRT_FLOAT fltval;
 int retval;

 retval = _atodbl(&dblval, str1);

 printf("Double value: %lf\n", dblval.x);
 printf("Return value: %d\n\n", retval);

 retval = _atoflt(&fltval, str1);
 printf("Float value: %f\n", fltval.f);
 printf("Return value: %d\n\n", retval);

 // A non-floating point value: returns 0.
 retval = _atoflt(&fltval, abc);
 printf("Float value: %f\n", fltval.f);
 printf("Return value: %d\n\n", retval);

 // Overflow.
 retval = _atoflt(&fltval, oflow);
 printf("Float value: %f\n", fltval.f);
 printf("Return value: %d\n\n", retval);

 return 0;
}

Double value: 3.141593
Return value: 0

Float value: 3.141593
Return value: 0

Float value: 0.000000
Return value: 0

Float value: inf
Return value: 3

See also
Data Conversion
Floating-Point Support
Locale
atof, _atof_l, _wtof, _wtof_l

atof, _atof_l, _wtof, _wtof_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double atof(
 const char *str
);
double _atof_l(
 const char *str,
 _locale_t locale
);
double _wtof(
 const wchar_t *str
);
double _wtof_l(
 const wchar_t *str,
 _locale_t locale
);

Parameters

Return Value

Remarks

Convert a string to double.

str
String to be converted.

locale
Locale to use.

Each function returns the double value produced by interpreting the input characters as a number. The return
value is 0.0 if the input cannot be converted to a value of that type.

In all out-of-range cases, errno is set to ERANGE . If the parameter passed in is NULL, the invalid parameter
handler is invoked, as described in Parameter Validation. If execution is allowed to continue, these functions
set errno to EINVAL and return 0.

These functions convert a character string to a double-precision, floating-point value.

The input string is a sequence of characters that can be interpreted as a numerical value of the specified type.
The function stops reading the input string at the first character that it cannot recognize as part of a number.
This character may be the null character ('\0' or L'\0') terminating the string.

The str argument to atof and _wtof has the following form:

[whitespace] [sign] [digits] [.digits] [{e | E }[sign]digits]

A whitespace consists of space or tab characters, which are ignored; sign is either plus (+) or minus (-); and
digits are one or more decimal digits. If no digits appear before the decimal point, at least one must appear
after the decimal point. The decimal digits may be followed by an exponent, which consists of an introductory

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/atof-atof-l-wtof-wtof-l.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tstof atof atof _wtof

_ttof atof atof _wtof

Requirements
ROUTINE(S) REQUIRED HEADER

atof, _atof_l C: <math.h> or <stdlib.h> C++: <cstdlib>, <stdlib.h>,
<cmath> or <math.h>

_wtof, _wtof_l C: <stdlib.h> or <wchar.h> C++: <cstdlib>, <stdlib.h> or
<wchar.h>

Example

letter (e, or E) and an optionally signed decimal integer.

The UCRT versions of these functions do not support conversion of Fortran-style (d or D) exponent letters.
This non-standard extension was supported by earlier versions of the CRT, and may be a breaking change for
your code.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed
in instead of the current locale.

This program shows how numbers stored as strings can be converted to numeric values using the atof and
_atof_l functions.

// crt_atof.c
//
// This program shows how numbers stored as
// strings can be converted to numeric
// values using the atof and _atof_l functions.

#include <stdlib.h>
#include <stdio.h>
#include <locale.h>

int main(void)
{
 char *str = NULL;
 double value = 0;
 _locale_t fr = _create_locale(LC_NUMERIC, "fr-FR");

 // An example of the atof function
 // using leading and training spaces.
 str = " 3336402735171707160320 ";
 value = atof(str);
 printf("Function: atof(\"%s\") = %e\n", str, value);

 // Another example of the atof function
 // using the 'E' exponential formatting keyword.
 str = "3.1412764583E210";
 value = atof(str);
 printf("Function: atof(\"%s\") = %e\n", str, value);

 // An example of the atof and _atof_l functions
 // using the 'e' exponential formatting keyword
 // and showing different decimal point interpretations.
 str = " -2,309e-25";
 value = atof(str);
 printf("Function: atof(\"%s\") = %e\n", str, value);
 value = _atof_l(str, fr);
 printf("Function: _atof_l(\"%s\", fr)) = %e\n", str, value);
}

Function: atof(" 3336402735171707160320 ") = 3.336403e+21
Function: atof("3.1412764583E210") = 3.141276e+210
Function: atof(" -2,309e-25") = -2.000000e+00
Function: _atof_l(" -2,309e-25", fr)) = -2.309000e-25

See also
Data Conversion
Floating-Point Support
Locale
_ecvt
_fcvt
_gcvt
setlocale, _wsetlocale
_atodbl, _atodbl_l, _atoldbl, _atoldbl_l, _atoflt, _atoflt_l

atoi, _atoi_l, _wtoi, _wtoi_l
3/1/2019 • 2 minutes to read • Edit Online

Syntax
int atoi(
 const char *str
);
int _wtoi(
 const wchar_t *str
);
int _atoi_l(
 const char *str,
 _locale_t locale
);
int _wtoi_l(
 const wchar_t *str,
 _locale_t locale
);

Parameters

Return Value

Remarks

Convert a string to integer.

str
String to be converted.

locale
Locale to use.

Each function returns the int value produced by interpreting the input characters as a number. The return value is
0 for atoi and _wtoi, if the input cannot be converted to a value of that type.

In the case of overflow with large negative integral values, LONG_MIN is returned. atoi and _wtoi return
INT_MAX and INT_MIN on these conditions. In all out-of-range cases, errno is set to ERANGE . If the
parameter passed in is NULL, the invalid parameter handler is invoked, as described in Parameter Validation. If
execution is allowed to continue, these functions set errno to EINVAL and return 0.

These functions convert a character string to an integer value (atoi and _wtoi). The input string is a sequence of
characters that can be interpreted as a numerical value of the specified type. The function stops reading the input
string at the first character that it cannot recognize as part of a number. This character may be the null character
('\0' or L'\0') terminating the string.

The str argument to atoi and _wtoi has the following form:

[whitespace] [sign] [digits]]

A whitespace consists of space or tab characters, which are ignored; sign is either plus (+) or minus (-); and digits
are one or more digits.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/atoi-atoi-l-wtoi-wtoi-l.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tstoi atoi atoi _wtoi

_ttoi atoi atoi _wtoi

Requirements
ROUTINES REQUIRED HEADER

atoi <stdlib.h>

_atoi_l, _wtoi, _wtoi_l <stdlib.h> or <wchar.h>

Example

// crt_atoi.c
// This program shows how numbers
// stored as strings can be converted to
// numeric values using the atoi functions.

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

int main(void)
{
 char *str = NULL;
 int value = 0;

 // An example of the atoi function.
 str = " -2309 ";
 value = atoi(str);
 printf("Function: atoi(\"%s\") = %d\n", str, value);

 // Another example of the atoi function.
 str = "31412764";
 value = atoi(str);
 printf("Function: atoi(\"%s\") = %d\n", str, value);

 // Another example of the atoi function
 // with an overflow condition occurring.
 str = "3336402735171707160320";
 value = atoi(str);
 printf("Function: atoi(\"%s\") = %d\n", str, value);
 if (errno == ERANGE)
 {
 printf("Overflow condition occurred.\n");
 }
}

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current locale. For more information, see Locale.

This program shows how numbers stored as strings can be converted to numeric values using the atoi functions.

Function: atoi(" -2309 ") = -2309
Function: atoi("31412764") = 31412764
Function: atoi("3336402735171707160320") = 2147483647
Overflow condition occurred.

See also
Data Conversion
Floating-Point Support
Locale
_ecvt
_fcvt
_gcvt
setlocale, _wsetlocale
_atodbl, _atodbl_l, _atoldbl, _atoldbl_l, _atoflt, _atoflt_l

_atoi64, _atoi64_l, _wtoi64, _wtoi64_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
__int64 _atoi64(
 const char *str
);
__int64 _wtoi64(
 const wchar_t *str
);
__int64 _atoi64_l(
 const char *str,
 _locale_t locale
);
__int64 _wtoi64_l(
 const wchar_t *str,
 _locale_t locale
);

Parameters

Return Value

Remarks

Converts a string to a 64-bit integer.

str
String to be converted.

locale
Locale to use.

Each function returns the __int64 value produced by interpreting the input characters as a number. The return
value is 0 for _atoi64 if the input cannot be converted to a value of that type.

In the case of overflow with large positive integral values, _atoi64 returns I64_MAX and I64_MIN in the case of
overflow with large negative integral values.

In all out-of-range cases, errno is set to ERANGE . If the parameter passed in is NULL, the invalid parameter
handler is invoked, as described in Parameter Validation. If execution is allowed to continue, these functions set
errno to EINVAL and return 0.

These functions convert a character string to a 64-bit integer value.

The input string is a sequence of characters that can be interpreted as a numerical value of the specified type. The
function stops reading the input string at the first character that it cannot recognize as part of a number. This
character might be the null character ('\0' or L'\0') terminating the string.

The str argument to _atoi64 has the following form:

[whitespace] [sign] [digits]

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/atoi64-atoi64-l-wtoi64-wtoi64-l.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tstoi64 _atoi64 _atoi64 _wtoi64

_ttoi64 _atoi64 _atoi64 _wtoi64

Requirements
ROUTINES REQUIRED HEADER

_atoi64, _atoi64_l <stdlib.h>

_wtoi64, _wtoi64_l <stdlib.h> or <wchar.h>

Example

A whitespace consists of space or tab characters, which are ignored; sign is either plus (+) or minus (-); and digits
are one or more digits.

_wtoi64 is identical to _atoi64 except that it takes a wide character string as a parameter.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current locale. For more information, see Locale.

This program shows how numbers stored as strings can be converted to numeric values using the _atoi64
functions.

// crt_atoi64.c
// This program shows how numbers stored as
// strings can be converted to numeric values
// using the _atoi64 functions.
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

int main(void)
{
 char *str = NULL;
 __int64 value = 0;

 // An example of the _atoi64 function
 // with leading and trailing white spaces.
 str = " -2309 ";
 value = _atoi64(str);
 printf("Function: _atoi64(\"%s\") = %d\n", str, value);

 // Another example of the _atoi64 function
 // with an arbitrary decimal point.
 str = "314127.64";
 value = _atoi64(str);
 printf("Function: _atoi64(\"%s\") = %d\n", str, value);

 // Another example of the _atoi64 function
 // with an overflow condition occurring.
 str = "3336402735171707160320";
 value = _atoi64(str);
 printf("Function: _atoi64(\"%s\") = %d\n", str, value);
 if (errno == ERANGE)
 {
 printf("Overflow condition occurred.\n");
 }
}

Function: _atoi64(" -2309 ") = -2309
Function: _atoi64("314127.64") = 314127
Function: _atoi64("3336402735171707160320") = -1
Overflow condition occurred.

See also
Data Conversion
Floating-Point Support
Locale
_ecvt
_fcvt
_gcvt
setlocale, _wsetlocale
_atodbl, _atodbl_l, _atoldbl, _atoldbl_l, _atoflt, _atoflt_l

atol, _atol_l, _wtol, _wtol_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
long atol(
 const char *str
);
long _atol_l(
 const char *str,
 _locale_t locale
);
long _wtol(
 const wchar_t *str
);
long _wtol_l(
 const wchar_t *str,
 _locale_t locale
);

Parameters

Return Value

Remarks

Convert a string to a long integer.

str
String to be converted.

locale
Locale to use.

Each function returns the long value produced by interpreting the input characters as a number. The return value
is 0L for atol if the input cannot be converted to a value of that type.

In the case of overflow with large positive integral values, atol returns LONG_MAX; in the case of overflow with
large negative integral values, LONG_MIN is returned. In all out-of-range cases, errno is set to ERANGE . If the
parameter passed in is NULL, the invalid parameter handler is invoked, as described in Parameter Validation. If
execution is allowed to continue, these functions set errno to EINVAL and return 0.

These functions convert a character string to a long integer value (atol).

The input string is a sequence of characters that can be interpreted as a numerical value of the specified type. The
function stops reading the input string at the first character that it cannot recognize as part of a number. This
character may be the null character ('\0' or L'\0') terminating the string.

The str argument to atol has the following form:

[whitespace] [sign] [digits]]

A whitespace consists of space or tab characters, which are ignored; sign is either plus (+) or minus (-); and digits
are one or more digits.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/atol-atol-l-wtol-wtol-l.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tstol atol atol _wtol

_ttol atol atol _wtol

Requirements
ROUTINES REQUIRED HEADER

atol <stdlib.h>

_atol_l, _wtol, _wtol_l <stdlib.h> and <wchar.h>

Example

_wtol is identical to atol except that it takes a wide character string.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current locale. For more information, see Locale.

This program shows how numbers stored as strings can be converted to numeric values using the atol function.

// crt_atol.c
// This program shows how numbers stored as
// strings can be converted to numeric values
// using the atol functions.
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

int main(void)
{
 char *str = NULL;
 long value = 0;

 // An example of the atol function
 // with leading and trailing white spaces.
 str = " -2309 ";
 value = atol(str);
 printf("Function: atol(\"%s\") = %d\n", str, value);

 // Another example of the atol function
 // with an arbitrary decimal point.
 str = "314127.64";
 value = atol(str);
 printf("Function: atol(\"%s\") = %d\n", str, value);

 // Another example of the atol function
 // with an overflow condition occurring.
 str = "3336402735171707160320";
 value = atol(str);
 printf("Function: atol(\"%s\") = %d\n", str, value);
 if (errno == ERANGE)
 {
 printf("Overflow condition occurred.\n");
 }
}

Function: atol(" -2309 ") = -2309
Function: atol("314127.64") = 314127
Function: atol("3336402735171707160320") = 2147483647
Overflow condition occurred.

See also
Data Conversion
Floating-Point Support
Locale
_ecvt
_fcvt
_gcvt
setlocale, _wsetlocale
_atodbl, _atodbl_l, _atoldbl, _atoldbl_l, _atoflt, _atoflt_l

atoll, _atoll_l, _wtoll, _wtoll_l
11/9/2018 • 2 minutes to read • Edit Online

Syntax
long long atoll(
 const char *str
);
long long _wtoll(
 const wchar_t *str
);
long long _atoll_l(
 const char *str,
 _locale_t locale
);
long long _wtoll_l(
 const wchar_t *str,
 _locale_t locale
);

Parameters

Return Value

Remarks

Converts a string to a long long integer.

str
String to be converted.

locale
Locale to use.

Each function returns the long long value that's produced by interpreting the input characters as a number. The
return value for atoll is 0 if the input cannot be converted to a value of that type.

For overflow with large positive integral values, atoll returns LLONG_MAX, and for overflow with large negative
integral values, it returns LLONG_MIN .

In all out-of-range cases, errno is set to ERANGE . If the parameter that's passed in is NULL, the invalid
parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue, these
functions set errno to EINVAL and return 0.

These functions convert a character string to a long long integer value.

The input string is a sequence of characters that can be interpreted as a numerical value of the specified type. The
function stops reading the input string at the first character that it cannot recognize as part of a number. This
character might be the null character ('\0' or L'\0') that terminates the string.

The str argument to atoll has the following form:

[whitespace] [sign] [digits]

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/atoll-atoll-l-wtoll-wtoll-l.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tstoll atoll atoll _wtoll

_tstoll_l _atoll_l _atoll_l _wtoll_l

_ttoll _atoll _atoll _wtoll

Requirements
ROUTINES REQUIRED HEADER

atoll, _atoll_l <stdlib.h>

_wtoll, _wtoll_l <stdlib.h> or <wchar.h>

Example

A whitespace consists of space or tab characters, which are ignored; sign is either plus (+) or minus (-); and digits
are one or more digits.

_wtoll is identical to atoll except that it takes a wide character string as a parameter.

The versions of these functions that have the _l suffix are identical to the versions that don't have it, except that
they use the locale parameter that's passed in instead of the current locale. For more information, see Locale.

This program shows how to use the atoll functions to convert numbers stored as strings to numeric values.

// crt_atoll.c
// Build with: cl /W4 /Tc crt_atoll.c
// This program shows how to use the atoll
// functions to convert numbers stored as
// strings to numeric values.
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

int main(void)
{
 char *str = NULL;
 long long value = 0;

 // An example of the atoll function
 // with leading and trailing white spaces.
 str = " -27182818284 ";
 value = atoll(str);
 printf("Function: atoll(\"%s\") = %lld\n", str, value);

 // Another example of the atoll function
 // with an arbitrary decimal point.
 str = "314127.64";
 value = atoll(str);
 printf("Function: atoll(\"%s\") = %lld\n", str, value);

 // Another example of the atoll function
 // with an overflow condition occurring.
 str = "3336402735171707160320";
 value = atoll(str);
 printf("Function: atoll(\"%s\") = %lld\n", str, value);
 if (errno == ERANGE)
 {
 printf("Overflow condition occurred.\n");
 }
}

Function: atoll(" -27182818284 ") = -27182818284
Function: atoll("314127.64") = 314127
Function: atoll("3336402735171707160320") = 9223372036854775807
Overflow condition occurred.

See also
Data Conversion
Floating-Point Support
Locale
_ecvt
_fcvt
_gcvt
setlocale, _wsetlocale
_atodbl, _atodbl_l, _atoldbl, _atoldbl_l, _atoflt, _atoflt_l

_beginthread, _beginthreadex
1/24/2019 • 9 minutes to read • Edit Online

Syntax
uintptr_t _beginthread(// NATIVE CODE
 void(__cdecl *start_address)(void *),
 unsigned stack_size,
 void *arglist
);
uintptr_t _beginthread(// MANAGED CODE
 void(__clrcall *start_address)(void *),
 unsigned stack_size,
 void *arglist
);
uintptr_t _beginthreadex(// NATIVE CODE
 void *security,
 unsigned stack_size,
 unsigned (__stdcall *start_address)(void *),
 void *arglist,
 unsigned initflag,
 unsigned *thrdaddr
);
uintptr_t _beginthreadex(// MANAGED CODE
 void *security,
 unsigned stack_size,
 unsigned (__clrcall *start_address)(void *),
 void *arglist,
 unsigned initflag,
 unsigned *thrdaddr
);

Parameters

Creates a thread.

start_address
Start address of a routine that begins execution of a new thread. For _beginthread, the calling convention is
either __cdecl (for native code) or __clrcall (for managed code); for _beginthreadex, it is either __stdcall (for native
code) or __clrcall (for managed code).

stack_size
Stack size for a new thread, or 0.

arglist
Argument list to be passed to a new thread, or NULL.

Security
Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle can be inherited by
child processes. If Security is NULL, the handle cannot be inherited. Must be NULL for Windows 95 applications.

initflag
Flags that control the initial state of a new thread. Set initflag to 0 to run immediately, or to
CREATE_SUSPENDED to create the thread in a suspended state; use ResumeThread to execute the thread. Set
initflag to STACK_SIZE_PARAM_IS_A_RESERVATION flag to use stack_size as the initial reserve size of the
stack in bytes; if this flag is not specified, stack_size specifies the commit size.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/beginthread-beginthreadex.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/cdecl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/clrcall
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/stdcall
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/clrcall
https://msdn.microsoft.com/library/windows/desktop/aa379560
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-resumethread

Return Value

Remarks

thrdaddr
Points to a 32-bit variable that receives the thread identifier. If it's NULL, it's not used.

If successful, each of these functions returns a handle to the newly created thread; however, if the newly created
thread exits too quickly, _beginthread might not return a valid handle. (See the discussion in the Remarks
section.) On an error, _beginthread returns -1L, and errno is set to EAGAIN if there are too many threads, to
EINVAL if the argument is invalid or the stack size is incorrect, or to EACCES if there are insufficient resources
(such as memory). On an error, _beginthreadex returns 0, and errno and _doserrno are set.

If start_address is NULL, the invalid parameter handler is invoked, as described in Parameter Validation. If
execution is allowed to continue, these functions set errno to EINVAL and return -1.

For more information about these and other return codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

For more information about uintptr_t, see Standard Types.

The _beginthread function creates a thread that begins execution of a routine at start_address. The routine at
start_address must use the __cdecl (for native code) or __clrcall (for managed code) calling convention and
should have no return value. When the thread returns from that routine, it is terminated automatically. For more
information about threads, see Multithreading Support for Older Code (Visual C++).

_beginthreadex resembles the Win32 CreateThread API more closely than _beginthread does.
_beginthreadex differs from _beginthread in the following ways:

_beginthreadex has three additional parameters: initflag, Security, and threadaddr. The new thread can
be created in a suspended state, with a specified security, and can be accessed by using thrdaddr, which is
the thread identifier.

The routine at start_address that's passed to _beginthreadex must use the __stdcall (for native code) or
__clrcall (for managed code) calling convention and must return a thread exit code.

_beginthreadex returns 0 on failure, rather than -1L.

A thread that's created by using _beginthreadex is terminated by a call to _endthreadex.

The _beginthreadex function gives you more control over how the thread is created than _beginthread does.
The _endthreadex function is also more flexible. For example, with _beginthreadex, you can use security
information, set the initial state of the thread (running or suspended), and get the thread identifier of the newly
created thread. You can also use the thread handle that's returned by _beginthreadex with the synchronization
APIs, which you cannot do with _beginthread.

It's safer to use _beginthreadex than _beginthread. If the thread that's generated by _beginthread exits
quickly, the handle that's returned to the caller of _beginthread might be invalid or point to another thread.
However, the handle that's returned by _beginthreadex has to be closed by the caller of _beginthreadex, so it is
guaranteed to be a valid handle if _beginthreadex did not return an error.

You can call _endthread or _endthreadex explicitly to terminate a thread; however, _endthread or _endthreadex
is called automatically when the thread returns from the routine that's passed as a parameter. Terminating a
thread with a call to _endthread or _endthreadex helps ensure correct recovery of resources that are allocated
for the thread.

_endthread automatically closes the thread handle, whereas _endthreadex does not. Therefore, when you use
_beginthread and _endthread, do not explicitly close the thread handle by calling the Win32 CloseHandle API.
This behavior differs from the Win32 ExitThread API.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-support-for-older-code-visual-cpp
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createthread
https://docs.microsoft.com/windows/desktop/api/handleapi/nf-handleapi-closehandle
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-exitthread

NOTE

Requirements
ROUTINE REQUIRED HEADER

_beginthread <process.h>

_beginthreadex <process.h>

Libraries

Example

// crt_BEGTHRD.C
// compile with: /MT /D "_X86_" /c
// processor: x86
#include <windows.h>
#include <process.h> /* _beginthread, _endthread */

For an executable file linked with Libcmt.lib, do not call the Win32 ExitThread API so that you don't prevent the run-time
system from reclaiming allocated resources. _endthread and _endthreadex reclaim allocated thread resources and then call
ExitThread.

The operating system handles the allocation of the stack when either _beginthread or _beginthreadex is called;
you don't have to pass the address of the thread stack to either of these functions. In addition, the stack_size
argument can be 0, in which case the operating system uses the same value as the stack that's specified for the
main thread.

arglist is a parameter to be passed to the newly created thread. Typically, it is the address of a data item, such as a
character string. arglist can be NULL if it is not needed, but _beginthread and _beginthreadex must be given
some value to pass to the new thread. All threads are terminated if any thread calls abort, exit, _exit, or
ExitProcess.

The locale of the new thread is initialized by using the per-process global current locale info. If per-thread locale is
enabled by a call to _configthreadlocale (either globally or for new threads only), the thread can change its locale
independently from other threads by calling setlocale or _wsetlocale. Threads that don't have the per-thread
locale flag set can affect the locale info in all other threads that also don't have the per-thread locale flag set, as
well as all newly-created threads. For more information, see Locale.

For /clr code, _beginthread and _beginthreadex each have two overloads. One takes a native calling-
convention function pointer, and the other takes a __clrcall function pointer. The first overload is not application
domain-safe and never will be. If you are writing /clr code you must ensure that the new thread enters the correct
application domain before it accesses managed resources. You can do this, for example, by using
call_in_appdomain Function. The second overload is application domain-safe; the newly created thread will always
end up in the application domain of the caller of _beginthread or _beginthreadex.

For more compatibility information, see Compatibility.

Multithreaded versions of the C run-time libraries only.

To use _beginthread or _beginthreadex, the application must link with one of the multithreaded C run-time
libraries.

The following example uses _beginthread and _endthread.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/call-in-appdomain-function

#include <stddef.h>
#include <stdlib.h>
#include <conio.h>

void Bounce(void *);
void CheckKey(void *);

// GetRandom returns a random integer between min and max.
#define GetRandom(min, max) ((rand() % (int)(((max) + 1) - (min))) + (min))
// GetGlyph returns a printable ASCII character value
#define GetGlyph(val) ((char)((val + 32) % 93 + 33))

BOOL repeat = TRUE; // Global repeat flag
HANDLE hStdOut; // Handle for console window
CONSOLE_SCREEN_BUFFER_INFO csbi; // Console information structure

int main()
{
 int param = 0;
 int * pparam = ¶m;

 // Get display screen's text row and column information.
 hStdOut = GetStdHandle(STD_OUTPUT_HANDLE);
 GetConsoleScreenBufferInfo(hStdOut, &csbi);

 // Launch CheckKey thread to check for terminating keystroke.
 _beginthread(CheckKey, 0, NULL);

 // Loop until CheckKey terminates program or 1000 threads created.
 while(repeat && param < 1000)
 {
 // launch another character thread.
 _beginthread(Bounce, 0, (void *) pparam);

 // increment the thread parameter
 param++;

 // Wait one second between loops.
 Sleep(1000L);
 }
}

// CheckKey - Thread to wait for a keystroke, then clear repeat flag.
void CheckKey(void * ignored)
{
 _getch();
 repeat = 0; // _endthread implied
}

// Bounce - Thread to create and control a colored letter that moves
// around on the screen.
//
// Params: parg - the value to create the character from
void Bounce(void * parg)
{
 char blankcell = 0x20;
 CHAR_INFO ci;
 COORD oldcoord, cellsize, origin;
 DWORD result;
 SMALL_RECT region;

 cellsize.X = cellsize.Y = 1;
 origin.X = origin.Y = 0;

 // Generate location, letter and color attribute from thread argument.
 srand(_threadid);
 oldcoord.X = region.Left = region.Right =
 GetRandom(csbi.srWindow.Left, csbi.srWindow.Right - 1);
 oldcoord.Y = region.Top = region.Bottom =

 oldcoord.Y = region.Top = region.Bottom =
 GetRandom(csbi.srWindow.Top, csbi.srWindow.Bottom - 1);
 ci.Char.AsciiChar = GetGlyph(*((int *)parg));
 ci.Attributes = GetRandom(1, 15);

 while (repeat)
 {
 // Pause between loops.
 Sleep(100L);

 // Blank out our old position on the screen, and draw new letter.
 WriteConsoleOutputCharacterA(hStdOut, &blankcell, 1, oldcoord, &result);
 WriteConsoleOutputA(hStdOut, &ci, cellsize, origin, ®ion);

 // Increment the coordinate for next placement of the block.
 oldcoord.X = region.Left;
 oldcoord.Y = region.Top;
 region.Left = region.Right += GetRandom(-1, 1);
 region.Top = region.Bottom += GetRandom(-1, 1);

 // Correct placement (and beep) if about to go off the screen.
 if (region.Left < csbi.srWindow.Left)
 region.Left = region.Right = csbi.srWindow.Left + 1;
 else if (region.Right >= csbi.srWindow.Right)
 region.Left = region.Right = csbi.srWindow.Right - 2;
 else if (region.Top < csbi.srWindow.Top)
 region.Top = region.Bottom = csbi.srWindow.Top + 1;
 else if (region.Bottom >= csbi.srWindow.Bottom)
 region.Top = region.Bottom = csbi.srWindow.Bottom - 2;

 // If not at a screen border, continue, otherwise beep.
 else
 continue;
 Beep((ci.Char.AsciiChar - 'A') * 100, 175);
 }
 // _endthread given to terminate
 _endthread();
}

Example

Press any key to end the sample application.

The following sample code demonstrates how you can use the thread handle that's returned by _beginthreadex
with the synchronization API WaitForSingleObject. The main thread waits for the second thread to terminate
before it continues. When the second thread calls _endthreadex, it causes its thread object to go to the signaled
state. This allows the primary thread to continue running. This cannot be done with _beginthread and
_endthread, because _endthread calls CloseHandle, which destroys the thread object before it can be set to the
signaled state.

https://docs.microsoft.com/windows/desktop/api/synchapi/nf-synchapi-waitforsingleobject

// crt_begthrdex.cpp
// compile with: /MT
#include <windows.h>
#include <stdio.h>
#include <process.h>

unsigned Counter;
unsigned __stdcall SecondThreadFunc(void* pArguments)
{
 printf("In second thread...\n");

 while (Counter < 1000000)
 Counter++;

 _endthreadex(0);
 return 0;
}

int main()
{
 HANDLE hThread;
 unsigned threadID;

 printf("Creating second thread...\n");

 // Create the second thread.
 hThread = (HANDLE)_beginthreadex(NULL, 0, &SecondThreadFunc, NULL, 0, &threadID);

 // Wait until second thread terminates. If you comment out the line
 // below, Counter will not be correct because the thread has not
 // terminated, and Counter most likely has not been incremented to
 // 1000000 yet.
 WaitForSingleObject(hThread, INFINITE);
 printf("Counter should be 1000000; it is-> %d\n", Counter);
 // Destroy the thread object.
 CloseHandle(hThread);
}

Creating second thread...
In second thread...
Counter should be 1000000; it is-> 1000000

See also
Process and Environment Control
_endthread, _endthreadex
abort
exit, _Exit, _exit
GetExitCodeThread

https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-getexitcodethread

Bessel Functions: _j0, _j1, _jn, _y0, _y1, _yn
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double _j0(
 double x
);
double _j1(
 double x
);
double _jn(
 int n,
 double x
);
double _y0(
 double x
);
double _y1(
 double x
);
double _yn(
 int n,
 double x
);

Parameters

Return Value

Remarks

INPUT SEH EXCEPTION MATHERR EXCEPTION

± QNAN, IND INVALID _DOMAIN

Computes the Bessel function of the first or second kind, of orders 0, 1, or n. The Bessel functions are commonly
used in the mathematics of electromagnetic wave theory.

x
Floating-point value.

n
Integer order of Bessel function.

Each of these routines returns a Bessel function of x. If x is negative in the _y0, _y1, or _yn functions, the routine
sets errno to EDOM, prints a _DOMAIN error message to stderr, and returns _HUGE_VAL. You can modify
error handling by using _matherr.

The _j0, _j1, and _jn routines return Bessel functions of the first kind: orders 0, 1, and n, respectively.

The _y0, _y1, and _yn routines return Bessel functions of the second kind: orders 0, 1, and n, respectively.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/bessel-functions-j0-j1-jn-y0-y1-yn.md

INPUT SEH EXCEPTION MATHERR EXCEPTION

± QNAN, IND INVALID _DOMAIN

± 0 ZERODIVIDE _SING

|x| < 0.0 INVALID _DOMAIN

Requirements
ROUTINE REQUIRED HEADER

_j0, _j1, _jn, _y0, _y1, _yn <cmath> (C++), <math.h> (C, C++)

Example
// crt_bessel1.c
#include <math.h>
#include <stdio.h>

int main(void)
{
 double x = 2.387;
 int n = 3, c;

 printf("Bessel functions for x = %f:\n", x);
 printf(" Kind Order Function Result\n\n");
 printf(" First 0 _j0(x) %f\n", _j0(x));
 printf(" First 1 _j1(x) %f\n", _j1(x));
 for(c = 2; c < 5; c++)
 printf(" First %d _jn(%d, x) %f\n", c, c, _jn(c, x));
 printf(" Second 0 _y0(x) %f\n", _y0(x));
 printf(" Second 1 _y1(x) %f\n", _y1(x));
 for(c = 2; c < 5; c++)
 printf(" Second %d _yn(%d, x) %f\n", c, c, _yn(c, x));
}

Bessel functions for x = 2.387000:
 Kind Order Function Result

 First 0 _j0(x) 0.009288
 First 1 _j1(x) 0.522941
 First 2 _jn(2, x) 0.428870
 First 3 _jn(3, x) 0.195734
 First 4 _jn(4, x) 0.063131
 Second 0 _y0(x) 0.511681
 Second 1 _y1(x) 0.094374
 Second 2 _yn(2, x) -0.432608
 Second 3 _yn(3, x) -0.819314
 Second 4 _yn(4, x) -1.626833

See also

For additional compatibility information, see Compatibility.

Floating-Point Support
_matherr

bitand
11/9/2018 • 2 minutes to read • Edit Online

Syntax

#define bitand &

Remarks

Example
// iso646_bitand.cpp
// compile with: /EHsc
#include <iostream>
#include <iso646.h>

int main()
{
 using namespace std;
 int a = 1, b = 2, result;

 result = a & b;
 cout << result << endl;

 result= a bitand b;
 cout << result << endl;
}

0
0

Requirements

An alternative to the & operator.

The macro yields the operator

Header: <iso646.h>

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/bitand.md

bitor
11/9/2018 • 2 minutes to read • Edit Online

Syntax

#define bitor |

Remarks

Example
// iso646_bitor.cpp
// compile with: /EHsc
#include <iostream>
#include <iso646.h>

int main()
{
 using namespace std;
 int a = 1, b = 2, result;

 result = a | b;
 cout << result << endl;

 result= a bitor b;
 cout << result << endl;
}

3
3

Requirements

An alternative to the | operator.

The macro yields the operator |.

Header: <iso646.h>

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/bitor.md

bsearch
3/1/2019 • 2 minutes to read • Edit Online

Syntax
void *bsearch(
 const void *key,
 const void *base,
 size_t num,
 size_t width,
 int (__cdecl *compare) (const void *key, const void *datum)
);

Parameters

Return Value

Remarks

VALUE RETURNED BY COMPARE ROUTINE DESCRIPTION

< 0 Key is less than array element.

0 Key is equal to array element.

Performs a binary search of a sorted array. A more secure version of this function is available; see bsearch_s.

key
Object to search for.

base
Pointer to base of search data.

number
Number of elements.

width
Width of elements.

compare
Callback function that compares two elements. The first is a pointer to the key for the search and the second is a
pointer to the array element to be compared with the key.

bsearch returns a pointer to an occurrence of key in the array pointed to by base. If key is not found, the function
returns NULL. If the array is not in ascending sort order or contains duplicate records with identical keys, the
result is unpredictable.

The bsearch function performs a binary search of a sorted array of number elements, each of width bytes in size.
The base value is a pointer to the base of the array to be searched, and key is the value being sought. The
compare parameter is a pointer to a user-supplied routine that compares the requested key to an array element
and returns one of the following values specifying their relationship:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/bsearch.md

> 0 Key is greater than array element.

VALUE RETURNED BY COMPARE ROUTINE DESCRIPTION

Requirements
ROUTINE REQUIRED HEADER

bsearch <stdlib.h> and <search.h>

Example

// crt_bsearch.c
#include <search.h>
#include <string.h>
#include <stdio.h>

int compare(char **arg1, char **arg2)
{
 /* Compare all of both strings: */
 return _strcmpi(*arg1, *arg2);
}

int main(void)
{
 char *arr[] = {"dog", "pig", "horse", "cat", "human", "rat", "cow", "goat"};
 char **result;
 char *key = "cat";
 int i;

 /* Sort using Quicksort algorithm: */
 qsort((void *)arr, sizeof(arr)/sizeof(arr[0]), sizeof(char *), (int (*)(const
 void*, const void*))compare);

 for(i = 0; i < sizeof(arr)/sizeof(arr[0]); ++i) /* Output sorted list */
 printf("%s ", arr[i]);

 /* Find the word "cat" using a binary search algorithm: */
 result = (char **)bsearch((char *) &key, (char *)arr, sizeof(arr)/sizeof(arr[0]),
 sizeof(char *), (int (*)(const void*, const void*))compare);
 if(result)
 printf("\n%s found at %Fp\n", *result, result);
 else
 printf("\nCat not found!\n");
}

cat cow dog goat horse human pig rat
cat found at 002F0F04

See also

This function validates its parameters. If compare, key or number is NULL, or if base is NULL and number is
nonzero, or if width is zero, the invalid parameter handler is invoked, as described in Parameter Validation. If
execution is allowed to continue, errno is set to EINVAL and the function returns NULL.

For additional compatibility information, see Compatibility.

This program sorts a string array with qsort, and then uses bsearch to find the word "cat".

Searching and Sorting
_lfind
_lsearch
qsort

bsearch_s
3/1/2019 • 3 minutes to read • Edit Online

Syntax
void *bsearch_s(
 const void *key,
 const void *base,
 size_t number,
 size_t width,
 int (__cdecl *compare) (void *, const void *key, const void *datum),
 void * context
);

Parameters

Return Value

Error Conditions

key base compare number width errno

Performs a binary search of a sorted array. This is version of bsearch with security enhancements as described in
Security Features in the CRT.

key
Object to search for.

base
Pointer to base of search data.

number
Number of elements.

width
Width of elements.

compare
Callback function that compares two elements. The first argument is the context pointer. The second argument is
a pointer to the key for the search. The third argument is a pointer to the array element to be compared with key.

context
A pointer to an object that can be accessed in the comparison function.

bsearch_s returns a pointer to an occurrence of key in the array pointed to by base. If key is not found, the
function returns NULL. If the array is not in ascending sort order or contains duplicate records with identical
keys, the result is unpredictable.

If invalid parameters are passed to the function, the invalid parameter handler is invoked as described in
Parameter Validation. If execution is allowed to continue, errno is set to EINVAL and the function returns NULL.
For more information, see errno, _doserrno, _sys_errlist, and _sys_nerr.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/bsearch-s.md

NULL any any any any EINVAL

any NULL any != 0 any EINVAL

any any any any = 0 EINVAL

any any NULL an any EINVAL

Remarks

VALUE RETURNED BY COMPARE ROUTINE DESCRIPTION

< 0 Key is less than array element.

0 Key is equal to array element.

> 0 Key is greater than array element.

Requirements
ROUTINE REQUIRED HEADER

bsearch_s <stdlib.h> and <search.h>

Example

// crt_bsearch_s.cpp
// This program uses bsearch_s to search a string array,
// passing a locale as the context.
// compile with: /EHsc
#include <stdlib.h>
#include <stdio.h>
#include <search.h>
#include <process.h>
#include <locale.h>
#include <locale>
#include <windows.h>
using namespace std;

The bsearch_s function performs a binary search of a sorted array of number elements, each of width bytes in
size. The base value is a pointer to the base of the array to be searched, and key is the value being sought. The
compare parameter is a pointer to a user-supplied routine that compares the requested key to an array element
and returns one of the following values specifying their relationship:

The context pointer may be useful if the searched data structure is part of an object, and the compare function
needs to access members of the object. The compare function may cast the void pointer into the appropriate
object type and access members of that object. The addition of the context parameter makes bsearch_s more
secure since additional context may be used to avoid reentrancy bugs associated with using static variables to
make data available to the compare function.

For additional compatibility information, see Compatibility.

This program sorts a string array with qsort_s, and then uses bsearch_s to find the word "cat".

// The sort order is dependent on the code page. Use 'chcp' at the
// command line to change the codepage. When executing this application,
// the command prompt codepage must match the codepage used here:

#define CODEPAGE_850

#ifdef CODEPAGE_850
#define ENGLISH_LOCALE "English_US.850"
#endif

#ifdef CODEPAGE_1252
#define ENGLISH_LOCALE "English_US.1252"
#endif

// The context parameter lets you create a more generic compare.
// Without this parameter, you would have stored the locale in a
// static variable, thus making it vulnerable to thread conflicts
// (if this were a multithreaded program).

int compare(void *pvlocale, char **str1, char **str2)
{
 char *s1 = *str1;
 char *s2 = *str2;

 locale& loc = *(reinterpret_cast< locale * > (pvlocale));

 return use_facet< collate<char> >(loc).compare(
 s1, s1+strlen(s1),
 s2, s2+strlen(s2));
}

int main(void)
{
 char *arr[] = {"dog", "pig", "horse", "cat", "human", "rat", "cow", "goat"};

 char *key = "cat";
 char **result;
 int i;

 /* Sort using Quicksort algorithm: */
 qsort_s(arr,
 sizeof(arr)/sizeof(arr[0]),
 sizeof(char *),
 (int (*)(void*, const void*, const void*))compare,
 &locale(ENGLISH_LOCALE));

 for(i = 0; i < sizeof(arr)/sizeof(arr[0]); ++i) /* Output sorted list */
 printf("%s ", arr[i]);

 /* Find the word "cat" using a binary search algorithm: */
 result = (char **)bsearch_s(&key,
 arr,
 sizeof(arr)/sizeof(arr[0]),
 sizeof(char *),
 (int (*)(void*, const void*, const void*))compare,
 &locale(ENGLISH_LOCALE));
 if(result)
 printf("\n%s found at %Fp\n", *result, result);
 else
 printf("\nCat not found!\n");
}

cat cow dog goat horse human pig rat
cat found at 002F0F04

See also
Searching and Sorting
_lfind
_lsearch
qsort

btowc
10/31/2018 • 2 minutes to read • Edit Online

Syntax
wint_t btowc(
 int character
);

Parameters

Return Value

Requirements
ROUTINE REQUIRED HEADER

btowc <stdio.h> or <wchar.h>

See also

Determine whether an integer represents a valid single-byte character in the initial shift state.

character
Integer to test.

Returns the wide-character representation of the character if the integer represents a valid single-byte character in
the initial shift state. Returns WEOF if the integer is EOF or is not a valid single-byte character in the initial shift
state. The output of this function is affected by the current LC_TYPE locale.

For additional compatibility information, see Compatibility.

mbtowc, _mbtowc_l

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/btowc.md

_byteswap_uint64, _byteswap_ulong,
_byteswap_ushort
10/31/2018 • 2 minutes to read • Edit Online

Syntax
unsigned short _byteswap_ushort (unsigned short val);
unsigned long _byteswap_ulong (unsigned long val);
unsigned __int64 _byteswap_uint64 (unsigned __int64 val);

Parameters

Requirements
ROUTINE REQUIRED HEADER

_byteswap_ushort <stdlib.h>

_byteswap_ulong <stdlib.h>

_byteswap_uint64 <stdlib.h>

Example
// crt_byteswap.c
#include <stdlib.h>

int main()
{
 unsigned __int64 u64 = 0x0102030405060708;
 unsigned long ul = 0x01020304;

 printf("byteswap of %I64x = %I64x\n", u64, _byteswap_uint64(u64));
 printf("byteswap of %Ix = %Ix", ul, _byteswap_ulong(ul));
}

byteswap of 102030405060708 = 807060504030201
byteswap of 1020304 = 4030201

See also

Reverses the order of bytes in an integer.

val
The integer to reverse byte order.

For more compatibility information, see Compatibility.

Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/byteswap-uint64-byteswap-ulong-byteswap-ushort.md

c16rtomb, c32rtomb
2/4/2019 • 2 minutes to read • Edit Online

Syntax
size_t c16rtomb(
 char *mbchar,
 char16_t wchar,
 mbstate_t *state
);
size_t c32rtomb(
 char *mbchar,
 char32_t wchar,
 mbstate_t *state
);

Parameters

Return Value

Remarks

Requirements

Convert a UTF-16 or UTF-32 wide character into a multibyte character in the current locale.

mbchar
Pointer to an array to store the multibyte converted character.

wchar
A wide character to convert.

state
A pointer to an mbstate_t object.

The number of bytes stored in array object mbchar, including any shift sequences. If wchar is not a valid wide
character, the value (size_t)(-1) is returned, errno is set to EILSEQ, and the value of state is unspecified.

The c16rtomb function converts the UTF-16 character wchar to the equivalent multibyte narrow character
sequence in the current locale. If mbchar is not a null pointer, the function stores the converted sequence in the
array object pointed to by mbchar. Up to MB_CUR_MAX bytes are stored in mbchar, and state is set to the
resulting multibyte shift state. If wchar is a null wide character, a sequence required to restore the initial shift state
is stored, if needed, followed by the null character, and state is set to the initial conversion state. The c32rtomb
function is identical, but converts a UTF-32 character.

If mbchar is a null pointer, the behavior is equivalent to a call to the function that substitutes an internal buffer for
mbchar and a wide null character for wchar.

The state conversion state object allows you to make subsequent calls to this function and other restartable
functions that maintain the shift state of the multibyte output characters. Results are undefined when you mix the
use of restartable and non-restartable functions, or if a call to setlocale is made between restartable function
calls.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/c16rtomb-c32rtomb1.md

ROUTINE REQUIRED HEADER

c16rtomb, c32rtomb C, C++: <uchar.h>

See also

For compatibility information, see Compatibility.

Data Conversion
Locale
Interpretation of Multibyte-Character Sequences
mbrtoc16, mbrtoc32
wcrtomb
wcrtomb_s

cabs, cabsf, cabsl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double cabs(
 _Dcomplex z
);
float cabs(
 _Fcomplex z
); // C++ only
long double cabs(
 _Lcomplex z
); // C++ only
float cabsf(
 _Fcomplex z
);
long double cabsl(
 _Lcomplex z
);

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

cabs, cabsf, cabsl <complex.h> <ccomplex>

See also

Retrieves the absolute value of a complex number.

z
A complex number.

The absolute value of z.

Because C++ allows overloading, you can call overloads of cabs that take _Fcomplex or _Lcomplex values,
and return float or long double values. In a C program, cabs always takes a _Dcomplex value and returns a
double value.

For more compatibility information, see Compatibility.

Alphabetical Function Reference
norm, normf, norml
creal, crealf, creall
cproj, cprojf, cprojl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cabs-cabsf-cabsl.md

conj, conjf, conjl
cimag, cimagf, cimagl
carg, cargf, cargl

_cabs
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double _cabs(
 struct _complex z
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_cabs <math.h>

Example

Calculates the absolute value of a complex number.

z
Complex number.

_cabs returns the absolute value of its argument if successful. On overflow, _cabs returns HUGE_VAL and sets
errno to ERANGE . You can change error handling with _matherr.

The _cabs function calculates the absolute value of a complex number, which must be a structure of type
_complex. The structure z is composed of a real component x and an imaginary component y. A call to _cabs
produces a value equivalent to that of the expression sqrt(z.x * z.x + z.y * z.y) .

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cabs.md

// crt_cabs.c
// Using _cabs, this program calculates
// the absolute value of a complex number.

#include <math.h>
#include <stdio.h>

int main(void)
{
 struct _complex number = { 3.0, 4.0 };
 double d;

 d = _cabs(number);
 printf("The absolute value of %f + %fi is %f\n",
 number.x, number.y, d);
}

The absolute value of 3.000000 + 4.000000i is 5.000000

See also
Floating-Point Support
abs, labs, llabs, _abs64
fabs, fabsf, fabsl

cacos, cacosf, cacosl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_Dcomplex cacos(_Dcomplex z);
_Fcomplex cacosf(_Fcomplex z);
_Lcomplex cacosl(_Lcomplex z);

_Fcomplex cacos(_Fcomplex z); // C++ only
_Lcomplex cacos(_Lcomplex z); // C++ only

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

cacos, cacosf, cacosl <complex.h> <ccomplex>

See also

Retrieves the arccosine of a complex number, with branch cuts outside the interval [-1, +1] along the real axis.

z
A complex number that represents an angle, in radians.

The arccosine of z, in radians. The result is unbounded along the imaginary axis, and in the in the interval [0, π]
along the real axis. A domain error will occur if z is outside the interval [-1, +1].

Because C++ allows overloading, you can call overloads of cacos that take and return _Fcomplex and
_Lcomplex values. In a C program, cacos always takes and returns a _Dcomplex value.

For more compatibility information, see Compatibility.

Alphabetical Function Reference
catanh, catanhf, catanhl
ctanh, ctanhf, ctanhl
catan, catanf, catanl
csinh, csinhf, csinhl
casinh, casinhf, casinhl
ccosh, ccoshf, ccoshl
cacosh, cacoshf, cacoshl
ctan, ctanf, ctanl
csin, csinf, csinl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cacos-cacosf-cacosl.md

casin, casinf, casinl
ccos, ccosf, ccosl
csqrt, csqrtf, csqrtl

cacosh, cacoshf, cacoshl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_Dcomplex cacosh(
 _Dcomplex z
);
_Fcomplex cacosh(
 _Fcomplex z
); // C++ only
_Lcomplex cacosh(
 _Lcomplex z
); // C++ only
_Fcomplex cacoshf(
 _Fcomplex z
);
_Lcomplex cacoshl(
 _Lcomplex z
);

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

cacosh, cacoshf, cacoshl <complex.h> <ccomplex>

See also

Retrieves the inverse hyperbolic cosine of a complex number with a branch cut at values less than 1 along the
real axis. .

z
A complex number that represents an angle, in radians.

The inverse hyperbolic cosine of z, in radians. The result is unbounded and non-negative along the real axis, and
in the interval [-iπ, +iπ] along the imaginary axis.

Because C++ allows overloading, you can call overloads of cacosh that take and return _Fcomplex and
_Lcomplex values. In a C program, cacosh always takes and returns a _Dcomplex value.

For more compatibility information, see Compatibility.

Alphabetical Function Reference
catanh, catanhf, catanhl
ctanh, ctanhf, ctanhl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cacosh-cacoshf-cacoshl.md

catan, catanf, catanl
csinh, csinhf, csinhl
casinh, casinhf, casinhl
ccosh, ccoshf, ccoshl
cacos, cacosf, cacosl
ctan, ctanf, ctanl
csin, csinf, csinl
casin, casinf, casinl
ccos, ccosf, ccosl
csqrt, csqrtf, csqrtl

_callnewh
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _callnewh(
 size_t size
)

Parameters

Return Value
VALUE DESCRIPTION

0 Failure: Either no new handler is installed or no new handler is
active.

1 Success: The new handler is installed and active. The memory
allocation can be retried.

Exceptions

Remarks

Requirements
ROUTINE REQUIRED HEADER

_callnewh internal.h

See also

Calls the currently installed new handler.

size
The amount of memory that the new operator tried to allocate.

This function throws bad_alloc if the new handler can’t be located.

The new handler is called if the new operator fails to successfully allocate memory. The new handler might then
initiate some appropriate action, such as freeing memory so that subsequent allocations succeed.

_set_new_handler
_set_new_mode

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/callnewh.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-operator-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/bad-alloc-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-operator-cpp

calloc
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void *calloc(
 size_t num,
 size_t size
);

Parameters

Return Value

Remarks

_set_new_mode(1);

Allocates an array in memory with elements initialized to 0.

number
Number of elements.

size
Length in bytes of each element.

calloc returns a pointer to the allocated space. The storage space pointed to by the return value is guaranteed
to be suitably aligned for storage of any type of object. To get a pointer to a type other than void, use a type cast
on the return value.

The calloc function allocates storage space for an array of number elements, each of length size bytes. Each
element is initialized to 0.

calloc sets errno to ENOMEM if a memory allocation fails or if the amount of memory requested exceeds
_HEAP_MAXREQ. For information on this and other error codes, see errno, _doserrno, _sys_errlist, and
_sys_nerr.

calloc calls malloc to use the C++ _set_new_mode function to set the new handler mode. The new handler
mode indicates whether, on failure, malloc is to call the new handler routine as set by _set_new_handler. By
default, malloc does not call the new handler routine on failure to allocate memory. You can override this
default behavior so that, when calloc fails to allocate memory, malloc calls the new handler routine in the
same way that the new operator does when it fails for the same reason. To override the default, call

early in your program, or link with NEWMODE.OBJ (see Link Options).

When the application is linked with a debug version of the C run-time libraries, calloc resolves to _calloc_dbg.
For more information about how the heap is managed during the debugging process, see The CRT Debug
Heap.

calloc is marked __declspec(noalias) and __declspec(restrict) , meaning that the function is guaranteed not
to modify global variables, and that the pointer returned is not aliased. For more information, see noalias and

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/calloc.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/noalias

Requirements
ROUTINE REQUIRED HEADER

calloc <stdlib.h> and <malloc.h>

Example
// crt_calloc.c
// This program uses calloc to allocate space for
// 40 long integers. It initializes each element to zero.

#include <stdio.h>
#include <malloc.h>

int main(void)
{
 long *buffer;

 buffer = (long *)calloc(40, sizeof(long));
 if(buffer != NULL)
 printf("Allocated 40 long integers\n");
 else
 printf("Can't allocate memory\n");
 free(buffer);
}

Allocated 40 long integers

See also

restrict.

For additional compatibility information, see Compatibility.

Memory Allocation
free
malloc
realloc

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/restrict

_calloc_dbg
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void *_calloc_dbg(
 size_t num,
 size_t size,
 int blockType,
 const char *filename,
 int linenumber
);

Parameters

Return Value

Remarks

Allocates a number of memory blocks in the heap with additional space for a debugging header and overwrite
buffers (debug version only).

number
Requested number of memory blocks.

size
Requested size of each memory block (bytes).

blockType
Requested type of memory block: _CLIENT_BLOCK or _NORMAL_BLOCK.

For information about the allocation block types and how they are used, seeTypes of blocks on the debug heap.

filename
Pointer to name of the source file that requested allocation operation or NULL.

linenumber
Line number in the source file where allocation operation was requested or NULL.

The filename and linenumber parameters are only available when _calloc_dbg has been called explicitly or the
_CRTDBG_MAP_ALLOC preprocessor constant has been defined.

On successful completion, this function returns a pointer to the user portion of the last allocated memory block,
calls the new handler function, or returns NULL. For a complete description of the return behavior, see the
Remarks section. For more information about how the new handler function is used, see the calloc function.

_calloc_dbg is a debug version of the calloc function. When _DEBUG is not defined, each call to _calloc_dbg is
reduced to a call to calloc. Both calloc and _calloc_dbg allocate number memory blocks in the base heap, but
_calloc_dbg offers several debugging features:

Buffers on either side of the user portion of the block to test for leaks.

A block type parameter to track specific allocation types.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/calloc-dbg.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

Requirements
ROUTINE REQUIRED HEADER

_calloc_dbg <crtdbg.h>

Example
// crt_callocd.c
// This program uses _calloc_dbg to allocate space for
// 40 long integers. It initializes each element to zero.

#include <stdio.h>
#include <malloc.h>
#include <crtdbg.h>

int main(void)
{
 long *bufferN, *bufferC;

 // Call _calloc_dbg to include the filename and line number
 // of our allocation request in the header and also so we can
 // allocate CLIENT type blocks specifically
 bufferN = (long *)_calloc_dbg(40, sizeof(long), _NORMAL_BLOCK, __FILE__, __LINE__);
 bufferC = (long *)_calloc_dbg(40, sizeof(long), _CLIENT_BLOCK, __FILE__, __LINE__);
 if(bufferN != NULL && bufferC != NULL)
 printf("Allocated memory successfully\n");
 else
 printf("Problem allocating memory\n");

 / _free_dbg must be called to free CLIENT type blocks
 free(bufferN);
 _free_dbg(bufferC, _CLIENT_BLOCK);
}

Allocated memory successfully

See also

filename/linenumber information to determine the origin of allocation requests.

_calloc_dbg allocates each memory block with slightly more space than the requested size. The additional space
is used by the debug heap manager to link the debug memory blocks and to provide the application with debug
header information and overwrite buffers. When the block is allocated, the user portion of the block is filled with
the value 0xCD and each of the overwrite buffers are filled with 0xFD.

_calloc_dbg sets errno to ENOMEM if a memory allocation fails; EINVAL is returned if the amount of memory
needed (including the overhead mentioned previously) exceeds _HEAP_MAXREQ. For information about this
and other error codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

For information about how memory blocks are allocated, initialized, and managed in the debug version of the
base heap, see CRT Debug Heap Details. For information about the differences between calling a standard heap
function versus its debug version in a debug build of an application, see Debug Versions of Heap Allocation
Functions.

For more compatibility information, see Compatibility.

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/debug-versions-of-heap-allocation-functions

Debug Routines
calloc
_malloc_dbg
_DEBUG

carg, cargf, cargl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double carg(
 _Dcomplex z
);
float carg(
 _Fcomplex z
); // C++ only
long double carg(
 _Lcomplex z
); // C++ only
float cargf(
 _Fcomplex z
);
long double cargl(
 _Lcomplex z
);

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

carg, cargf, cargl <complex.h> <ccomplex>

See also

Retrieves the argument of a complex number, with a branch cut along the negative real axis.

z
A complex number.

The argument (also known as the phase) of z. The result is in the interval [-π, +π].

Because C++ allows overloading, you can call overloads of carg that take _Fcomplex or _Lcomplex values, and
return float or long double values. In a C program, carg always takes a _Dcomplex value and returns a
double value.

For more compatibility information, see Compatibility.

Alphabetical Function Reference
norm, normf, norml
creal, crealf, creall
cproj, cprojf, cprojl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/carg-cargf-cargl.md

conj, conjf, conjl
cimag, cimagf, cimagl
cabs, cabsf, cabsl

casin, casinf, casinl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_Dcomplex casin(
 _Dcomplex z
);
_Fcomplex casin(
 _Fcomplex z
); // C++ only
_Lcomplex casin(
 _Lcomplex z
); // C++ only
_Fcomplex casinf(
 _Fcomplex z
);
_Lcomplex casinl(
 _Lcomplex z
);

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

casin, casinf, casinl <complex.h> <ccomplex>

See also

Retrieves the arcsine of a complex number, with branch cuts outside the interval [-1, +1] along the real axis.

z
A complex number that represents an angle, in radians.

The arcsine of z, in radians. The result is unbounded along the imaginary axis, and in the interval [-π/2, +π/2]
along the real axis.

Because C++ allows overloading, you can call overloads of casin that take and return _Fcomplex and
_Lcomplex values. In a C program, casin always takes and returns a _Dcomplex value.

For more compatibility information, see Compatibility.

Alphabetical Function Reference
catanh, catanhf, catanhl
ctanh, ctanhf, ctanhl
catan, catanf, catanl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/casin-casinf-casinl.md

csinh, csinhf, csinhl
casinh, casinhf, casinhl
ccosh, ccoshf, ccoshl
cacosh, cacoshf, cacoshl
cacos, cacosf, cacosl
ctan, ctanf, ctanl
csin, csinf, csinl
ccos, ccosf, ccosl
csqrt, csqrtf, csqrtl

casinh, casinhf, casinhl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_Dcomplex casinh(
 _Dcomplex z
);
_Fcomplex casinh(
 _Fcomplex z
); // C++ only
_Lcomplex casinh(
 _Lcomplex z
); // C++ only
_Fcomplex casinhf(
 _Fcomplex z
);
_Lcomplex casinhl(
 _Lcomplex z
);

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

casinh, casinhf, casinhl <complex.h> <ccomplex>

See also

Retrieves the inverse hyperbolic sine of a complex number, with branch cuts outside the interval [-i, +i] along the
imaginary axis.

z
A complex number that represents an angle, in radians.

The inverse hyperbolic sine of z, in radians. The result is unbound along the real axis, and in the interval [-iπ/2,
+iπ/2] along the imaginary axis.

Because C++ allows overloading, you can call overloads of casinh that take and return _Fcomplex and
_Lcomplex values. In a C program, casinh always takes and returns a _Dcomplex value.

For more compatibility information, see Compatibility.

Alphabetical Function Reference
catanh, catanhf, catanhl
ctanh, ctanhf, ctanhl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/casinh-casinhf-casinhl.md

catan, catanf, catanl
csinh, csinhf, csinhl
ccosh, ccoshf, ccoshl
cacosh, cacoshf, cacoshl
cacos, cacosf, cacosl
ctan, ctanf, ctanl
csin, csinf, csinl
casin, casinf, casinl
ccos, ccosf, ccosl
csqrt, csqrtf, csqrtl

catan, catanf, catanl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_Dcomplex catan(_Dcomplex z);
_Fcomplex catanf(_Fcomplex z);
_Lcomplex catanl(_Lcomplex z);

_Fcomplex catan(_Fcomplex z); // C++ only
_Lcomplex catan(_Lcomplex z); // C++ only

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

catan, catanf, catanl <complex.h> <ccomplex>

See also

Retrieves the arctangent of a complex number with branch cuts outside the interval [-1; +1] along the imaginary
axis.

z
A complex number that represents an angle, in radians.

The arctangent of z, in radians. The result is unbounded along the imaginary axis, and in the interval [-π/2;
+π/2] along the real axis.

Because C++ allows overloading, you can call overloads of catan that take and return _Fcomplex and
_Lcomplex values. In a C program, catan always takes and returns a _Dcomplex value.

For more compatibility information, see Compatibility.

Alphabetical Function Reference
catanh, catanhf, catanhl
ctanh, ctanhf, ctanhl
csinh, csinhf, csinhl
casinh, casinhf, casinhl
ccosh, ccoshf, ccoshl
cacosh, cacoshf, cacoshl
cacos, cacosf, cacosl
ctan, ctanf, ctanl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/catan-catanf-catanl.md

csin, csinf, csinl
casin, casinf, casinl
ccos, ccosf, ccosl
csqrt, csqrtf, csqrtl

catanh, catanhf, catanhl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_Dcomplex catanh(
 _Dcomplex z
);
_Fcomplex catanh(
 _Fcomplex z
); // C++ only
_Lcomplex catanh(
 _Lcomplex z
); // C++ only
_Fcomplex catanhf(
 _Fcomplex z
);
_Lcomplex catanhl(
 _Lcomplex z
);

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

catanh, catanhf, catanhl <complex.h> <ccomplex>

See also

Retrieves the inverse hyperbolic tangent of a complex number, with branch cuts outside the interval [-1; +1]
along the real axis.

z
A complex number that represents an angle, in radians.

The inverse hyperbolic tangent of z, in radians. The result is unbounded along the real axis, and in the interval [-
iπ/2; +iπ/2] along the imaginary axis. A domain error will occur if z is outside the interval [-1, +1]. A pole error
will occur if z is -1 or +1.

Because C++ allows overloading, you can call overloads of catanh that take and return _Fcomplex and
_Lcomplex values. In a C program, catanh always takes and returns a _Dcomplex value.

For more compatibility information, see Compatibility.

Alphabetical Function Reference
ctanh, ctanhf, ctanhl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/catanh-catanhf-catanhl.md

catan, catanf, catanl
csinh, csinhf, csinhl
casinh, casinhf, casinhl
ccosh, ccoshf, ccoshl
cacosh, cacoshf, cacoshl
cacos, cacosf, cacosl
ctan, ctanf, ctanl
csin, csinf, csinl
casin, casinf, casinl
ccos, ccosf, ccosl
csqrt, csqrtf, csqrtl

cbrt, cbrtf, cbrtl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double cbrt(
 double x
);
float cbrt(
 float x
); // C++ only
long double cbrt(
 long double x
); // C++ only
float cbrtf(
 float x
);
long double cbrtl(
 long double x
);

Parameters

Return Value

INPUT SEH EXCEPTION _MATHERR EXCEPTION

± ∞, QNAN, IND none none

Remarks

Requirements
FUNCTION C HEADER C++ HEADER

cbrt, cbrtf, cbrtl <math.h> <cmath>

Example

Calculates the cube root.

x
Floating-point value

The cbrt functions return the cube-root of x.

Because C++ allows overloading, you can call overloads of cbrt that take float or long double types. In a C
program, cbrt always takes and returns double.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cbrt-cbrtf-cbrtl.md

// crt_cbrt.c
// Compile using: cl /W4 crt_cbrt.c
// This program calculates a cube root.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double question = -64.64;
 double answer;

 answer = cbrt(question);
 printf("The cube root of %.2f is %.6f\n", question, answer);
}

The cube root of -64.64 is -4.013289

See also
Floating-Point Support
exp, expf, expl
log, logf, log10, log10f
pow, powf, powl

_Cbuild, _FCbuild, _LCbuild
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_Dcomplex _Cbuild(double real, double imaginary);
_Fcomplex _FCbuild(float real, float imaginary);
_Lcomplex _LCbuild(long double real, long double imaginary);

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

_Cbuild, _FCbuild, _LCbuild <complex.h> <ccomplex>

See also

Constructs a complex number from real and imaginary parts.

real
The real part of the complex number to construct.

imaginary
The imaginary part of the complex number to construct.

A _Dcomplex, _Fcomplex, or _Lcomplex structure that represents the complex number (real, imaginary * i) for
values of the specified floating-point type.

The _Cbuild, _FCbuild, and _LCbuild functions simplify creation of complex types. Use the creal, crealf, creall and
cimag, cimagf, cimagl functions to retrieve the real and imaginary portions of the represented complex numbers.

These functions are Microsoft-specific. The types _Dcomplex, _Fcomplex, and _Lcomplex are Microsoft-specific
equivalents to the unimplemented C99 native types double _Complex, float _Complex, and long double
_Complex, respectively. For more compatibility information, see Compatibility.

Alphabetical Function Reference
_Cmulcc, _FCmulcc, _LCmulcc
_Cmulcr, _FCmulcr, _LCmulcr
norm, normf, norml
cproj, cprojf, cprojl
conj, conjf, conjl
creal, crealf, creall
cimag, cimagf, cimagl
carg, cargf, cargl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cbuild-fcbuild-lcbuild.md

cabs, cabsf, cabsl

ccos, ccosf, ccosl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_Dcomplex ccos(
 _Dcomplex z
);
_Fcomplex ccos(
 _Fcomplex z
); // C++ only
_Lcomplex ccos(
 _Lcomplex z
); // C++ only
_Fcomplex ccosf(
 _Fcomplex z
);
_Lcomplex ccosl(
 _Lcomplex z
);

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

ccos, ccosf, ccosl <complex.h> <ccomplex>

See also

Retrieves the cosine of a complex number.

z
A complex number that represents the angle, in radians.

The cosine of z, in radians.

Because C++ allows overloading, you can call overloads of ccos that take and return _Fcomplex and
_Lcomplex values. In a C program, ccos always takes and returns a _Dcomplex value.

For more compatibility information, see Compatibility.

Alphabetical Function Reference
catanh, catanhf, catanhl
ctanh, ctanhf, ctanhl
catan, catanf, catanl
csinh, csinhf, csinhl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ccos-ccosf-ccosl.md

casinh, casinhf, casinhl
ccosh, ccoshf, ccoshl
cacosh, cacoshf, cacoshl
cacos, cacosf, cacosl
ctan, ctanf, ctanl
csin, csinf, csinl
casin, casinf, casinl
csqrt, csqrtf, csqrtl

ccosh, ccoshf, ccoshl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_Dcomplex ccosh(
 _Dcomplex z
);
_Fcomplex ccosh(
 _Fcomplex z
); // C++ only
_Lcomplex ccosh(
 _Lcomplex z
); // C++ only
_Fcomplex ccoshf(
 _Fcomplex z
);
_Lcomplex ccoshl(
 _Lcomplex z
);

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

ccosh, ccoshf, ccoshl <complex.h> <ccomplex>

See also

Retrieves the hyperbolic cosine of a complex number.

z
A complex number that represents the angle, in radians.

The hyperbolic cosine of z, in radians.

Because C++ allows overloading, you can call overloads of ccosh that take and return _Fcomplex and
_Lcomplex values. In a C program, ccosh always takes and returns a _Dcomplex value.

For more compatibility information, see Compatibility.

Alphabetical Function Reference
catanh, catanhf, catanhl
ctanh, ctanhf, ctanhl
catan, catanf, catanl
csinh, csinhf, csinhl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ccosh-ccoshf-ccoshl.md

casinh, casinhf, casinhl
cacosh, cacoshf, cacoshl
cacos, cacosf, cacosl
ctan, ctanf, ctanl
csin, csinf, csinl
casin, casinf, casinl
ccos, ccosf, ccosl
csqrt, csqrtf, csqrtl

ceil, ceilf, ceill
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double ceil(
 double x
);
float ceil(
 float x
); // C++ only
long double ceil(
 long double x
); // C++ only
float ceilf(
 float x
);
long double ceill(
 long double x
);

Parameters

Return Value

INPUT SEH EXCEPTION MATHERR EXCEPTION

± QNAN, IND none _DOMAIN

Remarks

Requirements
ROUTINE REQUIRED HEADER

ceil, ceilf, ceill <math.h>

Calculates the ceiling of a value.

x
Floating-point value.

The ceil functions return a floating-point value that represents the smallest integer that is greater than or equal
to x. There is no error return.

ceil has an implementation that uses Streaming SIMD Extensions 2 (SSE2). For information and restrictions
about using the SSE2 implementation, see _set_SSE2_enable.

Because C++ allows overloading, you can call overloads of ceil that take float or long double types. In a C
program, ceil always takes and returns a double.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ceil-ceilf-ceill.md

Example

See also

See the example for floor.

Floating-Point Support
floor, floorf, floorl
fmod, fmodf
round, roundf, roundl

_cexit, _c_exit
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void _cexit(void);
void _c_exit(void);

Remarks

FUNCTION BEHAVIOR

exit Performs complete C library termination procedures,
terminates process, and exits with supplied status code.

_exit Performs quick C library termination procedures, terminates
process, and exits with supplied status code.

_cexit Performs complete C library termination procedures and
returns to caller, but does not terminate process.

_c_exit Performs quick C library termination procedures and returns
to caller, but does not terminate process.

myObject.myClass::~myClass();

Requirements
ROUTINE REQUIRED HEADER

_cexit <process.h>

_c_exit <process.h>

Performs cleanup operations and returns without terminating the process.

The _cexit function calls, in last-in, first-out (L IFO) order, the functions registered by atexit and _onexit. Then
_cexit flushes all I/O buffers and closes all open streams before returning. _c_exit is the same as _exit but
returns to the calling process without processing atexit or _onexit or flushing stream buffers. The behavior of
exit, _exit, _cexit, and _c_exit is shown in the following table.

When you call the _cexit or _c_exit functions, the destructors for any temporary or automatic objects that exist at
the time of the call are not called. An automatic object is an object that is defined in a function where the object is
not declared to be static. A temporary object is an object created by the compiler. To destroy an automatic object
before calling _cexit or _c_exit, explicitly call the destructor for the object, as follows:

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cexit-c-exit.md

See also
Process and Environment Control
abort
atexit
_exec, _wexec Functions
exit, _Exit, _exit
_onexit, _onexit_m
_spawn, _wspawn Functions
system, _wsystem

cexp, cexpf, cexpl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_Dcomplex cexp(_Dcomplex z);
_Fcomplex cexpf(_Fcomplex z);
_Lcomplex cexpl(_Lcomplex z);

_Fcomplex cexp(_Fcomplex z); // C++ only
_Lcomplex cexp(_Lcomplex z); // C++ only

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

cexp, cexpf, cexpl <complex.h> <complex.h>

See also

Compute the base-e exponential of a complex number.

z
A complex number that represents the exponent.

The value of e raised to the power of z.

Because C++ allows overloading, you can call overloads of cexp that take and return _Fcomplex and
_Lcomplex values. In a C program, cexp always takes and returns a _Dcomplex value.

For compatibility information, see Compatibility.

Alphabetical Function Reference
cpow, cpowf, cpowl
clog10, clog10f, clog10l
clog, clogf, clogl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cexp-cexpf-cexpl.md

cgets
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _cgets or security-enhanced _cgets_s instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cgets.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_cgets_s, _cgetws_s
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
errno_t _cgets_s(
 char *buffer,
 size_t numberOfElements,
 size_t *pSizeRead
);
errno_t _cgetws_s(
 wchar_t *buffer
 size_t numberOfElements,
 size_t *pSizeRead
);
template <size_t size>
errno_t _cgets_s(
 char (&buffer)[size],
 size_t *pSizeRead
); // C++ only
template <size_t size>
errno_t _cgetws_s(
 wchar_t (&buffer)[size],
 size_t *pSizeRead
); // C++ only

Parameters

Return Value

Error Conditions

Gets a character string from the console. These versions of _cgets and _cgetws have security enhancements, as
described in Security Features in the CRT.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

buffer
Storage location for data.

numberOfElements
The size of the buffer in single-byte or wide characters, which is also the maximum number of characters to be
read.

pSizeRead
The number of characters actually read.

The return value is zero if successful; otherwise, an error code if a failure occurs.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cgets-s-cgetws-s.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

BUFFER NUMBEROFELEMENTS PSIZEREAD RETURN CONTENTS OF BUFFER

NULL any any EINVAL n/a

not NULL zero any EINVAL not modified

not NULL any NULL EINVAL zero-length string

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_cgetts_s _cgets_s _cgets_s _cgetws_s

Requirements
ROUTINE REQUIRED HEADER

_cgets_s <conio.h>

_cgetws_s <conio.h> or <wchar.h>

See also

_cgets_s and _cgetws_s read a string from the console and copy the string (with a null terminator) into buffer.
_cgetws_s is the wide character version of the function; other than the character size, the behavior of these two
functions is identical. The maximum size of the string to be read is passed in as the numberOfElements
parameter. This size should include an extra character for the terminating null. The actual number of characters
read is placed in pSizeRead.

If an error occurs during the operation or in the validating of the parameters, the invalid parameter handler is
invoked, as described in Parameter Validation . If execution is allowed to continue, errno is set to EINVAL and
EINVAL is returned.

In C++, the use of these functions is simplified by template overloads; the overloads can infer buffer length
automatically, thereby eliminating the need to specify a size argument, and they can automatically replace older,
less-secure functions with their newer, more secure counterparts. For more information, see Secure Template
Overloads.

For more compatibility information, see Compatibility.

Console and Port I/O
_getch, _getwch

chdir
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _chdir instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/chdir.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_chdir, _wchdir
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _chdir(
 const char *dirname
);
int _wchdir(
 const wchar_t *dirname
);

Parameters

Return Value

Remarks

_chdir("c:\temp");

Generic-Text Routine Mapping:

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tchdir _chdir _chdir _wchdir

Requirements

Changes the current working directory.

dirname
Path of new working directory.

These functions return a value of 0 if successful. A return value of -1 indicates failure. If the specified path could
not be found, errno is set to ENOENT. If dirname is NULL, the invalid parameter handler is invoked, as
described in Parameter Validation. If execution is allowed to continue, errno is set to EINVAL and the function
returns -1.

The _chdir function changes the current working directory to the directory specified by dirname. The dirname
parameter must refer to an existing directory. This function can change the current working directory on any
drive. If a new drive letter is specified in dirname, the default drive letter is changed as well. For example, if A is
the default drive letter and \BIN is the current working directory, the following call changes the current working
directory for drive C and establishes C as the new default drive:

When you use the optional backslash character (\) in paths, you must place two backslashes (\\) in a C string
literal to represent a single backslash (\).

_wchdir is a wide-character version of _chdir; the dirname argument to _wchdir is a wide-character string.
_wchdir and _chdir behave identically otherwise.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/chdir-wchdir.md

ROUTINE REQUIRED HEADER OPTIONAL HEADER

_chdir <direct.h> <errno.h>

_wchdir <direct.h> or <wchar.h> <errno.h>

Example
// crt_chdir.c
// arguments: C:\WINDOWS

/* This program uses the _chdir function to verify
 that a given directory exists. */

#include <direct.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

int main(int argc, char *argv[])
{

 if(_chdir(argv[1]))
 {
 switch (errno)
 {
 case ENOENT:
 printf("Unable to locate the directory: %s\n", argv[1]);
 break;
 case EINVAL:
 printf("Invalid buffer.\n");
 break;
 default:
 printf("Unknown error.\n");
 }
 }
 else
 system("dir *.exe");
}

For more compatibility information, see Compatibility.

Volume in drive C has no label.
Volume Serial Number is 2018-08A1

Directory of c:\windows

08/29/2002 04:00 AM 1,004,032 explorer.exe
12/17/2002 04:43 PM 10,752 hh.exe
03/03/2003 09:24 AM 33,792 ieuninst.exe
10/29/1998 04:45 PM 306,688 IsUninst.exe
08/29/2002 04:00 AM 66,048 NOTEPAD.EXE
03/03/2003 09:24 AM 33,792 Q330994.exe
08/29/2002 04:00 AM 134,144 regedit.exe
02/28/2003 06:26 PM 46,352 setdebug.exe
08/29/2002 04:00 AM 15,360 TASKMAN.EXE
08/29/2002 04:00 AM 49,680 twunk_16.exe
08/29/2002 04:00 AM 25,600 twunk_32.exe
08/29/2002 04:00 AM 256,192 winhelp.exe
08/29/2002 04:00 AM 266,752 winhlp32.exe
 13 File(s) 2,249,184 bytes
 0 Dir(s) 67,326,029,824 bytes free

See also
Directory Control
_mkdir, _wmkdir
_rmdir, _wrmdir
system, _wsystem

_chdrive
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _chdrive(
 int drive
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_chdrive <direct.h>

Example

See also

Changes the current working drive.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

drive
An integer from 1 through 26 that specifies the current working drive (1=A, 2=B, and so forth).

Zero (0) if the current working drive was changed successfully; otherwise, -1.

If drive is not in the range from 1 through 26, the invalid-parameter handler is invoked as described in Parameter
Validation. If execution is allowed to continue, the _chdrive function returns -1, errno is set to EACCES, and
_doserrno is set to ERROR_INVALID_DRIVE .

The _chdrive function is not thread-safe because it depends on the SetCurrentDirectory function, which is itself
not thread-safe. To use _chdrive safely in a multi-threaded application, you must provide your own thread
synchronization. For more information, see SetCurrentDirectory.

The _chdrive function changes only the current working drive; _chdir changes the current working directory.

For more information, see Compatibility.

See the example for _getdrive.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/chdrive.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-setcurrentdirectory

Directory Control
_chdir, _wchdir
_fullpath, _wfullpath
_getcwd, _wgetcwd
_getdrive
_mkdir, _wmkdir
_rmdir, _wrmdir
system, _wsystem

_chgsign, _chgsignf, _chgsignl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double _chgsign(
 double x
);
float _chgsignf(
 float x
);
long double _chgsignl(
 long double x
);

Parameters

Return Value

Requirements
ROUTINE REQUIRED HEADER

_chgsign <float.h>

_chgsignf, _chgsignl <math.h>

See also

Reverses the sign of a floating-point argument.

x
The floating-point value to be changed.

The _chgsign functions return a value that's equal to the floating-point argument x, but with its sign reversed.
There is no error return.

For more compatibility information, see Compatibility.

Floating-Point Support
fabs, fabsf, fabsl
copysign, copysignf, copysignl, _copysign, _copysignf, _copysignl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/chgsign-chgsignf-chgsignl.md

chmod
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _chmod instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/chmod.md

_chmod, _wchmod
11/9/2018 • 2 minutes to read • Edit Online

Syntax
int _chmod(const char *filename, int pmode);
int _wchmod(const wchar_t *filename, int pmode);

Parameters

Return Value

Remarks

PMODE MEANING

_S_IREAD Only reading permitted.

_S_IWRITE Writing permitted. (In effect, permits reading and writing.)

_S_IREAD | _S_IWRITE Reading and writing permitted.

Generic-Text Routine Mappings

Changes the file-permission settings.

filename
Name of the existing file.

pmode
Permission setting for the file.

These functions return 0 if the permission setting is successfully changed. A return value of -1 indicates failure. If
the specified file could not be found, errno is set to ENOENT; if a parameter is invalid, errno is set to EINVAL.

The _chmod function changes the permission setting of the file specified by filename. The permission setting
controls the read and write access to the file. The integer expression pmode contains one or both of the following
manifest constants, defined in SYS\Stat.h.

When both constants are given, they are joined with the bitwise or operator (|). If write permission is not given,
the file is read-only. Note that all files are always readable; it is not possible to give write-only permission. Thus,
the modes _S_IWRITE and _S_IREAD | _S_IWRITE are equivalent.

_wchmod is a wide-character version of _chmod; the filename argument to _wchmod is a wide-character
string. _wchmod and _chmod behave identically otherwise.

This function validates its parameters. If pmode is not a combination of one of the manifest constants or
incorporates an alternate set of constants, the function simply ignores those. If filename is NULL, the invalid
parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue, errno is
set to EINVAL and the function returns -1.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/chmod-wchmod.md

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tchmod _chmod _chmod _wchmod

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_chmod <io.h> <sys/types.h>, <sys/stat.h>,
<errno.h>

_wchmod <io.h> or <wchar.h> <sys/types.h>, <sys/stat.h>,
<errno.h>

Example

For more compatibility information, see Compatibility.

// crt_chmod.c
// This program uses _chmod to
// change the mode of a file to read-only.
// It then attempts to modify the file.
//

#include <sys/types.h>
#include <sys/stat.h>
#include <io.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

// Change the mode and report error or success
void set_mode_and_report(char * filename, int mask)
{
 // Check for failure
 if(_chmod(filename, mask) == -1)
 {
 // Determine cause of failure and report.
 switch (errno)
 {
 case EINVAL:
 fprintf(stderr, "Invalid parameter to chmod.\n");
 break;
 case ENOENT:
 fprintf(stderr, "File %s not found\n", filename);
 break;
 default:
 // Should never be reached
 fprintf(stderr, "Unexpected error in chmod.\n");
 }
 }
 else
 {
 if (mask == _S_IREAD)
 printf("Mode set to read-only\n");
 else if (mask & _S_IWRITE)
 printf("Mode set to read/write\n");
 }
 fflush(stderr);
}

int main(void)
{

 // Create or append to a file.
 system("echo /* End of file */ >> crt_chmod.c_input");

 // Set file mode to read-only:
 set_mode_and_report("crt_chmod.c_input ", _S_IREAD);

 system("echo /* End of file */ >> crt_chmod.c_input ");

 // Change back to read/write:
 set_mode_and_report("crt_chmod.c_input ", _S_IWRITE);

 system("echo /* End of file */ >> crt_chmod.c_input ");
}

A line of text.

 A line of text.Mode set to read-only
Access is denied.
Mode set to read/write

See also
File Handling
_access, _waccess
_creat, _wcreat
_fstat, _fstat32, _fstat64, _fstati64, _fstat32i64, _fstat64i32
_open, _wopen
_stat, _wstat Functions

chsize
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _chsize or security-enhanced _chsize_s instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-chsize.md

_chsize
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _chsize(
 int fd,
 long size
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_chsize <io.h> <errno.h>

Example

Changes the size of a file. A more secure version is available; see _chsize_s.

fd
File descriptor referring to an open file.

size
New length of the file in bytes.

_chsize returns the value 0 if the file size is successfully changed. A return value of -1 indicates an error: errno is
set to EACCES if the specified file is read-only or the specified file is locked against access, to EBADF if the
descriptor is invalid, ENOSPC if no space is left on the device, or EINVAL if size is less than zero.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these, and other, return codes.

The _chsize function extends or truncates the file associated with fd to the length specified by size. The file must
be open in a mode that permits writing. Null characters ('\0') are appended if the file is extended. If the file is
truncated, all data from the end of the shortened file to the original length of the file is lost.

This function validates its parameters. If size is less than zero or fd is a bad file descriptor, the invalid parameter
handler is invoked, as described in Parameter Validation.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/chsize.md

// crt_chsize.c
// This program uses _filelength to report the size
// of a file before and after modifying it with _chsize.

#include <io.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <share.h>

int main(void)
{
 int fh, result;
 unsigned int nbytes = BUFSIZ;

 // Open a file
 if(_sopen_s(&fh, "data", _O_RDWR | _O_CREAT, _SH_DENYNO,
 _S_IREAD | _S_IWRITE) == 0)
 {
 printf("File length before: %ld\n", _filelength(fh));
 if((result = _chsize(fh, 329678)) == 0)
 printf("Size successfully changed\n");
 else
 printf("Problem in changing the size\n");
 printf("File length after: %ld\n", _filelength(fh));
 _close(fh);
 }
}

File length before: 0
Size successfully changed
File length after: 329678

See also
File Handling
_close
_sopen, _wsopen
_open, _wopen

_chsize_s
10/31/2018 • 2 minutes to read • Edit Online

Syntax
errno_t _chsize_s(
 int fd,
 __int64 size
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_chsize_s <io.h> <errno.h>

See also

Changes the size of a file. This is a version of _chsize with security enhancements as described in Security
Features in the CRT.

fd
File descriptor referring to an open file.

size
New length of the file in bytes.

_chsize_s returns the value 0 if the file size is successfully changed. A nonzero return value indicates an error: the
return value is EACCES if the specified file is locked against access, EBADF if the specified file is read-only or the
descriptor is invalid, ENOSPC if no space is left on the device, or EINVAL if size is less than zero. errno is set to
the same value.

For more information about these and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The _chsize_s function extends or truncates the file associated with fd to the length specified by size. The file must
be open in a mode that permits writing. Null characters ('\0') are appended if the file is extended. If the file is
truncated, all data from the end of the shortened file to the original length of the file is lost.

_chsize_s takes a 64-bit integer as the file size, and therefore can handle file sizes greater than 4 GB. _chsize is
limited to 32-bit file sizes.

This function validates its parameters. If fd is not a valid file descriptor or size is less than zero, the invalid
parameter handler is invoked, as described in Parameter Validation.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/chsize-s.md

File Handling
_chsize
_close
_creat, _wcreat
_open, _wopen

cimag, cimagf, cimagl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double cimag(_Dcomplex z);
float cimagf(_Fcomplex z);
long double cimagl(_Lcomplex z);

float cimag(_Fcomplex z); // C++
long double cimag(_Lcomplex z); // C++

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

cimag, cimagf, cimagl <complex.h> <ccomplex>

See also

Retrieves the imaginary part of a complex number.

z
A complex number.

The imaginary part of z.

Because C++ allows overloading, you can call overloads of cimag that take _Fcomplex or _Lcomplex values,
and return float or long double values. In a C program, cimag always takes a _Dcomplex value and returns a
double value.

For more compatibility information, see Compatibility.

Alphabetical Function Reference
norm, normf, norml
creal, crealf, creall
cproj, cprojf, cprojl
conj, conjf, conjl
carg, cargf, cargl
cabs, cabsf, cabsl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cimag-cimagf-cimagl.md

_clear87, _clearfp
10/31/2018 • 2 minutes to read • Edit Online

Syntax
unsigned int _clear87(void);
unsigned int _clearfp(void);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_clear87 <float.h>

_clearfp <float.h>

Example

Gets and clears the floating-point status word.

The bits in the value returned indicate the floating-point status before the call to _clear87 or _clearfp. For a
complete definition of the bits returned by _clear87, see Float.h. Many of the math library functions modify the
8087/80287 status word, with unpredictable results. Return values from _clear87 and _status87 become more
reliable as fewer floating-point operations are performed between known states of the floating-point status word.

The _clear87 function clears the exception flags in the floating-point status word, sets the busy bit to 0, and
returns the status word. The floating-point status word is a combination of the 8087/80287 status word and
other conditions detected by the 8087/80287 exception handler, such as floating-point stack overflow and
underflow.

_clearfp is a platform-independent, portable version of the _clear87 routine. It is identical to _clear87 on Intel
(x86) platforms and is also supported by the x64 and ARM platforms. To ensure that your floating-point code is
portable to x64 and ARM, use _clearfp. If you are only targeting x86 platforms, you can use either _clear87 or
_clearfp.

These functions are deprecated when compiling with /clr (Common Language Runtime Compilation) because the
common language runtime only supports the default floating-point precision.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/clear87-clearfp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation

// crt_clear87.c
// compile with: /Od

// This program creates various floating-point
// problems, then uses _clear87 to report on these problems.
// Compile this program with Optimizations disabled (/Od).
// Otherwise the optimizer will remove the code associated with
// the unused floating-point values.
//

#include <stdio.h>
#include <float.h>

int main(void)
{
 double a = 1e-40, b;
 float x, y;

 printf("Status: %.4x - clear\n", _clear87());

 // Store into y is inexact and underflows:
 y = a;
 printf("Status: %.4x - inexact, underflow\n", _clear87());

 // y is denormal:
 b = y;
 printf("Status: %.4x - denormal\n", _clear87());
}

Status: 0000 - clear
Status: 0003 - inexact, underflow
Status: 80000 - denormal

See also
Floating-Point Support
_control87, _controlfp, __control87_2
_status87, _statusfp, _statusfp2

clearerr
11/8/2018 • 2 minutes to read • Edit Online

Syntax
void clearerr(
 FILE *stream
);

Parameters

Remarks

Requirements
ROUTINE REQUIRED HEADER

clearerr <stdio.h>

Example

Resets the error indicator for a stream. A more secure version of this function is available; see clearerr_s.

stream
Pointer to FILE structure.

The clearerr function resets the error indicator and end-of-file indicator for stream. Error indicators are not
automatically cleared; once the error indicator for a specified stream is set, operations on that stream continue to
return an error value until clearerr, fseek, fsetpos, or rewind is called.

If stream is NULL, the invalid parameter handler is invoked, as described in Parameter Validation. If execution is
allowed to continue, this function sets errno to EINVAL and returns. For more information on errno and error
codes, see errno Constants.

A more secure version of this function is available; see clearerr_s.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/clearerr.md

// crt_clearerr.c
// This program creates an error
// on the standard input stream, then clears
// it so that future reads won't fail.

#include <stdio.h>

int main(void)
{
 int c;
 // Create an error by writing to standard input.
 putc('c', stdin);
 if(ferror(stdin))
 {
 perror("Write error");
 clearerr(stdin);
 }

 // See if read causes an error.
 printf("Will input cause an error? ");
 c = getc(stdin);
 if(ferror(stdin))
 {
 perror("Read error");
 clearerr(stdin);
 }
 else
 printf("No read error\n");
}

Input

n

Output

Write error: No error
Will input cause an error? n
No read error

See also
Error Handling
Stream I/O
_eof
feof
ferror
perror, _wperror

clearerr_s
11/8/2018 • 2 minutes to read • Edit Online

Syntax
errno_t clearerr_s(
 FILE *stream
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

clearerr_s <stdio.h>

Example

Resets the error indicator for a stream. This is a version of clearerr with security enhancements as described in
Security Features in the CRT.

stream
Pointer to FILE structure

Zero if successful; EINVAL if stream is NULL.

The clearerr_s function resets the error indicator and end-of-file indicator for stream. Error indicators are not
automatically cleared; once the error indicator for a specified stream is set, operations on that stream continue to
return an error value until clearerr_s, clearerr, fseek, fsetpos, or rewind is called.

If stream is NULL, the invalid parameter handler is invoked, as described in Parameter Validation. If execution is
allowed to continue, this function sets errno to EINVAL and returns EINVAL.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/clearerr-s.md

// crt_clearerr_s.c
// This program creates an error
// on the standard input stream, then clears
// it so that future reads won't fail.

#include <stdio.h>

int main(void)
{
 int c;
 errno_t err;

 // Create an error by writing to standard input.
 putc('c', stdin);
 if(ferror(stdin))
 {
 perror("Write error");
 err = clearerr_s(stdin);
 if (err != 0)
 {
 abort();
 }
 }

 // See if read causes an error.
 printf("Will input cause an error? ");
 c = getc(stdin);
 if(ferror(stdin))
 {
 perror("Read error");
 err = clearerr_s(stdin);
 if (err != 0)
 {
 abort();
 }
 }
}

Input

n

Output

Write error: Bad file descriptor
Will input cause an error? n

See also
Error Handling
Stream I/O
clearerr
_eof
feof
ferror
perror, _wperror

clock
10/31/2018 • 2 minutes to read • Edit Online

Syntax
clock_t clock(void);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

clock <time.h>

Example

Calculates the wall-clock time used by the calling process.

The elapsed time since the CRT initialization at the start of the process, measured in CLOCKS_PER_SEC units per
second. If the elapsed time is unavailable or has exceeded the maximum positive time that can be recorded as a
clock_t type, the function returns the value (clock_t)(-1) .

The clock function tells how much wall-clock time has passed since the CRT initialization during process start.
Note that this function does not strictly conform to ISO C, which specifies net CPU time as the return value. To
obtain CPU times, use the Win32 GetProcessTimes function. To determine the elapsed time in seconds, divide the
value returned by the clock function by the macro CLOCKS_PER_SEC.

Given enough time, the value returned by clock can exceed the maximum positive value of clock_t. When the
process has run longer, the value returned by clock is always (clock_t)(-1) , as specified by the ISO C99
standard (7.23.2.1) and ISO C11 standard (7.27.2.1). Microsoft implements clock_t as a long, a signed 32-bit
integer, and the CLOCKS_PER_SEC macro is defined as 1000. This gives a maximum clock function return value
of 2147483.647 seconds, or about 24.8 days. Do not rely on the value returned by clock in processes that have
run for longer than this amount of time. You can use the 64-bit time function or the Windows
QueryPerformanceCounter function to record process elapsed times of many years.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/clock.md
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-getprocesstimes
https://msdn.microsoft.com/library/windows/desktop/ms644904

// crt_clock.c
// This sample uses clock() to 'sleep' for three
// seconds, then determines how long it takes
// to execute an empty loop 600000000 times.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

// Pauses for a specified number of milliseconds.
void do_sleep(clock_t wait)
{
 clock_t goal;
 goal = wait + clock();
 while(goal > clock())
 ;
}

const long num_loops = 600000000L;

int main(void)
{
 long i = num_loops;
 clock_t start, finish;
 double duration;

 // Delay for a specified time.
 printf("Delay for three seconds\n");
 do_sleep((clock_t)3 * CLOCKS_PER_SEC);
 printf("Done!\n");

 // Measure the duration of an event.
 start = clock();
 while(i--)
 ;
 finish = clock();
 duration = (double)(finish - start) / CLOCKS_PER_SEC;
 printf("Time to do %ld empty loops is ", num_loops);
 printf("%2.3f seconds\n", duration);
}

Delay for three seconds
Done!
Time to do 600000000 empty loops is 1.354 seconds

See also
Time Management
difftime, _difftime32, _difftime64
time, _time32, _time64

clog, clogf, clogl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_Dcomplex clog(
 _Dcomplex z
);
_Fcomplex clog(
 _Fcomplex z
); // C++ only
_Lcomplex clog(
 _Lcomplex z
); // C++ only
_Fcomplex clogf(
 _Fcomplex z
);
_Lcomplex clogl(
 _Lcomplex z
);

Parameters

Return Value

Z PARAMETER RETURN VALUE

Positive The base 10 logarithm of z

Zero - ∞

Negative NaN

NaN NaN

+ ∞ + ∞

Remarks

Retrieves the natural logarithm of a complex number, with a branch cut along the negative real axis.

z
The base of the logarithm.

The natural logarithm of z. The result is unbounded along the real axis and in the interval [-iπ, +iπ] along the
imaginary axis.

The possible return values are:

Because C++ allows overloading, you can call overloads of clog that take and return _Fcomplex and
_Lcomplex values. In a C program, clog always takes and returns a _Dcomplex value.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/clog-clogf-clogl.md

Requirements
ROUTINE C HEADER C++ HEADER

clog, clogf, clogl <complex.h> <ccomplex>

See also

For more compatibility information, see Compatibility.

Alphabetical Function Reference
cexp, cexpf, cexpl
cpow, cpowf, cpowl
clog10, clog10f, clog10l

clog10, clog10f, clog10l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_Dcomplex clog10(_Dcomplex z);
_Fcomplex clog10f(_Fcomplex z);
_Lcomplex clog10l(_Lcomplex z);

_Fcomplex clog10(_Fcomplex z); // C++ only
_Lcomplex clog10(_Lcomplex z); // C++ only

Parameters

Return Value

Z PARAMETER RETURN VALUE

Positive The base 10 logarithm of z

Zero - ∞

Negative NaN

NaN NaN

+ ∞ + ∞

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

clog10, clog10f, clogl <complex.h> <ccomplex>

Retrieves the base 10 logarithm of a complex number.

z
The base of the logarithm.

The possible return values are:

Because C++ allows overloading, you can call overloads of clog10 that take and return _Fcomplex and
_Lcomplex values. In a C program, clog10 always takes and returns a _Dcomplex value.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/clog10-clog10f-clog10l.md

See also
Alphabetical Function Reference
cexp, cexpf, cexpl
cpow, cpowf, cpowl
clog, clogf, clogl

_close
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _close(
 int fd
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_close <io.h> <errno.h>

Example

See also

Closes a file.

fd
File descriptor referring to the open file.

_close returns 0 if the file was successfully closed. A return value of -1 indicates an error.

The _close function closes the file associated with fd.

The file descriptor and the underlying OS file handle are closed. Thus, it is not necessary to call CloseHandle if
the file was originally opened using the Win32 function CreateFile and converted to a file descriptor using
_open_osfhandle.

This function validates its parameters. If fd is a bad file descriptor, the invalid parameter handler is invoked, as
described in Parameter Validation. If execution is allowed to continue, the functions returns -1 and errno is set
to EBADF.

For more compatibility information, see Compatibility.

See the example for _open.

Low-Level I/O
_chsize
_creat, _wcreat
_dup, _dup2
_open, _wopen

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/close.md

_unlink, _wunlink

close
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _close instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-close.md

_Cmulcc, _FCmulcc, _LCmulcc
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_Dcomplex _Cmulcc(_Dcomplex x, _Dcomplex y);
_Fcomplex _FCmulcc(_Fcomplex x, _Fcomplex y);
_Lcomplex _LCmulcc(_Lcomplex x, _Lcomplex y);

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

_Cmulcc, _FCmulcc, _LCmulcc <complex.h> <complex.h>

See also

Multiplies two complex numbers.

x
One of the complex operands to multiply.

y
The other complex operand to multiply.

A _Dcomplex, _Fcomplex, or _Lcomplex structure that represents the complex product of the complex numbers
x and y.

Because the built-in arithmetic operators do not work on the Microsoft implementation of the complex types, the
_Cmulcc, _FCmulcc, and _LCmulcc functions simplify multiplication of complex types.

These functions are Microsoft-specific. The types _Dcomplex, _Fcomplex, and _Lcomplex are Microsoft-specific
equivalents to the unimplemented C99 native types double _Complex, float _Complex, and long double
_Complex, respectively. For more compatibility information, see Compatibility.

Alphabetical Function Reference
_Cbuild, _FCbuild, _LCbuild
_Cmulcr, _FCmulcr, _LCmulcr
norm, normf, norml
cproj, cprojf, cprojl
conj, conjf, conjl
creal, crealf, creall
cimag, cimagf, cimagl
carg, cargf, cargl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cmulcc-fcmulcc-lcmulcc.md

cabs, cabsf, cabsl

_Cmulcr, _FCmulcr, _LCmulcr
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_Dcomplex _Cmulcr(_Dcomplex x, double y);
_Fcomplex _FCmulcr(_Fcomplex x, float y);
_Lcomplex _LCmulcr(_Lcomplex x, long double y);

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

_Cmulcr, _FCmulcr, _LCmulcr <complex.h> <complex.h>

See also

Multiplies a complex number by a floating-point number.

x
One of the complex operands to multiply.

y
The floating-point operand to multiply.

A _Dcomplex, _Fcomplex, or _Lcomplex structure that represents the complex product of the complex number
x and flaoting-point number y.

Because the built-in arithmetic operators do not work on the Microsoft implementation of the complex types, the
_Cmulcr, _FCmulcr, and _LCmulcr functions simplify multiplication of complex types by floating-point types.

These functions are Microsoft-specific. The types _Dcomplex, _Fcomplex, and _Lcomplex are Microsoft-specific
equivalents to the unimplemented C99 native types double _Complex, float _Complex, and long double
_Complex, respectively. For more compatibility information, see Compatibility.

Alphabetical Function Reference
_Cbuild, _FCbuild, _LCbuild
_Cmulcc, _FCmulcc, _LCmulcc
norm, normf, norml
cproj, cprojf, cprojl
conj, conjf, conjl
creal, crealf, creall
cimag, cimagf, cimagl
carg, cargf, cargl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cmulcr-fcmulcr-lcmulcr.md

cabs, cabsf, cabsl

_commit
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _commit(
 int fd
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADERS

_commit <io.h> <errno.h>

See also

Flushes a file directly to disk.

fd
File descriptor referring to the open file.

_commit returns 0 if the file was successfully flushed to disk. A return value of -1 indicates an error.

The _commit function forces the operating system to write the file associated with fd to disk. This call ensures that
the specified file is flushed immediately, not at the operating system's discretion.

If fd is an invalid file descriptor, the invalid parameter handler is invoked, as described in Parameter Validation. If
execution is allowed to continue, the function returns -1 and errno is set to EBADF.

For more compatibility information, see Compatibility.

Low-Level I/O
_creat, _wcreat
_open, _wopen
_read
_write

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/commit.md

compl
11/8/2018 • 2 minutes to read • Edit Online

Syntax
#define compl ~

Remarks

Example
// iso646_compl.cpp
// compile with: /EHsc
#include <iostream>
#include <iso646.h>

int main()
{
 using namespace std;
 int a = 1, result;

 result = ~a;
 cout << result << endl;

 result= compl(a);
 cout << result << endl;
}

-2
-2

Requirements

An alternative to the ~ operator.

The macro yields the operator ~.

Header: <iso646.h>

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/compl.md

_configthreadlocale
11/8/2018 • 2 minutes to read • Edit Online

Syntax
int _configthreadlocale(int per_thread_locale_type);

Parameters

Return Value

Remarks

OPTION DESCRIPTION

_ENABLE_PER_THREAD_LOCALE Make the current thread use a thread-specific locale.
Subsequent calls to setlocale in this thread affect only the
thread's own locale.

_DISABLE_PER_THREAD_LOCALE Make the current thread use the global locale. Subsequent
calls to setlocale in this thread affect other threads using the
global locale.

0 Retrieves the current setting for this particular thread.

Requirements

Configures per-thread locale options.

per_thread_locale_type
The option to set. One of the options listed in the following table.

The previous per-thread locale status (_DISABLE_PER_THREAD_LOCALE or
_ENABLE_PER_THREAD_LOCALE), or -1 on failure.

The _configurethreadlocale function is used to control the use of thread-specific locales. Use one of these
per_thread_locale_type options to specify or determine the per-thread locale status:

These functions affect the behavior of setlocale, _tsetlocale, _wsetlocale, and _setmbcp. When per-thread
locale is disabled, any subsequent call to setlocale or _wsetlocale changes the locale of all threads that use the
global locale. When per-thread locale is enabled, setlocale or _wsetlocale only affects the current thread's locale.

If you use _configurethreadlocale to enable a per-thread locale, we recommend that you call setlocale or
_wsetlocale to set the preferred locale in that thread immediately afterward.

If per_thread_locale_type is not one of the values listed in the table, this function invokes the invalid parameter
handler, as described in Parameter Validation. If execution is allowed to continue, this function sets errno to
EINVAL and returns -1.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/configthreadlocale.md

ROUTINE REQUIRED HEADER

_configthreadlocale <locale.h>

Example
// crt_configthreadlocale.cpp
//
// This program demonstrates the use of _configthreadlocale when
// using two independent threads.
//
// Compile by using: cl /EHsc /W4 crt_configthreadlocale.cpp

#include <locale.h>
#include <mbctype.h>
#include <process.h>
#include <windows.h>
#include <stdio.h>
#include <time.h>

#define BUFF_SIZE 100

// Retrieve the date and time in the current
// locale's format.
int get_time(unsigned char* str)
{
 __time64_t ltime;
 struct tm thetime;

 // Retieve the time
 _time64(<ime);
 _gmtime64_s(&thetime, <ime);

 // Format the current time structure into a string
 // using %#x is the long date representation,
 // appropriate to the current locale
 if (!strftime((char *)str, BUFF_SIZE, "%#x",
 (const struct tm*)&thetime))
 {
 printf("strftime failed!\n");
 return -1;
 }
 return 0;
}

// This thread sets its locale to German
// and prints the time.
unsigned __stdcall SecondThreadFunc(void* /*pArguments*/)
{
 unsigned char str[BUFF_SIZE];

 _configthreadlocale(_ENABLE_PER_THREAD_LOCALE);

 // Set the thread code page
 _setmbcp(_MB_CP_ANSI);

 // Set the thread locale
 printf("The thread locale is now set to %s.\n",
 setlocale(LC_ALL, "German"));

 // Retrieve the time string from the helper function
 if (get_time(str) == 0)
 {
 printf("The time in German locale is: '%s'\n", str);
 }

 _endthreadex(0);
 return 0;
}

// The main thread spawns a second thread (above) and then
// sets the locale to English and prints the time.
int main()
{
 HANDLE hThread;
 unsigned threadID;
 unsigned char str[BUFF_SIZE];

 // Enable per-thread locale causes all subsequent locale
 // setting changes in this thread to only affect this thread.
 _configthreadlocale(_ENABLE_PER_THREAD_LOCALE);

 // Retrieve the time string from the helper function
 printf("The thread locale is now set to %s.\n",
 setlocale(LC_ALL, "English"));

 // Create the second thread.
 hThread = (HANDLE)_beginthreadex(NULL, 0, &SecondThreadFunc,
 NULL, 0, &threadID);

 if (get_time(str) == 0)
 {
 // Retrieve the time string from the helper function
 printf("The time in English locale is: '%s'\n\n", str);
 }

 // Wait for the created thread to finish.
 WaitForSingleObject(hThread, INFINITE);

 // Destroy the thread object.
 CloseHandle(hThread);
}

The thread locale is now set to English_United States.1252.
The time in English locale is: 'Wednesday, May 12, 2004'

The thread locale is now set to German_Germany.1252.
The time in German locale is: 'Mittwoch, 12. Mai 2004'

See also
setlocale, _wsetlocale
_beginthread, _beginthreadex
Locale
Multithreading and Locales

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-and-locales

conj, conjf, conjl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_Dcomplex conj(
 _Dcomplex z
);
_Fcomplex conj(
 _Fcomplex z
); // C++ only
_Lcomplex conj(
 _Lcomplex z
); // C++ only
_Fcomplex conjf(
 _Fcomplex z
);
_Lcomplex conjl(
 _Lcomplex z
);

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

conj, conjf, conjl <complex.h> <ccomplex>

See also

Retrieves the complex conjugate of a complex number.

z
A complex number.

The complex conjugate of z. The result has the same real and imaginary part as z, but with the opposite sign.

Because C++ allows overloading, you can call overloads of conj that take and return _Fcomplex and
_Lcomplex values. In a C program, conj always takes and returns a _Dcomplex value.

For more compatibility information, see Compatibility.

Alphabetical Function Reference
norm, normf, norml
creal, crealf, creall
cproj, cprojf, cprojl
cimag, cimagf, cimagl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/conj-conjf-conjl.md

carg, cargf, cargl
cabs, cabsf, cabsl

_control87, _controlfp, __control87_2
10/31/2018 • 5 minutes to read • Edit Online

Syntax
unsigned int _control87(
 unsigned int new,
 unsigned int mask
);
unsigned int _controlfp(
 unsigned int new,
 unsigned int mask
);
int __control87_2(
 unsigned int new,
 unsigned int mask,
 unsigned int* x86_cw,
 unsigned int* sse2_cw
);

Parameters

Return Value

Remarks

Gets and sets the floating-point control word. A more secure version of _controlfp is available; see _controlfp_s.

new
New control-word bit values.

mask
Mask for new control-word bits to set.

x86_cw
Filled in with the control word for the x87 floating-point unit. Pass in 0 (NULL) to set only the SSE2 control
word.

sse2_cw
Control word for the SSE floating-point unit. Pass in 0 (NULL) to set only the x87 control word.

For _control87 and _controlfp, the bits in the value returned indicate the floating-point control state. For a
complete definition of the bits that are returned by _control87, see FLOAT.H.

For __control87_2, the return value is 1, which indicates success.

The _control87 function gets and sets the floating-point control word. The floating-point control word enables
the program to change the precision, rounding, and infinity modes in the floating-point math package,
depending on the platform. You can also use _control87 to mask or unmask floating-point exceptions. If the
value for mask is equal to 0, _control87 gets the floating-point control word. If mask is nonzero, a new value for
the control word is set: For any bit that is on (that is, equal to 1) in mask, the corresponding bit in new is used to
update the control word. In other words, fpcntrl = ((fpcntrl & ~mask) | (new & mask)) where fpcntrl is the
floating-point control word.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/control87-controlfp-control87-2.md

NOTE

_control87(_EM_INVALID, _MCW_EM);
// DENORMAL is unmasked by this call
_controlfp(_EM_INVALID, _MCW_EM);
// DENORMAL exception mask remains unchanged

_controlfp(_DN_SAVE, _MCW_DN);
// Denormal values preserved on ARM platforms and on x64 processors with
// SSE2 support. NOP on x86 platforms.
_controlfp(_DN_FLUSH, _MCW_DN);
// Denormal values flushed to zero by hardware on ARM platforms
// and x64 processors with SSE2 support. Ignored on other x86 platforms.

By default, the run-time libraries mask all floating-point exceptions.

_controlfp is a platform-independent, portable version of _control87. It is nearly identical to the _control87
function on x86, x64, and ARM platforms. If you are targeting x86, x64, or ARM platforms, use _control87 or
_controlfp.

The difference between _control87 and _controlfp is in how they treat DENORMAL values. For x86, x64, and
ARM platforms, _control87 can set and clear the DENORMAL OPERAND exception mask. _controlfp does
not modify the DENORMAL OPERAND exception mask. This example demonstrates the difference:

The possible values for the mask constant (mask) and new control values (new) are shown in the following
Hexadecimal Values table. Use the portable constants listed below (_MCW_EM, _EM_INVALID , and so forth)
as arguments to these functions, rather than supplying the hexadecimal values explicitly.

Intel x86-derived platforms support the DENORMAL input and output values in hardware. The x86 behavior is
to preserve DENORMAL values. The ARM platform and the x64 platforms that have SSE2 support enable
DENORMAL operands and results to be flushed, or forced to zero. The _controlfp and _control87 functions
provide a mask to change this behavior. The following example demonstrates the use of this mask.

On ARM platforms, the _control87 and _controlfp functions apply to the FPSCR register. On x64 architectures,
only the SSE2 control word that's stored in the MXCSR register is affected. On x86 platforms, _control87 and
_controlfp affect the control words for both the x87 and the SSE2, if present. The function __control87_2
enables both the x87 and SSE2 floating-point units to be controlled together or separately. If you want to affect
both units, pass in the addresses of two integers to x86_cw and sse2_cw. If you only want to affect one unit,
pass in an address for that parameter but pass in 0 (NULL) for the other. If 0 is passed for one of these
parameters, the function has no effect on that floating-point unit. This functionality could be useful in situations
where part of the code uses the x87 floating-point unit and another part of the code uses the SSE2 floating-
point unit. If you use __control87_2 in one part of a program and set different values for the floating-point
control words, and then use _control87 or _controlfp to further manipulate the control word, then _control87
and _controlfp might be unable to return a single control word to represent the state of both floating-point
units. In such a case, these functions set the EM_AMBIGUOUS flag in the returned integer value to indicate
that there is an inconsistency between the two control words. This is a warning that the returned control word
might not represent the state of both floating-point control words accurately.

On the ARM and x64 architectures, changing the infinity mode or the floating-point precision is not supported.
If the precision control mask is used on the x64 platform, the function raises an assertion and the invalid
parameter handler is invoked, as described in Parameter Validation.

NOTE

MASK HEX VALUE CONSTANT HEX VALUE

_MCW_DN (Denormal
control)

0x03000000 _DN_SAVE

_DN_FLUSH

0x00000000

0x01000000

_MCW_EM (Interrupt
exception mask)

0x0008001F _EM_INVALID

_EM_DENORMAL

_EM_ZERODIVIDE

_EM_OVERFLOW

_EM_UNDERFLOW

_EM_INEXACT

0x00000010

0x00080000

0x00000008

0x00000004

0x00000002

0x00000001

_MCW_IC (Infinity control)

(Not supported on ARM or
x64] platforms.)

0x00040000 _IC_AFFINE

_IC_PROJECTIVE

0x00040000

0x00000000

_MCW_RC (Rounding
control)

0x00000300 _RC_CHOP

_RC_UP

_RC_DOWN

_RC_NEAR

0x00000300

0x00000200

0x00000100

0x00000000

_MCW_PC (Precision
control)

(Not supported on ARM or
x64 platforms.)

0x00030000 _PC_24 (24 bits)

_PC_53 (53 bits)

_PC_64 (64 bits)

0x00020000

0x00010000

0x00000000

Requirements
ROUTINE REQUIRED HEADER

_control87, _controlfp, _control87_2 <float.h>

__control87_2 is not supported on the ARM or x64 architectures. If you use __control87_2 and compile your program
for the ARM or x64 architectures, the compiler generates an error.

These functions are ignored when you use /clr (Common Language Runtime Compilation) to compile because
the common language runtime (CLR) only supports the default floating-point precision.

Hexadecimal Values

For the _MCW_EM mask, clearing the mask sets the exception, which allows the hardware exception; setting
the mask hides the exception. If a _EM_UNDERFLOW or _EM_OVERFLOW occurs, no hardware exception is
thrown until the next floating-point instruction is executed. To generate a hardware exception immediately after
_EM_UNDERFLOW or _EM_OVERFLOW, call the FWAIT MASM instruction.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation

Example
// crt_cntrl87.c
// processor: x86
// This program uses __control87_2 to output the x87 control
// word, set the precision to 24 bits, and reset the status to
// the default.

#include <stdio.h>
#include <float.h>
#pragma fenv_access (on)

int main(void)
{
 double a = 0.1;
 unsigned int control_word_x87;

 // Show original x87 control word and do calculation.
 control_word_x87 = __control87_2(0, 0,
 &control_word_x87, 0);
 printf("Original: 0x%.4x\n", control_word_x87);
 printf("%1.1f * %1.1f = %.15e\n", a, a, a * a);

 // Set precision to 24 bits and recalculate.
 control_word_x87 = __control87_2(_PC_24, MCW_PC,
 &control_word_x87, 0);
 printf("24-bit: 0x%.4x\n", control_word_x87);
 printf("%1.1f * %1.1f = %.15e\n", a, a, a * a);

 // Restore default precision-control bits and recalculate.
 control_word_x87 = __control87_2(_CW_DEFAULT, MCW_PC,
 &control_word_x87, 0);
 printf("Default: 0x%.4x\n", control_word_x87);
 printf("%1.1f * %1.1f = %.15e\n", a, a, a * a);
}

Original: 0x0001
0.1 * 0.1 = 1.000000000000000e-002
24-bit: 0x0001
0.1 * 0.1 = 9.999999776482582e-003
Default: 0x0001
0.1 * 0.1 = 1.000000000000000e-002

See also

For more compatibility information, see Compatibility.

Floating-Point Support
_clear87, _clearfp
_status87, _statusfp, _statusfp2
_controlfp_s

_controlfp_s
10/31/2018 • 5 minutes to read • Edit Online

Syntax
errno_t _controlfp_s(
 unsigned int *currentControl,
 unsigned int newControl,
 unsigned int mask
);

Parameters

Return Value

Remarks

NOTE

Gets and sets the floating-point control word. This version of _control87, _controlfp, __control87_2 has security
enhancements, as described in Security Features in the CRT.

currentControl
The current control-word bit value.

newControl
New control-word bit values.

mask
Mask for new control-word bits to set.

Zero if successful, or an errno value error code.

The _controlfp_s function is a platform-independent and more secure version of _control87, which gets the
floating-point control word into the address that's stored in currentControl and sets it by using newControl. The
bits in the values indicate the floating-point control state. The floating-point control state enables the program to
change the precision, rounding, and infinity modes in the floating-point math package, depending on the
platform. You can also use _controlfp_s to mask or unmask floating-point exceptions.

If the value for mask is equal to 0, _controlfp_s gets the floating-point control word and stores the retrieved
value in currentControl.

If mask is nonzero, a new value for the control word is set: For any bit that is set (that is, equal to 1) in mask, the
corresponding bit in new is used to update the control word. In other words, fpcntrl = ((fpcntrl & ~mask) |
(newControl & mask)) where fpcntrl is the floating-point control word. In this scenario, currentControl is set to
the value after the change completes; it is not the old control-word bit value.

By default, the run-time libraries mask all floating-point exceptions.

_controlfp_s is nearly identical to the _control87 function on Intel (x86), x64, and ARM platforms. If you are
targeting x86, x64, or ARM platforms, you can use _control87 or _controlfp_s.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/controlfp-s.md

_control87(_EM_INVALID, _MCW_EM);
// DENORMAL is unmasked by this call.
unsigned int current_word = 0;
_controlfp_s(¤t_word, _EM_INVALID, _MCW_EM);
// DENORMAL exception mask remains unchanged.

unsigned int current_word = 0;
_controlfp_s(¤t_word, _DN_SAVE, _MCW_DN);
// Denormal values preserved on ARM platforms and on x64 processors with
// SSE2 support. NOP on x86 platforms.
_controlfp_s(¤t_word, _DN_FLUSH, _MCW_DN);
// Denormal values flushed to zero by hardware on ARM platforms
// and x64 processors with SSE2 support. Ignored on other x86 platforms.

Mask constants and values

MASK HEX VALUE CONSTANT HEX VALUE

_MCW_DN (Denormal
control)

0x03000000 _DN_SAVE

_DN_FLUSH

0x00000000

0x01000000

The difference between _control87 and _controlfp_s is in how they treat denormal values. For Intel (x86), x64,
and ARM platforms, _control87 can set and clear the DENORMAL OPERAND exception mask. _controlfp_s
does not modify the DENORMAL OPERAND exception mask. This example demonstrates the difference:

The possible values for the mask constant (mask) and new control values (newControl) are shown in the
following Hexadecimal Values table. Use the portable constants listed below (_MCW_EM, _EM_INVALID , and
so on) as arguments to these functions, rather than supplying the hexadecimal values explicitly.

Intel (x86)-derived platforms support the DENORMAL input and output values in hardware. The x86 behavior is
to preserve DENORMAL values. The ARM platform and the x64 platforms that have SSE2 support enable
DENORMAL operands and results to be flushed, or forced to zero. The _controlfp_s, _controlfp, and
_control87 functions provide a mask to change this behavior. The following example demonstrates the use of this
mask:

On ARM platforms, the _controlfp_s function applies to the FPSCR register. On x64 architectures, only the SSE2
control word that's stored in the MXCSR register is affected. On Intel (x86) platforms, _controlfp_s affects the
control words for both the x87 and the SSE2, if present. It is possible for the two control words to be inconsistent
with each other (because of a previous call to __control87_2, for example); if there is an inconsistency between the
two control words, _controlfp_s sets the EM_AMBIGUOUS flag in currentControl. This is a warning that the
returned control word might not represent the state of both floating-point control words accurately.

On the ARM and x64 architectures, changing the infinity mode or the floating-point precision is not supported. If
the precision control mask is used on the x64 platform, the function raises an assertion and the invalid parameter
handler is invoked, as described in Parameter Validation.

If the mask is not set correctly, this function generates an invalid parameter exception, as described in Parameter
Validation. If execution is allowed to continue, this function returns EINVAL and sets errno to EINVAL.

This function is ignored when you use /clr (Common Language Runtime Compilation) to compile because the
common language runtime (CLR) only supports the default floating-point precision.

For the _MCW_EM mask, clearing it sets the exception, which allows the hardware exception; setting it hides the
exception. If a _EM_UNDERFLOW or _EM_OVERFLOW occurs, no hardware exception is thrown until the next
floating-point instruction is executed. To generate a hardware exception immediately after _EM_UNDERFLOW
or _EM_OVERFLOW, call the FWAIT MASM instruction.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation

_MCW_EM (Interrupt
exception mask)

0x0008001F _EM_INVALID

_EM_DENORMAL

_EM_ZERODIVIDE

_EM_OVERFLOW

_EM_UNDERFLOW

_EM_INEXACT

0x00000010

0x00080000

0x00000008

0x00000004

0x00000002

0x00000001

_MCW_IC (Infinity control)

(Not supported on ARM or
x64 platforms.)

0x00040000 _IC_AFFINE

_IC_PROJECTIVE

0x00040000

0x00000000

_MCW_RC (Rounding
control)

0x00000300 _RC_CHOP

_RC_UP

_RC_DOWN

_RC_NEAR

0x00000300

0x00000200

0x00000100

0x00000000

_MCW_PC (Precision
control)

(Not supported on ARM or
x64 platforms.)

0x00030000 _PC_24 (24 bits)

_PC_53 (53 bits)

_PC_64 (64 bits)

0x00020000

0x00010000

0x00000000

MASK HEX VALUE CONSTANT HEX VALUE

Requirements
ROUTINE REQUIRED HEADER

_controlfp_s <float.h>

Example

For more compatibility information, see Compatibility.

// crt_contrlfp_s.c
// processor: x86
// This program uses _controlfp_s to output the FP control
// word, set the precision to 24 bits, and reset the status to
// the default.

#include <stdio.h>
#include <float.h>
#pragma fenv_access (on)

int main(void)
{
 double a = 0.1;
 unsigned int control_word;
 int err;

 // Show original FP control word and do calculation.
 err = _controlfp_s(&control_word, 0, 0);
 if (err) /* handle error here */;

 printf("Original: 0x%.4x\n", control_word);
 printf("%1.1f * %1.1f = %.15e\n", a, a, a * a);

 // Set precision to 24 bits and recalculate.
 err = _controlfp_s(&control_word, _PC_24, MCW_PC);
 if (err) /* handle error here */;

 printf("24-bit: 0x%.4x\n", control_word);
 printf("%1.1f * %1.1f = %.15e\n", a, a, a * a);

 // Restore default precision-control bits and recalculate.
 err = _controlfp_s(&control_word, _CW_DEFAULT, MCW_PC);
 if (err) /* handle error here */;

 printf("Default: 0x%.4x\n", control_word);
 printf("%1.1f * %1.1f = %.15e\n", a, a, a * a);
}

Original: 0x9001f
0.1 * 0.1 = 1.000000000000000e-002
24-bit: 0xa001f
0.1 * 0.1 = 9.999999776482582e-003
Default: 0x9001f
0.1 * 0.1 = 1.000000000000000e-002

See also
Floating-Point Support
_clear87, _clearfp
_status87, _statusfp, _statusfp2
_control87, _controlfp, __control87_2

copysign, copysignf, copysignl, _copysign,
_copysignf, _copysignl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double copysign(
 double x,
 double y
);
float copysign(
 float x,
 float y
); // C++ only
long double copysign(
 long double x,
 long double y
); // C++ only
float copysignf(
 float x,
 float y
); // C++ only
long double copysignl(
 long double x,
 long double y
); // C++ only
double _copysign(
 double x,
 double y
);
long double _copysignl(
 long double x,
 long double y
);

Parameters

Return Value

Remarks

Returns a value that has the magnitude of one argument and the sign of another.

x
The floating-point value that's returned as the magnitude of the result.

y
The floating-point value that's returned as the sign of the result.

Floating-Point Support Routines

The copysign functions return a floating-point value that combines the magnitude of x and the sign of y. There
is no error return.

Because C++ allows overloading, you can call overloads of copysign that take and return float or long double

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/copysign-copysignf-copysignl-copysign-copysignf-copysignl.md

Requirements
ROUTINE REQUIRED HEADER

_copysign <float.h>

copysign, copysignf, copysignl, _copysignf, _copysignl <math.h>

See also

values. In a C program, copysign always takes and returns a double.

For more compatibility information, see Compatibility.

fabs, fabsf, fabsl
_chgsign, _chgsignf, _chgsignl

cos, cosf, cosl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double cos(double x);
float cosf(float x);
long double cosl(long double x);

float cos(float x); // C++ only
long double cos(long double x); // C++ only

Parameters

Return Value

INPUT SEH EXCEPTION MATHERR EXCEPTION

± QNAN, IND none _DOMAIN

± INF INVALID _DOMAIN

Remarks

Requirements
ROUTINE REQUIRED C HEADER REQUIRED C++ HEADER

cos, cosh, cosf <math.h> <cmath> or <math.h>

Example

See also

Calculates the cosine.

x
Angle in radians.

The cosine of x. If x is greater than or equal to 263, or less than or equal to -263, a loss of significance in the
result occurs.

Because C++ allows overloading, you can call overloads of cos that take and return float or long double
values. In a C program, cos always takes and returns a double.

For additional compatibility information, see Compatibility.

See the example in sin, sinf, sinl.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cos-cosf-cosl.md

Floating-Point Support
acos, acosf, acosl
asin, asinf, asinl
atan, atanf, atanl, atan2, atan2f, atan2l
_matherr
sin, sinf, sinl
tan, tanf, tanl
_CIcos

cosh, coshf, coshl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double cosh(double x);
float coshf(float x);
long double coshl(long double x);

float cosh(float x); // C++ only
long double cosh(long double x); // C++ only

Parameters

Return Value

INPUT SEH EXCEPTION MATHERR EXCEPTION

± QNAN, IND none _DOMAIN

x ≥ 7.104760e+002 INEXACT+OVERFLOW OVERFLOW

Remarks

Requirements
ROUTINE REQUIRED HEADER (C) REQUIRED HEADER (C++)

coshf, cosl, coshl <math.h> <cmath> or <math.h>

Example

Calculates the hyperbolic cosine.

x
Angle in radians.

The hyperbolic cosine of x.

By default, if the result is too large in a cosh, coshf, or coshl call, the function returns HUGE_VAL and sets
errno to ERANGE .

Because C++ allows overloading, you can call overloads of cosh that take and return float or long double
values. In a C program, cosh always takes and returns a double.

For additional compatibility information, see Compatibility.

See the example in sinh, sinhf, sinhl.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cosh-coshf-coshl.md

See also
Floating-Point Support
acosh, acoshf, acoshl
asinh, asinhf, asinhl
atanh, atanhf, atanhl
_matherr
sinh, sinhf, sinhl
tanh, tanhf, tanhl

_countof Macro
10/31/2018 • 2 minutes to read • Edit Online

Syntax
#define _countof(array) (sizeof(array) / sizeof(array[0]))

Parameters

Return Value

Remarks

Requirements
MACRO REQUIRED HEADER

_countof <stdlib.h>

Example

Computes the number of elements in a statically-allocated array.

array
The name of an array.

The number of elements in the array, expressed as a size_t.

_countof is implemented as a function-like preprocessor macro. The C++ version has extra template machinery
to detect at compile time if a pointer is passed instead of a statically declared array.

Ensure that array is actually an array, not a pointer. In C, _countof produces erroneous results if array is a pointer.
In C++, _countof fails to compile if array is a pointer. An array passed as a parameter to a function decays to a
pointer, which means that within the function, you can't use _countof to determine the extent of the array.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/countof-macro.md

// crt_countof.cpp
#define _UNICODE
#include <stdio.h>
#include <stdlib.h>
#include <tchar.h>

int main(void)
{
 _TCHAR arr[20], *p;
 printf("sizeof(arr) = %zu bytes\n", sizeof(arr));
 printf("_countof(arr) = %zu elements\n", _countof(arr));
 // In C++, the following line would generate a compile-time error:
 // printf("%zu\n", _countof(p)); // error C2784 (because p is a pointer)

 _tcscpy_s(arr, _countof(arr), _T("a string"));
 // unlike sizeof, _countof works here for both narrow- and wide-character strings
}

sizeof(arr) = 40 bytes
_countof(arr) = 20 elements

See also
sizeof Operator

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/sizeof-operator

cpow, cpowf, cpowl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_Dcomplex cpow(
 _Dcomplex x, _Dcomplex y
);
_Fcomplex cpow(
 _Fcomplex x, _Fcomplex y
); // C++ only
_Lcomplex cpow(
 _Lcomplex x, _Lcomplex y
); // C++ only
_Fcomplex cpowf(
 _Fcomplex x, _Fcomplex y
);
_Lcomplex cpowl(
 _Lcomplex x, _Lcomplex y
);

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

cpow, cpowf, cpowl <complex.h> <ccomplex>

See also

Retrieves the value of a number raised to the specified power, where the base and exponent are complex
numbers. This function has a branch cut for the exponent along the negative real axis.

x
The base.

y
The exponent.

The value of x raised to the power of y with a branch cut for x along the negative real axis.

Because C++ allows overloading, you can call overloads of cpow that take and return _Fcomplex and
_Lcomplex values. In a C program, cpow always takes and returns a _Dcomplex value.

For more compatibility information, see Compatibility.

Alphabetical Function Reference
cexp, cexpf, cexpl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cpow-cpowf-cpowl.md

clog10, clog10f, clog10l
clog, clogf, clogl

cprintf
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _cprintf or security-enhanced _cprintf_s instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cprintf.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_cprintf, _cprintf_l, _cwprintf, _cwprintf_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _cprintf(
 const char * format [, argument_list]
);
int _cprintf_l(
 const char * format,
 locale_t locale [, argument_list]
);
int _cwprintf(
 const wchar * format [, argument_list]
);
int _cwprintf_l(
 const wchar * format,
 locale_t locale [, argument_list]
);

Parameters

Return Value

Remarks

Formats and prints to the console. More-secure versions are available; see _cprintf_s, _cprintf_s_l, _cwprintf_s,
_cwprintf_s_l.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions
not supported in Universal Windows Platform apps.

format
Format-control string.

argument_list
Optional parameters for the format string.

locale
The locale to use.

The number of characters printed.

These functions format and print a series of characters and values directly to the console, using the _putch
function (_putwch for _cwprintf) to output characters. Each argument in argument_list (if any) is converted
and output according to the corresponding format specification in format. The format argument uses the
format specification syntax for printf and wprintf functions. Unlike the fprintf, printf, and sprintf functions,
neither _cprintf nor _cwprintf translates line-feed characters into carriage return-line feed (CR-LF)
combinations when output.

An important distinction is that _cwprintf displays Unicode characters when used in Windows. Unlike

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cprintf-cprintf-l-cwprintf-cwprintf-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcprintf _cprintf _cprintf _cwprintf

_tcprintf_l _cprintf_l _cprintf_l _cwprintf_l

Requirements
ROUTINE REQUIRED HEADER

_cprintf, _cprintf_l <conio.h>

_cwprintf, _cwprintf_l <conio.h>

Example
// crt_cprintf.c
// compile with: /c
// This program displays some variables to the console.

#include <conio.h>

int main(void)
{
 int i = -16,
 h = 29;
 unsigned u = 62511;
 char c = 'A';
 char s[] = "Test";

 // Note that console output does not translate \n as
 // standard output does. Use \r\n instead.
 //
 _cprintf("%d %.4x %u %c %s\r\n", i, h, u, c, s);
}

-16 001d 62511 A Test

_cprintf, _cwprintf uses the current console locale settings.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed
in instead of the current locale.

_cprintf validates the format parameter. If format is a null pointer, the function invokes the invalid parameter
handler, as described in Parameter Validation. If execution is allowed to continue, the function returns -1 and
sets errno to EINVAL.

Ensure that format is not a user-defined string.

For more compatibility information, see Compatibility.

See also
Console and Port I/O
_cscanf, _cscanf_l, _cwscanf, _cwscanf_l
fprintf, _fprintf_l, fwprintf, _fwprintf_l
printf, _printf_l, wprintf, _wprintf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
vfprintf, _vfprintf_l, vfwprintf, _vfwprintf_l
_cprintf_s, _cprintf_s_l, _cwprintf_s, _cwprintf_s_l
_cprintf_p, _cprintf_p_l, _cwprintf_p, _cwprintf_p_l
Format Specification Syntax: printf and wprintf Functions

_cprintf_p, _cprintf_p_l, _cwprintf_p, _cwprintf_p_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _cprintf_p(
 const char * format [,
 argument] ...
);
int _cprintf_p_l(
 const char * format,
 locale_t locale [,
 argument] ...
);
int _cwprintf_p(
 const wchar * format [,
 argument] ...
);
int _cwprintf_p_l(
 const wchar * format,
 locale_t locale [,
 argument] ...
);

Parameters

Return Value

Remarks

Formats and prints to the console, and supports positional parameters in the format string.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

format
Format-control string.

argument
Optional parameters.

locale
The locale to use.

The number of characters printed or a negative value if an error occurs.

These functions format and print a series of characters and values directly to the console, using the _putch and
_putwch functions to output characters. Each argument (if any) is converted and output according to the
corresponding format specification in format. The format has the same form and function as the format
parameter for the printf_p function. The difference between _cprintf_p and cprintf_s is that _cprintf_p supports
positional parameters, which allows specifying the order in which the arguments are used in the format string.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cprintf-p-cprintf-p-l-cwprintf-p-cwprintf-p-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcprintf_p _cprintf_p _cprintf_p _cwprintf_p

_tcprintf_p_l _cprintf_p_l _cprintf_p_l _cwprintf_p_l

Requirements
ROUTINE REQUIRED HEADER

_cprintf_p, _cprintf_p_l <conio.h>

_cwprintf_p, _cwprintf_p_l <conio.h>

Example

For more information, see printf_p Positional Parameters.

Unlike the fprintf_p, printf_p, and sprintf_p functions, neither _cprintf_p nor _cwprintf_p translates line-feed
characters into carriage return-line feed (CR-LF) combinations when output. An important distinction is that
_cwprintf_p displays Unicode characters when used in Windows NT. Unlike _cprintf_p, _cwprintf_p uses the
current console locale settings.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current locale.

Ensure that format is not a user-defined string.

Also, like _cprintf_s and _cwprintf_s, they validate the input pointer and the format string. If format or argument
are NULL, or of the format string contains invalid formatting characters, these functions invoke the invalid
parameter handler, as described in Parameter Validation. If execution is allowed to continue, these functions
return -1 and set errno to EINVAL.

For more compatibility information, see Compatibility.

// crt_cprintf_p.c
// This program displays some variables to the console
// using the _cprintf_p function.

#include <conio.h>

int main(void)
{
 int i = -16,
 h = 29;
 unsigned u = 62511;
 char c = 'A';
 char s[] = "Test";

 // Note that console output does not translate
 // \n as standard output does. Use \r\n instead.
 _cprintf_p("%2$d %1$.4x %3$u %4$c %5$s\r\n",
 h, i, u, c, s);
}

-16 001d 62511 A Test

See also
Console and Port I/O
_cscanf, _cscanf_l, _cwscanf, _cwscanf_l
_cscanf_s, _cscanf_s_l, _cwscanf_s, _cwscanf_s_l
_fprintf_p, _fprintf_p_l, _fwprintf_p, _fwprintf_p_l
fprintf_s, _fprintf_s_l, fwprintf_s, _fwprintf_s_l
_printf_p, _printf_p_l, _wprintf_p, _wprintf_p_l
printf_s, _printf_s_l, wprintf_s, _wprintf_s_l
_sprintf_p, _sprintf_p_l, _swprintf_p, _swprintf_p_l
_vfprintf_p, _vfprintf_p_l, _vfwprintf_p, _vfwprintf_p_l
_cprintf_s, _cprintf_s_l, _cwprintf_s, _cwprintf_s_l
printf_p Positional Parameters
Format Specification Syntax: printf and wprintf Functions

_cprintf_s, _cprintf_s_l, _cwprintf_s, _cwprintf_s_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _cprintf_s(
 const char * format [,
 argument] ...
);
int _cprintf_s_l(
 const char * format,
 locale_t locale [,
 argument] ...
);
int _cwprintf_s(
 const wchar * format [,
 argument] ...
);
int _cwprintf_s_l(
 const wchar * format,
 locale_t locale [,
 argument] ...
);

Parameters

Return Value

Remarks

Formats and prints to the console. These versions of _cprintf, _cprintf_l, _cwprintf, _cwprintf_l have security
enhancements, as described in Security Features in the CRT.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions
not supported in Universal Windows Platform apps.

format
Format-control string.

argument
Optional parameters.

locale
The locale to use.

The number of characters printed.

These functions format and print a series of characters and values directly to the console, using the _putch
function (_putwch for _cwprintf_s) to output characters. Each argument (if any) is converted and output
according to the corresponding format specification in format. The format has the same form and function as
the format parameter for the printf_s function. Unlike the fprintf_s, printf_s, and sprintf_s functions, neither

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cprintf-s-cprintf-s-l-cwprintf-s-cwprintf-s-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcprintf_s _cprintf_s _cprintf_s _cwprintf_s

_tcprintf_s_l _cprintf_s_l _cprintf_s_l _cwprintf_s_l

Requirements
ROUTINE REQUIRED HEADER

_cprintf_s, _cprintf_s_l <conio.h>

_cwprintf_s, _cwprintf_s_l <conio.h>

Libraries

Example

_cprintf_s nor _cwprintf_s translates line-feed characters into carriage return-line feed (CR-LF) combinations
when output.

An important distinction is that _cwprintf_s displays Unicode characters when used in Windows NT. Unlike
_cprintf_s, _cwprintf_s uses the current console locale

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current locale.

Ensure that format is not a user-defined string.

Like the non-secure versions (see _cprintf, _cprintf_l, _cwprintf, _cwprintf_l), these functions validate their
parameters and invoke the invalid parameter handler, as described in Parameter Validation, if format is a null
pointer. These functions differ from the non-secure versions in that the format string itself is also validated. If
there are any unknown or badly formed formatting specifiers, these functions invoke the invalid parameter
handler. In all cases, If execution is allowed to continue, the functions return -1 and set errno to EINVAL.

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

// crt_cprintf_s.c
// compile with: /c
// This program displays some variables to the console.

#include <conio.h>

int main(void)
{
 int i = -16, h = 29;
 unsigned u = 62511;
 char c = 'A';
 char s[] = "Test";

 /* Note that console output does not translate \n as
 * standard output does. Use \r\n instead.
 */
 _cprintf_s("%d %.4x %u %c %s\r\n", i, h, u, c, s);
}

-16 001d 62511 A Test

See also
Console and Port I/O
_cscanf, _cscanf_l, _cwscanf, _cwscanf_l
fprintf_s, _fprintf_s_l, fwprintf_s, _fwprintf_s_l
printf_s, _printf_s_l, wprintf_s, _wprintf_s_l
sprintf_s, _sprintf_s_l, swprintf_s, _swprintf_s_l
vfprintf_s, _vfprintf_s_l, vfwprintf_s, _vfwprintf_s_l
Format Specification Syntax: printf and wprintf Functions

cproj, cprojf, cprojl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_Dcomplex cproj(
 _Dcomplex z
);
_Fcomplex cproj(
 _Fcomplex z
); // C++ only
_Lcomplex cproj(
 _Lcomplex z
); // C++ only
_Fcomplex cprojf(
 _Fcomplex z
);
_Lcomplex cprojl(
 _Lcomplex z
);

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

cproj, cprojf, cprojl <complex.h> <ccomplex>

See also

Retrieves the projection of a complex number on the Reimann sphere.

z
A complex number.

The projection of z on the Reimann sphere.

Because C++ allows overloading, you can call overloads of cproj that take and return _Fcomplex and
_Lcomplex values. In a C program, cproj always takes and returns a _Dcomplex value.

For more compatibility information, see Compatibility.

Alphabetical Function Reference
norm, normf, norml
creal, crealf, creall
conj, conjf, conjl
cimag, cimagf, cimagl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cproj-cprojf-cprojl.md

carg, cargf, cargl
cabs, cabsf, cabsl

cputs
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _cputs instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cputs.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_cputs, _cputws
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _cputs(
 const char *str
);
int _cputws(
 const wchar_t *str
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_cputts _cputs _cputs _cputws

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_cputs <conio.h> <errno.h>

_cputws <conio.h> <errno.h>

Puts a string to the console.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

str
Output string.

If successful, _cputs returns 0. If the function fails, it returns a nonzero value.

The _cputs function writes the null-terminated string that's pointed to by str directly to the console. A carriage
return-line feed (CR-LF) combination is not automatically appended to the string.

This function validates its parameter. If str is NULL, the invalid parameter handler is invoked, as described in
Parameter Validation. If execution is allowed to continue, errno is set to EINVAL and -1 is returned.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cputs-cputws.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Libraries

Example
// crt_cputs.c
// compile with: /c
// This program first displays a string to the console.

#include <conio.h>
#include <errno.h>

void print_to_console(char* buffer)
{
 int retval;
 retval = _cputs(buffer);
 if (retval)
 {
 if (errno == EINVAL)
 {
 _cputs("Invalid buffer in print_to_console.\r\n");
 }
 else
 _cputs("Unexpected error in print_to_console.\r\n");
 }
}

void wprint_to_console(wchar_t* wbuffer)
{
 int retval;
 retval = _cputws(wbuffer);
 if (retval)
 {
 if (errno == EINVAL)
 {
 _cputws(L"Invalid buffer in wprint_to_console.\r\n");
 }
 else
 _cputws(L"Unexpected error in wprint_to_console.\r\n");
 }
}

int main()
{

 // String to print at console.
 // Notice the \r (return) character.
 char* buffer = "Hello world (courtesy of _cputs)!\r\n";
 wchar_t *wbuffer = L"Hello world (courtesy of _cputws)!\r\n";
 print_to_console(buffer);
 wprint_to_console(wbuffer);
}

Hello world (courtesy of _cputs)!
Hello world (courtesy of _cputws)!

See also

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

Console and Port I/O

_putch, _putwch

creal, crealf, creall
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double creal(_Dcomplex z);
float crealf(_Fcomplex z);
long double creall(_Lcomplex z);

float creal(_Fcomplex z); // C++ only
long double creal(_Lcomplex z); // C++ only

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

creal, crealf, creall <complex.h> <ccomplex>

See also

Retrieves the real part of a complex number.

z
A complex number.

The real part of z.

Because C++ allows overloading, you can call overloads of creal that take _Fcomplex or _Lcomplex values,
and return float or long double values. In a C program, creal always takes a _Dcomplex value and returns a
double value.

The _Fcomplex, _Dcomplex, and _Lcomplex types are Microsoft-specific equivalents of the unimplemented
native C99 types float _Complex, double _Complex, and long double _Complex, respectively. For more
compatibility information, see Compatibility.

Alphabetical Function Reference
_Cbuild, _FCbuild, _LCbuild
norm, normf, norml
cproj, cprojf, cprojl
conj, conjf, conjl
cimag, cimagf, cimagl
carg, cargf, cargl
cabs, cabsf, cabsl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/creal-crealf-creall.md

creat
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _creat instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/creat.md

_creat, _wcreat
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _creat(
 const char *filename,
 int pmode
);
int _wcreat(
 const wchar_t *filename,
 int pmode
);

Parameters

Return Value

ERRNO SETTING DESCRIPTION

EACCES filename specifies an existing read-only file or specifies a
directory instead of a file.

EMFILE No more file descriptors are available.

ENOENT Specified file could not be found.

Remarks

Generic-Text Routine Mappings

Creates a new file. _creat and _wcreat have been deprecated; use _sopen_s, _wsopen_s instead.

filename
Name of new file.

pmode
Permission setting.

These functions, if successful, return a file descriptor to the created file. Otherwise, the functions return -1 and
set errno as shown in the following table.

If filename is NULL, these functions invoke the invalid parameter handler, as described in Parameter Validation.
If execution is allowed to continue, these functions set errno to EINVAL and return -1.

For more information about these and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The _creat function creates a new file or opens and truncates an existing one. _wcreat is a wide-character
version of _creat; the filename argument to _wcreat is a wide-character string. _wcreat and _creat behave
identically otherwise.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/creat-wcreat.md

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcreat _creat _creat _wcreat

VALUE DEFINITION

_S_IWRITE Writing permitted.

_S_IREAD Reading permitted.

_S_IREAD | _S_IWRITE Reading and writing permitted.

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_creat <io.h> <sys/types.h>, <sys/stat.h>,
<errno.h>

_wcreat <io.h> or <wchar.h> <sys/types.h>, <sys/stat.h>,
<errno.h>

Example

If the file specified by filename does not exist, a new file is created with the given permission setting and is
opened for writing. If the file already exists and its permission setting allows writing, _creat truncates the file to
length 0, destroying the previous contents, and opens it for writing. The permission setting, pmode, applies to
newly created files only. The new file receives the specified permission setting after it is closed for the first time.
The integer expression pmode contains one or both of the manifest constants _S_IWRITE and _S_IREAD ,
defined in SYS\Stat.h. When both constants are given, they are joined with the bitwise or operator (|). The
pmode parameter is set to one of the following values.

If write permission is not given, the file is read-only. All files are always readable; it is impossible to give write-
only permission. The modes _S_IWRITE and _S_IREAD | _S_IWRITE are then equivalent. Files opened using
_creat are always opened in compatibility mode (see _sopen) with _SH_DENYNO.

_creat applies the current file-permission mask to pmode before setting the permissions (see _umask). _creat
is provided primarily for compatibility with previous libraries. A call to _open with _O_CREAT and _O_TRUNC
in the oflag parameter is equivalent to _creat and is preferable for new code.

For more compatibility information, see Compatibility.

// crt_creat.c
// compile with: /W3
// This program uses _creat to create
// the file (or truncate the existing file)
// named data and open it for writing.

#include <sys/types.h>
#include <sys/stat.h>
#include <io.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 int fh;

 fh = _creat("data", _S_IREAD | _S_IWRITE); // C4996
 // Note: _creat is deprecated; use _sopen_s instead
 if(fh == -1)
 perror("Couldn't create data file");
 else
 {
 printf("Created data file.\n");
 _close(fh);
 }
}

Created data file.

See also
Low-Level I/O
_chmod, _wchmod
_chsize
_close
_dup, _dup2
_open, _wopen
_sopen, _wsopen
_umask

_create_locale, _wcreate_locale
11/8/2018 • 3 minutes to read • Edit Online

Syntax
_locale_t _create_locale(
 int category,
 const char *locale
);
_locale_t _wcreate_locale(
 int category,
 const wchar_t *locale
);

Parameters

Return Value

Remarks

CATEGORY FLAG AFFECTS

LC_ALL All categories, as listed below.

LC_COLLATE The strcoll, _stricoll, wcscoll, _wcsicoll, strxfrm, _strncoll,
_strnicoll, _wcsncoll, _wcsnicoll, and wcsxfrm functions.

LC_CTYPE The character-handling functions (except isdigit, isxdigit,
mbstowcs, and mbtowc, which are unaffected).

Creates a locale object.

category
Category.

locale
Locale specifier.

If a valid locale and category are given, returns the specified locale settings as a _locale_t object. The current
locale settings of the program are not changed.

The _create_locale function allows you to create an object that represents certain region-specific settings, for
use in locale-specific versions of many CRT functions (functions with the _l suffix). The behavior is similar to
setlocale, except that instead of applying the specified locale settings to the current environment, the settings
are saved in a _locale_t structure that is returned. The _locale_t structure should be freed using _free_locale
when it is no longer needed.

_wcreate_locale is a wide-character version of _create_locale; the locale argument to _wcreate_locale is a
wide-character string. _wcreate_locale and _create_locale behave identically otherwise.

The category argument specifies the parts of the locale-specific behavior that are affected. The flags used for
category and the parts of the program they affect are as shown in this table:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/create-locale-wcreate-locale.md

LC_MONETARY Monetary-formatting information returned by the
localeconv function.

LC_NUMERIC Decimal-point character for the formatted output routines
(such as printf), for the data-conversion routines, and for
the non-monetary formatting information returned by
localeconv. In addition to the decimal-point character,
LC_NUMERIC sets the thousands separator and the
grouping control string returned by localeconv.

LC_TIME The strftime and wcsftime functions.

CATEGORY FLAG AFFECTS

Requirements
ROUTINE REQUIRED HEADER

_create_locale <locale.h>

_wcreate_locale <locale.h> or <wchar.h>

Example

This function validates the category and locale parameters. If the category parameter is not one of the values
given in the previous table or if locale is NULL, the function returns NULL.

The locale argument is a pointer to a string that specifies the locale. For information about the format of the
locale argument, see Locale Names, Languages, and Country/Region Strings.

The locale argument can take a locale name, a language string, a language string and country/region code, a
code page, or a language string, country/region code, and code page. The set of available locale names,
languages, country/region codes, and code pages includes all that are supported by the Windows NLS API
except the code pages that require more than two bytes per character—for example, UTF-7 and UTF-8. If you
provide a code page like UTF-7 or UTF-8, _create_locale will fail and return NULL. The set of locale names
supported by _create_locale are described in Locale Names, Languages, and Country/Region Strings. The set
of language and country/region strings supported by _create_locale are listed in Language Strings and
Country/Region Strings.

For more information about locale settings, see setlocale, _wsetlocale.

The previous name of this function, __create_locale (with two leading underscores), has been deprecated.

For additional compatibility information, see Compatibility.

// crt_create_locale.c
// Sets the current locale to "de-CH" using the
// setlocale function and demonstrates its effect on the strftime
// function.

#include <stdio.h>
#include <locale.h>
#include <time.h>

int main(void)
{
 time_t ltime;
 struct tm thetime;
 unsigned char str[100];
 _locale_t locale;

 // Create a locale object representing the German (Switzerland) locale
 locale = _create_locale(LC_ALL, "de-CH");
 time (<ime);
 _gmtime64_s(&thetime, <ime);

 // %#x is the long date representation, appropriate to
 // the current locale
 if (!_strftime_l((char *)str, 100, "%#x",
 (const struct tm *)&thetime, locale))
 {
 printf("_strftime_l failed!\n");
 }
 else
 {
 printf("In de-CH locale, _strftime_l returns '%s'\n", str);
 }

 _free_locale(locale);

 // Create a locale object representing the default C locale
 locale = _create_locale(LC_ALL, "C");
 time(<ime);
 _gmtime64_s(&thetime, <ime);

 if (!_strftime_l((char *)str, 100, "%#x",
 (const struct tm *)&thetime, locale))
 {
 printf("_strftime_l failed!\n");
 }
 else
 {
 printf("In 'C' locale, _strftime_l returns '%s'\n", str);
 }

 _free_locale(locale);
}

In de-CH locale, _strftime_l returns 'Samstag, 9. Februar 2002'
In 'C' locale, _strftime_l returns 'Saturday, February 09, 2002'

See also
Locale Names, Languages, and Country/Region Strings
Language Strings
Country/Region Strings
_free_locale

_configthreadlocale
setlocale
Locale
localeconv
_mbclen, mblen, _mblen_l
strlen, wcslen, _mbslen, _mbslen_l, _mbstrlen, _mbstrlen_l
mbstowcs, _mbstowcs_l
mbtowc, _mbtowc_l
_setmbcp
setlocale, _wsetlocale
strcoll Functions
strftime, wcsftime, _strftime_l, _wcsftime_l
strxfrm, wcsxfrm, _strxfrm_l, _wcsxfrm_l
wcstombs, _wcstombs_l
wctomb, _wctomb_l

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/setlocale

_CrtCheckMemory
10/31/2018 • 2 minutes to read • Edit Online

Syntax

int _CrtCheckMemory(void);

Return Value

Remarks

_ASSERTE(_CrtCheckMemory());

Requirements
ROUTINE REQUIRED HEADER

_CrtCheckMemory <crtdbg.h>

Libraries

Confirms the integrity of the memory blocks allocated in the debug heap (debug version only).

If successful, _CrtCheckMemory returns TRUE; otherwise, the function returns FALSE.

The _CrtCheckMemory function validates memory allocated by the debug heap manager by verifying the
underlying base heap and inspecting every memory block. If an error or memory inconsistency is encountered in
the underlying base heap, the debug header information, or the overwrite buffers, _CrtCheckMemory generates
a debug report with information describing the error condition. When _DEBUG is not defined, calls to
_CrtCheckMemory are removed during preprocessing.

The behavior of _CrtCheckMemory can be controlled by setting the bit fields of the _crtDbgFlag flag using the
_CrtSetDbgFlag function. Turning the _CRTDBG_CHECK_ALWAYS_DF bit field ON results in
_CrtCheckMemory being called every time a memory allocation operation is requested. Although this method
slows down execution, it is useful for catching errors quickly. Turning the _CRTDBG_ALLOC_MEM_DF bit field
OFF causes _CrtCheckMemory to not verify the heap and immediately return TRUE .

Because this function returns TRUE or FALSE , it can be passed to one of the _ASSERT macros to create a simple
debugging error handling mechanism. The following example causes an assertion failure if corruption is detected
in the heap:

For more information about how _CrtCheckMemory can be used with other debug functions, see Heap State
Reporting Functions. For an overview of memory management and the debug heap, see CRT Debug Heap
Details.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtcheckmemory.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

Example

See also

For a sample of how to use _CrtCheckMemory, see crt_dbg1.

Debug Routines
_crtDbgFlag
_CrtSetDbgFlag

https://github.com/Microsoft/VCSamples/tree/master/VC2010Samples/crt/crt_dbg1

_CrtDbgBreak
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void _CrtDbgBreak(void);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_CrtDbgBreak <CRTDBG.h>

Libraries

See also

Sets a break point on a particular line of code. (Used in debug mode only.)

There is no return value.

The _CrtDbgBreak function sets a debug breakpoint on the particular line of code where the function resides.
This function is used in debug mode only and is dependent on _DEBUG being previously defined.

For more information about using other hook-capable run-time functions and writing your own client-defined
hook functions, see Writing Your Own Debug Hook Functions.

Debug versions of C run-time libraries only.

Debug Routines
__debugbreak

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtdbgbreak.md
https://docs.microsoft.com/visualstudio/debugger/debug-hook-function-writing
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/intrinsics/debugbreak

_CrtDbgReport, _CrtDbgReportW
10/31/2018 • 3 minutes to read • Edit Online

Syntax
int _CrtDbgReport(
 int reportType,
 const char *filename,
 int linenumber,
 const char *moduleName,
 const char *format [,
 argument] ...
);
int _CrtDbgReportW(
 int reportType,
 const wchar_t *filename,
 int linenumber,
 const wchar_t *moduleName,
 const wchar_t *format [,
 argument] ...
);

Parameters

Return Value

Generates a report with a debugging message and sends the report to three possible destinations (debug
version only).

reportType
Report type: _CRT_WARN , _CRT_ERROR, and _CRT_ASSERT.

filename
Pointer to name of source file where assert/report occurred or NULL.

linenumber
Line number in source file where assert/report occurred or NULL.

moduleName
Pointer to name of module (.exe or .dll) where assert or report occurred.

format
Pointer to format-control string used to create the user message.

argument
Optional substitution arguments used by format.

For all report destinations, _CrtDbgReport and _CrtDbgReportW return -1 if an error occurs and 0 if no errors
are encountered. However, when the report destination is a debug message window and the user clicks the
Retry button, these functions return 1. If the user clicks the Abort button in the Debug Message window, these
functions immediately abort and do not return a value.

The _RPT, _RPTF debug macros call _CrtDbgReport to generate their debug reports. The wide-character
versions of these macros as well as _ASSERT, _ASSERTE, _RPTW and _RPTFW, use _CrtDbgReportW to
generate their debug reports. When _CrtDbgReport or _CrtDbgReportW return 1, these macros start the

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtdbgreport-crtdbgreportw.md

Remarks

REPORT MODE REPORT FILE
_CRTDBGREPORT, _CRTDBGREPORTW
BEHAVIOR

_CRTDBG_MODE_DEBUG Not applicable Writes message by using Windows
OutputDebugString API.

_CRTDBG_MODE_WNDW Not applicable Calls Windows MessageBox API to
create message box to display the
message along with Abort, Retry, and
Ignore buttons. If a user clicks Abort,
_CrtDbgReport or _CrtDbgReport
immediately aborts. If a user clicks
Retry, it returns 1. If a user clicks
Ignore, execution continues and
_CrtDbgReport and
_CrtDbgReportW return 0. Note that
clicking Ignore when an error
condition exists often results in
"undefined behavior."

_CRTDBG_MODE_FILE __HFILE Writes message to user-supplied
HANDLE, using the Windows WriteFile
API and does not verify validity of file
handle; the application is responsible
for opening the report file and passing
a valid file handle.

_CRTDBG_MODE_FILE _CRTDBG_FILE_STDERR Writes message to stderr.

_CRTDBG_MODE_FILE _CRTDBG_FILE_STDOUT Writes message to stdout.

debugger, provided that just-in-time (JIT) debugging is enabled.

_CrtDbgReport and _CrtDbgReportW can send the debug report to three different destinations: a debug
report file, a debug monitor (the Visual Studio debugger), or a debug message window. Two configuration
functions, _CrtSetReportMode and _CrtSetReportFile, are used to specify the destination or destinations for each
report type. These functions allow the reporting destination or destinations for each report type to be separately
controlled. For example, it is possible to specify that a reportType of _CRT_WARN only be sent to the debug
monitor, while a reportType of _CRT_ASSERT be sent to a debug message window and a user-defined report
file.

_CrtDbgReportW is the wide-character version of _CrtDbgReport. All its output and string parameters are in
wide-character strings; otherwise it is identical to the single-byte character version.

_CrtDbgReport and _CrtDbgReportW create the user message for the debug report by substituting the
argument[n] arguments into the format string, using the same rules defined by the printf or wprintf functions.
These functions then generate the debug report and determine the destination or destinations, based on the
current report modes and file defined for reportType. When the report is sent to a debug message window, the
filename, lineNumber, and moduleName are included in the information displayed in the window.

The following table lists the available choices for the report mode or modes and file and the resulting behavior
of _CrtDbgReport and _CrtDbgReportW. These options are defined as bit flags in <crtdbg.h>.

The report can be sent to one, two, or three destinations or to no destination at all. For more information about
specifying the report mode or modes and report file, see the _CrtSetReportMode and _CrtSetReportFile
functions. For more information about using the debug macros and reporting functions, see Macros for

https://msdn.microsoft.com/library/windows/desktop/aa363362.aspx
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-messagebox
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/visualstudio/debugger/macros-for-reporting

Requirements
ROUTINE REQUIRED HEADER

_CrtDbgReport <crtdbg.h>

_CrtDbgReportW <crtdbg.h>

Libraries

Example
// crt_crtdbgreport.c
#include <crtdbg.h>

int main(int argc, char *argv[]) {
#ifdef _DEBUG
 _CrtDbgReport(_CRT_ASSERT, __FILE__, __LINE__, argv[0], NULL);
#endif
}

See also

Reporting.

If your application needs more flexibility than that provided by _CrtDbgReport and _CrtDbgReportW, you can
write your own reporting function and hook it into the C run-time library reporting mechanism by using the
_CrtSetReportHook function.

_CrtDbgReport and _CrtDbgReportW are Microsoft extensions. For more information, see Compatibility.

Debug versions of C run-time libraries only.

See crt_dbg2 for an example of how to change the report function.

Debug Routines
_CrtSetReportMode
_CrtSetReportFile
printf, _printf_l, wprintf, _wprintf_l
_DEBUG

https://github.com/Microsoft/VCSamples/tree/master/VC2010Samples/crt/crt_dbg2

_CrtDoForAllClientObjects
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void _CrtDoForAllClientObjects(
 void (* pfn)(void *, void *),
 void *context
);

Parameters

Remarks

Requirements
ROUTINE REQUIRED HEADER

_CrtDoForAllClientObjects <crtdbg.h>, <errno.h>

Calls an application-supplied function for all _CLIENT_BLOCK types in the heap (debug version only).

pfn
Pointer to the application-supplied function callback function. The first parameter to this function points to the
data. The second parameter is the context pointer that is passed to the call to _CrtDoForAllClientObjects.

context
Pointer to the application-supplied context to pass to the application-supplied function.

The _CrtDoForAllClientObjects function searches the heap's linked list for memory blocks with the
_CLIENT_BLOCK type and calls the application-supplied function when a block of this type is found. The found
block and the context parameter are passed as arguments to the application-supplied function. During debugging,
an application can track a specific group of allocations by explicitly calling the debug heap functions to allocate the
memory and specifying that the blocks be assigned the _CLIENT_BLOCK block type. These blocks can then be
tracked separately and reported on differently during leak detection and memory state reporting.

If the _CRTDBG_ALLOC_MEM_DF bit field of the _crtDbgFlag flag is not turned on,
_CrtDoForAllClientObjects immediately returns. When _DEBUG is not defined, calls to
_CrtDoForAllClientObjects are removed during preprocessing.

For more information about the _CLIENT_BLOCK type and how it can be used by other debug functions, see
Types of blocks on the debug heap. For information about how memory blocks are allocated, initialized, and
managed in the debug version of the base heap, see CRT Debug Heap Details.

If pfn is NULL, the invalid parameter handler is invoked, as described in Parameter Validation. If execution is
allowed to continue, errno, _doserrno, _sys_errlist, and _sys_nerr is set to EINVAL and the function returns.

For more compatibility information, see Compatibility.

Libraries: Debug versions of universal C run-time libraries only.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtdoforallclientobjects.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

See also
Debug Routines
_CrtSetDbgFlag
Heap State Reporting Functions
_CrtReportBlockType

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

_CrtDumpMemoryLeaks
10/31/2018 • 2 minutes to read • Edit Online

Syntax

int _CrtDumpMemoryLeaks(void);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_CrtDumpMemoryLeaks <crtdbg.h>

Libraries

Dumps all the memory blocks in the debug heap when a memory leak has occurred (debug version only).

_CrtDumpMemoryLeaks returns TRUE if a memory leak is found. Otherwise, the function returns FALSE.

The _CrtDumpMemoryLeaks function determines whether a memory leak has occurred since the start of
program execution. When a leak is found, the debug header information for all the objects in the heap is dumped
in a user-readable form. When _DEBUG is not defined, calls to _CrtDumpMemoryLeaks are removed during
preprocessing.

_CrtDumpMemoryLeaks is frequently called at the end of program execution to verify that all memory allocated
by the application has been freed. The function can be called automatically at program termination by turning on
the _CRTDBG_LEAK_CHECK_DF bit field of the _crtDbgFlag flag using the _CrtSetDbgFlag function.

_CrtDumpMemoryLeaks calls _CrtMemCheckpoint to obtain the current state of the heap and then scans the
state for blocks that have not been freed. When an unfreed block is encountered, _CrtDumpMemoryLeaks calls
_CrtMemDumpAllObjectsSince to dump information for all the objects allocated in the heap from the start of
program execution.

By default, internal C run-time blocks (_CRT_BLOCK) are not included in memory dump operations. The
_CrtSetDbgFlag function can be used to turn on the _CRTDBG_CHECK_CRT_DF bit of _crtDbgFlag to include
these blocks in the leak detection process.

For more information about heap state functions and the _CrtMemState structure, see Heap State Reporting
Functions. For more information about how memory blocks are allocated, initialized, and managed in the debug
version of the base heap, see CRT Debug Heap Details.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtdumpmemoryleaks.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

Example

See also

For a sample of how to use _CrtDumpMemoryLeaks, see crt_dbg1.

Debug Routines

https://github.com/Microsoft/VCSamples/tree/master/VC2010Samples/crt/crt_dbg1

_CrtGetAllocHook
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_CRT_ALLOC_HOOK _CrtGetAllocHook(void);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_CrtGetAllocHook <crtdbg.h>

Libraries

See also

Retrieves the current client-defined allocation function for hooking into the C run-time debug memory allocation
process (debug version only).

Returns the currently defined allocation hook function.

_CrtGetAllocHook retrieves the current client-defined application hook function for the C run-time debug library
memory allocation process.

For more information about using other hook-capable run-time functions and writing your own client-defined
hook functions, see Debug Hook Function Writing.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

Debug Routines
_CrtSetAllocHook

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtgetallochook.md
https://docs.microsoft.com/visualstudio/debugger/debug-hook-function-writing

_CrtGetDumpClient
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_CRT_DUMP_CLIENT _CrtGetDumpClient(void);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_CrtGetDumpClient <crtdbg.h>

Libraries

See also

Retrieves the current application-defined function for dumping the _CLIENT_BLOCK type memory blocks (debug
version only).

Returns the current dump routine.

The _CrtGetDumpClient function retrieves the current hook function for dumping objects stored in the
_CLIENT_BLOCK memory blocks for the C run-time debug memory dump process.

For more information about using other hook-capable run-time functions and writing your own client-defined
hook functions, see Debug Hook Function Writing.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

Debug Routines
_CrtReportBlockType
_CrtSetDumpClient

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtgetdumpclient.md
https://docs.microsoft.com/visualstudio/debugger/debug-hook-function-writing

_CrtGetReportHook
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_CRT_REPORT_HOOK _CrtGetReportHook(void);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_CrtGetReportHook <crtdbg.h>

Libraries

Example

See also

Retrieves the client-defined reporting function for hooking it into the C run time for the debug reporting process
(debug version only).

Returns the current client-defined reporting function.

_CrtGetReportHook allows an application to retrieve the current reporting function for the C run-time debug
library reporting process.

For more information about using other hook-capable run-time functions and writing your own client-defined
hook functions, see Debug Hook Function Writing.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

For a sample of how to use _CrtSetReportHook, see report.

Debug Routines
_CrtSetReportHook

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtgetreporthook.md
https://docs.microsoft.com/visualstudio/debugger/debug-hook-function-writing
https://github.com/Microsoft/VCSamples/tree/master/VC2010Samples/crt/report

_CrtIsMemoryBlock
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _CrtIsMemoryBlock(
 const void *userData,
 unsigned int size,
 long *requestNumber,
 char **filename,
 int *linenumber
);

Parameters

Return Value

Remarks

Verifies that a specified memory block is in the local heap and that it has a valid debug heap block type identifier
(debug version only).

userData
Pointer to the beginning of the memory block to verify.

size
Size of the specified block (in bytes).

requestNumber
Pointer to the allocation number of the block or NULL.

filename
Pointer to the name of the source file that requested the block or NULL.

linenumber
Pointer to the line number in the source file or NULL.

_CrtIsMemoryBlock returns TRUE if the specified memory block is located within the local heap and has a valid
debug heap block type identifier ; otherwise, the function returns FALSE .

The _CrtIsMemoryBlock function verifies that a specified memory block is located within the application's local
heap and that it has a valid block type identifier. This function can also be used to obtain the object allocation order
number and the source file name/line number where the memory block allocation was originally requested.
Passing non-NULL values for the requestNumber, filename, or linenumber parameters causes
_CrtIsMemoryBlock to set these parameters to the values in the memory block's debug header, if it finds the
block in the local heap. When _DEBUG is not defined, calls to _CrtIsMemoryBlock are removed during
preprocessing.

If _CrtIsMemoryBlock fails, it returns FALSE and the output parameters are initialized to default values:
requestNumber and lineNumber are set to 0 and filename is set to NULL.

Because this function returns TRUE or FALSE , it can be passed to one of the _ASSERT macros to create a simple
debugging error handling mechanism. The following example causes an assertion failure if the specified address is

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtismemoryblock.md

_ASSERTE(_CrtIsMemoryBlock(userData, size, &requestNumber,
 &filename, &linenumber));

Requirements
ROUTINE REQUIRED HEADER

_CrtIsMemoryBlock <crtdbg.h>

Libraries

Example

See also

not located within the local heap:

For more information about how _CrtIsMemoryBlock can be used with other debug functions and macros, see
Macros for Reporting. For information about how memory blocks are allocated, initialized, and managed in the
debug version of the base heap, see CRT Debug Heap Details.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

See the example for the _CrtIsValidHeapPointer topic.

Debug Routines

https://docs.microsoft.com/visualstudio/debugger/macros-for-reporting
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

_CrtIsValidHeapPointer
10/31/2018 • 3 minutes to read • Edit Online

Syntax
int _CrtIsValidHeapPointer(
 const void *userData
);

Parameters

Return Value

Remarks

_ASSERTE(_CrtIsValidHeapPointer(userData));

Requirements

Verifies that a specified pointer is in a heap allocated by some C run-time library, but not necessarily by the caller's
CRT library. In versions of the CRT before Visual Studio 2010, this verifies that the specified pointer is in the local
heap (debug version only).

userData
Pointer to the beginning of an allocated memory block.

_CrtIsValidHeapPointer returns TRUE if the specified pointer is in the heap shared by all CRT library instances.
In versions of the CRT before Visual Studio 2010, this returns TRUE if the specified pointer is in the local heap.
Otherwise, the function returns FALSE.

We do not recommend that you use this function. Starting with the Visual Studio 2010 CRT library, all CRT
libraries share one OS heap, the process heap. The _CrtIsValidHeapPointer function reports whether the pointer
was allocated in a CRT heap, but not that it was allocated by the caller's CRT library. For example, consider a block
allocated by using the Visual Studio 2010 version of the CRT library. If the _CrtIsValidHeapPointer function
exported by the Visual Studio 2012 version of the CRT library tests the pointer, it returns TRUE. This is no longer a
useful test. In versions of the CRT library before Visual Studio 2010, the function is used to ensure that a specific
memory address is within the local heap. The local heap refers to the heap created and managed by a particular
instance of the C run-time library. If a dynamic-link library (DLL) contains a static link to the run-time library, it
has its own instance of the run-time heap, and therefore its own heap, independent of the application's local heap.
When _DEBUG is not defined, calls to _CrtIsValidHeapPointer are removed during preprocessing.

Because this function returns TRUE or FALSE, it can be passed to one of the _ASSERT macros to create a simple
debugging error handling mechanism. The following example causes an assertion failure if the specified address is
not located within the local heap:

For more information about how _CrtIsValidHeapPointer can be used with other debug functions and macros,
see Macros for Reporting. For information about how memory blocks are allocated, initialized, and managed in
the debug version of the base heap, see CRT Debug Heap Details.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtisvalidheappointer.md
https://docs.microsoft.com/visualstudio/debugger/macros-for-reporting
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

ROUTINE REQUIRED HEADER

_CrtIsValidHeapPointer <crtdbg.h>

Libraries

Example

// crt_isvalid.c
// This program allocates a block of memory using _malloc_dbg
// and then tests the validity of this memory by calling
// _CrtIsMemoryBlock,_CrtIsValidPointer, and _CrtIsValidHeapPointer.

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

#define TRUE 1
#define FALSE 0

int main(void)
{
 char *my_pointer;

 // Call _malloc_dbg to include the filename and line number
 // of our allocation request in the header information
 my_pointer = (char *)_malloc_dbg(sizeof(char) * 10,
 _NORMAL_BLOCK, __FILE__, __LINE__);

 // Ensure that the memory got allocated correctly
 _CrtIsMemoryBlock((const void *)my_pointer, sizeof(char) * 10,
 NULL, NULL, NULL);

 // Test for read/write accessibility
 if (_CrtIsValidPointer((const void *)my_pointer,
 sizeof(char) * 10, TRUE))
 printf("my_pointer has read and write accessibility.\n");
 else
 printf("my_pointer only has read access.\n");

 // Make sure my_pointer is within the local heap
 if (_CrtIsValidHeapPointer((const void *)my_pointer))
 printf("my_pointer is within the local heap.\n");
 else
 printf("my_pointer is not located within the local"
 " heap.\n");

 free(my_pointer);
}

my_pointer has read and write accessibility.
my_pointer is within the local heap.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

The following example demonstrates how to test whether memory is valid when it is used with C run-time
libraries before Visual Studio 2010. This example is provided for users of legacy CRT library code.

See also
Debug Routines

_CrtIsValidPointer
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _CrtIsValidPointer(
 const void *address,
 unsigned int size,
 int access
);

Parameters

Return Value

Remarks

_ASSERTE(_CrtIsValidPointer(address, size, TRUE));

Verifies that a pointer is not null. In versions of the C run-time library before Visual Studio 2010, verifies that a
specified memory range is valid for reading and writing (debug version only).

address
Points to the beginning of the memory range to test for validity.

size
Size of the specified memory range (in bytes).

access
Read/write accessibility to determine for the memory range.

_CrtIsValidPointer returns TRUE if the specified pointer is not null. In CRT library versions before Visual Studio
2010, returns TRUE if the memory range is valid for the specified operation or operations. Otherwise, the function
returns FALSE.

Starting with the CRT library in Visual Studio 2010, the size and access parameters are ignored, and
_CrtIsValidPointer only verifies that the specified address is not null. Because this test is easy to perform yourself,
we do not recommend you use this function. In versions before Visual Studio 2010, the function verifies that the
memory range beginning at address and extending for size bytes is valid for the specified accessibility operation or
operations. When access is set to TRUE, the memory range is verified for both reading and writing. When access is
FALSE, the memory range is only validated for reading. When _DEBUG is not defined, calls to _CrtIsValidPointer
are removed during preprocessing.

Because this function returns TRUE or FALSE, it can be passed to one of the _ASSERT macros to create a simple
debugging error handling mechanism. The following example causes an assertion failure if the memory range is
not valid for both reading and writing operations:

For more information about how _CrtIsValidPointer can be used with other debug functions and macros, see
Macros for Reporting. For information about how memory blocks are allocated, initialized, and managed in the
debug version of the base heap, see CRT Debug Heap Details.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtisvalidpointer.md
https://docs.microsoft.com/visualstudio/debugger/macros-for-reporting
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

Requirements
ROUTINE REQUIRED HEADER

_CrtIsValidPointer <crtdbg.h>

Libraries

Example

See also

_CrtIsValidPointer is a Microsoft extension. For compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

See the example for the _CrtIsValidHeapPointer topic.

Debug Routines

_CrtMemCheckpoint
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void _CrtMemCheckpoint(
 _CrtMemState *state
);

Parameters

Remarks

Requirements
ROUTINE REQUIRED HEADER

_CrtMemCheckpoint <crtdbg.h>, <errno.h>

See also

Obtains the current state of the debug heap and stores in an application-supplied _CrtMemState structure
(debug version only).

state
Pointer to _CrtMemState structure to fill with the memory checkpoint.

The _CrtMemCheckpoint function creates a snapshot of the current state of the debug heap at any given
moment. This snapshot can be used by other heap state functions such as _CrtMemDifference to help detect
memory leaks and other problems. When _DEBUG is not defined, calls to _CrtMemState are removed during
preprocessing.

The application must pass a pointer to a previously allocated instance of the _CrtMemState structure, defined in
Crtdbg.h, in the state parameter. If _CrtMemCheckpoint encounters an error during the checkpoint creation, the
function generates a _CRT_WARN debug report describing the problem.

For more information about heap state functions and the _CrtMemState structure, see Heap State Reporting
Functions. For more information about how memory blocks are allocated, initialized, and managed in the debug
version of the base heap, see CRT Debug Heap Details.

If state is NULL, the invalid parameter handler is invoked, as described in Parameter Validation. If execution is
allowed to continue, errno, _doserrno, _sys_errlist, and _sys_nerr is set to EINVAL and the function returns.

For more compatibility information, see Compatibility.

Libraries: Debug versions of the UCRT only.

Debug Routines
_CrtMemDifference

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtmemcheckpoint.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

_CrtMemDifference
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _CrtMemDifference(
 _CrtMemState *stateDiff,
 const _CrtMemState *oldState,
 const _CrtMemState *newState
);

Parameters

Return Value

Remarks

Compares two memory states and returns their differences (debug version only).

stateDiff
Pointer to a _CrtMemState structure that is used to store the differences between the two memory states
(returned).

oldState
Pointer to an earlier memory state (_CrtMemState structure).

newState
Pointer to a later memory state (_CrtMemState structure).

If the memory states are significantly different, _CrtMemDifference returns TRUE. Otherwise, the function
returns FALSE.

The _CrtMemDifference function compares oldState and newState and stores their differences in stateDiff,
which can then be used by the application to detect memory leaks and other memory problems. When _DEBUG
is not defined, calls to _CrtMemDifference are removed during preprocessing.

newState and oldState must each be a valid pointer to a _CrtMemState structure, defined in Crtdbg.h, that has
been filled in by _CrtMemCheckpoint before calling _CrtMemDifference. stateDiff must be a pointer to a
previously allocated instance of the _CrtMemState structure. If stateDiff, newState, or oldState is NULL, the
invalid parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue,
errno, _doserrno, _sys_errlist, and _sys_nerr is set to EINVAL and the function returns FALSE.

_CrtMemDifference compares the _CrtMemState field values of the blocks in oldState to those in newState
and stores the result in stateDiff. When the number of allocated block types or total number of allocated blocks
for each type differs between the two memory states, the states are said to be significantly different. The
difference between the largest amount ever allocated at once for the two states and the difference between total
allocations for the two states are also stored in stateDiff.

By default, internal C run-time blocks (_CRT_BLOCK) are not included in memory state operations. The
_CrtSetDbgFlag function can be used to turn on the _CRTDBG_CHECK_CRT_DF bit of _crtDbgFlag to include
these blocks in leak detection and other memory state operations. Freed memory blocks (_FREE_BLOCK) do not
cause _CrtMemDifference to return TRUE.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtmemdifference.md

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_CrtMemDifference <crtdbg.h> <errno.h>

See also

For more information about heap state functions and the _CrtMemState structure, see Heap State Reporting
Functions. For information about how memory blocks are allocated, initialized, and managed in the debug version
of the base heap, see CRT Debug Heap Details.

For more compatibility information, see Compatibility.

Libraries: Debug versions of CRT Library Features only.

Debug Routines
_crtDbgFlag

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

_CrtMemDumpAllObjectsSince
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void _CrtMemDumpAllObjectsSince(
 const _CrtMemState *state
);

Parameters

Remarks

Requirements
ROUTINE REQUIRED HEADER

_CrtMemDumpAll-ObjectsSince <crtdbg.h>

Libraries

Dumps information about objects in the heap from the start of program execution or from a specified heap state
(debug version only).

state
Pointer to the heap state to begin dumping from or NULL.

The _CrtMemDumpAllObjectsSince function dumps the debug header information of objects allocated in the
heap in a user-readable form. The dump information can be used by the application to track allocations and detect
memory problems. When _DEBUG is not defined, calls to _CrtMemDumpAllObjectsSince are removed during
preprocessing.

_CrtMemDumpAllObjectsSince uses the value of the state parameter to determine where to initiate the dump
operation. To begin dumping from a specified heap state, the state parameter must be a pointer to a
_CrtMemState structure that has been filled in by _CrtMemCheckpoint before
_CrtMemDumpAllObjectsSince was called. When state is NULL, the function begins the dump from the start
of program execution.

If the application has installed a dump hook function by calling _CrtSetDumpClient, then every time
_CrtMemDumpAllObjectsSince dumps information about a _CLIENT_BLOCK type of block, it calls the
application-supplied dump function as well. By default, internal C run-time blocks (_CRT_BLOCK) are not
included in memory dump operations. The _CrtSetDbgFlag function can be used to turn on the
_CRTDBG_CHECK_CRT_DF bit of _crtDbgFlag to include these blocks. In addition, blocks marked as freed or
ignored (_FREE_BLOCK, _IGNORE_BLOCK) are not included in the memory dump.

For more information about heap state functions and the _CrtMemState structure, see Heap State Reporting
Functions. For more information about how memory blocks are allocated, initialized, and managed in the debug
version of the base heap, see CRT Debug Heap Details.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtmemdumpallobjectssince.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

Example

See also

Debug versions of C run-time libraries only.

For a sample of how to use _CrtMemDumpAllObjectsSince, see crt_dbg2.

Debug Routines
_crtDbgFlag

https://github.com/Microsoft/VCSamples/tree/master/VC2010Samples/crt/crt_dbg2

_CrtMemDumpStatistics
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void _CrtMemDumpStatistics(
 const _CrtMemState *state
);

Parameters

Remarks

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADERS

_CrtMemDumpStatistics <crtdbg.h> <errno.h>

See also

Dumps the debug header information for a specified heap state in a user-readable form (debug version only).

state
Pointer to the heap state to dump.

The _CrtMemDumpStatistics function dumps the debug header information for a specified state of the heap in a
user-readable form. The dump statistics can be used by the application to track allocations and detect memory
problems. The memory state can contain a specific heap state or the difference between two states. When
_DEBUG is not defined, calls to _CrtMemDumpStatistics are removed during preprocessing.

The state parameter must be a pointer to a _CrtMemState structure that has been filled in by
_CrtMemCheckpoint or returned by _CrtMemDifference before _CrtMemDumpStatistics is called. If state is
NULL, the invalid parameter handler is invoked, as described in Parameter Validation. If execution is allowed to
continue, errno is set to EINVAL and no action is taken. For more information, see errno, _doserrno, _sys_errlist,
and _sys_nerr.

For more information about heap state functions and the _CrtMemState structure, see Heap State Reporting
Functions. For more information about how memory blocks are allocated, initialized, and managed in the debug
version of the base heap, see CRT Debug Heap Details.

For more compatibility information, see Compatibility.

Libraries: Debug versions of CRT Library Features only.

Debug Routines

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtmemdumpstatistics.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

_CrtReportBlockType
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _CrtReportBlockType(
 const void * pBlock
};

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_CrtReportBlockType <crtdbg.h>

Libraries

Example

Returns the block type/subtype associated with a given debug heap block pointer.

pBlock
Pointer to a valid debug heap block.

When passed a valid debug heap pointer, the _CrtReportBlockType function returns the block type and subtype
in the form of an int. When passed an invalid pointer, the function returns -1.

To extract the type and subtype returned by _CrtReportBlockType, use the macros _BLOCK_TYPE and
_BLOCK_SUBTYPE (both defined in Crtdbg.h) on the return value.

For information about the allocation block types and how they are used, see Types of Blocks on the Debug Heap.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtreportblocktype.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

// crt_crtreportblocktype.cpp
// compile with: /MDd

#include <malloc.h>
#include <stdio.h>
#include <crtdbg.h>

void __cdecl Dumper(void *ptr, void *)
{
 int block = _CrtReportBlockType(ptr);
 _RPT3(_CRT_WARN, "Dumper found block at %p: type %d, subtype %d\n", ptr,
 _BLOCK_TYPE(block), _BLOCK_SUBTYPE(block));
}

void __cdecl LeakDumper(void *ptr, size_t sz)
{
 int block = _CrtReportBlockType(ptr);
 _RPT4(_CRT_WARN, "LeakDumper found block at %p:"
 " type %d, subtype %d, size %d\n", ptr,
 _BLOCK_TYPE(block), _BLOCK_SUBTYPE(block), sz);
}

int main(void)
{
 _CrtSetDbgFlag(_CrtSetDbgFlag(_CRTDBG_REPORT_FLAG) |
 _CRTDBG_LEAK_CHECK_DF);
 _CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
 _CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
 _malloc_dbg(10, _NORMAL_BLOCK , __FILE__, __LINE__);
 _malloc_dbg(10, _CLIENT_BLOCK | (1 << 16), __FILE__, __LINE__);
 _malloc_dbg(20, _CLIENT_BLOCK | (2 << 16), __FILE__, __LINE__);
 _malloc_dbg(30, _CLIENT_BLOCK | (3 << 16), __FILE__, __LINE__);
 _CrtDoForAllClientObjects(Dumper, NULL);
 _CrtSetDumpClient(LeakDumper);
}

Sample Output

Dumper found block at 00314F78: type 4, subtype 3
Dumper found block at 00314F38: type 4, subtype 2
Dumper found block at 00314F00: type 4, subtype 1
Detected memory leaks!
Dumping objects ->
crt_crtreportblocktype.cpp(30) : {55} client block at 0x00314F78, subtype 3, 30 bytes long.
Data: < > CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD
crt_crtreportblocktype.cpp(29) : {54} client block at 0x00314F38, subtype 2, 20 bytes long.
Data: < > CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD
crt_crtreportblocktype.cpp(28) : {53} client block at 0x00314F00, subtype 1, 10 bytes long.
Data: < > CD CD CD CD CD CD CD CD CD CD
crt_crtreportblocktype.cpp(27) : {52} normal block at 0x00314EC8, 10 bytes long.
Data: < > CD CD CD CD CD CD CD CD CD CD
Object dump complete.

See also
_CrtDoForAllClientObjects
_CrtSetDumpClient
_CrtMemDumpAllObjectsSince
_CrtDumpMemoryLeaks

_CrtSetAllocHook
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_CRT_ALLOC_HOOK _CrtSetAllocHook(
 _CRT_ALLOC_HOOK allocHook
);

Parameters

Return Value

Remarks

int YourAllocHook(int allocType, void *userData, size_t size,
 int blockType, long requestNumber,
 const unsigned char *filename, int lineNumber);

Installs a client-defined allocation function by hooking it into the C run-time debug memory allocation process
(debug version only).

allocHook
New client-defined allocation function to hook into the C run-time debug memory allocation process.

Returns the previously defined allocation hook function, or NULL if allocHook is NULL.

_CrtSetAllocHook allows an application to hook its own allocation function into the C run-time debug library
memory allocation process. As a result, every call to a debug allocation function to allocate, reallocate, or free a
memory block triggers a call to the application's hook function. _CrtSetAllocHook provides an application with
an easy method for testing how the application handles insufficient memory situations, the ability to examine
allocation patterns, and the opportunity to log allocation information for later analysis. When _DEBUG is not
defined, calls to _CrtSetAllocHook are removed during preprocessing.

The _CrtSetAllocHook function installs the new client-defined allocation function specified in allocHook and
returns the previously defined hook function. The following example demonstrates how a client-defined allocation
hook should be prototyped:

The allocType argument specifies the type of allocation operation (_HOOK_ALLOC, _HOOK_REALLOC, and
_HOOK_FREE) that triggered the call to the allocation's hook function. When the triggering allocation type is
_HOOK_FREE , userData is a pointer to the user data section of the memory block about to be freed. However,
when the triggering allocation type is _HOOK_ALLOC or _HOOK_REALLOC, userData is NULL because the
memory block has not been allocated yet.

size specifies the size of the memory block in bytes, blockType indicates the type of the memory block,
requestNumber is the object allocation order number of the memory block, and, if available, filename and
lineNumber specify the source file name and line number where the triggering allocation operation was initiated.

After the hook function has finished processing, it must return a Boolean value, which tells the main C run-time
allocation process how to continue. When the hook function wants the main allocation process to continue as if
the hook function had never been called, then the hook function should return TRUE . This causes the original

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtsetallochook.md

NOTE

Requirements
ROUTINE REQUIRED HEADER

_CrtSetAllocHook <crtdbg.h>

Libraries

Example

See also

triggering allocation operation to be executed. Using this implementation, the hook function can gather and save
allocation information for later analysis, without interfering with the current allocation operation or state of the
debug heap.

When the hook function wants the main allocation process to continue as if the triggering allocation operation
was called and it failed, then the hook function should return FALSE . Using this implementation, the hook
function can simulate a wide range of memory conditions and debug heap states to test how the application
handles each situation.

To clear the hook function, pass NULL to _CrtSetAllocHook.

For more information about how _CrtSetAllocHook can be used with other memory management functions or
how to write your own client-defined hook functions, see Debug Hook Function Writing.

_CrtSetAllocHook is not supported under /clr:pure. The /clr:pure and /clr:safe compiler options are deprecated in
Visual Studio 2015 and removed in Visual Studio 2017.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

For a sample of how to use _CrtSetAllocHook, see crt_dbg2.

Debug Routines
_CrtGetAllocHook

https://docs.microsoft.com/visualstudio/debugger/debug-hook-function-writing
https://github.com/Microsoft/VCSamples/tree/master/VC2010Samples/crt/crt_dbg2

_CrtSetBreakAlloc
10/31/2018 • 2 minutes to read • Edit Online

Syntax
long _CrtSetBreakAlloc(
 long lBreakAlloc
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_CrtSetBreakAlloc <crtdbg.h>

Libraries

Example

Sets a breakpoint on a specified object allocation order number (debug version only).

lBreakAlloc
Allocation order number, for which to set the breakpoint.

Returns the previous object allocation order number that had a breakpoint set.

_CrtSetBreakAlloc allows an application to perform memory leak detection by breaking at a specific point of
memory allocation and tracing back to the origin of the request. The function uses the sequential object allocation
order number assigned to the memory block when it was allocated in the heap. When _DEBUG is not defined,
calls to _CrtSetBreakAlloc are removed during preprocessing.

The object allocation order number is stored in the lRequest field of the _CrtMemBlockHeader structure, defined
in Crtdbg.h. When information about a memory block is reported by one of the debug dump functions, this
number is enclosed in braces, such as {36}.

For more information about how _CrtSetBreakAlloc can be used with other memory management functions, see
Tracking Heap Allocation Requests. For more information about how memory blocks are allocated, initialized, and
managed in the debug version of the base heap, see CRT Debug Heap Details.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtsetbreakalloc.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

// crt_setbrkal.c
// compile with: -D_DEBUG /MTd -Od -Zi -W3 /c /link -verbose:lib -debug

/*
* In this program, a call is made to the _CrtSetBreakAlloc routine
* to verify that the debugger halts program execution when it reaches
* a specified allocation number.
*/

#include <malloc.h>
#include <crtdbg.h>

int main()
{
 long allocReqNum;
 char *my_pointer;

 /*
 * Allocate "my_pointer" for the first
 * time and ensure that it gets allocated correctly
 */
 my_pointer = malloc(10);
 _CrtIsMemoryBlock(my_pointer, 10, &allocReqNum, NULL, NULL);

 /*
 * Set a breakpoint on the allocation request
 * number for "my_pointer"
 */
 _CrtSetBreakAlloc(allocReqNum+2);

 /*
 * Alternate freeing and reallocating "my_pointer"
 * to verify that the debugger halts program execution
 * when it reaches the allocation request
 */
 free(my_pointer);
 my_pointer = malloc(10);
 free(my_pointer);
 my_pointer = malloc(10);
 free(my_pointer);
}

See also
Debug Routines

_CrtSetDbgFlag
11/12/2018 • 6 minutes to read • Edit Online

Syntax
int _CrtSetDbgFlag(
 int newFlag
);

Parameters

Return Value

Remarks

BIT FIELD DEFAULT DESCRIPTION

_CRTDBG_ALLOC_MEM_DF ON ON: Enable debug heap allocations and
use of memory block type identifiers,
such as _CLIENT_BLOCK. OFF: Add
new allocations to heap's linked list,
but set block type to
_IGNORE_BLOCK.

Can also be combined with any of the
heap-frequency check macros.

Retrieves or modifies the state of the _crtDbgFlag flag to control the allocation behavior of the debug heap
manager (debug version only).

newFlag
New state for _crtDbgFlag.

Returns the previous state of _crtDbgFlag.

The _CrtSetDbgFlag function allows the application to control how the debug heap manager tracks memory
allocations by modifying the bit fields of the _crtDbgFlag flag. By setting the bits (turning on), the application
can instruct the debug heap manager to perform special debugging operations, including checking for memory
leaks when the application exits and reporting if any are found, simulating low-memory conditions by specifying
that freed memory blocks should remain in the heap's linked list, and verifying the integrity of the heap by
inspecting each memory block at every allocation request. When _DEBUG is not defined, calls to
_CrtSetDbgFlag are removed during preprocessing.

The following table lists the bit fields for _crtDbgFlag and describes their behavior. Because setting the bits
results in increased diagnostic output and reduced program execution speed, these bits are not set (turned off)
by default. For more information about these bit fields, see Heap State Reporting Functions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtsetdbgflag.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

_CRTDBG_CHECK_ALWAYS_DF OFF ON: Call _CrtCheckMemory at every
allocation and deallocation request.
OFF: _CrtCheckMemory must be
called explicitly.

Heap-frequency check macros have no
effect when this flag is set.

_CRTDBG_CHECK_CRT_DF OFF ON: Include _CRT_BLOCK types in leak
detection and memory state difference
operations. OFF: Memory used
internally by the run-time library is
ignored by these operations.

Can also be combined with any of the
heap-frequency check macros.

_CRTDBG_DELAY_FREE_MEM_DF OFF ON: Keep freed memory blocks in the
heap's linked list, assign them the
_FREE_BLOCK type, and fill them with
the byte value 0xDD. OFF: Do not keep
freed blocks in the heap's linked list.

Can also be combined with any of the
heap-frequency check macros.

_CRTDBG_LEAK_CHECK_DF OFF ON: Perform automatic leak checking
at program exit through a call to
_CrtDumpMemoryLeaks and generate
an error report if the application failed
to free all the memory it allocated.
OFF: Do not automatically perform
leak checking at program exit.

Can also be combined with any of the
heap-frequency check macros.

BIT FIELD DEFAULT DESCRIPTION

MACRO
NUMBER OF MALLOC, REALLOC, FREE, AND _MSIZE CALLS
BETWEEN CALLS TO _CRTCHECKMEMORY

_CRTDBG_CHECK_EVERY_16_DF 16

_CRTDBG_CHECK_EVERY_128_DF 128

_CRTDBG_CHECK_EVERY_1024_DF 1024

_CRTDBG_CHECK_DEFAULT_DF 0 (by default, no heap checks)

Heap-Check Frequency Macros

You can specify how often the C run-time library performs validation of the debug heap (_CrtCheckMemory)
based on the number of calls to malloc, realloc, free, and _msize.

_CrtSetDbgFlag then inspects the upper 16 bits of the newFlag parameter for a value. The value specified is the
number of malloc, realloc, free, and _msize calls between _CrtCheckMemory calls. Four predefined macros
are provided for this purpose.

#include <crtdbg.h>
int main()
{
 int tmp;

 // Get the current bits
 tmp = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);

 // Clear the upper 16 bits and OR in the desired frequency
 tmp = (tmp & 0x0000FFFF) | _CRTDBG_CHECK_EVERY_16_DF;

 // Set the new bits
 _CrtSetDbgFlag(tmp);
}

To change one or more of these bit fields and create a new state for the flag

// Get the current state of the flag
// and store it in a temporary variable
int tmpFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);

// Turn On (OR) - Keep freed memory blocks in the
// heap's linked list and mark them as freed
tmpFlag |= _CRTDBG_DELAY_FREE_MEM_DF;

// Turn Off (AND) - prevent _CrtCheckMemory from
// being called at every allocation request
tmpFlag &= ~_CRTDBG_CHECK_ALWAYS_DF;

// Set the new state for the flag
_CrtSetDbgFlag(tmpFlag);

By default, _CrtCheckMemory is called once every 1,024 times you call malloc, realloc, free, and _msize.

For example, you could specify a heap check every 16 malloc, realloc, free, and _msize operations with the
following code:

The upper 16 bits of the newFlag parameter are ignored when _CRTDBG_CHECK_ALWAYS_DF is specified. In
this case, _CrtCheckMemory is called each time you call malloc, realloc, free, and _msize.

newFlag is the new state to apply to the _crtDbgFlag and is a combination of the values for each of the bit
fields.

1. Call _CrtSetDbgFlag with newFlag equal to _CRTDBG_REPORT_FLAG to obtain the current
_crtDbgFlag state and store the returned value in a temporary variable.

2. Turn on any bits by a bitwise OR of the temporary variable with the corresponding bitmasks (represented
in the application code by manifest constants).

3. Turn off the other bits by AND-ing the variable with a bitwise NOT of the appropriate bitmasks.

4. Call _CrtSetDbgFlag with newFlag equal to the value stored in the temporary variable to set the new
state for _crtDbgFlag.

The following code demonstrates how to simulate low-memory conditions by keeping freed memory blocks in
the heap's linked list and prevent _CrtCheckMemory from being called at every allocation request:

For an overview of memory management and the debug heap, see CRT Debug Heap Details.

To disable a flag with the _CrtSetDbgFlag function, you should AND the variable with the bitwise NOT of the
bitmask.

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

Requirements
ROUTINE REQUIRED HEADER

_CrtSetDbgFlag <crtdbg.h>

Libraries

Example

If newFlag is not a valid value, this function invokes the invalid parameter handler, as described in Parameter
Validation. If execution is allowed to continue, this function sets errno to EINVAL and returns the previous state
of _crtDbgFlag.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

// crt_crtsetdflag.c
// compile with: /c -D_DEBUG /MTd -Od -Zi -W3 /link -verbose:lib /debug

// This program concentrates on allocating and freeing memory
// blocks to test the functionality of the _crtDbgFlag flag.

#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

int main()
{
 char *p1, *p2;
 int tmpDbgFlag;

 _CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
 _CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDERR);

 // Set the debug-heap flag to keep freed blocks in the
 // heap's linked list - This will allow us to catch any
 // inadvertent use of freed memory
 tmpDbgFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
 tmpDbgFlag |= _CRTDBG_DELAY_FREE_MEM_DF;
 tmpDbgFlag |= _CRTDBG_LEAK_CHECK_DF;
 _CrtSetDbgFlag(tmpDbgFlag);

 // Allocate 2 memory blocks and store a string in each
 p1 = malloc(34);
 p2 = malloc(38);
 strcpy_s(p1, 34, "p1 points to a Normal allocation block");
 strcpy_s(p2, 38, "p2 points to a Client allocation block");

 // Free both memory blocks
 free(p2);
 free(p1);

 // Set the debug-heap flag to no longer keep freed blocks in the
 // heap's linked list and turn on Debug type allocations (CLIENT)
 tmpDbgFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
 tmpDbgFlag |= _CRTDBG_ALLOC_MEM_DF;
 tmpDbgFlag &= ~_CRTDBG_DELAY_FREE_MEM_DF;
 _CrtSetDbgFlag(tmpDbgFlag);

 // Explicitly call _malloc_dbg to obtain the filename and
 // line number of our allocation request and also so we can
 // allocate CLIENT type blocks specifically for tracking
 p1 = _malloc_dbg(40, _NORMAL_BLOCK, __FILE__, __LINE__);
 p2 = _malloc_dbg(40, _CLIENT_BLOCK, __FILE__, __LINE__);
 strcpy_s(p1, 40, "p1 points to a Normal allocation block");
 strcpy_s(p2, 40, "p2 points to a Client allocation block");

 // _free_dbg must be called to free the CLIENT block
 _free_dbg(p2, _CLIENT_BLOCK);
 free(p1);

 // Allocate p1 again and then exit - this will leave unfreed
 // memory on the heap
 p1 = malloc(10);
}

See also
Debug Routines
_crtDbgFlag
_CrtCheckMemory

_CrtSetDebugFillThreshold
10/31/2018 • 2 minutes to read • Edit Online

Syntax
size_t _CrtSetDebugFillThreshold(size_t newThreshold);

Parameters

Return value

Remarks

Retrieves or modifies the threshold controlling buffer-filling behavior in debug functions.

newThreshold
New threshold size in bytes.

The previous threshold value.

The debug versions of some security-enhanced CRT functions fill the buffer passed to them with a special
character (0xFE). This helps to find cases where the incorrect size was passed to the function. Unfortunately, it
also reduces performance. To improve performance, use _CrtSetDebugFillThreshold to disable buffer-filling
for buffers larger than the newThreshold threshold. A newThreshold value of 0 disables it for all buffers.

The default threshold is SIZE_T_MAX.

Here is a list of the affected functions.

_ecvt_s

_fcvt_s

_gcvt_s

_itoa_s, _ltoa_s, _ultoa_s, _i64toa_s, _ui64toa_s, _itow_s, _ltow_s, _ultow_s, _i64tow_s, _ui64tow_s

_makepath_s, _wmakepath_s

_mbsnbcat_s, _mbsnbcat_s_l

_mbsnbcpy_s, _mbsnbcpy_s_l

_mbsnbset_s, _mbsnbset_s_l

_splitpath_s, _wsplitpath_s

strcat_s, wcscat_s, _mbscat_s

strcpy_s, wcscpy_s, _mbscpy_s

strerror_s, _strerror_s, _wcserror_s, __wcserror_s

_strlwr_s, _strlwr_s_l, _mbslwr_s, _mbslwr_s_l, _wcslwr_s, _wcslwr_s_l

strncat_s, _strncat_s_l, wcsncat_s, _wcsncat_s_l, _mbsncat_s, _mbsncat_s_l

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtsetdebugfillthreshold.md

Requirements
ROUTINE REQUIRED HEADER

_CrtSetDebugFillThreshold <crtdbg.h>

Libraries

Example
// crt_crtsetdebugfillthreshold.c
// compile with: cl /MTd crt_crtsetdebugfillthreshold.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <crtdbg.h>

void Clear(char buff[], size_t size)
{
 for(int i=0; i<size; ++i)
 buff[i] = 0;
}

void Print(char buff[], size_t size)
{
 for(int i=0; i<size; ++i)
 printf("%02x %c\n", (unsigned char)buff[i], buff[i]);
}

int main(void)
{
 char buff[10];

 printf("With buffer-filling on:\n");
 strcpy_s(buff, _countof(buff), "howdy");
 Print(buff, _countof(buff));

 _CrtSetDebugFillThreshold(0);

 printf("With buffer-filling off:\n");
 Clear(buff, _countof(buff));
 strcpy_s(buff, _countof(buff), "howdy");
 Print(buff, _countof(buff));
}

strncpy_s, _strncpy_s_l, wcsncpy_s, _wcsncpy_s_l, _mbsncpy_s, _mbsncpy_s_l

_strnset_s, _strnset_s_l, _wcsnset_s, _wcsnset_s_l, _mbsnset_s, _mbsnset_s_l

_strset_s, _strset_s_l, _wcsset_s, _wcsset_s_l, _mbsset_s, _mbsset_s_l

_strupr_s, _strupr_s_l, _mbsupr_s, _mbsupr_s_l, _wcsupr_s, _wcsupr_s_l

This function is Microsoft-specific. For more compatibility information, see Compatibility.

Debug versions of the C run-time libraries only.

With buffer-filling on:
68 h
6f o
77 w
64 d
79 y
00
fe ■
fe ■
fe ■
fe ■
With buffer-filling off:
68 h
6f o
77 w
64 d
79 y
00
00
00
00
00

See also
Debug Routines

_CrtSetDumpClient
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_CRT_DUMP_CLIENT _CrtSetDumpClient(_CRT_DUMP_CLIENT dumpClient);

Parameters

Return Value

Remarks

void DumpClientFunction(void *userPortion, size_t blockSize);

typedef void (__cdecl *_CRT_DUMP_CLIENT)(void *, size_t);

Requirements

Installs an application-defined function to dump _CLIENT_BLOCK type memory blocks (debug version only).

dumpClient
New client-defined memory dump function to hook into the C run-time debug memory dump process.

Returns the previously defined client block dump function.

The _CrtSetDumpClient function allows the application to hook its own function to dump objects stored in
_CLIENT_BLOCK memory blocks into the C run-time debug memory dump process. As a result, every time a
debug dump function such as _CrtMemDumpAllObjectsSince or _CrtDumpMemoryLeaks dumps a
_CLIENT_BLOCK memory block, the application's dump function is called as well. _CrtSetDumpClient provides
an application with an easy method for detecting memory leaks and validating or reporting the contents of data
stored in _CLIENT_BLOCK blocks. When _DEBUG is not defined, calls to _CrtSetDumpClient are removed
during preprocessing.

The _CrtSetDumpClient function installs the new application-defined dump function specified in dumpClient
and returns the previously defined dump function. An example of a client block dump function is as follows:

The userPortion argument is a pointer to the beginning of the user data portion of the memory block and
blockSize specifies the size of the allocated memory block in bytes. The client block dump function must return
void. The pointer to the client dump function that is passed to _CrtSetDumpClient is of type
_CRT_DUMP_CLIENT, as defined in Crtdbg.h:

For more information about functions that operate on _CLIENT_BLOCK type memory blocks, see Client Block
Hook Functions. The _CrtReportBlockType function can be used to return information about block types and
subtypes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtsetdumpclient.md
https://docs.microsoft.com/visualstudio/debugger/client-block-hook-functions

ROUTINE REQUIRED HEADER

_CrtSetDumpClient <crtdbg.h>

Libraries

See also

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

Debug Routines
_CrtReportBlockType
_CrtGetDumpClient

_CrtSetReportFile
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_HFILE _CrtSetReportFile(
 int reportType,
 _HFILE reportFile
);

Parameters

Return Value

Remarks

After you use _CrtSetReportMode to specify _CRTDBG_MODE_FILE , you can specify the file handle to receive
the message text. _CrtSetReportFile is also used by _CrtDbgReport, _CrtDbgReportW to specify the destination
of text (debug version only).

reportType
Report type: _CRT_WARN , _CRT_ERROR, and _CRT_ASSERT.

reportFile
New report file for reportType.

On successful completion, _CrtSetReportFile returns the previous report file defined for the report type
specified in reportType. If an invalid value is passed in for reportType, this function invokes the invalid parameter
handler, as described in Parameter Validation. If execution is allowed to continue, errno is set to EINVAL and the
function returns _CRTDBG_HFILE_ERROR. For more information, see errno, _doserrno, _sys_errlist, and
_sys_nerr.

_CrtSetReportFile is used with the _CrtSetReportMode function to define the destination or destinations for a
specific report type generated by _CrtDbgReport. When _CrtSetReportMode has been called to assign the
_CRTDBG_MODE_FILE reporting mode for a specific report type, _CrtSetReportFile should then be called to
define the specific file or stream to use as the destination. When _DEBUG is not defined, calls to
_CrtSetReportFile are removed during preprocessing.

The following list shows the available choices for reportFile and the resulting behavior of _CrtDbgReport. These
options are defined as bit flags in Crtdbg.h.

file handle

A handle to the file that will be the destination for messages. No attempt is made to verify the validity of
the handle. You must open and close the handle to the file. For example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtsetreportfile.md

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_CrtSetReportFile <crtdbg.h> <errno.h>

See also

HANDLE hLogFile;
hLogFile = CreateFile("c:\\log.txt", GENERIC_WRITE,
 FILE_SHARE_WRITE, NULL, CREATE_ALWAYS,
 FILE_ATTRIBUTE_NORMAL, NULL);
_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, hLogFile);

_RPT0(_CRT_WARN,"file message\n");
CloseHandle(hLogFile);

freopen("c:\\log2.txt", "w", stderr);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDERR);

_RPT0(_CRT_ERROR,"1st message\n");

_CRTDBG_FILE_STDERR

Writes message to stderr, which can be redirected as follows:

_CRTDBG_FILE_STDOUT

Writes message to stdout, which you can redirect.

_CRTDBG_REPORT_FILE

Returns the current report mode.

The report file used by each report type can be separately controlled. For example, it is possible to specify that a
reportType of _CRT_ERROR be reported to stderr, while a reportType of _CRT_ASSERT be reported to a user-
defined file handle or stream.

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that are
associated with the console, stdin, stdout, and stderr, must be redirected before C run-time functions can use
them in UWP apps. For more compatibility information, see Compatibility.

Libraries: Debug versions of CRT Library Features only.

Debug Routines

_CrtSetReportHook
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_CRT_REPORT_HOOK _CrtSetReportHook(
 _CRT_REPORT_HOOK reportHook
);

Parameters

Return Value

Remarks

int YourReportHook(int reportType, char *message, int *returnValue);

Installs a client-defined reporting function by hooking it into the C run-time debug reporting process (debug
version only).

reportHook
New client-defined reporting function to hook into the C run-time debug reporting process.

Returns the previous client-defined reporting function.

_CrtSetReportHook allows an application to use its own reporting function into the C run-time debug library
reporting process. As a result, whenever _CrtDbgReport is called to generate a debug report, the application's
reporting function is called first. This functionality enables an application to perform operations such as filtering
debug reports so it can focus on specific allocation types or send a report to destinations not available by using
_CrtDbgReport. When _DEBUG is not defined, calls to _CrtSetReportHook are removed during preprocessing.

For a more robust version of _CrtSetReportHook, see _CrtSetReportHook2.

The _CrtSetReportHook function installs the new client-defined reporting function specified in reportHook and
returns the previous client-defined hook. The following example demonstrates how a client-defined report hook
should be prototyped:

where reportType is the debug report type (_CRT_WARN , _CRT_ERROR, or _CRT_ASSERT), message is the fully
assembled debug user message to be contained in the report, and returnValue is the value specified by the
client-defined reporting function that should be returned by _CrtDbgReport. For a complete description of the
available report types, see the _CrtSetReportMode function.

If the client-defined reporting function completely handles the debug message such that no further reporting is
required, then the function should return TRUE . When the function returns FALSE , _CrtDbgReport is called to
generate the debug report using the current settings for the report type, mode, and file. In addition, by specifying
the _CrtDbgReport return value in returnValue, the application can also control whether a debug break occurs.
For a complete description of how the debug report is configured and generated, see _CrtSetReportMode,
_CrtSetReportFile, and _CrtDbgReport.

For more information about using other hook-capable run-time functions and writing your own client-defined
hook functions, see Debug Hook Function Writing.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtsetreporthook.md
https://docs.microsoft.com/visualstudio/debugger/debug-hook-function-writing

NOTE

Requirements
ROUTINE REQUIRED HEADER

_CrtSetReportHook <crtdbg.h>

Libraries

See also

If your application is compiled with /clr and the reporting function is called after the application has exited main, the CLR
will throw an exception if the reporting function calls any CRT functions.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

Debug Routines
_CrtGetReportHook

_CrtSetReportHook2, _CrtSetReportHookW2
10/31/2018 • 3 minutes to read • Edit Online

Syntax
int _CrtSetReportHook2(
 int mode,
 _CRT_REPORT_HOOK pfnNewHook
);
int _CrtSetReportHookW2(
 int mode,
 _CRT_REPORT_HOOKW pfnNewHook
);

Parameters

Return Value

Remarks

int YourReportHook(int reportType, wchar_t *message, int *returnValue);

Installs or uninstalls a client-defined reporting function by hooking it into the C run-time debug reporting process
(debug version only).

mode
The action to take: _CRT_RPTHOOK_INSTALL or _CRT_RPTHOOK_REMOVE .

pfnNewHook
Report hook to install or remove in the narrow-character or wide-character version of this function.

-1 if an error was encountered, with EINVAL or ENOMEM set; otherwise returns the reference count of
pfnNewHook after the call.

_CrtSetReportHook2 and _CrtSetReportHookW2 let you hook or unhook a function, whereas
_CrtSetReportHook only lets you hook a function.

_CrtSetReportHook2 or _CrtSetReportHookW2 should be used instead of _CrtSetReportHook when the
hook call is made in a DLL and when multiple DLLs might be loaded and setting their own hook functions. In such
a situation, DLLs can be unloaded in a different order than they were loaded and the hook function can be left
pointing at an unloaded DLL. Any debug output crashes the process if the hook functions were added with
_CrtSetReportHook.

Any hook functions added with _CrtSetReportHook are called if there are no hook functions added with
_CrtSetReportHook2 or _CrtSetReportHookW2 or if all hook functions added with _CrtSetReportHook2 and
_CrtSetReportHookW2 return FALSE .

The wide-character version of this function is available. The report hook functions take a string whose type (wide
or narrow characters) must match the version of this function used. Use the following function prototype for the
report hooks used with the wide-character version of this function:

Use the following prototype for the narrow-character report hooks:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtsetreporthook2-crtsetreporthookw2.md

int YourReportHook(int reportType, char *message, int *returnValue);

NOTE

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_CrtSetReportHook2 <crtdbg.h> <errno.h>

_CrtSetReportHookW2 <crtdbg.h> <errno.h>

Libraries

Example
// crt_setreporthook2.c
#include <windows.h>
#include <stdio.h>
#include <crtdbg.h>
#include <assert.h>

int __cdecl TestHook1(int nReportType, char* szMsg, int* pnRet)
{
 int nRet = FALSE;

 printf("CRT report hook 1.\n");
 printf("CRT report type is \"");
 switch (nReportType)
 {
 case _CRT_ASSERT:
 {
 printf("_CRT_ASSERT");
 // nRet = TRUE; // Always stop for this type of report
 break;
 }

 case _CRT_WARN:
 {
 printf("_CRT_WARN");
 break;
 }

 case _CRT_ERROR:
 {
 printf("_CRT_ERROR");
 break;
 }

These functions validate their parameters. If mode or pfnNewNook is invalid, these functions invoke the invalid
parameter handler, as described in Parameter Validation. If execution is allowed to continue, these functions set
errno to EINVAL and return -1.

If your application is compiled with /clr and the reporting function is called after the application has exited main, the CLR will
throw an exception if the reporting function calls any CRT functions.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

 }

 default:
 {
 printf("???Unknown???");
 break;
 }
 }

 printf("\".\nCRT report message is:\n\t");
 printf(szMsg);

 if (pnRet)
 *pnRet = 0;

 return nRet;
}

int __cdecl TestHook2(int nReportType, char* szMsg, int* pnRet)
{
 int nRet = FALSE;

 printf("CRT report hook 2.\n");
 printf("CRT report type is \"");
 switch (nReportType)
 {
 case _CRT_WARN:
 {
 printf("_CRT_WARN");
 break;
 }

 case _CRT_ERROR:
 {
 printf("_CRT_ERROR");
 break;
 }

 case _CRT_ASSERT:
 {
 printf("_CRT_ASSERT");
 nRet = TRUE; // Always stop for this type of report
 break;
 }

 default:
 {
 printf("???Unknown???");
 break;
 }
 }

 printf("\".\nCRT report message is: \t");
 printf(szMsg);

 if (pnRet)
 *pnRet = 0;
 // printf("CRT report code is %d.\n", *pnRet);
 return nRet;
}

int main(int argc, char* argv[])
{
 int nRet = 0;

 nRet = _CrtSetReportHook2(_CRT_RPTHOOK_INSTALL, TestHook1);
 printf("_CrtSetReportHook2(_CRT_RPTHOOK_INSTALL, TestHook1)"
 " returned %d\n", nRet);
 nRet = _CrtSetReportHook2(_CRT_RPTHOOK_INSTALL, TestHook2);

 printf("_CrtSetReportHook2(_CRT_RPTHOOK_INSTALL, TestHook2)"
 " returned %d\n", nRet);
 nRet = _CrtSetReportHook2(_CRT_RPTHOOK_INSTALL, TestHook2);
 printf("_CrtSetReportHook2(_CRT_RPTHOOK_INSTALL, TestHook2)"
 " returned %d\n", nRet);
 nRet = _CrtSetReportHook2(_CRT_RPTHOOK_REMOVE, TestHook1);
 printf("_CrtSetReportHook2(_CRT_RPTHOOK_REMOVE, TestHook1)"
 " returned %d\n", nRet);
 nRet = _CrtSetReportHook2(_CRT_RPTHOOK_INSTALL, TestHook1);
 printf("_CrtSetReportHook2(_CRT_RPTHOOK_INSTALL, TestHook1)"
 " returned %d\n", nRet);

 _ASSERT(0);

 nRet = _CrtSetReportHook2(_CRT_RPTHOOK_REMOVE, TestHook2);
 printf("_CrtSetReportHook2(_CRT_RPTHOOK_REMOVE, TestHook2)"
 " returned %d\n", nRet);
 nRet = _CrtSetReportHook2(_CRT_RPTHOOK_REMOVE, TestHook2);
 printf("_CrtSetReportHook2(_CRT_RPTHOOK_REMOVE, TestHook2)"
 " returned %d\n", nRet);
 nRet = _CrtSetReportHook2(_CRT_RPTHOOK_REMOVE, TestHook2);
 printf("_CrtSetReportHook2(_CRT_RPTHOOK_REMOVE, TestHook2)"
 " returned %d\n", nRet);
 nRet = _CrtSetReportHook2(_CRT_RPTHOOK_REMOVE, TestHook1);
 printf("_CrtSetReportHook2(_CRT_RPTHOOK_REMOVE, TestHook1)"
 " returned %d\n", nRet);

 return nRet;
}

Output

_CrtSetReportHook2(_CRT_RPTHOOK_INSTALL, TestHook1) returned 0
_CrtSetReportHook2(_CRT_RPTHOOK_INSTALL, TestHook2) returned 0
_CrtSetReportHook2(_CRT_RPTHOOK_INSTALL, TestHook2) returned 0
_CrtSetReportHook2(_CRT_RPTHOOK_REMOVE, TestHook1) returned 0
_CrtSetReportHook2(_CRT_RPTHOOK_INSTALL, TestHook1) returned 0
_CrtSetReportHook2(_CRT_RPTHOOK_REMOVE, TestHook2) returned 0
_CrtSetReportHook2(_CRT_RPTHOOK_REMOVE, TestHook2) returned 0
_CrtSetReportHook2(_CRT_RPTHOOK_REMOVE, TestHook2) returned 0
_CrtSetReportHook2(_CRT_RPTHOOK_REMOVE, TestHook1) returned 0

See also
Debug Routines

_CrtSetReportMode
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _CrtSetReportMode(
 int reportType,
 int reportMode
);

Parameters

Return Value

Remarks

Specifies the destination or destinations for a specific report type generated by _CrtDbgReport and any macros
that call _CrtDbgReport, _CrtDbgReportW, such as _ASSERT, _ASSERTE, _ASSERT_EXPR Macros, _ASSERT,
_ASSERTE, _ASSERT_EXPR Macros, _RPT, _RPTF, _RPTW, _RPTFW Macros, and _RPT, _RPTF, _RPTW,
_RPTFW Macros (debug version only).

reportType
Report type: _CRT_WARN , _CRT_ERROR, and _CRT_ASSERT.

reportMode
New report mode or modes for reportType.

On successful completion, _CrtSetReportMode returns the previous report mode or modes for the report type
specified in reportType. If an invalid value is passed in as reportType or an invalid mode is specified for
reportMode, _CrtSetReportMode invokes the invalid parameter handler as described in Parameter Validation.
If execution is allowed to continue, this function sets errno to EINVAL and returns -1. For more information,
see errno, _doserrno, _sys_errlist, and _sys_nerr.

_CrtSetReportMode specifies the output destination for _CrtDbgReport. Because the macros _ASSERT,
_ASSERTE, _RPT, and _RPTF call _CrtDbgReport, _CrtSetReportMode specifies the output destination of text
specified with those macros.

When _DEBUG is not defined, calls to _CrtSetReportMode are removed during preprocessing.

If you do not call _CrtSetReportMode to define the output destination of messages, then the following defaults
are in effect:

Assertion failures and errors are directed to a debug message window.

Warnings from Windows applications are sent to the debugger's output window.

Warnings from console applications are not displayed.

The following table lists the report types defined in Crtdbg.h.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crtsetreportmode.md

REPORT TYPE DESCRIPTION

_CRT_WARN Warnings, messages, and information that does not need
immediate attention.

_CRT_ERROR Errors, unrecoverable problems, and issues that require
immediate attention.

_CRT_ASSERT Assertion failures (asserted expressions that evaluate to
FALSE).

REPORT MODE _CRTDBGREPORT BEHAVIOR

_CRTDBG_MODE_DEBUG Writes the message to the debugger's output window.

_CRTDBG_MODE_FILE Writes the message to a user-supplied file handle.
_CrtSetReportFile should be called to define the specific file
or stream to use as the destination.

_CRTDBG_MODE_WNDW Creates a message box to display the message along with
the abort, Retry, and Ignore buttons.

_CRTDBG_REPORT_MODE Returns reportMode for the specified reportType:

1 _CRTDBG_MODE_FILE

2 _CRTDBG_MODE_DEBUG

4 _CRTDBG_MODE_WNDW

_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE | _CRTDBG_MODE_WNDW);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDERR);

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_CrtSetReportMode <crtdbg.h> <errno.h>

The _CrtSetReportMode function assigns the new report mode specified in reportMode to the report type
specified in reportType and returns the previously defined report mode for reportType. The following table lists
the available choices for reportMode and the resulting behavior of _CrtDbgReport. These options are defined
as bit flags in Crtdbg.h.

Each report type can be reported using one, two, or three modes or no mode at all. Therefore, it is possible to
have more than one destination defined for a single report type. For example, the following code fragment
causes assertion failures to be sent to both a debug message window and to stderr:

In addition, the reporting mode or modes for each report type can be separately controlled. For example, it is
possible to specify that a reportType of _CRT_WARN be sent to an output debug string, while _CRT_ASSERT
be displayed using a debug message window and sent to stderr, as previously illustrated.

For more compatibility information, see Compatibility.

Libraries: Debug versions of CRT Library Features only.

See also
Debug Routines

cscanf
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _cscanf instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cscanf.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_cscanf, _cscanf_l, _cwscanf, _cwscanf_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _cscanf(
 const char *format [,
 argument] ...
);
int _cscanf_l(
 const char *format,
 locale_t locale [,
 argument] ...
);
int _cwscanf(
 const wchar_t *format [,
 argument] ...
);
int _cwscanf_l(
 const wchar_t *format,
 locale_t locale [,
 argument] ...
);

Parameters

Return Value

Remarks

Reads formatted data from the console. More secure versions of these functions are available; see _cscanf_s,
_cscanf_s_l, _cwscanf_s, _cwscanf_s_l.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions
not supported in Universal Windows Platform apps.

format
Format-control string.

argument
Optional parameters.

locale
The locale to use.

The number of fields that were successfully converted and assigned. The return value does not include fields
that were read but not assigned. The return value is EOF for an attempt to read at end of file. This can occur
when keyboard input is redirected at the operating-system command-line level. A return value of 0 means that
no fields were assigned.

The _cscanf function reads data directly from the console into the locations given by argument. The _getche

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cscanf-cscanf-l-cwscanf-cwscanf-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcscanf _cscanf _cscanf _cwscanf

_tcscanf_l _cscanf_l _cscanf_l _cwscanf_l

Requirements
ROUTINE REQUIRED HEADER

_cscanf, _cscanf_l <conio.h>

_cwscanf, _cwscanf_l <conio.h> or <wchar.h>

Example
// crt_cscanf.c
// compile with: /c /W3
/* This program prompts for a string
* and uses _cscanf to read in the response.
* Then _cscanf returns the number of items
* matched, and the program displays that number.
*/

#include <stdio.h>
#include <conio.h>

int main(void)
{
 int result, i[3];

 _cprintf_s("Enter three integers: ");
 result = _cscanf("%i %i %i", &i[0], &i[1], &i[2]); // C4996
 // Note: _cscanf is deprecated; consider using _cscanf_s instead
 _cprintf_s("\r\nYou entered ");
 while(result--)
 _cprintf_s("%i ", i[result]);
 _cprintf_s("\r\n");
}

function is used to read characters. Each optional parameter must be a pointer to a variable with a type that
corresponds to a type specifier in format. The format controls the interpretation of the input fields and has the
same form and function as the format parameter for the scanf function. While _cscanf normally echoes the
input character, it does not do so if the last call was to _ungetch.

This function validates its parameters. If format is NULL, the invalid parameter handler is invoked, as described
in Parameter Validation. If execution is allowed to continue, errno is set to EINVAL and the function returns
EOF.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed
in instead of the current thread locale.

For more compatibility information, see Compatibility.

1 2 3

Enter three integers: 1 2 3
You entered 3 2 1

See also
Console and Port I/O
_cprintf, _cprintf_l, _cwprintf, _cwprintf_l
fscanf, _fscanf_l, fwscanf, _fwscanf_l
scanf_s, _scanf_s_l, wscanf_s, _wscanf_s_l
sscanf, _sscanf_l, swscanf, _swscanf_l

_cscanf_s, _cscanf_s_l, _cwscanf_s, _cwscanf_s_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _cscanf_s(
 const char *format [,
 argument] ...
);
int _cscanf_s_l(
 const char *format,
 locale_t locale [,
 argument] ...
);
int _cwscanf_s(
 const wchar_t *format [,
 argument] ...
);
int _cwscanf_s_l(
 const wchar_t *format,
 locale_t locale [,
 argument] ...
);

Parameters

Return Value

Reads formatted data from the console. These more secure versions of _cscanf, _cscanf_l, _cwscanf, _cwscanf_l
have security enhancements, as described in Security Features in the CRT.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

format
Format-control string.

argument
Optional parameters.

locale
The locale to use.

The number of fields that were successfully converted and assigned. The return value does not include fields that
were read but not assigned. The return value is EOF for an attempt to read at end of file. This can occur when
keyboard input is redirected at the operating-system command-line level. A return value of 0 means that no
fields were assigned.

These functions validate their parameters. If format is a null pointer, these functions invoke the invalid parameter
handler, as described in Parameter Validation. If execution is allowed to continue, these functions return EOF and
errno is set to EINVAL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cscanf-s-cscanf-s-l-cwscanf-s-cwscanf-s-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Remarks

NOTE

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcscanf_s _cscanf_s _cscanf_s _cwscanf_s

_tcscanf_s_l _cscanf_s_l _cscanf_s_l _cwscanf_s_l

Requirements
ROUTINE REQUIRED HEADER

_cscanf_s, _cscanf_s_l <conio.h>

_cwscanf_s, _cwscanf_s_l <conio.h> or <wchar.h>

Libraries

Example

The _cscanf_s function reads data directly from the console into the locations given by argument. The _getche
function is used to read characters. Each optional parameter must be a pointer to a variable with a type that
corresponds to a type specifier in format. The format controls the interpretation of the input fields and has the
same form and function as the format parameter for the scanf_s function. While _cscanf_s normally echoes the
input character, it does not do so if the last call was to _ungetch.

Like other secure versions of functions in the scanf family, _cscanf_s and _cswscanf_s require size arguments
for the type field characters c, C, s, S, and [. For more information, see scanf Width Specification.

The size parameter is of type unsigned, not size_t.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current thread locale.

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

// crt_cscanf_s.c
// compile with: /c
/* This program prompts for a string
* and uses _cscanf_s to read in the response.
* Then _cscanf_s returns the number of items
* matched, and the program displays that number.
*/

#include <stdio.h>
#include <conio.h>

int main(void)
{
 int result, n[3];
 int i;

 result = _cscanf_s("%i %i %i", &n[0], &n[1], &n[2]);
 _cprintf_s("\r\nYou entered ");
 for(i=0; i<result; i++)
 _cprintf_s("%i ", n[i]);
 _cprintf_s("\r\n");
}

1 2 3

You entered 1 2 3

See also
Console and Port I/O
_cprintf, _cprintf_l, _cwprintf, _cwprintf_l
fscanf_s, _fscanf_s_l, fwscanf_s, _fwscanf_s_l
scanf_s, _scanf_s_l, wscanf_s, _wscanf_s_l
sscanf_s, _sscanf_s_l, swscanf_s, _swscanf_s_l

csin, csinf, csinl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_Dcomplex csin(
 _Dcomplex z
);
_Fcomplex csin(
 _Fcomplex z
); // C++ only
_Lcomplex csin(
 _Lcomplex z
); // C++ only
_Fcomplex csinf(
 _Fcomplex z
);
_Lcomplex csinl(
 _Lcomplex z
);

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

csin, csinf, csinl <complex.h> <ccomplex>

See also

Retrieves the sine of a complex number.

z
A complex number that represents an angle, in radians.

The sine of z, in radians.

Because C++ allows overloading, you can call overloads of csin that take and return _Fcomplex and
_Lcomplex values. In a C program, csin always takes and returns a _Dcomplex value.

For more compatibility information, see Compatibility.

Alphabetical Function Reference
catanh, catanhf, catanhl
ctanh, ctanhf, ctanhl
catan, catanf, catanl
csinh, csinhf, csinhl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/csin-csinf-csinl.md

casinh, casinhf, casinhl
ccosh, ccoshf, ccoshl
cacosh, cacoshf, cacoshl
cacos, cacosf, cacosl
ctan, ctanf, ctanl
casin, casinf, casinl
ccos, ccosf, ccosl
csqrt, csqrtf, csqrtl

csinh, csinhf, csinhl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_Dcomplex csinh(
 _Dcomplex z
);
_Fcomplex csinh(
 _Fcomplex z
); // C++ only
_Lcomplex csinh(
 _Lcomplex z
); // C++ only
_Fcomplex csinhf(
 _Fcomplex z
);
_Lcomplex csinhl(
 _Lcomplex z
);

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

csinh, csinhf, csinhl <complex.h> <ccomplex>

See also

Retrieves the hyperbolic sine of a complex number.

z
A complex number that represents an angle, in radians.

The hyperbolic sine of z, in radians.

Because C++ allows overloading, you can call overloads of csinh that take and return _Fcomplex and
_Lcomplex values. In a C program, csinh always takes and returns a _Dcomplex value.

For more compatibility information, see Compatibility.

Alphabetical Function Reference
catanh, catanhf, catanhl
ctanh, ctanhf, ctanhl
catan, catanf, catanl
casinh, casinhf, casinhl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/csinh-csinhf-csinhl.md

ccosh, ccoshf, ccoshl
cacosh, cacoshf, cacoshl
cacos, cacosf, cacosl
ctan, ctanf, ctanl
csin, csinf, csinl
casin, casinf, casinl
ccos, ccosf, ccosl
csqrt, csqrtf, csqrtl

csqrt, csqrtf, csqrtl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_Dcomplex csqrt(
 _Dcomplex z
);
_Fcomplex csqrt(
 _Fcomplex z
); // C++ only
_Lcomplex csqrt(
 _Lcomplex z
); // C++ only
_Fcomplex csqrtf(
 _Fcomplex z
);
_Lcomplex csqrtl(
 _Lcomplex z
);

Parameters

Return Value

INPUT SEH EXCEPTION _MATHERR EXCEPTION

± QNAN, IND none _DOMAIN

- ∞ none _DOMAIN

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

csqrt, csqrtf, csqrtl <complex.h> <ccomplex>

See also

Retrieves the square root of a complex number, with a branch cut along the negative real axis.

z
A complex number.

The square root of z. The result is in the right half-plane.

Because C++ allows overloading, you can call overloads of csqrt that take and return _Fcomplex and
_Lcomplex values. In a C program, csqrt always takes and returns a _Dcomplex value.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/csqrt-csqrtf-csqrtl.md

Alphabetical Function Reference
catanh, catanhf, catanhl
ctanh, ctanhf, ctanhl
catan, catanf, catanl
csinh, csinhf, csinhl
casinh, casinhf, casinhl
ccosh, ccoshf, ccoshl
cacosh, cacoshf, cacoshl
cacos, cacosf, cacosl
ctan, ctanf, ctanl
csin, csinf, csinl
casin, casinf, casinl
ccos, ccosf, ccosl

ctan, ctanf, ctanl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_Dcomplex ctan(
 _Dcomplex z
);
_Fcomplex ctan(
 _Fcomplex z
); // C++ only
_Lcomplex ctan(
 _Lcomplex z
); // C++ only
_Fcomplex ctanf(
 _Fcomplex z
);
_Lcomplex ctanl(
 _Lcomplex z
);

Parameters

Return Value

INPUT SEH EXCEPTION _MATHERR EXCEPTION

± ∞, QNAN, IND none _DOMAIN

± ∞ (tan, tanf) INVALID _DOMAIN

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

ctan, ctanf, ctanl <complex.h> <ccomplex>

See also

Retrieves the tangent of a complex number.

z
A complex number that represents the angle, in radians.

The tangent of z.

Because C++ allows overloading, you can call overloads of ctan that take and return _Fcomplex and
_Lcomplex values. In a C program, ctan always takes and returns a _Dcomplex value.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ctan-ctanf-ctanl.md

Alphabetical Function Reference
catanh, catanhf, catanhl
ctanh, ctanhf, ctanhl
catan, catanf, catanl
csinh, csinhf, csinhl
casinh, casinhf, casinhl
ccosh, ccoshf, ccoshl
cacosh, cacoshf, cacoshl
cacos, cacosf, cacosl
csin, csinf, csinl
casin, casinf, casinl
ccos, ccosf, ccosl
csqrt, csqrtf, csqrtl

ctanh, ctanhf, ctanhl
2/4/2019 • 2 minutes to read • Edit Online

Syntax
_Dcomplex ctanh(
 _Dcomplex z
);
_Fcomplex ctanh(
 _Fcomplex z
); // C++ only
_Lcomplex ctanh(
 _Lcomplex z
); // C++ only
_Fcomplex ctanhf(
 _Fcomplex z
);
_Lcomplex ctanhl(
 _Lcomplex z
);

Parameters

Return Value

INPUT SEH EXCEPTION _MATHERR EXCEPTION

± ∞, QNAN, IND none _DOMAIN

± ∞ (tan, tanf) INVALID _DOMAIN

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

ctanh, ctanhf, ctanhl <complex.h> <ccomplex>

See also

Computes the complex hyperbolic tangent of a complex number.

z
A complex number that represents an angle, in radians.

The complex hyperbolic tangent of z.

Because C++ allows overloading, you can call overloads of ctanh that take and return _Fcomplex and
_Lcomplex values. In a C program, ctanh always takes and returns a _Dcomplex value.

For compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ctanh-ctanhf-ctanhl.md

Alphabetical Function Reference
catanh, catanhf, catanhl
catan, catanf, catanl
csinh, csinhf, csinhl
casinh, casinhf, casinhl
ccosh, ccoshf, ccoshl
cacosh, cacoshf, cacoshl
cacos, cacosf, cacosl
ctan, ctanf, ctanl
csin, csinf, csinl
casin, casinf, casinl
ccos, ccosf, ccosl
csqrt, csqrtf, csqrtl

ctime, _ctime32, _ctime64, _wctime, _wctime32,
_wctime64
10/31/2018 • 2 minutes to read • Edit Online

Syntax
char *ctime(const time_t *sourceTime);
char *_ctime32(const __time32_t *sourceTime);
char *_ctime64(const __time64_t *sourceTime);
wchar_t *_wctime(const time_t *sourceTime);
wchar_t *_wctime32(const __time32_t *sourceTime);
wchar_t *_wctime64(const __time64_t *sourceTime);

Parameters

Return Value

Remarks

Wed Jan 02 02:03:55 1980\n\0

Convert a time value to a string and adjust for local time zone settings. More secure versions of these
functions are available; see ctime_s, _ctime32_s, _ctime64_s, _wctime_s, _wctime32_s, _wctime64_s.

sourceTime
Pointer to stored time to convert.

A pointer to the character string result. NULL will be returned if:

sourceTime represents a date before midnight, January 1, 1970, UTC.

If you use _ctime32 or _wctime32 and sourceTime represents a date after 23:59:59 January 18, 2038,
UTC.

If you use _ctime64 or _wctime64 and sourceTime represents a date after 23:59:59, December 31,
3000, UTC.

ctime is an inline function which evaluates to _ctime64 and time_t is equivalent to __time64_t. If you need
to force the compiler to interpret time_t as the old 32-bit time_t, you can define _USE_32BIT_TIME_T.
Doing this will cause ctime to evaluate to _ctime32. This is not recommended because your application may
fail after January 18, 2038, and it is not allowed on 64-bit platforms.

The ctime function converts a time value stored as a time_t value into a character string. The sourceTime
value is usually obtained from a call to time, which returns the number of seconds elapsed since midnight
(00:00:00), January 1, 1970, coordinated universal time (UTC). The return value string contains exactly 26
characters and has the form:

A 24-hour clock is used. All fields have a constant width. The newline character ('\n') and the null character
('\0') occupy the last two positions of the string.

The converted character string is also adjusted according to the local time zone settings. See the time, _ftime,

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ctime-ctime32-ctime64-wctime-wctime32-wctime64.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tctime ctime ctime _wctime

_tctime32 _ctime32 _ctime32 _wctime32

_tctime64 _ctime64 _ctime64 _wctime64

Requirements
ROUTINE REQUIRED HEADER

ctime <time.h>

_ctime32 <time.h>

_ctime64 <time.h>

_wctime <time.h> or <wchar.h>

_wctime32 <time.h> or <wchar.h>

_wctime64 <time.h> or <wchar.h>

Example

and localtime functions for information on configuring the local time and the _tzset function for details about
defining the time zone environment and global variables.

A call to ctime modifies the single statically allocated buffer used by the gmtime and localtime functions.
Each call to one of these routines destroys the result of the previous call. ctime shares a static buffer with the
asctime function. Thus, a call to ctime destroys the results of any previous call to asctime, localtime, or
gmtime.

_wctime and _wctime64 are the wide-character version of ctime and _ctime64; returning a pointer to wide-
character string. Otherwise, _ctime64, _wctime, and _wctime64 behave identically to ctime.

These functions validate their parameters. If sourceTime is a null pointer, or if the sourceTime value is negative,
these functions invoke the invalid parameter handler, as described in Parameter Validation. If execution is
allowed to continue, the functions return NULL and set errno to EINVAL.

For additional compatibility information, see Compatibility.

// crt_ctime64.c
// compile with: /W3
/* This program gets the current
* time in _time64_t form, then uses ctime to
* display the time in string form.
*/

#include <time.h>
#include <stdio.h>

int main(void)
{
 __time64_t ltime;

 _time64(<ime);
 printf("The time is %s\n", _ctime64(<ime)); // C4996
 // Note: _ctime64 is deprecated; consider using _ctime64_s
}

The time is Wed Feb 13 16:04:43 2002

See also
Time Management
asctime, _wasctime
ctime_s, _ctime32_s, _ctime64_s, _wctime_s, _wctime32_s, _wctime64_s
_ftime, _ftime32, _ftime64
gmtime, _gmtime32, _gmtime64
localtime, _localtime32, _localtime64
time, _time32, _time64

ctime_s, _ctime32_s, _ctime64_s, _wctime_s,
_wctime32_s, _wctime64_s
10/31/2018 • 3 minutes to read • Edit Online

Syntax
errno_t ctime_s(
 char* buffer,
 size_t numberOfElements,
 const time_t *sourceTime
);
errno_t _ctime32_s(
 char* buffer,
 size_t numberOfElements,
 const __time32_t *sourceTime
);
errno_t _ctime64_s(
 char* buffer,
 size_t numberOfElements,
 const __time64_t *sourceTime)
;
errno_t _wctime_s(
 wchar_t* buffer,
 size_t numberOfElements,
 const time_t *sourceTime
);
errno_t _wctime32_s(
 wchar_t* buffer,
 size_t numberOfElements,
 const __time32_t *sourceTime
);
errno_t _wctime64_s(
 wchar_t* buffer,
 size_t numberOfElements,
 const __time64_t *sourceTime
);

Convert a time value to a string and adjust for local time zone settings. These are versions of ctime, _ctime64,
_wctime, _wctime64 with security enhancements as described in Security Features in the CRT.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ctime-s-ctime32-s-ctime64-s-wctime-s-wctime32-s-wctime64-s.md

template <size_t size>
errno_t _ctime32_s(
 char (&buffer)[size],
 const __time32_t *sourceTime
); // C++ only
template <size_t size>
errno_t _ctime64_s(
 char (&buffer)[size],
 const __time64_t *sourceTime
); // C++ only
template <size_t size>
errno_t _wctime32_s(
 wchar_t (&buffer)[size],
 const __time32_t *sourceTime
); // C++ only
template <size_t size>
errno_t _wctime64_s(
 wchar_t (&buffer)[size],
 const __time64_t *sourceTime
); // C++ only

Parameters

Return Value

Error Conditions
BUFFER NUMBEROFELEMENTS SOURCETIME RETURN VALUE IN BUFFER

NULL any any EINVAL Not modified

Not NULL (points to
valid memory)

0 any EINVAL Not modified

buffer
Must be large enough to hold 26 characters. A pointer to the character string result, or NULL if:

sourceTime represents a date before midnight, January 1, 1970, UTC.

If you use _ctime32_s or _wctime32_s and sourceTime represents a date after 23:59:59 January 18,
2038, UTC.

If you use _ctime64_s or _wctime64_s and sourceTime represents a date after 23:59:59, December 31,
3000, UTC.

If you use _ctime_s or _wctime_s, these functions are wrappers to the previous functions. See the
Remarks section.

numberOfElements
The size of the buffer.

sourceTime
Pointer to stored time.

Zero if successful. If there is a failure due to an invalid parameter, the invalid parameter handler is invoked, as
described in Parameter Validation. If execution is allowed to continue, an error code is returned. Error codes are
defined in ERRNO.H; for a listing of these errors, see errno. The actual error codes thrown for each error
condition are shown in the following table.

Not NULL 0< size < 26 any EINVAL Empty string

Not NULL >= 26 NULL EINVAL Empty string

Not NULL >= 26 < 0 EINVAL Empty string

BUFFER NUMBEROFELEMENTS SOURCETIME RETURN VALUE IN BUFFER

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tctime_s ctime_s ctime_s _wctime_s

_tctime32_s _ctime32_s _ctime32_s _wctime32_s

_tctime64_s _ctime64_s _ctime64_s _wctime64_s

Requirements
ROUTINE REQUIRED HEADER

ctime_s, _ctime32_s, _ctime64_s <time.h>

The ctime_s function converts a time value stored as a time_t structure into a character string. The sourceTime
value is usually obtained from a call to time, which returns the number of seconds elapsed since midnight
(00:00:00), January 1, 1970, coordinated universal time (UTC). The return value string contains exactly 26
characters and has the form:

Wed Jan 02 02:03:55 1980\n\0

A 24-hour clock is used. All fields have a constant width. The new line character ('\n') and the null character
('\0') occupy the last two positions of the string.

The converted character string is also adjusted according to the local time zone settings. See the time, _ftime,
and localtime32_s functions for information about configuring the local time and the _tzset function for
information about defining the time zone environment and global variables.

_wctime32_s and _wctime64_s are the wide-character version of _ctime32_s and _ctime64_s; returning a
pointer to wide-character string. Otherwise, _ctime64_s, _wctime32_s, and _wctime64_s behave identically to
_ctime32_s.

ctime_s is an inline function that evaluates to _ctime64_s and time_t is equivalent to __time64_t. If you need
to force the compiler to interpret time_t as the old 32-bit time_t, you can define _USE_32BIT_TIME_T. Doing
this will cause ctime_s to evaluate to _ctime32_s. This is not recommended because your application may fail
after January 18, 2038, and it is not allowed on 64-bit platforms.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically, eliminating the need to specify a size argument. For more information, see Secure Template
Overloads.

_wctime_s, _wctime32_s, _wctime64_s <time.h> or <wchar.h>

ROUTINE REQUIRED HEADER

Libraries

Example
// crt_wctime_s.c
// This program gets the current
// time in time_t form and then uses _wctime_s to
// display the time in string form.

#include <time.h>
#include <stdio.h>

#define SIZE 26

int main(void)
{
 time_t ltime;
 wchar_t buf[SIZE];
 errno_t err;

 time(<ime);

 err = _wctime_s(buf, SIZE, <ime);
 if (err != 0)
 {
 printf("Invalid Arguments for _wctime_s. Error Code: %d\n", err);
 }
 wprintf_s(L"The time is %s\n", buf);
}

The time is Fri Apr 25 13:03:39 2003

See also

For additional compatibility information, see Compatibility.

All versions of the C run-time libraries.

Time Management
asctime_s, _wasctime_s
ctime, _ctime32, _ctime64, _wctime, _wctime32, _wctime64
_ftime, _ftime32, _ftime64
gmtime_s, _gmtime32_s, _gmtime64_s
localtime_s, _localtime32_s, _localtime64_s
time, _time32, _time64

cwait
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _cwait instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-cwait.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_cwait
10/31/2018 • 3 minutes to read • Edit Online

IMPORTANT

Syntax
intptr_t _cwait(
 int *termstat,
 intptr_t procHandle,
 int action
);

Parameters

Return Value

VALUE DESCRIPTION

ECHILD No specified process exists, procHandle is invalid, or the call
to the GetExitCodeProcess or WaitForSingleObject API failed.

EINVAL action is invalid.

Remarks

Waits until another process terminates.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

termstat
Pointer to a buffer where the result code of the specified process will be stored, or NULL.

procHandle
The handle to the process to wait on (that is, the process that has to terminate before _cwait can return).

action
NULL: Ignored by Windows operating system applications; for other applications: action code to perform on
procHandle.

When the specified process has successfully completed, returns the handle of the specified process and sets
termstat to the result code that's returned by the specified process. Otherwise, returns -1 and sets errno as
follows.

For more information about these and other return codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

The _cwait function waits for the termination of the process ID of the specified process that's provided by
procHandle. The value of procHandle that's passed to _cwait should be the value that's returned by the call to the
_spawn function that created the specified process. If the process ID terminates before _cwait is called, _cwait
returns immediately. _cwait can be used by any process to wait for any other known process for which a valid

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cwait.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-getexitcodeprocess
https://docs.microsoft.com/windows/desktop/api/synchapi/nf-synchapi-waitforsingleobject

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_cwait <process.h> <errno.h>

Example

handle (procHandle) exists.

termstat points to a buffer where the return code of the specified process will be stored. The value of termstat
indicates whether the specified process terminated normally by calling the Windows ExitProcess API.
ExitProcess is called internally if the specified process calls exit or _exit, returns from main, or reaches the end
of main. For more information about the value that's passed back through termstat, see GetExitCodeProcess. If
_cwait is called by using a NULL value for termstat, the return code of the specified process is not stored.

The action parameter is ignored by the Windows operating system because parent-child relationships are not
implemented in these environments.

Unless procHandle is -1 or -2 (handles to the current process or thread), the handle will be closed. Therefore, in
this situation, do not use the returned handle.

For more compatibility information, see Compatibility.

https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-exitprocess
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-getexitcodeprocess

// crt_cwait.c
// compile with: /c
// This program launches several processes and waits
// for a specified process to finish.

#define _CRT_RAND_S

#include <windows.h>
#include <process.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

// Macro to get a random integer within a specified range
#define getrandom(min, max) (((rand_s (&number), number) % (int)(((max) + 1) - (min))) + (min))

struct PROCESS
{
 int nPid;
 char name[40];
} process[4] = { { 0, "Ann" }, { 0, "Beth" }, { 0, "Carl" }, { 0, "Dave" } };

int main(int argc, char *argv[])
{
 int termstat, c;
 unsigned int number;

 srand((unsigned)time(NULL)); // Seed randomizer

 // If no arguments, this is the calling process
 if (argc == 1)
 {
 // Spawn processes in numeric order
 for (c = 0; c < 4; c++) {
 _flushall();
 process[c].nPid = _spawnl(_P_NOWAIT, argv[0], argv[0],
 process[c].name, NULL);
 }

 // Wait for randomly specified process, and respond when done
 c = getrandom(0, 3);
 printf("Come here, %s.\n", process[c].name);
 _cwait(&termstat, process[c].nPid, _WAIT_CHILD);
 printf("Thank you, %s.\n", process[c].name);

 }
 // If there are arguments, this must be a spawned process
 else
 {
 // Delay for a period that's determined by process number
 Sleep((argv[1][0] - 'A' + 1) * 1000L);
 printf("Hi, Dad. It's %s.\n", argv[1]);
 }
}

Hi, Dad. It's Ann.
Come here, Ann.
Thank you, Ann.
Hi, Dad. It's Beth.
Hi, Dad. It's Carl.
Hi, Dad. It's Dave.

See also

Process and Environment Control
_spawn, _wspawn Functions

_CxxThrowException
10/31/2018 • 2 minutes to read • Edit Online

Syntax
extern "C" void __stdcall _CxxThrowException(
 void* pExceptionObject
 _ThrowInfo* pThrowInfo
);

Parameters

Remarks

Requirements

See also

Builds the exception record and calls the runtime environment to start processing the exception.

pExceptionObject
The object that generated the exception.

pThrowInfo
The information that is required to process the exception.

This method is included in a compiler-only file that the compiler uses to process exceptions. Do not call the method
directly from your code.

Source: Throw.cpp

Alphabetical Function Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/cxxthrowexception.md

difftime, _difftime32, _difftime64
11/8/2018 • 2 minutes to read • Edit Online

Syntax
double difftime(time_t timeEnd, time_t timeStart);
double _difftime32(__time32_t timeEnd, __time32_t timeStart);
double _difftime64(__time64_t timeEnd, __time64_t timeStart);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

difftime <time.h>

_difftime32 <time.h>

_difftime64 <time.h>

Finds the difference between two times.

timeEnd
Ending time.

timeStart
Beginning time.

difftime returns the elapsed time in seconds, from timeStart to timeEnd. The value returned is a double precision
floating-point number. The return value may be 0, indicating an error.

The difftime function computes the difference between the two supplied time values timeStart and timeEnd.

The time value supplied must fit within the range of time_t. time_t is a 64-bit value. Thus, the end of the range
was extended from 23:59:59 January 18, 2038, UTC to 23:59:59, December 31, 3000. The lower range of time_t
is still midnight, January 1, 1970.

difftime is an inline function that evaluates to either _difftime32 or _difftime64 depending on whether
_USE_32BIT_TIME_T is defined. _difftime32 and _difftime64 can be used directly to force the use of a particular
size of the time type.

These functions validate their parameters. If either of the parameters is zero or negative, the invalid parameter
handler is invoked, as described in Parameter Validation. If execution is allowed to continue, these functions return
0 and set errno to EINVAL.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/difftime-difftime32-difftime64.md

Example
// crt_difftime.c
// This program calculates the amount of time
// needed to do a floating-point multiply 100 million times.
//

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <float.h>

double RangedRand(float range_min, float range_max)
{
 // Generate random numbers in the half-closed interval
 // [range_min, range_max). In other words,
 // range_min <= random number < range_max
 return ((double)rand() / (RAND_MAX + 1) * (range_max - range_min)
 + range_min);
}

int main(void)
{
 time_t start, finish;
 long loop;
 double result, elapsed_time;
 double arNums[3];

 // Seed the random-number generator with the current time so that
 // the numbers will be different every time we run.
 srand((unsigned)time(NULL));

 arNums[0] = RangedRand(1, FLT_MAX);
 arNums[1] = RangedRand(1, FLT_MAX);
 arNums[2] = RangedRand(1, FLT_MAX);
 printf("Using floating point numbers %.5e %.5e %.5e\n", arNums[0], arNums[1], arNums[2]);

 printf("Multiplying 2 numbers 100 million times...\n");

 time(&start);
 for(loop = 0; loop < 100000000; loop++)
 result = arNums[loop%3] * arNums[(loop+1)%3];
 time(&finish);

 elapsed_time = difftime(finish, start);
 printf("\nProgram takes %6.0f seconds.\n", elapsed_time);
}

Using random floating point numbers 1.04749e+038 2.01482e+038 1.72737e+038
Multiplying 2 floating point numbers 100 million times...
Program takes 3 seconds.

See also
Floating-Point Support
Time Management
time, _time32, _time64

div, ldiv, lldiv
10/31/2018 • 2 minutes to read • Edit Online

Syntax
div_t div(
 int numer,
 int denom
);
ldiv_t ldiv(
 long numer,
 long denom
);
lldiv_t lldiv(
 long long numer,
 long long denom
);

ldiv_t div(
 long numer,
 long denom
); /* C++ only */
lldiv_t div(
 long long numer,
 long long denom
); /* C++ only */

Parameters

Return Value

Remarks

Computes the quotient and the remainder of two integer values.

numer
The numerator.

denom
The denominator.

div called by using arguments of type int returns a structure of type div_t, which comprises the quotient and the
remainder. The return value with arguments of type long is ldiv_t, and the return value with arguments of type
long long is lldiv_t. div_t, ldiv_t, and lldiv_t are defined in <stdlib.h>.

The div function divides numer by denom and thereby computes the quotient and the remainder. The div_t
structure contains the quotient, quot, and the remainder, rem. The sign of the quotient is the same as that of the
mathematical quotient. Its absolute value is the largest integer that is less than the absolute value of the
mathematical quotient. If the denominator is 0, the program terminates with an error message.

The overloads of div that take arguments of type long or long long are only available to C++ code. The return
types ldiv_t and lldiv_t contains members quot and rem, which have the same meanings as the members of div_t.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/div.md

Requirements
ROUTINE REQUIRED HEADER

div, ldiv, lldiv <stdlib.h>

Example
// crt_div.c
// arguments: 876 13

// This example takes two integers as command-line
// arguments and displays the results of the integer
// division. This program accepts two arguments on the
// command line following the program name, then calls
// div to divide the first argument by the second.
// Finally, it prints the structure members quot and rem.
//

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

int main(int argc, char *argv[])
{
 int x,y;
 div_t div_result;

 x = atoi(argv[1]);
 y = atoi(argv[2]);

 printf("x is %d, y is %d\n", x, y);
 div_result = div(x, y);
 printf("The quotient is %d, and the remainder is %d\n",
 div_result.quot, div_result.rem);
}

x is 876, y is 13
The quotient is 67, and the remainder is 5

See also

For additional compatibility information, see Compatibility.

Floating-Point Support
ldiv, lldiv
imaxdiv

dup, dup2
10/31/2018 • 2 minutes to read • Edit Online

These POSIX functions are deprecated. Use the ISO C++ conformant _dup, _dup2 instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-dup-dup2.md

_dup, _dup2
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _dup(int fd);
int _dup2(int fd1, int fd2);

Parameters

Return Value

Remarks

int cstderr = _dup(_fileno(stderr));

Requirements
ROUTINE REQUIRED HEADER

_dup <io.h>

_dup2 <io.h>

Creates a second file descriptor for an open file (_dup), or reassigns a file descriptor (_dup2).

fd, fd1
File descriptors referring to open file.

fd2
Any file descriptor.

_dup returns a new file descriptor. _dup2 returns 0 to indicate success. If an error occurs, each function returns -
1 and sets errno to EBADF if the file descriptor is invalid or to EMFILE if no more file descriptors are available.
In the case of an invalid file descriptor, the function also invokes the invalid parameter handler, as described in
Parameter Validation.

For more information about these and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The _dup and _dup2 functions associate a second file descriptor with a currently open file. These functions can
be used to associate a predefined file descriptor, such as that for stdout, with a different file. Operations on the
file can be carried out using either file descriptor. The type of access allowed for the file is unaffected by the
creation of a new descriptor. _dup returns the next available file descriptor for the given file. _dup2 forces fd2 to
refer to the same file as fd1. If fd2 is associated with an open file at the time of the call, that file is closed.

Both _dup and _dup2 accept file descriptors as parameters. To pass a stream (FILE *) to either of these
functions, use _fileno. The fileno routine returns the file descriptor currently associated with the given stream.
The following example shows how to associate stderr (defined as FILE * in Stdio.h) with a file descriptor:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/dup-dup2.md

Example
// crt_dup.c
// This program uses the variable old to save
// the original stdout. It then opens a new file named
// DataFile and forces stdout to refer to it. Finally, it
// restores stdout to its original state.

#include <io.h>
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 int old;
 FILE *DataFile;

 old = _dup(1); // "old" now refers to "stdout"
 // Note: file descriptor 1 == "stdout"
 if(old == -1)
 {
 perror("_dup(1) failure");
 exit(1);
 }
 _write(old, "This goes to stdout first\n", 26);
 if(fopen_s(&DataFile, "data", "w") != 0)
 {
 puts("Can't open file 'data'\n");
 exit(1);
 }

 // stdout now refers to file "data"
 if(-1 == _dup2(_fileno(DataFile), 1))
 {
 perror("Can't _dup2 stdout");
 exit(1);
 }
 puts("This goes to file 'data'\n");

 // Flush stdout stream buffer so it goes to correct file
 fflush(stdout);
 fclose(DataFile);

 // Restore original stdout
 _dup2(old, 1);
 puts("This goes to stdout\n");
 puts("The file 'data' contains:");
 _flushall();
 system("type data");
}

This goes to stdout first
This goes to stdout

The file 'data' contains:
This goes to file 'data'

See also

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that are
associated with the console, stdin, stdout, and stderr, must be redirected before C run-time functions can use
them in UWP apps. For more compatibility information, see Compatibility.

Low-Level I/O
_close
_creat, _wcreat
_open, _wopen

_dupenv_s, _wdupenv_s
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
errno_t _dupenv_s(
 char **buffer,
 size_t *numberOfElements,
 const char *varname
);
errno_t _wdupenv_s(
 wchar_t **buffer,
 size_t *numberOfElements,
 const wchar_t *varname
);

Parameters

Return Value

Remarks

Gets a value from the current environment.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

buffer
Buffer to store the variable's value.

numberOfElements
Size of buffer.

varname
Environment variable name.

Zero on success, an error code on failure.

These functions validate their parameters; if buffer or varname is NULL, the invalid parameter handler is invoked
as described in Parameter Validation. If execution is allowed to continue, the functions set errno to EINVAL and
return EINVAL.

If these functions cannot allocate enough memory, they set buffer to NULL and numberOfElements to 0, and
return ENOMEM.

The _dupenv_s function searches the list of environment variables for varname. If the variable is found,
_dupenv_s allocates a buffer and copies the variable's value into the buffer. The buffer's address and length are
returned in buffer and numberOfElements. By allocating the buffer itself, _dupenv_s provides a more convenient
alternative to getenv_s, _wgetenv_s.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/dupenv-s-wdupenv-s.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

NOTE

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tdupenv_s _dupenv_s _dupenv_s _wdupenv_s

Requirements
ROUTINE REQUIRED HEADER

_dupenv_s <stdlib.h>

_wdupenv_s <stdlib.h> or <wchar.h>

Example
// crt_dupenv_s.c
#include <stdlib.h>

int main(void)
{
 char *pValue;
 size_t len;
 errno_t err = _dupenv_s(&pValue, &len, "pathext");
 if (err) return -1;
 printf("pathext = %s\n", pValue);
 free(pValue);
 err = _dupenv_s(&pValue, &len, "nonexistentvariable");
 if (err) return -1;
 printf("nonexistentvariable = %s\n", pValue);
 free(pValue); // It's OK to call free with NULL
}

It is the calling program's responsibility to free the memory by calling free.

If the variable is not found, then buffer is set to NULL, numberOfElements is set to 0, and the return value is 0
because this situation is not considered to be an error condition.

If you are not interested in the size of the buffer you can pass NULL for numberOfElements.

_dupenv_s is not case sensitive in the Windows operating system. _dupenv_s uses the copy of the environment
pointed to by the global variable _environ to access the environment. See the Remarks in getenv_s, _wgetenv_s
for a discussion of _environ.

The value in buffer is a copy of the environment variable's value; modifying it has no effect on the environment.
Use the _putenv_s, _wputenv_s function to modify the value of an environment variable.

_wdupenv_s is a wide-character version of _dupenv_s; the arguments of _wdupenv_s are wide-character
strings. The _wenviron global variable is a wide-character version of _environ. See the Remarks in getenv_s,
_wgetenv_s for more on _wenviron.

For additional compatibility information, see Compatibility.

pathext = .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.pl
nonexistentvariable = (null)

See also
Process and Environment Control
Environmental Constants
_dupenv_s_dbg, _wdupenv_s_dbg
getenv_s, _wgetenv_s
_putenv_s, _wputenv_s

_dupenv_s_dbg, _wdupenv_s_dbg
10/31/2018 • 2 minutes to read • Edit Online

Syntax
errno_t _dupenv_s_dbg(
 char **buffer,
 size_t *numberOfElements,
 const char *varname,
 int blockType,
 const char *filename,
 int linenumber
);
errno_t _wdupenv_s_dbg(
 wchar_t **buffer,
 size_t * numberOfElements,
 const wchar_t *varname,
 int blockType,
 const char *filename,
 int linenumber
);

Parameters

Return Value

Get a value from the current environment. Versions of _dupenv_s, _wdupenv_s that allocate memory with
_malloc_dbg to provide additional debugging information.

buffer
Buffer to store the variable's value.

numberOfElements
Size of buffer.

varname
Environment variable name.

blockType
Requested type of the memory block: _CLIENT_BLOCK or _NORMAL_BLOCK.

filename
Pointer to the name of the source file or NULL.

linenumber
Line number in source file or NULL.

Zero on success, an error code on failure.

These functions validate their parameters; if buffer or varname is NULL, the invalid parameter handler is invoked
as described in Parameter Validation. If execution is allowed to continue, the functions set errno to EINVAL and
return EINVAL.

If these functions cannot allocate enough memory, they set buffer to NULL and numberOfElements to 0, and
return ENOMEM.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/dupenv-s-dbg-wdupenv-s-dbg.md

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tdupenv_s_dbg _dupenv_s_dbg _dupenv_s_dbg _wdupenv_s_dbg

Requirements
ROUTINE REQUIRED HEADER

_dupenv_s_dbg <crtdbg.h>

_wdupenv_s_dbg <crtdbg.h>

Example
// crt_dupenv_s_dbg.c
#include <stdlib.h>
#include <crtdbg.h>

int main(void)
{
 char *pValue;
 size_t len;
 errno_t err = _dupenv_s_dbg(&pValue, &len, "pathext",
 _NORMAL_BLOCK, __FILE__, __LINE__);
 if (err) return -1;
 printf("pathext = %s\n", pValue);
 free(pValue);
 err = _dupenv_s_dbg(&pValue, &len, "nonexistentvariable",
 _NORMAL_BLOCK, __FILE__, __LINE__);
 if (err) return -1;
 printf("nonexistentvariable = %s\n", pValue);
 free(pValue); // It's OK to call free with NULL
}

pathext = .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.pl
nonexistentvariable = (null)

The _dupenv_s_dbg and _wdupenv_s_dbg functions are identical to _dupenv_s and _wdupenv_s except that,
when _DEBUG is defined, these functions use the debug version of malloc, _malloc_dbg, to allocate memory for
the value of the environment variable. For information on the debugging features of _malloc_dbg, see
_malloc_dbg.

You do not need to call these functions explicitly in most cases. Instead, you can define the flag
_CRTDBG_MAP_ALLOC. When _CRTDBG_MAP_ALLOC is defined, calls to _dupenv_s and _wdupenv_s are
remapped to _dupenv_s_dbg and _wdupenv_s_dbg, respectively, with the blockType set to _NORMAL_BLOCK.
Thus, you do not need to call these functions explicitly unless you want to mark the heap blocks as
_CLIENT_BLOCK. For more information on block types, see Types of blocks on the debug heap.

For additional compatibility information, see Compatibility.

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

See also
Process and Environment Control
Environmental Constants
getenv_s, _wgetenv_s
_putenv_s, _wputenv_s

ecvt
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _ecvt or security-enhanced _ecvt_s instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-ecvt.md

_ecvt
10/31/2018 • 2 minutes to read • Edit Online

Syntax
char *_ecvt(
 double value,
 int count,
 int *dec,
 int *sign
);

Parameters

Return Value

Remarks

Converts a double number to a string. A more secure version of this function is available; see _ecvt_s.

value
Number to be converted.

count
Number of digits stored.

dec
Stored decimal-point position.

sign
Sign of the converted number.

_ecvt returns a pointer to the string of digits; NULL if an error occurred.

The _ecvt function converts a floating-point number to a character string. The value parameter is the floating-
point number to be converted. This function stores up to count digits of value as a string and appends a null
character ('\0'). If the number of digits in value exceeds count, the low-order digit is rounded. If there are fewer
than count digits, the string is padded with zeros.

The total number of digits returned by _ecvt will not exceed _CVTBUFSIZE .

Only digits are stored in the string. The position of the decimal point and the sign of value can be obtained from
dec and sign after the call. The dec parameter points to an integer value giving the position of the decimal point
with respect to the beginning of the string. A 0 or negative integer value indicates that the decimal point lies to
the left of the first digit. The sign parameter points to an integer that indicates the sign of the converted number.
If the integer value is 0, the number is positive. Otherwise, the number is negative.

The difference between _ecvt and _fcvt is in the interpretation of the count parameter. _ecvt interprets count as
the total number of digits in the output string, whereas _fcvt interprets count as the number of digits after the
decimal point.

_ecvt and _fcvt use a single statically allocated buffer for the conversion. Each call to one of these routines
destroys the result of the previous call.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ecvt.md

Requirements
FUNCTION REQUIRED HEADER

_ecvt <stdlib.h>

Example
// crt_ecvt.c
// compile with: /W3
// This program uses _ecvt to convert a
// floating-point number to a character string.

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 int decimal, sign;
 char *buffer;
 int precision = 10;
 double source = 3.1415926535;

 buffer = _ecvt(source, precision, &decimal, &sign); // C4996
 // Note: _ecvt is deprecated; consider using _ecvt_s instead
 printf("source: %2.10f buffer: '%s' decimal: %d sign: %d\n",
 source, buffer, decimal, sign);
}

source: 3.1415926535 buffer: '3141592654' decimal: 1 sign: 0

See also

This function validates its parameters. If dec or sign is NULL, or count is 0, the invalid parameter handler is
invoked, as described in Parameter Validation. If execution is allowed to continue, errno is set to EINVAL and
NULL is returned.

For more compatibility information, see Compatibility.

Data Conversion
Floating-Point Support
atof, _atof_l, _wtof, _wtof_l
_fcvt
_gcvt

_ecvt_s
10/31/2018 • 3 minutes to read • Edit Online

Syntax
errno_t _ecvt_s(
 char * _Buffer,
 size_t _SizeInBytes,
 double _Value,
 int _Count,
 int *_Dec,
 int *_Sign
);
template <size_t size>
errno_t _ecvt_s(
 char (&_Buffer)[size],
 double _Value,
 int _Count,
 int *_Dec,
 int *_Sign
); // C++ only

Parameters

Return Value

Error Conditions

Converts a double number to a string. This is a version of _ecvt with security enhancements as described in
Security Features in the CRT.

_Buffer
Filled with the pointer to the string of digits, the result of the conversion.

_SizeInBytes
Size of the buffer in bytes.

_Value
Number to be converted.

_Count
Number of digits stored.

_Dec
Stored decimal-point position.

_Sign
Sign of the converted number.

Zero if successful. The return value is an error code if there is a failure. Error codes are defined in Errno.h. For
more information, see errno, _doserrno, _sys_errlist, and _sys_nerr.

In the case of an invalid parameter, as listed in the following table, this function invokes the invalid parameter
handler, as described in Parameter Validation. If execution is allowed to continue, this function sets errno to
EINVAL and returns EINVAL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ecvt-s.md

_BUFFER
_SIZEINBYTE
S _VALUE _COUNT _DEC _SIGN

RETURN
VALUE

VALUE IN
BUFFER

NULL any any any any any EINVAL Not
modified.

Not NULL
(points to
valid
memory)

<=0 any any any any EINVAL Not
modified.

any any any any NULL any EINVAL Not
modified.

any any any any any NULL EINVAL Not
modified.

Security Issues

Remarks

Requirements
FUNCTION REQUIRED HEADER OPTIONAL HEADER

_ecvt_s <stdlib.h> <errno.h>

_ecvt_s might generate an access violation if buffer does not point to valid memory and is not NULL.

The _ecvt_s function converts a floating-point number to a character string. The _Value parameter is the
floating-point number to be converted. This function stores up to count digits of _Value as a string and appends
a null character ('\0'). If the number of digits in _Value exceeds _Count, the low-order digit is rounded. If there
are fewer than count digits, the string is padded with zeros.

Only digits are stored in the string. The position of the decimal point and the sign of _Value can be obtained from
_Dec and _Sign after the call. The _Dec parameter points to an integer value giving the position of the decimal
point with respect to the beginning of the string. A 0 or negative integer value indicates that the decimal point
lies to the left of the first digit. The _Sign parameter points to an integer that indicates the sign of the converted
number. If the integer value is 0, the number is positive. Otherwise, the number is negative.

A buffer of length _CVTBUFSIZE is sufficient for any floating-point value.

The difference between _ecvt_s and _fcvt_s is in the interpretation of the _Count parameter. _ecvt_s interprets
_Count as the total number of digits in the output string, whereas _fcvt_s interprets _Count as the number of
digits after the decimal point.

In C++, using this function is simplified by a template overload; the overload can infer buffer length
automatically, eliminating the need to specify a size argument. For more information, see Secure Template
Overloads.

The debug version of this function first fills the buffer with 0xFD. To disable this behavior, use
_CrtSetDebugFillThreshold.

For more compatibility information, see Compatibility.

Example
// ecvt_s.c
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

int main()
{
 char * buf = 0;
 int decimal;
 int sign;
 int err;

 buf = (char*) malloc(_CVTBUFSIZE);
 err = _ecvt_s(buf, _CVTBUFSIZE, 1.2, 5, &decimal, &sign);

 if (err != 0)
 {
 printf("_ecvt_s failed with error code %d\n", err);
 exit(1);
 }

 printf("Converted value: %s\n", buf);
}

Converted value: 12000

See also
Data Conversion
Floating-Point Support
atof, _atof_l, _wtof, _wtof_l
_ecvt
_fcvt_s
_gcvt_s

_endthread, _endthreadex
1/24/2019 • 2 minutes to read • Edit Online

Syntax
void _endthread(void);
void _endthreadex(
 unsigned retval
);

Parameters

Remarks

NOTE

NOTE

Requirements
FUNCTION REQUIRED HEADER

_endthread <process.h>

_endthreadex <process.h>

Terminates a thread; _endthread terminates a thread that's created by _beginthread and _endthreadex
terminates a thread that's created by _beginthreadex.

retval
Thread exit code.

You can call _endthread or _endthreadex explicitly to terminate a thread; however, _endthread or
_endthreadex is called automatically when the thread returns from the routine passed as a parameter to
_beginthread or _beginthreadex. Terminating a thread with a call to endthread or _endthreadex helps
ensure proper recovery of resources allocated for the thread.

For an executable file linked with Libcmt.lib, do not call the Win32 ExitThread API; this prevents the run-time system from
reclaiming allocated resources. _endthread and _endthreadex reclaim allocated thread resources and then call
ExitThread.

_endthread automatically closes the thread handle. (This behavior differs from the Win32 ExitThread API.)
Therefore, when you use _beginthread and _endthread, do not explicitly close the thread handle by calling the
Win32 CloseHandle API.

Like the Win32 ExitThread API, _endthreadex does not close the thread handle. Therefore, when you use
_beginthreadex and _endthreadex, you must close the thread handle by calling the Win32 CloseHandle API.

_endthread and _endthreadex cause C++ destructors pending in the thread not to be called.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/endthread-endthreadex.md
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-exitthread
https://docs.microsoft.com/windows/desktop/api/handleapi/nf-handleapi-closehandle

Libraries

Example

See also

For more compatibility information, see Compatibility.

Multithreaded versions of the C run-time libraries only.

See the example for _beginthread.

Process and Environment Control
_beginthread, _beginthreadex

eof
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _eof instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-eof.md

_eof
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _eof(
 int fd
);

Parameters

Return Value

Remarks

Requirements
FUNCTION REQUIRED HEADER OPTIONAL HEADER

_eof <io.h> <errno.h>

Example

Tests for end of file (EOF).

fd
File descriptor referring to the open file.

_eof returns 1 if the current position is end of file, or 0 if it is not. A return value of -1 indicates an error; in this
case, the invalid parameter handler is invoked, as described in Parameter Validation. If execution is allowed to
continue, errno is set to EBADF, which indicates an invalid file descriptor.

The _eof function determines whether the end of the file associated with fd has been reached.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/eof.md

// crt_eof.c
// This program reads data from a file
// ten bytes at a time until the end of the
// file is reached or an error is encountered.
//
#include <io.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <share.h>

int main(void)
{
 int fh, count, total = 0;
 char buf[10];
 if(_sopen_s(&fh, "crt_eof.txt", _O_RDONLY, _SH_DENYNO, 0))
 {
 perror("Open failed");
 exit(1);
 }
 // Cycle until end of file reached:
 while(!_eof(fh))
 {
 // Attempt to read in 10 bytes:
 if((count = _read(fh, buf, 10)) == -1)
 {
 perror("Read error");
 break;
 }
 // Total actual bytes read
 total += count;
 }
 printf("Number of bytes read = %d\n", total);
 _close(fh);
}

Input: crt_eof.txt

This file contains some text.

Output

Number of bytes read = 29

See also
Error Handling
Low-Level I/O
clearerr
feof
ferror
perror, _wperror

erf, erff, erfl, erfc, erfcf, erfcl
2/4/2019 • 2 minutes to read • Edit Online

Syntax
double erf(
 double x
);
float erf(
 float x
); // C++ only
long double erf(
 long double x
); // C++ only
float erff(
 float x
);
long double erfl(
 long double x
);
double erfc(
 double x
);
float erfc(
 float x
); // C++ only
long double erfc(
 long double x
); // C++ only
float erfcf(
 float x
);
long double erfcl(
 long double x
);

Parameters

Return Value

Remarks

Computes the error function or the complementary error function of a value.

x
A floating-point value.

The erf functions return the Gauss error function of x. The erfc functions return the complementary Gauss error
function of x.

The erf functions calculate the Gauss error function of x, which is defined as:

The complementary Gauss error function is defined as 1 - erf(x). The erf functions return a value in the range -

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/erf-erff-erfl-erfc-erfcf-erfcl.md

Requirements
FUNCTION REQUIRED HEADER

erf, erff, erfl, erfc, erfcf, erfcl <math.h>

See also

1.0 to 1.0. There is no error return. The erfc functions return a value in the range 0 to 2. If x is too large for erfc,
the errno variable is set to ERANGE .

Because C++ allows overloading, you can call overloads of erf and erfc that take and return float and long
double types. In a C program, erf and erfc always take and return a double.

For additional compatibility information, see Compatibility.

Floating-Point Support

execl
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _execl instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/execl.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_execl, _wexecl
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
intptr_t _execl(
 const char *cmdname,
 const char *arg0,
 ... const char *argn,
 NULL
);
intptr_t _wexecl(
 const wchar_t *cmdname,
 const wchar_t *arg0,
 ... const wchar_t *argn,
 NULL
);

Parameters

Return Value

ERRNO VALUE DESCRIPTION

E2BIG The space required for the arguments and environment
settings exceeds 32 KB.

EACCES The specified file has a locking or sharing violation.

EINVAL Invalid parameter (one or more of the parameters was a null
pointer or empty string).

EMFILE Too many files open (the specified file must be opened to
determine whether it is executable).

ENOENT The file or path is not found.

Loads and executes new child processes.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

cmdname
Path of the file to be executed.

arg0, ... argn
List of pointers to the parameters.

If successful, these functions do not return to the calling process. A return value of -1 indicates an error, in which
case the errno global variable is set.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/execl-wexecl.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

ENOEXEC The specified file is not executable or has an invalid
executable-file format.

ENOMEM Not enough memory is available to execute the new process;
the available memory has been corrupted; or an invalid block
exists, indicating that the calling process was not allocated
properly.

ERRNO VALUE DESCRIPTION

Remarks

Requirements
FUNCTION REQUIRED HEADER OPTIONAL HEADER

_execl <process.h> <errno.h>

_wexecl <process.h> or <wchar.h> <errno.h>

Example

See also

Each of these functions loads and executes a new process, passing each command-line argument as a separate
parameter. The first argument is the command or executable file name, and the second argument should be the
same as the first. It becomes argv[0] in the executed process. The third argument is the first argument, argv[1] ,
of the process being executed.

The _execl functions validate their parameters. If either cmdname or arg0 is a null pointer or empty string, these
functions invoke the invalid parameter handler as described in Parameter Validation If execution is allowed to
continue, these functions set errno to EINVAL and return -1. No new process is executed.

For more compatibility information, see Compatibility.

See the example in _exec, _wexec Functions.

Process and Environment Control
_exec, _wexec Functions
abort
atexit
exit, _Exit, _exit
_onexit, _onexit_m
_spawn, _wspawn Functions
system, _wsystem

execle
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _execle instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/execle.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_execle, _wexecle
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
intptr_t _execle(
 const char *cmdname,
 const char *arg0,
 ... const char *argn,
 NULL,
 const char *const *envp
);
intptr_t _wexecle(
 const wchar_t *cmdname,
 const wchar_t *arg0,
 ... const wchar_t *argn,
 NULL,
 const char *const *envp
);

Parameters

Return Value

ERRNO VALUE DESCRIPTION

E2BIG The space that's required for the arguments and the
environment settings exceeds 32 KB.

EACCES The specified file has a locking or sharing violation.

EINVAL Invalid parameter.

Loads and executes new child processes.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

cmdname
Path of the file to execute.

arg0, ... argn
List of pointers to parameters.

envp
Array of pointers to environment settings.

If successful, these functions do not return to the calling process. A return value of -1 indicates an error, in which
case the errno global variable is set.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/execle-wexecle.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

EMFILE Too many files are open. (The specified file must be opened to
determine whether it is executable.)

ENOENT The file or path is not found.

ENOEXEC The specified file is not executable or has an invalid
executable-file format.

ENOMEM Not enough memory is available to execute the new process;
the available memory has been corrupted; or an invalid block
exists, which indicates that the calling process was not
allocated correctly.

ERRNO VALUE DESCRIPTION

Remarks

Requirements
FUNCTION REQUIRED HEADER OPTIONAL HEADER

_execle <process.h> <errno.h>

_wexecle <process.h> or <wchar.h> <errno.h>

Example

See also

For more information about these return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

Each of these functions loads and executes a new process, and passes each command-line argument as a separate
parameter and passes an array of pointers to environment settings.

The _execle functions validate their parameters. If cmdname or arg0 is a null pointer or an empty string, these
functions invoke the invalid parameter handler, as described in Parameter Validation. If execution is allowed to
continue, these functions set errno to EINVAL and return -1. No new process is launched.

For more information, see Compatibility.

See the example in _exec, _wexec Functions.

Process and Environment Control
_exec, _wexec Functions
abort
atexit
exit, _Exit, _exit
_onexit, _onexit_m
_spawn, _wspawn Functions
system, _wsystem

execlp
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _execlp instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/execlp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_execlp, _wexeclp
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
intptr_t _execlp(
 const char *cmdname,
 const char *arg0,
 ... const char *argn,
 NULL
);
intptr_t _wexeclp(
 const wchar_t *cmdname,
 const wchar_t *arg0,
 ... const wchar_t *argn,
 NULL
);

Parameters

Return Value

ERRNO VALUE DESCRIPTION

E2BIG The space required for the arguments and environment
settings exceeds 32 KB.

EACCES The specified file has a locking or sharing violation.

EINVAL Invalid parameter.

EMFILE Too many files open (the specified file must be opened to
determine whether it is executable).

ENOENT The file or path not found.

Loads and executes new child processes.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

cmdname
Path of the file to execute.

arg0, ... argn
List of pointers to parameters.

If successful, these functions do not return to the calling process. A return value of -1 indicates an error, in which
case the errno global variable is set.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/execlp-wexeclp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

ENOEXEC The specified file is not executable or has an invalid
executable-file format.

ENOMEM Not enough memory is available to execute the new process;
the available memory has been corrupted; or an invalid block
exists, indicating that the calling process was not allocated
properly.

ERRNO VALUE DESCRIPTION

Remarks

Requirements
FUNCTION REQUIRED HEADER OPTIONAL HEADER

_execlp <process.h> <errno.h>

_wexeclp <process.h> or <wchar.h> <errno.h>

Example

See also

For more information about these and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

Each of these functions loads and executes a new process, passing each command-line argument as a separate
parameter and using the PATH environment variable to find the file to execute.

The _execlp functions validate their parameters. If cmdname or arg0 is a null pointer or empty string, these
functions invoke the invalid parameter handler as described in Parameter Validation. If execution is allowed to
continue, these functions set errno to EINVAL and return -1. No new process is launched.

For more compatibility information, see Compatibility.

See the example in _exec, _wexec Functions.

Process and Environment Control
_exec, _wexec Functions
abort
atexit
exit, _Exit, _exit
_onexit, _onexit_m
_spawn, _wspawn Functions
system, _wsystem

execlpe
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _execlpe instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/execlpe.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_execlpe, _wexeclpe
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
intptr_t _execlpe(
 const char *cmdname,
 const char *arg0,
 ... const char *argn,
 NULL,
 const char *const *envp
);
intptr_t _wexeclpe(
 const wchar_t *cmdname,
 const wchar_t *arg0,
 ... const wchar_t *argn,
 NULL,
 const wchar_t *const *envp
);

Parameters

Return Value

ERRNO VALUE DESCRIPTION

E2BIG The space required for the arguments and environment
settings exceeds 32 KB.

EACCES The specified file has a locking or sharing violation.

EINVAL Invalid parameter.

Loads and executes new child processes.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

cmdname
Path of the file to execute.

arg0, ... argn
List of pointers to parameters.

envp
Array of pointers to environment settings.

If successful, these functions do not return to the calling process. A return value of -1 indicates an error, in which
case the errno global variable is set.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/execlpe-wexeclpe.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

EMFILE Too many files open (the specified file must be opened to
determine whether it is executable).

ENOENT The file or path not found.

ENOEXEC The specified file is not executable or has an invalid
executable-file format.

ENOMEM Not enough memory is available to execute the new process;
the available memory has been corrupted; or an invalid block
exists, indicating that the calling process was not allocated
properly.

ERRNO VALUE DESCRIPTION

Remarks

Requirements
FUNCTION REQUIRED HEADER OPTIONAL HEADER

_execlpe <process.h> <errno.h>

_wexeclpe <process.h> or <wchar.h> <errno.h>

Example

See also

For more information about these and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

Each of these functions loads and executes a new process, passing each command-line argument as a separate
parameter and also passing an array of pointers to environment settings. These functions use the PATH
environment variable to find the file to execute.

The _execlpe functions validate their parameters. If either cmdname or arg0 is a null pointers or empty string,
these functions invoke the invalid parameter handler as described in Parameter Validation. If execution is allowed
to continue, these functions set errno to EINVAL and return -1. No new process is launched.

For more compatibility information, see Compatibility.

See the example in _exec, _wexec Functions.

Process and Environment Control
_exec, _wexec Functions
abort
atexit
exit, _Exit, _exit
_onexit, _onexit_m
_spawn, _wspawn Functions
system, _wsystem

execv
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _execv instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/execv.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_execv, _wexecv
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
intptr_t _execv(
 const char *cmdname,
 const char *const *argv
);
intptr_t _wexecv(
 const wchar_t *cmdname,
 const wchar_t *const *argv
);

Parameters

Return Value

ERRNO VALUE DESCRIPTION

E2BIG The space required for the arguments and environment
settings exceeds 32 KB.

EACCES The specified file has a locking or sharing violation.

EINVAL Invalid parameter.

EMFILE Too many files open (the specified file must be opened to
determine whether it is executable).

ENOENT The file or path not found.

ENOEXEC The specified file is not executable or has an invalid
executable-file format.

Loads and executes new child processes.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

cmdname
Path of the file to execute.

argv
Array of pointers to parameters.

If successful, these functions do not return to the calling process. A return value of -1 indicates an error, in which
case the errno global variable is set.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/execv-wexecv.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

ENOMEM Not enough memory is available to execute the new process;
the available memory has been corrupted; or an invalid block
exists, indicating that the calling process was not allocated
properly.

ERRNO VALUE DESCRIPTION

Remarks

Requirements
FUNCTION REQUIRED HEADER OPTIONAL HEADER

_execv <process.h> <errno.h>

_wexecv <process.h> or <wchar.h> <errno.h>

Example

See also

For more information about these and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

Each of these functions loads and executes a new process, passing an array of pointers to command-line
arguments.

The _execv functions validate their parameters. If cmdname is a null pointer, or if argv is a null pointer, pointer to
an empty array, or if the array contains an empty string as the first argument, the _execv functions invoke the
invalid parameter handler as described in Parameter Validation. If execution is allowed to continue, these
functions set errno to EINVAL and return -1. No process is launched.

For more compatibility information, see Compatibility.

See the example in _exec, _wexec Functions.

Process and Environment Control
_exec, _wexec Functions
abort
atexit
exit, _Exit, _exit
_onexit, _onexit_m
_spawn, _wspawn Functions
system, _wsystem

execve
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _execve instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/execve.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_execve, _wexecve
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
intptr_t _execve(
 const char *cmdname,
 const char *const *argv,
 const char *const *envp
);
intptr_t _wexecve(
 const wchar_t *cmdname,
 const wchar_t *const *argv,
 const wchar_t *const *envp
);

Parameters

Return Value

ERRNO VALUE DESCRIPTION

E2BIG The space required for the arguments and environment
settings exceeds 32 KB.

EACCES The specified file has a locking or sharing violation.

EINVAL Invalid parameter.

EMFILE Too many files open (the specified file must be opened to
determine whether it is executable).

ENOENT The file or path not found.

Loads and executes new child processes.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

cmdname
Path of the file to execute.

argv
Array of pointers to parameters.

envp
Array of pointers to environment settings.

If successful, these functions do not return to the calling process. A return value of -1 indicates an error, in which
case the errno global variable is set.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/execve-wexecve.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

ENOEXEC The specified file is not executable or has an invalid
executable-file format.

ENOMEM Not enough memory is available to execute the new process;
the available memory has been corrupted; or an invalid block
exists, indicating that the calling process was not allocated
properly.

ERRNO VALUE DESCRIPTION

Remarks

Requirements
FUNCTION REQUIRED HEADER OPTIONAL HEADER

_execve <process.h> <errno.h>

_wexecve <process.h> or <wchar.h> <errno.h>

Example

See also

For more information about these and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

Each of these functions loads and executes a new process, passing an array of pointers to command-line
arguments and an array of pointers to environment settings.

_execve and _wexecve validate their parameters. If cmdname is a null pointer, or if argv is a null pointer, pointer
to an empty array, or if the array contains an empty string as the first argument, these functions invoke the invalid
parameter handler as described in Parameter Validation. If execution is allowed to continue, these functions set
errno to EINVAL and return -1. No process is launched.

For more compatibility information, see Compatibility.

See the example in _exec, _wexec Functions.

Process and Environment Control
_exec, _wexec Functions
abort
atexit
exit, _Exit, _exit
_onexit, _onexit_m
_spawn, _wspawn Functions
system, _wsystem

execvp
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _execvp instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/execvp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_execvp, _wexecvp
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
intptr_t _execvp(
 const char *cmdname,
 const char *const *argv
);
intptr_t _wexecvp(
 const wchar_t *cmdname,
 const wchar_t *const *argv
);

Parameters

Return Value

ERRNO VALUE DESCRIPTION

E2BIG The space required for the arguments and environment
settings exceeds 32 KB.

EACCES The specified file has a locking or sharing violation.

EINVAL Invalid parameter.

EMFILE Too many files open (the specified file must be opened to
determine whether it is executable).

ENOENT The file or path not found.

ENOEXEC The specified file is not executable or has an invalid
executable-file format.

Loads and executes new child processes.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

cmdname
Path of the file to execute.

argv
Array of pointers to parameters.

If successful, these functions do not return to the calling process. A return value of -1 indicates an error, in which
case the errno global variable is set.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/execvp-wexecvp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

ENOMEM Not enough memory is available to execute the new process;
the available memory has been corrupted; or an invalid block
exists, indicating that the calling process was not allocated
properly.

ERRNO VALUE DESCRIPTION

Remarks

Requirements
FUNCTION REQUIRED HEADER OPTIONAL HEADER

_execvp <process.h> <errno.h>

_wexecvp <process.h> or <wchar.h> <errno.h>

Example

See also

For more information about these and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

Each of these functions loads and executes a new process, passing an array of pointers to command-line
arguments and using the PATH environment variable to find the file to execute.

The _execvp functions validate their parameters. If the cmdname is a null pointer, or argv is a null pointer, pointer
to an empty array, or if the array contains an empty string as the first argument, these functions invoke the invalid
parameter handler as described in Parameter Validation. If execution is allowed to continue, these functions set
errno to EINVAL and return -1. No process is launched.

For more compatibility information, see Compatibility.

See the example in _exec, _wexec Functions.

Process and Environment Control
_exec, _wexec Functions
abort
atexit
exit, _Exit, _exit
_onexit, _onexit_m
_spawn, _wspawn Functions
system, _wsystem

execvpe
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _execvpe instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/execvpe.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_execvpe, _wexecvpe
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
intptr_t _execvpe(
 const char *cmdname,
 const char *const *argv,
 const char *const *envp
);
intptr_t _wexecvpe(
 const wchar_t *cmdname,
 const wchar_t *const *argv,
 const wchar_t *const *envp
);

Parameters

Return Value

ERRNO VALUE DESCRIPTION

E2BIG The space that's required for the arguments and environment
settings exceeds 32 KB.

EACCES The specified file has a locking or sharing violation.

EMFILE Too many files are open. (The specified file must be opened to
determine whether it is executable.)

ENOENT The file or path is not found.

Loads and runs new child processes.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

cmdname
Path of the file to execute.

argv
Array of pointers to parameters.

envp
Array of pointers to environment settings.

If successful, these functions do not return to the calling process. A return value of -1 indicates an error, in which
case the errno global variable is set.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/execvpe-wexecvpe.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

ENOEXEC The specified file is not executable or has an invalid
executable-file format.

ENOMEM Not enough memory is available to execute the new process;
the available memory has been corrupted; or an invalid block
exists, which indicates that the calling process was not
allocated correctly.

ERRNO VALUE DESCRIPTION

Remarks

Requirements
FUNCTION REQUIRED HEADER OPTIONAL HEADER

_execvpe <process.h> <errno.h>

_wexecvpe <process.h> or <wchar.h> <errno.h>

Example

See also

For more information about these and other return codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

Each of these functions loads and executes a new process, and passes an array of pointers to command-line
arguments and an array of pointers to environment settings. These functions use the PATH environment variable
to find the file to execute.

The _execvpe functions validate their parameters. If the cmdname is a null pointer, or if argv is a null pointer, a
pointer to an empty array, or a pointer to an array that contains an empty string as the first argument, these
functions invoke the invalid parameter handler, as described in Parameter Validation. If execution is allowed to
continue, these functions set errno to EINVAL and return -1. No process is launched.

For more compatibility information, see Compatibility.

See the example in _exec, _wexec Functions.

Process and Environment Control
_exec, _wexec Functions
abort
atexit
exit, _Exit, _exit
_onexit, _onexit_m
_spawn, _wspawn Functions
system, _wsystem

exit, _Exit, _exit
10/31/2018 • 2 minutes to read • Edit Online

NOTE

Syntax
void exit(
 int const status
);
void _Exit(
 int const status
);
void _exit(
 int const status
);

Parameters

Remarks

FUNCTION DESCRIPTION

Terminates the calling process. The exit function terminates it after cleanup; _exit and _Exit terminate it
immediately.

Do not use this method to shut down a Universal Windows Platform (UWP) app, except in testing or debugging
scenarios. Programmatic or UI ways to close a Store app are not permitted according to the Microsoft Store policies.
For more information, see UWP App lifecycle. For more information about Windows 10 apps, see How-to guides for
Windows 10 apps.

status
Exit status code.

The exit, _Exit and _exit functions terminate the calling process. The exit function calls destructors for
thread-local objects, then calls—in last-in-first-out (L IFO) order—the functions that are registered by atexit
and _onexit, and then flushes all file buffers before it terminates the process. The _Exit and _exit functions
terminate the process without destroying thread-local objects or processing atexit or _onexit functions,
and without flushing stream buffers.

Although the exit, _Exit and _exit calls do not return a value, the value in status is made available to the
host environment or waiting calling process, if one exists, after the process exits. Typically, the caller sets the
status value to 0 to indicate a normal exit, or to some other value to indicate an error. The status value is
available to the operating-system batch command ERRORLEVEL and is represented by one of two
constants: EXIT_SUCCESS, which represents a value of 0, or EXIT_FAILURE , which represents a value of
1.

The exit, _Exit, _exit, quick_exit, _cexit, and _c_exit functions behave as follows.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/exit-exit-exit.md
https://docs.microsoft.com/legal/windows/agreements/store-policies
https://docs.microsoft.com/windows/uwp/launch-resume/app-lifecycle
https://developer.microsoft.com/windows/apps

exit Performs complete C library termination procedures,
terminates the process, and provides the supplied status
code to the host environment.

_Exit Performs minimal C library termination procedures,
terminates the process, and provides the supplied status
code to the host environment.

_exit Performs minimal C library termination procedures,
terminates the process, and provides the supplied status
code to the host environment.

quick_exit Performs quick C library termination procedures,
terminates the process, and provides the supplied status
code to the host environment.

_cexit Performs complete C library termination procedures and
returns to the caller. Does not terminate the process.

_c_exit Performs minimal C library termination procedures and
returns to the caller. Does not terminate the process.

FUNCTION DESCRIPTION

void last_fn() {}
 struct SomeClass {} myInstance{};
 // ...
 myInstance.~SomeClass(); // explicit destructor call
 exit(0);
}

Requirements
FUNCTION REQUIRED HEADER

exit, _Exit, _exit <process.h> or <stdlib.h>

Example

When you call the exit, _Exit or _exit function, the destructors for any temporary or automatic objects that
exist at the time of the call are not called. An automatic object is a non-static local object defined in a
function. A temporary object is an object that's created by the compiler, such as a value returned by a
function call. To destroy an automatic object before you call exit, _Exit, or _exit, explicitly call the destructor
for the object, as shown here:

Do not use DLL_PROCESS_ATTACH to call exit from DllMain. To exit the DLLMain function, return
FALSE from DLL_PROCESS_ATTACH.

For additional compatibility information, see Compatibility.

// crt_exit.c
// This program returns an exit code of 1. The
// error code could be tested in a batch file.

#include <stdlib.h>

int main(void)
{
 exit(1);
}

See also
Process and Environment Control
abort
atexit
_cexit, _c_exit
_exec, _wexec Functions
_onexit, _onexit_m
quick_exit
_spawn, _wspawn Functions
system, _wsystem

exp, expf, expl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double exp(
 double x
);
float exp(
 float x
); // C++ only
long double exp(
 long double x
); // C++ only
float expf(
 float x
);
long double expl(
 long double x
);

Parameters

Return Value

INPUT SEH EXCEPTION MATHERR EXCEPTION

± Quiet NaN, indeterminate None _DOMAIN

± Infinity INVALID _DOMAIN

x ≥ 7.097827e+002 INEXACT+OVERFLOW OVERFLOW

X ≤ -7.083964e+002 INEXACT+UNDERFLOW UNDERFLOW

Remarks

Calculates the exponential.

x
The floating-point value to exponentiate the natural logarithm base e by.

The exp functions return the exponential value of the floating-point parameter, x, if successful. That is, the result
is e , where e is the base of the natural logarithm. On overflow, the function returns INF (infinity) and on
underflow, exp returns 0.

x

The exp function has an implementation that uses Streaming SIMD Extensions 2 (SSE2). See _set_SSE2_enable
for information and restrictions on using the SSE2 implementation.

C++ allows overloading, so you can call overloads of exp that take a float or long double argument. In a C
program, exp always takes and returns a double.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/exp-expf.md

Requirements
FUNCTION REQUIRED C HEADER REQUIRED C++ HEADER

exp, expf, expl <math.h> <cmath> or <math.h>

Example
// crt_exp.c

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x = 2.302585093, y;

 y = exp(x);
 printf("exp(%f) = %f\n", x, y);
}

exp(2.302585) = 10.000000

See also

For additional compatibility information, see Compatibility.

Floating-Point Support
log, logf, log10, log10f
_CIexp

exp2, exp2f, exp2l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double exp2(
 double x
);

float exp2(
 float x
); // C++ only

long double exp2(
 long double x
); // C++ only

float exp2f(
 float x
);

long double exp2l(
 long double x
);

Parameters

Return Value

ISSUE RETURN

x = ±0 1

x = -INFINITY +0

x = +INFINITY +INFINITY

x = NaN NaN

Overflow range error +HUGE_VAL, +HUGE_VALF, or +HUGE_VALL

Underflow range error Correct result, after rounding

Remarks

Computes 2 raised to the specified value.

x
The value of the exponent.

If successful, returns the base-2 exponent of x, that is, 2 . Otherwise, it returns one of the following values:x

Errors are reported as specified in _matherr.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/exp2-exp2f-exp2l.md

Requirements
ROUTINE C HEADER C++ HEADER

exp, expf, expl <math.h> <cmath>

See also

Because C++ allows overloading, you can call overloads of exp2 that take and return float and long double
types. In a C program, exp2 always takes and returns a double.

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
exp, expf, expl
log2, log2f, log2l

_expand
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void *_expand(
 void *memblock,
 size_t size
);

Parameters

Return Value

Remarks

NOTE

Changes the size of a memory block.

memblock
Pointer to previously allocated memory block.

size
New size in bytes.

_expand returns a void pointer to the reallocated memory block. _expand, unlike realloc, cannot move a block
to change its size. Thus, if there is sufficient memory available to expand the block without moving it, the
memblock parameter to _expand is the same as the return value.

_expand returns NULL when an error is detected during its operation. For example, if _expand is used to shrink
a memory block, it might detect corruption in the small block heap or an invalid block pointer and return NULL.

If there is insufficient memory available to expand the block to the given size without moving it, the function
returns NULL. _expand never returns a block expanded to a size less than requested. If a failure occurs, errno
indicates the nature of the failure. For more information about errno, see errno, _doserrno, _sys_errlist, and
_sys_nerr.

The return value points to a storage space that is guaranteed to be suitably aligned for storage of any type of
object. To check the new size of the item, use _msize. To get a pointer to a type other than void, use a type cast on
the return value.

The _expand function changes the size of a previously allocated memory block by trying to expand or contract
the block without moving its location in the heap. The memblock parameter points to the beginning of the block.
The size parameter gives the new size of the block, in bytes. The contents of the block are unchanged up to the
shorter of the new and old sizes. memblock should not be a block that has been freed.

On 64-bit platforms, _expand might not contract the block if the new size is less than the current size; in particular, if the
block was less than 16K in size and therefore allocated in the Low Fragmentation Heap, _expand leaves the block
unchanged and returns memblock.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/expand.md

Requirements
FUNCTION REQUIRED HEADER

_expand <malloc.h>

Example
// crt_expand.c

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>

int main(void)
{
 char *bufchar;
 printf("Allocate a 512 element buffer\n");
 if((bufchar = (char *)calloc(512, sizeof(char))) == NULL)
 exit(1);
 printf("Allocated %d bytes at %Fp\n",
 _msize(bufchar), (void *)bufchar);
 if((bufchar = (char *)_expand(bufchar, 1024)) == NULL)
 printf("Can't expand");
 else
 printf("Expanded block to %d bytes at %Fp\n",
 _msize(bufchar), (void *)bufchar);
 // Free memory
 free(bufchar);
 exit(0);
}

Allocate a 512 element buffer
Allocated 512 bytes at 002C12BC
Expanded block to 1024 bytes at 002C12BC

See also

When the application is linked with a debug version of the C run-time libraries, _expand resolves to _expand_dbg.
For more information about how the heap is managed during the debugging process, see The CRT Debug Heap.

This function validates its parameters. If memblock is a null pointer, this function invokes an invalid parameter
handler, as described in Parameter Validation. If execution is allowed to continue, errno is set to EINVAL and the
function returns NULL. If size is greater than _HEAP_MAXREQ, errno is set to ENOMEM and the function
returns NULL.

For additional compatibility information, see Compatibility.

Memory Allocation
calloc
free
malloc
_msize
realloc

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

_expand_dbg
10/31/2018 • 3 minutes to read • Edit Online

Syntax
void *_expand_dbg(
 void *userData,
 size_t newSize,
 int blockType,
 const char *filename,
 int linenumber
);

Parameters

Return Value

Remarks

Resizes a specified block of memory in the heap by expanding or contracting the block (debug version only).

userData
Pointer to the previously allocated memory block.

newSize
Requested new size for the block (in bytes).

blockType
Requested type for resized block: _CLIENT_BLOCK or _NORMAL_BLOCK.

filename
Pointer to the name of the source file that requested expand operation or NULL.

linenumber
Line number in the source file where the expand operation was requested or NULL.

The filename and linenumber parameters are only available when _expand_dbg has been called explicitly or the
_CRTDBG_MAP_ALLOC preprocessor constant has been defined.

On successful completion, _expand_dbg returns a pointer to the resized memory block. Because the memory is
not moved, the address is the same as the userData. If an error occurred or the block could not be expanded to the
requested size, it returns NULL. If a failure occurs, errno is with information from the operating system about the
nature of the failure. For more information about errno, see errno, _doserrno, _sys_errlist, and _sys_nerr.

The _expand_dbg function is a debug version of the _expand function. When _DEBUG is not defined, each call to
_expand_dbg is reduced to a call to _expand. Both _expand and _expand_dbg resize a memory block in the
base heap, but _expand_dbg accommodates several debugging features: buffers on either side of the user
portion of the block to test for leaks, a block type parameter to track specific allocation types, and
filename/linenumber information to determine the origin of allocation requests.

_expand_dbg resizes the specified memory block with slightly more space than the requested newSize. newSize
might be greater or less than the size of the originally allocated memory block. The additional space is used by the
debug heap manager to link the debug memory blocks and to provide the application with debug header

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/expand-dbg.md

Requirements
ROUTINE REQUIRED HEADER

_expand_dbg <crtdbg.h>

Libraries

Example

information and overwrite buffers. The resize is accomplished by either expanding or contracting the original
memory block. _expand_dbg does not move the memory block, as does the _realloc_dbg function.

When newSize is greater than the original block size, the memory block is expanded. During an expansion, if the
memory block cannot be expanded to accommodate the requested size, NULL is returned. When newSize is less
than the original block size, the memory block is contracted until the new size is obtained.

For information about how memory blocks are allocated, initialized, and managed in the debug version of the
base heap, see CRT Debug Heap Details. For information about the allocation block types and how they are used,
see Types of blocks on the debug heap. For information about the differences between calling a standard heap
function and its debug version in a debug build of an application, see Debug Versions of Heap Allocation
Functions.

This function validates its parameters. If memblock is a null pointer, or if size is greater than _HEAP_MAXREQ,
this function invokes an invalid parameter handler, as described in Parameter Validation. If execution is allowed to
continue, errno is set to EINVAL and the function returns NULL.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/debug-versions-of-heap-allocation-functions

// crt_expand_dbg.c
//
// This program allocates a block of memory using _malloc_dbg
// and then calls _msize_dbg to display the size of that block.
// Next, it uses _expand_dbg to expand the amount of
// memory used by the buffer and then calls _msize_dbg again to
// display the new amount of memory allocated to the buffer.
//

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <crtdbg.h>

int main(void)
{
 long *buffer;
 size_t size;

 // Call _malloc_dbg to include the filename and line number
 // of our allocation request in the header
 buffer = (long *)_malloc_dbg(40 * sizeof(long),
 _NORMAL_BLOCK, __FILE__, __LINE__);
 if(buffer == NULL)
 exit(1);

 // Get the size of the buffer by calling _msize_dbg
 size = _msize_dbg(buffer, _NORMAL_BLOCK);
 printf("Size of block after _malloc_dbg of 40 longs: %u\n", size);

 // Expand the buffer using _expand_dbg and show the new size
 buffer = (long *)_expand_dbg(buffer, size + sizeof(long),
 _NORMAL_BLOCK, __FILE__, __LINE__);

 if(buffer == NULL)
 exit(1);
 size = _msize_dbg(buffer, _NORMAL_BLOCK);
 printf("Size of block after _expand_dbg of 1 more long: %u\n",
 size);

 free(buffer);
 exit(0);
}

Size of block after _malloc_dbg of 40 longs: 160
Size of block after _expand_dbg of 1 more long: 164

Comment

See also

The output of this program depends on your computer's ability to expand all the sections. If all sections are
expanded, the output is reflected in the Output section.

Debug Routines
_malloc_dbg

expm1, expm1f, expm1l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double expm1(
 double x
);
float expm1(
 float x
); // C++ only
long double expm1(
 long double x
); // C++ only
float expm1f(
 float x
);
long double expm1l(
 long double x
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

expm1, expm1f, expm1l <math.h>

See also

Computes the base-e exponential of a value, minus one.

x
The floating-point exponential value.

The expm1 functions return a floating-point value that represents e - 1, if successful. On overflow, expm1
returns HUGE_VAL, expm1f returns HUGE_VALF, expm1l returns HUGE_VALL, and errno is set to ERANGE .
For more information about return codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

x

Because C++ allows overloading, you can call overloads of expm1 that take and return float and long double
values. In a C program, expm1 always takes and returns a double.

For additional compatibility information, see Compatibility.

Floating-Point Support
exp2, exp2f, exp2l
pow, powf, powl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/expm1-expm1f-expm1l.md

fabs, fabsf, fabsl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double fabs(
 double x
);
float fabs(
 float x
); // C++ only
long double fabs(
 long double x
); // C++ only
float fabsf(
 float x
);
long double fabsl(
 long double x
);

Parameters

Return Value

INPUT SEH EXCEPTION MATHERR EXCEPTION

± QNAN,IND none _DOMAIN

Remarks

Requirements
FUNCTION REQUIRED C HEADER REQUIRED C++ HEADER

fabs, fabsf, fabsl <math.h> <cmath> or <math.h>

Example

Calculates the absolute value of the floating-point argument.

x
Floating-point value.

The fabs functions return the absolute value of the argument x. There is no error return.

C++ allows overloading, so you can call overloads of fabs if you include the <cmath> header. In a C program,
fabs always takes and returns a double.

For additional compatibility information, see Compatibility.

See the example for abs.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fabs-fabsf-fabsl.md

See also
Floating-Point Support
abs, labs, llabs, _abs64
_cabs

fclose, _fcloseall
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int fclose(
 FILE *stream
);
int _fcloseall(void);

Parameters

Return Value

Remarks

Requirements
FUNCTION REQUIRED HEADER

fclose <stdio.h>

_fcloseall <stdio.h>

Closes a stream (fclose) or closes all open streams (_fcloseall).

stream
Pointer to FILE structure.

fclose returns 0 if the stream is successfully closed. _fcloseall returns the total number of streams closed. Both
functions return EOF to indicate an error.

The fclose function closes stream. If stream is NULL, the invalid parameter handler is invoked, as described in
Parameter Validation. If execution is allowed to continue, fclose sets errno to EINVAL and returns EOF. It is
recommended that the stream pointer always be checked prior to calling this function.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these, and other, error codes.

The _fcloseall function closes all open streams except stdin, stdout, stderr (and, in MS-DOS, _stdaux and
_stdprn). It also closes and deletes any temporary files created by tmpfile. In both functions, all buffers
associated with the stream are flushed prior to closing. System-allocated buffers are released when the stream
is closed. Buffers assigned by the user with setbuf and setvbuf are not automatically released.

Note: When these functions are used to close a stream, the underlying file descriptor and OS file handle (or
socket) are closed, as well as the stream. Thus, if the file was originally opened as a file handle or file descriptor
and is closed with fclose, do not also call _close to close the file descriptor; do not call the Win32 function
CloseHandle to close the file handle.

fclose and _fcloseall include code to protect against interference from other threads. For non-locking version
of a fclose, see _fclose_nolock.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fclose-fcloseall.md

Example

See also

For additional compatibility information, see Compatibility.

See the example for fopen.

Stream I/O
_close
_fdopen, _wfdopen
fflush
fopen, _wfopen
freopen, _wfreopen

_fclose_nolock
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _fclose_nolock(
 FILE *stream
);

Parameters

Return Value

Remarks

Requirements
FUNCTION REQUIRED HEADER

_fclose_nolock <stdio.h>

See also

Closes a stream without thread-locking.

stream
Pointer to the FILE structure.

fclose returns 0 if the stream is successfully closed. Returns EOF to indicate an error.

This functions is a non-locking version of fclose. It is identical except that it is not protected from interference by
other threads. It might be faster because it does not incur the overhead of locking out other threads. Use this
function only in thread-safe contexts such as single-threaded applications or where the calling scope already
handles thread isolation.

For more compatibility information, see Compatibility.

Stream I/O
_close
_fdopen, _wfdopen
fflush
fopen, _wfopen
freopen, _wfreopen

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fclose-nolock.md

fcloseall
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _fcloseall instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fcloseall.md

fcvt
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _fcvt or security-enhanced _fcvt_s instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-fcvt.md

_fcvt
10/31/2018 • 2 minutes to read • Edit Online

Syntax
char *_fcvt(
 double value,
 int count,
 int *dec,
 int *sign
);

Parameters

Return Value

Remarks

Converts a floating-point number to a string. A more secure version of this function is available; see _fcvt_s.

value
Number to be converted.

count
Number of digits after the decimal point.

dec
Pointer to the stored decimal-point position.

sign
Pointer to the stored sign indicator.

_fcvt returns a pointer to the string of digits, NULL on error.

The _fcvt function converts a floating-point number to a null-terminated character string. The value parameter
is the floating-point number to be converted. _fcvt stores the digits of value as a string and appends a null
character ('\0'). The count parameter specifies the number of digits to be stored after the decimal point. Excess
digits are rounded off to count places. If there are fewer than count digits of precision, the string is padded with
zeros.

The total number of digits returned by _fcvt will not exceed _CVTBUFSIZE .

Only digits are stored in the string. The position of the decimal point and the sign of value can be obtained from
dec and sign after the call. The dec parameter points to an integer value; this integer value gives the position of
the decimal point with respect to the beginning of the string. A zero or negative integer value indicates that the
decimal point lies to the left of the first digit. The parameter sign points to an integer indicating the sign of
value. The integer is set to 0 if value is positive and is set to a nonzero number if value is negative.

The difference between _ecvt and _fcvt is in the interpretation of the count parameter. _ecvt interprets count as
the total number of digits in the output string, whereas _fcvt interprets count as the number of digits after the
decimal point.

_ecvt and _fcvt use a single statically allocated buffer for the conversion. Each call to one of these routines

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fcvt.md

Requirements
FUNCTION REQUIRED HEADER

_fcvt <stdlib.h>

Example
// crt_fcvt.c
// compile with: /W3
// This program converts the constant
// 3.1415926535 to a string and sets the pointer
// buffer to point to that string.

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 int decimal, sign;
 char *buffer;
 double source = 3.1415926535;

 buffer = _fcvt(source, 7, &decimal, &sign); // C4996
 // Note: _fcvt is deprecated; consider using _fcvt_s instead
 printf("source: %2.10f buffer: '%s' decimal: %d sign: %d\n",
 source, buffer, decimal, sign);
}

source: 3.1415926535 buffer: '31415927' decimal: 1 sign: 0

See also

destroys the results of the previous call.

This function validates its parameters. If dec or sign is NULL, or count is 0, the invalid parameter handler is
invoked, as described in Parameter Validation. If execution is allowed to continue, errno is set to EINVAL and
NULL is returned.

For more compatibility information, see Compatibility.

Data Conversion
Floating-Point Support
atof, _atof_l, _wtof, _wtof_l
_ecvt
_gcvt

_fcvt_s
10/31/2018 • 3 minutes to read • Edit Online

Syntax
errno_t _fcvt_s(
 char* buffer,
 size_t sizeInBytes,
 double value,
 int count,
 int *dec,
 int *sign
);
template <size_t size>
errno_t _fcvt_s(
 char (&buffer)[size],
 double value,
 int count,
 int *dec,
 int *sign
); // C++ only

Parameters

Return Value

Error Conditions

Converts a floating-point number to a string. This is a version of _fcvt with security enhancements as described
in Security Features in the CRT.

buffer
The supplied buffer that will hold the result of the conversion.

sizeInBytes
The size of the buffer in bytes.

value
Number to be converted.

count
Number of digits after the decimal point.

dec
Pointer to the stored decimal-point position.

sign
Pointer to the stored sign indicator.

Zero if successful. The return value is an error code if there is a failure. Error codes are defined in Errno.h. For a
listing of these errors, see errno, _doserrno, _sys_errlist, and _sys_nerr.

In the case of an invalid parameter, as listed in the following table, this function invokes the invalid parameter
handler, as described in Parameter Validation. If execution is allowed to continue, this function sets errno to
EINVAL and returns EINVAL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fcvt-s.md

BUFFER SIZEINBYTES VALUE COUNT DEC SIGN RETURN
VALUE IN
BUFFER

NULL any any any any any EINVAL Not
modified.

Not NULL
(points to
valid
memory)

<=0 any any any any EINVAL Not
modified.

any any any any NULL any EINVAL Not
modified.

any any any any any NULL EINVAL Not
modified.

Security Issues

Remarks

Requirements
FUNCTION REQUIRED HEADER OPTIONAL HEADER

_fcvt_s <stdlib.h> <errno.h>

_fcvt_s might generate an access violation if buffer does not point to valid memory and is not NULL.

The _fcvt_s function converts a floating-point number to a null-terminated character string. The value parameter
is the floating-point number to be converted. _fcvt_s stores the digits of value as a string and appends a null
character ('\0'). The count parameter specifies the number of digits to be stored after the decimal point. Excess
digits are rounded off to count places. If there are fewer than count digits of precision, the string is padded with
zeros.

Only digits are stored in the string. The position of the decimal point and the sign of value can be obtained from
dec and sign after the call. The dec parameter points to an integer value; this integer value gives the position of
the decimal point with respect to the beginning of the string. A zero or negative integer value indicates that the
decimal point lies to the left of the first digit. The parameter sign points to an integer indicating the sign of value.
The integer is set to 0 if value is positive and is set to a nonzero number if value is negative.

A buffer of length _CVTBUFSIZE is sufficient for any floating point value.

The difference between _ecvt_s and _fcvt_s is in the interpretation of the count parameter. _ecvt_s interprets
count as the total number of digits in the output string, and _fcvt_s interprets count as the number of digits after
the decimal point.

In C++, using this function is simplified by a template overload; the overload can infer buffer length
automatically, eliminating the need to specify a size argument. For more information, see Secure Template
Overloads.

The debug version of this function first fills the buffer with 0xFD. To disable this behavior, use
_CrtSetDebugFillThreshold.

For more compatibility information, see Compatibility.

Example
// fcvt_s.c
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

int main()
{
 char * buf = 0;
 int decimal;
 int sign;
 int err;

 buf = (char*) malloc(_CVTBUFSIZE);
 err = _fcvt_s(buf, _CVTBUFSIZE, 1.2, 5, &decimal, &sign);

 if (err != 0)
 {
 printf("_fcvt_s failed with error code %d\n", err);
 exit(1);
 }

 printf("Converted value: %s\n", buf);
}

Converted value: 120000

See also

Libraries: All versions of the CRT Library Features.

Data Conversion
Floating-Point Support
atof, _atof_l, _wtof, _wtof_l
_ecvt_s
_gcvt_s
_fcvt

fdim, fdimf, fdiml
11/9/2018 • 2 minutes to read • Edit Online

Syntax
double fdim(
 double x,
 double y
);

float fdim(
 float x,
 float y
); //C++ only

long double fdim(
 long double x,
 long double y
); //C++ only

float fdimf(
 float x,
 float y
);

long double fdiml(
 long double x,
 long double y
);

Parameters

Return Value

RETURN VALUE SCENARIO

x-y if x > y

0 if x <= y

ISSUE RETURN

Overflow range error +HUGE_VAL, +HUGE_VALF, or +HUGE_VALL

Determines the positive difference between the first and second values.

x
The first value.

y
The second value.

Returns the positive difference between x and y:

Otherwise, may return one of the following errors:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fdim-fdimf-fdiml.md

Underflow range error correct value (after rounding)

x or y is NaN NaN

ISSUE RETURN

Remarks

Requirements
FUNCTION C HEADER C++ HEADER

fdim, fdimf, fdiml <math.h> <cmath>

See also

Errors are reported as specified in _matherr.

Because C++ allows overloading, you can call overloads of fdim that take and return float and long double
types. In a C program, fdim always takes and returns a double.

Except for the NaN handling, this function is equivalent to fmax(x - y, 0) .

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
fmax, fmaxf, fmaxl
abs, labs, llabs, _abs64

fdopen
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _fdopen instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fdopen.md

_fdopen, _wfdopen
11/8/2018 • 4 minutes to read • Edit Online

Syntax
FILE *_fdopen(
 int fd,
 const char *mode
);
FILE *_wfdopen(
 int fd,
 const wchar_t *mode
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tfdopen _fdopen _fdopen _wfdopen

Associates a stream with a file that was previously opened for low-level I/O.

fd
File descriptor of the open file.

mode
Type of file access.

Each of these functions returns a pointer to the open stream. A null pointer value indicates an error. When an
error occurs, the invalid parameter handler is invoked, as described in Parameter Validation. If execution is
allowed to continue, errno is set either to EBADF, which indicates a bad file descriptor, or EINVAL, which
indicates that mode was a null pointer.

For more information about these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The _fdopen function associates an I/O stream with the file that is identified by fd, and thus allows a file that is
opened for low-level I/O to be buffered and formatted. _wfdopen is a wide-character version of _fdopen; the
mode argument to _wfdopen is a wide-character string. _wfdopen and _fdopen otherwise behave identically.

File descriptors passed into _fdopen are owned by the returned FILE * stream. If _fdopen is successful, do not
call _close on the file descriptor. Calling fclose on the returned FILE * also closes the file descriptor.

The mode character string specifies the type of file access requested for the file:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fdopen-wfdopen.md

MODE ACCESS

"r" Opens for reading. If the file does not exist or cannot be
found, the fopen call fails.

"w" Opens an empty file for writing. If the given file exists, its
contents are destroyed.

"a" Opens for writing at the end of the file (appending). Creates
the file if it does not exist.

"r+" Opens for both reading and writing. The file must exist.

"w+" Opens an empty file for both reading and writing. If the file
exists, its contents are destroyed.

"a+" Opens for reading and appending. Creates the file if it does
not exist.

MODE MODIFIER BEHAVIOR

t Open in text (translated) mode. In this mode, carriage
return-line feed (CR-LF) combinations are translated into
one-line feeds (LF) on input, and LF characters are
translated to CR-LF combinations on output. Also, Ctrl+Z is
interpreted as an end-of-file character on input.

b Open in binary (untranslated) mode. Any translations from t
mode are suppressed.

c Enable the commit flag for the associated filename so that
the contents of the file buffer are written directly to disk if
either fflush or _flushall is called.

n Reset the commit flag for the associated filename to "no-
commit." This is the default. It also overrides the global
commit flag if you link your program with Commode.obj.
The global commit flag default is "no-commit" unless you
explicitly link your program with Commode.obj.

When a file is opened with the "a" or "a+" access type, all write operations occur at the end of the file. The file
pointer can be repositioned by using fseek or rewind, but it is always moved back to the end of the file before
any write operation is carried out. Thus, existing data cannot be overwritten. When the "r+", "w+", or "a+"
access type is specified, both reading and writing are allowed (the file is said to be open for "update"). However,
when you switch between reading and writing, there must be an intervening fflush, fsetpos, fseek, or rewind
operation. You can specify the current position for the fsetpos or fseek operation, if you want to.

In addition to the above values, the following characters can also be included in mode to specify the translation
mode for newline characters:

The t, c, and n mode options are Microsoft extensions for fopen and _fdopen. Do not use them if you want to
preserve ANSI portability.

If t or b is not given in mode, the default translation mode is defined by the global variable _fmode. If t or b is
prefixed to the argument, the function fails and returns NULL. For a discussion of text and binary modes, see
Text and Binary Mode File I/O.

CHARACTERS IN MODE STRING EQUIVALENT OFLAG VALUE FOR _OPEN AND _SOPEN

a _O_WRONLY | _O_APPEND (usually _O_WRONLY |
_O_CREAT | _O_APPEND)

a+ _O_RDWR | _O_APPEND (usually _O_RDWR | _O_APPEND
| _O_CREAT)

r _O_RDONLY

r+ _O_RDWR

w _O_WRONLY (usually _O_WRONLY | _O_CREAT |
_O_TRUNC)

w+ _O_RDWR (usually _O_RDWR | _O_CREAT | _O_TRUNC)

b _O_BINARY

t _O_TEXT

c None

n None

Requirements
FUNCTION REQUIRED HEADER

_fdopen <stdio.h>

_wfdopen <stdio.h> or <wchar.h>

Example

Valid characters for the mode string used in fopen and _fdopen correspond to oflag arguments used in _open
and _sopen, as shown in this table:

For more compatibility information, see Compatibility.

// crt_fdopen.c
// This program opens a file by using low-level
// I/O, then uses _fdopen to switch to stream
// access. It counts the lines in the file.

#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>
#include <share.h>

int main(void)
{
 FILE *stream;
 int fd, count = 0;
 char inbuf[128];

 // Open a file.
 if(_sopen_s(&fd, "crt_fdopen.txt", _O_RDONLY, _SH_DENYNO, 0))
 exit(1);

 // Get stream from file descriptor.
 if((stream = _fdopen(fd, "r")) == NULL)
 exit(1);

 while(fgets(inbuf, 128, stream) != NULL)
 count++;

 // After _fdopen, close by using fclose, not _close.
 fclose(stream);
 printf("Lines in file: %d\n", count);
}

Input: crt_fdopen.txt

Line one
Line two

Output

Lines in file: 2

See also
Stream I/O
_dup, _dup2
fclose, _fcloseall
fopen, _wfopen
freopen, _wfreopen
_open, _wopen

feclearexcept
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int feclearexcept(
 int excepts
);

Parameters

Return Value

Remarks

EXCEPTION MACRO DESCRIPTION

FE_DIVBYZERO A singularity or pole error occurred in an earlier floating-point
operation; an infinity value was created.

FE_INEXACT The function was forced to round the stored result of an
earlier floating-point operation.

FE_INVALID A domain error occurred in an earlier floating-point operation.

FE_OVERFLOW A range error occurred; an earlier floating-point operation
result was too large to be represented.

FE_UNDERFLOW An earlier floating-point operation result was too small to be
represented at full precision; a denormal value was created.

FE_ALL_EXCEPT The bitwise OR of all supported floating-point exceptions.

Requirements

Attempts to clear the floating-point exception flags specified by the argument.

excepts
The exception status flags to clear.

Returns zero if excepts is zero, or if all the specified exceptions were successfully cleared. Otherwise, returns a
nonzero value.

The feclearexcept function attempts to clear the floating point exception status flags specified by excepts. The
function supports these exception macros, defined in fenv.h:

The excepts argument may be zero, or the bitwise OR of one or more of the supported exception macros. The
result of any other argument value is undefined.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/feclearexcept1.md

FUNCTION C HEADER C++ HEADER

feclearexcept <fenv.h> <cfenv>

See also

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
fetestexcept

fegetenv
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int fegetenv(
 fenv_t *penv
);

Parameters

Return Value

Remarks

Requirements
FUNCTION C HEADER C++ HEADER

fegetenv <fenv.h> <cfenv>

See also

Stores the current floating-point environment in the specified object.

penv
Pointer to an fenv_t object to contain the current floating-point environment values.

Returns 0 if the floating-point environment was successfully stored in penv. Otherwise, returns a non-zero value.

The fegetenv function stores the current floating-point environment in the object pointed to by penv. The floating
point environment is the set of status flags and control modes that affect floating-point calculations. This includes
the rounding direction mode and the status flags for floating-point exceptions. If penv does not point to a valid
fenv_t object, subsequent behavior is undefined.

To use this function, you must turn off floating-point optimizations that could prevent access by using the
#pragma fenv_access(on) directive prior to the call. For more information, see fenv_access.

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
fesetenv

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fegetenv1.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/fenv-access

fegetexceptflag
11/9/2018 • 2 minutes to read • Edit Online

Syntax
int fegetexceptflag(
 fexcept_t* pstatus,
 int excepts
);

Parameters

Return Value

Remarks

EXCEPTION MACRO DESCRIPTION

FE_DIVBYZERO A singularity or pole error occurred in an earlier floating-point
operation; an infinity value was created.

FE_INEXACT The function was forced to round the stored result of an
earlier floating-point operation.

FE_INVALID A domain error occurred in an earlier floating-point operation.

FE_OVERFLOW A range error occurred; an earlier floating-point operation
result was too large to be represented.

FE_UNDERFLOW An earlier floating-point operation result was too small to be
represented at full precision; a denormal value was created.

FE_ALLEXCEPT The bitwise OR of all supported floating-point exceptions.

Stores the current state of the specified floating-point exception flags.

pstatus
A pointer to a fexcept_t object to contain the current values of the exception flags specified by excepts.

excepts
The floating-point exception flags to store in pstatus.

On success, returns 0. Otherwise, returns a non-zero value.

The fegetexceptflag function stores the current state of the floating-point exception status flags specified by
excepts in the fexcept_t object pointed to by pstatus. pstatus must point to a valid fexcept_t object, or subsequent
behavior is undefined. The fegetexceptflag function supports these exception macros, defined in <fenv.h>:

The excepts argument may be zero, one of the supported floating-point exception macros, or the bitwise OR of
two or more of the macros. The effect of any other argument value is undefined.

To use this function, you must turn off floating-point optimizations that could prevent access by using the

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fegetexceptflag2.md

Requirements
FUNCTION C HEADER C++ HEADER

fegetexceptflag <fenv.h> <cfenv>

See also

#pragma fenv_access(on) directive prior to the call. For more information, see fenv_access.

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
fesetexceptflag

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/fenv-access

fegetround, fesetround
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int fegetround(void);

int fesetround(
 int round_mode
);

Parameters

Return Value

Remarks

MACRO DESCRIPTION

FE_DOWNWARD Round towards negative infinity.

FE_TONEAREST Round towards the nearest.

FE_TOWARDZERO Round towards zero.

FE_UPWARD Round towards positive infinity.

Gets or sets the current floating-point rounding mode.

round_mode
The rounding mode to set, as one of the floating-point rounding macros. If the value is not equal to one of the
floating-point rounding macros, the rounding mode is not changed.

On success, fegetround returns the rounding mode as one of the floating point rounding macro values. It returns
a negative value if the current rounding mode can't be determined.

On success, fesetround returns 0. Otherwise, a non-zero value is returned.

Floating-point operations can use one of several rounding modes. These control which direction the results of
floating-point operations are rounded toward when the results are stored. These are the names and behaviors of
the floating-point rounding macros defined in <fenv.h>:

The default behavior of FE_TONEAREST is to round results midway between representable values toward the
nearest value with an even (0) least significant bit.

The current rounding mode affects these operations:

String conversions.

The results of floating-point arithmetic operators outside of constant expressions.

The library rounding functions, such as rint and nearbyint.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fegetround-fesetround2.md

Requirements
FUNCTION C HEADER C++ HEADER

fegetround, fesetround <fenv.h> <cfenv>

See also

Return values from standard library mathematical functions.

The current rounding mode does not affect these operations:

The trunc, ceil, floor, and lround library functions.

Floating-point to integer implicit casts and conversions, which always round towards zero.

The results of floating-point arithmetic operators in constant expressions, which always round to the
nearest value.

To use these functions, you must turn off floating-point optimizations that could prevent access by using the
#pragma fenv_access(on) directive prior to the call. For more information, see fenv_access.

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
nearbyint, nearbyintf, nearbyintl
rint, rintf, rintl
lrint, lrintf, lrintl, llrint, llrintf, llrintl

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/fenv-access

feholdexcept
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int feholdexcept(
 fenv_t *penv
);

Parameters

Return Value

Remarks

Requirements
FUNCTION C HEADER C++ HEADER

feholdexcept <fenv.h> <cfenv>

See also

Saves the current floating-point environment in the specified object, clears the floating-point status flags, and, if
possible, puts the floating-point environment into non-stop mode.

penv
Pointer to an fenv_t object to contain a copy of the floating-point environment.

Returns zero if and only if the function is able to successfully turn on non-stop floating-point exception handling.

The feholdexcept function is used to store the state of the current floating point environment in the fenv_t
object pointed to by penv, and to set the environment to not interrupt execution on floating-point exceptions. This
is known as non-stop mode. This mode continues until the environment is restored using fesetenv or
feupdateenv.

You can use this function at the beginning of a subroutine that needs to hide one or more floating-point
exceptions from the caller. To report an exception, you can simply clear the unwanted exceptions by using
feclearexcept, and then end the non-stop mode with a call to feupdateenv.

To use this function, you must turn off floating-point optimizations that could prevent access by using the
#pragma fenv_access(on) directive prior to the call. For more information, see fenv_access.

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
feclearexcept
fesetenv
feupdateenv

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/feholdexcept2.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/fenv-access

feof
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int feof(
 FILE *stream
);

Parameters

Return Value

Remarks

Requirements
FUNCTION REQUIRED HEADER

feof <stdio.h>

Example

Tests for end-of-file on a stream.

stream
Pointer to FILE structure.

The feof function returns a nonzero value if a read operation has attempted to read past the end of the file; it
returns 0 otherwise. If the stream pointer is NULL, the function invokes the invalid parameter handler, as
described in Parameter Validation. If execution is allowed to continue, errno is set to EINVAL and the feof
returns 0.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these, and other, error codes.

The feof routine (implemented both as a function and as a macro) determines whether the end of stream has
been passed. When the end of file is passed, read operations return an end-of-file indicator until the stream is
closed or until rewind, fsetpos, fseek, or clearerr is called against it.

For example, if a file contains 10 bytes and you read 10 bytes from the file, feof will return 0 because, even
though the file pointer is at the end of the file, you have not attempted to read beyond the end. Only after you try
to read an 11th byte will feof return a nonzero value.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/feof.md

// crt_feof.c
// This program uses feof to indicate when
// it reaches the end of the file CRT_FEOF.TXT. It also
// checks for errors with ferror.
//

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 int count, total = 0;
 char buffer[100];
 FILE *stream;

 fopen_s(&stream, "crt_feof.txt", "r");
 if(stream == NULL)
 exit(1);

 // Cycle until end of file reached:
 while(!feof(stream))
 {
 // Attempt to read in 100 bytes:
 count = fread(buffer, sizeof(char), 100, stream);
 if(ferror(stream)) {
 perror("Read error");
 break;
 }

 // Total up actual bytes read
 total += count;
 }
 printf("Number of bytes read = %d\n", total);
 fclose(stream);
}

Input: crt_feof.txt
Line one.
Line two.

Output

Number of bytes read = 19

See also
Error Handling
Stream I/O
clearerr
_eof
ferror
perror, _wperror

feraiseexcept
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int feraiseexcept(
 int excepts
);

Parameters

Return Value

Remarks

EXCEPTION MACRO DESCRIPTION

FE_DIVBYZERO A singularity or pole error occurred in an earlier floating-point
operation; an infinity value was created.

FE_INEXACT The function was forced to round the stored result of an
earlier floating-point operation.

FE_INVALID A domain error occurred in an earlier floating-point operation.

FE_OVERFLOW A range error occurred; an earlier floating-point operation
result was too large to be represented.

FE_UNDERFLOW An earlier floating-point operation result was too small to be
represented at full precision; a denormal value was created.

FE_ALLEXCEPT The bitwise OR of all supported floating-point exceptions.

Raises the specified floating-point exceptions.

excepts
The floating-point exceptions to raise.

If all specified exceptions are raised successfully, returns 0.

The feraiseexcept function attempts to raise the floating-point exceptions specified by excepts. The
feraiseexcept function supports these exception macros, defined in <fenv.h>:

The excepts argument may be zero, one of the exception macro values, or the bitwise OR of two or more of the
supported exception macros. If one of the specified exception macros is FE_OVERFLOW or FE_UNDERFLOW, the
FE_INEXACT exception may be raised as a side-effect.

To use this function, you must turn off floating-point optimizations that could prevent access by using the
#pragma fenv_access(on) directive prior to the call. For more information, see fenv_access.

Microsoft Specific: The exceptions specified in excepts are raised in the order FE_INVALID, FE_DIVBYZERO,

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/feraiseexcept.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/fenv-access

Requirements
FUNCTION C HEADER C++ HEADER

feraiseexcept <fenv.h> <cfenv>

See also

FE_OVERFLOW, FE_UNDERFLOW, FE_INEXACT. However, FE_INEXACT can be raised when FE_OVERFLOW or
FE_UNDERFLOW is raised, even if not specified in excepts. End Microsoft Specific

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
fesetexceptflag
feholdexcept
fetestexcept
feupdateenv

ferror
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int ferror(
 FILE *stream
);

Parameters

Return Value

Remarks

Requirements
FUNCTION REQUIRED HEADER

ferror <stdio.h>

Example

See also

Tests for an error on a stream.

stream
Pointer to FILE structure.

If no error has occurred on stream, ferror returns 0. Otherwise, it returns a nonzero value. If stream is NULL,
ferror invokes the invalid parameter handler, as described in Parameter Validation. If execution is allowed to
continue, this function sets errno to EINVAL and returns 0.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these, and other, error codes.

The ferror routine (implemented both as a function and as a macro) tests for a reading or writing error on the
file associated with stream. If an error has occurred, the error indicator for the stream remains set until the
stream is closed or rewound, or until clearerr is called against it.

For additional compatibility information, see Compatibility.

See the example for feof.

Error Handling
Stream I/O
clearerr
_eof
feof
fopen, _wfopen

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ferror.md

perror, _wperror

fesetenv
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int fesetenv(
 const fenv_t *penv
);

Parameters

Return Value

Remarks

Requirements
FUNCTION C HEADER C++ HEADER

fesetenv <fenv.h> <cfenv>

See also

Sets the current floating-point environment.

penv
Pointer to a fenv_t object that contains a floating-point environment as set by a call to fegetenv or feholdexcept.
You can also specify the default startup floating-point environment by using the FE_DFL_ENV macro.

Returns 0 if the environment was successfully set. Otherwise, returns a nonzero value.

The fesetenv function sets the current floating-point environment from the value stored in the fenv_t object
pointed to by penv. The floating point environment is the set of status flags and control modes that affect floating-
point calculations. This includes the rounding mode and the status flags for floating-point exceptions. If penv is
not FE_DFL_ENV or does not point to a valid fenv_t object, subsequent behavior is undefined.

A call to this function sets the exception status flags that are in the penv object, but it does not raise those
exceptions.

To use this function, you must turn off floating-point optimizations that could prevent access by using the
#pragma fenv_access(on) directive prior to the call. For more information, see fenv_access.

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
fegetenv
feclearexcept
feholdexcept
fesetexceptflag

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fesetenv1.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/fenv-access

fesetexceptflag
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int fesetexceptflag(
 const fexcept_t *pstatus,
 int excepts
);

Parameters

Return Value

Remarks

EXCEPTION MACRO DESCRIPTION

FE_DIVBYZERO A singularity or pole error occurred in an earlier floating-point
operation; an infinity value was created.

FE_INEXACT The function was forced to round the stored result of an
earlier floating-point operation.

FE_INVALID A domain error occurred in an earlier floating-point
operation.

FE_OVERFLOW A range error occurred; an earlier floating-point operation
result was too large to be represented.

FE_UNDERFLOW An earlier floating-point operation result was too small to be
represented at full precision; a denormal value was created.

FE_ALLEXCEPT The bitwise OR of all supported floating-point exceptions.

Sets the specified floating-point status flags in the current floating-point environment.

pstatus
Pointer to an fexcept_t object containing the values to set the exception status flags to. The object may be set by
a previous call to fegetexceptflag.

excepts
The floating-point exception status flags to set.

If all the specified exception status flags are set successfully, returns 0. Otherwise, returns a nonzero value.

The fesetexceptflag function sets the state of the floating-point exception status flags specified by excepts to the
corresponding values set in the fexcept_t object pointed to by pstatus. It does not raise the exceptions. The
pstatus pointer must point to a valid fexcept_t object, or subsequent behavior is undefined. The fesetexceptflag
function supports these exception macro values in excepts, defined in <fenv.h>:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fesetexceptflag2.md

Requirements
FUNCTION C HEADER C++ HEADER

fesetexceptflag <fenv.h> <cfenv>

See also

The excepts argument may be zero, one of the supported floating-point exception macros, or the bitwise OR of
two or more of the macros. The effect of any other argument value is undefined.

To use this function, you must turn off floating-point optimizations that could prevent access by using the
#pragma fenv_access(on) directive prior to the call. For more information, see fenv_access.

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
fegetexceptflag

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/fenv-access

fetestexcept
11/9/2018 • 2 minutes to read • Edit Online

Syntax
int fetestexcept(
 int excepts
);

Parameters

Return Value

Remarks

EXCEPTION MACRO DESCRIPTION

FE_DIVBYZERO A singularity or pole error occurred in an earlier floating-point
operation; an infinity value was created.

FE_INEXACT The function was forced to round the stored result of an
earlier floating-point operation.

FE_INVALID A domain error occurred in an earlier floating-point operation.

FE_OVERFLOW A range error occurred; an earlier floating-point operation
result was too large to be represented.

FE_UNDERFLOW An earlier floating-point operation result was too small to be
represented at full precision; a denormal value was created.

FE_ALLEXCEPT The bitwise OR of all supported floating-point exceptions.

Determines which of the specified floating-point exception status flags are currently set.

excepts
A bitwise OR of the floating-point status flags to test.

On success, returns a bitmask containing a bitwise OR of the floating-point exception macros that correspond to
the exception status flags currently set. Returns 0 if none of the exceptions are set.

Use the fetestexcept function to determine which exceptions were raised by a floating point operation. Use the
excepts parameter to specify which exception status flags to test. The fetestexcept function uses these exception
macros defined in <fenv.h> in excepts and the return value:

The specified excepts argument may be 0, one of the supported floating-point exception macros, or the bitwise
OR of two or more of the macros. The effect of any other excepts argument value is undefined.

To use this function, you must turn off floating-point optimizations that could prevent access by using the
#pragma fenv_access(on) directive prior to the call. For more information, see fenv_access.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fetestexcept1.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/fenv-access

Requirements
FUNCTION C HEADER C++ HEADER

fetestexcept <fenv.h> <cfenv>

See also

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
feclearexcept
feraiseexcept

feupdateenv
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int feupdateenv(
 const fenv_t* penv
);

Parameters

Return Value

Remarks

Requirements
FUNCTION C HEADER C++ HEADER

feupdateenv <fenv.h> <cfenv>

See also

Saves the currently raised floating-point exceptions, restores the specified floating-point environment state, and
then raises the saved floating-point exceptions.

penv
Pointer to a fenv_t object that contains a floating-point environment as set by a call to fegetenv or feholdexcept.
You can also specify the default startup floating-point environment by using the FE_DFL_ENV macro.

Returns 0 if all actions completed successfully. Otherwise, returns a nonzero value.

The feupdateenv function performs multiple actions. First, it stores the current raised floating-point exception
status flags in automatic storage. Then, it sets the current floating-point environment from the value stored in the
fenv_t object pointed to by penv. If penv is not FE_DFL_ENV or does not point to a valid fenv_t object,
subsequent behavior is undefined. Finally, feupdateenv raises the locally stored floating-point exceptions.

To use this function, you must turn off floating-point optimizations that could prevent access by using the
#pragma fenv_access(on) directive prior to the call. For more information, see fenv_access.

For additional compatibility information, see Compatibility.

fegetenv
feclearexcept
feholdexcept
fesetexceptflag

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/feupdateenv.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/fenv-access

fflush
11/8/2018 • 2 minutes to read • Edit Online

Syntax
int fflush(
 FILE *stream
);

Parameters

Return Value

NOTE

Remarks

Flushes a stream.

stream
Pointer to FILE structure.

fflush returns 0 if the buffer was successfully flushed. The value 0 is also returned in cases in which the
specified stream has no buffer or is open for reading only. A return value of EOF indicates an error.

If fflush returns EOF, data may have been lost due to a write failure. When setting up a critical error handler, it is safest to
turn buffering off with the setvbuf function or to use low-level I/O routines such as _open, _close, and _write instead of
the stream I/O functions.

The fflush function flushes the stream stream. If the stream was opened in write mode, or it was opened in
update mode and the last operation was a write, the contents of the stream buffer are written to the underlying
file or device and the buffer is discarded. If the stream was opened in read mode, or if the stream has no buffer,
the call to fflush has no effect, and any buffer is retained. A call to fflush negates the effect of any prior call to
ungetc for the stream. The stream remains open after the call.

If stream is NULL, the behavior is the same as a call to fflush on each open stream. All streams opened in write
mode and all streams opened in update mode where the last operation was a write are flushed. The call has no
effect on other streams.

Buffers are normally maintained by the operating system, which determines the optimal time to write the data
automatically to disk: when a buffer is full, when a stream is closed, or when a program terminates normally
without closing the stream. The commit-to-disk feature of the run-time library lets you ensure that critical data
is written directly to disk rather than to the operating-system buffers. Without rewriting an existing program,
you can enable this feature by linking the program's object files with COMMODE.OBJ. In the resulting
executable file, calls to _flushall write the contents of all buffers to disk. Only _flushall and fflush are affected
by COMMODE.OBJ.

For information about controlling the commit-to-disk feature, see Stream I/O, fopen, and _fdopen.

This function locks the calling thread and is therefore thread-safe. For a non-locking version, see
_fflush_nolock.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fflush.md

Requirements
FUNCTION REQUIRED HEADER

fflush <stdio.h>

Example
// crt_fflush.c
#include <stdio.h>
#include <conio.h>

int main(void)
{
 int integer;
 char string[81];

 // Read each word as a string.
 printf("Enter a sentence of four words with scanf: ");
 for(integer = 0; integer < 4; integer++)
 {
 scanf_s("%s", string, sizeof(string));
 printf("%s\n", string);
 }

 // You must flush the input buffer before using gets.
 // fflush on input stream is an extension to the C standard
 fflush(stdin);
 printf("Enter the same sentence with gets: ");
 gets_s(string, sizeof(string));
 printf("%s\n", string);
}

This is a test
This is a test

Enter a sentence of four words with scanf: This is a test
This
is
a
test
Enter the same sentence with gets: This is a test
This is a test

See also

For additional compatibility information, see Compatibility.

Stream I/O
fclose, _fcloseall
_flushall
setvbuf

_fflush_nolock
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _fflush_nolock(
 FILE *stream
);

Parameters

Return Value

Remarks

Requirements
FUNCTION REQUIRED HEADER

_fflush_nolock <stdio.h>

See also

Flushes a stream without locking the thread.

stream
Pointer to the FILE structure.

See fflush.

This function is a non-locking version of fflush. It is identical to fflush except that it is not protected from
interference by other threads. It might be faster because it does not incur the overhead of locking out other
threads. Use this function only in thread-safe contexts such as single-threaded applications or where the calling
scope already handles thread isolation.

For more compatibility information, see Compatibility.

Stream I/O
fclose, _fcloseall
_flushall
setvbuf

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fflush-nolock.md

fgetc, fgetwc
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int fgetc(
 FILE *stream
);
wint_t fgetwc(
 FILE *stream
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_fgettc fgetc fgetc fgetwc

Read a character from a stream.

stream
Pointer to FILE structure.

fgetc returns the character read as an int or returns EOF to indicate an error or end of file. fgetwc returns, as a
wint_t, the wide character that corresponds to the character read or returns WEOF to indicate an error or end
of file. For both functions, use feof or ferror to distinguish between an error and an end-of-file condition. If a
read error occurs, the error indicator for the stream is set. If stream is NULL, fgetc and fgetwc invoke the
invalid parameter handler, as described in Parameter Validation. If execution is allowed to continue, these
functions set errno to EINVAL and return EOF.

Each of these functions reads a single character from the current position of the file associated with stream. The
function then increments the associated file pointer (if defined) to point to the next character. If the stream is at
end of file, the end-of-file indicator for the stream is set.

fgetc is equivalent to getc, but is implemented only as a function, rather than as a function and a macro.

fgetwc is the wide-character version of fgetc; it reads c as a multibyte character or a wide character according
to whether stream is opened in text mode or binary mode.

The versions with the _nolock suffix are identical except that they are not protected from interference by other
threads.

For more information about processing wide characters and multibyte characters in text and binary modes, see
Unicode Stream I/O in Text and Binary Modes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fgetc-fgetwc.md

Requirements
FUNCTION REQUIRED HEADER

fgetc <stdio.h>

fgetwc <stdio.h> or <wchar.h>

Example
// crt_fgetc.c
// This program uses getc to read the first
// 80 input characters (or until the end of input)
// and place them into a string named buffer.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 FILE *stream;
 char buffer[81];
 int i, ch;

 // Open file to read line from:
 fopen_s(&stream, "crt_fgetc.txt", "r");
 if(stream == NULL)
 exit(0);

 // Read in first 80 characters and place them in "buffer":
 ch = fgetc(stream);
 for(i=0; (i < 80) && (feof(stream) == 0); i++)
 {
 buffer[i] = (char)ch;
 ch = fgetc(stream);
 }

 // Add null to end string
 buffer[i] = '\0';
 printf("%s\n", buffer);
 fclose(stream);
}

Input: crt_fgetc.txt
Line one.
Line two.

Output

Line one.
Line two.

See also

For additional compatibility information, see Compatibility.

Stream I/O
fputc, fputwc
getc, getwc

_fgetc_nolock, _fgetwc_nolock
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _fgetc_nolock(
 FILE *stream
);
wint_t _fgetwc_nolock(
 FILE *stream
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_fgettc_nolock _fgetc_nolock _fgetc_nolock _fgetwc_nolock

Requirements
FUNCTION REQUIRED HEADER

_fgetc_nolock <stdio.h>

_fgetwc_nolock <stdio.h> or <wchar.h>

Example

Reads a character from a stream without locking the thread.

stream
Pointer to the FILE structure.

Seefgetc, fgetwc.

_fgetc_nolock and _fgetwc_nolock are identical to fgetc and fgetwc, respectively, except that they are not
protected from interference by other threads. They might be faster because they do not incur the overhead of
locking out other threads. Use these functions only in thread-safe contexts such as single-threaded applications or
where the calling scope already handles thread isolation.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fgetc-nolock-fgetwc-nolock.md

// crt_fgetc_nolock.c
// This program uses getc to read the first
// 80 input characters (or until the end of input)
// and place them into a string named buffer.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 FILE *stream;
 char buffer[81];
 int i, ch;

 // Open file to read line from:
 if(fopen_s(&stream, "crt_fgetc_nolock.txt", "r") != 0)
 exit(0);

 // Read in first 80 characters and place them in "buffer":
 ch = fgetc(stream);
 for(i=0; (i < 80) && (feof(stream) == 0); i++)
 {
 buffer[i] = (char)ch;
 ch = _fgetc_nolock(stream);
 }

 // Add null to end string
 buffer[i] = '\0';
 printf("%s\n", buffer);
 fclose(stream);
}

Input: crt_fgetc_nolock.txt
Line one.
Line two.

Output

Line one.
Line two.

See also
Stream I/O
fputc, fputwc
getc, getwc

fgetchar
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _fgetchar instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fgetchar.md

_fgetchar, _fgetwchar
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _fgetchar(void);
wint_t _fgetwchar(void);

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_fgettchar _fgetchar _fgetchar _fgetwchar

Requirements
FUNCTION REQUIRED HEADER

_fgetchar <stdio.h>

_fgetwchar <stdio.h> or <wchar.h>

Example

Reads a character from stdin.

_fgetchar returns the character read as an int or returns EOF to indicate an error or end of file. _fgetwchar
returns, as a wint_t, the wide character that corresponds to the character read or returns WEOF to indicate an error
or end of file. For both functions, use feof or ferror to distinguish between an error and an end-of-file condition.

These functions read a single character from stdin. The function then increments the associated file pointer (if
defined) to point to the next character. If the stream is at end of file, the end-of-file indicator for the stream is set.

_fgetchar is equivalent to fgetc(stdin) . It is also equivalent to getchar, but implemented only as a function,
rather than as a function and a macro. _fgetwchar is the wide-character version of _fgetchar.

These functions are not compatible with the ANSI standard.

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that are
associated with the console—stdin, stdout, and stderr—must be redirected before C run-time functions can use
them in UWP apps. For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fgetchar-fgetwchar.md

// crt_fgetchar.c
// This program uses _fgetchar to read the first
// 80 input characters (or until the end of input)
// and place them into a string named buffer.
//

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char buffer[81];
 int i, ch;

 // Read in first 80 characters and place them in "buffer":
 ch = _fgetchar();
 for(i=0; (i < 80) && (feof(stdin) == 0); i++)
 {
 buffer[i] = (char)ch;
 ch = _fgetchar();
 }

 // Add null to end string
 buffer[i] = '\0';
 printf("%s\n", buffer);
}

 Line one.
Line two.Line one.
Line two.

See also
Stream I/O
fputc, fputwc
getc, getwc

fgetpos
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int fgetpos(
 FILE *stream,
 fpos_t *pos
);

Parameters

Return Value

Remarks

Requirements
FUNCTION REQUIRED HEADER

fgetpos <stdio.h>

Example

Gets a stream's file-position indicator.

stream
Target stream.

pos
Position-indicator storage.

If successful, fgetpos returns 0. On failure, it returns a nonzero value and sets errno to one of the following
manifest constants (defined in STDIO.H): EBADF, which means the specified stream is not a valid file pointer or
is not accessible, or EINVAL, which means the stream value or the value of pos is invalid, such as if either is a
null pointer. If stream or pos is a NULL pointer, the function invokes the invalid parameter handler, as described
in Parameter Validation.

The fgetpos function gets the current value of the stream argument's file-position indicator and stores it in the
object pointed to by pos. The fsetpos function can later use information stored in pos to reset the stream
argument's pointer to its position at the time fgetpos was called. The pos value is stored in an internal format
and is intended for use only by fgetpos and fsetpos.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fgetpos.md

// crt_fgetpos.c
// This program uses fgetpos and fsetpos to
// return to a location in a file.

#include <stdio.h>

int main(void)
{
 FILE *stream;
 fpos_t pos;
 char buffer[20];

 if(fopen_s(&stream, "crt_fgetpos.txt", "rb")) {
 perror("Trouble opening file");
 return -1;
 }

 // Read some data and then save the position.
 fread(buffer, sizeof(char), 8, stream);
 if(fgetpos(stream, &pos) != 0) {
 perror("fgetpos error");
 return -1;
 }

 fread(buffer, sizeof(char), 13, stream);
 printf("after fgetpos: %.13s\n", buffer);

 // Restore to old position and read data
 if(fsetpos(stream, &pos) != 0) {
 perror("fsetpos error");
 return -1;
 }

 fread(buffer, sizeof(char), 13, stream);
 printf("after fsetpos: %.13s\n", buffer);
 fclose(stream);
}

Input: crt_fgetpos.txt
fgetpos gets a stream's file-position indicator.

Output crt_fgetpos.txt

after fgetpos: gets a stream
after fsetpos: gets a stream

See also
Stream I/O
fsetpos

fgets, fgetws
10/31/2018 • 2 minutes to read • Edit Online

Syntax
char *fgets(
 char *str,
 int numChars,
 FILE *stream
);
wchar_t *fgetws(
 wchar_t *str,
 int numChars,
 FILE *stream
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

Get a string from a stream.

str
Storage location for data.

numChars
Maximum number of characters to read.

stream
Pointer to FILE structure.

Each of these functions returns str. NULL is returned to indicate an error or an end-of-file condition. Use feof or
ferror to determine whether an error occurred. If str or stream is a null pointer, or numChars is less than or equal
to zero, this function invokes the invalid parameter handler, as described in Parameter Validation. If execution is
allowed to continue, errno is set to EINVAL and the function returns NULL.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these, and other, error codes.

The fgets function reads a string from the input stream argument and stores it in str. fgets reads characters
from the current stream position to and including the first newline character, to the end of the stream, or until the
number of characters read is equal to numChars - 1, whichever comes first. The result stored in str is appended
with a null character. The newline character, if read, is included in the string.

fgetws is a wide-character version of fgets.

fgetws reads the wide-character argument str as a multibyte-character string or a wide-character string
according to whether stream is opened in text mode or binary mode, respectively. For more information about
using text and binary modes in Unicode and multibyte stream-I/O, see Text and Binary Mode File I/O and
Unicode Stream I/O in Text and Binary Modes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fgets-fgetws.md

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_fgetts fgets fgets fgetws

Requirements
FUNCTION REQUIRED HEADER

fgets <stdio.h>

fgetws <stdio.h> or <wchar.h>

Example
// crt_fgets.c
// This program uses fgets to display
// the first line from a file.

#include <stdio.h>

int main(void)
{
 FILE *stream;
 char line[100];

 if(fopen_s(&stream, "crt_fgets.txt", "r") == 0)
 {
 if(fgets(line, 100, stream) == NULL)
 printf("fgets error\numChars");
 else
 printf("%s", line);
 fclose(stream);
 }
}

Input: crt_fgets.txt

Line one.
Line two.

Output

Line one.

See also

For additional compatibility information, see Compatibility.

Stream I/O
fputs, fputws
gets, _getws
puts, _putws

filelength
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _filelength instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/filelength.md

_filelength, _filelengthi64
10/31/2018 • 2 minutes to read • Edit Online

Syntax
long _filelength(
 int fd
);
__int64 _filelengthi64(
 int fd
);

Parameters

Return Value

Requirements
FUNCTION REQUIRED HEADER

_filelength <io.h>

_filelengthi64 <io.h>

Example

See also

Gets the length of a file.

fd
Target the file descriptor.

Both _filelength and _filelengthi64 return the file length, in bytes, of the target file associated with fd. If fd is an
invalid file descriptor, this function invokes the invalid parameter handler, as described in Parameter Validation. If
execution is allowed to continue, both functions return -1L to indicate an error and set errno to EBADF.

For more compatibility information, see Compatibility.

See the example for _chsize.

File Handling
_chsize
_fileno
_fstat, _fstat32, _fstat64, _fstati64, _fstat32i64, _fstat64i32
_fstat, _fstat32, _fstat64, _fstati64, _fstat32i64, _fstat64i32
_stat, _wstat Functions
_stat, _wstat Functions

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/filelength-filelengthi64.md

fileno
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _fileno instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-fileno.md

_fileno
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _fileno(
 FILE *stream
);

Parameters

Return Value

NOTE

Remarks

Requirements
FUNCTION REQUIRED HEADER

_fileno <stdio.h>

Example

Gets the file descriptor associated with a stream.

stream
Pointer to the FILE structure.

_fileno returns the file descriptor. There is no error return. The result is undefined if stream does not specify an
open file. If stream is NULL, _fileno invokes the invalid parameter handler, as described in Parameter Validation.
If execution is allowed to continue, this function returns -1 and sets errno to EINVAL.

For more information about these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

If stdout or stderr is not associated with an output stream (for example, in a Windows application without a console
window), the file descriptor returned is -2. In previous versions, the file descriptor returned was -1. This change allows
applications to distinguish this condition from an error.

The _fileno routine returns the file descriptor currently associated with stream. This routine is implemented both
as a function and as a macro. For information about choosing either implementation, see Choosing Between
Functions and Macros.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fileno.md

// crt_fileno.c
// This program uses _fileno to obtain
// the file descriptor for some standard C streams.
//

#include <stdio.h>

int main(void)
{
 printf("The file descriptor for stdin is %d\n", _fileno(stdin));
 printf("The file descriptor for stdout is %d\n", _fileno(stdout));
 printf("The file descriptor for stderr is %d\n", _fileno(stderr));
}

The file descriptor for stdin is 0
The file descriptor for stdout is 1
The file descriptor for stderr is 2

See also
Stream I/O
_fdopen, _wfdopen
_filelength, _filelengthi64
fopen, _wfopen
freopen, _wfreopen

_findclose
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _findclose(
 intptr_t handle
);

Parameters

Return Value

Requirements
FUNCTION REQUIRED HEADER

_findclose <io.h>

See also

Closes the specified search handle and releases associated resources.

handle
Search handle returned by a previous call to _findfirst.

If successful, _findclose returns 0. Otherwise, it returns -1 and sets errno to ENOENT, indicating that no more
matching files could be found.

For more compatibility information, see Compatibility.

System Calls
Filename Search Functions

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/findclose.md

_findfirst, _findfirst32, _findfirst32i64, _findfirst64,
_findfirst64i32, _findfirsti64, _wfindfirst, _wfindfirst32,
_wfindfirst32i64, _wfindfirst64, _wfindfirst64i32,
_wfindfirsti64
2/4/2019 • 3 minutes to read • Edit Online

Syntax

Provide information about the first instance of a file name that matches the file specified in the filespec
argument.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/findfirst-functions.md

intptr_t _findfirst(
 const char *filespec,
 struct _finddata_t *fileinfo
);
intptr_t _findfirst32(
 const char *filespec,
 struct _finddata32_t *fileinfo
);
intptr_t _findfirst64(
 const char *filespec,
 struct _finddata64_t *fileinfo
);
intptr_t _findfirsti64(
 const char *filespec,
 struct _finddatai64_t *fileinfo
);
intptr_t _findfirst32i64(
 const char *filespec,
 struct _finddata32i64_t *fileinfo
);
intptr_t _findfirst64i32(
 const char *filespec,
 struct _finddata64i32_t *fileinfo
);
intptr_t _wfindfirst(
 const wchar_t *filespec,
 struct _wfinddata_t *fileinfo
);
intptr_t _wfindfirst32(
 const wchar_t *filespec,
 struct _wfinddata32_t *fileinfo
);
intptr_t _wfindfirst64(
 const wchar_t *filespec,
 struct _wfinddata64_t *fileinfo
);
intptr_t _wfindfirsti64(
 const wchar_t *filespec,
 struct _wfinddatai64_t *fileinfo
);
intptr_t _wfindfirst32i64(
 const wchar_t *filespec,
 struct _wfinddata32i64_t *fileinfo
);
intptr_t _wfindfirst64i32(
 const wchar_t *filespec,
 struct _wfinddata64i32_t *fileinfo
);

Parameters

Return Value

filespec
Target file specification (can include wildcard characters).

fileinfo
File information buffer.

If successful, _findfirst returns a unique search handle identifying the file or group of files that match the
filespec specification, which can be used in a subsequent call to _findnext or to _findclose. Otherwise, _findfirst
returns -1 and sets errno to one of the following values.

ERRNO VALUE CONDITION

EINVAL Invalid parameter: filespec or fileinfo was NULL. Or, the
operating system returned an unexpected error.

ENOENT File specification that could not be matched.

ENOMEM Insufficient memory.

EINVAL Invalid file name specification or the file name given was
larger than MAX_PATH.

Remarks

Time Type and File Length Type Variations of _findfirst

FUNCTIONS _USE_32BIT_TIME_T DEFINED? TIME TYPE FILE LENGTH TYPE

_findfirst, _wfindfirst Not defined 64-bit 32-bit

_findfirst, _wfindfirst Defined 32-bit 32-bit

_findfirst32, _wfindfirst32 Not affected by the macro
definition

32-bit 32-bit

For more information about these and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

If an invalid parameter is passed in, these functions invoke the invalid parameter handler, as described in
Parameter Validation.

You must call _findclose after you are finished with either the _findfirst or _findnext function (or any variants).
This frees resources used by these functions in your application.

The variations of these functions that have the w prefix are wide-character versions; otherwise, they are
identical to the corresponding single-byte functions.

Variations of these functions support 32-bit or 64-bit time types and 32-bit or 64-bit file sizes. The first
numeric suffix (32 or 64) indicates the size of the time type; the second suffix is either i32 or i64, and indicates
whether the file size is represented as a 32-bit or 64-bit integer. For information about which versions support
32-bit and 64-bit time types and file sizes, see the following table. The i32 or i64 suffix is omitted if it is the
same as the size of the time type, so _findfirst64 also supports 64-bit file lengths and _findfirst32 supports
only 32-bit file lengths.

These functions use various forms of the _finddata_t structure for the fileinfo parameter. For more
information about the structure, see Filename Search Functions.

The variations that use a 64-bit time type enable file-creation dates to be expressed up through 23:59:59,
December 31, 3000, UTC. Those that use 32-bit time types represent dates only through 23:59:59 January 18,
2038, UTC. Midnight, January 1, 1970, is the lower bound of the date range for all these functions.

Unless you have a specific reason to use the versions that specify the time size explicitly, use _findfirst or
_wfindfirst or, if you need to support file sizes larger than 3 GB, use _findfirsti64 or _wfindfirsti64. All these
functions use the 64-bit time type. In earlier versions, these functions used a 32-bit time type. If this is a
breaking change for an application, you might define _USE_32BIT_TIME_T to revert to the old behavior. If
_USE_32BIT_TIME_T is defined, _findfirst, _finfirsti64, and their corresponding Unicode versions use a 32-
bit time.

_findfirst64, _wfindfirst64 Not affected by the macro
definition

64-bit 64-bit

_findfirsti64,
_wfindfirsti64

Not defined 64-bit 64-bit

_findfirsti64,
_wfindfirsti64

Defined 32-bit 64-bit

_findfirst32i64,
_wfindfirst32i64

Not affected by the macro
definition

32-bit 64-bit

_findfirst64i32,
_wfindfirst64i32

Not affected by the macro
definition

64-bit 32-bit

FUNCTIONS _USE_32BIT_TIME_T DEFINED? TIME TYPE FILE LENGTH TYPE

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tfindfirst _findfirst _findfirst _wfindfirst

_tfindfirst32 _findfirst32 _findfirst32 _wfindfirst32

_tfindfirst64 _findfirst64 _findfirst64 _wfindfirst64

_tfindfirsti64 _findfirsti64 _findfirsti64 _wfindfirsti64

_tfindfirst32i64 _findfirst32i64 _findfirst32i64 _wfindfirst32i64

_tfindfirst64i32 _findfirst64i32 _findfirst64i32 _wfindfirst64i32

Requirements
FUNCTION REQUIRED HEADER

_findfirst <io.h>

_findfirst32 <io.h>

_findfirst64 <io.h>

_findfirsti64 <io.h>

_findfirst32i64 <io.h>

_findfirst64i32 <io.h>

_wfindfirst <io.h> or <wchar.h>

_wfindfirst32 <io.h> or <wchar.h>

_wfindfirst64 <io.h> or <wchar.h>

_wfindfirsti64 <io.h> or <wchar.h>

_wfindfirst32i64 <io.h> or <wchar.h>

_wfindfirst64i32 <io.h> or <wchar.h>

FUNCTION REQUIRED HEADER

See also

For more compatibility information, see Compatibility.

System Calls
Filename Search Functions

_findnext, _findnext32, _findnext32i64, _findnext64,
_findnext64i32, _findnexti64, _wfindnext,
_wfindnext32, _wfindnext32i64, _wfindnext64,
_wfindnext64i32, _wfindnexti64
11/8/2018 • 3 minutes to read • Edit Online

Syntax

Find the next name, if any, that matches the filespec argument in a previous call to _findfirst, and then alter the
fileinfo structure contents accordingly.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/findnext-functions.md

int _findnext(
 intptr_t handle,
 struct _finddata_t *fileinfo
);
int _findnext32(
 intptr_t handle,
 struct _finddata32_t *fileinfo
);
int _findnext64(
 intptr_t handle,
 struct __finddata64_t *fileinfo
);
int _findnexti64(
 intptr_t handle,
 struct __finddatai64_t *fileinfo
);
int _findnext32i64(
 intptr_t handle,
 struct _finddata32i64_t *fileinfo
);
int _findnext64i32(
 intptr_t handle,
 struct _finddata64i32_t *fileinfo
);
int _wfindnext(
 intptr_t handle,
 struct _wfinddata_t *fileinfo
);
int _wfindnext32(
 intptr_t handle,
 struct _wfinddata32_t *fileinfo
);
int _wfindnext64(
 intptr_t handle,
 struct _wfinddata64_t *fileinfo
);
int _wfindnexti64(
 intptr_t handle,
 struct _wfinddatai64_t *fileinfo
);
int _wfindnext32i64(
 intptr_t handle,
 struct _wfinddatai64_t *fileinfo
);
int _wfindnext64i32(
 intptr_t handle,
 struct _wfinddata64i32_t *fileinfo
);

Parameters

Return Value

handle
Search handle returned by a previous call to _findfirst.

fileinfo
File information buffer.

If successful, returns 0. Otherwise, returns -1 and sets errno to a value indicating the nature of the failure.
Possible error codes are shown in the following table.

ERRNO VALUE CONDITION

EINVAL Invalid parameter: fileinfo was NULL. Or, the operating
system returned an unexpected error.

ENOENT No more matching files could be found.

ENOMEM Not enough memory or the file name's length exceeded
MAX_PATH.

Remarks

Time Type and File Length Type Variations of _findnext

FUNCTIONS _USE_32BIT_TIME_T DEFINED? TIME TYPE FILE LENGTH TYPE

_findnext, _wfindnext Not defined 64-bit 32-bit

_findnext, _wfindnext Defined 32-bit 32-bit

_findnext32,
_wfindnext32

Not affected by the macro
definition

32-bit 32-bit

_findnext64,
_wfindnext64

Not affected by the macro
definition

64-bit 64-bit

_findnexti64,
_wfindnexti64

Not defined 64-bit 64-bit

_findnexti64,
_wfindnexti64

Defined 32-bit 64-bit

If an invalid parameter is passed in, these functions invoke the invalid parameter handler, as described in
Parameter Validation.

You must call _findclose after you are finished using either the _findfirst or _findnext function (or any
variants). This frees up resources used by these functions in your application.

The variations of these functions with the w prefix are wide-character versions; otherwise, they are identical to
the corresponding single-byte functions.

Variations of these functions support 32-bit or 64-bit time types and 32-bit or 64-bit file sizes. The first
numerical suffix (32 or 64) indicates the size of the time type used; the second suffix is either i32 or i64,
indicating whether the file size is represented as a 32-bit or 64-bit integer. For information about which
versions support 32-bit and 64-bit time types and file sizes, see the following table. The variations that use a
64-bit time type allow file-creation dates to be expressed up through 23:59:59, December 31, 3000, UTC;
whereas those using 32-bit time types only represent dates through 23:59:59 January 18, 2038, UTC.
Midnight, January 1, 1970, is the lower bound of the date range for all these functions.

Unless you have a specific reason to use the versions that specify the time size explicitly, use _findnext or
_wfindnext or, if you need to support file sizes greater than 3 GB, use _findnexti64 or _wfindnexti64. All
these functions use the 64-bit time type. In previous versions, these functions used a 32-bit time type. If this is
a breaking change for an application, you might define _USE_32BIT_TIME_T to get the old behavior. If
_USE_32BIT_TIME_T is defined, _findnext, _finnexti64 and their corresponding Unicode versions use a 32-
bit time.

_findnext32i64,
_wfindnext32i64

Not affected by the macro
definition

32-bit 64-bit

_findnext64i32,
_wfindnext64i32

Not affected by the macro
definition

64-bit 32-bit

FUNCTIONS _USE_32BIT_TIME_T DEFINED? TIME TYPE FILE LENGTH TYPE

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tfindnext _findnext _findnext _wfindnext

_tfindnext32 _findnext32 _findnext32 _wfindnext32

_tfindnext64 _findnext64 _findnext64 _wfindnext64

_tfindnexti64 _findnexti64 _findnexti64 _wfindnexti64

_tfindnext32i64 _findnext32i64 _findnext32i64 _wfindnext32i64

_tfindnext64i32 _findnext64i32 _findnext64i32 _wfindnext64i32

Requirements
FUNCTION REQUIRED HEADER

_findnext <io.h>

_findnext32 <io.h>

_findnext64 <io.h>

_findnexti64 <io.h>

_findnext32i64 <io.h>

_findnext64i32 <io.h>

_wfindnext <io.h> or <wchar.h>

_wfindnext32 <io.h> or <wchar.h>

_wfindnext64 <io.h> or <wchar.h>

_wfindnexti64 <io.h> or <wchar.h>

_wfindnext32i64 <io.h> or <wchar.h>

_wfindnext64i32 <io.h> or <wchar.h>

Libraries

See also

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

System Calls
Filename Search Functions

Floating-point primitives
2/4/2019 • 6 minutes to read • Edit Online

_dclass, _ldclass, _fdclass
Syntax

short __cdecl _dclass(double x);
short __cdecl _ldclass(long double x);
short __cdecl _fdclass(float x);

Parameters

Remarks

VALUE DESCRIPTION

FP_NAN A quiet, signaling, or indeterminate NaN

FP_INFINITE A positive or negative infinity

FP_NORMAL A positive or negative normalized non-zero value

FP_SUBNORMAL A positive or negative subnormal (denormalized) value

FP_ZERO A positive or negative zero value

_dsign, _ldsign, _fdsign
Syntax

int __cdecl _dsign(double x);
int __cdecl _ldsign(long double x);
int __cdecl _fdsign(float x);

Parameters

Microsoft-specific primitive functions that are used to implement some standard C runtime library (CRT) floating-
point functions. They're documented here for completeness, but aren't recommended for use. Some of these
functions are noted as unused, because they're known to have issues in precision, exception handling, and
conformance to IEEE-754 behavior. They exist in the library only for backward compatibility. For correct behavior,
portability, and adherence to standards, prefer the standard floating-point functions over these functions.

x
Floating-point function argument.

These floating-point primitives implement the C versions of the CRT macro fpclassify for floating-point types. The
classification of the argument x is returned as one of these constants, defined in math.h:

For additional detail, you can use the Microsoft-specific _fpclass, _fpclassf functions. Use the fpclassify macro or
function for portability.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/floating-point-primitives.md

Remarks

_dpcomp, _ldpcomp, _fdpcomp
Syntax

int __cdecl _dpcomp(double x, double y);
int __cdecl _ldpcomp(long double x, long double y);
int __cdecl _fdpcomp(float x, float y);

Parameters

Remarks

VALUE DESCRIPTION

_FP_LT x can be considered less than y

_FP_EQ x can be considered equal to y

_FP_GT x can be considered greater than y

_dtest, _ldtest, _fdtest
Syntax

short __cdecl _dtest(double* px);
short __cdecl _ldtest(long double* px);
short __cdecl _fdtest(float* px);

Parameters

Remarks

VALUE DESCRIPTION

FP_NAN A quiet, signaling, or indeterminate NaN

x
Floating-point function argument.

These floating-point primitives implement the signbit macro or function in the CRT. They return a non-zero value if
the sign bit is set in the significand (mantissa) of the argument x, and 0 if the sign bit is not set.

x, y
Floating-point function arguments.

These floating-point primitives take two arguments, x and y, and return a value that shows their ordering
relationship, expressed as the bitwise or of these constants, defined in math.h:

These primitives implement the isgreater, isgreaterequal, isless, islessequal, islessgreater, and isunordered macros
and functions in the CRT.

px
Pointer to a floating-point argument.

These floating-point primitives implement the C++ versions of the CRT function fpclassify for floating-point types.
The argument x is evaluated and the classification is returned as one of these constants, defined in math.h:

FP_INFINITE A positive or negative infinity

FP_NORMAL A positive or negative normalized non-zero value

FP_SUBNORMAL A positive or negative subnormal (denormalized) value

FP_ZERO A positive or negative zero value

VALUE DESCRIPTION

_d_int, _ld_int, _fd_int
Syntax

short __cdecl _d_int(double* px, short exp);
short __cdecl _ld_int(long double* px, short exp);
short __cdecl _fd_int(float* px, short exp);

Parameters

Remarks

_dscale, _ldscale, _fdscale
Syntax

short __cdecl _dscale(double* px, long exp);
short __cdecl _ldscale(long double* px, long exp);
short __cdecl _fdscale(float* px, long exp);

Parameters

Remarks

For additional detail, you can use the Microsoft-specific _fpclass, _fpclassf functions. Use the fpclassify function for
portability.

px
Pointer to a floating-point argument.

exp
An exponent as an integral type.

These floating-point primitives take a pointer to a floating-point value px and an exponent value exp, and remove
the fractional part of the floating-point value below the given exponent, if possible. The value returned is the result
of fpclassify on the input value in px if it's a NaN or infinity, and on the output value in px otherwise.

px
Pointer to a floating-point argument.

exp
An exponent as an integral type.

These floating-point primitives take a pointer to a floating-point value px and an exponent value exp, and scale the
value in px by 2 , if possible. The value returned is the result of fpclassify on the input value in px if it's a NaN or
infinity, and on the output value in px otherwise. For portability, prefer the ldexp, ldexpf, and ldexpl functions.

exp

_dunscale, _ldunscale, _fdunscale
Syntax

short __cdecl _dunscale(short* pexp, double* px);
short __cdecl _ldunscale(short* pexp, long double* px);
short __cdecl _fdunscale(short* pexp, float* px);

Parameters

Remarks

_dexp, _ldexp, _fdexp
Syntax

short __cdecl _dexp(double* px, double y, long exp);
short __cdecl _ldexp(long double* px, long double y, long exp);
short __cdecl _fdexp(float* px, float y, long exp);

Parameters

Remarks

_dnorm, _fdnorm
Syntax

short __cdecl _dnorm(unsigned short* ps);
short __cdecl _fdnorm(unsigned short* ps);

Parameters

pexp
A pointer to an exponent as an integral type.

px
Pointer to a floating-point argument.

These floating-point primitives break down the floating-point value pointed at by px into a significand (mantissa)
and an exponent, if possible. The significand is scaled such that the absolute value is greater than or equal to 0.5
and less than 1.0. The exponent is the value n, where the original floating-point value is equal to the scaled
significand times 2 . This integer exponent n is stored at the location pointed to by pexp. The value returned is the
result of fpclassify on the input value in px if it's a NaN or infinity, and on the output value otherwise. For
portability, prefer the frexp, frexpf, frexpl functions.

n

y
Floating-point function argument.

px
Pointer to a floating-point argument.

exp
An exponent as an integral type.

These floating-point primitives construct a floating-point value in the location pointed at by px equal to y * 2 .
The value returned is the result of fpclassify on the input value in y if it's a NaN or infinity, and on the output value
in px otherwise. For portability, prefer the ldexp, ldexpf, and ldexpl functions.

exp

Remarks

_dpoly, _ldpoly, _fdpoly
Syntax

double __cdecl _dpoly(double x, double const* table, int n);
long double __cdecl _ldpoly(long double x, long double const* table, int n);
float __cdecl _fdpoly(float x, _float const* table, int n);

Parameters

Remarks

_dlog, _dlog, _dlog
Syntax

double __cdecl _dlog(double x, int base_flag);
long double __cdecl _ldlog(long double x, int base_flag);
float __cdecl _fdlog(float x, int base_flag);

Parameters

Remarks

ps
Pointer to the bitwise representation of a floating-point value expressed as an array of unsigned short.

These floating-point primitives normalize the fractional part of an underflowed floating-point value and adjust the
characteristic, or biased exponent, to match. The value is passed as the bitwise representation of the floating-point
type converted to an array of unsigned short through the _double_val , _ldouble_val , or _float_val type
punning union declared in math.h. The return value is the result of fpclassify on the input floating-point value if
it's a NaN or infinity, and on the output value otherwise.

x
Floating-point function argument.

table
Pointer to a table of constant coefficients for a polynomial.

n
Order of the polynomial to evaluate.

These floating-point primitives return the evaluation of x in the polynomial of order n whose coefficients are
represented by the corresponding constant values in table. For example, if table[0] = 3.0, table[1] = 4.0, table[2] =
5.0, and n = 2, it represents the polynomial 5.0x + 4.0x + 3.0. If this polynomial is evaluated for x of 2.0, the result
is 31.0. These functions aren't used internally.

2

x
Floating-point function argument.

base_flag
Flag that controls the base to use, 0 for base e and non-zero for base 10.

These floating-point primitives return the natural log of x, ln(x) or log (x), when base_flag is 0. They return the log
base 10 of x, or log (x), when base_flag is non-zero. These functions aren't used internally. For portability, prefer
the functions log, logf, logl, log10, log10f, and log10l.

e

10

_dsin, _ldsin, _fdsin
Syntax

double __cdecl _dsin(double x, unsigned int quadrant);
long double __cdecl _ldsin(long double x, unsigned int quadrant);
float __cdecl _fdsin(float x, unsigned int quadrant);

Parameters

Remarks

Requirements

See also

x
Floating-point function argument.

quadrant
Quadrant offset of 0, 1, 2, or 3 to use to produce sin , cos , -sin , and -cos results.

These floating-point primitives return the sine of x offset by the quadrant modulo 4. Effectively, they return the
sine, cosine, -sine, and -cosine of x when quadrant modulo 4 is 0, 1, 2, or 3, respectively. These functions aren't
used internally. For portability, prefer the sin, sinf, sinl, cos, cosf, and cosl functions.

Header: <math.h>

For additional compatibility information, see Compatibility.

Floating-point support
fpclassify
_fpclass, _fpclassf
isfinite, _finite, _finitef
isinf
isnan, _isnan, _isnanf
isnormal
cos, cosf, cosl
frexp, frexpf, frexpl
ldexp, ldexpf, and ldexpl
log, logf, logl, log10, log10f, log10l
sin, sinf, sinl

floor, floorf, floorl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double floor(
 double x
);
float floor(
 float x
); // C++ only
long double floor(
 long double x
); // C++ only
float floorf(
 float x
);
long double floorl(
 long double x
);

Parameters

Return Value

INPUT SEH EXCEPTION MATHERR EXCEPTION

± QNAN,IND none _DOMAIN

Remarks

Requirements
FUNCTION REQUIRED HEADER

floor, floorf, floorl <math.h>

Calculates the floor of a value.

x
Floating-point value.

The floor functions return a floating-point value that represents the largest integer that is less than or equal to x.
There is no error return.

floor has an implementation that uses Streaming SIMD Extensions 2 (SSE2). For information and restrictions
about using the SSE2 implementation, see _set_SSE2_enable.

C++ allows overloading, so you can call overloads of floor that take and return float and long double values.
In a C program, floor always takes and returns a double.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/floor-floorf-floorl.md

Example
// crt_floor.c
// This example displays the largest integers
// less than or equal to the floating-point values 2.8
// and -2.8. It then shows the smallest integers greater
// than or equal to 2.8 and -2.8.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double y;

 y = floor(2.8);
 printf("The floor of 2.8 is %f\n", y);
 y = floor(-2.8);
 printf("The floor of -2.8 is %f\n", y);

 y = ceil(2.8);
 printf("The ceil of 2.8 is %f\n", y);
 y = ceil(-2.8);
 printf("The ceil of -2.8 is %f\n", y);
}

The floor of 2.8 is 2.000000
The floor of -2.8 is -3.000000
The ceil of 2.8 is 3.000000
The ceil of -2.8 is -2.000000

See also
Floating-Point Support
ceil, ceilf, ceill
round, roundf, roundl
fmod, fmodf

flushall
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _flushall instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-flushall.md

_flushall
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _flushall(void);

Return Value

Remarks

Requirements
FUNCTION REQUIRED HEADER

_flushall <stdio.h>

Example

Flushes all streams; clears all buffers.

_flushall returns the number of open streams (input and output). There is no error return.

By default, the _flushall function writes to appropriate files the contents of all buffers associated with open
output streams. All buffers associated with open input streams are cleared of their current contents. (These
buffers are normally maintained by the operating system, which determines the optimal time to write the data
automatically to disk: when a buffer is full, when a stream is closed, or when a program terminates normally
without closing streams.)

If a read follows a call to _flushall, new data is read from the input files into the buffers. All streams remain
open after the call to _flushall.

The commit-to-disk feature of the run-time library lets you ensure that critical data is written directly to disk
rather than to the operating system buffers. Without rewriting an existing program, you can enable this feature
by linking the program's object files with Commode.obj. In the resulting executable file, calls to _flushall write
the contents of all buffers to disk. Only _flushall and fflush are affected by Commode.obj.

For information about controlling the commit-to-disk feature, see Stream I/O, fopen, and _fdopen.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/flushall.md

// crt_flushall.c
// This program uses _flushall
// to flush all open buffers.

#include <stdio.h>

int main(void)
{
 int numflushed;

 numflushed = _flushall();
 printf("There were %d streams flushed\n", numflushed);
}

There were 3 streams flushed

See also
Stream I/O
_commit
fclose, _fcloseall
fflush
setvbuf

fma, fmaf, fmal
11/9/2018 • 2 minutes to read • Edit Online

Syntax
double fma(
 double x,
 double y,
 double z
);

float fma(
 float x,
 float y,
 float z
); //C++ only

long double fma(
 long double x,
 long double y,
 long double z
); //C++ only

float fmaf(
 float x,
 float y,
 float z
);

long double fmal(
 long double x,
 long double y,
 long double z
);

Parameters

Return Value

Multiplies two values together, adds a third value, and then rounds the result, without losing any precision due to
intermediary rounding.

x
The first value to multiply.

y
The second value to multiply.

z
The value to add.

Returns (x * y) + z . The return value is then rounded using the current rounding format.

Otherwise, may return one of the following values:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fma-fmaf-fmal.md

ISSUE RETURN

x = INFINITY, y = 0 or

x = 0, y = INFINITY

NaN

x or y = exact ± INFINITY, z = INFINITY with the opposite
sign

NaN

x or y = NaN NaN

not (x = 0, y= indefinite) and z = NaN

not (x=indefinite, y=0) and z = NaN

NaN

Overflow range error ±HUGE_VAL, ±HUGE_VALF, or ±HUGE_VALL

Underflow range error correct value, after rounding.

Remarks

Requirements
FUNCTION C HEADER C++ HEADER

fma, fmaf, fmal <math.h> <cmath>

See also

Errors are reported as specified in _matherr.

Because C++ allows overloading, you can call overloads of fma that take and return float and long double
types. In a C program, fma always takes and returns a double.

This function computes the value as though it were taken to infinite precision, and then rounds the final result.

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
remainder, remainderf, remainderl
remquo, remquof, remquol

fmax, fmaxf, fmaxl
11/9/2018 • 2 minutes to read • Edit Online

Syntax
double fmax(
 double x,
 double y
);

float fmax(
 float x,
 float y
); //C++ only

long double fmax(
 long double x,
 long double y
); //C++ only

float fmaxf(
 float x,
 float y
);

long double fmaxl(
 long double x,
 long double y
);

Parameters

Return Value

ISSUE RETURN

x = NaN y

y = NaN x

x and y = NaN NaN

Determine the larger of two specified numeric values.

x
The first value to compare.

y
The second value to compare.

If successful, returns the larger of x or y. The value returned is exact, and does not depend on any form of
rounding.

Otherwise, may return one of the following values:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fmax-fmaxf-fmaxl.md

Remarks

Requirements
FUNCTION C HEADER C++ HEADER

fmax, fmaxf, fmaxl <math.h> <cmath> or <math.h>

See also

This function does not use the errors specified in _matherr.

Because C++ allows overloading, you can call overloads of fmax that take and return float and long double types.
In a C program, fmax always takes and returns a double.

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
fmin, fminf, fminl

fmin, fminf, fminl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double fmin(
 double x,
 double y
);

float fmin(
 float x,
 float y
); //C++ only

long double fmin(
 long double x,
 long double y
); //C++ only

float fminf(
 float x,
 float y
);

long double fminl(
 long double x,
 long double y
);

Parameters

Return Value

INPUT RESULT

x is NaN y

y is NaN x

x and y are NaN NaN

Determines the smaller of the two specified values.

x
The first value to compare.

y
The second value to compare.

If successful, returns the smaller of x or y.

The function does not cause _matherr to be invoked, cause any floating-point exceptions, or change the value of
errno.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fmin-fminf-fminl.md

Remarks

Requirements
ROUTINE REQUIRED HEADER

fmin, fminf, fminl C: <math.h>
C++: <math.h> or <cmath>

See also

Because C++ allows overloading, you can call overloads of fmin that take and return float and long double
types. In a C program, fmin always takes and returns a double.

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
fmax, fmaxf, fmaxl

fmod, fmodf, fmodl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double fmod(
 double x,
 double y
);
float fmod(
 float x,
 float y
); // C++ only
long double fmod(
 long double x,
 long double y
); // C++ only
float fmodf(
 float x,
 float y
);
long double fmodl(
 long double x,
 long double y
);

Parameters

Return Value

Remarks

Requirements
FUNCTION REQUIRED HEADER

fmod, fmodf, fmodl <math.h>

Calculates the floating-point remainder.

x, y
Floating-point values.

fmod returns the floating-point remainder of x / y. If the value of y is 0.0, fmod returns a quiet NaN. For
information about representation of a quiet NaN by the printf family, see printf.

The fmod function calculates the floating-point remainder f of x / y such that x = i * y + f, where i is an integer, f
has the same sign as x, and the absolute value of f is less than the absolute value of y.

C++ allows overloading, so you can call overloads of fmod that take and return float and long double values.
In a C program, fmod always takes two double arguments and returns a double.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fmod-fmodf.md

Example
// crt_fmod.c
// This program displays a floating-point remainder.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double w = -10.0, x = 3.0, z;

 z = fmod(w, x);
 printf("The remainder of %.2f / %.2f is %f\n", w, x, z);
}

The remainder of -10.00 / 3.00 is -1.000000

See also
Floating-Point Support
ceil, ceilf, ceill
fabs, fabsf, fabsl
floor, floorf, floorl
_CIfmod

fopen, _wfopen
2/4/2019 • 11 minutes to read • Edit Online

Syntax
FILE *fopen(
 const char *filename,
 const char *mode
);
FILE *_wfopen(
 const wchar_t *filename,
 const wchar_t *mode
);

Parameters

Return Value

Remarks

Opens a file. More-secure versions of these functions that perform additional parameter validation and
return error codes are available; see fopen_s, _wfopen_s.

filename
File name.

mode
Kind of access that's enabled.

Each of these functions returns a pointer to the open file. A null pointer value indicates an error. If
filename or mode is NULL or an empty string, these functions trigger the invalid parameter handler,
which is described in Parameter Validation. If execution is allowed to continue, these functions return
NULL and set errno to EINVAL.

For more information, see errno, _doserrno, _sys_errlist, and _sys_nerr.

The fopen function opens the file that is specified by filename. By default, a narrow filename string is
interpreted using the ANSI codepage (CP_ACP). In Windows Desktop applications this can be changed to
the OEM codepage (CP_OEMCP) by using the SetFileApisToOEM function. You can use the
AreFileApisANSI function to determine whether filename is interpreted using the ANSI or the system
default OEM codepage. _wfopen is a wide-character version of fopen; the arguments to _wfopen are
wide-character strings. Otherwise, _wfopen and fopen behave identically. Just using _wfopen does not
affect the coded character set that is used in the file stream.

fopen accepts paths that are valid on the file system at the point of execution; fopen accepts UNC paths
and paths that involve mapped network drives as long as the system that executes the code has access to
the share or mapped drive at the time of execution. When you construct paths for fopen, make sure that
drives, paths, or network shares will be available in the execution environment. You can use either forward
slashes (/) or backslashes (\) as the directory separators in a path.

Always check the return value to see whether the pointer is NULL before you perform any additional
operations on the file. If an error occurs, the global variable errno is set and may be used to obtain

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fopen-wfopen.md
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-setfileapistooem
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-arefileapisansi

Unicode Support

NOTE

Encodings Used Based on ccs Flag and BOM

CCS FLAG NO BOM (OR NEW FILE) BOM: UTF-8 BOM: UTF-16

UNICODE UTF-16LE UTF-8 UTF-16LE

UTF-8 UTF-8 UTF-8 UTF-16LE

UTF-16LE UTF-16LE UTF-8 UTF-16LE

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tfopen fopen fopen _wfopen

specific error information. For more information, see errno, _doserrno, _sys_errlist, and _sys_nerr.

fopen supports Unicode file streams. To open a Unicode file, pass a ccs flag that specifies the desired
encoding to fopen, as follows.

FILE *fp = fopen("newfile.txt", "rt+, ccs=encoding");

Allowed values of encoding are UNICODE , UTF-8, and UTF-16LE .

When a file is opened in Unicode mode, input functions translate the data that's read from the file into
UTF-16 data stored as type wchar_t. Functions that write to a file opened in Unicode mode expect buffers
that contain UTF-16 data stored as type wchar_t. If the file is encoded as UTF-8, then UTF-16 data is
translated into UTF-8 when it is written, and the file's UTF-8-encoded content is translated into UTF-16
when it is read. An attempt to read or write an odd number of bytes in Unicode mode causes a parameter
validation error. To read or write data that's stored in your program as UTF-8, use a text or binary file
mode instead of a Unicode mode. You are responsible for any required encoding translation.

If the file already exists and is opened for reading or appending, the Byte Order Mark (BOM), if it present
in the file, determines the encoding. The BOM encoding takes precedence over the encoding that is
specified by the ccs flag. The ccs encoding is only used when no BOM is present or the file is a new file.

BOM detection only applies to files that are opened in Unicode mode (that is, by passing the ccs flag).

The following table summarizes the modes that are used for various ccs flags given to fopen and Byte
Order Marks in the file.

Files opened for writing in Unicode mode have a BOM written to them automatically.

If mode is "a, ccs=encoding", fopen first tries to open the file by using both read and write access. If this
succeeds, the function reads the BOM to determine the encoding for the file; if this fails, the function uses
the default encoding for the file. In either case, fopen will then re-open the file by using write-only access.
(This applies to "a" mode only, not to "a+" mode.)

The character string mode specifies the kind of access that is requested for the file, as follows.

MODE ACCESS

"r" Opens for reading. If the file does not exist or cannot be
found, the fopen call fails.

"w" Opens an empty file for writing. If the given file exists, its
contents are destroyed.

"a" Opens for writing at the end of the file (appending)
without removing the end-of-file (EOF) marker before
new data is written to the file. Creates the file if it does
not exist.

"r+" Opens for both reading and writing. The file must exist.

"w+" Opens an empty file for both reading and writing. If the
file exists, its contents are destroyed.

"a+" Opens for reading and appending. The appending
operation includes the removal of the EOF marker before
new data is written to the file. The EOF marker is not
restored after writing is completed. Creates the file if it
does not exist.

MODE MODIFIER TRANSLATION MODE

t Open in text (translated) mode.

b Open in binary (untranslated) mode; translations
involving carriage-return and linefeed characters are
suppressed.

When a file is opened by using the "a" access type or the "a+" access type, all write operations occur at
the end of the file. The file pointer can be repositioned by using fseek or rewind, but is always moved back
to the end of the file before any write operation is performed. Therefore, existing data cannot be
overwritten.

The "a" mode does not remove the EOF marker before it appends to the file. After appending has
occurred, the MS-DOS TYPE command only shows data up to the original EOF marker and not any data
appended to the file. Before it appends to the file, the "a+" mode does remove the EOF marker. After
appending, the MS-DOS TYPE command shows all data in the file. The "a+" mode is required for
appending to a stream file that is terminated with the CTRL+Z EOF marker.

When the "r+", "w+", or "a+" access type is specified, both reading and writing are enabled (the file is
said to be open for "update"). However, when you switch from reading to writing, the input operation
must encounter an EOF marker. If there is no EOF, you must use an intervening call to a file positioning
function. The file positioning functions are fsetpos, fseek, and rewind. When you switch from writing to
reading, you must use an intervening call to either fflush or to a file positioning function.

In addition to the earlier values, the following characters can be appended to mode to specify the
translation mode for newline characters.

In text mode, CTRL+Z is interpreted as an EOF character on input. In files that are opened for
reading/writing by using "a+", fopen checks for a CTRL+Z at the end of the file and removes it, if it is
possible. This is done because using fseek and ftell to move within a file that ends with CTRL+Z may
cause fseek to behave incorrectly near the end of the file.

MODE MODIFIER BEHAVIOR

c Enable the commit flag for the associated filename so
that the contents of the file buffer are written directly to
disk if either fflush or _flushall is called.

n Reset the commit flag for the associated filename to "no-
commit." This is the default. It also overrides the global
commit flag if you link your program with
COMMODE.OBJ. The global commit flag default is "no-
commit" unless you explicitly link your program with
COMMODE.OBJ (see Link Options).

N Specifies that the file is not inherited by child processes.

S Specifies that caching is optimized for, but not restricted
to, sequential access from disk.

R Specifies that caching is optimized for, but not restricted
to, random access from disk.

T Specifies a file as temporary. If possible, it is not flushed
to disk.

D Specifies a file as temporary. It is deleted when the last
file pointer is closed.

ccs=encoding Specifies the encoded character set to use (one of UTF-8,
UTF-16LE, or UNICODE) for this file. Leave unspecified if
you want ANSI encoding.

CHARACTERS IN MODE STRING EQUIVALENT OFLAG VALUE FOR _OPEN/_SOPEN

a _O_WRONLY | _O_APPEND (usually _O_WRONLY |
_O_CREAT | _O_APPEND)

In text mode, carriage return-linefeed combinations are translated into single linefeeds on input, and
linefeed characters are translated to carriage return-linefeed combinations on output. When a Unicode
stream-I/O function operates in text mode (the default), the source or destination stream is assumed to be
a sequence of multibyte characters. Therefore, the Unicode stream-input functions convert multibyte
characters to wide characters (as if by a call to the mbtowc function). For the same reason, the Unicode
stream-output functions convert wide characters to multibyte characters (as if by a call to the wctomb
function).

If t or b is not given in mode, the default translation mode is defined by the global variable _fmode. If t or
b is prefixed to the argument, the function fails and returns NULL.

For more information about how to use text and binary modes in Unicode and multibyte stream-I/O, see
Text and Binary Mode File I/O and Unicode Stream I/O in Text and Binary Modes.

The following options can be appended to mode to specify additional behaviors.

Valid characters for the mode string that is used in fopen and _fdopen correspond to oflag arguments
that are used in _open and _sopen, as follows.

a+ _O_RDWR | _O_APPEND (usually _O_RDWR |
_O_APPEND | _O_CREAT)

r _O_RDONLY

r+ _O_RDWR

w _O_WRONLY (usually _O_WRONLY | _O_CREAT |
_O_TRUNC)

w+ _O_RDWR (usually _O_RDWR | _O_CREAT | _O_TRUNC)

b _O_BINARY

t _O_TEXT

c None

n None

S _O_SEQUENTIAL

R _O_RANDOM

T _O_SHORTLIVED

D _O_TEMPORARY

ccs=UNICODE _O_WTEXT

ccs=UTF-8 _O_UTF8

ccs=UTF-16LE _O_UTF16

CHARACTERS IN MODE STRING EQUIVALENT OFLAG VALUE FOR _OPEN/_SOPEN

Requirements
FUNCTION REQUIRED HEADER

fopen <stdio.h>

_wfopen <stdio.h> or <wchar.h>

If you are using rb mode, you do not have to port your code, and if you expect to read most of a large file
or are not concerned about network performance, you might also consider whether to use memory
mapped Win32 files as an option.

_wfopen is a Microsoft extension. For more information about compatibility, see Compatibility.

The c, n, t, S, R, T, and D mode options are Microsoft extensions for fopen and _fdopen and should not
be used where ANSI portability is desired.

Example 1

// crt_fopen.c
// compile with: /W3
// This program opens two files. It uses
// fclose to close the first file and
// _fcloseall to close all remaining files.

#include <stdio.h>

FILE *stream, *stream2;

int main(void)
{
 int numclosed;

 // Open for read (will fail if file "crt_fopen.c" does not exist)
 if((stream = fopen("crt_fopen.c", "r")) == NULL) // C4996
 // Note: fopen is deprecated; consider using fopen_s instead
 printf("The file 'crt_fopen.c' was not opened\n");
 else
 printf("The file 'crt_fopen.c' was opened\n");

 // Open for write
 if((stream2 = fopen("data2", "w+")) == NULL) // C4996
 printf("The file 'data2' was not opened\n");
 else
 printf("The file 'data2' was opened\n");

 // Close stream if it is not NULL
 if(stream)
 {
 if (fclose(stream))
 {
 printf("The file 'crt_fopen.c' was not closed\n");
 }
 }

 // All other files are closed:
 numclosed = _fcloseall();
 printf("Number of files closed by _fcloseall: %u\n", numclosed);
}

The file 'crt_fopen.c' was opened
The file 'data2' was opened
Number of files closed by _fcloseall: 1

Example 2

The following program opens two files. It uses fclose to close the first file and _fcloseall to close all
remaining files.

The following program creates a file (or overwrites one if it exists), in text mode that has Unicode
encoding. It then writes two strings into the file and closes the file. The output is a file named
_wfopen_test.xml, which contains the data from the output section.

// crt__wfopen.c
// compile with: /W3
// This program creates a file (or overwrites one if
// it exists), in text mode using Unicode encoding.
// It then writes two strings into the file
// and then closes the file.

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <wchar.h>

#define BUFFER_SIZE 50

int main(int argc, char** argv)
{
 wchar_t str[BUFFER_SIZE];
 size_t strSize;
 FILE* fileHandle;

 // Create an the xml file in text and Unicode encoding mode.
 if ((fileHandle = _wfopen(L"_wfopen_test.xml",L"wt+,ccs=UNICODE")) == NULL) // C4996
 // Note: _wfopen is deprecated; consider using _wfopen_s instead
 {
 wprintf(L"_wfopen failed!\n");
 return(0);
 }

 // Write a string into the file.
 wcscpy_s(str, sizeof(str)/sizeof(wchar_t), L"<xmlTag>\n");
 strSize = wcslen(str);
 if (fwrite(str, sizeof(wchar_t), strSize, fileHandle) != strSize)
 {
 wprintf(L"fwrite failed!\n");
 }

 // Write a string into the file.
 wcscpy_s(str, sizeof(str)/sizeof(wchar_t), L"</xmlTag>");
 strSize = wcslen(str);
 if (fwrite(str, sizeof(wchar_t), strSize, fileHandle) != strSize)
 {
 wprintf(L"fwrite failed!\n");
 }

 // Close the file.
 if (fclose(fileHandle))
 {
 wprintf(L"fclose failed!\n");
 }
 return 0;
}

See also
Stream I/O
Interpretation of Multibyte-Character Sequences
fclose, _fcloseall
_fdopen, _wfdopen
ferror
_fileno
freopen, _wfreopen
_open, _wopen
_setmode

_sopen, _wsopen

fopen_s, _wfopen_s
11/8/2018 • 9 minutes to read • Edit Online

Syntax
errno_t fopen_s(
 FILE** pFile,
 const char *filename,
 const char *mode
);
errno_t _wfopen_s(
 FILE** pFile,
 const wchar_t *filename,
 const wchar_t *mode
);

Parameters

Return Value

Error Conditions

PFILE FILENAME MODE RETURN VALUE CONTENTS OF PFILE

NULL any any EINVAL unchanged

any NULL any EINVAL unchanged

any any NULL EINVAL unchanged

Remarks

Opens a file. These versions of fopen, _wfopen have security enhancements, as described in Security Features in
the CRT.

pFile
A pointer to the file pointer that will receive the pointer to the opened file.

filename
Filename.

mode
Type of access permitted.

Zero if successful; an error code on failure. See errno, _doserrno, _sys_errlist, and _sys_nerr for more information
about these error codes.

Files that are opened by fopen_s and _wfopen_s are not sharable. If you require that a file be sharable, use
_fsopen, _wfsopen with the appropriate sharing mode constant—for example, _SH_DENYNO for read/write
sharing.

The fopen_s function opens the file that's specified by filename. _wfopen_s is a wide-character version of
fopen_s; the arguments to _wfopen_s are wide-character strings. _wfopen_s and fopen_s behave identically

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fopen-s-wfopen-s.md

Unicode support

NOTE

Encodings Used Based on ccs Flag and BOM

CCS FLAG NO BOM (OR NEW FILE) BOM: UTF-8 BOM: UTF-16

UNICODE UTF-16LE UTF-8 UTF-16LE

UTF-8 UTF-8 UTF-8 UTF-16LE

UTF-16LE UTF-16LE UTF-8 UTF-16LE

Generic-Text Routine Mappings

otherwise.

fopen_s accepts paths that are valid on the file system at the point of execution; UNC paths and paths that
involve mapped network drives are accepted by fopen_s as long as the system that's executing the code has
access to the share or mapped network drive at the time of execution. When you construct paths for fopen_s,
don't make assumptions about the availability of drives, paths, or network shares in the execution environment.
You can use either forward slashes (/) or backslashes (\) as the directory separators in a path.

These functions validate their parameters. If pFile, filename, or mode is a null pointer, these functions generate
an invalid parameter exception, as described in Parameter Validation.

Always check the return value to see if the function succeeded before you perform any further operations on the
file. If an error occurs, the error code is returned and the global variable errno is set. For more information, see
errno, _doserrno, _sys_errlist, and _sys_nerr.

fopen_s supports Unicode file streams. To open a new or existing Unicode file, pass a ccs flag that specifies the
desired encoding to fopen_s:

fopen_s(&fp, "newfile.txt", "rw, ccs=encoding");

Allowed values of encoding are UNICODE , UTF-8, and UTF-16LE . If there no value is specified for encoding,
fopen_s uses ANSI encoding.

If the file already exists and is opened for reading or appending, the Byte Order Mark (BOM), if present in the
file, determines the encoding. The BOM encoding takes precedence over the encoding that's specified by the ccs
flag. The ccs encoding is only used when no BOM is present or if the file is a new file.

BOM-detection only applies to files that are opened in Unicode mode; that is, by passing the ccs flag.

The following table summarizes the modes for various ccs flags that are given to fopen_s and for Byte Order
Marks in the file.

Files that are opened for writing in Unicode mode have a BOM written to them automatically.

If mode is "a, ccs=encoding", fopen_s first tries to open the file with both read access and write access. If
successful, the function reads the BOM to determine the encoding for the file; if unsuccessful, the function uses
the default encoding for the file. In either case, fopen_s then re-opens the file with write-only access. (This
applies to a mode only, not a+.)

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tfopen_s fopen_s fopen_s _wfopen_s

MODE ACCESS

"r" Opens for reading. If the file does not exist or cannot be
found, the fopen_s call fails.

"w" Opens an empty file for writing. If the given file exists, its
contents are destroyed.

"a" Opens for writing at the end of the file (appending) without
removing the end-of-file (EOF) marker before new data is
written to the file. Creates the file if it does not exist.

"r+" Opens for both reading and writing. The file must exist.

"w+" Opens an empty file for both reading and writing. If the file
exists, its contents are destroyed.

"a+" Opens for reading and appending. The appending operation
includes the removal of the EOF marker before new data is
written to the file. The EOF marker is not restored after
writing is completed. Creates the file if it does not exist.

MODE MODIFIER TRANSLATION MODE

t Open in text (translated) mode.

b Open in binary (untranslated) mode; translations involving
carriage-return and linefeed characters are suppressed.

The character string mode specifies the kind of access that's requested for the file, as follows.

When a file is opened by using the "a" or "a+" access type, all write operations occur at the end of the file. The
file pointer can be repositioned by using fseek or rewind, but it's always moved back to the end of the file before
any write operation is carried out so that existing data cannot be overwritten.

The "a" mode does not remove the EOF marker before appending to the file. After appending has occurred, the
MS-DOS TYPE command only shows data up to the original EOF marker and not any data that's appended to
the file. The "a+" mode does remove the EOF marker before appending to the file. After appending, the MS-
DOS TYPE command shows all data in the file. The "a+" mode is required for appending to a stream file that is
terminated by using the CTRL+Z EOF marker.

When the "r+", "w+", or "a+" access type is specified, both reading and writing are allowed. (The file is said to
be open for "update".) However, when you switch from reading to writing, the input operation must encounter
an EOF marker. If there is no EOF, you must use an intervening call to a file-positioning function. The file-
positioning functions are fsetpos, fseek, and rewind. When you switch from writing to reading, you must use an
intervening call to either fflush or to a file-positioning function.

In addition to the above values, the following characters can be included in mode to specify the translation mode
for newline characters:

In text (translated) mode, CTRL+Z is interpreted as an end-of-file character on input. In files opened for

MODE MODIFIER BEHAVIOR

c Enable the commit flag for the associated filename so that
the contents of the file buffer are written directly to disk if
either fflush or _flushall is called.

n Reset the commit flag for the associated filename to "no-
commit." This is the default. It also overrides the global
commit flag if you link your program with COMMODE.OBJ.
The global commit flag default is "no-commit" unless you
explicitly link your program with COMMODE.OBJ (see Link
Options).

N Specifies that the file is not inherited by child processes.

S Specifies that caching is optimized for, but not restricted to,
sequential access from disk.

R Specifies that caching is optimized for, but not restricted to,
random access from disk.

T Specifies a file as temporary. If possible, it is not flushed to
disk.

D Specifies a file as temporary. It is deleted when the last file
pointer is closed.

ccs=encoding Specifies the encoded character set to use (one of UTF-8,
UTF-16LE, or UNICODE) for this file. Leave unspecified if you
want ANSI encoding.

CHARACTERS IN MODE STRING EQUIVALENT OFLAG VALUE FOR _OPEN/_SOPEN

a _O_WRONLY | _O_APPEND (usually _O_WRONLY |
_O_CREAT |** _O_APPEND**)

reading/writing with "a+", fopen_s checks for a CTRL+Z at the end of the file and removes it, if possible. This is
done because using fseek and ftell to move within a file that ends with a CTRL+Z, may cause fseek to behave
improperly near the end of the file.

Also, in text mode, carriage return-linefeed combinations are translated into single linefeeds on input, and
linefeed characters are translated to carriage return-linefeed combinations on output. When a Unicode stream-
I/O function operates in text mode (the default), the source or destination stream is assumed to be a sequence of
multibyte characters. Therefore, the Unicode stream-input functions convert multibyte characters to wide
characters (as if by a call to the mbtowc function). For the same reason, the Unicode stream-output functions
convert wide characters to multibyte characters (as if by a call to the wctomb function).

If t or b is not given in mode, the default translation mode is defined by the global variable _fmode. If t or b is
prefixed to the argument, the function fails and returns NULL.

For more information about using text and binary modes in Unicode and multibyte stream-I/O, see Text and
Binary Mode File I/O and Unicode Stream I/O in Text and Binary Modes.

Valid characters for the mode string used in fopen_s and _fdopen correspond to oflag arguments used in _open
and _sopen, as follows.

a+ _O_RDWR | _O_APPEND (usually _O_RDWR | _O_APPEND |
_O_CREAT)

r _O_RDONLY

r+ _O_RDWR

w _O_WRONLY (usually _O_WRONLY | _O_CREAT |**
_O_TRUNC**)

w+ _O_RDWR (usually _O_RDWR | _O_CREAT | _O_TRUNC)

b _O_BINARY

t _O_TEXT

c None

n None

S _O_SEQUENTIAL

R _O_RANDOM

T _O_SHORTLIVED

D _O_TEMPORARY

ccs=UNICODE _O_WTEXT

ccs=UTF-8 _O_UTF8

ccs=UTF-16LE _O_UTF16

CHARACTERS IN MODE STRING EQUIVALENT OFLAG VALUE FOR _OPEN/_SOPEN

Requirements
FUNCTION REQUIRED HEADER

fopen_s <stdio.h>

_wfopen_s <stdio.h> or <wchar.h>

Libraries

If you are using rb mode, won't need to port your code, and expect to read a lot of the file and/or don't care
about network performance, memory mapped Win32 files might also be an option.

For additional compatibility information, see Compatibility.

All versions of the C run-time libraries.

Example
// crt_fopen_s.c
// This program opens two files. It uses
// fclose to close the first file and
// _fcloseall to close all remaining files.

#include <stdio.h>

FILE *stream, *stream2;

int main(void)
{
 errno_t err;

 // Open for read (will fail if file "crt_fopen_s.c" does not exist)
 err = fopen_s(&stream, "crt_fopen_s.c", "r");
 if(err == 0)
 {
 printf("The file 'crt_fopen_s.c' was opened\n");
 }
 else
 {
 printf("The file 'crt_fopen_s.c' was not opened\n");
 }

 // Open for write
 err = fopen_s(&stream2, "data2", "w+");
 if(err == 0)
 {
 printf("The file 'data2' was opened\n");
 }
 else
 {
 printf("The file 'data2' was not opened\n");
 }

 // Close stream if it is not NULL
 if(stream)
 {
 err = fclose(stream);
 if (err == 0)
 {
 printf("The file 'crt_fopen_s.c' was closed\n");
 }
 else
 {
 printf("The file 'crt_fopen_s.c' was not closed\n");
 }
 }

 // All other files are closed:
 int numclosed = _fcloseall();
 printf("Number of files closed by _fcloseall: %u\n", numclosed);
}

The file 'crt_fopen_s.c' was opened
The file 'data2' was opened
Number of files closed by _fcloseall: 1

The c, n, and t mode options are Microsoft extensions for fopen_s and _fdopen and should not be used where
ANSI portability is desired.

See also
Stream I/O
fclose, _fcloseall
_fdopen, _wfdopen
ferror
_fileno
freopen, _wfreopen
_open, _wopen
_setmode

_fpclass, _fpclassf
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _fpclass(
 double x
);

int _fpclassf(
 float x
); /* x64 only */

Parameters

Return Value

VALUE DESCRIPTION

_FPCLASS_SNAN Signaling NaN

_FPCLASS_QNAN Quiet NaN

_FPCLASS_NINF Negative infinity (-INF)

_FPCLASS_NN Negative normalized non-zero

_FPCLASS_ND Negative denormalized

_FPCLASS_NZ Negative zero (- 0)

_FPCLASS_PZ Positive 0 (+0)

_FPCLASS_PD Positive denormalized

_FPCLASS_PN Positive normalized non-zero

_FPCLASS_PINF Positive infinity (+INF)

Remarks

Returns a value indicating the floating-point classification of the argument.

x
The floating-point value to test.

The _fpclass and _fpclassf functions return an integer value that indicates the floating-point classification of the
argument x. The classification may have one of the following values, defined in <float.h>.

The _fpclass and _fpclassf functions are Microsoft specific. They are similar to fpclassify, but return more

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fpclass-fpclassf.md

Requirements
FUNCTION REQUIRED HEADER

_fpclass, _fpclassf <float.h>

See also

detailed information about the argument. The _fpclassf function is only available when compiled for the x64
platform.

For more compatibility and conformance information, see Compatibility.

Floating-Point Support
isnan, _isnan, _isnanf
fpclassify

fpclassify
11/9/2018 • 2 minutes to read • Edit Online

Syntax
int fpclassify(
 /* floating-point */ x
);

int fpclassify(
 float x
); // C++ only

int fpclassify(
 double x
); // C++ only

int fpclassify(
 long double x
); // C++ only

Parameters

Return Value

VALUE DESCRIPTION

FP_NAN A quiet, signaling, or indeterminate NaN

FP_INFINITE A positive or negative infinity

FP_NORMAL A positive or negative normalized non-zero value

FP_SUBNORMAL A positive or negative denormalized value

FP_ZERO A positive or negative zero value

Remarks

Returns the floating-point classification of the argument.

x
The floating-point value to test.

fpclassify returns an integer value that indicates the floating-point class of the argument x. This table shows the
possible values returned by fpclassify, defined in <math.h>.

In C, fpclassify is a macro; in C++, fpclassify is a function overloaded using argument types of float, double,
or long double. In either case, the value returned depends on the effective type of the argument expression,
and not on any intermediate representation. For example, a normal double or long double value can become
an infinity, denormal, or zero value when converted to a float.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fpclassify.md

Requirements
FUNCTION/MACRO REQUIRED HEADER (C) REQUIRED HEADER (C++)

fpclassify <math.h> <math.h> or <cmath>

See also

The fpclassify macro and fpclassify functions conform to the ISO C99 and C++11 specifications. For more
compatibility information, see Compatibility.

Floating-Point Support
isnan, _isnan, _isnanf

_fpieee_flt
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _fpieee_flt(
 unsigned long excCode,
 struct _EXCEPTION_POINTERS *excInfo,
 int handler(_FPIEEE_RECORD *)
);

Parameters

Return Value

Remarks

_FPIEEE_RECORD FIELD DESCRIPTION

RoundingMode
Precision

These unsigned int fields contain information about the
floating-point environment at the time the exception
occurred.

Operation This unsigned int field indicates the type of operation that
caused the trap. If the type is a comparison
(_FpCodeCompare), you can supply one of the special
_FPIEEE_COMPARE_RESULT values (as defined in Fpieee.h) in
the Result.Value field. The conversion type
(_FpCodeConvert) indicates that the trap occurred during a
floating-point conversion operation. You can look at the
Operand1 and Result types to determine the type of
conversion being attempted.

Invokes a user-defined trap handler for IEEE floating-point exceptions.

excCode
Exception code.

excInfo
Pointer to the Windows NT exception information structure.

handler
Pointer to the user's IEEE trap-handler routine.

The return value of _fpieee_flt is the value returned by handler. As such, the IEEE filter routine might be used in
the except clause of a structured exception-handling (SEH) mechanism.

The _fpieee_flt function invokes a user-defined trap handler for IEEE floating-point exceptions and provides it
with all relevant information. This routine serves as an exception filter in the SEH mechanism, which invokes your
own IEEE exception handler when necessary.

The _FPIEEE_RECORD structure, defined in Fpieee.h, contains information pertaining to an IEEE floating-point
exception. This structure is passed to the user-defined trap handler by _fpieee_flt.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fpieee-flt.md

Operand1
Operand2
Result

These _FPIEEE_VALUE structures indicate the types and
values of the proposed result and operands. Each structure
contains these fields:

OperandValid - Flag indicating whether the responding
value is valid.
Format - Data type of the corresponding value. The format
type might be returned even if the corresponding value is not
valid.
Value - Result or operand data value.

Cause
Enable
Status

_FPIEEE_EXCEPTION_FLAGS contains one bit field per type of
floating point exception. There is a correspondence between
these fields and the arguments used to mask the exceptions
supplied to _controlfp. The exact meaning of each bit depends
on context:

Cause - Each set bit indicates the particular exception that
was raised.
Enable - Each set bit indicates that the particular exception is
currently unmasked.
Status - Each set bit indicates that the particular exception is
currently pending. This includes exceptions that have not
been raised because they were masked by _controlfp.

_FPIEEE_RECORD FIELD DESCRIPTION

Requirements
FUNCTION REQUIRED HEADER

_fpieee_flt <fpieee.h>

Example

Pending exceptions that are disabled are raised when you enable them. This can result in undefined behavior
when using _fpieee_flt as an exception filter. Always call _clearfp before enabling floating point exceptions.

For more compatibility information, see Compatibility.

// crt_fpieee.c
// This program demonstrates the implementation of
// a user-defined floating-point exception handler using the
// _fpieee_flt function.

#include <fpieee.h>
#include <excpt.h>
#include <float.h>
#include <stddef.h>

int fpieee_handler(_FPIEEE_RECORD *);

int fpieee_handler(_FPIEEE_RECORD *pieee)
{
 // user-defined ieee trap handler routine:
 // there is one handler for all
 // IEEE exceptions

 // Assume the user wants all invalid
 // operations to return 0.

 if ((pieee->Cause.InvalidOperation) &&
 (pieee->Result.Format == _FpFormatFp32))
 {
 pieee->Result.Value.Fp32Value = 0.0F;

 return EXCEPTION_CONTINUE_EXECUTION;
 }
 else
 return EXCEPTION_EXECUTE_HANDLER;
}

#define _EXC_MASK \
 _EM_UNDERFLOW + \
 _EM_OVERFLOW + \
 _EM_ZERODIVIDE + \
 _EM_INEXACT

int main(void)
{
 // ...

 __try {
 // unmask invalid operation exception
 _controlfp_s(NULL, _EXC_MASK, _MCW_EM);

 // code that may generate
 // fp exceptions goes here
 }
 __except (_fpieee_flt(GetExceptionCode(),
 GetExceptionInformation(),
 fpieee_handler)){

 // code that gets control

 // if fpieee_handler returns
 // EXCEPTION_EXECUTE_HANDLER goes here

 }

 // ...
}

See also

Floating-Point Support
_control87, _controlfp, __control87_2
_controlfp_s

_fpreset
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void _fpreset(void);

Remarks

Requirements
FUNCTION REQUIRED HEADER

_fpreset <float.h>

Example
// crt_fpreset.c
// This program uses signal to set up a
// routine for handling floating-point errors.

#include <stdio.h>
#include <signal.h>
#include <setjmp.h>
#include <stdlib.h>
#include <float.h>
#include <math.h>
#include <string.h>

jmp_buf mark; // Address for long jump to jump to
int fperr; // Global error number

void __cdecl fphandler(int sig, int num); // Prototypes
void fpcheck(void);

int main(void)
{
 double n1 = 5.0;
 double n2 = 0.0;
 double r;
 int jmpret;

 // Unmask all floating-point exceptions.

Resets the floating-point package.

The _fpreset function reinitializes the floating-point math package. _fpreset is usually used with signal, system,
or the _exec or _spawn functions. If a program traps floating-point error signals (SIGFPE) with signal, it can
safely recover from floating-point errors by invoking _fpreset and using longjmp.

This function is deprecated when compiling with /clr (Common Language Runtime Compilation) because the
common language runtime only supports the default floating-point precision.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fpreset.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation

 _control87(0, _MCW_EM);
 // Set up floating-point error handler. The compiler
 // will generate a warning because it expects
 // signal-handling functions to take only one argument.
 if(signal(SIGFPE, (void (__cdecl *)(int)) fphandler) == SIG_ERR)
 {
 fprintf(stderr, "Couldn't set SIGFPE\n");
 abort();
 }

 // Save stack environment for return in case of error. First
 // time through, jmpret is 0, so true conditional is executed.
 // If an error occurs, jmpret will be set to -1 and false
 // conditional will be executed.
 jmpret = setjmp(mark);
 if(jmpret == 0)
 {
 printf("Dividing %4.3g by %4.3g...\n", n1, n2);
 r = n1 / n2;
 // This won't be reached if error occurs.
 printf("\n\n%4.3g / %4.3g = %4.3g\n", n1, n2, r);

 r = n1 * n2;
 // This won't be reached if error occurs.
 printf("\n\n%4.3g * %4.3g = %4.3g\n", n1, n2, r);
 }
 else
 fpcheck();
}
// fphandler handles SIGFPE (floating-point error) interrupt. Note
// that this prototype accepts two arguments and that the
// prototype for signal in the run-time library expects a signal
// handler to have only one argument.
//
// The second argument in this signal handler allows processing of
// _FPE_INVALID, _FPE_OVERFLOW, _FPE_UNDERFLOW, and
// _FPE_ZERODIVIDE, all of which are Microsoft-specific symbols
// that augment the information provided by SIGFPE. The compiler
// will generate a warning, which is harmless and expected.

void fphandler(int sig, int num)
{
 // Set global for outside check since we don't want
 // to do I/O in the handler.
 fperr = num;

 // Initialize floating-point package. */
 _fpreset();

 // Restore calling environment and jump back to setjmp. Return
 // -1 so that setjmp will return false for conditional test.
 longjmp(mark, -1);
}

void fpcheck(void)
{
 char fpstr[30];
 switch(fperr)
 {
 case _FPE_INVALID:
 strcpy_s(fpstr, sizeof(fpstr), "Invalid number");
 break;
 case _FPE_OVERFLOW:
 strcpy_s(fpstr, sizeof(fpstr), "Overflow");

 break;
 case _FPE_UNDERFLOW:
 strcpy_s(fpstr, sizeof(fpstr), "Underflow");
 break;

 break;
 case _FPE_ZERODIVIDE:
 strcpy_s(fpstr, sizeof(fpstr), "Divide by zero");
 break;
 default:
 strcpy_s(fpstr, sizeof(fpstr), "Other floating point error");
 break;
 }
 printf("Error %d: %s\n", fperr, fpstr);
}

Dividing 5 by 0...
Error 131: Divide by zero

See also
Floating-Point Support
_exec, _wexec Functions
signal
_spawn, _wspawn Functions
system, _wsystem

fprintf, _fprintf_l, fwprintf, _fwprintf_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int fprintf(
 FILE *stream,
 const char *format [,
 argument]...
);
int _fprintf_l(
 FILE *stream,
 const char *format,
 locale_t locale [,
 argument]...
);
int fwprintf(
 FILE *stream,
 const wchar_t *format [,
 argument]...
);
int _fwprintf_l(
 FILE *stream,
 const wchar_t *format,
 locale_t locale [,
 argument]...
);

Parameters

Return Value

Print formatted data to a stream. More secure versions of these functions are available; see fprintf_s,
_fprintf_s_l, fwprintf_s, _fwprintf_s_l.

stream
Pointer to FILE structure.

format
Format-control string.

argument
Optional arguments.

locale
The locale to use.

fprintf returns the number of bytes written. fwprintf returns the number of wide characters written. Each
of these functions returns a negative value instead when an output error occurs. If stream or format is
NULL, these functions invoke the invalid parameter handler, as described in Parameter Validation. If
execution is allowed to continue, the functions return -1 and set errno to EINVAL. The format string is not
checked for valid formatting characters as it is when using fprintf_s or fwprintf_s.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these, and other, error codes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fprintf-fprintf-l-fwprintf-fwprintf-l.md

Remarks

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_ftprintf fprintf fprintf fwprintf

_ftprintf_l _fprintf_l _fprintf_l _fwprintf_l

Requirements
FUNCTION REQUIRED HEADER

fprintf, _fprintf_l <stdio.h>

fwprintf, _fwprintf_l <stdio.h> or <wchar.h>

Example

fprintf formats and prints a series of characters and values to the output stream. Each function argument
(if any) is converted and output according to the corresponding format specification in format. For fprintf,
the format argument has the same syntax and use that it has in printf.

fwprintf is a wide-character version of fprintf; in fwprintf, format is a wide-character string. These
functions behave identically if the stream is opened in ANSI mode. fprintf does not currently support
output into a UNICODE stream.

The versions of these functions with the _l suffix are identical except that they use the locale parameter
passed in instead of the current thread locale.

Ensure that format is not a user-defined string.

For more information, see Format Specifications.

For additional compatibility information, see Compatibility.

// crt_fprintf.c
/* This program uses fprintf to format various
* data and print it to the file named FPRINTF.OUT. It
* then displays FPRINTF.OUT on the screen using the system
* function to invoke the operating-system TYPE command.
*/

#include <stdio.h>
#include <process.h>

FILE *stream;

int main(void)
{
 int i = 10;
 double fp = 1.5;
 char s[] = "this is a string";
 char c = '\n';

 fopen_s(&stream, "fprintf.out", "w");
 fprintf(stream, "%s%c", s, c);
 fprintf(stream, "%d\n", i);
 fprintf(stream, "%f\n", fp);
 fclose(stream);
 system("type fprintf.out");
}

this is a string
10
1.500000

See also
Stream I/O
_cprintf, _cprintf_l, _cwprintf, _cwprintf_l
fscanf, _fscanf_l, fwscanf, _fwscanf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
Format Specification Syntax: printf and wprintf Functions

_fprintf_p, _fprintf_p_l, _fwprintf_p, _fwprintf_p_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _fprintf_p(
 FILE *stream,
 const char *format [,
 argument]...
);
int _fprintf_p_l(
 FILE *stream,
 const char *format,
 locale_t locale [,
 argument]...
);
int _fwprintf_p(
 FILE *stream,
 const wchar_t *format [,
 argument]...
);
int _fwprintf_p_l(
 FILE *stream,
 const wchar_t *format,
 locale_t locale [,
 argument]...
);

Parameters

Return Value

Remarks

Prints formatted data to a stream.

stream
Pointer to the FILE structure.

format
Format-control string.

argument
Optional arguments.

locale
The locale to use.

_fprintf_p and _fwprintf_p return the number of characters written or return a negative value when an output
error occurs.

_fprintf_p formats and prints a series of characters and values to the output stream. Each function argument (if
any) is converted and output according to the corresponding format specification in format. For _fprintf_p, the
format argument has the same syntax and use that it has in _printf_p. These functions support positional
parameters, meaning that the order of the parameters used by the format string can be changed. For more

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fprintf-p-fprintf-p-l-fwprintf-p-fwprintf-p-l.md

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_ftprintf_p _fprintf_p _fprintf_p _fwprintf_p

_ftprintf_p_l _fprintf_p_l _fprintf_p_l _fwprintf_p_l

Requirements
FUNCTION REQUIRED HEADER

_fprintf_p, _fprintf_p_l <stdio.h>

_fwprintf_p, _fwprintf_p_l <stdio.h> or <wchar.h>

Example

information about positional parameters, see printf_p Positional Parameters.

_fwprintf_p is a wide-character version of _fprintf_p; in _fwprintf_p, format is a wide-character string. These
functions behave identically if the stream is opened in ANSI mode. _fprintf_p doesn't currently support output
into a UNICODE stream.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current locale.

Ensure that format is not a user-defined string.

Like the non-secure versions (see fprintf, _fprintf_l, fwprintf, _fwprintf_l), these functions validate their
parameters and invoke the invalid parameter handler, as described in Parameter Validation, if either stream or
format is a null pointer or if there are any unknown or badly formed formatting specifiers. If execution is allowed
to continue, the functions return -1 and set errno to EINVAL.

For more information, see Format Specifications.

For more compatibility information, see Compatibility.

// crt_fprintf_p.c
// This program uses _fprintf_p to format various
// data and print it to the file named FPRINTF_P.OUT. It
// then displays FPRINTF_P.OUT on the screen using the system
// function to invoke the operating-system TYPE command.
//

#include <stdio.h>
#include <process.h>

int main(void)
{
 FILE *stream = NULL;
 int i = 10;
 double fp = 1.5;
 char s[] = "this is a string";
 char c = '\n';

 // Open the file
 if (fopen_s(&stream, "fprintf_p.out", "w") == 0)
 {
 // Format and print data
 _fprintf_p(stream, "%2$s%1$c", c, s);
 _fprintf_p(stream, "%d\n", i);
 _fprintf_p(stream, "%f\n", fp);

 // Close the file
 fclose(stream);
 }

 // Verify our data
 system("type fprintf_p.out");
}

this is a string
10
1.500000

See also
Stream I/O
_cprintf, _cprintf_l, _cwprintf, _cwprintf_l
fscanf, _fscanf_l, fwscanf, _fwscanf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
printf_p Positional Parameters
_cprintf_p, _cprintf_p_l, _cwprintf_p, _cwprintf_p_l
_cprintf_s, _cprintf_s_l, _cwprintf_s, _cwprintf_s_l
printf_p Positional Parameters
fscanf_s, _fscanf_s_l, fwscanf_s, _fwscanf_s_l

fprintf_s, _fprintf_s_l, fwprintf_s, _fwprintf_s_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int fprintf_s(
 FILE *stream,
 const char *format [,
 argument_list]
);
int _fprintf_s_l(
 FILE *stream,
 const char *format,
 locale_t locale [,
 argument_list]
);
int fwprintf_s(
 FILE *stream,
 const wchar_t *format [,
 argument_list]
);
int _fwprintf_s_l(
 FILE *stream,
 const wchar_t *format,
 locale_t locale [,
 argument_list]
);

Parameters

Return Value

Remarks

Print formatted data to a stream. These are versions of fprintf, _fprintf_l, fwprintf, _fwprintf_l with security
enhancements as described in Security Features in the CRT.

stream
Pointer to FILE structure.

format
Format-control string.

argument_list
Optional arguments to the format string.

locale
The locale to use.

fprintf_s returns the number of bytes written. fwprintf_s returns the number of wide characters written. Each
of these functions returns a negative value instead when an output error occurs.

fprintf_s formats and prints a series of characters and values to the output stream. Each argument in
argument_list (if any) is converted and output according to the corresponding format specification in format.
The format argument uses the format specification syntax for printf and wprintf functions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fprintf-s-fprintf-s-l-fwprintf-s-fwprintf-s-l.md

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_ftprintf_s fprintf_s fprintf_s fwprintf_s

_ftprintf_s_l _fprintf_s_l _fprintf_s_l _fwprintf_s_l

Requirements
FUNCTION REQUIRED HEADER

fprintf_s, _fprintf_s_l <stdio.h>

fwprintf_s, _fwprintf_s_l <stdio.h> or <wchar.h>

Example

fwprintf_s is a wide-character version of fprintf_s; in fwprintf_s, format is a wide-character string. These
functions behave identically if the stream is opened in ANSI mode. fprintf_s doesn't currently support output
into a UNICODE stream.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed
in instead of the current locale.

Ensure that format is not a user-defined string.

Like the non-secure versions (see fprintf, _fprintf_l, fwprintf, _fwprintf_l), these functions validate their
parameters and invoke the invalid parameter handler, as described in Parameter Validation, if either stream or
format is a null pointer. The format string itself is also validated. If there are any unknown or badly formed
formatting specifiers, these functions generate the invalid parameter exception. In all cases, If execution is
allowed to continue, the functions return -1 and set errno to EINVAL. See _doserrno, errno, _sys_errlist, and
_sys_nerr for more information on these, and other, error codes.

For more information, see Format Specifications.

For additional compatibility information, see Compatibility.

// crt_fprintf_s.c
// This program uses fprintf_s to format various
// data and print it to the file named FPRINTF_S.OUT. It
// then displays FPRINTF_S.OUT on the screen using the system
// function to invoke the operating-system TYPE command.

#include <stdio.h>
#include <process.h>

FILE *stream;

int main(void)
{
 int i = 10;
 double fp = 1.5;
 char s[] = "this is a string";
 char c = '\n';

 fopen_s(&stream, "fprintf_s.out", "w");
 fprintf_s(stream, "%s%c", s, c);
 fprintf_s(stream, "%d\n", i);
 fprintf_s(stream, "%f\n", fp);
 fclose(stream);
 system("type fprintf_s.out");
}

this is a string
10
1.500000

See also
Stream I/O
_cprintf, _cprintf_l, _cwprintf, _cwprintf_l
fscanf, _fscanf_l, fwscanf, _fwscanf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l

fputc, fputwc
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int fputc(
 int c,
 FILE *stream
);
wint_t fputwc(
 wchar_t c,
 FILE *stream
);

Parameters

Return Value

Remarks

ROUTINE REMARKS

fputc Equivalent to putc, but implemented only as a function,
rather than as a function and a macro.

Writes a character to a stream.

c
Character to be written.

stream
Pointer to FILE structure.

Each of these functions returns the character written. For fputc, a return value of EOF indicates an error. For
fputwc, a return value of WEOF indicates an error. If stream is NULL, these functions invoke the invalid
parameter handler, as described in Parameter Validation. If execution is allowed to continue, they return EOF
and set errno to EINVAL.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these, and other, error codes.

Each of these functions writes the single character c to a file at the position indicated by the associated file
position indicator (if defined) and advances the indicator as appropriate. In the case of fputc and fputwc, the
file is associated with stream. If the file cannot support positioning requests or was opened in append mode,
the character is appended to the end of the stream.

The two functions behave identically if the stream is opened in ANSI mode. fputc does not currently support
output into a UNICODE stream.

The versions with the _nolock suffix are identical except that they are not protected from interference by other
threads. For more information, see_fputc_nolock, _fputwc_nolock.

Routine-specific remarks follow.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fputc-fputwc.md

fputwc Wide-character version of fputc. Writes c as a multibyte
character or a wide character according to whether stream
is opened in text mode or binary mode.

ROUTINE REMARKS

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_fputtc fputc fputc fputwc

Requirements
FUNCTION REQUIRED HEADER

fputc <stdio.h>

fputwc <stdio.h> or <wchar.h>

Example
// crt_fputc.c
// This program uses fputc
// to send a character array to stdout.

#include <stdio.h>

int main(void)
{
 char strptr1[] = "This is a test of fputc!!\n";
 char *p;

 // Print line to stream using fputc.
 p = strptr1;
 while((*p != '\0') && fputc(*(p++), stdout) != EOF) ;

}

This is a test of fputc!!

See also

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that
are associated with the console—stdin, stdout, and stderr—must be redirected before C run-time functions
can use them in UWP apps. For additional compatibility information, see Compatibility.

Stream I/O
fgetc, fgetwc
putc, putwc

_fputc_nolock, _fputwc_nolock
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _fputc_nolock(
 int c,
 FILE *stream
);
wint_t _fputwc_nolock(
 wchar_t c,
 FILE *stream
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_fputtc_nolock _fputc_nolock _fputc_nolock _fputwc_nolock

Requirements
FUNCTION REQUIRED HEADER

_fputc_nolock <stdio.h>

_fputwc_nolock <stdio.h> or <wchar.h>

Writes a character to a stream without locking the thread.

c
Character to be written.

stream
Pointer to the FILE structure.

Each of these functions returns the character written. For error information, see fputc, fputwc.

_fputc_nolock and _fputwc_nolock are identical to fputc and fputwc, respectively, except that they are not
protected from interference by other threads. They might be faster because they do not incur the overhead of
locking out other threads. Use these functions only in thread-safe contexts such as single-threaded applications or
where the calling scope already handles thread isolation.

The two functions behave identically if the stream is opened in ANSI mode. _fputc_nolock does not currently
support output into a UNICODE stream.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fputc-nolock-fputwc-nolock.md

Example
// crt_fputc_nolock.c
// This program uses _fputc_nolock
// to send a character array to stdout.

#include <stdio.h>

int main(void)
{
 char strptr1[] = "This is a test of _fputc_nolock!!\n";
 char *p;

 // Print line to stream using fputc.
 p = strptr1;
 while((*p != '\0') && _fputc_nolock(*(p++), stdout) != EOF) ;

}

This is a test of _fputc_nolock!!

See also

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that are
associated with the console—stdin, stdout, and stderr—must be redirected before C run-time functions can use
them in UWP apps. For more compatibility information, see Compatibility.

Stream I/O
fgetc, fgetwc
putc, putwc

fputchar
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _fputchar instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fputchar.md

_fputchar, _fputwchar
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _fputchar(
 int c
);
wint_t _fputwchar(
 wchar_t c
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_fputtchar _fputchar _fputchar _fputwchar

Requirements
FUNCTION REQUIRED HEADER

_fputchar <stdio.h>

_fputwchar <stdio.h> or <wchar.h>

Writes a character to stdout.

c
Character to be written.

Each of these functions returns the character written. For _fputchar, a return value of EOF indicates an error. For
_fputwchar, a return value of WEOF indicates an error. If c is NULL, these functions generate an invalid
parameter exception, as described in Parameter Validation. If execution is allowed to continue, they return EOF (or
WEOF) and set errno to EINVAL.

For more information about these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

Both of these functions writes the single character c to stdout and advances the indicator as appropriate.
_fputchar is equivalent to fputc(stdout) . It is also equivalent to putchar, but implemented only as a function,
rather than as a function and a macro. Unlike fputc and putchar, these functions are not compatible with the
ANSI standard.

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that are

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fputchar-fputwchar.md

Example
// crt_fputchar.c
// This program uses _fputchar
// to send a character array to stdout.

#include <stdio.h>

int main(void)
{
 char strptr[] = "This is a test of _fputchar!!\n";
 char *p = NULL;

 // Print line to stream using _fputchar.
 p = strptr;
 while((*p != '\0') && _fputchar(*(p++)) != EOF)
 ;
}

This is a test of _fputchar!!

See also

associated with the console—stdin, stdout, and stderr—must be redirected before C run-time functions can use
them in UWP apps. For more compatibility information, see Compatibility.

Stream I/O
fgetc, fgetwc
putc, putwc

fputs, fputws
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int fputs(
 const char *str,
 FILE *stream
);
int fputws(
 const wchar_t *str,
 FILE *stream
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_fputts fputs fputs fputws

Requirements

Writes a string to a stream.

str
Output string.

stream
Pointer to FILE structure.

Each of these functions returns a nonnegative value if it is successful. On an error, fputs and fputws return EOF.
If str or stream is a null pointer, these functions invoke the invalid parameter handler, as described in Parameter
Validation. If execution is allowed to continue, these functions set errno to EINVAL and then fputs returns EOF,
and fputws returns WEOF.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these, and other, error codes.

Each of these functions copies str to the output stream at the current position. fputws copies the wide-character
argument str to stream as a multibyte-character string or a wide-character string according to whether stream is
opened in text mode or binary mode, respectively. Neither function copies the terminating null character.

The two functions behave identically if the stream is opened in ANSI mode. fputs does not currently support
output into a UNICODE stream.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fputs-fputws.md

FUNCTION REQUIRED HEADER

fputs <stdio.h>

fputws <stdio.h> or <wchar.h>

Example
// crt_fputs.c
// This program uses fputs to write
// a single line to the stdout stream.

#include <stdio.h>

int main(void)
{
 fputs("Hello world from fputs.\n", stdout);
}

Hello world from fputs.

See also

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that are
associated with the console—stdin, stdout, and stderr—must be redirected before C run-time functions can use
them in UWP apps. For additional compatibility information, see Compatibility.

Stream I/O
fgets, fgetws
gets, _getws
puts, _putws

fread
2/7/2019 • 2 minutes to read • Edit Online

Syntax
size_t fread(
 void *buffer,
 size_t size,
 size_t count,
 FILE *stream
);

Parameters

Return Value

Remarks

Reads data from a stream.

buffer
Storage location for data.

size
Item size in bytes.

count
Maximum number of items to be read.

stream
Pointer to FILE structure.

fread returns the number of full items actually read, which may be less than count if an error occurs or if the end
of the file is encountered before reaching count. Use the feof or ferror function to distinguish a read error from
an end-of-file condition. If size or count is 0, fread returns 0 and the buffer contents are unchanged. If stream or
buffer is a null pointer, fread invokes the invalid parameter handler, as described in Parameter Validation. If
execution is allowed to continue, this function sets errno to EINVAL and returns 0.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these error codes.

The fread function reads up to count items of size bytes from the input stream and stores them in buffer. The file
pointer associated with stream (if there is one) is increased by the number of bytes actually read. If the given
stream is opened in text mode, Windows-style newlines are converted into Unix-style newlines. That is, carriage
return-linefeed (CRLF) pairs are replaced by single linefeed (LF) characters. The replacement has no effect on the
file pointer or the return value. The file-pointer position is indeterminate if an error occurs. The value of a
partially read item cannot be determined.

When used on a text mode stream, if the amount of data requested (that is, size * count) is greater than or equal
to the internal FILE * buffer size (by default this is 4096 bytes, configurable by using setvbuf), stream data is
copied directly into the user-provided buffer, and newline conversion is done in that buffer. Since the converted
data may be shorter than the stream data copied into the buffer, data past buffer[return_value * size] (where
return_value is the return value from fread) may contain unconverted data from the file. For this reason, we

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fread.md

Requirements
FUNCTION REQUIRED HEADER

fread <stdio.h>

Example
// crt_fread.c
// This program opens a file named FREAD.OUT and
// writes 25 characters to the file. It then tries to open
// FREAD.OUT and read in 25 characters. If the attempt succeeds,
// the program displays the number of actual items read.

#include <stdio.h>

int main(void)
{
 FILE *stream;
 char list[30];
 int i, numread, numwritten;

 // Open file in text mode:
 if(fopen_s(&stream, "fread.out", "w+t") == 0)
 {
 for (i = 0; i < 25; i++)
 list[i] = (char)('z' - i);
 // Write 25 characters to stream
 numwritten = fwrite(list, sizeof(char), 25, stream);
 printf("Wrote %d items\n", numwritten);
 fclose(stream);

 }
 else
 printf("Problem opening the file\n");

 if(fopen_s(&stream, "fread.out", "r+t") == 0)
 {
 // Attempt to read in 25 characters
 numread = fread(list, sizeof(char), 25, stream);
 printf("Number of items read = %d\n", numread);
 printf("Contents of buffer = %.25s\n", list);
 fclose(stream);
 }
 else
 printf("File could not be opened\n");
}

Wrote 25 items
Number of items read = 25
Contents of buffer = zyxwvutsrqponmlkjihgfedcb

See also

recommend you null-terminate character data at buffer[return_value * size] if the intent of the buffer is to act as a
C-style string. See fopen for details on the effects of text mode and binary mode.

This function locks out other threads. If you need a non-locking version, use _fread_nolock.

For additional compatibility information, see Compatibility.

Stream I/O
Text and Binary File I/O
fopen
fwrite
_read

fread_s
10/31/2018 • 2 minutes to read • Edit Online

Syntax
size_t fread_s(
 void *buffer,
 size_t bufferSize,
 size_t elementSize,
 size_t count,
 FILE *stream
);

Parameters

Return Value

Remarks

Reads data from a stream. This version of fread has security enhancements, as described in Security Features in
the CRT.

buffer
Storage location for data.

bufferSize
Size of the destination buffer in bytes.

elementSize
Size of the item to read in bytes.

count
Maximum number of items to be read.

stream
Pointer to FILE structure.

fread_s returns the number of (whole) items that were read into the buffer, which may be less than count if a read
error or the end of the file is encountered before count is reached. Use the feof or ferror function to distinguish an
error from an end-of-file condition. If size or count is 0, fread_s returns 0 and the buffer contents are unchanged.
If stream or buffer is a null pointer, fread_s invokes the invalid parameter handler, as described in Parameter
Validation. If execution is allowed to continue, this function sets errno to EINVAL and returns 0.

For more information about error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The fread_s function reads up to count items of elementSize bytes from the input stream and stores them in
buffer. The file pointer that is associated with stream (if there is one) is increased by the number of bytes actually
read. If the given stream is opened in text mode, carriage return-linefeed pairs are replaced with single linefeed
characters. The replacement has no effect on the file pointer or the return value. The file-pointer position is
indeterminate if an error occurs. The value of a partially read item cannot be determined.

This function locks out other threads. If you require a non-locking version, use _fread_nolock.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fread-s.md

Requirements
FUNCTION REQUIRED HEADER

fread_s <stdio.h>

Example
// crt_fread_s.c
// Command line: cl /EHsc /nologo /W4 crt_fread_s.c
//
// This program opens a file that's named FREAD.OUT and
// writes characters to the file. It then tries to open
// FREAD.OUT and read in characters by using fread_s. If the attempt succeeds,
// the program displays the number of actual items read.

#include <stdio.h>

#define BUFFERSIZE 30
#define DATASIZE 22
#define ELEMENTCOUNT 2
#define ELEMENTSIZE (DATASIZE/ELEMENTCOUNT)
#define FILENAME "FREAD.OUT"

int main(void)
{
 FILE *stream;
 char list[30];
 int i, numread, numwritten;

 for (i = 0; i < DATASIZE; i++)
 list[i] = (char)('z' - i);
 list[DATASIZE] = '\0'; // terminal null so we can print it

 // Open file in text mode:
 if(fopen_s(&stream, FILENAME, "w+t") == 0)
 {
 // Write DATASIZE characters to stream
 printf("Contents of buffer before write/read:\n\t%s\n\n", list);
 numwritten = fwrite(list, sizeof(char), DATASIZE, stream);
 printf("Wrote %d items\n\n", numwritten);
 fclose(stream);
 } else {
 printf("Problem opening the file\n");
 return -1;
 }

 if(fopen_s(&stream, FILENAME, "r+t") == 0) {
 // Attempt to read in characters in 2 blocks of 11
 numread = fread_s(list, BUFFERSIZE, ELEMENTSIZE, ELEMENTCOUNT, stream);
 printf("Number of %d-byte elements read = %d\n\n", ELEMENTSIZE, numread);
 printf("Contents of buffer after write/read:\n\t%s\n", list);
 fclose(stream);
 } else {
 printf("File could not be opened\n");
 return -1;
 }
}

For additional compatibility information, see Compatibility.

Contents of buffer before write/read:
 zyxwvutsrqponmlkjihgfe

Wrote 22 items

Number of 11-byte elements read = 2

Contents of buffer after write/read:
 zyxwvutsrqponmlkjihgfe

See also
Stream I/O
fwrite
_read

_fread_nolock
10/31/2018 • 2 minutes to read • Edit Online

Syntax
size_t _fread_nolock(
 void *buffer,
 size_t size,
 size_t count,
 FILE *stream
);

Parameters

Return Value

Remarks

Requirements
FUNCTION REQUIRED HEADER

_fread_nolock <stdio.h>

See also

Reads data from a stream, without locking other threads.

buffer
Storage location for data.

size
Item size in bytes.

count
Maximum number of items to be read.

stream
Pointer to the FILE structure.

See fread.

This function is a non-locking version of fread. It is identical to fread except that it is not protected from
interference by other threads. It might be faster because it does not incur the overhead of locking out other
threads. Use this function only in thread-safe contexts such as single-threaded applications or where the calling
scope already handles thread isolation.

For more compatibility information, see Compatibility.

Stream I/O
fwrite
_read

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fread-nolock.md

_fread_nolock_s
10/31/2018 • 2 minutes to read • Edit Online

Syntax
size_t _fread_nolock_s(
 void *buffer,
 size_t bufferSize,
 size_t elementSize,
 size_t elementCount,
 FILE *stream
);

Parameters

Return Value

Remarks

Requirements
FUNCTION REQUIRED HEADER

_fread_nolock_s C: <stdio.h>; C++: <cstdio> or <stdio.h>

Reads data from a stream, without locking other threads. This version of fread_nolock has security enhancements,
as described in Security Features in the CRT.

buffer
Storage location for data.

bufferSize
Size of the destination buffer in bytes.

elementSize
Size of the item to read in bytes.

elementCount
Maximum number of items to be read.

stream
Pointer to FILE structure.

See fread_s.

This function is a non-locking version of fread_s. It is identical to fread_s except that it is not protected from
interference by other threads. It might be faster because it does not incur the overhead of locking out other
threads. Use this function only in thread-safe contexts such as single-threaded applications or where the calling
scope already handles thread isolation.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fread-nolock-s2.md

See also
Stream I/O
fwrite
_read

free
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void free(
 void *memblock
);

Parameters

Remarks

Requirements
FUNCTION REQUIRED HEADER

free <stdlib.h> and <malloc.h>

Example

Deallocates or frees a memory block.

memblock
Previously allocated memory block to be freed.

The free function deallocates a memory block (memblock) that was previously allocated by a call to calloc,
malloc, or realloc. The number of freed bytes is equivalent to the number of bytes requested when the block
was allocated (or reallocated, in the case of realloc). If memblock is NULL, the pointer is ignored and free
immediately returns. Attempting to free an invalid pointer (a pointer to a memory block that was not allocated
by calloc, malloc, or realloc) may affect subsequent allocation requests and cause errors.

If an error occurs in freeing the memory, errno is set with information from the operating system on the nature
of the failure. For more information, see errno, _doserrno, _sys_errlist, and _sys_nerr.

After a memory block has been freed, _heapmin minimizes the amount of free memory on the heap by
coalescing the unused regions and releasing them back to the operating system. Freed memory that is not
released to the operating system is restored to the free pool and is available for allocation again.

When the application is linked with a debug version of the C run-time libraries, free resolves to _free_dbg. For
more information about how the heap is managed during the debugging process, see The CRT Debug Heap.

free is marked __declspec(noalias) , meaning that the function is guaranteed not to modify global variables.
For more information, see noalias.

To free memory allocated with _malloca, use _freea.

For additional compatibility information, see Compatibility.

See the example for malloc.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/free.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/noalias

See also
Memory Allocation
_alloca
calloc
malloc
realloc
_free_dbg
_heapmin
_freea

_free_dbg
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void _free_dbg(
 void *userData,
 int blockType
);

Parameters

Remarks

Requirements
ROUTINE REQUIRED HEADER

_free_dbg <crtdbg.h>

Frees a block of memory in the heap (debug version only).

userData
Pointer to the allocated memory block to be freed.

blockType
Type of allocated memory block to be freed: _CLIENT_BLOCK, _NORMAL_BLOCK, or _IGNORE_BLOCK.

The _free_dbg function is a debug version of the free function. When _DEBUG is not defined, each call to
_free_dbg is reduced to a call to free. Both free and _free_dbg free a memory block in the base heap, but
_free_dbg accommodates two debugging features: the ability to keep freed blocks in the heap's linked list to
simulate low memory conditions and a block type parameter to free specific allocation types.

_free_dbg performs a validity check on all specified files and block locations before performing the free
operation. The application is not expected to provide this information. When a memory block is freed, the debug
heap manager automatically checks the integrity of the buffers on either side of the user portion and issues an
error report if overwriting has occurred. If the _CRTDBG_DELAY_FREE_MEM_DF bit field of the _crtDbgFlag
flag is set, the freed block is filled with the value 0xDD, assigned the _FREE_BLOCK block type, and kept in the
heap's linked list of memory blocks.

If an error occurs in freeing the memory, errno is set with information from the operating system on the nature
of the failure. For more information, see errno, _doserrno, _sys_errlist, and _sys_nerr.

For information about how memory blocks are allocated, initialized, and managed in the debug version of the
base heap, see CRT Debug Heap Details. For information about the allocation block types and how they are used,
see Types of blocks on the debug heap. For information about the differences between calling a standard heap
function and its debug version in a debug build of an application, see Debug Versions of Heap Allocation
Functions.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/free-dbg.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/debug-versions-of-heap-allocation-functions

Example

See also

For a sample of how to use _free_dbg, see crt_dbg2.

Debug Routines
_malloc_dbg

https://github.com/Microsoft/VCSamples/tree/master/VC2010Samples/crt/crt_dbg2

_free_locale
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void _free_locale(
 _locale_t locale
);

Parameters

Remarks

Requirements
ROUTINE REQUIRED HEADER

_free_locale <locale.h>

See also

Frees a locale object.

locale
Locale object to free.

The _free_locale function is used to free the locale object obtained from a call to _get_current_locale or
_create_locale.

The previous name of this function, __free_locale (with two leading underscores) has been deprecated.

For more compatibility information, see Compatibility.

_get_current_locale
_create_locale, _wcreate_locale

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/free-locale.md

_freea
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void _freea(
 void *memblock
);

Parameters

Return Value

Remarks

Requirements

Deallocates or frees a memory block.

memblock
Previously allocated memory block to be freed.

None.

The _freea function deallocates a memory block (memblock) that was previously allocated by a call to _malloca.
_freea checks to see if the memory was allocated on the heap or the stack. If it was allocated on the stack, _freea
does nothing. If it was allocated on the heap, the number of freed bytes is equivalent to the number of bytes
requested when the block was allocated. If memblock is NULL, the pointer is ignored and _freea immediately
returns. Attempting to free an invalid pointer (a pointer to a memory block that was not allocated by _malloca)
might affect subsequent allocation requests and cause errors.

_freea calls free internally if it finds that the memory is allocated on the heap. Whether the memory is on the
heap or the stack is determined by a marker placed in memory at the address immediately preceding the
allocated memory.

If an error occurs in freeing the memory, errno is set with information from the operating system on the nature of
the failure. For more information, see errno, _doserrno, _sys_errlist, and _sys_nerr.

After a memory block has been freed, _heapmin minimizes the amount of free memory on the heap by coalescing
the unused regions and releasing them back to the operating system. Freed memory that is not released to the
operating system is restored to the free pool and is available for allocation again.

A call to _freea must accompany all calls to _malloca. It is also an error to call _freea twice on the same memory.
When the application is linked with a debug version of the C run-time libraries, particularly with _malloc_dbg
features enabled by defining _CRTDBG_MAP_ALLOC, it is easier to find missing or duplicated calls to _freea.
For more information about how the heap is managed during the debugging process, see The CRT Debug Heap.

_freea is marked __declspec(noalias) , meaning that the function is guaranteed not to modify global variables.
For more information, see noalias.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/freea.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/noalias

FUNCTION REQUIRED HEADER

_freea <stdlib.h> and <malloc.h>

Example

See also

For more compatibility information, see Compatibility.

See the example for _malloca.

Memory Allocation
_malloca
calloc
malloc
_malloc_dbg
realloc
_free_dbg
_heapmin

freopen, _wfreopen
11/8/2018 • 4 minutes to read • Edit Online

Syntax
FILE *freopen(
 const char *path,
 const char *mode,
 FILE *stream
);
FILE *_wfreopen(
 const wchar_t *path,
 const wchar_t *mode,
 FILE *stream
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tfreopen freopen freopen _wfreopen

Reassigns a file pointer. More secure versions of these functions are available; see freopen_s, _wfreopen_s.

path
Path of new file.

mode
Type of access permitted.

stream
Pointer to FILE structure.

Each of these functions returns a pointer to the newly opened file. If an error occurs, the original file is closed
and the function returns a NULL pointer value. If path, mode, or stream is a null pointer, or if filename is an
empty string, these functions invoke the invalid parameter handler, as described in Parameter Validation. If
execution is allowed to continue, these functions set errno to EINVAL and return NULL.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these, and other, error codes.

More secure versions of these functions exist, see freopen_s, _wfreopen_s.

The freopen function closes the file currently associated with stream and reassigns stream to the file specified
by path. _wfreopen is a wide-character version of _freopen; the path and mode arguments to _wfreopen are
wide-character strings. _wfreopen and _freopen behave identically otherwise.

freopen is typically used to redirect the pre-opened files stdin, stdout, and stderr to files specified by the

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/freopen-wfreopen.md

MODE ACCESS

"r" Opens for reading. If the file does not exist or cannot be
found, the freopen call fails.

"w" Opens an empty file for writing. If the given file exists, its
contents are destroyed.

"a" Opens for writing at the end of the file (appending) without
removing the end-of-file (EOF) marker before new data is
written to the file. Creates the file if it does not exist.

"r+" Opens for both reading and writing. The file must exist.

"w+" Opens an empty file for both reading and writing. If the file
exists, its contents are destroyed.

"a+" Opens for reading and appending. The appending
operation includes the removal of the EOF marker before
new data is written to the file. The EOF marker is not
restored after writing is completed. Creates the file if it does
not exist.

MODE MODIFIER TRANSLATION MODE

t Open in text (translated) mode.

b Open in binary (untranslated) mode; translations involving
carriage-return and linefeed characters are suppressed.

user. The new file associated with stream is opened with mode, which is a character string specifying the type
of access requested for the file, as follows:

Use the "w" and "w+" types with care, as they can destroy existing files.

When a file is opened with the "a" or "a+" access type, all write operations take place at the end of the file.
Although the file pointer can be repositioned using fseek or rewind, the file pointer is always moved back to
the end of the file before any write operation is carried out. Thus, existing data cannot be overwritten.

The "a" mode does not remove the EOF marker before appending to the file. After appending has occurred,
the MS-DOS TYPE command only shows data up to the original EOF marker and not any data appended to
the file. The "a+" mode does remove the EOF marker before appending to the file. After appending, the MS-
DOS TYPE command shows all data in the file. The "a+" mode is required for appending to a stream file that
is terminated with the CTRL+Z EOF marker.

When the "r+", "w+", or "a+" access type is specified, both reading and writing are allowed (the file is said to
be open for "update"). However, when you switch between reading and writing, there must be an intervening
fsetpos, fseek, or rewind operation. The current position can be specified for the fsetpos or fseek operation, if
desired. In addition to the above values, one of the following characters may be included in the mode string to
specify the translation mode for new lines.

In text (translated) mode, carriage return-linefeed (CR-LF) combinations are translated into single linefeed
(LF) characters on input; LF characters are translated to CR-LF combinations on output. Also, CTRL+Z is
interpreted as an end-of-file character on input. In files opened for reading or for writing and reading with
"a+", the run-time library checks for a CTRL+Z at the end of the file and removes it, if possible. This is done
because using fseek and ftell to move within a file may cause fseek to behave improperly near the end of the

Requirements
FUNCTION REQUIRED HEADER

freopen <stdio.h>

_wfreopen <stdio.h> or <wchar.h>

Example
// crt_freopen.c
// compile with: /W3
// This program reassigns stderr to the file
// named FREOPEN.OUT and writes a line to that file.
#include <stdio.h>
#include <stdlib.h>

FILE *stream;

int main(void)
{
 // Reassign "stderr" to "freopen.out":
 stream = freopen("freopen.out", "w", stderr); // C4996
 // Note: freopen is deprecated; consider using freopen_s instead

 if(stream == NULL)
 fprintf(stdout, "error on freopen\n");
 else
 {
 fprintf(stdout, "successfully reassigned\n"); fflush(stdout);
 fprintf(stream, "This will go to the file 'freopen.out'\n");
 fclose(stream);
 }
 system("type freopen.out");
}

successfully reassigned
This will go to the file 'freopen.out'

See also

file. The t option is a Microsoft extension that should not be used where ANSI portability is desired.

If t or b is not given in mode, the default translation mode is defined by the global variable _fmode. If t or b is
prefixed to the argument, the function fails and returns NULL.

For a discussion of text and binary modes, see Text and Binary Mode File I/O.

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that
are associated with the console, stdin, stdout, and stderr, must be redirected before C run-time functions can
use them in UWP apps. For additional compatibility information, see Compatibility.

Stream I/O
fclose, _fcloseall
_fdopen, _wfdopen
_fileno
fopen, _wfopen

_open, _wopen
_setmode

freopen_s, _wfreopen_s
11/8/2018 • 4 minutes to read • Edit Online

Syntax
errno_t freopen(
 FILE** pFile,
 const char *path,
 const char *mode,
 FILE *stream
);
errno_t _wfreopen(
 FILE** pFile,
 const wchar_t *path,
 const wchar_t *mode,
 FILE *stream
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

Reassigns a file pointer. These versions of freopen, _wfreopen have security enhancements, as described in
Security Features in the CRT.

pFile
A pointer to the file pointer to be provided by the call.

path
Path of new file.

mode
Type of access permitted.

stream
Pointer to FILE structure.

Each of these functions returns an error code. If an error occurs, the original file is closed.

The freopen_s function closes the file currently associated with stream and reassigns stream to the file specified
by path. _wfreopen_s is a wide-character version of _freopen_s; the path and mode arguments to _wfreopen_s
are wide-character strings. _wfreopen_s and _freopen_s behave identically otherwise.

If any of pFile, path, mode, or stream are NULL, or if path is an empty string, these functions invoke the invalid
parameter handler, as described in Parameter Validation. If execution is allowed to continue, these functions set
errno to EINVAL and return EINVAL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/freopen-s-wfreopen-s.md

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tfreopen_s freopen_s freopen_s _wfreopen_s

MODE ACCESS

"r" Opens for reading. If the file does not exist or cannot be
found, the freopen_s call fails.

"w" Opens an empty file for writing. If the given file exists, its
contents are destroyed.

"a" Opens for writing at the end of the file (appending) without
removing the end-of-file (EOF) marker before new data is
written to the file. Creates the file if it does not exist.

"r+" Opens for both reading and writing. The file must exist.

"w+" Opens an empty file for both reading and writing. If the file
exists, its contents are destroyed.

"a+" Opens for reading and appending. The appending operation
includes the removal of the EOF marker before new data is
written to the file. The EOF marker is not restored after
writing is completed. Creates the file if it does not exist.

MODE MODIFIER TRANSLATION MODE

t Open in text (translated) mode.

b Open in binary (untranslated) mode; translations involving
carriage-return and linefeed characters are suppressed.

freopen_s is typically used to redirect the pre-opened files stdin, stdout, and stderr to files specified by the user.
The new file associated with stream is opened with mode, which is a character string specifying the type of access
requested for the file, as follows:

Use the "w" and "w+" types with care, as they can destroy existing files.

When a file is opened with the "a" or "a+" access type, all write operations take place at the end of the file.
Although the file pointer can be repositioned using fseek or rewind, the file pointer is always moved back to the
end of the file before any write operation is carried out. Thus, existing data cannot be overwritten.

The "a" mode does not remove the EOF marker before appending to the file. After appending has occurred, the
MS-DOS TYPE command only shows data up to the original EOF marker and not any data appended to the file.
The "a+" mode does remove the EOF marker before appending to the file. After appending, the MS-DOS TYPE
command shows all data in the file. The "a+" mode is required for appending to a stream file that is terminated
with the CTRL+Z EOF marker.

When the "r+", "w+", or "a+" access type is specified, both reading and writing are allowed (the file is said to be
open for "update"). However, when you switch between reading and writing, there must be an intervening
fsetpos, fseek, or rewind operation. The current position can be specified for the fsetpos or fseek operation, if
desired. In addition to the above values, one of the following characters may be included in the mode string to
specify the translation mode for new lines.

Requirements
FUNCTION REQUIRED HEADER

freopen_s <stdio.h>

_wfreopen_s <stdio.h> or <wchar.h>

Example
// crt_freopen_s.c
// This program reassigns stderr to the file
// named FREOPEN.OUT and writes a line to that file.

#include <stdio.h>
#include <stdlib.h>

FILE *stream;

int main(void)
{
 errno_t err;
 // Reassign "stderr" to "freopen.out":
 err = freopen_s(&stream, "freopen.out", "w", stderr);

 if(err != 0)
 fprintf(stdout, "error on freopen\n");
 else
 {
 fprintf(stdout, "successfully reassigned\n"); fflush(stdout);
 fprintf(stream, "This will go to the file 'freopen.out'\n");
 fclose(stream);
 }
 system("type freopen.out");
}

successfully reassigned
This will go to the file 'freopen.out'

See also

In text (translated) mode, carriage return-linefeed (CR-LF) combinations are translated into single linefeed (LF)
characters on input; LF characters are translated to CR-LF combinations on output. Also, CTRL+Z is interpreted
as an end-of-file character on input. In files opened for reading or for writing and reading with "a+", the run-
time library checks for a CTRL+Z at the end of the file and removes it, if possible. This is done because using
fseek and ftell to move within a file may cause fseek to behave improperly near the end of the file. The t option is
a Microsoft extension that should not be used where ANSI portability is desired.

If t or b is not given in mode, the default translation mode is defined by the global variable _fmode. If t or b is
prefixed to the argument, the function fails and returns NULL.

For a discussion of text and binary modes, see Text and Binary Mode File I/O.

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that are
associated with the console, stdin, stdout, and stderr, must be redirected before C run-time functions can use
them in UWP apps. For additional compatibility information, see Compatibility.

Stream I/O
freopen, _wfreopen
fclose, _fcloseall
_fdopen, _wfdopen
_fileno
fopen, _wfopen
_open, _wopen
_setmode

frexp, frexpf, frexpl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double frexp(
 double x,
 int *expptr
);
float frexpf(
 float x,
 int * expptr
);
long double frexpl(
 long double x,
 int * expptr
);
float frexp(
 float x,
 int * expptr
); // C++ only
long double frexp(
 long double x,
 int * expptr
); // C++ only

Parameters

Return Value

Remarks

Requirements

Gets the mantissa and exponent of a floating-point number.

x
Floating-point value.

expptr
Pointer to stored integer exponent.

frexp returns the mantissa. If x is 0, the function returns 0 for both the mantissa and the exponent. If expptr is
NULL, the invalid parameter handler is invoked as described in Parameter Validation. If execution is allowed to
continue, this function sets errno to EINVAL and returns 0.

The frexp function breaks down the floating-point value (x) into a mantissa (m) and an exponent (n), such that
the absolute value of m is greater than or equal to 0.5 and less than 1.0, and x = m * 2 . The integer exponent n is
stored at the location pointed to by expptr.

n

C++ allows overloading, so you can call overloads of frexp. In a C program, frexp always takes a double and an
int pointer and returns a double.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/frexp.md

FUNCTION REQUIRED HEADER

frexp, frexpf, frexpl <math.h>

Example
// crt_frexp.c
// This program calculates frexp(16.4, &n)
// then displays y and n.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x, y;
 int n;

 x = 16.4;
 y = frexp(x, &n);
 printf("frexp(%f, &n) = %f, n = %d\n", x, y, n);
}

frexp(16.400000, &n) = 0.512500, n = 5

See also

For additional compatibility information, see Compatibility.

Floating-Point Support
ldexp
modf, modff, modfl

fscanf, _fscanf_l, fwscanf, _fwscanf_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int fscanf(
 FILE *stream,
 const char *format [,
 argument]...
);
int _fscanf_l(
 FILE *stream,
 const char *format,
 locale_t locale [,
 argument]...
);
int fwscanf(
 FILE *stream,
 const wchar_t *format [,
 argument]...
);
int _fwscanf_l(
 FILE *stream,
 const wchar_t *format,
 locale_t locale [,
 argument]...
);

Parameters

Return Value

Read formatted data from a stream. More secure versions of these functions are available; see fscanf_s,
_fscanf_s_l, fwscanf_s, _fwscanf_s_l.

stream
Pointer to FILE structure.

format
Format-control string.

argument
Optional arguments.

locale
The locale to use.

Each of these functions returns the number of fields successfully converted and assigned; the return value does
not include fields that were read but not assigned. A return value of 0 indicates that no fields were assigned. If
an error occurs, or if the end of the file stream is reached before the first conversion, the return value is EOF
for fscanf and fwscanf.

These functions validate their parameters. If stream or format is a null pointer, the invalid parameter handler is
invoked, as described in Parameter Validation. If execution is allowed to continue, these functions return EOF
and set errno to EINVAL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fscanf-fscanf-l-fwscanf-fwscanf-l.md

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_ftscanf fscanf fscanf fwscanf

_ftscanf_l _fscanf_l _fscanf_l _fwscanf_l

Requirements
FUNCTION REQUIRED HEADER

fscanf, _fscanf_l <stdio.h>

fwscanf, _fwscanf_l <stdio.h> or <wchar.h>

Example

The fscanf function reads data from the current position of stream into the locations given by argument (if
any). Each argument must be a pointer to a variable of a type that corresponds to a type specifier in format.
format controls the interpretation of the input fields and has the same form and function as the format
argument for scanf; see scanf for a description of format.

fwscanf is a wide-character version of fscanf; the format argument to fwscanf is a wide-character string.
These functions behave identically if the stream is opened in ANSI mode. fscanf doesn't currently support
input from a UNICODE stream.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed
in instead of the current thread locale.

For more information, see Format Specification Fields - scanf functions and wscanf Functions.

For additional compatibility information, see Compatibility.

// crt_fscanf.c
// compile with: /W3
// This program writes formatted
// data to a file. It then uses fscanf to
// read the various data back from the file.

#include <stdio.h>

FILE *stream;

int main(void)
{
 long l;
 float fp;
 char s[81];
 char c;

 if(fopen_s(&stream, "fscanf.out", "w+") != 0)
 printf("The file fscanf.out was not opened\n");
 else
 {
 fprintf(stream, "%s %ld %f%c", "a-string",
 65000, 3.14159, 'x');
 // Security caution!
 // Beware loading data from a file without confirming its size,
 // as it may lead to a buffer overrun situation.

 // Set pointer to beginning of file:
 fseek(stream, 0L, SEEK_SET);

 // Read data back from file:
 fscanf(stream, "%s", s); // C4996
 fscanf(stream, "%ld", &l); // C4996

 fscanf(stream, "%f", &fp); // C4996
 fscanf(stream, "%c", &c); // C4996
 // Note: fscanf is deprecated; consider using fscanf_s instead

 // Output data read:
 printf("%s\n", s);
 printf("%ld\n", l);
 printf("%f\n", fp);
 printf("%c\n", c);

 fclose(stream);
 }
}

a-string
65000
3.141590
x

See also
Stream I/O
_cscanf, _cscanf_l, _cwscanf, _cwscanf_l
fprintf, _fprintf_l, fwprintf, _fwprintf_l
scanf, _scanf_l, wscanf, _wscanf_l
sscanf, _sscanf_l, swscanf, _swscanf_l
fscanf_s, _fscanf_s_l, fwscanf_s, _fwscanf_s_l

fscanf_s, _fscanf_s_l, fwscanf_s, _fwscanf_s_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int fscanf_s(
 FILE *stream,
 const char *format [,
 argument]...
);
int _fscanf_s_l(
 FILE *stream,
 const char *format,
 locale_t locale [,
 argument]...
);
int fwscanf_s(
 FILE *stream,
 const wchar_t *format [,
 argument]...
);
int _fwscanf_s_l(
 FILE *stream,
 const wchar_t *format,
 locale_t locale [,
 argument]...
);

Parameters

Return Value

Reads formatted data from a stream. These versions of fscanf, _fscanf_l, fwscanf, _fwscanf_l have security
enhancements, as described in Security Features in the CRT.

stream
Pointer to FILE structure.

format
Format-control string.

argument
Optional arguments.

locale
The locale to use.

Each of these functions returns the number of fields that are successfully converted and assigned; the return
value does not include fields that were read but not assigned. A return value of 0 indicates that no fields were
assigned. If an error occurs, or if the end of the file stream is reached before the first conversion, the return value
is EOF for fscanf_s and fwscanf_s.

These functions validate their parameters. If stream is an invalid file pointer, or format is a null pointer, these
functions invoke the invalid parameter handler, as described in Parameter Validation. If execution is allowed to
continue, these functions return EOF and set errno to EINVAL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fscanf-s-fscanf-s-l-fwscanf-s-fwscanf-s-l.md

Remarks

NOTE

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_ftscanf_s fscanf_s fscanf_s fwscanf_s

_ftscanf_s_l _fscanf_s_l _fscanf_s_l _fwscanf_s_l

Requirements
FUNCTION REQUIRED HEADER

fscanf_s, _fscanf_s_l <stdio.h>

fwscanf_s, _fwscanf_s_l <stdio.h> or <wchar.h>

Example

The fscanf_s function reads data from the current position of stream into the locations that are given by
argument (if any). Each argument must be a pointer to a variable of a type that corresponds to a type specifier in
format. format controls the interpretation of the input fields and has the same form and function as the format
argument for scanf_s; see Format Specification Fields: scanf and wscanf Functions for a description of format.
fwscanf_s is a wide-character version of fscanf_s; the format argument to fwscanf_s is a wide-character string.
These functions behave identically if the stream is opened in ANSI mode. fscanf_s doesn't currently support
input from a UNICODE stream.

The main difference between the more secure functions (that have the _s suffix) and the other versions is that
the more secure functions require the size in characters of each c, C, s, S, and [type field to be passed as an
argument immediately following the variable. For more information, see scanf_s, _scanf_s_l, wscanf_s,
_wscanf_s_l and scanf Width Specification.

The size parameter is of type unsigned, not size_t.

The versions of these functions that have the _l suffix are identical except that they use the locale parameter
that's passed in instead of the current thread locale.

For additional compatibility information, see Compatibility.

// crt_fscanf_s.c
// This program writes formatted
// data to a file. It then uses fscanf to
// read the various data back from the file.

#include <stdio.h>
#include <stdlib.h>

FILE *stream;

int main(void)
{
 long l;
 float fp;
 char s[81];
 char c;

 errno_t err = fopen_s(&stream, "fscanf.out", "w+");
 if(err)
 printf_s("The file fscanf.out was not opened\n");
 else
 {
 fprintf_s(stream, "%s %ld %f%c", "a-string",
 65000, 3.14159, 'x');
 // Set pointer to beginning of file:
 fseek(stream, 0L, SEEK_SET);

 // Read data back from file:
 fscanf_s(stream, "%s", s, _countof(s));
 fscanf_s(stream, "%ld", &l);

 fscanf_s(stream, "%f", &fp);
 fscanf_s(stream, "%c", &c, 1);

 // Output data read:
 printf("%s\n", s);
 printf("%ld\n", l);
 printf("%f\n", fp);
 printf("%c\n", c);

 fclose(stream);
 }
}

a-string
65000
3.141590
x

See also
Stream I/O
_cscanf_s, _cscanf_s_l, _cwscanf_s, _cwscanf_s_l
fprintf_s, _fprintf_s_l, fwprintf_s, _fwprintf_s_l
scanf_s, _scanf_s_l, wscanf_s, _wscanf_s_l
sscanf_s, _sscanf_s_l, swscanf_s, _swscanf_s_l
fscanf, _fscanf_l, fwscanf, _fwscanf_l

fseek, _fseeki64
11/8/2018 • 3 minutes to read • Edit Online

Syntax
int fseek(
 FILE *stream,
 long offset,
 int origin
);
int _fseeki64(
 FILE *stream,
 __int64 offset,
 int origin
);

Parameters

Return Value

Remarks

ORIGIN VALUE MEANING

SEEK_CUR Current position of file pointer.

SEEK_END End of file.

SEEK_SET Beginning of file.

Moves the file pointer to a specified location.

stream
Pointer to FILE structure.

offset
Number of bytes from origin.

origin
Initial position.

If successful, fseek and _fseeki64 returns 0. Otherwise, it returns a nonzero value. On devices incapable
of seeking, the return value is undefined. If stream is a null pointer, or if origin is not one of allowed
values described below, fseek and _fseeki64 invoke the invalid parameter handler, as described in
Parameter Validation. If execution is allowed to continue, these functions set errno to EINVAL and
return -1.

The fseek and _fseeki64 functions moves the file pointer (if any) associated with stream to a new
location that is offset bytes from origin. The next operation on the stream takes place at the new
location. On a stream open for update, the next operation can be either a read or a write. The argument
origin must be one of the following constants, defined in STDIO.H:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fseek-fseeki64.md

Requirements
FUNCTION REQUIRED HEADER

fseek <stdio.h>

_fseeki64 <stdio.h>

Example

You can use fseek and _fseeki64 to reposition the pointer anywhere in a file. The pointer can also be
positioned beyond the end of the file. fseek and _fseeki64 clears the end-of-file indicator and negates
the effect of any prior ungetc calls against stream.

When a file is opened for appending data, the current file position is determined by the last I/O
operation, not by where the next write would occur. If no I/O operation has yet occurred on a file
opened for appending, the file position is the start of the file.

For streams opened in text mode, fseek and _fseeki64 have limited use, because carriage return-
linefeed translations can cause fseek and _fseeki64 to produce unexpected results. The only fseek and
_fseeki64 operations guaranteed to work on streams opened in text mode are:

Seeking with an offset of 0 relative to any of the origin values.

Seeking from the beginning of the file with an offset value returned from a call to ftell when
using fseek or _ftelli64 when using _fseeki64.

Also in text mode, CTRL+Z is interpreted as an end-of-file character on input. In files opened for
reading/writing, fopen and all related routines check for a CTRL+Z at the end of the file and remove it if
possible. This is done because using the combination of fseek and ftell or _fseeki64 and _ftelli64, to
move within a file that ends with a CTRL+Z may cause fseek or _fseeki64 to behave improperly near
the end of the file.

When the CRT opens a file that begins with a Byte Order Mark (BOM), the file pointer is positioned
after the BOM (that is, at the start of the file's actual content). If you have to fseek to the beginning of
the file, use ftell to get the initial position and fseek to it rather than to position 0.

This function locks out other threads during execution and is therefore thread-safe. For a non-locking
version, see _fseek_nolock, _fseeki64_nolock.

For additional compatibility information, see Compatibility.

// crt_fseek.c
// This program opens the file FSEEK.OUT and
// moves the pointer to the file's beginning.

#include <stdio.h>

int main(void)
{
 FILE *stream;
 char line[81];
 int result;

 if (fopen_s(&stream, "fseek.out", "w+") != 0)
 {
 printf("The file fseek.out was not opened\n");
 return -1;
 }
 fprintf(stream, "The fseek begins here: "
 "This is the file 'fseek.out'.\n");
 result = fseek(stream, 23L, SEEK_SET);
 if(result)
 perror("Fseek failed");
 else
 {
 printf("File pointer is set to middle of first line.\n");
 fgets(line, 80, stream);
 printf("%s", line);
 }
 fclose(stream);
}

File pointer is set to middle of first line.
This is the file 'fseek.out'.

See also
Stream I/O
fopen, _wfopen
ftell, _ftelli64
_lseek, _lseeki64
rewind

_fseek_nolock, _fseeki64_nolock
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _fseek_nolock(
 FILE *stream,
 long offset,
 int origin
);
int _fseeki64_nolock(
 FILE *stream,
 __int64 offset,
 int origin
);

Parameters

Return Value

Remarks

Requirements
FUNCTION REQUIRED HEADER

_fseek_nolock, _fseeki64_nolock <stdio.h>

See also

Moves the file pointer to a specified location.

stream
Pointer to the FILE structure.

offset
Number of bytes from origin.

origin
Initial position.

Same as fseek and _fseeki64, respectively.

These functions are the non-locking versions of fseek and _fseeki64, respectively. These are identical to fseek and
_fseeki64 except that they are not protected from interference by other threads. These functions might be faster
because they do not incur the overhead of locking out other threads. Use these functions only in thread-safe
contexts such as single-threaded applications or where the calling scope already handles thread isolation.

For additional compatibility information, see Compatibility.

Stream I/O
ftell, _ftelli64

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fseek-nolock-fseeki64-nolock.md

_lseek, _lseeki64
rewind

fsetpos
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int fsetpos(
 FILE *stream,
 const fpos_t *pos
);

Parameters

Return Value

Remarks

Requirements
FUNCTION REQUIRED HEADER

fsetpos <stdio.h>

Example

See also

Sets the stream-position indicator.

stream
Pointer to FILE structure.

pos
Position-indicator storage.

If successful, fsetpos returns 0. On failure, the function returns a nonzero value and sets errno to one of the
following manifest constants (defined in ERRNO.H): EBADF, which means the file is not accessible or the
object that stream points to is not a valid file structure; or EINVAL, which means an invalid value for stream or
pos was passed. If an invalid parameter is passed in, these functions invoke the invalid parameter handler, as
described in Parameter Validation.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these, and other, return codes.

The fsetpos function sets the file-position indicator for stream to the value of pos, which is obtained in a prior
call to fgetpos against stream. The function clears the end-of-file indicator and undoes any effects of ungetc on
stream. After calling fsetpos, the next operation on stream may be either input or output.

For additional compatibility information, see Compatibility.

See the example for fgetpos.

Stream I/O

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fsetpos.md

fgetpos

_fsopen, _wfsopen
10/31/2018 • 4 minutes to read • Edit Online

Syntax
FILE *_fsopen(
 const char *filename,
 const char *mode,
 int shflag
);
FILE *_wfsopen(
 const wchar_t *filename,
 const wchar_t *mode,
 int shflag
);

Parameters

Return Value

Remarks

TERM DEFINITION

"r" Opens for reading. If the file does not exist or cannot be
found, the _fsopen call fails.

Opens a stream with file sharing.

filename
Name of the file to open.

mode
Type of access permitted.

shflag
Type of sharing allowed.

Each of these functions returns a pointer to the stream. A null pointer value indicates an error. If filename or
mode is NULL or an empty string, these functions invoke the invalid parameter handler, as described in
Parameter Validation. If execution is allowed to continue, these functions return NULL and set errno to
EINVAL.

For more information about these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The _fsopen function opens the file specified by filename as a stream and prepares the file for subsequent
shared reading or writing, as defined by the mode and shflag arguments. _wfsopen is a wide-character version
of _fsopen; the filename and mode arguments to _wfsopen are wide-character strings. _wfsopen and _fsopen
behave identically otherwise.

The character string mode specifies the type of access requested for the file, as shown in the following table.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fsopen-wfsopen.md

"w" Opens an empty file for writing. If the given file exists, its
contents are destroyed.

"a" Opens for writing at the end of the file (appending); creates
the file first if it does not exist.

"r+" Opens for both reading and writing. (The file must exist.)

"w+" Opens an empty file for both reading and writing. If the
given file exists, its contents are destroyed.

"a+" Opens for reading and appending; creates the file first if it
does not exist.

TERM DEFINITION

TERM DEFINITION

t Opens a file in text (translated) mode. In this mode, carriage
return-line feed (CR-LF) combinations are translated into
single line feeds (LF) on input and LF characters are
translated to CR-LF combinations on output. Also, CTRL+Z is
interpreted as an end-of-file character on input. In files
opened for reading or reading/writing, _fsopen checks for a
CTRL+Z at the end of the file and removes it, if possible. This
is done because using fseek and ftell to move within a file
that ends with a CTRL+Z might cause fseek to behave
improperly near the end of the file.

b Opens a file in binary (untranslated) mode; the above
translations are suppressed.

S Specifies that caching is optimized for, but not restricted to,
sequential access from disk.

R Specifies that caching is optimized for, but not restricted to,
random access from disk.

T Specifies a file as temporary. If possible, it is not flushed to
disk.

D Specifies a file as temporary. It is deleted when the last file
pointer is closed.

Use the "w" and "w+" types with care, as they can destroy existing files.

When a file is opened with the "a" or "a+" access type, all write operations occur at the end of the file. The file
pointer can be repositioned using fseek or rewind, but it is always moved back to the end of the file before any
write operation is carried out. Thus, existing data cannot be overwritten. When the "r+", "w+", or "a+" access
type is specified, both reading and writing are allowed (the file is said to be open for update). However, when
switching between reading and writing, there must be an intervening fsetpos, fseek, or rewind operation. The
current position can be specified for the fsetpos or fseek operation, if desired. In addition to the above values,
one of the following characters can be included in mode to specify the translation mode for new lines, and for
file management.

If t or b is not given in mode, the translation mode is defined by the default-mode variable _fmode. If t or b is

TERM DEFINITION

_SH_COMPAT Sets Compatibility mode for 16-bit applications.

_SH_DENYNO Permits read and write access.

_SH_DENYRD Denies read access to the file.

_SH_DENYRW Denies read and write access to the file.

_SH_DENYWR Denies write access to the file.

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tfsopen _fsopen _fsopen _wfsopen

Requirements
FUNCTION REQUIRED HEADER OPTIONAL HEADERS

_fsopen <stdio.h> <share.h>

For manifest constant for shflag
parameter.

_wfsopen <stdio.h> or <wchar.h> <share.h>

For manifest constant for shflag
parameter.

Example

prefixed to the argument, the function fails and returns NULL. For a discussion of text and binary modes, see
Text and Binary Mode File I/O.

The argument shflag is a constant expression consisting of one of the following manifest constants, defined in
Share.h.

// crt_fsopen.c

#include <stdio.h>
#include <stdlib.h>
#include <share.h>

int main(void)
{
 FILE *stream;

 // Open output file for writing. Using _fsopen allows us to
 // ensure that no one else writes to the file while we are
 // writing to it.
 //
 if((stream = _fsopen("outfile", "wt", _SH_DENYWR)) != NULL)
 {
 fprintf(stream, "No one else in the network can write "
 "to this file until we are done.\n");
 fclose(stream);
 }
 // Now others can write to the file while we read it.
 system("type outfile");
}

No one else in the network can write to this file until we are done.

See also
Stream I/O
fclose, _fcloseall
_fdopen, _wfdopen
ferror
_fileno
fopen, _wfopen
freopen, _wfreopen
_open, _wopen
_setmode
_sopen, _wsopen

_fstat, _fstat32, _fstat64, _fstati64, _fstat32i64,
_fstat64i32
11/8/2018 • 3 minutes to read • Edit Online

Syntax
int _fstat(
 int fd,
 struct _stat *buffer
);
int _fstat32(
 int fd,
 struct __stat32 *buffer
);
int _fstat64(
 int fd,
 struct __stat64 *buffer
);
int _fstati64(
 int fd,
 struct _stati64 *buffer
);
int _fstat32i64(
 int fd,
 struct _stat32i64 *buffer
);
int _fstat64i32(
 int fd,
 struct _stat64i32 *buffer
);

Parameters

Return Value

Remarks

Gets information about an open file.

fd
File descriptor of the open file.

buffer
Pointer to the structure to store results.

Returns 0 if the file-status information is obtained. A return value of -1 indicates an error. If the file descriptor
is invalid or buffer is NULL, the invalid parameter handler is invoked, as described in Parameter Validation. If
execution is allowed to continue, errno is set to EBADF, in the case of an invalid file descriptor, or to EINVAL,
if buffer is NULL.

The _fstat function obtains information about the open file associated with fd and stores it in the structure
pointed to by buffer. The _stat structure, defined in SYS\Stat.h, contains the following fields.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fstat-fstat32-fstat64-fstati64-fstat32i64-fstat64i32.md

FIELD MEANING

st_atime Time of the last file access.

st_ctime Time of the creation of the file.

st_dev If a device, fd; otherwise 0.

st_mode Bit mask for file-mode information. The _S_IFCHR bit is set
if fd refers to a device. The _S_IFREG bit is set if fd refers to
an ordinary file. The read/write bits are set according to the
file's permission mode. _S_IFCHR and other constants are
defined in SYS\Stat.h.

st_mtime Time of the last modification of the file.

st_nlink Always 1 on non-NTFS file systems.

st_rdev If a device, fd; otherwise 0.

st_size Size of the file in bytes.

Time Type and File Length Type Variations of _stat

FUNCTIONS _USE_32BIT_TIME_T DEFINED? TIME TYPE FILE LENGTH TYPE

_fstat Not defined 64-bit 32-bit

_fstat Defined 32-bit 32-bit

_fstat32 Not affected by the macro
definition

32-bit 32-bit

_fstat64 Not affected by the macro
definition

64-bit 64-bit

_fstati64 Not defined 64-bit 64-bit

If fd refers to a device, the st_atime, st_ctime, st_mtime, and st_size fields are not meaningful.

Because Stat.h uses the _dev_t type, which is defined in Types.h, you must include Types.h before Stat.h in your
code.

_fstat64, which uses the __stat64 structure, allows file-creation dates to be expressed up through 23:59:59,
December 31, 3000, UTC; whereas the other functions only represent dates through 23:59:59 January 18,
2038, UTC. Midnight, January 1, 1970, is the lower bound of the date range for all these functions.

Variations of these functions support 32-bit or 64-bit time types and 32-bit or 64-bit file lengths. The first
numerical suffix (32 or 64) indicates the size of the time type used; the second suffix is either i32 or i64,
indicating whether the file size is represented as a 32-bit or 64-bit integer.

_fstat is equivalent to _fstat64i32, and struct _stat contains a 64-bit time. This is true unless
_USE_32BIT_TIME_T is defined, in which case the old behavior is in effect; _fstat uses a 32-bit time, and
struct _stat contains a 32-bit time. The same is true for _fstati64.

_fstati64 Defined 32-bit 64-bit

_fstat32i64 Not affected by the macro
definition

32-bit 64-bit

_fstat64i32 Not affected by the macro
definition

64-bit 32-bit

FUNCTIONS _USE_32BIT_TIME_T DEFINED? TIME TYPE FILE LENGTH TYPE

Requirements
FUNCTION REQUIRED HEADER

_fstat <sys/stat.h> and <sys/types.h>

_fstat32 <sys/stat.h> and <sys/types.h>

_fstat64 <sys/stat.h> and <sys/types.h>

_fstati64 <sys/stat.h> and <sys/types.h>

_fstat32i64 <sys/stat.h> and <sys/types.h>

_fstat64i32 <sys/stat.h> and <sys/types.h>

Example

For more compatibility information, see Compatibility.

// crt_fstat.c
// This program uses _fstat to report
// the size of a file named F_STAT.OUT.

#include <io.h>
#include <fcntl.h>
#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <share.h>

int main(void)
{
 struct _stat buf;
 int fd, result;
 char buffer[] = "A line to output";
 char timebuf[26];
 errno_t err;

 _sopen_s(&fd,
 "f_stat.out",
 _O_CREAT | _O_WRONLY | _O_TRUNC,
 _SH_DENYNO,
 _S_IREAD | _S_IWRITE);
 if(fd != -1)
 _write(fd, buffer, strlen(buffer));

 // Get data associated with "fd":
 result = _fstat(fd, &buf);

 // Check if statistics are valid:
 if(result != 0)
 {
 if (errno == EBADF)
 printf("Bad file descriptor.\n");
 else if (errno == EINVAL)
 printf("Invalid argument to _fstat.\n");
 }
 else
 {
 printf("File size : %ld\n", buf.st_size);
 err = ctime_s(timebuf, 26, &buf.st_mtime);
 if (err)
 {
 printf("Invalid argument to ctime_s.");
 exit(1);
 }
 printf("Time modified : %s", timebuf);
 }
 _close(fd);
}

File size : 16
Time modified : Wed May 07 15:25:11 2003

See also
File Handling
_access, _waccess

_chmod, _wchmod
_filelength, _filelengthi64
_stat, _wstat Functions

ftell, _ftelli64
10/31/2018 • 2 minutes to read • Edit Online

Syntax
long ftell(
 FILE *stream
);
__int64 _ftelli64(
 FILE *stream
);

Parameters

Return Value

Remarks

Gets the current position of a file pointer.

stream
Target FILE structure.

ftell and _ftelli64 return the current file position. The value returned by ftell and _ftelli64 may not reflect the
physical byte offset for streams opened in text mode, because text mode causes carriage return-linefeed
translation. Use ftell with fseek or _ftelli64 with _fseeki64 to return to file locations correctly. On error, ftell
and _ftelli64 invoke the invalid parameter handler, as described in Parameter Validation. If execution is allowed
to continue, these functions return -1L and set errno to one of two constants, defined in ERRNO.H. The
EBADF constant means the stream argument is not a valid file pointer value or does not refer to an open file.
EINVAL means an invalid stream argument was passed to the function. On devices incapable of seeking (such
as terminals and printers), or when stream does not refer to an open file, the return value is undefined.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these, and other, return codes.

The ftell and _ftelli64 functions retrieve the current position of the file pointer (if any) associated with stream.
The position is expressed as an offset relative to the beginning of the stream.

Note that when a file is opened for appending data, the current file position is determined by the last I/O
operation, not by where the next write would occur. For example, if a file is opened for an append and the last
operation was a read, the file position is the point where the next read operation would start, not where the
next write would start. (When a file is opened for appending, the file position is moved to end of file before any
write operation.) If no I/O operation has yet occurred on a file opened for appending, the file position is the
beginning of the file.

In text mode, CTRL+Z is interpreted as an end-of-file character on input. In files opened for reading/writing,
fopen and all related routines check for a CTRL+Z at the end of the file and remove it if possible. This is done
because using the combination of ftell and fseek or _ftelli64 and _fseeki64, to move within a file that ends
with a CTRL+Z may cause ftell or _ftelli64 to behave improperly near the end of the file.

This function locks the calling thread during execution and is therefore thread-safe. For a non-locking version,
see _ftell_nolock.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ftell-ftelli64.md

Requirements
FUNCTION REQUIRED HEADER OPTIONAL HEADERS

ftell <stdio.h> <errno.h>

_ftelli64 <stdio.h> <errno.h>

Example
// crt_ftell.c
// This program opens a file named CRT_FTELL.C
// for reading and tries to read 100 characters. It
// then uses ftell to determine the position of the
// file pointer and displays this position.

#include <stdio.h>

FILE *stream;

int main(void)
{
 long position;
 char list[100];
 if(fopen_s(&stream, "crt_ftell.c", "rb") == 0)
 {
 // Move the pointer by reading data:
 fread(list, sizeof(char), 100, stream);
 // Get position after read:
 position = ftell(stream);
 printf("Position after trying to read 100 bytes: %ld\n",
 position);
 fclose(stream);
 }
}

Position after trying to read 100 bytes: 100

See also

For additional compatibility information, see Compatibility.

Stream I/O
fopen, _wfopen
fgetpos
fseek, _fseeki64
_lseek, _lseeki64

_ftell_nolock, _ftelli64_nolock
10/31/2018 • 2 minutes to read • Edit Online

Syntax
long _ftell_nolock(
 FILE *stream
);
__int64 _ftelli64_nolock(
 FILE *stream
);

Parameters

Return Value

Remarks

Requirements
FUNCTION REQUIRED HEADER OPTIONAL HEADER

ftell_nolock <stdio.h> <errno.h>

_ftelli64_nolock <stdio.h> <errno.h>

See also

Gets the current position of a file pointer, without locking the thread.

stream
Target the FILE structure.

Same as ftell and _ftelli64. For more information, see ftell, _ftelli64.

These functions are non-locking versions of ftell and _ftelli64, respectively. They are identical to ftell and
_ftelli64 except that they are not protected from interference by other threads. These functions might be faster
because they do not incur the overhead of locking out other threads. Use these functions only in thread-safe
contexts such as single-threaded applications or where the calling scope already handles thread isolation.

For more compatibility information, see Compatibility.

Stream I/O
fgetpos
fseek, _fseeki64
_lseek, _lseeki64
ftell, _ftelli64

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ftell-nolock-ftelli64-nolock.md

_ftime, _ftime32, _ftime64
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void _ftime(struct _timeb *timeptr);
void _ftime32(struct __timeb32 *timeptr);
void _ftime64(struct __timeb64 *timeptr);

Parameters

Remarks

FIELD DESCRIPTION

dstflag Nonzero if daylight savings time is currently in effect for
the local time zone. (See _tzset for an explanation of how
daylight savings time is determined.)

millitm Fraction of a second in milliseconds.

time Time in seconds since midnight (00:00:00), January 1,
1970, coordinated universal time (UTC).

timezone Difference in minutes, moving westward, between UTC and
local time. The value of timezone is set from the value of
the global variable _timezone (see _tzset).

Get the current time. More secure versions of these functions are available; see _ftime_s, _ftime32_s,
_ftime64_s.

timeptr
Pointer to a _timeb, __timeb32, or __timeb64 structure.

The _ftime function gets the current local time and stores it in the structure pointed to by timeptr. The
_timeb, __timeb32, and __timeb64 structures are defined in <sys\timeb.h>. They contain four fields, which
are listed in the following table.

The _ftime64 function, which uses the __timeb64 structure, allows file-creation dates to be expressed up
through 23:59:59, December 31, 3000, UTC; whereas _ftime32 only represents dates through 23:59:59
January 18, 2038, UTC. Midnight, January 1, 1970, is the lower bound of the date range for all these
functions.

The _ftime function is equivalent to _ftime64, and _timeb contains a 64-bit time unless
_USE_32BIT_TIME_T is defined, in which case the old behavior is in effect; _ftime uses a 32-bit time and
_timeb contains a 32-bit time.

_ftime validates its parameters. If passed a null pointer as timeptr, the function invokes the invalid parameter
handler, as described in Parameter Validation. If execution is allowed to continue, the function sets errno to
EINVAL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ftime-ftime32-ftime64.md

Requirements
FUNCTION REQUIRED HEADER

_ftime <sys/types.h> and <sys/timeb.h>

_ftime32 <sys/types.h> and <sys/timeb.h>

_ftime64 <sys/types.h> and <sys/timeb.h>

Example
// crt_ftime.c
// compile with: /W3
// This program uses _ftime to obtain the current
// time and then stores this time in timebuffer.

#include <stdio.h>
#include <sys/timeb.h>
#include <time.h>

int main(void)
{
 struct _timeb timebuffer;
 char timeline[26];
 errno_t err;
 time_t time1;
 unsigned short millitm1;
 short timezone1;
 short dstflag1;

 _ftime(&timebuffer); // C4996
 // Note: _ftime is deprecated; consider using _ftime_s instead

 time1 = timebuffer.time;
 millitm1 = timebuffer.millitm;
 timezone1 = timebuffer.timezone;
 dstflag1 = timebuffer.dstflag;

 printf("Seconds since midnight, January 1, 1970 (UTC): %I64d\n",
 time1);
 printf("Milliseconds: %d\n", millitm1);
 printf("Minutes between UTC and local time: %d\n", timezone1);
 printf("Daylight savings time flag (1 means Daylight time is in "
 "effect): %d\n", dstflag1);

 err = ctime_s(timeline, 26, & (timebuffer.time));
 if (err)
 {
 printf("Invalid argument to ctime_s. ");
 }
 printf("The time is %.19s.%hu %s", timeline, timebuffer.millitm,
 &timeline[20]);
}

For more compatibility information, see Compatibility.

Seconds since midnight, January 1, 1970 (UTC): 1051553334
Milliseconds: 230
Minutes between UTC and local time: 480
Daylight savings time flag (1 means Daylight time is in effect): 1
The time is Mon Apr 28 11:08:54.230 2003

See also
Time Management
asctime, _wasctime
ctime, _ctime32, _ctime64, _wctime, _wctime32, _wctime64
gmtime, _gmtime32, _gmtime64
localtime, _localtime32, _localtime64
time, _time32, _time64

_ftime_s, _ftime32_s, _ftime64_s
10/31/2018 • 2 minutes to read • Edit Online

Syntax
errno_t _ftime_s(struct _timeb *timeptr);
errno_t _ftime32_s(struct __timeb32 *timeptr);
errno_t _ftime64_s(struct __timeb64 *timeptr);

Parameters

Return Value

Remarks

FIELD DESCRIPTION

dstflag Nonzero if daylight savings time is currently in effect for the
local time zone. (See _tzset for an explanation of how daylight
savings time is determined.)

millitm Fraction of a second in milliseconds.

time Time in seconds since midnight (00:00:00), January 1, 1970,
coordinated universal time (UTC).

timezone Difference in minutes, moving westward, between UTC and
local time. The value of timezone is set from the value of the
global variable _timezone (see _tzset).

Gets the current time. These are versions of _ftime, _ftime32, _ftime64 with security enhancements as described
in Security Features in the CRT.

timeptr
Pointer to a _timeb, __timeb32, or __timeb64 structure.

Zero if successful, an error code on failure. If timeptr is NULL, the return value is EINVAL.

The _ftime_s function gets the current local time and stores it in the structure pointed to by timeptr. The _timeb,
__timeb32, and __timeb64 structures are defined in SYS\Timeb.h. They contain four fields, which are listed in
the following table.

The _ftime64_s function, which uses the __timeb64 structure, allows file-creation dates to be expressed up
through 23:59:59, December 31, 3000, UTC; whereas _ftime32_s only represents dates through 23:59:59
January 18, 2038, UTC. Midnight, January 1, 1970, is the lower bound of the date range for all these functions.

The _ftime_s function is equivalent to _ftime64_s, and _timeb contains a 64-bit time, unless
_USE_32BIT_TIME_T is defined, in which case the old behavior is in effect; _ftime_s uses a 32-bit time and
_timeb contains a 32-bit time.

_ftime_s validates its parameters. If passed a null pointer as timeptr, the function invokes the invalid parameter
handler, as described in Parameter Validation. If execution is allowed to continue, the function sets errno to

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ftime-s-ftime32-s-ftime64-s.md

Requirements
FUNCTION REQUIRED HEADER

_ftime_s <sys/types.h> and <sys/timeb.h>

_ftime32_s <sys/types.h> and <sys/timeb.h>

_ftime64_s <sys/types.h> and <sys/timeb.h>

Libraries

Example
// crt_ftime64_s.c
// This program uses _ftime64_s to obtain the current
// time and then stores this time in timebuffer.

#include <stdio.h>
#include <sys/timeb.h>
#include <time.h>

int main(void)
{
 struct _timeb timebuffer;
 char timeline[26];
 errno_t err;
 time_t time1;
 unsigned short millitm1;
 short timezone1;
 short dstflag1;

 _ftime64_s(&timebuffer);

 time1 = timebuffer.time;
 millitm1 = timebuffer.millitm;
 timezone1 = timebuffer.timezone;
 dstflag1 = timebuffer.dstflag;

 printf("Seconds since midnight, January 1, 1970 (UTC): %I64d\n",
 time1);
 printf("Milliseconds: %d\n", millitm1);
 printf("Minutes between UTC and local time: %d\n", timezone1);
 printf("Daylight savings time flag (1 means Daylight time is in "
 "effect): %d\n", dstflag1);

 err = ctime_s(timeline, 26, & (timebuffer.time));
 if (err)
 {
 printf("Invalid argument to ctime_s. ");
 }
 printf("The time is %.19s.%hu %s", timeline, timebuffer.millitm,
 &timeline[20]);
}

EINVAL.

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

Seconds since midnight, January 1, 1970 (UTC): 1051553334
Milliseconds: 230
Minutes between UTC and local time: 480
Daylight savings time flag (1 means Daylight time is in effect): 1
The time is Mon Apr 28 11:08:54.230 2003

See also
Time Management
asctime, _wasctime
ctime, _ctime32, _ctime64, _wctime, _wctime32, _wctime64
gmtime, _gmtime32, _gmtime64
localtime, _localtime32, _localtime64
time, _time32, _time64

_fullpath, _wfullpath
10/31/2018 • 3 minutes to read • Edit Online

Syntax
char *_fullpath(
 char *absPath,
 const char *relPath,
 size_t maxLength
);
wchar_t *_wfullpath(
 wchar_t *absPath,
 const wchar_t *relPath,
 size_t maxLength
);

Parameters

Return Value

Remarks

#include <stdlib.h>

Creates an absolute or full path name for the specified relative path name.

absPath
Pointer to a buffer containing the absolute or full path name, or NULL.

relPath
Relative path name.

maxLength
Maximum length of the absolute path name buffer (absPath). This length is in bytes for _fullpath but in wide
characters (wchar_t) for _wfullpath.

Each of these functions returns a pointer to a buffer containing the absolute path name (absPath). If there is an
error (for example, if the value passed in relPath includes a drive letter that is not valid or cannot be found, or if
the length of the created absolute path name (absPath) is greater than maxLength), the function returns NULL.

The _fullpath function expands the relative path name in relPath to its fully qualified or absolute path and stores
this name in absPath. If absPath is NULL, malloc is used to allocate a buffer of sufficient length to hold the path
name. It is the responsibility of the caller to free this buffer. A relative path name specifies a path to another
location from the current location (such as the current working directory: "."). An absolute path name is the
expansion of a relative path name that states the entire path required to reach the desired location from the root
of the file system. Unlike _makepath, _fullpath can be used to obtain the absolute path name for relative paths
(relPath) that include "./" or "../" in their names.

For example, to use C run-time routines, the application must include the header files that contain the
declarations for the routines. Each header file include statement references the location of the file in a relative
manner (from the application's working directory):

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fullpath-wfullpath.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tfullpath _fullpath _fullpath _wfullpath

Requirements
FUNCTION REQUIRED HEADER

_fullpath <stdlib.h>

_wfullpath <stdlib.h> or <wchar.h>

Example

when the absolute path (actual file system location) of the file might be:

\\machine\shareName\msvcSrc\crt\headerFiles\stdlib.h

_fullpath automatically handles multibyte-character string arguments as appropriate, recognizing multibyte-
character sequences according to the multibyte code page currently in use. _wfullpath is a wide-character
version of _fullpath; the string arguments to _wfullpath are wide-character strings. _wfullpath and _fullpath
behave identically except that _wfullpath does not handle multibyte-character strings.

If _DEBUG and _CRTDBG_MAP_ALLOC are both defined, calls to _fullpath and _wfullpath are replaced by
calls to _fullpath_dbg and _wfullpath_dbg to allow for debugging memory allocations. For more information,
see _fullpath_dbg, _wfullpath_dbg.

This function invokes the invalid parameter handler, as described in Parameter Validation, if maxlen is less than
or equal to 0. If execution is allowed to continue, this function sets errno to EINVAL and returns NULL.

If the absPath buffer is NULL, _fullpath calls malloc to allocate a buffer and ignores the maxLength argument. It
is the caller's responsibility to deallocate this buffer (using free) as appropriate. If the relPath argument specifies
a disk drive, the current directory of this drive is combined with the path.

For more compatibility information, see Compatibility.

// crt_fullpath.c
// This program demonstrates how _fullpath
// creates a full path from a partial path.

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <direct.h>

void PrintFullPath(char * partialPath)
{
 char full[_MAX_PATH];
 if(_fullpath(full, partialPath, _MAX_PATH) != NULL)
 printf("Full path is: %s\n", full);
 else
 printf("Invalid path\n");
}

int main(void)
{
 PrintFullPath("test");
 PrintFullPath("\\test");
 PrintFullPath("..\\test");
}

Full path is: C:\Documents and Settings\user\My Documents\test
Full path is: C:\test
Full path is: C:\Documents and Settings\user\test

See also
File Handling
_getcwd, _wgetcwd
_getdcwd, _wgetdcwd
_makepath, _wmakepath
_splitpath, _wsplitpath

_fullpath_dbg, _wfullpath_dbg
10/31/2018 • 2 minutes to read • Edit Online

Syntax
char *_fullpath_dbg(
 char *absPath,
 const char *relPath,
 size_t maxLength,
 int blockType,
 const char *filename,
 int linenumber
);
wchar_t *_wfullpath_dbg(
 wchar_t *absPath,
 const wchar_t *relPath,
 size_t maxLength,
 int blockType,
 const char *filename,
 int linenumber
);

Parameters

Return Value

Remarks

Versions of _fullpath, _wfullpath that use the debug version of malloc to allocate memory.

absPath
Pointer to a buffer containing the absolute or full path name, or NULL.

relPath
Relative path name.

maxLength
Maximum length of the absolute path name buffer (absPath). This length is in bytes for _fullpath but in wide
characters (wchar_t) for _wfullpath.

blockType
Requested type of memory block: _CLIENT_BLOCK or _NORMAL_BLOCK.

filename
Pointer to the name of the source file that requested allocation operation or NULL.

linenumber
Line number in the source file where the allocation operation was requested or NULL.

Each function returns a pointer to a buffer containing the absolute path name (absPath). If there is an error (for
example, if the value passed in relPath includes a drive letter that is not valid or cannot be found, or if the length of
the created absolute path name (absPath) is greater than maxLength) the function returns NULL.

The _fullpath_dbg and _wfullpath_dbg functions are identical to _fullpath and _wfullpath except that, when
_DEBUG is defined, these functions use the debug version of malloc, _malloc_dbg, to allocate memory if NULL

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fullpath-dbg-wfullpath-dbg.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tfullpath_dbg _fullpath_dbg _fullpath_dbg _wfullpath_dbg

Requirements
FUNCTION REQUIRED HEADER

_fullpath_dbg <crtdbg.h>

_wfullpath_dbg <crtdbg.h>

See also

is passed as the first parameter. For information on the debugging features of _malloc_dbg, see _malloc_dbg.

You do not need to call these functions explicitly in most cases. Instead, you can define the
_CRTDBG_MAP_ALLOC flag. When _CRTDBG_MAP_ALLOC is defined, calls to _fullpath and _wfullpath are
remapped to _fullpath_dbg and _wfullpath_dbg, respectively, with the blockType set to _NORMAL_BLOCK.
Thus, you do not need to call these functions explicitly unless you want to mark the heap blocks as
_CLIENT_BLOCK. For more information, see Types of blocks on the debug heap.

For more compatibility information, see Compatibility.

File Handling
_fullpath, _wfullpath
Debug Versions of Heap Allocation Functions

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/debug-versions-of-heap-allocation-functions

_futime, _futime32, _futime64
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _futime(
 int fd,
 struct _utimbuf *filetime
);
int _futime32(
 int fd,
 struct __utimbuf32 *filetime
);
int _futime64(
 int fd,
 struct __utimbuf64 *filetime
);

Parameters

Return Value

Remarks

Requirements

Sets the modification time on an open file.

fd
File descriptor to the open file.

filetime
Pointer to the structure containing the new modification date.

Return 0 if successful. If an error occurs, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, the function returns -1 and errno is set to EBADF, indicating an
invalid file descriptor, or EINVAL, indicating an invalid parameter.

The _futime routine sets the modification date and the access time on the open file associated with fd. _futime is
identical to _utime, except that its argument is the file descriptor of an open file, rather than the name of a file or a
path to a file. The _utimbuf structure contains fields for the new modification date and access time. Both fields
must contain valid values. _utimbuf32 and _utimbuf64 are identical to _utimbuf except for the use of the 32-
bit and 64-bit time types, respectively. _futime and _utimbuf use a 64-bit time type and _futime is identical in
behavior to _futime64. If you need to force the old behavior, define _USE_32BIT_TIME_T. Doing this causes
_futime to be identical in behavior to _futime32 and causes the _utimbuf structure to use the 32-bit time type,
making it equivalent to __utimbuf32.

_futime64, which uses the __utimbuf64 structure, can read and modify file dates through 23:59:59, December
31, 3000, UTC; whereas a call to _futime32 fails if the date on the file is later than 23:59:59 January 18, 2038,
UTC. Midnight, January 1, 1970, is the lower bound of the date range for these functions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/futime-futime32-futime64.md

FUNCTION REQUIRED HEADER OPTIONAL HEADER

_futime <sys/utime.h> <errno.h>

_futime32 <sys/utime.h> <errno.h>

_futime64 <sys/utime.h> <errno.h>

Example
// crt_futime.c
// This program uses _futime to set the
// file-modification time to the current time.

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <io.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/utime.h>
#include <share.h>

int main(void)
{
 int hFile;

 // Show file time before and after.
 system("dir crt_futime.c_input");

 _sopen_s(&hFile, "crt_futime.c_input", _O_RDWR, _SH_DENYNO, 0);

 if(_futime(hFile, NULL) == -1)
 perror("_futime failed\n");
 else
 printf("File time modified\n");

 _close (hFile);

 system("dir crt_futime.c_input");
}

Input: crt_futime.c_input

Arbitrary file contents.

Sample Output

For more compatibility information, see Compatibility.

Volume in drive Z has no label.
Volume Serial Number is 5C68-57C1

Directory of Z:\crt

03/25/2004 10:40 AM 24 crt_futime.c_input
 1 File(s) 24 bytes
 0 Dir(s) 24,268,476,416 bytes free
Volume in drive Z has no label.
Volume Serial Number is 5C68-57C1

Directory of Z:\crt

03/25/2004 10:41 AM 24 crt_futime.c_input
 1 File(s) 24 bytes
 0 Dir(s) 24,268,476,416 bytes free
File time modified

See also
Time Management

fwide
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int fwide(
 FILE *stream,
 int mode;
);

Parameters

Return Value

Remarks

Requirements
FUNCTION REQUIRED HEADER

fwide <wchar.h>

Unimplemented.

stream
Pointer to FILE structure (ignored).

mode
The new width of the stream: positive for wide character, negative for byte, zero to leave unchanged. (This value is
ignored.)

This function currently just returns mode.

The current version of this function does not comply with the Standard.

For more information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fwide.md

fwrite
10/31/2018 • 2 minutes to read • Edit Online

Syntax
size_t fwrite(
 const void *buffer,
 size_t size,
 size_t count,
 FILE *stream
);

Parameters

Return Value

Remarks

Requirements

Writes data to a stream.

buffer
Pointer to data to be written.

size
Item size, in bytes.

count
Maximum number of items to be written.

stream
Pointer to FILE structure.

fwrite returns the number of full items actually written, which may be less than count if an error occurs. Also, if
an error occurs, the file-position indicator cannot be determined. If either stream or buffer is a null pointer, or if
an odd number of bytes to be written is specified in Unicode mode, the function invokes the invalid parameter
handler, as described in Parameter Validation. If execution is allowed to continue, this function sets errno to
EINVAL and returns 0.

The fwrite function writes up to count items, of size length each, from buffer to the output stream. The file
pointer associated with stream (if there is one) is incremented by the number of bytes actually written. If stream
is opened in text mode, each linefeed is replaced with a carriage-return - linefeed pair. The replacement has no
effect on the return value.

When stream is opened in Unicode translation mode—for example, if stream is opened by calling fopen and
using a mode parameter that includes ccs=UNICODE , ccs=UTF-16LE , or ccs=UTF-8, or if the mode is
changed to a Unicode translation mode by using _setmode and a mode parameter that includes _O_WTEXT,
_O_U16TEXT, or _O_U8TEXT—buffer is interpreted as a pointer to an array of wchar_t that contains UTF-16
data. An attempt to write an odd number of bytes in this mode causes a parameter validation error.

Because this function locks the calling thread, it is thread-safe. For a non-locking version, see _fwrite_nolock.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fwrite.md

FUNCTION REQUIRED HEADER

fwrite <stdio.h>

Example

See also

For additional compatibility information, see Compatibility.

See the example for fread.

Stream I/O
_setmode
fread
_fwrite_nolock
_write

_fwrite_nolock
10/31/2018 • 2 minutes to read • Edit Online

Syntax
size_t _fwrite_nolock(
 const void *buffer,
 size_t size,
 size_t count,
 FILE *stream
);

Parameters

Return Value

Remarks

Requirements
FUNCTION REQUIRED HEADER

_fwrite_nolock <stdio.h>

Example

Writes data to a stream, without locking the thread.

buffer
Pointer to the data to be written.

size
Item size in bytes.

count
Maximum number of items to be written.

stream
Pointer to the FILE structure.

Same as fwrite.

This function is a non-locking version of fwrite. It is identical to fwrite except that it is not protected from
interference by other threads. It might be faster because it does not incur the overhead of locking out other
threads. Use this function only in thread-safe contexts such as single-threaded applications or where the calling
scope already handles thread isolation.

For more compatibility information, see Compatibility.

See the example for fread.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/fwrite-nolock.md

See also
Stream I/O
fread
_write

gcvt
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _gcvt or security-enhanced _gcvt_s instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-gcvt.md

_gcvt
10/31/2018 • 2 minutes to read • Edit Online

Syntax
char *_gcvt(
 double value,
 int digits,
 char *buffer
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_gcvt <stdlib.h>

Converts a floating-point value to a string, which it stores in a buffer. A more secure version of this function is
available; see _gcvt_s.

value
Value to be converted.

digits
Number of significant digits stored.

buffer
Storage location for the result.

_gcvt returns a pointer to the string of digits.

The _gcvt function converts a floating-point value to a character string (which includes a decimal point and a
possible sign byte) and stores the string in buffer. The buffer should be large enough to accommodate the
converted value plus a terminating null character, which is appended automatically. If a buffer size of digits + 1
is used, the function overwrites the end of the buffer. This is because the converted string includes a decimal
point and can contain sign and exponent information. There is no provision for overflow. _gcvt attempts to
produce digits digits in decimal format. If it cannot, it produces digits digits in exponential format. Trailing zeros
might be suppressed in the conversion.

A buffer of length _CVTBUFSIZE is sufficient for any floating point value.

This function validates its parameters. If buffer is NULL, the invalid parameter handler is invoked, as described
in Parameter Validation. If execution is allowed to continue, this function sets errno to EINVAL and returns
NULL.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/gcvt.md

Example
// crt_gcvt.c
// compile with: /W3
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(void)
{
 char buffer[_CVTBUFSIZE];
 double value = -1234567890.123;
 printf("The following numbers were converted by _gcvt(value,12,buffer):\n");
 _gcvt(value, 12, buffer); // C4996
 // Note: _gcvt is deprecated; consider using _gcvt_s instead
 printf("buffer: '%s' (%d chars)\n", buffer, strlen(buffer));
 value *= 10;
 _gcvt(value, 12, buffer); // C4996
 printf("buffer: '%s' (%d chars)\n", buffer, strlen(buffer));
 value *= 10;
 _gcvt(value, 12, buffer); // C4996
 printf("buffer: '%s' (%d chars)\n", buffer, strlen(buffer));
 value *= 10;
 _gcvt(value, 12, buffer); // C4996
 printf("buffer: '%s' (%d chars)\n", buffer, strlen(buffer));

 printf("\n");
 value = -12.34567890123;
 _gcvt(value, 12, buffer); // C4996
 printf("buffer: '%s' (%d chars)\n", buffer, strlen(buffer));
 value /= 10;
 _gcvt(value, 12, buffer); // C4996
 printf("buffer: '%s' (%d chars)\n", buffer, strlen(buffer));
 value /= 10;
 _gcvt(value, 12, buffer); // C4996
 printf("buffer: '%s' (%d chars)\n", buffer, strlen(buffer));
 value /= 10;
 _gcvt(value, 12, buffer); // C4996
 printf("buffer: '%s' (%d chars)\n", buffer, strlen(buffer));
}

The following numbers were converted by _gcvt(value,12,buffer):
buffer: '-1234567890.12' (14 chars)
buffer: '-12345678901.2' (14 chars)
buffer: '-123456789012' (13 chars)
buffer: '-1.23456789012e+012' (19 chars)

buffer: '-12.3456789012' (14 chars)
buffer: '-1.23456789012' (14 chars)
buffer: '-0.123456789012' (15 chars)
buffer: '-1.23456789012e-002' (19 chars)

See also
Data Conversion
Floating-Point Support
atof, _atof_l, _wtof, _wtof_l
_ecvt
_fcvt

_gcvt_s
10/31/2018 • 2 minutes to read • Edit Online

Syntax
errno_t _gcvt_s(
 char *buffer,
 size_t sizeInBytes,
 double value,
 int digits
);
template <size_t cchStr>
errno_t _gcvt_s(
 char (&buffer)[cchStr],
 double value,
 int digits
); // C++ only

Parameters

Return Value

Error Conditions

BUFFER SIZEINBYTES VALUE DIGITS RETURN VALUE IN BUFFER

NULL any any any EINVAL Not modified.

Not NULL
(points to valid
memory)

zero any any EINVAL Not modified.

Converts a floating-point value to a string. This is a version of _gcvt with security enhancements as described in
Security Features in the CRT.

buffer
Buffer to store the result of the conversion.

sizeInBytes
Size of the buffer.

value
Value to be converted.

digits
Number of significant digits stored.

Zero if successful. If a failure occurs due to an invalid parameter (see the following table for invalid values), the
invalid parameter handler is invoked as described in Parameter Validation. If execution is allowed to continue, an
error code is returned. Error codes are defined in Errno.h. For a listing of these errors, see errno, _doserrno,
_sys_errlist, and _sys_nerr.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/gcvt-s.md

Not NULL
(points to valid
memory)

any any >= sizeInBytes EINVAL Not modified.

BUFFER SIZEINBYTES VALUE DIGITS RETURN VALUE IN BUFFER

Remarks

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_gcvt_s <stdlib.h> <error.h>

Example

Security Issues

_gcvt_s can generate an access violation if buffer does not point to valid memory and is not NULL.

The _gcvt_s function converts a floating-point value to a character string (which includes a decimal point and a
possible sign byte) and stores the string in buffer. buffer should be large enough to accommodate the converted
value plus a terminating null character, which is appended automatically. A buffer of length _CVTBUFSIZE is
sufficient for any floating point value. If a buffer size of digits + 1 is used, the function will not overwrite the end
of the buffer, so be sure to supply a sufficient buffer for this operation. _gcvt_s attempts to produce digits digits
in decimal format. If it cannot, it produces digits digits in exponential format. Trailing zeros can be suppressed in
the conversion.

In C++, using this function is simplified by a template overload; the overload can infer buffer length
automatically, eliminating the need to specify a size argument. For more information, see Secure Template
Overloads.

The debug version of this function first fills the buffer with 0xFD. To disable this behavior, use
_CrtSetDebugFillThreshold.

For more compatibility information, see Compatibility.

// crt_gcvt_s.c
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

int main()
{
 char buf[_CVTBUFSIZE];
 int decimal;
 int sign;
 int err;

 err = _gcvt_s(buf, _CVTBUFSIZE, 1.2, 5);

 if (err != 0)
 {
 printf("_gcvt_s failed with error code %d\n", err);
 exit(1);
 }

 printf("Converted value: %s\n", buf);
}

Converted value: 1.2

See also
Data Conversion
Floating-Point Support
atof, _atof_l, _wtof, _wtof_l
_ecvt_s
_fcvt_s
_gcvt

_get_current_locale
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_locale_t _get_current_locale(void);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_get_current_locale <locale.h>

See also

Gets a locale object representing the current locale.

A locale object representing the current locale.

The _get_current_locale function gets the currently set locale for the thread and returns a locale object
representing that locale.

The previous name of this function, __get_current_locale (with two leading underscores) has been deprecated.

For more compatibility information, see Compatibility.

setlocale, _wsetlocale
_create_locale, _wcreate_locale
_free_locale

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/get-current-locale.md

_get_daylight
10/31/2018 • 2 minutes to read • Edit Online

Syntax
error_t _get_daylight(int* hours);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_get_daylight <time.h>

See also

Retrieves the daylight saving time offset in hours.

hours
The offset in hours of daylight saving time.

Zero if successful or an errno value if an error occurs.

The _get_daylight function retrieves the number of hours in daylight saving time as an integer. If daylight saving
time is in effect, the default offset is one hour (although a few regions do observe a two-hour offset).

If hours is NULL, the invalid parameter handler is invoked as described in Parameter Validation. If execution is
allowed to continue, this function sets errno to EINVAL and returns EINVAL.

We recommend you use this function instead of the macro _daylight or the deprecated function __daylight.

For more information, see Compatibility.

Time Management
errno, _doserrno, _sys_errlist, and _sys_nerr
_get_dstbias
_get_timezone
_get_tzname

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/get-daylight.md

_get_doserrno
11/8/2018 • 2 minutes to read • Edit Online

Syntax
errno_t _get_doserrno(
 int * pValue
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_get_doserrno <stdlib.h>, <cstdlib> (C++) <errno.h>, <cerrno> (C++)

See also

Gets the error value returned by the operating system before it is translated into an errno value.

pValue
A pointer to an integer to be filled with the current value of the _doserrno global macro.

If _get_doserrno succeeds, it returns zero; if it fails, it returns an error code. If pValue is NULL, the invalid
parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue, this
function sets errno to EINVAL and returns EINVAL.

The _doserrno global macro is set to zero during CRT initialization, before process execution begins. It is set to
the operating-system error value returned by any system-level function call that returns an operating-system
error, and it is never reset to zero during execution. When you write code to check the error value returned by a
function, always clear _doserrno by using _set_doserrno before the function call. Because another function call
may overwrite _doserrno, check the value by using _get_doserrno immediately after the function call.

We recommend _get_errno instead of _get_doserrno for portable error codes.

Possible values of _doserrno are defined in <errno.h>.

_get_doserrno is a Microsoft extension. For more compatibility information, see Compatibility.

_set_doserrno
errno, _doserrno, _sys_errlist, and _sys_nerr

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/get-doserrno.md

_get_dstbias
10/31/2018 • 2 minutes to read • Edit Online

Syntax
error_t _get_dstbias(int* seconds);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_get_dstbias <time.h>

See also

Retrieves the daylight saving time offset in seconds.

seconds
The offset in seconds of daylight saving time.

Zero if successful or an errno value if an error occurs.

The _get_dstbias function retrieves the number of seconds in daylight saving time as an integer. If daylight
saving time is in effect, the default offset is 3600 seconds, which is the number of seconds in one hour (though a
few regions do observe a two-hour offset).

If seconds is NULL, the invalid parameter handler is invoked as described in Parameter Validation. If execution is
allowed to continue, this function sets errno to EINVAL and returns EINVAL.

We recommend you use this function instead of the macro _dstbias or the deprecated function __dstbias.

For more information, see Compatibility.

Time Management
errno, _doserrno, _sys_errlist, and _sys_nerr
_get_daylight
_get_timezone
_get_tzname

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/get-dstbias.md

_get_errno
11/8/2018 • 2 minutes to read • Edit Online

Syntax
errno_t _get_errno(
 int * pValue
);

Parameters

Return Value

Remarks

Example
// crt_get_errno.c
#include <stdio.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <share.h>
#include <errno.h>

int main()
{
 errno_t err;
 int pfh;
 _sopen_s(&pfh, "nonexistent.file", _O_WRONLY, _SH_DENYNO, _S_IWRITE);
 _get_errno(&err);
 printf("errno = %d\n", err);
 printf("fyi, ENOENT = %d\n", ENOENT);
}

errno = 2
fyi, ENOENT = 2

Requirements

Gets the current value of the errno global variable.

pValue
A pointer to an integer to be filled with the current value of the errno variable.

Returns zero if successful; an error code on failure. If pValue is NULL, the invalid parameter handler is invoked as
described in Parameter Validation. If execution is allowed to continue, this function sets errno to EINVAL and
returns EINVAL.

Possible values of errno are defined in Errno.h. Also, see errno Constants.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/get-errno.md

ROUTINE REQUIRED HEADER OPTIONAL HEADER

_get_errno <stdlib.h> <errno.h>

See also

For more compatibility information, see Compatibility.

_set_errno
errno, _doserrno, _sys_errlist, and _sys_nerr

_get_FMA3_enable, _set_FMA3_enable
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _set_FMA3_enable(int flag);
int _get_FMA3_enable();

Parameters

Return Value

Remarks

Requirements

ROUTINE REQUIRED HEADER

_set_FMA3_enable, _get_FMA3_enable C: <math.h>
C++: <cmath> or <math.h>

See also

Gets or sets a flag that specifies whether the transcendental math floating-point library functions use FMA3
instructions in code compiled for X64 platforms.

flag
Set to 1 to enable the FMA3 implementations of the transcendental math floating-point library functions on X64
platforms, or to 0 to use the implementations that do not use FMA3 instructions.

A non-zero value if the FMA3 implementations of the transcendental math floating-point library functions are
enabled. Otherwise, zero.

Use the _set_FMA3_enable function to enable or disable the use of FMA3 instructions in the transcendental
math floating-point functions in the CRT library. The return value reflects the implementation in use after the
change. If the CPU does not support FMA3 instructions, this function cannot enable them in the library, and the
return value is zero. Use _get_FMA3_enable to get the current state of the library. By default, on X64 platforms,
the CRT startup code detects whether the CPU supports FMA3 instructions, and enables or disables the FMA3
implementations in the library.

Because the FMA3 implementations use different algorithms, slight differences in the result of computations may
be observable when the FMA3 implementations are enabled or disabled, or between computers that do or do not
support FMA3. For more information, see Floating-point migration issues.

The _set_FMA3_enable and _get_FMA3_enable functions are only available in the X64 versions of the CRT.

The _set_FMA3_enable and _get_FMA3_enable functions are Microsoft specific. For compatibility information,
see Compatibility.

Floating-point support

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/get-fma3-enable-set-fma3-enable.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/porting/floating-point-migration-issues

Floating-point migration issues

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/porting/floating-point-migration-issues

_get_fmode
11/8/2018 • 2 minutes to read • Edit Online

Syntax
errno_t _get_fmode(
 int * pmode
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_get_fmode <stdlib.h> <fcntl.h>

Example

See also

Gets the default file translation mode for file I/O operations.

pmode
A pointer to an integer to be filled with the current default mode: _O_TEXT or _O_BINARY .

Returns zero if successful; an error code on failure. If pmode is NULL, the invalid parameter handler is invoked as
described in Parameter Validation. If execution is allowed to continue, errno is set to EINVAL and the function
returns EINVAL.

The function gets the value of the _fmode global variable. This variable specifies the default file translation mode
for both low-level and stream file I/O operations, such as _open, _pipe, fopen, and freopen.

For more compatibility information, see Compatibility.

See the example in _set_fmode.

_fmode
_set_fmode
_setmode
Text and Binary Mode File I/O

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/get-fmode.md

_get_heap_handle
10/31/2018 • 2 minutes to read • Edit Online

Syntax
intptr_t _get_heap_handle(void);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_get_heap_handle <malloc.h>

Sample
// crt_get_heap_handle.cpp
// compile with: /MT
#include <windows.h>
#include <malloc.h>
#include <stdio.h>

int main(void)
{
 intptr_t hCrtHeap = _get_heap_handle();
 ULONG ulEnableLFH = 2;
 if (HeapSetInformation((PVOID)hCrtHeap,
 HeapCompatibilityInformation,
 &ulEnableLFH, sizeof(ulEnableLFH)))
 puts("Enabling Low Fragmentation Heap succeeded");
 else
 puts("Enabling Low Fragmentation Heap failed");
 return 0;
}

See also

Returns the handle of the heap that's used by the C run-time system.

Returns the handle to the Win32 heap used by the C run-time system.

Use this function if you want to call HeapSetInformation and enable the Low Fragmentation Heap on the CRT
heap.

For more compatibility information, see Compatibility.

Memory Allocation

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/get-heap-handle.md
https://docs.microsoft.com/windows/desktop/api/heapapi/nf-heapapi-heapsetinformation

_get_invalid_parameter_handler,
_get_thread_local_invalid_parameter_handler
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_invalid_parameter_handler _get_invalid_parameter_handler(void);
_invalid_parameter_handler _get_thread_local_invalid_parameter_handler(void);

Return Value

Remarks

typedef void (__cdecl* _invalid_parameter_handler)(
 wchar_t const*,
 wchar_t const*,
 wchar_t const*,
 unsigned int,
 uintptr_t
);

Requirements
ROUTINE REQUIRED HEADER

_get_invalid_parameter_handler,
_get_thread_local_invalid_parameter_handler

C: <stdlib.h>

C++: <cstdlib> or <stdlib.h>

Gets the function that is called when the CRT detects an invalid argument.

A pointer to the currently set invalid parameter handler function, or a null pointer if none has been set.

The _get_invalid_parameter_handler function gets the currently set global invalid parameter handler. It returns
a null pointer if no global invalid parameter handler was set. Similarly, the
_get_thread_local_invalid_parameter_handler gets the current thread-local invalid parameter handler of the
thread it is called on, or a null pointer if no handler was set. For information about how to set global and thread-
local invalid parameter handlers, see _set_invalid_parameter_handler,
_set_thread_local_invalid_parameter_handler.

The returned invalid parameter handler function pointer has the following type:

For details on the invalid parameter handler, see the prototype in _set_invalid_parameter_handler,
_set_thread_local_invalid_parameter_handler.

The _get_invalid_parameter_handler and _get_thread_local_invalid_parameter_handler functions are
Microsoft specific. For compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/get-invalid-parameter-handler-get-thread-local-invalid-parameter-handler.md

See also
_set_invalid_parameter_handler, _set_thread_local_invalid_parameter_handler
Security-Enhanced Versions of CRT Functions

_get_osfhandle
10/31/2018 • 2 minutes to read • Edit Online

Syntax
intptr_t _get_osfhandle(
 int fd
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_get_osfhandle <io.h>

See also

Retrieves the operating-system file handle that is associated with the specified file descriptor.

fd
An existing file descriptor.

Returns an operating-system file handle if fd is valid. Otherwise, the invalid parameter handler is invoked, as
described in Parameter Validation. If execution is allowed to continue, this function returns
INVALID_HANDLE_VALUE (-1) and sets errno to EBADF, indicating an invalid file handle. To avoid a compiler
warning when the result is used in routines that expect a Win32 file handle, cast it to a HANDLE type.

To close a file whose operating system (OS) file handle is obtained by _get_osfhandle, call _close on the file
descriptor fd. Do not call CloseHandle on the return value of this function. The underlying OS file handle is
owned by the fd file descriptor, and is closed when _close is called on fd. If the file descriptor is owned by a FILE *

stream, then calling fclose on that FILE * stream closes both the file descriptor and the underlying OS file handle.
In this case, do not call _close on the file descriptor.

For more compatibility information, see Compatibility.

File Handling
_close
_creat, _wcreat
_dup, _dup2
_open, _wopen

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/get-osfhandle.md

_get_pgmptr
11/8/2018 • 2 minutes to read • Edit Online

Syntax
errno_t _get_pgmptr(
 char **pValue
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_get_pgmptr <stdlib.h>

See also

Gets the current value of the _pgmptr global variable.

pValue
A pointer to a string to be filled with the current value of the _pgmptr variable.

Returns zero if successful; an error code on failure. If pValue is NULL, the invalid parameter handler is invoked as
described in Parameter Validation. If execution is allowed to continue, this function sets errno to EINVAL and
returns EINVAL.

Only call _get_pgmptr if your program has a narrow entry point, like main() or WinMain(). The _pgmptr global
variable contains the full path to the executable associated with the process. For more information, see _pgmptr,
_wpgmptr.

For more compatibility information, see Compatibility.

_get_wpgmptr

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/get-pgmptr.md

_get_printf_count_output
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _get_printf_count_output();

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_get_printf_count_output <stdio.h>

Example

See also

Indicates whether printf, _printf_l, wprintf, _wprintf_l-family functions support the %n format.

Non-zero if %n is supported, 0 if %n is not supported.

If %n is not supported (the default), encountering %n in the format string of any of the printf functions will invoke
the invalid parameter handler as described in Parameter Validation. If %n support is enabled (see
_set_printf_count_output) then %n will behave as described in Format Specification Syntax: printf and wprintf
Functions.

For additional compatibility information, see Compatibility.

See the example for _set_printf_count_output.

_set_printf_count_output

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/get-printf-count-output.md

_get_purecall_handler, _set_purecall_handler
10/31/2018 • 2 minutes to read • Edit Online

Syntax
typedef void (__cdecl* _purecall_handler)(void);
_purecall_handler __cdecl _get_purecall_handler(void);
_purecall_handler __cdecl _set_purecall_handler(
 _purecall_handler function
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_get_purecall_handler, _set_purecall_handler <cstdlib> or <stdlib.h>

Example

Gets or sets the error handler for a pure virtual function call.

function
The function to be called when a pure virtual function is called. A _purecall_handler function must have a void
return type.

The previous _purecall_handler. Returns nullptr if there was no previous handler.

The _get_purecall_handler and _set_purecall_handler functions are Microsoft-specific and apply only to C++
code.

A call to a pure virtual function is an error because it has no implementation. By default, the compiler generates
code to invoke an error handler function when a pure virtual function is called, which terminates the program. You
can install your own error handler function for pure virtual function calls, to catch them for debugging or
reporting purposes. To use your own error handler, create a function that has the _purecall_handler signature,
then use _set_purecall_handler to make it the current handler.

Because there is only one _purecall_handler for each process, when you call _set_purecall_handler it
immediately impacts all threads. The last caller on any thread sets the handler.

To restore the default behavior, call _set_purecall_handler by using a nullptr argument.

For compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/get-purecall-handler-set-purecall-handler.md

// _set_purecall_handler.cpp
// compile with: /W1
#include <tchar.h>
#include <stdio.h>
#include <stdlib.h>

class CDerived;
class CBase
{
public:
 CBase(CDerived *derived): m_pDerived(derived) {};
 ~CBase();
 virtual void function(void) = 0;

 CDerived * m_pDerived;
};

class CDerived : public CBase
{
public:
 CDerived() : CBase(this) {}; // C4355
 virtual void function(void) {};
};

CBase::~CBase()
{
 m_pDerived -> function();
}

void myPurecallHandler(void)
{
 printf("In _purecall_handler.");
 exit(0);
}

int _tmain(int argc, _TCHAR* argv[])
{
 _set_purecall_handler(myPurecallHandler);
 CDerived myDerived;
}

In _purecall_handler.

See also
Error Handling
_purecall

_get_terminate
10/31/2018 • 2 minutes to read • Edit Online

Syntax
terminate_function _get_terminate(void);

Return Value

Requirements
ROUTINE REQUIRED HEADER

_get_terminate <eh.h>

See also

Returns the termination routine to be called by terminate.

Returns a pointer to the function registered by set_terminate. If no function has been set, the return value may be
used to restore the default behavior ; this value may be NULL.

For additional compatibility information, see Compatibility.

Exception Handling Routines
abort
set_unexpected
terminate
unexpected

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/get-terminate.md

_get_timezone
10/31/2018 • 2 minutes to read • Edit Online

Syntax
error_t _get_timezone(
 long* seconds
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_get_timezone <time.h>

See also

Retrieves the difference in seconds between coordinated universal time (UTC) and local time.

seconds
The difference in seconds between UTC and local time.

Zero if successful or an errno value if an error occurs.

The _get_timezone function retrieves the difference in seconds between UTC and local time as an integer. The
default value is 28,800 seconds, for Pacific Standard Time (eight hours behind UTC).

If seconds is NULL, the invalid parameter handler is invoked, as described in Parameter Validation. If execution is
allowed to continue, this function sets errno to EINVAL and returns EINVAL.

For more information, see Compatibility.

Time Management
errno, _doserrno, _sys_errlist, and _sys_nerr
_get_daylight
_get_dstbias
_get_tzname

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/get-timezone.md

_get_tzname
10/31/2018 • 2 minutes to read • Edit Online

Syntax
errno_t _get_tzname(
 size_t* pReturnValue,
 char* timeZoneName,
 size_t sizeInBytes,
 int index
);

Parameters

INDEX CONTENTS OF TIMEZONENAME TIMEZONENAME DEFAULT VALUE

0 Time zone name "PST"

1 Daylight standard time zone name "PDT"

> 1 or < 0 errno set to EINVAL not modified

Return Value

Error Conditions

Retrieves the character string representation of the time zone name or the daylight standard time zone name
(DST).

pReturnValue
The string length of timeZoneName including a null terminator.

timeZoneName
The address of a character string for the representation of the time zone name or the daylight standard time
zone name (DST), depending on index.

sizeInBytes
The size of the timeZoneName character string in bytes.

index
The index of one of the two time zone names to retrieve.

Unless the values are explicitly changed during run time, the default values are "PST" and "PDT" respectively.

Zero if successful, otherwise an errno type value.

If either timeZoneName is NULL, or sizeInBytes is zero or less than zero (but not both), an invalid parameter
handler is invoked, as described in Parameter Validation. If execution is allowed to continue, this function sets
errno to EINVAL and returns EINVAL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/get-tzname.md

PRETURNVALUE TIMEZONENAME SIZEINBYTES INDEX RETURN VALUE
CONTENTS OF
TIMEZONENAME

size of TZ name NULL 0 0 or 1 0 not modified

size of TZ name any > 0 0 or 1 0 TZ name

not modified NULL > 0 any EINVAL not modified

not modified any zero any EINVAL not modified

not modified any > 0 > 1 EINVAL not modified

Remarks

Example

The _get_tzname function retrieves the character string representation of the current time zone name or the
daylight standard time zone name (DST) into the address of timeZoneName depending on the index value,
along with the size of the string in pReturnValue. If timeZoneName is NULL and sizeInBytes is zero, the size of
the string required to hold the specified time zone and a terminating null in bytes is returned in pReturnValue.
The index values must be either 0 for standard time zone or 1 for daylight standard time zone; any other values
of index have undetermined results.

This sample calls _get_tzname to get the required buffer size to display the current Daylight standard time zone
name, allocates a buffer of that size, calls _get_tzname again to load the name in the buffer, and prints it to the
console.

// crt_get_tzname.c
// Compile by using: cl /W4 crt_get_tzname.c
#include <stdio.h>
#include <time.h>
#include <malloc.h>

enum TZINDEX {
 STD,
 DST
};

int main()
{
 size_t tznameSize = 0;
 char * tznameBuffer = NULL;

 // Get the size of buffer required to hold DST time zone name
 if (_get_tzname(&tznameSize, NULL, 0, DST))
 return 1; // Return an error value if it failed

 // Allocate a buffer for the name
 if (NULL == (tznameBuffer = (char *)(malloc(tznameSize))))
 return 2; // Return an error value if it failed

 // Load the name in the buffer
 if (_get_tzname(&tznameSize, tznameBuffer, tznameSize, DST))
 return 3; // Return an error value if it failed

 printf_s("The current Daylight standard time zone name is %s.\n", tznameBuffer);
 return 0;
}

Output

The current Daylight standard time zone name is PDT.

Requirements
ROUTINE REQUIRED HEADER

_get_tzname <time.h>

See also

For more information, see Compatibility.

Time Management
errno, _doserrno, _sys_errlist, and _sys_nerr
_get_daylight
_get_dstbias
_get_timezone

_get_unexpected
10/31/2018 • 2 minutes to read • Edit Online

Syntax
unexpected_function _get_unexpected(void);

Return Value

Requirements
ROUTINE REQUIRED HEADER

_get_unexpected <eh.h>

See also

Returns the termination routine to be called by unexpected.

Returns a pointer to the function registered by set_unexpected. If no function has been set, the return value may be
used to restore the default behavior ; this value may be NULL.

For additional compatibility information, see Compatibility.

Exception Handling Routines
abort
set_terminate
terminate
unexpected

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/get-unexpected.md

_get_wpgmptr
11/8/2018 • 2 minutes to read • Edit Online

Syntax
errno_t _get_wpgmptr(
 wchar_t **pValue
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_get_wpgmptr <stdlib.h>

See also

Gets the current value of the _wpgmptr global variable.

pValue
A pointer to a string to be filled with the current value of the _wpgmptr variable.

Returns zero if successful; an error code on failure. If pValue is NULL, the invalid parameter handler is invoked as
described in Parameter Validation. If execution is allowed to continue, this function sets errno to EINVAL and
returns EINVAL.

Only call _get_wpgmptr if your program has a wide entry point, like wmain() or wWinMain(). The _wpgmptr
global variable contains the full path to the executable associated with the process as a wide-character string. For
more information, see _pgmptr, _wpgmptr.

For more compatibility information, see Compatibility.

_get_pgmptr

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/get-wpgmptr.md

getc, getwc
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int getc(
 FILE *stream
);
wint_t getwc(
 FILE *stream
);

Parameters

Return Value

Remarks

ROUTINE REMARKS

getc Same as fgetc, but implemented as a function and as a
macro.

getwc Wide-character version of getc. Reads a multibyte character
or a wide character according to whether stream is opened
in text mode or binary mode.

Generic-Text Routine Mappings

Read a character from a stream.

stream
Input stream.

Returns the character read. To indicate a read error or end-of-file condition, getc returns EOF, and getwc
returns WEOF. For getc, use ferror or feof to check for an error or for end of file. If stream is NULL, getc
and getwc invoke the invalid parameter handler, as described in Parameter Validation. If execution is allowed
to continue, these functions return EOF (or WEOF for getwc) and set errno to EINVAL.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these, and other, error codes.

Each routine reads a single character from a file at the current position and increments the associated file
pointer (if defined) to point to the next character. The file is associated with stream.

These functions lock the calling thread and are therefore thread-safe. For a non-locking version, see
_getc_nolock, _getwc_nolock.

Routine-specific remarks follow.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getc-getwc.md

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_gettc getc getc getwc

Requirements
ROUTINE REQUIRED HEADER

getc <stdio.h>

getwc <stdio.h> or <wchar.h>

Example
// crt_getc.c
// Use getc to read a line from a file.

#include <stdio.h>

int main()
{
 char buffer[81];
 int i, ch;
 FILE* fp;

 // Read a single line from the file "crt_getc.txt".

 fopen_s(&fp, "crt_getc.txt", "r");
 if (!fp)
 {
 printf("Failed to open file crt_getc.txt.\n");
 exit(1);
 }

 for (i = 0; (i < 80) && ((ch = getc(fp)) != EOF)
 && (ch != '\n'); i++)
 {
 buffer[i] = (char) ch;
 }

 // Terminate string with a null character
 buffer[i] = '\0';
 printf("Input was: %s\n", buffer);

 fclose(fp);
}

Input: crt_getc.txt

Line one.
Line two.

Output

For additional compatibility information, see Compatibility.

Input was: Line one.

See also
Stream I/O
fgetc, fgetwc
_getch, _getwch
putc, putwc
ungetc, ungetwc

_getc_nolock, _getwc_nolock
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _getc_nolock(
 FILE *stream
);
wint_t _getwc_nolock(
 FILE *stream
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_gettc_nolock getc_nolock getc_nolock getwc_nolock

Requirements
ROUTINE REQUIRED HEADER

getc_nolock <stdio.h>

getwc_nolock <stdio.h> or <wchar.h>

Example

Reads a character from a stream.

stream
Input stream.

See getc, getwc.

These functions are identical to getc and getwc except that they do not lock the calling thread. They might be
faster because they do not incur the overhead of locking out other threads. Use these functions only in thread-safe
contexts such as single-threaded applications or where the calling scope already handles thread isolation.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getc-nolock-getwc-nolock.md

// crt_getc_nolock.c
// Use getc to read a line from a file.

#include <stdio.h>

int main()
{
 char buffer[81];
 int i, ch;
 FILE* fp;

 // Read a single line from the file "crt_getc_nolock.txt".
 fopen_s(&fp, "crt_getc_nolock.txt", "r");
 if (!fp)
 {
 printf("Failed to open file crt_getc_nolock.txt.\n");
 exit(1);
 }

 for (i = 0; (i < 80) && ((ch = getc(fp)) != EOF)
 && (ch != '\n'); i++)
 {
 buffer[i] = (char) ch;
 }

 // Terminate string with a null character
 buffer[i] = '\0';
 printf("Input was: %s\n", buffer);

 fclose(fp);
}

Input: crt_getc_nolock.txt

Line the first.
Line the second.

Output

Input was: Line the first.

See also
Stream I/O
fgetc, fgetwc
_getch, _getwch
putc, putwc
ungetc, ungetwc

getch
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _getch instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getch.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_getch, _getwch
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _getch(void);
wint_t _getwch(void);

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_gettch _getch _getch _getwch

Requirements
ROUTINE REQUIRED HEADER

_getch <conio.h>

_getwch <conio.h> or <wchar.h>

Example

Gets a character from the console without echo.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions
not supported in Universal Windows Platform apps.

Returns the character read. There is no error return.

The _getch and _getwch functions read a single character from the console without echoing the character.
None of these functions can be used to read CTRL+C. When reading a function key or an arrow key, each
function must be called twice; the first call returns 0 or 0xE0, and the second call returns the actual key code.

These functions lock the calling thread and are therefore thread-safe. For non-locking versions, see
_getch_nolock, _getwch_nolock.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getch-getwch.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

// crt_getch.c
// compile with: /c
// This program reads characters from
// the keyboard until it receives a 'Y' or 'y'.

#include <conio.h>
#include <ctype.h>

int main(void)
{
 int ch;

 _cputs("Type 'Y' when finished typing keys: ");
 do
 {
 ch = _getch();
 ch = toupper(ch);
 } while(ch != 'Y');

 _putch(ch);
 _putch('\r'); // Carriage return
 _putch('\n'); // Line feed
}

abcdefy

Type 'Y' when finished typing keys: Y

See also
Console and Port I/O
_getche, _getwche
_cgets, _cgetws
getc, getwc
_ungetch, _ungetwch, _ungetch_nolock, _ungetwch_nolock

_getch_nolock, _getwch_nolock
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _getch_nolock(void);
wint_t _getwch_nolock(void);

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_gettch_nolock _getch_nolock _getch_nolock _getwch_nolock

Requirements
ROUTINE REQUIRED HEADER

_getch_nolock <conio.h>

_getwch_nolock <conio.h> or <wchar.h>

Example

Gets a character from the console without echo and without locking the thread.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

Returns the character read. There is no error return.

_getch_nolock and _getwch_nolock are identical to _getch and _getchw except that they not protected from
interference by other threads. They might be faster because they do not incur the overhead of locking out other
threads. Use these functions only in thread-safe contexts such as single-threaded applications or where the calling
scope already handles thread isolation.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getch-nolock-getwch-nolock.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

// crt_getch_nolock.c
// compile with: /c
// This program reads characters from
// the keyboard until it receives a 'Y' or 'y'.

#include <conio.h>
#include <ctype.h>

int main(void)
{
 int ch;

 _cputs("Type 'Y' when finished typing keys: ");
 do
 {
 ch = _getch_nolock();
 ch = toupper(ch);
 } while(ch != 'Y');

 _putch_nolock(ch);
 _putch_nolock('\r'); // Carriage return
 _putch_nolock('\n'); // Line feed
}

abcdefy

Type 'Y' when finished typing keys: Y

See also
Console and Port I/O
_getche, _getwche
_cgets, _cgetws
getc, getwc
_ungetch, _ungetwch, _ungetch_nolock, _ungetwch_nolock

getchar, getwchar
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int getchar();
wint_t getwchar();

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_gettchar getchar getchar getwchar

Requirements
ROUTINE REQUIRED HEADER

getchar <stdio.h>

getwchar <stdio.h> or <wchar.h>

Example

Reads a character from standard input.

Returns the character read. To indicate a read error or end-of-file condition, getchar returns EOF, and getwchar
returns WEOF. For getchar, use ferror or feof to check for an error or for end of file.

Each routine reads a single character from stdin and increments the associated file pointer to point to the next
character. getchar is the same as _fgetchar, but it is implemented as a function and as a macro.

These functions lock the calling thread and are therefore thread-safe. For a non-locking version, see
_getchar_nolock, _getwchar_nolock.

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that are
associated with the console, stdin, stdout, and stderr, must be redirected before C run-time functions can use
them in UWP apps. For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getchar-getwchar.md

// crt_getchar.c
// Use getchar to read a line from stdin.

#include <stdio.h>

int main()
{
 char buffer[81];
 int i, ch;

 for (i = 0; (i < 80) && ((ch = getchar()) != EOF)
 && (ch != '\n'); i++)
 {
 buffer[i] = (char) ch;
 }

 // Terminate string with a null character
 buffer[i] = '\0';
 printf("Input was: %s\n", buffer);
}

This textInput was: This text

See also
Stream I/O
getc, getwc
fgetc, fgetwc
_getch, _getwch
putc, putwc
ungetc, ungetwc

_getchar_nolock, _getwchar_nolock
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _getchar_nolock(void);
wint_t _getwchar_nolock(void);

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_gettchar_nolock _getchar_nolock _getchar_nolock _getwchar_nolock

Requirements
ROUTINE REQUIRED HEADER

_getchar_nolock <stdio.h>

_getwchar_nolock <stdio.h> or <wchar.h>

Example

Reads a character from standard input.

See getchar, getwchar.

_getchar_nolock and _getwchar_nolock are identical to getchar and getwchar except that they are not
protected from interference by other threads. They might be faster because they do not incur the overhead of
locking out other threads. Use these functions only in thread-safe contexts such as single-threaded applications or
where the calling scope already handles thread isolation.

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that are
associated with the console, stdin, stdout, and stderr, must be redirected before C run-time functions can use
them in UWP apps. For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getchar-nolock-getwchar-nolock.md

// crt_getchar_nolock.c
// Use _getchar_nolock to read a line from stdin.

#include <stdio.h>

int main()
{
 char buffer[81];
 int i, ch;

 for (i = 0; (i < 80) && ((ch = _getchar_nolock()) != EOF)
 && (ch != '\n'); i++)
 {
 buffer[i] = (char) ch;
 }

 // Terminate string with a null character

 buffer[i] = '\0';
 printf("Input was: %s\n", buffer);
}

This textInput was: This text

See also
Stream I/O
getc, getwc
fgetc, fgetwc
_getch, _getwch
putc, putwc
ungetc, ungetwc

getche
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _getche instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getche.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_getche, _getwche
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _getche(void);
wint_t _getwche(void);

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_getche _getche _getch _getwche

Requirements
ROUTINE REQUIRED HEADER

_getche <conio.h>

_getwche <conio.h> or <wchar.h>

Example

Gets a character from the console with echo.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

Returns the character read. There is no error return.

The _getche and _getwche functions read a single character from the console with echo, meaning that the
character is displayed at the console. None of these functions can be used to read CTRL+C. When reading a
function key or an arrow key, each function must be called twice; the first call returns 0 or 0xE0, and the second
call returns the actual key code.

These functions lock the calling thread and are therefore thread-safe. For non-locking versions, see
_getche_nolock, _getwche_nolock.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getche-getwche.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

// crt_getche.c
// compile with: /c
// This program reads characters from
// the keyboard until it receives a 'Y' or 'y'.

#include <conio.h>
#include <ctype.h>

int main(void)
{
 int ch;

 _cputs("Type 'Y' when finished typing keys: ");
 do
 {
 ch = _getche();
 ch = toupper(ch);
 } while(ch != 'Y');

 _putch(ch);
 _putch('\r'); // Carriage return
 _putch('\n'); // Line feed
}

abcdefy

Type 'Y' when finished typing keys: abcdefyY

See also
Console and Port I/O
_cgets, _cgetws
getc, getwc
_ungetch, _ungetwch, _ungetch_nolock, _ungetwch_nolock

_getche_nolock, _getwche_nolock
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _getche_nolock(void);
wint_t _getwche_nolock(void);

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_gettche_nolock _getche_nolock _getch_nolock _getwche_nolock

Requirements
ROUTINE REQUIRED HEADER

_getche_nolock <conio.h>

_getwche_nolock <conio.h> or <wchar.h>

Example

Gets a character from the console, with echo and without locking the thread.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

Returns the character read. There is no error return.

_getche_nolock and _getwche_nolock are identical to _getche and _getwche except that they not protected
from interference by other threads. They might be faster because they do not incur the overhead of locking out
other threads. Use these functions only in thread-safe contexts such as single-threaded applications or where the
calling scope already handles thread isolation.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getche-nolock-getwche-nolock.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

// crt_getche_nolock.c
// compile with: /c
// This program reads characters from
// the keyboard until it receives a 'Y' or 'y'.

#include <conio.h>
#include <ctype.h>

int main(void)
{
 int ch;

 _cputs("Type 'Y' when finished typing keys: ");
 do
 {
 ch = _getche_nolock();
 ch = toupper(ch);
 } while(ch != 'Y');

 _putch_nolock(ch);
 _putch_nolock('\r'); // Carriage return
 _putch_nolock('\n'); // Line feed
}

abcdefy

Type 'Y' when finished typing keys: abcdefyY

See also
Console and Port I/O
_cgets, _cgetws
getc, getwc
_ungetch, _ungetwch, _ungetch_nolock, _ungetwch_nolock

getcwd
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _getcwd instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getcwd.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_getcwd, _wgetcwd
10/31/2018 • 2 minutes to read • Edit Online

Syntax
char *_getcwd(
 char *buffer,
 int maxlen
);
wchar_t *_wgetcwd(
 wchar_t *buffer,
 int maxlen
);

Parameters

Return Value

Remarks

Gets the current working directory.

buffer
Storage location for the path.

maxlen
Maximum length of the path in characters: char for _getcwd and wchar_t for _wgetcwd.

Returns a pointer to buffer. A NULL return value indicates an error, and errno is set either to ENOMEM,
indicating that there is insufficient memory to allocate maxlen bytes (when a NULL argument is given as buffer),
or to ERANGE , indicating that the path is longer than maxlen characters. If maxlen is less than or equal to zero,
this function invokes an invalid parameter handler, as described in Parameter Validation.

For more information about these and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The _getcwd function gets the full path of the current working directory for the default drive and stores it at
buffer. The integer argument maxlen specifies the maximum length for the path. An error occurs if the length of
the path (including the terminating null character) exceeds maxlen. The buffer argument can be NULL; a buffer
of at least size maxlen (more only if necessary) is automatically allocated, using malloc, to store the path. This
buffer can later be freed by calling free and passing it the _getcwd return value (a pointer to the allocated
buffer).

_getcwd returns a string that represents the path of the current working directory. If the current working
directory is the root, the string ends with a backslash (\). If the current working directory is a directory other
than the root, the string ends with the directory name and not with a backslash.

_wgetcwd is a wide-character version of _getcwd; the buffer argument and return value of _wgetcwd are
wide-character strings. _wgetcwd and _getcwd behave identically otherwise.

When _DEBUG and _CRTDBG_MAP_ALLOC are defined, calls to _getcwd and _wgetcwd are replaced by
calls to _getcwd_dbg and _wgetcwd_dbg to allow for debugging memory allocations. For more information,
see _getcwd_dbg, _wgetcwd_dbg.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getcwd-wgetcwd.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tgetcwd _getcwd _getcwd _wgetcwd

Requirements
ROUTINE REQUIRED HEADER

_getcwd <direct.h>

_wgetcwd <direct.h> or <wchar.h>

Example
// crt_getcwd.c
// This program places the name of the current directory in the
// buffer array, then displays the name of the current directory
// on the screen. Passing NULL as the buffer forces getcwd to allocate
// memory for the path, which allows the code to support file paths
// longer than _MAX_PATH, which are supported by NTFS.

#include <direct.h>
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char* buffer;

 // Get the current working directory:
 if((buffer = _getcwd(NULL, 0)) == NULL)
 perror("_getcwd error");
 else
 {
 printf("%s \nLength: %d\n", buffer, strnlen(buffer));
 free(buffer);
 }
}

C:\Code

See also

For more compatibility information, see Compatibility.

Directory Control
_chdir, _wchdir
_mkdir, _wmkdir
_rmdir, _wrmdir

_getcwd_dbg, _wgetcwd_dbg
10/31/2018 • 2 minutes to read • Edit Online

Syntax
char *_getcwd_dbg(
 char *buffer,
 int maxlen,
 int blockType,
 const char *filename,
 int linenumber
);
wchar_t *_wgetcwd_dbg(
 wchar_t *buffer,
 int maxlen,
 int blockType,
 const char *filename,
 int linenumber
);

Parameters

Return Value

Remarks

Debug versions of the _getcwd, _wgetcwd functions (only available during debug).

buffer
Storage location for the path.

maxlen
Maximum length of the path in characters: char for _getcwd_dbg and wchar_t for _wgetcwd_dbg.

blockType
Requested type of the memory block: _CLIENT_BLOCK or _NORMAL_BLOCK.

filename
Pointer to the name of the source file that requested the allocation operation or NULL.

linenumber
Line number in the source file where the allocation operation was requested or NULL.

Returns a pointer to buffer. A NULL return value indicates an error, and errno is set either to ENOMEM,
indicating that there is insufficient memory to allocate maxlen bytes (when a NULL argument is given as buffer),
or to ERANGE , indicating that the path is longer than maxlen characters.

For more information, see errno, _doserrno, _sys_errlist, and _sys_nerr.

The _getcwd_dbg and _wgetcwd_dbg functions are identical to _getcwd and _wgetcwd except that, when
_DEBUG is defined, these functions use the debug version of malloc and _malloc_dbg to allocate memory if
NULL is passed as the first parameter. For more information, see _malloc_dbg.

You do not need to call these functions explicitly in most cases. Instead, you can define the
_CRTDBG_MAP_ALLOC flag. When _CRTDBG_MAP_ALLOC is defined, calls to _getcwd and _wgetcwd are

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getcwd-dbg-wgetcwd-dbg.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tgetcwd_dbg _getcwd_dbg _getcwd_dbg _wgetcwd_dbg

Requirements
ROUTINE REQUIRED HEADER

_getcwd_dbg <crtdbg.h>

_wgetcwd_dbg <crtdbg.h>

See also

remapped to _getcwd_dbg and _wgetcwd_dbg, respectively, with the blockType set to _NORMAL_BLOCK.
Thus, you do not need to call these functions explicitly unless you want to mark the heap blocks as
_CLIENT_BLOCK. For more information, see Types of blocks on the debug heap.

For more compatibility information, see Compatibility.

_getcwd, _wgetcwd
Directory Control
Debug Versions of Heap Allocation Functions

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/debug-versions-of-heap-allocation-functions

_getdcwd, _wgetdcwd
2/4/2019 • 2 minutes to read • Edit Online

Syntax
char *_getdcwd(
 int drive,
 char *buffer,
 int maxlen
);
wchar_t *_wgetdcwd(
 int drive,
 wchar_t *buffer,
 int maxlen
);

Parameters

Return Value

Remarks

Gets the full path of the current working directory on the specified drive.

drive
A non-negative integer that specifies the drive (0 = default drive, 1 = A, 2 = B, and so on).

If the specified drive isn't available, or the kind of drive (for example, removable, fixed, CD-ROM, RAM disk, or
network drive) can't be determined, the invalid-parameter handler is invoked. For more information, see
Parameter Validation.

buffer
Storage location for the path, or NULL.

If NULL is specified, this function allocates a buffer of at least maxlen size by using malloc, and the return value
of _getdcwd is a pointer to the allocated buffer. The buffer can be freed by calling free and passing it the pointer.

maxlen
A nonzero positive integer that specifies the maximum length of the path, in characters: char for _getdcwd and
wchar_t for _wgetdcwd.

If maxlen is less than or equal to zero, the invalid-parameter handler is invoked. For more information, see
Parameter Validation.

Pointer to a string that represents the full path of the current working directory on the specified drive, or NULL,
which indicates an error.

If buffer is specified as NULL and there is insufficient memory to allocate maxlen characters, an error occurs and
errno is set to ENOMEM. If the length of the path including the terminating null character exceeds maxlen, an
error occurs, and errno is set to ERANGE . For more information about these error codes, see errno, _doserrno,
_sys_errlist, and _sys_nerr.

The _getdcwd function gets the full path of the current working directory on the specified drive and stores it at
buffer. If the current working directory is set to the root, the string ends with a backslash (\). If the current

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getdcwd-wgetdcwd.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tgetdcwd _getdcwd _getdcwd _wgetdcwd

Requirements
ROUTINE REQUIRED HEADER

_getdcwd <direct.h>

_wgetdcwd <direct.h> or <wchar.h>

Example

See also

working directory is set to a directory other than the root, the string ends with the name of the directory and not
with a backslash.

_wgetdcwd is a wide-character version of _getdcwd, and its buffer parameter and return value are wide-
character strings. Otherwise, _wgetdcwd and _getdcwd behave identically.

This function is thread-safe even though it depends on GetFullPathName, which is itself not thread-safe.
However, you can violate thread safety if your multithreaded application calls both this function and
GetFullPathNameA.

The version of this function that has the _nolock suffix behaves identically to this function except that it is not
thread-safe and is not protected from interference by other threads. For more information, see _getdcwd_nolock,
_wgetdcwd_nolock.

When _DEBUG and _CRTDBG_MAP_ALLOC are defined, calls to _getdcwd and _wgetdcwd are replaced by
calls to _getdcwd_dbg and _wgetdcwd_dbg so that you can debug memory allocations. For more information,
see_getdcwd_dbg, _wgetdcwd_dbg.

For more compatibility information, see Compatibility.

See the example in _getdrive.

Directory Control
_chdir, _wchdir
_getcwd, _wgetcwd
_getdrive
_mkdir, _wmkdir
_rmdir, _wrmdir

https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-getfullpathnamea

_getdcwd_dbg, _wgetdcwd_dbg
10/31/2018 • 2 minutes to read • Edit Online

Syntax
char *_getdcwd_dbg(
 int drive,
 char *buffer,
 int maxlen,
 int blockType,
 const char *filename,
 int linenumber
);
wchar_t *_wgetdcwd_dbg(
 int drive,
 wchar_t *buffer,
 int maxlen,
 int blockType,
 const char *filename,
 int linenumber
);

Parameters

Return Value

Remarks

Debug versions of the _getdcwd, _wgetdcwd functions (only available during debug).

drive
Name of the disk drive.

buffer
Storage location for the path.

maxlen
Maximum length of the path in characters: char for _getdcwd_dbg and wchar_t for _wgetdcwd_dbg.

blockType
Requested type of the memory block: _CLIENT_BLOCK or _NORMAL_BLOCK.

filename
Pointer to the name of the source file that requested the allocation operation or NULL.

linenumber
Line number in the source file where the allocation operation was requested or NULL.

Returns a pointer to buffer. A NULL return value indicates an error, and errno is set either to ENOMEM,
indicating that there is insufficient memory to allocate maxlen bytes (when a NULL argument is given as buffer),
or to ERANGE , indicating that the path is longer than maxlen characters. For more information, see errno,
_doserrno, _sys_errlist, and _sys_nerr.

The _getdcwd_dbg and _wgetdcwd_dbg functions are identical to _getdcwd and _wgetdcwd except that,
when _DEBUG is defined, these functions use the debug version of malloc and _malloc_dbg to allocate memory

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getdcwd-dbg-wgetdcwd-dbg.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tgetdcwd_dbg _getdcwd_dbg _getdcwd_dbg _wgetdcwd_dbg

Requirements
ROUTINE REQUIRED HEADER

_getdcwd_dbg <crtdbg.h>

_wgetdcwd_dbg <crtdbg.h>

See also

if NULL is passed as the buffer parameter. For more information, see _malloc_dbg.

You do not need to call these functions explicitly in most cases. Instead, you can define the
_CRTDBG_MAP_ALLOC flag. When _CRTDBG_MAP_ALLOC is defined, calls to _getdcwd and _wgetdcwd
are remapped to _getdcwd_dbg and _wgetdcwd_dbg, respectively, with the blockType set to
_NORMAL_BLOCK. Thus, you do not need to call these functions explicitly unless you want to mark the heap
blocks as _CLIENT_BLOCK. For more information, see Types of Blocks on the Debug Heap.

For more compatibility information, see Compatibility.

_getdcwd, _wgetdcwd
Directory Control
Debug Versions of Heap Allocation Functions

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/debug-versions-of-heap-allocation-functions

_getdcwd_nolock, _wgetdcwd_nolock
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
char *_getdcwd_nolock(
 int drive,
 char *buffer,
 int maxlen
);
wchar_t *_wgetdcwd_nolock(
 int drive,
 wchar_t *buffer,
 int maxlen
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tgetdcwd_nolock _getdcwd_nolock _getdcwd_nolock _wgetdcwd_nolock

Gets the full path of the current working directory on the specified drive.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

drive
Disk drive.

buffer
Storage location for the path.

maxlen
Maximum length of path in characters: char for _getdcwd and wchar_t for _wgetdcwd.

See _getdcwd, _wgetdcwd.

_getdcwd_nolock and _wgetdcwd_nolock are identical to _getdcwd and _wgetdcwd, respectively, except that
they are not protected from interference by other threads. They might be faster because they do not incur the
overhead of locking out other threads. Use these functions only in thread-safe contexts such as single-threaded
applications or where the calling scope already handles thread isolation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getdcwd-nolock-wgetdcwd-nolock.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Requirements
ROUTINE REQUIRED HEADER

_getdcwd_nolock <direct.h>

_wgetdcwd_nolock <direct.h> or <wchar.h>

See also

For more compatibility information, see Compatibility.

Directory Control
_chdir, _wchdir
_getcwd, _wgetcwd
_getdrive
_mkdir, _wmkdir
_rmdir, _wrmdir

_getdiskfree
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
unsigned _getdiskfree(
 unsigned drive,
 struct _diskfree_t * driveinfo
);

Parameters

Return Value

Remarks

struct _diskfree_t {
 unsigned total_clusters; // The total number of clusters, both used and available, on the disk.
 unsigned avail_clusters; // The number of unused clusters on the disk.
 unsigned sectors_per_cluster; // The number of sectors in each cluster.
 unsigned bytes_per_sector; // The size of each sector in bytes.
};

Requirements

Uses information about a disk drive to populate a _diskfree_t structure.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

drive
The disk drive for which you want information.

driveinfo
A _diskfree_t structure that will be populated with information about the drive.

If the function succeeds, the return value is zero. If the function fails, the return value is the error code. The value
errno is set for any errors that are returned by the operating system. For more information about error conditions
that are indicated by errno, see errno Constants.

The _diskfree_t structure is defined in Direct.h.

This function validates its parameters. If the driveinfo pointer is NULL or drive specifies an invalid drive, this
function invokes an invalid parameter handler, as described in Parameter Validation. If execution is allowed to
continue, the function returns EINVAL and sets errno to EINVAL. Valid drives range from 0 to 26. A drive value
of 0 specifies the current drive; thereafter, numbers map to letters of the English alphabet such that 1 indicates
drive A, 3 indicates drive C, and so on.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getdiskfree.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

ROUTINE REQUIRED HEADER

_getdiskfree <direct.h>

Example
// crt_getdiskfree.c
// compile with: /c
#include <windows.h>
#include <direct.h>
#include <stdio.h>
#include <tchar.h>

TCHAR g_szBorder[] = _T("==\n");
TCHAR g_szTitle1[] = _T("|DRIVE|TOTAL CLUSTERS|AVAIL CLUSTERS|SECTORS / CLUSTER|BYTES / SECTOR|\n");
TCHAR g_szTitle2[] = _T("|=====|==============|==============|=================|==============|\n");
TCHAR g_szLine[] = _T("| A: | | | | |\n");

void utoiRightJustified(TCHAR* szLeft, TCHAR* szRight, unsigned uVal);

int main(int argc, char* argv[]) {
 TCHAR szMsg[4200];
 struct _diskfree_t df = {0};
 ULONG uDriveMask = _getdrives();
 unsigned uErr, uLen, uDrive;

 printf(g_szBorder);
 printf(g_szTitle1);
 printf(g_szTitle2);

 for (uDrive=1; uDrive<=26; ++uDrive) {
 if (uDriveMask & 1) {
 uErr = _getdiskfree(uDrive, &df);
 memcpy(szMsg, g_szLine, sizeof(g_szLine));
 szMsg[3] = uDrive + 'A' - 1;

 if (uErr == 0) {
 utoiRightJustified(szMsg+8, szMsg+19, df.total_clusters);
 utoiRightJustified(szMsg+23, szMsg+34, df.avail_clusters);
 utoiRightJustified(szMsg+38, szMsg+52, df.sectors_per_cluster);
 utoiRightJustified(szMsg+56, szMsg+67, df.bytes_per_sector);
 }
 else {
 uLen = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, NULL,
 uErr, 0, szMsg+8, 4100, NULL);
 szMsg[uLen+6] = ' ';
 szMsg[uLen+7] = ' ';
 szMsg[uLen+8] = ' ';
 }

 printf(szMsg);
 }

 uDriveMask >>= 1;
 }

 printf(g_szBorder);
}

void utoiRightJustified(TCHAR* szLeft, TCHAR* szRight, unsigned uVal) {
 TCHAR* szCur = szRight;
 int nComma = 0;

 if (uVal) {

For more compatibility information, see Compatibility.

 if (uVal) {
 while (uVal && (szCur >= szLeft)) {
 if (nComma == 3) {
 *szCur = ',';
 nComma = 0;
 }
 else {
 *szCur = (uVal % 10) | 0x30;
 uVal /= 10;
 ++nComma;
 }

 --szCur;
 }
 }
 else {
 *szCur = '0';
 --szCur;
 }

 if (uVal) {
 szCur = szLeft;

 while (szCur <= szRight) {
 szCur = '';
 ++szCur;
 }
 }
}

==
DRIVE	TOTAL CLUSTERS	AVAIL CLUSTERS	SECTORS / CLUSTER	BYTES / SECTOR
=====	==============	==============	=================	==============
A:	The device is not ready.			
C:	4,721,093	3,778,303	8	512
D:	1,956,097	1,800,761	8	512
E:	The device is not ready.			
==

See also
Directory Control

_getdrive
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _getdrive(void);

Return Value

Requirements
ROUTINE REQUIRED HEADER

_getdrive <direct.h>

Example

Gets the current disk drive.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

Returns the current (default) drive (1=A, 2=B, and so on). There is no error return.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getdrive.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

// crt_getdrive.c
// compile with: /c
// Illustrates drive functions including:
// _getdrive _chdrive _getdcwd
//

#include <stdio.h>
#include <direct.h>
#include <stdlib.h>
#include <ctype.h>

int main(void)
{
 int ch, drive, curdrive;
 static char path[_MAX_PATH];

 // Save current drive.
 curdrive = _getdrive();

 printf("Available drives are:\n");

 // If we can switch to the drive, it exists.
 for(drive = 1; drive <= 26; drive++)
 {
 if(!_chdrive(drive))
 {
 printf("%c:", drive + 'A' - 1);
 if(_getdcwd(drive, path, _MAX_PATH) != NULL)
 printf(" (Current directory is %s)", path);
 putchar('\n');
 }
 }

 // Restore original drive.
 _chdrive(curdrive);
}

Available drives are:
A: (Current directory is A:\)
C: (Current directory is C:\)
E: (Current directory is E:\testdir\bin)
F: (Current directory is F:\)
G: (Current directory is G:\)

See also
Directory Control
_chdrive
_getcwd, _wgetcwd
_getdcwd, _wgetdcwd

_getdrives
11/14/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
unsigned long _getdrives(void);

Return Value

Requirements
ROUTINE REQUIRED HEADER

_getdrives <direct.h>

Example

Returns a bitmask that represents the currently available disk drives.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

If the function succeeds, the return value is a bitmask that represents the currently available disk drives. Bit
position 0 (the least-significant bit) is drive A, bit position 1 is drive B, bit position 2 is drive C, and so on. If the
function fails, the return value is zero. To get extended error information, call GetLastError.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getdrives.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

// crt_getdrives.c
// This program retrieves and lists out
// all the logical drives that are
// currently mounted on the machine.

#include <windows.h>
#include <direct.h>
#include <stdio.h>
#include <tchar.h>

TCHAR g_szDrvMsg[] = _T("A:\n");

int main(int argc, char* argv[]) {
 ULONG uDriveMask = _getdrives();

 if (uDriveMask == 0)
 {
 printf("_getdrives() failed with failure code: %d\n",
 GetLastError());
 }
 else
 {
 printf("The following logical drives are being used:\n");

 while (uDriveMask) {
 if (uDriveMask & 1)
 printf(g_szDrvMsg);

 ++g_szDrvMsg[0];
 uDriveMask >>= 1;
 }
 }
}

The following logical drives are being used:
A:
C:
D:
E:

See also
Directory Control

getenv, _wgetenv
10/31/2018 • 3 minutes to read • Edit Online

IMPORTANT

Syntax
char *getenv(
 const char *varname
);
wchar_t *_wgetenv(
 const wchar_t *varname
);

Parameters

Return Value

Remarks

Gets a value from the current environment. More secure versions of these functions are available; see getenv_s,
_wgetenv_s.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

varname
Environment variable name.

Returns a pointer to the environment table entry containing varname. It is not safe to modify the value of the
environment variable using the returned pointer. Use the _putenv function to modify the value of an
environment variable. The return value is NULL if varname is not found in the environment table.

The getenv function searches the list of environment variables for varname. getenv is not case sensitive in the
Windows operating system. getenv and _putenv use the copy of the environment pointed to by the global
variable _environ to access the environment. getenv operates only on the data structures accessible to the run-
time library and not on the environment "segment" created for the process by the operating system. Therefore,
programs that use the envp argument to main or wmain may retrieve invalid information.

If varname is NULL, this function invokes an invalid parameter handler, as described in Parameter Validation. If
execution is allowed to continue, this function sets errno to EINVAL and returns NULL.

_wgetenv is a wide-character version of getenv; the argument and return value of _wgetenv are wide-
character strings. The _wenviron global variable is a wide-character version of _environ.

In an MBCS program (for example, in an SBCS ASCII program), _wenviron is initially NULL because the
environment is composed of multibyte-character strings. Then, on the first call to _wputenv, or on the first call to
_wgetenv if an (MBCS) environment already exists, a corresponding wide-character string environment is
created and is then pointed to by _wenviron.

Similarly in a Unicode (_wmain) program, _environ is initially NULL because the environment is composed of

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getenv-wgetenv.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/main-program-startup
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/main-program-startup

C a u t i o n

NOTE

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tgetenv getenv getenv _wgetenv

Requirements
ROUTINE REQUIRED HEADER

getenv <stdlib.h>

_wgetenv <stdlib.h> or <wchar.h>

Example

wide-character strings. Then, on the first call to _putenv, or on the first call to getenv if a (Unicode)
environment already exists, a corresponding MBCS environment is created and is then pointed to by _environ.

When two copies of the environment (MBCS and Unicode) exist simultaneously in a program, the run-time
system must maintain both copies, resulting in slower execution time. For example, whenever you call _putenv,
a call to _wputenv is also executed automatically, so that the two environment strings correspond.

In rare instances, when the run-time system is maintaining both a Unicode version and a multibyte version of
the environment, these two environment versions may not correspond exactly. This is because, although any
unique multibyte-character string maps to a unique Unicode string, the mapping from a unique Unicode string
to a multibyte-character string is not necessarily unique. For more information, see _environ, _wenviron.

The _putenv and _getenv families of functions are not thread-safe. _getenv could return a string pointer while _putenv is
modifying the string, causing random failures. Make sure that calls to these functions are synchronized.

To check or change the value of the TZ environment variable, use getenv, _putenv and _tzset as necessary. For
more information about TZ , see _tzset and _daylight, timezone, and _tzname.

For additional compatibility information, see Compatibility.

// crt_getenv.c
// compile with: /W3
// This program uses getenv to retrieve
// the LIB environment variable and then uses
// _putenv to change it to a new value.

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char *libvar;

 // Get the value of the LIB environment variable.
 libvar = getenv("LIB"); // C4996
 // Note: getenv is deprecated; consider using getenv_s instead

 if(libvar != NULL)
 printf("Original LIB variable is: %s\n", libvar);

 // Attempt to change path. Note that this only affects the environment
 // variable of the current process. The command processor's
 // environment is not changed.
 _putenv("LIB=c:\\mylib;c:\\yourlib"); // C4996
 // Note: _putenv is deprecated; consider using putenv_s instead

 // Get new value.
 libvar = getenv("LIB"); // C4996

 if(libvar != NULL)
 printf("New LIB variable is: %s\n", libvar);
}

Original LIB variable is: C:\progra~1\devstu~1\vc\lib
New LIB variable is: c:\mylib;c:\yourlib

See also
Process and Environment Control
_putenv, _wputenv
Environmental Constants

getenv_s, _wgetenv_s
10/31/2018 • 4 minutes to read • Edit Online

IMPORTANT

Syntax
errno_t getenv_s(
 size_t *pReturnValue,
 char* buffer,
 size_t numberOfElements,
 const char *varname
);
errno_t _wgetenv_s(
 size_t *pReturnValue,
 wchar_t *buffer,
 size_t numberOfElements,
 const wchar_t *varname
);
template <size_t size>
errno_t getenv_s(
 size_t *pReturnValue,
 char (&buffer)[size],
 const char *varname
); // C++ only
template <size_t size>
errno_t _wgetenv_s(
 size_t *pReturnValue,
 wchar_t (&buffer)[size],
 const wchar_t *varname
); // C++ only

Parameters

Return Value

Gets a value from the current environment. These versions of getenv, _wgetenv have security enhancements, as
described in Security Features in the CRT.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions
not supported in Universal Windows Platform apps.

pReturnValue
The buffer size that's required, or 0 if the variable is not found.

buffer
Buffer to store the value of the environment variable.

numberOfElements
Size of buffer.

varname
Environment variable name.

Zero if successful; otherwise, an error code on failure.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getenv-s-wgetenv-s.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Error Conditions

PRETURNVALUE BUFFER NUMBEROFELEMENTS VARNAME RETURN VALUE

NULL any any any EINVAL

any NULL >0 any EINVAL

any any any NULL EINVAL

Remarks

C a u t i o n

NOTE

Any of these error conditions invokes an invalid parameter handler, as described in Parameter Validation. If
execution is allowed to continue, the functions set errno to EINVAL and return EINVAL.

Also, if the buffer is too small, these functions return ERANGE . They do not invoke an invalid parameter
handler. They write out the required buffer size in pReturnValue, and thereby enable programs to call the
function again with a larger buffer.

The getenv_s function searches the list of environment variables for varname. getenv_s is not case sensitive in
the Windows operating system. getenv_s and _putenv_s use the copy of the environment that's pointed to by
the global variable _environ to access the environment. getenv_s operates only on the data structures that are
accessible to the run-time library and not on the environment "segment" that's created for the process by the
operating system. Therefore, programs that use the envp argument to main or wmain might retrieve invalid
information.

_wgetenv_s is a wide-character version of getenv_s; the argument and return value of _wgetenv_s are wide-
character strings. The _wenviron global variable is a wide-character version of _environ.

In an MBCS program (for example, in an SBCS ASCII program), _wenviron is initially NULL because the
environment is composed of multibyte-character strings. Then, on the first call to _wputenv, or on the first call
to _wgetenv_s, if an (MBCS) environment already exists, a corresponding wide-character string environment is
created and is then pointed to by _wenviron.

Similarly in a Unicode (_wmain) program, _environ is initially NULL because the environment is composed of
wide-character strings. Then, on the first call to _putenv, or on the first call to getenv_s if a (Unicode)
environment already exists, a corresponding MBCS environment is created and is then pointed to by _environ.

When two copies of the environment (MBCS and Unicode) exist simultaneously in a program, the run-time
system must maintain both copies, and this causes slower execution time. For example, when you call _putenv,
a call to _wputenv is also executed automatically so that the two environment strings correspond.

In rare instances, when the run-time system is maintaining both a Unicode version and a multibyte version of
the environment, the two environment versions may not correspond exactly. This happens because, although
any unique multibyte-character string maps to a unique Unicode string, the mapping from a unique Unicode
string to a multibyte-character string is not necessarily unique. For more information, see _environ, _wenviron.

The _putenv_s and _getenv_s families of functions are not thread-safe. _getenv_s could return a string pointer while
_putenv_s is modifying the string and thereby cause random failures. Make sure that calls to these functions are
synchronized.

In C++, use of these functions is simplified by template overloads; the overloads can infer buffer length
automatically and thereby eliminate the need to specify a size argument. For more information, see Secure

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/main-program-startup
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/main-program-startup

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tgetenv_s getenv_s getenv_s _wgetenv_s

Requirements
ROUTINE REQUIRED HEADER

getenv_s <stdlib.h>

_wgetenv_s <stdlib.h> or <wchar.h>

Example

Template Overloads.

To check or change the value of the TZ environment variable, use getenv_s, _putenv, and _tzset, as required.
For more information about TZ , see _tzset and _daylight, _dstbias, _timezone, and _tzname.

For additional compatibility information, see Compatibility.

// crt_getenv_s.c
// This program uses getenv_s to retrieve
// the LIB environment variable and then uses
// _putenv to change it to a new value.

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char* libvar;
 size_t requiredSize;

 getenv_s(&requiredSize, NULL, 0, "LIB");
 if (requiredSize == 0)
 {
 printf("LIB doesn't exist!\n");
 exit(1);
 }

 libvar = (char*) malloc(requiredSize * sizeof(char));
 if (!libvar)
 {
 printf("Failed to allocate memory!\n");
 exit(1);
 }

 // Get the value of the LIB environment variable.
 getenv_s(&requiredSize, libvar, requiredSize, "LIB");

 printf("Original LIB variable is: %s\n", libvar);

 // Attempt to change path. Note that this only affects
 // the environment variable of the current process. The command
 // processor's environment is not changed.
 _putenv_s("LIB", "c:\\mylib;c:\\yourlib");

 getenv_s(&requiredSize, NULL, 0, "LIB");

 libvar = (char*) realloc(libvar, requiredSize * sizeof(char));
 if (!libvar)
 {
 printf("Failed to allocate memory!\n");
 exit(1);
 }

 // Get the new value of the LIB environment variable.
 getenv_s(&requiredSize, libvar, requiredSize, "LIB");

 printf("New LIB variable is: %s\n", libvar);

 free(libvar);
}

Original LIB variable is: c:\vctools\lib;c:\vctools\atlmfc\lib;c:\vctools\PlatformSDK\lib;c:\vctools\Visual
Studio SDKs\DIA Sdk\lib;c:\vctools\Visual Studio SDKs\BSC Sdk\lib
New LIB variable is: c:\mylib;c:\yourlib

See also
Process and Environment Control
Environmental Constants
_putenv, _wputenv

_dupenv_s, _wdupenv_s

_getmaxstdio
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _getmaxstdio(void);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_getmaxstdio <stdio.h>

Example
// crt_setmaxstdio.c
// The program retrieves the maximum number
// of open files and prints the results
// to the console.

#include <stdio.h>

int main()
{
 printf("%d\n", _getmaxstdio());

 _setmaxstdio(2048);

 printf("%d\n", _getmaxstdio());
}

512
2048

See also

Returns the number of simultaneously open files permitted at the stream I/O level.

Returns a number that represents the number of simultaneously open files currently permitted at the stdio level.

Use _setmaxstdio to configure the number of simultaneously open files permitted at the stdio level.

For more compatibility information, see Compatibility.

Stream I/O

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getmaxstdio.md

_getmbcp
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _getmbcp(void);

Return Value

Requirements
ROUTINE REQUIRED HEADER

_getmbcp <mbctype.h>

See also

Retrieves the current code page.

Returns the current multibyte code page. A return value of 0 indicates that a single byte code page is in use.

For more compatibility information, see Compatibility.

_setmbcp

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getmbcp.md

getpid
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _getpid instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-getpid.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_getpid
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _getpid(void);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_getpid <process.h>

Example
// crt_getpid.c
// This program uses _getpid to obtain
// the process ID and then prints the ID.

#include <stdio.h>
#include <process.h>

int main(void)
{
 // If run from command line, shows different ID for
 // command line than for operating system shell.

 printf("Process id: %d\n", _getpid());
}

Gets the process identification.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

Returns the process ID obtained from the system. There is no error return.

The _getpid function obtains the process ID from the system. The process ID uniquely identifies the calling
process.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getpid.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Process id: 3584

See also
Process and Environment Control
_mktemp, _wmktemp

gets_s, _getws_s
10/31/2018 • 2 minutes to read • Edit Online

Syntax
char *gets_s(
 char *buffer,
 size_t sizeInCharacters
);
wchar_t *_getws_s(
 wchar_t *buffer,
 size_t sizeInCharacters
);

template <size_t size>
char *gets_s(char (&buffer)[size]); // C++ only

template <size_t size>
wchar_t *_getws_s(wchar_t (&buffer)[size]); // C++ only

Parameters

Return Value

Remarks

Gets a line from the stdin stream. These versions of gets, _getws have security enhancements, as described in
Security Features in the CRT.

buffer
Storage location for input string.

sizeInCharacters
The size of the buffer.

Returns buffer if successful. A NULL pointer indicates an error or end-of-file condition. Use ferror or feof to
determine which one has occurred.

The gets_s function reads a line from the standard input stream stdin and stores it in buffer. The line consists of
all characters up to and including the first newline character ('\n'). gets_s then replaces the newline character with
a null character ('\0') before returning the line. In contrast, the fgets_s function retains the newline character.

If the first character read is the end-of-file character, a null character is stored at the beginning of buffer and
NULL is returned.

_getws_s is a wide-character version of gets_s; its argument and return value are wide-character strings.

If buffer is NULL or sizeInCharacters is less than or equal to zero, or if the buffer is too small to contain the input
line and null terminator, these functions invoke an invalid parameter handler, as described in Parameter
Validation. If execution is allowed to continue, these functions return NULL and set errno to ERANGE .

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically (eliminating the need to specify a size argument) and they can automatically replace older, non-

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/gets-s-getws-s.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_getts_s gets_s gets_s _getws_s

Requirements
ROUTINE REQUIRED HEADER

gets_s <stdio.h>

_getws_s <stdio.h> or <wchar.h>

Example
// crt_gets_s.c
// This program retrieves a string from the stdin and
// prints the same string to the console.

#include <stdio.h>

int main(void)
{
 char line[21]; // room for 20 chars + '\0'
 gets_s(line, 20);
 printf("The line entered was: %s\n", line);
}

Hello there!

The line entered was: Hello there!

See also

secure functions with their newer, secure counterparts. For more information, see Secure Template Overloads.

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that are
associated with the console, stdin, stdout, and stderr, must be redirected before C run-time functions can use
them in UWP apps. For additional compatibility information, see Compatibility.

Stream I/O
gets, _getws
fgets, fgetws
fputs, fputws
puts, _putws

getw
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _getw instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-getw.md

_getw
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _getw(
 FILE *stream
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_getw <stdio.h>

Example

Gets an integer from a stream.

stream
Pointer to the FILE structure.

_getw returns the integer value read. A return value of EOF indicates either an error or end of file. However,
because the EOF value is also a legitimate integer value, use feof or ferror to verify an end-of-file or error
condition. If stream is NULL, the invalid parameter handler is invoked, as described in Parameter Validation. If
execution is allowed to continue, errno is set to EINVAL and the function returns EOF.

The _getw function reads the next binary value of type int from the file associated with stream and increments
the associated file pointer (if there is one) to point to the next unread character. _getw does not assume any
special alignment of items in the stream. Problems with porting can occur with _getw because the size of the int
type and the ordering of bytes within the int type differ across systems.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/getw.md

// crt_getw.c
// This program uses _getw to read a word
// from a stream, then performs an error check.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 FILE *stream;
 int i;

 if(fopen_s(&stream, "crt_getw.txt", "rb"))
 printf("Couldn't open file\n");
 else
 {
 // Read a word from the stream:
 i = _getw(stream);

 // If there is an error...
 if(ferror(stream))
 {
 printf("_getw failed\n");
 clearerr_s(stream);
 }
 else
 printf("First data word in file: 0x%.4x\n", i);
 fclose(stream);
 }
}

Input: crt_getw.txt

Line one.
Line two.

Output

First data word in file: 0x656e694c

See also
Stream I/O
_putw

gmtime, _gmtime32, _gmtime64
10/31/2018 • 3 minutes to read • Edit Online

Syntax
struct tm *gmtime(const time_t *sourceTime);
struct tm *_gmtime32(const __time32_t *sourceTime);
struct tm *_gmtime64(const __time64_t *sourceTime);

Parameters

Return Value

FIELD DESCRIPTION

tm_sec Seconds after minute (0 - 59).

tm_min Minutes after hour (0 - 59).

tm_hour Hours since midnight (0 - 23).

tm_mday Day of month (1 - 31).

tm_mon Month (0 - 11; January = 0).

tm_year Year (current year minus 1900).

tm_wday Day of week (0 - 6; Sunday = 0).

tm_yday Day of year (0 - 365; January 1 = 0).

tm_isdst Always 0 for gmtime.

Converts a time_t time value to a tm structure. More secure versions of these functions are available; see
gmtime_s, _gmtime32_s, _gmtime64_s.

sourceTime
Pointer to the stored time. The time is represented as seconds elapsed since midnight (00:00:00), January 1,
1970, coordinated universal time (UTC).

A pointer to a structure of type tm. The fields of the returned structure hold the evaluated value of the
sourceTime argument in UTC rather than in local time. Each of the structure fields is of type int, as follows:

Both the 32-bit and 64-bit versions of gmtime, mktime, mkgmtime, and localtime all use one common tm
structure per thread for the conversion. Each call to one of these functions destroys the result of any previous
call. If sourceTime represents a date before midnight, January 1, 1970, gmtime returns NULL. There is no
error return.

_gmtime64, which uses the __time64_t structure, enables dates to be expressed up through 23:59:59,
December 31, 3000, UTC, whereas _gmtime32 only represent dates through 23:59:59 January 18, 2038,

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/gmtime-gmtime32-gmtime64.md

Remarks

NOTE

Requirements
ROUTINE REQUIRED C HEADER REQUIRED C++ HEADER

gmtime, _gmtime32, _gmtime64 <time.h> <ctime> or <time.h>

Example
// crt_gmtime.c
// compile with: /W3
// This program uses _gmtime64 to convert a long-
// integer representation of coordinated universal time
// to a structure named newtime, then uses asctime to
// convert this structure to an output string.

#include <time.h>
#include <stdio.h>

int main(void)
{
 struct tm *newtime;
 __int64 ltime;
 char buff[80];

 _time64(<ime);

 // Obtain coordinated universal time:
 newtime = _gmtime64(<ime); // C4996
 // Note: _gmtime64 is deprecated; consider using _gmtime64_s
 asctime_s(buff, sizeof(buff), newtime);
 printf("Coordinated universal time is %s\n", buff);
}

UTC. Midnight, January 1, 1970, is the lower bound of the date range for both functions.

gmtime is an inline function that evaluates to _gmtime64, and time_t is equivalent to __time64_t unless
_USE_32BIT_TIME_T is defined. If you must force the compiler to interpret time_t as the old 32-bit time_t,
you can define _USE_32BIT_TIME_T, but doing so causes gmtime to be in-lined to _gmtime32 and time_t
to be defined as __time32_t. We recommend that you do not do this, because it is not allowed on 64-bit
platforms and in any case your application may fail after January 18, 2038.

These functions validate their parameters. If sourceTime is a null pointer, or if the sourceTime value is
negative, these functions invoke an invalid parameter handler, as described in Parameter Validation. If
execution is allowed to continue, the functions return NULL and set errno to EINVAL.

The _gmtime32 function breaks down the sourceTime value and stores it in a statically allocated structure of
type tm, defined in TIME.H. The value of sourceTime is typically obtained from a call to the time function.

In most cases, the target environment tries to determine whether daylight savings time is in effect. The C run-time
library assumes that the United States rules for implementing the calculation of Daylight Saving Time (DST) are used.

For additional compatibility information, see Compatibility.

Coordinated universal time is Tue Feb 12 23:11:31 2002

See also
Time Management
asctime, _wasctime
ctime, _ctime32, _ctime64, _wctime, _wctime32, _wctime64
_ftime, _ftime32, _ftime64
gmtime_s, _gmtime32_s, _gmtime64_s
localtime, _localtime32, _localtime64
_mkgmtime, _mkgmtime32, _mkgmtime64
mktime, _mktime32, _mktime64
time, _time32, _time64

gmtime_s, _gmtime32_s, _gmtime64_s
11/8/2018 • 3 minutes to read • Edit Online

Syntax
errno_t gmtime_s(
 struct tm* tmDest,
 const __time_t* sourceTime
);
errno_t _gmtime32_s(
 struct tm* tmDest,
 const __time32_t* sourceTime
);
errno_t _gmtime64_s(
 struct tm* tmDest,
 const __time64_t* sourceTime
);

Parameters

Return Value

Error Conditions

TMDEST SOURCETIME RETURN VALUE IN TMDEST

NULL any EINVAL Not modified.

Not NULL (points to valid
memory)

NULL EINVAL All fields set to -1.

Not NULL < 0 EINVAL All fields set to -1.

Remarks

Converts a time value to a tm structure. These are versions of _gmtime32, _gmtime64 with security
enhancements as described in Security Features in the CRT.

tmDest
Pointer to a tm structure. The fields of the returned structure hold the evaluated value of the timer argument in
UTC rather than in local time.

sourceTime
Pointer to stored time. The time is represented as seconds elapsed since midnight (00:00:00), January 1, 1970,
coordinated universal time (UTC).

Zero if successful. The return value is an error code if there is a failure. Error codes are defined in Errno.h; for a
listing of these errors, see errno.

In the case of the first two error conditions, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, these functions set errno to EINVAL and return EINVAL.

The _gmtime32_s function breaks down the sourceTime value and stores it in a structure of type tm, defined in

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/gmtime-s-gmtime32-s-gmtime64-s.md

NOTE

FIELD DESCRIPTION

tm_sec Seconds after minute (0 - 59).

tm_min Minutes after hour (0 - 59).

tm_hour Hours since midnight (0 - 23).

tm_mday Day of month (1 - 31).

tm_mon Month (0 - 11; January = 0).

tm_year Year (current year minus 1900).

tm_wday Day of week (0 - 6; Sunday = 0).

tm_yday Day of year (0 - 365; January 1 = 0).

tm_isdst Always 0 for gmtime_s.

Requirements
ROUTINE REQUIRED C HEADER REQUIRED C++ HEADER

gmtime_s, _gmtime32_s,
_gmtime64_s

<time.h> <ctime> or <time.h>

Example

Time.h. The address of the structure is passed in tmDest. The value of sourceTime is usually obtained from a call
to the time function.

The target environment should try to determine whether daylight savings time is in effect. The C run-time library
assumes the United States rules for implementing the calculation of daylight saving time .

Each of the structure fields is of type int, as shown in the following table.

_gmtime64_s, which uses the __time64_t structure, allows dates to be expressed up through 23:59:59,
December 31, 3000, UTC; whereas gmtime32_s only represent dates through 23:59:59 January 18, 2038, UTC.
Midnight, January 1, 1970, is the lower bound of the date range for both these functions.

gmtime_s is an inline function which evaluates to _gmtime64_s and time_t is equivalent to __time64_t. If you
need to force the compiler to interpret time_t as the old 32-bit time_t, you can define _USE_32BIT_TIME_T.
Doing this will cause gmtime_s to be in-lined to _gmtime32_s. This is not recommended because your
application may fail after January 18, 2038, and it is not allowed on 64-bit platforms.

For more compatibility information, see Compatibility.

// crt_gmtime64_s.c
// This program uses _gmtime64_s to convert a 64-bit
// integer representation of coordinated universal time
// to a structure named newtime, then uses asctime_s to
// convert this structure to an output string.

#include <time.h>
#include <stdio.h>

int main(void)
{
 struct tm newtime;
 __int64 ltime;
 char buf[26];
 errno_t err;

 _time64(<ime);

 // Obtain coordinated universal time:
 err = _gmtime64_s(&newtime, <ime);
 if (err)
 {
 printf("Invalid Argument to _gmtime64_s.");
 }

 // Convert to an ASCII representation
 err = asctime_s(buf, 26, &newtime);
 if (err)
 {
 printf("Invalid Argument to asctime_s.");
 }

 printf("Coordinated universal time is %s\n",
 buf);
}

Coordinated universal time is Fri Apr 25 20:12:33 2003

See also
Time Management
asctime_s, _wasctime_s
ctime, _ctime32, _ctime64, _wctime, _wctime32, _wctime64
_ftime, _ftime32, _ftime64
gmtime, _gmtime32, _gmtime64
localtime_s, _localtime32_s, _localtime64_s
_mkgmtime, _mkgmtime32, _mkgmtime64
mktime, _mktime32, _mktime64
time, _time32, _time64

_heapchk
11/8/2018 • 2 minutes to read • Edit Online

Syntax
int _heapchk(void);

Return Value

RETURN VALUE CONDITION

_HEAPBADBEGIN Initial header information is bad or cannot be found.

_HEAPBADNODE Bad node has been found or heap is damaged.

_HEAPBADPTR Pointer into heap is not valid.

_HEAPEMPTY Heap has not been initialized.

_HEAPOK Heap appears to be consistent.

Remarks

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_heapchk <malloc.h> <errno.h>

Example

Runs consistency checks on the heap.

_heapchk returns one of the following integer manifest constants defined in Malloc.h.

In addition, if an error occurs, _heapchk sets errno to ENOSYS.

The _heapchk function helps debug heap-related problems by checking for minimal consistency of the heap. If
the operating system does not support _heapchk(for example, Windows 98), the function returns _HEAPOK
and sets errno to ENOSYS.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/heapchk.md

// crt_heapchk.c
// This program checks the heap for
// consistency and prints an appropriate message.

#include <malloc.h>
#include <stdio.h>

int main(void)
{
 int heapstatus;
 char *buffer;

 // Allocate and deallocate some memory
 if((buffer = (char *)malloc(100)) != NULL)
 free(buffer);

 // Check heap status
 heapstatus = _heapchk();
 switch(heapstatus)
 {
 case _HEAPOK:
 printf(" OK - heap is fine\n");
 break;
 case _HEAPEMPTY:
 printf(" OK - heap is empty\n");
 break;
 case _HEAPBADBEGIN:
 printf("ERROR - bad start of heap\n");
 break;
 case _HEAPBADNODE:
 printf("ERROR - bad node in heap\n");
 break;
 }
}

OK - heap is fine

See also
Memory Allocation
_heapadd
_heapmin
_heapset
_heapwalk

_heapmin
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _heapmin(void);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_heapmin <malloc.h> <errno.h>

See also

Releases unused heap memory to the operating system.

If successful, _heapmin returns 0; otherwise, the function returns -1 and sets errno to ENOSYS.

For more information about this and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The _heapmin function minimizes the heap by releasing unused heap memory to the operating system. If the
operating system does not support _heapmin(for example, Windows 98), the function returns -1 and sets errno
to ENOSYS.

For more compatibility information, see Compatibility.

Memory Allocation
free
_heapadd
_heapchk
_heapset
_heapwalk
malloc

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/heapmin.md

_heapwalk
10/31/2018 • 3 minutes to read • Edit Online

IMPORTANT

Syntax
int _heapwalk(_HEAPINFO *entryinfo);

Parameters

Return Value

RETURN VALUE MEANING

_HEAPBADBEGIN Initial header information invalid or not found.

_HEAPBADNODE Heap damaged or bad node found.

_HEAPBADPTR The _pentry field of the _HEAPINFO structure does not
contain a valid pointer into the heap or entryinfo is a null
pointer.

_HEAPEND End of the heap reached successfully.

_HEAPEMPTY Heap not initialized.

_HEAPOK No errors so far; entryinfo is updated with information about
the next heap entry.

Remarks

Traverses the heap and returns information about the next entry.

This API cannot be used in applications that execute in the Windows Runtime except in Debug builds. For more
information, see CRT functions not supported in Universal Windows Platform apps.

entryinfo
Buffer to contain heap information.

_heapwalk returns one of the following integer manifest constants defined in Malloc.h.

In addition, if an error occurs, _heapwalk sets errno to ENOSYS.

The _heapwalk function helps debug heap-related problems in programs. The function walks through the heap,
traversing one entry per call, and returns a pointer to a structure of type _HEAPINFO that contains information
about the next heap entry. The _HEAPINFO type, defined in Malloc.h, contains the following elements.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/heapwalk.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

FIELD MEANING

int *_pentry Heap entry pointer.

size_t _size Size of the heap entry.

int _useflag Flag that indicates whether the heap entry is in use.

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_heapwalk <malloc.h> <errno.h>

Example

A call to _heapwalk that returns _HEAPOK stores the size of the entry in the _size field and sets the _useflag
field to either _FREEENTRY or _USEDENTRY (both are constants defined in Malloc.h). To obtain this
information about the first entry in the heap, pass _heapwalk a pointer to a _HEAPINFO structure whose
_pentry member is NULL. If the operating system does not support _heapwalk(for example, Windows 98), the
function returns _HEAPEND and sets errno to ENOSYS.

This function validates its parameter. If entryinfo is a null pointer, the invalid parameter handler is invoked, as
described in Parameter Validation. If execution is allowed to continue, errno is set to EINVAL and the function
returns _HEAPBADPTR.

For more compatibility information, see Compatibility.

// crt_heapwalk.c

// This program "walks" the heap, starting
// at the beginning (_pentry = NULL). It prints out each
// heap entry's use, location, and size. It also prints
// out information about the overall state of the heap as
// soon as _heapwalk returns a value other than _HEAPOK
// or if the loop has iterated 100 times.

#include <stdio.h>
#include <malloc.h>

void heapdump(void);

int main(void)
{
 char *buffer;

 heapdump();
 if((buffer = (char *)malloc(59)) != NULL)
 {
 heapdump();
 free(buffer);
 }
 heapdump();
}

void heapdump(void)
{
 _HEAPINFO hinfo;
 int heapstatus;
 int numLoops;
 hinfo._pentry = NULL;
 numLoops = 0;
 while((heapstatus = _heapwalk(&hinfo)) == _HEAPOK &&
 numLoops < 100)
 {
 printf("%8s block at %Fp of size %4.4X\n",
 (hinfo._useflag == _USEDENTRY ? "USED" : "FREE"),
 hinfo._pentry, hinfo._size);
 numLoops++;
 }

 switch(heapstatus)
 {
 case _HEAPEMPTY:
 printf("OK - empty heap\n");
 break;
 case _HEAPEND:
 printf("OK - end of heap\n");
 break;
 case _HEAPBADPTR:
 printf("ERROR - bad pointer to heap\n");
 break;
 case _HEAPBADBEGIN:
 printf("ERROR - bad start of heap\n");
 break;
 case _HEAPBADNODE:
 printf("ERROR - bad node in heap\n");
 break;
 }
}

 USED block at 00310650 of size 0100
 USED block at 00310758 of size 0800
 USED block at 00310F60 of size 0080
 FREE block at 00310FF0 of size 0398
 USED block at 00311390 of size 000D
 USED block at 003113A8 of size 00B4
 USED block at 00311468 of size 0034
 USED block at 003114A8 of size 0039
...
 USED block at 00312228 of size 0010
 USED block at 00312240 of size 1000
 FREE block at 00313250 of size 1DB0
OK - end of heap

See also
Memory Allocation
_heapadd
_heapchk
_heapmin
_heapset

hypot, hypotf, hypotl, _hypot, _hypotf, _hypotl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double hypot(
 double x,
 double y
);
float hypotf(
 float x,
 float y
);
long double hypotl(
 long double x,
 long double y
);
double _hypot(
 double x,
 double y
);
float _hypotf(
 float x,
 float y
);
long double _hypotl(
 long double x,
 long double y
);

Parameters

Return Value

Remarks

Requirements

Calculates the hypotenuse.

x, y
Floating-point values.

If successful, hypot returns the length of the hypotenuse; on overflow, hypot returns INF (infinity) and the errno
variable is set to ERANGE . You can use _matherr to modify error handling.

For more information about return codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

The hypot functions calculate the length of the hypotenuse of a right triangle, given the length of the two sides x
and y (in other words, the square root of x + y).2 2

The versions of the functions that have leading underscores are provided for compatibility with earlier standards.
Their behavior is identical to the versions that don't have leading underscores. We recommend using the
versions without leading underscores for new code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/hypot-hypotf-hypotl-hypot-hypotf-hypotl.md

ROUTINE REQUIRED HEADER

hypot, hypotf, hypotl, _hypot, _hypotf, _hypotl <math.h>

Example
// crt_hypot.c
// This program prints the hypotenuse of a right triangle.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x = 3.0, y = 4.0;

 printf("If a right triangle has sides %2.1f and %2.1f, "
 "its hypotenuse is %2.1f\n", x, y, _hypot(x, y));
}

If a right triangle has sides 3.0 and 4.0, its hypotenuse is 5.0

See also

For more compatibility information, see Compatibility.

Floating-Point Support
_cabs
_matherr

ilogb, ilogbf, ilogbl
11/9/2018 • 2 minutes to read • Edit Online

Syntax
int ilogb(
 double x
);

int ilogb(
 float x
); //C++ only

int ilogb(
 long double x
); //C++ only

int ilogbf(
 float x
);

int ilogbl(
 long double x
);

Parameters

Return Value

INPUT RESULT

±0 FP_ILOGB0

±inf, ±nan, indefinite FP_ILOGBNAN

Remarks

Requirements

Retrieves an integer that represents the unbiased base-2 exponent of the specified value.

x
The specified value.

If successful, return the base-2 exponent of x as a signed int value.

Otherwise, returns one of the following values, defined in <math.h>:

Errors are reported as specified in _matherr.

Because C++ allows overloading, you can call overloads of ilogb that take and return float and long double
types. In a C program, ilogb always takes and returns a double.

Calling this function is similar to calling the equivalent logb function, then casting the return value to int.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ilogb-ilogbf-ilogbl2.md

ROUTINE C HEADER C++ HEADER

ilogb, ilogbf, ilogbl <math.h> <cmath>

See also

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
frexp
logb, logbf, logbl, _logb, _logbf

imaxabs
10/31/2018 • 2 minutes to read • Edit Online

Syntax
intmax_t imaxabs(
 intmax_t n
);

Parameters

Return Value

NOTE

Requirements
ROUTINE REQUIRED HEADER

imaxabs <inttypes.h>

Libraries

Example

Calculates the absolute value of an integer of any size.

n
Integer value.

The imaxabs function returns the absolute value of the argument. There is no error return.

Because the range of negative integers that can be represented by using intmax_t is larger than the range of positive
integers that can be represented, it's possible to supply an argument to imaxabs that can’t be converted. If the absolute
value of the argument cannot be represented by the return type, the behavior of imaxabs is undefined.

For additional compatibility information, see Compatibility.

All versions of the C run-time libraries.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/imaxabs.md

// crt_imaxabs.c
// Build using: cl /W3 /Tc crt_imaxabs.c
// This example calls imaxabs to compute an
// absolute value, then displays the results.

#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>

int main(int argc, char *argv[])
{
 intmax_t x = LLONG_MIN + 2;

 printf("The absolute value of %lld is %lld\n", x, imaxabs(x));
}

The absolute value of -9223372036854775806 is 9223372036854775806

See also
Data Conversion
Floating-Point Support
abs, labs, llabs, _abs64
_cabs
fabs, fabsf, fabsl

imaxdiv
10/31/2018 • 2 minutes to read • Edit Online

Syntax
imaxdiv_t imaxdiv(
 intmax_t numer,
 intmax_t denom
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

imaxdiv <inttypes.h>

Example

Computes the quotient and the remainder of two integer values of any size as a single operation.

numer
The numerator.

denom
The denominator.

imaxdiv called with arguments of type intmax_t returns a structure of type imaxdiv_t that comprises the quotient
and the remainder.

The imaxdiv function divides numer by denom and thereby computes the quotient and the remainder. The
imaxdiv_t structure contains the quotient, intmax_t quot, and the remainder, intmax_t rem. The sign of the
quotient is the same as that of the mathematical quotient. Its absolute value is the largest integer that is less than
the absolute value of the mathematical quotient. If the denominator is 0, the program terminates with an error
message.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/imaxdiv.md

// crt_imaxdiv.c
// Build using: cl /W3 /Tc crt_imaxdiv.c
// This example takes two integers as command-line
// arguments and calls imaxdiv to divide the first
// argument by the second, then displays the results.

#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>

int main(int argc, char *argv[])
{
 intmax_t x,y;
 imaxdiv_t div_result;

 x = atoll(argv[1]);
 y = atoll(argv[2]);

 printf("The call to imaxdiv(%lld, %lld)\n", x, y);
 div_result = imaxdiv(x, y);
 printf("results in a quotient of %lld, and a remainder of %lld\n\n",
 div_result.quot, div_result.rem);
}

The call to imaxdiv(9460730470000000, 8766)
results in a quotient of 1079252848505, and a remainder of 5170

See also

When built and then called with command line parameters of 9460730470000000 8766 , the code generates this
output:

Floating-Point Support
div
ldiv, lldiv

_initterm, _initterm_e
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void __cdecl _initterm(
 PVFV *,
 PVFV *
);

int __cdecl _initterm_e(
 PVFV *,
 PVFV *
);

Return Value

Remarks

See also

Internal methods that walk a table of function pointers and initialize them.

The first pointer is the starting location in the table and the second pointer is the ending location.

A non-zero error code if an initialization fails and throws an error; 0 if no error occurs.

These methods are only called internally during the initialization of a C++ program. Do not call these methods in a
program.

When these methods walk a table of function entries, they skip NULL entries and continue.

Alphabetical Function Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/initterm-initterm-e.md

_invalid_parameter, _invalid_parameter_noinfo,
_invalid_parameter_noinfo_noreturn, _invoke_watson
10/31/2018 • 2 minutes to read • Edit Online

Syntax
extern "C" void __cdecl
_invalid_parameter(
 wchar_t const* const expression,
 wchar_t const* const function_name,
 wchar_t const* const file_name,
 unsigned int const line_number,
 uintptr_t const reserved);

extern "C" void __cdecl
_invalid_parameter_noinfo(void);

extern "C" __declspec(noreturn) void __cdecl
_invalid_parameter_noinfo_noreturn(void);

extern "C" __declspec(noreturn) void __cdecl
_invoke_watson(
 wchar_t const* const expression,
 wchar_t const* const function_name,
 wchar_t const* const file_name,
 unsigned int const line_number,
 uintptr_t const reserved);

Parameters

Return Value

These functions are used by the C Runtime Library to handle non-valid parameters passed to CRT Library
functions. Your code may also use these functions to support default or customizable handling of non-valid
parameters.

expression
A string representing the source code parameter expression that is not valid.

function_name
The name of the function that called the handler.

file_name
The source code file where the handler was called.

line_number
The line number in the source code where the handler was called.

reserved
Unused.

These functions do not return a value. The _invalid_parameter_noinfo_noreturn and _invoke_watson
functions do not return to the caller, and in some cases, _invalid_parameter and _invalid_parameter_noinfo

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/invalid-parameter-functions.md

Remarks

Requirements
FUNCTION REQUIRED HEADER

_invalid_parameter, _invalid_parameter_noinfo,
_invalid_parameter_noinfo_noreturn, _invoke_watson

<corecrt.h>

See also

may not return to the caller.

When C runtime library functions are passed non-valid parameters, the library functions call an invalid
parameter handler, a function that may be specified by the programmer to do any of several things. For example,
it may report the issue to the user, write to a log, break in a debugger, terminate the program, or do nothing at all.
If no function is specified by the programmer, a default handler, _invoke_watson, is called.

By default, when a non-valid parameter is identified in debug code, CRT library functions call the function
_invalid_parameter using verbose parameters. In non-debug code, the _invalid_parameter_noinfo function is
called, which calls the _invalid_parameter function using empty parameters. If the non-debug CRT library
function requires program termination, the _invalid_parameter_noinfo_noreturn function is called, which calls
the _invalid_parameter function using empty parameters, followed by a call to the _invoke_watson function to
force program termination.

The _invalid_parameter function checks whether a user-defined invalid parameter handler was set, and if so,
calls it. For example, if a user-defined thread-local handler was set by a call to
set_thread_local_invalid_parameter_handler in the current thread, it is called, then the function returns.
Otherwise, if a user-defined global invalid parameter handler was set by a call to set_invalid_parameter_handler,
it is called, then the function returns. Otherwise, the default handler _invoke_watson is called. The default
behavior of _invoke_watson is to terminate the program. User-defined handlers may terminate or return. We
recommend that user-defined handlers terminate the program unless recovery is certain.

When the default handler _invoke_watson is called, if the processor supports a __fastfail operation, it is invoked
using a parameter of FAST_FAIL_INVALID_ARG and the process terminates. Otherwise, a fast fail exception is
raised, which can be caught by an attached debugger. If the process is allowed to continue, it is terminated by a
call to the Windows TerminateProcess function using an exception code status of
STATUS_INVALID_CRUNTIME_PARAMETER.

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
_get_invalid_parameter_handler, _get_thread_local_invalid_parameter_handler
_set_invalid_parameter_handler, _set_thread_local_invalid_parameter_handler
Parameter Validation

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/intrinsics/fastfail

isalnum, iswalnum, _isalnum_l, _iswalnum_l
3/1/2019 • 2 minutes to read • Edit Online

Syntax
int isalnum(int c);
int iswalnum(wint_t c);
int _isalnum_l(int c, _locale_t locale);
int _iswalnum_l(wint_t c, _locale_t locale);

Parameters

Return Value

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_istalnum isalnum _ismbcalnum iswalnum

_istalnum_l _isalnum_l _ismbcalnum_l _iswalnum_l

Requirements
ROUTINE REQUIRED HEADER

isalnum <ctype.h>

iswalnum <ctype.h> or <wchar.h>

_isalnum_l <ctype.h>

Determines whether an integer represents an alphanumeric character.

c
Integer to test.

locale
The locale to use.

Each of these routines returns nonzero if c is a particular representation of an alphanumeric character. isalnum
returns a nonzero value if either isalpha or isdigit is nonzero for c, that is, if c is within the ranges A - Z, a - z, or
0 - 9. iswalnum returns a nonzero value if either iswalpha or iswdigit is nonzero for c. Each of these routines
returns 0 if c does not satisfy the test condition.

The versions of these functions that have the _l suffix use the locale parameter that's passed in instead of the
current locale. For more information, see Locale.

The behavior of isalnum and _isalnum_l is undefined if c is not EOF or in the range 0 through 0xFF, inclusive.
When a debug CRT library is used and c is not one of these values, the functions raise an assertion.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/isalnum-iswalnum-isalnum-l-iswalnum-l.md

_iswalnum_l <ctype.h> or <wchar.h>

ROUTINE REQUIRED HEADER

See also

For additional compatibility information, see Compatibility.

Character Classification
Locale
is, isw Routines

isalpha, iswalpha, _isalpha_l, _iswalpha_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int isalpha(
 int c
);
int iswalpha(
 wint_t c
);
int _isalpha_l(
 int c,
 _locale_t locale
);
int _iswalpha_l(
 wint_t c,
 _locale_t locale
);

Parameters

Return Value

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_istalpha isalpha _ismbcalpha iswalpha

_istalpha_l _isalpha_l _ismbcalpha_l _iswalpha_l

Determines whether an integer represents an alphabetic character.

c
Integer to test.

locale
The locale to use instead of the current locale.

Each of these routines returns nonzero if c is a particular representation of an alphabetic character. isalpha
returns a nonzero value if c is within the ranges A - Z or a - z. iswalpha returns a nonzero value only for wide
characters for which iswupper or iswlower is nonzero; that is, for any wide character that is one of an
implementation-defined set for which none of iswcntrl, iswdigit, iswpunct, or iswspace is nonzero. Each of
these routines returns 0 if c does not satisfy the test condition.

The versions of these functions that have the _l suffix use the locale parameter that's passed in instead of the
current locale. For more information, see Locale.

The behavior of isalpha and _isalpha_l is undefined if c is not EOF or in the range 0 through 0xFF, inclusive.
When a debug CRT library is used and c is not one of these values, the functions raise an assertion.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/isalpha-iswalpha-isalpha-l-iswalpha-l.md

Requirements
ROUTINE REQUIRED HEADER

isalpha <ctype.h>

iswalpha <ctype.h> or <wchar.h>

_isalpha_l <ctype.h>

_iswalpha_l <ctype.h> or <wchar.h>

See also

For additional compatibility information, see Compatibility.

Character Classification
Locale
is, isw Routines

isascii, __isascii, iswascii
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int __isascii(
 int c
);
int iswascii(
 wint_t c
);

#define isascii __isascii

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_istascii __isascii __isascii iswascii

Requirements
ROUTINE REQUIRED HEADER

isascii, __isascii C: <ctype.h>

C++: <cctype> or <ctype.h>

Determines whether a particular character is an ASCII character.

c
Integer to test.

Each of these routines returns nonzero if c is a particular representation of an ASCII character. __isascii returns a
nonzero value if c is an ASCII character (in the range 0x00 - 0x7F). iswascii returns a nonzero value if c is a
wide-character representation of an ASCII character. Each of these routines returns 0 if c does not satisfy the test
condition.

Both __isascii and iswascii are implemented as macros unless the preprocessor macro
_CTYPE_DISABLE_MACROS is defined.

For backward compatibility, isascii is implemented as a macro only if __STDC__ is not defined or is defined as 0;
otherwise it is undefined.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/isascii-isascii-iswascii.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/predefined-macros

iswascii C: <wctype.h>, <ctype.h>, or <wchar.h>

C++: <cwctype>, <cctype>, <wctype.h>, <ctype.h>, or
<wchar.h>

ROUTINE REQUIRED HEADER

See also

The isascii, __isascii and iswascii functions are Microsoft specific. For additional compatibility information, see
Compatibility.

Character Classification
Locale
is, isw Routines

isatty
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _isatty instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-isatty.md

_isatty
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _isatty(int fd);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_isatty <io.h>

Libraries

Example

Determines whether a file descriptor is associated with a character device.

fd
File descriptor that refers to the device to be tested.

_isatty returns a nonzero value if the descriptor is associated with a character device. Otherwise, _isatty returns 0.

The _isatty function determines whether fd is associated with a character device (a terminal, console, printer, or
serial port).

This function validates the fd parameter. If fd is a bad file pointer, the invalid parameter handler is invoked, as
described in Parameter Validation. If execution is allowed to continue, the function returns 0 and sets errno to
EBADF.

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/isatty.md

// crt_isatty.c
/* This program checks to see whether
* stdout has been redirected to a file.
*/

#include <stdio.h>
#include <io.h>

int main(void)
{
 if(_isatty(_fileno(stdout)))
 printf("stdout has not been redirected to a file\n");
 else
 printf("stdout has been redirected to a file\n");
}

Sample Output

stdout has not been redirected to a file

See also
File Handling

isblank, iswblank, _isblank_l, _iswblank_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int isblank(
 int c
);
int iswblank(
 wint_t c
);
int _isblank_l(
 int c,
 _locale_t locale
);
int _iswblank_l(
 wint_t c,
 _locale_t locale
);

Parameters

Return Value

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_istblank isblank _ismbcblank iswblank

_istblank_l _isblank_l _ismbcblank_l _iswblank_l

Determines whether an integer represents a blank character.

c
Integer to test.

locale
Locale to use.

Each of these routines returns nonzero if c is a particular representation of a space or horizontal tab character, or
is one of a locale-specific set of characters that are used to separate words within a line of text. isblank returns a
nonzero value if c is a space character (0x20) or horizontal tab character (0x09). The result of the test condition for
the isblank functions depends on the LC_CTYPE category setting of the locale; for more information, see
setlocale, _wsetlocale. The versions of these functions that do not have the _l suffix use the current locale for any
locale-dependent behavior; the versions that do have the _l suffix are identical except that they use the locale
that's passed in instead. For more information, see Locale.

iswblank returns a nonzero value if c is a wide character that corresponds to a standard space or horizontal tab
character.

The behavior of isblank and _isblank_l is undefined if c is not EOF or in the range 0 through 0xFF, inclusive.
When a debug CRT library is used and c is not one of these values, the functions raise an assertion.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/isblank-iswblank-isblank-l-iswblank-l.md

Requirements
ROUTINE REQUIRED HEADER

isblank <ctype.h>

iswblank <ctype.h> or <wchar.h>

_isblank_l <ctype.h>

_iswblank_l <ctype.h> or <wchar.h>

See also

For additional compatibility information, see Compatibility.

Character Classification
Locale
is, isw Routines

iscntrl, iswcntrl, _iscntrl_l, _iswcntrl_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int iscntrl(
 int c
);
int iswcntrl(
 wint_t c
);
int _iscntrl_l(
 int c,
 _locale_t locale
);
int _iswcntrl_l(
 wint_t c,
 _locale_t locale
);

Parameters

Return Value

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_istcntrl iscntrl iscntrl iswcntrl

_istcntrl_l _iscntrl_l _iscntrl_l _iswcntrl_l

Requirements

Determines whether an integer represents a control character.

c
Integer to test

locale
The locale to use.

Each of these routines returns nonzero if c is a particular representation of a control character. iscntrl returns a
nonzero value if c is a control character (0x00 - 0x1F or 0x7F). iswcntrl returns a nonzero value if c is a control
wide character. Each of these routines returns 0 if c does not satisfy the test condition.

The versions of these functions that have the _l suffix use the locale parameter that's passed in instead of the
current locale. For more information, see Locale.

The behavior of iscntrl and _iscntrl_l is undefined if c is not EOF or in the range 0 through 0xFF, inclusive. When
a debug CRT library is used and c is not one of these values, the functions raise an assertion.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/iscntrl-iswcntrl-iscntrl-l-iswcntrl-l.md

ROUTINE REQUIRED HEADER

iscntrl <ctype.h>

iswcntrl <ctype.h> or <wchar.h>

_iscntrl_l <ctype.h>

_iswcntrl_l <ctype.h> or <wchar.h>

See also

For additional compatibility information, see Compatibility.

Character Classification
Locale
is, isw Routines

_isctype, iswctype, _isctype_l, _iswctype_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _isctype(
 int c,
 _ctype_t desc
);
int _isctype_l(
 int c,
 _ctype_t desc,
 _locale_t locale
);
int iswctype(
 wint_t c,
 wctype_t desc
);
int _iswctype_l(
 wint_t c,
 wctype_t desc,
 _locale_t locale
);

Parameters

Return Value

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

n/a _isctype n/a _iswctype

n/a _isctype_l n/a _iswctype_l

Tests c for the ctype property specified by the desc argument. For each valid value of desc, there is an equivalent
wide-character classification routine.

c
Integer to test.

desc
Property to test for. This is normally retrieved using ctype or wctype.

locale
The locale to use for any locale-dependent tests.

_isctype and iswctype return a nonzero value if c has the property specified by desc in the current locale or 0 if
it does not. The versions of these functions with the _l suffix are identical except that they use the locale passed in
instead of the current locale for their locale-dependent behavior. For more information, see Locale.

The behavior of _isctype and _isctype_l is undefined if c is not EOF or in the range 0 through 0xFF, inclusive.
When a debug CRT library is used and c is not one of these values, the functions raise an assertion.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/isctype-iswctype-isctype-l-iswctype-l.md

Requirements
ROUTINE REQUIRED HEADER

_isctype <ctype.h>

iswctype <ctype.h> or <wchar.h>

_isctype_l <ctype.h>

_iswctype_l <ctype.h> or <wchar.h>

Libraries

See also

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

Character Classification
Locale
is, isw Routines

iscsym, iscsymf, __iscsym, __iswcsym, __iscsymf,
__iswcsymf, _iscsym_l, _iswcsym_l, _iscsymf_l,
_iswcsymf_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int __iscsym(
 int c
);
int __iswcsym(
 wint_t c
);
int __iscsymf(
 int c
);
int __iswcsymf(
 wint_t c
);
int _iscsym_l(
 int c,
 _locale_t locale
);
int _iswcsym_l(
 wint_t c,
 _locale_t locale
);
int _iscsymf_l(
 int c,
 _locale_t locale
);
int _iswcsymf_l(
 wint_t c,
 _locale_t locale
);
#define iscsym __iscsym
#define iscsymf __iscsymf

Parameters

Return Value

Determine if an integer represents a character that may be used in an identifier.

c
Integer to test. c should be in the range of 0-255 for the narrow character version of the function.

locale
The locale to use.

Both __iscsym and __iswcsym return a nonzero value if c is a letter, underscore, or digit. Both __iscsymf and
__iswcsymf return a nonzero value if c is a letter or an underscore. Each of these routines returns 0 if c does not
satisfy the test condition. The versions of these functions with the _l suffix are identical except that they use the
locale passed in instead of the current locale for their locale-dependent behavior. For more information, see

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/iscsym-functions.md

Remarks

Requirements
ROUTINE REQUIRED HEADER

iscsym, iscsymf, __iscsym, __iswcsym, __iscsymf,
__iswcsymf, _iscsym_l, _iswcsym_l, _iscsymf_l,
_iswcsymf_l

C: <ctype.h>

C++: <cctype> or <ctype.h>

See also

Locale.

These routines are defined as macros unless the preprocessor macro _CTYPE_DISABLE_MACROS is defined.
When you use the macro versions of these routines, the arguments can be evaluated more than once. Be careful
when you use expressions that have side effects within the argument list.

For backward compatibility, iscsym and iscsymf are defined as macros only when __STDC__ is not defined or
is defined as 0; otherwise they are undefined.

The iscsym, iscsymf, __iscsym, __iswcsym, __iscsymf, __iswcsymf, _iscsym_l, _iswcsym_l, _iscsymf_l, and
_iswcsymf_l routines are Microsoft specific. For additional compatibility information, see Compatibility.

Character Classification
Locale
is, isw Routines

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/predefined-macros

isdigit, iswdigit, _isdigit_l, _iswdigit_l
3/1/2019 • 2 minutes to read • Edit Online

Syntax
int isdigit(
 int c
);
int iswdigit(
 wint_t c
);
int _isdigit_l(
 int c,
 _locale_t locale
);
int _iswdigit_l(
 wint_t c,
 _locale_t locale
);

Parameters

Return Value

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_istdigit isdigit _ismbcdigit iswdigit

_istdigit_l _isdigit_l _ismbcdigit_l _iswdigit_l

Requirements

Determines whether an integer represents a decimal-digit character.

c
Integer to test.

locale
The locale to use.

Each of these routines returns nonzero if c is a particular representation of a decimal-digit character. isdigit
returns a nonzero value if c is a decimal digit (0 - 9). iswdigit returns a nonzero value if c is a wide character that
corresponds to a decimal-digit character. Each of these routines returns 0 if c does not satisfy the test condition.

The versions of these functions that have the _l suffix use the locale that's passed in instead of the current locale
for their locale-dependent behavior. For more information, see Locale.

The behavior of isdigit and _isdigit_l is undefined if c is not EOF or in the range 0 through 0xFF, inclusive.
When a debug CRT library is used and c is not one of these values, the functions raise an assertion.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/isdigit-iswdigit-isdigit-l-iswdigit-l.md

ROUTINE REQUIRED HEADER

isdigit <ctype.h>

iswdigit <ctype.h> or <wchar.h>

_isdigit_l <ctype.h>

_iswdigit_l <ctype.h> or <wchar.h>

See also

For additional compatibility information, see Compatibility.

Character Classification
Locale
is, isw Routines

isfinite, _finite, _finitef
3/1/2019 • 2 minutes to read • Edit Online

Syntax
int isfinite(
 /* floating-point */ x
); /* C-only macro */

template <class FloatingType>
inline bool isfinite(
 FloatingType x
) throw(); /* C++-only template function */

int _finite(
 double x
);

int _finitef(
 float x
); /* x64 and ARM/ARM64 only */

Parameters

Return value

Remarks

Requirements
FUNCTION REQUIRED HEADER (C) REQUIRED HEADER (C++)

_finite <float.h> or <math.h> <float.h>, <math.h>, <cfloat>, or
<cmath>

isfinite , _finitef <math.h> <math.h> or <cmath>

Determines whether a floating-point value is finite.

x
The floating-point value to test.

The isfinite macro and the _finite and _finitef functions return a non-zero value if x is either a normal or
subnormal finite value. They return 0 if the argument is infinite or a NaN. The C++ inline template function
isfinite behaves the same way, but returns true or false.

isfinite is a macro when compiled as C, and an inline template function when compiled as C++. The _finite

and _finitef functions are Microsoft-specific. The _finitef function is only available when compiled for x86,
ARM, or ARM64 platforms.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/finite-finitef.md

See also
Floating-Point Support
fpclassify
_fpclass, _fpclassf
isinf
isnan, _isnan, _isnanf
isnormal

isgraph, iswgraph, _isgraph_l, _iswgraph_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int isgraph(
 int c
);
int iswgraph(
 wint_t c
);
int _isgraph_l(
 int c,
 _locale_t locale
);
int _iswgraph_l(
 wint_t c,
 _locale_t locale
);

Parameters

Return Value

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_istgraph isgraph _ismbcgraph iswgraph

_istgraph_l _isgraph_l _ismbcgraph_l _iswgraph_l

Requirements

Determines whether an integer represents a graphical character.

c
Integer to test.

Each of these routines returns nonzero if c is a particular representation of a printable character other than a
space. isgraph returns a nonzero value if c is a printable character other than a space. iswgraph returns a
nonzero value if c is a printable wide character other than a wide character space. Each of these routines returns 0
if c does not satisfy the test condition.

The versions of these functions that have the _l suffix use the locale that's passed in instead of the current locale
for their locale-dependent behavior. For more information, see Locale.

The behavior of isgraph and _isgraph_l is undefined if c is not EOF or in the range 0 through 0xFF, inclusive.
When a debug CRT library is used and c is not one of these values, the functions raise an assertion.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/isgraph-iswgraph-isgraph-l-iswgraph-l.md

ROUTINE REQUIRED HEADER

isgraph <ctype.h>

iswgraph <ctype.h> or <wchar.h>

_isgraph_l <ctype.h>

_iswgraph_l <ctype.h> or <wchar.h>

See also

For additional compatibility information, see Compatibility.

Character Classification
Locale
is, isw Routines

isgreater, isgreaterequal, isless, islessequal,
islessgreater, isunordered
2/4/2019 • 2 minutes to read • Edit Online

Syntax
int isgreater(
 /* floating-point */ x,
 /* floating-point */ y
); /* C-only macro */

int isgreaterequal(
 /* floating-point */ x,
 /* floating-point */ y
); /* C-only macro */

int isless(
 /* floating-point */ x,
 /* floating-point */ y
); /* C-only macro */

int islessequal(
 /* floating-point */ x,
 /* floating-point */ y
); /* C-only macro */

int islessgreater(
 /* floating-point */ x,
 /* floating-point */ y
); /* C-only macro */

int isunordered(
 /* floating-point */ x,
 /* floating-point */ y
); /* C-only macro */

Determines the ordering relationship between two floating-point values.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/floating-point-ordering.md

template <class FloatingType1, class FloatingType2>
inline bool isgreater(
 FloatingType1 x,
 FloatingType2 y
) throw(); /* C++-only template function */

template <class FloatingType1, class FloatingType2>
inline bool isgreaterequal(
 FloatingType1 x,
 FloatingType2 y
) throw(); /* C++-only template function */

template <class FloatingType1, class FloatingType2>
inline bool isless(
 FloatingType1 x,
 FloatingType2 y
) throw(); /* C++-only template function */

template <class FloatingType1, class FloatingType2>
inline bool islessequal(
 FloatingType1 x,
 FloatingType2 y
) throw(); /* C++-only template function */

template <class FloatingType1, class FloatingType2>
inline bool islessgreater(
 FloatingType1 x,
 FloatingType2 y
) throw(); /* C++-only template function */

template <class FloatingType1, class FloatingType2>
inline bool isunordered(
 FloatingType1 x,
 FloatingType2 y
) throw(); /* C++-only template function */

Parameters

Return Value

Remarks

x, y
The floating-point values to compare.

In all comparisons, infinities of the same sign compare as equal. Negative infinity is less than any finite value or
positive infinity. Positive infinity is greater than any finite value or negative infinity. Zeroes are equal regardless of
sign. NaNs are not less than, equal to, or greater than any value, including another NaN.

When neither argument is a NaN, the ordering macros isgreater, isgreaterequal, isless, and islessequal return
a non-zero value if the specified ordering relation between x and y holds true. These macros return 0 if either or
both arguments are NaNs or if the ordering relationship is false. The function forms behave the same way, but
return true or false.

The islessgreater macro returns a non-zero value if both x and y are not NaNs, and x is either less than or
greater than y. It returns 0 if either or both arguments are NaNs, or if the values are equal. The function form
behaves the same way, but returns true or false.

The isunordered macro returns a non-zero value if either x, y, or both are NaNs. Otherwise, it returns 0. The
function form behaves the same way, but returns true or false.

These comparison operations are implemented as macros when compiled as C, and as inline template functions

Requirements
FUNCTION REQUIRED HEADER (C) REQUIRED HEADER (C++)

isgreater, isgreaterequal, isless,
islessequal, islessgreater,
isunordered

<math.h> <math.h> or <cmath>

See also

when compiled as C++.

For more compatibility information, see Compatibility.

Floating-Point Support
isfinite, _finite, _finitef
isinf
isnan, _isnan, _isnanf
_fpclass, _fpclassf

isinf
2/4/2019 • 2 minutes to read • Edit Online

Syntax
int isinf(
 /* floating-point */ x
); /* C-only macro */

template <class FloatingType>
inline bool isinf(
 FloatingType x
) throw(); /* C++-only template function */

Parameters

Return value

Remarks

Requirements
FUNCTION REQUIRED HEADER (C) REQUIRED HEADER (C++)

isinf <math.h> <math.h> or <cmath>

See also

Determines whether a floating-point value is an infinity.

x
The floating-point value to test.

isinf returns a nonzero value (true in C++ code) if the argument x is a positive or negative infinity. isinf returns 0
(false in C++ code) if the argument is finite or a NAN. Both normal and subnormal floating-point values are
considered finite.

isinf is a macro when compiled as C, and an inline template function when compiled as C++.

For more compatibility information, see Compatibility.

Floating-Point Support
fpclassify
_fpclass, _fpclassf
isfinite, _finite, _finitef
isnan, _isnan, _isnanf
isnormal

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/isinf.md

isleadbyte, _isleadbyte_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int isleadbyte(int c);
int _isleadbyte_l(int c);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_istleadbyte Always returns false _isleadbyte Always returns false

Requirements
ROUTINE REQUIRED HEADER

isleadbyte <ctype.h>

_isleadbyte_l <ctype.h>

Determines whether a character is the lead byte of a multibyte character.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

c
Integer to test.

isleadbyte returns a nonzero value if the argument satisfies the test condition or 0 if it does not. In the "C" locale
and in single-byte character set (SBCS) locales, isleadbyte always returns 0.

The isleadbyte macro returns a nonzero value if its argument is the first byte of a multibyte character. isleadbyte
produces a meaningful result for any integer argument from -1 (EOF) to UCHAR_MAX (0xFF), inclusive.

The expected argument type of isleadbyte is int; if a signed character is passed, the compiler may convert it to an
integer by sign extension, yielding unpredictable results.

The version of this function with the _l suffix is identical except that it uses the locale passed in instead of the
current locale for its locale-dependent behavior.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/isleadbyte-isleadbyte-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

See also

For additional compatibility information, see Compatibility.

Byte Classification
Locale
_ismbb Routines

islower, iswlower, _islower_l, _iswlower_l
3/1/2019 • 2 minutes to read • Edit Online

Syntax
int islower(
 int c
);
int iswlower(
 wint_t c
);
int islower_l(
 int c,
 _locale_t locale
);
int _iswlower_l(
 wint_t c,
 _locale_t locale
);

Parameters

Return Value

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_istlower islower _ismbclower iswlower

_istlower_l _islower _l _ismbclower_l _liswlower_l

Determines whether an integer represents a lowercase character.

c
Integer to test.

locale
Locale to use.

Each of these routines returns nonzero if c is a particular representation of a lowercase character. islower returns
a nonzero value if c is a lowercase character (a - z). iswlower returns a nonzero value if c is a wide character that
corresponds to a lowercase letter, or if c is one of an implementation-defined set of wide characters for which
none of iswcntrl, iswdigit, iswpunct, or iswspace is nonzero. Each of these routines returns 0 if c does not
satisfy the test condition.

The versions of these functions that have the _l suffix use the locale that's passed in instead of the current locale
for their locale-dependent behavior. For more information, see Locale.

The behavior of islower and _islower_l is undefined if c is not EOF or in the range 0 through 0xFF, inclusive.
When a debug CRT library is used and c is not one of these values, the functions raise an assertion.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/islower-iswlower-islower-l-iswlower-l.md

Requirements
ROUTINE REQUIRED HEADER

islower <ctype.h>

iswlower <ctype.h> or <wchar.h>

_islower_l <ctype.h>

_swlower_l <ctype.h> or <wchar.h>

See also

For additional compatibility information, see Compatibility.

Character Classification
Locale
is, isw Routines

_ismbbalnum, _ismbbalnum_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _ismbbalnum(
 unsigned int c
);
int _ismbbalnum_l(
 unsigned int c
);

Parameters

Return Value

Requirements
ROUTINE REQUIRED HEADER

_ismbbalnum <mbctype.h>

_ismbbalnum_l <mbctype.h>

Libraries

See also

Determines whether a specified multibyte character is alpha or numeric.

c
Integer to be tested.

locale
Locale to use.

_ismbbalnum returns a nonzero value if the expression:

isalnum(c) || _ismbbkalnum(c)

is nonzero for c, or 0 if it is not.

The version of this function with the _l suffix is identical except that it uses the locale passed in instead of the
current locale for its locale-dependent behavior.

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

Byte Classification
_ismbb Routines

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ismbbalnum-ismbbalnum-l.md

_ismbbalpha, _ismbbalpha_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _ismbbalpha(
 unsigned int c
);
int _ismbbalpha_l(
 unsigned int c
);

Parameters

Return Value

Requirements
ROUTINE REQUIRED HEADER

_ismbbalpha <mbctype.h>

_ismbbalpha_l <mbctype.h>

Libraries

See also

Determines whether a specified multibyte character is alpha.

c
Integer to be tested.

locale
Locale to use.

_ismbbalpha returns a nonzero value if the expression:

isalpha(c) || _ismbbkalnum(c)

is nonzero for c, or 0 if it is not. _ismbbalpha uses the current locale for any locale-dependent character settings.
_ismbbalpha_l is identical except that it uses the locale passed in.

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

Byte Classification
_ismbb Routines

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ismbbalpha-ismbbalpha-l.md

_ismbbblank, _ismbbblank_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _ismbbblank(
 unsigned int c
);
int _ismbbblank_l(
 unsigned int c,
 _locale_t locale
);

Parameters

Return Value

Requirements
ROUTINE REQUIRED HEADER

_ismbbblank <mbctype.h>

_ismbbblank_l <mbctype.h>

See also

Determines whether a specified multibyte character is a blank character.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

c
Integer to be tested.

locale
Locale to use.

_ismbbblank returns a nonzero value if c represents a space (0x20) character, a horizontal tab (0x09) character, or
a locale-specific character that's used to separate words within a line of text for which isspace is true; otherwise,
returns 0. _ismbbblank uses the current locale for any locale-dependent behavior. _ismbbblank_l is identical
except that it instead uses the locale that's passed in. For more information, see Locale.

For more compatibility information, see Compatibility.

Byte Classification
_ismbb Routines

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ismbbblank-ismbbblank-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_ismbbgraph, _ismbbgraph_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _ismbbgraph (
 unsigned int c
);
int _ismbbgraph_l (
 unsigned int c,
 _locale_t locale
);

Parameters

Return Value

Requirements
ROUTINE REQUIRED HEADER

_ismbbgraph <mbctype.h>

_ismbbgraph_l <mbctype.h>

Libraries

See also

Determines whether a particular multibyte character is a graphical character.

c
Integer to be tested.

locale
Locale to use.

Returns a nonzero value if the expression:

isctype(c, (_PUNCT | _UPPER | _LOWER | _DIGIT)) || _ismbbkprint(c)

is nonzero for c, or 0 if it is not. _ismbbgraph uses the current locale for any locale-dependent behavior.
_ismbbgraph_l is identical except that it uses the locale passed in instead. For more information, see Locale.

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

Byte Classification
_ismbb Routines

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ismbbgraph-ismbbgraph-l.md

_ismbbkalnum, _ismbbkalnum_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _ismbbkalnum(
 unsigned int c
);
int _ismbbkalnum_l(
 unsigned int c,
 _locale_t locale
);

Parameters

Return Value

Requirements
ROUTINE REQUIRED HEADER

_ismbbkalnum <mbctype.h>

_ismbbkalnum_l <mbctype.h>

See also

Determines whether a particular multibyte character is a non-ASCII text symbol.

c
Integer to be tested.

locale
Locale to use.

_ismbbkalnum returns a nonzero value if the integer c is a non-ASCII text symbol other than punctuation, or 0 if
it is not. _ismbbkalnum uses the current locale for locale-dependent character information. _ismbbkalnum_l is
identical to _ismbbkalnum except that it takes the locale as a parameter. For more information, see Locale.

For more compatibility information, see Compatibility.

Byte Classification
_ismbb Routines

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ismbbkalnum-ismbbkalnum-l.md

_ismbbkana, _ismbbkana_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _ismbbkana(
 unsigned int c
);
int _ismbbkana_l(
 unsigned int c,
 _locale_t locale
);

Parameters

Return Value

Requirements
ROUTINE REQUIRED HEADER

_ismbbkana <mbctype.h>

_ismbbkana_l <mbctype.h>

See also

Tests for a katakana symbol and is specific to code page 932.

c
Integer to be tested.

locale
Locale to use.

_ismbbkana returns a nonzero value if the integer c is a katakana symbol or 0 if it is not. _ismbbkana uses the
current locale for locale-dependent character information. _ismbbkana_l is identical except that it uses the locale
object passed in. For more information, see Locale.

For more compatibility information, see Compatibility.

Byte Classification
_ismbb Routines

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ismbbkana-ismbbkana-l.md

_ismbbkprint, _ismbbkprint_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _ismbbkprint(
 unsigned int c
);
int _ismbbkprint_l(
 unsigned int c,
 _locale_t locale
);

Parameters

Return Value

Requirements
ROUTINE REQUIRED HEADER

_ismbbkprint <mbctype.h>

_ismbbkprint_l <mbctype.h>

See also

Determines whether a particular multibyte character is a punctuation symbol.

c
Integer to be tested.

locale
Locale to use.

_ismbbkprint returns a nonzero value if the integer c is a non-ASCII text or non-ASCII punctuation symbol or 0
if it is not. For example, in code page 932 only, _ismbbkprint tests for katakana alphanumeric or katakana
punctuation (range: 0xA1 - 0xDF). _ismbbkprint uses the current locale for locale-dependent character settings.
_ismbbkprint_l is identical except that it uses the locale passed in. For more information, see Locale.

For more compatibility information, see Compatibility.

Byte Classification
_ismbb Routines

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ismbbkprint-ismbbkprint-l.md

_ismbbkpunct, _ismbbkpunct_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _ismbbkpunct(
 unsigned int c
);
int _ismbbkpunct_l(
 unsigned int c,
 _locale_t locale
);

Parameters

Return Value

Requirements
ROUTINE REQUIRED HEADER

_ismbbkpunct <mbctype.h>

_ismbbkpunct_l <mbctype.h>

See also

Checks whether a multibyte character is a punctuation character.

c
Integer to be tested.

locale
Locale to use.

_ismbbkpunct returns a nonzero value if the integer c is a non-ASCII punctuation symbol, or 0 if it is not. For
example, in code page 932 only, _ismbbkpunct tests for katakana punctuation. _ismbbkpunct uses the current
locale for any locale-dependent character settings. _ismbbkpunct_l is identical except that it uses the locale that's
passed in. For more information, see Locale.

For more compatibility information, see Compatibility.

Byte Classification
_ismbb Routines

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ismbbkpunct-ismbbkpunct-l.md

_ismbblead, _ismbblead_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _ismbblead(
 unsigned int c
);
int _ismbblead_l(
 unsigned int c,
 _locale_t locale
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_istlead Always returns false _ismbblead Always returns false

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_ismbblead <mbctype.h> or <mbstring.h> <ctype.h>,* <limits.h>, <stdlib.h>

_ismbblead_l <mbctype.h> or <mbstring.h> <ctype.h>,* <limits.h>, <stdlib.h>

Tests a character to determine whether it is a lead byte of a multibyte character.

c
Integer to be tested.

locale
Locale to use.

Returns a nonzero value if the integer c is the first byte of a multibyte character.

Multibyte characters consist of a lead byte followed by a trailing byte. Lead bytes are distinguished by being in a
particular range for a given character set. For example, in code page 932 only, lead bytes range from 0x81 - 0x9F
and 0xE0 - 0xFC.

_ismbblead uses the current locale for locale-dependent behavior. _ismbblead_l is identical except that it uses
the locale passed in instead. For more information, see Locale.

* For manifest constants for the test conditions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ismbblead-ismbblead-l.md

See also

For more compatibility information, see Compatibility.

Byte Classification
_ismbb Routines

_ismbbprint, _ismbbprint_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _ismbbprint(
 unsigned int c
);
int _ismbbprint_l(
 unsigned int c,
 _locale_t locale
);

Parameters

Return Value

Requirements
ROUTINE REQUIRED HEADER

_ismbbprint <mbctype.h>

_ismbbprint_l <mbctype.h>

See also

Determines whether a specified multibyte character is a print character.

c
Integer to be tested.

locale
Locale to use.

_ismbbprint returns a nonzero value if the expression:

isprint(c) || _ismbbkprint(c)

is nonzero for c, or 0 if it is not. _ismbbprint uses the current locale for any locale-dependent behavior.
_ismbbprint_l is identical except that it uses the locale passed in instead. For more information, see Locale.

For more compatibility information, see Compatibility.

Byte Classification
_ismbb Routines

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ismbbprint-ismbbprint-l.md

_ismbbpunct, _ismbbpunct_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _ismbbpunct(
 unsigned int c
);
int _ismbbpunct_l(
 unsigned int c,
 _locale_t locale
);

Parameters

Return Value

Requirements
ROUTINE REQUIRED HEADER

_ismbbpunct <mbctype.h>

_ismbbpunct_l <mbctype.h>

See also

Determines whether a particular character is a punctuation character.

c
Integer to be tested.

locale
Locale to use.

_ismbbpunct returns a nonzero value if the integer c is a non-ASCII punctuation symbol. _ismbbpunct uses the
current locale for any locale-dependent character settings. _ismbbpunct_l is identical except that it uses the
locale that's passed in. For more information, see Locale.

For more compatibility information, see Compatibility.

Byte Classification
_ismbb Routines

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ismbbpunct-ismbbpunct-l.md

_ismbbtrail, _ismbbtrail_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _ismbbtrail(
 unsigned int c
);
int _ismbbtrail_l(
 unsigned int c,
 _locale_t locale
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_ismbbtrail <mbctype.h> or <mbstring.h> <ctype.h>,* <limits.h>, <stdlib.h>

_ismbbtrail_l <mbctype.h> or <mbstring.h> <ctype.h>,* <limits.h>, <stdlib.h>

See also

Determines whether a byte is a trailing byte of a multibyte character.

c
The integer to be tested.

locale
The locale to use.

_ismbbtrail returns a nonzero value if the integer c is the second byte of a multibyte character. For example, in
code page 932 only, valid ranges are 0x40 to 0x7E and 0x80 to 0xFC.

_ismbbtrail uses the current locale for locale-dependent behavior. _ismbbtrail_l is identical except that it uses
the locale that's passed in instead. For more information, see Locale.

* For manifest constants for the test conditions.

For more compatibility information, see Compatibility.

Byte Classification
_ismbb Routines

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ismbbtrail-ismbbtrail-l.md

_ismbcalnum, _ismbcalnum_l, _ismbcalpha,
_ismbcalpha_l, _ismbcdigit, _ismbcdigit_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _ismbcalnum
(
 unsigned int c
);
int _ismbcalnum_l
(
 unsigned int c,
 _locale_t locale
);
int _ismbcalpha
(
 unsigned int c
);
int _ismbcalpha_l
(
 unsigned int c,
 _locale_t locale
);
int _ismbcdigit
(
 unsigned int c
);
int _ismbcdigit_l
(
 unsigned int c,
 _locale_t locale
);

Parameters

Return Value

Checks whether a multibyte character is an alphanumeric, alpha, or digit character.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions
not supported in Universal Windows Platform apps.

c
Character to be tested.

locale
Locale to use.

Each of these routines returns a nonzero value if the character satisfies the test condition or 0 if it does not. If
c<= 255 and there is a corresponding _ismbb routine (for example, _ismbcalnum corresponds to
_ismbbalnum), the result is the return value of the corresponding _ismbb routine.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ismbcalnum-functions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Remarks

ROUTINE TEST CONDITION CODE PAGE 932 EXAMPLE

_ismbcalnum, _ismbcalnum_l Alphanumeric Returns nonzero if and only if c is a
single-byte representation of an ASCII
English letter: See examples for
_ismbcdigit and _ismbcalpha.

_ismbcalpha, _ismbcalpha_l Alphabetic Returns nonzero if and only if c is a
single-byte representation of an ASCII
English letter: 0x41<=c<=0x5A or
0x61<=c<=0x7A; or a katakana
letter: 0xA6<=c<=0xDF.

_ismbcdigit, _ismbcdigit Digit Returns nonzero if and only if c is a
single-byte representation of an ASCII
digit: 0x30<=c<=0x39.

Requirements
ROUTINE REQUIRED HEADER

_ismbcalnum, _ismbcalnum_l <mbstring.h>

_ismbcalpha, _ismbcalpha_l <mbstring.h>

_ismbcdigit, _ismbcdigit_l <mbstring.h>

See also

Each of these routines tests a given multibyte character for a given condition.

The versions of these functions with the _l suffix are identical except that they use the locale passed in instead
of the current locale for their locale-dependent behavior. For more information, see Locale.

For more compatibility information, see Compatibility.

Character Classification
_ismbc Routines
is, isw Routines
_ismbb Routines

_ismbcgraph, _ismbcgraph_l, _ismbcprint,
_ismbcprint_l, _ismbcpunct, _ismbcpunct_l,
_ismbcblank, _ismbcblank_l, _ismbcspace,
_ismbcspace_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _ismbcgraph(
 unsigned int c
);
int _ismbcgraph_l(
 unsigned int c,
 _locale_t locale
);
int _ismbcprint(
 unsigned int c
);
int _ismbcprint_l(
 unsigned int c,
 _locale_t locale
);
int _ismbcpunct(
 unsigned int c
);
int _ismbcpunct_l(
 unsigned int c,
 _locale_t locale
);
int _ismbcblank(
 unsigned int c
);
int _ismbcblank_l(
 unsigned int c,
 _locale_t locale
);
int _ismbcspace(
 unsigned int c
);
int _ismbcspace_l(
 unsigned int c,
 _locale_t locale
);

Parameters

Determines whether character is a graphical character, a display character, a punctuation character, or a
space character.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT
functions not supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ismbcgraph-functions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Return Value

Remarks

ROUTINE TEST CONDITION CODE PAGE 932 EXAMPLE

_ismbcgraph Graphic Returns nonzero if and only if c is a
single-byte representation of any
ASCII or katakana printable character
except a white space ().

_ismbcprint Printable Returns nonzero if and only if c is a
single-byte representation of any
ASCII or katakana printable character
including a white space ().

_ismbcpunct Punctuation Returns nonzero if and only if c is a
single-byte representation of any
ASCII or katakana punctuation
character.

_ismbcblank Space or horizontal tab Returns nonzero if and only if c is a
space or horizontal tab character:
c=0x20 or c=0x09.

_ismbcspace White space Returns nonzero if and only if c is a
white-space character: c=0x20 or
0x09<=c<=0x0D.

Requirements
ROUTINE REQUIRED HEADER

_ismbcgraph <mbstring.h>

_ismbcgraph_l <mbstring.h>

_ismbcprint <mbstring.h>

c
Character to be determined.

locale
Locale to use.

Each of these routines returns a nonzero value if the character satisfies the test condition, or 0 if it does not.
If c <= 255 and there is a corresponding _ismbb routine (for example, _ismbcalnum corresponds to
_ismbbalnum), the result is the return value of the corresponding _ismbb routine.

The versions of these functions are identical, except that the ones that have the _l suffix use the locale that's
passed in for their locale-dependent behavior, instead of the current locale. For more information, see
Locale.

Each of these functions tests a given multibyte character for a given condition.

_ismbcprint_l <mbstring.h>

_ismbcpunct <mbstring.h>

_ismbcpunct_l <mbstring.h>

_ismbcblank <mbstring.h>

_ismbcblank_l <mbstring.h>

_ismbcspace <mbstring.h>

_ismbcspace_l <mbstring.h>

ROUTINE REQUIRED HEADER

Libraries

See also

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

Character Classification
Locale
Interpretation of Multibyte-Character Sequences
_ismbc Routines
is, isw Routines
_ismbb Routines

_ismbchira, _ismbchira_l, _ismbckata, _ismbckata_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _ismbchira(
 unsigned int c
);
int _ismbchira_l(
 unsigned int c,
 _locale_t locale
);
int _ismbckata(
 unsigned int c
);
int _ismbckata_l(
 unsigned int c,
 _locale_t locale
);

Parameters

Return Value

Remarks

ROUTINE TEST CONDITION (CODE PAGE 932 ONLY)

_ismbchira Double-byte Hiragana: 0x829F<=c<=0x82F1.

Code Page 932 Specific functions

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

c
Character to be tested.

locale
Locale to use.

Each of these routines returns a nonzero value if the character satisfies the test condition or 0 if it does not. If c
<= 255 and there is a corresponding _ismbb routine (for example, _ismbcalnum corresponds to
_ismbbalnum), the result is the return value of the corresponding _ismbb routine.

Each of these functions tests a given multibyte character for a given condition.

The versions of these functions with the _l suffix are identical except that they use the locale passed in instead of
the current locale for their locale-dependent behavior. For more information, see Locale.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ismbchira-ismbchira-l-ismbckata-ismbckata-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_ismbchira_l Double-byte Hiragana: 0x829F<=c<=0x82F1.

_ismbckata Double-byte katakana: 0x8340<=c<=0x8396.

_ismbckata_l Double-byte katakana: 0x8340<=c<=0x8396.

ROUTINE TEST CONDITION (CODE PAGE 932 ONLY)

Requirements
ROUTINE REQUIRED HEADER

_ismbchira <mbstring.h>

_ismbchira_l <mbstring.h>

_ismbckata <mbstring.h>

_ismbckata_l <mbstring.h>

See also

End Code Page 932 Specific

For more compatibility information, see Compatibility.

Character Classification
_ismbc Routines
is, isw Routines
Locale
Interpretation of Multibyte-Character Sequences

_ismbcl0, _ismbcl0_l, _ismbcl1, _ismbcl1_l, _ismbcl2,
_ismbcl2_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _ismbcl0(
 unsigned int c
);
int _ismbcl0_l(
 unsigned int c,
 _locale_t locale
);
int _ismbcl1(
 unsigned int c
);
int _ismbcl1_l(
 unsigned int c ,
 _locale_t locale
);
int _ismbcl2(
 unsigned int c
);
int _ismbcl2_l(
 unsigned int c,
 _locale_t locale
);

Parameters

Return Value

Remarks

Code Page 932 Specific functions, using the current locale or a specified LC_CTYPE conversion state
category.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions
not supported in Universal Windows Platform apps.

c
Character to be tested.

locale
Locale to use.

Each of these routines returns a nonzero value if the character satisfies the test condition or 0 if it does not. If c
<= 255 and there is a corresponding _ismbb routine (for example, _ismbcalnum corresponds to
_ismbbalnum), the result is the return value of the corresponding _ismbb routine.

Each of these functions tests a given multibyte character for a given condition.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ismbcl0-ismbcl0-l-ismbcl1-ismbcl1-l-ismbcl2-ismbcl2-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

ROUTINE TEST CONDITION (CODE PAGE 932 ONLY)

_ismbcl0 JIS non-Kanji: 0x8140<=c<=0x889E.

_ismbcl0_l JIS non-Kanji: 0x8140<=c<=0x889E.

_ismbcl1 JIS level-1: 0x889F<=c<=0x9872.

_ismbcl1_l JIS level-1: 0x889F<=c<=0x9872.

_ismbcl2 JIS level-2: 0x989F<=c<=0xEAA4.

_ismbcl2_l JIS level-2: 0x989F<=c<=0xEAA4.

Requirements
ROUTINE REQUIRED HEADER

_ismbcl0 <mbstring.h>

_ismbcl0_l <mbstring.h>

_ismbcl1 <mbstring.h>

_ismbcl1_l <mbstring.h>

_ismbcl2 <mbstring.h>

_ismbcl2_l <mbstring.h>

See also

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for
more information. The versions of these functions without the _l suffix use the current locale for this locale-
dependent behavior ; the versions with the _l suffix are identical except that they use the locale parameter
passed in instead. For more information, see Locale.

The functions check that the specified value c matches the test conditions described above, but do not check
that c is a valid multibyte character. If the lower byte is in the ranges 0x00 - 0x3F, 0x7F, or 0xFD - 0xFF, these
functions return a nonzero value, indicating that the character satisfies the test condition. Use _ismbbtrail to test
whether the multibyte character is defined.

End Code Page 932 Specific

For more compatibility information, see Compatibility.

Character Classification
_ismbc Routines
is, isw Routines

_ismbclegal, _ismbclegal_l, _ismbcsymbol,
_ismbcsymbol_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _ismbclegal(
 unsigned int c
);
int _ismbclegal_l(
 unsigned int c,
 _locale_t locale
);
int _ismbcsymbol(
 unsigned int c
);
int _ismbcsymbol_l(
 unsigned int c,
 _locale_t locale
);

Parameters

Return Value

Remarks

Checks whether a multibyte character is a legal or symbol character.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

c
Character to be tested.

locale
Locale to use.

Each of these routines returns a nonzero value if the character satisfies the test condition or 0 if it does not. If
c<= 255 and there is a corresponding _ismbb routine (for example, _ismbcalnum corresponds to
_ismbbalnum), the result is the return value of the corresponding _ismbb routine.

Each of these functions tests a given multibyte character for a given condition.

The versions of these functions with the _l suffix are identical except that they use the locale passed in instead of
the current locale for their locale-dependent behavior. For more information, see Locale.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ismbclegal-ismbclegal-l-ismbcsymbol-ismbcsymbol-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

ROUTINE TEST CONDITION CODE PAGE 932 EXAMPLE

_ismbclegal Valid multibyte Returns nonzero if and only if the first
byte of c is within ranges 0x81 - 0x9F
or 0xE0 - 0xFC, while the second byte
is within ranges 0x40 - 0x7E or 0x80 -
FC.

_ismbcsymbol Multibyte symbol Returns nonzero if and only if
0x8141<=c<=0x81AC.

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_istlegal Always returns false _ismbclegal Always returns false.

_istlegal_l Always returns false _ismbclegal_l Always returns false.

Requirements
ROUTINE REQUIRED HEADER

_ismbclegal, _ismbclegal_l <mbstring.h>

_ismbcsymbol, _ismbcsymbol_l <mbstring.h>

See also

For more compatibility information, see Compatibility.

Character Classification
_ismbc Routines
is, isw Routines
_ismbb Routines

_ismbclower, _ismbclower_l, _ismbcupper,
_ismbcupper_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _ismbclower(
 unsigned int c
);
int _ismbclower_l(
 unsigned int c,
 _locale_t locale
);
int _ismbcupper(
 unsigned int c
);
int _ismbcupper_l(
 unsigned int c,
 _locale_t locale
);

Parameters

Return Value

Remarks

Checks whether a multibyte character is lowercase or uppercase.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions
not supported in Universal Windows Platform apps.

c
Character to be tested.

locale
Locale to use.

Each of these routines returns a nonzero value if the character satisfies the test condition or 0 if it does not. If
c<= 255 and there is a corresponding _ismbb routine (for example, _ismbcalnum corresponds to
_ismbbalnum), the result is the return value of the corresponding _ismbb routine.

Each of these functions tests a given multibyte character for a given condition.

The versions of these functions with the _l suffix are identical except that they use the locale passed in instead of
the current locale for their locale-dependent behavior. For more information, see Locale.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ismbclower-ismbclower-l-ismbcupper-ismbcupper-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

ROUTINE TEST CONDITION CODE PAGE 932 EXAMPLE

_ismbclower Lowercase alphabetic Returns nonzero if and only if c is a
single-byte representation of an ASCII
lowercase English letter:
0x61<=c<=0x7A.

_ismbclower_l Lowercase alphabetic Returns nonzero if and only if c is a
single-byte representation of an ASCII
lowercase English letter:
0x61<=c<=0x7A.

_ismbcupper Uppercase alphabetic Returns nonzero if and only if c is a
single-byte representation of an ASCII
uppercase English letter:
0x41<=c<=0x5A.

_ismbcupper_l Uppercase alphabetic Returns nonzero if and only if c is a
single-byte representation of an ASCII
uppercase English letter:
0x41<=c<=0x5A.

Requirements
ROUTINE REQUIRED HEADER

_ismbclower <mbstring.h>

_ismbclower_l <mbstring.h>

_ismbcupper <mbstring.h>

_ismbcupper_l <mbstring.h>

See also

For more compatibility information, see Compatibility.

Character Classification
_ismbc Routines
Locale
Interpretation of Multibyte-Character Sequences
is, isw Routines
_ismbb Routines

_ismbslead, _ismbstrail, _ismbslead_l, _ismbstrail_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _ismbslead(
 const unsigned char *str,
 const unsigned char *current
);
int _ismbstrail(
 const unsigned char *str,
 const unsigned char *current
);
int _ismbslead_l(
 const unsigned char *str,
 const unsigned char *current,
 _locale_t locale
);
int _ismbstrail_l(
 const unsigned char *str,
 const unsigned char *current,
 _locale_t locale
);

Parameters

Return Value

Remarks

Performs context-sensitive tests for multibyte-character-string lead bytes and trail bytes and determines whether
a given substring pointer points to a lead byte or a trail byte.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

str
Pointer to the start of the string or the previous known lead byte.

current
Pointer to the position in the string to be tested.

locale
The locale to use.

_ismbslead returns -1 if the character is a lead byte and _ismbstrail returns -1 if the character is a trail byte. If
the input strings are valid but are not a lead byte or trail byte, these functions return zero. If either argument is
NULL, the invalid parameter handler is invoked, as described in Parameter Validation. If execution is allowed to
continue, these functions return NULL and set errno to EINVAL.

_ismbslead and _ismbstrail are slower than the _ismbblead and _ismbbtrail versions because they take the

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ismbslead-ismbstrail-ismbslead-l-ismbstrail-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_ismbslead <mbctype.h> or <mbstring.h> <ctype.h>,* <limits.h>, <stdlib.h>

_ismbstrail <mbctype.h> or <mbstring.h> <ctype.h>,* <limits.h>, <stdlib.h>

_ismbslead_l <mbctype.h> or <mbstring.h> <ctype.h>,* <limits.h>, <stdlib.h>

_ismbstrail_l <mbctype.h> or <mbstring.h> <ctype.h>,* <limits.h>, <stdlib.h>

See also

string context into account.

The versions of these functions that have the _l suffix are identical except that for their locale-dependent behavior
they use the locale that's passed in instead of the current locale. For more information, see Locale.

* For manifest constants for the test conditions.

For more compatibility information, see Compatibility.

Character Classification
_ismbc Routines
is, isw Routines
_ismbb Routines

isnan, _isnan, _isnanf
2/4/2019 • 2 minutes to read • Edit Online

Syntax
int isnan(
 /* floating-point */ x
); /* C-only macro */

int _isnan(
 double x
);

int _isnanf(
 float x
); /* x64 only */

template <class T>
bool isnan(
 T x
) throw(); /* C++ only */

Parameters

Return Value

Remarks

Requirements

Tests if a floating-point value is not a number (NAN).

x
The floating-point value to test.

In C, the isnan macro and the _isnan and _isnanf functions return a non-zero value if the argument x is a
NAN; otherwise they return 0.

In C++, the isnan template function returns true if the argument x is a NaN; otherwise it returns false.

Because a NaN value does not compare as equal to any other NaN value, you must use one of these functions
or macros to detect one. A NaN is generated when the result of a floating-point operation can't be represented
in IEEE-754 floating-point format for the specified type. For information about how a NaN is represented for
output, see printf.

When compiled as C++, the isnan macro is not defined, and an isnan template function is defined instead. It
behaves the same way as the macro, but returns a value of type bool instead of an integer.

The _isnan and _isnanf functions are Microsoft-specific. The _isnanf function is only available when compiled
for x64.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/isnan-isnan-isnanf.md

ROUTINE REQUIRED HEADER (C) REQUIRED HEADER (C++)

isnan, _isnanf <math.h> <math.h> or <cmath>

_isnan <float.h> <float.h> or <cfloat>

See also

For more compatibility information, see Compatibility.

Floating-Point Support
fpclassify
_fpclass, _fpclassf
isfinite, _finite, _finitef
isinf
isnormal

isnormal
4/22/2019 • 2 minutes to read • Edit Online

Syntax
int isnormal(
 /* floating-point */ x
); /* C-only macro */

template <class FloatingType>
inline bool isnormal(
 FloatingType x
) throw(); /* C++-only function template */

Parameters

Return value

Remarks

Requirements
FUNCTION REQUIRED HEADER (C) REQUIRED HEADER (C++)

isnormal <math.h> <math.h> or <cmath>

See also

Determines whether a floating-point value is a normal value.

x
The floating-point value to test.

isnormal returns a nonzero value (true in C++ code) if the argument x is neither zero, subnormal, infinite, nor a
NaN. Otherwise, isnormal returns 0 (false in C++ code).

isnormal is a macro when compiled as C, and an inline function template when compiled as C++.

For more compatibility information, see Compatibility.

Floating-Point Support
isfinite, _finite, _finitef
isinf
isnan, _isnan, _isnanf
_fpclass, _fpclassf

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/isnormal.md

ispunct, iswpunct, _ispunct_l, _iswpunct_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int ispunct(
 int c
);
int iswpunct(
 wint_t c
);
int _ispunct_l(
 int c,
 _locale_t locale
);
int _iswpunct_l(
 wint_t c,
 _locale_t locale
);

Parameters

Return Value

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_ istpunct ispunct _ismbcpunct iswpunct

Determines whether an integer represents a punctuation character.

c
Integer to test.

locale
The locale to use.

Each of these routines returns nonzero if c is a particular representation of a punctuation character. ispunct
returns a nonzero value for any printable character that is not a space character or a character for which isalnum
is nonzero. iswpunct returns a nonzero value for any printable wide character that is neither the space wide
character nor a wide character for which iswalnum is nonzero. Each of these routines returns 0 if c does not
satisfy the test condition.

The result of the test condition for the ispunct function depends on the LC_CTYPE category setting of the locale;
see setlocale, _wsetlocale for more information. The versions of these functions that do not have the _l suffix use
the current locale for any locale-dependent behavior; the versions that do have the _l suffix are identical except
that they use the locale that's passed in instead. For more information, see Locale.

The behavior of ispunct and _ispunct_l is undefined if c is not EOF or in the range 0 through 0xFF, inclusive.
When a debug CRT library is used and c is not one of these values, the functions raise an assertion.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ispunct-iswpunct-ispunct-l-iswpunct-l.md

Requirements
ROUTINE REQUIRED HEADER

ispunct <ctype.h>

iswpunct <ctype.h> or <wchar.h>

_ispunct_l <ctype.h>

_iswpunct_l <ctype.h> or <wchar.h>

See also

For additional compatibility information, see Compatibility.

Character Classification
Locale
is, isw Routines

isprint, iswprint, _isprint_l, _iswprint_l
3/1/2019 • 2 minutes to read • Edit Online

Syntax
int isprint(
 int c
);
int iswprint(
 wint_t c
);
int _isprint_l(
 int c,
 _locale_t locale
);
int _iswprint_l(
 wint_t c,
 _locale_t locale
);

Parameters

Return Value

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_ istprint isprint _ismbcprint iswprint

Requirements

Determines whether an integer represents a printable character.

c
Integer to test.

locale
The locale to use.

Each of these routines returns nonzero if c is a particular representation of a printable character. isprint returns a
nonzero value if c is a printable character—this includes the space character (0x20 - 0x7E). iswprint returns a
nonzero value if c is a printable wide character—this includes the space wide character. Each of these routines
returns 0 if c does not satisfy the test condition.

The result of the test condition for these functions depends on the LC_CTYPE category setting of the locale; see
setlocale, _wsetlocale for more information. The versions of these functions that do not have the _l suffix use the
current locale for any locale-dependent behavior; the versions that do have the _l suffix are identical except that
they use the locale that's passed in instead. For more information, see Locale.

The behavior of isprint and _isprint_l is undefined if c is not EOF or in the range 0 through 0xFF, inclusive.
When a debug CRT library is used and c is not one of these values, the functions raise an assertion.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/isprint-iswprint-isprint-l-iswprint-l.md

ROUTINE REQUIRED HEADER

isprint <ctype.h>

iswprint <ctype.h> or <wchar.h>

_isprint_l <ctype.h>

_iswprint_l <ctype.h> or <wchar.h>

See also

For additional compatibility information, see Compatibility.

Character Classification
Locale
is, isw Routines

isspace, iswspace, _isspace_l, _iswspace_l
3/1/2019 • 2 minutes to read • Edit Online

Syntax
int isspace(
 int c
);
int iswspace(
 wint_t c
);
int _isspace_l(
 int c,
 _locale_t locale
);
int _iswspace_l(
 wint_t c,
 _locale_t locale
);

Parameters

Return Value

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_ istspace isspace _ismbcspace iswspace

Requirements

Determines whether an integer represents a space character.

c
Integer to test.

locale
Locale to use.

Each of these routines returns nonzero if c is a particular representation of a space character. isspace returns a
nonzero value if c is a white-space character (0x09 - 0x0D or 0x20). The result of the test condition for the
isspace function depends on the LC_CTYPE category setting of the locale; see setlocale, _wsetlocale for more
information. The versions of these functions that do not have the _l suffix use the current locale for any locale-
dependent behavior ; the versions that do have the _l suffix are identical except that they use the locale that's
passed in instead. For more information, see Locale.

iswspace returns a nonzero value if c is a wide character that corresponds to a standard white-space character.

The behavior of isspace and _isspace_l is undefined if c is not EOF or in the range 0 through 0xFF, inclusive.
When a debug CRT library is used and c is not one of these values, the functions raise an assertion.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/isspace-iswspace-isspace-l-iswspace-l.md

ROUTINE REQUIRED HEADER

isspace <ctype.h>

iswspace <ctype.h> or <wchar.h>

_isspace_l <ctype.h>

_iswspace_l <ctype.h> or <wchar.h>

See also

For additional compatibility information, see Compatibility.

Character Classification
Locale
is, isw Routines

isupper, _isupper_l, iswupper, _iswupper_l
3/1/2019 • 2 minutes to read • Edit Online

Syntax
int isupper(
 int c
);
int _isupper_l (
 int c,
 _locale_t locale
);
int iswupper(
 wint_t c
);
int _iwsupper_l(
 wint_t c,
 _locale_t locale
);

Parameters

Return Value

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_istupper isupper _ismbcupper iswupper

_istupper_l _isupper_l _ismbclower, _ismbclower_l,
_ismbcupper, _ismbcupper_l

_iswupper_l

Determines whether an integer represents an uppercase character.

c
Integer to test.

locale
Locale to use.

Each of these routines returns nonzero if c is a particular representation of an uppercase letter. isupper returns a
nonzero value if c is an uppercase character (A - Z). iswupper returns a nonzero value if c is a wide character
that corresponds to an uppercase letter, or if c is one of an implementation-defined set of wide characters for
which none of iswcntrl, iswdigit, iswpunct, or iswspace is nonzero. Each of these routines returns 0 if c does
not satisfy the test condition.

The versions of these functions that have the _l suffix use the locale that's passed in instead of the current locale
for their locale-dependent behavior. For more information, see Locale.

The behavior of isupper and _isupper_l is undefined if c is not EOF or in the range 0 through 0xFF, inclusive.
When a debug CRT library is used and c is not one of these values, the functions raise an assertion.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/isupper-isupper-l-iswupper-iswupper-l.md

Requirements
ROUTINE REQUIRED HEADER

isupper <ctype.h>

_isupper_l <ctype.h>

iswupper <ctype.h> or <wchar.h>

_iswupper_l <ctype.h>

See also

For additional compatibility information, see Compatibility.

Character Classification
Locale
is, isw Routines

isxdigit, iswxdigit, _isxdigit_l, _iswxdigit_l
3/1/2019 • 2 minutes to read • Edit Online

Syntax
int isxdigit(
 int c
);
int iswxdigit(
 wint_t c
);
int _isxdigit_l(
 int c,
 _locale_t locale
);
int _iswxdigit_l(
 wint_t c,
 _locale_t locale
);

Parameters

Return Value

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_istxdigit isxdigit isxdigit iswxdigit

Requirements

Determines whether an integer represents a character that is a hexadecimal digit.

c
Integer to test.

locale
Locale to use.

Each of these routines returns nonzero if c is a particular representation of a hexadecimal digit. isxdigit returns a
nonzero value if c is a hexadecimal digit (A - F, a - f, or 0 - 9). iswxdigit returns a nonzero value if c is a wide
character that corresponds to a hexadecimal digit character. Each of these routines returns 0 if c does not satisfy
the test condition.

For the "C" locale, the iswxdigit function does not support Unicode full-width hexadecimal characters.

The versions of these functions that have the _l suffix use the locale that's passed in instead of the current locale
for their locale-dependent behavior. For more information, see Locale.

The behavior of isxdigit and _isxdigit_l is undefined if c is not EOF or in the range 0 through 0xFF, inclusive.
When a debug CRT library is used and c is not one of these values, the functions raise an assertion.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/isxdigit-iswxdigit-isxdigit-l-iswxdigit-l.md

ROUTINE REQUIRED HEADER

isxdigit <ctype.h>

iswxdigit <ctype.h> or <wchar.h>

_isxdigit_l <ctype.h>

_iswxdigit_l <ctype.h> or <wchar.h>

See also

For additional compatibility information, see Compatibility.

Character Classification
Locale
is, isw Routines

itoa, _itoa, ltoa, _ltoa, ultoa, _ultoa, _i64toa,
_ui64toa, _itow, _ltow, _ultow, _i64tow, _ui64tow
3/1/2019 • 7 minutes to read • Edit Online

Syntax
char * _itoa(int value, char *buffer, int radix);
char * _ltoa(long value, char *buffer, int radix);
char * _ultoa(unsigned long value, char *buffer, int radix);
char * _i64toa(long long value, char *buffer, int radix);
char * _ui64toa(unsigned long long value, char *buffer, int radix);

wchar_t * _itow(int value, wchar_t *buffer, int radix);
wchar_t * _ltow(long value, wchar_t *buffer, int radix);
wchar_t * _ultow(unsigned long value, wchar_t *buffer, int radix);
wchar_t * _i64tow(long long value, wchar_t *buffer, int radix);
wchar_t * _ui64tow(unsigned long long value, wchar_t *buffer, int radix);

// These Posix versions of the functions have deprecated names:
char * itoa(int value, char *buffer, int radix);
char * ltoa(long value, char *buffer, int radix);
char * ultoa(unsigned long value, char *buffer, int radix);

// The following template functions are C++ only:
template <size_t size>
char *_itoa(int value, char (&buffer)[size], int radix);

template <size_t size>
char *_itoa(long value, char (&buffer)[size], int radix);

template <size_t size>
char *_itoa(unsigned long value, char (&buffer)[size], int radix);

template <size_t size>
char *_i64toa(long long value, char (&buffer)[size], int radix);

template <size_t size>
char * _ui64toa(unsigned long long value, char (&buffer)[size], int radix);

template <size_t size>
wchar_t * _itow(int value, wchar_t (&buffer)[size], int radix);

template <size_t size>
wchar_t * _ltow(long value, wchar_t (&buffer)[size], int radix);

template <size_t size>
wchar_t * _ultow(unsigned long value, wchar_t (&buffer)[size], int radix);

template <size_t size>
wchar_t * _i64tow(long long value, wchar_t (&buffer)[size], int radix);

template <size_t size>
wchar_t * _ui64tow(unsigned long long value, wchar_t (&buffer)[size],
 int radix);

Converts an integer to a string. More secure versions of these functions are available; see _itoa_s, _itow_s
functions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/itoa-itow.md

Parameters

Return Value

Remarks

IMPORTANT

#define _CRT_SECURE_NO_WARNINGS 1
#include <stdlib.h>

value
Number to be converted.

buffer
Buffer that holds the result of the conversion.

radix
The base to use for the conversion of value, which must be in the range 2-36.

size
Length of the buffer in units of the character type. This parameter is inferred from the buffer argument in C++.

Each of these functions returns a pointer to buffer. There is no error return.

The _itoa, _ltoa, _ultoa, _i64toa, and _ui64toa functions convert the digits of the given value argument to a
null-terminated character string and store the result (up to 33 characters for _itoa, _ltoa, and _ultoa, and 65
for _i64toa and _ui64toa) in buffer. If radix equals 10 and value is negative, the first character of the stored
string is the minus sign (-). The _itow, _ltow, _ultow, _i64tow, and _ui64tow functions are wide-character
versions of _itoa, _ltoa, _ultoa, _i64toa, and _ui64toa, respectively.

These functions can write past the end of a buffer that is too small. To prevent buffer overruns, ensure that buffer is large
enough to hold the converted digits plus the trailing null-character and a sign character. Misuse of these functions can
cause serious security issues in your code.

Because of their potential for security issues, by default, these functions cause deprecation warning C4996:
This function or variable may be unsafe. Consider using safe_function instead. To disable deprecation,
use _CRT_SECURE_NO_WARNINGS. We recommend you change your source code to use the
safe_function suggested by the warning message. The more secure functions do not write more characters
than the specified buffer size. For more information, see _itoa_s, _itow_s functions.

To use these functions without the deprecation warning, define the _CRT_SECURE_NO_WARNINGS
preprocessor macro before including any CRT headers. You can do this on the command line in a developer
command prompt by adding the /D_CRT_SECURE_NO_WARNINGS compiler option to the cl command.
Otherwise, define the macro in your source files. If you use precompiled headers, define the macro at the top of
the precompiled header include file, typically stdafx.h. To define the macro in your source code, use a #define
directive before you include any CRT header, as in this example:

In C++, these functions have template overloads that invoke their safer counterparts. For more information,
see Secure Template Overloads.

The Posix names itoa, ltoa, and ultoa exist as aliases for the _itoa, _ltoa, and _ultoa functions. The Posix
names are deprecated because they do not follow the implementation-specific function name conventions of
ISO C. By default, these functions cause deprecation warning C4996: The POSIX name for this item is
deprecated. Instead, use the ISO C and C++ conformant name: new_name. We recommend you change

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-3-c4996
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-3-c4996

#define _CRT_NONSTDC_NO_WARNINGS 1
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdlib.h>

Maximum conversion count macros

Functions radix Macros

_itoa, _itow 16
10
8
2

_MAX_ITOSTR_BASE16_COUNT
_MAX_ITOSTR_BASE10_COUNT
_MAX_ITOSTR_BASE8_COUNT
_MAX_ITOSTR_BASE2_COUNT

_ltoa, _ltow 16
10
8
2

_MAX_LTOSTR_BASE16_COUNT
_MAX_LTOSTR_BASE10_COUNT
_MAX_LTOSTR_BASE8_COUNT
_MAX_LTOSTR_BASE2_COUNT

_ultoa, _ultow 16
10
8
2

_MAX_ULTOSTR_BASE16_COUNT
_MAX_ULTOSTR_BASE10_COUNT
_MAX_ULTOSTR_BASE8_COUNT
_MAX_ULTOSTR_BASE2_COUNT

_i64toa, _i64tow 16
10
8
2

_MAX_I64TOSTR_BASE16_COUNT
_MAX_I64TOSTR_BASE10_COUNT
_MAX_I64TOSTR_BASE8_COUNT
_MAX_I64TOSTR_BASE2_COUNT

_ui64toa, _ui64tow 16
10
8
2

_MAX_U64TOSTR_BASE16_COUNT
_MAX_U64TOSTR_BASE10_COUNT
_MAX_U64TOSTR_BASE8_COUNT
_MAX_U64TOSTR_BASE2_COUNT

your source code to use the safer versions of these functions, _itoa_s, _ltoa_s, or _ultoa_s. For more
information, see _itoa_s, _itow_s functions.

For source code portability, you may prefer to retain the Posix names in your code. To use these functions
without the deprecation warning, define both the _CRT_NONSTDC_NO_WARNINGS and
_CRT_SECURE_NO_WARNINGS preprocessor macros before including any CRT headers. You can do this
on the command line in a developer command prompt by adding the /D_CRT_SECURE_NO_WARNINGS
and /D_CRT_NONSTDC_NO_WARNINGS compiler options to the cl command. Otherwise, define the
macros in your source files. If you use precompiled headers, define the macros at the top of the precompiled
header include file, typically stdafx.h. To define the macros in your source code, use #define directives before
you include any CRT header, as in this example:

To help you create secure buffers for conversions, the CRT includes some convenient macros. These define the
size of the buffer required to convert the longest possible value of each integer type, including the null
terminator and sign character, for several common bases. To ensure that your conversion buffer is large
enough to receive any conversion in the base specified by radix, use one of these defined macros when you
allocate the buffer. This helps to prevent buffer overrun errors when you convert integral types to strings.
These macros are defined when you include either stdlib.h or wchar.h in your source.

To use one of these macros in a string conversion function, declare your conversion buffer of the appropriate
character type and use the macro value for the integer type and base as the buffer dimension. This table lists
the macros that are appropriate for each function for the listed bases:

#include <wchar.h>
#include <iostream>
int main()
{
 wchar_t buffer[_MAX_U64TOSTR_BASE2_COUNT];
 std:wcout << _ui64tow(0xFFFFFFFFFFFFFFFFull, buffer, 2) << std::endl;
}

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_itot _itoa _itoa _itow

_ltot _ltoa _ltoa _ltow

_ultot _ultoa _ultoa _ultow

_i64tot _i64toa _i64toa _i64tow

_ui64tot _ui64toa _ui64toa _ui64tow

Requirements
ROUTINE REQUIRED HEADER

itoa, ltoa, ultoa <stdlib.h>

_itoa, _ltoa, _ultoa, _i64toa, _ui64toa <stdlib.h>

_itow, _ltow, _ultow, _i64tow, _ui64tow <stdlib.h> or <wchar.h>

Example

This example uses a conversion count macro to define a buffer large enough to contain an unsigned long
long in base 2:

These functions and macros are Microsoft-specific. For more compatibility information, see Compatibility.

This sample demonstrates the use of some of the integer conversion functions. Note the use of the
_CRT_SECURE_NO_WARNINGS macro to silence warning C4996.

// crt_itoa.c
// Compile by using: cl /W4 crt_itoa.c
// This program makes use of the _itoa functions
// in various examples.

#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h> // for printf
#include <string.h> // for strnlen
#include <stdlib.h> // for _countof, _itoa fns, _MAX_COUNT macros

int main(void)
{
 char buffer[_MAX_U64TOSTR_BASE2_COUNT];
 int r;

 for (r = 10; r >= 2; --r)
 {
 _itoa(-1, buffer, r);
 printf("base %d: %s (%d chars)\n", r, buffer,
 strnlen(buffer, _countof(buffer)));
 }
 printf("\n");

 for (r = 10; r >= 2; --r)
 {
 _i64toa(-1LL, buffer, r);
 printf("base %d: %s (%d chars)\n", r, buffer,
 strnlen(buffer, _countof(buffer)));
 }
 printf("\n");

 for (r = 10; r >= 2; --r)
 {
 _ui64toa(0xffffffffffffffffULL, buffer, r);
 printf("base %d: %s (%d chars)\n", r, buffer,
 strnlen(buffer, _countof(buffer)));
 }
}

base 10: -1 (2 chars)
base 9: 12068657453 (11 chars)
base 8: 37777777777 (11 chars)
base 7: 211301422353 (12 chars)
base 6: 1550104015503 (13 chars)
base 5: 32244002423140 (14 chars)
base 4: 3333333333333333 (16 chars)
base 3: 102002022201221111210 (21 chars)
base 2: 11111111111111111111111111111111 (32 chars)

base 10: -1 (2 chars)
base 9: 145808576354216723756 (21 chars)
base 8: 1777777777777777777777 (22 chars)
base 7: 45012021522523134134601 (23 chars)
base 6: 3520522010102100444244423 (25 chars)
base 5: 2214220303114400424121122430 (28 chars)
base 4: 33333333333333333333333333333333 (32 chars)
base 3: 11112220022122120101211020120210210211220 (41 chars)
base 2: 11 (64 chars)

base 10: 18446744073709551615 (20 chars)
base 9: 145808576354216723756 (21 chars)
base 8: 1777777777777777777777 (22 chars)
base 7: 45012021522523134134601 (23 chars)
base 6: 3520522010102100444244423 (25 chars)
base 5: 2214220303114400424121122430 (28 chars)
base 4: 33333333333333333333333333333333 (32 chars)
base 3: 11112220022122120101211020120210210211220 (41 chars)
base 2: 11 (64 chars)

See also
Data Conversion
_itoa_s, _itow_s functions

_itoa_s, _ltoa_s, _ultoa_s, _i64toa_s, _ui64toa_s,
_itow_s, _ltow_s, _ultow_s, _i64tow_s, _ui64tow_s
3/1/2019 • 4 minutes to read • Edit Online

Syntax
errno_t _itoa_s(int value, char * buffer, size_t size, int radix);
errno_t _ltoa_s(long value, char * buffer, size_t size, int radix);
errno_t _ultoa_s(unsigned long value, char * buffer, size_t size, int radix);
errno_t _i64toa_s(long long value, char *buffer,
 size_t size, int radix);
errno_t _ui64toa_s(unsigned long long value, char *buffer,
 size_t size, int radix);

errno_t _itow_s(int value, wchar_t *buffer,
 size_t size, int radix);
errno_t _ltow_s(long value, wchar_t *buffer,
 size_t size, int radix);
errno_t _ultow_s(unsigned long value, wchar_t *buffer,
 size_t size, int radix);
errno_t _i64tow_s(long long value, wchar_t *buffer,
 size_t size, int radix);
errno_t _ui64tow_s(unsigned long long value, wchar_t *buffer,
 size_t size, int radix
);

// These template functions are C++ only:
template <size_t size>
errno_t _itoa_s(int value, char (&buffer)[size], int radix);

template <size_t size>
errno_t _ltoa_s(long value, char (&buffer)[size], int radix);

template <size_t size>
errno_t _ultoa_s(unsigned long value, char (&buffer)[size], int radix);

template <size_t size>
errno_t _itow_s(int value, wchar_t (&buffer)[size], int radix);

template <size_t size>
errno_t _ltow_s(long value, wchar_t (&buffer)[size], int radix);

template <size_t size>
errno_t _ultow_s(unsigned long value, wchar_t (&buffer)[size], int radix);

Parameters

Converts an integer to a string. These are versions of the _itoa, _itow functions with security enhancements as
described in Security Features in the CRT.

value
Number to be converted.

buffer
Output buffer that holds the result of the conversion.

size

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/itoa-s-itow-s.md

Return value

Error conditions

VALUE BUFFER SIZE RADIX RETURN

any NULL any any EINVAL

any any <=0 any EINVAL

any any <= length of the
result string required

any EINVAL

any any any radix < 2 or radix >
36

EINVAL

Security issues

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_itot_s _itoa_s _itoa_s _itow_s

_ltot_s _ltoa_s _ltoa_s _ltow_s

_ultot_s _ultoa_s _ultoa_s _ultow_s

_i64tot_s _i64toa_s _i64toa_s _i64tow_s

Size of buffer in characters or wide characters.

radix
The radix or numeric base to use to convert value, which must be in the range 2-36.

Zero if successful; an error code on failure. If any of the following conditions applies, the function invokes an
invalid parameter handler, as described in Parameter Validation.

These functions can generate an access violation if buffer does not point to valid memory and is not NULL, or
if the length of the buffer is not long enough to hold the result string.

Except for the parameters and return value, the _itoa_s and _itow_s function families have the same behavior
as the corresponding less secure _itoa and _itow versions.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically (eliminating the need to specify a size argument) and they can automatically replace older, non-
secure functions with their newer, secure counterparts. For more information, see Secure Template Overloads.

The debug library versions of these functions first fill the buffer with 0xFD. To disable this behavior, use
_CrtSetDebugFillThreshold.

The CRT includes convenient macros to define the size of the buffer required to convert the longest possible
value of each integer type, including the null terminator and sign character, for several common bases. For
information, see Maximum conversion count macros.

_ui64tot_s _ui64toa_s _ui64toa_s _ui64tow_s

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

Requirements
ROUTINE REQUIRED HEADER

_itoa_s, _ltoa_s, _ultoa_s, _i64toa_s, _ui64toa_s <stdlib.h>

_itow_s, _ltow_s, _ultow_s, _i64tow_s, _ui64tow_s <stdlib.h> or <wchar.h>

Example

// crt_itoa_s.c
// Compile by using: cl /W4 crt_itoa_s.c
#include <stdlib.h> // for _itoa_s functions, _countof, count macro
#include <stdio.h> // for printf
#include <string.h> // for strnlen

int main(void)
{
 char buffer[_MAX_U64TOSTR_BASE2_COUNT];
 int r;
 for (r = 10; r >= 2; --r)
 {
 _itoa_s(-1, buffer, _countof(buffer), r);
 printf("base %d: %s (%d chars)\n",
 r, buffer, strnlen(buffer, _countof(buffer)));
 }
 printf("\n");
 for (r = 10; r >= 2; --r)
 {
 _i64toa_s(-1LL, buffer, _countof(buffer), r);
 printf("base %d: %s (%d chars)\n",
 r, buffer, strnlen(buffer, _countof(buffer)));
 }
 printf("\n");
 for (r = 10; r >= 2; --r)
 {
 _ui64toa_s(0xffffffffffffffffULL, buffer, _countof(buffer), r);
 printf("base %d: %s (%d chars)\n",
 r, buffer, strnlen(buffer, _countof(buffer)));
 }
}

These functions are Microsoft-specific. For more compatibility information, see Compatibility.

This sample demonstrates the use of a few of the integer conversion functions. Note that the _countof macro
only works to determine buffer size when the array declaration is visible to the compiler, and not for
parameters that have decayed to pointers.

base 10: -1 (2 chars)
base 9: 12068657453 (11 chars)
base 8: 37777777777 (11 chars)
base 7: 211301422353 (12 chars)
base 6: 1550104015503 (13 chars)
base 5: 32244002423140 (14 chars)
base 4: 3333333333333333 (16 chars)
base 3: 102002022201221111210 (21 chars)
base 2: 11111111111111111111111111111111 (32 chars)

base 10: -1 (2 chars)
base 9: 145808576354216723756 (21 chars)
base 8: 1777777777777777777777 (22 chars)
base 7: 45012021522523134134601 (23 chars)
base 6: 3520522010102100444244423 (25 chars)
base 5: 2214220303114400424121122430 (28 chars)
base 4: 33333333333333333333333333333333 (32 chars)
base 3: 11112220022122120101211020120210210211220 (41 chars)
base 2: 11 (64 chars)

base 10: 18446744073709551615 (20 chars)
base 9: 145808576354216723756 (21 chars)
base 8: 1777777777777777777777 (22 chars)
base 7: 45012021522523134134601 (23 chars)
base 6: 3520522010102100444244423 (25 chars)
base 5: 2214220303114400424121122430 (28 chars)
base 4: 33333333333333333333333333333333 (32 chars)
base 3: 11112220022122120101211020120210210211220 (41 chars)
base 2: 11 (64 chars)

See also
Data Conversion
_itoa, _itow functions

j0, j1, jn
10/31/2018 • 2 minutes to read • Edit Online

These POSIX functions are deprecated. Use the ISO C++ conformant _j0, _j1, _jn instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/j0-j1-jn.md

kbhit
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _kbhit instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-kbhit.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_kbhit
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax

int _kbhit(void);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_kbhit <conio.h>

Libraries

Example

Checks the console for keyboard input.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

_kbhit returns a nonzero value if a key has been pressed. Otherwise, it returns 0.

The _kbhit function checks the console for a recent keystroke. If the function returns a nonzero value, a keystroke
is waiting in the buffer. The program can then call _getch or _getche to get the keystroke.

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/kbhit.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

// crt_kbhit.c
// compile with: /c
/* This program loops until the user
* presses a key. If _kbhit returns nonzero, a
* keystroke is waiting in the buffer. The program
* can call _getch or _getche to get the keystroke.
*/

#include <conio.h>
#include <stdio.h>

int main(void)
{
 /* Display message until key is pressed. */
 while(!_kbhit())
 _cputs("Hit me!! ");

 /* Use _getch to throw key away. */
 printf("\nKey struck was '%c'\n", _getch());
}

Sample Output

Hit me!! Hit me!! Hit me!! Hit me!! Hit me!! Hit me!! Hit me!!
Key struck was 'q'

See also
Console and Port I/O

ldexp, ldexpf, ldexpl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double ldexp(
 double x,
 int exp
);
float ldexp(
 float x,
 int exp
); // C++ only
long double ldexp(
 long double x,
 int exp
); // C++ only
float ldexpf(
 float x,
 int exp
);
long double ldexpl(
 long double x,
 int exp
);

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

ldexp, ldexpf, ldexpl <math.h> <cmath>

Multiplies a floating-point number by an integral power of two.

x
Floating-point value.

exp
Integer exponent.

The ldexp functions return the value of x * 2 if successful. On overflow, and depending on the sign of x, ldexp
returns +/- HUGE_VAL; the errno value is set to ERANGE .

exp

For more information about errno and possible error return values, see errno, _doserrno, _sys_errlist, and
_sys_nerr.

Because C++ allows overloading, you can call overloads of ldexp that take float or long double types. In a C
program, ldexp always takes a double and an int and returns a double.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ldexp.md

Example
// crt_ldexp.c

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x = 4.0, y;
 int p = 3;

 y = ldexp(x, p);
 printf("%2.1f times two to the power of %d is %2.1f\n", x, p, y);
}

Output
4.0 times two to the power of 3 is 32.0

See also

For compatibility information, see Compatibility.

Floating-Point Support
frexp
modf, modff, modfl

2 minutes to read

lfind
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _lfind or security-enhanced _lfind_s instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-lfind.md

_lfind
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void *_lfind(
 const void *key,
 const void *base,
 unsigned int *num,
 unsigned int width,
 int (__cdecl *compare)(const void *, const void *)
);

Parameters

Return Value

Remarks

Performs a linear search for the specified key. A more secure version of this function is available; see _lfind_s.

key
Object to search for.

base
Pointer to the base of search data.

number
Number of array elements.

width
Width of array elements.

compare
Pointer to comparison routine. The first parameter is a pointer to key for search. The second parameter is a
pointer to array element to be compared with key.

If the key is found, _lfind returns a pointer to the element of the array at base that matches key. If the key is not
found, _lfind returns NULL.

The _lfind function performs a linear search for the value key in an array of number elements, each of width
bytes. Unlike bsearch, _lfind does not require the array to be sorted. The base argument is a pointer to the base
of the array to be searched. The compare argument is a pointer to a user-supplied routine that compares two
array elements and then returns a value specifying their relationship. _lfind calls the compare routine one or
more times during the search, passing pointers to two array elements on each call. The compare routine must
compare the elements and then return nonzero (meaning the elements are different) or 0 (meaning the elements
are identical).

This function validates its parameters. If compare, key or number is NULL, or if base is NULL and number is
nonzero, or if width is less than zero, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, errno is set to EINVAL and the function returns NULL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/lfind.md

Requirements
ROUTINE REQUIRED HEADER

_lfind <search.h>

Example
// crt_lfind.c
// This program uses _lfind to search a string array
// for an occurrence of "hello".

#include <search.h>
#include <string.h>
#include <stdio.h>

int compare(const void *arg1, const void *arg2)
{
 return(_stricmp(* (char**)arg1, * (char**)arg2));
}

int main()
{
 char *arr[] = {"Hi", "Hello", "Bye"};
 int n = sizeof(arr) / sizeof(char*);
 char **result;
 char *key = "hello";

 result = (char **)_lfind(&key, arr,
 &n, sizeof(char *), compare);

 if(result)
 printf("%s found\n", *result);
 else
 printf("hello not found!\n");
}

Hello found

See also

For more compatibility information, see Compatibility.

Searching and Sorting
_lfind_s
bsearch
_lsearch
qsort

_lfind_s
10/31/2018 • 3 minutes to read • Edit Online

Syntax
void *_lfind_s(
 const void *key,
 const void *base,
 unsigned int *num,
 size_t size,
 int (__cdecl *compare)(void *, const void *, const void *),
 void * context
);

Parameters

Return Value

Error Conditions

KEY BASE COMPARE NUM SIZE ERRNO

NULL any any any any EINVAL

any NULL any != 0 any EINVAL

Performs a linear search for the specified key. A version of _lfind with security enhancements as described in
Security Features in the CRT.

key
Object to search for.

base
Pointer to the base of search data.

number
Number of array elements.

size
Size of array elements in bytes.

compare
Pointer to comparison routine. The first parameter is the context pointer. The second parameter is a pointer to key
for search. The third parameter is a pointer to array element to be compared with key.

context
A pointer to an object that might be accessed in the comparison function.

If the key is found, _lfind_s returns a pointer to the element of the array at base that matches key. If the key is not
found, _lfind_s returns NULL.

If invalid parameters are passed to the function, the invalid parameter handler is invoked, as described in
Parameter Validation. If execution is allowed to continue, errno is set to EINVAL and the function returns NULL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/lfind-s.md

any any any any zero EINVAL

any any NULL an any EINVAL

KEY BASE COMPARE NUM SIZE ERRNO

Remarks

Requirements
ROUTINE REQUIRED HEADER

_lfind_s <search.h>

Example
// crt_lfind_s.cpp
// This program uses _lfind_s to search a string array,
// passing a locale as the context.
// compile with: /EHsc
#include <stdlib.h>
#include <stdio.h>
#include <search.h>
#include <process.h>
#include <locale.h>
#include <locale>
#include <windows.h>
using namespace std;

// The sort order is dependent on the code page. Use 'chcp' at the
// command line to change the codepage. When executing this application,
// the command prompt codepage must match the codepage used here:

#define CODEPAGE_850

#ifdef CODEPAGE_850
// Codepage 850 is the OEM codepage used by the command line,
// so \x00e1 is the German Sharp S

char *array1[] = { "wei\x00e1", "weis", "annehmen", "weizen", "Zeit",
 "weit" };

The _lfind_s function performs a linear search for the value key in an array of number elements, each of width
bytes. Unlike bsearch_s, _lfind_s does not require the array to be sorted. The base argument is a pointer to the
base of the array to be searched. The compare argument is a pointer to a user-supplied routine that compares
two array elements and then returns a value specifying their relationship. _lfind_s calls the compare routine one
or more times during the search, passing the context pointer and pointers to two array elements on each call. The
compare routine must compare the elements then return nonzero (meaning that the elements are different) or 0
(meaning the elements are identical).

_lfind_s is similar to _lfind except for the addition of the context pointer to the arguments of the comparison
function and the parameter list of the function. The context pointer can be useful if the searched data structure is
part of an object and the compare function needs to access members of the object. The compare function can
cast the void pointer into the appropriate object type and access members of that object. The addition of the
context parameter makes _lfind_s more secure because additional context can be used to avoid reentrancy bugs
associated with using static variables to make data available to the compare function.

For more compatibility information, see Compatibility.

 "weit" };

#define GERMAN_LOCALE "German_Germany.850"

#endif

#ifdef CODEPAGE_1252
 // If using codepage 1252 (ISO 8859-1, Latin-1), use \x00df
 // for the German Sharp S
char *array1[] = { "wei\x00df", "weis", "annehmen", "weizen", "Zeit",
 "weit" };

#define GERMAN_LOCALE "German_Germany.1252"

#endif

// The context parameter lets you create a more generic compare.
// Without this parameter, you would have stored the locale in a
// static variable, thus making it vulnerable to thread conflicts
// (if this were a multithreaded program).

int compare(void *pvlocale, const void *str1, const void *str2)
{
 char *s1 = *(char**)str1;
 char *s2 = *(char**)str2;

 locale& loc = *(reinterpret_cast< locale * > (pvlocale));

 return use_facet< collate<char> >(loc).compare(
 s1, s1+strlen(s1),
 s2, s2+strlen(s2));
}

void find_it(char *key, char *array[], unsigned int num, locale &loc)
{
 char **result = (char **)_lfind_s(&key, array,
 &num, sizeof(char *), compare, &loc);
 if(result)
 printf("%s found\n", *result);
 else
 printf("%s not found\n", key);
}

int main()
{
 find_it("weit", array1, sizeof(array1)/sizeof(char*), locale(GERMAN_LOCALE));
}

weit found

See also
Searching and Sorting
bsearch_s
_lsearch_s
qsort_s
_lfind

lgamma, lgammaf, lgammal
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);

float lgamma(float x); //C++ only
long double lgamma(long double x); //C++ only

Parameters

Return Value

ISSUE RETURN

x = NaN NaN

x = ±0 +INFINITY

x= negative integer +INFINITY

±INFINITY +INFINITY

pole error +HUGE_VAL, +HUGE_VALF, or +HUGE_VALL

overflow range error ±HUGE_VAL, ±HUGE_VALF, or ±HUGE_VALL

Remarks

Requirements

Determines the natural logarithm of the absolute value of the gamma function of the specified value.

x
The value to compute.

If successful, return the natural logarithm of the absolute value of the gamma function of x.

Errors are reported as specified in _matherr.

Because C++ allows overloading, you can call overloads of lgamma that take and return float and long double
types. In a C program, lgamma always takes and returns a double.

If x is a rational number, this function returns the logarithm of the factorial of (x - 1).

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/lgamma-lgammaf-lgammal.md

FUNCTION C HEADER C++ HEADER

lgamma, lgammaf, lgammal <math.h> <cmath>

See also

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
tgamma, tgammaf, tgammal

localeconv
10/31/2018 • 3 minutes to read • Edit Online

Syntax
struct lconv *localeconv(void);

Return Value

Remarks

FIELD MEANING

decimal_point,
_W_decimal_point

Pointer to decimal-point character for nonmonetary
quantities.

thousands_sep,
_W_thousands_sep

Pointer to character that separates groups of digits to left of
decimal point for nonmonetary quantities.

grouping Pointer to a char-sized integer that contains the size of
each group of digits in nonmonetary quantities.

int_curr_symbol,
_W_int_curr_symbol

Pointer to international currency symbol for current locale.
First three characters specify alphabetic international
currency symbol as defined in the ISO 4217 Codes for the
Representation of Currency and Funds standard. Fourth
character (immediately preceding null character) separates
international currency symbol from monetary quantity.

currency_symbol,
_W_currency_symbol

Pointer to local currency symbol for current locale.

mon_decimal_point,
_W_mon_decimal_point

Pointer to decimal-point character for monetary quantities.

mon_thousands_sep,
_W_mon_thousands_sep

Pointer to separator for groups of digits to left of decimal
place in monetary quantities.

Gets detailed information on locale settings.

localeconv returns a pointer to a filled-in object of type struct lconv. The values contained in the object are
copied from the locale settings in thread-local storage, and can be overwritten by subsequent calls to
localeconv. Changes made to the values in this object do not modify the locale settings. Calls to setlocale with
category values of LC_ALL, LC_MONETARY , or LC_NUMERIC overwrite the contents of the structure.

The localeconv function gets detailed information about numeric formatting for the current locale. This
information is stored in a structure of type lconv. The lconv structure, defined in LOCALE.H, contains the
following members:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/localeconv.md

mon_grouping Pointer to a char-sized integer that contains the size of
each group of digits in monetary quantities.

positive_sign,
_W_positive_sign

String denoting sign for nonnegative monetary quantities.

negative_sign,
_W_negative_sign

String denoting sign for negative monetary quantities.

int_frac_digits Number of digits to right of decimal point in internationally
formatted monetary quantities.

frac_digits Number of digits to right of decimal point in formatted
monetary quantities.

p_cs_precedes Set to 1 if currency symbol precedes value for nonnegative
formatted monetary quantity. Set to 0 if symbol follows
value.

p_sep_by_space Set to 1 if currency symbol is separated by space from value
for nonnegative formatted monetary quantity. Set to 0 if
there is no space separation.

n_cs_precedes Set to 1 if currency symbol precedes value for negative
formatted monetary quantity. Set to 0 if symbol succeeds
value.

n_sep_by_space Set to 1 if currency symbol is separated by space from value
for negative formatted monetary quantity. Set to 0 if there
is no space separation.

p_sign_posn Position of positive sign in nonnegative formatted
monetary quantities.

n_sign_posn Position of positive sign in negative formatted monetary
quantities.

FIELD MEANING

Except as specified, members of the lconv structure that have char * and wchar_t * versions are pointers to
strings. Any of these that equals "" (or L"" for wchar_t *) is either of zero length or not supported in the
current locale. Note that decimal_point and _W_decimal_point are always supported and of nonzero length.

The char members of the structure are small nonnegative numbers, not characters. Any of these that equals
CHAR_MAX is not supported in the current locale.

The values of grouping and mon_grouping are interpreted according to the following rules:

CHAR_MAX - Do not perform any further grouping.

0 - Use previous element for each of remaining digits.

n - Number of digits that make up current group. Next element is examined to determine size of next
group of digits before current group.

The values for int_curr_symbol are interpreted according to the following rules:

The first three characters specify the alphabetic international currency symbol as defined in the ISO

Requirements
ROUTINE REQUIRED HEADER

localeconv <locale.h>

Libraries

See also

4217 Codes for the Representation of Currency and Funds standard.

The fourth character (immediately preceding the null character) separates the international currency
symbol from the monetary quantity.

The values for p_cs_precedes and n_cs_precedes are interpreted according to the following rules (the
n_cs_precedes rule is in parentheses):

0 - Currency symbol follows value for nonnegative (negative) formatted monetary value.

1 - Currency symbol precedes value for nonnegative (negative) formatted monetary value.

The values for p_sep_by_space and n_sep_by_space are interpreted according to the following rules (the
n_sep_by_space rule is in parentheses):

0 - Currency symbol is separated from value by space for nonnegative (negative) formatted monetary
value.

1 - There is no space separation between currency symbol and value for nonnegative (negative)
formatted monetary value.

The values for p_sign_posn and n_sign_posn are interpreted according to the following rules:

0 - Parentheses surround quantity and currency symbol.

1 - Sign string precedes quantity and currency symbol.

2 - Sign string follows quantity and currency symbol.

3 - Sign string immediately precedes currency symbol.

4 - Sign string immediately follows currency symbol.

For additional compatibility information, see Compatibility.

All versions of the C run-time libraries.

Locale
setlocale
strcoll Functions
strftime, wcsftime, _strftime_l, _wcsftime_l
strxfrm, wcsxfrm, _strxfrm_l, _wcsxfrm_l

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/setlocale

localtime, _localtime32, _localtime64
10/31/2018 • 3 minutes to read • Edit Online

Syntax
struct tm *localtime(const time_t *sourceTime);
struct tm *_localtime32(const __time32_t *sourceTime);
struct tm *_localtime64(const __time64_t *sourceTime);

Parameters

Return Value

FIELD DESCRIPTION

tm_sec Seconds after minute (0 - 59).

tm_min Minutes after hour (0 - 59).

tm_hour Hours since midnight (0 - 23).

tm_mday Day of month (1 - 31).

tm_mon Month (0 - 11; January = 0).

tm_year Year (current year minus 1900).

Converts a time value and corrects for the local time zone. More secure versions of these functions are
available; see localtime_s, _localtime32_s, _localtime64_s.

sourceTime
Pointer to stored time.

Return a pointer to the structure result, or NULL if the date passed to the function is:

Before midnight, January 1, 1970.

After 03:14:07, January 19, 2038, UTC (using _time32 and time32_t).

After 23:59:59, December 31, 3000, UTC (using _time64 and __time64_t).

_localtime64, which uses the __time64_t structure, allows dates to be expressed up through 23:59:59,
December 31, 3000, coordinated universal time (UTC), whereas _localtime32 represents dates through
23:59:59 January 18, 2038, UTC.

localtime is an inline function which evaluates to _localtime64, and time_t is equivalent to __time64_t. If
you need to force the compiler to interpret time_t as the old 32-bit time_t, you can define
_USE_32BIT_TIME_T. Doing this will cause localtime to evaluate to _localtime32. This is not
recommended because your application may fail after January 18, 2038, and it is not allowed on 64-bit
platforms.

The fields of the structure type tm store the following values, each of which is an int:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/localtime-localtime32-localtime64.md

tm_wday Day of week (0 - 6; Sunday = 0).

tm_yday Day of year (0 - 365; January 1 = 0).

tm_isdst Positive value if daylight saving time is in effect; 0 if
daylight saving time is not in effect; negative value if status
of daylight saving time is unknown.

FIELD DESCRIPTION

Remarks

NOTE

Requirements
ROUTINE REQUIRED C HEADER REQUIRED C++ HEADER

localtime, _localtime32,
_localtime64

<time.h> <ctime> or <time.h>

Example

If the TZ environment variable is set, the C run-time library assumes rules appropriate to the United States
for implementing the calculation of daylight-saving time (DST).

The localtime function converts a time stored as a time_t value and stores the result in a structure of type
tm. The long value sourceTime represents the seconds elapsed since midnight (00:00:00), January 1, 1970,
UTC. This value is usually obtained from the time function.

Both the 32-bit and 64-bit versions of gmtime, mktime, mkgmtime, and localtime all use a single tm
structure per thread for the conversion. Each call to one of these routines destroys the result of the previous
call.

localtime corrects for the local time zone if the user first sets the global environment variable TZ . When TZ
is set, three other environment variables (_timezone, _daylight, and _tzname) are automatically set as well.
If the TZ variable is not set, localtime attempts to use the time zone information specified in the Date/Time
application in Control Panel. If this information cannot be obtained, PST8PDT, which signifies the Pacific
Time Zone, is used by default. See _tzset for a description of these variables. TZ is a Microsoft extension and
not part of the ANSI standard definition of localtime.

The target environment should try to determine whether daylight saving time is in effect.

These functions validate their parameters. If sourceTime is a null pointer, or if the sourceTime value is
negative, these functions invoke an invalid parameter handler, as described in Parameter Validation. If
execution is allowed to continue, the functions return NULL and set errno to EINVAL.

For additional compatibility information, see Compatibility.

// crt_localtime.cpp
// compile with: /W3
// This program uses _time64 to get the current time
// and then uses localtime64() to convert this time to a structure
// representing the local time. The program converts the result
// from a 24-hour clock to a 12-hour clock and determines the
// proper extension (AM or PM).

#include <stdio.h>
#include <string.h>
#include <time.h>

int main(void)
{
 struct tm *newtime;
 char am_pm[] = "AM";
 __time64_t long_time;

 _time64(&long_time); // Get time as 64-bit integer.
 // Convert to local time.
 newtime = _localtime64(&long_time); // C4996
 // Note: _localtime64 deprecated; consider _localetime64_s

 if(newtime->tm_hour > 12) // Set up extension.
 strcpy_s(am_pm, sizeof(am_pm), "PM");
 if(newtime->tm_hour > 12) // Convert from 24-hour
 newtime->tm_hour -= 12; // to 12-hour clock.
 if(newtime->tm_hour == 0) // Set hour to 12 if midnight.
 newtime->tm_hour = 12;

 char buff[30];
 asctime_s(buff, sizeof(buff), newtime);
 printf("%.19s %s\n", buff, am_pm);
}

Tue Feb 12 10:05:58 AM

See also
Time Management
asctime, _wasctime
ctime, _ctime32, _ctime64, _wctime, _wctime32, _wctime64
_ftime, _ftime32, _ftime64
gmtime, _gmtime32, _gmtime64
localtime_s, _localtime32_s, _localtime64_s
time, _time32, _time64
_tzset

localtime_s, _localtime32_s, _localtime64_s
10/31/2018 • 4 minutes to read • Edit Online

Syntax
errno_t localtime_s(
 struct tm* const tmDest,
 time_t const* const sourceTime
);
errno_t _localtime32_s(
 struct tm* tmDest,
 __time32_t const* sourceTime
);
errno_t _localtime64_s(
 struct tm* tmDest,
 __time64_t const* sourceTime
);

Parameters

Return Value

Error Conditions

TMDEST SOURCETIME RETURN VALUE VALUE IN TMDEST
INVOKES INVALID
PARAMETER HANDLER

NULL any EINVAL Not modified Yes

Not NULL (points to
valid memory)

NULL EINVAL All fields set to -1 Yes

Not NULL (points to
valid memory)

less than 0 or
greater than
_MAX__TIME64_T

EINVAL All fields set to -1 No

Remarks

Converts a time_t time value to a tm structure, and corrects for the local time zone. These are versions of
localtime, _localtime32, _localtime64 with security enhancements as described in Security Features in the CRT.

tmDest
Pointer to the time structure to be filled in.

sourceTime
Pointer to the stored time.

Zero if successful. The return value is an error code if there is a failure. Error codes are defined in Errno.h. For a
listing of these errors, see errno.

In the case of the first two error conditions, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, these functions set errno to EINVAL and return EINVAL.

The _localtime32_s function converts a time stored as a time_t value and stores the result in a structure of

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/localtime-s-localtime32-s-localtime64-s.md

NOTE

FIELD DESCRIPTION

tm_sec Seconds after minute (0 - 59).

tm_min Minutes after hour (0 - 59).

tm_hour Hours since midnight (0 - 23).

tm_mday Day of month (1 - 31).

tm_mon Month (0 - 11; January = 0).

tm_year Year (current year minus 1900).

tm_wday Day of week (0 - 6; Sunday = 0).

tm_yday Day of year (0 - 365; January 1 = 0).

tm_isdst Positive value if daylight saving time is in effect; 0 if daylight
saving time is not in effect; negative value if status of
daylight saving time is unknown.

Requirements

type tm. The long value sourceTime represents the seconds elapsed since midnight (00:00:00), January 1,
1970, UTC. This value is usually obtained from the time function.

_localtime32_s corrects for the local time zone if the user first sets the global environment variable TZ . When
TZ is set, three other environment variables (_timezone, _daylight, and _tzname) are automatically set as
well. If the TZ variable is not set, localtime32_s attempts to use the time zone information specified in the
Date/Time application in Control Panel. If this information cannot be obtained, PST8PDT, which signifies the
Pacific time zone, is used by default. See _tzset for a description of these variables. TZ is a Microsoft extension
and not part of the ANSI standard definition of localtime.

The target environment should try to determine whether daylight saving time is in effect.

_localtime64_s, which uses the __time64_t structure, allows dates to be expressed up through 23:59:59,
January 18, 3001, coordinated universal time (UTC), whereas _localtime32_s represents dates through
23:59:59 January 18, 2038, UTC.

localtime_s is an inline function which evaluates to _localtime64_s, and time_t is equivalent to __time64_t. If
you need to force the compiler to interpret time_t as the old 32-bit time_t, you can define
_USE_32BIT_TIME_T. Doing this will cause localtime_s to evaluate to _localtime32_s. This is not
recommended because your application may fail after January 18, 2038, and it is not allowed on 64-bit
platforms.

The fields of the structure type tm store the following values, each of which is an int.

If the TZ environment variable is set, the C run-time library assumes rules appropriate to the United States for
implementing the calculation of daylight saving time (DST).

ROUTINE REQUIRED C HEADER REQUIRED C++ HEADER

localtime_s, _localtime32_s,
_localtime64_s

<time.h> <ctime> or <time.h>

Example
// crt_localtime_s.c
// This program uses _time64 to get the current time
// and then uses _localtime64_s() to convert this time to a structure
// representing the local time. The program converts the result
// from a 24-hour clock to a 12-hour clock and determines the
// proper extension (AM or PM).

#include <stdio.h>
#include <string.h>
#include <time.h>

int main(void)
{
 struct tm newtime;
 char am_pm[] = "AM";
 __time64_t long_time;
 char timebuf[26];
 errno_t err;

 // Get time as 64-bit integer.
 _time64(&long_time);
 // Convert to local time.
 err = _localtime64_s(&newtime, &long_time);
 if (err)
 {
 printf("Invalid argument to _localtime64_s.");
 exit(1);
 }
 if(newtime.tm_hour > 12) // Set up extension.
 strcpy_s(am_pm, sizeof(am_pm), "PM");
 if(newtime.tm_hour > 12) // Convert from 24-hour
 newtime.tm_hour -= 12; // to 12-hour clock.
 if(newtime.tm_hour == 0) // Set hour to 12 if midnight.
 newtime.tm_hour = 12;

 // Convert to an ASCII representation.
 err = asctime_s(timebuf, 26, &newtime);
 if (err)
 {
 printf("Invalid argument to asctime_s.");
 exit(1);
 }
 printf("%.19s %s\n", timebuf, am_pm);
}

Fri Apr 25 01:19:27 PM

See also

For more compatibility information, see Compatibility.

Time Management
asctime_s, _wasctime_s

ctime, _ctime32, _ctime64, _wctime, _wctime32, _wctime64
_ftime, _ftime32, _ftime64
gmtime_s, _gmtime32_s, _gmtime64_s
localtime, _localtime32, _localtime64
time, _time32, _time64
_tzset

_lock_file
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void _lock_file(FILE* file);

Parameters

Remarks

Requirements
ROUTINE REQUIRED HEADER

_lock_file <stdio.h>

Example

Locks a FILE object to ensure consistency for threads accessing the FILE object concurrently.

file
File handle.

The _lock_file function locks the FILE object specified by file. The underlying file is not locked by _lock_file. Use
_unlock_file to release the lock on the file. Calls to _lock_file and _unlock_file must be matched in a thread.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/lock-file.md

// crt_lock_file.c
// This example creates multiple threads that write to standard output
// concurrently, first with _file_lock, then without.

#include <stdio.h>
#include <process.h>// _beginthread
#include <windows.h>// HANDLE

void Task_locked(void* str)
{
 for(int i=0; i<1000; ++i)
 {
 _lock_file(stdout);
 for(char* cp = (char*)str; *cp; ++cp)
 {
 _fputc_nolock(*cp, stdout);
 }
 _unlock_file(stdout);
 }
}

void Task_unlocked(void* str)
{
 for(int i=0; i<1000; ++i)
 {
 for(char* cp = (char*)str; *cp; ++cp)
 {
 fputc(*cp, stdout);
 }
 }
}

int main()
{
 HANDLE h[3];
 h[0] = (HANDLE)_beginthread(&Task_locked, 0, "First\n");
 h[1] = (HANDLE)_beginthread(&Task_locked, 0, "Second\n");
 h[2] = (HANDLE)_beginthread(&Task_locked, 0, "Third\n");

 WaitForMultipleObjects(3, h, true, INFINITE);

 h[0] = (HANDLE)_beginthread(&Task_unlocked, 0, "First\n");
 h[1] = (HANDLE)_beginthread(&Task_unlocked, 0, "Second\n");
 h[2] = (HANDLE)_beginthread(&Task_unlocked, 0, "Third\n");

 WaitForMultipleObjects(3, h, true, INFINITE);
}

...
First
Second
First
Second
Third
Second
Third
Second
...
FSiercsotn
dF
iSrescto
nFdi
rSsetc
oFnidr
sSte
cFoinrds
tS
eFciornsdt

See also
File Handling
_creat, _wcreat
_open, _wopen
_unlock_file

locking
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _locking instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-locking.md

_locking
11/8/2018 • 2 minutes to read • Edit Online

Syntax
int _locking(
 int fd,
 int mode,
 long nbytes
);

Parameters

Return Value

ERRNO VALUE CONDITION

EACCES Locking violation (file already locked or unlocked).

EBADF Invalid file descriptor.

EDEADLOCK Locking violation. Returned when the _LK_LOCK or _LK_RLCK
flag is specified and the file cannot be locked after 10
attempts.

EINVAL An invalid argument was given to _locking.

Remarks

Locks or unlocks bytes of a file.

fd
File descriptor.

mode
Locking action to perform.

nbytes
Number of bytes to lock.

_locking returns 0 if successful. A return value of -1 indicates failure, in which case errno is set to one of the
following values.

If the failure is due to a bad parameter, such as an invalid file descriptor, the invalid parameter handler is invoked,
as described in Parameter Validation.

The _locking function locks or unlocks nbytes bytes of the file specified by fd. Locking bytes in a file prevents
access to those bytes by other processes. All locking or unlocking begins at the current position of the file pointer
and proceeds for the next nbytes bytes. It is possible to lock bytes past end of file.

mode must be one of the following manifest constants, which are defined in Locking.h.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/locking.md

MODE VALUE EFFECT

_LK_LOCK Locks the specified bytes. If the bytes cannot be locked, the
program immediately tries again after 1 second. If, after 10
attempts, the bytes cannot be locked, the constant returns an
error.

_LK_NBLCK Locks the specified bytes. If the bytes cannot be locked, the
constant returns an error.

_LK_NBRLCK Same as _LK_NBLCK.

_LK_RLCK Same as _LK_LOCK.

_LK_UNLCK Unlocks the specified bytes, which must have been previously
locked.

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_locking <io.h> and <sys/locking.h> <errno.h>

Libraries

Example

Multiple regions of a file that do not overlap can be locked. A region being unlocked must have been previously
locked. _locking does not merge adjacent regions; if two locked regions are adjacent, each region must be
unlocked separately. Regions should be locked only briefly and should be unlocked before closing a file or exiting
the program.

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

// crt_locking.c
/* This program opens a file with sharing. It locks
* some bytes before reading them, then unlocks them. Note that the
* program works correctly only if the file exists.
*/

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/locking.h>
#include <share.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <io.h>

int main(void)
{
 int fh, numread;
 char buffer[40];

 /* Quit if can't open file or system doesn't
 * support sharing.
 */
 errno_t err = _sopen_s(&fh, "crt_locking.txt", _O_RDONLY, _SH_DENYNO,
 _S_IREAD | _S_IWRITE);
 printf("%d %d\n", err, fh);
 if(err != 0)
 exit(1);

 /* Lock some bytes and read them. Then unlock. */
 if(_locking(fh, LK_NBLCK, 30L) != -1)
 {
 long lseek_ret;
 printf("No one can change these bytes while I'm reading them\n");
 numread = _read(fh, buffer, 30);
 buffer[30] = '\0';
 printf("%d bytes read: %.30s\n", numread, buffer);
 lseek_ret = _lseek(fh, 0L, SEEK_SET);
 _locking(fh, LK_UNLCK, 30L);
 printf("Now I'm done. Do what you will with them\n");
 }
 else
 perror("Locking failed\n");

 _close(fh);
}

Input: crt_locking.txt

The first thirty bytes of this file will be locked.

Sample Output
No one can change these bytes while I'm reading them
30 bytes read: The first thirty bytes of this
Now I'm done. Do what you will with them

See also
File Handling
_creat, _wcreat

_open, _wopen

log, logf, logl, log10, log10f, log10l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double log(double x);
float logf(float x);
long double logl(double x);
double log10(double x);
float log10f (float x);
long double log10l(double x);

float log(float x); // C++ only
long double log(long double x); // C++ only
float log10(float x); // C++ only
long double log10(long double x); // C++ only

Parameters

Return Value

INPUT SEH EXCEPTION MATHERR EXCEPTION

± QNAN, IND none _DOMAIN

± 0 ZERODIVIDE _SING

x < 0 INVALID _DOMAIN

Remarks

Requirements

Calculates logarithms.

x
Value whose logarithm is to be found.

The log functions return the natural logarithm (base e) of x if successful. The log10 functions return the base-
10 logarithm. If x is negative, these functions return an indefinite (IND), by default. If x is 0, they return infinity
(INF).

log and log10 have an implementation that uses Streaming SIMD Extensions 2 (SSE2). See _set_SSE2_enable
for information and restrictions on using the SSE2 implementation.

C++ allows overloading, so you can call overloads of log and log10 that take and return float or long
double values. In a C program, log and log10 always take and return a double.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/log-logf-log10-log10f.md

ROUTINE REQUIRED HEADER

log, logf, logl, log10, log10f, log10l <math.h>

Example
// crt_log.c
/* This program uses log and log10
* to calculate the natural logarithm and
* the base-10 logarithm of 9,000.
*/

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x = 9000.0;
 double y;

 y = log(x);
 printf("log(%.2f) = %f\n", x, y);
 y = log10(x);
 printf("log10(%.2f) = %f\n", x, y);
}

log(9000.00) = 9.104980
log10(9000.00) = 3.954243

// logbase.cpp
#include <math.h>
#include <stdio.h>

double logbase(double a, double base)
{
 return log(a) / log(base);
}

int main()
{
 double x = 65536;
 double result;

 result = logbase(x, 2);
 printf("Log base 2 of %lf is %lf\n", x, result);
}

Log base 2 of 65536.000000 is 16.000000

See also

For additional compatibility information, see Compatibility.

To generate logarithms for other bases, use the mathematical relation: log base b of a == natural log (a) /
natural log (b).

Floating-Point Support

exp, expf, expl
_matherr
pow, powf, powl
_CIlog
_CIlog10

log1p, log1pf, log1pl
11/9/2018 • 2 minutes to read • Edit Online

Syntax
double log1p(
 double x
);

float log1p(
 float x
); //C++ only

long double log1p(
 long double x
); //C++ only

float log1pf(
 float x
);

long double log1pl(
 long double x
);

Parameters

Return Value

INPUT RESULT SEH EXCEPTION ERRNO

+inf +inf

Denormals Same as input UNDERFLOW

±0 Same as input

-1 -inf DIVBYZERO ERANGE

< -1 nan INVALID EDOM

-inf nan INVALID EDOM

±SNaN Same as input INVALID

Computes the natural logarithm of 1 plus the specified value.

x
The floating-point argument.

If successful, returns the natural (base-e) log of (x + 1).

Otherwise, may return one of the following values:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/log1p-log1pf-log1pl2.md

±QNaN, indefinite Same as input

INPUT RESULT SEH EXCEPTION ERRNO

Remarks

Requirements
FUNCTION C HEADER C++ HEADER

log1p, log1pf, log1pl <math.h> <cmath>

See also

The errno value is set to ERANGE if x = -1. The errno value is set to EDOM if x < -1.

The log1p functions may be more accurate than using log(x + 1) when x is near 0.

Because C++ allows overloading, you can call overloads of log1p that take and return float and long double
types. In a C program, log1p always takes and returns a double.

If x is a natural number, this function returns the logarithm of the factorial of (x - 1).

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
log2, log2f, log2l
log, logf, log10, log10f

log2, log2f, log2l
11/9/2018 • 2 minutes to read • Edit Online

Syntax
double log2(
 double x
);

float log2(
 float x
); //C++ only

long double log2(
 long double x
); //C++ only

float log2f(
 float x
);

long double log2l(
 long double x
);

Parameters

Return Value

ISSUE RETURN

x < 0 NaN

x = ±0 -INFINITY

x = 1 +0

+INFINITY +INFINITY

NaN NaN

domain error NaN

pole error -HUGE_VAL, -HUGE_VALF, or -HUGE_VALL

Determines the binary (base-2) logarithm of the specified value.

x
The value to determine the base-2 logarithm of.

On success, returns return log2 x.

Otherwise, may return one of the following values:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/log2-log2f-log2l.md

Remarks

Requirements
FUNCTION C HEADER C++ HEADER

log2, log2f, log2l <math.h> <cmath>

See also

Errors are reported as specified in _matherr.

If x is an integer, this function essentially returns the zero-based index of the most significant 1 bit of x.

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
exp2, exp2f, exp2l
log, logf, log10, log10f

logb, logbf, logbl, _logb, _logbf
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double logb(
 double x
);
float logb(
 float x
); // C++ only
long double logb(
 long double x
); // C++ only
float logbf(
 float x
);
long double logbl(
 long double x
);
double _logb(
 double x
);
float _logbf(
 float x
);

Parameters

Return Value

Remarks

INPUT SEH EXCEPTION MATHERR EXCEPTION

± QNAN,IND None _DOMAIN

± 0 ZERODIVIDE _SING

Requirements

Extracts the exponent value of a floating-point argument.

x
A floating-point value.

logb returns the unbiased exponent value of x as a signed integer represented as a floating-point value.

The logb functions extract the exponential value of the floating-point argument x, as though x were represented
with infinite range. If the argument x is denormalized, it is treated as if it were normalized.

Because C++ allows overloading, you can call overloads of logb that take and return float or long double
values. In a C program, logb always takes and returns a double.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/logb-logbf-logbl-logb-logbf.md

ROUTINE REQUIRED HEADER

_logb <float.h>

logb, logbf, logbl, _logbf <math.h>

Libraries

See also

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

Floating-Point Support
frexp

longjmp
3/1/2019 • 2 minutes to read • Edit Online

Syntax
void longjmp(
 jmp_buf env,
 int value
);

Parameters

Remarks

Restores the stack environment and execution locale set by a setjmp call.

env
Variable in which environment is stored.

value
Value to be returned to setjmp call.

The longjmp function restores a stack environment and execution locale previously saved in env by setjmp .
setjmp and longjmp provide a way to execute a nonlocal goto; they are typically used to pass execution control

to error-handling or recovery code in a previously called routine without using the normal call and return
conventions.

A call to setjmp causes the current stack environment to be saved in env. A subsequent call to longjmp restores
the saved environment and returns control to the point immediately following the corresponding setjmp call.
Execution resumes as if value had just been returned by the setjmp call. The values of all variables (except
register variables) that are accessible to the routine receiving control contain the values they had when longjmp
was called. The values of register variables are unpredictable. The value returned by setjmp must be nonzero. If
value is passed as 0, the value 1 is substituted in the actual return.

Microsoft Specific

In Microsoft C++ code on Windows, longjmp uses the same stack-unwinding semantics as exception-handling
code. It is safe to use in the same places that C++ exceptions can be raised. However, this usage is not portable,
and comes with some important caveats.

Only call longjmp before the function that called setjmp returns; otherwise the results are unpredictable.

Observe the following restrictions when using longjmp:

Do not assume that the values of the register variables will remain the same. The values of register
variables in the routine calling setjmp may not be restored to the proper values after longjmp is
executed.

Do not use longjmp to transfer control out of an interrupt-handling routine unless the interrupt is caused
by a floating-point exception. In this case, a program may return from an interrupt handler via longjmp if
it first reinitializes the floating-point math package by calling _fpreset.

Do not use longjmp to transfer control from a callback routine invoked directly or indirectly by Windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/longjmp.md

NOTE

Requirements
ROUTINE REQUIRED HEADER

longjmp <setjmp.h>

Example

See also

code.

If the code is compiled by using /EHs or /EHsc and the function that contains the longjmp call is
noexcept then local objects in that function may not be destructed during the stack unwind.

END Microsoft Specific

In portable C++ code, you can't assume setjmp and longjmp support C++ object semantics. Specifically, a setjmp /
longjmp call pair has undefined behavior if replacing the setjmp and longjmp by catch and throw would invoke any

non-trivial destructors for any automatic objects. In C++ programs, we recommend you use the C++ exception-handling
mechanism.

For more information, see Using setjmp and longjmp.

For additional compatibility information, see Compatibility.

See the example for _fpreset.

Process and Environment Control
setjmp

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/using-setjmp-longjmp

lrint, lrintf, lrintl, llrint, llrintf, llrintl
11/9/2018 • 2 minutes to read • Edit Online

Syntax
long int lrint(
 double x
);

long int lrint(
 float x
); //C++ only

long int lrint(
 long double x
); //C++ only

long int lrintf(
 float x
);

long int lrintl(
 long double x
);

long long int llrint(
 double x
);

long long int llrint(
 float x
); //C++ only

long long int llrint(
 long double x
); //C++ only

long long int llrintf(
 float x
);

long long int llrintl(
 long double x
);

Parameters

Return Value

Rounds the specified floating-point value to the nearest integral value, by using the current rounding mode and
direction.

x
the value to round.

If successful, returns the rounded integral value of x.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/lrint-lrintf-lrintl-llrint-llrintf-llrintl.md

ISSUE RETURN

x is outside the range of the return type

x = ±∞

x = NaN

Raises FE_INVALID and returns zero (0).

Remarks

Requirements
FUNCTION C HEADER C++ HEADER

lrint, lrintf, lrintl, llrint, llrintf, llrintl <math.h> <cmath>

See also

Because C++ allows overloading, you can call overloads of lrint and llrint that take float and long double
types. In a C program, lrint and llrint always take a double.

If x does not represent the floating-point equivalent of an integral value, these functions raise FE_INEXACT.

Microsoft specific: When the result is outside the range of the return type, or when the parameter is a NaN or
infinity, the return value is implementation defined. The Microsoft compiler returns a zero (0) value.

For additional compatibility information, see Compatibility.

Alphabetical Function Reference

lround, lroundf, lroundl, llround, llroundf, llroundl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
long lround(
 double x
);
long lround(
 float x
); // C++ only
long lround(
 long double x
); // C++ only
long lroundf(
 float x
);
long lroundl(
 long double x
);
long long llround(
 double x
);
long long llround(
 float x
); // C++ only
long long llround(
 long double x
); // C++ only
long long llroundf(
 float x
);
long long llroundl(
 long double x
);

Parameters

Return Value

INPUT SEH EXCEPTION MATHERR EXCEPTION

± QNAN, IND none _DOMAIN

Remarks

Rounds a floating-point value to the nearest integer.

x
The floating-point value to round.

The lround and llround functions return the nearest long or long long integer to x. Halfway values are
rounded away from zero, regardless of the setting of the floating-point rounding mode. There is no error return.

Because C++ allows overloading, you can call overloads of lround or llround that take and return float and
long double values. In a C program, lround and llround always take and return a double.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/lround-lroundf-lroundl-llround-llroundf-llroundl.md

Requirements
ROUTINE REQUIRED HEADER

lround, lroundf, lroundl, llround, llroundf, llroundl <math.h>

Example
// crt_lround.c
// Build with: cl /W4 /Tc crt_lround.c
// This example displays the rounded results of
// the floating-point values 2.499999, -2.499999,
// 2.8, -2.8, 3.5 and -3.5.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x = 2.499999;
 float y = 2.8f;
 long double z = 3.5L;

 printf("lround(%f) is %d\n", x, lround(x));
 printf("lround(%f) is %d\n", -x, lround(-x));
 printf("lroundf(%f) is %d\n", y, lroundf(y));
 printf("lroundf(%f) is %d\n", -y, lroundf(-y));
 printf("lroundl(%Lf) is %d\n", z, lroundl(z));
 printf("lroundl(%Lf) is %d\n", -z, lroundl(-z));
}

lround(2.499999) is 2
lround(-2.499999) is -2
lroundf(2.800000) is 3
lroundf(-2.800000) is -3
lroundl(3.500000) is 4
lroundl(-3.500000) is -4

See also

For additional compatibility information, see Compatibility.

Floating-Point Support
ceil, ceilf, ceill
floor, floorf, floorl
fmod, fmodf
lrint, lrintf, lrintl, llrint, llrintf, llrintl
round, roundf, roundl
nearbyint, nearbyintf, nearbyintl
rint, rintf, rintl

_lrotl, _lrotr
10/31/2018 • 2 minutes to read • Edit Online

Syntax
unsigned long _lrotl(unsigned long value, int shift);
unsigned long _lrotr(unsigned long value, int shift);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_lrotl, _lrotr <stdlib.h>

Example

Rotates bits to the left (_lrotl) or right (_lrotr).

value
Value to be rotated.

shift
Number of bits to shift value.

Both functions return the rotated value. There is no error return.

The _lrotl and _lrotr functions rotate value by shift bits. _lrotl rotates the value left, toward more significant bits.
_lrotr rotates the value right, toward less significant bits. Both functions wrap bits rotated off one end of value to
the other end.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/lrotl-lrotr.md

// crt_lrot.c

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 unsigned long val = 0x0fac35791;

 printf("0x%8.8lx rotated left eight bits is 0x%8.8lx\n",
 val, _lrotl(val, 8));
 printf("0x%8.8lx rotated right four bits is 0x%8.8lx\n",
 val, _lrotr(val, 4));
}

0xfac35791 rotated left eight bits is 0xc35791fa
0xfac35791 rotated right four bits is 0x1fac3579

See also
Floating-Point Support
_rotl, _rotl64, _rotr, _rotr64

lsearch
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _lsearch or security-enhanced _lsearch_s instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-lsearch.md

_lsearch
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void *_lsearch(
 const void *key,
 void *base,
 unsigned int *num,
 unsigned int width,
 int (__cdecl *compare)(const void *, const void *)
);

Parameters

Return Value

Remarks

Performs a linear search for a value; adds to end of list if not found. A more secure version of this function is
available; see _lsearch_s.

key
Object to search for.

base
Pointer to the base of array to be searched.

number
Number of elements.

width
Width of each array element.

compare
Pointer to the comparison routine. The first parameter is a pointer to the key for search. The second parameter is
a pointer to an array element to be compared with the key.

If the key is found, _lsearch returns a pointer to the element of the array at base that matches key. If the key is
not found, _lsearch returns a pointer to the newly added item at the end of the array.

The _lsearch function performs a linear search for the value key in an array of number elements, each of width
bytes. Unlike bsearch, _lsearch does not require the array to be sorted. If key is not found, _lsearch adds it to
the end of the array and increments number.

The compare argument is a pointer to a user-supplied routine that compares two array elements and returns a
value specifying their relationship. _lsearch calls the compare routine one or more times during the search,
passing pointers to two array elements on each call. compare must compare the elements and return either
nonzero (meaning the elements are different) or 0 (meaning the elements are identical).

This function validates its parameters. If compare, key or number is NULL, or if base is NULL and number is
nonzero, or if width is less than zero, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, errno is set to EINVAL and the function returns NULL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/lsearch.md

Requirements
ROUTINE REQUIRED HEADER

_lsearch <search.h>

Example
// crt_lsearch.c
#include <search.h>
#include <string.h>
#include <stdio.h>

int compare(const void *arg1, const void *arg2);

int main(void)
{
 char * wordlist[4] = { "hello", "thanks", "bye" };
 // leave room to grow...
 int n = 3;
 char **result;
 char *key = "extra";
 int i;

 printf("wordlist before _lsearch:");
 for(i=0; i<n; ++i) printf(" %s", wordlist[i]);
 printf("\n");

 result = (char **)_lsearch(&key, wordlist,
 &n, sizeof(char *), compare);

 printf("wordlist after _lsearch:");
 for(i=0; i<n; ++i) printf(" %s", wordlist[i]);
 printf("\n");
}

int compare(const void *arg1, const void *arg2)
{
 return(_stricmp(* (char**)arg1, * (char**)arg2));
}

wordlist before _lsearch: hello thanks bye
wordlist after _lsearch: hello thanks bye extra

See also

For more compatibility information, see Compatibility.

Searching and Sorting
bsearch
_lfind
_lsearch_s

_lsearch_s
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void *_lsearch_s(
 const void *key,
 void *base,
 unsigned int *num,
 size_t size,
 int (__cdecl *compare)(void *, const void *, const void *),
 void * context
);

Parameters

Return Value

Error Conditions

KEY BASE COMPARE NUMBER SIZE ERRNO

NULL any any any any EINVAL

Performs a linear search for a value. A version of _lsearch with security enhancements as described in Security
Features in the CRT.

key
Object to search for.

base
Pointer to the base of array to be searched.

number
Number of elements.

size
Size of each array element in bytes.

compare
Pointer to the comparison routine. The second parameter is a pointer to the key for search. The third parameter is
a pointer to an array element to be compared with the key.

context
A pointer to an object that might be accessed in the comparison function.

If key is found, _lsearch_s returns a pointer to the element of the array at base that matches key. If key is not
found, _lsearch_s returns a pointer to the newly added item at the end of the array.

If invalid parameters are passed to the function, the invalid parameter handler is invoked, as described in
Parameter Validation. If execution is allowed to continue, then errno is set to EINVAL and the function returns
NULL. For more information, see errno, _doserrno, _sys_errlist, and _sys_nerr.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/lsearch-s.md

any NULL any != 0 any EINVAL

any any any any zero EINVAL

any any NULL an any EINVAL

KEY BASE COMPARE NUMBER SIZE ERRNO

Remarks

Requirements
ROUTINE REQUIRED HEADER

_lsearch_s <search.h>

See also

The _lsearch_s function performs a linear search for the value key in an array of number elements, each of width
bytes. Unlike bsearch_s, _lsearch_s does not require the array to be sorted. If key is not found, then _lsearch_s
adds it to the end of the array and increments number.

The compare function is a pointer to a user-supplied routine that compares two array elements and returns a
value specifying their relationship. The compare function also takes the pointer to the context as the first
argument. _lsearch_s calls compare one or more times during the search, passing pointers to two array elements
on each call. compare must compare the elements and then return either nonzero (meaning the elements are
different) or 0 (meaning the elements are identical).

The context pointer can be useful if the searched data structure is part of an object and the compare function
needs to access members of the object. For example, code in the compare function can cast the void pointer into
the appropriate object type and access members of that object. The addition of the context pointer makes
_lsearch_s more secure because additional context can be used to avoid reentrancy bugs associated with using
static variables to make data available to the compare function.

For more compatibility information, see Compatibility.

Searching and Sorting
bsearch_s
_lfind_s
_lsearch

lseek
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _lseek instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/lseek.md

_lseek, _lseeki64
11/8/2018 • 2 minutes to read • Edit Online

Syntax
long _lseek(
 int fd,
 long offset,
 int origin
);
__int64 _lseeki64(
 int fd,
 __int64 offset,
 int origin
);

Parameters

Return Value

Remarks

ORIGIN VALUE

SEEK_SET Beginning of the file.

SEEK_CUR Current position of the file pointer.

Moves a file pointer to the specified location.

fd
File descriptor referring to an open file.

offset
Number of bytes from origin.

origin
Initial position.

_lseek returns the offset, in bytes, of the new position from the beginning of the file. _lseeki64 returns the offset
in a 64-bit integer. The function returns -1L to indicate an error. If passed an invalid parameter, such as a bad file
descriptor, or the value for origin is invalid or the position specified by offset is before the beginning of the file,
the invalid parameter handler is invoked, as described in Parameter Validation. If execution is allowed to
continue, these functions set errno to EBADF and return -1L. On devices incapable of seeking (such as
terminals and printers), the return value is undefined.

For more information about these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The _lseek function moves the file pointer associated with fd to a new location that is offset bytes from origin.
The next operation on the file occurs at the new location. The origin argument must be one of the following
constants, which are defined in Stdio.h.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/lseek-lseeki64.md

SEEK_END End of file.

ORIGIN VALUE

Requirements
ROUTINE REQUIRED HEADER

_lseek <io.h>

_lseeki64 <io.h>

Libraries

Example

You can use _lseek to reposition the pointer anywhere in a file or beyond the end of the file.

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

// crt_lseek.c
/* This program first opens a file named lseek.txt.
* It then uses _lseek to find the beginning of the file,
* to find the current position in the file, and to find
* the end of the file.
*/

#include <io.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <share.h>

int main(void)
{
 int fh;
 long pos; /* Position of file pointer */
 char buffer[10];

 _sopen_s(&fh, "crt_lseek.c_input", _O_RDONLY, _SH_DENYNO, 0);

 /* Seek the beginning of the file: */
 pos = _lseek(fh, 0L, SEEK_SET);
 if(pos == -1L)
 perror("_lseek to beginning failed");
 else
 printf("Position for beginning of file seek = %ld\n", pos);

 /* Move file pointer a little */
 _read(fh, buffer, 10);

 /* Find current position: */
 pos = _lseek(fh, 0L, SEEK_CUR);
 if(pos == -1L)
 perror("_lseek to current position failed");
 else
 printf("Position for current position seek = %ld\n", pos);

 /* Set the end of the file: */
 pos = _lseek(fh, 0L, SEEK_END);
 if(pos == -1L)
 perror("_lseek to end failed");
 else
 printf("Position for end of file seek = %ld\n", pos);

 _close(fh);
}

Input: crt_lseek.c_input

Line one.
Line two.
Line three.
Line four.
Line five.

Output

Position for beginning of file seek = 0
Position for current position seek = 10
Position for end of file seek = 57

See also
Low-Level I/O
fseek, _fseeki64
_tell, _telli64

_makepath, _wmakepath
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void _makepath(
 char *path,
 const char *drive,
 const char *dir,
 const char *fname,
 const char *ext
);
void _wmakepath(
 wchar_t *path,
 const wchar_t *drive,
 const wchar_t *dir,
 const wchar_t *fname,
 const wchar_t *ext
);

Parameters

Remarks

Create a path name from components. More secure versions of these functions are available; see _makepath_s,
_wmakepath_s.

path
Full path buffer.

drive
Contains a letter (A, B, and so on) corresponding to the desired drive and an optional trailing colon. _makepath
inserts the colon automatically in the composite path if it is missing. If drive is NULL or points to an empty
string, no drive letter appears in the composite path string.

dir
Contains the path of directories, not including the drive designator or the actual file name. The trailing slash is
optional, and either a forward slash (/) or a backslash (\) or both might be used in a single dir argument. If no
trailing slash (/ or \) is specified, it is inserted automatically. If dir is NULL or points to an empty string, no
directory path is inserted in the composite path string.

fname
Contains the base file name without any file name extensions. If fname is NULL or points to an empty string, no
filename is inserted in the composite path string.

ext
Contains the actual file name extension, with or without a leading period (.). _makepath inserts the period
automatically if it does not appear in ext. If ext is NULL or points to an empty string, no extension is inserted in
the composite path string.

The _makepath function creates a composite path string from individual components, storing the result in path.
The path might include a drive letter, directory path, filename, and filename extension. _wmakepath is a wide-
character version of _makepath; the arguments to _wmakepath are wide-character strings. _wmakepath and
_makepath behave identically otherwise.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/makepath-wmakepath.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tmakepath _makepath _makepath _wmakepath

Requirements
ROUTINE REQUIRED HEADER

_makepath <stdlib.h>

_wmakepath <stdlib.h> or <wchar.h>

Example
// crt_makepath.c
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char path_buffer[_MAX_PATH];
 char drive[_MAX_DRIVE];
 char dir[_MAX_DIR];
 char fname[_MAX_FNAME];
 char ext[_MAX_EXT];

 _makepath(path_buffer, "c", "\\sample\\crt\\", "makepath", "c"); // C4996
 // Note: _makepath is deprecated; consider using _makepath_s instead
 printf("Path created with _makepath: %s\n\n", path_buffer);
 _splitpath(path_buffer, drive, dir, fname, ext); // C4996
 // Note: _splitpath is deprecated; consider using _splitpath_s instead
 printf("Path extracted with _splitpath:\n");
 printf(" Drive: %s\n", drive);
 printf(" Dir: %s\n", dir);
 printf(" Filename: %s\n", fname);
 printf(" Ext: %s\n", ext);
}

Security Note Use a null-terminated string. To avoid buffer overrun, the null-terminated string must not exceed
the size of the path buffer. _makepath does not ensure that the length of the composite path string does not
exceed _MAX_PATH. For more information, see Avoiding Buffer Overruns.

The path argument must point to an empty buffer large enough to hold the complete path. The composite path
must be no larger than the _MAX_PATH constant, defined in Stdlib.h.

If path is NULL, the invalid parameter handler is invoked, as described in Parameter Validation. In addition,
errno is set to EINVAL. NULL values are allowed for all other parameters.

For more compatibility information, see Compatibility.

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

Path created with _makepath: c:\sample\crt\makepath.c

Path extracted with _splitpath:
 Drive: c:
 Dir: \sample\crt\
 Filename: makepath
 Ext: .c

See also
File Handling
_fullpath, _wfullpath
_splitpath, _wsplitpath
_makepath_s, _wmakepath_s

_makepath_s, _wmakepath_s
3/1/2019 • 3 minutes to read • Edit Online

Syntax
errno_t _makepath_s(
 char *path,
 size_t sizeInBytes,
 const char *drive,
 const char *dir,
 const char *fname,
 const char *ext
);
errno_t _wmakepath_s(
 wchar_t *path,
 size_t sizeInWords,
 const wchar_t *drive,
 const wchar_t *dir,
 const wchar_t *fname,
 const wchar_t *ext
);
template <size_t size>
errno_t _makepath_s(
 char (&path)[size],
 const char *drive,
 const char *dir,
 const char *fname,
 const char *ext
); // C++ only
template <size_t size>
errno_t _wmakepath_s(
 wchar_t (&path)[size],
 const wchar_t *drive,
 const wchar_t *dir,
 const wchar_t *fname,
 const wchar_t *ext
); // C++ only

Parameters

Creates a path name from components. These are versions of _makepath, _wmakepath with security
enhancements as described in Security Features in the CRT.

path
Full path buffer.

sizeInWords
Size of the buffer in words.

sizeInBytes
Size of the buffer in bytes.

drive
Contains a letter (A, B, and so on) corresponding to the desired drive and an optional trailing colon.
_makepath_s inserts the colon automatically in the composite path if it is missing. If drive is NULL or points to
an empty string, no drive letter appears in the composite path string.

dir

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/makepath-s-wmakepath-s.md

Return Value

Error Conditions

PATH SIZEINWORDS / SIZEINBYTES RETURN CONTENTS OF PATH

NULL any EINVAL not modified

any <= 0 EINVAL not modified

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tmakepath_s _makepath_s _makepath_s _wmakepath_s

Contains the path of directories, not including the drive designator or the actual file name. The trailing slash is
optional, and either a forward slash (/) or a backslash (\) or both might be used in a single dir argument. If no
trailing slash (/ or \) is specified, it is inserted automatically. If dir is NULL or points to an empty string, no
directory path is inserted in the composite path string.

fname
Contains the base file name without any file name extensions. If fname is NULL or points to an empty string, no
filename is inserted in the composite path string.

ext
Contains the actual file name extension, with or without a leading period (.). _makepath_s inserts the period
automatically if it does not appear in ext. If ext is NULL or points to an empty string, no extension is inserted in
the composite path string.

Zero if successful; an error code on failure.

If any of the above error conditions occurs, these functions invoke the invalid parameter handler, as described in
Parameter Validation. If execution is allowed to continue, errno is set to EINVAL and the functions returns
EINVAL. NULL is allowed for the parameters drive, fname, and ext. For information about the behavior when
these parameters are null pointers or empty strings, see the Remarks section.

The _makepath_s function creates a composite path string from individual components, storing the result in
path. The path might include a drive letter, directory path, file name, and file name extension. _wmakepath_s is a
wide-character version of _makepath_s; the arguments to _wmakepath_s are wide-character strings.
_wmakepath_s and _makepath_s behave identically otherwise.

The path argument must point to an empty buffer large enough to hold the complete path. The composite path
must be no larger than the _MAX_PATH constant, defined in Stdlib.h.

If path is NULL, the invalid parameter handler is invoked, as described in Parameter Validation. In addition,
errno is set to EINVAL. NULL values are allowed for all other parameters.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically (eliminating the need to specify a size argument) and they can automatically replace older, non-
secure functions with their newer, secure counterparts. For more information, see Secure Template Overloads.

The debug versions of these functions first fill the buffer with 0xFD. To disable this behavior, use
_CrtSetDebugFillThreshold.

Requirements
ROUTINE REQUIRED HEADER

_makepath_s <stdlib.h>

_wmakepath_s <stdlib.h> or <wchar.h>

Example
// crt_makepath_s.c

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char path_buffer[_MAX_PATH];
 char drive[_MAX_DRIVE];
 char dir[_MAX_DIR];
 char fname[_MAX_FNAME];
 char ext[_MAX_EXT];
 errno_t err;

 err = _makepath_s(path_buffer, _MAX_PATH, "c", "\\sample\\crt\\",
 "crt_makepath_s", "c");
 if (err != 0)
 {
 printf("Error creating path. Error code %d.\n", err);
 exit(1);
 }
 printf("Path created with _makepath_s: %s\n\n", path_buffer);
 err = _splitpath_s(path_buffer, drive, _MAX_DRIVE, dir, _MAX_DIR, fname,
 _MAX_FNAME, ext, _MAX_EXT);
 if (err != 0)
 {
 printf("Error splitting the path. Error code %d.\n", err);
 exit(1);
 }
 printf("Path extracted with _splitpath_s:\n");
 printf(" Drive: %s\n", drive);
 printf(" Dir: %s\n", dir);
 printf(" Filename: %s\n", fname);
 printf(" Ext: %s\n", ext);
}

Path created with _makepath_s: c:\sample\crt\crt_makepath_s.c

Path extracted with _splitpath_s:
 Drive: c:
 Dir: \sample\crt\
 Filename: crt_makepath_s
 Ext: .c

See also

For more compatibility information, see Compatibility.

File Handling
_fullpath, _wfullpath

_splitpath_s, _wsplitpath_s
_makepath, _wmakepath

malloc
10/31/2018 • 3 minutes to read • Edit Online

Syntax
void *malloc(
 size_t size
);

Parameters

Return Value

Remarks

calloc fscanf _getw setvbuf

_exec functions fseek _popen _spawn functions

fgetc fsetpos printf _strdup

_fgetchar _fullpath putc system

Allocates memory blocks.

size
Bytes to allocate.

malloc returns a void pointer to the allocated space, or NULL if there is insufficient memory available. To
return a pointer to a type other than void, use a type cast on the return value. The storage space pointed to
by the return value is guaranteed to be suitably aligned for storage of any type of object that has an
alignment requirement less than or equal to that of the fundamental alignment. (In Visual C++, the
fundamental alignment is the alignment that's required for a double, or 8 bytes. In code that targets 64-bit
platforms, it’s 16 bytes.) Use _aligned_malloc to allocate storage for objects that have a larger alignment
requirement—for example, the SSE types __m128 and __m256, and types that are declared by using
__declspec(align(n)) where n is greater than 8. If size is 0, malloc allocates a zero-length item in the

heap and returns a valid pointer to that item. Always check the return from malloc, even if the amount of
memory requested is small.

The malloc function allocates a memory block of at least size bytes. The block may be larger than size bytes
because of the space that's required for alignment and maintenance information.

malloc sets errno to ENOMEM if a memory allocation fails or if the amount of memory requested
exceeds _HEAP_MAXREQ. For information about this and other error codes, see errno, _doserrno,
_sys_errlist, and _sys_nerr.

The startup code uses malloc to allocate storage for the _environ, envp, and argv variables. The following
functions and their wide-character counterparts also call malloc.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/malloc.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/m128

fgets fwrite putchar _tempnam

fprintf getc _putenv ungetc

fputc getchar puts vfprintf

_fputchar _getcwd _putw vprintf

fputs _getdcwd scanf

fread gets _searchenv

Requirements
ROUTINE REQUIRED HEADER

malloc <stdlib.h> and <malloc.h>

Libraries

Example

The C++ _set_new_mode function sets the new handler mode for malloc. The new handler mode indicates
whether, on failure, malloc is to call the new handler routine as set by _set_new_handler. By default, malloc
does not call the new handler routine on failure to allocate memory. You can override this default behavior
so that, when malloc fails to allocate memory, malloc calls the new handler routine in the same way that
the new operator does when it fails for the same reason. To override the default, call _set_new_mode(1)

early in your program, or link with NEWMODE.OBJ (see Link Options).

When the application is linked with a debug version of the C run-time libraries, malloc resolves to
_malloc_dbg. For more information about how the heap is managed during the debugging process, see
CRT Debug Heap Details.

malloc is marked __declspec(noalias) and __declspec(restrict) ; this means that the function is
guaranteed not to modify global variables, and that the pointer returned is not aliased. For more
information, see noalias and restrict.

For additional compatibility information, see Compatibility.

All versions of the C run-time libraries.

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/noalias
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/restrict

// crt_malloc.c
// This program allocates memory with
// malloc, then frees the memory with free.

#include <stdlib.h> // For _MAX_PATH definition
#include <stdio.h>
#include <malloc.h>

int main(void)
{
 char *string;

 // Allocate space for a path name
 string = malloc(_MAX_PATH);

 // In a C++ file, explicitly cast malloc's return. For example,
 // string = (char *)malloc(_MAX_PATH);

 if(string == NULL)
 printf("Insufficient memory available\n");
 else
 {
 printf("Memory space allocated for path name\n");
 free(string);
 printf("Memory freed\n");
 }
}

Memory space allocated for path name
Memory freed

See also
Memory Allocation
calloc
free
realloc
_aligned_malloc

_malloc_dbg
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void *_malloc_dbg(
 size_t size,
 int blockType,
 const char *filename,
 int linenumber
);

Parameters

Return Value

Remarks

Allocates a block of memory in the heap with additional space for a debugging header and overwrite buffers
(debug version only).

size
Requested size of the memory block (in bytes).

blockType
Requested type of the memory block: _CLIENT_BLOCK or _NORMAL_BLOCK.

filename
Pointer to the name of the source file that requested the allocation operation or NULL.

linenumber
Line number in the source file where the allocation operation was requested or NULL.

The filename and linenumber parameters are only available when _malloc_dbg has been called explicitly or
the _CRTDBG_MAP_ALLOC preprocessor constant has been defined.

On successful completion, this function returns a pointer to the user portion of the allocated memory block,
calls the new handler function, or returns NULL. For a complete description of the return behavior, see the
following Remarks section. For more information about how the new handler function is used, see the malloc
function.

_malloc_dbg is a debug version of the malloc function. When _DEBUG is not defined, each call to
_malloc_dbg is reduced to a call to malloc. Both malloc and _malloc_dbg allocate a block of memory in
the base heap, but _malloc_dbg offers several debugging features: buffers on either side of the user portion
of the block to test for leaks, a block type parameter to track specific allocation types, and
filename/linenumber information to determine the origin of allocation requests.

_malloc_dbg allocates the memory block with slightly more space than the requested size. The additional
space is used by the debug heap manager to link the debug memory blocks and to provide the application
with debug header information and overwrite buffers. When the block is allocated, the user portion of the
block is filled with the value 0xCD and each of the overwrite buffers are filled with 0xFD.

_malloc_dbg sets errno to ENOMEM if a memory allocation fails or if the amount of memory needed

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/malloc-dbg.md

Requirements
ROUTINE REQUIRED HEADER

_malloc_dbg <crtdbg.h>

Libraries

Example

See also

(including the overhead mentioned previously) exceeds _HEAP_MAXREQ. For information about this and
other error codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

For information about how memory blocks are allocated, initialized, and managed in the debug version of the
base heap, see CRT Debug Heap Details. For information about the allocation block types and how they are
used, see Types of blocks on the debug heap. For information about the differences between calling a
standard heap function and its debug version in a debug build of an application, see Debug Versions of Heap
Allocation Functions.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

For a sample of how to use _malloc_dbg, see crt_dbg1.

Debug Routines
malloc
_calloc_dbg
_calloc_dbg

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/debug-versions-of-heap-allocation-functions
https://github.com/Microsoft/VCSamples/tree/master/VC2010Samples/crt/crt_dbg1

_malloca
2/7/2019 • 3 minutes to read • Edit Online

Syntax
void *_malloca(
 size_t size
);

Parameters

Return Value

Remarks

Allocates memory on the stack. This is a version of _alloca with security enhancements as described in Security
Features in the CRT.

size
Bytes to be allocated from the stack.

The _malloca routine returns a void pointer to the allocated space, which is guaranteed to be suitably aligned
for storage of any type of object. If size is 0, _malloca allocates a zero-length item and returns a valid pointer to
that item.

If size is greater than _ALLOCA_S_THRESHOLD , then _malloca attempts to allocate on the heap, and returns a
null pointer if the space can't be allocated. If size is less than or equal to _ALLOCA_S_THRESHOLD , then
_malloca attempts to allocate on the stack, and a stack overflow exception is generated if the space can't be
allocated. The stack overflow exception isn't a C++ exception; it's a structured exception. Instead of using C++
exception handling, you must use Structured Exception Handling (SEH) to catch this exception.

_malloca allocates size bytes from the program stack or the heap if the request exceeds a certain size in bytes
given by _ALLOCA_S_THRESHOLD . The difference between _malloca and _alloca is that _alloca always
allocates on the stack, regardless of the size. Unlike _alloca, which does not require or permit a call to free to
free the memory so allocated, _malloca requires the use of _freea to free memory. In debug mode, _malloca
always allocates memory from the heap.

There are restrictions to explicitly calling _malloca in an exception handler (EH). EH routines that run on x86-
class processors operate in their own memory frame: They perform their tasks in memory space that is not
based on the current location of the stack pointer of the enclosing function. The most common implementations
include Windows NT structured exception handling (SEH) and C++ catch clause expressions. Therefore,
explicitly calling _malloca in any of the following scenarios results in program failure during the return to the
calling EH routine:

Windows NT SEH exception filter expression: __except (_malloca ())

Windows NT SEH final exception handler: __finally { _malloca () }

C++ EH catch clause expression

However, _malloca can be called directly from within an EH routine or from an application-supplied callback
that gets invoked by one of the EH scenarios previously listed.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/malloca.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/structured-exception-handling-c-cpp

IMPORTANT

Requirements
ROUTINE REQUIRED HEADER

_malloca <malloc.h>

Example
// crt_malloca_simple.c
#include <stdio.h>
#include <malloc.h>

void Fn()
{
 char * buf = (char *)_malloca(100);
 // do something with buf
 _freea(buf);
}

int main()
{
 Fn();
}

Example

In Windows XP, if _malloca is called inside a try/catch block, you must call _resetstkoflw in the catch block.

In addition to the above restrictions, when using the /clr (Common Language Runtime Compilation) option,
_malloca cannot be used in __except blocks. For more information, see /clr Restrictions.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-restrictions

// crt_malloca_exception.c
// This program demonstrates the use of
// _malloca and trapping any exceptions
// that may occur.

#include <windows.h>
#include <stdio.h>
#include <malloc.h>

int main()
{
 int size;
 int numberRead = 0;
 int errcode = 0;
 void *p = NULL;
 void *pMarker = NULL;

 while (numberRead == 0)
 {
 printf_s("Enter the number of bytes to allocate "
 "using _malloca: ");
 numberRead = scanf_s("%d", &size);
 }

 // Do not use try/catch for _malloca,
 // use __try/__except, since _malloca throws
 // Structured Exceptions, not C++ exceptions.

 __try
 {
 if (size > 0)
 {
 p = _malloca(size);
 }
 else
 {
 printf_s("Size must be a positive number.");
 }
 _freea(p);
 }

 // Catch any exceptions that may occur.
 __except(GetExceptionCode() == STATUS_STACK_OVERFLOW)
 {
 printf_s("_malloca failed!\n");

 // If the stack overflows, use this function to restore.
 errcode = _resetstkoflw();
 if (errcode)
 {
 printf("Could not reset the stack!");
 _exit(1);
 }
 };
}

Input

1000

Sample Output

Enter the number of bytes to allocate using _malloca: 1000

See also
Memory Allocation
calloc
malloc
realloc
_resetstkoflw

_matherr
11/8/2018 • 3 minutes to read • Edit Online

Syntax
int _matherr(struct _exception * except);

Parameters

Return Value

Remarks

struct _exception
{
 int type; // exception type - see below
 char* name; // name of function where error occurred
 double arg1; // first argument to function
 double arg2; // second argument (if any) to function
 double retval; // value to be returned by function
};

MACRO MEANING

_DOMAIN Argument domain error

_SING Argument singularity

Handles math errors.

except
Pointer to the structure containing error information.

_matherr returns 0 to indicate an error, or a nonzero value to indicate success. If _matherr returns 0, an
error message can be displayed and errno is set to an appropriate error value. If _matherr returns a
nonzero value, no error message is displayed and errno remains unchanged.

For more information about return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The _matherr function processes errors generated by the floating-point functions of the math library. These
functions call _matherr when an error is detected.

For special error handling, you can provide a different definition of _matherr. If you use the dynamically
linked version of the C run-time library (CRT), you can replace the default _matherr routine in a client
executable with a user-defined version. However, you cannot replace the default _matherr routine in a DLL
client of the CRT DLL.

When an error occurs in a math routine, _matherr is called with a pointer to an _exception type structure
(defined in <math.h>) as an argument. The _exception structure contains the following elements.

The type member specifies the type of math error. It is one of the following values, defined in <math.h>:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/matherr.md

_OVERFLOW Overflow range error

_PLOSS Partial loss of significance

_TLOSS Total loss of significance

_UNDERFLOW The result is too small to be represented. (This condition is
not currently supported.)

MACRO MEANING

Requirements
ROUTINE REQUIRED HEADER

_matherr <math.h>

Example

The structure member name is a pointer to a null-terminated string containing the name of the function
that caused the error. The structure members arg1 and arg2 specify the values that caused the error. If only
one argument is given, it is stored in arg1.

The default return value for the given error is retval. If you change the return value, it must specify whether
an error actually occurred.

For more compatibility information, see Compatibility.

// crt_matherr.c
/* illustrates writing an error routine for math
* functions. The error function must be:
* _matherr
*/

#include <math.h>
#include <string.h>
#include <stdio.h>

int main()
{
 /* Do several math operations that cause errors. The _matherr
 * routine handles _DOMAIN errors, but lets the system handle
 * other errors normally.
 */
 printf("log(-2.0) = %e\n", log(-2.0));
 printf("log10(-5.0) = %e\n", log10(-5.0));
 printf("log(0.0) = %e\n", log(0.0));
}

/* Handle several math errors caused by passing a negative argument
* to log or log10 (_DOMAIN errors). When this happens, _matherr
* returns the natural or base-10 logarithm of the absolute value
* of the argument and suppresses the usual error message.
*/
int _matherr(struct _exception *except)
{
 /* Handle _DOMAIN errors for log or log10. */
 if(except->type == _DOMAIN)
 {
 if(strcmp(except->name, "log") == 0)
 {
 except->retval = log(-(except->arg1));
 printf("Special: using absolute value: %s: _DOMAIN "
 "error\n", except->name);
 return 1;
 }
 else if(strcmp(except->name, "log10") == 0)
 {
 except->retval = log10(-(except->arg1));
 printf("Special: using absolute value: %s: _DOMAIN "
 "error\n", except->name);
 return 1;
 }
 }
 printf("Normal: ");
 return 0; /* Else use the default actions */
}

Special: using absolute value: log: _DOMAIN error
log(-2.0) = 6.931472e-01
Special: using absolute value: log10: _DOMAIN error
log10(-5.0) = 6.989700e-01
Normal: log(0.0) = -inf

See also
Floating-Point Support

__max
10/31/2018 • 2 minutes to read • Edit Online

Syntax
#define __max(a,b) (((a) > (b)) ? (a) : (b))

Parameters

Return Value

Remarks

Requirements
MACRO REQUIRED HEADER

__max <stdlib.h>

Example

See also

A preprocessor macro that returns the larger of two values.

a, b
Values of any numeric type to be compared.

__max returns the larger of its arguments.

The __max macro compares two values and returns the value of the larger one. The arguments can be of any
numeric data type, signed or unsigned. Both arguments and the return value must be of the same data type.

The argument returned is evaluated twice by the macro. This can lead to unexpected results if the argument is an
expression that alters its value when it is evaluated, such as *p++ .

For more information, see the example for __min.

Floating-Point Support
__min

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/max.md

_mbbtombc, _mbbtombc_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
unsigned int _mbbtombc(
 unsigned int c
);
unsigned int _mbbtombc_l(
 unsigned int c,
 _locale_t locale
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_mbbtombc <mbstring.h>

_mbbtombc_l <mbstring.h>

Converts a single-byte multibyte character to a corresponding double-byte multibyte character.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

c
Single-byte character to convert.

locale
Locale to use.

If _mbbtombc successfully converts c, it returns a multibyte character ; otherwise, it returns c.

The _mbbtombc function converts a given single-byte multibyte character to a corresponding double-byte
multibyte character. Characters must be within the range 0x20 - 0x7E or 0xA1 - 0xDF to be converted.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale,
_wsetlocale for more information. The versions of this function are identical, except that _mbbtombc uses the
current locale for this locale-dependent behavior and _mbbtombc_l instead uses the locale parameter that's
passed in. For more information, see Locale.

In earlier versions, _mbbtombc was named hantozen. For new code, use _mbbtombc.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbbtombc-mbbtombc-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

See also

For more compatibility information, see Compatibility.

Data Conversion
_mbctombb, _mbctombb_l

_mbbtype, _mbbtype_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _mbbtype(
 unsigned char c,
 int type
);
int _mbbtype_l(
 unsigned char c,
 int type,
 _locale_t locale
);

Parameters

Return Value

VALUE OF TYPE _MBBTYPE TESTS FOR RETURN VALUE C

Any value except 1 Valid single byte or lead byte _MBC_SINGLE (0) Single byte (0x20 - 0x7E,
0xA1 - 0xDF)

Any value except 1 Valid single byte or lead byte _MBC_LEAD (1) Lead byte of multibyte
character (0x81 - 0x9F, 0xE0
- 0xFC)

Any value except 1 Valid single-byte or lead
byte

_MBC_ILLEGAL

(-1)

Invalid character (any value
except 0x20 - 0x7E, 0xA1 -
0xDF, 0x81 - 0x9F, 0xE0 -
0xFC

Returns the byte type, based on the previous byte.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

c
The character to test.

type
The type of byte to test for.

locale
The locale to use.

_mbbtype returns the type of byte in a string. This decision is context-sensitive, as specified by the value of type,
which provides the control test condition. type is the type of the previous byte in the string. The manifest constants
in the following table are defined in Mbctype.h.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbbtype-mbbtype-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

1 Valid trail byte _MBC_TRAIL (2) Trailing byte of multibyte
character (0x40 - 0x7E, 0x80
- 0xFC)

1 Valid trail byte _MBC_ILLEGAL

(-1)

Invalid character (any value
except 0x20 - 0x7E, 0xA1 -
0xDF, 0x81 - 0x9F, 0xE0 -
0xFC

VALUE OF TYPE _MBBTYPE TESTS FOR RETURN VALUE C

Remarks

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_mbbtype <mbstring.h> <mbctype.h>*

_mbbtype_l <mbstring.h> <mbctype.h>*

See also

The _mbbtype function determines the type of a byte in a multibyte character. If the value of type is any value
except 1, _mbbtype tests for a valid single-byte or lead byte of a multibyte character. If the value of type is 1,
_mbbtype tests for a valid trail byte of a multibyte character.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale,
_wsetlocale for more information. The _mbbtype version of this function uses the current locale for this locale-
dependent behavior ; the _mbbtype_l version is identical except that it use the locale parameter that's passed in
instead. For more information, see Locale.

In earlier versions, _mbbtype was named chkctype. For new code, use _mbbtype instead.

* For definitions of manifest constants that are used as return values.

For more compatibility information, see Compatibility.

Byte Classification

_mbccpy, _mbccpy_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
void _mbccpy(
 unsigned char *dest,
 const unsigned char *src
);
void _mbccpy_l(
 unsigned char *dest,
 const unsigned char *src,
 _locale_t locale
);

Parameters

Remarks

Generic-Text Routine Mappings

Copies a multibyte character from one string to another string. More secure versions of these functions are
available; see _mbccpy_s, _mbccpy_s_l.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

dest
Copy destination.

src
Multibyte character to copy.

locale
Locale to use.

The _mbccpy function copies one multibyte character from src to dest.

This function validates its parameters. If _mbccpy is passed a null pointer for dest or src, the invalid parameter
handler is invoked, as described in Parameter Validation. If execution is allowed to continue, errno is set to
EINVAL.

_mbccpy uses the current locale for any locale-dependent behavior. _mbccpy_l is identical to _mbccpy except
that _mbccpy_l uses the locale passed in for any locale-dependent behavior. For more information, see Locale.

Security Note Use a null-terminated string. The null-terminated string must not exceed the size of the
destination buffer. For more information, see Avoiding Buffer Overruns. Buffer overrun problems are a frequent
method of system attack, resulting in an unwarranted elevation of privilege.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbccpy-mbccpy-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps
https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tccpy Maps to macro or inline
function

_mbccpy Maps to macro or inline
function

_tccpy_l n/a _mbccpy_l n/a

Requirements
ROUTINE REQUIRED HEADER

_mbccpy <mbctype.h>

_mbccpy_l <mbctype.h>

See also

For more compatibility information, see Compatibility.

Locale
Interpretation of Multibyte-Character Sequences
_mbclen, mblen, _mblen_l

_mbccpy_s, _mbccpy_s_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
errno_t _mbccpy_s(
 unsigned char *dest,
 size_t buffSizeInBytes,
 int * pCopied,
 const unsigned char *src
);
errno_t _mbccpy_s_l(
 unsigned char *dest,
 size_t buffSizeInBytes,
 int * pCopied,
 const unsigned char *src,
 locale_t locale
);
template <size_t size>
errno_t _mbccpy_s(
 unsigned char (&dest)[size],
 int * pCopied,
 const unsigned char *src
); // C++ only
template <size_t size>
errno_t _mbccpy_s_l(
 unsigned char (&dest)[size],
 int * pCopied,
 const unsigned char *src,
 locale_t locale
); // C++ only

Parameters

Copies one multibyte character from a string to another string. These versions of _mbccpy, _mbccpy_l have
security enhancements, as described in Security Features in the CRT.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

dest
Copy destination.

buffSizeInBytes
Size of the destination buffer.

pCopied
Filled with the number of bytes copied (1 or 2 if successful). Pass NULL if you don't care about the number.

src
Multibyte character to copy.

locale
Locale to use.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbccpy-s-mbccpy-s-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Return Value

Remarks

SRC COPIED TO DEST PCOPIED RETURN VALUE

non-lead-byte non-lead-byte 1 0

0 0 1 0

lead-byte followed by non-0 lead-byte followed by non-0 2 0

lead-byte followed by 0 0 1 EILSEQ

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tccpy_s Maps to macro or inline
function.

_mbccpy_s Maps to macro or inline
function.

Requirements
ROUTINE REQUIRED HEADER

_mbccpy_s <mbstring.h>

_mbccpy_s_l <mbstring.h>

Zero if successful; an error code on failure. If src or dest is NULL, or if more than buffSizeinBytes bytes would
be copied to dest, then the invalid parameter handler is invoked, as described in Parameter Validation. If execution
is allowed to continue, the functions return EINVAL and errno is set to EINVAL.

The _mbccpy_s function copies one multibyte character from src to dest. If src does not point to the lead byte of a
multibyte character as determined by an implicit call to _ismbblead, then the single byte that src points to is
copied. If src points to a lead byte but the following byte is 0 and thus invalid, then 0 is copied to dest, errno is set
to EILSEQ, and the function returns EILSEQ.

_mbccpy_s does not append a null terminator ; however, if src points to a null character, then that null is copied to
dest (this is just a regular single-byte copy).

The value in pCopied is filled with the number of bytes copied. Possible values are 1 and 2 if the operation is
successful. If NULL is passed in, this parameter is ignored.

Note that the second row is just a special case of the first. Also note that the table assumes buffSizeInBytes >=
pCopied.

_mbccpy_s uses the current locale for any locale-dependent behavior. _mbccpy_s_l is identical to _mbccpy_s
except that _mbccpy_s_l uses the locale passed in for any locale-dependent behavior.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically, eliminating the need to specify a size argument. For more information, see Secure Template
Overloads.

See also

For more compatibility information, see Compatibility.

Locale
Interpretation of Multibyte-Character Sequences
_mbclen, mblen, _mblen_l

_mbcjistojms, _mbcjistojms_l, _mbcjmstojis,
_mbcjmstojis_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
unsigned int _mbcjistojms(
 unsigned int c
);
unsigned int _mbcjistojms_l(
 unsigned int c,
 _locale_t locale
);
unsigned int _mbcjmstojis(
 unsigned int c
);
unsigned int _mbcjmstojis_l(
 unsigned int c,
 _locale_t locale
);

Parameters

Return Value

Remarks

Converts between Japan Industry Standard (JIS) and Japan Microsoft (JMS) characters.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

c
Character to convert.

locale
Locale to use.

On Japanese locale, these functions return a converted character or return 0 if no conversion is possible. On a
non-Japanese locale, these functions return the character passed in.

The _mbcjistojms function converts a Japan Industry Standard (JIS) character to a Microsoft Kanji (Shift J IS)
character. The character is converted only if the lead and trail bytes are in the range 0x21 - 0x7E. If the lead or
trial byte is outside this range, errno is set to EILSEQ. For more information about this and other error codes,
see errno, _doserrno, _sys_errlist, and _sys_nerr.

The _mbcjmstojis function converts a Shift J IS character to a JIS character. The character is converted only if the
lead byte is in the range 0x81 - 0x9F or 0xE0 - 0xFC and the trail byte is in the range 0x40 - 0x7E or 0x80 - 0xFC.
Note that some code points in that range do not have a character assigned and so cannot be converted.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbcjistojms-mbcjistojms-l-mbcjmstojis-mbcjmstojis-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Requirements
ROUTINE REQUIRED HEADER

_mbcjistojms <mbstring.h>

_mbcjistojms_l <mbstring.h>

_mbcjmstojis <mbstring.h>

_mbcjmstojis_l <mbstring.h>

See also

The value c should be a 16-bit value whose upper 8 bits represent the lead byte of the character to convert and
whose lower 8 bits represent the trail byte.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for more
information. The versions of these functions without the _l suffix use the current locale for this locale-dependent
behavior ; the versions with the _l suffix are identical except that they use the locale parameter passed in instead.
For more information, see Locale.

In earlier versions, _mbcjistojms and _mbcjmstojis were called jistojms and jmstojis, respectively.
_mbcjistojms, _mbcjistojms_l, _mbcjmstojis and _mbcjmstojis_l should be used instead.

For more compatibility information, see Compatibility.

Data Conversion
_ismbb Routines

_mbclen, mblen, _mblen_l, _mbclen_l
2/4/2019 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
size_t _mbclen(
 const unsigned char *c
);
size_t _mbclen_l(
 unsigned char const* c,
 _locale_t locale
);
int mblen(
 const char *mbstr,
 size_t count
);
int _mblen_l(
 const char *mbstr,
 size_t count,
 _locale_t locale
);

Parameters

Return Value

Remarks

Gets the length and determines the validity of a multibyte character.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions
not supported in Universal Windows Platform apps.

c
Multibyte character.

mbstr
Address of a multibyte-character byte sequence.

count
Number of bytes to check.

locale
Locale to use.

_mbclen returns 1 or 2, according to whether the multibyte character c is 1 or 2 bytes long. There is no error
return for _mbclen. If mbstr isn't NULL, mblen returns the length, in bytes, of the multibyte character. If mbstr
is NULL or it points to the wide-character null character, mblen returns 0. When the object that mbstr points
to doesn't form a valid multibyte character within the first count characters, mblen returns -1.

The _mbclen function returns the length, in bytes, of the multibyte character c. If c doesn't point to the lead

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbclen-mblen-mblen-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tclen Maps to macro or inline
function

_mbclen Maps to macro or inline
function

Requirements
ROUTINE REQUIRED HEADER

_mbclen <mbstring.h>

mblen <stdlib.h>

_mblen_l <stdlib.h>

Example

byte of a multibyte character as determined by an implicit call to _ismbblead, the result of _mbclen is
unpredictable.

mblen returns the length in bytes of mbstr if it's a valid multibyte character and determines multibyte-
character validity associated with the code page. mblen examines count or fewer bytes contained in mbstr, but
not more than MB_CUR_MAX bytes.

The output value is affected by the LC_CTYPE category setting of the locale; see setlocale for more
information. The versions of these functions without the _l suffix use the current locale for this locale-
dependent behavior. The _l suffixed versions behave the same, but they use the locale parameter passed in
instead. For more information, see Locale.

For more compatibility information, see Compatibility.

// crt_mblen.c
/* illustrates the behavior of the mblen function
*/

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 int i;
 char *pmbc = (char *)malloc(sizeof(char));
 wchar_t wc = L'a';

 printf("Convert wide character to multibyte character:\n");
 wctomb_s(&i, pmbc, sizeof(char), wc);
 printf(" Characters converted: %u\n", i);
 printf(" Multibyte character: %x\n\n", *pmbc);

 i = mblen(pmbc, MB_CUR_MAX);
 printf("Length in bytes of multibyte character %x: %u\n", *pmbc, i);

 pmbc = NULL;
 i = mblen(pmbc, MB_CUR_MAX);
 printf("Length in bytes of NULL multibyte character %x: %u\n", pmbc, i);
}

Convert wide character to multibyte character:
 Characters converted: 1
 Multibyte character: 61

Length in bytes of multibyte character 61: 1
Length in bytes of NULL multibyte character 0: 0

See also
Character Classification
Locale
Interpretation of Multibyte-Character Sequences
_mbccpy, _mbccpy_l
strlen, wcslen, _mbslen, _mbslen_l, _mbstrlen, _mbstrlen_l

_mbctohira, _mbctohira_l, _mbctokata, _mbctokata_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
unsigned int _mbctohira(
 unsigned int c
);
unsigned int _mbctohira_l(
 unsigned int c,
 _locale_t locale
);
unsigned int _mbctokata(
 unsigned int c
);
unsigned int _mbctokata_l(
 unsigned int c,
 _locale_t locale
);

Parameters

Return Value

Remarks

ROUTINES CONVERTS

_mbctohira, _mbctohira_l Multibyte katakana to multibyte hiragana.

_mbctokata, _mbctokata_l Multibyte hiragana to multibyte katakana.

Converts between hiragana and katakana characters.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

c
Multibyte character to convert.

locale
Locale to use.

Each of these functions returns the converted character c, if possible. Otherwise it returns the character c
unchanged.

The _mbctohira and _mbctokata functions test a character c and, if possible, apply one of the following
conversions.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for more

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbctohira-mbctohira-l-mbctokata-mbctokata-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Requirements
ROUTINE REQUIRED HEADER

_mbctohira <mbstring.h>

_mbctohira_l <mbstring.h>

_mbctokata <mbstring.h>

_mbctokata_l <mbstring.h>

See also

information. The versions of these functions are identical, except that the ones that don't have the _l suffix use the
current locale for this locale-dependent behavior and the ones that do have the _l suffix instead use the locale
parameter that's passed in. For more information, see Locale.

In earlier versions, _mbctohira was named jtohira and _mbctokata was named jtokata. For new code, use the
new names.

For more compatibility information, see Compatibility.

Data Conversion
_mbcjistojms, _mbcjistojms_l, _mbcjmstojis, _mbcjmstojis_l
_mbctolower, _mbctolower_l, _mbctoupper, _mbctoupper_l
_mbctombb, _mbctombb_l

_mbctolower, _mbctolower_l, _mbctoupper,
_mbctoupper_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
unsigned int _mbctolower(
 unsigned int c
);
unsigned int _mbctolower_l(
 unsigned int c,
 _locale_t locale
);
unsigned int _mbctoupper(
 unsigned int c
);
unsigned int _mbctoupper_l(
 unsigned int c,
 _locale_t locale
);

Parameters

Return Value

Remarks

ROUTINES CONVERTS

_mbctolower, _mbctolower_l Uppercase character to lowercase character.

_mbctoupper, _mbctoupper_l Lowercase character to uppercase character.

Tests and converts the case of a multibyte character.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

c
Multibyte character to convert.

locale
Locale to use.

Each of these functions returns the converted character c, if possible. Otherwise it returns the character c
unchanged.

The functions test a character c and, if possible, apply one of the following conversions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbctolower-mbctolower-l-mbctoupper-mbctoupper-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_totlower tolower _mbctolower towlower

_totlower_l _tolower_l _mbctolower_l _towlower_t

_totupper toupper _mbctoupper towupper

_totupper_l toupper_l _mbctoupper_l _towupper_l

Requirements
ROUTINES REQUIRED HEADER

_mbctolower, _mbctolower_l <mbstring.h>

_mbctoupper, _mbctoupper_l <mbstring.h>

See also

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for more
information. The version of this function without the _l suffix uses the current locale for this locale-dependent
behavior ; the version with the _l suffix is identical except that it uses the locale parameter passed in instead. For
more information, see Locale.

In previous versions, _mbctolower was called jtolower, and _mbctoupper was called jtoupper. For new code,
use the new names instead.

For more compatibility information, see Compatibility.

Data Conversion
_mbbtombc, _mbbtombc_l
_mbcjistojms, _mbcjistojms_l, _mbcjmstojis, _mbcjmstojis_l
_mbctohira, _mbctohira_l, _mbctokata, _mbctokata_l
_mbctombb, _mbctombb_l

_mbctombb, _mbctombb_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
unsigned int _mbctombb(
 unsigned int c
);
unsigned int _mbctombb_l(
 unsigned int c,
 _locale_t locale
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_mbctombb <mbstring.h>

Converts a double-byte multibyte character to a corresponding single-byte multibyte character.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

c
Multibyte character to convert.

locale
Locale to use.

If successful, _mbctombb and _mbctombb_l returns the single-byte character that corresponds to c; otherwise
it returns c.

The _mbctombb and _mbctombb_l functions convert a given multibyte character to a corresponding single-
byte multibyte character. Characters must correspond to single-byte characters within the range 0x20 - 0x7E or
0xA1 - 0xDF to be converted.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for more
information. The version of this function without the _l suffix uses the current locale for this locale-dependent
behavior ; the version with the _l suffix is identical except that it use the locale parameter passed in instead. For
more information, see Locale.

In previous versions, _mbctombb was called zentohan. Use _mbctombb instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbctombb-mbctombb-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_mbctombb_l <mbstring.h>

ROUTINE REQUIRED HEADER

See also

For more compatibility information, see Compatibility.

Data Conversion
_mbbtombc, _mbbtombc_l
_mbcjistojms, _mbcjistojms_l, _mbcjmstojis, _mbcjmstojis_l
_mbctohira, _mbctohira_l, _mbctokata, _mbctokata_l
_mbctolower, _mbctolower_l, _mbctoupper, _mbctoupper_l

mbrlen
11/9/2018 • 2 minutes to read • Edit Online

Syntax
size_t mbrlen(
 const char * str,
 size_t count,
 mbstate_t * mbstate
);

Parameters

Return Value

0 The next count or fewer bytes complete the multibyte
character that represents the wide null character.

1 to count, inclusive The next count or fewer bytes complete a valid multibyte
character. The value returned is the number of bytes that
complete the multibyte character.

(size_t)(-2) The next count bytes contribute to an incomplete but
potentially valid multibyte character and all count bytes have
been processed.

(size_t)(-1) An encoding error occurred. The next count or fewer bytes do
not contribute to a complete and valid multibyte character. In
this case, errno is set to EILSEQ and the conversion state in
mbstate is unspecified.

Remarks

Determine the number of bytes that are required to complete a multibyte character in the current locale, with the
capability of restarting in the middle of a multibyte character.

str
Pointer to the next byte to inspect in a multibyte character string.

count
The maximum number of bytes to inspect.

mbstate
Pointer to the current shift state of the initial byte of str.

One of the following values:

The mbrlen function inspects at most count bytes starting with the byte pointed to by str to determine the number
of bytes that are required to complete the next multibyte character, including any shift sequences. It is equivalent to
the call mbrtowc(NULL, str, count, &mbstate) where mbstate is either a user-provided mbstate_t object, or a static
internal object provided by the library.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbrlen.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

not applicable not applicable mbrlen not applicable

Requirements
ROUTINE REQUIRED HEADER

mbrlen <wchar.h>

Example

The mbrlen function saves and uses the shift state of an incomplete multibyte character in the mbstate parameter.
This gives mbrlen the capability of restarting in the middle of a multibyte character if need be, examining at most
count bytes. If mbstate is a null pointer, mbrlen uses an internal, static mbstate_t object to store the shift state.
Because the internal mbstate_t object is not thread-safe, we recommend that you always allocate and pass your
own mbstate parameter.

The mbrlen function differs from _mbclen, mblen, _mblen_l by its restartability. The shift state is stored in mbstate
for subsequent calls to the same or other restartable functions. Results are undefined when mixing the use of
restartable and nonrestartable functions. For example, an application should use wcsrlen instead of wcslen if a
subsequent call to wcsrtombs is used instead of wcstombs.

For additional compatibility information, see Compatibility.

This example shows how the interpretation of multibyte characters depends on the current code page, and
demonstrates the resuming capability of mbrlen.

// crt_mbrlen.c
// Compile by using: cl crt_mbrlen.c
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <locale.h>
#include <wchar.h>

size_t Example(const char * pStr)
{
 size_t charLen = 0;
 size_t charCount = 0;
 mbstate_t mbState = {0};

 while ((charLen = mbrlen(pStr++, 1, &mbState)) != 0 &&
 charLen != (size_t)-1)
 {
 if (charLen != (size_t)-2) // if complete mbcs char,
 {
 charCount++;
 }
 }
 return (charCount);
}

int main(void)
{
 int cp;
 size_t charCount = 0;
 const char *pSample =
 "\x82\xD0\x82\xE7\x82\xAA\x82\xC8: Shift-jis hiragana.";

 cp = _getmbcp();
 charCount = Example(pSample);
 printf("\nCode page: %d\n%s\nCharacter count: %d\n",
 cp, pSample, charCount);

 setlocale(LC_ALL, "ja-JP"); // Set Japanese locale
 _setmbcp(932); // and Japanese multibyte code page
 cp = _getmbcp();
 charCount = Example(pSample);
 printf("\nCode page: %d\n%s\nCharacter count: %d\n",
 cp, pSample, charCount);
}

Code page: 0
é╨éτé¬é╚: Shift-jis hiragana.
Character count: 29

Code page: 932
????: Shift-jis hiragana.
Character count: 25

See also
String Manipulation
Locale

mbrtoc16, mbrtoc32
11/9/2018 • 3 minutes to read • Edit Online

Syntax
size_t mbrtoc16(
 char16_t* destination,
 const char* source,
 size_t max_bytes,
 mbstate_t* state
);

size_t mbrtoc32(
 char32_t* destination,
 const char* source,
 size_t max_bytes,
 mbstate_t* state
);

Parameters

Return Value

VALUE CONDITION

0 The next max_bytes or fewer characters converted from
source correspond to the null wide character, which is the
value stored if destination is not null.

state contains the initial shift state.

Between 1 and max_bytes, inclusive The value returned is the number of bytes of source that
complete a valid multibyte character. The converted wide
character is stored if destination is not null.

Translates the first multibyte character in a narrow string into the equivalent UTF-16 or UTF-32 character.

destination
Pointer to the char16_t or char32_t equivalent of the multibyte character to convert. If null, the function does not
store a value.

source
Pointer to the multibyte character string to convert.

max_bytes
The maximum number of bytes in source to examine for a character to convert. This should be a value between
one and the number of bytes, including any null terminator, remaining in source.

state
Pointer to a mbstate_t conversion state object used to interpret the multibyte string to one or more output
characters.

On success, returns the value of the first of these conditions that applies, given the current state value:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbrtoc16-mbrtoc323.md

-3 The next wide character resulting from a previous call to the
function has been stored in destination if destination is not
null. No bytes from source are consumed by this call to the
function.

When source points to a multibyte character that requires
more than one wide character to represent (for example, a
surrogate pair), then the state value is updated so that the
next function call writes out the additional character.

-2 The next max_bytes bytes represent an incomplete, but
potentially valid, multibyte character. No value is stored in
destination. This result can occur if max_bytes is zero.

-1 An encoding error has occurred. The next max_bytes or fewer
bytes do not contribute to a complete and valid multibyte
character. No value is stored in destination.

EILSEQ is stored in errno and the conversion state state is
unspecified.

VALUE CONDITION

Remarks

Requirements
FUNCTION C HEADER C++ HEADER

mbrtoc16, mbrtoc32 <uchar.h> <cuchar>

See also

The mbrtoc16 function reads up to max_bytes bytes from source to find the first complete, valid multibyte
character, and then stores the equivalent UTF-16 character in destination. The source bytes are interpreted
according to the current thread multibyte locale. If the multibyte character requires more than one UTF-16 output
character, such as a surrogate pair, then the state value is set to store the next UTF-16 character in destination on
the next call to mbrtoc16. The mbrtoc32 function is identical, but output is stored as a UTF-32 character.

If source is null, these functions return the equivalent of a call made using arguments of NULL for destination, ""
for source, and 1 for max_bytes. The passed values of destination and max_bytes are ignored.

If source is not null, the function starts at the beginning of the string and inspects up to max_bytes bytes to
determine the number of bytes required to complete the next multibyte character, including any shift sequences. If
the examined bytes contain a valid and complete multibyte character, the function converts the character into the
equivalent 16-bit or 32-bit wide character or characters. If destination is not null, the function stores the first (and
possibly only) result character in destination. If additional output characters are required, a value is set in state, so
that subsequent calls to the function output the additional characters and return the value -3. If no more output
characters are required, then state is set to the initial shift state.

For additional compatibility information, see Compatibility.

Data Conversion
Locale
Interpretation of Multibyte-Character Sequences
c16rtomb, c32rtomb

mbrtowc
mbsrtowcs
mbsrtowcs_s

mbrtowc
10/31/2018 • 3 minutes to read • Edit Online

Syntax
size_t mbrtowc(
 wchar_t *wchar,
 const char *mbchar,
 size_t count,
 mbstate_t *mbstate
);

Parameters

Return Value

Remarks

Convert a multibyte character in the current locale into the equivalent wide character, with the capability of
restarting in the middle of a multibyte character.

wchar
Address of a wide character to receive the converted wide character string (type wchar_t). This value can be a null
pointer if no return wide character is required.

mbchar
Address of a sequence of bytes (a multibyte character).

count
Number of bytes to check.

mbstate
Pointer to conversion state object. If this value is a null pointer, the function uses a static internal conversion state
object. Because the internal mbstate_t object is not thread-safe, we recommend that you always pass your own
mbstate argument.

One of the following values:

0 The next count or fewer bytes complete the multibyte character that represents the null wide character, which is
stored in wchar, if wchar is not a null pointer.

1 to count, inclusive The next count or fewer bytes complete a valid multibyte character. The value returned is the
number of bytes that complete the multibyte character. The wide character equivalent is stored in wchar, if wchar
is not a null pointer.

(size_t)(-1) An encoding error occurred. The next count or fewer bytes do not contribute to a complete and valid
multibyte character. In this case, errno is set to EILSEQ and the conversion shift state in mbstate is unspecified.

(size_t)(-2) The next count bytes contribute to an incomplete but potentially valid multibyte character, and all count
bytes have been processed. No value is stored in wchar, but mbstate is updated to restart the function.

If mbchar is a null pointer, the function is equivalent to the call:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbrtowc.md

Example

// crt_mbrtowc.cpp

#include <stdio.h>
#include <mbctype.h>
#include <string.h>
#include <locale.h>
#include <wchar.h>

#define BUF_SIZE 100

int Sample(char* szIn, wchar_t* wcOut, int nMax)
{
 mbstate_t state = {0}; // Initial state
 size_t nConvResult,
 nmbLen = 0,
 nwcLen = 0;
 wchar_t* wcCur = wcOut;
 wchar_t* wcEnd = wcCur + nMax;
 const char* mbCur = szIn;
 const char* mbEnd = mbCur + strlen(mbCur) + 1;
 char* szLocal;

 // Sets all locale to French_Canada.1252
 szLocal = setlocale(LC_ALL, "French_Canada.1252");
 if (!szLocal)
 {
 printf("The fuction setlocale(LC_ALL, \"French_Canada.1252\") failed!\n");
 return 1;
 }

 printf("Locale set to: \"%s\"\n", szLocal);

 // Sets the code page associated current locale's code page
 // from a previous call to setlocale.
 if (_setmbcp(_MB_CP_SBCS) == -1)
 {
 printf("The fuction _setmbcp(_MB_CP_SBCS) failed!");
 return 1;
 }

 while ((mbCur < mbEnd) && (wcCur < wcEnd))
 {
 //
 nConvResult = mbrtowc(wcCur, mbCur, 1, &state);
 switch (nConvResult)
 {
 case 0:

mbrtowc(NULL, "", 1, &mbstate)

In this case, the value of the arguments wchar and count are ignored.

If mbchar is not a null pointer, the function examines count bytes from mbchar to determine the required number
of bytes that are required to complete the next multibyte character. If the next character is valid, the corresponding
multibyte character is stored in wchar if it is not a null pointer. If the character is the corresponding wide null
character, the resulting state of mbstate is the initial conversion state.

The mbrtowc function differs from mbtowc, _mbtowc_l by its restartability. The conversion state is stored in
mbstate for subsequent calls to the same or other restartable functions. Results are undefined when mixing the
use of restartable and nonrestartable functions. For example, an application should use wcsrlen instead of wcslen
if a subsequent call to wcsrtombs is used instead of wcstombs.

Converts a multibyte character to its wide character equivalent.

 case 0:
 { // done
 printf("Conversion succeeded!\nMultibyte String: ");
 printf(szIn);
 printf("\nWC String: ");
 wprintf(wcOut);
 printf("\n");
 mbCur = mbEnd;
 break;
 }

 case -1:
 { // encoding error
 printf("The call to mbrtowc has detected an encoding error.\n");
 mbCur = mbEnd;
 break;
 }

 case -2:
 { // incomplete character
 if (!mbsinit(&state))
 {
 printf("Currently in middle of mb conversion, state = %x\n", state);
 // state will contain data regarding lead byte of mb character
 }

 ++nmbLen;
 ++mbCur;
 break;
 }

 default:
 {
 if (nConvResult > 2) // The multibyte should never be larger than 2
 {
 printf("Error: The size of the converted multibyte is %d.\n", nConvResult);
 }

 ++nmbLen;
 ++nwcLen;
 ++wcCur;
 ++mbCur;
 break;
 }
 }
 }

 return 0;
}

int main(int argc, char* argv[])
{
 char mbBuf[BUF_SIZE] = "AaBbCc\x9A\x8B\xE0\xEF\xF0xXyYzZ";
 wchar_t wcBuf[BUF_SIZE] = {L''};

 return Sample(mbBuf, wcBuf, BUF_SIZE);
}

Sample Output

Locale set to: "French_Canada.1252"
Conversion succeeded!
Multibyte String: AaBbCcÜïα∩≡xXyYzZ
WC String: AaBbCcÜïα∩≡xXyYzZ

Requirements
ROUTINE REQUIRED HEADER

mbrtowc <wchar.h>

See also
Data Conversion
Locale
Interpretation of Multibyte-Character Sequences

_mbsbtype, _mbsbtype_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _mbsbtype(
 const unsigned char *mbstr,
 size_t count
);
int _mbsbtype_l(
 const unsigned char *mbstr,
 size_t count,
 _locale_t locale
);

Parameters

Return Value

RETURN VALUE BYTE TYPE

_MBC_SINGLE (0) Single-byte character. For example, in code page 932,
_mbsbtype returns 0 if the specified byte is within the range
0x20 - 0x7E or 0xA1 - 0xDF.

_MBC_LEAD (1) Lead byte of multibyte character. For example, in code page
932, _mbsbtype returns 1 if the specified byte is within the
range 0x81 - 0x9F or 0xE0 - 0xFC.

_MBC_TRAIL (2) Trailing byte of multibyte character. For example, in code page
932, _mbsbtype returns 2 if the specified byte is within the
range 0x40 - 0x7E or 0x80 - 0xFC.

Returns the type of byte within a string.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

mbstr
Address of a sequence of multibyte characters.

count
Byte offset from head of string.

locale
Locale to use.

_mbsbtype and _mbsbtype_l returns an integer value indicating the result of the test on the specified byte. The
manifest constants in the following table are defined in Mbctype.h.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbsbtype-mbsbtype-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_MBC_ILLEGAL (-1) NULL string, invalid character, or null byte found before the
byte at offset count in mbstr.

RETURN VALUE BYTE TYPE

Remarks

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_mbsbtype <mbstring.h> <mbctype.h>*

_mbsbtype_l <mbstring.h> <mbctype.h>*

See also

The _mbsbtype function determines the type of a byte in a multibyte character string. The function examines only
the byte at offset count in mbstr, ignoring invalid characters before the specified byte.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for more
information. The version of this function without the _l suffix uses the current locale for this locale-dependent
behavior ; the version with the _l suffix is identical except that it use the locale parameter passed in instead. For
more information, see Locale.

If the input string is NULL, the invalid parameter handler is invoked, as described in Parameter Validation. If
execution is allowed to continue, errno is set to EINVAL and the function returns _MBC_ILLEGAL.

* For manifest constants used as return values.

For more compatibility information, see Compatibility.

Byte Classification

mbsinit
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int mbsinit(
 const mbstate_t* ps
);

Parameters

Return Value

Remarks

Example
// crt_mbsinit.cpp
#include <stdio.h>
#include <mbctype.h>
#include <string.h>
#include <locale.h>
#include <cwchar>
#include <xlocinfo.h>

#define BUF_SIZE 0x40

wchar_t g_wcBuf[BUF_SIZE] = L"This a wc buffer that will be over written...";
char g_mbBuf[BUF_SIZE] = "AaBbCc\x9A\x8B\xE0\xEF\xF0xXyYzZ";
int g_nInit = strlen(g_mbBuf);

int MbsinitSample(char* szIn, wchar_t* wcOut, int nMax)
{
 mbstate_t state = {0};
 size_t nConvResult, nmbLen = 0, nwcLen = 0;
 wchar_t* wcCur = wcOut;
 wchar_t* wcEnd = wcCur + nMax;
 const char* mbCur = szIn;
 const char* mbEnd = mbCur + strlen(mbCur) + 1;
 char* szLocal = setlocale(LC_ALL, "japanese");

 printf("Locale set to: \"%s\"\n", szLocal);

 if (_setmbcp(_MB_CP_LOCALE) != -1)

Tracks the state of a multibyte character conversion.

ps
A pointer to an mbstate_t variable.

Nonzero if ps is NULL or if not in the middle of a conversion.

When using one of the ANSI functions that takes an mbstate_t pointer, passing the address of your mbstate_t
will return information about whether the last byte in the buffer was converted.

The appropriate code page needs to be installed to support your multibyte characters.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbsinit.md

 {
 while ((mbCur < mbEnd) && (wcCur < wcEnd))
 {
 nConvResult = mbrtowc(wcCur, mbCur, 1, &state);

 switch (nConvResult)
 {
 case 0:
 { // done
 printf("Conversion succeeded!\nMB String: ");
 printf(szIn);
 printf("\nWC String: ");
 wprintf(wcOut);
 printf("\n");
 mbCur = mbEnd;
 break;
 }

 case -1:
 { // encoding error
 printf("ERROR: The call to mbrtowc has detected an encoding error.\n");
 mbCur = mbEnd;
 break;
 }

 case -2:
 { // incomplete character
 if (!mbsinit(&state))
 {
 printf("Currently in middle of mb conversion, state = %x\n", state);
 // state will contain data regarding lead byte of mb character
 }

 ++nmbLen;
 ++mbCur;
 break;
 }

 default:
 {
 if (nConvResult > 2) // Microsoft mb should never be larger than 2
 printf("ERROR: nConvResult = %d\n", nConvResult);

 ++nmbLen;
 ++nwcLen;
 ++wcCur;
 ++mbCur;
 break;
 }
 }
 }
 }
 else
 printf("ERROR: _setmbcp(932) failed!");

 return 0;
}

int main(int argc, char* argv[])
{
 return MbsinitSample(g_mbBuf, g_wcBuf, BUF_SIZE);
}

Sample Output

Locale set to: "Japanese_Japan.932"
Currently in middle of mb conversion, state = 9a
Currently in middle of mb conversion, state = e0
Currently in middle of mb conversion, state = f0
Conversion succeeded!
MB String: AaBbCcxXyYzZ
WC String: AaBbCcxXyYzZ

See also
Byte Classification

_mbsnbcat, _mbsnbcat_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
unsigned char *_mbsnbcat(
 unsigned char *dest,
 const unsigned char *src,
 size_t count
);
unsigned char *_mbsnbcat_l(
 unsigned char *dest,
 const unsigned char *src,
 size_t count,
 _locale_t locale
);
template <size_t size>
unsigned char *_mbsnbcat(
 unsigned char (&dest)[size],
 const unsigned char *src,
 size_t count
); // C++ only
template <size_t size>
unsigned char *_mbsnbcat_l(
 unsigned char (&dest)[size],
 const unsigned char *src,
 size_t count,
 _locale_t locale
); // C++ only

Parameters

Return Value

Appends, at most, the first n bytes of one multibyte-character string to another. More secure versions of these
functions are available; see _mbsnbcat_s, _mbsnbcat_s_l.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

dest
Null-terminated multibyte-character destination string.

src
Null-terminated multibyte-character source string.

count
Number of bytes from src to append to dest.

locale
Locale to use.

_mbsnbcat returns a pointer to the destination string. No return value is reserved to indicate an error.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbsnbcat-mbsnbcat-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsncat strncat _mbsnbcat wcsncat

_tcsncat_l _strncat_l _mbsnbcat_l _wcsncat_l

Requirements
ROUTINE REQUIRED HEADER

_mbsnbcat <mbstring.h>

_mbsnbcat_l <mbstring.h>

See also

The _mbsnbcat function appends, at most, the first count bytes of src to dest. If the byte immediately preceding
the null character in dest is a lead byte, the initial byte of src overwrites this lead byte. Otherwise, the initial byte
of src overwrites the terminating null character of dest. If a null byte appears in src before count bytes are
appended, _mbsnbcat appends all bytes from src, up to the null character. If count is greater than the length of
src, the length of src is used in place of count. The resulting string is terminated with a null character. If copying
takes place between strings that overlap, the behavior is undefined.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for more
information. The _mbsnbcat version of the function uses the current locale for this locale-dependent behavior;
the _mbsnbcat_l version is identical except that they use the locale parameter passed in instead. For more
information, see Locale.

Security Note Use a null-terminated string. The null-terminated string must not exceed the size of the
destination buffer. For more information, see Avoiding Buffer Overruns.

If dest or src is NULL, the function will generate an invalid parameter error, as described in Parameter Validation.
If the error is handled, the function returns EINVAL and sets errno to EINVAL.

In C++, these functions have template overloads that invoke the newer, secure counterparts of these functions.
For more information, see Secure Template Overloads.

For more compatibility information, see Compatibility.

String Manipulation
_mbsnbcmp, _mbsnbcmp_l
_strncnt, _wcsncnt, _mbsnbcnt, _mbsnbcnt_l, _mbsnccnt, _mbsnccnt_l
_mbsnbcpy, _mbsnbcpy_l
_mbsnbicmp, _mbsnbicmp_l
_mbsnbset, _mbsnbset_l
strncat, _strncat_l, wcsncat, _wcsncat_l, _mbsncat, _mbsncat_l
_mbsnbcat_s, _mbsnbcat_s_l

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

_mbsnbcat_s, _mbsnbcat_s_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
errno_t _mbsnbcat_s(
 unsigned char *dest,
 size_t sizeInBytes,
 const unsigned char *src,
 size_t count
);
errno_t _mbsnbcat_s_l(
 unsigned char *dest,
 size_t sizeInBytes,
 const unsigned char *src,
 size_t count,
 _locale_t locale
);
template <size_t size>
errno_t _mbsnbcat_s(
 unsigned char (&dest)[size],
 const unsigned char *src,
 size_t count
); // C++ only
template <size_t size>
errno_t _mbsnbcat_s_l(
 unsigned char (&dest)[size],
 const unsigned char *src,
 size_t count,
 _locale_t locale
); // C++ only

Parameters

Appends to a multibyte character string, at most, the first n bytes of another multibyte-character string. These are
versions of _mbsnbcat, _mbsnbcat_l that have security enhancements, as described in Security Features in the
CRT.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

dest
Null-terminated multibyte-character destination string.

sizeInBytes
Size of the dest buffer in bytes.

src
Null-terminated multibyte-character source string.

count
Number of bytes from src to append to dest.

locale

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbsnbcat-s-mbsnbcat-s-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Return Value

Error Conditions

DEST SIZEINBYTES SRC RETURN VALUE

NULL any any EINVAL

Any <= 0 any EINVAL

Any any NULL EINVAL

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsncat strncat _mbsnbcat_s wcsncat

_tcsncat_s_l _strncat_s_l _mbsnbcat_s_l _wcsncat_s_l

Requirements
ROUTINE REQUIRED HEADER

_mbsnbcat_s <mbstring.h>

Locale to use.

Zero if successful; otherwise, an error code.

If any of the error conditions occurs, the function generates an invalid parameter error, as described in Parameter
Validation. If the error is handled, the function returns EINVAL and sets errno to EINVAL.

The _mbsnbcat_s function appends to dest, at most, the first count bytes of src. If the byte that immediately
precedes the null character in dest is a lead byte, it is overwritten by the initial byte of src. Otherwise, the initial
byte of src overwrites the terminating null character of dest. If a null byte appears in src before count bytes are
appended, _mbsnbcat_s appends all bytes from src, up to the null character. If count is greater than the length of
src, the length of src is used in place of count. The resulting string is terminated by a null character. If copying
takes place between strings that overlap, the behavior is undefined.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale,
_wsetlocale for more information. The versions of these functions are identical, except that the ones that don't
have the _l suffix use the current locale and the ones that do have the _l suffix instead use the locale parameter
that's passed in. For more information, see Locale.

In C++, the use of these functions is simplified by template overloads; the overloads can infer buffer length
automatically and thereby eliminate the need to specify a size argument, and they can automatically use their
newer, more secure functions to replace older, less-secure functions. For more information, see Secure Template
Overloads.

The debug versions of these functions first fill the buffer with 0xFD. To disable this behavior, use
_CrtSetDebugFillThreshold.

_mbsnbcat_s_l <mbstring.h>

ROUTINE REQUIRED HEADER

See also

For more compatibility information, see Compatibility.

String Manipulation
_mbsnbcmp, _mbsnbcmp_l
_strncnt, _wcsncnt, _mbsnbcnt, _mbsnbcnt_l, _mbsnccnt, _mbsnccnt_l
_mbsnbcpy, _mbsnbcpy_l
_mbsnbcpy_s, _mbsnbcpy_s_l
_mbsnbset, _mbsnbset_l
strncat, _strncat_l, wcsncat, _wcsncat_l, _mbsncat, _mbsncat_l
strncat_s, _strncat_s_l, wcsncat_s, _wcsncat_s_l, _mbsncat_s, _mbsncat_s_l

_mbsnbcmp, _mbsnbcmp_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _mbsnbcmp(
 const unsigned char *string1,
 const unsigned char *string2,
 size_t count
);
int _mbsnbcmp_l(
 const unsigned char *string1,
 const unsigned char *string2,
 size_t count,
 _locale_t locale
);

Parameters

Return Value

RETURN VALUE DESCRIPTION

< 0 string1 substring is less than string2 substring.

0 string1 substring is identical to string2 substring.

> 0 string1 substring is greater than string2 substring.

Remarks

Compares the first n bytes of two multibyte-character strings.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

string1, string2
The strings to compare.

count
The number of bytes to compare.

locale
The locale to use.

The return value indicates the ordinal relationship between the substrings of string1 and string2.

On a parameter validation error, _mbsnbcmp and _mbsnbcmp_l return _NLSCMPERROR, which is defined in
<string.h> and <mbstring.h>.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbsnbcmp-mbsnbcmp-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsncmp strncmp _mbsnbcmp wcsncmp

_tcsncmp_l strncmp _mbsnbcml wcsncmp

Requirements
ROUTINE REQUIRED HEADER

_mbsnbcmp <mbstring.h>

_mbsnbcmp_l <mbstring.h>

Example

The _mbsnbcmp functions compare at most the first count bytes in string1 and string2 and return a value that
indicates the relationship between the substrings. _mbsnbcmp is a case-sensitive version of _mbsnbicmp.
Unlike _mbsnbcoll, _mbsnbcmp is not affected by the collation order of the locale. _mbsnbcmp recognizes
multibyte-character sequences according to the current multibyte code page.

_mbsnbcmp resembles _mbsncmp, except that _mbsncmp compares strings by characters rather than by
bytes.

The output value is affected by the LC_CTYPE category setting of the locale, which specifies the lead bytes and
trailing bytes of multibyte characters. For more information, see setlocale. The _mbsnbcmp function uses the
current locale for this locale-dependent behavior. The _mbsnbcmp_l function is identical except that it uses the
locale parameter instead. For more information, see Locale.

If either string1 or string2 is a null pointer, these functions invoke the invalid parameter handler, as described in
Parameter Validation. If execution is allowed to continue, the functions return _NLSCMPERROR and errno is
set to EINVAL.

For more compatibility information, see Compatibility.

// crt_mbsnbcmp.c
#include <mbstring.h>
#include <stdio.h>

char string1[] = "The quick brown dog jumps over the lazy fox";
char string2[] = "The QUICK brown fox jumps over the lazy dog";

int main(void)
{
 char tmp[20];
 int result;
 printf("Compare strings:\n %s\n", string1);
 printf(" %s\n\n", string2);
 printf("Function: _mbsnbcmp (first 10 characters only)\n");
 result = _mbsncmp(string1, string2 , 10);
 if(result > 0)
 _mbscpy_s(tmp, sizeof(tmp), "greater than");
 else if(result < 0)
 _mbscpy_s(tmp, sizeof(tmp), "less than");
 else
 _mbscpy_s(tmp, sizeof(tmp), "equal to");
 printf("Result: String 1 is %s string 2\n\n", tmp);
 printf("Function: _mbsnicmp _mbsnicmp (first 10 characters only)\n");
 result = _mbsnicmp(string1, string2, 10);
 if(result > 0)
 _mbscpy_s(tmp, sizeof(tmp), "greater than");
 else if(result < 0)
 _mbscpy_s(tmp, sizeof(tmp), "less than");
 else
 _mbscpy_s(tmp, sizeof(tmp), "equal to");
 printf("Result: String 1 is %s string 2\n\n", tmp);
}

Output

Compare strings:
 The quick brown dog jumps over the lazy fox
 The QUICK brown fox jumps over the lazy dog

Function: _mbsnbcmp (first 10 characters only)
Result: String 1 is greater than string 2

Function: _mbsnicmp _mbsnicmp (first 10 characters only)
Result: String 1 is equal to string 2

See also
String Manipulation
_mbsnbcat, _mbsnbcat_l
_mbsnbicmp, _mbsnbicmp_l
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
Locale
Interpretation of Multibyte-Character Sequences

_mbsnbcoll, _mbsnbcoll_l, _mbsnbicoll, _mbsnbicoll_l
10/31/2018 • 3 minutes to read • Edit Online

IMPORTANT

Syntax
int _mbsnbcoll(
 const unsigned char *string1,
 const unsigned char *string2,
 size_t count
);
int _mbsnbcoll_l(
 const unsigned char *string1,
 const unsigned char *string2,
 size_t count,
 _locale_t locale
);
int _mbsnbicoll(
 const unsigned char *string1,
 const unsigned char *string2,
 size_t count
);
int _mbsnbicoll_l(
 const unsigned char *string1,
 const unsigned char *string2,
 size_t count,
 _locale_t locale
);

Parameters

Return Value

RETURN VALUE DESCRIPTION

< 0 string1 substring less than string2 substring.

Compares n bytes of two multibyte-character strings by using multibyte code-page information.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

string1, string2
Strings to compare.

count
Number of bytes to compare.

locale
Locale to use.

The return value indicates the relation of the substrings of string1 and string2.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbsnbcoll-mbsnbcoll-l-mbsnbicoll-mbsnbicoll-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

0 string1 substring identical to string2 substring.

> 0 string1 substring greater than string2 substring.

RETURN VALUE DESCRIPTION

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsncoll _strncoll _mbsnbcoll _wcsncoll

_tcsncoll_l _strncoll, _wcsncoll,
_mbsncoll, _strncoll_l,
_wcsncoll_l, _mbsncoll_l

_mbsnbcoll_l _wcsncoll_l

_tcsnicoll _strnicoll _mbsnbicoll _wcsnicoll

_tcsnicoll_l _strnicoll_l _mbsnbicoll_l _wcsnicoll_l

Requirements

If string1 or string2 is NULL or count is greater than INT_MAX, the invalid parameter handler is invoked, as
described in Parameter Validation. If execution is allowed to continue, these functions return _NLSCMPERROR
and set errno to EINVAL. To use _NLSCMPERROR, include either String.h or Mbstring.h.

Each of these functions collates, at most, the first count bytes in string1 and string2 and returns a value indicating
the relationship between the resulting substrings of string1 and string2. If the final byte in the substring of
string1 or string2 is a lead byte, it is not included in the comparison; these functions compare only complete
characters in the substrings. _mbsnbicoll is a case-insensitive version of _mbsnbcoll. Like _mbsnbcmp and
_mbsnbicmp, _mbsnbcoll and _mbsnbicoll collate the two multibyte-character strings according to the
lexicographic order specified by the multibyte code page currently in use.

For some code pages and corresponding character sets, the order of characters in the character set might differ
from the lexicographic character order. In the "C" locale, this is not the case: the order of characters in the ASCII
character set is the same as the lexicographic order of the characters. However, in certain European code pages,
for example, the character 'a' (value 0x61) precedes the character 'ä' (value 0xE4) in the character set, but the
character 'ä' precedes the character 'a' lexicographically. To perform a lexicographic comparison of strings by
bytes in such an instance, use _mbsnbcoll rather than _mbsnbcmp; to check only for string equality, use
_mbsnbcmp.

Because the coll functions collate strings lexicographically for comparison, whereas the cmp functions simply
test for string equality, the coll functions are much slower than the corresponding cmp versions. Therefore, the
coll functions should be used only when there is a difference between the character set order and the
lexicographic character order in the current code page and this difference is of interest for the comparison.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for more
information. The versions of these functions without the _l suffix use the current locale for this locale-dependent
behavior ; the versions with the _l suffix are identical except that they use the locale parameter passed in instead.
For more information, see Locale.

ROUTINE REQUIRED HEADER

_mbsnbcoll <mbstring.h>

_mbsnbcoll_l <mbstring.h>

_mbsnbicoll <mbstring.h>

_mbsnbicoll_l <mbstring.h>

See also

For more compatibility information, see Compatibility.

String Manipulation
_mbsnbcat, _mbsnbcat_l
_mbsnbcmp, _mbsnbcmp_l
_mbsnbicmp, _mbsnbicmp_l
strcoll Functions
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l

_mbsnbcpy, _mbsnbcpy_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
unsigned char * _mbsnbcpy(
 unsigned char * strDest,
 const unsigned char * strSource,
 size_t count
);
unsigned char * _mbsnbcpy_l(
 unsigned char * strDest,
 const unsigned char * strSource,
 size_t count,
 _locale_t locale
);
template <size_t size>
unsigned char * _mbsnbcpy(
 unsigned char (&strDest)[size],
 const unsigned char * strSource,
 size_t count
); // C++ only
template <size_t size>
unsigned char * _mbsnbcpy_l(
 unsigned char (&strDest)[size],
 const unsigned char * strSource,
 size_t count,
 _locale_t locale
); // C++ only

Parameters

Return Value

Copies n bytes of a string to a destination string. More secure versions of these functions are available—see
_mbsnbcpy_s, _mbsnbcpy_s_l.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

strDest
Destination for the character string to be copied.

strSource
Character string to be copied.

count
Number of bytes to be copied.

locale
Locale to use.

_mbsnbcpy returns a pointer to the destination character string. No return value is reserved to indicate an error.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbsnbcpy-mbsnbcpy-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Remarks

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsncpy strncpy _mbsnbcpy wcsncpy

_tcsncpy_l _strncpy_l _mbsnbcp_l _wcsncpy_l

Requirements
ROUTINE REQUIRED HEADER

_mbsnbcpy <mbstring.h>

_mbsnbcpy_l <mbstring.h>

See also

The _mbsnbcpy function copies count bytes from strSource to strDest. If count exceeds the size of strDest or the
source and destination strings overlap, the behavior of _mbsnbcpy is undefined.

If strSource or strDest is a null pointer, this function invokes the invalid parameter handler as described in
Parameter Validation. If execution is allowed to continue, the function returns NULL and sets errno to EINVAL.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale,
_wsetlocale for more information. The versions of these functions are identical, except that those that don't have
the _l suffix use the current locale and the versions that do have the _l suffix instead use the locale parameter
that's passed in. For more information, see Locale.

These functions might be vulnerable to buffer overrun threats. Buffer overruns can be used to execute arbitrary attacker
code, which can cause an unwarranted elevation of privilege and compromise the system. For more information, see
Avoiding Buffer Overruns.

In C++, these functions have template overloads that invoke the newer, more secure counterparts of these
functions. For more information, see Secure Template Overloads.

For more compatibility information, see Compatibility.

String Manipulation
_mbsnbcat, _mbsnbcat_l
_mbsnbcmp, _mbsnbcmp_l
_strncnt, _wcsncnt, _mbsnbcnt, _mbsnbcnt_l, _mbsnccnt, _mbsnccnt_l
_mbsnbset, _mbsnbset_l
strncpy, _strncpy_l, wcsncpy, _wcsncpy_l, _mbsncpy, _mbsncpy_l

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

_mbsnbcpy_s, _mbsnbcpy_s_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
errno_t _mbsnbcpy_s(
 unsigned char * strDest,
 size_t sizeInBytes,
 const unsigned char * strSource,
 size_t count
);
errno_t _mbsnbcpy_s_l(
 unsigned char * strDest,
 size_t sizeInBytes,
 const unsigned char * strSource,
 size_t count,
 _locale_t locale
);
template <size_t size>
errno_t _mbsnbcpy_s(
 unsigned char (&strDest)[size],
 const unsigned char * strSource,
 size_t count
); // C++ only
template <size_t size>
errno_t _mbsnbcpy_s_l(
 unsigned char (&strDest)[size],
 const unsigned char * strSource,
 size_t count,
 _locale_t locale
); // C++ only

Parameters

Copies n bytes of a string to a destination string. These versions of _mbsnbcpy, _mbsnbcpy_l have security
enhancements, as described in Security Features in the CRT.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

strDest
Destination for character string to be copied.

sizeInBytes
Destination buffer size.

strSource
Character string to be copied.

count
Number of bytes to be copied.

locale
Locale to use.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbsnbcpy-s-mbsnbcpy-s-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Return Value

Remarks

NOTE

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsncpy_s _strncpy_s _mbsnbcpy_s _wcsncpy_s

_tcsncpy_s_l _strncpy_s_l _mbsnbcpy_s_l _wcsncpy_s_l

Requirements
ROUTINE REQUIRED HEADER

_mbsnbcpy_s <mbstring.h>

_mbsnbcpy_s_l <mbstring.h>

See also

Zero if successful; EINVAL if a bad parameter was passed in.

The _mbsnbcpy_s function copies count bytes from strSource to strDest. If count exceeds the size of strDest,
either of the input strings is a null pointer, or sizeInBytes or count is 0, the function invokes the invalid parameter
handler as described in Parameter Validation . If execution is allowed to continue, the function returns EINVAL. If
the source and destination strings overlap, the behavior of _mbsnbcpy_s is undefined.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for more
information. The versions of these functions without the _l suffix use the current locale for this locale-dependent
behavior ; the versions with the _l suffix are identical except that they use the locale parameter passed in instead.
For more information, see Locale.

Unlike the non-secure version of this function, _mbsnbcpy_s does not do any null padding and always null terminates the
string.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically (eliminating the need to specify a size argument) and they can automatically replace older, non-
secure functions with their newer, secure counterparts. For more information, see Secure Template Overloads.

The debug versions of these functions first fill the buffer with 0xFD. To disable this behavior, use
_CrtSetDebugFillThreshold.

For more compatibility information, see Compatibility.

String Manipulation
_mbsnbcat, _mbsnbcat_l
_mbsnbcmp, _mbsnbcmp_l
_strncnt, _wcsncnt, _mbsnbcnt, _mbsnbcnt_l, _mbsnccnt, _mbsnccnt_l
_mbsnbicmp, _mbsnbicmp_l

_mbsnbset, _mbsnbset_l
strncpy, _strncpy_l, wcsncpy, _wcsncpy_l, _mbsncpy, _mbsncpy_l

_mbsnbicmp, _mbsnbicmp_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _mbsnbicmp(
 const unsigned char *string1,
 const unsigned char *string2,
 size_t count
);

Parameters

Return Value

RETURN VALUE DESCRIPTION

< 0 string1 substring less than string2 substring.

0 string1 substring identical to string2 substring.

> 0 string1 substring greater than string2 substring.

Remarks

Compares n bytes of two multibyte-character strings, and ignores case.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

string1, string2
Null-terminated strings to compare.

count
Number of bytes to compare.

The return value indicates the relationship between the substrings.

On an error, _mbsnbicmp returns _NLSCMPERROR, which is defined in String.h and Mbstring.h.

The _mbsnbicmp function performs an ordinal comparison of at most the first count bytes of string1 and
string2. The comparison is performed by converting each character to lowercase; _mbsnbcmp is a case-sensitive
version of _mbsnbicmp. The comparison ends if a terminating null character is reached in either string before
count characters are compared. If the strings are equal when a terminating null character is reached in either
string before count characters are compared, the shorter string is lesser.

_mbsnbicmp is similar to _mbsnbcmp, except that it compares strings up to count bytes instead of by
characters.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbsnbicmp-mbsnbicmp-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsnicmp _strnicmp _mbsnbicmp _wcsnicmp

_tcsnicmp_l _strnicmp_l _mbsnbicmp_l _wcsnicmp_l

Requirements
ROUTINE REQUIRED HEADER

_mbsnbicmp <mbstring.h>

Example

See also

Two strings containing characters located between 'Z' and 'a' in the ASCII table ('[', '\', ']', '^', '_', and '`') compare
differently, depending on their case. For example, the two strings "ABCDE" and "ABCD^" compare one way if
the comparison is lowercase ("abcde" > "abcd^") and the other way ("ABCDE" < "ABCD^") if it is uppercase.

_mbsnbicmp recognizes multibyte-character sequences according to the multibyte code page currently in use. It
is not affected by the current locale setting.

If either string1 or string2 is a null pointer, _mbsnbicmp invokes the invalid parameter handler as described in
Parameter Validation. If execution is allowed to continue, the function returns _NLSCMPERROR and sets errno
to EINVAL.

For more compatibility information, see Compatibility.

See the example for _mbsnbcmp, _mbsnbcmp_l.

String Manipulation
_mbsnbcat, _mbsnbcat_l
_mbsnbcmp, _mbsnbcmp_l
_stricmp, _wcsicmp, _mbsicmp, _stricmp_l, _wcsicmp_l, _mbsicmp_l

_mbsnbset, _mbsnbset_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
unsigned char *_mbsnbset(
 unsigned char *str,
 unsigned int c,
 size_t count
);
unsigned char *_mbsnbset_l(
 unsigned char *str,
 unsigned int c,
 size_t count,
 _locale_t locale
);

Parameters

Return Value

Remarks

Sets the first n bytes of a multibyte-character string to a specified character. More secure versions of these
functions are available; see _mbsnbset_s, _mbsnbset_s_l.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

str
String to be altered.

c
Single-byte or multibyte-character setting.

count
Number of bytes to be set.

locale
Locale to use.

_mbsnbset returns a pointer to the altered string.

The _mbsnbset and _mbsnbset_l functions set, at most, the first count bytes of str to c. If count is greater than
the length of str, the length of str is used instead of count. If c is a multibyte character and cannot be set entirely
into the last byte specified by count, the last byte is padded with a blank character. _mbsnbset and _mbsnbset_l
does not place a terminating null at the end of str.

_mbsnbset and _mbsnbset_l is similar to _mbsnset, except that it sets count bytes rather than count characters
of c.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbsnbset-mbsnbset-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsnset _strnset _mbsnbset _wcsnset

_tcsnset_l _strnset_l _mbsnbset_l _wcsnset_l

Requirements
ROUTINE REQUIRED HEADER

_mbsnbset <mbstring.h>

_mbsnbset_l <mbstring.h>

Example
// crt_mbsnbset.c
// compile with: /W3
#include <mbstring.h>
#include <stdio.h>

int main(void)
{
 char string[15] = "This is a test";
 /* Set not more than 4 bytes of string to be *'s */
 printf("Before: %s\n", string);
 _mbsnbset(string, '*', 4); // C4996
 // Note; _mbsnbset is deprecated; consider _mbsnbset_s
 printf("After: %s\n", string);
}

Output

Before: This is a test
After: **** is a test

See also

If str is NULL or count is zero, this function generates an invalid parameter exception as described in Parameter
Validation. If execution is allowed to continue, errno is set to EINVAL and the function returns NULL. Also, if c
is not a valid multibyte character, errno is set to EINVAL and a space is used instead.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for more
information. The _mbsnbset version of this function uses the current locale for this locale-dependent behavior;
the _mbsnbset_l version is identical except that it use the locale parameter passed in instead. For more
information, see Locale.

Security Note This API incurs a potential threat brought about by a buffer overrun problem. Buffer overrun
problems are a frequent method of system attack, resulting in an unwarranted elevation of privilege. For more
information, see Avoiding Buffer Overruns.

For more compatibility information, see Compatibility.

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

String Manipulation
_mbsnbcat, _mbsnbcat_l
_strnset, _strnset_l, _wcsnset, _wcsnset_l, _mbsnset, _mbsnset_l
_strset, _strset_l, _wcsset, _wcsset_l, _mbsset, _mbsset_l

_mbsnbset_s, _mbsnbset_s_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
errno_t _mbsnbset_s(
 unsigned char *str,
 size_t size,
 unsigned int c,
 size_t count
);
errno_t _mbsnbset_s_l(
 unsigned char *str,
 size_t size,
 unsigned int c,
 size_t count,
 _locale_t locale
);
template <size_t size>
errno_t _mbsnbset_s(
 unsigned char (&str)[size],
 unsigned int c,
 size_t count
); // C++ only
template <size_t size>
errno_t _mbsnbset_s_l(
 unsigned char (&str)[size],
 unsigned int c,
 size_t count,
 _locale_t locale
); // C++ only

Parameters

Sets the first n bytes of a multibyte-character string to a specified character. These versions of _mbsnbset,
_mbsnbset_l have security enhancements, as described in Security Features in the CRT.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

str
String to be altered.

size
The size of the string buffer.

c
Single-byte or multibyte-character setting.

count
Number of bytes to be set.

locale
Locale to use.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbsnbset-s-mbsnbset-s-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsnset_s _strnset_s _mbsnbset_s _wcsnset_s

_tcsnset_s_l _strnset_s _l _mbsnbset_s_l _wcsnset_s_l

Requirements
ROUTINE REQUIRED HEADER

_mbsnbset_s <mbstring.h>

_mbsnbset_s_l <mbstring.h>

Example

Zero if successful; otherwise, an error code.

The _mbsnbset_s and _mbsnbset_s_l functions set, at most, the first count bytes of str to c. If count is greater
than the length of str, the length of str is used instead of count. If c is a multibyte character and cannot be set
entirely into the last byte that's specified by count, the last byte is padded with a blank character. _mbsnbset_s
and _mbsnbset_s_l do not place a terminating null at the end of str.

_mbsnbset_s and _mbsnbset_s_l resemble _mbsnset, except that they set count bytes rather than count
characters of c.

If str is NULL or count is zero, this function generates an invalid parameter exception, as described in Parameter
Validation. If execution is allowed to continue, errno is set to EINVAL and the function returns NULL. Also, if c is
not a valid multibyte character, errno is set to EINVAL and a space is used instead.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale,
_wsetlocale for more information. The _mbsnbset_s version of this function uses the current locale for this locale-
dependent behavior ; the _mbsnbset_s_l version is identical except that it instead uses the locale parameter that's
passed in. For more information, see Locale.

In C++, use of these functions is simplified by template overloads; the overloads can infer buffer length
automatically and thereby eliminate the need to specify a size argument. For more information, see Secure
Template Overloads.

The debug versions of these functions first fill the buffer with 0xFD. To disable this behavior, use
_CrtSetDebugFillThreshold.

For more compatibility information, see Compatibility.

// crt_mbsnbset_s.c
#include <mbstring.h>
#include <stdio.h>

int main(void)
{
 char string[15] = "This is a test";
 /* Set not more than 4 bytes of string to be *'s */
 printf("Before: %s\n", string);
 _mbsnbset_s(string, sizeof(string), '*', 4);
 printf("After: %s\n", string);
}

Output
Before: This is a test
After: **** is a test

See also
String Manipulation
_mbsnbcat, _mbsnbcat_l
_strnset, _strnset_l, _wcsnset, _wcsnset_l, _mbsnset, _mbsnset_l
_strset, _strset_l, _wcsset, _wcsset_l, _mbsset, _mbsset_l

mbsrtowcs
10/31/2018 • 3 minutes to read • Edit Online

Syntax
size_t mbsrtowcs(
 wchar_t *wcstr,
 const char **mbstr,
 sizeof count,
 mbstate_t *mbstate
);
template <size_t size>
size_t mbsrtowcs(
 wchar_t (&wcstr)[size],
 const char **mbstr,
 sizeof count,
 mbstate_t *mbstate
); // C++ only

Parameters

Return Value

Remarks

Converts a multibyte character string in the current locale to a corresponding wide character string, with the
capability of restarting in the middle of a multibyte character. A more secure version of this function is available;
see mbsrtowcs_s.

wcstr
Address to store the resulting converted wide character string.

mbstr
Indirect pointer to the location of the multibyte character string to convert.

count
The maximum number of characters (not bytes) to convert and store in wcstr.

mbstate
A pointer to an mbstate_t conversion state object. If this value is a null pointer, a static internal conversion state
object is used. Because the internal mbstate_t object is not thread-safe, we recommend that you always pass your
own mbstate parameter.

Returns the number of characters successfully converted, not including the terminating null character, if any.
Returns (size_t)(-1) if an error occurred, and sets errno to EILSEQ.

The mbsrtowcs function converts a string of multibyte characters indirectly pointed to by mbstr, into wide
characters stored in the buffer pointed to by wcstr, by using the conversion state contained in mbstate. The
conversion continues for each character until either a terminating null multibyte character is encountered, a
multibyte sequence that does not correspond to a valid character in the current locale is encountered, or until
count characters have been converted. If mbsrtowcs encounters the multibyte null character ('\0') either before or
when count occurs, it converts it to a 16-bit terminating null character and stops.

Thus, the wide character string at wcstr is null-terminated only if mbsrtowcs encounters a multibyte null character

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbsrtowcs.md

Exceptions

Requirements
ROUTINE REQUIRED HEADER

mbsrtowcs <wchar.h>

See also

during conversion. If the sequences pointed to by mbstr and wcstr overlap, the behavior of mbsrtowcs is
undefined. mbsrtowcs is affected by the LC_TYPE category of the current locale.

The mbsrtowcs function differs from mbstowcs, _mbstowcs_l by its restartability. The conversion state is stored in
mbstate for subsequent calls to the same or other restartable functions. Results are undefined when mixing the
use of restartable and nonrestartable functions. For example, an application should use mbsrlen instead of
mbslen, if a subsequent call to mbsrtowcs is used instead of mbstowcs.

If wcstr is not a null pointer, the pointer object pointed to by mbstr is assigned a null pointer if conversion stopped
because a terminating null character was reached. Otherwise, it is assigned the address just past the last multibyte
character converted, if any. This allows a subsequent function call to restart conversion where this call stopped.

If the wcstr argument is a null pointer, the count argument is ignored and mbsrtowcs returns the required size in
wide characters for the destination string. If mbstate is a null pointer, the function uses a non-thread-safe static
internal mbstate_t conversion state object. If the character sequence mbstr does not have a corresponding
multibyte character representation, a -1 is returned and the errno is set to EILSEQ.

If mbstr isa null pointer, the invalid parameter handler is invoked, as described in Parameter Validation. If execution
is allowed to continue, this function sets errno to EINVAL and returns -1.

In C++, this function has a template overload that invokes the newer, secure counterpart of this function. For more
information, see Secure Template Overloads.

The mbsrtowcs function is multithread safe as long as no function in the current thread calls setlocale as long as
this function is executing and the mbstate argument is not a null pointer.

Data Conversion
Locale
Interpretation of Multibyte-Character Sequences
mbrtowc
mbtowc, _mbtowc_l
mbstowcs, _mbstowcs_l
mbsinit

mbsrtowcs_s
10/31/2018 • 4 minutes to read • Edit Online

Syntax
errno_t mbsrtowcs_s(
 size_t * pReturnValue,
 wchar_t * wcstr,
 size_t sizeInWords,
 const char ** mbstr,
 size_t count,
 mbstate_t * mbstate
);
template <size_t size>
errno_t mbsrtowcs_s(
 size_t * pReturnValue,
 wchar_t (&wcstr)[size],
 const char ** mbstr,
 size_t count,
 mbstate_t * mbstate
); // C++ only

Parameters

Return Value

Convert a multibyte character string in the current locale to its wide character string representation. A version of
mbsrtowcs with security enhancements as described in Security Features in the CRT.

pReturnValue
The number of characters converted.

wcstr
Address of buffer to store the resulting converted wide character string.

sizeInWords
The size of wcstr in words (wide characters).

mbstr
Indirect pointer to the location of the multibyte character string to be converted.

count
The maximum number of wide characters to store in the wcstr buffer, not including the terminating null, or
_TRUNCATE.

mbstate
A pointer to an mbstate_t conversion state object. If this value is a null pointer, a static internal conversion state
object is used. Because the internal mbstate_t object is not thread-safe, we recommend that you always pass
your own mbstate parameter.

Zero if conversion is successful, or an error code on failure.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbsrtowcs-s.md

ERROR CONDITION RETURN VALUE AND ERRNO

wcstr is a null pointer and sizeInWords > 0 EINVAL

mbstr is a null pointer EINVAL

The string indirectly pointed to by mbstr contains a multibyte
sequence that is not valid for the current locale.

EILSEQ

The destination buffer is too small to contain the converted
string (unless count is _TRUNCATE; for more information, see
Remarks)

ERANGE

Remarks

IMPORTANT

If any one of these conditions occurs, the invalid parameter exception is invoked as described in Parameter
Validation . If execution is allowed to continue, the function returns an error code and sets errno as indicated in
the table.

The mbsrtowcs_s function converts a string of multibyte characters indirectly pointed to by mbstr into wide
characters stored in the buffer pointed to by wcstr, by using the conversion state contained in mbstate. The
conversion will continue for each character until one of these conditions is met:

A multibyte null character is encountered

An invalid multibyte character is encountered

The number of wide characters stored in the wcstr buffer equals count.

The destination string wcstr is always null-terminated, even in the case of an error, unless wcstr is a null pointer.

If count is the special value _TRUNCATE, mbsrtowcs_s converts as much of the string as will fit into the
destination buffer, while still leaving room for a null terminator.

If mbsrtowcs_s successfully converts the source string, it puts the size in wide characters of the converted string
and the null terminator into *pReturnValue, provided pReturnValue is not a null pointer. This occurs even if the
wcstr argument is a null pointer and lets you determine the required buffer size. Note that if wcstr is a null pointer,
count is ignored.

If wcstr is not a null pointer, the pointer object pointed to by mbstr is assigned a null pointer if conversion stopped
because a terminating null character was reached. Otherwise, it is assigned the address just past the last multibyte
character converted, if any. This allows a subsequent function call to restart conversion where this call stopped.

If mbstate is a null pointer, the library internal mbstate_t conversion state static object is used. Because this
internal static object is not thread-safe, we recommend that you pass your own mbstate value.

If mbsrtowcs_s encounters a multibyte character that is not valid in the current locale, it puts -1 in *pReturnValue,
sets the destination buffer wcstr to an empty string, sets errno to EILSEQ, and returns EILSEQ.

If the sequences pointed to by mbstr and wcstr overlap, the behavior of mbsrtowcs_s is undefined. mbsrtowcs_s
is affected by the LC_TYPE category of the current locale.

Ensure that wcstr and mbstr do not overlap, and that count correctly reflects the number of multibyte characters to
convert.

Exceptions

Requirements
ROUTINE REQUIRED HEADER

mbsrtowcs_s <wchar.h>

See also

The mbsrtowcs_s function differs from mbstowcs_s, _mbstowcs_s_l by its restartability. The conversion state is
stored in mbstate for subsequent calls to the same or other restartable functions. Results are undefined when
mixing the use of restartable and nonrestartable functions. For example, an application should use mbsrlen
instead of mbslen, if a subsequent call to mbsrtowcs_s is used instead of mbstowcs_s.

In C++, using this function is simplified by template overloads; the overloads can infer buffer length automatically
(eliminating the requirement to specify a size argument) and they can automatically replace older, non-secure
functions by using their newer, secure counterparts. For more information, see Secure Template Overloads.

The mbsrtowcs_s function is multithread safe if no function in the current thread calls setlocale as long as this
function is executing and the mbstate argument is not a null pointer.

Data Conversion
Locale
Interpretation of Multibyte-Character Sequences
mbrtowc
mbtowc, _mbtowc_l
mbstowcs_s, _mbstowcs_s_l
mbsinit

mbstowcs, _mbstowcs_l
3/1/2019 • 4 minutes to read • Edit Online

Syntax
size_t mbstowcs(
 wchar_t *wcstr,
 const char *mbstr,
 size_t count
);
size_t _mbstowcs_l(
 wchar_t *wcstr,
 const char *mbstr,
 size_t count,
 _locale_t locale
);
template <size_t size>
size_t mbstowcs(
 wchar_t (&wcstr)[size],
 const char *mbstr,
 size_t count
); // C++ only
template <size_t size>
size_t _mbstowcs_l(
 wchar_t (&wcstr)[size],
 const char *mbstr,
 size_t count,
 _locale_t locale
); // C++ only

Parameters

Return Value

Converts a sequence of multibyte characters to a corresponding sequence of wide characters. More secure
versions of these functions are available; see mbstowcs_s, _mbstowcs_s_l.

wcstr
The address of a sequence of wide characters.

mbstr
The address of a sequence of null terminated multibyte characters.

count
The maximum number of multibyte characters to convert.

locale
The locale to use.

If mbstowcs successfully converts the source string, it returns the number of converted multibyte characters. If
the wcstr argument is NULL, the function returns the required size (in wide characters) of the destination string.
If mbstowcs encounters an invalid multibyte character, it returns -1. If the return value is count, the wide-
character string is not null-terminated.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbstowcs-mbstowcs-l.md

IMPORTANT

Remarks

Requirements
ROUTINE REQUIRED HEADER

mbstowcs <stdlib.h>

_mbstowcs_l <stdlib.h>

Example
// crt_mbstowcs.c
// compile with: /W3
// illustrates the behavior of the mbstowcs function

#include <stdlib.h>
#include <stdio.h>
#include <locale.h>

int main(void)
{
 size_t size;
 int nChar = 2; // number of characters to convert
 int requiredSize;

 unsigned char *pmbnull = NULL;
 unsigned char *pmbhello = NULL;

Ensure that wcstr and mbstr do not overlap, and that count correctly reflects the number of multibyte characters to
convert.

The mbstowcs function converts up to a maximum number of count multibyte characters pointed to by mbstr
to a string of corresponding wide characters that are determined by the current locale. It stores the resulting
wide-character string at the address represented by wcstr. The result is similar to a series of calls to mbtowc. If
mbstowcs encounters the single-byte null character ('\0') either before or when count occurs, it converts the
null character to a wide-character null character (L'\0') and stops. Thus the wide-character string at wcstr is null-
terminated only if a null character is encountered during conversion. If the sequences pointed to by wcstr and
mbstr overlap, the behavior is undefined.

If the wcstr argument is NULL, mbstowcs returns the number of wide characters that would result from
conversion, not including a null terminator. The source string must be null-terminated for the correct value to
be returned. If you need the resulting wide character string to be null-terminated, add one to the returned value.

If the mbstr argument is NULL, or if count is > INT_MAX, the invalid parameter handler is invoked, as
described in Parameter Validation . If execution is allowed to continue, errno is set to EINVAL and the function
returns -1.

mbstowcs uses the current locale for any locale-dependent behavior; _mbstowcs_l is identical except that it
uses the locale passed in instead. For more information, see Locale.

In C++, these functions have template overloads that invoke the newer, secure counterparts of these functions.
For more information, see Secure Template Overloads.

For additional compatibility information, see Compatibility.

 unsigned char *pmbhello = NULL;
 char* localeInfo;

 wchar_t *pwchello = L"\x3042\x3043"; // 2 Hiragana characters
 wchar_t *pwc;

 /* Enable the Japanese locale and codepage */
 localeInfo = setlocale(LC_ALL, "Japanese_Japan.932");
 printf("Locale information set to %s\n", localeInfo);

 printf("Convert to multibyte string:\n");

 requiredSize = wcstombs(NULL, pwchello, 0); // C4996
 // Note: wcstombs is deprecated; consider using wcstombs_s
 printf(" Required Size: %d\n", requiredSize);

 /* Add one to leave room for the null terminator. */
 pmbhello = (unsigned char *)malloc(requiredSize + 1);
 if (! pmbhello)
 {
 printf("Memory allocation failure.\n");
 return 1;
 }
 size = wcstombs(pmbhello, pwchello, requiredSize + 1); // C4996
 // Note: wcstombs is deprecated; consider using wcstombs_s
 if (size == (size_t) (-1))
 {
 printf("Couldn't convert string. Code page 932 may"
 " not be available.\n");
 return 1;
 }
 printf(" Number of bytes written to multibyte string: %u\n",
 (unsigned int) size);
 printf(" Hex values of the");
 printf(" multibyte characters: %#.2x %#.2x %#.2x %#.2x\n",
 pmbhello[0], pmbhello[1], pmbhello[2], pmbhello[3]);
 printf(" Codepage 932 uses 0x81 to 0x9f as lead bytes.\n\n");

 printf("Convert back to wide-character string:\n");

 /* Assume we don't know the length of the multibyte string.
 Get the required size in characters, and allocate enough space. */

 requiredSize = mbstowcs(NULL, pmbhello, 0); // C4996
 /* Add one to leave room for the null terminator */
 pwc = (wchar_t *)malloc((requiredSize + 1) * sizeof(wchar_t));
 if (! pwc)
 {
 printf("Memory allocation failure.\n");
 return 1;
 }
 size = mbstowcs(pwc, pmbhello, requiredSize + 1); // C4996
 if (size == (size_t) (-1))
 {
 printf("Couldn't convert string--invalid multibyte character.\n");
 }
 printf(" Characters converted: %u\n", (unsigned int)size);
 printf(" Hex value of first 2");
 printf(" wide characters: %#.4x %#.4x\n\n", pwc[0], pwc[1]);
 free(pwc);
 free(pmbhello);
}

Locale information set to Japanese_Japan.932
Convert to multibyte string:
 Required Size: 4
 Number of bytes written to multibyte string: 4
 Hex values of the multibyte characters: 0x82 0xa0 0x82 0xa1
 Codepage 932 uses 0x81 to 0x9f as lead bytes.

Convert back to wide-character string:
 Characters converted: 2
 Hex value of first 2 wide characters: 0x3042 0x3043

See also
Data Conversion
Locale
Interpretation of Multibyte-Character Sequences
_mbclen, mblen, _mblen_l
mbtowc, _mbtowc_l
wcstombs, _wcstombs_l
wctomb, _wctomb_l
MultiByteToWideChar

https://docs.microsoft.com/windows/desktop/api/stringapiset/nf-stringapiset-multibytetowidechar

mbstowcs_s, _mbstowcs_s_l
2/4/2019 • 2 minutes to read • Edit Online

Syntax
errno_t mbstowcs_s(
 size_t *pReturnValue,
 wchar_t *wcstr,
 size_t sizeInWords,
 const char *mbstr,
 size_t count
);
errno_t _mbstowcs_s_l(
 size_t *pReturnValue,
 wchar_t *wcstr,
 size_t sizeInWords,
 const char *mbstr,
 size_t count,
 _locale_t locale
);
template <size_t size>
errno_t mbstowcs_s(
 size_t *pReturnValue,
 wchar_t (&wcstr)[size],
 const char *mbstr,
 size_t count
); // C++ only
template <size_t size>
errno_t _mbstowcs_s_l(
 size_t *pReturnValue,
 wchar_t (&wcstr)[size],
 const char *mbstr,
 size_t count,
 _locale_t locale
); // C++ only

Parameters

Converts a sequence of multibyte characters to a corresponding sequence of wide characters. Versions of
mbstowcs, _mbstowcs_l with security enhancements as described in Security Features in the CRT.

pReturnValue
The number of characters converted.

wcstr
Address of buffer for the resulting converted wide character string.

sizeInWords
The size of the wcstr buffer in words.

mbstr
The address of a sequence of null terminated multibyte characters.

count
The maximum number of wide characters to store in the wcstr buffer, not including the terminating null, or
_TRUNCATE.

locale

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbstowcs-s-mbstowcs-s-l.md

Return Value

ERROR CONDITION RETURN VALUE AND ERRNO

wcstr is NULL and sizeInWords > 0 EINVAL

mbstr is NULL EINVAL

The destination buffer is too small to contain the converted
string (unless count is _TRUNCATE; see Remarks below)

ERANGE

wcstr is not NULL and sizeInWords == 0 EINVAL

Remarks

IMPORTANT

The locale to use.

Zero if successful, an error code on failure.

If any of these conditions occurs, the invalid parameter exception is invoked as described in Parameter
Validation . If execution is allowed to continue, the function returns an error code and sets errno as indicated in
the table.

The mbstowcs_s function converts a string of multibyte characters pointed to by mbstr into wide characters
stored in the buffer pointed to by wcstr. The conversion will continue for each character until one of these
conditions is met:

A multibyte null character is encountered

An invalid multibyte character is encountered

The number of wide characters stored in the wcstr buffer equals count.

The destination string is always null-terminated (even in the case of an error).

If count is the special value _TRUNCATE, then mbstowcs_s converts as much of the string as will fit into the
destination buffer, while still leaving room for a null terminator.

If mbstowcs_s successfully converts the source string, it puts the size in wide characters of the converted string,
including the null terminator, into *pReturnValue (provided pReturnValue is not NULL). This occurs even if the
wcstr argument is NULL and provides a way to determine the required buffer size. Note that if wcstr is NULL,
count is ignored, and sizeInWords must be 0.

If mbstowcs_s encounters an invalid multibyte character, it puts 0 in *pReturnValue, sets the destination buffer
to an empty string, sets errno to EILSEQ, and returns EILSEQ.

If the sequences pointed to by mbstr and wcstr overlap, the behavior of mbstowcs_s is undefined.

Ensure that wcstr and mbstr do not overlap, and that count correctly reflects the number of multibyte characters to
convert.

mbstowcs_s uses the current locale for any locale-dependent behavior; _mbstowcs_s_l is identical except that it
uses the locale passed in instead. For more information, see Locale.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length

Requirements
ROUTINE REQUIRED HEADER

mbstowcs_s <stdlib.h>

_mbstowcs_s_l <stdlib.h>

See also

automatically (eliminating the need to specify a size argument) and they can automatically replace older, non-
secure functions with their newer, secure counterparts. For more information, see Secure Template Overloads.

For additional compatibility information, see Compatibility.

Data Conversion
Locale
MultiByteToWideChar
Interpretation of Multibyte-Character Sequences
_mbclen, mblen, _mblen_l
mbtowc, _mbtowc_l
wcstombs, _wcstombs_l
wctomb, _wctomb_l

https://docs.microsoft.com/windows/desktop/api/stringapiset/nf-stringapiset-multibytetowidechar

mbtowc, _mbtowc_l
3/1/2019 • 2 minutes to read • Edit Online

Syntax
int mbtowc(
 wchar_t *wchar,
 const char *mbchar,
 size_t count
);
int _mbtowc_l(
 wchar_t *wchar,
 const char *mbchar,
 size_t count,
 _locale_t locale
);

Parameters

Return Value

Remarks

Requirements

Convert a multibyte character to a corresponding wide character.

wchar
Address of a wide character (type wchar_t).

mbchar
Address of a sequence of bytes (a multibyte character).

count
Number of bytes to check.

locale
The locale to use.

If mbchar is not NULL and if the object that mbchar points to forms a valid multibyte character, mbtowc
returns the length in bytes of the multibyte character. If mbchar is NULL or the object that it points to is a
wide-character null character (L'\0'), the function returns 0. If the object that mbchar points to does not form a
valid multibyte character within the first count characters, it returns -1.

The mbtowc function converts count or fewer bytes pointed to by mbchar, if mbchar is not NULL, to a
corresponding wide character. mbtowc stores the resulting wide character at wchar, if wchar is not NULL.
mbtowc does not examine more than MB_CUR_MAX bytes. mbtowc uses the current locale for locale-
dependent behavior ; _mbtowc_l is identical except that it uses the locale passed in instead. For more
information, see Locale.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mbtowc-mbtowc-l.md

ROUTINE REQUIRED HEADER

mbtowc <stdlib.h>

_mbtowc_l <stdlib.h>

Libraries

Example
// crt_mbtowc.c
// Illustrates the behavior of the mbtowc function

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 int i;
 char *pmbc = (char *)malloc(sizeof(char));
 wchar_t wc = L'a';
 wchar_t *pwcnull = NULL;
 wchar_t *pwc = (wchar_t *)malloc(sizeof(wchar_t));
 printf("Convert a wide character to multibyte character:\n");
 wctomb_s(&i, pmbc, sizeof(char), wc);
 printf(" Characters converted: %u\n", i);
 printf(" Multibyte character: %x\n\n", *pmbc);

 printf("Convert multibyte character back to a wide "
 "character:\n");
 i = mbtowc(pwc, pmbc, MB_CUR_MAX);
 printf(" Bytes converted: %u\n", i);
 printf(" Wide character: %x\n\n", *pwc);
 printf("Attempt to convert when target is NULL\n");
 printf(" returns the length of the multibyte character:\n");
 i = mbtowc(pwcnull, pmbc, MB_CUR_MAX);
 printf(" Length of multibyte character: %u\n\n", i);

 printf("Attempt to convert a NULL pointer to a");
 printf(" wide character:\n");
 pmbc = NULL;
 i = mbtowc(pwc, pmbc, MB_CUR_MAX);
 printf(" Bytes converted: %u\n", i);
}

For additional compatibility information, see Compatibility.

All versions of the C run-time libraries.

Convert a wide character to multibyte character:
 Characters converted: 1
 Multibyte character: 61

Convert multibyte character back to a wide character:
 Bytes converted: 1
 Wide character: 61

Attempt to convert when target is NULL
 returns the length of the multibyte character:
 Length of multibyte character: 1

Attempt to convert a NULL pointer to a wide character:
 Bytes converted: 0

See also
Data Conversion
MultiByteToWideChar
Locale
Interpretation of Multibyte-Character Sequences
_mbclen, mblen, _mblen_l
wcstombs, _wcstombs_l
wctomb, _wctomb_l

https://docs.microsoft.com/windows/desktop/api/stringapiset/nf-stringapiset-multibytetowidechar

memccpy
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _memccpy instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-memccpy.md

_memccpy
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void *_memccpy(
 void *dest,
 const void *src,
 int c,
 size_t count
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_memccpy <memory.h> or <string.h>

Libraries

Copies characters from a buffer.

dest
Pointer to the destination.

src
Pointer to the source.

c
Last character to copy.

count
Number of characters.

If the character c is copied, _memccpy returns a pointer to the char in dest that immediately follows the
character. If c is not copied, it returns NULL.

The _memccpy function copies 0 or more characters of src to dest, halting when the character c has been copied
or when count characters have been copied, whichever comes first.

Security Note Make sure that the destination buffer is the same size or larger than the source buffer. For more
information, see Avoiding Buffer Overruns.

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/memccpy.md
https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

Example
// crt_memccpy.c

#include <memory.h>
#include <stdio.h>
#include <string.h>

char string1[60] = "The quick brown dog jumps over the lazy fox";

int main(void)
{
 char buffer[61];
 char *pdest;

 printf("Function: _memccpy 60 characters or to character 's'\n");
 printf("Source: %s\n", string1);
 pdest = _memccpy(buffer, string1, 's', 60);
 *pdest = '\0';
 printf("Result: %s\n", buffer);
 printf("Length: %d characters\n", strlen(buffer));
}

Output

Function: _memccpy 60 characters or to character 's'
Source: The quick brown dog jumps over the lazy fox
Result: The quick brown dog jumps
Length: 25 characters

See also
Buffer Manipulation
memchr, wmemchr
memcmp, wmemcmp
memcpy, wmemcpy
memset, wmemset

memchr, wmemchr
4/2/2019 • 2 minutes to read • Edit Online

Syntax
void *memchr(
 const void *buffer,
 int c,
 size_t count
); // C only
void *memchr(
 void *buffer,
 int c,
 size_t count
); // C++ only
const void *memchr(
 const void *buffer,
 int c,
 size_t count
); // C++ only
wchar_t *wmemchr(
 const wchar_t * buffer,
 wchar_t c,
 size_t count
); // C only
wchar_t *wmemchr(
 wchar_t * buffer,
 wchar_t c,
 size_t count
); // C++ only
const wchar_t *wmemchr(
 const wchar_t * buffer,
 wchar_t c,
 size_t count
); // C++ only

Parameters

Return Value

Remarks

Find characters in a buffer.

buffer
Pointer to buffer.

c
Character to look for.

count
Number of characters to check.

If successful, returns a pointer to the first location of c in buffer. Otherwise it returns NULL.

memchr and wmemchr look for the first occurrence of c in the first count characters of buffer. It stops when it finds
c or when it has checked the first count characters.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/memchr-wmemchr.md

Requirements
ROUTINE REQUIRED HEADER

memchr <memory.h> or <string.h>

wmemchr <wchar.h>

Libraries

Example
// crt_memchr.c

#include <memory.h>
#include <stdio.h>

int ch = 'r';
char str[] = "lazy";
char string[] = "The quick brown dog jumps over the lazy fox";
char fmt1[] = " 1 2 3 4 5";
char fmt2[] = "12345678901234567890123456789012345678901234567890";

int main(void)
{
 char *pdest;
 int result;
 printf("String to be searched:\n %s\n", string);
 printf(" %s\n %s\n\n", fmt1, fmt2);

 printf("Search char: %c\n", ch);
 pdest = memchr(string, ch, sizeof(string));
 result = (int)(pdest - string + 1);
 if (pdest != NULL)
 printf("Result: %c found at position %d\n", ch, result);
 else
 printf("Result: %c not found\n");
}

Output

String to be searched:
 The quick brown dog jumps over the lazy fox
 1 2 3 4 5
 12345678901234567890123456789012345678901234567890

Search char: r
Result: r found at position 12

In C, these functions take a const pointer for the first argument. In C++, two overloads are available. The
overload taking a pointer to const returns a pointer to const; the version that takes a pointer to non-const
returns a pointer to non-const. The macro _CRT_CONST_CORRECT_OVERLOADS is defined if both the const
and non-const versions of these functions are available. If you require the non-const behavior for both C++
overloads in C++, define the symbol _CONST_RETURN.

For more information about compatibility, see Compatibility.

All versions of the C run-time libraries.

See also
Buffer Manipulation
_memccpy
memcmp, wmemcmp
memcpy, wmemcpy
memset, wmemset
strchr, wcschr, _mbschr, _mbschr_l

memcmp, wmemcmp
3/1/2019 • 2 minutes to read • Edit Online

Syntax
int memcmp(
 const void *buffer1,
 const void *buffer2,
 size_t count
);
int wmemcmp(
 const wchar_t * buffer1,
 const wchar_t * buffer2,
 size_t count
);

Parameters

Return Value

RETURN VALUE RELATIONSHIP OF FIRST COUNT CHARACTERS OF BUF1 AND BUF2

< 0 buffer1 less than buffer2

0 buffer1 identical to buffer2

> 0 buffer1 greater than buffer2

Remarks

Requirements

Compares characters in two buffers.

buffer1
First buffer.

buffer2
Second buffer.

count
Number of characters to compare. (Compares bytes for memcmp, wide characters for wmemcmp).

The return value indicates the relationship between the buffers.

Compares the first count characters of buffer1 and buffer2 and returns a value that indicates their relationship.
The sign of a non-zero return value is the sign of the difference between the first differing pair of values in the
buffers. The values are interpreted as unsigned char for memcmp, and as wchar_t for wmemcmp.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/memcmp-wmemcmp.md

ROUTINE REQUIRED HEADER

memcmp <memory.h> or <string.h>

wmemcmp <wchar.h>

Libraries

Example
// crt_memcmp.c
/* This program uses memcmp to compare
* the strings named first and second. If the first
* 19 bytes of the strings are equal, the program
* considers the strings to be equal.
*/

#include <string.h>
#include <stdio.h>

int main(void)
{
 char first[] = "12345678901234567890";
 char second[] = "12345678901234567891";
 int int_arr1[] = {1,2,3,4};
 int int_arr2[] = {1,2,3,4};
 int result;

 printf("Compare '%.19s' to '%.19s':\n", first, second);
 result = memcmp(first, second, 19);
 if(result < 0)
 printf("First is less than second.\n");
 else if(result == 0)
 printf("First is equal to second.\n");
 else
 printf("First is greater than second.\n");

 printf("Compare '%d,%d' to '%d,%d':\n", int_arr1[0], int_arr1[1], int_arr2[0], int_arr2[1]);
 result = memcmp(int_arr1, int_arr2, sizeof(int) * 2);
 if(result < 0)
 printf("int_arr1 is less than int_arr2.\n");
 else if(result == 0)
 printf("int_arr1 is equal to int_arr2.\n");
 else
 printf("int_arr1 is greater than int_arr2.\n");
}

Compare '1234567890123456789' to '1234567890123456789':
First is equal to second.
Compare '1,2' to '1,2':
int_arr1 is equal to int_arr2.

See also

For additional compatibility information, see Compatibility.

All versions of the C run-time library.

Buffer Manipulation

_memccpy
memchr, wmemchr
memcpy, wmemcpy
memset, wmemset
strcmp, wcscmp, _mbscmp
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l

memcpy, wmemcpy
3/1/2019 • 2 minutes to read • Edit Online

Syntax
void *memcpy(
 void *dest,
 const void *src,
 size_t count
);
wchar_t *wmemcpy(
 wchar_t *dest,
 const wchar_t *src,
 size_t count
);

Parameters

Return Value

Remarks

IMPORTANT

Copies bytes between buffers. More secure versions of these functions are available; see memcpy_s,
wmemcpy_s.

dest
New buffer.

src
Buffer to copy from.

count
Number of characters to copy.

The value of dest.

memcpy copies count bytes from src to dest; wmemcpy copies count wide characters (two bytes). If the source
and destination overlap, the behavior of memcpy is undefined. Use memmove to handle overlapping regions.

Make sure that the destination buffer is the same size or larger than the source buffer. For more information, see Avoiding
Buffer Overruns.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/memcpy-wmemcpy.md
https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

IMPORTANT

#define _CRT_SECURE_DEPRECATE_MEMORY
#include <memory.h>

#define _CRT_SECURE_DEPRECATE_MEMORY
#include <wchar.h>

Requirements
ROUTINE REQUIRED HEADER

memcpy <memory.h> or <string.h>

wmemcpy <wchar.h>

Example

See also

Because so many buffer overruns, and thus potential security exploits, have been traced to improper usage of memcpy,
this function is listed among the “banned” functions by the Security Development Lifecycle (SDL). You may observe that
some VC++ library classes continue to use memcpy. Furthermore, you may observe that the VC++ compiler optimizer
sometimes emits calls to memcpy. The Visual C++ product is developed in accordance with the SDL process, and thus
usage of this banned function has been closely evaluated. In the case of library use of it, the calls have been carefully
scrutinized to ensure that buffer overruns will not be allowed through these calls. In the case of the compiler, sometimes
certain code patterns are recognized as identical to the pattern of memcpy, and are thus replaced with a call to the
function. In such cases, the use of memcpy is no more unsafe than the original instructions would have been; they have
simply been optimized to a call to the performance-tuned memcpy function. Just as the use of “safe” CRT functions
doesn’t guarantee safety (they just make it harder to be unsafe), the use of “banned” functions doesn’t guarantee danger
(they just require greater scrutiny to ensure safety).

Because memcpy usage by the VC++ compiler and libraries has been so carefully scrutinized, these calls are permitted
within code that is otherwise compliant with SDL. memcpy calls introduced in application source code are only compliant
with the SDL when that use has been reviewed by security experts.

The memcpy and wmemcpy functions will only be deprecated if the constant
_CRT_SECURE_DEPRECATE_MEMORY is defined prior to the inclusion statement in order for the functions
to be deprecated, such as in the example below:

or

For additional compatibility information, see Compatibility.

See memmove for a sample of how to use memcpy.

Buffer Manipulation
_memccpy
memchr, wmemchr
memcmp, wmemcmp
memmove, wmemmove
memset, wmemset

strcpy_s, wcscpy_s, _mbscpy_s
strncpy_s, _strncpy_s_l, wcsncpy_s, _wcsncpy_s_l, _mbsncpy_s, _mbsncpy_s_l

memcpy_s, wmemcpy_s
3/1/2019 • 2 minutes to read • Edit Online

Syntax
errno_t memcpy_s(
 void *dest,
 size_t destSize,
 const void *src,
 size_t count
);
errno_t wmemcpy_s(
 wchar_t *dest,
 size_t destSize,
 const wchar_t *src,
 size_t count
);

Parameters

Return Value

Error Conditions

DEST DESTSIZE SRC COUNT RETURN VALUE
CONTENTS OF
DEST

any any any 0 0 Not modified

NULL any any non-zero EINVAL Not modified

any any NULL non-zero EINVAL dest is zeroed
out

any < count any non-zero ERANGE dest is zeroed
out

Copies bytes between buffers. These are versions of memcpy, wmemcpy with security enhancements as described
in Security Features in the CRT.

dest
New buffer.

destSize
Size of the destination buffer, in bytes for memcpy_s and wide characters (wchar_t) for wmemcpy_s.

src
Buffer to copy from.

count
Number of characters to copy.

Zero if successful; an error code on failure.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/memcpy-s-wmemcpy-s.md

Remarks

Requirements
ROUTINE REQUIRED HEADER

memcpy_s <memory.h> or <string.h>

wmemcpy_s <wchar.h>

Example
// crt_memcpy_s.c
// Copy memory in a more secure way.

#include <memory.h>
#include <stdio.h>

int main()
{
 int a1[10], a2[100], i;
 errno_t err;

 // Populate a2 with squares of integers
 for (i = 0; i < 100; i++)
 {
 a2[i] = i*i;
 }

 // Tell memcpy_s to copy 10 ints (40 bytes), giving
 // the size of the a1 array (also 40 bytes).
 err = memcpy_s(a1, sizeof(a1), a2, 10 * sizeof (int));
 if (err)
 {
 printf("Error executing memcpy_s.\n");
 }
 else
 {
 for (i = 0; i < 10; i++)
 printf("%d ", a1[i]);
 }
 printf("\n");
}

0 1 4 9 16 25 36 49 64 81

See also

memcpy_s copies count bytes from src to dest; wmemcpy_s copies count wide characters (two bytes). If the
source and destination overlap, the behavior of memcpy_s is undefined. Use memmove_s to handle overlapping
regions.

These functions validate their parameters. If count is non-zero and dest or src is a null pointer, or destSize is
smaller than count, these functions invoke the invalid parameter handler, as described in Parameter Validation. If
execution is allowed to continue, these functions return EINVAL or ERANGE and set errno to the return value.

For additional compatibility information, see Compatibility.

Buffer Manipulation
_memccpy
memchr, wmemchr
memcmp, wmemcmp
memmove, wmemmove
memset, wmemset
strcpy, wcscpy, _mbscpy
strncpy, _strncpy_l, wcsncpy, _wcsncpy_l, _mbsncpy, _mbsncpy_l
strncpy_s, _strncpy_s_l, wcsncpy_s, _wcsncpy_s_l, _mbsncpy_s, _mbsncpy_s_l

memicmp
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _memicmp instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/memicmp.md

_memicmp, _memicmp_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _memicmp(
 const void *buffer1,
 const void *buffer2,
 size_t count
);
int _memicmp_l(
 const void *buffer1,
 const void *buffer2,
 size_t count,
 _locale_t locale
);

Parameters

Return Value

RETURN VALUE RELATIONSHIP OF FIRST COUNT BYTES OF BUF1 AND BUF2

< 0 buffer1 less than buffer2.

0 buffer1 identical to buffer2.

> 0 buffer1 greater than buffer2.

_NLSCMPERROR An error occurred.

Remarks

Compares characters in two buffers (case-insensitive).

buffer1
First buffer.

buffer2
Second buffer.

count
Number of characters.

locale
Locale to use.

The return value indicates the relationship between the buffers.

The _memicmp function compares the first count characters of the two buffers buffer1 and buffer2 byte by byte.
The comparison is not case-sensitive.

If either buffer1 or buffer2 is a null pointer, this function invokes an invalid parameter handler, as described in

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/memicmp-memicmp-l.md

Requirements
ROUTINE REQUIRED HEADER

_memicmp <memory.h> or <string.h>

_memicmp_l <memory.h> or <string.h>

Example
// crt_memicmp.c
// This program uses _memicmp to compare
// the first 29 letters of the strings named first and
// second without regard to the case of the letters.

#include <memory.h>
#include <stdio.h>
#include <string.h>

int main(void)
{
 int result;
 char first[] = "Those Who Will Not Learn from History";
 char second[] = "THOSE WHO WILL NOT LEARN FROM their mistakes";
 // Note that the 29th character is right here ^

 printf("Compare '%.29s' to '%.29s'\n", first, second);
 result = _memicmp(first, second, 29);
 if(result < 0)
 printf("First is less than second.\n");
 else if(result == 0)
 printf("First is equal to second.\n");
 else if(result > 0)
 printf("First is greater than second.\n");
}

Compare 'Those Who Will Not Learn from' to 'THOSE WHO WILL NOT LEARN FROM'
First is equal to second.

See also

Parameter Validation. If execution is allowed to continue, the function returns _NLSCMPERROR and sets errno
to EINVAL.

_memicmp uses the current locale for locale-dependent behavior; _memicmp_l is identical except that it uses
the locale passed in instead. For more information, see Locale.

For more compatibility information, see Compatibility.

Buffer Manipulation
_memccpy
memchr, wmemchr
memcmp, wmemcmp
memcpy, wmemcpy
memset, wmemset
_stricmp, _wcsicmp, _mbsicmp, _stricmp_l, _wcsicmp_l, _mbsicmp_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l

memmove, wmemmove
3/1/2019 • 2 minutes to read • Edit Online

Syntax
void *memmove(
 void *dest,
 const void *src,
 size_t count
);
wchar_t *wmemmove(
 wchar_t *dest,
 const wchar_t *src,
 size_t count
);

Parameters

Return Value

Remarks

#define _CRT_SECURE_DEPRECATE_MEMORY
#include <string.h>

Moves one buffer to another. More secure versions of these functions are available; see memmove_s,
wmemmove_s.

dest
Destination object.

src
Source object.

count
Number of bytes (memmove) or characters (wmemmove) to copy.

The value of dest.

Copies count bytes (memmove) or characters (wmemmove) from src to dest. If some regions of the source
area and the destination overlap, both functions ensure that the original source bytes in the overlapping region
are copied before being overwritten.

Security Note Make sure that the destination buffer is the same size or larger than the source buffer. For more
information, see Avoiding Buffer Overruns.

The memmove and wmemmove functions will only be deprecated if the constant
_CRT_SECURE_DEPRECATE_MEMORY is defined prior to the inclusion statement in order for the functions to
be deprecated, such as in the example below:

or

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/memmove-wmemmove.md
https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

#define _CRT_SECURE_DEPRECATE_MEMORY
#include <wchar.h>

Requirements
ROUTINE REQUIRED HEADER

memmove <string.h>

wmemmove <wchar.h>

Example
// crt_memcpy.c
// Illustrate overlapping copy: memmove
// always handles it correctly; memcpy may handle
// it correctly.
//

#include <memory.h>
#include <string.h>
#include <stdio.h>

char str1[7] = "aabbcc";

int main(void)
{
 printf("The string: %s\n", str1);
 memcpy(str1 + 2, str1, 4);
 printf("New string: %s\n", str1);

 strcpy_s(str1, sizeof(str1), "aabbcc"); // reset string

 printf("The string: %s\n", str1);
 memmove(str1 + 2, str1, 4);
 printf("New string: %s\n", str1);
}

The string: aabbcc
New string: aaaabb
The string: aabbcc
New string: aaaabb

See also

For additional compatibility information, see Compatibility.

Buffer Manipulation
_memccpy
memcpy, wmemcpy
strcpy, wcscpy, _mbscpy
strncpy, _strncpy_l, wcsncpy, _wcsncpy_l, _mbsncpy, _mbsncpy_l

memmove_s, wmemmove_s
3/1/2019 • 2 minutes to read • Edit Online

Syntax
errno_t memmove_s(
 void *dest,
 size_t numberOfElements,
 const void *src,
 size_t count
);
errno_t wmemmove_s(
 wchar_t *dest,
 size_t numberOfElements,
 const wchar_t *src,
 size_t count
);

Parameters

Return Value

Error Conditions

DEST NUMBEROFELEMENTS SRC RETURN VALUE CONTENTS OF DEST

NULL any any EINVAL not modified

any any NULL EINVAL not modified

any < count any ERANGE not modified

Remarks

Moves one buffer to another. These are versions of memmove, wmemmove with security enhancements as
described in Security Features in the CRT.

dest
Destination object.

numberOfElements
Size of the destination buffer.

src
Source object.

count
Number of bytes (memmove_s) or characters (wmemmove_s) to copy.

Zero if successful; an error code on failure

Copies count bytes of characters from src to dest. If some regions of the source area and the destination overlap,
memmove_s ensures that the original source bytes in the overlapping region are copied before being

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/memmove-s-wmemmove-s.md

Requirements
ROUTINE REQUIRED HEADER

memmove_s <string.h>

wmemmove_s <wchar.h>

Example
// crt_memmove_s.c
//
// The program demonstrates the
// memmove_s function which works as expected
// for moving overlapping regions.

#include <stdio.h>
#include <string.h>

int main()
{
 char str[] = "0123456789";

 printf("Before: %s\n", str);

 // Move six bytes from the start of the string
 // to a new position shifted by one byte. To protect against
 // buffer overrun, the secure version of memmove requires the
 // the length of the destination string to be specified.

 memmove_s((str + 1), strnlen(str + 1, 10), str, 6);

 printf_s(" After: %s\n", str);
}

Output

Before: 0123456789
After: 0012345789

See also

overwritten.

If dest or if src is a null pointer, or if the destination string is too small, these functions invoke an invalid parameter
handler, as described in Parameter Validation . If execution is allowed to continue, these functions return EINVAL
and set errno to EINVAL.

For additional compatibility information, see Compatibility.

Buffer Manipulation
_memccpy
memcpy, wmemcpy
strcpy_s, wcscpy_s, _mbscpy_s
strcpy, wcscpy, _mbscpy
strncpy_s, _strncpy_s_l, wcsncpy_s, _wcsncpy_s_l, _mbsncpy_s, _mbsncpy_s_l
strncpy, _strncpy_l, wcsncpy, _wcsncpy_l, _mbsncpy, _mbsncpy_l

memset, wmemset
3/1/2019 • 2 minutes to read • Edit Online

Syntax
void *memset(
 void *dest,
 int c,
 size_t count
);
wchar_t *wmemset(
 wchar_t *dest,
 wchar_t c,
 size_t count
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

memset <memory.h> or <string.h>

wmemset <wchar.h>

Libraries

Sets buffers to a specified character.

dest
Pointer to destination.

c
Character to set.

count
Number of characters.

The value of dest.

Sets the first count characters of dest to the character c.

Security Note Make sure that the destination buffer has enough room for at least count characters. For more
information, see Avoiding Buffer Overruns.

For additional compatibility information, see Compatibility.

All versions of the C run-time libraries.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/memset-wmemset.md
https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

Example
// crt_memset.c
/* This program uses memset to
* set the first four chars of buffer to "*".
*/

#include <memory.h>
#include <stdio.h>

int main(void)
{
 char buffer[] = "This is a test of the memset function";

 printf("Before: %s\n", buffer);
 memset(buffer, '*', 4);
 printf("After: %s\n", buffer);
}

Output

Before: This is a test of the memset function
After: **** is a test of the memset function

// crt_wmemset.c
/* This program uses memset to
* set the first four chars of buffer to "*".
*/

#include <wchar.h>
#include <stdio.h>

int main(void)
{
 wchar_t buffer[] = L"This is a test of the wmemset function";

 wprintf(L"Before: %s\n", buffer);
 wmemset(buffer, '*', 4);
 wprintf(L"After: %s\n", buffer);
}

Output

Before: This is a test of the wmemset function
After: **** is a test of the wmemset function

See also

Here's an example of the use of wmemset:

Buffer Manipulation
_memccpy
memchr, wmemchr
memcmp, wmemcmp
memcpy, wmemcpy
_strnset, _strnset_l, _wcsnset, _wcsnset_l, _mbsnset, _mbsnset_l

__min
10/31/2018 • 2 minutes to read • Edit Online

Syntax
#define __min(a,b) (((a) < (b)) ? (a) : (b))

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

__min <stdlib.h>

Example
// crt_minmax.c

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 int a = 10;
 int b = 21;

 printf("The larger of %d and %d is %d\n", a, b, __max(a, b));
 printf("The smaller of %d and %d is %d\n", a, b, __min(a, b));
}

The larger of 10 and 21 is 21
The smaller of 10 and 21 is 10

A preprocessor macro that returns the smaller of two values.

a, b
Values of any type that the < operator works on.

The smaller of the two arguments.

The __min macro compares two values and returns the value of the smaller one. The arguments can be of any
numeric data type, signed or unsigned. Both arguments and the return value must be of the same data type.

The argument returned is evaluated twice by the macro. This can lead to unexpected results if the argument is an
expression that alters its value when it is evaluated, such as *p++ .

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/min.md

See also
Floating-Point Support
__max

mkdir
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _mkdir instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mkdir.md

_mkdir, _wmkdir
10/31/2018 • 2 minutes to read • Edit Online

Syntax

int _mkdir(
 const char *dirname
);
int _wmkdir(
 const wchar_t *dirname
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tmkdir _mkdir _mkdir _wmkdir

Requirements

Creates a new directory.

dirname
Path for a new directory.

Each of these functions returns the value 0 if the new directory was created. On an error, the function returns -1
and sets errno as follows.

EEXIST Directory was not created because dirname is the name of an existing file, directory, or device.

ENOENT Path was not found.

For more information about these and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The _mkdir function creates a new directory with the specified dirname. _mkdir can create only one new
directory per call, so only the last component of dirname can name a new directory. _mkdir does not translate
path delimiters. In Windows NT, both the backslash (\) and the forward slash (/) are valid path delimiters in
character strings in run-time routines.

_wmkdir is a wide-character version of _mkdir; the dirname argument to _wmkdir is a wide-character string.
_wmkdir and _mkdir behave identically otherwise.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mkdir-wmkdir.md

ROUTINE REQUIRED HEADER

_mkdir <direct.h>

_wmkdir <direct.h> or <wchar.h>

Libraries

Example
// crt_makedir.c

#include <direct.h>
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 if(_mkdir("\\testtmp") == 0)
 {
 printf("Directory '\\testtmp' was successfully created\n");
 system("dir \\testtmp");
 if(_rmdir("\\testtmp") == 0)
 printf("Directory '\\testtmp' was successfully removed\n");
 else
 printf("Problem removing directory '\\testtmp'\n");
 }
 else
 printf("Problem creating directory '\\testtmp'\n");
}

Sample Output

Directory '\testtmp' was successfully created
Volume in drive C has no label.
Volume Serial Number is E078-087A

Directory of C:\testtmp

02/12/2002 09:56a <DIR> .
02/12/2002 09:56a <DIR> ..
 0 File(s) 0 bytes
 2 Dir(s) 15,498,690,560 bytes free
Directory '\testtmp' was successfully removed

See also

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

Directory Control
_chdir, _wchdir
_rmdir, _wrmdir

_mkgmtime, _mkgmtime32, _mkgmtime64
10/31/2018 • 3 minutes to read • Edit Online

Syntax
time_t _mkgmtime(
 struct tm* timeptr
);
__time32_t _mkgmtime32(
 struct tm* timeptr
);
__time64_t _mkgmtime64(
 struct tm* timeptr
);

Parameters

Return Value

Remarks

Converts a UTC time represented by a struct tm to a UTC time represented by a time_t type.

timeptr
A pointer to the UTC time as a struct tm to convert.

A quantity of type __time32_t or __time64_t representing the number of seconds elapsed since midnight,
January 1, 1970, in Coordinated Universal Time (UTC). If the date is out of range (see the Remarks section) or
the input cannot be interpreted as a valid time, the return value is -1.

The _mkgmtime32 and _mkgmtime64 functions convert a UTC time to a __time32_t or __time64_t type
representing the time in UTC. To convert a local time to UTC time, use mktime, _mktime32, and _mktime64
instead.

_mkgmtime is an inline function that evaluates to _mkgmtime64, and time_t is equivalent to __time64_t. If
you need to force the compiler to interpret time_t as the old 32-bit time_t, you can define
_USE_32BIT_TIME_T. This is not recommended because your application might fail after January 18, 2038 (the
maximum range of a 32-bit time_t), and it is not allowed at all on 64-bit platforms.

The time structure passed in will be changed as follows, in the same way as they are changed with the _mktime
functions: the tm_wday and tm_yday fields are set to new values based on the values of tm_mday and
tm_year. When specifying a tm structure time, set the tm_isdst field to:

Zero (0) to indicate that standard time is in effect.

A value greater than 0 to indicate that daylight saving time is in effect.

A value less than zero to have the C run-time library code compute whether standard time or daylight
saving time is in effect.

The C run-time library uses the TZ environment variable to determine the correct daylight savings time. If TZ is
not set, the operating system is queried to get the correct regional daylight savings time behavior. tm_isdst is a
required field. If not set, its value is undefined and the return value from mktime is unpredictable.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mkgmtime-mkgmtime32-mkgmtime64.md

Example
// crt_mkgmtime.c
#include <stdio.h>
#include <time.h>

int main()
{
 struct tm t1, t2;
 time_t now, mytime, gmtime;
 char buff[30];

 time(& now);

 _localtime64_s(&t1, &now);
 _gmtime64_s(&t2, &now);

 mytime = mktime(&t1);
 gmtime = _mkgmtime(&t2);

 printf("Seconds since midnight, January 1, 1970\n");
 printf("My time: %I64d\nGM time (UTC): %I64d\n\n", mytime, gmtime);

 /* Use asctime_s to display these times. */

 _localtime64_s(&t1, &mytime);
 asctime_s(buff, sizeof(buff), &t1);
 printf("Local Time: %s\n", buff);

 _gmtime64_s(&t2, &gmtime);
 asctime_s(buff, sizeof(buff), &t2);
 printf("Greenwich Mean Time: %s\n", buff);

}

Sample Output

Seconds since midnight, January 1, 1970
My time: 1171588492
GM time (UTC): 1171588492

Local Time: Thu Feb 15 17:14:52 2007

Greenwich Mean Time: Fri Feb 16 01:14:52 2007

The range of the _mkgmtime32 function is from midnight, January 1, 1970, UTC to 23:59:59 January 18, 2038,
UTC. The range of _mkgmtime64 is from midnight, January 1, 1970, UTC to 23:59:59, December 31, 3000,
UTC. An out-of-range date results in a return value of -1. The range of _mkgmtime depends on whether
_USE_32BIT_TIME_T is defined. If not defined (the default) the range is that of _mkgmtime64; otherwise, the
range is limited to the 32-bit range of _mkgmtime32.

Note that gmtime and localtime use a single statically allocated buffer for the conversion. If you supply this
buffer to mkgmtime, the previous contents are destroyed.

The following example shows how the incomplete structure is filled out with the computed values of the day of
the week and the day of the year.

// crt_mkgmtime2.c
#include <stdio.h>
#include <time.h>
#include <memory.h>

int main()
{
 struct tm t1, t2;
 time_t gmtime;
 char buff[30];

 memset(&t1, 0, sizeof(struct tm));
 memset(&t2, 0, sizeof(struct tm));

 t1.tm_mon = 1;
 t1.tm_isdst = 0;
 t1.tm_year = 103;
 t1.tm_mday = 12;

 // The day of the week and year will be incorrect in the output here.
 asctime_s(buff, sizeof(buff), &t1);
 printf("Before calling _mkgmtime, t1 = %s t.tm_yday = %d\n",
 buff, t1.tm_yday);

 gmtime = _mkgmtime(&t1);

 // The correct day of the week and year were determined.
 asctime_s(buff, sizeof(buff), &t1);
 printf("After calling _mkgmtime, t1 = %s t.tm_yday = %d\n",
 buff, t1.tm_yday);

}

Output

Before calling _mkgmtime, t1 = Sun Feb 12 00:00:00 2003
t.tm_yday = 0
After calling _mkgmtime, t1 = Wed Feb 12 00:00:00 2003
t.tm_yday = 42

See also
Time Management
asctime, _wasctime
asctime_s, _wasctime_s
gmtime, _gmtime32, _gmtime64
gmtime_s, _gmtime32_s, _gmtime64_s
localtime_s, _localtime32_s, _localtime64_s
mktime, _mktime32, _mktime64
time, _time32, _time64

mktemp
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _mktemp or security-enhanced _mktemp_s
instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mktemp.md

_mktemp, _wmktemp
11/8/2018 • 4 minutes to read • Edit Online

Syntax
char *_mktemp(
 char *nameTemplate
);
wchar_t *_wmktemp(
 wchar_t *nameTemplate
);
template <size_t size>
char *_mktemp(
 char (&nameTemplate)[size]
); // C++ only
template <size_t size>
wchar_t *_wmktemp(
 wchar_t (&nameTemplate)[size]
); // C++ only

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tmktemp _mktemp _mktemp _wmktemp

Creates a unique file name. More secure versions of these functions are available; see _mktemp_s, _wmktemp_s.

nameTemplate
File name pattern.

Each of these functions returns a pointer to the modified nameTemplate. The function returns NULL if
nameTemplate is badly formed or no more unique names can be created from the given nameTemplate.

The _mktemp function creates a unique file name by modifying the nameTemplate argument. _mktemp
automatically handles multibyte-character string arguments as appropriate, recognizing multibyte-character
sequences according to the multibyte code page currently in use by the run-time system. _wmktemp is a wide-
character version of _mktemp; the argument and return value of _wmktemp are wide-character strings.
_wmktemp and _mktemp behave identically otherwise, except that _wmktemp does not handle multibyte-
character strings.

The nameTemplate argument has the form baseXXXXXX, where base is the part of the new file name that you
supply and each X is a placeholder for a character supplied by _mktemp. Each placeholder character in
nameTemplate must be an uppercase X. _mktemp preserves base and replaces the first trailing X with an
alphabetic character. _mktemp replaces the following trailing X's with a five-digit value; this value is a unique
number identifying the calling process, or in multithreaded programs, the calling thread.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mktemp-wmktemp.md

Requirements
ROUTINE REQUIRED HEADER

_mktemp <io.h>

_wmktemp <io.h> or <wchar.h>

Example

Each successful call to _mktemp modifies nameTemplate. In each subsequent call from the same process or
thread with the same nameTemplate argument, _mktemp checks for file names that match names returned by
_mktemp in previous calls. If no file exists for a given name, _mktemp returns that name. If files exist for all
previously returned names, _mktemp creates a new name by replacing the alphabetic character it used in the
previously returned name with the next available lowercase letter, in order, from 'a' through 'z'. For example, if
base is:

fn

and the five-digit value supplied by _mktemp is 12345, the first name returned is:

fna12345

If this name is used to create file FNA12345 and this file still exists, the next name returned on a call from the
same process or thread with the same base for nameTemplate is:

fnb12345

If FNA12345 does not exist, the next name returned is again:

fna12345

_mktemp can create a maximum of 26 unique file names for any given combination of base and nameTemplate
values. Therefore, FNZ12345 is the last unique file name _mktemp can create for the base and nameTemplate
values used in this example.

On failure, errno is set. If nameTemplate has an invalid format (for example, fewer than 6 X's), errno is set to
EINVAL. If _mktemp is unable to create a unique name because all 26 possible file names already exist,
_mktemp sets nameTemplate to an empty string and returns EEXIST.

In C++, these functions have template overloads that invoke the newer, secure counterparts of these functions.
For more information, see Secure Template Overloads.

For more compatibility information, see Compatibility.

// crt_mktemp.c
// compile with: /W3
/* The program uses _mktemp to create
* unique filenames. It opens each filename
* to ensure that the next name is unique.
*/

#include <io.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>

char *template = "fnXXXXXX";
char *result;
char names[27][9];

int main(void)
{
 int i;
 FILE *fp;

 for(i = 0; i < 27; i++)
 {
 strcpy_s(names[i], sizeof(names[i]), template);
 /* Attempt to find a unique filename: */
 result = _mktemp(names[i]); // C4996
 // Note: _mktemp is deprecated; consider using _mktemp_s instead
 if(result == NULL)
 {
 printf("Problem creating the template\n");
 if (errno == EINVAL)
 {
 printf("Bad parameter\n");
 }
 else if (errno == EEXIST)
 {
 printf("Out of unique filenames\n");
 }
 }
 else
 {
 fopen_s(&fp, result, "w");
 if(fp != NULL)
 printf("Unique filename is %s\n", result);
 else
 printf("Cannot open %s\n", result);
 fclose(fp);
 }
 }
}

Unique filename is fna03912
Unique filename is fnb03912
Unique filename is fnc03912
Unique filename is fnd03912
Unique filename is fne03912
Unique filename is fnf03912
Unique filename is fng03912
Unique filename is fnh03912
Unique filename is fni03912
Unique filename is fnj03912
Unique filename is fnk03912
Unique filename is fnl03912
Unique filename is fnm03912
Unique filename is fnn03912
Unique filename is fno03912
Unique filename is fnp03912
Unique filename is fnq03912
Unique filename is fnr03912
Unique filename is fns03912
Unique filename is fnt03912
Unique filename is fnu03912
Unique filename is fnv03912
Unique filename is fnw03912
Unique filename is fnx03912
Unique filename is fny03912
Unique filename is fnz03912
Problem creating the template.
Out of unique filenames.

See also
File Handling
fopen, _wfopen
_getmbcp
_getpid
_open, _wopen
_setmbcp
_tempnam, _wtempnam, tmpnam, _wtmpnam
tmpfile

_mktemp_s, _wmktemp_s
10/31/2018 • 3 minutes to read • Edit Online

Syntax
errno_t _mktemp_s(
 char *nameTemplate,
 size_t sizeInChars
);
errno_t _wmktemp_s(
 wchar_t *nameTemplate,
 size_t sizeInChars
);
template <size_t size>
errno_t _mktemp_s(
 char (&nameTemplate)[size]
); // C++ only
template <size_t size>
errno_t _wmktemp_s(
 wchar_t (&nameTemplate)[size]
); // C++ only

Parameters

Return Value

Error Conditions

NAMETEMPLATE SIZEINCHARS RETURN VALUE
NEW VALUE IN
NAMETEMPLATE

NULL any EINVAL NULL

Incorrect format (see
Remarks section for correct
format)

any EINVAL empty string

any <= number of X's EINVAL empty string

Creates a unique file name. These are versions of _mktemp, _wmktemp with security enhancements as described
in Security Features in the CRT.

nameTemplate
File name pattern.

sizeInChars
Size of the buffer in single-byte characters in _mktemp_s; wide characters in _wmktemp_s, including the null
terminator.

Both of these functions return zero on success; an error code on failure.

If any of the above error conditions occurs, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, errno is set to EINVAL and the functions returns EINVAL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mktemp-s-wmktemp-s.md

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tmktemp_s _mktemp_s _mktemp_s _wmktemp_s

Requirements

The _mktemp_s function creates a unique file name by modifying the nameTemplate argument, so that after the
call, the nameTemplate pointer points to a string containing the new file name. _mktemp_s automatically handles
multibyte-character string arguments as appropriate, recognizing multibyte-character sequences according to the
multibyte code page currently in use by the run-time system. _wmktemp_s is a wide-character version of
_mktemp_s; the argument of _wmktemp_s is a wide-character string. _wmktemp_s and _mktemp_s behave
identically otherwise, except that _wmktemp_s does not handle multibyte-character strings.

The nameTemplate argument has the form baseXXXXXX, where base is the part of the new file name that you
supply and each X is a placeholder for a character supplied by _mktemp_s. Each placeholder character in
nameTemplate must be an uppercase X. _mktemp_s preserves base and replaces the first trailing X with an
alphabetic character. _mktemp_s replaces the following trailing X's with a five-digit value; this value is a unique
number identifying the calling process, or in multithreaded programs, the calling thread.

Each successful call to _mktemp_s modifies nameTemplate. In each subsequent call from the same process or
thread with the same nameTemplate argument, _mktemp_s checks for file names that match names returned by
_mktemp_s in previous calls. If no file exists for a given name, _mktemp_s returns that name. If files exist for all
previously returned names, _mktemp_s creates a new name by replacing the alphabetic character it used in the
previously returned name with the next available lowercase letter, in order, from 'a' through 'z'. For example, if
base is:

fn

and the five-digit value supplied by _mktemp_s is 12345, the first name returned is:

fna12345

If this name is used to create file FNA12345 and this file still exists, the next name returned on a call from the
same process or thread with the same base for nameTemplate is:

fnb12345

If FNA12345 does not exist, the next name returned is again:

fna12345

_mktemp_s can create a maximum of 26 unique file names for any given combination of base and
nameTemplate values. Therefore, FNZ12345 is the last unique file name _mktemp_s can create for the base and
nameTemplate values used in this example.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically (eliminating the need to specify a size argument) and they can automatically replace older, non-
secure functions with their newer, secure counterparts. For more information, see Secure Template Overloads.

ROUTINE REQUIRED HEADER

_mktemp_s <io.h>

_wmktemp_s <io.h> or <wchar.h>

Example
// crt_mktemp_s.cpp
/* The program uses _mktemp to create
* five unique filenames. It opens each filename
* to ensure that the next name is unique.
*/

#include <io.h>
#include <string.h>
#include <stdio.h>

char *fnTemplate = "fnXXXXXX";
char names[5][9];

int main()
{
 int i, err, sizeInChars;
 FILE *fp;

 for(i = 0; i < 5; i++)
 {
 strcpy_s(names[i], sizeof(names[i]), fnTemplate);
 /* Get the size of the string and add one for the null terminator.*/
 sizeInChars = strnlen(names[i], 9) + 1;
 /* Attempt to find a unique filename: */
 err = _mktemp_s(names[i], sizeInChars);
 if(err != 0)
 printf("Problem creating the template");
 else
 {
 if(fopen_s(&fp, names[i], "w") == 0)
 printf("Unique filename is %s\n", names[i]);
 else
 printf("Cannot open %s\n", names[i]);
 fclose(fp);
 }
 }

 return 0;
}

Sample Output

Unique filename is fna03188
Unique filename is fnb03188
Unique filename is fnc03188
Unique filename is fnd03188
Unique filename is fne03188

See also

For more compatibility information, see Compatibility.

File Handling

fopen, _wfopen
_getmbcp
_getpid
_open, _wopen
_setmbcp
_tempnam, _wtempnam, tmpnam, _wtmpnam
tmpfile_s

mktime, _mktime32, _mktime64
10/31/2018 • 3 minutes to read • Edit Online

Syntax
time_t mktime(
 struct tm *timeptr
);
__time32_t _mktime32(
 struct tm *timeptr
);
__time64_t _mktime64(
 struct tm *timeptr
);

Parameters

Return Value

Remarks

Convert the local time to a calendar value.

timeptr
Pointer to time structure; see asctime.

_mktime32 returns the specified calendar time encoded as a value of type time_t. If timeptr references a date
before midnight, January 1, 1970, or if the calendar time cannot be represented, _mktime32 returns -1 cast to
type time_t. When using _mktime32 and if timeptr references a date after 23:59:59 January 18, 2038,
Coordinated Universal Time (UTC), it will return -1 cast to type time_t.

_mktime64 will return -1 cast to type __time64_t if timeptr references a date after 23:59:59, December 31,
3000, UTC.

The mktime, _mktime32 and _mktime64 functions convert the supplied time structure (possibly incomplete)
pointed to by timeptr into a fully defined structure with normalized values and then converts it to a time_t
calendar time value. The converted time has the same encoding as the values returned by the time function.
The original values of the tm_wday and tm_yday components of the timeptr structure are ignored, and the
original values of the other components are not restricted to their normal ranges.

mktime is an inline function that is equivalent to _mktime64, unless _USE_32BIT_TIME_T is defined, in
which case it is equivalent to _mktime32.

After an adjustment to UTC, _mktime32 handles dates from midnight, January 1, 1970, to 23:59:59 January
18, 2038, UTC. _mktime64 handles dates from midnight, January 1, 1970 to 23:59:59, December 31, 3000.
This adjustment may cause these functions to return -1 (cast to time_t, __time32_t or __time64_t) even
though the date you specify is within range. For example, if you are in Cairo, Egypt, which is two hours ahead
of UTC, two hours will first be subtracted from the date you specify in timeptr; this may now put your date out
of range.

These functions may be used to validate and fill in a tm structure. If successful, these functions set the values of
tm_wday and tm_yday as appropriate and set the other components to represent the specified calendar time,
but with their values forced to the normal ranges. The final value of tm_mday is not set until tm_mon and

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/mktime-mktime32-mktime64.md

Requirements
ROUTINE REQUIRED HEADER

mktime <time.h>

_mktime32 <time.h>

_mktime64 <time.h>

Libraries

Example

tm_year are determined. When specifying a tm structure time, set the tm_isdst field to:

Zero (0) to indicate that standard time is in effect.

A value greater than 0 to indicate that daylight saving time is in effect.

A value less than zero to have the C run-time library code compute whether standard time or daylight
saving time is in effect.

The C run-time library will determine the daylight savings time behavior from the TZ environment variable. If
TZ is not set, the Win32 API call GetTimeZoneInformation is used to get the daylight savings time information
from the operating system. If this fails, the library assumes the United States' rules for implementing the
calculation of daylight saving time are used. tm_isdst is a required field. If not set, its value is undefined and
the return value from these functions is unpredictable. If timeptr points to a tm structure returned by a
previous call to asctime, gmtime, or localtime (or variants of these functions), the tm_isdst field contains the
correct value.

Note that gmtime and localtime (and _gmtime32, _gmtime64, _localtime32, and _localtime64) use a
single buffer per thread for the conversion. If you supply this buffer to mktime, _mktime32 or _mktime64,
the previous contents are destroyed.

These functions validate their parameter. If timeptr is a null pointer, the invalid parameter handler is invoked, as
described in Parameter Validation. If execution is allowed to continue, the functions return -1 and set errno to
EINVAL.

For additional compatibility information, see Compatibility.

All versions of the C run-time libraries.

https://docs.microsoft.com/windows/desktop/api/timezoneapi/nf-timezoneapi-gettimezoneinformation

// crt_mktime.c
/* The example takes a number of days
* as input and returns the time, the current
* date, and the specified number of days.
*/

#include <time.h>
#include <stdio.h>

int main(void)
{
 struct tm when;
 __time64_t now, result;
 int days;
 char buff[80];

 time(&now);
 _localtime64_s(&when, &now);
 asctime_s(buff, sizeof(buff), &when);
 printf("Current time is %s\n", buff);
 days = 20;
 when.tm_mday = when.tm_mday + days;
 if((result = mktime(&when)) != (time_t)-1) {
 asctime_s(buff, sizeof(buff), &when);
 printf("In %d days the time will be %s\n", days, buff);
 } else
 perror("mktime failed");
}

Sample Output

Current time is Fri Apr 25 13:34:07 2003

In 20 days the time will be Thu May 15 13:34:07 2003

See also
Time Management
asctime, _wasctime
gmtime, _gmtime32, _gmtime64
localtime, _localtime32, _localtime64
_mkgmtime, _mkgmtime32, _mkgmtime64
time, _time32, _time64

modf, modff, modfl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double modf(double x, double * intptr);
float modff(float x, float * intptr);
long double modfl(long double x, long double * intptr);

float modf(float x, float * intptr); // C++ only
long double modf(long double x, long double * intptr); // C++ only

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

modf, modff, modfl C: <math.h>

C++: , <cmath> or <math.h>

Example

Splits a floating-point value into fractional and integer parts.

x
Floating-point value.

intptr
Pointer to stored integer portion.

This function returns the signed fractional portion of x. There is no error return.

The modf functions break down the floating-point value x into fractional and integer parts, each of which has the
same sign as x. The signed fractional portion of x is returned. The integer portion is stored as a floating-point
value at intptr.

modf has an implementation that uses Streaming SIMD Extensions 2 (SSE2). See _set_SSE2_enable for
information and restrictions on using the SSE2 implementation.

C++ allows overloading, so you can call overloads of modf that take and return float or long double
parameters. In a C program, modf always takes two double values and returns a double value.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/modf-modff-modfl.md

// crt_modf.c

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x, y, n;

 x = -14.87654321; /* Divide x into its fractional */
 y = modf(x, &n); /* and integer parts */

 printf("For %f, the fraction is %f and the integer is %.f\n",
 x, y, n);
}

For -14.876543, the fraction is -0.876543 and the integer is -14

See also
Floating-Point Support
frexp
ldexp

_msize
10/31/2018 • 2 minutes to read • Edit Online

Syntax
size_t _msize(
 void *memblock
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_msize <malloc.h>

Libraries

Example

See also

Returns the size of a memory block allocated in the heap.

memblock
Pointer to the memory block.

_msize returns the size (in bytes) as an unsigned integer.

The _msize function returns the size, in bytes, of the memory block allocated by a call to calloc, malloc, or
realloc.

When the application is linked with a debug version of the C run-time libraries, _msize resolves to _msize_dbg.
For more information about how the heap is managed during the debugging process, see The CRT Debug Heap.

This function validates its parameter. If memblock is a null pointer, _msize invokes an invalid parameter handler, as
described in Parameter Validation. If the error is handled, the function sets errno to EINVAL and returns -1.

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

See the example for realloc.

Memory Allocation
calloc

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/msize.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

_expand
malloc
realloc

_msize_dbg
10/31/2018 • 2 minutes to read • Edit Online

Syntax
size_t _msize_dbg(
 void *userData,
 int blockType
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_msize_dbg <crtdbg.h>

Libraries

Calculates the size of a block of memory in the heap (debug version only).

userData
Pointer to the memory block for which to determine the size.

blockType
Type of the specified memory block: _CLIENT_BLOCK or _NORMAL_BLOCK.

On successful completion, _msize_dbg returns the size (in bytes) of the specified memory block; otherwise it
returns NULL.

_msize_dbg is a debug version of the _msize function. When _DEBUG is not defined, each call to _msize_dbg is
reduced to a call to _msize. Both _msize and _msize_dbg calculate the size of a memory block in the base heap,
but _msize_dbg adds two debugging features: It includes the buffers on either side of the user portion of the
memory block in the returned size and it allows size calculations for specific block types.

For information about how memory blocks are allocated, initialized, and managed in the debug version of the
base heap, see CRT Debug Heap Details. For information about the allocation block types and how they are used,
see Types of blocks on the debug heap. For information about the differences between calling a standard heap
function and its debug version in a debug build of an application, see Debug Versions of Heap Allocation
Functions.

This function validates its parameter. If memblock is a null pointer, _msize invokes an invalid parameter handler,
as described in Parameter Validation. If the error is handled, the function sets errno to EINVAL and returns -1.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/msize-dbg.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/debug-versions-of-heap-allocation-functions

Example
// crt_msize_dbg.c
// compile with: /MTd
/*
* This program allocates a block of memory using _malloc_dbg
* and then calls _msize_dbg to display the size of that block.
* Next, it uses _realloc_dbg to expand the amount of
* memory used by the buffer and then calls _msize_dbg again to
* display the new amount of memory allocated to the buffer.
*/

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <crtdbg.h>

int main(void)
{
 long *buffer, *newbuffer;
 size_t size;

 /*
 * Call _malloc_dbg to include the filename and line number
 * of our allocation request in the header
 */
 buffer = (long *)_malloc_dbg(40 * sizeof(long), _NORMAL_BLOCK, __FILE__, __LINE__);
 if(buffer == NULL)
 exit(1);

 /*
 * Get the size of the buffer by calling _msize_dbg
 */
 size = _msize_dbg(buffer, _NORMAL_BLOCK);
 printf("Size of block after _malloc_dbg of 40 longs: %u\n", size);

 /*
 * Reallocate the buffer using _realloc_dbg and show the new size
 */
 newbuffer = _realloc_dbg(buffer, size + (40 * sizeof(long)), _NORMAL_BLOCK, __FILE__, __LINE__);
 if(newbuffer == NULL)
 exit(1);
 buffer = newbuffer;
 size = _msize_dbg(buffer, _NORMAL_BLOCK);
 printf("Size of block after _realloc_dbg of 40 more longs: %u\n", size);

 free(buffer);
 exit(0);
}

Output

Size of block after _malloc_dbg of 40 longs: 160
Size of block after _realloc_dbg of 40 more longs: 320

See also

Debug versions of C run-time libraries only.

Debug Routines
_malloc_dbg

nan, nanf, nanl
2/4/2019 • 2 minutes to read • Edit Online

Syntax
double nan(const char* input);
float nanf(const char* input);
long double nanl(const char* input);

Parameters

Return Value

Remarks

Requirements
FUNCTION C HEADER C++ HEADER

nan, nanf, nanl <math.h> <cmath> or <math.h>

See also

Returns a quiet NaN value.

input
A string value.

The nan functions return a quiet NaN value.

The nan functions return a floating-point value that corresponds to a quiet (non-signalling) NaN. The input value
is ignored. For information about how a NaN is represented for output, see printf, _printf_l, wprintf, _wprintf_l.

Floating-Point Support
fpclassify
_fpclass, _fpclassf
isfinite, _finite, _finitef
isinf
isnan, _isnan, _isnanf
isnormal

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/nan-nanf-nanl.md

nearbyint, nearbyintf, nearbyintl
2/4/2019 • 2 minutes to read • Edit Online

Syntax
double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);

float nearbyint(float x); //C++ only
long double nearbyint(long double x); //C++ only

Parameters

Return Value

ISSUE RETURN

x = ±INFINITY ±INFINITY, unmodified

x = ±0 ±0, unmodified

x = NaN NaN

Remarks

Requirements

Rounds the specified floating-point value to an integer, and returns that value in a floating-point format.

x
The value to round.

If successful, returns x, rounded to the nearest integer, using the current rounding format as reported by
fegetround. Otherwise, the function may return one of the following values:

Errors are not reported through _matherr; specifically, this function does not report any FE_INEXACT
exceptions.

The primary difference between this function and rint is that this function does not raise the inexact floating point
exception.

Because the maximum floating-point values are exact integers, this function will never overflow by itself; rather,
the output may overflow the return value, depending on which version of the function you use.

C++ allows overloading, so you can call overloads of nearbyint that take and return float or long double
parameters. In a C program, nearbyint always takes two double values and returns a double value.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/nearbyint-nearbyintf-nearbyintl1.md

FUNCTION C HEADER C++ HEADER

nearbyint, nearbyintf, nearbyintl <math.h> <cmath> or <math.h>

See also

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
Math and floating-point support

nextafter, nextafterf, nextafterl, _nextafter, _nextafterf,
nexttoward, nexttowardf, nexttowardl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);

double _nextafter(double x, double y);
float _nextafterf(float x, float y); /* x64 only */

double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);

float nextafter(float x, float y); /* C++ only, requires <cmath> */
long double nextafter(long double x, long double y); /* C++ only, requires <cmath> */

float nexttoward(float x, long double y); /* C++ only, requires <cmath> */
long double nexttoward(long double x, long double y); /* C++ only, requires <cmath> */

Parameters

Return Value

Remarks

Returns the next representable floating-point value.

x
The floating-point value to start from.

y
The floating-point value to go towards.

Returns the next representable floating-point value of the return type after x in the direction of y. If x and y are
equal, the function returns y, converted to the return type, with no exception triggered. If x is not equal to y, and
the result is a denormal or zero, the FE_UNDERFLOW and FE_INEXACT floating-point exception states are
set, and the correct result is returned. If either x or y is a NAN, then the return value is one of the input NANs. If
x is finite and the result is infinite or not representable in the type, a correctly signed infinity or NAN is returned,
the FE_OVERFLOW and FE_INEXACT floating-point exception states are set, and errno is set to ERANGE .

The nextafter and nexttoward function families are equivalent, except for the parameter type of y. If x and y
are equal, the value returned is y converted to the return type.

Because C++ allows overloading, if you include <cmath> you can call overloads of nextafter and nexttoward
that return float and long double types. In a C program, nextafter and nexttoward always return double.

The _nextafter and _nextafterf functions are Microsoft specific. The _nextafterf function is only available
when compiling for x64.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/nextafter-functions.md

Requirements
ROUTINE REQUIRED HEADER (C) REQUIRED HEADER (C++)

nextafter, nextafterf, nextafterl,
_nextafterf, nexttoward,
nexttowardf, nexttowardl

<math.h> <math.h> or <cmath>

_nextafter <float.h> <float.h> or <cfloat>

See also

For more compatibility information, see Compatibility.

Floating-Point Support
isnan, _isnan, _isnanf

norm, normf, norml
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double norm(_Dcomplex z);
float normf(_Fcomplex z);
long double norml(_Lcomplex z);

float norm(_Fcomplex z); // C++ only
long double norm(_Lcomplex z); // C++ only

Parameters

Return Value

Remarks

Requirements
ROUTINE C HEADER C++ HEADER

norm, normf, norml <complex.h> <complex.h>

See also

Retrieves the squared magnitude of a complex number.

z
A complex number.

The squared magnitude of z.

Because C++ allows overloading, you can call overloads of norm that take _Fcomplex or _Lcomplex values,
and return float or long double values. In a C program, norm always takes a _Dcomplex value and returns a
double value.

The _Fcomplex, _Dcomplex, and _Lcomplex types are Microsoft-specific equivalents of the unimplemented
native C99 types float _Complex, double _Complex, and long double _Complex, respectively. For more
compatibility information, see Compatibility.

Alphabetical Function Reference
creal, crealf, creall
cproj, cprojf, cprojl
conj, conjf, conjl
cimag, cimagf, cimagl
carg, cargf, cargl
cabs, cabsf, cabsl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/norm-normf-norml1.md

not
11/9/2018 • 2 minutes to read • Edit Online

Syntax

#define not !

Remarks

Example
// iso646_not.cpp
// compile with: /EHsc
#include <iostream>
#include <iso646.h>

int main()
{
 using namespace std;
 int a = 0;

 if (!a)
 cout << "a is zero" << endl;

 if (not(a))
 cout << "a is zero" << endl;
}

a is zero
a is zero

Requirements

An alternative to the ! operator.

The macro yields the operator !.

Header: <iso646.h>

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/not.md

not_eq
11/9/2018 • 2 minutes to read • Edit Online

Syntax

#define not_eq !=

Remarks

Example
// iso646_not_eq.cpp
// compile with: /EHsc
#include <iostream>
#include <iso646.h>

int main()
{
 using namespace std;
 int a = 0, b = 1;

 if (a != b)
 cout << "a is not equal to b" << endl;

 if (a not_eq b)
 cout << "a is not equal to b" << endl;
}

a is not equal to b
a is not equal to b

Requirements

An alternative to the != operator.

The macro yields the operator !=.

Header: <iso646.h>

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/not-eq.md

offsetof Macro
10/31/2018 • 2 minutes to read • Edit Online

Syntax
size_t offsetof(
 structName,
 memberName
);

Parameters

Return Value

Remarks

NOTE

Requirements
ROUTINE REQUIRED HEADER

offsetof <stddef.h>

Libraries

See also

Retrieves the offset of a member from the beginning of its parent structure.

structName
Name of the parent data structure.

memberName
Name of the member in the parent data structure for which to determine the offset.

offsetof returns the offset in bytes of the specified member from the beginning of its parent data structure. It is
undefined for bit fields.

The offsetof macro returns the offset in bytes of memberName from the beginning of the structure specified by
structName as a value of type size_t. You can specify types with the struct keyword.

offsetof is not a function and cannot be described using a C prototype.

For additional compatibility information, see Compatibility.

All versions of the C run-time libraries.

Memory Allocation

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/offsetof-macro.md

_onexit, _onexit_m
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_onexit_t _onexit(
 _onexit_t function
);
_onexit_t_m _onexit_m(
 _onexit_t_m function
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_onexit <stdlib.h>

Example

Registers a routine to be called at exit time.

function
Pointer to a function to be called at exit.

_onexit returns a pointer to the function if successful or NULL if there is no space to store the function
pointer.

The _onexit function is passed the address of a function (function) to be called when the program
terminates normally. Successive calls to _onexit create a register of functions that are executed in L IFO
(last-in-first-out) order. The functions passed to _onexit cannot take parameters.

In the case when _onexit is called from within a DLL, routines registered with _onexit run on a DLL's
unloading after DllMain is called with DLL_PROCESS_DETACH.

_onexit is a Microsoft extension. For ANSI portability, use atexit. The _onexit_m version of the function is
for mixed mode use.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/onexit-onexit-m.md

// crt_onexit.c

#include <stdlib.h>
#include <stdio.h>

/* Prototypes */
int fn1(void), fn2(void), fn3(void), fn4 (void);

int main(void)
{
 _onexit(fn1);
 _onexit(fn2);
 _onexit(fn3);
 _onexit(fn4);
 printf("This is executed first.\n");
}

int fn1()
{
 printf("next.\n");
 return 0;
}

int fn2()
{
 printf("executed ");
 return 0;
}

int fn3()
{
 printf("is ");
 return 0;
}

int fn4()
{
 printf("This ");
 return 0;
}

Output

This is executed first.
This is executed next.

See also
Process and Environment Control
atexit
exit, _Exit, _exit
__dllonexit

open
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _open instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/open.md

_open, _wopen
11/8/2018 • 6 minutes to read • Edit Online

Syntax
int _open(
 const char *filename,
 int oflag [,
 int pmode]
);
int _wopen(
 const wchar_t *filename,
 int oflag [,
 int pmode]
);

Parameters

Return Value

ERRNO VALUE CONDITION

EACCES Tried to open a read-only file for writing, file's sharing
mode does not allow the specified operations, or the
given path is a directory.

EEXIST _O_CREAT and _O_EXCL flags specified, but filename
already exists.

EINVAL Invalid oflag or pmode argument.

EMFILE No more file descriptors are available (too many files are
open).

ENOENT File or path not found.

Opens a file. These functions are deprecated because more-secure versions are available; see _sopen_s,
_wsopen_s.

filename
File name.

oflag
The kind of operations allowed.

pmode
Permission mode.

Each of these functions returns a file descriptor for the opened file. A return value of -1 indicates an
error ; in that case errno is set to one of the following values.

For more information about these and other return codes, see errno, _doserrno, _sys_errlist, and
_sys_nerr.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/open-wopen.md

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_topen _open _open _wopen

OFLAG CONSTANT BEHAVIOR

_O_APPEND Moves the file pointer to the end of the file before every
write operation.

_O_BINARY Opens the file in binary (untranslated) mode. (See fopen
for a description of binary mode.)

_O_CREAT Creates a file and opens it for writing. Has no effect if the
file specified by filename exists. The pmode argument is
required when _O_CREAT is specified.

_O_CREAT | _O_SHORT_LIVED Creates a file as temporary and if possible does not flush
to disk. The pmode argument is required when
_O_CREAT is specified.

_O_CREAT | _O_TEMPORARY Creates a file as temporary; the file is deleted when the
last file descriptor is closed. The pmode argument is
required when _O_CREAT is specified.

_O_CREAT | _O_EXCL Returns an error value if a file specified by filename
exists. Applies only when used with _O_CREAT.

_O_NOINHERIT Prevents creation of a shared file descriptor.

_O_RANDOM Specifies that caching is optimized for, but not restricted
to, random access from disk.

_O_RDONLY Opens a file for reading only. Cannot be specified with
_O_RDWR or _O_WRONLY.

_O_RDWR Opens a file for both reading and writing. Cannot be
specified with _O_RDONLY or _O_WRONLY.

_O_SEQUENTIAL Specifies that caching is optimized for, but not restricted
to, sequential access from disk.

_O_TEXT Opens a file in text (translated) mode. (For more
information, see Text and Binary Mode File I/O and
fopen.)

The _open function opens the file specified by filename and prepares it for reading or writing, as
specified by oflag. _wopen is a wide-character version of _open; the filename argument to _wopen is a
wide-character string. _wopen and _open behave identically otherwise.

oflag is an integer expression formed from one or more of the following manifest constants or constant
combinations, which are defined in <fcntl.h>.

_O_TRUNC Opens a file and truncates it to zero length; the file must
have write permission. Cannot be specified with
_O_RDONLY. _O_TRUNC used with _O_CREAT opens
an existing file or creates a file. Note: The _O_TRUNC
flag destroys the contents of the specified file.

_O_WRONLY Opens a file for writing only. Cannot be specified with
_O_RDONLY or _O_RDWR.

_O_U16TEXT Opens a file in Unicode UTF-16 mode.

_O_U8TEXT Opens a file in Unicode UTF-8 mode.

_O_WTEXT Opens a file in Unicode mode.

OFLAG CONSTANT BEHAVIOR

PMODE MEANING

_S_IREAD Only reading permitted.

To specify the file access mode, you must specify either _O_RDONLY , _O_RDWR, or _O_WRONLY .
There is no default value for the access mode.

If _O_WTEXT is used to open a file for reading, _open reads the beginning of the file and checks for a
byte order mark (BOM). If there is a BOM, the file is treated as UTF-8 or UTF-16LE, depending on the
BOM. If no BOM is present, the file is treated as ANSI. When a file is opened for writing by using
_O_WTEXT, UTF-16 is used. Regardless of any previous setting or byte order mark, if _O_U8TEXT is
used, the file is always opened as UTF-8; if _O_U16TEXT is used, the file is always opened as UTF-16.

When a file is opened in Unicode mode by using _O_WTEXT, _O_U8TEXT, or _O_U16TEXT, input
functions translate the data that's read from the file into UTF-16 data stored as type wchar_t. Functions
that write to a file opened in Unicode mode expect buffers that contain UTF-16 data stored as type
wchar_t. If the file is encoded as UTF-8, then UTF-16 data is translated into UTF-8 when it is written,
and the file's UTF-8-encoded content is translated into UTF-16 when it is read. An attempt to read or
write an odd number of bytes in Unicode mode causes a parameter validation error. To read or write data
that's stored in your program as UTF-8, use a text or binary file mode instead of a Unicode mode. You
are responsible for any required encoding translation.

If _open is called with _O_WRONLY | _O_APPEND (append mode) and _O_WTEXT, _O_U16TEXT, or
_O_U8TEXT, it first tries to open the file for reading and writing, read the BOM, then reopen it for
writing only. If opening the file for reading and writing fails, it opens the file for writing only and uses the
default value for the Unicode mode setting.

When two or more manifest constants are used to form the oflag argument, the constants are combined
with the bitwise-OR operator (|). For a discussion of binary and text modes, see Text and Binary Mode
File I/O.

The pmode argument is required only when _O_CREAT is specified. If the file already exists, pmode is
ignored. Otherwise, pmode specifies the file permission settings, which are set when the new file is
closed the first time. _open applies the current file-permission mask to pmode before the permissions
are set. (For more information, see _umask.) pmode is an integer expression that contains one or both of
the following manifest constants, which are defined in <sys\stat.h>.

_S_IWRITE Writing permitted. (In effect, permits reading and
writing.)

_S_IREAD | _S_IWRITE Reading and writing permitted.

PMODE MEANING

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_open <io.h> <fcntl.h>, <sys\types.h>,
<sys\stat.h>

_wopen <io.h> or <wchar.h> <fcntl.h>, <sys\types.h>,
<sys\stat.h>

Libraries

Example

When both constants are given, they are joined with the bitwise-OR operator (|). In Windows, all files
are readable; write-only permission is not available. Therefore, the modes _S_IWRITE and _S_IREAD |
_S_IWRITE are equivalent.

If a value other than some combination of _S_IREAD and _S_IWRITE is specified for pmode—even if it
would specify a valid pmode in another operating system—or if any value other than the allowed oflag
values is specified, the function generates an assertion in Debug mode and invokes the invalid parameter
handler, as described in Parameter Validation. If execution is allowed to continue, the function returns -1
and sets errno to EINVAL.

_open and _wopen are Microsoft extensions. For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

// crt_open.c
// compile with: /W3
/* This program uses _open to open a file
* named CRT_OPEN.C for input and a file named CRT_OPEN.OUT
* for output. The files are then closed.
*/
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <io.h>
#include <stdio.h>

int main(void)
{
 int fh1, fh2;

 fh1 = _open("CRT_OPEN.C", _O_RDONLY); // C4996
 // Note: _open is deprecated; consider using _sopen_s instead
 if(fh1 == -1)
 perror("Open failed on input file");
 else
 {
 printf("Open succeeded on input file\n");
 _close(fh1);
 }

 fh2 = _open("CRT_OPEN.OUT", _O_WRONLY | _O_CREAT, _S_IREAD |
 _S_IWRITE); // C4996
 if(fh2 == -1)
 perror("Open failed on output file");
 else
 {
 printf("Open succeeded on output file\n");
 _close(fh2);
 }
}

Output

Open succeeded on input file
Open succeeded on output file

See also
Low-Level I/O
_chmod, _wchmod
_close
_creat, _wcreat
_dup, _dup2
fopen, _wfopen
_sopen, _wsopen

_open_osfhandle
5/23/2019 • 2 minutes to read • Edit Online

Syntax
int _open_osfhandle (
 intptr_t osfhandle,
 int flags
);

Parameters

Return Value

Remarks

_O_APPEND Positions a file pointer to the end of the file before every write
operation.

_O_RDONLY Opens the file for reading only.

_O_TEXT Opens the file in text (translated) mode.

_O_WTEXT Opens the file in Unicode (translated UTF-16) mode.

Associates a C run-time file descriptor with an existing operating-system file handle.

osfhandle
Operating-system file handle.

flags
Types of operations allowed.

If successful, _open_osfhandle returns a C run-time file descriptor. Otherwise, it returns -1.

The _open_osfhandle function allocates a C run-time file descriptor and associates it with the operating-system
file handle specified by osfhandle. To avoid a compiler warning, cast the osfhandle argument from HANDLE to
intptr_t. The flags argument is an integer expression formed from one or more of the manifest constants defined
in <fcntl.h>. When two or more manifest constants are used to form the flags argument, the constants are
combined with the bitwise-OR operator (|).

These manifest constants are defined in <fcntl.h>:

The _open_osfhandle call transfers ownership of the Win32 file handle to the file descriptor. To close a file
opened by using _open_osfhandle, call _close. The underlying OS file handle is also closed by a call to _close.
Don't call the Win32 function CloseHandle on the original handle. If the file descriptor is owned by a FILE *
stream, then a call to fclose on that FILE * stream closes both the file descriptor and the underlying handle. In this
case, don't call _close on the file descriptor or CloseHandle on the original handle.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/open-osfhandle.md

Requirements
ROUTINE REQUIRED HEADER

_open_osfhandle <io.h>

See also

For more compatibility information, see Compatibility.

File Handling

or_eq
11/9/2018 • 2 minutes to read • Edit Online

Syntax

#define or_eq |=

Remarks

Example
// iso646_oreq.cpp
// compile with: /EHsc
#include <iostream>
#include <iso646.h>

int main()
{
 using namespace std;
 int a = 3, b = 2, result;

 result= a |= b;
 cout << result << endl;

 result= a or_eq b;
 cout << result << endl;
}

3
3

Requirements

An alternative to the |= operator.

The macro yields the operator |=.

Header: <iso646.h>

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/or-eq.md

or
11/9/2018 • 2 minutes to read • Edit Online

Syntax

#define or ||

Remarks

Example
// iso646_or.cpp
// compile with: /EHsc
#include <iostream>
#include <iso646.h>

int main()
{
 using namespace std;
 bool a = true, b = false, result;

 boolalpha(cout);

 result= a || b;
 cout << result << endl;

 result= a or b;
 cout << result << endl;
}

true
true

Requirements

An alternative to the || operator.

The macro yields the operator ||.

Header: <iso646.h>

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/or.md

_pclose
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _pclose(
FILE *stream
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_pclose <stdio.h>

Libraries

See also

Waits for a new command processor and closes the stream on the associated pipe.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

stream
Return value from the previous call to _popen.

Returns the exit status of the terminating command processor, or -1 if an error occurs. The format of the return
value is the same as that for _cwait, except the low-order and high-order bytes are swapped. If stream is NULL,
_pclose sets errno to EINVAL and returns -1.

For information about these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The _pclose function looks up the process ID of the command processor (Cmd.exe) started by the associated
_popen call, executes a _cwait call on the new command processor, and closes the stream on the associated pipe.

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

Process and Environment Control
_pipe

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/pclose.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_popen, _wpopen

perror, _wperror
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void perror(
 const char *message
);
void _wperror(
 const wchar_t *message
);

Parameters

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tperror perror perror _wperror

Requirements

Print an error message.

message
String message to print.

The perror function prints an error message to stderr. _wperror is a wide-character version of _perror; the
message argument to _wperror is a wide-character string. _wperror and _perror behave identically otherwise.

message is printed first, followed by a colon, then by the system error message for the last library call that
produced the error, and finally by a newline character. If message is a null pointer or a pointer to a null string,
perror prints only the system error message.

The error number is stored in the variable errno (defined in ERRNO.H). The system error messages are
accessed through the variable _sys_errlist, which is an array of messages ordered by error number. perror
prints the appropriate error message using the errno value as an index to _sys_errlist. The value of the variable
_sys_nerr is defined as the maximum number of elements in the _sys_errlist array.

For accurate results, call perror immediately after a library routine returns with an error. Otherwise, subsequent
calls can overwrite the errno value.

In the Windows operating system, some errno values listed in ERRNO.H are unused. These values are
reserved for use by the UNIX operating system. See _doserrno, errno, _sys_errlist, and _sys_nerr for a listing of
errno values used by the Windows operating system. perror prints an empty string for any errno value not
used by these platforms.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/perror-wperror.md

ROUTINE REQUIRED HEADER

perror <stdio.h> or <stdlib.h>

_wperror <stdio.h> or <wchar.h>

Libraries

Example
// crt_perror.c
// compile with: /W3
/* This program attempts to open a file named
* NOSUCHF.ILE. Because this file probably doesn't exist,
* an error message is displayed. The same message is
* created using perror, strerror, and _strerror.
*/

#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <share.h>

int main(void)
{
 int fh;

 if(_sopen_s(&fh, "NOSUCHF.ILE", _O_RDONLY, _SH_DENYNO, 0) != 0)
 {
 /* Three ways to create error message: */
 perror("perror says open failed");
 printf("strerror says open failed: %s\n",
 strerror(errno)); // C4996
 printf(_strerror("_strerror says open failed")); // C4996
 // Note: strerror and _strerror are deprecated; consider
 // using strerror_s and _strerror_s instead.
 }
 else
 {
 printf("open succeeded on input file\n");
 _close(fh);
 }
}

perror says open failed: No such file or directory
strerror says open failed: No such file or directory
_strerror says open failed: No such file or directory

See also

For additional compatibility information, see Compatibility.

All versions of the C run-time libraries.

Process and Environment Control

clearerr
ferror
strerror, _strerror, _wcserror, __wcserror

_pipe
10/31/2018 • 7 minutes to read • Edit Online

IMPORTANT

Syntax
int _pipe(
 int *pfds,
 unsigned int psize,
 int textmode
);

Parameters

Return Value

Remarks

Creates a pipe for reading and writing.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

pfds
Pointer to an array of two int to hold read and write file descriptors.

psize
Amount of memory to reserve.

textmode
File mode.

Returns 0 if successful. Returns -1 to indicate an error. On error, errno is set to one of these values:

EMFILE , which indicates that no more file descriptors are available.

ENFILE , which indicates a system-file-table overflow.

EINVAL, which indicates that either the array pfds is a null pointer or that an invalid value for textmode
was passed in.

For more information about these and other return codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

The _pipe function creates a pipe, which is an artificial I/O channel that a program uses to pass information to
other programs. A pipe resembles a file because it has a file pointer, a file descriptor, or both, and it can be read
from or written to by using the Standard Library input and output functions. However, a pipe does not represent
a specific file or device. Instead, it represents temporary storage in memory that is independent of the program's
own memory and is controlled entirely by the operating system.

_pipe resembles _open but opens the pipe for reading and writing and returns two file descriptors instead of
one. The program can use both sides of the pipe or close the one that it doesn't need. For example, the command

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/pipe.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_pipe <io.h> <fcntl.h>,1 <errno.h>2

Libraries

Example 1
// crt_pipe.c
/* This program uses the _pipe function to pass streams of
* text to spawned processes.
*/

#include <stdlib.h>

processor in Windows creates a pipe when it executes a command such as PROGRAM1 | PROGRAM2.

The standard output descriptor of PROGRAM1 is attached to the pipe's write descriptor. The standard input
descriptor of PROGRAM2 is attached to the pipe's read descriptor. This eliminates the need to create temporary
files to pass information to other programs.

The _pipe function returns two file descriptors to the pipe in the pfds argument. The element pfds[0] contains the
read descriptor, and the element pfds[1] contains the write descriptor. Pipe file descriptors are used in the same
way as other file descriptors. (The low-level input and output functions _read and _write can read from and write
to a pipe.) To detect the end-of-pipe condition, check for a _read request that returns 0 as the number of bytes
read.

The psize argument specifies the amount of memory, in bytes, to reserve for the pipe. The textmode argument
specifies the translation mode for the pipe. The manifest constant _O_TEXT specifies a text translation, and the
constant _O_BINARY specifies binary translation. (See fopen, _wfopen for a description of text and binary
modes.) If the textmode argument is 0, _pipe uses the default translation mode that's specified by the default-
mode variable _fmode.

In multithreaded programs, no locking is performed. The file descriptors that are returned are newly opened and
should not be referenced by any thread until after the _pipe call is complete.

To use the _pipe function to communicate between a parent process and a child process, each process must have
only one descriptor open on the pipe. The descriptors must be opposites: if the parent has a read descriptor open,
then the child must have a write descriptor open. The easiest way to do this is to bitwise or (|) the
_O_NOINHERIT flag with textmode. Then, use _dup or _dup2 to create an inheritable copy of the pipe
descriptor that you want to pass to the child. Close the original descriptor, and then spawn the child process. On
returning from the spawn call, close the duplicate descriptor in the parent process. For more information, see
example 2 later in this article.

In the Windows operating system, a pipe is destroyed when all of its descriptors have been closed. (If all read
descriptors on the pipe have been closed, then writing to the pipe causes an error.) All read and write operations
on the pipe wait until there is enough data or enough buffer space to complete the I/O request.

1 For _O_BINARY and _O_TEXT definitions.

2 errno definitions.

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

#include <stdio.h>
#include <io.h>
#include <fcntl.h>
#include <process.h>
#include <math.h>

enum PIPES { READ, WRITE }; /* Constants 0 and 1 for READ and WRITE */
#define NUMPROBLEM 8

int main(int argc, char *argv[])
{

 int fdpipe[2];
 char hstr[20];
 int pid, problem, c;
 int termstat;

 /* If no arguments, this is the spawning process */
 if(argc == 1)
 {

 setvbuf(stdout, NULL, _IONBF, 0);

 /* Open a set of pipes */
 if(_pipe(fdpipe, 256, O_BINARY) == -1)
 exit(1);

 /* Convert pipe read descriptor to string and pass as argument
 * to spawned program. Program spawns itself (argv[0]).
 */
 _itoa_s(fdpipe[READ], hstr, sizeof(hstr), 10);
 if((pid = _spawnl(P_NOWAIT, argv[0], argv[0],
 hstr, NULL)) == -1)
 printf("Spawn failed");

 /* Put problem in write pipe. Since spawned program is
 * running simultaneously, first solutions may be done
 * before last problem is given.
 */
 for(problem = 1000; problem <= NUMPROBLEM * 1000; problem += 1000)
 {

 printf("Son, what is the square root of %d?\n", problem);
 _write(fdpipe[WRITE], (char *)&problem, sizeof(int));

 }

 /* Wait until spawned program is done processing. */
 _cwait(&termstat, pid, WAIT_CHILD);
 if(termstat & 0x0)
 printf("Child failed\n");

 _close(fdpipe[READ]);
 _close(fdpipe[WRITE]);

 }

 /* If there is an argument, this must be the spawned process. */
 else
 {

 /* Convert passed string descriptor to integer descriptor. */
 fdpipe[READ] = atoi(argv[1]);

 /* Read problem from pipe and calculate solution. */
 for(c = 0; c < NUMPROBLEM; c++)
 {

 _read(fdpipe[READ], (char *)&problem, sizeof(int));

 _read(fdpipe[READ], (char *)&problem, sizeof(int));
 printf("Dad, the square root of %d is %3.2f.\n",
 problem, sqrt((double)problem));

 }
 }
}

Son, what is the square root of 1000?
Son, what is the square root of 2000?
Son, what iDad, the square root of 1000 is 31.62.
Dad, the square root of 2000 is 44.72.
s the square root of 3000?
Dad, the square root of 3000 is 54.77.
Son, what is the square root of 4000?
Dad, the square root of 4000 is 63.25.
Son, what is the square root of 5000?
Dad, the square root of 5000 is 70.71.
Son, what is the square root of 6000?
SonDad, the square root of 6000 is 77.46.
, what is the square root of 7000?
Dad, the square root of 7000 is 83.67.
Son, what is the square root of 8000?
Dad, the square root of 8000 is 89.44.

Example 2

// crt_pipe_beeper.c

#include <stdio.h>
#include <string.h>

int main()
{
 int i;
 for(i=0;i<10;++i)
 {
 printf("This is speaker beep number %d...\n\7", i+1);
 }
 return 0;
}

// crt_pipe_BeepFilter.C
// arguments: crt_pipe_beeper.exe

#include <windows.h>
#include <process.h>
#include <memory.h>
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

#define OUT_BUFF_SIZE 512
#define READ_FD 0
#define WRITE_FD 1
#define BEEP_CHAR 7

This is a basic filter application. It spawns the application crt_pipe_beeper after it creates a pipe that directs the
spawned application's stdout to the filter. The filter removes ASCII 7 (beep) characters.

The actual filter application:

char szBuffer[OUT_BUFF_SIZE];

int Filter(char* szBuff, ULONG nSize, int nChar)
{
 char* szPos = szBuff + nSize -1;
 char* szEnd = szPos;
 int nRet = nSize;

 while (szPos > szBuff)
 {
 if (*szPos == nChar)
 {
 memmove(szPos, szPos+1, szEnd - szPos);
 --nRet;
 }
 --szPos;
 }
 return nRet;
}

int main(int argc, char** argv)
{
 int nExitCode = STILL_ACTIVE;
 if (argc >= 2)
 {
 HANDLE hProcess;
 int fdStdOut;
 int fdStdOutPipe[2];

 // Create the pipe
 if(_pipe(fdStdOutPipe, 512, O_NOINHERIT) == -1)
 return 1;

 // Duplicate stdout file descriptor (next line will close original)
 fdStdOut = _dup(_fileno(stdout));

 // Duplicate write end of pipe to stdout file descriptor
 if(_dup2(fdStdOutPipe[WRITE_FD], _fileno(stdout)) != 0)
 return 2;

 // Close original write end of pipe
 _close(fdStdOutPipe[WRITE_FD]);

 // Spawn process
 hProcess = (HANDLE)_spawnvp(P_NOWAIT, argv[1],
 (const char* const*)&argv[1]);

 // Duplicate copy of original stdout back into stdout
 if(_dup2(fdStdOut, _fileno(stdout)) != 0)
 return 3;

 // Close duplicate copy of original stdout
 _close(fdStdOut);

 if(hProcess)
 {
 int nOutRead;
 while (nExitCode == STILL_ACTIVE)
 {
 nOutRead = _read(fdStdOutPipe[READ_FD],
 szBuffer, OUT_BUFF_SIZE);
 if(nOutRead)
 {
 nOutRead = Filter(szBuffer, nOutRead, BEEP_CHAR);
 fwrite(szBuffer, 1, nOutRead, stdout);
 }

 if(!GetExitCodeProcess(hProcess,(unsigned long*)&nExitCode))
 return 4;

 return 4;
 }
 }
 }
 return nExitCode;
}

This is speaker beep number 1...
This is speaker beep number 2...
This is speaker beep number 3...
This is speaker beep number 4...
This is speaker beep number 5...
This is speaker beep number 6...
This is speaker beep number 7...
This is speaker beep number 8...
This is speaker beep number 9...
This is speaker beep number 10...

See also
Process and Environment Control
_open, _wopen

_popen, _wpopen
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
FILE *_popen(
 const char *command,
 const char *mode
);
FILE *_wpopen(
 const wchar_t *command,
 const wchar_t *mode
);

Parameters

Return Value

Remarks

ACCESS MODE DESCRIPTION

"r" The calling process can read the spawned command's
standard output using the returned stream.

"w" The calling process can write to the spawned command's
standard input using the returned stream.

Creates a pipe and executes a command.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

command
Command to be executed.

mode
Mode of the returned stream.

Returns a stream associated with one end of the created pipe. The other end of the pipe is associated with the
spawned command's standard input or standard output. The functions return NULL on an error. If the error is an
invalid parameter, such as if command or mode is a null pointer, or mode is not a valid mode, errno is set to
EINVAL. See the Remarks section for valid modes.

For information about these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The _popen function creates a pipe and asynchronously executes a spawned copy of the command processor
with the specified string command. The character string mode specifies the type of access requested, as follows.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/popen-wpopen.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

"b" Open in binary mode.

"t" Open in text mode.

ACCESS MODE DESCRIPTION

NOTE

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tpopen _popen _popen _wpopen

Requirements
ROUTINE REQUIRED HEADER

_popen <stdio.h>

_wpopen <stdio.h> or <wchar.h>

Libraries

Example

If used in a Windows program, the _popen function returns an invalid file pointer that causes the program to stop
responding indefinitely. _popen works properly in a console application. To create a Windows application that redirects
input and output, see Creating a Child Process with Redirected Input and Output in the Windows SDK.

_wpopen is a wide-character version of _popen; the path argument to _wpopen is a wide-character string.
_wpopen and _popen behave identically otherwise.

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

https://docs.microsoft.com/windows/desktop/ProcThread/creating-a-child-process-with-redirected-input-and-output

// crt_popen.c
/* This program uses _popen and _pclose to receive a
* stream of text from a system process.
*/

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

 char psBuffer[128];
 FILE *pPipe;

 /* Run DIR so that it writes its output to a pipe. Open this
 * pipe with read text attribute so that we can read it
 * like a text file.
 */

 if((pPipe = _popen("dir *.c /on /p", "rt")) == NULL)
 exit(1);

 /* Read pipe until end of file, or an error occurs. */

 while(fgets(psBuffer, 128, pPipe))
 {
 printf(psBuffer);
 }

 /* Close pipe and print return value of pPipe. */
 if (feof(pPipe))
 {
 printf("\nProcess returned %d\n", _pclose(pPipe));
 }
 else
 {
 printf("Error: Failed to read the pipe to the end.\n");
 }
}

Sample Output

Volume in drive C is CDRIVE
Volume Serial Number is 0E17-1702

Directory of D:\proj\console\test1

07/17/98 07:26p 780 popen.c
 1 File(s) 780 bytes
 86,597,632 bytes free

Process returned 0

See also

This output assumes that there is only one file in the current directory with a .c file name extension.

Process and Environment Control
_pclose
_pipe

pow, powf, powl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double pow(double x, double y);
float powf(float x, float y);
long double powl(long double x, long double y);

double pow(double x, int y); // C++ only
float pow(float x, float y); // C++ only
float pow(float x, int y); // C++ only
long double pow(long double x, long double y); // C++ only
long double pow(long double x, int y); // C++ only

Parameters

Return Value

VALUES OF X AND Y RETURN VALUE OF POW

x != 0.0 and y == 0.0 1

x == 0.0 and y == 0.0 1

x == 0.0 and y < 0 INF

Remarks

Requirements

Calculates x raised to the power of y.

x
Base.

y
Exponent.

Returns the value of x . No error message is printed on overflow or underflow.y

pow does not recognize integral floating-point values greater than 2 (for example, 1.0E100).64

pow has an implementation that uses Streaming SIMD Extensions 2 (SSE2). For information and restrictions
about using the SSE2 implementation, see _set_SSE2_enable.

Because C++ allows overloading, you can call any of the various overloads of pow. In a C program, pow always
takes two double values and returns a double value.

The pow(int, int) overload is no longer available. If you use this overload, the compiler may emit C2668. To
avoid this problem, cast the first parameter to double, float, or long double.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/pow-powf-powl.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-errors-2/compiler-error-c2668

ROUTINE REQUIRED HEADER (C) REQUIRED HEADER (C++)

pow, powf, powl <math.h> <math.h> or <cmath>

Example
// crt_pow.c

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x = 2.0, y = 3.0, z;

 z = pow(x, y);
 printf("%.1f to the power of %.1f is %.1f\n", x, y, z);
}

2.0 to the power of 3.0 is 8.0

See also

For additional compatibility information, see Compatibility.

Floating-Point Support
exp, expf, expl
log, logf, log10, log10f
sqrt, sqrtf, sqrtl
_CIpow

printf, _printf_l, wprintf, _wprintf_l
10/31/2018 • 3 minutes to read • Edit Online

Syntax
int printf(
 const char *format [,
 argument]...
);
int _printf_l(
 const char *format,
 locale_t locale [,
 argument]...
);
int wprintf(
 const wchar_t *format [,
 argument]...
);
int _wprintf_l(
 const wchar_t *format,
 locale_t locale [,
 argument]...
);

Parameters

Return Value

Remarks

Prints formatted output to the standard output stream. More secure versions of these functions are
available; see printf_s, _printf_s_l, wprintf_s, _wprintf_s_l.

format
Format control.

argument
Optional arguments.

locale
The locale to use.

Returns the number of characters printed, or a negative value if an error occurs. If format is NULL, the
invalid parameter handler is invoked, as described in Parameter Validation. If execution is allowed to
continue, the function returns -1 and sets errno to EINVAL. If EOF (0xFFFF) is encountered in
argument, the function returns -1.

For information on errno and error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The printf function formats and prints a series of characters and values to the standard output stream,
stdout. If arguments follow the format string, the format string must contain specifications that
determine the output format for the arguments. printf and fprintf behave identically except that printf
writes output to stdout rather than to a destination of type FILE .

wprintf is a wide-character version of printf; format is a wide-character string. wprintf and printf

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/printf-printf-l-wprintf-wprintf-l.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tprintf printf printf wprintf

printf("Line one\n\t\tLine two\n");

Line one
 Line two

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tprintf printf printf wprintf

_tprintf_l _printf_l _printf_l _wprintf_l

Requirements
ROUTINE REQUIRED HEADER

printf, _printf_l <stdio.h>

wprintf, _wprintf_l <stdio.h> or <wchar.h>

behave identically if the stream is opened in ANSI mode. printf does not currently support output into
a UNICODE stream.

The versions of these functions with the _l suffix are identical except that they use the locale parameter
passed in instead of the current thread locale.

The format argument consists of ordinary characters, escape sequences, and (if arguments follow
format) format specifications. The ordinary characters and escape sequences are copied to stdout in
order of their appearance. For example, the line:

produces the output:

Format specifications always begin with a percent sign (%) and are read left to right. When printf
encounters the first format specification (if any), it converts the value of the first argument after format
and outputs it accordingly. The second format specification causes the second argument to be
converted and output, and so on. If there are more arguments than there are format specifications, the
extra arguments are ignored. The results are undefined if there are not enough arguments for all the
format specifications.

Ensure that format is not a user-defined string.

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream

Example
// crt_printf.c
// This program uses the printf and wprintf functions
// to produce formatted output.

#include <stdio.h>

int main(void)
{
 char ch = 'h',
 *string = "computer";
 wchar_t wch = L'w',
 *wstring = L"Unicode";
 int count = -9234;
 double fp = 251.7366;

 // Display integers
 printf("Integer formats:\n"
 " Decimal: %d Justified: %.6d "
 "Unsigned: %u\n",
 count, count, count, count);

 // Display decimals
 printf("Decimal %d as:\n Hex: %Xh "
 "C hex: 0x%x Octal: %o\n",
 count, count, count, count);

 // Display in different radixes
 printf("Digits 10 equal:\n Hex: %i "
 "Octal: %i Decimal: %i\n",
 0x10, 010, 10);

 // Display characters
 printf("Characters in field (1):\n"
 "%10c%5hc%5C%5lc\n",
 ch, ch, wch, wch);
 wprintf(L"Characters in field (2):\n"
 L"%10C%5hc%5c%5lc\n",
 ch, ch, wch, wch);

 // Display strings
 printf("Strings in field (1):\n%25s\n"
 "%25.4hs\n %S%25.3ls\n",
 string, string, wstring, wstring);
 wprintf(L"Strings in field (2):\n%25S\n"
 L"%25.4hs\n %s%25.3ls\n",
 string, string, wstring, wstring);

 // Display real numbers
 printf("Real numbers:\n %f %.2f %e %E\n",
 fp, fp, fp, fp);

 // Display pointer
 printf("\nAddress as: %p\n", &count);
}

Sample Output

handles that are associated with the console, stdin, stdout, and stderr, must be redirected before C
run-time functions can use them in UWP apps. For additional compatibility information, see
Compatibility.

Integer formats:
 Decimal: -9234 Justified: -009234 Unsigned: 4294958062
Decimal -9234 as:
 Hex: FFFFDBEEh C hex: 0xffffdbee Octal: 37777755756
Digits 10 equal:
 Hex: 16 Octal: 8 Decimal: 10
Characters in field (1):
 h h w w
Characters in field (2):
 h h w w
Strings in field (1):
 computer
 comp
 Unicode Uni
Strings in field (2):
 computer
 comp
 Unicode Uni
Real numbers:
 251.736600 251.74 2.517366e+002 2.517366E+002

Address as: 0012FF3C

See also
Floating-Point Support
Stream I/O
Locale
fopen, _wfopen
_fprintf_p, _fprintf_p_l, _fwprintf_p, _fwprintf_p_l
scanf, _scanf_l, wscanf, _wscanf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
vprintf Functions
_set_output_format

_printf_p, _printf_p_l, _wprintf_p, _wprintf_p_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _printf_p(
 const char *format [,
 argument]...
);
int _printf_p_l(
 const char *format,
 locale_t locale [,
 argument]...
);
int _wprintf_p(
 const wchar_t *format [,
 argument]...
);
int _wprintf_p_l(
 const wchar_t *format,
 locale_t locale [,
 argument]...
);

Parameters

Return Value

Remarks

Prints formatted output to the standard output stream, and enables specification of the order in which
parameters are used in the format string.

format
Format control.

argument
Optional arguments.

locale
The locale to use.

Returns the number of characters printed or a negative value if an error occurs.

The _printf_p function formats and prints a series of characters and values to the standard output stream,
stdout. If arguments follow the format string, the format string must contain specifications that determine the
output format for the arguments (see printf_p Positional Parameters).

The difference between _printf_p and printf_s is that _printf_p supports positional parameters, which allows
specifying the order in which the arguments are used in the format string. For more information, see printf_p
Positional Parameters.

_wprintf_p is the wide-character version of _printf_p; they behave identically if the stream is opened in ANSI
mode. _printf_p doesn't currently support output into a UNICODE stream.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/printf-p-printf-p-l-wprintf-p-wprintf-p-l.md

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tprintf_p _printf_p _printf_p _wprintf_p

_tprintf_p_l _printf_p_l _printf_p_l _wprintf_p_l

Requirements
ROUTINE REQUIRED HEADER

_printf_p, _printf_p_l <stdio.h>

_wprintf_p, _wprintf_p_l <stdio.h> or <wchar.h>

Example
// crt_printf_p.c
// This program uses the _printf_p and _wprintf_p
// functions to choose the order in which parameters
// are used.

#include <stdio.h>

int main(void)
{
 // Positional arguments
 _printf_p("Specifying the order: %2$s %3$s %1$s %4$s %5$s.\n",
 "little", "I'm", "a", "tea", "pot");

 // Resume arguments
 _wprintf_p(L"Reusing arguments: %1$d %1$d %1$d %1$d\n", 10);

 // Width argument
 _printf_p("Width specifiers: %1$*2$s", "Hello\n", 10);
}

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current thread locale.

Ensure that format is not a user-defined string.

If format or argument are NULL, or of the format string contains invalid formatting characters, _printf_p and
_wprintf_p functions invoke an invalid parameter handler, as described in Parameter Validation. If execution is
allowed to continue, the function returns -1 and sets errno to EINVAL.

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that are
associated with the console, stdin, stdout, and stderr, must be redirected before C run-time functions can use
them in UWP apps. For additional compatibility information, see Compatibility.

Specifying the order: I'm a little tea pot.
Reusing arguments: 10 10 10 10
Width specifiers: Hello

See also
Floating-Point Support
Stream I/O
Locale
fopen, _wfopen
_fprintf_p, _fprintf_p_l, _fwprintf_p, _fwprintf_p_l
fprintf, _fprintf_l, fwprintf, _fwprintf_l
fprintf_s, _fprintf_s_l, fwprintf_s, _fwprintf_s_l
scanf, _scanf_l, wscanf, _wscanf_l
scanf_s, _scanf_s_l, wscanf_s, _wscanf_s_l
_sprintf_p, _sprintf_p_l, _swprintf_p, _swprintf_p_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
sprintf_s, _sprintf_s_l, swprintf_s, _swprintf_s_l
vprintf Functions

printf_s, _printf_s_l, wprintf_s, _wprintf_s_l
11/9/2018 • 3 minutes to read • Edit Online

Syntax
int printf_s(
 const char *format [,
 argument]...
);
int _printf_s_l(
 const char *format,
 locale_t locale [,
 argument]...
);
int wprintf_s(
 const wchar_t *format [,
 argument]...
);
int _wprintf_s_l(
 const wchar_t *format,
 locale_t locale [,
 argument]...
);

Parameters

Return Value

Remarks

Prints formatted output to the standard output stream. These versions of printf, _printf_l, wprintf, _wprintf_l
have security enhancements, as described in Security Features in the CRT.

format
Format control.

argument
Optional arguments.

locale
The locale to use.

Returns the number of characters printed, or a negative value if an error occurs.

The printf_s function formats and prints a series of characters and values to the standard output stream,
stdout. If arguments follow the format string, the format string must contain specifications that determine the
output format for the arguments.

The main difference between printf_s and printf is that printf_s checks the format string for valid formatting
characters, whereas printf only checks if the format string is a null pointer. If either check fails, an invalid
parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue, the
function returns -1 and sets errno to EINVAL.

For information on errno and error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/printf-s-printf-s-l-wprintf-s-wprintf-s-l.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tprintf_s printf_s printf_s wprintf_s

_tprintf_s_l _printf_s_l _printf_s_l _wprintf_s_l

printf_s("Line one\n\t\tLine two\n");

Line one
 Line two

IMPORTANT

Requirements
ROUTINE REQUIRED HEADER

printf_s, _printf_s_l <stdio.h>

wprintf_s, _wprintf_s_l <stdio.h> or <wchar.h>

Example

printf_s and fprintf_s behave identically except that printf_s writes output to stdout rather than to a
destination of type FILE . For more information, see fprintf_s, _fprintf_s_l, fwprintf_s, _fwprintf_s_l.

wprintf_s is a wide-character version of printf_s; format is a wide-character string. wprintf_s and printf_s
behave identically if the stream is opened in ANSI mode. printf_s doesn't currently support output into a
UNICODE stream.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed
in instead of the current thread locale.

The format argument consists of ordinary characters, escape sequences, and (if arguments follow format)
format specifications. The ordinary characters and escape sequences are copied to stdout in order of their
appearance. For example, the line

produces the output

Format specifications always begin with a percent sign (%) and are read left to right. When printf_s encounters
the first format specification (if any), it converts the value of the first argument after format and outputs it
accordingly. The second format specification causes the second argument to be converted and output, and so
on. If there are more arguments than there are format specifications, the extra arguments are ignored. The
results are undefined if there are not enough arguments for all the format specifications.

Ensure that format is not a user-defined string.

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that
are associated with the console, stdin, stdout, and stderr, must be redirected before C run-time functions can
use them in UWP apps. For additional compatibility information, see Compatibility.

// crt_printf_s.c
/* This program uses the printf_s and wprintf_s functions
* to produce formatted output.
*/

#include <stdio.h>

int main(void)
{
 char ch = 'h', *string = "computer";
 int count = -9234;
 double fp = 251.7366;
 wchar_t wch = L'w', *wstring = L"Unicode";

 /* Display integers. */
 printf_s("Integer formats:\n"
 " Decimal: %d Justified: %.6d Unsigned: %u\n",
 count, count, count);

 printf_s("Decimal %d as:\n Hex: %Xh C hex: 0x%x Octal: %o\n",
 count, count, count, count);

 /* Display in different radixes. */
 printf_s("Digits 10 equal:\n Hex: %i Octal: %i Decimal: %i\n",
 0x10, 010, 10);

 /* Display characters. */

 printf_s("Characters in field (1):\n%10c%5hc%5C%5lc\n", ch, ch, wch, wch);
 wprintf_s(L"Characters in field (2):\n%10C%5hc%5c%5lc\n", ch, ch, wch, wch);

 /* Display strings. */

 printf_s("Strings in field (1):\n%25s\n%25.4hs\n %S%25.3ls\n",
 string, string, wstring, wstring);
 wprintf_s(L"Strings in field (2):\n%25S\n%25.4hs\n %s%25.3ls\n",
 string, string, wstring, wstring);

 /* Display real numbers. */
 printf_s("Real numbers:\n %f %.2f %e %E\n", fp, fp, fp, fp);

 /* Display pointer. */
 printf_s("\nAddress as: %p\n", &count);

}

Sample Output

Integer formats:
 Decimal: -9234 Justified: -009234 Unsigned: 4294958062
Decimal -9234 as:
 Hex: FFFFDBEEh C hex: 0xffffdbee Octal: 37777755756
Digits 10 equal:
 Hex: 16 Octal: 8 Decimal: 10
Characters in field (1):
 h h w w
Characters in field (2):
 h h w w
Strings in field (1):
 computer
 comp
 Unicode Uni
Strings in field (2):
 computer
 comp
 Unicode Uni
Real numbers:
 251.736600 251.74 2.517366e+002 2.517366E+002

Address as: 0012FF78

See also
Floating-Point Support
Stream I/O
Locale
fopen, _wfopen
fprintf, _fprintf_l, fwprintf, _fwprintf_l
scanf, _scanf_l, wscanf, _wscanf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
vprintf Functions

_purecall
5/8/2019 • 2 minutes to read • Edit Online

Syntax
extern "C" int __cdecl _purecall();

Remarks

Requirements

See also

The default pure virtual function call error handler. The compiler generates code to call this function when a pure
virtual member function is called.

The _purecall function is a Microsoft-specific implementation detail of the Microsoft C++ compiler. This function
is not intended to be called by your code directly, and it has no public header declaration. It is documented here
because it is a public export of the C Runtime Library.

A call to a pure virtual function is an error because it has no implementation. The compiler generates code to
invoke the _purecall error handler function when a pure virtual function is called. By default, _purecall terminates
the program. Before terminating, the _purecall function invokes a _purecall_handler function if one has been set
for the process. You can install your own error handler function for pure virtual function calls, to catch them for
debugging or reporting purposes. To use your own error handler, create a function that has the _purecall_handler
signature, then use _set_purecall_handler to make it the current handler.

The _purecall function does not have a header declaration. The _purecall_handler typedef is defined in
<stdlib.h>.

Alphabetical Function Reference
_get_purecall_handler, _set_purecall_handler

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/purecall.md

putc, putwc
11/8/2018 • 2 minutes to read • Edit Online

Syntax
int putc(
 int c,
 FILE *stream
);
wint_t putwc(
 wchar_t c,
 FILE *stream
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_puttc putc putc putwc

Writes a character to a stream.

c
Character to be written.

stream
Pointer to FILE structure.

Returns the character written. To indicate an error or end-of-file condition, putc and putchar return EOF;
putwc and putwchar return WEOF. For all four routines, use ferror or feof to check for an error or end of file.
If passed a null pointer for stream, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, these functions return EOF or WEOF and set errno to EINVAL.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these, and other, error codes.

The putc routine writes the single character c to the output stream at the current position. Any integer can be
passed to putc, but only the lower 8 bits are written. The putchar routine is identical to putc(c, stdout) .
For each routine, if a read error occurs, the error indicator for the stream is set. putc and putchar are similar
to fputc and _fputchar, respectively, but are implemented both as functions and as macros (see Choosing
Between Functions and Macros). putwc and putwchar are wide-character versions of putc and putchar,
respectively. putwc and putc behave identically if the stream is opened in ANSI mode. putc doesn't currently
support output into a UNICODE stream.

The versions with the _nolock suffix are identical except that they are not protected from interference by other
threads. For more information, see _putc_nolock, _putwc_nolock.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/putc-putwc.md

Requirements
ROUTINE REQUIRED HEADER

putc <stdio.h>

putwc <stdio.h> or <wchar.h>

Libraries

Example
// crt_putc.c
/* This program uses putc to write buffer
* to a stream. If an error occurs, the program
* stops before writing the entire buffer.
*/

#include <stdio.h>

int main(void)
{
 FILE *stream;
 char *p, buffer[] = "This is the line of output\n";
 int ch;

 ch = 0;
 /* Make standard out the stream and write to it. */
 stream = stdout;
 for(p = buffer; (ch != EOF) && (*p != '\0'); p++)
 ch = putc(*p, stream);
}

Output

This is the line of output

See also

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that
are associated with the console, stdin, stdout, and stderr, must be redirected before C run-time functions can
use them in UWP apps. For additional compatibility information, see Compatibility.

All versions of the C run-time libraries.

Stream I/O
fputc, fputwc
getc, getwc

_putc_nolock, _putwc_nolock
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _putc_nolock(
 int c,
 FILE *stream
);
wint_t _putwc_nolock(
 wchar_t c,
 FILE *stream
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_puttc_nolock _putc_nolock _putc_nolock _putwc_nolock

Requirements
ROUTINE REQUIRED HEADER

_putc_nolock <stdio.h>

_putwc_nolock <stdio.h> or <wchar.h>

Writes a character to a stream without locking the thread.

c
Character to be written.

stream
Pointer to the FILE structure.

See putc, putwc.

_putc_nolock and _putwc_nolock are identical to the versions without the _nolock suffix except that they are
not protected from interference by other threads. They might be faster because they do not incur the overhead of
locking out other threads. Use these functions only in thread-safe contexts such as single-threaded applications or
where the calling scope already handles thread isolation.

_putwc_nolock is the wide-character version of _putc_nolock; the two functions behave identically if the stream
is opened in ANSI mode. _putc_nolock doesn't currently support output into a UNICODE stream.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/putc-nolock-putwc-nolock.md

Libraries

Example
// crt_putc_nolock.c
/* This program uses putc to write buffer
* to a stream. If an error occurs, the program
* stops before writing the entire buffer.
*/

#include <stdio.h>

int main(void)
{
 FILE *stream;
 char *p, buffer[] = "This is the line of output\n";
 int ch;

 ch = 0;
 /* Make standard out the stream and write to it. */
 stream = stdout;
 for(p = buffer; (ch != EOF) && (*p != '\0'); p++)
 ch = _putc_nolock(*p, stream);
}

Output

This is the line of output

See also

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that are
associated with the console, stdin, stdout, and stderr, must be redirected before C run-time functions can use
them in UWP apps. For additional compatibility information, see Compatibility.

All versions of the C run-time libraries.

Stream I/O
fputc, fputwc
getc, getwc

putch
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _putch instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/putch.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_putch, _putwch
11/8/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _putch(
 int c
);

wint_t _putwch(
 wchar_t c
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_puttch _putch _putch _putwch

Requirements
ROUTINE REQUIRED HEADER

_putch <conio.h>

_putwch <conio.h>

Writes a character to the console.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

c
Character to be output.

Returns c if successful. If _putch fails, it returns EOF; if _putwch fails, it returns WEOF.

These functions write the character c directly, without buffering, to the console. In Windows NT, _putwch writes
Unicode characters using the current console locale setting.

The versions with the _nolock suffix are identical except that they are not protected from interference by other
threads. For more information, see _putch_nolock, _putwch_nolock.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/putch-putwch.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

ROUTINE REQUIRED HEADER

Libraries

Example

See also

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

See the example for _getch.

Console and Port I/O
_cprintf, _cprintf_l, _cwprintf, _cwprintf_l
_getch, _getwch

_putch_nolock, _putwch_nolock
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _putch_nolock(
int c
);
wint_t _putwch_nolock(
wchar_t c
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_puttch_nolock _putch_nolock _putch_nolock _putwch_nolock

Requirements
ROUTINE REQUIRED HEADER

_putch_nolock <conio.h>

_putwch_nolock <conio.h>

Writes a character to the console without locking the thread.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

c
Character to be output.

Returns c if successful. If _putch_nolock fails, it returns EOF; if _putwch_nolock fails, it returns WEOF.

_putch_nolock and _putwch_nolock are identical to _putch and _putwch, respectively, except that they are not
protected from interference by other threads. They might be faster because they do not incur the overhead of
locking out other threads. Use these functions only in thread-safe contexts such as single-threaded applications or
where the calling scope already handles thread isolation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/putch-nolock-putwch-nolock.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Libraries

See also

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

Console and Port I/O
_cprintf, _cprintf_l, _cwprintf, _cwprintf_l
_getch, _getwch

putchar, putwchar
11/8/2018 • 2 minutes to read • Edit Online

Syntax
int putchar(
 int c
);
wint_t putwchar(
 wchar_t c
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_puttchar putchar putchar putwchar

Requirements

Writes a character to stdout.

c
Character to be written.

Returns the character written. To indicate an error or end-of-file condition, putc and putchar return EOF; putwc
and putwchar return WEOF. For all four routines, use ferror or feof to check for an error or end of file. If passed a
null pointer for stream, these functions generate an invalid parameter exception, as described in Parameter
Validation. If execution is allowed to continue, they return EOF or WEOF and set errno to EINVAL.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these, and other, error codes.

The putc routine writes the single character c to the output stream at the current position. Any integer can be
passed to putc, but only the lower 8 bits are written. The putchar routine is identical to putc(c, stdout) . For
each routine, if a read error occurs, the error indicator for the stream is set. putc and putchar are similar to fputc
and _fputchar, respectively, but are implemented both as functions and as macros (see Choosing Between
Functions and Macros). putwc and putwchar are wide-character versions of putc and putchar, respectively.

The versions with the _nolock suffix are identical except that they are not protected from interference by other
threads. They may be faster since they do not incur the overhead of locking out other threads. Use these functions
only in thread-safe contexts such as single-threaded applications or where the calling scope already handles
thread isolation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/putchar-putwchar.md

ROUTINE REQUIRED HEADER

putchar <stdio.h>

putwchar <stdio.h> or <wchar.h>

Libraries

Example
// crt_putchar.c
/* This program uses putc to write buffer
* to a stream. If an error occurs, the program
* stops before writing the entire buffer.
*/

#include <stdio.h>

int main(void)
{
 FILE *stream;
 char *p, buffer[] = "This is the line of output\n";
 int ch;

 ch = 0;

 for(p = buffer; (ch != EOF) && (*p != '\0'); p++)
 ch = putchar(*p);
}

Output

This is the line of output

See also

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that are
associated with the console, stdin, stdout, and stderr, must be redirected before C run-time functions can use
them in UWP apps. For additional compatibility information, see Compatibility.

All versions of the C run-time libraries.

Stream I/O
fputc, fputwc
getc, getwc

_putchar_nolock, _putwchar_nolock
11/9/2018 • 2 minutes to read • Edit Online

Syntax
int _putchar_nolock(
 int c
);
wint_t _putwchar_nolock(
 wchar_t c
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_puttchar_nolock _putchar_nolock _putchar_nolock _putwchar_nolock

Requirements
ROUTINE REQUIRED HEADER

_putchar_nolock <stdio.h>

_putwchar_nolock <stdio.h> or <wchar.h>

Libraries

Writes a character to stdout without locking the thread.

c
Character to be written.

See putchar, putwchar.

putchar_nolock and _putwchar_nolock are identical to the versions without the _nolock suffix except that they
are not protected from interference by other threads. They might be faster because they do not incur the overhead
of locking out other threads. Use these functions only in thread-safe contexts such as single-threaded applications
or where the calling scope already handles thread isolation.

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that are
associated with the console, stdin, stdout, and stderr, must be redirected before C run-time functions can use
them in UWP apps. For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/putchar-nolock-putwchar-nolock.md

Example
// crt_putchar_nolock.c
/* This program uses putchar to write buffer
* to stdout. If an error occurs, the program
* stops before writing the entire buffer.
*/

#include <stdio.h>

int main(void)
{
 FILE *stream;
 char *p, buffer[] = "This is the line of output\n";
 int ch;

 ch = 0;

 for(p = buffer; (ch != EOF) && (*p != '\0'); p++)
 ch = _putchar_nolock(*p);
}

Output

This is the line of output

See also

All versions of the C run-time libraries.

Stream I/O
fputc, fputwc
fgetc, fgetwc

putenv
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _putenv or security-enhanced _putenv_s instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/putenv.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_putenv, _wputenv
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _putenv(
 const char *envstring
);
int _wputenv(
 const wchar_t *envstring
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tputenv _putenv _putenv _wputenv

Creates, modifies, or removes environment variables. More secure versions of these functions are available;
see _putenv_s, _wputenv_s.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions
not supported in Universal Windows Platform apps.

envstring
Environment-string definition.

Return 0 if successful or -1 in the case of an error.

The _putenv function adds new environment variables or modifies the values of existing environment
variables. Environment variables define the environment in which a process executes (for example, the default
search path for libraries to be linked with a program). _wputenv is a wide-character version of _putenv; the
envstring argument to _wputenv is a wide-character string.

The envstring argument must be a pointer to a string of the form varname=value_string, where varname is the
name of the environment variable to be added or modified and value_string is the variable's value. If varname
is already part of the environment, its value is replaced by value_string; otherwise, the new varname variable
and its value_string value are added to the environment. You can remove a variable from the environment by
specifying an empty value_string, or in other words, by specifying only varname=.

_putenv and _wputenv affect only the environment that is local to the current process; you cannot use them
to modify the command-level environment. That is, these functions operate only on data structures accessible

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/putenv-wputenv.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

NOTE

Requirements
ROUTINE REQUIRED HEADER

_putenv <stdlib.h>

_wputenv <stdlib.h> or <wchar.h>

Example

See also

to the run-time library and not on the environment segment created for a process by the operating system.
When the current process terminates, the environment reverts to the level of the calling process (in most cases,
the operating-system level). However, the modified environment can be passed to any new processes created
by _spawn, _exec, or system, and these new processes get any new items added by _putenv and _wputenv.

Do not change an environment entry directly: instead, use _putenv or _wputenv to change it. In particular,
direct freeing elements of the _environ[] global array might lead to invalid memory being addressed.

getenv and _putenv use the global variable _environ to access the environment table; _wgetenv and
_wputenv use _wenviron. _putenv and _wputenv might change the value of _environ and _wenviron, thus
invalidating the _envp argument to main and the _wenvp argument to wmain. Therefore, it is safer to use
_environ or _wenviron to access the environment information. For more information about the relation of
_putenv and _wputenv to global variables, see _environ, _wenviron.

The _putenv and _getenv families of functions are not thread-safe. _getenv could return a string pointer while _putenv
is modifying the string, causing random failures. Make sure that calls to these functions are synchronized.

For more compatibility information, see Compatibility.

For a sample of how to use _putenv, see getenv, _wgetenv.

Process and Environment Control
getenv, _wgetenv
_searchenv, _wsearchenv

_putenv_s, _wputenv_s
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
errno_t _putenv_s(
 const char *varname,
 const char *value_string
);
errno_t _wputenv_s(
 const wchar_t *varname,
 const wchar_t *value_string
);

Parameters

Return Value

Error Conditions

VARNAME VALUE_STRING RETURN VALUE

NULL any EINVAL

any NULL EINVAL

Remarks

Creates, modifies, or removes environment variables. These are versions of _putenv, _wputenv but have security
enhancements, as described in Security Features in the CRT.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions
not supported in Universal Windows Platform apps.

varname
The environment variable name.

value_string
The value to set the environment variable to.

Returns 0 if successful, or an error code.

If one of the error conditions occurs, these functions invoke an invalid parameter handler, as described in
Parameter Validation. If execution is allowed to continue, these functions return EINVAL and set errno to
EINVAL.

The _putenv_s function adds new environment variables or modifies the values of existing environment
variables. Environment variables define the environment in which a process executes (for example, the default
search path for libraries to be linked with a program). _wputenv_s is a wide-character version of _putenv_s;
the envstring argument to _wputenv_s is a wide-character string.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/putenv-s-wputenv-s.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tputenv_s _putenv_s _putenv_s _wputenv_s

NOTE

Requirements
ROUTINE REQUIRED HEADER

_putenv_s <stdlib.h>

_wputenv_s <stdlib.h> or <wchar.h>

Example

See also

varname is the name of the environment variable to be added or modified and value_string is the variable's
value. If varname is already part of the environment, its value is replaced by value_string; otherwise, the new
varname variable and its value_string are added to the environment. You can remove a variable from the
environment by specifying an empty string (that is, "") for value_string.

_putenv_s and _wputenv_s affect only the environment that is local to the current process; you cannot use
them to modify the command-level environment. These functions operate only on data structures that are
accessible to the run-time library and not on the environment "segment" that the operating system creates for a
process. When the current process terminates, the environment reverts to the level of the calling process, which
in most cases is the operating-system level. However, the modified environment can be passed to any new
processes that are created by _spawn, _exec, or system, and these new processes get any new items that are
added by _putenv_s and _wputenv_s.

Do not change an environment entry directly; instead, use _putenv_s or _wputenv_s to change it. In particular,
directly freeing elements of the _environ[] global array might cause invalid memory to be addressed.

getenv and _putenv_s use the global variable _environ to access the environment table; _wgetenv and
_wputenv_s use _wenviron. _putenv_s and _wputenv_s may change the value of _environ and _wenviron,
and thereby invalidate the envp argument to main and the _wenvp argument to wmain. Therefore, it is safer
to use _environ or _wenviron to access the environment information. For more information about the
relationship of _putenv_s and _wputenv_s to global variables, see _environ, _wenviron.

The _putenv_s and _getenv_s families of functions are not thread-safe. _getenv_s could return a string pointer while
_putenv_s is modifying the string, and thereby cause random failures. Make sure that calls to these functions are
synchronized.

For additional compatibility information, see Compatibility.

For a sample that shows how to use _putenv_s, see getenv_s, _wgetenv_s.

Process and Environment Control
getenv, _wgetenv

_searchenv, _wsearchenv

puts, _putws
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int puts(
 const char *str
);
int _putws(
 const wchar_t *str
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_putts puts puts _putws

Requirements
ROUTINE REQUIRED HEADER

puts <stdio.h>

_putws <stdio.h>

Writes a string to stdout.

str
Output string.

Returns a nonnegative value if successful. If puts fails, it returns EOF; if _putws fails, it returns WEOF. If str is a
null pointer, the invalid parameter handler is invoked, as described in Parameter Validation. If execution is
allowed to continue, the functions set errno to EINVAL and return EOF or WEOF.

For information on these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The puts function writes str to the standard output stream stdout, replacing the string's terminating null
character ('\0') with a newline character ('\n') in the output stream.

_putws is the wide-character version of puts; the two functions behave identically if the stream is opened in
ANSI mode. puts doesn't currently support output into a UNICODE stream.

_putwch writes Unicode characters using the current CONSOLE LOCALE setting.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/puts-putws.md

Libraries

Example
// crt_puts.c
// This program uses puts to write a string to stdout.

#include <stdio.h>

int main(void)
{
 puts("Hello world from puts!");
}

Output

Hello world from puts!

See also

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that are
associated with the console, stdin, stdout, and stderr, must be redirected before C run-time functions can use
them in UWP apps. For additional compatibility information, see Compatibility.

All versions of the C run-time libraries.

Stream I/O
fputs, fputws
fgets, fgetws

putw
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _putw instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-putw.md

_putw
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _putw(
 int binint,
 FILE *stream
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_putw <stdio.h>

Libraries

Example

Writes an integer to a stream.

binint
Binary integer to be output.

stream
Pointer to the FILE structure.

Returns the value written. A return value of EOF might indicate an error. Because EOF is also a legitimate integer
value, use ferror to verify an error. If stream is a null pointer, the invalid parameter handler is invoked, as
described in Parameter Validation. If execution is allowed to continue, this function sets errno to EINVAL and
returns EOF.

For information about these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The _putw function writes a binary value of type int to the current position of stream. _putw does not affect the
alignment of items in the stream nor does it assume any special alignment. _putw is primarily for compatibility
with previous libraries. Portability problems might occur with _putw because the size of an int and the ordering
of bytes within an int differ across systems.

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/putw.md

// crt_putw.c
/* This program uses _putw to write a
* word to a stream, then performs an error check.
*/

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 FILE *stream;
 unsigned u;
 if(fopen_s(&stream, "data.out", "wb"))
 exit(1);
 for(u = 0; u < 10; u++)
 {
 _putw(u + 0x2132, stream); /* Write word to stream. */
 if(ferror(stream)) /* Make error check. */
 {
 printf("_putw failed");
 clearerr_s(stream);
 exit(1);
 }
 }
 printf("Wrote ten words\n");
 fclose(stream);
}

Output

Wrote ten words

See also
Stream I/O
_getw

_query_new_handler
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_PNH _query_new_handler(
 void
);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_query_new_handler <new.h>

Libraries

See also

Returns the address of the current new handler routine.

Returns the address of the current new handler routine as set by _set_new_handler.

The C++ _query_new_handler function returns the address of the current exception-handling function set by the
C++ _set_new_handler function. _set_new_handler is used to specify an exception-handling function that is to
gain control if the new operator fails to allocate memory. For more information, see the discussion of the new and
delete operators in the C++ Language Reference.

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

Memory Allocation
free

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/query-new-handler.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-and-delete-operators

_query_new_mode
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _query_new_mode(
 void
);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_query_new_mode <new.h>

Libraries

See also

Returns an integer indicating the new handler mode set by _set_new_mode for malloc.

Returns the current new handler mode, namely 0 or 1, for malloc. A return value of 1 indicates that, on failure to
allocate memory, malloc calls the new handler routine; a return value of 0 indicates that it does not.

The C++ _query_new_mode function returns an integer that indicates the new handler mode that is set by the
C++ _set_new_mode function for malloc. The new handler mode indicates whether, on failure to allocate memory,
malloc is to call the new handler routine as set by _set_new_handler. By default, malloc does not call the new
handler routine on failure. You can use _set_new_mode to override this behavior so that on failure malloc calls
the new handler routine in the same way that the new operator does when it fails to allocate memory. For more
information, see the discussion of the new and delete operators in the C++ Language Reference.

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

Memory Allocation
calloc
free
realloc
_query_new_handler

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/query-new-mode.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-and-delete-operators

quick_exit
10/31/2018 • 2 minutes to read • Edit Online

Syntax
__declspec(noreturn) void quick_exit(
 int status
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

quick_exit <process.h> or <stdlib.h>

See also

Causes normal program termination to occur.

status
The status code to return to the host environment.

The quick_exit function cannot return to its caller.

The quick_exit function causes normal program termination. It calls no functions registered by atexit, _onexit or
signal handlers registered by the signal function. Behavior is undefined if quick_exit is called more than once, or
if the exit function is also called.

The quick_exit function calls, in last-in, first-out (L IFO) order, the functions registered by at_quick_exit, except
for those functions already called when the function was registered. Behavior is undefined if a longjmp call is made
during a call to a registered function that would terminate the call to the function.

After the registered functions have been called, quick_exit invokes _Exit by using the status value to return
control to the host environment.

For more information about compatibility, see Compatibility.

Process and Environment Control
abort
atexit
_exec, _wexec Functions
exit, _Exit, _exit
_onexit, _onexit_m
_spawn, _wspawn Functions

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/quick-exit1.md

system, _wsystem

qsort
3/1/2019 • 2 minutes to read • Edit Online

Syntax
void qsort(
 void *base,
 size_t number,
 size_t width,
 int (__cdecl *compare)(const void *, const void *)
);

Parameters

Remarks

compare((void *) & elem1, (void *) & elem2);

COMPARE FUNCTION RETURN VALUE DESCRIPTION

< 0 elem1 less than elem2

0 elem1 equivalent to elem2

> 0 elem1 greater than elem2

Performs a quick sort. A more secure version of this function is available; see qsort_s.

base
Start of target array.

number
Array size in elements.

width
Element size in bytes.

compare
Pointer to a user-supplied routine that compares two array elements and returns a value that specifies their
relationship.

The qsort function implements a quick-sort algorithm to sort an array of number elements, each of width bytes.
The argument base is a pointer to the base of the array to be sorted. qsort overwrites this array by using the
sorted elements.

qsort calls the compare routine one or more times during the sort, and passes pointers to two array elements on
each call.

The routine compares the elements and returns one of the following values.

The array is sorted in increasing order, as defined by the comparison function. To sort an array in decreasing
order, reverse the sense of "greater than" and "less than" in the comparison function.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/qsort.md

Requirements
ROUTINE REQUIRED HEADER

qsort <stdlib.h> and <search.h>

Example
// crt_qsort.c
// arguments: every good boy deserves favor

/* This program reads the command-line
* parameters and uses qsort to sort them. It
* then displays the sorted arguments.
*/

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

int compare(const void *arg1, const void *arg2);

int main(int argc, char **argv)
{
 int i;
 /* Eliminate argv[0] from sort: */
 argv++;
 argc--;

 /* Sort remaining args using Quicksort algorithm: */
 qsort((void *)argv, (size_t)argc, sizeof(char *), compare);

 /* Output sorted list: */
 for(i = 0; i < argc; ++i)
 printf(" %s", argv[i]);
 printf("\n");
}

int compare(const void *arg1, const void *arg2)
{
 /* Compare all of both strings: */
 return _stricmp(* (char**) arg1, * (char**) arg2);
}

boy deserves every favor good

See also

This function validates its parameters. If compare or number is NULL, or if base is NULL and number is
nonzero, or if width is less than zero, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, the function returns and errno is set to EINVAL.

For additional compatibility information, see Compatibility.

Searching and Sorting
bsearch
_lsearch

qsort_s
3/1/2019 • 4 minutes to read • Edit Online

Syntax
void qsort_s(
 void *base,
 size_t num,
 size_t width,
 int (__cdecl *compare)(void *, const void *, const void *),
 void * context
);

Parameters

Remarks

compare(context, (void *) & elem1, (void *) & elem2);

RETURN VALUE DESCRIPTION

< 0 elem1 less than elem2

0 elem1 equivalent to elem2

Performs a quick sort. A version of qsort with security enhancements as described in Security Features in the
CRT.

base
Start of target array.

number
Array size in elements.

width
Element size in bytes.

compare
Comparison function. The first argument is the context pointer. The second argument is a pointer to the key for
the search. The third argument is a pointer to the array element to be compared with key.

context
A pointer to a context, which can be any object that the compare routine needs to access.

The qsort_s function implements a quick-sort algorithm to sort an array of number elements, each of width
bytes. The argument base is a pointer to the base of the array to be sorted. qsort_s overwrites this array with the
sorted elements. The argument compare is a pointer to a user-supplied routine that compares two array
elements and returns a value specifying their relationship. qsort_s calls the compare routine one or more times
during the sort, passing pointers to two array elements on each call:

The routine must compare the elements and then return one of the following values:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/qsort-s.md

> 0 elem1 greater than elem2

RETURN VALUE DESCRIPTION

Error Conditions

KEY BASE COMPARE NUM WIDTH ERRNO

NULL any any any any EINVAL

any NULL any != 0 any EINVAL

any any any any <= 0 EINVAL

any any NULL any any EINVAL

Requirements
ROUTINE REQUIRED HEADER

qsort_s <stdlib.h> and <search.h>

Example

// crt_qsort_s.cpp
// compile with: /EHsc /MT
#include <stdlib.h>
#include <stdio.h>
#include <search.h>
#include <process.h>
#include <locale.h>
#include <locale>
#include <windows.h>
using namespace std;

The array is sorted in increasing order, as defined by the comparison function. To sort an array in decreasing
order, reverse the sense of "greater than" and "less than" in the comparison function.

If invalid parameters are passed to the function, the invalid parameter handler is invoked, as described in
Parameter Validation. If execution is allowed to continue, then the function returns and errno is set to EINVAL.
For more information, see errno, _doserrno, _sys_errlist, and _sys_nerr.

qsort_s has the same behavior as qsort but has the context parameter and sets errno. By passing a context
parameter, comparison functions can use an object pointer to access object functionality or other information not
accessible through an element pointer. The addition of the context parameter makes qsort_s more secure because
context can be used to avoid reentrancy bugs introduced by using static variables to make shared information
available to the compare function.

For additional compatibility information, see Compatibility.

Libraries: All versions of the CRT Library Features.

The following example demonstrates how to use the context parameter in the qsort_s function. The context
parameter makes it easier to perform thread-safe sorts. Instead of using static variables that must be
synchronized to ensure thread safety, pass a different context parameter in each sort. In this example, a locale
object is used as the context parameter.

// The sort order is dependent on the code page. Use 'chcp' at the
// command line to change the codepage. When executing this application,
// the command prompt codepage must match the codepage used here:

#define CODEPAGE_850

#ifdef CODEPAGE_850
// Codepage 850 is the OEM codepage used by the command line,
// so \x00e1 is the German Sharp S in that codepage and \x00a4
// is the n tilde.

char *array1[] = { "wei\x00e1", "weis", "annehmen", "weizen", "Zeit",
 "weit" };
char *array2[] = { "Espa\x00a4ol", "Espa\x00a4" "a", "espantado" };
char *array3[] = { "table", "tableux", "tablet" };

#define GERMAN_LOCALE "German_Germany.850"
#define SPANISH_LOCALE "Spanish_Spain.850"
#define ENGLISH_LOCALE "English_US.850"

#endif

#ifdef CODEPAGE_1252
 // If using codepage 1252 (ISO 8859-1, Latin-1), use \x00df
 // for the German Sharp S and \x001f for the n tilde.
char *array1[] = { "wei\x00df", "weis", "annehmen", "weizen", "Zeit",
 "weit" };
char *array2[] = { "Espa\x00f1ol", "Espa\x00f1" "a", "espantado" };
char *array3[] = { "table", "tableux", "tablet" };

#define GERMAN_LOCALE "German_Germany.1252"
#define SPANISH_LOCALE "Spanish_Spain.1252"
#define ENGLISH_LOCALE "English_US.1252"

#endif

// The context parameter lets you create a more generic compare.
// Without this parameter, you would have stored the locale in a
// static variable, thus making sort_array vulnerable to thread
// conflicts.

int compare(void *pvlocale, const void *str1, const void *str2)
{
 char s1[256];
 char s2[256];
 strcpy_s(s1, 256, *(char**)str1);
 strcpy_s(s2, 256, *(char**)str2);
 _strlwr_s(s1, sizeof(s1));
 _strlwr_s(s2, sizeof(s2));

 locale& loc = *(reinterpret_cast< locale * > (pvlocale));

 return use_facet< collate<char> >(loc).compare(s1,
 &s1[strlen(s1)], s2, &s2[strlen(s2)]);

}

void sort_array(char *array[], int num, locale &loc)
{
 qsort_s(array, num, sizeof(char*), compare, &loc);
}

void print_array(char *a[], int c)
{
 for (int i = 0; i < c; i++)
 printf("%s ", a[i]);
 printf("\n");

}

}

void sort_german(void * Dummy)
{
 sort_array(array1, 6, locale(GERMAN_LOCALE));
}

void sort_spanish(void * Dummy)
{
 sort_array(array2, 3, locale(SPANISH_LOCALE));
}

void sort_english(void * Dummy)
{
 sort_array(array3, 3, locale(ENGLISH_LOCALE));
}

int main()
{
 int i;
 HANDLE threads[3];

 printf("Unsorted input:\n");
 print_array(array1, 6);
 print_array(array2, 3);
 print_array(array3, 3);

 // Create several threads that perform sorts in different
 // languages at the same time.

 threads[0] = reinterpret_cast<HANDLE>(
 _beginthread(sort_german , 0, NULL));
 threads[1] = reinterpret_cast<HANDLE>(
 _beginthread(sort_spanish, 0, NULL));
 threads[2] = reinterpret_cast<HANDLE>(
 _beginthread(sort_english, 0, NULL));

 for (i = 0; i < 3; i++)
 {
 if (threads[i] == reinterpret_cast<HANDLE>(-1))
 {
 printf("Error creating threads.\n");
 exit(1);
 }
 }

 // Wait until all threads have terminated.
 WaitForMultipleObjects(3, threads, true, INFINITE);

 printf("Sorted output: \n");

 print_array(array1, 6);
 print_array(array2, 3);
 print_array(array3, 3);
}

Sample Output

Unsorted input:
weiß weis annehmen weizen Zeit weit
Español España espantado
table tableux tablet
Sorted output:
annehmen weiß weis weit weizen Zeit
España Español espantado
table tablet tableux

See also
Searching and Sorting
bsearch_s
_lsearch_s
qsort

raise
10/31/2018 • 2 minutes to read • Edit Online

NOTE

Syntax
int raise(
 int sig
);

Parameters

Return Value

Remarks

SIGNAL MEANING DEFAULT

SIGABRT Abnormal termination Terminates the calling program with
exit code 3

SIGFPE Floating-point error Terminates the calling program

SIGILL Illegal instruction Terminates the calling program

SIGINT CTRL+C interrupt Terminates the calling program

SIGSEGV Illegal storage access Terminates the calling program

SIGTERM Termination request sent to the
program

Ignores the signal

Sends a signal to the executing program.

Do not use this method to shut down a Microsoft Store app, except in testing or debugging scenarios. Programmatic or UI
ways to close a Store app are not permitted according to the Microsoft Store policies. For more information, see UWP app
lifecycle.

sig
Signal to be raised.

If successful, raise returns 0. Otherwise, it returns a nonzero value.

The raise function sends sig to the executing program. If a previous call to signal has installed a signal-handling
function for sig, raise executes that function. If no handler function has been installed, the default action
associated with the signal value sig is taken, as follows.

If the argument is not a valid signal as specified above, the invalid parameter handler is invoked, as described in
Parameter Validation. If not handled, the function sets errno to EINVAL and returns a nonzero value.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/raise.md
https://docs.microsoft.com/legal/windows/agreements/store-policies
https://docs.microsoft.com/windows/uwp/launch-resume/app-lifecycle

Requirements
ROUTINE REQUIRED HEADER

raise <signal.h>

See also

For additional compatibility information, see Compatibility.

Process and Environment Control
abort
signal

rand
3/1/2019 • 2 minutes to read • Edit Online

Syntax
int rand(void);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

rand <stdlib.h>

Example

Generates a pseudorandom number by using a well-known and fully-reproducible algorithm. A more
programmatically secure version of this function is available; see rand_s. Numbers generated by rand are not
cryptographically secure. For more cryptographically secure random number generation, use rand_s or the
functions declared in the C++ Standard Library in <random>.

rand returns a pseudorandom number, as described above. There is no error return.

The rand function returns a pseudorandom integer in the range 0 to RAND_MAX (32767). Use the srand
function to seed the pseudorandom-number generator before calling rand.

The rand function generates a well-known sequence and is not appropriate for use as a cryptographic function.
For more cryptographically secure random number generation, use rand_s or the functions declared in the C++
Standard Library in <random>. For information about what's wrong with rand and how <random> addresses
these shortcomings, see this video entitled rand Considered Harmful.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/rand.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/random
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/random
https://channel9.msdn.com/Events/GoingNative/2013/rand-Considered-Harmful

// crt_rand.c
// This program seeds the random-number generator
// with the time, then exercises the rand function.
//

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void SimpleRandDemo(int n)
{
 // Print n random numbers.
 int i;
 for(i = 0; i < n; i++)
 printf(" %6d\n", rand());
}

void RangedRandDemo(int range_min, int range_max, int n)
{
 // Generate random numbers in the half-closed interval
 // [range_min, range_max). In other words,
 // range_min <= random number < range_max
 int i;
 for (i = 0; i < n; i++)
 {
 int u = (double)rand() / (RAND_MAX + 1) * (range_max - range_min)
 + range_min;
 printf(" %6d\n", u);
 }
}

int main(void)
{
 // Seed the random-number generator with the current time so that
 // the numbers will be different every time we run.
 srand((unsigned)time(NULL));

 SimpleRandDemo(10);
 printf("\n");
 RangedRandDemo(-100, 100, 10);
}

22036
18330
11651
27464
18093
3284
11785
14686
11447
11285

 74
 48
 27
 65
 96
 64
 -5
 -42
 -55
 66

See also
Floating-Point Support
srand
rand_s

rand_s
10/31/2018 • 2 minutes to read • Edit Online

Syntax
errno_t rand_s(unsigned int* randomValue);

Parameters

Return Value

Remarks

#define _CRT_RAND_S
#include <stdlib.h>

Requirements
ROUTINE REQUIRED HEADER

rand_s <stdlib.h>

Example

Generates a pseudorandom number. This is a more secure version of the function rand, with security
enhancements as described in Security Features in the CRT.

randomValue
A pointer to an integer to hold the generated value.

Zero if successful, otherwise, an error code. If the input pointer randomValue is a null pointer, the function
invokes an invalid parameter handler, as described in Parameter Validation. If execution is allowed to continue, the
function returns EINVAL and sets errno to EINVAL. If the function fails for any other reason, *randomValue is
set to 0.

The rand_s function writes a pseudorandom integer in the range 0 to UINT_MAX to the input pointer. The
rand_s function uses the operating system to generate cryptographically secure random numbers. It does not use
the seed generated by the srand function, nor does it affect the random number sequence used by rand.

The rand_s function requires that constant _CRT_RAND_S be defined prior to the inclusion statement for the
function to be declared, as in the following example:

rand_s depends on the RtlGenRandom API, which is only available in Windows XP and later.

For more information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/rand-s.md
https://docs.microsoft.com/windows/desktop/api/ntsecapi/nf-ntsecapi-rtlgenrandom

// crt_rand_s.c
// This program illustrates how to generate random
// integer or floating point numbers in a specified range.

// Remembering to define _CRT_RAND_S prior
// to inclusion statement.
#define _CRT_RAND_S

#include <stdlib.h>
#include <stdio.h>
#include <limits.h>

int main(void)
{
 int i;
 unsigned int number;
 double max = 100.0;
 errno_t err;

 // Display 10 random integers in the range [1,10].
 for(i = 0; i < 10;i++)
 {
 err = rand_s(&number);
 if (err != 0)
 {
 printf_s("The rand_s function failed!\n");
 }
 printf_s(" %u\n", (unsigned int) ((double)number /
 ((double) UINT_MAX + 1) * 10.0) + 1);
 }

 printf_s("\n");

 // Display 10 random doubles in [0, max).
 for (i = 0; i < 10;i++)
 {
 err = rand_s(&number);
 if (err != 0)
 {
 printf_s("The rand_s function failed!\n");
 }
 printf_s(" %g\n", (double) number /
 ((double) UINT_MAX + 1) * max);
 }
}

Sample Output

10
4
5
2
8
2
5
6
1
1

32.6617
29.4471
11.5413
6.41924
20.711
60.2878
61.0094
20.1222
80.9192
65.0712

See also
Floating-Point Support
rand
srand

read
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _read instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-read.md

_read
2/14/2019 • 2 minutes to read • Edit Online

Syntax
int _read(
 int const fd,
 void * const buffer,
 unsigned const buffer_size
);

Parameters

Return Value

Remarks

Requirements

Reads data from a file.

fd
File descriptor referring to the open file.

buffer
Storage location for data.

buffer_size
Maximum number of bytes to read.

_read returns the number of bytes read, which might be less than buffer_size if there are fewer than buffer_size
bytes left in the file, or if the file was opened in text mode. In text mode, each carriage return-line feed pair \r\n

is replaced with a single linefeed character \n . Only the single linefeed character is counted in the return value.
The replacement does not affect the file pointer.

If the function tries to read at end of file, it returns 0. If fd is not valid, the file isn't open for reading, or the file is
locked, the invalid parameter handler is invoked, as described in Parameter Validation. If execution is allowed to
continue, the function returns -1 and sets errno to EBADF.

If buffer is NULL, or if buffer_size > INT_MAX, the invalid parameter handler is invoked. If execution is allowed
to continue, the function returns -1 and errno is set to EINVAL.

For more information about this and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The _read function reads a maximum of buffer_size bytes into buffer from the file associated with fd. The read
operation begins at the current position of the file pointer associated with the given file. After the read operation,
the file pointer points to the next unread character.

If the file was opened in text mode, the read terminates when _read encounters a CTRL+Z character, which is
treated as an end-of-file indicator. Use _lseek to clear the end-of-file indicator.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/read.md

ROUTINE REQUIRED HEADER

_read <io.h>

Libraries

Example
// crt_read.c
/* This program opens a file named crt_read.txt
* and tries to read 60,000 bytes from
* that file using _read. It then displays the
* actual number of bytes read.
*/

#include <fcntl.h> /* Needed only for _O_RDWR definition */
#include <io.h>
#include <stdlib.h>
#include <stdio.h>
#include <share.h>

char buffer[60000];

int main(void)
{
 int fh, bytesread;
 unsigned int nbytes = 60000;

 /* Open file for input: */
 if (_sopen_s(&fh, "crt_read.txt", _O_RDONLY, _SH_DENYNO, 0))
 {
 perror("open failed on input file");
 exit(1);
 }

 /* Read in input: */
 if ((bytesread = _read(fh, buffer, nbytes)) <= 0)
 perror("Problem reading file");
 else
 printf("Read %u bytes from file\n", bytesread);

 _close(fh);
}

Input: crt_read.txt

Line one.
Line two.

Output

Read 19 bytes from file

See also

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

Low-Level I/O
_creat, _wcreat
fread
_open, _wopen
_write

realloc
10/31/2018 • 3 minutes to read • Edit Online

Syntax
void *realloc(
 void *memblock,
 size_t size
);

Parameters

Return Value

Remarks

Reallocate memory blocks.

memblock
Pointer to previously allocated memory block.

size
New size in bytes.

realloc returns a void pointer to the reallocated (and possibly moved) memory block.

If there is not enough available memory to expand the block to the given size, the original block is left
unchanged, and NULL is returned.

If size is zero, then the block pointed to by memblock is freed; the return value is NULL, and memblock is left
pointing at a freed block.

The return value points to a storage space that is guaranteed to be suitably aligned for storage of any type of
object. To get a pointer to a type other than void, use a type cast on the return value.

The realloc function changes the size of an allocated memory block. The memblock argument points to the
beginning of the memory block. If memblock is NULL, realloc behaves the same way as malloc and allocates
a new block of size bytes. If memblock is not NULL, it should be a pointer returned by a previous call to calloc,
malloc, or realloc.

The size argument gives the new size of the block, in bytes. The contents of the block are unchanged up to the
shorter of the new and old sizes, although the new block can be in a different location. Because the new block
can be in a new memory location, the pointer returned by realloc is not guaranteed to be the pointer passed
through the memblock argument. realloc does not zero newly allocated memory in the case of buffer growth.

realloc sets errno to ENOMEM if the memory allocation fails or if the amount of memory requested exceeds
_HEAP_MAXREQ. For information on this and other error codes, see errno, _doserrno, _sys_errlist, and
_sys_nerr.

realloc calls malloc in order to use the C++ _set_new_mode function to set the new handler mode. The new
handler mode indicates whether, on failure, malloc is to call the new handler routine as set by
_set_new_handler. By default, malloc does not call the new handler routine on failure to allocate memory. You
can override this default behavior so that, when realloc fails to allocate memory, malloc calls the new handler

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/realloc.md

_set_new_mode(1);

Requirements
ROUTINE REQUIRED HEADER

realloc <stdlib.h> and <malloc.h>

Example

routine in the same way that the new operator does when it fails for the same reason. To override the default,
call

early in ones program, or link with NEWMODE.OBJ (see Link Options).

When the application is linked with a debug version of the C run-time libraries, realloc resolves to
_realloc_dbg. For more information about how the heap is managed during the debugging process, see The
CRT Debug Heap.

realloc is marked __declspec(noalias) and __declspec(restrict) , meaning that the function is guaranteed
not to modify global variables, and that the pointer returned is not aliased. For more information, see noalias
and restrict.

For additional compatibility information, see Compatibility.

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/noalias
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/restrict

// crt_realloc.c
// This program allocates a block of memory for
// buffer and then uses _msize to display the size of that
// block. Next, it uses realloc to expand the amount of
// memory used by buffer and then calls _msize again to
// display the new amount of memory allocated to buffer.

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>

int main(void)
{
 long *buffer, *oldbuffer;
 size_t size;

 if((buffer = (long *)malloc(1000 * sizeof(long))) == NULL)
 exit(1);

 size = _msize(buffer);
 printf_s("Size of block after malloc of 1000 longs: %u\n", size);

 // Reallocate and show new size:
 oldbuffer = buffer; // save pointer in case realloc fails
 if((buffer = realloc(buffer, size + (1000 * sizeof(long))))
 == NULL)
 {
 free(oldbuffer); // free original block
 exit(1);
 }
 size = _msize(buffer);
 printf_s("Size of block after realloc of 1000 more longs: %u\n",
 size);

 free(buffer);
 exit(0);
}

Size of block after malloc of 1000 longs: 4000
Size of block after realloc of 1000 more longs: 8000

See also
Memory Allocation
calloc
free
malloc

_realloc_dbg
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void *_realloc_dbg(
 void *userData,
 size_t newSize,
 int blockType,
 const char *filename,
 int linenumber
);

Parameters

Return Value

Remarks

Reallocates a specified block of memory in the heap by moving and/or resizing the block (debug version only).

userData
Pointer to the previously allocated memory block.

newSize
Requested size for the reallocated block (bytes).

blockType
Requested type for the reallocated block: _CLIENT_BLOCK or _NORMAL_BLOCK.

filename
Pointer to the name of the source file that requested the realloc operation or NULL.

linenumber
Line number in the source file where the realloc operation was requested or NULL.

The filename and linenumber parameters are only available when _realloc_dbg has been called explicitly or the
_CRTDBG_MAP_ALLOC preprocessor constant has been defined.

On successful completion, this function either returns a pointer to the user portion of the reallocated memory
block, calls the new handler function, or returns NULL. For a complete description of the return behavior, see the
following Remarks section. For more information about how the new handler function is used, see the realloc
function.

_realloc_dbg is a debug version of the realloc function. When _DEBUG is not defined, each call to _realloc_dbg
is reduced to a call to realloc. Both realloc and _realloc_dbg reallocate a memory block in the base heap, but
_realloc_dbg accommodates several debugging features: buffers on either side of the user portion of the block to
test for leaks, a block type parameter to track specific allocation types, and filename/linenumber information to
determine the origin of allocation requests.

_realloc_dbg reallocates the specified memory block with slightly more space than the requested newSize.
newSize might be greater or less than the size of the originally allocated memory block. The additional space is
used by the debug heap manager to link the debug memory blocks and to provide the application with debug

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/realloc-dbg.md

Requirements
ROUTINE REQUIRED HEADER

_realloc_dbg <crtdbg.h>

Libraries

Example

See also

header information and overwrite buffers. The reallocation might result in moving the original memory block to a
different location in the heap, as well as changing the size of the memory block. If the memory block is moved,
the contents of the original block are overwritten.

_realloc_dbg sets errno to ENOMEM if a memory allocation fails or if the amount of memory needed
(including the overhead mentioned previously) exceeds _HEAP_MAXREQ. For information about this and other
error codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

For information about how memory blocks are allocated, initialized, and managed in the debug version of the
base heap, see CRT Debug Heap Details. For information about the allocation block types and how they are used,
see Types of blocks on the debug heap. For information about the differences between calling a standard heap
function and its debug version in a debug build of an application, see Debug Versions of Heap Allocation
Functions.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

See the example in the _msize_dbg topic.

Debug Routines
_malloc_dbg

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/debug-versions-of-heap-allocation-functions

_recalloc
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void *_recalloc(
 void *memblock
 size_t num,
 size_t size
);

Parameters

Return Value

Remarks

A combination of realloc and calloc. Reallocates an array in memory and initializes its elements to 0.

memblock
Pointer to previously allocated memory block.

number
Number of elements.

size
Length in bytes of each element.

_recalloc returns a void pointer to the reallocated (and possibly moved) memory block.

If there is not enough available memory to expand the block to the given size, the original block is left unchanged,
and NULL is returned.

If the requested size is zero, then the block pointed to by memblock is freed; the return value is NULL, and
memblock is left pointing at a freed block.

The return value points to a storage space that is guaranteed to be suitably aligned for storage of any type of
object. To get a pointer to a type other than void, use a type cast on the return value.

The _recalloc function changes the size of an allocated memory block. The memblock argument points to the
beginning of the memory block. If memblock is NULL, _recalloc behaves the same way as calloc and allocates a
new block of number * size bytes. Each element is initialized to 0. If memblock is not NULL, it should be a pointer
returned by a previous call to calloc, malloc, or realloc.

Because the new block can be in a new memory location, the pointer returned by _recalloc is not guaranteed to
be the pointer passed through the memblock argument.

_recalloc sets errno to ENOMEM if the memory allocation fails or if the amount of memory requested exceeds
_HEAP_MAXREQ. For information on this and other error codes, see errno, _doserrno, _sys_errlist, and
_sys_nerr.

recalloc calls realloc in order to use the C++ _set_new_mode function to set the new handler mode. The new
handler mode indicates whether, on failure, realloc is to call the new handler routine as set by _set_new_handler.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/recalloc.md

_set_new_mode(1);

Requirements
ROUTINE REQUIRED HEADER

_recalloc <stdlib.h> and <malloc.h>

See also

By default, realloc does not call the new handler routine on failure to allocate memory. You can override this
default behavior so that, when _recalloc fails to allocate memory, realloc calls the new handler routine in the
same way that the new operator does when it fails for the same reason. To override the default, call

early in the program, or link with NEWMODE.OBJ.

When the application is linked with a debug version of the C run-time libraries, _recalloc resolves to
_recalloc_dbg. For more information about how the heap is managed during the debugging process, see The CRT
Debug Heap.

_recalloc is marked __declspec(noalias) and __declspec(restrict) , meaning that the function is guaranteed not
to modify global variables, and that the pointer returned is not aliased. For more information, see noalias and
restrict.

For additional compatibility information, see Compatibility.

Memory Allocation
_recalloc_dbg
_aligned_recalloc
_aligned_offset_recalloc
free
Link Options

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/noalias
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/restrict

_recalloc_dbg
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void *_recalloc_dbg(
 void *userData,
 size_t num,
 size_t size,
 int blockType,
 const char *filename,
 int linenumber
);

Parameters

Return Value

Remarks

Reallocates an array and initializes its elements to 0 (debug version only).

userData
Pointer to the previously allocated memory block.

number
Requested number of memory blocks.

size
Requested size of each memory block (bytes).

blockType
Requested type of memory block: _CLIENT_BLOCK or _NORMAL_BLOCK.

For information about the allocation block types and how they are used, see Types of blocks on the debug heap.

filename
Pointer to name of the source file that requested allocation operation or NULL.

linenumber
Line number in the source file where allocation operation was requested or NULL.

The filename and linenumber parameters are only available when _recalloc_dbg has been called explicitly or the
_CRTDBG_MAP_ALLOC preprocessor constant has been defined.

On successful completion, this function either returns a pointer to the user portion of the reallocated memory
block, calls the new handler function, or returns NULL. For a complete description of the return behavior, see the
following Remarks section. For more information about how the new handler function is used, see the _recalloc
function.

_recalloc_dbg is a debug version of the _recalloc function. When _DEBUG is not defined, each call to
_recalloc_dbg is reduced to a call to _recalloc. Both _recalloc and _recalloc_dbg reallocate a memory block in
the base heap, but _recalloc_dbg accommodates several debugging features: buffers on either side of the user
portion of the block to test for leaks, a block type parameter to track specific allocation types, and

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/recalloc-dbg.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

Requirements
ROUTINE REQUIRED HEADER

_recalloc_dbg <crtdbg.h>

Libraries

See also

filename/linenumber information to determine the origin of allocation requests.

_recalloc_dbg reallocates the specified memory block with slightly more space than the requested size (number *
size) which might be greater or less than the size of the originally allocated memory block. The additional space is
used by the debug heap manager to link the debug memory blocks and to provide the application with debug
header information and overwrite buffers. The reallocation might result in moving the original memory block to a
different location in the heap, as well as changing the size of the memory block. The user portion of the block is
filled with the value 0xCD and each of the overwrite buffers are filled with 0xFD.

_recalloc_dbg sets errno to ENOMEM if a memory allocation fails; EINVAL is returned if the amount of
memory needed (including the overhead mentioned previously) exceeds _HEAP_MAXREQ. For information
about this and other error codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

For information about how memory blocks are allocated, initialized, and managed in the debug version of the
base heap, see CRT Debug Heap Details. For information about the differences between calling a standard heap
function and its debug version in a debug build of an application, see Debug Versions of Heap Allocation
Functions.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

Debug Routines

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/debug-versions-of-heap-allocation-functions

remainder, remainderf, remainderl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);

float remainder(float x, float y); /* C++ only */
long double remainder(long double x, long double y); /* C++ only */

Parameters

Return Value

Remarks

Requirements
FUNCTION REQUIRED HEADER (C) REQUIRED HEADER (C++)

remainder, remainderf, remainderl <math.h> <cmath> or <math.h>

Example

Computes the remainder of the quotient of two floating-point values, rounded to the nearest integral value.

x
The numerator.

y
The denominator.

The floating-point remainder of x / y. If the value of y is 0.0, remainder returns a quiet NaN. For information
about the representation of a quiet NaN by the printf family, see printf, _printf_l, wprintf, _wprintf_l.

The remainder functions calculate the floating-point remainder r of x / y such that x = n * y + r, where nis the
integer nearest in value to x / y and nis even whenever | n - x / y | = 1/2. When r = 0, r has the same sign as x.

Because C++ allows overloading, you can call overloads of remainder that take and return float or long double
values. In a C program, remainder always takes two double arguments and returns a double.

For compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/remainder-remainderf-remainderl.md

// crt_remainder.c
// This program displays a floating-point remainder.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double w = -10.0, x = 3.0, z;

 z = remainder(w, x);
 printf("The remainder of %.2f / %.2f is %f\n", w, x, z);
}

The remainder of -10.00 / 3.00 is -1.000000

See also
Floating-Point Support
ldiv, lldiv
imaxdiv
fmod, fmodf
remquo, remquof, remquol

remove, _wremove
1/21/2019 • 2 minutes to read • Edit Online

Syntax
int remove(
 const char *path
);
int _wremove(
 const wchar_t *path
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tremove remove remove _wremove

Requirements
ROUTINE REQUIRED HEADER

remove <stdio.h> or <io.h>

_wremove <stdio.h> or <wchar.h>

Libraries

Delete a file.

path
Path of file to be removed.

Each of these functions returns 0 if the file is successfully deleted. Otherwise, it returns -1 and sets errno either to
EACCES to indicate that the path specifies a read-only file, specifies a directory, or the file is open, or to ENOENT
to indicate that the filename or path was not found.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these and other return codes.

The remove function deletes the file specified by path. _wremove is a wide-character version of _remove; the
path argument to _wremove is a wide-character string. _wremove and _remove behave identically otherwise.
All handles to a file must be closed before it can be deleted.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/remove-wremove.md

Example
// crt_remove.c
/* This program uses remove to delete crt_remove.txt */

#include <stdio.h>

int main(void)
{
 if(remove("crt_remove.txt") == -1)
 perror("Could not delete 'CRT_REMOVE.TXT'");
 else
 printf("Deleted 'CRT_REMOVE.TXT'\n");
}

Input: crt_remove.txt

This file will be deleted.

Sample Output

Deleted 'CRT_REMOVE.TXT'

See also

All versions of the C run-time libraries.

File Handling
_unlink, _wunlink

remquo, remquof, remquol
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double remquo(double numer, double denom, int* quo);
float remquof(float numer, float denom, int* quo);
long double remquol(long double numer, long double denom, int* quo);

float remquo(float numer, float denom, int* quo); /* C++ only */
long double remquo(long double numer, long double denom, int* quo); /* C++ only */

Parameters

Return Value

Remarks

Requirements
FUNCTION REQUIRED HEADER (C) REQUIRED HEADER (C++)

remquo, remquof, remquol <math.h> <cmath> or <math.h>

Example

Computes the remainder of two integer values, and stores an integer value with the sign and approximate
magnitude of the quotient in a location that's specified in a parameter.

numer
The numerator.

denom
The denominator.

quo
A pointer to an integer to store a value that has the sign and approximate magnitude of the quotient.

remquo returns the floating-point remainder of x / y. If the value of y is 0.0, remquo returns a quiet NaN. For
information about the representation of a quiet NaN by the printf family, see printf, _printf_l, wprintf, _wprintf_l.

The remquo function calculates the floating-point remainder f of x / y such that x = i * y + f, where i is an integer,
f has the same sign as x, and the absolute value of f is less than the absolute value of y.

C++ allows overloading, so you can call overloads of remquo that take and return float or long double values.
In a C program, remquo always takes two double arguments and returns a double.

For compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/remquo-remquof-remquol.md

// crt_remquo.c
// This program displays a floating-point remainder.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double w = -10.0, x = 3.0, z;
 int quo = 0;

 z = remquo(w, x, &quo);
 printf("The remainder of %.2f / %.2f is %f\n", w, x, z);
 printf("Approximate signed quotient is %d\n", quo);
}

The remainder of -10.00 / 3.00 is -1.000000
Approximate signed quotient is -3

See also
Floating-Point Support
ldiv, lldiv
imaxdiv
fmod, fmodf
remainder, remainderf, remainderl

rename, _wrename
11/8/2018 • 2 minutes to read • Edit Online

Syntax
int rename(
 const char *oldname,
 const char *newname
);
int _wrename(
 const wchar_t *oldname,
 const wchar_t *newname
);

Parameters

Return Value

ERRNO VALUE CONDITION

EACCES File or directory specified by newname already exists or could
not be created (invalid path); or oldname is a directory and
newname specifies a different path.

ENOENT File or path specified by oldname not found.

EINVAL Name contains invalid characters.

Remarks

Generic-Text Routine Mappings

Rename a file or directory.

oldname
Pointer to old name.

newname
Pointer to new name.

Each of these functions returns 0 if it is successful. On an error, the function returns a nonzero value and sets
errno to one of the following values:

For other possible return values, see _doserrno, _errno, syserrlist, and _sys_nerr.

The rename function renames the file or directory specified by oldname to the name given by newname. The old
name must be the path of an existing file or directory. The new name must not be the name of an existing file or
directory. You can use rename to move a file from one directory or device to another by giving a different path in
the newname argument. However, you cannot use rename to move a directory. Directories can be renamed, but
not moved.

_wrename is a wide-character version of _rename; the arguments to _wrename are wide-character strings.
_wrename and _rename behave identically otherwise.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/rename-wrename.md

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_trename rename rename _wrename

Requirements
ROUTINE REQUIRED HEADER

rename <io.h> or <stdio.h>

_wrename <stdio.h> or <wchar.h>

Libraries

Example
// crt_renamer.c
/* This program attempts to rename a file named
* CRT_RENAMER.OBJ to CRT_RENAMER.JBO. For this operation
* to succeed, a file named CRT_RENAMER.OBJ must exist and
* a file named CRT_RENAMER.JBO must not exist.
*/

#include <stdio.h>

int main(void)
{
 int result;
 char old[] = "CRT_RENAMER.OBJ", new[] = "CRT_RENAMER.JBO";

 /* Attempt to rename file: */
 result = rename(old, new);
 if(result != 0)
 printf("Could not rename '%s'\n", old);
 else
 printf("File '%s' renamed to '%s'\n", old, new);
}

Output

File 'CRT_RENAMER.OBJ' renamed to 'CRT_RENAMER.JBO'

See also

For additional compatibility information, see Compatibility.

All versions of the C run-time libraries.

File Handling

_resetstkoflw
10/31/2018 • 7 minutes to read • Edit Online

IMPORTANT

Syntax
int _resetstkoflw(void);

Return Value

Remarks

Recovers from stack overflow.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

Nonzero if the function succeeds, zero if it fails.

The _resetstkoflw function recovers from a stack overflow condition, allowing a program to continue instead of
failing with a fatal exception error. If the _resetstkoflw function is not called, there are no guard pages after the
previous exception. The next time that there is a stack overflow, there are no exceptions at all and the process
terminates without warning.

If a thread in an application causes an EXCEPTION_STACK_OVERFLOW exception, the thread has left its stack
in a damaged state. This is in contrast to other exceptions such as EXCEPTION_ACCESS_VIOLATION or
EXCEPTION_INT_DIVIDE_BY_ZERO, where the stack is not damaged. The stack is set to an arbitrarily small
value when the program is first loaded. The stack then grows on demand to meet the needs of the thread. This is
implemented by placing a page with PAGE_GUARD access at the end of the current stack. For more information,
see Creating Guard Pages.

When the code causes the stack pointer to point to an address on this page, an exception occurs and the system
does the following three things:

Removes the PAGE_GUARD protection on the guard page so that the thread can read and write data to the
memory.

Allocates a new guard page that is located one page below the last one.

Reruns the instruction that raised the exception.

In this way, the system can increase the size of the stack for the thread automatically. Each thread in a process has
a maximum stack size. The stack size is set at compile time by the /STACK (Stack Allocations), or by the
STACKSIZE statement in the .def file for the project.

When this maximum stack size is exceeded, the system does the following three things:

Removes the PAGE_GUARD protection on the guard page, as previously described.

Tries to allocate a new guard page below the last one. However, this fails because the maximum stack size

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/resetstkoflw.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps
https://docs.microsoft.com/windows/desktop/Memory/creating-guard-pages
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/stack-stack-allocations
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/stacksize

Requirements
ROUTINE REQUIRED HEADER

_resetstkoflw <malloc.h>

Example

has been exceeded.

Raises an exception so that the thread can handle it in the exception block.

Note that, at that point, the stack no longer has a guard page. The next time that the program grows the stack all
the way to the end, where there should be a guard page, the program writes beyond the end of the stack and
causes an access violation.

Call _resetstkoflw to restore the guard page whenever recovery is done after a stack overflow exception. This
function can be called from inside the main body of an __except block or outside an __except block. However,
there are some restrictions on when it should be used. _resetstkoflw should never be called from:

A filter expression.

A filter function.

A function called from a filter function.

A catch block.

A __finally block.

At these points, the stack is not yet sufficiently unwound.

Stack overflow exceptions are generated as structured exceptions, not C++ exceptions, so _resetstkoflw is not
useful in an ordinary catch block because it will not catch a stack overflow exception. However, if
_set_se_translator is used to implement a structured exception translator that throws C++ exceptions (as in the
second example), a stack overflow exception results in a C++ exception that can be handled by a C++ catch block.

It is not safe to call _resetstkoflw in a C++ catch block that is reached from an exception thrown by the
structured exception translator function. In this case, the stack space is not freed and the stack pointer is not reset
until outside the catch block, even though destructors have been called for any destructible objects before the
catch block. This function should not be called until the stack space is freed and the stack pointer has been reset.
Therefore, it should be called only after exiting the catch block. As little stack space as possible should be used in
the catch block because a stack overflow that occurs in the catch block that is itself attempting to recover from a
previous stack overflow is not recoverable and can cause the program to stop responding as the overflow in the
catch block triggers an exception that itself is handled by the same catch block.

There are situations where _resetstkoflw can fail even if used in a correct location, such as within an __except
block. If, even after unwinding the stack, there is still not enough stack space left to execute _resetstkoflw without
writing into the last page of the stack, _resetstkoflw fails to reset the last page of the stack as the guard page and
returns 0, indicating failure. Therefore, safe usage of this function should include checking the return value instead
of assuming that the stack is safe to use.

Structured exception handling will not catch a STATUS_STACK_OVERFLOW exception when the application is
compiled with /clr (see /clr (Common Language Runtime Compilation)).

For more compatibility information, see Compatibility.

Libraries: All versions of the CRT Library Features.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation

// crt_resetstkoflw.c
// Launch program with and without arguments to observe
// the difference made by calling _resetstkoflw.

#include <malloc.h>
#include <stdio.h>
#include <windows.h>

void recursive(int recurse)
{
 _alloca(2000);
 if (recurse)
 recursive(recurse);
}

// Filter for the stack overflow exception.
// This function traps the stack overflow exception, but passes
// all other exceptions through.
int stack_overflow_exception_filter(int exception_code)
{
 if (exception_code == EXCEPTION_STACK_OVERFLOW)
 {
 // Do not call _resetstkoflw here, because
 // at this point, the stack is not yet unwound.
 // Instead, signal that the handler (the __except block)
 // is to be executed.
 return EXCEPTION_EXECUTE_HANDLER;
 }
 else
 return EXCEPTION_CONTINUE_SEARCH;
}

int main(int ac)
{
 int i = 0;
 int recurse = 1, result = 0;

 for (i = 0 ; i < 10 ; i++)
 {
 printf("loop #%d\n", i + 1);
 __try
 {
 recursive(recurse);

 }

 __except(stack_overflow_exception_filter(GetExceptionCode()))
 {
 // Here, it is safe to reset the stack.

 if (ac >= 2)
 {
 puts("resetting stack overflow");
 result = _resetstkoflw();
 }
 }

 // Terminate if _resetstkoflw failed (returned 0)
 if (!result)
 return 3;
 }

 return 0;
}

The following example shows the recommended usage of the _resetstkoflw function.

loop #1

loop #1
resetting stack overflow
loop #2
resetting stack overflow
loop #3
resetting stack overflow
loop #4
resetting stack overflow
loop #5
resetting stack overflow
loop #6
resetting stack overflow
loop #7
resetting stack overflow
loop #8
resetting stack overflow
loop #9
resetting stack overflow
loop #10
resetting stack overflow

Description

Code

// crt_resetstkoflw2.cpp
// compile with: /EHa
// _set_se_translator requires the use of /EHa
#include <malloc.h>
#include <stdio.h>
#include <windows.h>
#include <eh.h>

class Exception { };

class StackOverflowException : Exception { };

// Because the overflow is deliberate, disable the warning that
// this function will cause a stack overflow.
#pragma warning (disable: 4717)
void CauseStackOverflow (int i)
{
 // Overflow the stack by allocating a large stack-based array
 // in a recursive function.
 int a[10000];
 printf("%d ", i);
 CauseStackOverflow (i + 1);
}

void __cdecl SEHTranslator (unsigned int code, _EXCEPTION_POINTERS*)
{
 // For stack overflow exceptions, throw our own C++
 // exception object.
 // For all other exceptions, throw a generic exception object.

Sample output with no program arguments:

The program stops responding without executing further iterations.

With program arguments:

The following example shows the recommended use of _resetstkoflw in a program where structured exceptions
are converted to C++ exceptions.

 // For all other exceptions, throw a generic exception object.
 // Use minimal stack space in this function.
 // Do not call _resetstkoflw in this function.

 if (code == EXCEPTION_STACK_OVERFLOW)
 throw StackOverflowException ();
 else
 throw Exception();
}

int main ()
{
 bool stack_reset = false;
 bool result = false;

 // Set up a function to handle all structured exceptions,
 // including stack overflow exceptions.
 _set_se_translator (SEHTranslator);

 try
 {
 CauseStackOverflow (0);
 }
 catch (StackOverflowException except)
 {
 // Use minimal stack space here.
 // Do not call _resetstkoflw here.
 printf("\nStack overflow!\n");
 stack_reset = true;
 }
 catch (Exception except)
 {
 // Do not call _resetstkoflw here.
 printf("\nUnknown Exception!\n");
 }
 if (stack_reset)
 {
 result = _resetstkoflw();
 // If stack reset failed, terminate the application.
 if (result == 0)
 exit(1);
 }

 void* pv = _alloca(100000);
 printf("Recovered from stack overflow and allocated 100,000 bytes"
 " using _alloca.");

 return 0;
}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Stack overflow!
Recovered from stack overflow and allocated 100,000 bytes using _alloca.

See also
_alloca

rewind
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void rewind(
 FILE *stream
);

Parameters

Remarks

Requirements
ROUTINE REQUIRED HEADER

rewind <stdio.h>

Libraries

Example

Repositions the file pointer to the beginning of a file.

stream
Pointer to FILE structure.

The rewind function repositions the file pointer associated with stream to the beginning of the file. A call to
rewind is similar to

(void) fseek(stream, 0L, SEEK_SET);

However, unlike fseek, rewind clears the error indicators for the stream as well as the end-of-file indicator.
Also, unlike fseek, rewind does not return a value to indicate whether the pointer was successfully moved.

To clear the keyboard buffer, use rewind with the stream stdin, which is associated with the keyboard by
default.

If stream is a NULL pointer, the invalid parameter handler is invoked, as described in Parameter Validation. If
execution is allowed to continue, this function returns and errno is set to EINVAL.

For information on these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

For additional compatibility information, see Compatibility.

All versions of the C run-time libraries.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/rewind.md

// crt_rewind.c
/* This program first opens a file named
* crt_rewind.out for input and output and writes two
* integers to the file. Next, it uses rewind to
* reposition the file pointer to the beginning of
* the file and reads the data back in.
*/
#include <stdio.h>

int main(void)
{
 FILE *stream;
 int data1, data2;

 data1 = 1;
 data2 = -37;

 fopen_s(&stream, "crt_rewind.out", "w+");
 if(stream != NULL)
 {
 fprintf(stream, "%d %d", data1, data2);
 printf("The values written are: %d and %d\n", data1, data2);
 rewind(stream);
 fscanf_s(stream, "%d %d", &data1, &data2);
 printf("The values read are: %d and %d\n", data1, data2);
 fclose(stream);
 }
}

Output

The values written are: 1 and -37
The values read are: 1 and -37

See also
Stream I/O

rint, rintf, rintl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double rint(double x);
float rintf(float x);
long double rintl(long double x);

float rint(float x); // C++ only
long double rint(long double x); // C++ only

Parameters

Return Value

INPUT SEH EXCEPTION _MATHERR EXCEPTION

± ∞, QNAN, IND none none

Denormals EXCEPTION_FLT_UNDERFLOW none

Remarks

Requirements
FUNCTION C HEADER C++ HEADER

rint, rintf, rintl <math.h> <cmath>

Example

Rounds a floating-point value to the nearest integer in floating-point format.

x
The floating-point value to round.

The rint functions return a floating-point value that represents the nearest integer to x. Halfway values are
rounded according to the current setting of the floating-point rounding mode, the same as the nearbyint
functions. Unlike the nearbyint functions, the rint functions may raise the FE_INEXACT floating-point
exception if the result differs in value from the argument. There is no error return.

Because C++ allows overloading, you can call overloads of rint that take and return float and long double
values. In a C program, rint always takes and returns a double.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/rint-rintf-rintl.md

// crt_rint.c
// Build with: cl /W3 /Tc crt_rint.c
// This example displays the rounded results of
// the floating-point values 2.499999, -2.499999,
// 2.8, -2.8, 2.5 and -2.5.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x = 2.499999;
 float y = 2.8f;
 long double z = 2.5;

 printf("rint(%f) is %.0f\n", x, rint (x));
 printf("rint(%f) is %.0f\n", -x, rint (-x));
 printf("rintf(%f) is %.0f\n", y, rintf(y));
 printf("rintf(%f) is %.0f\n", -y, rintf(-y));
 printf("rintl(%Lf) is %.0Lf\n", z, rintl(z));
 printf("rintl(%Lf) is %.0Lf\n", -z, rintl(-z));
}

rint(2.499999) is 2
rint(-2.499999) is -2
rintf(2.800000) is 3
rintf(-2.800000) is -3
rintl(2.500000) is 3
rintl(-2.500000) is -3

See also
Floating-Point Support
ceil, ceilf, ceill
floor, floorf, floorl
fmod, fmodf
lrint, lrintf, lrintl, llrint, llrintf, llrintl
lround, lroundf, lroundl, llround, llroundf, llroundl
nearbyint, nearbyintf, nearbyintl
rint

rmdir
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _rmdir instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/rmdir.md

_rmdir, _wrmdir
11/8/2018 • 2 minutes to read • Edit Online

Syntax
int _rmdir(
 const char *dirname
);
int _wrmdir(
 const wchar_t *dirname
);

Parameters

Return Value

ERRNO VALUE CONDITION

ENOTEMPTY Given path is not a directory, the directory is not empty, or
the directory is either the current working directory or the
root directory.

ENOENT Path is invalid.

EACCES A program has an open handle to the directory.

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_trmdir _rmdir _rmdir _wrmdir

Deletes a directory.

dirname
Path of the directory to be removed.

Each of these functions returns 0 if the directory is successfully deleted. A return value of -1 indicates an error
and errno is set to one of the following values:

For more information about these and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The _rmdir function deletes the directory specified by dirname. The directory must be empty, and it must not be
the current working directory or the root directory.

_wrmdir is a wide-character version of _rmdir; the dirname argument to _wrmdir is a wide-character string.
_wrmdir and _rmdir behave identically otherwise.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/rmdir-wrmdir.md

Requirements
ROUTINE REQUIRED HEADER

_rmdir <direct.h>

_wrmdir <direct.h> or <wchar.h>

Libraries

Example

See also

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

See the example for _mkdir.

Directory Control
_chdir, _wchdir
_mkdir, _wmkdir

rmtmp
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _rmtmp instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-rmtmp.md

_rmtmp
10/31/2018 • 2 minutes to read • Edit Online

Syntax

int _rmtmp(void);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_rmtmp <stdio.h>

Libraries

Example

See also

Removes temporary files.

_rmtmp returns the number of temporary files closed and deleted.

The _rmtmp function cleans up all temporary files in the current directory. The function removes only those files
created by tmpfile; use it only in the same directory in which the temporary files were created.

For more compatibility information, see Compatibility.

All versions of the C run-time libraries.

See the example for tmpfile.

Stream I/O
_flushall
tmpfile
_tempnam, _wtempnam, tmpnam, _wtmpnam

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/rmtmp.md

_rotl, _rotl64, _rotr, _rotr64
10/31/2018 • 2 minutes to read • Edit Online

Syntax

unsigned int _rotl(
 unsigned int value,
 int shift
);
unsigned __int64 _rotl64(
 unsigned __int64 value,
 int shift
);
unsigned int _rotr(
 unsigned int value,
 int shift
);
unsigned __int64 _rotr64(
 unsigned __int64 value,
 int shift
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_rotl, _rotl64 <stdlib.h>

_rotr, _rotr64 <stdlib.h>

Libraries

Rotates bits to the left (_rotl) or right (_rotr).

value
Value to be rotated.

shift
Number of bits to shift.

The rotated value. There is no error return.

The _rotl and _rotr functions rotate the unsigned value by shift bits. _rotl rotates the value left. _rotr rotates the
value right. Both functions wrap bits rotated off one end of value to the other end.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/rotl-rotl64-rotr-rotr64.md

Example
// crt_rot.c
/* This program shifts values to rotate an integer.
*/

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 unsigned val = 0x0fd93;
 __int64 val2 = 0x0101010101010101;

 printf("0x%4.4x rotated left three times is 0x%4.4x\n",
 val, _rotl(val, 3));
 printf("0x%4.4x rotated right four times is 0x%4.4x\n",
 val, _rotr(val, 4));

 printf("%I64x rotated left three times is %I64x\n",
 val2, _rotl64(val2, 3));
 printf("%I64x rotated right four times is %I64x\n",
 val2, _rotr64(val2, 4));
}

Output

0xfd93 rotated left three times is 0x7ec98
0xfd93 rotated right four times is 0x30000fd9
101010101010101 rotated left three times is 808080808080808
101010101010101 rotated right four times is 1010101010101010

See also

All versions of the C run-time libraries.

Floating-Point Support
_lrotl, _lrotr

round, roundf, roundl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double round(
 double x
);
float round(
 float x
); // C++ only
long double round(
 long double x
); // C++ only
float roundf(
 float x
);
long double roundl(
 long double x
);

Parameters

Return Value

INPUT SEH EXCEPTION MATHERR EXCEPTION

± QNAN, IND none _DOMAIN

Remarks

Requirements
ROUTINE REQUIRED HEADER

round, roundf, roundl <math.h>

Example

Rounds a floating-point value to the nearest integer.

x
The floating-point value to round.

The round functions return a floating-point value that represents the nearest integer to x. Halfway values are
rounded away from zero, regardless of the setting of the floating-point rounding mode. There is no error return.

Because C++ allows overloading, you can call overloads of round that take and return float and long double
values. In a C program, round always takes and returns a double.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/round-roundf-roundl.md

// crt_round.c
// Build with: cl /W3 /Tc crt_round.c
// This example displays the rounded results of
// the floating-point values 2.499999, -2.499999,
// 2.8, -2.8, 2.5 and -2.5.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x = 2.499999;
 float y = 2.8f;
 long double z = 2.5;

 printf("round(%f) is %.0f\n", x, round(x));
 printf("round(%f) is %.0f\n", -x, round(-x));
 printf("roundf(%f) is %.0f\n", y, roundf(y));
 printf("roundf(%f) is %.0f\n", -y, roundf(-y));
 printf("roundl(%Lf) is %.0Lf\n", z, roundl(z));
 printf("roundl(%Lf) is %.0Lf\n", -z, roundl(-z));
}

round(2.499999) is 2
round(-2.499999) is -2
roundf(2.800000) is 3
roundf(-2.800000) is -3
roundl(2.500000) is 3
roundl(-2.500000) is -3

See also
Floating-Point Support
ceil, ceilf, ceill
floor, floorf, floorl
fmod, fmodf
lrint, lrintf, lrintl, llrint, llrintf, llrintl
lround, lroundf, lroundl, llround, llroundf, llroundl
nearbyint, nearbyintf, nearbyintl
rint, rintf, rintl

_RPT, _RPTF, _RPTW, _RPTFW Macros
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_RPT
 n
 (
 reportType,
 format,
...[args]
);
_RPTFn(
 reportType,
 format,
 [args]
);
_RPTWn(
 reportType,
 format
 [args]
);
_RPTFWn(
 reportType,
 format
 [args]
);

Parameters

Remarks

Tracks an application's progress by generating a debug report (debug version only). Note that n specifies the
number of arguments in args and can be 0, 1, 2, 3, 4, or 5.

reportType
Report type: _CRT_WARN , _CRT_ERROR, or _CRT_ASSERT.

format
Format-control string used to create the user message.

args
Substitution arguments used by format.

All these macros take the reportType and format parameters. In addition, they might also take up to four
additional arguments, signified by the number appended to the macro name. For example, _RPT0 and
_RPTF0 take no additional arguments, _RPT1 and _RPTF1 take arg1, _RPT2 and _RPTF2 take arg1 and
arg2, and so on.

The _RPT and _RPTF macros are similar to the printf function, because they can be used to track an
application's progress during the debugging process. However, these macros are more flexible than printf
because they do not need to be enclosed in #ifdef statements to prevent them from being called in a retail
build of an application. This flexibility is achieved by using the _DEBUG macro; the _RPT and _RPTF macros
are only available when the _DEBUG flag is defined. When _DEBUG is not defined, calls to these macros are
removed during preprocessing.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/rpt-rptf-rptw-rptfw-macros.md

REPORT TYPE OUTPUT DESTINATION

_CRT_WARN Warning text is not displayed.

_CRT_ERROR A pop-up window. Same as if
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_WNDW);

had been specified.

_CRT_ASSERT Same as _CRT_ERROR.

Requirements
MACRO REQUIRED HEADER

_RPT macros <crtdbg.h>

_RPTF macros <crtdbg.h>

_RPTW macros <crtdbg.h>

_RPTFW macros <crtdbg.h>

Libraries

The _RPTW and _RPTFW macros are wide-character versions of these macros. They are like wprintf and
take wide-character strings as arguments.

The _RPT macros call the _CrtDbgReport function to generate a debug report with a user message. The
_RPTW macros call the _CrtDbgReportW function to generate the same report with wide characters. The
_RPTF and _RPTFW macros create a debug report with the source file and line number where the report
macro was called, in addition to the user message. The user message is created by substituting the arg[n]
arguments into the format string, using the same rules defined by the printf function.

_CrtDbgReport or _CrtDbgReportW generates the debug report and determines its destinations based on
the current report modes and file defined for reportType. The _CrtSetReportMode and _CrtSetReportFile
functions are used to define the destinations for each report type.

If an _RPT macro is called and neither _CrtSetReportMode nor _CrtSetReportFile has been called,
messages are displayed as follows.

When the destination is a debug message window and the user chooses the Retry button, _CrtDbgReport or
_CrtDbgReportW returns 1, causing these macros to start the debugger, provided that just-in-time (JIT)
debugging is enabled. For more information about using these macros as a debugging error handling
mechanism, see Using Macros for Verification and Reporting.

Two other macros exist that generate a debug report. The _ASSERT macro generates a report, but only when
its expression argument evaluates to FALSE. _ASSERTE is exactly like _ASSERT, but includes the failed
expression in the generated report.

For more compatibility information, see Compatibility.

Debug versions of C run-time libraries only.

Although these are macros and are obtained by including Crtdbg.h, the application must link with one of the
debug libraries because these macros call other run-time functions.

https://docs.microsoft.com/visualstudio/debugger/macros-for-reporting

Example

See also

See the example in the _ASSERT topic.

Debug Routines

_RTC_GetErrDesc
10/31/2018 • 2 minutes to read • Edit Online

Syntax
const char * _RTC_GetErrDesc(
 _RTC_ErrorNumber errnum
);

Parameters

Return Value

Requirements
ROUTINE REQUIRED HEADER

_RTC_GetErrDesc <rtcapi.h>

Libraries

See also

Returns a brief description of a run-time error check (RTC) type.

errnum
A number between zero and one less than the value returned by _RTC_NumErrors.

A character string that contains a short description of one of the error types detected by the run-time error check
system. If error is less than zero or greater than or equal to the value returned by _RTC_NumErrors,
_RTC_GetErrDesc returns NULL.

For more information, see Compatibility.

All versions of the C run-time libraries.

_RTC_NumErrors
Run-Time Error Checking

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/rtc-geterrdesc.md

_RTC_NumErrors
11/9/2018 • 2 minutes to read • Edit Online

Syntax

int _RTC_NumErrors(void);

Return Value

Requirements
ROUTINE REQUIRED HEADER

_RTC_NumErrors <rtcapi.h>

Libraries

See also

Returns the total number of errors that can be detected by run-time error checks (RTC). You can use this number
as the control in a for loop, where each value in the loop is passed to _RTC_GetErrDesc.

An integer whose value represents the total number of errors that can be detected by the Visual C++ run-time
error checks.

For more information, see Compatibility.

All versions of the C run-time libraries.

_RTC_GetErrDesc
Run-Time Error Checking

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/rtc-numerrors.md

_RTC_SetErrorFunc
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_RTC_error_fn _RTC_SetErrorFunc(
 _RTC_error_fn function
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_RTC_SetErrorFunc <rtcapi.h>

Libraries

See also

Designates a function as the handler for reporting run-time error checks (RTCs). This function is deprecated; use
_RTC_SetErrorFuncW instead.

function
The address of the function that will handle run-time error checks.

The previously defined error function. If there is no previously defined function, returns NULL.

Do not use this function; instead, use _RTC_SetErrorFuncW. It is retained only for backward compatibility.

For more information, see Compatibility.

All versions of the C run-time libraries.

_CrtDbgReport, _CrtDbgReportW
Run-Time Error Checking

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/rtc-seterrorfunc.md

_RTC_SetErrorFuncW
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_RTC_error_fnW _RTC_SetErrorFuncW(
 _RTC_error_fnW function
);

Parameters

Return Value

Remarks

typedef int (__cdecl * _RTC_error_fnW)(
 int errorType,
 const wchar_t * filename,
 int linenumber,
 const wchar_t * moduleName,
 const wchar_t * format,
 ...);

Designates a function as the handler for the reporting of run-time error checks (RTCs).

function
The address of the function that will handle run-time error checks.

The previously defined error function; or NULL if there is no previously defined function.

In new code, use only _RTC_SetErrorFuncW. _RTC_SetErrorFunc is only included in the library for backward
compatibility.

The _RTC_SetErrorFuncW callback applies only to the component that it was linked in, but not globally.

Make sure that the address that you pass to _RTC_SetErrorFuncW is that of a valid error handling function.

If an error has been assigned a type of -1 by using _RTC_SetErrorType, the error handling function is not called.

Before you can call this function, you must first call one of the run-time error-check initialization functions. For
more information, see Using Run-Time Checks Without the C Run-Time Library.

_RTC_error_fnW is defined as follows:

where:

errorType
The type of error that's specified by _RTC_SetErrorType.

filename
The source file where the failure occurred, or null if no debug information is available.

linenumber
The line in filename where the failure occurred, or 0 if no debug information is available.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/rtc-seterrorfuncw.md
https://docs.microsoft.com/visualstudio/debugger/using-run-time-checks-without-the-c-run-time-library

Requirements
ROUTINE REQUIRED HEADER

_RTC_SetErrorFuncW <rtcapi.h>

Libraries

See also

moduleName
The DLL or executable name where the failure occurred.

format
printf style string to display an error message, using the remaining parameters. The first argument of the
VA_ARGLIST is the RTC Error number that occurred.

For an example that shows how to use _RTC_error_fnW, see Native Run-Time Checks Customization.

For more information, see Compatibility.

All versions of the C run-time libraries.

_CrtDbgReport, _CrtDbgReportW
Run-Time Error Checking

https://docs.microsoft.com/visualstudio/debugger/native-run-time-checks-customization

_RTC_SetErrorType
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _RTC_SetErrorType(
 _RTC_ErrorNumber errnum,
 int ErrType
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_RTC_SetErrorType <rtcapi.h>

Libraries

See also

Associates an error that is detected by run-time error checks (RTCs) with a type. Your error handler processes how
to output errors of the specified type.

errnum
A number between zero and one less than the value returned by _RTC_NumErrors.

ErrType
A value to assign to this errnum. For example, you might use _CRT_ERROR. If you are using _CrtDbgReport as
your error handler, ErrType can only be one of the symbols defined in _CrtSetReportMode. If you have your own
error handler (_RTC_SetErrorFunc), you can have as many ErrTypes as there are errnums.

An ErrType of _RTC_ERRTYPE_IGNORE has special meaning to _CrtSetReportMode; the error is ignored.

The previous value for the error type type.

By default, all errors are set to ErrType = 1, which corresponds to _CRT_ERROR. For more information about the
default error types such as _CRT_ERROR, see _CrtDbgReport.

Before you can call this function, you must first call one of the run-time error check initialization functions; see
Using Run-Time Checks without the C Run-Time Library

For more information, see Compatibility.

All versions of the C run-time libraries.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/rtc-seterrortype.md
https://docs.microsoft.com/visualstudio/debugger/using-run-time-checks-without-the-c-run-time-library

_RTC_GetErrDesc
Run-Time Error Checking

_scalb, _scalbf
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double _scalb(
 double x,
 long exp
);
float _scalbf(
 float x,
 long exp
); /* x64 only */

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_scalb, _scalbf <float.h>

See also

Scales argument by a power of 2.

x
Double-precision, floating-point value.

exp
Long integer exponent.

Returns an exponential value if successful. On overflow (depending on the sign of x), _scalb returns +/-
HUGE_VAL; the errno variable is set to ERANGE .

For more information about this and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The _scalb function calculates the value of x * 2 .exp

For more compatibility information, see Compatibility.

Floating-Point Support
ldexp

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/scalb.md

scalbn, scalbnf, scalbnl, scalbln, scalblnf, scalblnl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double scalbn(
 double x,
 int exp
);
float scalbn(
 float x,
 int exp
); // C++ only
long double scalbn(
 long double x,
 int exp
); // C++ only
float scalbnf(
 float x,
 int exp
);
long double scalbnl(
 long double x,
 int exp
);
double scalbln(
 double x,
 long exp
);
float scalbln(
 float x,
 long exp
); // C++ only
long double scalbln(
 long double x,
 long exp
); // C++ only
float scalblnf(
 float x,
 long exp
);
long double scalblnl(
 long double x,
 long exp
);

Parameters

Return Value

Multiplies a floating-point number by an integral power of FLT_RADIX.

x
Floating-point value.

exp
Integer exponent.

exp

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/scalbn-scalbnf-scalbnl-scalbln-scalblnf-scalblnl.md

Remarks

Requirements
FUNCTION C HEADER C++ HEADER

scalbn, scalbnf, scalbnl, scalbln,
scalblnf, scalblnl

<math.h> <cmath>

Example
// crt_scalbn.c
// Compile using: cl /W4 crt_scalbn.c
#include <math.h>
#include <stdio.h>

int main(void)
{
 double x = 6.4, y;
 int p = 3;

 y = scalbn(x, p);
 printf("%2.1f times FLT_RADIX to the power of %d is %2.1f\n", x, p, y);
}

Output

6.4 times FLT_RADIX to the power of 3 is 51.2

See also

The scalbn functions return the value of x * FLT_RADIX when successful. On overflow (depending on the sign
of x), scalbn returns +/- HUGE_VAL; the errno value is set to ERANGE .

exp

For more information about errno and possible error return values, see errno, _doserrno, _sys_errlist, and
_sys_nerr.

FLT_RADIX is defined in <float.h> as the native floating-point radix; on binary systems, it has a value of 2, and
scalbn is equivalent to ldexp.

Because C++ allows overloading, you can call overloads of scalbn and scalbln that take and return float or
long double types. In a C program, scalbn always takes a double and an int and returns a double, and
scalbln always takes a double and a long and returns a double.

For additional compatibility information, see Compatibility.

Floating-Point Support
frexp
ldexp
modf, modff, modfl

scanf, _scanf_l, wscanf, _wscanf_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int scanf(
 const char *format [,
 argument]...
);
int _scanf_l(
 const char *format,
 locale_t locale [,
 argument]...
);
int wscanf(
 const wchar_t *format [,
 argument]...
);
int _wscanf_l(
 const wchar_t *format,
 locale_t locale [,
 argument]...
);

Parameters

Return Value

Remarks

Reads formatted data from the standard input stream. More secure versions of these function are available;
see scanf_s, _scanf_s_l, wscanf_s, _wscanf_s_l.

format
Format control string.

argument
Optional arguments.

locale
The locale to use.

Returns the number of fields successfully converted and assigned; the return value does not include fields
that were read but not assigned. A return value of 0 indicates that no fields were assigned.

If format is a NULL pointer, the invalid parameter handler is invoked, as described in Parameter Validation.
If execution is allowed to continue, these functions return EOF and set errno to EINVAL.

For information on these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The scanf function reads data from the standard input stream stdin and writes the data into the location
given by argument. Each argument must be a pointer to a variable of a type that corresponds to a type
specifier in format. If copying takes place between strings that overlap, the behavior is undefined.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/scanf-scanf-l-wscanf-wscanf-l.md

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tscanf scanf scanf wscanf

_tscanf_l _scanf_l _scanf_l _wscanf_l

Requirements
ROUTINE REQUIRED HEADER

scanf, _scanf_l <stdio.h>

wscanf, _wscanf_l <stdio.h> or <wchar.h>

Example

When reading a string with scanf, always specify a width for the %s format (for example, "%32s" instead of "%s");
otherwise, improperly formatted input can easily cause a buffer overrun. Alternately, consider using scanf_s,
_scanf_s_l, wscanf_s, _wscanf_s_l or fgets.

wscanf is a wide-character version of scanf; the format argument to wscanf is a wide-character string.
wscanf and scanf behave identically if the stream is opened in ANSI mode. scanf doesn't currently
support input from a UNICODE stream.

The versions of these functions with the _l suffix are identical except that they use the locale parameter
passed in instead of the current thread locale.

For more information, see Format Specification Fields — scanf functions and wscanf Functions.

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles
that are associated with the console, stdin, stdout, and stderr, must be redirected before C run-time
functions can use them in UWP apps. For additional compatibility information, see Compatibility.

// crt_scanf.c
// compile with: /W3
// This program uses the scanf and wscanf functions
// to read formatted input.

#include <stdio.h>

int main(void)
{
 int i, result;
 float fp;
 char c, s[81];
 wchar_t wc, ws[81];
 result = scanf("%d %f %c %C %80s %80S", &i, &fp, &c, &wc, s, ws); // C4996
 // Note: scanf and wscanf are deprecated; consider using scanf_s and wscanf_s
 printf("The number of fields input is %d\n", result);
 printf("The contents are: %d %f %c %C %s %S\n", i, fp, c, wc, s, ws);
 result = wscanf(L"%d %f %hc %lc %80S %80ls", &i, &fp, &c, &wc, s, ws); // C4996
 wprintf(L"The number of fields input is %d\n", result);
 wprintf(L"The contents are: %d %f %C %c %hs %s\n", i, fp, c, wc, s, ws);
}

71 98.6 h z Byte characters
36 92.3 y n Wide characters

The number of fields input is 6
The contents are: 71 98.599998 h z Byte characters
The number of fields input is 6
The contents are: 36 92.300003 y n Wide characters

See also
Floating-Point Support
Stream I/O
Locale
fscanf, _fscanf_l, fwscanf, _fwscanf_l
printf, _printf_l, wprintf, _wprintf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
sscanf, _sscanf_l, swscanf, _swscanf_l

scanf_s, _scanf_s_l, wscanf_s, _wscanf_s_l
3/27/2019 • 4 minutes to read • Edit Online

Syntax
int scanf_s(
 const char *format [,
 argument]...
);
int _scanf_s_l(
 const char *format,
 locale_t locale [,
 argument]...
);
int wscanf_s(
 const wchar_t *format [,
 argument]...
);
int _wscanf_s_l(
 const wchar_t *format,
 locale_t locale [,
 argument]...
);

Parameters

Return Value

Remarks

Reads formatted data from the standard input stream. These versions of scanf, _scanf_l, wscanf, _wscanf_l
have security enhancements, as described in Security Features in the CRT.

format
Format control string.

argument
Optional arguments.

locale
The locale to use.

Returns the number of fields successfully converted and assigned. The return value doesn't include fields that
were read but not assigned. A return value of 0 indicates no fields were assigned. The return value is EOF for
an error, or if the end-of-file character or the end-of-string character is found in the first attempt to read a
character. If format is a NULL pointer, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, scanf_s and wscanf_s return EOF and set errno to EINVAL.

For information about these and other error codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

The scanf_s function reads data from the standard input stream, stdin, and writes it into argument. Each
argument must be a pointer to a variable type that corresponds to the type specifier in format. If copying
occurs between strings that overlap, the behavior is undefined.

wscanf_s is a wide-character version of scanf_s; the format argument to wscanf_s is a wide-character string.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/scanf-s-scanf-s-l-wscanf-s-wscanf-s-l.md

char s[10];
scanf_s("%9s", s, (unsigned)_countof(s)); // buffer size is 10, width specification is 9

NOTE

wchar_t ws[10];
wscanf_s(L"%9S", ws, (unsigned)_countof(ws));

char c;
scanf_s("%c", &c, 1);

char c[4];
scanf_s("%4c", c, (unsigned)_countof(c)); // not null terminated

Generic-Text Routine Mappings

wscanf_s and scanf_s behave identically if the stream is opened in ANSI mode. scanf_s doesn't currently
support input from a UNICODE stream.

The versions of these functions that have the _l suffix are identical, except they use the locale parameter
instead of the current thread locale.

Unlike scanf and wscanf, scanf_s and wscanf_s require you to specify buffer sizes for some parameters.
Specify the sizes for all c, C, s, S, or string control set [] parameters. The buffer size in characters is passed as
an additional parameter. It immediately follows the pointer to the buffer or variable. For example, if you're
reading a string, the buffer size for that string is passed as follows:

The buffer size includes the terminal null. You can use a width specification field to ensure the token that's
read in fits into the buffer. When a token is too large to fit, nothing is written to the buffer unless there's a
width specification.

The size parameter is of type unsigned, not size_t. Use a static cast to convert a size_t value to unsigned for 64-bit
build configurations.

The buffer size parameter describes the maximum number of characters, not bytes. In this example, the width
of the buffer type doesn't match the width of the format specifier.

The S format specifier means use the character width that's "opposite" the default width supported by the
function. The character width is single byte, but the function supports double-byte characters. This example
reads in a string of up to nine single-byte-wide characters and puts them in a double-byte-wide character
buffer. The characters are treated as single-byte values; the first two characters are stored in ws[0] , the
second two are stored in ws[1] , and so on.

This example reads a single character:

When multiple characters for non-null-terminated strings are read, integers are used for both the width
specification and the buffer size.

For more information, see scanf Width Specification.

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tscanf_s scanf_s scanf_s wscanf_s

_tscanf_s_l _scanf_s_l _scanf_s_l _wscanf_s_l

Requirements
ROUTINE REQUIRED HEADER

scanf_s, _scanf_s_l <stdio.h>

wscanf_s, _wscanf_s_l <stdio.h> or <wchar.h>

Example
// crt_scanf_s.c
// This program uses the scanf_s and wscanf_s functions
// to read formatted input.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 int i,
 result;
 float fp;
 char c,
 s[80];
 wchar_t wc,
 ws[80];

 result = scanf_s("%d %f %c %C %s %S", &i, &fp, &c, 1,
 &wc, 1, s, (unsigned)_countof(s), ws, (unsigned)_countof(ws));
 printf("The number of fields input is %d\n", result);
 printf("The contents are: %d %f %c %C %s %S\n", i, fp, c,
 wc, s, ws);
 result = wscanf_s(L"%d %f %hc %lc %S %ls", &i, &fp, &c, 2,
 &wc, 1, s, (unsigned)_countof(s), ws, (unsigned)_countof(ws));
 wprintf(L"The number of fields input is %d\n", result);
 wprintf(L"The contents are: %d %f %C %c %hs %s\n", i, fp,
 c, wc, s, ws);
}

71 98.6 h z Byte characters
36 92.3 y n Wide characters

For more information, see Format Specification Fields: scanf and wscanf Functions.

The console isn't supported in Universal Windows Platform (UWP) apps. The standard stream handles stdin,
stdout, and stderr must be redirected before C run-time functions can use them in UWP apps. For additional
compatibility information, see Compatibility.

This program produces the following output when given this input:

The number of fields input is 6
The contents are: 71 98.599998 h z Byte characters
The number of fields input is 6
The contents are: 36 92.300003 y n Wide characters

See also
Floating-Point Support
Stream I/O
Locale
fscanf, _fscanf_l, fwscanf, _fwscanf_l
printf, _printf_l, wprintf, _wprintf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
sscanf, _sscanf_l, swscanf, _swscanf_l

_scprintf, _scprintf_l, _scwprintf, _scwprintf_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _scprintf(
 const char *format [,
 argument] ...
);
int _scprintf_l(
 const char *format,
 locale_t locale [,
 argument] ...
);
int _scwprintf(
 const wchar_t *format [,
 argument] ...
);
int _scwprintf_l(
 const wchar_t *format,
 locale_t locale [,
 argument] ...
);

Parameters

Return Value

Remarks

Returns the number of characters in the formatted string.

format
Format-control string.

argument
Optional arguments.

locale
The locale to use.

For more information, see Format Specifications.

Returns the number of characters that would be generated if the string were to be printed or sent to a file or
buffer using the specified formatting codes. The value returned does not include the terminating null character.
_scwprintf performs the same function for wide characters.

If format is a NULL pointer, the invalid parameter handler is invoked, as described in Parameter Validation. If
execution is allowed to continue, these functions return -1 and set errno to EINVAL.

For information about these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

Each argument (if any) is converted according to the corresponding format specification in format. The format
consists of ordinary characters and has the same form and function as the format argument for printf.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/scprintf-scprintf-l-scwprintf-scwprintf-l.md

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_sctprintf _scprintf _scprintf _scwprintf

_sctprintf_l _scprintf_l _scprintf_l _scwprintf_l

Requirements
ROUTINE REQUIRED HEADER

_scprintf, _scprintf_l <stdio.h>

_scwprintf, _scwprintf_l <stdio.h> or <wchar.h>

Example
// crt__scprintf.c

#define _USE_MATH_DEFINES

#include <stdio.h>
#include <math.h>
#include <malloc.h>

int main(void)
{
 int count;
 int size;
 char *s = NULL;

 count = _scprintf("The value of Pi is calculated to be %f.\n",
 M_PI);

 size = count + 1; // the string will need one more char for the null terminator
 s = malloc(sizeof(char) * size);
 sprintf_s(s, size, "The value of Pi is calculated to be %f.\n",
 M_PI);
 printf("The length of the following string will be %i.\n", count);
 printf("%s", s);
 free(s);
}

The length of the following string will be 46.
The value of Pi is calculated to be 3.141593.

instead of the current thread locale.

Ensure that format is not a user-defined string.

For more compatibility information, see Compatibility.

See also
Stream I/O
fprintf, _fprintf_l, fwprintf, _fwprintf_l
printf, _printf_l, wprintf, _wprintf_l
scanf, _scanf_l, wscanf, _wscanf_l
sscanf, _sscanf_l, swscanf, _swscanf_l
vprintf Functions

_scprintf_p, _scprintf_p_l, _scwprintf_p, _scwprintf_p_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _scprintf_p(
 const char *format [,
 argument] ...
);
int _scprintf_p_l(
 const char *format,
 locale_t locale [,
 argument] ...
);
int _scwprintf_p (
 const wchar_t *format [,
 argument] ...
);
int _scwprintf_p _l(
 const wchar_t *format,
 locale_t locale [,
 argument] ...
);

Parameters

Return Value

Remarks

Returns the number of characters in the formatted string, with the ability to specify the order in which parameters
are used in the format string.

format
Format-control string.

argument
Optional arguments.

locale
The locale to use.

Returns the number of characters that would be generated if the string were to be printed or sent to a file or
buffer using the specified formatting codes. The value returned does not include the terminating null character.
_scwprintf_p performs the same function for wide characters.

The difference between _scprintf_p and _scprintf is that _scprintf_p supports positional parameters, which
allows specifying the order in which the arguments are used in the format string. For more information, see
printf_p Positional Parameters.

If format is a NULL pointer, the invalid parameter handler is invoked, as described in Parameter Validation. If
execution is allowed to continue, these functions return -1 and set errno to EINVAL.

For information about these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/scprintf-p-scprintf-p-l-scwprintf-p-scwprintf-p-l.md

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_sctprintf_p _scprintf_p _scprintf_p _scwprintf_p

_sctprintf_p_l _scprintf_p_l _scprintf_p_l _scwprintf_p_l

Requirements
ROUTINE REQUIRED HEADER

_scprintf_p, _scprintf_p_l <stdio.h>

_scwprintf_p, _scwprintf_p_l <stdio.h> or <wchar.h>

See also

Each argument (if any) is converted according to the corresponding format specification in format. The format
consists of ordinary characters and has the same form and function as the format argument for printf.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current thread locale.

Ensure that format is not a user-defined string.

For more compatibility information, see Compatibility.

Stream I/O
_scprintf, _scprintf_l, _scwprintf, _scwprintf_l
_printf_p, _printf_p_l, _wprintf_p, _wprintf_p_l

_searchenv, _wsearchenv
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
void _searchenv(
 const char *filename,
 const char *varname,
 char *pathname
);
void _wsearchenv(
 const wchar_t *filename,
 const wchar_t *varname,
 wchar_t *pathname
);
template <size_t size>
void _searchenv(
 const char *filename,
 const char *varname,
 char (&pathname)[size]
); // C++ only
template <size_t size>
void _wsearchenv(
 const wchar_t *filename,
 const wchar_t *varname,
 wchar_t (&pathname)[size]
); // C++ only

Parameters

Remarks

Uses environment paths to search for a file. More secure versions of these functions are available; see
_searchenv_s, _wsearchenv_s.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

filename
Name of the file to search for.

varname
Environment to search.

pathname
Buffer to store the complete path.

The _searchenv routine searches for the target file in the specified domain. The varname variable can be any
environment or user-defined variable—for example, PATH, LIB, or INCLUDE—that specifies a list of directory
paths. Because _searchenv is case-sensitive, varname should match the case of the environment variable.

The routine first searches for the file in the current working directory. If it does not find the file, it looks through
the directories that are specified by the environment variable. If the target file is in one of those directories, the

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/searchenv-wsearchenv.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tsearchenv _searchenv _searchenv _wsearchenv

Requirements
ROUTINE REQUIRED HEADER

_searchenv <stdlib.h>

_wsearchenv <stdlib.h> or <wchar.h>

Example

newly created path is copied into pathname. If the filename file is not found, pathname contains an empty null-
terminated string.

The pathname buffer should be at least _MAX_PATH characters long to accommodate the full length of the
constructed path name. Otherwise, _searchenv might overrun the pathname buffer and cause unexpected
behavior.

_wsearchenv is a wide-character version of _searchenv, and the arguments to _wsearchenv are wide-character
strings. _wsearchenv and _searchenv behave identically otherwise.

If filename is an empty string, these functions return ENOENT.

If filename or pathname is a NULL pointer, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, these functions return -1 and set errno to EINVAL.

For more information about errno and error codes, see errno Constants.

In C++, these functions have template overloads that invoke the newer, more secure counterparts of these
functions. For more information, see Secure Template Overloads.

For more compatibility information, see Compatibility.

// crt_searchenv.c
// compile with: /W3
// This program searches for a file in
// a directory that's specified by an environment variable.

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char pathbuffer[_MAX_PATH];
 char searchfile[] = "CL.EXE";
 char envvar[] = "PATH";

 // Search for file in PATH environment variable:
 _searchenv(searchfile, envvar, pathbuffer); // C4996
 // Note: _searchenv is deprecated; consider using _searchenv_s
 if(*pathbuffer != '\0')
 printf("Path for %s:\n%s\n", searchfile, pathbuffer);
 else
 printf("%s not found\n", searchfile);
}

Path for CL.EXE:
C:\Program Files\Microsoft Visual Studio 8\VC\BIN\CL.EXE

See also
Directory Control
getenv, _wgetenv
_putenv, _wputenv
_searchenv_s, _wsearchenv_s

_searchenv_s, _wsearchenv_s
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
errno_t _searchenv_s(
 const char *filename,
 const char *varname,
 char *pathname,
 size_t numberOfElements
);
errno_t _wsearchenv_s(
 const wchar_t *filename,
 const wchar_t *varname,
 wchar_t *pathname,
 size_t numberOfElements
);
template <size_t size>
errno_t _searchenv_s(
 const char *filename,
 const char *varname,
 char (&pathname)[size]
); // C++ only
template <size_t size>
errno_t _wsearchenv_s(
 const wchar_t *filename,
 const wchar_t *varname,
 wchar_t (&pathname)[size]
); // C++ only

Parameters

Return Value

Searches for a file by using environment paths. These versions of _searchenv, _wsearchenv have security
enhancements, as described in Security Features in the CRT.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

filename
Name of the file to search for.

varname
Environment to search.

pathname
Buffer to store the complete path.

numberOfElements
Size of the pathname buffer.

Zero if successful; an error code on failure.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/searchenv-s-wsearchenv-s.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Error Conditions

FILENAME VARNAME PATHNAME
NUMBEROFELEME
NTS RETURN VALUE

CONTENTS OF
PATHNAME

any any NULL any EINVAL n/a

NULL any any any EINVAL not changed

any any any <= 0 EINVAL not changed

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tsearchenv_s _searchenv_s _searchenv_s _wsearchenv_s

Requirements
ROUTINE REQUIRED HEADER

_searchenv_s <stdlib.h>

_wsearchenv_s <stdlib.h> or <wchar.h>

If filename is an empty string, the return value is ENOENT.

If any of these error conditions occurs, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, these functions set errno to EINVAL and return EINVAL.

The _searchenv_s routine searches for the target file in the specified domain. The varname variable can be any
environment or user-defined variable that specifies a list of directory paths, such as PATH, LIB, and INCLUDE .
Because _searchenv_s is case-sensitive, varname should match the case of the environment variable. If varname
does not match the name of an environment variable defined in the process's environment, the function returns
zero and the pathname variable is unchanged.

The routine searches first for the file in the current working directory. If it does not find the file, it looks next
through the directories specified by the environment variable. If the target file is in one of those directories, the
newly created path is copied into pathname. If the filename file is not found, pathname contains an empty null-
terminated string.

The pathname buffer should be at least _MAX_PATH characters long to accommodate the full length of the
constructed path name. Otherwise, _searchenv_s might overrun the pathname buffer resulting in unexpected
behavior.

_wsearchenv_s is a wide-character version of _searchenv_s; the arguments to _wsearchenv_s are wide-
character strings. _wsearchenv_s and _searchenv_s behave identically otherwise.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically (eliminating the need to specify a size argument) and they can automatically replace older, non-
secure functions with their newer, secure counterparts. For more information, see Secure Template Overloads.

For more compatibility information, see Compatibility.

Example
// crt_searchenv_s.c
/* This program searches for a file in
* a directory specified by an environment variable.
*/

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char pathbuffer[_MAX_PATH];
 char searchfile[] = "CL.EXE";
 char envvar[] = "PATH";
 errno_t err;

 /* Search for file in PATH environment variable: */
 err = _searchenv_s(searchfile, envvar, pathbuffer, _MAX_PATH);
 if (err != 0)
 {
 printf("Error searching the path. Error code: %d\n", err);
 }
 if(*pathbuffer != '\0')
 printf("Path for %s:\n%s\n", searchfile, pathbuffer);
 else
 printf("%s not found\n", searchfile);
}

Path for CL.EXE:
C:\Program Files\Microsoft Visual Studio 2010\VC\BIN\CL.EXE

See also
Directory Control
_searchenv, _wsearchenv
getenv, _wgetenv
_putenv, _wputenv

__security_init_cookie
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void __security_init_cookie(void);

Remarks

Example

Requirements
ROUTINE REQUIRED HEADER

__security_init_cookie <process.h>

See also

Initializes the global security cookie.

The global security cookie is used for buffer overrun protection in code compiled with /GS (Buffer Security Check)
and in code that uses exception handling. On entry to an overrun-protected function, the cookie is put on the stack,
and on exit, the value on the stack is compared with the global cookie. Any difference between them indicates that
a buffer overrun has occurred and causes immediate termination of the program.

Normally, __security_init_cookie is called by the CRT when it is initialized. If you bypass CRT initialization—for
example, if you use /ENTRY to specify an entry-point—then you must call __security_init_cookie yourself. If
__security_init_cookie is not called, the global security cookie is set to a default value and buffer overrun
protection is compromised. Because an attacker can exploit this default cookie value to defeat the buffer overrun
checks, we recommend that you always call __security_init_cookie when you define your own entry point.

The call to __security_init_cookie must be made before any overrun-protected function is entered; otherwise a
spurious buffer overrun will be detected. For more information, see C Runtime Error R6035.

See the examples in C Runtime Error R6035.

__security_init_cookie is a Microsoft extension to the standard C Runtime Library. For compatibility information,
see Compatibility.

Microsoft Security Response Center

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/security-init-cookie.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/gs-buffer-security-check
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/entry-entry-point-symbol
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/tool-errors/c-runtime-error-r6035
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/tool-errors/c-runtime-error-r6035
https://www.microsoft.com/msrc?rtc=1

_seh_filter_dll, _seh_filter_exe
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int __cdecl _seh_filter_dll(
 unsigned long _ExceptionNum,
 struct _EXCEPTION_POINTERS* _ExceptionPtr
);
int __cdecl _seh_filter_exe(
 unsigned long _ExceptionNum,
 struct _EXCEPTION_POINTERS* _ExceptionPtr
);

Parameters

Return Value

Remarks

EXCEPTION NUMBER (UNSIGNED LONG) SIGNAL NUMBER

STATUS_ACCESS_VIOLATION SIGSEGV

STATUS_ILLEGAL_INSTRUCTION SIGILL

STATUS_PRIVILEGED_INSTRUCTION SIGILL

STATUS_FLOAT_DENORMAL_OPERAND SIGFPE

STATUS_FLOAT_DIVIDE_BY_ZERO SIGFPE

STATUS_FLOAT_INEXACT_RESULT SIGFPE

STATUS_FLOAT_INVALID_OPERATION SIGFPE

STATUS_FLOAT_OVERFLOW SIGFPE

Identifies the exception and the related action to be taken.

_ExceptionNum
The identifier for the exception.

_ExceptionPtr
A pointer to the exception information.

An integer that indicates the action to be taken, based on the result of exception processing.

These methods are called by the exception-filter expression of the try-except Statement. The method consults a
constant internal table to identify the exception and determine the appropriate action, as shown here. The
exception numbers are defined in winnt.h and the signal numbers are defined in signal.h.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/seh-filter-dll-seh-filter-exe.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/try-except-statement

STATUS_FLOAT_STACK_CHECK SIGFPE

STATUS_FLOAT_UNDERFLOW SIGFPE

EXCEPTION NUMBER (UNSIGNED LONG) SIGNAL NUMBER

Requirements

See also

Header: corecrt_startup.h

Alphabetical Function Reference

_set_abort_behavior
10/31/2018 • 2 minutes to read • Edit Online

NOTE

Syntax
unsigned int _set_abort_behavior(
 unsigned int flags,
 unsigned int mask
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_set_abort_behavior <stdlib.h>

Example

Specifies the action to be taken when a program is abnormally terminated.

Do not use the abort function to shut down a Microsoft Store app, except in testing or debugging scenarios. Programmatic
or UI ways to close a Store app are not permitted according to the Microsoft Store policies. For more information, see UWP
app lifecycle.

flags
New value of the abort flags.

mask
Mask for the abort flags bits to set.

The old value of the flags.

There are two abort flags: _WRITE_ABORT_MSG and _CALL_REPORTFAULT. _WRITE_ABORT_MSG
determines whether a helpful text message is printed when a program is abnormally terminated. The message
states that the application has called the abort function. The default behavior is to print the message.
_CALL_REPORTFAULT, if set, specifies that a Watson crash dump is generated and reported when abort is
called. By default, crash dump reporting is enabled in non-DEBUG builds.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/set-abort-behavior.md
https://docs.microsoft.com/legal/windows/agreements/store-policies
https://docs.microsoft.com/windows/uwp/launch-resume/app-lifecycle

// crt_set_abort_behavior.c
// compile with: /TC
#include <stdlib.h>

int main()
{
 printf("Suppressing the abort message. If successful, this message"
 " will be the only output.\n");
 // Suppress the abort message
 _set_abort_behavior(0, _WRITE_ABORT_MSG);
 abort();
}

Suppressing the abort message. If successful, this message will be the only output.

See also
abort

setbuf
4/9/2019 • 2 minutes to read • Edit Online

Syntax
void setbuf(
 FILE *stream,
 char *buffer
);

Parameters

Remarks

Requirements
ROUTINE REQUIRED HEADER

setbuf <stdio.h>

Example

Controls stream buffering. This function is deprecated; use setvbuf instead.

stream
Pointer to FILE structure.

buffer
User-allocated buffer.

The setbuf function controls buffering for stream. The stream argument must refer to an open file that hasn't
been read or written. If the buffer argument is NULL, the stream is unbuffered. If not, the buffer must point to a
character array of length BUFSIZ , where BUFSIZ is the buffer size as defined in STDIO.H. The user-specified
buffer, instead of the default system-allocated buffer for the given stream, is used for I/O buffering. The stderr
stream is unbuffered by default, but you can use setbuf to assign buffers to stderr.

setbuf has been replaced by setvbuf, which is the preferred routine for new code. Unlike setvbuf, setbuf has no
way of reporting errors. setvbuf also lets you control both the buffering mode and the buffer size. setbuf exists
for compatibility with existing code.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/setbuf.md

// crt_setbuf.c
// compile with: /W3
// This program first opens files named DATA1 and
// DATA2. Then it uses setbuf to give DATA1 a user-assigned
// buffer and to change DATA2 so that it has no buffer.

#include <stdio.h>

int main(void)
{
 char buf[BUFSIZ];
 FILE *stream1, *stream2;

 fopen_s(&stream1, "data1", "a");
 fopen_s(&stream2, "data2", "w");

 if((stream1 != NULL) && (stream2 != NULL))
 {
 // "stream1" uses user-assigned buffer:
 setbuf(stream1, buf); // C4996
 // Note: setbuf is deprecated; consider using setvbuf instead
 printf("stream1 set to user-defined buffer at: %Fp\n", buf);

 // "stream2" is unbuffered
 setbuf(stream2, NULL); // C4996
 printf("stream2 buffering disabled\n");
 _fcloseall();
 }
}

stream1 set to user-defined buffer at: 0012FCDC
stream2 buffering disabled

See also
Stream I/O
fclose, _fcloseall
fflush
fopen, _wfopen
setvbuf

_set_controlfp
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void __cdecl _set_controlfp(
 unsigned int newControl,
 unsigned int mask
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER COMPATIBILITY

_set_controlfp <float.h> x86 processor only

See also

Sets the floating-point control word.

newControl
New control-word bit values.

mask
Mask for new control-word bits to set.

None.

The _set_controlfp function is similar to _control87, but it only sets the floating-point control word to
newControl. The bits in the values indicate the floating-point control state. The floating-point control state allows
the program to change the precision, rounding, and infinity modes in the floating-point math package. You can
also mask or unmask floating-point exceptions using _set_controlfp. For more information, see _control87,
_controlfp, __control87_2.

This function is deprecated when compiling with /clr (Common Language Runtime Compilation) because the
common language runtime only supports the default floating-point precision.

For more compatibility information, see Compatibility.

Floating-Point Support
_clear87, _clearfp
_status87, _statusfp, _statusfp2

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/set-controlfp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation

_set_doserrno
11/8/2018 • 2 minutes to read • Edit Online

Syntax
errno_t _set_doserrno(int error_value);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_set_doserrno <stdlib.h> <errno.h>

See also

Sets the value of the _doserrno global variable.

error_value
The new value of _doserrno.

Returns zero if successful.

Possible values are defined in Errno.h.

For more compatibility information, see Compatibility.

_get_doserrno
errno, _doserrno, _sys_errlist, and _sys_nerr

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/set-doserrno.md

_set_errno
11/8/2018 • 2 minutes to read • Edit Online

Syntax
errno_t _set_errno(int error_value);

Parameters

Return Value

Remarks

Example
// crt_set_errno.c
#include <stdio.h>
#include <errno.h>

int main()
{
 _set_errno(EILSEQ);
 perror("Oops");
}

Oops: Illegal byte sequence

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_set_errno <stdlib.h> <errno.h>

See also

Set the value of the errno global variable.

error_value
The new value of errno.

Returns zero if successful.

Possible values are defined in Errno.h. Also, see errno Constants.

For more compatibility information, see Compatibility.

_get_errno
errno, _doserrno, _sys_errlist, and _sys_nerr

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/set-errno.md

_set_error_mode
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _set_error_mode(
 int mode_val
);

Parameters

Return Value

Remarks

PARAMETER DESCRIPTION

_OUT_TO_DEFAULT Error sink is determined by __app_type.

_OUT_TO_STDERR Error sink is a standard error.

_OUT_TO_MSGBOX Error sink is a message box.

_REPORT_ERRMODE Report the current __error_mode value.

Requirements

Modifies __error_mode to determine a non-default location where the C runtime writes an error message for an
error that might end the program.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

mode_val
Destination of error messages.

Returns the old setting or -1 if an error occurs.

Controls the error output sink by setting the value of __error_mode. For example, you can direct output to a
standard error or use the MessageBox API.

The mode_val parameter can be set to one of the following values.

If a value other than those listed is passed in, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, _set_error_mode sets errno to EINVAL and returns -1.

When it's used with an assert, _set_error_mode displays the failed statement in the dialog box and gives you the
option of choosing the Ignore button so that you can continue to run the program.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/set-error-mode.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

ROUTINE REQUIRED HEADER

_set_error_mode <stdlib.h>

Example
// crt_set_error_mode.c
// compile with: /c
#include <stdlib.h>
#include <assert.h>

int main()
{
 _set_error_mode(_OUT_TO_STDERR);
 assert(2+2==5);
}

Assertion failed: 2+2==5, file crt_set_error_mode.c, line 8

This application has requested the Runtime to terminate it in an unusual way.
Please contact the application's support team for more information.

See also
assert Macro, _assert, _wassert

_set_fmode
11/8/2018 • 2 minutes to read • Edit Online

Syntax
errno_t _set_fmode(
 int mode
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_set_fmode <stdlib.h> <fcntl.h>, <errno.h>

Example

Sets the default file translation mode for file I/O operations.

mode
The file translation mode desired: _O_TEXT or _O_BINARY .

Returns zero if successful, an error code on failure. If mode is not _O_TEXT or _O_BINARY or _O_WTEXT, the
invalid parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue,
this function sets errno to EINVAL and returns EINVAL.

The function sets the _fmode global variable. This variable specifies the default file translation mode for the file
I/O operations _open and _pipe.

_O_TEXT and _O_BINARY are defined in Fcntl.h. EINVAL is defined in Errno.h.

For more compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/set-fmode.md

// crt_set_fmode.c
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h> /* for _O_TEXT and _O_BINARY */
#include <errno.h> /* for EINVAL */
#include <sys\stat.h> /* for _S_IWRITE */
#include <share.h> /* for _SH_DENYNO */

int main()
{
 int mode, fd, ret;
 errno_t err;
 int buf[12] = { 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
 75, 76 };
 char * filename = "fmode.out";

 err = _get_fmode(&mode);
 if (err == EINVAL)
 {
 printf("Invalid parameter: mode\n");
 return 1;
 }
 else
 printf("Default Mode is %s\n", mode == _O_TEXT ? "text" :
 "binary");

 err = _set_fmode(_O_BINARY);
 if (err == EINVAL)
 {
 printf("Invalid mode.\n");
 return 1;
 }

 if (_sopen_s(&fd, filename, _O_RDWR | _O_CREAT, _SH_DENYNO, _S_IWRITE | _S_IREAD) != 0)
 {
 printf("Error opening the file %s\n", filename);
 return 1;
 }

 if (ret = _write(fd, buf, 12*sizeof(int)) < 12*sizeof(int))
 {
 printf("Problem writing to the file %s.\n", filename);
 printf("Number of bytes written: %d\n", ret);
 }

 if (_close(fd) != 0)
 {
 printf("Error closing the file %s. Error code %d.\n",
 filename, errno);
 }

 system("type fmode.out");
}

Default Mode is binary
A B C D E F G H I J K L

See also
_fmode
_get_fmode
_setmode
Text and Binary Mode File I/O

_set_invalid_parameter_handler,
_set_thread_local_invalid_parameter_handler
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_invalid_parameter_handler _set_invalid_parameter_handler(
 _invalid_parameter_handler pNew
);
_invalid_parameter_handler _set_thread_local_invalid_parameter_handler(
 _invalid_parameter_handler pNew
);

Parameters

Return Value

Remarks

void _invalid_parameter(
 const wchar_t * expression,
 const wchar_t * function,
 const wchar_t * file,
 unsigned int line,
 uintptr_t pReserved
);

Sets a function to be called when the CRT detects an invalid argument.

pNew
The function pointer to the new invalid parameter handler.

A pointer to the invalid parameter handler before the call.

Many C runtime functions check the validity of arguments passed to them. If an invalid argument is passed, the
function can set the errno error number or return an error code. In such cases, the invalid parameter handler is
also called. The C runtime supplies a default global invalid parameter handler that terminates the program and
displays a runtime error message. You can use the _set_invalid_parameter_handler to set your own function
as the global invalid parameter handler. The C runtime also supports a thread-local invalid parameter handler. If
a thread-local parameter handler is set in a thread by using _set_thread_local_invalid_parameter_handler,
the C runtime functions called from the thread use that handler instead of the global handler. Only one function
can be specified as the global invalid argument handler at a time. Only one function can be specified as the
thread-local invalid argument handler per thread, but different threads can have different thread-local handlers.
This allows you to change the handler used in one part of your code without affecting the behavior of other
threads.

When the runtime calls the invalid parameter function, it usually means that a nonrecoverable error occurred.
The invalid parameter handler function you supply should save any data it can and then abort. It should not
return control to the main function unless you are confident that the error is recoverable.

The invalid parameter handler function must have the following prototype:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/set-invalid-parameter-handler-set-thread-local-invalid-parameter-handler.md

Requirements
ROUTINE REQUIRED HEADER

_set_invalid_parameter_handler,
_set_thread_local_invalid_parameter_handler

C: <stdlib.h>

C++: <cstdlib> or <stdlib.h>

Example

// crt_set_invalid_parameter_handler.c
// compile with: /Zi /MTd
#include <stdio.h>
#include <stdlib.h>
#include <crtdbg.h> // For _CrtSetReportMode

void myInvalidParameterHandler(const wchar_t* expression,
 const wchar_t* function,
 const wchar_t* file,
 unsigned int line,
 uintptr_t pReserved)
{
 wprintf(L"Invalid parameter detected in function %s."
 L" File: %s Line: %d\n", function, file, line);
 wprintf(L"Expression: %s\n", expression);
 abort();
}

int main()
{
 char* formatString;

 _invalid_parameter_handler oldHandler, newHandler;
 newHandler = myInvalidParameterHandler;
 oldHandler = _set_invalid_parameter_handler(newHandler);

 // Disable the message box for assertions.
 _CrtSetReportMode(_CRT_ASSERT, 0);

 // Call printf_s with invalid parameters.

 formatString = NULL;
 printf(formatString);
}

The expression argument is a wide string representation of the argument expression that raised the error. The
function argument is the name of the CRT function that received the invalid argument. The file argument is the
name of the CRT source file that contains the function. The line argument is the line number in that file. The last
argument is reserved. The parameters all have the value NULL unless a debug version of the CRT library is
used.

The _set_invalid_parameter_handler and _set_thread_local_invalid_parameter_handler functions are
Microsoft specific. For compatibility information, see Compatibility.

In the following example, an invalid parameter error handler is used to print the function that received the
invalid parameter and the file and line in CRT sources. When the debug CRT library is used, invalid parameter
errors also raise an assertion, which is disabled in this example using _CrtSetReportMode.

Invalid parameter detected in function common_vfprintf. File:
minkernel\crts\ucrt\src\appcrt\stdio\output.cpp Line: 32
Expression: format != nullptr

See also
_get_invalid_parameter_handler, _get_thread_local_invalid_parameter_handler
Security-Enhanced Versions of CRT Functions
errno, _doserrno, _sys_errlist, and _sys_nerr

setjmp
3/1/2019 • 2 minutes to read • Edit Online

Syntax
int setjmp(
 jmp_buf env
);

Parameters

Return Value

Remarks

NOTE

Saves the current state of the program.

env
Variable in which environment is stored.

Returns 0 after saving the stack environment. If setjmp returns as a result of a longjmp call, it returns the value
argument of longjmp , or if the value argument of longjmp is 0, setjmp returns 1. There is no error return.

The setjmp function saves a stack environment, which you can subsequently restore, using longjmp . When used
together, setjmp and longjmp provide a way to execute a non-local goto. They are typically used to pass
execution control to error-handling or recovery code in a previously called routine without using the normal
calling or return conventions.

A call to setjmp saves the current stack environment in env. A subsequent call to longjmp restores the saved
environment and returns control to the point just after the corresponding setjmp call. All variables (except
register variables) accessible to the routine receiving control contain the values they had when longjmp was
called.

It is not possible to use setjmp to jump from native to managed code.

Microsoft Specific

In Microsoft C++ code on Windows, longjmp uses the same stack-unwinding semantics as exception-handling
code. It is safe to use in the same places that C++ exceptions can be raised. However, this usage is not portable,
and comes with some important caveats. For details, see longjmp.

END Microsoft Specific

In portable C++ code, you can't assume setjmp and longjmp support C++ object semantics. Specifically, a setjmp /
longjmp call pair has undefined behavior if replacing the setjmp and longjmp by catch and throw would invoke any

non-trivial destructors for any automatic objects. In C++ programs, we recommend you use the C++ exception-handling
mechanism.

For more information, see Using setjmp and longjmp.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/setjmp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/using-setjmp-longjmp

Requirements
ROUTINE REQUIRED HEADER

setjmp <setjmp.h>

Example

See also

For additional compatibility information, see Compatibility.

See the example for _fpreset.

Process and Environment Control
longjmp

setlocale, _wsetlocale
3/22/2019 • 8 minutes to read • Edit Online

Syntax
char *setlocale(
 int category,
 const char *locale
);
wchar_t *_wsetlocale(
 int category,
 const wchar_t *locale
);

Parameters

Return Value

setlocale(LC_ALL, "en-US");

en-US

Remarks

Sets or retrieves the run-time locale.

category
Category affected by locale.

locale
Locale specifier.

If a valid locale and category are given, returns a pointer to the string associated with the
specified locale and category. If the locale or category is not valid, returns a null pointer
and the current locale settings of the program are not changed.

For example, the call

sets all categories, returning only the string

You can copy the string returned by setlocale to restore that part of the program's locale
information. Global or thread local storage is used for the string returned by setlocale.
Later calls to setlocale overwrite the string, which invalidates string pointers returned by
earlier calls.

Use the setlocale function to set, change, or query some or all of the current program
locale information specified by locale and category. locale refers to the locality
(country/region and language) for which you can customize certain aspects of your
program. Some locale-dependent categories include the formatting of dates and the
display format for monetary values. If you set locale to the default string for a language
that has multiple forms supported on your computer, you should check the setlocale

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/setlocale-wsetlocale.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS
NOT DEFINED _MBCS DEFINED _UNICODE DEFINED

_tsetlocale setlocale setlocale _wsetlocale

CATEGORY FLAG AFFECTS

LC_ALL All categories, as listed below.

LC_COLLATE The strcoll, _stricoll, wcscoll, _wcsicoll,
strxfrm, _strncoll, _strnicoll, _wcsncoll,
_wcsnicoll, and wcsxfrm functions.

LC_CTYPE The character-handling functions (except isdigit,
isxdigit, mbstowcs, and mbtowc, which are
unaffected).

LC_MONETARY Monetary-formatting information returned by
the localeconv function.

LC_NUMERIC Decimal-point character for the formatted
output routines (such as printf), for the data-
conversion routines, and for the non-monetary
formatting information returned by localeconv.
In addition to the decimal-point character,
LC_NUMERIC sets the thousands separator and
the grouping control string returned by
localeconv.

LC_TIME The strftime and wcsftime functions.

return value to see which language is in effect. For example, if you set locale to "chinese"
the return value could be either "chinese-simplified" or "chinese-traditional".

_wsetlocale is a wide-character version of setlocale; the locale argument and return
value of _wsetlocale are wide-character strings. _wsetlocale and setlocale behave
identically otherwise.

The category argument specifies the parts of a program's locale information that are
affected. The macros used for category and the parts of the program they affect are as
follows:

This function validates the category parameter. If the category parameter is not one of the
values given in the previous table, the invalid parameter handler is invoked, as described in
Parameter Validation. If execution is allowed to continue, the function sets errno to
EINVAL and returns NULL.

The locale argument is a pointer to a string that specifies the locale. For information about
the format of the locale argument, see Locale Names, Languages, and Country/Region
Strings. If locale points to an empty string, the locale is the implementation-defined native
environment. A value of C specifies the minimal ANSI conforming environment for C
translation. The C locale assumes that all char data types are 1 byte and that their value is
always less than 256.

At program startup, the equivalent of the following statement is executed:

// Set all categories and return "en-US"
setlocale(LC_ALL, "en-US");
// Set only the LC_MONETARY category and return "fr-FR"
setlocale(LC_MONETARY, "fr-FR");
printf("%s\n", setlocale(LC_ALL, NULL));

LC_COLLATE=en-US;LC_CTYPE=en-US;LC_MONETARY=fr-FR;LC_NUMERIC=en-US;LC_TIME=en-US

setlocale(LC_ALL, "C");

The locale argument can take a locale name, a language string, a language string and
country/region code, a code page, or a language string, country/region code, and code
page. The set of available locale names, languages, country/region codes, and code pages
includes all those supported by the Windows NLS API except code pages that require
more than two bytes per character, such as UTF-7 and UTF-8. If you provide a code page
value of UTF-7 or UTF-8, setlocale will fail, returning NULL. The set of locale names
supported by setlocale are described in Locale Names, Languages, and Country/Region
Strings. The set of language and country/region strings supported by setlocale are listed
in Language Strings and Country/Region Strings. We recommend the locale name form
for performance and for maintainability of locale strings embedded in code or serialized to
storage. The locale name strings are less likely to be changed by an operating system
update than the language and country/region name form.

A null pointer that's passed as the locale argument tells setlocale to query instead of to
set the international environment. If the locale argument is a null pointer, the program's
current locale setting is not changed. Instead, setlocale returns a pointer to the string
that's associated with the category of the thread's current locale. If the category argument
is LC_ALL, the function returns a string that indicates the current setting of each category,
separated by semicolons. For example, the sequence of calls

returns

which is the string that's associated with the LC_ALL category.

The following examples pertain to the LC_ALL category. Either of the strings ".OCP" and
".ACP" can be used instead of a code page number to specify use of the user-default OEM
code page and user-default ANSI code page, respectively.

setlocale(LC_ALL, "");

Sets the locale to the default, which is the user-default ANSI code page obtained
from the operating system.

setlocale(LC_ALL, ".OCP");

Explicitly sets the locale to the current OEM code page obtained from the operating
system.

setlocale(LC_ALL, ".ACP");

Sets the locale to the ANSI code page obtained from the operating system.

setlocale(LC_ALL, "<localename>");

Sets the locale to the locale name that's indicated by <localename>.

setlocale(LC_ALL, "<language>_<country>");

Requirements

Sets the locale to the language and country/region indicated by <language> and
<country>, together with the default code page obtained from the host operating
system.

setlocale(LC_ALL, "<language>_<country>.<code_page>");

Sets the locale to the language, country/region, and code page indicated by the
<language>, <country>, and <code_page> strings. You can use various
combinations of language, country/region, and code page. For example, this call
sets the locale to French Canada with code page 1252:

setlocale(LC_ALL, "French_Canada.1252");

This call sets the locale to French Canada with the default ANSI code page:

setlocale(LC_ALL, "French_Canada.ACP");

This call sets the locale to French Canada with the default OEM code page:

setlocale(LC_ALL, "French_Canada.OCP");

setlocale(LC_ALL, "<language>");

Sets the locale to the language that's indicated by <language>, and uses the default
country/region for the specified language and the user-default ANSI code page for
that country/region as obtained from the host operating system. For example, the
following calls to setlocale are functionally equivalent:

setlocale(LC_ALL, "en-US");

setlocale(LC_ALL, "English");

setlocale(LC_ALL, "English_United States.1252");

We recommend the first form for performance and maintainability.

setlocale(LC_ALL, ".<code_page>");

Sets the code page to the value indicated by <code_page>, together with the
default country/region and language (as defined by the host operating system) for
the specified code page.

The category must be either LC_ALL or LC_CTYPE to effect a change of code page. For
example, if the default country/region and language of the host operating system are
"United States" and "English," the following two calls to setlocale are functionally
equivalent:

setlocale(LC_ALL, ".1252");

setlocale(LC_ALL, "English_United States.1252");

For more information, see the setlocale pragma directive in the C/C++ Preprocessor
Reference.

The function _configthreadlocale is used to control whether setlocale affects the locale of
all threads in a program or only the locale of the calling thread.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/setlocale
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/c-cpp-preprocessor-reference

ROUTINE REQUIRED HEADER

setlocale <locale.h>

_wsetlocale <locale.h> or <wchar.h>

Example
// crt_setlocale.c
//
// This program demonstrates the use of setlocale when
// using two independent threads.
//

#include <locale.h>
#include <process.h>
#include <windows.h>
#include <stdio.h>
#include <time.h>

#define BUFF_SIZE 100

// Retrieve the date in the current
// locale's format.
int get_date(unsigned char* str)
{
 __time64_t ltime;
 struct tm thetime;

 // Retrieve the current time
 _time64(<ime);
 _gmtime64_s(&thetime, <ime);

 // Format the current time structure into a string
 // "%#x" is the long date representation in the
 // current locale
 if (!strftime((char *)str, BUFF_SIZE, "%#x",
 (const struct tm *)&thetime))
 {
 printf("strftime failed!\n");
 return -1;
 }
 return 0;
}

// This thread sets its locale to the argument
// and prints the date.
uintptr_t __stdcall SecondThreadFunc(void* pArguments)
{
 unsigned char str[BUFF_SIZE];
 char * locale = (char *)pArguments;

 // Set the thread locale
 printf("The thread locale is now set to %s.\n",
 setlocale(LC_ALL, locale));

 // Retrieve the date string from the helper function
 if (get_date(str) == 0)
 {
 printf("The date in %s locale is: '%s'\n", locale, str);
 }

 _endthreadex(0);

For additional compatibility information, see Compatibility.

 _endthreadex(0);
 return 0;
}

// The main thread sets the locale to English
// and then spawns a second thread (above) and prints the date.
int main()
{
 HANDLE hThread;
 unsigned threadID;
 unsigned char str[BUFF_SIZE];

 // Enable per-thread locale causes all subsequent locale
 // setting changes in this thread to only affect this thread.
 _configthreadlocale(_ENABLE_PER_THREAD_LOCALE);

 // Set the locale of the main thread to US English.
 printf("The thread locale is now set to %s.\n",
 setlocale(LC_ALL, "en-US"));

 // Create the second thread with a German locale.
 // Our thread function takes an argument of the locale to use.
 hThread = (HANDLE)_beginthreadex(NULL, 0, &SecondThreadFunc,
 "de-DE", 0, &threadID);

 if (get_date(str) == 0)
 {
 // Retrieve the date string from the helper function
 printf("The date in en-US locale is: '%s'\n\n", str);
 }

 // Wait for the created thread to finish.
 WaitForSingleObject(hThread, INFINITE);

 // Destroy the thread object.
 CloseHandle(hThread);
}

The thread locale is now set to en-US.
The time in en-US locale is: 'Wednesday, May 12, 2004'

The thread locale is now set to de-DE.
The time in de-DE locale is: 'Mittwoch, 12. Mai 2004'

See also
Locale Names, Languages, and Country/Region Strings
_configthreadlocale
_create_locale, _wcreate_locale
Locale
localeconv
_mbclen, mblen, _mblen_l
strlen, wcslen, _mbslen, _mbslen_l, _mbstrlen, _mbstrlen_l
mbstowcs, _mbstowcs_l
mbtowc, _mbtowc_l
_setmbcp
strcoll Functions
strftime, wcsftime, _strftime_l, _wcsftime_l
strxfrm, wcsxfrm, _strxfrm_l, _wcsxfrm_l
wcstombs, _wcstombs_l
wctomb, _wctomb_l

_setmaxstdio
5/23/2019 • 2 minutes to read • Edit Online

Syntax
int _setmaxstdio(
 int new_max
);

Parameters

Return Value

Remarks

NOTE

Requirements
ROUTINE REQUIRED HEADER

_setmaxstdio <stdio.h>

Sets a maximum for the number of simultaneously open files at the stream I/O level.

new_max
New maximum for the number of simultaneously open files at the stream I/O level.

Returns new_max if successful; -1 otherwise.

If new_max is less than _IOB_ENTRIES, or greater than the maximum number of handles available in the
operating system, the invalid parameter handler is invoked, as described in Parameter Validation. If execution is
allowed to continue, this function returns -1 and sets errno to EINVAL.

For information about these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The _setmaxstdio function changes the maximum value for the number of files that may be open simultaneously
at the stream I/O level.

C run-time I/O now supports up to 8,192 files open simultaneously at the low I/O level. This level includes files
opened and accessed using the _open, _read, and _write family of I/O functions. By default, up to 512 files can
be open simultaneously at the stream I/O level. This level includes files opened and accessed using the fopen,
fgetc, and fputc family of functions. The limit of 512 open files at the stream I/O level can be increased to a
maximum of 8,192 by use of the _setmaxstdio function.

Because stream I/O-level functions, such as fopen, are built on top of the low I/O-level functions, the maximum
of 8,192 is a hard upper limit for the number of simultaneously open files accessed through the C run-time
library.

This upper limit might be beyond what's supported by a particular Win32 platform and configuration.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/setmaxstdio.md

Example

See also

For more compatibility information, see Compatibility.

See _getmaxstdio for an example of using _setmaxstdio.

Stream I/O

_setmbcp
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _setmbcp(
 int codepage
);

Parameters

Return Value

Remarks

_exec functions _mktemp _stat

_fullpath _spawn functions _tempnam

_makepath _splitpath tmpnam

Sets a new multibyte code page.

codepage
New code page setting for locale-independent multibyte routines.

Returns 0 if the code page is set successfully. If an invalid code page value is supplied for codepage, returns -1
and the code page setting is unchanged. Sets errno to EINVAL if a memory allocation failure occurs.

The _setmbcp function specifies a new multibyte code page. By default, the run-time system automatically
sets the multibyte code page to the system-default ANSI code page. The multibyte code page setting affects all
multibyte routines that are not locale dependent. However, it is possible to instruct _setmbcp to use the code
page defined for the current locale (see the following list of manifest constants and associated behavior
results). For a list of the multibyte routines that are dependent on the locale code page rather than the
multibyte code page, see Interpretation of Multibyte-Character Sequences.

The multibyte code page also affects multibyte-character processing by the following run-time library
routines:

In addition, all run-time library routines that receive multibyte-character argv or envp program arguments as
parameters (such as the _exec and _spawn families) process these strings according to the multibyte code
page. Therefore, these routines are also affected by a call to _setmbcp that changes the multibyte code page.

The codepage argument can be set to any of the following values:

_MB_CP_ANSI Use ANSI code page obtained from operating system at program startup.

_MB_CP_LOCALE Use the current locale's code page obtained from a previous call to setlocale.

_MB_CP_OEM Use OEM code page obtained from operating system at program startup.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/setmbcp.md

Requirements
ROUTINE REQUIRED HEADER

_setmbcp <mbctype.h>

See also

_MB_CP_SBCS Use single-byte code page. When the code page is set to _MB_CP_SBCS, a routine
such as _ismbblead always returns false.

Any other valid code page value, regardless of whether the value is an ANSI, OEM, or other operating-
system-supported code page (except UTF-7 and UTF-8, which are not supported).

For more compatibility information, see Compatibility.

_getmbcp
setlocale, _wsetlocale

setmode
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _setmode instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-setmode.md

_setmode
1/4/2019 • 2 minutes to read • Edit Online

Syntax
int _setmode (
 int fd,
 int mode
);

Parameters

Return Value

Remarks

C a u t i o n

C a u t i o n

Sets the file translation mode.

fd
File descriptor.

mode
New translation mode.

If successful, returns the previous translation mode.

If invalid parameters are passed to this function, the invalid-parameter handler is invoked, as described in
Parameter Validation. If execution is allowed to continue, this function returns -1 and sets errno to either
EBADF, which indicates an invalid file descriptor, or EINVAL, which indicates an invalid mode argument.

For more information about these and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The _setmode function sets to mode the translation mode of the file given by fd. Passing _O_TEXT as mode
sets text (that is, translated) mode. Carriage return-line feed (CR-LF) combinations are translated into a single
line feed character on input. Line feed characters are translated into CR-LF combinations on output. Passing
_O_BINARY sets binary (untranslated) mode, in which these translations are suppressed.

You can also pass _O_U16TEXT, _O_U8TEXT, or _O_WTEXT to enable Unicode mode, as demonstrated in
the second example later in this document.

Unicode mode is for wide print functions (for example, wprintf) and is not supported for narrow print
functions. Use of a narrow print function on a Unicode mode stream triggers an assert.

_setmode is typically used to modify the default translation mode of stdin and stdout, but you can use it on
any file. If you apply _setmode to the file descriptor for a stream, call _setmode before you perform any input
or output operations on the stream.

If you write data to a file stream, explicitly flush the code by using fflush before you use _setmode to change
the mode. If you do not flush the code, you might get unexpected behavior. If you have not written data to the
stream, you do not have to flush the code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/setmode.md

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADERS

_setmode <io.h> <fcntl.h>

Example
// crt_setmode.c
// This program uses _setmode to change
// stdin from text mode to binary mode.

#include <stdio.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 int result;

 // Set "stdin" to have binary mode:
 result = _setmode(_fileno(stdin), _O_BINARY);
 if(result == -1)
 perror("Cannot set mode");
 else
 printf("'stdin' successfully changed to binary mode\n");
}

'stdin' successfully changed to binary mode

Example
// crt_setmodeunicode.c
// This program uses _setmode to change
// stdout to Unicode. Cyrillic and Ideographic
// characters will appear on the console (if
// your console font supports those character sets).

#include <fcntl.h>
#include <io.h>
#include <stdio.h>

int main(void) {
 _setmode(_fileno(stdout), _O_U16TEXT);
 wprintf(L"\x043a\x043e\x0448\x043a\x0430 \x65e5\x672c\x56fd\n");
 return 0;
}

See also

For more compatibility information, see Compatibility.

File Handling
_creat, _wcreat
fopen, _wfopen
_open, _wopen
_set_fmode

_set_new_handler
10/31/2018 • 3 minutes to read • Edit Online

Syntax
_PNH _set_new_handler(_PNH pNewHandler);

Parameters

Return Value

Remarks

// set_new_handler1.cpp
#include <new.h>

int handle_program_memory_depletion(size_t)
{
 // Your code
}

int main(void)
{
 _set_new_handler(handle_program_memory_depletion);
 int *pi = new int[BIG_NUMBER];
}

Transfers control to your error-handling mechanism if the new operator fails to allocate memory.

pNewHandler
Pointer to the application-supplied memory handling function. An argument of 0 causes the new handler to be
removed.

Returns a pointer to the previous exception handling function registered by _set_new_handler, so that the
previous function can be restored later. If no previous function has been set, the return value can be used to
restore the default behavior ; this value can be NULL.

The C++ _set_new_handler function specifies an exception-handling function that gains control if the new
operator fails to allocate memory. If new fails, the run-time system automatically calls the exception-handling
function that was passed as an argument to _set_new_handler. _PNH, defined in New.h, is a pointer to a
function that returns type int and takes an argument of type size_t. Use size_t to specify the amount of space
to be allocated.

There is no default handler.

_set_new_handler is essentially a garbage-collection scheme. The run-time system retries allocation each time
your function returns a nonzero value and fails if your function returns 0.

An occurrence of the _set_new_handler function in a program registers the exception-handling function
specified in the argument list with the run-time system:

You can save the function address that was last passed to the _set_new_handler function and reinstate it later :

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/set-new-handler.md

 _PNH old_handler = _set_new_handler(my_handler);
 // Code that requires my_handler
 // . . .
 _set_new_handler(old_handler)
 // Code that requires old_handler
 // . . .

_set_new_mode(1);

Requirements
ROUTINE REQUIRED HEADER

_set_new_handler <new.h>

Example

The C++ _set_new_mode function sets the new handler mode for malloc. The new handler mode indicates
whether, on failure, malloc is to call the new handler routine as set by _set_new_handler. By default, malloc
does not call the new handler routine on failure to allocate memory. You can override this default behavior so
that, when malloc fails to allocate memory, malloc calls the new handler routine in the same way that the new
operator does when it fails for the same reason. To override the default, call:

early in your program or link with Newmode.obj.

If a user-defined operator new is provided, the new handler functions are not automatically called on failure.

For more information, see new and delete in the C++ Language Reference.

There is a single _set_new_handler handler for all dynamically linked DLLs or executables; even if you call
_set_new_handler your handler might be replaced by another or that you are replacing a handler set by
another DLL or executable.

For more compatibility information, see Compatibility.

In this example, when the allocation fails, control is transferred to MyNewHandler. The argument passed to
MyNewHandler is the number of bytes requested. The value returned from MyNewHandler is a flag indicating
whether allocation should be retried: a nonzero value indicates that allocation should be retried, and a zero
value indicates that allocation has failed.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-operator-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/delete-operator-cpp

// crt_set_new_handler.cpp
// compile with: /c
#include <stdio.h>
#include <new.h>
#define BIG_NUMBER 0x1fffffff

int coalesced = 0;

int CoalesceHeap()
{
 coalesced = 1; // Flag RecurseAlloc to stop
 // do some work to free memory
 return 0;
}
// Define a function to be called if new fails to allocate memory.
int MyNewHandler(size_t size)
{
 printf("Allocation failed. Coalescing heap.\n");

 // Call a function to recover some heap space.
 return CoalesceHeap();
}

int RecurseAlloc() {
 int *pi = new int[BIG_NUMBER];
 if (!coalesced)
 RecurseAlloc();
 return 0;
}

int main()
{
 // Set the failure handler for new to be MyNewHandler.
 _set_new_handler(MyNewHandler);
 RecurseAlloc();
}

Allocation failed. Coalescing heap.

This application has requested the Runtime to terminate it in an unusual way.
Please contact the application's support team for more information.

See also
Memory Allocation
calloc
free
realloc

_set_new_mode
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _set_new_mode(int newhandlermode);

Parameters

Return Value

Remarks

_set_new_mode(1);

Requirements
ROUTINE REQUIRED HEADER

_set_new_mode <new.h>

See also

Sets a new handler mode for malloc.

newhandlermode
New handler mode for malloc; valid value is 0 or 1.

Returns the previous handler mode set for malloc. A return value of 1 indicates that, on failure to allocate
memory, malloc previously called the new handler routine; a return value of 0 indicates that it did not. If the
newhandlermode argument does not equal 0 or 1, returns -1.

The C++ _set_new_mode function sets the new handler mode for malloc. The new handler mode indicates
whether, on failure, malloc is to call the new handler routine as set by _set_new_handler. By default, malloc
does not call the new handler routine on failure to allocate memory. You can override this default behavior so
that, when malloc fails to allocate memory, malloc calls the new handler routine in the same way that the new
operator does when it fails for the same reason. For more information, see the new and delete operators in the
C++ Language Reference. To override the default, call:

early in your program or link with Newmode.obj (see Link Options).

This function validates its parameter. If newhandlermode is anything other than 0 or 1, the function invokes the
invalid parameter handler, as described in Parameter Validation. If execution is allowed to continue,
_set_new_mode returns -1 and sets errno to EINVAL .

For more compatibility information, see Compatibility.

Memory Allocation
calloc

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/set-new-mode.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-operator-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/delete-operator-cpp

free
realloc
_query_new_handler
_query_new_mode

_set_printf_count_output
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _set_printf_count_output(
 int enable
);

Parameters

Property Value/Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_set_printf_count_output <stdio.h>

Example

Enable or disable support of the %n format in printf, _printf_l, wprintf, _wprintf_l-family functions.

enable
A non-zero value to enable %n support, 0 to disable %n support.

The state of %n support before calling this function: non-zero if %n support was enabled, 0 if it was disabled.

Because of security reasons, support for the %n format specifier is disabled by default in printf and all its
variants. If %n is encountered in a printf format specification, the default behavior is to invoke the invalid
parameter handler as described in Parameter Validation. Calling _set_printf_count_output with a non-zero
argument will cause printf-family functions to interpret %n as described in Format Specification Syntax: printf
and wprintf Functions.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/set-printf-count-output.md

// crt_set_printf_count_output.c
#include <stdio.h>

int main()
{
 int e;
 int i;
 e = _set_printf_count_output(1);
 printf("%%n support was %sabled.\n",
 e ? "en" : "dis");
 printf("%%n support is now %sabled.\n",
 _get_printf_count_output() ? "en" : "dis");
 printf("12345%n6789\n", &i); // %n format should set i to 5
 printf("i = %d\n", i);
}

%n support was disabled.
%n support is now enabled.
123456789
i = 5

See also
_get_printf_count_output

_set_se_translator
3/12/2019 • 4 minutes to read • Edit Online

Syntax
_se_translator_function _set_se_translator(
 _se_translator_function seTransFunction
);

Parameters

Return Value

Remarks

Set a per-thread callback function to translate Win32 exceptions (C structured exceptions) into C++ typed
exceptions.

seTransFunction
Pointer to a C structured exception translator function that you write.

Returns a pointer to the previous translator function registered by _set_se_translator, so that the previous
function can be restored later. If no previous function has been set, the return value can be used to restore the
default behavior ; this value can be nullptr.

The _set_se_translator function provides a way to handle Win32 exceptions (C structured exceptions) as C++
typed exceptions. To allow each C exception to be handled by a C++ catch handler, first define a C exception
wrapper class that can be used, or derived from, to attribute a specific class type to a C exception. To use this
class, install a custom C exception translator function that is called by the internal exception-handling mechanism
each time a C exception is raised. Within your translator function, you can throw any typed exception that can be
caught by a matching C++ catch handler.

You must use /EHa when using _set_se_translator.

To specify a custom translation function, call _set_se_translator using the name of your translation function as its
argument. The translator function that you write is called once for each function invocation on the stack that has
try blocks. There is no default translator function.

Your translator function should do no more than throw a C++ typed exception. If it does anything in addition to
throwing (such as writing to a log file, for example) your program might not behave as expected, because the
number of times the translator function is invoked is platform-dependent.

In a multithreaded environment, translator functions are maintained separately for each thread. Each new thread
needs to install its own translator function. Thus, each thread is in charge of its own translation handling.
_set_se_translator is specific to one thread; another DLL can install a different translation function.

The seTransFunction function that you write must be a native-compiled function (not compiled with /clr). It must
take an unsigned integer and a pointer to a Win32 _EXCEPTION_POINTERS structure as arguments. The
arguments are the return values of calls to the Win32 API GetExceptionCode and GetExceptionInformation
functions, respectively.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/set-se-translator.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/eh-exception-handling-model

typedef void (__cdecl *_se_translator_function)(unsigned int, struct _EXCEPTION_POINTERS*);

Requirements
ROUTINE REQUIRED HEADER

_set_se_translator <eh.h>

Example

For _set_se_translator, there are implications when dynamically linking to the CRT; another DLL in the process
might call _set_se_translator and replace your handler with its own.

When using _set_se_translator from managed code (code compiled with /clr) or mixed native and managed
code, be aware that the translator affects exceptions generated in native code only. Any managed exceptions
generated in managed code (such as when raising System::Exception) are not routed through the translator
function. Exceptions raised in managed code using the Win32 function RaiseException or caused by a system
exception like a divide by zero exception are routed through the translator.

For more compatibility information, see Compatibility.

// crt_settrans.cpp
// compile with: cl /W4 /EHa crt_settrans.cpp
#include <stdio.h>
#include <windows.h>
#include <eh.h>
#include <exception>

class SE_Exception : public std::exception
{
private:
 unsigned int nSE;
public:
 SE_Exception() : nSE{ 0 } {}
 SE_Exception(unsigned int n) : nSE{ n } {}
 unsigned int getSeNumber() { return nSE; }
};

void SEFunc()
{
 __try
 {
 printf("In __try, about to force exception\n");
 int x = 5;
 int y = 0;
 int *p = &y;
 *p = x / *p;
 }
 __finally
 {
 printf("In __finally\n");
 }
}

void trans_func(unsigned int u, EXCEPTION_POINTERS*)
{
 throw SE_Exception(u);
}

int main()
{
 auto original = _set_se_translator(trans_func);
 try
 {
 SEFunc();
 }
 catch(SE_Exception& e)
 {
 printf("Caught a __try exception, error %8.8x.\n", e.getSeNumber());
 }
 _set_se_translator(original);
}

In __try, about to force exception
In __finally
Caught a __try exception, error c0000094.

Example
Although the functionality provided by _set_se_translator is not available in managed code, it is possible to use
this mapping in native code, even if that native code is in a compilation under the /clr switch, as long as the
native code is indicated using #pragma unmanaged . If a structured exception is being thrown in managed code that
is to be mapped, the code that generates and handles the exception must be marked #pragma unmanaged . The

// crt_set_se_translator_clr.cpp
// compile with: cl /W4 /clr crt_set_se_translator_clr.cpp
#include <windows.h>
#include <eh.h>
#include <assert.h>
#include <stdio.h>
#include <exception>

int thrower_func(int i) {
 int y = 0;
 int *p = &y;
 *p = i / *p;
 return 0;
}

class SE_Exception : public std::exception {
private:
 unsigned int nSE;
public:
 SE_Exception() : nSE{ 0 } {}
 SE_Exception(unsigned int n) : nSE{ n } {}
 unsigned int getSeNumber() { return nSE; }
};

#pragma unmanaged
void my_trans_func(unsigned int u, PEXCEPTION_POINTERS)
{
 throw SE_Exception(u);
}

void DoTest()
{
 try
 {
 thrower_func(10);
 }
 catch(SE_Exception& e)
 {
 printf("Caught SE_Exception, error %8.8x\n", e.getSeNumber());
 }
 catch(...)
 {
 printf("Caught unexpected SEH exception.\n");
 }
}
#pragma managed

int main() {
 auto original = _set_se_translator(my_trans_func);
 DoTest();
 _set_se_translator(original);
}

Caught SE_Exception, error c0000094

See also

following code shows a possible use. For more information, see Pragma Directives and the __Pragma Keyword.

Exception Handling Routines
set_terminate
set_unexpected
terminate

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/pragma-directives-and-the-pragma-keyword

unexpected

_set_SSE2_enable
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _set_SSE2_enable(
 int flag
);

Parameters

Return Value

Remarks

NOTE

Enables or disables the use of Streaming SIMD Extensions 2 (SSE2) instructions in CRT math routines. (This
function is not available on x64 architectures because SSE2 is enabled by default.)

flag
1 to enable the SSE2 implementation; 0 to disable the SSE2 implementation. By default, SSE2 implementation is
enabled on processors that support it.

Nonzero if SSE2 implementation is enabled; zero if SSE2 implementation is disabled.

The following functions have SSE2 implementations that can be enabled by using _set_SSE2_enable:

atan

ceil

exp

floor

log

log10

modf

pow

The SSE2 implementations of these functions might give slightly different answers than the default
implementations, because SSE2 intermediate values are 64-bit floating-point quantities but the default
implementation intermediate values are 80-bit floating-point quantities.

If you use the /Oi (Generate Intrinsic Functions) compiler option to compile the project, it may appear that
_set_SSE2_enable has no effect. The /Oi compiler option gives the compiler the authority to use intrinsics to replace CRT
calls; this behavior overrides the effect of _set_SSE2_enable. If you want to guarantee that /Oi does not override
_set_SSE2_enable, use /Oi- to compile your project. This might also be good practice when you use other compiler
switches that imply /Oi.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/set-sse2-enable.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/oi-generate-intrinsic-functions

Requirements
ROUTINE REQUIRED HEADER

_set_SSE2_enable <math.h>

Example
// crt_set_SSE2_enable.c
// processor: x86
#include <math.h>
#include <stdio.h>

int main()
{
 int i = _set_SSE2_enable(1);

 if (i)
 printf("SSE2 enabled.\n");
 else
 printf("SSE2 not enabled; processor does not support SSE2.\n");
}

SSE2 enabled.

See also

The SSE2 implementation is only used if all exceptions are masked. Use _control87, _controlfp to mask
exceptions.

For more compatibility information, see Compatibility.

CRT Library Features

set_terminate (CRT)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
terminate_function set_terminate(terminate_function termFunction);

Parameters

Return Value

Remarks

typedef void (*terminate_function)();

NOTE

Requirements

Installs your own termination routine to be called by terminate.

termFunction
Pointer to a terminate function that you write.

Returns a pointer to the previous function registered by set_terminate so that the previous function can be
restored later. If no previous function has been set, the return value may be used to restore the default behavior;
this value may be NULL.

The set_terminate function installs termFunction as the function called by terminate. set_terminate is used
with C++ exception handling and may be called at any point in your program before the exception is thrown.
terminate calls abort by default. You can change this default by writing your own termination function and
calling set_terminate with the name of your function as its argument. terminate calls the last function given as
an argument to set_terminate. After performing any desired cleanup tasks, termFunction should exit the
program. If it does not exit (if it returns to its caller), abort is called.

In a multithreaded environment, terminate functions are maintained separately for each thread. Each new thread
needs to install its own terminate function. Thus, each thread is in charge of its own termination handling.

The terminate_function type is defined in EH.H as a pointer to a user-defined termination function,
termFunction that returns void. Your custom function termFunction can take no arguments and should not
return to its caller. If it does, abort is called. An exception may not be thrown from within termFunction.

The set_terminate function only works outside the debugger.

There is a single set_terminate handler for all dynamically linked DLLs or EXEs; even if you call set_terminate
your handler may be replaced by another, or you may be replacing a handler set by another DLL or EXE.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/set-terminate-crt.md

ROUTINE REQUIRED HEADER

set_terminate <eh.h>

Example

See also

For additional compatibility information, see Compatibility.

See the example for terminate.

Exception Handling Routines
abort
_get_terminate
set_unexpected
terminate
unexpected

set_unexpected (CRT)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
unexpected_function set_unexpected(unexpected_function unexpFunction);

Parameters

Return Value

Remarks

typedef void (*unexpected_function)();

Requirements

Installs your own termination function to be called by unexpected.

unexpFunction
Pointer to a function that you write to replace the unexpected function.

Returns a pointer to the previous termination function registered by _set_unexpected so that the previous
function can be restored later. If no previous function has been set, the return value may be used to restore the
default behavior ; this value may be NULL.

The set_unexpected function installs unexpFunction as the function called by unexpected. unexpected is not
used in the current C++ exception-handling implementation. The unexpected_function type is defined in EH.H
as a pointer to a user-defined unexpected function, unexpFunction that returns void. Your custom
unexpFunction function should not return to its caller.

By default, unexpected calls terminate. You can change this default behavior by writing your own termination
function and calling set_unexpected with the name of your function as its argument. unexpected calls the last
function given as an argument to set_unexpected.

Unlike the custom termination function installed by a call to set_terminate, an exception can be thrown from
within unexpFunction.

In a multithreaded environment, unexpected functions are maintained separately for each thread. Each new
thread needs to install its own unexpected function. Thus, each thread is in charge of its own unexpected
handling.

In the current Microsoft implementation of C++ exception handling, unexpected calls terminate by default
and is never called by the exception-handling run-time library. There is no particular advantage to calling
unexpected rather than terminate.

There is a single set_unexpected handler for all dynamically linked DLLs or EXEs; even if you call
set_unexpected your handler may be replaced by another or that you are replacing a handler set by another
DLL or EXE.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/set-unexpected-crt.md

ROUTINE REQUIRED HEADER

set_unexpected <eh.h>

See also

For additional compatibility information, see Compatibility.

Exception Handling Routines
abort
_get_unexpected
set_terminate
terminate
unexpected

setvbuf
11/8/2018 • 2 minutes to read • Edit Online

Syntax
int setvbuf(
 FILE *stream,
 char *buffer,
 int mode,
 size_t size
);

Parameters

Return Value

Remarks

Controls stream buffering and buffer size.

stream
Pointer to FILE structure.

buffer
User-allocated buffer.

mode
Mode of buffering.

size
Buffer size in bytes. Allowable range: 2 <= size <= INT_MAX (2147483647). Internally, the value supplied for
size is rounded down to the nearest multiple of 2.

Returns 0 if successful.

If stream is NULL, or if mode or size is not within a valid change, the invalid parameter handler is invoked, as
described in Parameter Validation. If execution is allowed to continue, this function returns -1 and sets errno to
EINVAL.

For information on these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The setvbuf function allows the program to control both buffering and buffer size for stream. stream must refer
to an open file that has not undergone an I/O operation since it was opened. The array pointed to by buffer is
used as the buffer, unless it is NULL, in which case setvbuf uses an automatically allocated buffer of length
size/2 * 2 bytes.

The mode must be _IOFBF, _IOLBF, or _IONBF. If mode is _IOFBF or _IOLBF, then size is used as the size of
the buffer. If mode is _IONBF, the stream is unbuffered and size and buffer are ignored. Values for mode and
their meanings are:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/setvbuf.md

MODE VALUE MEANING

_IOFBF Full buffering; that is, buffer is used as the buffer and size is
used as the size of the buffer. If buffer is NULL, an
automatically allocated buffer size bytes long is used.

_IOLBF For some systems, this provides line buffering. However, for
Win32, the behavior is the same as _IOFBF - Full Buffering.

_IONBF No buffer is used, regardless of buffer or size.

Requirements
ROUTINE REQUIRED HEADER

setvbuf <stdio.h>

Libraries

Example
// crt_setvbuf.c
// This program opens two streams: stream1
// and stream2. It then uses setvbuf to give stream1 a
// user-defined buffer of 1024 bytes and stream2 no buffer.
//

#include <stdio.h>

int main(void)
{
 char buf[1024];
 FILE *stream1, *stream2;

 if(fopen_s(&stream1, "data1", "a") == 0 &&
 fopen_s(&stream2, "data2", "w") == 0)
 {
 if(setvbuf(stream1, buf, _IOFBF, sizeof(buf)) != 0)
 printf("Incorrect type or size of buffer for stream1\n");
 else
 printf("'stream1' now has a buffer of 1024 bytes\n");
 if(setvbuf(stream2, NULL, _IONBF, 0) != 0)
 printf("Incorrect type or size of buffer for stream2\n");
 else
 printf("'stream2' now has no buffer\n");
 _fcloseall();
 }
}

'stream1' now has a buffer of 1024 bytes
'stream2' now has no buffer

For additional compatibility information, see Compatibility.

All versions of the C run-time libraries.

See also
Stream I/O
fclose, _fcloseall
fflush
fopen, _wfopen
setbuf

signal
11/8/2018 • 5 minutes to read • Edit Online

IMPORTANT

Syntax
void __cdecl *signal(int sig, int (*func)(int, int));

Parameters

Return Value

Remarks

SIG VALUE DESCRIPTION

SIGABRT Abnormal termination

SIGFPE Floating-point error

SIGILL Illegal instruction

SIGINT CTRL+C signal

SIGSEGV Illegal storage access

Sets interrupt signal handling.

Do not use this method to shut down a Microsoft Store app, except in testing or debugging scenarios. Programmatic or
UI ways to close a Store app are not permitted according to the Microsoft Store policies. For more information, see UWP
app lifecycle.

sig
Signal value.

func
The second parameter is a pointer to the function to be executed. The first parameter is a signal value and the
second parameter is a sub-code that can be used when the first parameter is S IGFPE.

signal returns the previous value of func that's associated with the given signal. For example, if the previous
value of func was SIG_IGN , the return value is also SIG_IGN . A return value of SIG_ERR indicates an error ; in
that case, errno is set to EINVAL.

See errno, _doserrno, _sys_errlist, and _sys_nerr for more information about return codes.

The signal function enables a process to choose one of several ways to handle an interrupt signal from the
operating system. The sig argument is the interrupt to which signal responds; it must be one of the following
manifest constants, which are defined in S IGNAL.H.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/signal.md
https://docs.microsoft.com/legal/windows/agreements/store-policies
https://docs.microsoft.com/windows/uwp/launch-resume/app-lifecycle

SIGTERM Termination request

SIG VALUE DESCRIPTION

NOTE

If sig is not one of the above values, the invalid parameter handler is invoked, as defined in Parameter Validation
. If execution is allowed to continue, this function sets errno to EINVAL and returns SIG_ERR.

By default, signal terminates the calling program with exit code 3, regardless of the value of sig.

SIGINT is not supported for any Win32 application. When a CTRL+C interrupt occurs, Win32 operating systems generate
a new thread to specifically handle that interrupt. This can cause a single-thread application, such as one in UNIX, to
become multithreaded and cause unexpected behavior.

The func argument is an address to a signal handler that you write, or to one of the predefined constants
SIG_DFL or SIG_IGN , which are also defined in S IGNAL.H. If func is a function, it is installed as the signal
handler for the given signal. The signal handler's prototype requires one formal argument, sig, of type int. The
operating system provides the actual argument through sig when an interrupt occurs; the argument is the signal
that generated the interrupt. Therefore, you can use the six manifest constants (listed in the preceding table) in
your signal handler to determine which interrupt occurred and take appropriate action. For example, you can call
signal twice to assign the same handler to two different signals, and then test the sig argument in the handler to
take different actions based on the signal received.

If you are testing for floating-point exceptions (SIGFPE), func points to a function that takes an optional second
argument that is one of several manifest constants, defined in FLOAT.H, of the form FPE_xxx. When a SIGFPE
signal occurs, you can test the value of the second argument to determine the kind of floating-point exception
and then take appropriate action. This argument and its possible values are Microsoft extensions.

For floating-point exceptions, the value of func is not reset when the signal is received. To recover from floating-
point exceptions, use try/except clauses to surround the floating point operations. It's also possible to recover by
using setjmp with longjmp. In either case, the calling process resumes execution and leaves the floating-point
state of the process undefined.

If the signal handler returns, the calling process resumes execution immediately following the point at which it
received the interrupt signal. This is true regardless of the kind of signal or operating mode.

Before the specified function is executed, the value of func is set to SIG_DFL. The next interrupt signal is treated
as described for SIG_DFL, unless an intervening call to signal specifies otherwise. You can use this feature to
reset signals in the called function.

Because signal-handler routines are usually called asynchronously when an interrupt occurs, your signal-handler
function may get control when a run-time operation is incomplete and in an unknown state. The following list
summarizes the restrictions that determine which functions you can use in your signal-handler routine.

Do not issue low-level or STDIO.H I/O routines (for example, printf or fread).

Do not call heap routines or any routine that uses the heap routines (for example, malloc, _strdup, or
_putenv). See malloc for more information.

Do not use any function that generates a system call (for example, _getcwd or time).

Do not use longjmp unless the interrupt is caused by a floating-point exception (that is, sig is SIGFPE).
In this case, first reinitialize the floating-point package by using a call to _fpreset.

Do not use any overlay routines.

volatile double d = 0.0f;

Requirements
ROUTINE REQUIRED HEADER

signal <signal.h>

Example

// crt_signal.c
// compile with: /EHsc /W4
// Use signal to attach a signal handler to the abort routine
#include <stdlib.h>
#include <signal.h>
#include <tchar.h>

void SignalHandler(int signal)
{
 if (signal == SIGABRT) {
 // abort signal handler code
 } else {
 // ...
 }
}

int main()
{
 typedef void (*SignalHandlerPointer)(int);

 SignalHandlerPointer previousHandler;
 previousHandler = signal(SIGABRT, SignalHandler);

 abort();
}

This application has requested the Runtime to terminate it in an unusual way.
Please contact the application's support team for more information.

See also

A program must contain floating-point code if it is to trap the SIGFPE exception by using the function. If your
program does not have floating-point code and requires the run-time library's signal-handling code, just declare
a volatile double and initialize it to zero:

The SIGILL and SIGTERM signals are not generated under Windows. They are included for ANSI compatibility.
Therefore, you can set signal handlers for these signals by using signal, and you can also explicitly generate
these signals by calling raise.

Signal settings are not preserved in spawned processes that are created by calls to _exec or _spawn functions.
The signal settings are reset to the default values in the new process.

For additional compatibility information, see Compatibility.

The following example shows how to use signal to add some custom behavior to the SIGABRT signal. For
additional information about abort behavior, see _set_abort_behavior.

Process and Environment Control
abort
_exec, _wexec Functions
exit, _Exit, _exit
_fpreset
_spawn, _wspawn Functions

signbit
2/4/2019 • 2 minutes to read • Edit Online

Syntax
int signbit(
 /* floating-point */ x
); /* C-only macro */

inline bool signbit(
 float x
) throw(); /* C++-only overloaded function */

inline bool signbit(
 double x
) throw(); /* C++-only overloaded function */

inline bool signbit(
 long double x
) throw(); /* C++-only overloaded function */

Parameters

Return value

Remarks

Requirements
FUNCTION REQUIRED HEADER (C) REQUIRED HEADER (C++)

signbit <math.h> <math.h> or <cmath>

See also

Determines whether a floating-point value is negative.

x
The floating-point value to test.

signbit returns a non-zero value (true in C++) if the argument x is negative or negative infinity. It returns 0 (false
in C++) if the argument is non-negative, positive infinity, or a NAN.

signbit is a macro when compiled as C, and an overloaded inline function when compiled as C++.

For more compatibility information, see Compatibility.

Floating-Point Support
isfinite, _finite, _finitef
isinf
isnan, _isnan, _isnanf
isnormal

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/signbit.md

_fpclass, _fpclassf

sin, sinf, sinl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double sin(double x);
float sinf(float x);
long double sinl(long double x);

float sin(float x); // C++ only
long double sin(long double x); // C++ only

Parameters

Return value

INPUT SEH EXCEPTION MATHERR EXCEPTION

± QNAN,IND None _DOMAIN

± ∞ (sin, sinf, sinl) INVALID _DOMAIN

Remarks

Requirements
ROUTINE REQUIRED HEADER (C) REQUIRED HEADER (C++)

sin, sinf, sinl <math.h> <cmath> or <math.h>

Example

Calculates the sine of a floating-point value.

x
Angle in radians.

The sin functions return the sine of x. If x is greater than or equal to 263, or less than or equal to -263, a loss of
significance in the result occurs.

For more information about return codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

Because C++ allows overloading, you can call overloads of sin that take and return float or long double
values. In a C program, sin always takes and returns double.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/sin-sinf-sinl.md

// crt_sincos.c
// This program displays the sine and cosine of pi / 2.
// Compile by using: cl /W4 crt_sincos.c

#include <math.h>
#include <stdio.h>

int main(void)
{
 double pi = 3.1415926535;
 double x, y;

 x = pi / 2;
 y = sin(x);
 printf("sin(%f) = %f\n", x, y);
 y = cos(x);
 printf("cos(%f) = %f\n", x, y);
}

sin(1.570796) = 1.000000
cos(1.570796) = 0.000000

See also
Floating-Point Support
acos, acosf, acosl
asin, asinf, asinl
atan, atanf, atanl, atan2, atan2f, atan2l
cos, cosf, cosl
tan, tanf, tanl
_CIsin

sinh, sinhf, sinhl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double sinh(double x);
float sinhf(float x);
long double sinhl(long double x);

float sinh(float x); // C++ only
long double sinh(long double x); // C++ only

Parameters

Return Value

INPUT SEH EXCEPTION MATHERR EXCEPTION

± QNAN,IND None _DOMAIN

|x| ≥ 7.104760e+002 OVERFLOW+INEXACT OVERFLOW

Remarks

Requirements
ROUTINE REQUIRED HEADER (C) REQUIRED HEADER (C++)

sinh, sinhf, sinhl <math.h> <cmath> or <math.h>

Example

Calculates the hyperbolic sine.

x
Angle in radians.

The sinh functions return the hyperbolic sine of x. By default, if the result is too large, sinh sets errno to
ERANGE and returns ±HUGE_VAL.

For more information about return codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

Because C++ allows overloading, you can call overloads of sinh that take and return float or long double
values. In a C program, sinh always takes and returns double.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/sinh-sinhf-sinhl.md

// crt_sinhcosh.c
// This program displays the hyperbolic
// sine and hyperbolic cosine of pi / 2.
// Compile by using: cl /W4 crt_sinhcosh.c

#include <math.h>
#include <stdio.h>

int main(void)
{
 double pi = 3.1415926535;
 double x, y;

 x = pi / 2;
 y = sinh(x);
 printf("sinh(%f) = %f\n",x, y);
 y = cosh(x);
 printf("cosh(%f) = %f\n",x, y);
}

sinh(1.570796) = 2.301299
cosh(1.570796) = 2.509178

See also
Floating-Point Support
acosh, acoshf, acoshl
asinh, asinhf, asinhl
atanh, atanhf, atanhl
cosh, coshf, coshl
tanh, tanhf, tanhl

snprintf, _snprintf, _snprintf_l, _snwprintf, _snwprintf_l
10/31/2018 • 5 minutes to read • Edit Online

Syntax

Writes formatted data to a string. More secure versions of these functions are available; see _snprintf_s,
_snprintf_s_l, _snwprintf_s, _snwprintf_s_l.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/snprintf-snprintf-snprintf-l-snwprintf-snwprintf-l.md

int snprintf(
 char *buffer,
 size_t count,
 const char *format [,
 argument] ...
);
int _snprintf(
 char *buffer,
 size_t count,
 const char *format [,
 argument] ...
);
int _snprintf_l(
 char *buffer,
 size_t count,
 const char *format,
 locale_t locale [,
 argument] ...
);
int _snwprintf(
 wchar_t *buffer,
 size_t count,
 const wchar_t *format [,
 argument] ...
);
int _snwprintf_l(
 wchar_t *buffer,
 size_t count,
 const wchar_t *format,
 locale_t locale [,
 argument] ...
);
template <size_t size>
int _snprintf(
 char (&buffer)[size],
 size_t count,
 const char *format [,
 argument] ...
); // C++ only
template <size_t size>
int _snprintf_l(
 char (&buffer)[size],
 size_t count,
 const char *format,
 locale_t locale [,
 argument] ...
); // C++ only
template <size_t size>
int _snwprintf(
 wchar_t (&buffer)[size],
 size_t count,
 const wchar_t *format [,
 argument] ...
); // C++ only
template <size_t size>
int _snwprintf_l(
 wchar_t (&buffer)[size],
 size_t count,
 const wchar_t *format,
 locale_t locale [,
 argument] ...
); // C++ only

Parameters
buffer

Return Value

Remarks

IMPORTANT

Storage location for the output.

count
Maximum number of characters to store.

format
Format-control string.

argument
Optional arguments.

locale
The locale to use.

For more information, see Format Specification Syntax: printf and wprintf Functions.

Let len be the length of the formatted data string, not including the terminating null. Both len and count are in
bytes for snprintf and _snprintf, wide characters for _snwprintf.

For all functions, if len < count, len characters are stored in buffer, a null-terminator is appended, and len is
returned.

The snprintf function truncates the output when len is greater than or equal to count, by placing a null-
terminator at buffer[count-1] . The value returned is len, the number of characters that would have been output
if count was large enough. The snprintf function returns a negative value if an encoding error occurs.

For all functions other than snprintf, if len = count, len characters are stored in buffer, no null-terminator is
appended, and len is returned. If len > count, count characters are stored in buffer, no null-terminator is
appended, and a negative value is returned.

If buffer is a null pointer and count is zero, len is returned as the count of characters required to format the
output, not including the terminating null. To make a successful call with the same argument and locale
parameters, allocate a buffer holding at least len + 1 characters.

If buffer is a null pointer and count is nonzero, or if format is a null pointer, the invalid parameter handler is
invoked, as described in Parameter Validation. If execution is allowed to continue, these functions return -1 and
set errno to EINVAL.

For information about these and other error codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

The snprintf function and the _snprintf family of functions format and store count or fewer characters in buffer.
The snprintf function always stores a terminating null character, truncating the output if necessary. The
_snprintf family of functions only appends a terminating null character if the formatted string length is strictly
less than count characters. Each argument (if any) is converted and is output according to the corresponding
format specification in format. The format consists of ordinary characters and has the same form and function
as the format argument for printf. If copying occurs between strings that overlap, the behavior is undefined.

Ensure that format is not a user-defined string. Because the _snprintf functions do not guarantee null termination—in
particular, when the return value is count—make sure that they are followed by code that adds the null terminator. For
more information, see Avoiding Buffer Overruns.

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_sntprintf _snprintf _snprintf _snwprintf

_sntprintf_l _snprintf_l _snprintf_l _snwprintf_l

Requirements
ROUTINE REQUIRED HEADER

snprintf, _snprintf, _snprintf_l <stdio.h>

_snwprintf, _snwprintf_l <stdio.h> or <wchar.h>

Example
// crt_snprintf.c
// compile with: /W3
#include <stdio.h>
#include <stdlib.h>

#if !defined(__cplusplus)
typedef int bool;
const bool true = 1;
const bool false = 0;
#endif

#define FAIL 0 // change to 1 and see what happens

int main(void)
{
 char buffer[200];
 const static char s[] = "computer"
#if FAIL
"computercomputercomputercomputercomputercomputercomputercomputer"
"computercomputercomputercomputercomputercomputercomputercomputer"
"computercomputercomputercomputercomputercomputercomputercomputer"
"computercomputercomputercomputercomputercomputercomputercomputer"
#endif
 ;
 const char c = 'l';
 const int i = 35;

Beginning with the UCRT in Visual Studio 2015 and Windows 10, snprintf is no longer identical to _snprintf.
The snprintf function behavior is now C99 standard compliant.

_snwprintf is a wide-character version of _snprintf; the pointer arguments to _snwprintf are wide-character
strings. Detection of encoding errors in _snwprintf might differ from that in _snprintf. _snwprintf, just like
swprintf, writes output to a string instead of a destination of type FILE .

The versions of these functions that have the _l suffix are identical except that they use the locale parameter
passed in instead of the current thread locale.

In C++, these functions have template overloads that invoke their newer, more secure counterparts. For more
information, see Secure Template Overloads.

For more compatibility information, see Compatibility.

#if FAIL
 const double fp = 1e300; // doesn't fit in the buffer
#else
 const double fp = 1.7320534;
#endif
 /* !subtract one to prevent "squeezing out" the terminal null! */
 const int bufferSize = sizeof(buffer)/sizeof(buffer[0]) - 1;
 int bufferUsed = 0;
 int bufferLeft = bufferSize - bufferUsed;
 bool bSuccess = true;
 buffer[0] = 0;

 /* Format and print various data: */

 if (bufferLeft > 0)
 {
 int perElementBufferUsed = _snprintf(&buffer[bufferUsed],
 bufferLeft, " String: %s\n", s); // C4996
 // Note: _snprintf is deprecated; consider _snprintf_s instead
 if (bSuccess = (perElementBufferUsed >= 0))
 {
 bufferUsed += perElementBufferUsed;
 bufferLeft -= perElementBufferUsed;
 if (bufferLeft > 0)
 {
 int perElementBufferUsed = _snprintf(&buffer[bufferUsed],
 bufferLeft, " Character: %c\n", c); // C4996
 if (bSuccess = (perElementBufferUsed >= 0))
 {
 bufferUsed += perElementBufferUsed;
 bufferLeft -= perElementBufferUsed;
 if (bufferLeft > 0)
 {
 int perElementBufferUsed = _snprintf(&buffer
 [bufferUsed], bufferLeft, " Integer: %d\n", i); // C4996
 if (bSuccess = (perElementBufferUsed >= 0))
 {
 bufferUsed += perElementBufferUsed;
 bufferLeft -= perElementBufferUsed;
 if (bufferLeft > 0)
 {
 int perElementBufferUsed = _snprintf(&buffer
 [bufferUsed], bufferLeft, " Real: %f\n", fp); // C4996
 if (bSuccess = (perElementBufferUsed >= 0))
 {
 bufferUsed += perElementBufferUsed;
 }
 }
 }
 }
 }
 }
 }
 }

 if (!bSuccess)
 {
 printf("%s\n", "failure");
 }
 else
 {
 /* !store null because _snprintf doesn't necessarily (if the string
 * fits without the terminal null, but not with it)!
 * bufferUsed might be as large as bufferSize, which normally is
 * like going one element beyond a buffer, but in this case
 * subtracted one from bufferSize, so we're ok.
 */
 buffer[bufferUsed] = 0;
 printf("Output:\n%s\ncharacter count = %d\n", buffer, bufferUsed);

 }
 return EXIT_SUCCESS;
}

Output:
 String: computer
 Character: l
 Integer: 35
 Real: 1.732053

character count = 69

See also
Stream I/O
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
fprintf, _fprintf_l, fwprintf, _fwprintf_l
printf, _printf_l, wprintf, _wprintf_l
scanf, _scanf_l, wscanf, _wscanf_l
sscanf, _sscanf_l, swscanf, _swscanf_l
vprintf Functions

_snprintf_s, _snprintf_s_l, _snwprintf_s, _snwprintf_s_l
3/1/2019 • 4 minutes to read • Edit Online

Syntax
int _snprintf_s(
 char *buffer,
 size_t sizeOfBuffer,
 size_t count,
 const char *format [,
 argument] ...
);
int _snprintf_s_l(
 char *buffer,
 size_t sizeOfBuffer,
 size_t count,
 const char *format,
 locale_t locale [,
 argument] ...
);
int _snwprintf_s(
 wchar_t *buffer,
 size_t sizeOfBuffer,
 size_t count,
 const wchar_t *format [,
 argument] ...
);
int _snwprintf_s_l(
 wchar_t *buffer,
 size_t sizeOfBuffer,
 size_t count,
 const wchar_t *format,
 locale_t locale [,
 argument] ...
);
template <size_t size>
int _snprintf_s(
 char (&buffer)[size],
 size_t count,
 const char *format [,
 argument] ...
); // C++ only
template <size_t size>
int _snwprintf_s(
 wchar_t (&buffer)[size],
 size_t count,
 const wchar_t *format [,
 argument] ...
); // C++ only

Parameters

Writes formatted data to a string. These are versions of snprintf, _snprintf, _snprintf_l, _snwprintf, _snwprintf_l
with security enhancements as described in Security Features in the CRT.

buffer
Storage location for the output.

sizeOfBuffer

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/snprintf-s-snprintf-s-l-snwprintf-s-snwprintf-s-l.md

Return Value

Remarks

IMPORTANT

Generic-Text Routine Mappings

The size of the storage location for output. Size in bytes for _snprintf_s or size in words for _snwprintf_s.

count
Maximum number of characters to store, or _TRUNCATE.

format
Format-control string.

argument
Optional arguments.

locale
The locale to use.

_snprintf_s returns the number of characters stored in buffer, not counting the terminating null character.
_snwprintf_s returns the number of wide characters stored in buffer, not counting the terminating null wide
character.

If the storage required to store the data and a terminating null exceeds sizeOfBuffer, the invalid parameter
handler is invoked, as described in Parameter Validation. If execution continues after the invalid parameter
handler, these functions set buffer to an empty string, set errno to ERANGE , and return -1.

If buffer or format is a NULL pointer, or if count is less than or equal to zero, the invalid parameter handler is
invoked. If execution is allowed to continue, these functions set errno to EINVAL and return -1.

For information about these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The _snprintf_s function formats and stores count or fewer characters in buffer and appends a terminating null.
Each argument (if any) is converted and output according to the corresponding format specification in format.
The formatting is consistent with the printf family of functions; see Format Specification Syntax: printf and
wprintf Functions. If copying occurs between strings that overlap, the behavior is undefined.

If count is _TRUNCATE, then _snprintf_s writes as much of the string as will fit in buffer while leaving room for
a terminating null. If the entire string (with terminating null) fits in buffer, then _snprintf_s returns the number
of characters written (not including the terminating null); otherwise, _snprintf_s returns -1 to indicate that
truncation occurred.

Ensure that format is not a user-defined string.

_snwprintf_s is a wide-character version of _snprintf_s; the pointer arguments to _snwprintf_s are wide-
character strings. Detection of encoding errors in _snwprintf_s might differ from that in _snprintf_s.
_snwprintf_s, like swprintf_s, writes output to a string rather than to a destination of type FILE .

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current thread locale.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically (eliminating the need to specify a size argument) and they can automatically replace older, non-
secure functions with their newer, secure counterparts. For more information, see Secure Template Overloads.

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_sntprintf_s _snprintf_s _snprintf_s _snwprintf_s

_sntprintf_s_l _snprintf_s_l _snprintf_s_l _snwprintf_s_l

Requirements
ROUTINE REQUIRED HEADER

_snprintf_s, _snprintf_s_l <stdio.h>

_snwprintf_s, _snwprintf_s_l <stdio.h> or <wchar.h>

Example
// crt_snprintf_s.cpp
// compile with: /MTd

// These #defines enable secure template overloads
// (see last part of Examples() below)
#define _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES 1
#define _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES_COUNT 1

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <crtdbg.h> // For _CrtSetReportMode
#include <errno.h>

// This example uses a 10-byte destination buffer.

int snprintf_s_tester(const char * fmt, int x, size_t count)
{
 char dest[10];

 printf("\n");

 if (count == _TRUNCATE)
 printf("%zd-byte buffer; truncation semantics\n",
 _countof(dest));
 else
 printf("count = %zd; %zd-byte buffer\n",
 count, _countof(dest));

 int ret = _snprintf_s(dest, _countof(dest), count, fmt, x);

 printf(" new contents of dest: '%s'\n", dest);

 return ret;
}

void Examples()
{
 // formatted output string is 9 characters long: "<<<123>>>"
 snprintf_s_tester("<<<%d>>>", 121, 8);
 snprintf_s_tester("<<<%d>>>", 121, 9);
 snprintf_s_tester("<<<%d>>>", 121, 10);

For more compatibility information, see Compatibility.

 printf("\nDestination buffer too small:\n");

 snprintf_s_tester("<<<%d>>>", 1221, 10);

 printf("\nTruncation examples:\n");

 int ret = snprintf_s_tester("<<<%d>>>", 1221, _TRUNCATE);
 printf(" truncation %s occur\n", ret == -1 ? "did"
 : "did not");

 ret = snprintf_s_tester("<<<%d>>>", 121, _TRUNCATE);
 printf(" truncation %s occur\n", ret == -1 ? "did"
 : "did not");
 printf("\nSecure template overload example:\n");

 char dest[10];
 _snprintf(dest, 10, "<<<%d>>>", 12321);
 // With secure template overloads enabled (see #defines
 // at top of file), the preceding line is replaced by
 // _snprintf_s(dest, _countof(dest), 10, "<<<%d>>>", 12345);
 // Instead of causing a buffer overrun, _snprintf_s invokes
 // the invalid parameter handler.
 // If secure template overloads were disabled, _snprintf would
 // write 10 characters and overrun the dest buffer.
 printf(" new contents of dest: '%s'\n", dest);
}

void myInvalidParameterHandler(
 const wchar_t* expression,
 const wchar_t* function,
 const wchar_t* file,
 unsigned int line,
 uintptr_t pReserved)
{
 wprintf(L"Invalid parameter handler invoked: %s\n", expression);
}

int main(void)
{
 _invalid_parameter_handler oldHandler, newHandler;

 newHandler = myInvalidParameterHandler;
 oldHandler = _set_invalid_parameter_handler(newHandler);
 // Disable the message box for assertions.
 _CrtSetReportMode(_CRT_ASSERT, 0);

 Examples();
}

count = 8; 10-byte buffer
 new contents of dest: '<<<121>>'

count = 9; 10-byte buffer
 new contents of dest: '<<<121>>>'

count = 10; 10-byte buffer
 new contents of dest: '<<<121>>>'

Destination buffer too small:

count = 10; 10-byte buffer
Invalid parameter handler invoked: ("Buffer too small", 0)
 new contents of dest: ''

Truncation examples:

10-byte buffer; truncation semantics
 new contents of dest: '<<<1221>>'
 truncation did occur

10-byte buffer; truncation semantics
 new contents of dest: '<<<121>>>'
 truncation did not occur

Secure template overload example:
Invalid parameter handler invoked: ("Buffer too small", 0)
 new contents of dest: ''

See also
Stream I/O
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
fprintf, _fprintf_l, fwprintf, _fwprintf_l
printf, _printf_l, wprintf, _wprintf_l
scanf, _scanf_l, wscanf, _wscanf_l
sscanf, _sscanf_l, swscanf, _swscanf_l
vprintf Functions

_snscanf, _snscanf_l, _snwscanf, _snwscanf_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int __cdecl _snscanf(
 const char * input,
 size_t length,
 const char * format,
 ...
);
int __cdecl _snscanf_l(
 const char * input,
 size_t length,
 const char * format,
 locale_t locale,
 ...
);
int __cdecl _snwscanf(
 const wchar_t * input,
 size_t length,
 const wchar_t * format,
 ...
);
int __cdecl _snwscanf_l(
 const wchar_t * input,
 size_t length,
 const wchar_t * format,
 locale_t locale,
 ...
);

Parameters

Return Value

Reads formatted data of a specified length from a string. More secure versions of these functions are available;
see _snscanf_s, _snscanf_s_l, _snwscanf_s, _snwscanf_s_l.

input
Input string to examine.

length
Number of characters to examine in input.

format
One or more format specifiers.

...
Optional variables that will be used to store the values extracted from the input string by the format specifiers in
format.

locale
The locale to use.

Both of these functions returns the number of fields successfully converted and assigned; the return value does

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/snscanf-snscanf-l-snwscanf-snwscanf-l.md

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_sntscanf _snscanf _snscanf _snwscanf

_sntscanf_l _snscanf_l _snscanf_l _snwscanf_l

Requirements
ROUTINE REQUIRED HEADER

_snscanf, _snscanf_l <stdio.h>

_snwscanf, _snwscanf_l <stdio.h> or <wchar.h>

Example

not include fields that were read but not assigned. A return value of 0 indicates that no fields were assigned. The
return value is EOF for an error or if the end of the string is reached before the first conversion. For more
information, see sscanf.

If input or format is a NULL pointer, or if length is less than or equal to zero, the invalid parameter handler is
invoked, as described in Parameter Validation. If execution is allowed to continue, these functions return EOF and
set errno to EINVAL.

For information about these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

This function is like sscanf except that it provides the ability to specify a fixed number of characters to examine
from the input string. For more information, see sscanf.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current thread locale.

For more compatibility information, see Compatibility.

// crt_snscanf.c
// compile with: /W3

#include <stdio.h>
int main()
{
 char str1[] = "15 12 14...";
 wchar_t str2[] = L"15 12 14...";
 char s1[3];
 wchar_t s2[3];
 int i;
 float fp;

 i = _snscanf(str1, 6, "%s %f", s1, &fp); // C4996
 // Note: _snscanf is deprecated; consider using _snscanf_s instead
 printf("_snscanf converted %d fields: ", i);
 printf("%s and %f\n", s1, fp);

 i = _snwscanf(str2, 6, L"%s %f", s2, &fp); // C4996
 // Note: _snwscanf is deprecated; consider using _snwscanf_s instead
 wprintf(L"_snwscanf converted %d fields: ", i);
 wprintf(L"%s and %f\n", s2, fp);
}

_snscanf converted 2 fields: 15 and 12.000000
_snwscanf converted 2 fields: 15 and 12.000000

See also
scanf Width Specification

_snscanf_s, _snscanf_s_l, _snwscanf_s, _snwscanf_s_l
3/1/2019 • 2 minutes to read • Edit Online

Syntax
int __cdecl _snscanf_s(
 const char * input,
 size_t length,
 const char * format [, argument_list]
);
int __cdecl _snscanf_s_l(
 const char * input,
 size_t length,
 const char * format,
 locale_t locale [, argument_list]
);
int __cdecl _snwscanf_s(
 const wchar_t * input,
 size_t length,
 const wchar_t * format [, argument_list]
);
int __cdecl _snwscanf_s_l(
 const wchar_t * input,
 size_t length,
 const wchar_t * format,
 locale_t locale [, argument_list]
);

Parameters

Return Value

Reads formatted data of a specified length from a string. These are versions of _snscanf, _snscanf_l, _snwscanf,
_snwscanf_l with security enhancements as described in Security Features in the CRT.

input
Input string to examine.

length
Number of characters to examine in input.

format
One or more format specifiers.

locale
The locale to use.

argument_list
Optional arguments to be assigned according to the format string.

Both of these functions returns the number of fields successfully converted and assigned; the return value does
not include fields that were read but not assigned. A return value of 0 indicates that no fields were assigned. The
return value is EOF for an error or if the end of the string is reached before the first conversion. For more
information, see sscanf_s, _sscanf_s_l, swscanf_s, _swscanf_s_l.

If input or format is a NULL pointer, the invalid parameter handler is invoked, as described in Parameter

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/snscanf-s-snscanf-s-l-snwscanf-s-snwscanf-s-l.md

Remarks

NOTE

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_sntscanf_s _snscanf_s _snscanf_s _snwscanf_s

_sntscanf_s_l _snscanf_s_l _snscanf_s_l _snwscanf_s_l

Requirements
ROUTINE REQUIRED HEADER

_snscanf_s, _snscanf_s_l <stdio.h>

_snwscanf_s, _snwscanf_s_l <stdio.h> or <wchar.h>

Example

Validation. If execution is allowed to continue, these functions return EOF and set errno to EINVAL.

For information about these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

This function is like sscanf_s except that it provides the ability to specify a fixed number of characters to examine
from the input string. For more information, see sscanf_s, _sscanf_s_l, swscanf_s, _swscanf_s_l.

The buffer size parameter is required with the type field characters c, C, s, S, and [. For more information, see
scanf Type Field Characters.

The size parameter is of type unsigned, not size_t.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current thread locale.

For more compatibility information, see Compatibility.

// crt_snscanf_s.c
// This example scans a string of
// numbers, using both the character
// and wide character secure versions
// of the snscanf function.

#include <stdio.h>

int main()
{
 char str1[] = "15 12 14...";
 wchar_t str2[] = L"15 12 14...";
 char s1[3];
 wchar_t s2[3];
 int i;
 float fp;

 i = _snscanf_s(str1, 6, "%s %f", s1, 3, &fp);
 printf_s("_snscanf_s converted %d fields: ", i);
 printf_s("%s and %f\n", s1, fp);

 i = _snwscanf_s(str2, 6, L"%s %f", s2, 3, &fp);
 wprintf_s(L"_snwscanf_s converted %d fields: ", i);
 wprintf_s(L"%s and %f\n", s2, fp);
}

_snscanf_s converted 2 fields: 15 and 12.000000
_snwscanf_s converted 2 fields: 15 and 12.000000

See also
scanf Width Specification

sopen
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _sopen or security-enhanced _sopen_s instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/sopen.md

_sopen, _wsopen
11/8/2018 • 5 minutes to read • Edit Online

Syntax
int _sopen(
 const char *filename,
 int oflag,
 int shflag [,
 int pmode]
);
int _wsopen(
 const wchar_t *filename,
 int oflag,
 int shflag [,
 int pmode]
);

Parameters

Return Value

ERRNO VALUE CONDITION

EACCES The given path is a directory, or the file is read-only, but an
open-for-writing operation was attempted.

EEXIST _O_CREAT and _O_EXCL flags were specified, but filename
already exists.

EINVAL Invalid oflag or shflag argument.

EMFILE No more file descriptors are available.

Opens a file for sharing. More secure versions of these functions are available: see _sopen_s, _wsopen_s.

filename
File name.

oflag
The kind of operations allowed.

shflag
The kind of sharing allowed.

pmode
Permission setting.

Each of these functions returns a file descriptor for the opened file.

If filename or oflag is a NULL pointer, or if oflag or shflag is not within a valid range of values, the invalid
parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue, these
functions return -1 and set errno to one of the following values.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/sopen-wsopen.md

ENOENT File or path is not found.

ERRNO VALUE CONDITION

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tsopen _sopen _sopen _wsopen

OFLAG CONSTANT BEHAVIOR

_O_APPEND Moves the file pointer to the end of the file before every
write operation.

_O_BINARY Opens the file in binary (untranslated) mode. (See fopen for
a description of binary mode.)

_O_CREAT Creates a file and opens it for writing. Has no effect if the
file specified by filename exists. The pmode argument is
required when _O_CREAT is specified.

_O_CREAT | _O_SHORT_LIVED Creates a file as temporary and if possible does not flush to
disk. The pmode argument is required when _O_CREAT is
specified.

_O_CREAT | _O_TEMPORARY Creates a file as temporary; the file is deleted when the last
file descriptor is closed. The pmode argument is required
when _O_CREAT is specified.

_O_CREAT | _O_EXCL Returns an error value if a file specified by filename exists.
Applies only when used with _O_CREAT.

_O_NOINHERIT Prevents creation of a shared file descriptor.

_O_RANDOM Specifies that caching is optimized for, but not restricted to,
random access from disk.

_O_RDONLY Opens a file for reading only. Cannot be specified with
_O_RDWR or _O_WRONLY.

_O_RDWR Opens a file for both reading and writing. Cannot be
specified with _O_RDONLY or _O_WRONLY.

For more information about these and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The _sopen function opens the file specified by filename and prepares the file for shared reading or writing,
as defined by oflag and shflag. _wsopen is a wide-character version of _sopen; the filename argument to
_wsopen is a wide-character string. _wsopen and _sopen behave identically otherwise.

The integer expression oflag is formed by combining one or more of the following manifest constants, which
are defined in <fcntl.h>. When two or more constants form the argument oflag, they are combined with the
bitwise-OR operator (|).

_O_SEQUENTIAL Specifies that caching is optimized for, but not restricted to,
sequential access from disk.

_O_TEXT Opens a file in text (translated) mode. (For more
information, see Text and Binary Mode File I/O and fopen.)

_O_TRUNC Opens a file and truncates it to zero length; the file must
have write permission. Cannot be specified with
_O_RDONLY. _O_TRUNC used with _O_CREAT opens an
existing file or creates a file. Note: The _O_TRUNC flag
destroys the contents of the specified file.

_O_WRONLY Opens a file for writing only. Cannot be specified with
_O_RDONLY or _O_RDWR.

_O_U16TEXT Opens a file in Unicode UTF-16 mode.

_O_U8TEXT Opens a file in Unicode UTF-8 mode.

_O_WTEXT Opens a file in Unicode mode.

OFLAG CONSTANT BEHAVIOR

SHFLAG CONSTANT BEHAVIOR

_SH_DENYRW Denies read and write access to a file.

_SH_DENYWR Denies write access to a file.

_SH_DENYRD Denies read access to a file.

_SH_DENYNO Permits read and write access.

To specify the file access mode, you must specify either _O_RDONLY , _O_RDWR, or _O_WRONLY . There is
no default value for the access mode.

When a file is opened in Unicode mode by using _O_WTEXT, _O_U8TEXT, or _O_U16TEXT, input functions
translate the data that's read from the file into UTF-16 data stored as type wchar_t. Functions that write to a
file opened in Unicode mode expect buffers that contain UTF-16 data stored as type wchar_t. If the file is
encoded as UTF-8, then UTF-16 data is translated into UTF-8 when it is written, and the file's UTF-8-encoded
content is translated into UTF-16 when it is read. An attempt to read or write an odd number of bytes in
Unicode mode causes a parameter validation error. To read or write data that's stored in your program as
UTF-8, use a text or binary file mode instead of a Unicode mode. You are responsible for any required
encoding translation.

If _sopen is called with _O_WRONLY | _O_APPEND (append mode) and _O_WTEXT, _O_U16TEXT, or
_O_U8TEXT, it first tries to open the file for reading and writing, read the BOM, then reopen it for writing
only. If opening the file for reading and writing fails, it opens the file for writing only and uses the default
value for the Unicode mode setting.

The argument shflag is a constant expression consisting of one of the following manifest constants, which are
defined in <share.h>.

The pmode argument is required only when _O_CREAT is specified. If the file does not exist, pmode specifies
the file's permission settings, which are set when the new file is closed the first time. Otherwise, pmode is

PMODE MEANING

_S_IREAD Only reading permitted.

_S_IWRITE Writing permitted. (In effect, permits reading and writing.)

_S_IREAD | _S_IWRITE Reading and writing permitted.

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_sopen <io.h> <fcntl.h>, <sys\types.h>,
<sys\stat.h>, <share.h>

_wsopen <io.h> or <wchar.h> <fcntl.h>, <sys\types.h>,
<sys\stat.h>, <share.h>

Example

See also

ignored. pmode is an integer expression that contains one or both of the manifest constants _S_IWRITE and
_S_IREAD , which are defined in <sys\stat.h>. When both constants are given, they are combined with the
bitwise-OR operator. The meaning of pmode is as follows.

If write permission is not given, the file is read-only. In the Windows operating system, all files are readable; it
is not possible to give write-only permission. Therefore, the modes _S_IWRITE and _S_IREAD | _S_IWRITE
are equivalent.

_sopen applies the current file-permission mask to pmode before the permissions are set. (See _umask.)

For more compatibility information, see Compatibility.

See the example for _locking.

Low-Level I/O
_close
_creat, _wcreat
fopen, _wfopen
_fsopen, _wfsopen
_open, _wopen

_sopen_s, _wsopen_s
11/8/2018 • 5 minutes to read • Edit Online

Syntax
errno_t _sopen_s(
 int* pfh,
 const char *filename,
 int oflag,
 int shflag,
 int pmode
);
errno_t _wsopen_s(
 int* pfh,
 const wchar_t *filename,
 int oflag,
 int shflag,
 int pmode,
);

Parameters

Return Value

ERRNO VALUE CONDITION

EACCES The given path is a directory, or the file is read-only, but an
open-for-writing operation was attempted.

EEXIST _O_CREAT and _O_EXCL flags were specified, but filename
already exists.

EINVAL Invalid oflag, shflag, or pmode argument, or pfh or filename
was a null pointer.

Opens a file for sharing. These versions of _sopen and _wsopen have security enhancements, as described in
Security Features in the CRT.

pfh
The file handle, or -1 in the case of an error.

filename
File name.

oflag
The kind of operations allowed.

shflag
The kind of sharing allowed.

pmode
Permission setting.

A nonzero return value indicates an error; in that case errno is set to one of the following values.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/sopen-s-wsopen-s.md

EMFILE No more file descriptors available.

ENOENT File or path not found.

ERRNO VALUE CONDITION

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tsopen_s _sopen_s _sopen_s _wsopen_s

OFLAG CONSTANT BEHAVIOR

_O_APPEND Moves the file pointer to the end of the file before every
write operation.

_O_BINARY Opens the file in binary (untranslated) mode. (See fopen for a
description of binary mode.)

_O_CREAT Creates a file and opens it for writing. Has no effect if the file
specified by filename exists. The pmode argument is required
when _O_CREAT is specified.

_O_CREAT | _O_SHORT_LIVED Creates a file as temporary and if possible does not flush to
disk. The pmode argument is required when _O_CREAT is
specified.

_O_CREAT | _O_TEMPORARY Creates a file as temporary; the file is deleted when the last
file descriptor is closed. The pmode argument is required
when _O_CREAT is specified.

_O_CREAT | _O_EXCL Returns an error value if a file specified by filename exists.
Applies only when used with _O_CREAT.

_O_NOINHERIT Prevents creation of a shared file descriptor.

If an invalid argument is passed to the function, the invalid parameter handler is invoked, as described in
Parameter Validation. If execution is allowed to continue, errno is set to EINVAL and EINVAL is returned.

For more information about these and other return codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

In the case of an error, -1 is returned through pfh (unless pfh is a null pointer).

The _sopen_s function opens the file specified by filename and prepares the file for shared reading or writing, as
defined by oflag and shflag. _wsopen_s is a wide-character version of _sopen_s; the filename argument to
_wsopen_s is a wide-character string. _wsopen_s and _sopen_s behave identically otherwise.

The integer expression oflag is formed by combining one or more manifest constants, which are defined in
<fcntl.h>. When two or more constants form the argument oflag, they are combined with the bitwise-OR
operator (|).

_O_RANDOM Specifies that caching is optimized for, but not restricted to,
random access from disk.

_O_RDONLY Opens a file for reading only. Cannot be specified with
_O_RDWR or _O_WRONLY.

_O_RDWR Opens a file for both reading and writing. Cannot be
specified with _O_RDONLY or _O_WRONLY.

_O_SEQUENTIAL Specifies that caching is optimized for, but not restricted to,
sequential access from disk.

_O_TEXT Opens a file in text (translated) mode. (For more information,
see Text and Binary Mode File I/O and fopen.)

_O_TRUNC Opens a file and truncates it to zero length; the file must
have write permission. Cannot be specified with
_O_RDONLY. _O_TRUNC used with _O_CREAT opens an
existing file or creates a file. Note: The _O_TRUNC flag
destroys the contents of the specified file.

_O_WRONLY Opens a file for writing only. Cannot be specified with
_O_RDONLY or _O_RDWR.

_O_U16TEXT Opens a file in Unicode UTF-16 mode.

_O_U8TEXT Opens a file in Unicode UTF-8 mode.

_O_WTEXT Opens a file in Unicode mode.

OFLAG CONSTANT BEHAVIOR

SHFLAG CONSTANT BEHAVIOR

_SH_DENYRW Denies read and write access to a file.

To specify the file access mode, you must specify either _O_RDONLY , _O_RDWR, or _O_WRONLY . There is no
default value for the access mode.

When a file is opened in Unicode mode by using _O_WTEXT, _O_U8TEXT, or _O_U16TEXT, input functions
translate the data that's read from the file into UTF-16 data stored as type wchar_t. Functions that write to a file
opened in Unicode mode expect buffers that contain UTF-16 data stored as type wchar_t. If the file is encoded
as UTF-8, then UTF-16 data is translated into UTF-8 when it is written, and the file's UTF-8-encoded content is
translated into UTF-16 when it is read. An attempt to read or write an odd number of bytes in Unicode mode
causes a parameter validation error. To read or write data that's stored in your program as UTF-8, use a text or
binary file mode instead of a Unicode mode. You are responsible for any required encoding translation.

If _sopen_s is called with _O_WRONLY | _O_APPEND (append mode) and _O_WTEXT, _O_U16TEXT, or
_O_U8TEXT, it first tries to open the file for reading and writing, read the BOM, then reopen it for writing only.
If opening the file for reading and writing fails, it opens the file for writing only and uses the default value for the
Unicode mode setting.

The argument shflag is a constant expression that consists of one of the following manifest constants, which are
defined in <share.h>.

_SH_DENYWR Denies write access to a file.

_SH_DENYRD Denies read access to a file.

_SH_DENYNO Permits read and write access.

SHFLAG CONSTANT BEHAVIOR

PMODE MEANING

_S_IREAD Only reading permitted.

_S_IWRITE Writing permitted. (In effect, permits reading and writing.)

_S_IREAD | _S_IWRITE Reading and writing permitted.

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_sopen_s <io.h> <fcntl.h>, <sys\types.h>, <sys\stat.h>,
<share.h>

_wsopen_s <io.h> or <wchar.h> <fcntl.h>, <sys/types.h>, <sys/stat.h>,
<share.h>

Example

See also

The pmode argument is always required, unlike in _sopen. When you specify _O_CREAT, if the file does not
exist, pmode specifies the file's permission settings, which are set when the new file is closed the first time.
Otherwise, pmode is ignored. pmode is an integer expression that contains one or both of the manifest
constants _S_IWRITE and _S_IREAD , which are defined in <sys\stat.h>. When both constants are given, they
are combined with the bitwise-OR operator. The meaning of pmode is as follows.

If write permission is not given, the file is read-only. In the Windows operating system, all files are readable; it is
not possible to give write-only permission. Therefore, the modes _S_IWRITE and _S_IREAD | _S_IWRITE are
equivalent.

_sopen_s applies the current file-permission mask to pmode before the permissions are set. (See _umask.)

_sopen_s and _wsopen_s are Microsoft extensions. For more compatibility information, see Compatibility.

See the example for _locking.

Low-Level I/O
_close
_creat, _wcreat
fopen, _wfopen
_fsopen, _wfsopen
_open, _wopen

spawnl
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _spawnl instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/spawnl.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_spawnl, _wspawnl
11/8/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
intptr_t _spawnl(
 int mode,
 const char *cmdname,
 const char *arg0,
 const char *arg1,
 ... const char *argn,
 NULL
);
intptr_t _wspawnl(
 int mode,
 const wchar_t *cmdname,
 const wchar_t *arg0,
 const wchar_t *arg1,
 ... const wchar_t *argn,
 NULL
);

Parameters

Return Value

Creates and executes a new process.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

mode
Execution mode for the calling process.

cmdname
Path of the file to be executed.

arg0, arg1, ... argn
List of pointers to arguments. The arg0 argument is usually a pointer to cmdname. The arguments arg1 through
argn are pointers to the character strings forming the new argument list. Following argn, there must be a NULL
pointer to mark the end of the argument list.

The return value from a synchronous _spawnl or _wspawnl (_P_WAIT specified for mode) is the exit status of
the new process. The return value from an asynchronous _spawnl or _wspawnl (_P_NOWAIT or
_P_NOWAITO specified for mode) is the process handle. The exit status is 0 if the process terminated normally.
You can set the exit status to a nonzero value if the spawned process specifically calls the exit routine with a
nonzero argument. If the new process did not explicitly set a positive exit status, a positive exit status indicates an
abnormal exit with an abort or an interrupt. A return value of -1 indicates an error (the new process is not started).
In this case, errno is set to one of the following values.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/spawnl-wspawnl.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

E2BIG Argument list exceeds 1024 bytes.

EINVAL mode argument is invalid.

ENOENT File or path is not found.

ENOEXEC Specified file is not executable or has invalid executable-file
format.

ENOMEM Not enough memory is available to execute the new process.

Remarks

Requirements
ROUTINE REQUIRED HEADER

_spawnl <process.h>

_wspawnl <stdio.h> or <wchar.h>

Example

See also

For more information about these and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

These functions validate their parameters. If either cmdname or arg0 is an empty string or a null pointer, the
invalid parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue,
these functions set errno to EINVAL, and return -1. No new process is spawned.

Each of these functions creates and executes a new process, passing each command-line argument as a separate
parameter.

For more compatibility information, see Compatibility.

See the example in _spawn, _wspawn Functions.

Process and Environment Control
_spawn, _wspawn Functions
abort
atexit
_exec, _wexec Functions
exit, _Exit, _exit
_flushall
_getmbcp
_onexit, _onexit_m
_setmbcp
system, _wsystem

spawnle
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _spawnle instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/spawnle.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_spawnle, _wspawnle
11/8/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
intptr_t _spawnle(
 int mode,
 const char *cmdname,
 const char *arg0,
 const char *arg1,
 ... const char *argn,
 NULL,
 const char *const *envp
);
intptr_t _wspawnle(
 int mode,
 const wchar_t *cmdname,
 const wchar_t *arg0,
 const wchar_t *arg1,
 ... const wchar_t *argn,
 NULL,
 const wchar_t *const *envp
);

Parameters

Return Value

Creates and executes a new process.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

mode
Execution mode for the calling process.

cmdname
Path of the file to be executed.

arg0, arg1, ... argn
List of pointers to arguments. The arg0 argument is usually a pointer to cmdname. The arguments arg1 through
argn are pointers to the character strings forming the new argument list. Following argn, there must be a NULL
pointer to mark the end of the argument list.

envp
Array of pointers to environment settings.

The return value from a synchronous _spawnle or _wspawnle (_P_WAIT specified for mode) is the exit status of
the new process. The return value from an asynchronous _spawnle or _wspawnle (_P_NOWAIT or
_P_NOWAITO specified for mode) is the process handle. The exit status is 0 if the process terminated normally.
You can set the exit status to a nonzero value if the spawned process specifically calls the exit routine with a
nonzero argument. If the new process did not explicitly set a positive exit status, a positive exit status indicates an

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/spawnle-wspawnle.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

E2BIG Argument list exceeds 1024 bytes.

EINVAL mode argument is invalid.

ENOENT File or path is not found.

ENOEXEC Specified file is not executable or has invalid executable-file
format.

ENOMEM Not enough memory is available to execute the new process.

Remarks

Requirements
ROUTINE REQUIRED HEADER

_spawnle <process.h>

_wspawnle <stdio.h> or <wchar.h>

Example

See also

abnormal exit with an abort or an interrupt. A return value of -1 indicates an error (the new process is not started).
In this case, errno is set to one of the following values.

For more information about these and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

Each of these functions creates and executes a new process, passing each command-line argument as a separate
parameter and also passing an array of pointers to environment settings.

These functions validate their parameters. If either cmdname or arg0 is an empty string or a null pointer, the
invalid parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue,
these functions set errno to EINVAL, and return -1. No new process is spawned.

For more compatibility information, see Compatibility.

See the example in _spawn, _wspawn Functions.

Process and Environment Control
_spawn, _wspawn Functions
abort
atexit
_exec, _wexec Functions
exit, _Exit, _exit
_flushall
_getmbcp
_onexit, _onexit_m
_setmbcp
system, _wsystem

spawnlp
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _spawnlp instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/spawnlp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_spawnlp, _wspawnlp
11/8/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
intptr_t _spawnlp(
 int mode,
 const char *cmdname,
 const char *arg0,
 const char *arg1,
 ... const char *argn,
 NULL
);
intptr_t _wspawnlp(
 int mode,
 const wchar_t *cmdname,
 const wchar_t *arg0,
 const wchar_t *arg1,
 ... const wchar_t *argn,
 NULL
);

Parameters

Return Value

Creates and executes a new process.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

mode
Execution mode for the calling process.

cmdname
Path of the file to be executed.

arg0, arg1, ... argn
List of pointers to arguments. The arg0 argument is usually a pointer to cmdname. The arguments arg1 through
argn are pointers to the character strings forming the new argument list. Following argn, there must be a NULL
pointer to mark the end of the argument list.

The return value from a synchronous _spawnlp or _wspawnlp (_P_WAIT specified for mode) is the exit status of
the new process. The return value from an asynchronous _spawnlp or _wspawnlp (_P_NOWAIT or
_P_NOWAITO specified for mode) is the process handle. The exit status is 0 if the process terminated normally.
You can set the exit status to a nonzero value if the spawned process specifically calls the exit routine with a
nonzero argument. If the new process did not explicitly set a positive exit status, a positive exit status indicates an
abnormal exit with an abort or an interrupt. A return value of -1 indicates an error (the new process is not started).
In this case, errno is set to one of the following values.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/spawnlp-wspawnlp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

E2BIG Argument list exceeds 1024 bytes.

EINVAL mode argument is invalid.

ENOENT File or path is not found.

ENOEXEC Specified file is not executable or has invalid executable-file
format.

ENOMEM Not enough memory is available to execute the new process.

Remarks

Requirements
ROUTINE REQUIRED HEADER

_spawnlp <process.h>

_wspawnlp <stdio.h> or <wchar.h>

Example

See also

For more information about these and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

Each of these functions creates and executes a new process, passing each command-line argument as a separate
parameter and using the PATH environment variable to find the file to execute.

These functions validate their parameters. If either cmdname or arg0 is an empty string or a null pointer, these
functions generate an invalid parameter exception, as described in Parameter Validation. If execution is allowed to
continue, these functions set errno to EINVAL, and return -1. No new process is spawned.

For more compatibility information, see Compatibility.

See the example in _spawn, _wspawn Functions.

Process and Environment Control
_spawn, _wspawn Functions
abort
atexit
_exec, _wexec Functions
exit, _Exit, _exit
_flushall
_getmbcp
_onexit, _onexit_m
_setmbcp
system, _wsystem

spawnlpe
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _spawnlpe instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/spawnlpe.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_spawnlpe, _wspawnlpe
11/8/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
intptr_t _spawnlpe(
 int mode,
 const char *cmdname,
 const char *arg0,
 const char *arg1,
 ... const char *argn,
 NULL,
 const char *const *envp
);
intptr_t _wspawnlpe(
 int mode,
 const wchar_t *cmdname,
 const wchar_t *arg0,
 const wchar_t *arg1,
 ... const wchar_t *argn,
 NULL,
 const wchar_t *const *envp
);

Parameters

Return Value

Creates and executes a new process.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

mode
Execution mode for the calling process.

cmdname
Path of the file to be executed.

arg0, arg1, ... argn
List of pointers to arguments. The arg0 argument is typically a pointer to cmdname. The arguments arg1 through
argn are pointers to the character strings that form the new argument list. Following argn, there must be a NULL
pointer to mark the end of the argument list.

envp
Array of pointers to environment settings.

The return value from a synchronous _spawnlpe or _wspawnlpe (_P_WAIT specified for mode) is the exit status
of the new process. The return value from an asynchronous _spawnlpe or _wspawnlpe (_P_NOWAIT or
_P_NOWAITO specified for mode) is the process handle. The exit status is 0 if the process terminated normally.
You can set the exit status to a nonzero value if the spawned process specifically uses a nonzero argument to call
the exit routine. If the new process did not explicitly set a positive exit status, a positive exit status indicates an

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/spawnlpe-wspawnlpe.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

E2BIG Argument list exceeds 1024 bytes.

EINVAL mode argument is invalid.

ENOENT File or path is not found.

ENOEXEC Specified file is not executable or has invalid executable-file
format.

ENOMEM Not enough memory is available to execute the new process.

Remarks

Requirements
ROUTINE REQUIRED HEADER

_spawnlpe <process.h>

_wspawnlpe <stdio.h> or <wchar.h>

Example

See also

abnormal exit caused by an abort or an interrupt. A return value of -1 indicates an error (the new process is not
started). In this case, errno is set to one of the following values.

For more information about these and other return codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

Each of these functions creates and executes a new process, passes each command-line argument as a separate
parameter, and passes an array of pointers to environment settings. These functions use the PATH environment
variable to find the file to execute.

These functions validate their parameters. If either cmdname or arg0 is an empty string or a null pointer, the
invalid parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue,
these functions set errno to EINVAL, and return -1. No new process is spawned.

For more compatibility information, see Compatibility.

See the example in _spawn, _wspawn Functions.

Process and Environment Control
_spawn, _wspawn Functions
abort
atexit
_exec, _wexec Functions
exit, _Exit, _exit
_flushall
_getmbcp
_onexit, _onexit_m
_setmbcp

system, _wsystem

spawnv
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _spawnv instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/spawnv.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_spawnv, _wspawnv
11/8/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
intptr_t _spawnv(
 int mode,
 const char *cmdname,
 const char *const *argv
);
intptr_t _wspawnv(
 int mode,
 const wchar_t *cmdname,
 const wchar_t *const *argv
);

Parameters

Return Value

E2BIG Argument list exceeds 1024 bytes.

EINVAL mode argument is invalid.

Creates and executes a new process.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

mode
Execution mode for the calling process.

cmdname
Path of the file to be executed.

argv
Array of pointers to arguments. The argument argv[0] is usually a pointer to a path in real mode or to the
program name in protected mode, and argv[1] through argv[n] are pointers to the character strings forming the
new argument list. The argument argv[n +1] must be a NULL pointer to mark the end of the argument list.

The return value from a synchronous _spawnv or _wspawnv (_P_WAIT specified for mode) is the exit status of
the new process. The return value from an asynchronous _spawnv or _wspawnv (_P_NOWAIT or
_P_NOWAITO specified for mode) is the process handle. The exit status is 0 if the process terminated normally.
You can set the exit status to a nonzero value if the spawned process specifically calls the exit routine with a
nonzero argument. If the new process did not explicitly set a positive exit status, a positive exit status indicates an
abnormal exit with an abort or an interrupt. A return value of -1 indicates an error (the new process is not started).
In this case, errno is set to one of the following values.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/spawnv-wspawnv.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

ENOENT File or path is not found.

ENOEXEC Specified file is not executable or has invalid executable-file
format.

ENOMEM Not enough memory is available to execute the new process.

Remarks

Requirements
ROUTINE REQUIRED HEADER

_spawnv <stdio.h> or <process.h>

_wspawnv <stdio.h> or <wchar.h>

Example

See also

For more information about these and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

Each of these functions creates and executes a new process, passing an array of pointers to command-line
arguments.

These functions validate their parameters. If either cmdname or argv is a null pointer, or if argv points to null
pointer, or argv[0] is an empty string, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, these functions set errno to EINVAL, and return -1. No new
process is spawned.

For more compatibility information, see Compatibility.

See the example in _spawn, _wspawn Functions.

Process and Environment Control
_spawn, _wspawn Functions
abort
atexit
_exec, _wexec Functions
exit, _Exit, _exit
_flushall
_getmbcp
_onexit, _onexit_m
_setmbcp
system, _wsystem

spawnve
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _spawnve instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/spawnve.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_spawnve, _wspawnve
11/8/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
intptr_t _spawnve(
 int mode,
 const char *cmdname,
 const char *const *argv,
 const char *const *envp
);
intptr_t _wspawnve(
 int mode,
 const wchar_t *cmdname,
 const wchar_t *const *argv,
 const wchar_t *const *envp
);

Parameters

Return Value

Creates and executes a new process.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

mode
Execution mode for a calling process.

cmdname
Path of the file to be executed.

argv
Array of pointers to arguments. The argument argv[0] is usually a pointer to a path in real mode or to the
program name in protected mode, and argv[1] through argv[n] are pointers to the character strings forming the
new argument list. The argument argv[n +1] must be a NULL pointer to mark the end of the argument list.

envp
Array of pointers to environment settings.

The return value from a synchronous _spawnve or _wspawnve (_P_WAIT specified for mode) is the exit status
of the new process. The return value from an asynchronous _spawnve or _wspawnve (_P_NOWAIT or
_P_NOWAITO specified for mode) is the process handle. The exit status is 0 if the process terminated normally.
You can set the exit status to a nonzero value if the spawned process specifically calls the exit routine with a
nonzero argument. If the new process did not explicitly set a positive exit status, a positive exit status indicates an
abnormal exit with an abort or an interrupt. A return value of -1 indicates an error (the new process is not started).
In this case, errno is set to one of the following values.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/spawnve-wspawnve.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

E2BIG Argument list exceeds 1024 bytes.

EINVAL mode argument is invalid.

ENOENT File or path is not found.

ENOEXEC Specified file is not executable or has invalid executable-file
format.

ENOMEM Not enough memory is available to execute the new process.

Remarks

Requirements
ROUTINE REQUIRED HEADER

_spawnve <stdio.h> or <process.h>

_wspawnve <stdio.h> or <wchar.h>

Example

See also

For more information about these and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

Each of these functions creates and executes a new process, passing an array of pointers to command-line
arguments and an array of pointers to environment settings.

These functions validate their parameters. If either cmdname or argv is a null pointer, or if argv points to null
pointer, or argv[0] is an empty string, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, these functions set errno to EINVAL, and return -1. No new
process is spawned.

For more compatibility information, see Compatibility.

See the example in _spawn, _wspawn Functions.

Process and Environment Control
_spawn, _wspawn Functions
abort
atexit
_exec, _wexec Functions
exit, _Exit, _exit
_flushall
_getmbcp
_onexit, _onexit_m
_setmbcp
system, _wsystem

spawnvp
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _spawnvp instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/spawnvp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_spawnvp, _wspawnvp
11/8/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
intptr_t _spawnvp(
 int mode,
 const char *cmdname,
 const char *const *argv
);
intptr_t _wspawnvp(
 int mode,
 const wchar_t *cmdname,
 const wchar_t *const *argv
);

Parameters

Return Value

E2BIG Argument list exceeds 1024 bytes.

EINVAL mode argument is invalid.

Creates a process and executes it.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

mode
Execution mode for calling the process.

cmdname
Path of the file to be executed.

argv
Array of pointers to arguments. The argument argv[0] is usually a pointer to a path in real mode or to the
program name in protected mode, and argv[1] through argv[n] are pointers to the character strings that form the
new argument list. The argument argv[n +1] must be a NULL pointer to mark the end of the argument list.

The return value from a synchronous _spawnvp or _wspawnvp (_P_WAIT specified for mode) is the exit status
of the new process. The return value from an asynchronous _spawnvp or _wspawnvp (_P_NOWAIT or
_P_NOWAITO specified for mode) is the process handle. The exit status is 0 if the process terminated normally.
You can set the exit status to a nonzero value if the spawned process specifically uses a nonzero argument to call
the exit routine. If the new process did not explicitly set a positive exit status, a positive exit status indicates an
abnormal exit with an abort or an interrupt. A return value of -1 indicates an error (the new process is not started).
In this case, errno is set to one of the following values:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/spawnvp-wspawnvp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

ENOENT File or path is not found.

ENOEXEC Specified file is not executable or has invalid executable-file
format.

ENOMEM Not enough memory is available to execute the new process.

Remarks

Requirements
ROUTINE REQUIRED HEADER

_spawnvp <stdio.h> or <process.h>

_wspawnvp <stdio.h> or <wchar.h>

Example

See also

For more information about these, and other, return codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

Each of these functions creates a new process and executes it, and passes an array of pointers to command-line
arguments and uses the PATH environment variable to find the file to execute.

These functions validate their parameters. If either cmdname or argv is a null pointer, or if argv points to null
pointer, or argv[0] is an empty string, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, these functions set errno to EINVAL, and return -1. No new
process is spawned.

For additional compatibility information, see Compatibility.

See the example in _spawn, _wspawn Functions.

Process and Environment Control
_spawn, _wspawn Functions
abort
atexit
_exec, _wexec Functions
exit, _Exit, _exit
_flushall
_getmbcp
_onexit, _onexit_m
_setmbcp
system, _wsystem

spawnvpe
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _spawnvpe instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/spawnvpe.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_spawnvpe, _wspawnvpe
11/8/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
intptr_t _spawnvpe(
 int mode,
 const char *cmdname,
 const char *const *argv,
 const char *const *envp
);
intptr_t _wspawnvpe(
 int mode,
 const wchar_t *cmdname,
 const wchar_t *const *argv,
 const wchar_t *const *envp
);

Parameters

Return Value

Creates and executes a new process.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

mode
Execution mode for calling process

cmdname
Path of file to be executed

argv
Array of pointers to arguments. The argument argv[0] is usually a pointer to a path in real mode or to the
program name in protected mode, and argv[1] through argv[n] are pointers to the character strings forming the
new argument list. The argument argv[n +1] must be a NULL pointer to mark the end of the argument list.

envp
Array of pointers to environment settings

The return value from a synchronous _spawnvpe or _wspawnvpe (_P_WAIT specified for mode) is the exit
status of the new process. The return value from an asynchronous _spawnvpe or _wspawnvpe (_P_NOWAIT or
_P_NOWAITO specified for mode) is the process handle. The exit status is 0 if the process terminated normally.
You can set the exit status to a nonzero value if the spawned process specifically calls the exit routine with a
nonzero argument. If the new process did not explicitly set a positive exit status, a positive exit status indicates an
abnormal exit with an abort or an interrupt. A return value of -1 indicates an error (the new process is not started).
In this case, errno is set to one of the following values:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/spawnvpe-wspawnvpe.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

E2BIG Argument list exceeds 1024 bytes.

EINVAL mode argument is invalid.

ENOENT File or path is not found.

ENOEXEC Specified file is not executable or has invalid executable-file
format.

ENOMEM Not enough memory is available to execute the new process.

Remarks

Requirements
ROUTINE REQUIRED HEADER

_spawnvpe <stdio.h> or <process.h>

_wspawnvpe <stdio.h> or <wchar.h>

Example

See also

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these, and other, return codes.

Each of these functions creates and executes a new process, passing an array of pointers to command-line
arguments and an array of pointers to environment settings. These functions use the PATH environment variable
to find the file to execute.

These functions validate their parameters. If either cmdname or argv is a null pointer, or if argv points to null
pointer, or argv[0] is an empty string, the invalid parameter handler is invoked, as described in Parameter
Validation . If execution is allowed to continue, these functions set errno to EINVAL, and return -1. No new
process is spawned.

For additional compatibility information, see Compatibility.

See the example in _spawn, _wspawn Functions.

abort
atexit
_exec, _wexec Functions
exit, _Exit, _exit
_flushall
_getmbcp
_onexit, _onexit_m
_setmbcp
system, _wsystem

_splitpath, _wsplitpath
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void _splitpath(
 const char *path,
 char *drive,
 char *dir,
 char *fname,
 char *ext
);
void _wsplitpath(
 const wchar_t *path,
 wchar_t *drive,
 wchar_t *dir,
 wchar_t *fname,
 wchar_t *ext
);

Parameters

Remarks

Break a path name into components. More secure versions of these functions are available, see _splitpath_s,
_wsplitpath_s.

path
Full path.

drive
Drive letter, followed by a colon (:). You can pass NULL for this parameter if you do not need the drive letter.

dir
Directory path, including trailing slash. Forward slashes (/), backslashes (\), or both may be used. You can pass
NULL for this parameter if you do not need the directory path.

fname
Base filename (no extension). You can pass NULL for this parameter if you do not need the filename.

ext
Filename extension, including leading period (.). You can pass NULL for this parameter if you do not need the
filename extension.

The _splitpath function breaks a path into its four components. _splitpath automatically handles multibyte-
character string arguments as appropriate, recognizing multibyte-character sequences according to the multibyte
code page currently in use. _wsplitpath is a wide-character version of _splitpath; the arguments to _wsplitpath
are wide-character strings. These functions behave identically otherwise.

Security Note These functions incur a potential threat brought about by a buffer overrun problem. Buffer
overrun problems are a frequent method of system attack, resulting in an unwarranted elevation of privilege. For
more information, see Avoiding Buffer Overruns. More secure versions of these functions are available; see
_splitpath_s, _wsplitpath_s.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/splitpath-wsplitpath.md
https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tsplitpath _splitpath _splitpath _wsplitpath

NAME VALUE

_MAX_DRIVE 3

_MAX_DIR 256

_MAX_FNAME 256

_MAX_EXT 256

Requirements
ROUTINE REQUIRED HEADER

_splitpath <stdlib.h>

_wsplitpath <stdlib.h> or <wchar.h>

Example

See also

Each component of the full path is stored in a separate buffer; the manifest constants _MAX_DRIVE ,
_MAX_DIR, _MAX_FNAME , and _MAX_EXT (defined in STDLIB.H) specify the maximum size for each file
component. File components that are larger than the corresponding manifest constants cause heap corruption.

Each buffer must be as large as its corresponding manifest constant to avoid potential buffer overrun.

The following table lists the values of the manifest constants.

If the full path does not contain a component (for example, a filename), _splitpath assigns empty strings to the
corresponding buffers.

You can pass NULL to _splitpath for any parameter other than path that you do not need.

If path is NULL, the invalid parameter handler is invoked, as described in Parameter Validation. If execution is
allowed to continue, errno is set to EINVAL and the function returns EINVAL.

For additional compatibility information, see Compatibility.

See the example for _makepath.

File Handling
_fullpath, _wfullpath
_getmbcp
_makepath, _wmakepath
_setmbcp
_splitpath_s, _wsplitpath_s

_splitpath_s, _wsplitpath_s
3/1/2019 • 3 minutes to read • Edit Online

Syntax
errno_t _splitpath_s(
 const char * path,
 char * drive,
 size_t driveNumberOfElements,
 char * dir,
 size_t dirNumberOfElements,
 char * fname,
 size_t nameNumberOfElements,
 char * ext,
 size_t extNumberOfElements
);
errno_t _wsplitpath_s(
 const wchar_t * path,
 wchar_t * drive,
 size_t driveNumberOfElements,
 wchar_t *dir,
 size_t dirNumberOfElements,
 wchar_t * fname,
 size_t nameNumberOfElements,
 wchar_t * ext,
 size_t extNumberOfElements
);
template <size_t drivesize, size_t dirsize, size_t fnamesize, size_t extsize>
errno_t _splitpath_s(
 const char *path,
 char (&drive)[drivesize],
 char (&dir)[dirsize],
 char (&fname)[fnamesize],
 char (&ext)[extsize]
); // C++ only
template <size_t drivesize, size_t dirsize, size_t fnamesize, size_t extsize>
errno_t _wsplitpath_s(
 const wchar_t *path,
 wchar_t (&drive)[drivesize],
 wchar_t (&dir)[dirsize],
 wchar_t (&fname)[fnamesize],
 wchar_t (&ext)[extsize]
); // C++ only

Parameters

Breaks a path name into components. These are versions of _splitpath, _wsplitpath with security enhancements
as described in Security Features in the CRT.

path
Full path.

drive
Drive letter, followed by a colon (:). You can pass NULL for this parameter if you do not need the drive letter.

driveNumberOfElements
The size of the drive buffer in single-byte or wide characters. If drive is NULL, this value must be 0.

dir

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/splitpath-s-wsplitpath-s.md

Return Value

Error Conditions

CONDITION RETURN VALUE

path is NULL EINVAL

drive is NULL, driveNumberOfElements is non-zero EINVAL

drive is non-NULL, driveNumberOfElements is zero EINVAL

dir is NULL, dirNumberOfElements is non-zero EINVAL

dir is non-NULL, dirNumberOfElements is zero EINVAL

fname is NULL, nameNumberOfElements is non-zero EINVAL

fname is non-NULL, nameNumberOfElements is zero EINVAL

ext is NULL, extNumberOfElements is non-zero EINVAL

ext is non-NULL, extNumberOfElements is zero EINVAL

Remarks

Directory path, including trailing slash. Forward slashes (/), backslashes (\), or both may be used. You can pass
NULL for this parameter if you do not need the directory path.

dirNumberOfElements
The size of the dir buffer in single-byte or wide characters. If dir is NULL, this value must be 0.

fname
Base filename (without extension). You can pass NULL for this parameter if you do not need the filename.

nameNumberOfElements
The size of the fname buffer in single-byte or wide characters. If fname is NULL, this value must be 0.

ext
Filename extension, including leading period (.).You can pass NULL for this parameter if you do not need the
filename extension.

extNumberOfElements
The size of ext buffer in single-byte or wide characters. If ext is NULL, this value must be 0.

Zero if successful; an error code on failure.

If any of the above conditions occurs, the invalid parameter handler is invoked, as described in Parameter
Validation . If execution is allowed to continue, these functions set errno to EINVAL and return EINVAL.

If any of the buffers is too short to hold the result, these functions clear all the buffers to empty strings, set errno
to ERANGE , and return ERANGE .

The _splitpath_s function breaks a path into its four components. _splitpath_s automatically handles multibyte-
character string arguments as appropriate, recognizing multibyte-character sequences according to the
multibyte code page currently in use. _wsplitpath_s is a wide-character version of _splitpath_s; the arguments

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tsplitpath_s _splitpath_s _splitpath_s _wsplitpath_s

NAME VALUE

_MAX_DRIVE 3

_MAX_DIR 256

_MAX_FNAME 256

_MAX_EXT 256

Requirements
ROUTINE REQUIRED HEADER

_splitpath_s <stdlib.h>

_wsplitpath_s <stdlib.h> or <wchar.h>

Example

See also

to _wsplitpath_s are wide-character strings. These functions behave identically otherwise

Each component of the full path is stored in a separate buffer; the manifest constants _MAX_DRIVE ,
_MAX_DIR, _MAX_FNAME , and _MAX_EXT (defined in STDLIB.H) specify the maximum allowable size for
each file component. File components larger than the corresponding manifest constants cause heap corruption.

The following table lists the values of the manifest constants.

If the full path does not contain a component (for example, a filename), _splitpath_s assigns an empty string to
the corresponding buffer.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically, eliminating the need to specify a size argument. For more information, see Secure Template
Overloads.

The debug versions of these functions first fill the buffer with 0xFD. To disable this behavior, use
_CrtSetDebugFillThreshold.

For additional compatibility information, see Compatibility.

See the example for _makepath_s, _wmakepath_s.

File Handling
_splitpath, _wsplitpath
_fullpath, _wfullpath
_getmbcp

_makepath, _wmakepath
_setmbcp

sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
3/1/2019 • 3 minutes to read • Edit Online

Syntax
int sprintf(
 char *buffer,
 const char *format [,
 argument] ...
);
int _sprintf_l(
 char *buffer,
 const char *format,
 locale_t locale [,
 argument] ...
);
int swprintf(
 wchar_t *buffer,
 size_t count,
 const wchar_t *format [,
 argument]...
);
int _swprintf_l(
 wchar_t *buffer,
 size_t count,
 const wchar_t *format,
 locale_t locale [,
 argument] ...
);
int __swprintf_l(
 wchar_t *buffer,
 const wchar_t *format,
 locale_t locale [,
 argument] ...
);
template <size_t size>
int sprintf(
 char (&buffer)[size],
 const char *format [,
 argument] ...
); // C++ only
template <size_t size>
int _sprintf_l(
 char (&buffer)[size],
 const char *format,
 locale_t locale [,
 argument] ...
); // C++ only

Parameters

Write formatted data to a string. More secure versions of some of these functions are available; see
sprintf_s, _sprintf_s_l, swprintf_s, _swprintf_s_l. The secure versions of swprintf and _swprintf_l do not
take a count parameter.

buffer
Storage location for output

count

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/sprintf-sprintf-l-swprintf-swprintf-l-swprintf-l.md

Return Value

Remarks

IMPORTANT

Generic-Text Routine Mappings

Maximum number of characters to store in the Unicode version of this function.

format
Format-control string

argument
Optional arguments

locale
The locale to use.

For more information, see Format Specifications.

The number of characters written, or -1 if an error occurred. If buffer or format is a null pointer, the invalid
parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue,
these functions return -1 and set errno to EINVAL.

sprintf returns the number of bytes stored in buffer, not counting the terminating null character. swprintf
returns the number of wide characters stored in buffer, not counting the terminating null wide character.

The sprintf function formats and stores a series of characters and values in buffer. Each argument (if any)
is converted and output according to the corresponding format specification in format. The format
consists of ordinary characters and has the same form and function as the format argument for printf. A
null character is appended after the last character written. If copying occurs between strings that overlap,
the behavior is undefined.

Using sprintf, there is no way to limit the number of characters written, which means that code using sprintf is
susceptible to buffer overruns. Consider using the related function _snprintf, which specifies a maximum number of
characters to be written to buffer, or use _scprintf to determine how large a buffer is required. Also, ensure that
format is not a user-defined string.

swprintf is a wide-character version of sprintf; the pointer arguments to swprintf are wide-character
strings. Detection of encoding errors in swprintf may differ from that in sprintf. swprintf and fwprintf
behave identically except that swprintf writes output to a string rather than to a destination of type FILE ,
and swprintf requires the count parameter to specify the maximum number of characters to be written.
The versions of these functions with the _l suffix are identical except that they use the locale parameter
passed in instead of the current thread locale.

swprintf conforms to the ISO C Standard, which requires the second parameter, count, of type size_t. To
force the old nonstandard behavior, define _CRT_NON_CONFORMING_SWPRINTFS. In a future
version, the old behavior may be removed, so code should be changed to use the new conformant
behavior.

In C++, these functions have template overloads that invoke the newer, secure counterparts of these
functions. For more information, see Secure Template Overloads.

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_stprintf sprintf sprintf _swprintf

_stprintf_l _sprintf_l _sprintf_l __swprintf_l

Requirements
ROUTINE REQUIRED HEADER

sprintf, _sprintf_l <stdio.h>

swprintf, _swprintf_l <stdio.h> or <wchar.h>

Example
// crt_sprintf.c
// compile with: /W3
// This program uses sprintf to format various
// data and place them in the string named buffer.

#include <stdio.h>

int main(void)
{
 char buffer[200], s[] = "computer", c = 'l';
 int i = 35, j;
 float fp = 1.7320534f;

 // Format and print various data:
 j = sprintf(buffer, " String: %s\n", s); // C4996
 j += sprintf(buffer + j, " Character: %c\n", c); // C4996
 j += sprintf(buffer + j, " Integer: %d\n", i); // C4996
 j += sprintf(buffer + j, " Real: %f\n", fp);// C4996
 // Note: sprintf is deprecated; consider using sprintf_s instead

 printf("Output:\n%s\ncharacter count = %d\n", buffer, j);
}

Output:
 String: computer
 Character: l
 Integer: 35
 Real: 1.732053

character count = 79

Example

For additional compatibility information, see Compatibility.

// crt_swprintf.c
// wide character example
// also demonstrates swprintf returning error code
#include <stdio.h>

int main(void)
{
 wchar_t buf[100];
 int len = swprintf(buf, 100, L"%s", L"Hello world");
 printf("wrote %d characters\n", len);
 len = swprintf(buf, 100, L"%s", L"Hello\xffff world");
 // swprintf fails because string contains WEOF (\xffff)
 printf("wrote %d characters\n", len);
}

wrote 11 characters
wrote -1 characters

See also
Stream I/O
fprintf, _fprintf_l, fwprintf, _fwprintf_l
printf, _printf_l, wprintf, _wprintf_l
scanf, _scanf_l, wscanf, _wscanf_l
sscanf, _sscanf_l, swscanf, _swscanf_l
vprintf Functions

_sprintf_p, _sprintf_p_l, _swprintf_p, _swprintf_p_l
10/31/2018 • 3 minutes to read • Edit Online

Syntax
int _sprintf_p(
 char *buffer,
 size_t sizeOfBuffer,
 const char *format [,
 argument_list]
);
int _sprintf_p_l(
 char *buffer,
 size_t sizeOfBuffer,
 const char *format,
 locale_t locale [,
 argument_list]
);
int _swprintf_p(
 wchar_t *buffer,
 size_t sizeOfBuffer,
 const wchar_t *format [,
 argument_list]
);
int _swprintf_p_l(
 wchar_t *buffer,
 size_t sizeOfBuffer,
 const wchar_t *format,
 locale_t locale [,
 argument_list]
);

Parameters

Return Value

Write formatted data to a string with the ability to specify the order that the parameters are used in the format
string.

buffer
Storage location for output

sizeOfBuffer
Maximum number of characters to store.

format
Format-control string.

argument_list
Optional arguments to the format string.

locale
The locale to use.

For more information, see Format Specifications.

The number of characters written, or -1 if an error occurred.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/sprintf-p-sprintf-p-l-swprintf-p-swprintf-p-l.md

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_stprintf_p _sprintf_p _sprintf_p _swprintf_p

_stprintf_p_l _sprintf_p_l _sprintf_p_l _swprintf_p_l

Requirements
ROUTINE REQUIRED HEADER

_sprintf_p, _sprintf_p_l <stdio.h>

_swprintf_p, _swprintf_p_l <stdio.h> or <wchar.h>

Example

The _sprintf_p function formats and stores a series of characters and values in buffer. Each argument in the
argument_list (if any) is converted and output according to the corresponding format specification in format.
The format argument uses the format specification syntax for printf and wprintf functions. A null character is
appended after the last character written. If copying occurs between strings that overlap, the behavior is
undefined. The difference between _sprintf_p and sprintf_s is that _sprintf_p supports positional parameters,
which allows specifying the order in which the arguments are used in the format string. For more information,
see printf_p Positional Parameters.

_swprintf_p is a wide-character version of _sprintf_p; the pointer arguments to _swprintf_p are wide-character
strings. Detection of encoding errors in _swprintf_p may differ from that in _sprintf_p. _swprintf_p and
fwprintf_p behave identically except that _swprintf_p writes output to a string rather than to a destination of
type FILE , and _swprintf_p requires the count parameter to specify the maximum number of characters to be
written. The versions of these functions with the _l suffix are identical except that they use the locale parameter
passed in instead of the current thread locale.

_sprintf_p returns the number of bytes stored in buffer, not counting the terminating null character.
_swprintf_p returns the number of wide characters stored in buffer, not counting the terminating null wide
character. If buffer or format is a null pointer, or if the format string contains invalid formatting characters, the
invalid parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue,
these functions return -1 and set errno to EINVAL.

For additional compatibility information, see Compatibility.

// crt_sprintf_p.c
// This program uses _sprintf_p to format various
// data and place them in the string named buffer.
//

#include <stdio.h>

int main(void)
{
 char buffer[200],
 s[] = "computer", c = 'l';
 int i = 35,
 j;
 float fp = 1.7320534f;

 // Format and print various data:
 j = _sprintf_p(buffer, 200,
 " String: %s\n", s);
 j += _sprintf_p(buffer + j, 200 - j,
 " Character: %c\n", c);
 j += _sprintf_p(buffer + j, 200 - j,
 " Integer: %d\n", i);
 j += _sprintf_p(buffer + j, 200 - j,
 " Real: %f\n", fp);

 printf("Output:\n%s\ncharacter count = %d\n",
 buffer, j);
}

Output:
 String: computer
 Character: l
 Integer: 35
 Real: 1.732053

character count = 79

Example
// crt_swprintf_p.c
// This is the wide character example which
// also demonstrates _swprintf_p returning
// error code.
#include <stdio.h>

#define BUFFER_SIZE 100

int main(void)
{
 wchar_t buffer[BUFFER_SIZE];
 int len;

 len = _swprintf_p(buffer, BUFFER_SIZE, L"%2$s %1$d",
 0, L" marbles in your head.");
 _printf_p("Wrote %d characters\n", len);

 // _swprintf_p fails because string contains WEOF (\xffff)
 len = _swprintf_p(buffer, BUFFER_SIZE, L"%s",
 L"Hello\xffff world");
 _printf_p("Wrote %d characters\n", len);
}

Wrote 24 characters
Wrote -1 characters

See also
Stream I/O
_fprintf_p, _fprintf_p_l, _fwprintf_p, _fwprintf_p_l
fprintf, _fprintf_l, fwprintf, _fwprintf_l
_printf_p, _printf_p_l, _wprintf_p, _wprintf_p_l
printf, _printf_l, wprintf, _wprintf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
scanf, _scanf_l, wscanf, _wscanf_l
sscanf, _sscanf_l, swscanf, _swscanf_l
sscanf_s, _sscanf_s_l, swscanf_s, _swscanf_s_l
vprintf Functions
printf_p Positional Parameters

sprintf_s, _sprintf_s_l, swprintf_s, _swprintf_s_l
3/1/2019 • 3 minutes to read • Edit Online

Syntax
int sprintf_s(
 char *buffer,
 size_t sizeOfBuffer,
 const char *format,
 ...
);
int _sprintf_s_l(
 char *buffer,
 size_t sizeOfBuffer,
 const char *format,
 locale_t locale,
 ...
);
int swprintf_s(
 wchar_t *buffer,
 size_t sizeOfBuffer,
 const wchar_t *format,
 ...
);
int _swprintf_s_l(
 wchar_t *buffer,
 size_t sizeOfBuffer,
 const wchar_t *format,
 locale_t locale,
 ...
);
template <size_t size>
int sprintf_s(
 char (&buffer)[size],
 const char *format,
 ...
); // C++ only
template <size_t size>
int swprintf_s(
 wchar_t (&buffer)[size],
 const wchar_t *format,
 ...
); // C++ only

Parameters

Write formatted data to a string. These are versions of sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l with
security enhancements as described in Security Features in the CRT.

buffer
Storage location for output

sizeOfBuffer
Maximum number of characters to store.

format
Format-control string

...

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/sprintf-s-sprintf-s-l-swprintf-s-swprintf-s-l.md

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_stprintf_s sprintf_s sprintf_s swprintf_s

_stprintf_s_l _sprintf_s_l _sprintf_s_l _swprintf_s_l

Optional arguments to be formatted

locale
The locale to use.

For more information, see Format Specifications.

The number of characters written, or -1 if an error occurred. If buffer or format is a null pointer, sprintf_s and
swprintf_s return -1 and set errno to EINVAL.

sprintf_s returns the number of bytes stored in buffer, not counting the terminating null character. swprintf_s
returns the number of wide characters stored in buffer, not counting the terminating null wide character.

The sprintf_s function formats and stores a series of characters and values in buffer. Each argument (if any) is
converted and output according to the corresponding format specification in format. The format consists of
ordinary characters and has the same form and function as the format argument for printf. A null character is
appended after the last character written. If copying occurs between strings that overlap, the behavior is
undefined.

One main difference between sprintf_s and sprintf is that sprintf_s checks the format string for valid
formatting characters, whereas sprintf only checks if the format string or buffer are NULL pointers. If either
check fails, the invalid parameter handler is invoked, as described in Parameter Validation. If execution is
allowed to continue, the function returns -1 and sets errno to EINVAL.

The other main difference between sprintf_s and sprintf is that sprintf_s takes a length parameter specifying
the size of the output buffer in characters. If the buffer is too small for the formatted text, including the
terminating null, then the buffer is set to an empty string by placing a null character at buffer[0], and the invalid
parameter handler is invoked. Unlike _snprintf, sprintf_s guarantees that the buffer will be null-terminated
unless the buffer size is zero.

swprintf_s is a wide-character version of sprintf_s; the pointer arguments to swprintf_s are wide-character
strings. Detection of encoding errors in swprintf_s may differ from that in sprintf_s. The versions of these
functions with the _l suffix are identical except that they use the locale parameter passed in instead of the
current thread locale.

In C++, use of these functions is simplified by template overloads; the overloads can infer buffer length
automatically, which eliminates the need to specify a size argument, and they can automatically replace older,
non-secure functions with their newer, secure counterparts. For more information, see Secure Template
Overloads.

There are versions of sprintf_s that offer additional control over what happens if the buffer is too small. For
more information, see _snprintf_s, _snprintf_s_l, _snwprintf_s, _snwprintf_s_l.

Requirements
ROUTINE REQUIRED HEADER

sprintf_s, _sprintf_s_l C: <stdio.h>

C++: <cstdio> or <stdio.h>

swprintf_s, _swprintf_s_l C: <stdio.h> or <wchar.h>

C++: <cstdio>, <cwchar>, <stdio.h> or <wchar.h>

Example
// crt_sprintf_s.c
// This program uses sprintf_s to format various
// data and place them in the string named buffer.
//

#include <stdio.h>

int main(void)
{
 char buffer[200], s[] = "computer", c = 'l';
 int i = 35, j;
 float fp = 1.7320534f;

 // Format and print various data:
 j = sprintf_s(buffer, 200, " String: %s\n", s);
 j += sprintf_s(buffer + j, 200 - j, " Character: %c\n", c);
 j += sprintf_s(buffer + j, 200 - j, " Integer: %d\n", i);
 j += sprintf_s(buffer + j, 200 - j, " Real: %f\n", fp);

 printf_s("Output:\n%s\ncharacter count = %d\n", buffer, j);
}

Output:
 String: computer
 Character: l
 Integer: 35
 Real: 1.732053

character count = 79

Example

For additional compatibility information, see Compatibility.

// crt_swprintf_s.c
// wide character example
// also demonstrates swprintf_s returning error code
#include <stdio.h>

int main(void)
{
 wchar_t buf[100];
 int len = swprintf_s(buf, 100, L"%s", L"Hello world");
 printf("wrote %d characters\n", len);
 len = swprintf_s(buf, 100, L"%s", L"Hello\xffff world");
 // swprintf_s fails because string contains WEOF (\xffff)
 printf("wrote %d characters\n", len);
}

wrote 11 characters
wrote -1 characters

See also
Stream I/O
fprintf, _fprintf_l, fwprintf, _fwprintf_l
printf, _printf_l, wprintf, _wprintf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
scanf, _scanf_l, wscanf, _wscanf_l
sscanf, _sscanf_l, swscanf, _swscanf_l
vprintf Functions

sqrt, sqrtf, sqrtl
3/1/2019 • 2 minutes to read • Edit Online

Syntax
double sqrt(
 double x
);
float sqrt(
 float x
); // C++ only
long double sqrt(
 long double x
); // C++ only
float sqrtf(
 float x
);
long double sqrtl(
 long double x
);

Parameters

Remarks

Return Value

INPUT SEH EXCEPTION _MATHERR EXCEPTION

± QNAN,IND none _DOMAIN

- ∞ none _DOMAIN

x<0 none _DOMAIN

Requirements
FUNCTION C HEADER C++ HEADER

sqrt, sqrtf, sqrtl <math.h> <cmath>

Calculates the square root.

x
Non-negative floating-point value

Because C++ allows overloading, you can call overloads of sqrt that take float or long double types. In a C
program, sqrt always takes and returns double.

The sqrt functions return the square-root of x. By default, if x is negative, sqrt returns an indefinite NaN.

For compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/sqrt-sqrtf-sqrtl.md

Example
// crt_sqrt.c
// This program calculates a square root.

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 double question = 45.35, answer;
 answer = sqrt(question);
 if(question < 0)
 printf("Error: sqrt returns %f\n", answer);
 else
 printf("The square root of %.2f is %.2f\n", question, answer);
}

The square root of 45.35 is 6.73

See also
Floating-Point Support
exp, expf, expl
log, logf, log10, log10f
pow, powf, powl
_CIsqrt

srand
3/1/2019 • 2 minutes to read • Edit Online

Syntax
void srand(
 unsigned int seed
);

Parameters

Remarks

Requirements
ROUTINE REQUIRED HEADER

srand <stdlib.h>

Example

See also

Sets the starting seed value for the pseudorandom number generator used by the rand function.

seed
Seed for pseudorandom number generation

The srand function sets the starting point for generating a series of pseudorandom integers in the current thread.
To reinitialize the generator to create the same sequence of results, call the srand function and use the same seed
argument again. Any other value for seed sets the generator to a different starting point in the pseudorandom
sequence. rand retrieves the pseudorandom numbers that are generated. Calling rand before any call to srand
generates the same sequence as calling srand with seed passed as 1.

For additional compatibility information, see Compatibility.

See the example for rand.

Floating-Point Support
rand

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/srand.md

sscanf, _sscanf_l, swscanf, _swscanf_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int sscanf(
 const char *buffer,
 const char *format [,
 argument] ...
);
int _sscanf_l(
 const char *buffer,
 const char *format,
 locale_t locale [,
 argument] ...
);
int swscanf(
 const wchar_t *buffer,
 const wchar_t *format [,
 argument] ...
);
int _swscanf_l(
 const wchar_t *buffer,
 const wchar_t *format,
 locale_t locale [,
 argument] ...
);

Parameters

Return Value

Read formatted data from a string. More secure versions of these functions are available; see sscanf_s,
_sscanf_s_l, swscanf_s, _swscanf_s_l.

buffer
Stored data

format
Format-control string. For more information, see Format Specifications.

argument
Optional arguments

locale
The locale to use

Each of these functions returns the number of fields successfully converted and assigned; the return value
does not include fields that were read but not assigned. A return value of 0 indicates that no fields were
assigned. The return value is EOF for an error or if the end of the string is reached before the first conversion.

If buffer or format is a NULL pointer, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, these functions return -1 and set errno to EINVAL.

For information on these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/sscanf-sscanf-l-swscanf-swscanf-l.md

Remarks

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_stscanf sscanf sscanf swscanf

_stscanf_l _sscanf_l _sscanf_l _swscanf_l

Requirements
ROUTINE REQUIRED HEADER

sscanf, _sscanf_l <stdio.h>

swscanf, _swscanf_l <stdio.h> or <wchar.h>

Example

The sscanf function reads data from buffer into the location given by each argument. Every argument must
be a pointer to a variable with a type that corresponds to a type specifier in format. The format argument
controls the interpretation of the input fields and has the same form and function as the format argument for
the scanf function. If copying takes place between strings that overlap, the behavior is undefined.

When reading a string with sscanf, always specify a width for the %s format (for example, "%32s" instead of "%s");
otherwise, improperly formatted input can easily cause a buffer overrun.

swscanf is a wide-character version of sscanf; the arguments to swscanf are wide-character strings. sscanf
does not handle multibyte hexadecimal characters. swscanf does not handle Unicode full-width hexadecimal
or "compatibility zone" characters. Otherwise, swscanf and sscanf behave identically.

The versions of these functions with the _l suffix are identical except that they use the locale parameter
passed in instead of the current thread locale.

For additional compatibility information, see Compatibility.

// crt_sscanf.c
// compile with: /W3
// This program uses sscanf to read data items
// from a string named tokenstring, then displays them.

#include <stdio.h>

int main(void)
{
 char tokenstring[] = "15 12 14...";
 char s[81];
 char c;
 int i;
 float fp;

 // Input various data from tokenstring:
 // max 80 character string:
 sscanf(tokenstring, "%80s", s); // C4996
 sscanf(tokenstring, "%c", &c); // C4996
 sscanf(tokenstring, "%d", &i); // C4996
 sscanf(tokenstring, "%f", &fp); // C4996
 // Note: sscanf is deprecated; consider using sscanf_s instead

 // Output the data read
 printf("String = %s\n", s);
 printf("Character = %c\n", c);
 printf("Integer: = %d\n", i);
 printf("Real: = %f\n", fp);
}

String = 15
Character = 1
Integer: = 15
Real: = 15.000000

See also
Stream I/O
fscanf, _fscanf_l, fwscanf, _fwscanf_l
scanf, _scanf_l, wscanf, _wscanf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
snprintf, _snprintf, _snprintf_l, _snwprintf, _snwprintf_l

sscanf_s, _sscanf_s_l, swscanf_s, _swscanf_s_l
3/1/2019 • 3 minutes to read • Edit Online

Syntax
int sscanf_s(
 const char *buffer,
 const char *format [,
 argument] ...
);
int _sscanf_s_l(
 const char *buffer,
 const char *format,
 locale_t locale [,
 argument] ...
);
int swscanf_s(
 const wchar_t *buffer,
 const wchar_t *format [,
 argument] ...
);
int _swscanf_s_l(
 const wchar_t *buffer,
 const wchar_t *format,
 locale_t locale [,
 argument] ...
);

Parameters

Return Value

Reads formatted data from a string. These versions of sscanf, _sscanf_l, swscanf, _swscanf_l have security
enhancements, as described in Security Features in the CRT.

buffer
Stored data

format
Format-control string. For more information, see Format Specification Fields: scanf and wscanf Functions.

argument
Optional arguments

locale
The locale to use

Each of these functions returns the number of fields that are successfully converted and assigned; the return
value does not include fields that were read but not assigned. A return value of 0 indicates that no fields were
assigned. The return value is EOF for an error or if the end of the string is reached before the first conversion.

If buffer or format is a NULL pointer, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, these functions return -1 and set errno to EINVAL

For information about these and other error codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/sscanf-s-sscanf-s-l-swscanf-s-swscanf-s-l.md

Remarks

wchar_t ws[10];
swscanf_s(in_str, L"%9s", ws, (unsigned)_countof(ws)); // buffer size is 10, width specification is 9

wchar_t wc;
swscanf_s(in_str, L"%c", &wc, 1);

char c[4];
sscanf_s(input, "%4c", &c, (unsigned)_countof(c)); // not null terminated

NOTE

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_stscanf_s sscanf_s sscanf_s swscanf_s

_stscanf_s_l _sscanf_s_l _sscanf_s_l _swscanf_s_l

The sscanf_s function reads data from buffer into the location that's given by each argument. The arguments
after the format string specify pointers to variables that have a type that corresponds to a type specifier in
format. Unlike the less secure version sscanf, a buffer size parameter is required when you use the type field
characters c, C, s, S, or string control sets that are enclosed in []. The buffer size in characters must be supplied
as an additional parameter immediately after each buffer parameter that requires it. For example, if you are
reading into a string, the buffer size for that string is passed as follows:

The buffer size includes the terminating null. A width specification field may be used to ensure that the token
that's read in will fit into the buffer. If no width specification field is used, and the token read in is too big to fit in
the buffer, nothing is written to that buffer.

In the case of characters, a single character may be read as follows:

This example reads a single character from the input string and then stores it in a wide-character buffer. When
you read multiple characters for non-null terminated strings, unsigned integers are used as the width
specification and the buffer size.

For more information, see scanf_s, _scanf_s_l, wscanf_s, _wscanf_s_l and scanf Type Field Characters.

The size parameter is of type unsigned, not size_t. When compiling for 64-bit targets, use a static cast to convert
_countof or sizeof results to the correct size.

The format argument controls the interpretation of the input fields and has the same form and function as the
format argument for the scanf_s function. If copying occurs between strings that overlap, the behavior is
undefined.

swscanf_s is a wide-character version of sscanf_s; the arguments to swscanf_s are wide-character strings.
sscanf_s does not handle multibyte hexadecimal characters. swscanf_s does not handle Unicode full-width
hexadecimal or "compatibility zone" characters. Otherwise, swscanf_s and sscanf_s behave identically.

The versions of these functions that have the _l suffix are identical except that they use the locale parameter
that's passed in instead of the current thread locale.

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

Requirements
ROUTINE REQUIRED HEADER

sscanf_s, _sscanf_s_l <stdio.h>

swscanf_s, _swscanf_s_l <stdio.h> or <wchar.h>

Example
// crt_sscanf_s.c
// This program uses sscanf_s to read data items
// from a string named tokenstring, then displays them.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char tokenstring[] = "15 12 14...";
 char s[81];
 char c;
 int i;
 float fp;

 // Input various data from tokenstring:
 // max 80 character string plus null terminator
 sscanf_s(tokenstring, "%s", s, (unsigned)_countof(s));
 sscanf_s(tokenstring, "%c", &c, (unsigned)sizeof(char));
 sscanf_s(tokenstring, "%d", &i);
 sscanf_s(tokenstring, "%f", &fp);

 // Output the data read
 printf_s("String = %s\n", s);
 printf_s("Character = %c\n", c);
 printf_s("Integer: = %d\n", i);
 printf_s("Real: = %f\n", fp);
}

String = 15
Character = 1
Integer: = 15
Real: = 15.000000

See also

For additional compatibility information, see Compatibility.

Stream I/O
fscanf, _fscanf_l, fwscanf, _fwscanf_l
scanf, _scanf_l, wscanf, _wscanf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l

snprintf, _snprintf, _snprintf_l, _snwprintf, _snwprintf_l

_stat, _stat32, _stat64, _stati64, _stat32i64,
_stat64i32, _wstat, _wstat32, _wstat64, _wstati64,
_wstat32i64, _wstat64i32
11/8/2018 • 5 minutes to read • Edit Online

Syntax
int _stat(
 const char *path,
 struct _stat *buffer
);
int _stat32(
 const char *path,
 struct __stat32 *buffer
);
int _stat64(
 const char *path,
 struct __stat64 *buffer
);
int _stati64(
 const char *path,
 struct _stati64 *buffer
);
int _stat32i64(
 const char *path,
 struct _stat32i64 *buffer
);
int _stat64i32(
 const char *path,
 struct _stat64i32 *buffer
);
int _wstat(
 const wchar_t *path,
 struct _stat *buffer
);
int _wstat32(
 const wchar_t *path,
 struct __stat32 *buffer
);
int _wstat64(
 const wchar_t *path,
 struct __stat64 *buffer
);
int _wstati64(
 const wchar_t *path,
 struct _stati64 *buffer
);
int _wstat32i64(
 const wchar_t *path,
 struct _stat32i64 *buffer
);
int _wstat64i32(
 const wchar_t *path,
 struct _stat64i32 *buffer
);

Get status information on a file.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/stat-functions.md

Parameters

Return Value

Remarks

NOTE

Time Type and File Length Type Variations of _stat

FUNCTIONS
_USE_32BIT_TIME_T
DEFINED? TIME TYPE FILE LENGTH TYPE

_stat, _wstat Not defined 64-bit 32-bit

_stat, _wstat Defined 32-bit 32-bit

_stat32, _wstat32 Not affected by the macro
definition

32-bit 32-bit

path
Pointer to a string containing the path of existing file or directory.

buffer
Pointer to structure that stores results.

Each of these functions returns 0 if the file-status information is obtained. A return value of -1 indicates an
error, in which case errno is set to ENOENT, indicating that the filename or path could not be found. A
return value of EINVAL indicates an invalid parameter ; errno is also set to EINVAL in this case.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on this, and other, return codes.

The date stamp on a file can be represented if it is later than midnight, January 1, 1970, and before 23:59:59,
December 31, 3000, UTC, unless you use _stat32 or _wstat32, or have defined _USE_32BIT_TIME_T, in
which case the date can be represented only until 23:59:59 January 18, 2038, UTC.

The _stat function obtains information about the file or directory specified by path and stores it in the
structure pointed to by buffer. _stat automatically handles multibyte-character string arguments as
appropriate, recognizing multibyte-character sequences according to the multibyte code page currently in
use.

_wstat is a wide-character version of _stat; the path argument to _wstat is a wide-character string. _wstat
and _stat behave identically except that _wstat does not handle multibyte-character strings.

Variations of these functions support 32- or 64-bit time types, and 32- or 64-bit file lengths. The first
numerical suffix (32 or 64) indicates the size of the time type used; the second suffix is either i32 or i64,
indicating whether the file size is represented as a 32-bit or 64-bit integer.

_stat is equivalent to _stat64i32, and struct _stat contains a 64-bit time. This is true unless
_USE_32BIT_TIME_T is defined, in which case the old behavior is in effect; _stat uses a 32-bit time, and
struct _stat contains a 32-bit time. The same is true for _stati64.

_wstat does not work with Windows Vista symbolic links. In these cases, _wstat will always report a file size of 0. _stat
does work correctly with symbolic links.

This function validates its parameters. If either path or buffer is NULL, the invalid parameter handler is
invoked, as described in Parameter Validation.

_stat64, _wstat64 Not affected by the macro
definition

64-bit 64-bit

_stati64, _wstati64 Not defined 64-bit 64-bit

_stati64, _wstati64 Defined 32-bit 64-bit

_stat32i64, _wstat32i64 Not affected by the macro
definition

32-bit 64-bit

_stat64i32, _wstat64i32 Not affected by the macro
definition

64-bit 32-bit

FUNCTIONS
_USE_32BIT_TIME_T
DEFINED? TIME TYPE FILE LENGTH TYPE

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tstat _stat _stat _wstat

_tstat64 _stat64 _stat64 _wstat64

_tstati64 _stati64 _stati64 _wstati64

_tstat32i64 _stat32i64 _stat32i64 _wstat32i64

_tstat64i32 _stat64i32 _stat64i32 _wstat64i32

FIELD

st_gid Numeric identifier of group that owns the file (UNIX-
specific) This field will always be zero on Windows systems.
A redirected file is classified as a Windows file.

st_atime Time of last access of file. Valid on NTFS but not on FAT
formatted disk drives.

st_ctime Time of creation of file. Valid on NTFS but not on FAT
formatted disk drives.

st_dev Drive number of the disk containing the file (same as
st_rdev).

st_ino Number of the information node (the inode) for the file
(UNIX-specific). On UNIX file systems, the inode describes
the file date and time stamps, permissions, and content.
When files are hard-linked to one another, they share the
same inode. The inode, and therefore st_ino, has no
meaning in the FAT, HPFS, or NTFS file systems.

The _stat structure, defined in SYS\STAT.H, includes the following fields.

st_mode Bit mask for file-mode information. The _S_IFDIR bit is set
if path specifies a directory; the _S_IFREG bit is set if path
specifies an ordinary file or a device. User read/write bits
are set according to the file's permission mode; user
execute bits are set according to the filename extension.

st_mtime Time of last modification of file.

st_nlink Always 1 on non-NTFS file systems.

st_rdev Drive number of the disk containing the file (same as
st_dev).

st_size Size of the file in bytes; a 64-bit integer for variations with
the i64 suffix.

st_uid Numeric identifier of user who owns file (UNIX-specific).
This field will always be zero on Windows systems. A
redirected file is classified as a Windows file.

FIELD

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADERS

_stat, _stat32, _stat64, _stati64,
_stat32i64, _stat64i32

<sys/types.h> followed by
<sys/stat.h>

<errno.h>

_wstat, _wstat32, _wstat64,
_wstati64, _wstat32i64, _wstat64i32

<sys/types.h> followed by
<sys/stat.h> or <wchar.h>

<errno.h>

Example

If path refers to a device, the st_size, various time fields, st_dev, and st_rdev fields in the _stat structure are
meaningless. Because STAT.H uses the _dev_t type that is defined in TYPES.H, you must include TYPES.H
before STAT.H in your code.

For additional compatibility information, see Compatibility.

// crt_stat.c
// This program uses the _stat function to
// report information about the file named crt_stat.c.

#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <errno.h>

int main(void)
{
 struct _stat buf;
 int result;
 char timebuf[26];
 char* filename = "crt_stat.c";
 errno_t err;

 // Get data associated with "crt_stat.c":
 result = _stat(filename, &buf);

 // Check if statistics are valid:
 if(result != 0)
 {
 perror("Problem getting information");
 switch (errno)
 {
 case ENOENT:
 printf("File %s not found.\n", filename);
 break;
 case EINVAL:
 printf("Invalid parameter to _stat.\n");
 break;
 default:
 /* Should never be reached. */
 printf("Unexpected error in _stat.\n");
 }
 }
 else
 {
 // Output some of the statistics:
 printf("File size : %ld\n", buf.st_size);
 printf("Drive : %c:\n", buf.st_dev + 'A');
 err = ctime_s(timebuf, 26, &buf.st_mtime);
 if (err)
 {
 printf("Invalid arguments to ctime_s.");
 exit(1);
 }
 printf("Time modified : %s", timebuf);
 }
}

File size : 732
Drive : C:
Time modified : Thu Feb 07 14:39:36 2002

See also
File Handling
_access, _waccess
_fstat, _fstat32, _fstat64, _fstati64, _fstat32i64, _fstat64i32
_getmbcp

_setmbcp

_STATIC_ASSERT Macro
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_STATIC_ASSERT(
 booleanExpression
);

Parameters

Remarks

Example

// crt__static_assert.c

#include <crtdbg.h>
#include <stdio.h>

_STATIC_ASSERT(sizeof(int) >= 2);
_STATIC_ASSERT(sizeof(long) == 1); // C2466

int main()
{
 printf("I am sure that sizeof(int) will be >= 2: %d\n",
 sizeof(int));
 printf("I am not so sure that sizeof(long) == 1: %d\n",
 sizeof(long));
}

Requirements
MACRO REQUIRED HEADER

_STATIC_ASSERT <crtdbg.h>

See also

Evaluate an expression at compile time and generate an error when the result is FALSE .

booleanExpression
Expression (including pointers) that evaluates to nonzero (TRUE) or 0 (FALSE).

This macro resembles the _ASSERT and _ASSERTE macros, except that booleanExpression is evaluated at compile
time instead of at runtime. If booleanExpression evaluates to FALSE (0), Compiler Error C2466 is generated.

In this example, we check whether the sizeof an int is larger than or equal to 2 bytes and whether the sizeof a long
is 1 byte. The program will not compile and it will generate Compiler Error C2466 because a long is larger than 1
byte.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/static-assert-macro.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-errors-1/compiler-error-c2466
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/sizeof-operator-c
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/sizeof-operator-c
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-errors-1/compiler-error-c2466

Alphabetical Function Reference
_ASSERT, _ASSERTE, _ASSERT_EXPR Macros

_status87, _statusfp, _statusfp2
10/31/2018 • 2 minutes to read • Edit Online

Syntax
unsigned int _status87(void);
unsigned int _statusfp(void);
void _statusfp2(unsigned int *px86, unsigned int *pSSE2)

Parameters

Return Value

Remarks

Gets the floating-point status word.

px86
This address is filled with the status word for the x87 floating-point unit.

pSSE2
This address is filled with the status word for the SSE2 floating-point unit.

For _status87 and _statusfp, the bits in the value that's returned indicate the floating-point status. See the
FLOAT.H include file for a definition of the bits that are returned by _statusfp. Many math library functions
modify the floating-point status word, with unpredictable results. Optimization can reorder, combine, and
eliminate floating-point operations around calls to _status87, _statusfp, and related functions. Use the /Od
(Disable (Debug)) compiler option or the fenv_access pragma directive to prevent optimizations that reorder
floating-point operations. Return values from _clearfp and _statusfp, and also the return parameters of
_statusfp2, are more reliable if fewer floating-point operations are performed between known states of the
floating-point status word.

The _statusfp function gets the floating-point status word. The status word is a combination of the floating-
point processor status and other conditions detected by the floating-point exception handler—for example,
floating-point stack overflow and underflow. Unmasked exceptions are checked for before the contents of the
status word are returned. This means that the caller is informed of pending exceptions. On x86 platforms,
_statusfp returns a combination of the x87 and SSE2 floating-point status. On x64 platforms, the status that's
returned is based on the SSE’s MXCSR status. On ARM platforms, _statusfp returns status from the FPSCR
register.

_statusfp is a platform-independent, portable version of _status87. It is identical to _status87 on Intel (x86)
platforms and is also supported by the x64 and ARM platforms. To ensure that your floating-point code is
portable to all architectures, use _statusfp. If you are only targeting x86 platforms, you can use either _status87
or _statusfp.

We recommend _statusfp2 for chips (such as the Pentium IV) that have both an x87 and an SSE2 floating-point
processor. For _statusfp2, the addresses are filled by using the floating-point status word for both the x87 or the
SSE2 floating-point processor. For a chip that supports x87 and SSE2 floating-point processors,
EM_AMBIGUOUS is set to 1 if _statusfp or _controlfp is used and the action was ambiguous because it could
refer to the x87 or the SSE2 floating-point status word. The _statusfp2 function is only supported on x86
platforms.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/status87-statusfp-statusfp2.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/od-disable-debug
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/fenv-access

Requirements
ROUTINE REQUIRED HEADER

_status87, _statusfp, _statusfp2 <float.h>

Example
// crt_statusfp.c
// Build by using: cl /W4 /Ox /nologo crt_statusfp.c
// This program creates various floating-point errors and
// then uses _statusfp to display messages that indicate these problems.

#include <stdio.h>
#include <float.h>
#pragma fenv_access(on)

double test(void)
{
 double a = 1e-40;
 float b;
 double c;

 printf("Status = 0x%.8x - clear\n", _statusfp());

 // Assignment into b is inexact & underflows:
 b = (float)(a + 1e-40);
 printf("Status = 0x%.8x - inexact, underflow\n", _statusfp());

 // c is denormal:
 c = b / 2.0;
 printf("Status = 0x%.8x - inexact, underflow, denormal\n",
 _statusfp());

 // Clear floating point status:
 _clearfp();
 return c;
}

int main(void)
{
 return (int)test();
}

Status = 0x00000000 - clear
Status = 0x00000003 - inexact, underflow
Status = 0x00080003 - inexact, underflow, denormal

See also

These functions are not useful for /clr (Common Language Runtime Compilation) because the common
language runtime (CLR) only supports the default floating-point precision.

For additional compatibility information, see Compatibility.

Floating-Point Support
_clear87, _clearfp
_control87, _controlfp, __control87_2

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation

strcat, wcscat, _mbscat
3/1/2019 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
char *strcat(
 char *strDestination,
 const char *strSource
);
wchar_t *wcscat(
 wchar_t *strDestination,
 const wchar_t *strSource
);
unsigned char *_mbscat(
 unsigned char *strDestination,
 const unsigned char *strSource
);
template <size_t size>
char *strcat(
 char (&strDestination)[size],
 const char *strSource
); // C++ only
template <size_t size>
wchar_t *wcscat(
 wchar_t (&strDestination)[size],
 const wchar_t *strSource
); // C++ only
template <size_t size>
unsigned char *_mbscat(
 unsigned char (&strDestination)[size],
 const unsigned char *strSource
); // C++ only

Parameters

Return Value

Remarks

Appends a string. More secure versions of these functions are available; see strcat_s, wcscat_s, _mbscat_s.

_mbscat_s cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions
not supported in Universal Windows Platform apps.

strDestination
Null-terminated destination string.

strSource
Null-terminated source string.

Each of these functions returns the destination string (strDestination). No return value is reserved to indicate an
error.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strcat-wcscat-mbscat.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcscat strcat _mbscat wcscat

Requirements
ROUTINE REQUIRED HEADER

strcat <string.h>

wcscat <string.h> or <wchar.h>

_mbscat <mbstring.h>

Example

See also

The strcat function appends strSource to strDestination and terminates the resulting string with a null character.
The initial character of strSource overwrites the terminating null character of strDestination. The behavior of
strcat is undefined if the source and destination strings overlap.

Because strcat does not check for sufficient space in strDestination before appending strSource, it is a potential cause of
buffer overruns. Consider using strncat instead.

wcscat and _mbscat are wide-character and multibyte-character versions of strcat. The arguments and return
value of wcscat are wide-character strings; those of _mbscat are multibyte-character strings. These three
functions behave identically otherwise.

In C++, these functions have template overloads that invoke the newer, secure counterparts of these functions.
For more information, see Secure Template Overloads.

For additional compatibility information, see Compatibility.

See the example for strcpy.

String Manipulation
strncat, _strncat_l, wcsncat, _wcsncat_l, _mbsncat, _mbsncat_l
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
strncpy, _strncpy_l, wcsncpy, _wcsncpy_l, _mbsncpy, _mbsncpy_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
strrchr, wcsrchr, _mbsrchr, _mbsrchr_l
strspn, wcsspn, _mbsspn, _mbsspn_l

strcat_s, wcscat_s, _mbscat_s, _mbscat_s_l
3/1/2019 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
errno_t strcat_s(
 char *strDestination,
 size_t numberOfElements,
 const char *strSource
);
errno_t wcscat_s(
 wchar_t *strDestination,
 size_t numberOfElements,
 const wchar_t *strSource
);
errno_t _mbscat_s(
 unsigned char *strDestination,
 size_t numberOfElements,
 const unsigned char *strSource
);
errno_t _mbscat_s_l(
 unsigned char *strDestination,
 size_t numberOfElements,
 const unsigned char *strSource,
 _locale_t locale
);
template <size_t size>
errno_t strcat_s(
 char (&strDestination)[size],
 const char *strSource
); // C++ only
template <size_t size>
errno_t wcscat_s(
 wchar_t (&strDestination)[size],
 const wchar_t *strSource
); // C++ only
template <size_t size>
errno_t _mbscat_s(
 unsigned char (&strDestination)[size],
 const unsigned char *strSource
); // C++ only
template <size_t size>
errno_t _mbscat_s_l(
 unsigned char (&strDestination)[size],
 const unsigned char *strSource,
 _locale_t locale
); // C++ only

Parameters

Appends a string. These versions of strcat, wcscat, _mbscat have security enhancements, as described in Security
Features in the CRT.

_mbscat_s and _mbscat_s_l cannot be used in applications that execute in the Windows Runtime. For more information,
see CRT functions not supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strcat-s-wcscat-s-mbscat-s.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Return Value

Error Conditions

STRDESTINATION NUMBEROFELEMENTS STRSOURCE RETURN VALUE
CONTENTS OF
STRDESTINATION

NULL or
unterminated

any any EINVAL not modified

any any NULL EINVAL strDestination[0] set
to 0

any 0, or too small any ERANGE strDestination[0] set
to 0

Remarks

char buf[16];
strcpy_s(buf, 16, "Start");
strcat_s(buf, 16, " End"); // Correct
strcat_s(buf, 16 - strlen(buf), " End"); // Incorrect

strDestination
Null-terminated destination string buffer.

numberOfElements
Size of the destination string buffer.

strSource
Null-terminated source string buffer.

locale
Locale to use.

Zero if successful; an error code on failure.

The strcat_s function appends strSource to strDestination and terminates the resulting string with a null
character. The initial character of strSource overwrites the terminating null character of strDestination. The
behavior of strcat_s is undefined if the source and destination strings overlap.

Note that the second parameter is the total size of the buffer, not the remaining size:

wcscat_s and _mbscat_s are wide-character and multibyte-character versions of strcat_s. The arguments and
return value of wcscat_s are wide-character strings; those of _mbscat_s are multibyte-character strings. These
three functions behave identically otherwise.

If strDestination is a null pointer, or is not null-terminated, or if strSource is a NULL pointer, or if the destination
string is too small, the invalid parameter handler is invoked, as described in Parameter Validation. If execution is
allowed to continue, these functions return EINVAL and set errno to EINVAL.

The versions of functions that have the _l suffix have the same behavior, but use the locale parameter that's
passed in instead of the current locale. For more information, see Locale.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically (eliminating the need to specify a size argument) and they can automatically replace older, non-
secure functions with their newer, secure counterparts. For more information, see Secure Template Overloads.

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcscat_s strcat_s _mbscat_s wcscat_s

Requirements
ROUTINE REQUIRED HEADER

strcat_s <string.h>

wcscat_s <string.h> or <wchar.h>

_mbscat_s <mbstring.h>

Example

See also

The debug versions of these functions first fill the buffer with 0xFD. To disable this behavior, use
_CrtSetDebugFillThreshold.

For additional compatibility information, see Compatibility.

See the code example in strcpy_s, wcscpy_s, _mbscpy_s.

String Manipulation
strncat, _strncat_l, wcsncat, _wcsncat_l, _mbsncat, _mbsncat_l
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
strncpy, _strncpy_l, wcsncpy, _wcsncpy_l, _mbsncpy, _mbsncpy_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
strrchr, wcsrchr, _mbsrchr, _mbsrchr_l
strspn, wcsspn, _mbsspn, _mbsspn_l

strchr, wcschr, _mbschr, _mbschr_l
10/31/2018 • 3 minutes to read • Edit Online

IMPORTANT

Syntax

Finds a character in a string, by using the current locale or a specified LC_CTYPE conversion-state category.

_mbschr and _mbschr_l cannot be used in applications that execute in the Windows Runtime. For more information,
see CRT functions not supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strchr-wcschr-mbschr-mbschr-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

char *strchr(
 const char *str,
 int c
); // C only
char *strchr(
 char * str,
 int c
); // C++ only
const char *strchr(
 const char * str,
 int c
); // C++ only
wchar_t *wcschr(
 const wchar_t *str,
 wchar_t c
); // C only
wchar_t *wcschr(
 wchar_t *str,
 wchar_t c
); // C++ only
const wchar_t *wcschr(
 const wchar_t *str,
 wchar_t c
); // C++ only
unsigned char *_mbschr(
 const unsigned char *str,
 unsigned int c
); // C only
unsigned char *_mbschr(
 unsigned char *str,
 unsigned int c
); // C++ only
const unsigned char *_mbschr(
 const unsigned char *str,
 unsigned int c
); // C++ only
unsigned char *_mbschr_l(
 const unsigned char *str,
 unsigned int c,
 _locale_t locale
); // C only
unsigned char *_mbschr_l(
 unsigned char *str,
 unsigned int c,
 _locale_t locale
); // C++ only
const unsigned char *_mbschr_l(
 const unsigned char *str,
 unsigned int c,
 _locale_t locale
); // C++ only

Parameters

Return Value

str
Null-terminated source string.

c
Character to be located.

locale
Locale to use.

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcschr strchr _mbschr wcschr

_n/a n/a _mbschr_l n/a

Requirements
ROUTINE REQUIRED HEADER

strchr <string.h>

wcschr <string.h> or <wchar.h>

_mbschr , _mbschr_l <mbstring.h>

Example

Each of these functions returns a pointer to the first occurrence of c in str, or NULL if c is not found.

The strchr function finds the first occurrence of c in str, or it returns NULL if c is not found. The null terminating
character is included in the search.

wcschr , _mbschr and _mbschr_l are wide-character and multibyte-character versions of strchr . The
arguments and return value of wcschr are wide-character strings; those of _mbschr are multibyte-character
strings. _mbschr recognizes multibyte-character sequences. Also, if the string is a null pointer, _mbschr invokes
the invalid parameter handler, as described in Parameter Validation. If execution is allowed to continue, _mbschr

returns NULL and sets errno to EINVAL. strchr and wcschr do not validate their parameters. These three
functions behave identically otherwise.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; for more information,
see setlocale. The versions of these functions without the _l suffix use the current locale for this locale-dependent
behavior ; the versions with the _l suffix are identical except that they use the locale parameter passed in instead.
For more information, see Locale.

In C, these functions take a const pointer for the first argument. In C++, two overloads are available. The
overload taking a pointer to const returns a pointer to const; the version that takes a pointer to non-const
returns a pointer to non-const. The macro _CRT_CONST_CORRECT_OVERLOADS is defined if both the const
and non-const versions of these functions are available. If you require the non-const behavior for both C++
overloads, define the symbol _CONST_RETURN.

For more information about compatibility, see Compatibility.

// crt_strchr.c
//
// This program illustrates searching for a character
// with strchr (search forward) or strrchr (search backward).
//

#include <string.h>
#include <stdio.h>

int ch = 'r';

char string[] = "The quick brown dog jumps over the lazy fox";
char fmt1[] = " 1 2 3 4 5";
char fmt2[] = "12345678901234567890123456789012345678901234567890";

int main(void)
{
 char *pdest;
 int result;

 printf_s("String to be searched:\n %s\n", string);
 printf_s(" %s\n %s\n\n", fmt1, fmt2);
 printf_s("Search char: %c\n", ch);

 // Search forward.
 pdest = strchr(string, ch);
 result = (int)(pdest - string + 1);
 if (pdest != NULL)
 printf_s("Result: first %c found at position %d\n",
 ch, result);
 else
 printf_s("Result: %c not found\n", ch);

 // Search backward.
 pdest = strrchr(string, ch);
 result = (int)(pdest - string + 1);
 if (pdest != NULL)
 printf_s("Result: last %c found at position %d\n", ch, result);
 else
 printf_s("Result:\t%c not found\n", ch);
}

String to be searched:
 The quick brown dog jumps over the lazy fox
 1 2 3 4 5
 12345678901234567890123456789012345678901234567890

Search char: r
Result: first r found at position 12
Result: last r found at position 30

See also
String Manipulation
Locale
Interpretation of Multibyte-Character Sequences
strcspn, wcscspn, _mbscspn, _mbscspn_l
strncat, _strncat_l, wcsncat, _wcsncat_l, _mbsncat, _mbsncat_l
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
strncpy, _strncpy_l, wcsncpy, _wcsncpy_l, _mbsncpy, _mbsncpy_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l

strpbrk, wcspbrk, _mbspbrk, _mbspbrk_l
strrchr, wcsrchr, _mbsrchr, _mbsrchr_l
strstr, wcsstr, _mbsstr, _mbsstr_l

strcmp, wcscmp, _mbscmp, _mbscmp_l
2/4/2019 • 3 minutes to read • Edit Online

IMPORTANT

Syntax
int strcmp(
 const char *string1,
 const char *string2
);
int wcscmp(
 const wchar_t *string1,
 const wchar_t *string2
);
int _mbscmp(
 const unsigned char *string1,
 const unsigned char *string2
);
int _mbscmp_l(
 const unsigned char *string1,
 const unsigned char *string2,
 _locale_t locale
);

Parameters

Return Value

VALUE RELATIONSHIP OF STRING1 TO STRING2

< 0 string1 is less than string2

0 string1 is identical to string2

> 0 string1 is greater than string2

Compare strings.

_mbscmp and _mbscmp_l cannot be used in applications that execute in the Windows Runtime. For more information,
see CRT functions not supported in Universal Windows Platform apps.

string1, string2
Null-terminated strings to compare.

locale
Locale to use.

The return value for each of these functions indicates the ordinal relation of string1 to string2.

On a parameter validation error, _mbscmp and _mbscmp_l return _NLSCMPERROR, which is defined in
<string.h> and <mbstring.h>.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strcmp-wcscmp-mbscmp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcscmp strcmp _mbscmp wcscmp

Requirements
ROUTINE REQUIRED HEADER

strcmp <string.h>

wcscmp <string.h> or <wchar.h>

_mbscmp <mbstring.h>

Libraries

The strcmp function performs an ordinal comparison of string1 and string2 and returns a value that indicates
their relationship. wcscmp and _mbscmp are, respectively, wide-character and multibyte-character versions
of strcmp. _mbscmp recognizes multibyte-character sequences according to the current multibyte code page
and returns _NLSCMPERROR on an error. _mbscmp_l has the same behavior, but uses the locale parameter
that's passed in instead of the current locale. For more information, see Code Pages. Also, if string1 or string2
is a null pointer, _mbscmp invokes the invalid parameter handler, as described in Parameter Validation. If
execution is allowed to continue, _mbscmp and _mbscmp_l return _NLSCMPERROR and set errno to
EINVAL. strcmp and wcscmp do not validate their parameters. These functions behave identically otherwise.

The strcmp functions differ from the strcoll functions in that strcmp comparisons are ordinal, and are not
affected by locale. strcoll compares strings lexicographically by using the LC_COLLATE category of the
current locale. For more information about the LC_COLLATE category, see setlocale, _wsetlocale.

In the "C" locale, the order of characters in the character set (ASCII character set) is the same as the
lexicographic character order. However, in other locales, the order of characters in the character set may differ
from the lexicographic order. For example, in certain European locales, the character 'a' (value 0x61) comes
before the character 'ä' (value 0xE4) in the character set, but the character 'ä' comes in front of the character 'a'
lexicographically.

In locales for which the character set and the lexicographic character order differ, you can use strcoll instead of
strcmp for lexicographic comparison of strings. Alternatively, you can use strxfrm on the original strings, and
then use strcmp on the resulting strings.

The strcmp functions are case-sensitive. _stricmp, _wcsicmp, and _mbsicmp compare strings by first
converting them to their lowercase forms. Two strings that contain characters that are located between 'Z' and
'a' in the ASCII table ('[', '\', ']', '^', '_', and '`') compare differently, depending on their case. For example, the
two strings "ABCDE" and "ABCD^" compare one way if the comparison is lowercase ("abcde" > "abcd^") and
the other way ("ABCDE" < "ABCD^") if the comparison is uppercase.

For additional compatibility information, see Compatibility.

All versions of the C run-time libraries.

Example
// crt_strcmp.c

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

char string1[] = "The quick brown dog jumps over the lazy fox";
char string2[] = "The QUICK brown dog jumps over the lazy fox";

int main(void)
{
 char tmp[20];
 int result;

 // Case sensitive
 printf("Compare strings:\n %s\n %s\n\n", string1, string2);
 result = strcmp(string1, string2);
 if(result > 0)
 strcpy_s(tmp, _countof(tmp), "greater than");
 else if(result < 0)
 strcpy_s(tmp, _countof (tmp), "less than");
 else
 strcpy_s(tmp, _countof (tmp), "equal to");
 printf(" strcmp: String 1 is %s string 2\n", tmp);

 // Case insensitive (could use equivalent _stricmp)
 result = _stricmp(string1, string2);
 if(result > 0)
 strcpy_s(tmp, _countof (tmp), "greater than");
 else if(result < 0)
 strcpy_s(tmp, _countof (tmp), "less than");
 else
 strcpy_s(tmp, _countof (tmp), "equal to");
 printf(" _stricmp: String 1 is %s string 2\n", tmp);
}

Compare strings:
 The quick brown dog jumps over the lazy fox
 The QUICK brown dog jumps over the lazy fox

 strcmp: String 1 is greater than string 2
 _stricmp: String 1 is equal to string 2

See also
String Manipulation
memcmp, wmemcmp
_memicmp, _memicmp_l
strcoll Functions
_stricmp, _wcsicmp, _mbsicmp, _stricmp_l, _wcsicmp_l, _mbsicmp_l
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
strrchr, wcsrchr, _mbsrchr, _mbsrchr_l
strspn, wcsspn, _mbsspn, _mbsspn_l
strxfrm, wcsxfrm, _strxfrm_l, _wcsxfrm_l

strcmpi
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _stricmp instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strcmpi.md

strcoll, wcscoll, _mbscoll, _strcoll_l, _wcscoll_l,
_mbscoll_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int strcoll(
 const char *string1,
 const char *string2
);
int wcscoll(
 const wchar_t *string1,
 const wchar_t *string2
);
int _mbscoll(
 const unsigned char *string1,
 const unsigned char *string2
);
int _strcoll_l(
 const char *string1,
 const char *string2,
 _locale_t locale
);
int wcscoll_l(
 const wchar_t *string1,
 const wchar_t *string2,
 _locale_t locale
);
int _mbscoll_l(
 const unsigned char *string1,
 const unsigned char *string2,
 _locale_t locale
);

Parameters

Return Value

Compares strings by using the current locale or a specified LC_COLLATE conversion-state category.

_mbscoll and _mbscoll_l cannot be used in applications that execute in the Windows Runtime. For more information, see
CRT functions not supported in Universal Windows Platform apps.

string1, string2
Null-terminated strings to compare.

locale
Locale to use.

Each of these functions returns a value indicating the relationship of string1 to string2, as follows.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strcoll-wcscoll-mbscoll-strcoll-l-wcscoll-l-mbscoll-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

RETURN VALUE RELATIONSHIP OF STRING1 TO STRING2

< 0 string1 less than string2

0 string1 identical to string2

> 0 string1 greater than string2

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcscoll strcoll _mbscoll wcscoll

Requirements
ROUTINE REQUIRED HEADER

strcoll <string.h>

wcscoll <wchar.h>, <string.h>

_mbscoll, _mbscoll_l <mbstring.h>

_strcoll_l <string.h>

_wcscoll_l <wchar.h>, <string.h>

Each of these functions returns _NLSCMPERROR on an error. To use _NLSCMPERROR, include either
STRING.H or MBSTRING.H. wcscoll can fail if either string1 or string2 is NULL or contains wide-character
codes outside the domain of the collating sequence. When an error occurs, wcscoll may set errno to EINVAL.
To check for an error on a call to wcscoll, set errno to 0 and then check errno after calling wcscoll.

Each of these functions performs a case-sensitive comparison of string1 and string2 according to the code page
currently in use. These functions should be used only when there is a difference between the character set order
and the lexicographic character order in the current code page and this difference is of interest for the string
comparison.

All of these functions validate their parameters. If either string1 or string2 is a null pointer, or if count is greater
than INT_MAX, the invalid parameter handler is invoked, as described in Parameter Validation . If execution is
allowed to continue, these functions return _NLSCMPERROR and set errno to EINVAL.

The comparison of the two strings is a locale-dependent operation since each locale has different rules for
ordering characters. The versions of these functions without the _l suffix use the current thread's locale for this
locale-dependent behavior; the versions with the _l suffix are identical to the corresponding function without the
suffix except that they use the locale passed in as a parameter instead of the current locale. For more
information, see Locale.

For additional compatibility information, see Compatibility.

See also
Locale
String Manipulation
strcoll Functions
localeconv
_mbsnbcoll, _mbsnbcoll_l, _mbsnbicoll, _mbsnbicoll_l
setlocale, _wsetlocale
strcmp, wcscmp, _mbscmp
_stricmp, _wcsicmp, _mbsicmp, _stricmp_l, _wcsicmp_l, _mbsicmp_l
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
strxfrm, wcsxfrm, _strxfrm_l, _wcsxfrm_l

strcpy, wcscpy, _mbscpy
3/1/2019 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
char *strcpy(
 char *strDestination,
 const char *strSource
);
wchar_t *wcscpy(
 wchar_t *strDestination,
 const wchar_t *strSource
);
unsigned char *_mbscpy(
 unsigned char *strDestination,
 const unsigned char *strSource
);
template <size_t size>
char *strcpy(
 char (&strDestination)[size],
 const char *strSource
); // C++ only
template <size_t size>
wchar_t *wcscpy(
 wchar_t (&strDestination)[size],
 const wchar_t *strSource
); // C++ only
template <size_t size>
unsigned char *_mbscpy(
 unsigned char (&strDestination)[size],
 const unsigned char *strSource
); // C++ only

Parameters

Return Value

Remarks

Copies a string. More secure versions of these functions are available; see strcpy_s, wcscpy_s, _mbscpy_s.

_mbscpy cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions
not supported in Universal Windows Platform apps.

strDestination
Destination string.

strSource
Null-terminated source string.

Each of these functions returns the destination string. No return value is reserved to indicate an error.

The strcpy function copies strSource, including the terminating null character, to the location that's specified by

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strcpy-wcscpy-mbscpy.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcscpy strcpy _mbscpy wcscpy

Requirements
ROUTINE REQUIRED HEADER

strcpy <string.h>

wcscpy <string.h> or <wchar.h>

_mbscpy <mbstring.h>

Example

strDestination. The behavior of strcpy is undefined if the source and destination strings overlap.

Because strcpy does not check for sufficient space in strDestination before it copies strSource, it is a potential cause of
buffer overruns. Therefore, we recommend that you use strcpy_s instead.

wcscpy and _mbscpy are, respectively, wide-character and multibyte-character versions of strcpy. The
arguments and return value of wcscpy are wide-character strings; those of _mbscpy are multibyte-character
strings. These three functions behave identically otherwise.

In C++, these functions have template overloads that invoke the newer, secure counterparts of these functions.
For more information, see Secure Template Overloads.

For additional compatibility information, see Compatibility.

// crt_strcpy.c
// compile with: /W3
// This program uses strcpy
// and strcat to build a phrase.

#include <string.h>
#include <stdio.h>

int main(void)
{
 char string[80];

 // If you change the previous line to
 // char string[20];
 // strcpy and strcat will happily overrun the string
 // buffer. See the examples for strncpy and strncat
 // for safer string handling.

 strcpy(string, "Hello world from "); // C4996
 // Note: strcpy is deprecated; use strcpy_s instead
 strcat(string, "strcpy "); // C4996
 // Note: strcat is deprecated; use strcat_s instead
 strcat(string, "and "); // C4996
 strcat(string, "strcat!"); // C4996
 printf("String = %s\n", string);
}

String = Hello world from strcpy and strcat!

See also
String Manipulation
strcat, wcscat, _mbscat
strcmp, wcscmp, _mbscmp
strncat, _strncat_l, wcsncat, _wcsncat_l, _mbsncat, _mbsncat_l
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
strncpy, _strncpy_l, wcsncpy, _wcsncpy_l, _mbsncpy, _mbsncpy_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
strrchr, wcsrchr, _mbsrchr, _mbsrchr_l
strspn, wcsspn, _mbsspn, _mbsspn_l

strcpy_s, wcscpy_s, _mbscpy_s, _mbscpy_s_l
3/1/2019 • 3 minutes to read • Edit Online

IMPORTANT

Syntax
errno_t strcpy_s(
 char *dest,
 rsize_t dest_size,
 const char *src
);
errno_t wcscpy_s(
 wchar_t *dest,
 rsize_t dest_size,
 const wchar_t *src
);
errno_t _mbscpy_s(
 unsigned char *dest,
 rsize_t dest_size,
 const unsigned char *src
);
errno_t _mbscpy_s_l(
 unsigned char *dest,
 rsize_t dest_size,
 const unsigned char *src,
 _locale_t locale
);

Copies a string. These versions of strcpy, wcscpy, _mbscpy have security enhancements, as described in Security
Features in the CRT.

_mbscpy_s and _mbscpy_s_l cannot be used in applications that execute in the Windows Runtime. For more
information, see CRT functions not supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strcpy-s-wcscpy-s-mbscpy-s.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

// Template functions are C++ only:
template <size_t size>
errno_t strcpy_s(
 char (&dest)[size],
 const char *src
); // C++ only
template <size_t size>
errno_t wcscpy_s(
 wchar_t (&dest)[size],
 const wchar_t *src
); // C++ only
template <size_t size>
errno_t _mbscpy_s(
 unsigned char (&dest)[size],
 const unsigned char *src
); // C++ only
template <size_t size>
errno_t _mbscpy_s_l(
 unsigned char (&dest)[size],
 const unsigned char *src,
 _locale_t locale
); // C++ only

Parameters

Return Value

Error Conditions

DEST DEST_SIZE SRC RETURN VALUE CONTENTS OF DEST

NULL any any EINVAL not modified

any any NULL EINVAL dest[0] set to 0

any 0, or too small any ERANGE dest[0] set to 0

Remarks

dest
Location of the destination string buffer.

dest_size
Size of the destination string buffer in char units for narrow and multi-byte functions, and wchar_t units for
wide functions. This value must be greater than zero and not greater than RSIZE_MAX.

src
Null-terminated source string buffer.

locale
Locale to use.

Zero if successful; otherwise, an error.

The strcpy_s function copies the contents in the address of src, including the terminating null character, to the
location that's specified by dest. The destination string must be large enough to hold the source string and its
terminating null character. The behavior of strcpy_s is undefined if the source and destination strings overlap.

wcscpy_s is the wide-character version of strcpy_s, and _mbscpy_s is the multibyte-character version. The

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcscpy_s strcpy_s _mbscpy_s wcscpy_s

Requirements
ROUTINE REQUIRED HEADER

strcpy_s <string.h>

wcscpy_s <string.h> or <wchar.h>

_mbscpy_s <mbstring.h>

Example

arguments of wcscpy_s are wide-character strings; those of _mbscpy_s and _mbscpy_s_l are multibyte-
character strings. These functions behave identically otherwise. _mbscpy_s_l is identical to _mbscpy_s except
that it uses the locale parameter passed in instead of the current locale. For more information, see Locale.

If dest or src is a null pointer, or if the destination string size dest_size is too small, the invalid parameter handler
is invoked, as described in Parameter Validation. If execution is allowed to continue, these functions return
EINVAL and set errno to EINVAL when dest or src is a null pointer, and they return ERANGE and set errno
to ERANGE when the destination string is too small.

Upon successful execution, the destination string is always null-terminated.

In C++, use of these functions is simplified by template overloads that can infer buffer length automatically so
that you don't have to specify a size argument, and they can automatically replace older, less-secure functions
with their newer, more secure counterparts. For more information, see Secure Template Overloads.

The debug library versions of these functions first fill the buffer with 0xFE. To disable this behavior, use
_CrtSetDebugFillThreshold.

These functions are Microsoft-specific. For additional compatibility information, see Compatibility.

Unlike production quality code, this sample calls the secure string functions without checking for errors:

// crt_strcpy_s.c
// Compile by using: cl /W4 crt_strcpy_s.c
// This program uses strcpy_s and strcat_s
// to build a phrase.

#include <string.h> // for strcpy_s, strcat_s
#include <stdlib.h> // for _countof
#include <stdio.h> // for printf
#include <errno.h> // for return values

int main(void)
{
 char string[80];

 strcpy_s(string, _countof(string), "Hello world from ");
 strcat_s(string, _countof(string), "strcpy_s ");
 strcat_s(string, _countof(string), "and ");
 strcat_s(string, _countof(string), "strcat_s!");

 printf("String = %s\n", string);
}

String = Hello world from strcpy_s and strcat_s!

// crt_wcscpy_s.cpp
// Compile by using: cl /EHsc /W4 crt_wcscpy_s.cpp
// This program uses wcscpy_s and wcscat_s
// to build a phrase.

#include <cstring> // for wcscpy_s, wcscat_s
#include <cstdlib> // for _countof
#include <iostream> // for cout, includes <cstdlib>, <cstring>
#include <errno.h> // for return values

int main(void)
{
 wchar_t string[80];
 // using template versions of wcscpy_s and wcscat_s:
 wcscpy_s(string, L"Hello world from ");
 wcscat_s(string, L"wcscpy_s ");
 wcscat_s(string, L"and ");
 // of course we can supply the size explicitly if we want to:
 wcscat_s(string, _countof(string), L"wcscat_s!");

 std::wcout << L"String = " << string << std::endl;
}

String = Hello world from wcscpy_s and wcscat_s!

See also

When building C++ code, the template versions may be easier to use.

String Manipulation
strcat, wcscat, _mbscat, _mbscat_l
strcmp, wcscmp, _mbscmp, _mbscmp_l
strncat_s, _strncat_s_l, wcsncat_s, _wcsncat_s_l, _mbsncat_s, _mbsncat_s_l
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l

strncpy_s, _strncpy_s_l, wcsncpy_s, _wcsncpy_s_l, _mbsncpy_s, _mbsncpy_s_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
strrchr, wcsrchr, _mbsrchr, _mbsrchr_l
strspn, wcsspn, _mbsspn, _mbsspn_l

strcspn, wcscspn, _mbscspn, _mbscspn_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
size_t strcspn(
 const char *str,
 const char *strCharSet
);
size_t wcscspn(
 const wchar_t *str,
 const wchar_t *strCharSet
);
size_t _mbscspn(
 const unsigned char *str,
 const unsigned char *strCharSet
);
size_t _mbscspn_l(
 const unsigned char *str,
 const unsigned char *strCharSet,
 _locale_t locale
);

Parameters

Return Value

Remarks

Returns the index of the first occurrence in a string, of a character that belongs to a set of characters.

_mbschr and _mbschr_l cannot be used in applications that execute in the Windows Runtime. For more information, see
CRT functions not supported in Universal Windows Platform apps.

str
Null-terminated searched string.

strCharSet
Null-terminated character set.

locale
Locale to use.

These functions return the index of the first character in str that is in strCharSet. If none of the characters in str is
in strCharSet, then the return value is the length of str.

No return value is reserved to indicate an error.

wcscspn and _mbscspn are wide-character and multibyte-character versions of strcspn. The arguments of
wcscspn are wide-character strings; those of _mbscspn are multibyte-character strings.

_mbscspn validates its parameters. If either str or strCharSet is a null pointer, the invalid parameter handler is

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strcspn-wcscspn-mbscspn-mbscspn-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcscspn strcspn _mbscspn wcscspn

n/a n/a _mbscspn_l n/a

Requirements
ROUTINE REQUIRED HEADER

strcspn <string.h>

wcscspn <string.h> or <wchar.h>

_mbscspn, _mbscspn_l <mbstring.h>

Example
// crt_strcspn.c

#include <string.h>
#include <stdio.h>

void test(const char * str, const char * strCharSet)
{
 int pos = strcspn(str, strCharSet);
 printf("strcspn(\"%s\", \"%s\") = %d\n", str, strCharSet, pos);
}

int main(void)
{
 test("xyzbxz", "abc");
 test("xyzbxz", "xyz");
 test("xyzbxz", "no match");
 test("xyzbxz", "");
 test("", "abc");
 test("", "");
}

invoked, as described in Parameter Validation. If execution is allowed to continue, the function returns 0 and sets
errno to EINVAL. strcspn and wcscspn do not validate their parameters. These three functions behave
identically otherwise.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for more
information. The versions of these functions without the _l suffix use the current locale for this locale-dependent
behavior ; the versions with the _l suffix are identical except that they use the locale parameter passed in instead.
For more information, see Locale.

For additional compatibility information, see Compatibility.

strcspn("xyzbxz", "abc") = 3
strcspn("xyzbxz", "xyz") = 0
strcspn("xyzbxz", "no match") = 6
strcspn("xyzbxz", "") = 6
strcspn("", "abc") = 0
strcspn("", "") = 0

See also
String Manipulation
Locale
Interpretation of Multibyte-Character Sequences
strncat, _strncat_l, wcsncat, _wcsncat_l, _mbsncat, _mbsncat_l
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
strncpy, _strncpy_l, wcsncpy, _wcsncpy_l, _mbsncpy, _mbsncpy_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
strrchr, wcsrchr, _mbsrchr, _mbsrchr_l
strspn, wcsspn, _mbsspn, _mbsspn_l

_strdate, _wstrdate
10/31/2018 • 2 minutes to read • Edit Online

Syntax
char *_strdate(
 char *datestr
);
wchar_t *_wstrdate(
 wchar_t *datestr
);
template <size_t size>
char *_strdate(
 char (&datestr)[size]
); // C++ only
template <size_t size>
wchar_t *_wstrdate(
 wchar_t (&datestr)[size]
); // C++ only

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

Copy current system date to a buffer. More secure versions of these functions are available; see _strdate_s,
_wstrdate_s.

datestr
A pointer to a buffer containing the formatted date string.

Each of these functions returns a pointer to the resulting character string datestr.

More secure versions of these functions are available; see _strdate_s, _wstrdate_s. It is recommended that the
more secure functions be used wherever possible.

The _strdate function copies the current system date to the buffer pointed to by datestr, formatted mm/dd/yy,
where mm is two digits representing the month, dd is two digits representing the day, and yy is the last two digits
of the year. For example, the string 12/05/99 represents December 5, 1999. The buffer must be at least 9 bytes
long.

If datestr is a NULL pointer, the invalid parameter handler is invoked, as described in Parameter Validation. If
execution is allowed to continue, these functions return -1 and set errno to EINVAL.

_wstrdate is a wide-character version of _strdate; the argument and return value of _wstrdate are wide-
character strings. These functions behave identically otherwise.

In C++, these functions have template overloads that invoke the newer, secure counterparts of these functions.
For more information, see Secure Template Overloads.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strdate-wstrdate.md

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tstrdate _strdate _strdate _wstrdate

Requirements
ROUTINE REQUIRED HEADER

_strdate <time.h>

_wstrdate <time.h> or <wchar.h>

Example
// strdate.c
// compile with: /W3
#include <time.h>
#include <stdio.h>
int main()
{
 char tmpbuf[9];

 // Set time zone from TZ environment variable. If TZ is not set,
 // the operating system is queried to obtain the default value
 // for the variable.
 //
 _tzset();

 printf("OS date: %s\n", _strdate(tmpbuf)); // C4996
 // Note: _strdate is deprecated; consider using _strdate_s instead
}

OS date: 04/25/03

See also

For additional compatibility information, see Compatibility.

Time Management
asctime, _wasctime
ctime, _ctime32, _ctime64, _wctime, _wctime32, _wctime64
gmtime, _gmtime32, _gmtime64
localtime, _localtime32, _localtime64
mktime, _mktime32, _mktime64
time, _time32, _time64
_tzset

_strdate_s, _wstrdate_s
10/31/2018 • 2 minutes to read • Edit Online

Syntax
errno_t _strdate_s(
 char *buffer,
 size_t numberOfElements
);
errno_t _wstrdate_s(
 wchar_t *buffer,
 size_t numberOfElements
);
template <size_t size>
errno_t _strdate_s(
 char (&buffer)[size]
); // C++ only
template <size_t size>
errno_t _wstrdate_s(
 wchar_t (&buffer)[size]
); // C++ only

Parameters

Return Value

Error Conditions
BUFFER NUMBEROFELEMENTS RETURN CONTENTS OF BUFFER

NULL (any) EINVAL Not modified

Not NULL (pointing to valid
buffer)

0 EINVAL Not modified

Not NULL (pointing to valid
buffer)

0 < numberOfElements < 9 EINVAL Empty string

Not NULL (pointing to valid
buffer)

numberOfElements >= 9 0 Current date formatted as
specified in the remarks

Copy the current system date to a buffer. These are versions of _strdate, _wstrdate with security enhancements as
described in Security Features in the CRT.

buffer
A pointer to a buffer which will be filled in with the formatted date string.

numberOfElements
Size of the buffer.

Zero if successful. The return value is an error code if there is a failure. Error codes are defined in ERRNO.H; see
table below for the exact errors generated by this function. For more information on error codes, see errno.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strdate-s-wstrdate-s.md

Security Issues

Remarks

Generic-Text Routine Mapping:

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tstrdate_s _strdate_s _strdate_s _wstrdate_s

Requirements
ROUTINE REQUIRED HEADER

_strdate <time.h>

_wstrdate <time.h> or <wchar.h>

_strdate_s <time.h>

Example

See also

Passing in an invalid non NULL value for the buffer will result in an access violation if the numberOfElements
parameter is greater than 9.

Passing values for size that is greater than the actual size of the buffer will result in buffer overrun.

These functions provide more secure versions of _strdate and _wstrdate. The _strdate_s function copies the
current system date to the buffer pointed to by buffer, formatted mm/dd/yy, where mm is two digits
representing the month, dd is two digits representing the day, and yy is the last two digits of the year. For
example, the string 12/05/99 represents December 5, 1999. The buffer must be at least 9 characters long.

_wstrdate_s is a wide-character version of _strdate_s; the argument and return value of _wstrdate_s are wide-
character strings. These functions behave identically otherwise.

If buffer is a NULL pointer, or if numberOfElements is less than 9 characters, the invalid parameter handler is
invoked, as described in Parameter Validation. If execution is allowed to continue, these functions return -1 and
set errno to EINVAL if the buffer is NULL or if numberOfElements is less than or equal to 0, or set errno to
ERANGE if numberOfElements is less than 9.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically (eliminating the need to specify a size argument) and they can automatically replace older, non-
secure functions with their newer, secure counterparts. For more information, see Secure Template Overloads.

See the example for time.

Time Management
asctime_s, _wasctime_s
ctime_s, _ctime32_s, _ctime64_s, _wctime_s, _wctime32_s, _wctime64_s
gmtime_s, _gmtime32_s, _gmtime64_s
localtime_s, _localtime32_s, _localtime64_s
mktime, _mktime32, _mktime64

time, _time32, _time64
_tzset

_strdec, _wcsdec, _mbsdec, _mbsdec_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
unsigned char *_strdec(
 const unsigned char *start,
 const unsigned char *current
);
unsigned wchar_t *_wcsdec(
 const unsigned wchar_t *start,
 const unsigned wchar_t *current
);
unsigned char *_mbsdec(
 const unsigned char *start,
 const unsigned char *current
);
unsigned char *_mbsdec_l(
 const unsigned char *start,
 const unsigned char *current,
 _locale_t locale
);

Parameters

Return Value

Remarks

Moves a string pointer back one character.

mbsdec and mbsdec_l cannot be used in applications that execute in the Windows Runtime. For more information, see
CRT functions not supported in Universal Windows Platform apps.

start
Pointer to any character (or for _mbsdec and _mbsdec_l, the first byte of any multibyte character) in the source
string; start must precede current in the source string.

current
Pointer to any character (or for _mbsdec and _mbsdec_l, the first byte of any multibyte character) in the source
string; current must follow start in the source string.

locale
Locale to use.

_mbsdec, _mbsdec_l, _strdec, and _wcsdec each return a pointer to the character that immediately precedes
current; _mbsdec returns NULL if the value of start is greater than or equal to that of current. _tcsdec maps to
one of these functions and its return value depends on the mapping.

The _mbsdec and _mbsdec_l functions return a pointer to the first byte of the multibyte character that
immediately precedes current in the string that contains start.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strdec-wcsdec-mbsdec-mbsdec-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsdec _strdec _mbsdec _wcsdec

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER

_mbsdec <mbstring.h> <mbctype.h>

_mbsdec_l <mbstring.h> <mbctype.h>

_strdec <tchar.h>

_wcsdec <tchar.h>

Example

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale,
_wsetlocale for more information. _mbsdec recognizes multibyte-character sequences according to the locale
that's currently in use, while _mbsdec_l is identical except that it instead uses the locale parameter that's passed
in. For more information, see Locale.

If start or current is NULL, the invalid parameter handler is invoked, as described in Parameter Validation. If
execution is allowed to continue, this function returns EINVAL and sets errno to EINVAL.

These functions might be vulnerable to buffer overrun threats. Buffer overruns can be used for system attacks because they
can cause an unwarranted elevation of privilege. For more information, see Avoiding Buffer Overruns.

_strdec and _wcsdec are single-byte-character and wide-character versions of _mbsdec and _mbsdec_l. _strdec
and _wcsdec are provided only for this mapping and should not be used otherwise.

For more information, see Using Generic-Text Mappings and Generic-Text Mappings.

For more compatibility information, see Compatibility.

The following example shows a use of _tcsdec.

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

// crt_tcsdec.cpp
// Compile by using: cl /EHsc crt_tcsdec.cpp
#include <iostream>
#include <tchar.h>
using namespace std;

int main()
{
 const TCHAR *str = _T("12345");
 cout << "str: " << str << endl;

 const TCHAR *str2;
 str2 = str + 2;
 cout << "str2: " << str2 << endl;

 TCHAR *answer;
 answer = _tcsdec(str, str2);
 cout << "answer: " << answer << endl;

 return (0);
}

// crt_mbsdec.cpp
// Compile by using: cl /EHsc crt_mbsdec.c
#include <iostream>
#include <mbstring.h>
using namespace std;

int main()
{
 char *str = "12345";
 cout << "str: " << str << endl;

 char *str2;
 str2 = str + 2;
 cout << "str2: " << str2 << endl;

 unsigned char *answer;
 answer = _mbsdec(reinterpret_cast<unsigned char *>(str), reinterpret_cast<unsigned char *>(str2));

 cout << "answer: " << answer << endl;

 return (0);
}

See also

The following example shows a use of _mbsdec.

String Manipulation
_strinc, _wcsinc, _mbsinc, _mbsinc_l
_strnextc, _wcsnextc, _mbsnextc, _mbsnextc_l
_strninc, _wcsninc, _mbsninc, _mbsninc_l

strdup, wcsdup
10/31/2018 • 2 minutes to read • Edit Online

These POSIX functions are deprecated. Use the ISO C++ conformant _strdup, _wcsdup, _mbsdup instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strdup-wcsdup.md

_strdup, _wcsdup, _mbsdup
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
char *_strdup(
 const char *strSource
);
wchar_t *_wcsdup(
 const wchar_t *strSource
);
unsigned char *_mbsdup(
 const unsigned char *strSource
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsdup _strdup _mbsdup _wcsdup

Duplicates strings.

_mbsdup cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions
not supported in Universal Windows Platform apps.

strSource
Null-terminated source string.

Each of these functions returns a pointer to the storage location for the copied string or NULL if storage cannot
be allocated.

The _strdup function calls malloc to allocate storage space for a copy of strSource and then copies strSource to
the allocated space.

_wcsdup and _mbsdup are wide-character and multibyte-character versions of _strdup. The arguments and
return value of _wcsdup are wide-character strings; those of _mbsdup are multibyte-character strings. These
three functions behave identically otherwise.

Because _strdup calls malloc to allocate storage space for the copy of strSource, it is good practice always to
release this memory by calling the free routine on the pointer that's returned by the call to _strdup.

If _DEBUG and _CRTDBG_MAP_ALLOC are defined, _strdup and _wcsdup are replaced by calls to
_strdup_dbg and _wcsdup_dbg to allow for debugging memory allocations. For more information, see

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strdup-wcsdup-mbsdup.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Requirements
ROUTINE REQUIRED HEADER

_strdup <string.h>

_wcsdup <string.h> or <wchar.h>

_mbsdup <mbstring.h>

Example
// crt_strdup.c

#include <string.h>
#include <stdio.h>

int main(void)
{
 char buffer[] = "This is the buffer text";
 char *newstring;
 printf("Original: %s\n", buffer);
 newstring = _strdup(buffer);
 printf("Copy: %s\n", newstring);
 free(newstring);
}

Original: This is the buffer text
Copy: This is the buffer text

See also

_strdup_dbg, _wcsdup_dbg.

For additional compatibility information, see Compatibility.

String Manipulation
memset, wmemset
strcat, wcscat, _mbscat
strcmp, wcscmp, _mbscmp
strncat, _strncat_l, wcsncat, _wcsncat_l, _mbsncat, _mbsncat_l
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
strncpy, _strncpy_l, wcsncpy, _wcsncpy_l, _mbsncpy, _mbsncpy_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
strrchr, wcsrchr, _mbsrchr, _mbsrchr_l
strspn, wcsspn, _mbsspn, _mbsspn_l

_strdup_dbg, _wcsdup_dbg
10/31/2018 • 2 minutes to read • Edit Online

Syntax
char *_strdup_dbg(
 const char *strSource,
 int blockType,
 const char *filename,
 int linenumber
);
wchar_t *_wcsdup_dbg(
 const wchar_t *strSource,
 int blockType,
 const char *filename,
 int linenumber
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

Versions of _strdup and _wcsdup that use the debug version of malloc.

strSource
Null-terminated source string.

blockType
Requested type of memory block: _CLIENT_BLOCK or _NORMAL_BLOCK.

filename
Pointer to name of source file that requested allocation operation or NULL.

linenumber
Line number in source file where allocation operation was requested or NULL.

Each of these functions returns a pointer to the storage location for the copied string or NULL if storage cannot
be allocated.

The _strdup_dbg and _wcsdup_dbg functions are identical to _strdup and _wcsdup except that, when _DEBUG
is defined, these functions use the debug version of malloc, _malloc_dbg, to allocate memory for the duplicated
string. For information on the debugging features of _malloc_dbg, see _malloc_dbg.

You do not need to call these functions explicitly in most cases. Instead, you can define the flag
_CRTDBG_MAP_ALLOC. When _CRTDBG_MAP_ALLOC is defined, calls to _strdup and _wcsdup are
remapped to _strdup_dbg and _wcsdup_dbg, respectively, with the blockType set to _NORMAL_BLOCK. Thus,
you do not need to call these functions explicitly unless you want to mark the heap blocks as _CLIENT_BLOCK.
For more information on block types, see Types of blocks on the debug heap.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strdup-dbg-wcsdup-dbg.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsdup_dbg _strdup_dbg _mbsdup _wcsdup_dbg

Requirements
ROUTINE REQUIRED HEADER

_strdup_dbg, _wcsdup_dbg <crtdbg.h>

Libraries

See also

For additional compatibility information, see Compatibility.

All debug versions of the C run-time libraries.

String Manipulation
_strdup, _wcsdup, _mbsdup
Debug Versions of Heap Allocation Functions

https://docs.microsoft.com/visualstudio/debugger/debug-versions-of-heap-allocation-functions

strerror, _strerror, _wcserror, __wcserror
10/31/2018 • 2 minutes to read • Edit Online

Syntax
char *strerror(
 int errnum
);
char *_strerror(
 const char *strErrMsg
);
wchar_t * _wcserror(
 int errnum
);
wchar_t * __wcserror(
 const wchar_t *strErrMsg
);

Parameters

Return Value

Remarks

if ((_access("datafile",2)) == -1)
 fprintf(stderr, _strerror(NULL));

Gets a system error message string (strerror, _wcserror) or formats a user-supplied error message string
(_strerror, __wcserror). More secure versions of these functions are available; see strerror_s, _strerror_s,
_wcserror_s, __wcserror_s.

errnum
Error number.

strErrMsg
User-supplied message.

All of these functions return a pointer to the error-message string. Subsequent calls can overwrite the string.

The strerror function maps errnum to an error-message string and returns a pointer to the string. Neither
strerror nor _strerror actually prints the message: For that, you have to call an output function such as fprintf:

If strErrMsg is passed as NULL, _strerror returns a pointer to a string that contains the system error message
for the last library call that produced an error. The error-message string is terminated by the newline character
('\n'). If strErrMsg is not equal to NULL, then _strerror returns a pointer to a string that contains (in order) your
string message, a colon, a space, the system error message for the last library call that produces an error, and a
newline character. Your string message can be, at most, 94 characters long.

The actual error number for _strerror is stored in the variable errno. To produce accurate results, call _strerror
immediately after a library routine returns with an error. Otherwise, subsequent calls to strerror or _strerror can
overwrite the errno value.

_wcserror and __wcserror are wide-character versions of strerror and _strerror, respectively.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strerror-strerror-wcserror-wcserror.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcserror strerror strerror _wcserror

Requirements
ROUTINE REQUIRED HEADER

strerror <string.h>

_strerror <string.h>

_wcserror, __wcserror <string.h>

Example

See also

_strerror, _wcserror, and __wcserror are not part of the ANSI definition; they are Microsoft extensions and we
recommend that you do not use them where you want portable code. For ANSI compatibility, use strerror
instead.

To get error strings, we recommend strerror or _wcserror instead of the deprecated macros _sys_errlist and
_sys_nerr and the deprecated internal functions __sys_errlist and __sys_nerr.

For additional compatibility information, see Compatibility.

See the example for perror.

String Manipulation
clearerr
ferror
perror, _wperror

strerror_s, _strerror_s, _wcserror_s, __wcserror_s
10/31/2018 • 3 minutes to read • Edit Online

Syntax
errno_t strerror_s(
 char *buffer,
 size_t numberOfElements,
 int errnum
);
errno_t _strerror_s(
 char *buffer,
 size_t numberOfElements,
 const char *strErrMsg
);
errno_t _wcserror_s(
 wchar_t *buffer,
 size_t numberOfElements,
 int errnum
);
errno_t __wcserror_s(
 wchar_t *buffer,
 size_t numberOfElements,
 const wchar_t *strErrMsg
);
template <size_t size>
errno_t strerror_s(
 char (&buffer)[size],
 int errnum
); // C++ only
template <size_t size>
errno_t _strerror_s(
 char (&buffer)[size],
 const char *strErrMsg
); // C++ only
template <size_t size>
errno_t _wcserror_s(
 wchar_t (&buffer)[size],
 int errnum
); // C++ only
template <size_t size>
errno_t __wcserror_s(
 wchar_t (&buffer)[size],
 const wchar_t *strErrMsg
); // C++ only

Parameters

Get a system error message (strerror_s, _wcserror_s) or print a user-supplied error message (_strerror_s,
__wcserror_s). These are versions of strerror, _strerror, _wcserror, __wcserror with security enhancements as
described in Security Features in the CRT.

buffer
Buffer to hold error string.

numberOfElements
Size of buffer.

errnum

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strerror-s-strerror-s-wcserror-s-wcserror-s.md

Return Value

Error Condtions

BUFFER NUMBEROFELEMENTS STRERRMSG CONTENTS OF BUFFER

NULL any any n/a

any 0 any not modified

Remarks

if ((_access("datafile",2)) == -1)
{
 _strerror_s(buffer, 80);
 fprintf(stderr, buffer);
}

Error number.

strErrMsg
User-supplied message.

Zero if successful, an error code on failure.

The strerror_s function maps errnum to an error-message string, returning the string in buffer. _strerror_s
doesn't take the error number; it uses the current value of errno to determine the appropriate message. Neither
strerror_s nor _strerror_s actually prints the message: For that, you need to call an output function such as
fprintf:

If strErrMsg is NULL, _strerror_s returns a string in buffer containing the system error message for the last
library call that produced an error. The error-message string is terminated by the newline character ('\n'). If
strErrMsg is not equal to NULL, then _strerror_s returns a string in buffer containing (in order) your string
message, a colon, a space, the system error message for the last library call producing an error, and a newline
character. Your string message can be, at most, 94 characters long.

These functions truncate the error message if its length exceeds numberOfElements -1. The resulting string in
buffer is always null-terminated.

The actual error number for _strerror_s is stored in the variable errno. The system error messages are accessed
through the variable _sys_errlist, which is an array of messages ordered by error number. _strerror_s accesses
the appropriate error message by using the errno value as an index to the variable _sys_errlist. The value of the
variable _sys_nerr is defined as the maximum number of elements in the _sys_errlist array. To produce accurate
results, call _strerror_s immediately after a library routine returns with an error. Otherwise, subsequent calls to
strerror_s or _strerror_s can overwrite the errno value.

_wcserror_s and __wcserror_s are wide-character versions of strerror_s and _strerror_s, respectively.

These functions validate their parameters. If buffer is NULL or if the size parameter is 0, the invalid parameter
handler is invoked, as described in Parameter Validation . If execution is allowed to continue, the functions return
EINVAL and set errno to EINVAL.

_strerror_s, _wcserror_s, and __wcserror_s are not part of the ANSI definition but are instead Microsoft
extensions to it. Do not use them where portability is desired; for ANSI compatibility, use strerror_s instead.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcserror_s strerror_s strerror_s _wcserror_s

Requirements
ROUTINE REQUIRED HEADER

strerror_s, _strerror_s <string.h>

_wcserror_s, __wcserror_s <string.h> or <wchar.h>

Example

See also

automatically, eliminating the need to specify a size argument. For more information, see Secure Template
Overloads.

The debug versions of these functions first fill the buffer with 0xFD. To disable this behavior, use
_CrtSetDebugFillThreshold.

For additional compatibility information, see Compatibility.

See the example for perror.

String Manipulation
clearerr
ferror
perror, _wperror

strftime, wcsftime, _strftime_l, _wcsftime_l
10/31/2018 • 5 minutes to read • Edit Online

Syntax
size_t strftime(
 char *strDest,
 size_t maxsize,
 const char *format,
 const struct tm *timeptr
);
size_t _strftime_l(
 char *strDest,
 size_t maxsize,
 const char *format,
 const struct tm *timeptr,
 _locale_t locale
);
size_t wcsftime(
 wchar_t *strDest,
 size_t maxsize,
 const wchar_t *format,
 const struct tm *timeptr
);
size_t _wcsftime_l(
 wchar_t *strDest,
 size_t maxsize,
 const wchar_t *format,
 const struct tm *timeptr,
 _locale_t locale
);

Parameters

Return Value

Format a time string.

strDest
Output string.

maxsize
Size of the strDest buffer, measured in characters (char or wchar_t).

format
Format-control string.

timeptr
tm data structure.

locale
The locale to use.

strftime returns the number of characters placed in strDest and wcsftime returns the corresponding number of
wide characters.

If the total number of characters, including the terminating null, is more than maxsize, both strftime and

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strftime-wcsftime-strftime-l-wcsftime-l.md

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsftime strftime strftime wcsftime

Code Replacement string

%a Abbreviated weekday name in the locale

%A Full weekday name in the locale

%b Abbreviated month name in the locale

%B Full month name in the locale

%c Date and time representation appropriate for locale

%C The year divided by 100 and truncated to an integer, as a
decimal number (00−99)

%d Day of month as a decimal number (01 - 31)

%D Equivalent to %m/%d/%y

wcsftime return 0 and the contents of strDest are indeterminate.

The number of characters in strDest is equal to the number of literal characters in format as well as any
characters that may be added to format via formatting codes. The terminating null of a string is not counted in
the return value.

The strftime and wcsftime functions format the tm time value in timeptr according to the supplied format
argument and store the result in the buffer strDest. At most, maxsize characters are placed in the string. For a
description of the fields in the timeptr structure, see asctime. wcsftime is the wide-character equivalent of
strftime; its string-pointer argument points to a wide-character string. These functions behave identically
otherwise.

This function validates its parameters. If strDest, format, or timeptr is a null pointer, or if the tm data structure
addressed by timeptr is invalid (for example, if it contains out of range values for the time or date), or if the
format string contains an invalid formatting code, the invalid parameter handler is invoked, as described in
Parameter Validation. If execution is allowed to continue, the function returns 0 and sets errno to EINVAL.

The format argument consists of one or more codes; as in printf, the formatting codes are preceded by a
percent sign (%). Characters that do not begin with % are copied unchanged to strDest. The LC_TIME category
of the current locale affects the output formatting of strftime. (For more information on LC_TIME , see
setlocale.) The strftime and wcsftime functions use the currently set locale. The _strftime_l and _wcsftime_l
versions of these functions are identical except that they take the locale as a parameter and use that instead of
the currently set locale. For more information, see Locale.

The strftime functions support these formatting codes:

%e Day of month as a decimal number (1 - 31), where single
digits are preceded by a space

%F Equivalent to %Y-%m-%d

%g The last 2 digits of the ISO 8601 week-based year as a
decimal number (00 - 99)

%G The ISO 8601 week-based year as a decimal number

%h Abbreviated month name (equivalent to %b)

%H Hour in 24-hour format (00 - 23)

%I Hour in 12-hour format (01 - 12)

%j Day of the year as a decimal number (001 - 366)

%m Month as a decimal number (01 - 12)

%M Minute as a decimal number (00 - 59)

%n A newline character (\n)

%p The locale's A.M./P.M. indicator for 12-hour clock

%r The locale's 12-hour clock time

%R Equivalent to %H:%M

%S Second as a decimal number (00 - 59)

%t A horizontal tab character (\t)

%T Equivalent to %H:%M:%S, the ISO 8601 time format

%u ISO 8601 weekday as a decimal number (1 - 7; Monday is 1)

%U Week number of the year as a decimal number (00 - 53),
where the first Sunday is the first day of week 1

%V ISO 8601 week number as a decimal number (00 - 53)

%w Weekday as a decimal number (0 - 6; Sunday is 0)

%W Week number of the year as a decimal number (00 - 53),
where the first Monday is the first day of week 1

%x Date representation for the locale

%X Time representation for the locale

%y Year without century, as decimal number (00 - 99)

%Y Year with century, as decimal number

%z The offset from UTC in ISO 8601 format; no characters if
time zone is unknown

%Z Either the locale's time-zone name or time zone abbreviation,
depending on registry settings; no characters if time zone is
unknown

%% Percent sign

FORMAT CODE MEANING

%#a, %#A, %#b, %#B, %#g, %#G, %#h, %#n, %#p, %#t,
%#u, %#w, %#X, %#z, %#Z, %#%

flag is ignored.

%#c Long date and time representation, appropriate for the
locale. For example: "Tuesday, March 14, 1995, 12:41:29".

%#x Long date representation, appropriate to the locale. For
example: "Tuesday, March 14, 1995".

%#d, %#D, %#e, %#F, %#H, %#I, %#j, %#m, %#M, %#r,
%#R, %#S, %#T, %#U, %#V, %#W, %#y, %#Y

Remove leading zeros or spaces (if any).

Requirements
ROUTINE REQUIRED HEADER

strftime <time.h>

wcsftime <time.h> or <wchar.h>

_strftime_l <time.h>

_wcsftime_l <time.h> or <wchar.h>

Example

As in the printf function, the # flag may prefix any formatting code. In that case, the meaning of the format code
is changed as follows.

The ISO 8601 week and week-based year produced by %V , %g, and %G, uses a week that begins on Monday,
where week 1 is the week that contains January 4th, which is the first week that includes at least four days of the
year. If the first Monday of the year is the 2nd, 3rd, or 4th, the preceding days are part of the last week of the
preceding year. For those days, %V is replaced by 53, and both %g and %G are replaced by the digits of the
preceding year.

The _strftime_l and _wcsftime_l functions are Microsoft-specific. For additional compatibility information, see
Compatibility.

See also

See the example for time.

Locale
Time Management
String Manipulation
localeconv
setlocale, _wsetlocale
strcoll Functions
strxfrm, wcsxfrm, _strxfrm_l, _wcsxfrm_l

stricmp, wcsicmp
10/31/2018 • 2 minutes to read • Edit Online

These POSIX functions are deprecated. Use the ISO C++ conformant _stricmp, _wcsicmp, _mbsicmp, _stricmp_l,
_wcsicmp_l, _mbsicmp_l instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/stricmp-wcsicmp.md

_stricmp, _wcsicmp, _mbsicmp, _stricmp_l,
_wcsicmp_l, _mbsicmp_l
10/31/2018 • 4 minutes to read • Edit Online

IMPORTANT

Syntax
int _stricmp(
 const char *string1,
 const char *string2
);
int _wcsicmp(
 const wchar_t *string1,
 const wchar_t *string2
);
int _mbsicmp(
 const unsigned char *string1,
 const unsigned char *string2
);
int _stricmp_l(
 const char *string1,
 const char *string2,
 _locale_t locale
);
int _wcsicmp_l(
 const wchar_t *string1,
 const wchar_t *string2,
 _locale_t locale
);
int _mbsicmp_l(
 const unsigned char *string1,
 const unsigned char *string2,
 _locale_t locale
);

Parameters

Return Value

Performs a case-insensitive comparison of strings.

_mbsicmp and _mbsicmp_l cannot be used in applications that execute in the Windows Runtime. For more information,
see CRT functions not supported in Universal Windows Platform apps.

string1, string2
Null-terminated strings to compare.

locale
Locale to use.

The return value indicates the relation of string1 to string2 as follows.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/stricmp-wcsicmp-mbsicmp-stricmp-l-wcsicmp-l-mbsicmp-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

RETURN VALUE DESCRIPTION

< 0 string1 less than string2

0 string1 identical to string2

> 0 string1 greater than string2

Remarks

NOTE

On an error, _mbsicmp returns _NLSCMPERROR, which is defined in <string.h> and <mbstring.h>.

The _stricmp function ordinally compares string1 and string2 after converting each character to lowercase,
and returns a value indicating their relationship. _stricmp differs from _stricoll in that the _stricmp
comparison is only affected by LC_CTYPE , which determines which characters are upper and lowercase. The
_stricoll function compares strings according to both the LC_CTYPE and LC_COLLATE categories of the
locale, which includes both the case and the collation order. For more information about the LC_COLLATE
category, see setlocale and Locale Categories. The versions of these functions without the _l suffix use the
current locale for locale-dependent behavior. The versions with the suffix are identical except that they use the
locale passed in instead. If the locale has not been set, the C locale is used. For more information, see Locale.

_stricmp is equivalent to _strcmpi. They can be used interchangeably but _stricmp is the preferred standard.

The _strcmpi function is equivalent to _stricmp and is provided for backward compatibility only.

Because _stricmp does lowercase comparisons, it may result in unexpected behavior.

To illustrate when case conversion by _stricmp affects the outcome of a comparison, assume that you have the
two strings JOHNSTON and JOHN_HENRY. The string JOHN_HENRY will be considered less than
JOHNSTON because the "_" has a lower ASCII value than a lowercase S. In fact, any character that has an
ASCII value between 91 and 96 will be considered less than any letter.

If the strcmp function is used instead of _stricmp, JOHN_HENRY will be greater than JOHNSTON.

_wcsicmp and _mbsicmp are wide-character and multibyte-character versions of _stricmp. The arguments
and return value of _wcsicmp are wide-character strings; those of _mbsicmp are multibyte-character strings.
_mbsicmp recognizes multibyte-character sequences according to the current multibyte code page and
returns _NLSCMPERROR on an error. For more information, see Code Pages. These three functions behave
identically otherwise.

_wcsicmp and wcscmp behave identically except that wcscmp does not convert its arguments to lowercase
before comparing them. _mbsicmp and _mbscmp behave identically except that _mbscmp does not convert
its arguments to lowercase before comparing them.

You will need to call setlocale for _wcsicmp to work with Latin 1 characters. The C locale is in effect by default,
so, for example, ä will not compare equal to Ä. Call setlocale with any locale other than the C locale before the
call to _wcsicmp. The following sample demonstrates how _wcsicmp is sensitive to the locale:

// crt_stricmp_locale.c
#include <string.h>
#include <stdio.h>
#include <locale.h>

int main() {
 setlocale(LC_ALL,"C"); // in effect by default
 printf("\n%d",_wcsicmp(L"ä", L"Ä")); // compare fails
 setlocale(LC_ALL,"");
 printf("\n%d",_wcsicmp(L"ä", L"Ä")); // compare succeeds
}

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsicmp _stricmp _mbsicmp _wcsicmp

Requirements
ROUTINE REQUIRED HEADER

_stricmp, _stricmp_l <string.h>

_wcsicmp, _wcsicmp_l <string.h> or <wchar.h>

_mbsicmp, _mbsicmp_l <mbstring.h>

Example

An alternative is to call _create_locale, _wcreate_locale and pass the returned locale object as a parameter to
_wcsicmp_l.

All of these functions validate their parameters. If either string1 or string2 are null pointers, the invalid
parameter handler is invoked, as described in Parameter Validation . If execution is allowed to continue, these
functions return _NLSCMPERROR and set errno to EINVAL.

For additional compatibility information, see Compatibility.

// crt_stricmp.c

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

char string1[] = "The quick brown dog jumps over the lazy fox";
char string2[] = "The QUICK brown dog jumps over the lazy fox";

int main(void)
{
 char tmp[20];
 int result;

 // Case sensitive
 printf("Compare strings:\n %s\n %s\n\n", string1, string2);
 result = strcmp(string1, string2);
 if(result > 0)
 strcpy_s(tmp, _countof(tmp), "greater than");
 else if(result < 0)
 strcpy_s(tmp, _countof(tmp), "less than");
 else
 strcpy_s(tmp, _countof(tmp), "equal to");
 printf(" strcmp: String 1 is %s string 2\n", tmp);

 // Case insensitive (could use equivalent _stricmp)
 result = _stricmp(string1, string2);
 if(result > 0)
 strcpy_s(tmp, _countof(tmp), "greater than");
 else if(result < 0)
 strcpy_s(tmp, _countof(tmp), "less than");
 else
 strcpy_s(tmp, _countof(tmp), "equal to");
 printf(" _stricmp: String 1 is %s string 2\n", tmp);
}

Compare strings:
 The quick brown dog jumps over the lazy fox
 The QUICK brown dog jumps over the lazy fox

 strcmp: String 1 is greater than string 2
 _stricmp: String 1 is equal to string 2

See also
String Manipulation
memcmp, wmemcmp
_memicmp, _memicmp_l
strcmp, wcscmp, _mbscmp
strcoll Functions
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
strrchr, wcsrchr, _mbsrchr, _mbsrchr_l
_strset, _strset_l, _wcsset, _wcsset_l, _mbsset, _mbsset_l
strspn, wcsspn, _mbsspn, _mbsspn_l

_stricoll, _wcsicoll, _mbsicoll, _stricoll_l, _wcsicoll_l,
_mbsicoll_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _stricoll(
 const char *string1,
 const char *string2
);
int _wcsicoll(
 const wchar_t *string1,
 const wchar_t *string2
);
int _mbsicoll(
 const unsigned char *string1,
 const unsigned char *string2
);
int _stricoll_l(
 const char *string1,
 const char *string2,
 _locale_t locale
);
int _wcsicoll_l(
 const wchar_t *string1,
 const wchar_t *string2,
 _locale_t locale
);
int _mbsicoll_l(
 const unsigned char *string1,
 const unsigned char *string2,
 _locale_t locale
);

Parameters

Return Value

Compares strings by using locale-specific information.

_mbsicoll and _mbsicoll_l cannot be used in applications that execute in the Windows Runtime. For more information,
see CRT functions not supported in Universal Windows Platform apps.

string1, string2
Null-terminated strings to compare.

locale
The locale to use.

Each of these functions returns a value indicating the relationship of string1 to string2, as follows.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/stricoll-wcsicoll-mbsicoll-stricoll-l-wcsicoll-l-mbsicoll-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

RETURN VALUE RELATIONSHIP OF STRING1 TO STRING2

< 0 string1 less than string2

0 string1 identical to string2

> 0 string1 greater than string2

_NLSCMPERROR An error occurred.

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsicoll _stricoll _mbsicoll _wcsicoll

Requirements
ROUTINE REQUIRED HEADER

_stricoll, _stricoll_l <string.h>

_wcsicoll, _wcsicoll_l <wchar.h>, <string.h>

_mbsicoll, _mbsicoll_l <mbstring.h>

See also

Each of these functions returns _NLSCMPERROR. To use _NLSCMPERROR, include either <string.h> or
<mbstring.h>. _wcsicoll can fail if either string1 or string2 contains wide-character codes outside the domain of
the collating sequence. When an error occurs, _wcsicoll may set errno to EINVAL. To check for an error on a
call to _wcsicoll, set errno to 0 and then check errno after calling _wcsicoll.

Each of these functions performs a case-insensitive comparison of string1 and string2 according to the code
page currently in use. These functions should be used only when there is a difference between the character set
order and the lexicographic character order in the current code page and this difference is of interest for the
string comparison.

_stricmp differs from _stricoll in that the _stricmp comparison is affected by LC_CTYPE , whereas the _stricoll
comparison is according to the LC_CTYPE and LC_COLLATE categories of the locale. For more information on
the LC_COLLATE category, see setlocale and Locale Categories. The versions of these functions without the _l
suffix use the current locale; the versions with the _l suffix are identical except that they use the locale passed in
instead. For more information, see Locale.

All of these functions validate their parameters. If either string1 or string2 are NULL pointers, the invalid
parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue, these
functions return _NLSCMPERROR and set errno to EINVAL.

For additional compatibility information, see Compatibility.

Locale

String Manipulation
strcoll Functions
localeconv
_mbsnbcoll, _mbsnbcoll_l, _mbsnbicoll, _mbsnbicoll_l
setlocale, _wsetlocale
strcmp, wcscmp, _mbscmp
_stricmp, _wcsicmp, _mbsicmp, _stricmp_l, _wcsicmp_l, _mbsicmp_l
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
strxfrm, wcsxfrm, _strxfrm_l, _wcsxfrm_l

_strinc, _wcsinc, _mbsinc, _mbsinc_l
11/9/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
char *_strinc(
 const char *current,
 _locale_t locale
);
wchar_t *_wcsinc(
 const wchar_t *current,
 _locale_t locale
);
unsigned char *_mbsinc(
 const unsigned char *current
);
unsigned char *_mbsinc_l(
 const unsigned char *current,
 _locale_t locale
);

Parameters

Return Value

Remarks

Advances a string pointer by one character.

_mbsinc and _mbsinc_l cannot be used in applications that execute in the Windows Runtime. For more information, see
CRT functions not supported in Universal Windows Platform apps.

current
Character pointer.

locale
Locale to use.

Each of these routines returns a pointer to the character that immediately follows current.

The _mbsinc function returns a pointer to the first byte of the multibyte character that immediately follows
current. _mbsinc recognizes multibyte-character sequences according to the multibyte code page that's currently
in use; _mbsinc_l is identical except that it instead uses the locale parameter that's passed in. For more
information, see Locale.

The generic-text function _tcsinc, defined in Tchar.h, maps to _mbsinc if _MBCS has been defined, or to _wcsinc
if _UNICODE has been defined. Otherwise, _tcsinc maps to _strinc. _strinc and _wcsinc are single-byte-
character and wide-character versions of _mbsinc. _strinc and _wcsinc are provided only for this mapping and
should not be used otherwise. For more information, see Using Generic-Text Mappings and Generic-Text
Mappings.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strinc-wcsinc-mbsinc-mbsinc-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

IMPORTANT

Requirements
ROUTINE REQUIRED HEADER

_mbsinc <mbstring.h>

_mbsinc_l <mbstring.h>

_strinc <tchar.h>

_wcsinc <tchar.h>

See also

If current is NULL, the invalid parameter handler is invoked, as described in Parameter Validation. If execution is
allowed to continue, this function returns EINVAL and sets errno to EINVAL.

These functions might be vulnerable to buffer overrun threats. Buffer overruns can be used for system attacks because they
can cause an unwarranted elevation of privilege. For more information, see Avoiding Buffer Overruns.

For more compatibility information, see Compatibility.

String Manipulation
_strdec, _wcsdec, _mbsdec, _mbsdec_l
_strnextc, _wcsnextc, _mbsnextc, _mbsnextc_l
_strninc, _wcsninc, _mbsninc, _mbsninc_l

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

strlen, wcslen, _mbslen, _mbslen_l, _mbstrlen,
_mbstrlen_l
3/1/2019 • 3 minutes to read • Edit Online

IMPORTANT

Syntax
size_t strlen(
 const char *str
);
size_t wcslen(
 const wchar_t *str
);
size_t _mbslen(
 const unsigned char *str
);
size_t _mbslen_l(
 const unsigned char *str,
 _locale_t locale
);
size_t _mbstrlen(
 const char *str
);
size_t _mbstrlen_l(
 const char *str,
 _locale_t locale
);

Parameters

Return Value

Remarks

Gets the length of a string, by using the current locale or a specified locale. More secure versions of these
functions are available; see strnlen, strnlen_s, wcsnlen, wcsnlen_s, _mbsnlen, _mbsnlen_l, _mbstrnlen,
_mbstrnlen_l

_mbslen, _mbslen_l, _mbstrlen, and _mbstrlen_l cannot be used in applications that execute in the Windows Runtime.
For more information, see CRT functions not supported in Universal Windows Platform apps.

str
Null-terminated string.

locale
Locale to use.

Each of these functions returns the number of characters in str, excluding the terminal null. No return value is
reserved to indicate an error, except for _mbstrlen and _mbstrlen_l, which return ((size_t)(-1)) if the string
contains an invalid multibyte character.

strlen interprets the string as a single-byte character string, so its return value is always equal to the number of

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strlen-wcslen-mbslen-mbslen-l-mbstrlen-mbstrlen-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcslen strlen strlen wcslen

_tcsclen strlen _mbslen wcslen

_tcsclen_l strlen _mbslen_l wcslen

Requirements
ROUTINE REQUIRED HEADER

strlen <string.h>

wcslen <string.h> or <wchar.h>

_mbslen, _mbslen_l <mbstring.h>

_mbstrlen, _mbstrlen_l <stdlib.h>

Example

bytes, even if the string contains multibyte characters. wcslen is a wide-character version of strlen; the
argument of wcslen is a wide-character string and the count of characters is in wide (two-byte) characters.
wcslen and strlen behave identically otherwise.

Security Note These functions incur a potential threat brought about by a buffer overrun problem. Buffer
overrun problems are a frequent method of system attack, resulting in an unwarranted elevation of privilege.
For more information, see Avoiding Buffer Overruns.

_mbslen and _mbslen_l return the number of multibyte characters in a multibyte-character string but they do
not test for multibyte-character validity. _mbstrlen and _mbstrlen_l test for multibyte-character validity and
recognize multibyte-character sequences. If the string passed to _mbstrlen or _mbstrlen_l contains an invalid
multibyte character for the code page, the function returns -1 and sets errno to EILSEQ.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for
more information. The versions of these functions without the _l suffix use the current locale for this locale-
dependent behavior ; the versions with the _l suffix are identical except that they use the locale parameter
passed in instead. For more information, see Locale.

For additional compatibility information, see Compatibility.

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

// crt_strlen.c
// Determine the length of a string. For the multi-byte character
// example to work correctly, the Japanese language support for
// non-Unicode programs must be enabled by the operating system.

#include <string.h>
#include <locale.h>

int main()
{
 char* str1 = "Count.";
 wchar_t* wstr1 = L"Count.";
 char * mbstr1;
 char * locale_string;

 // strlen gives the length of single-byte character string
 printf("Length of '%s' : %d\n", str1, strlen(str1));

 // wstrlen gives the length of a wide character string
 wprintf(L"Length of '%s' : %d\n", wstr1, wcslen(wstr1));

 // A multibyte string: [A] [B] [C] [katakana A] [D] [\0]
 // in Code Page 932. For this example to work correctly,
 // the Japanese language support must be enabled by the
 // operating system.
 mbstr1 = "ABC" "\x83\x40" "D";

 locale_string = setlocale(LC_CTYPE, "Japanese_Japan");

 if (locale_string == NULL)
 {
 printf("Japanese locale not enabled. Exiting.\n");
 exit(1);
 }
 else
 {
 printf("Locale set to %s\n", locale_string);
 }

 // _mbslen will recognize the Japanese multibyte character if the
 // current locale used by the operating system is Japanese
 printf("Length of '%s' : %d\n", mbstr1, _mbslen(mbstr1));

 // _mbstrlen will recognize the Japanese multibyte character
 // since the CRT locale is set to Japanese even if the OS locale
 // isnot.
 printf("Length of '%s' : %d\n", mbstr1, _mbstrlen(mbstr1));
 printf("Bytes in '%s' : %d\n", mbstr1, strlen(mbstr1));

}

Length of 'Count.' : 6
Length of 'Count.' : 6
Length of 'ABCァD' : 5
Length of 'ABCァD' : 5
Bytes in 'ABCァD' : 6

See also
String Manipulation
Interpretation of Multibyte-Character Sequences
Locale
setlocale, _wsetlocale

strcat, wcscat, _mbscat
strcmp, wcscmp, _mbscmp
strcoll Functions
strcpy, wcscpy, _mbscpy
strrchr, wcsrchr, _mbsrchr, _mbsrchr_l
_strset, _strset_l, _wcsset, _wcsset_l, _mbsset, _mbsset_l
strspn, wcsspn, _mbsspn, _mbsspn_l

strlwr, wcslwr
10/31/2018 • 2 minutes to read • Edit Online

These POSIX functions are deprecated. Use the ISO C++ conformant _strlwr, _wcslwr, _mbslwr, _strlwr_l,
_wcslwr_l, _mbslwr_l or security-enhanced _strlwr_s, _strlwr_s_l, _mbslwr_s, _mbslwr_s_l, _wcslwr_s, _wcslwr_s_l
instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strlwr-wcslwr.md

_strlwr, _wcslwr, _mbslwr, _strlwr_l, _wcslwr_l,
_mbslwr_l
3/1/2019 • 2 minutes to read • Edit Online

IMPORTANT

Syntax

Converts a string to lowercase. More secure versions of these functions are available; see _strlwr_s, _strlwr_s_l,
_mbslwr_s, _mbslwr_s_l, _wcslwr_s, _wcslwr_s_l.

_mbslwr and _mbslwr_l cannot be used in applications that execute in the Windows Runtime. For more information, see
CRT functions not supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strlwr-wcslwr-mbslwr-strlwr-l-wcslwr-l-mbslwr-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

char *_strlwr(
 char * str
);
wchar_t *_wcslwr(
 wchar_t * str
);
unsigned char *_mbslwr(
 unsigned char * str
);
char *_strlwr_l(
 char * str,
 _locale_t locale
);
wchar_t *_wcslwr_l(
 wchar_t * str,
 _locale_t locale
);
unsigned char *_mbslwr_l(
 unsigned char * str,
 _locale_t locale
);
template <size_t size>
char *_strlwr(
 char (&str)[size]
); // C++ only
template <size_t size>
wchar_t *_wcslwr(
 wchar_t (&str)[size]
); // C++ only
template <size_t size>
unsigned char *_mbslwr(
 unsigned char (&str)[size]
); // C++ only
template <size_t size>
char *_strlwr_l(
 char (&str)[size],
 _locale_t locale
); // C++ only
template <size_t size>
wchar_t *_wcslwr_l(
 wchar_t (&str)[size],
 _locale_t locale
); // C++ only
template <size_t size>
unsigned char *_mbslwr_l(
 unsigned char (&str)[size],
 _locale_t locale
); // C++ only

Parameters

Return Value

str
Null-terminated string to convert to lowercase.

locale
The locale to use.

Each of these functions returns a pointer to the converted string. Because the modification is done in place, the
pointer returned is the same as the pointer passed as the input argument. No return value is reserved to
indicate an error.

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcslwr _strlwr _mbslwr _wcslwr

_tcslwr_l _strlwr_l _mbslwr_l _wcslwr_l

Requirements
ROUTINE REQUIRED HEADER

_strlwr, _strlwr_l <string.h>

_wcslwr, _wcslwr_l <string.h> or <wchar.h>

_mbslwr, _mbslwr_l <mbstring.h>

Example

The _strlwr function converts any uppercase letters in str to lowercase as determined by the LC_CTYPE
category setting of the locale. Other characters are not affected. For more information on LC_CTYPE , see
setlocale. The versions of these functions without the _l suffix use the current locale for their locale-dependent
behavior ; the versions with the _l suffix are identical except that they use the locale passed in instead. For more
information, see Locale.

The _wcslwr and _mbslwr functions are wide-character and multibyte-character versions of _strlwr. The
argument and return value of _wcslwr are wide-character strings; those of _mbslwr are multibyte-character
strings. These three functions behave identically otherwise.

If str is a NULL pointer, the invalid parameter handler is invoked, as described in Parameter Validation . If
execution is allowed to continue, these functions return the original string and set errno to EINVAL.

In C++, these functions have template overloads that invoke the newer, secure counterparts of these functions.
For more information, see Secure Template Overloads.

For additional compatibility information, see Compatibility.

// crt_strlwr.c
// compile with: /W3
// This program uses _strlwr and _strupr to create
// uppercase and lowercase copies of a mixed-case string.
#include <string.h>
#include <stdio.h>

int main(void)
{
 char string[100] = "The String to End All Strings!";
 char * copy1 = _strdup(string); // make two copies
 char * copy2 = _strdup(string);

 _strlwr(copy1); // C4996
 // Note: _strlwr is deprecated; consider using _strlwr_s instead
 _strupr(copy2); // C4996
 // Note: _strupr is deprecated; consider using _strupr_s instead

 printf("Mixed: %s\n", string);
 printf("Lower: %s\n", copy1);
 printf("Upper: %s\n", copy2);

 free(copy1);
 free(copy2);
}

Mixed: The String to End All Strings!
Lower: the string to end all strings!
Upper: THE STRING TO END ALL STRINGS!

See also
String Manipulation
Locale
_strupr, _strupr_l, _mbsupr, _mbsupr_l, _wcsupr_l, _wcsupr

_strlwr_s, _strlwr_s_l, _mbslwr_s, _mbslwr_s_l,
_wcslwr_s, _wcslwr_s_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax

Converts a string to lowercase, by using the current locale or a locale object that's passed in. These versions of
_strlwr, _wcslwr, _mbslwr, _strlwr_l, _wcslwr_l, _mbslwr_l have security enhancements, as described in Security
Features in the CRT.

_mbslwr_s and _mbslwr_s_l cannot be used in applications that execute in the Windows Runtime. For more information,
see CRT functions not supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strlwr-s-strlwr-s-l-mbslwr-s-mbslwr-s-l-wcslwr-s-wcslwr-s-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

errno_t _strlwr_s(
 char *str,
 size_t numberOfElements
);
errno_t _strlwr_s_l(
 char *str,
 size_t numberOfElements,
 _locale_t locale
);
errno_t _mbslwr_s(
 unsigned char *str,
 size_t numberOfElements
);
errno_t _mbslwr_s_l(
 unsigned char *str,
 size_t numberOfElements,
 _locale_t locale
);
errno_t _wcslwr_s(
 wchar_t *str,
 size_t numberOfElements
);
errno_t _wcslwr_s_l(
 wchar_t *str,
 size_t numberOfElements,
 _locale_t locale
);
template <size_t size>
errno_t _strlwr_s(
 char (&str)[size]
); // C++ only
template <size_t size>
errno_t _strlwr_s_l(
 char (&str)[size],
 _locale_t locale
); // C++ only
template <size_t size>
errno_t _mbslwr_s(
 unsigned char (&str)[size]
); // C++ only
template <size_t size>
errno_t _mbslwr_s_l(
 unsigned char (&str)[size],
 _locale_t locale
); // C++ only
template <size_t size>
errno_t _wcslwr_s(
 wchar_t (&str)[size]
); // C++ only
template <size_t size>
errno_t _wcslwr_s_l(
 wchar_t (&str)[size],
 _locale_t locale
); // C++ only

Parameters
str
Null-terminated string to convert to lowercase.

numberOfElements
Size of the buffer.

locale
The locale to use.

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcslwr_s _strlwr_s _mbslwr_s _wcslwr_s

_tcslwr_s_l _strlwr_s_l _mbslwr_s_l _wcslwr_s_l

Requirements
ROUTINE REQUIRED HEADER

_strlwr_s, _strlwr_s_l <string.h>

_mbslwr_s, _mbslwr_s_l <mbstring.h>

_wcslwr_s, _wcslwr_s_l <string.h> or <wchar.h>

Example

Zero if successful; a non-zero error code on failure.

These functions validate their parameters. If str is not a valid null-terminated string, the invalid parameter
handler is invoked, as described in Parameter Validation . If execution is allowed to continue, the functions
return EINVAL and set errno to EINVAL. If numberOfElements is less than the length of the string, the
functions also return EINVAL and set errno to EINVAL.

The _strlwr_s function converts, in place, any uppercase letters in str to lowercase. _mbslwr_s is a multi-byte
character version of _strlwr_s. _wcslwr_s is a wide-character version of _strlwr_s.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for
more information. The versions of these functions without the _l suffix use the current locale for this locale-
dependent behavior ; the versions with the _l suffix are identical except that they use the locale parameter
passed in instead. For more information, see Locale.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically (eliminating the need to specify a size argument) and they can automatically replace older, non-
secure functions with their newer, secure counterparts. For more information, see Secure Template Overloads.

The debug versions of these functions first fill the buffer with 0xFD. To disable this behavior, use
_CrtSetDebugFillThreshold.

For additional compatibility information, see Compatibility.

// crt_strlwr_s.cpp
// This program uses _strlwr_s and _strupr_s to create
// uppercase and lowercase copies of a mixed-case string.
//

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{
 char str[] = "The String to End All Strings!";
 char *copy1, *copy2;
 errno_t err;

 err = _strlwr_s(copy1 = _strdup(str), strlen(str) + 1);
 err = _strupr_s(copy2 = _strdup(str), strlen(str) + 1);

 printf("Mixed: %s\n", str);
 printf("Lower: %s\n", copy1);
 printf("Upper: %s\n", copy2);

 free(copy1);
 free(copy2);

 return 0;
}

Mixed: The String to End All Strings!
Lower: the string to end all strings!
Upper: THE STRING TO END ALL STRINGS!

See also
String Manipulation
Locale
Interpretation of Multibyte-Character Sequences
_strupr_s, _strupr_s_l, _mbsupr_s, _mbsupr_s_l, _wcsupr_s, _wcsupr_s_l

strncat, _strncat_l, wcsncat, _wcsncat_l, _mbsncat,
_mbsncat_l
3/1/2019 • 3 minutes to read • Edit Online

IMPORTANT

Syntax

Appends characters of a string. More secure versions of these functions are available, see strncat_s,
_strncat_s_l, wcsncat_s, _wcsncat_s_l, _mbsncat_s, _mbsncat_s_l .

_mbsncat and _mbsncat_l cannot be used in applications that execute in the Windows Runtime. For more
information, see CRT functions not supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strncat-strncat-l-wcsncat-wcsncat-l-mbsncat-mbsncat-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

char *strncat(
 char *strDest,
 const char *strSource,
 size_t count
);
wchar_t *wcsncat(
 wchar_t *strDest,
 const wchar_t *strSource,
 size_t count
);
unsigned char *_mbsncat(
 unsigned char *strDest,
 const unsigned char *strSource,
 size_t count
);
unsigned char *_mbsncat_l(
 unsigned char *strDest,
 const unsigned char *strSource,
 size_t count,
 _locale_t locale
);
template <size_t size>
char *strncat(
 char (&strDest)[size],
 const char *strSource,
 size_t count
); // C++ only
template <size_t size>
wchar_t *wcsncat(
 wchar_t (&strDest)[size],
 const wchar_t *strSource,
 size_t count
); // C++ only
template <size_t size>
unsigned char *_mbsncat(
 unsigned char (&strDest)[size],
 const unsigned char *strSource,
 size_t count
); // C++ only
template <size_t size>
unsigned char *_mbsncat_l(
 unsigned char (&strDest)[size],
 const unsigned char *strSource,
 size_t count,
 _locale_t locale
); // C++ only

Parameters

Return Value

strDest
Null-terminated destination string.

strSource
Null-terminated source string.

count
Number of characters to append.

locale
Locale to use.

Returns a pointer to the destination string. No return value is reserved to indicate an error.

Remarks

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsncat strncat _mbsnbcat wcsncat

_tcsncat_l _strncat_l _mbsnbcat_l _wcsncat_l

NOTE

Requirements
ROUTINE REQUIRED HEADER

strncat <string.h>

wcsncat <string.h> or <wchar.h>

_mbsncat <mbstring.h>

_mbsncat_l <mbstring.h>

The strncat function appends, at most, the first count characters of strSource to strDest. The initial character
of strSource overwrites the terminating null character of strDest. If a null character appears in strSource
before count characters are appended, strncat appends all characters from strSource, up to the null character.
If count is greater than the length of strSource, the length of strSource is used in place of count. The all cases,
the resulting string is terminated with a null character. If copying takes place between strings that overlap, the
behavior is undefined.

strncat does not check for sufficient space in strDest; it is therefore a potential cause of buffer overruns. Keep in mind
that count limits the number of characters appended; it is not a limit on the size of strDest. See the example below. For
more information, see Avoiding Buffer Overruns.

wcsncat and _mbsncat are wide-character and multibyte-character versions of strncat. The string
arguments and return value of wcsncat are wide-character strings; those of _mbsncat are multibyte-
character strings. These three functions behave identically otherwise.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for
more information. The versions of these functions without the _l suffix use the current locale for this locale-
dependent behavior ; the versions with the _l suffix are identical except that they use the locale parameter
passed in instead. For more information, see Locale.

In C++, these functions have template overloads. For more information, see Secure Template Overloads.

_strncat_l and _wcsncat_l have no locale dependence and are not meant to be called directly. They are provided for
internal use by _tcsncat_l.

For additional compatibility information, see Compatibility.

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

Example
// crt_strncat.c
// Use strcat and strncat to append to a string.
#include <stdlib.h>

#define MAXSTRINGLEN 39

char string[MAXSTRINGLEN+1];
// or char *string = malloc(MAXSTRINGLEN+1);

void BadAppend(char suffix[], int n)
{
 strncat(string, suffix, n);
}

void GoodAppend(char suffix[], size_t n)
{
 strncat(string, suffix, __min(n, MAXSTRINGLEN-strlen(string)));
}

int main(void)
{
 string[0] = '\0';
 printf("string can hold up to %d characters\n", MAXSTRINGLEN);

 strcpy(string, "This is the initial string!");
 // concatenate up to 20 characters...
 BadAppend("Extra text to add to the string...", 20);
 printf("After BadAppend : %s (%d chars)\n", string, strlen(string));

 strcpy(string, "This is the initial string!");
 // concatenate up to 20 characters...
 GoodAppend("Extra text to add to the string...", 20);
 printf("After GoodAppend: %s (%d chars)\n", string, strlen(string));
}

Output

string can hold up to 39 characters
After BadAppend : This is the initial string!Extra text to add to (47 chars)
After GoodAppend: This is the initial string!Extra text t (39 chars)

See also

Note that BadAppend caused a buffer overrun.

String Manipulation
_mbsnbcat, _mbsnbcat_l
strcat, wcscat, _mbscat
strcmp, wcscmp, _mbscmp
strcpy, wcscpy, _mbscpy
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
strncpy, _strncpy_l, wcsncpy, _wcsncpy_l, _mbsncpy, _mbsncpy_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
strrchr, wcsrchr, _mbsrchr, _mbsrchr_l
_strset, _strset_l, _wcsset, _wcsset_l, _mbsset, _mbsset_l
strspn, wcsspn, _mbsspn, _mbsspn_l
Locale
Interpretation of Multibyte-Character Sequences

strncat_s, _strncat_s_l, wcsncat_s, _wcsncat_s_l,
_mbsncat_s, _mbsncat_s_l
3/1/2019 • 6 minutes to read • Edit Online

IMPORTANT

Syntax
errno_t strncat_s(
 char *strDest,
 size_t numberOfElements,
 const char *strSource,
 size_t count
);
errno_t _strncat_s_l(
 char *strDest,
 size_t numberOfElements,
 const char *strSource,
 size_t count,
 _locale_t locale
);
errno_t wcsncat_s(
 wchar_t *strDest,
 size_t numberOfElements,
 const wchar_t *strSource,
 size_t count
);
errno_t _wcsncat_s_l(
 wchar_t *strDest,
 size_t numberOfElements,
 const wchar_t *strSource,
 size_t count,
 _locale_t locale
);
errno_t _mbsncat_s(
 unsigned char *strDest,
 size_t numberOfElements,
 const unsigned char *strSource,
 size_t count
);
errno_t _mbsncat_s_l(
 unsigned char *strDest,
 size_t numberOfElements,
 const unsigned char *strSource,
 size_t count,
 _locale_t locale
);
template <size_t size>
errno_t strncat_s(
 char (&strDest)[size],
 const char *strSource,
 size_t count

Appends characters to a string. These versions of strncat, _strncat_l, wcsncat, _wcsncat_l, _mbsncat, _mbsncat_l
have security enhancements, as described in Security Features in the CRT.

_mbsncat_s and _mbsncat_s_l cannot be used in applications that execute in the Windows Runtime. For more
information, see CRT functions not supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strncat-s-strncat-s-l-wcsncat-s-wcsncat-s-l-mbsncat-s-mbsncat-s-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

 size_t count
); // C++ only
template <size_t size>
errno_t _strncat_s_l(
 char (&strDest)[size],
 const char *strSource,
 size_t count,
 _locale_t locale
); // C++ only
template <size_t size>
errno_t wcsncat_s(
 wchar_t (&strDest)[size],
 const wchar_t *strSource,
 size_t count
); // C++ only
template <size_t size>
errno_t _wcsncat_s_l(
 wchar_t (&strDest)[size],
 const wchar_t *strSource,
 size_t count,
 _locale_t locale
); // C++ only
template <size_t size>
errno_t _mbsncat_s(
 unsigned char (&strDest)[size],
 const unsigned char *strSource,
 size_t count
); // C++ only
template <size_t size>
errno_t _mbsncat_s_l(
 unsigned char (&strDest)[size],
 const unsigned char *strSource,
 size_t count,
 _locale_t locale
); // C++ only

Parameters

Return Value

Error Conditions

STRDESTINATION NUMBEROFELEMENTS STRSOURCE RETURN VALUE
CONTENTS OF
STRDESTINATION

NULL or
unterminated

any any EINVAL not modified

strDest
Null-terminated destination string.

numberOfElements
Size of the destination buffer.

strSource
Null-terminated source string.

count
Number of characters to append, or _TRUNCATE.

locale
Locale to use.

Returns 0 if successful, an error code on failure.

any any NULL EINVAL not modified

any 0, or too small any ERANGE not modified

STRDESTINATION NUMBEROFELEMENTS STRSOURCE RETURN VALUE
CONTENTS OF
STRDESTINATION

Remarks

char dst[5];
strncpy_s(dst, _countof(dst), "12", 2);
strncat_s(dst, _countof(dst), "34567", 3);

strncat_s(dst, _countof(dst), "34567", _TRUNCATE);

strncat_s(dst, _countof(dst), "34567", _countof(dst)-strlen(dst)-1);

These functions try to append the first D characters of strSource to the end of strDest, where D is the lesser of
count and the length of strSource. If appending those D characters will fit within strDest (whose size is given as
numberOfElements) and still leave room for a null terminator, then those characters are appended, starting at
the original terminating null of strDest, and a new terminating null is appended; otherwise, strDest[0] is set to
the null character and the invalid parameter handler is invoked, as described in Parameter Validation.

There is an exception to the above paragraph. If count is _TRUNCATE then as much of strSource as will fit is
appended to strDest while still leaving room to append a terminating null.

For example,

means that we are asking strncat_s to append three characters to two characters in a buffer five characters
long; this would leave no space for the null terminator, hence strncat_s zeroes out the string and calls the
invalid parameter handler.

If truncation behavior is needed, use _TRUNCATE or adjust the size parameter accordingly:

or

In all cases, the resulting string is terminated with a null character. If copying takes place between strings that
overlap, the behavior is undefined.

If strSource or strDest is NULL, or is numberOfElements is zero, the invalid parameter handler is invoked, as
described in Parameter Validation . If execution is allowed to continue, the function returns EINVAL without
modifying its parameters.

wcsncat_s and _mbsncat_s are wide-character and multibyte-character versions of strncat_s. The string
arguments and return value of wcsncat_s are wide-character strings; those of _mbsncat_s are multibyte-
character strings. These three functions behave identically otherwise.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for
more information. The versions of these functions without the _l suffix use the current locale for this locale-
dependent behavior ; the versions with the _l suffix are identical except that they use the locale parameter
passed in instead. For more information, see Locale.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically (eliminating the need to specify a size argument) and they can automatically replace older, non-

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsncat_s strncat_s _mbsnbcat_s wcsncat_s

_tcsncat_s_l _strncat_s_l _mbsnbcat_s_l _wcsncat_s_l

Requirements
ROUTINE REQUIRED HEADER

strncat_s <string.h>

wcsncat_s <string.h> or <wchar.h>

_mbsncat_s, _mbsncat_s_l <mbstring.h>

Example
// crt_strncat_s.cpp
// compile with: /MTd

// These #defines enable secure template overloads
// (see last part of Examples() below)
#define _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES 1
#define _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES_COUNT 1

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <crtdbg.h> // For _CrtSetReportMode
#include <errno.h>

// This example uses a 10-byte destination buffer.

errno_t strncat_s_tester(const char * initialDest,
 const char * src,
 int count)
{
 char dest[10];
 strcpy_s(dest, _countof(dest), initialDest);

 printf_s("\n");

 if (count == _TRUNCATE)
 printf_s("Appending '%s' to %d-byte buffer dest with truncation semantics\n",
 src, _countof(dest));
 else
 printf_s("Appending %d chars of '%s' to %d-byte buffer dest\n",
 count, src, _countof(dest));

secure functions with their newer, secure counterparts. For more information, see Secure Template Overloads.

The debug versions of these functions first fill the buffer with 0xFD. To disable this behavior, use
_CrtSetDebugFillThreshold.

_strncat_s_l and _wcsncat_s_l have no locale dependence; they are only provided for _tcsncat_s_l.

For additional compatibility information, see Compatibility.

 printf_s(" old contents of dest: '%s'\n", dest);

 errno_t err = strncat_s(dest, _countof(dest), src, count);

 printf_s(" new contents of dest: '%s'\n", dest);

 return err;
}

void Examples()
{
 strncat_s_tester("hi ", "there", 4);
 strncat_s_tester("hi ", "there", 5);
 strncat_s_tester("hi ", "there", 6);

 printf_s("\nDestination buffer too small:\n");
 strncat_s_tester("hello ", "there", 4);

 printf_s("\nTruncation examples:\n");

 errno_t err = strncat_s_tester("hello ", "there", _TRUNCATE);
 printf_s(" truncation %s occur\n", err == STRUNCATE ? "did"
 : "did not");

 err = strncat_s_tester("hello ", "!", _TRUNCATE);
 printf_s(" truncation %s occur\n", err == STRUNCATE ? "did"
 : "did not");

 printf_s("\nSecure template overload example:\n");

 char dest[10] = "cats and ";
 strncat(dest, "dachshunds", 15);
 // With secure template overloads enabled (see #define
 // at top of file), the preceding line is replaced by
 // strncat_s(dest, _countof(dest), "dachshunds", 15);
 // Instead of causing a buffer overrun, strncat_s invokes
 // the invalid parameter handler.
 // If secure template overloads were disabled, strncat would
 // append "dachshunds" and overrun the dest buffer.
 printf_s(" new contents of dest: '%s'\n", dest);
}

void myInvalidParameterHandler(
 const wchar_t* expression,
 const wchar_t* function,
 const wchar_t* file,
 unsigned int line,
 uintptr_t pReserved)
{
 wprintf_s(L"Invalid parameter handler invoked: %s\n", expression);
}

int main(void)
{
 _invalid_parameter_handler oldHandler, newHandler;

 newHandler = myInvalidParameterHandler;
 oldHandler = _set_invalid_parameter_handler(newHandler);
 // Disable the message box for assertions.
 _CrtSetReportMode(_CRT_ASSERT, 0);

 Examples();
}

Appending 4 chars of 'there' to 10-byte buffer dest
 old contents of dest: 'hi '
 new contents of dest: 'hi ther'

Appending 5 chars of 'there' to 10-byte buffer dest
 old contents of dest: 'hi '
 new contents of dest: 'hi there'

Appending 6 chars of 'there' to 10-byte buffer dest
 old contents of dest: 'hi '
 new contents of dest: 'hi there'

Destination buffer too small:

Appending 4 chars of 'there' to 10-byte buffer dest
 old contents of dest: 'hello '
Invalid parameter handler invoked: (L"Buffer is too small" && 0)
 new contents of dest: ''

Truncation examples:

Appending 'there' to 10-byte buffer dest with truncation semantics
 old contents of dest: 'hello '
 new contents of dest: 'hello the'
 truncation did occur

Appending '!' to 10-byte buffer dest with truncation semantics
 old contents of dest: 'hello '
 new contents of dest: 'hello !'
 truncation did not occur

Secure template overload example:
Invalid parameter handler invoked: (L"Buffer is too small" && 0)
 new contents of dest: ''

See also
String Manipulation
Locale
Interpretation of Multibyte-Character Sequences
_mbsnbcat, _mbsnbcat_l
strcat, wcscat, _mbscat
strcmp, wcscmp, _mbscmp
strcpy, wcscpy, _mbscpy
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
strncpy, _strncpy_l, wcsncpy, _wcsncpy_l, _mbsncpy, _mbsncpy_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
strrchr, wcsrchr, _mbsrchr, _mbsrchr_l
_strset, _strset_l, _wcsset, _wcsset_l, _mbsset, _mbsset_l
strspn, wcsspn, _mbsspn, _mbsspn_l

strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
3/1/2019 • 3 minutes to read • Edit Online

IMPORTANT

Syntax
int strncmp(
 const char *string1,
 const char *string2,
 size_t count
);
int wcsncmp(
 const wchar_t *string1,
 const wchar_t *string2,
 size_t count
);
int _mbsncmp(
 const unsigned char *string1,
 const unsigned char *string2,
 size_t count
);
int _mbsncmp_l(
 const unsigned char *string1,
 const unsigned char *string2,
 size_t count,
 _locale_t locale
);int _mbsnbcmp(
 const unsigned char *string1,
 const unsigned char *string2,
 size_t count
);

Parameters

Return Value

Compares up to the specified count of characters of two strings.

_mbsncmp and _mbsncmp_l cannot be used in applications that execute in the Windows Runtime. For more
information, see CRT functions not supported in Universal Windows Platform apps.

string1, string2
Strings to compare.

count
Number of characters to compare.

locale
Locale to use.

The return value indicates the relation of the substrings of string1 and string2 as follows.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strncmp-wcsncmp-mbsncmp-mbsncmp-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

RETURN VALUE DESCRIPTION

< 0 string1 substring less than string2 substring

0 string1 substring identical to string2 substring

> 0 string1 substring greater than string2 substring

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsnccmp strncmp _mbsncmp wcsncmp

_tcsncmp strncmp _mbsnbcmp wcsncmp

_tccmp Maps to macro or inline
function

_mbsncmp Maps to macro or inline
function

not applicable not applicable _mbsncmp_l not applicable

Requirements
ROUTINE REQUIRED HEADER

strncmp <string.h>

On a parameter validation error, _mbsncmp and _mbsncmp_l return _NLSCMPERROR, which is defined
in <string.h> and <mbstring.h>.

The strncmp function performs an ordinal comparison of at most the first count characters in string1 and
string2 and returns a value indicating the relationship between the substrings. strncmp is a case-sensitive
version of _strnicmp. wcsncmp and _mbsncmp are case-sensitive versions of _wcsnicmp and
_mbsnicmp.

wcsncmp and _mbsncmp are wide-character and multibyte-character versions of strncmp. The
arguments of wcsncmp are wide-character strings; those of _mbsncmp are multibyte-character strings.
_mbsncmp recognizes multibyte-character sequences according to a multibyte code page and returns
_NLSCMPERROR on an error.

Also, _mbsncmp and _mbsncmp_l validate parameters. If string1 or string2 is a null pointer, the invalid
parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue,
_mbsncmp and _mbsncmp_l return _NLSCMPERROR and set errno to EINVAL. strncmp and
wcsncmp do not validate their parameters. These functions behave identically otherwise.

The comparison behavior of _mbsncmp and _mbsncmp_l is affected by the setting of the LC_CTYPE
category setting of the locale. This controls detection of leading and trailing bytes of multibyte characters.
For more information, see setlocale. The _mbsncmp function uses the current locale for this locale-
dependent behavior. The _mbsncmp_l function is identical except that it uses the locale parameter instead.
For more information, see Locale. If the locale is a single-byte locale, the behavior of these functions is
identical to strncmp.

wcsncmp <string.h> or <wchar.h>

_mbsncmp, _mbsncmp_l <mbstring.h>

ROUTINE REQUIRED HEADER

Example
// crt_strncmp.c
#include <string.h>
#include <stdio.h>

char string1[] = "The quick brown dog jumps over the lazy fox";
char string2[] = "The QUICK brown fox jumps over the lazy dog";

int main(void)
{
 char tmp[20];
 int result;
 printf("Compare strings:\n %s\n %s\n\n",
 string1, string2);
 printf("Function: strncmp (first 10 characters only)\n");
 result = strncmp(string1, string2 , 10);
 if(result > 0)
 strcpy_s(tmp, sizeof(tmp), "greater than");
 else if(result < 0)
 strcpy_s(tmp, sizeof(tmp), "less than");
 else
 strcpy_s(tmp, sizeof(tmp), "equal to");
 printf("Result: String 1 is %s string 2\n\n", tmp);
 printf("Function: strnicmp _strnicmp (first 10 characters only)\n");
 result = _strnicmp(string1, string2, 10);
 if(result > 0)
 strcpy_s(tmp, sizeof(tmp), "greater than");
 else if(result < 0)
 strcpy_s(tmp, sizeof(tmp), "less than");
 else
 strcpy_s(tmp, sizeof(tmp), "equal to");
 printf("Result: String 1 is %s string 2\n", tmp);
}

Compare strings:
 The quick brown dog jumps over the lazy fox
 The QUICK brown fox jumps over the lazy dog

Function: strncmp (first 10 characters only)
Result: String 1 is greater than string 2

Function: strnicmp _strnicmp (first 10 characters only)
Result: String 1 is equal to string 2

See also

For additional compatibility information, see Compatibility.

String Manipulation
Locale
Interpretation of Multibyte-Character Sequences
_mbsnbcmp, _mbsnbcmp_l

_mbsnbicmp, _mbsnbicmp_l
strcmp, wcscmp, _mbscmp
strcoll Functions
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
strrchr, wcsrchr, _mbsrchr, _mbsrchr_l
_strset, _strset_l, _wcsset, _wcsset_l, _mbsset, _mbsset_l
strspn, wcsspn, _mbsspn, _mbsspn_l

_strncnt, _wcsncnt, _mbsnbcnt, _mbsnbcnt_l,
_mbsnccnt, _mbsnccnt_l
11/9/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
size_t _strncnt(
 const char *str,
 size_t count
);
size_t _wcsncnt(
 const wchar_t *str,
 size_t count
);
size_t _mbsnbcnt(
 const unsigned char *str,
 size_t count
);
size_t _mbsnbcnt_l(
 const unsigned char *str,
 size_t count,
 _locale_t locale
);
size_t _mbsnccnt(
 const unsigned char *str,
 size_t count
);
size_t _mbsnccnt_l(
 const unsigned char *str,
 size_t count,
 _locale_t locale
);

Parameters

Return Value

Returns the number of characters or bytes within a specified count.

_mbsnbcnt, _mbsnbcnt_l, _mbsnccnt, and _mbsnccnt_l cannot be used in applications that execute in the Windows
Runtime. For more information, see CRT functions not supported in Universal Windows Platform apps.

str
String to be examined.

count
Number of characters or bytes to be examined in str.

locale
Locale to use.

_mbsnbcnt and _mbsnbcnt_l return the number of bytes found in the first count of multibyte characters of str.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strncnt-wcsncnt-mbsnbcnt-mbsnbcnt-l-mbsnccnt-mbsnccnt-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Remarks

Generic-Text Routine Mappings

ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsnbcnt _strncnt _mbsnbcnt _wcsncnt

_tcsnccnt _strncnt _mbsnbcnt n/a

_wcsncnt n/a n/a _mbsnbcnt

_wcsncnt n/a n/a _mbsnccnt

n/a n/a _mbsnbcnt_l _mbsnccnt_l

Requirements
ROUTINE REQUIRED HEADER

_mbsnbcnt <mbstring.h>

_mbsnbcnt_l <mbstring.h>

_mbsnccnt <mbstring.h>

_mbsnccnt_l <mbstring.h>

_mbsnccnt and _mbsnccnt_l return the number of characters found in the first count of bytes of str. If a null
character is encountered before the examination of str has completed, they return the number of bytes or
characters found before the null character. If str consists of fewer than count characters or bytes, they return the
number of characters or bytes in the string. If count is less than zero, they return 0. In previous versions, these
functions had a return value of type int rather than size_t.

_strncnt returns the number of characters in the first count bytes of the single-byte string str. _wcsncnt returns
the number of characters in the first count wide characters of the wide-character string str.

_mbsnbcnt and _mbsnbcnt_l count the number of bytes found in the first count of multibyte characters of str.
_mbsnbcnt and _mbsnbcnt_l replace mtob and should be used in place of mtob.

_mbsnccnt and _mbsnccnt_l count the number of characters found in the first count of bytes of str. If
_mbsnccnt and _mbsnccnt_l encounter a null character in the second byte of a double-byte character, the first
byte is also considered to be null and is not included in the returned count value. _mbsnccnt and _mbsnccnt_l
replace btom and should be used in place of btom.

If str is a NULL pointer or is count is 0, these functions invoke the invalid parameter handler as described in
Parameter Validation, errno is set to EINVAL, and the function returns 0.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for
more information. The versions of these functions without the _l suffix use the current locale for this locale-
dependent behavior ; the versions with the _l suffix are identical except that they use the locale parameter passed
in instead. For more information, see Locale.

_strncnt <tchar.h>

_wcsncnt <tchar.h>

ROUTINE REQUIRED HEADER

Example
// crt_mbsnbcnt.c

#include <mbstring.h>
#include <stdio.h>

int main(void)
{
 unsigned char str[] = "This is a multibyte-character string.";
 unsigned int char_count, byte_count;
 char_count = _mbsnccnt(str, 10);
 byte_count = _mbsnbcnt(str, 10);
 if (byte_count - char_count)
 printf("The first 10 characters contain %d multibyte characters\n", char_count);
 else
 printf("The first 10 characters are single-byte.\n");
}

Output

The first 10 characters are single-byte.

See also

For more compatibility information, see Compatibility.

String Manipulation
Locale
Interpretation of Multibyte-Character Sequences
_mbsnbcat, _mbsnbcat_l

_strncoll, _wcsncoll, _mbsncoll, _strncoll_l,
_wcsncoll_l, _mbsncoll_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _strncoll(
 const char *string1,
 const char *string2,
 size_t count
);
int _wcsncoll(
 const wchar_t *string1,
 const wchar_t *string2,
 size_t count
);
int _mbsncoll(
 const unsigned char *string1,
 const unsigned char *string2,
 size_t count
);
int _strncoll_l(
 const char *string1,
 const char *string2,
 size_t count,
 _locale_t locale
);
int _wcsncoll_l(
 const wchar_t *string1,
 const wchar_t *string2,
 size_t count,
 _locale_t locale
);
int _mbsncoll_l(
 const unsigned char *string1,
 const unsigned char *string2,
 size_t count,
 _locale_t locale
);

Parameters

Compares strings by using locale-specific information.

_mbsncoll and _mbsncoll_l cannot be used in applications that execute in the Windows Runtime. For more information,
see CRT functions not supported in Universal Windows Platform apps.

string1, string2
Null-terminated strings to compare.

count
The number of characters to compare.

locale

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strncoll-wcsncoll-mbsncoll-strncoll-l-wcsncoll-l-mbsncoll-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Return Value

RETURN VALUE RELATIONSHIP OF STRING1 TO STRING2

< 0 string1 is less than string2.

0 string1 is identical to string2.

> 0 string1 is greater than string2.

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsnccoll _strncoll _mbsncoll _wcsncoll

_tcsncoll _strncoll _mbsnbcoll _wcsncoll

Requirements
ROUTINE REQUIRED HEADER

_strncoll, _strncoll_l <string.h>

_wcsncoll, _wcsncoll_l <wchar.h> or <string.h>

_mbsncoll, _mbsncoll_l <mbstring.h>

The locale to use.

Each of these functions returns a value that indicates the relationship of the substrings of string1 and string2,
as follows.

Each of these functions returns _NLSCMPERROR. To use _NLSCMPERROR, include either STRING.h or
MBSTRING.h. _wcsncoll can fail if either string1 or string2 contains wide-character codes that are outside the
domain of the collating sequence. When an error occurs, _wcsncoll may set errno to EINVAL. To check for an
error on a call to _wcsncoll, set errno to 0 and then check errno after you call _wcsncoll.

Each of these functions performs a case-sensitive comparison of the first count characters in string1 and
string2, according to the code page that's currently in use. Use these functions only when there is a difference
between the character set order and the lexicographic character order in the code page, and when this
difference is of interest for the string comparison. The character set order is locale-dependent. The versions of
these functions that don't have the _l suffix use the current locale, but the versions that have the _l suffix use
the locale that's passed in. For more information, see Locale.

All of these functions validate their parameters. If either string1 or string2 is a null pointer, or count is greater
than INT_MAX, the invalid parameter handler is invoked, as described in Parameter Validation. If execution is
allowed to continue, these functions return _NLSCMPERROR and set errno to EINVAL.

For additional compatibility information, see Compatibility.

See also
Locale
String Manipulation
strcoll Functions
localeconv
_mbsnbcoll, _mbsnbcoll_l, _mbsnbicoll, _mbsnbicoll_l
setlocale, _wsetlocale
strcmp, wcscmp, _mbscmp
_stricmp, _wcsicmp, _mbsicmp, _stricmp_l, _wcsicmp_l, _mbsicmp_l
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
strxfrm, wcsxfrm, _strxfrm_l, _wcsxfrm_l

strncpy, _strncpy_l, wcsncpy, _wcsncpy_l,
_mbsncpy, _mbsncpy_l
3/1/2019 • 5 minutes to read • Edit Online

IMPORTANT

Syntax
char *strncpy(
 char *strDest,
 const char *strSource,
 size_t count
);
char *_strncpy_l(
 char *strDest,
 const char *strSource,
 size_t count,
 locale_t locale
);
wchar_t *wcsncpy(
 wchar_t *strDest,
 const wchar_t *strSource,
 size_t count
);
wchar_t *_wcsncpy_l(
 wchar_t *strDest,
 const wchar_t *strSource,
 size_t count,
 locale_t locale
);
unsigned char *_mbsncpy(
 unsigned char *strDest,
 const unsigned char *strSource,
 size_t count
);
unsigned char *_mbsncpy_l(
 unsigned char *strDest,
 const unsigned char *strSource,
 size_t count,
 _locale_t locale
);
template <size_t size>
char *strncpy(
 char (&strDest)[size],
 const char *strSource,
 size_t count
); // C++ only
template <size_t size>
char *_strncpy_l(
 char (&strDest)[size],
 const char *strSource,
 size_t count,

Copy characters of one string to another. More secure versions of these functions are available; see
strncpy_s, _strncpy_s_l, wcsncpy_s, _wcsncpy_s_l, _mbsncpy_s, _mbsncpy_s_l.

_mbsncpy and _mbsncpy_l cannot be used in applications that execute in the Windows Runtime. For more
information, see CRT functions not supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strncpy-strncpy-l-wcsncpy-wcsncpy-l-mbsncpy-mbsncpy-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

 size_t count,
 locale_t locale
); // C++ only
template <size_t size>
wchar_t *wcsncpy(
 wchar_t (&strDest)[size],
 const wchar_t *strSource,
 size_t count
); // C++ only
template <size_t size>
wchar_t *_wcsncpy_l(
 wchar_t (&strDest)[size],
 const wchar_t *strSource,
 size_t count,
 locale_t locale
); // C++ only
template <size_t size>
unsigned char *_mbsncpy(
 unsigned char (&strDest)[size],
 const unsigned char *strSource,
 size_t count
); // C++ only
template <size_t size>
unsigned char *_mbsncpy_l(
 unsigned char (&strDest)[size],
 const unsigned char *strSource,
 size_t count,
 _locale_t locale
); // C++ only

Parameters

Return Value

Remarks

IMPORTANT

strDest
Destination string.

strSource
Source string.

count
Number of characters to be copied.

locale
Locale to use.

Returns strDest. No return value is reserved to indicate an error.

The strncpy function copies the initial count characters of strSource to strDest and returns strDest. If count is
less than or equal to the length of strSource, a null character is not appended automatically to the copied
string. If count is greater than the length of strSource, the destination string is padded with null characters up
to length count. The behavior of strncpy is undefined if the source and destination strings overlap.

strncpy does not check for sufficient space in strDest; this makes it a potential cause of buffer overruns. The count
argument limits the number of characters copied; it is not a limit on the size of strDest. See the following example. For
more information, see Avoiding Buffer Overruns.

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsncpy strncpy _mbsnbcpy wcsncpy

_tcsncpy_l _strncpy_l _mbsnbcpy_l _wcsncpy_l

NOTE

Requirements
ROUTINE REQUIRED HEADER

strncpy <string.h>

wcsncpy <string.h> or <wchar.h>

_mbsncpy, _mbsncpy_l <mbstring.h>

Example

If strDest or strSource is a NULL pointer, or if count is less than or equal to zero, the invalid parameter
handler is invoked, as described in Parameter Validation. If execution is allowed to continue, these functions
return -1 and set errno to EINVAL.

wcsncpy and _mbsncpy are wide-character and multibyte-character versions of strncpy. The arguments
and return value of wcsncpy and _mbsncpy vary accordingly. These six functions behave identically
otherwise.

The versions of these functions with the _l suffix are identical except that they use the locale passed in
instead of the current locale for their locale-dependent behavior. For more information, see Locale.

In C++, these functions have template overloads that invoke the newer, secure counterparts of these
functions. For more information, see Secure Template Overloads.

_strncpy_l and _wcsncpy_l have no locale dependence; they are provided just for _tcsncpy_l and are not intended to
be called directly.

For additional platform compatibility information, see Compatibility.

The following example demonstrates the use of strncpy and how it can be misused to cause program bugs
and security issues. The compiler generates a warning for each call to strncpy similar to
crt_strncpy_x86.c(15) : warning C4996: 'strncpy': This function or variable may be unsafe. Consider
using strncpy_s instead. To disable deprecation, use _CRT_SECURE_NO_WARNINGS. See online
help for details.

// crt_strncpy_x86.c
// Use this command in an x86 developer command prompt to compile:
// cl /TC /W3 crt_strncpy_x86.c

#include <stdio.h>
#include <string.h>

int main() {
 char t[20];
 char s[20];
 char *p = 0, *q = 0;

 strcpy_s(s, sizeof(s), "AA BB CC");
 // Note: strncpy is deprecated; consider using strncpy_s instead
 strncpy(s, "aa", 2); // "aa BB CC" C4996
 strncpy(s + 3, "bb", 2); // "aa bb CC" C4996
 strncpy(s, "ZZ", 3); // "ZZ", C4996
 // count greater than strSource, null added
 printf("%s\n", s);

 strcpy_s(s, sizeof(s), "AA BB CC");
 p = strstr(s, "BB");
 q = strstr(s, "CC");
 strncpy(s, "aa", p - s - 1); // "aa BB CC" C4996
 strncpy(p, "bb", q - p - 1); // "aa bb CC" C4996
 strncpy(q, "cc", q - s); // "aa bb cc" C4996
 strncpy(q, "dd", strlen(q)); // "aa bb dd" C4996
 printf("%s\n", s);

 // some problems with strncpy
 strcpy_s(s, sizeof(s), "test");
 strncpy(t, "this is a very long string", 20); // C4996
 // Danger: at this point, t has no terminating null,
 // so the printf continues until it runs into one.
 // In this case, it will print "this is a very long test"
 printf("%s\n", t);

 strcpy_s(t, sizeof(t), "dogs like cats");
 printf("%s\n", t);

 strncpy(t + 10, "to chase cars.", 14); // C4996
 printf("%s\n", t);

 // strncpy has caused a buffer overrun and corrupted string s
 printf("Buffer overrun: s = '%s' (should be 'test')\n", s);
 // Since the stack grows from higher to lower addresses, buffer
 // overruns can corrupt function return addresses on the stack,
 // which can be exploited to run arbitrary code.
}

ZZ
aa bb dd
this is a very long test
dogs like cats
dogs like to chase cars.
Buffer overrun: s = 'ars.' (should be 'test')

Output

The layout of automatic variables and the level of error detection and code protection can vary with changed
compiler settings. This example may have different results when built in other compilation environments or
with other compiler options.

See also
String Manipulation
Locale
Interpretation of Multibyte-Character Sequences
_mbsnbcpy, _mbsnbcpy_l
strcat, wcscat, _mbscat
strcmp, wcscmp, _mbscmp
strcpy, wcscpy, _mbscpy
strncat, _strncat_l, wcsncat, _wcsncat_l, _mbsncat, _mbsncat_l
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
strrchr, wcsrchr, _mbsrchr, _mbsrchr_l
_strset, _strset_l, _wcsset, _wcsset_l, _mbsset, _mbsset_l
strspn, wcsspn, _mbsspn, _mbsspn_l
strncpy_s, _strncpy_s_l, wcsncpy_s, _wcsncpy_s_l, _mbsncpy_s, _mbsncpy_s_l
strcpy_s, wcscpy_s, _mbscpy_s

strncpy_s, _strncpy_s_l, wcsncpy_s, _wcsncpy_s_l,
_mbsncpy_s, _mbsncpy_s_l
3/1/2019 • 6 minutes to read • Edit Online

IMPORTANT

Syntax
errno_t strncpy_s(
 char *strDest,
 size_t numberOfElements,
 const char *strSource,
 size_t count
);
errno_t _strncpy_s_l(
 char *strDest,
 size_t numberOfElements,
 const char *strSource,
 size_t count,
 _locale_t locale
);
errno_t wcsncpy_s(
 wchar_t *strDest,
 size_t numberOfElements,
 const wchar_t *strSource,
 size_t count
);
errno_t _wcsncpy_s_l(
 wchar_t *strDest,
 size_t numberOfElements,
 const wchar_t *strSource,
 size_t count,
 _locale_t locale
);
errno_t _mbsncpy_s(
 unsigned char *strDest,
 size_t numberOfElements,
 const unsigned char *strSource,
 size_t count
);
errno_t _mbsncpy_s_l(
 unsigned char *strDest,
 size_t numberOfElements,
 const unsigned char *strSource,
 size_t count,
 locale_t locale
);
template <size_t size>
errno_t strncpy_s(
 char (&strDest)[size],
 const char *strSource,
 size_t count

Copies characters of one string to another. These versions of strncpy, _strncpy_l, wcsncpy, _wcsncpy_l,
_mbsncpy, _mbsncpy_l have security enhancements, as described in Security Features in the CRT.

_mbsncpy_s and _mbsncpy_s_l cannot be used in applications that execute in the Windows Runtime. For more
information, see CRT functions not supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strncpy-s-strncpy-s-l-wcsncpy-s-wcsncpy-s-l-mbsncpy-s-mbsncpy-s-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

 size_t count
); // C++ only
template <size_t size>
errno_t _strncpy_s_l(
 char (&strDest)[size],
 const char *strSource,
 size_t count,
 _locale_t locale
); // C++ only
template <size_t size>
errno_t wcsncpy_s(
 wchar_t (&strDest)[size],
 const wchar_t *strSource,
 size_t count
); // C++ only
template <size_t size>
errno_t _wcsncpy_s_l(
 wchar_t (&strDest)[size],
 const wchar_t *strSource,
 size_t count,
 _locale_t locale
); // C++ only
template <size_t size>
errno_t _mbsncpy_s(
 unsigned char (&strDest)[size],
 const unsigned char *strSource,
 size_t count
); // C++ only
template <size_t size>
errno_t _mbsncpy_s_l(
 unsigned char (&strDest)[size],
 const unsigned char *strSource,
 size_t count,
 locale_t locale
); // C++ only

Parameters

Return Value

Error Conditions

STRDEST NUMBEROFELEMENTS STRSOURCE RETURN VALUE
CONTENTS OF
STRDEST

NULL any any EINVAL not modified

strDest
Destination string.

numberOfElements
The size of the destination string, in characters.

strSource
Source string.

count
Number of characters to be copied, or _TRUNCATE.

locale
The locale to use.

Zero if successful, STRUNCATE if truncation occurred, otherwise an error code.

any any NULL EINVAL strDest[0] set to 0

any 0 any EINVAL not modified

not NULL too small any ERANGE strDest[0] set to 0

STRDEST NUMBEROFELEMENTS STRSOURCE RETURN VALUE
CONTENTS OF
STRDEST

Remarks

char dst[5];
strncpy_s(dst, 5, "a long string", 5);

strncpy_s(dst, 5, "a long string", _TRUNCATE);
strncpy_s(dst, 5, "a long string", 4);

These functions try to copy the first D characters of strSource to strDest, where D is the lesser of count and the
length of strSource. If those D characters will fit within strDest (whose size is given as numberOfElements) and
still leave room for a null terminator, then those characters are copied and a terminating null is appended;
otherwise, strDest[0] is set to the null character and the invalid parameter handler is invoked, as described in
Parameter Validation.

There is an exception to the above paragraph. If count is _TRUNCATE , then as much of strSource as will fit
into strDest is copied while still leaving room for the terminating null which is always appended.

For example,

means that we are asking strncpy_s to copy five characters into a buffer five bytes long; this would leave no
space for the null terminator, hence strncpy_s zeroes out the string and calls the invalid parameter handler.

If truncation behavior is needed, use _TRUNCATE or (size - 1):

Note that unlike strncpy, if count is greater than the length of strSource, the destination string is NOT padded
with null characters up to length count.

The behavior of strncpy_s is undefined if the source and destination strings overlap.

If strDest or strSource is NULL, or numberOfElements is 0, the invalid parameter handler is invoked. If
execution is allowed to continue, the function returns EINVAL and sets errno to EINVAL.

wcsncpy_s and _mbsncpy_s are wide-character and multibyte-character versions of strncpy_s. The
arguments and return value of wcsncpy_s and mbsncpy_s do vary accordingly. These six functions behave
identically otherwise.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for
more information. The versions of these functions without the _l suffix use the current locale for this locale-
dependent behavior ; the versions with the _l suffix are identical except that they use the locale parameter
passed in instead. For more information, see Locale.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically (eliminating the need to specify a size argument) and they can automatically replace older, non-
secure functions with their newer, secure counterparts. For more information, see Secure Template Overloads.

The debug versions of these functions first fill the buffer with 0xFD. To disable this behavior, use

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsncpy_s strncpy_s _mbsnbcpy_s wcsncpy_s

_tcsncpy_s_l _strncpy_s_l _mbsnbcpy_s_l _wcsncpy_s_l

NOTE

Requirements
ROUTINE REQUIRED HEADER

strncpy_s, _strncpy_s_l <string.h>

wcsncpy_s, _wcsncpy_s_l <string.h> or <wchar.h>

_mbsncpy_s, _mbsncpy_s_l <mbstring.h>

Example
// crt_strncpy_s_1.cpp
// compile with: /MTd

// these #defines enable secure template overloads
// (see last part of Examples() below)
#define _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES 1
#define _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES_COUNT 1

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <crtdbg.h> // For _CrtSetReportMode
#include <errno.h>

// This example uses a 10-byte destination buffer.

errno_t strncpy_s_tester(const char * src,
 int count)
{
 char dest[10];

 printf("\n");

 if (count == _TRUNCATE)
 printf("Copying '%s' to %d-byte buffer dest with truncation semantics\n",
 src, _countof(dest));
 else
 printf("Copying %d chars of '%s' to %d-byte buffer dest\n",
 count, src, _countof(dest));

_CrtSetDebugFillThreshold.

_strncpy_s_l, _wcsncpy_s_l and _mbsncpy_s_l have no locale dependence and are provided just for _tcsncpy_s_l and
are not intended to be called directly.

For additional compatibility information, see Compatibility.

 errno_t err = strncpy_s(dest, _countof(dest), src, count);

 printf(" new contents of dest: '%s'\n", dest);

 return err;
}

void Examples()
{
 strncpy_s_tester("howdy", 4);
 strncpy_s_tester("howdy", 5);
 strncpy_s_tester("howdy", 6);

 printf("\nDestination buffer too small:\n");
 strncpy_s_tester("Hi there!!", 10);

 printf("\nTruncation examples:\n");

 errno_t err = strncpy_s_tester("How do you do?", _TRUNCATE);
 printf(" truncation %s occur\n", err == STRUNCATE ? "did"
 : "did not");

 err = strncpy_s_tester("Howdy.", _TRUNCATE);
 printf(" truncation %s occur\n", err == STRUNCATE ? "did"
 : "did not");

 printf("\nSecure template overload example:\n");

 char dest[10];
 strncpy(dest, "very very very long", 15);
 // With secure template overloads enabled (see #defines at
 // top of file), the preceding line is replaced by
 // strncpy_s(dest, _countof(dest), "very very very long", 15);
 // Instead of causing a buffer overrun, strncpy_s invokes
 // the invalid parameter handler.
 // If secure template overloads were disabled, strncpy would
 // copy 15 characters and overrun the dest buffer.
 printf(" new contents of dest: '%s'\n", dest);
}

void myInvalidParameterHandler(
 const wchar_t* expression,
 const wchar_t* function,
 const wchar_t* file,
 unsigned int line,
 uintptr_t pReserved)
{
 wprintf(L"Invalid parameter handler invoked: %s\n", expression);
}

int main(void)
{
 _invalid_parameter_handler oldHandler, newHandler;

 newHandler = myInvalidParameterHandler;
 oldHandler = _set_invalid_parameter_handler(newHandler);
 // Disable the message box for assertions.
 _CrtSetReportMode(_CRT_ASSERT, 0);

 Examples();
}

Copying 4 chars of 'howdy' to 10-byte buffer dest
 new contents of dest: 'howd'

Copying 5 chars of 'howdy' to 10-byte buffer dest
 new contents of dest: 'howdy'

Copying 6 chars of 'howdy' to 10-byte buffer dest
 new contents of dest: 'howdy'

Destination buffer too small:

Copying 10 chars of 'Hi there!!' to 10-byte buffer dest
Invalid parameter handler invoked: (L"Buffer is too small" && 0)
 new contents of dest: ''

Truncation examples:

Copying 'How do you do?' to 10-byte buffer dest with truncation semantics
 new contents of dest: 'How do yo'
 truncation did occur

Copying 'Howdy.' to 10-byte buffer dest with truncation semantics
 new contents of dest: 'Howdy.'
 truncation did not occur

Secure template overload example:
Invalid parameter handler invoked: (L"Buffer is too small" && 0)
 new contents of dest: ''

Example
// crt_strncpy_s_2.c
// contrasts strncpy and strncpy_s

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char a[20] = "test";
 char s[20];

 // simple strncpy usage:

 strcpy_s(s, 20, "dogs like cats");
 printf("Original string:\n '%s'\n", s);

 // Here we can't use strncpy_s since we don't
 // want null termination
 strncpy(s, "mice", 4);
 printf("After strncpy (no null-termination):\n '%s'\n", s);
 strncpy(s+5, "love", 4);
 printf("After strncpy into middle of string:\n '%s'\n", s);

 // If we use strncpy_s, the string is terminated
 strncpy_s(s, _countof(s), "mice", 4);
 printf("After strncpy_s (with null-termination):\n '%s'\n", s);

}

Original string:
 'dogs like cats'
After strncpy (no null-termination):
 'mice like cats'
After strncpy into middle of string:
 'mice love cats'
After strncpy_s (with null-termination):
 'mice'

See also
String Manipulation
Locale
Interpretation of Multibyte-Character Sequences
_mbsnbcpy, _mbsnbcpy_l
strcat_s, wcscat_s, _mbscat_s
strcmp, wcscmp, _mbscmp
strcpy_s, wcscpy_s, _mbscpy_s
strncat_s, _strncat_s_l, wcsncat_s, _wcsncat_s_l, _mbsncat_s, _mbsncat_s_l
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
strrchr, wcsrchr, _mbsrchr, _mbsrchr_l
_strset, _strset_l, _wcsset, _wcsset_l, _mbsset, _mbsset_l
strspn, wcsspn, _mbsspn, _mbsspn_l

_strnextc, _wcsnextc, _mbsnextc, _mbsnextc_l
11/9/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
unsigned int _strnextc(
 const char *str
);
unsigned int _wscnextc(
 const wchar_t *str
);
unsigned int _mbsnextc(
 const unsigned char *str
);
unsigned int _mbsnextc_l(
 const unsigned char *str,
 _locale_t locale
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

Finds the next character in a string.

_mbsnextc and _mbsnextc_l cannot be used in applications that execute in the Windows Runtime. For more information,
see CRT functions not supported in Universal Windows Platform apps.

str
Source string.

locale
Locale to use.

Each of these functions returns the integer value of the next character in str.

The _mbsnextc function returns the integer value of the next multibyte character in str, without advancing the
string pointer. _mbsnextc recognizes multibyte-character sequences according to the multibyte code page
currently in use.

If str is NULL, the invalid parameter handler is invoked, as described in Parameter Validation. If execution is
allowed to continue, errno is set to EINVAL and the function returns 0.

Security Note This API incurs a potential threat brought about by a buffer overrun problem. Buffer overrun
problems are a frequent method of system attack, resulting in an unwarranted elevation of privilege. For more
information, see Avoiding Buffer Overruns.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strnextc-wcsnextc-mbsnextc-mbsnextc-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps
https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsnextc _strnextc _mbsnextc _wcsnextc

Requirements
ROUTINE REQUIRED HEADER

_mbsnextc <mbstring.h>

_mbsnextc_l <mbstring.h>

_strnextc <tchar.h>

_wcsnextc <tchar.h>

See also

_strnextc and _wcsnextc are single-byte-character string and wide-character string versions of _mbsnextc.
_wcsnextc returns the integer value of the next wide character in str; _strnextc returns the integer value of the
next single-byte character in str. _strnextc and _wcsnextc are provided only for this mapping and should not be
used otherwise. For more information, see Using Generic-Text Mappings and Generic-Text Mappings.

_mbsnextc_l is identical except that it uses the locale parameter passed in instead. For more information, see
Locale.

For more compatibility information, see Compatibility.

String Manipulation
Locale
Interpretation of Multibyte-Character Sequences
_strdec, _wcsdec, _mbsdec, _mbsdec_l
_strinc, _wcsinc, _mbsinc, _mbsinc_l
_strninc, _wcsninc, _mbsninc, _mbsninc_l

strnicmp, wcsnicmp
10/31/2018 • 2 minutes to read • Edit Online

These POSIX functions are deprecated. Use the ISO C++ conformant _strnicmp, _wcsnicmp, _mbsnicmp,
_strnicmp_l, _wcsnicmp_l, _mbsnicmp_l instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strnicmp-wcsnicmp.md

_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l,
_wcsnicmp_l, _mbsnicmp_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _strnicmp(
 const char *string1,
 const char *string2,
 size_t count
);
int _wcsnicmp(
 const wchar_t *string1,
 const wchar_t *string2,
 size_t count
);
int _mbsnicmp(
 const unsigned char *string1,
 const unsigned char *string2,
 size_t count
);
int _strnicmp_l(
 const char *string1,
 const char *string2,
 size_t count,
 _locale_t locale
);
int _wcsnicmp_l(
 const wchar_t *string1,
 const wchar_t *string2,
 size_t count,
 _locale_t locale
);
int _mbsnicmp_l(
 const unsigned char *string1,
 const unsigned char *string2,
 size_t count,
 _locale_t locale
);

Parameters

Compares the specified number of characters of two strings without regard to case.

_mbsnicmp and _mbsnicmp_l cannot be used in applications that execute in the Windows Runtime. For more
information, see CRT functions not supported in Universal Windows Platform apps.

string1, string2
Null-terminated strings to compare.

count
Number of characters to compare.

locale

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strnicmp-wcsnicmp-mbsnicmp-strnicmp-l-wcsnicmp-l-mbsnicmp-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Return Value

RETURN VALUE DESCRIPTION

< 0 string1 substring is less than string2 substring.

0 string1 substring is identical to string2 substring.

> 0 string1 substring is greater than string2 substring.

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsncicmp _strnicmp _mbsnicmp _wcsnicmp

_tcsnicmp _strnicmp _mbsnbicmp _wcsnicmp

_tcsncicmp_l _strnicmp_l _mbsnicmp_l _wcsnicmp_l

Requirements

Locale to use.

Indicates the relationship between the substrings, as follows.

On a parameter validation error, these functions return _NLSCMPERROR, which is defined in <string.h>
and <mbstring.h>.

The _strnicmp function ordinally compares, at most, the first count characters of string1 and string2. The
comparison is performed without regard to case by converting each character to lowercase. _strnicmp is a
case-insensitive version of strncmp. The comparison ends if a terminating null character is reached in
either string before count characters are compared. If the strings are equal when a terminating null
character is reached in either string before count characters are compared, the shorter string is lesser.

The characters from 91 to 96 in the ASCII table ('[', '\', ']', '^', '_', and '`') evaluate as less than any
alphabetic character. This ordering is identical to that of stricmp.

_wcsnicmp and _mbsnicmp are wide-character and multibyte-character versions of _strnicmp. The
arguments of _wcsnicmp are wide-character strings; those of _mbsnicmp are multibyte-character strings.
_mbsnicmp recognizes multibyte-character sequences according to the current multibyte code page and
returns _NLSCMPERROR on an error. For more information, see Code Pages. These three functions
behave identically otherwise. These functions are affected by the locale setting—the versions that don't
have the _l suffix use the current locale for their locale-dependent behavior; the versions that do have the
_l suffix instead use the locale that's passed in. For more information, see Locale.

All of these functions validate their parameters. If either string1 or string2 is a null pointer, the invalid
parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue,
these functions return _NLSCMPERROR and set errno to EINVAL.

ROUTINE REQUIRED HEADER

_strnicmp, _strnicmp_l <string.h>

_wcsnicmp, _wcsnicmp_l <string.h> or <wchar.h>

_mbsnicmp, _mbsnicmp_l <mbstring.h>

Example

See also

For additional compatibility information, see Compatibility.

See the example for strncmp.

String Manipulation
strcat, wcscat, _mbscat
strcmp, wcscmp, _mbscmp
strcpy, wcscpy, _mbscpy
strncat, _strncat_l, wcsncat, _wcsncat_l, _mbsncat, _mbsncat_l
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
strncpy, _strncpy_l, wcsncpy, _wcsncpy_l, _mbsncpy, _mbsncpy_l
strrchr, wcsrchr, _mbsrchr, _mbsrchr_l
_strset, _strset_l, _wcsset, _wcsset_l, _mbsset, _mbsset_l
strspn, wcsspn, _mbsspn, _mbsspn_l

_strnicoll, _wcsnicoll, _mbsnicoll, _strnicoll_l,
_wcsnicoll_l, _mbsnicoll_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _strnicoll(
 const char *string1,
 const char *string2,
 size_t count
);
int _wcsnicoll(
 const wchar_t *string1,
 const wchar_t *string2 ,
 size_t count
);
int _mbsnicoll(
 const unsigned char *string1,
 const unsigned char *string2,
 size_t count
);
int _strnicoll_l(
 const char *string1,
 const char *string2,
 size_t count,
 _locale_t locale
);
int _wcsnicoll_l(
 const wchar_t *string1,
 const wchar_t *string2 ,
 size_t count,
 _locale_t locale
);
int _mbsnicoll_l(
 const unsigned char *string1,
 const unsigned char *string2,
 size_t count,
 _locale_t locale
);

Parameters

Compares strings by using locale-specific information.

_mbsnicoll and _mbsnicoll_l cannot be used in applications that execute in the Windows Runtime. For more
information, see CRT functions not supported in Universal Windows Platform apps.

string1, string2
Null-terminated strings to compare

count
Number of characters to compare

locale

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strnicoll-wcsnicoll-mbsnicoll-strnicoll-l-wcsnicoll-l-mbsnicoll-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Return Value

RETURN VALUE RELATIONSHIP OF STRING1 TO STRING2

< 0 string1 less than string2

0 string1 identical to string2

> 0 string1 greater than string2

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsncicoll _strnicoll _mbsnbicoll _wcsnicoll

_tcsnicoll _strnicoll _mbsnbicoll _wcsnicoll

_tcsnicoll_l _strnicoll_l _mbsnbicoll_l _wcsnicoll_l

Requirements
ROUTINE REQUIRED HEADER

_strnicoll, _strnicoll_l <string.h>

_wcsnicoll, _wcsnicoll_l <wchar.h> or <string.h>

_mbsnicoll, _mbsnicoll_l <mbstring.h>

The locale to use.

Each of these functions returns a value indicating the relationship of the substrings of string1 and string2, as
follows.

Each of these functions returns _NLSCMPERROR. To use _NLSCMPERROR, include either STRING.H or
MBSTRING.H. _wcsnicoll can fail if either string1 or string2 contains wide-character codes outside the
domain of the collating sequence. When an error occurs, _wcsnicoll may set errno to EINVAL. To check for
an error on a call to _wcsnicoll, set errno to 0 and then check errno after calling _wcsnicoll.

Each of these functions performs a case-insensitive comparison of the first count characters in string1 and
string2 according to the code page. These functions should be used only when there is a difference between
the character set order and the lexicographic character order in the code page and this difference is of interest
for the string comparison. The versions of these functions without the _l suffix use the current locale and code
page. The versions with the _l suffix are identical except that they use the locale passed in instead. For more
information, see Locale.

All of these functions validate their parameters. If either string1 or string2 is a null pointer, or if count is greater
than INT_MAX, the invalid parameter handler is invoked, as described in Parameter Validation . If execution is
allowed to continue, these functions return _NLSCMPERROR and set errno to EINVAL.

See also

For additional compatibility information, see Compatibility.

Locale
String Manipulation
strcoll Functions
localeconv
_mbsnbcoll, _mbsnbcoll_l, _mbsnbicoll, _mbsnbicoll_l
setlocale, _wsetlocale
strcmp, wcscmp, _mbscmp
_stricmp, _wcsicmp, _mbsicmp, _stricmp_l, _wcsicmp_l, _mbsicmp_l
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
strxfrm, wcsxfrm, _strxfrm_l, _wcsxfrm_l

_strninc, _wcsninc, _mbsninc, _mbsninc_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
char *_strninc(
 const char *str,
 size_t count
);
wchar_t *_wcsninc(
 const wchar_t *str,
 size_t count
);
unsigned char *_mbsninc(
 const unsigned char *str,
 size_t count
);
unsigned char *_mbsninc(
 const unsigned char *str,
 size_t count,
 _locale_t locale
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

Advances a string pointer by n characters.

_mbsninc and _mbsninc_l cannot be used in applications that execute in the Windows Runtime. For more information, see
CRT functions not supported in Universal Windows Platform apps.

str
Source string.

count
Number of characters to increment a string pointer.

locale
Locale to use.

Each of these routines returns a pointer to str after str has been incremented by count characters or NULL if the
supplied pointer is NULL. If count is greater than or equal to the number of characters in str, the result is
undefined.

The _mbsninc function increments str by count multibyte characters. _mbsninc recognizes multibyte-character
sequences according to the multibyte code page currently in use.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strninc-wcsninc-mbsninc-mbsninc-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsninc _strninc _mbsninc _wcsninc

Requirements
ROUTINE REQUIRED HEADER

_mbsninc <mbstring.h>

_mbsninc_l <mbstring.h>

_strninc <tchar.h>

_wcsninc <tchar.h>

See also

_strninc and _wcsninc are single-byte-character string and wide-character string versions of _mbsninc.
_wcsninc and _strninc are provided only for this mapping and should not be used otherwise. For more
information, see Using Generic-Text Mappings and Generic-Text Mappings.

_mbsninc_l is identical except that it uses the locale parameter passed in instead. For more information, see
Locale.

For more compatibility information, see Compatibility.

String Manipulation
Locale
Interpretation of Multibyte-Character Sequences
_strdec, _wcsdec, _mbsdec, _mbsdec_l
_strinc, _wcsinc, _mbsinc, _mbsinc_l
_strnextc, _wcsnextc, _mbsnextc, _mbsnextc_l

strnlen, strnlen_s, wcsnlen, wcsnlen_s, _mbsnlen,
_mbsnlen_l, _mbstrnlen, _mbstrnlen_l
3/1/2019 • 4 minutes to read • Edit Online

IMPORTANT

Syntax
size_t strnlen(
 const char *str,
 size_t numberOfElements
);
size_t strnlen_s(
 const char *str,
 size_t numberOfElements
);
size_t wcsnlen(
 const wchar_t *str,
 size_t numberOfElements
);
size_t wcsnlen_s(
 const wchar_t *str,
 size_t numberOfElements
);
size_t _mbsnlen(
 const unsigned char *str,
 size_t numberOfElements
);
size_t _mbsnlen_l(
 const unsigned char *str,
 size_t numberOfElements,
 _locale_t locale
);
size_t _mbstrnlen(
 const char *str,
 size_t numberOfElements
);
size_t _mbstrnlen_l(
 const char *str,
 size_t numberOfElements,
 _locale_t locale
);

Parameters

Gets the length of a string by using the current locale or one that has been passed in. These are more secure
versions of strlen, wcslen, _mbslen, _mbslen_l, _mbstrlen, _mbstrlen_l.

_mbsnlen, _mbsnlen_l, _mbstrnlen, and _mbstrnlen_l cannot be used in applications that execute in the Windows
Runtime. For more information, see CRT functions not supported in Universal Windows Platform apps.

str
Null-terminated string.

numberOfElements
The size of the string buffer.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strnlen-strnlen-s.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Return Value

Remarks

NOTE

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsnlen strnlen strnlen wcsnlen

_tcscnlen strnlen _mbsnlen wcsnlen

_tcscnlen_l strnlen _mbsnlen_l wcsnlen

locale
Locale to use.

These functions return the number of characters in the string, not including the terminating null character. If
there is no null terminator within the first numberOfElements bytes of the string (or wide characters for
wcsnlen), then numberOfElements is returned to indicate the error condition; null-terminated strings have
lengths that are strictly less than numberOfElements.

_mbstrnlen and _mbstrnlen_l return -1 if the string contains an invalid multibyte character.

strnlen is not a replacement for strlen; strnlen is intended to be used only to calculate the size of incoming untrusted
data in a buffer of known size—for example, a network packet. strnlen calculates the length but doesn't walk past the end
of the buffer if the string is unterminated. For other situations, use strlen. (The same applies to wcsnlen, _mbsnlen, and
_mbstrnlen.)

Each of these functions returns the number of characters in str, not including the terminating null character.
However, strnlen and strnlen_s interpret the string as a single-byte character string and therefore, the return
value is always equal to the number of bytes, even if the string contains multibyte characters. wcsnlen and
wcsnlen_s are wide-character versions of strnlen and strnlen_s respectively; the arguments for wcsnlen and
wcsnlen_s are wide-character strings and the count of characters are in wide-character units. Otherwise,
wcsnlen and strnlen behave identically, as do strnlen_s and wcsnlen_s.

strnlen, wcsnlen, and _mbsnlen do not validate their parameters. If str is NULL, an access violation occurs.

strnlen_s and wcsnlen_s validate their parameters. If str is NULL, the functions return 0.

_mbstrnlen also validates its parameters. If str is NULL, or if numberOfElements is greater than INT_MAX,
_mbstrnlen generates an invalid parameter exception, as described in Parameter Validation. If execution is
allowed to continue, _mbstrnlen sets errno to EINVAL and returns -1.

_mbsnlen and _mbstrnlen return the number of multibyte characters in a multibyte-character string.
_mbsnlen recognizes multibyte-character sequences according to the multibyte code page that's currently in
use or according to the locale that's passed in; it does not test for multibyte-character validity. _mbstrnlen tests
for multibyte-character validity and recognizes multibyte-character sequences. If the string that's passed to
_mbstrnlen contains an invalid multibyte character, errno is set to EILSEQ.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale,
_wsetlocale for more information. The versions of these functions are identical, except that the ones that don't

Requirements
ROUTINE REQUIRED HEADER

strnlen, strnlen_s <string.h>

wcsnlen, wcsnlen_s <string.h> or <wchar.h>

_mbsnlen, _mbsnlen_l <mbstring.h>

_mbstrnlen, _mbstrnlen_l <stdlib.h>

Example
// crt_strnlen.c

#include <string.h>

int main()
{
 // str1 is 82 characters long. str2 is 159 characters long

 char* str1 = "The length of a string is the number of characters\n"
 "excluding the terminating null.";
 char* str2 = "strnlen takes a maximum size. If the string is longer\n"
 "than the maximum size specified, the maximum size is\n"
 "returned rather than the actual size of the string.";
 size_t len;
 size_t maxsize = 100;

 len = strnlen(str1, maxsize);
 printf("%s\n Length: %d \n\n", str1, len);

 len = strnlen(str2, maxsize);
 printf("%s\n Length: %d \n", str2, len);
}

The length of a string is the number of characters
excluding the terminating null.
Length: 82

strnlen takes a maximum size. If the string is longer
than the maximum size specified, the maximum size is
returned rather than the actual size of the string.
Length: 100

See also

have the _l suffix use the current locale for this locale-dependent behavior and the versions that have the _l suffix
instead use the locale parameter that's passed in. For more information, see Locale.

For additional compatibility information, see Compatibility.

String Manipulation
Locale
Interpretation of Multibyte-Character Sequences
setlocale, _wsetlocale

strncat, _strncat_l, wcsncat, _wcsncat_l, _mbsncat, _mbsncat_l
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
strcoll Functions
strncpy_s, _strncpy_s_l, wcsncpy_s, _wcsncpy_s_l, _mbsncpy_s, _mbsncpy_s_l
strrchr, wcsrchr, _mbsrchr, _mbsrchr_l
_strset, _strset_l, _wcsset, _wcsset_l, _mbsset, _mbsset_l
strspn, wcsspn, _mbsspn, _mbsspn_l

strnset, wcsnset
10/31/2018 • 2 minutes to read • Edit Online

These POSIX functions are deprecated. Use the ISO C++ conformant _strnset, _strnset_l, _wcsnset, _wcsnset_l,
_mbsnset, _mbsnset_l or security-enhanced _strnset_s, _strnset_s_l, _wcsnset_s, _wcsnset_s_l, _mbsnset_s,
_mbsnset_s_l instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strnset-wcsnset.md

_strnset, _strnset_l, _wcsnset, _wcsnset_l, _mbsnset,
_mbsnset_l
3/1/2019 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
char *_strnset(
 char *str,
 int c,
 size_t count
);
char *_strnset_l(
 char *str,
 int c,
 size_t count,
 locale_t locale
);
wchar_t *_wcsnset(
 wchar_t *str,
 wchar_t c,
 size_t count
);
wchar_t *_wcsnset_l(
 wchar_t *str,
 wchar_t c,
 size_t count,
 _locale_t locale
);
unsigned char *_mbsnset(
 unsigned char *str,
 unsigned int c,
 size_t count
);
unsigned char *_mbsnset_l(
 unsigned char *str,
 unsigned int c,
 size_t count,
 _locale_t locale
);

Parameters

Initializes characters of a string to a given character. More secure versions of these functions exist; see
_strnset_s, _strnset_s_l, _wcsnset_s, _wcsnset_s_l, _mbsnset_s, _mbsnset_s_l.

_mbsnset and _mbsnset_l cannot be used in applications that execute in the Windows Runtime. For more information,
see CRT functions not supported in Universal Windows Platform apps.

str
String to be altered.

c
Character setting.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strnset-strnset-l-wcsnset-wcsnset-l-mbsnset-mbsnset-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsnset _strnset _mbsnbset _wcsnset

_tcsnset_l _strnset_l _mbsnbset_l _wcsnset_l

Requirements
ROUTINE REQUIRED HEADER

_strnset <string.h>

_strnset_l <tchar.h>

_wcsnset <string.h> or <wchar.h>

_wcsnset_l <tchar.h>

_mbsnset, _mbsnset_l <mbstring.h>

Example

count
Number of characters to be set.

locale
Locale to use.

Returns a pointer to the altered string.

The _strnset function sets, at most, the first count characters of str to c (converted to char). If count is greater
than the length of str, the length of str is used instead of count.

_wcsnset and _mbsnset are wide-character and multibyte-character versions of _strnset. The string
arguments and return value of _wcsnset are wide-character strings; those of _mbsnset are multibyte-character
strings. These three functions behave identically otherwise.

_mbsnset validates its parameters; if str is a null pointer, the invalid parameter handler is invoked, as described
in Parameter Validation . If execution is allowed to continue, _mbsnset returns NULL and sets errno to
EINVAL. _strnset and _wcsnset do not validate their parameters.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for
more information. The versions of these functions without the _l suffix use the current locale for this locale-
dependent behavior ; the versions with the _l suffix are identical except that they use the locale parameter
passed in instead. For more information, see Locale.

For additional compatibility information, see Compatibility.

// crt_strnset.c
// compile with: /W3
#include <string.h>
#include <stdio.h>

int main(void)
{
 char string[15] = "This is a test";
 /* Set not more than 4 characters of string to be *'s */
 printf("Before: %s\n", string);
 _strnset(string, '*', 4); // C4996
 // Note: _strnset is deprecated; consider using _strnset_s
 printf("After: %s\n", string);
}

Before: This is a test
After: **** is a test

See also
String Manipulation
Locale
Interpretation of Multibyte-Character Sequences
strcat, wcscat, _mbscat
strcmp, wcscmp, _mbscmp
strcpy, wcscpy, _mbscpy
_strset, _strset_l, _wcsset, _wcsset_l, _mbsset, _mbsset_l

_strnset_s, _strnset_s_l, _wcsnset_s, _wcsnset_s_l,
_mbsnset_s, _mbsnset_s_l
3/1/2019 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
errno_t _strnset_s(
 char *str,
 size_t numberOfElements,
 int c,
 size_t count
);
errno_t _strnset_s_l(
 char *str,
 size_t numberOfElements,
 int c,
 size_t count,
 locale_t locale
);
errno_t _wcsnset_s(
 wchar_t *str,
 size_t numberOfElements,
 wchar_t c,
 size_t count
);
errno_t _wcsnset_s_l(
 wchar_t *str,
 size_t numberOfElements,
 wchar_t c,
 size_t count,
 _locale_t locale
);
errno_t _mbsnset_s(
 unsigned char *str,
 size_t numberOfElements,
 unsigned int c,
 size_t count
);
errno_t _mbsnset_s_l(
 unsigned char *str,
 size_t numberOfElements,
 unsigned int c,
 size_t count,
 _locale_t locale
);

Parameters

Initializes characters of a string to a given character. These versions of _strnset, _strnset_l, _wcsnset, _wcsnset_l,
_mbsnset, _mbsnset_l have security enhancements, as described in Security Features in the CRT.

_mbsnset_s and _mbsnset_s_l cannot be used in applications that execute in the Windows Runtime. For more
information, see CRT functions not supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strnset-s-strnset-s-l-wcsnset-s-wcsnset-s-l-mbsnset-s-mbsnset-s-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsnset_s _strnset_s _mbsnbset_s _wcsnset_s

_tcsnset_s_l _strnset_s_l _mbsnbset_s_l _wcsnset_s_l

Requirements
ROUTINE REQUIRED HEADER

_strnset_s <string.h>

str
String to be altered.

numberOfElements
The size of the str buffer.

c
Character setting.

count
Number of characters to be set.

locale
Locale to use.

Zero if successful, otherwise an error code.

These functions validate their arguments. If str is not a valid null-terminated string or the size argument is less
than or equal to 0, then the invalid parameter handler is invoked, as described in Parameter Validation. If
execution is allowed to continue, these functions return an error code and set errno to that error code. The
default error code is EINVAL if a more specific value does not apply.

These functions set, at most, the first count characters of str to c. If count is greater than the size of str, the size of
str is used instead of count. An error occurs if count is greater than numberOfElements and both those
parameters are greater than the size of str.

_wcsnset_s and _mbsnset_s are wide-character and multibyte-character versions of _strnset_s. The string
argument of _wcsnset_s is a wide-character string; that of _mbsnset_s is amultibyte-character string. These
three functions behave identically otherwise.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for more
information. The versions of these functions without the _l suffix use the current locale for this locale-dependent
behavior ; the versions with the _l suffix are identical except that they use the locale parameter passed in instead.
For more information, see Locale.

The debug versions of these functions first fill the buffer with 0xFD. To disable this behavior, use
_CrtSetDebugFillThreshold.

_strnset_s_l <tchar.h>

_wcsnset_s <string.h> or <wchar.h>

_wcsnset_s_l <tchar.h>

_mbsnset_s, _mbsnset_s_l <mbstring.h>

ROUTINE REQUIRED HEADER

Example
// crt_strnset_s.c
#include <string.h>
#include <stdio.h>

int main(void)
{
 char string[15] = "This is a test";
 /* Set not more than 4 characters of string to be *'s */
 printf("Before: %s\n", string);
 _strnset_s(string, sizeof(string), '*', 4);
 printf("After: %s\n", string);
}

Before: This is a test
After: **** is a test

See also

For additional compatibility information, see Compatibility.

String Manipulation
Locale
Interpretation of Multibyte-Character Sequences
strcat, wcscat, _mbscat
strcmp, wcscmp, _mbscmp
strcpy, wcscpy, _mbscpy
_strset, _strset_l, _wcsset, _wcsset_l, _mbsset, _mbsset_l

strpbrk, wcspbrk, _mbspbrk, _mbspbrk_l
10/31/2018 • 3 minutes to read • Edit Online

IMPORTANT

Syntax

Scans strings for characters in specified character sets.

_mbspbrk and _mbspbrk_l cannot be used in applications that execute in the Windows Runtime. For more information,
see CRT functions not supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strpbrk-wcspbrk-mbspbrk-mbspbrk-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

char *strpbrk(
 const char *str,
 const char *strCharSet
); // C only
char *strpbrk(
 char *str,
 const char *strCharSet
); // C++ only
const char *strpbrk(
 const char *str,
 const char *strCharSet
); // C++ only
wchar_t *wcspbrk(
 const wchar_t *str,
 const wchar_t *strCharSet
); // C only
wchar_t *wcspbrk(
 wchar_t *str,
 const wchar_t *strCharSet
); // C++ only
const wchar_t *wcspbrk(
 const wchar_t *str,
 const wchar_t *strCharSet
); // C++ only
unsigned char *_mbspbrk(
 const unsigned char *str,
 const unsigned char *strCharSet
); // C only
unsigned char *_mbspbrk(
 unsigned char *str,
 const unsigned char *strCharSet
); // C++ only
const unsigned char *_mbspbrk(
 const unsigned char *str,
 const unsigned char *strCharSet
); // C++ only
unsigned char *_mbspbrk_l(
 const unsigned char *str,
 const unsigned char *strCharSet,
 _locale_t locale
); // C only
unsigned char *_mbspbrk_l(
 unsigned char *str,
 const unsigned char *strCharSet,
 _locale_t locale
); // C++ only
const unsigned char *_mbspbrk_l(
 const unsigned char *str,
 const unsigned char* strCharSet,
 _locale_t locale
); // C++ only

Parameters

Return Value

str
Null-terminated, searched string.

strCharSet
Null-terminated character set.

locale
Locale to use.

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcspbrk strpbrk _mbspbrk wcspbrk

n/a n/a _mbspbrk_l n/a

Requirements
ROUTINE REQUIRED HEADER

strpbrk <string.h>

wcspbrk <string.h> or <wchar.h>

_mbspbrk , _mbspbrk_l <mbstring.h>

Example

Returns a pointer to the first occurrence of any character from strCharSet in str, or a NULL pointer if the two
string arguments have no characters in common.

The strpbrk function returns a pointer to the first occurrence of a character in str that belongs to the set of
characters in strCharSet. The search does not include the terminating null character.

wcspbrk and _mbspbrk are wide-character and multibyte-character versions of strpbrk . The arguments and
return value of wcspbrk are wide-character strings; those of _mbspbrk are multibyte-character strings.

_mbspbrk validates its parameters. If str or strCharSet is NULL, the invalid parameter handler is invoked, as
described in Parameter Validation. If execution is allowed to continue, _mbspbrk returns NULL and sets errno to
EINVAL. strpbrk and wcspbrk do not validate their parameters. These three functions behave identically
otherwise.

_mbspbrk is similar to _mbscspn except that _mbspbrk returns a pointer rather than a value of type size_t.

In C, these functions take a const pointer for the first argument. In C++, two overloads are available. The
overload taking a pointer to const returns a pointer to const; the version that takes a pointer to non-const
returns a pointer to non-const. The macro _CRT_CONST_CORRECT_OVERLOADS is defined if both the const
and non-const versions of these functions are available. If you require the non-const behavior for both C++
overloads, define the symbol _CONST_RETURN.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; for more information,
see setlocale. The versions of these functions without the _l suffix use the current locale for this locale-dependent
behavior ; the version with the _l suffix is identical except that it uses the locale parameter passed in instead. For
more information, see Locale.

For more information about compatibility, see Compatibility.

// crt_strpbrk.c

#include <string.h>
#include <stdio.h>

int main(void)
{
 char string[100] = "The 3 men and 2 boys ate 5 pigs\n";
 char *result = NULL;

 // Return pointer to first digit in "string".
 printf("1: %s\n", string);
 result = strpbrk(string, "0123456789");
 printf("2: %s\n", result++);
 result = strpbrk(result, "0123456789");
 printf("3: %s\n", result++);
 result = strpbrk(result, "0123456789");
 printf("4: %s\n", result);
}

1: The 3 men and 2 boys ate 5 pigs

2: 3 men and 2 boys ate 5 pigs

3: 2 boys ate 5 pigs

4: 5 pigs

See also
String Manipulation
Locale
Interpretation of Multibyte-Character Sequences
strcspn, wcscspn, _mbscspn, _mbscspn_l
strchr, wcschr, _mbschr, _mbschr_l
strrchr, wcsrchr, _mbsrchr, _mbsrchr_l

strrchr, wcsrchr, _mbsrchr, _mbsrchr_l
3/1/2019 • 2 minutes to read • Edit Online

IMPORTANT

Syntax

Scans a string for the last occurrence of a character.

_mbsrchr and _mbsrchr_l cannot be used in applications that execute in the Windows Runtime. For more
information, see CRT functions not supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strrchr-wcsrchr-mbsrchr-mbsrchr-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

char *strrchr(
 const char *str,
 int c
); // C only
char *strrchr(
 char *str,
 int c
); // C++ only
const char *strrchr(
 const char *str,
 int c
); // C++ only
wchar_t *wcsrchr(
 const wchar_t *str,
 wchar_t c
); // C only
wchar_t *wcsrchr(
 wchar_t *str,
 wchar_t c
); // C++ only
const wchar_t *wcsrchr(
 const wchar_t *str,
 wchar_t c
); // C++ only
unsigned char *_mbsrchr(
 const unsigned char *str,
 unsigned int c
); // C only
unsigned char *_mbsrchr(
 unsigned char *str,
 unsigned int c
); // C++ only
const unsigned char *_mbsrchr(
 const unsigned char *str,
 unsigned int c
); // C++ only
unsigned char *_mbsrchr_l(
 const unsigned char *str,
 unsigned int c,
 _locale_t locale
); // C only
unsigned char *_mbsrchr_l(
 unsigned char *str,
 unsigned int c,
 _locale_t locale
); // C++ only
const unsigned char *_mbsrchr_l(
 const unsigned char *str,
 unsigned int c,
 _locale_t locale
); // C++ only

Parameters

Return Value

str
Null-terminated string to search.

c
Character to be located.

locale
Locale to use.

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsrchr strrchr _mbsrchr wcsrchr

n/a n/a _mbsrchr_l n/a

Requirements
ROUTINE REQUIRED HEADER

strrchr <string.h>

wcsrchr <string.h> or <wchar.h>

_mbsrchr , _mbsrchr_l <mbstring.h>

Example

See also

Returns a pointer to the last occurrence of c in str, or NULL if c is not found.

The strrchr function finds the last occurrence of c (converted to char) in str. The search includes the
terminating null character.

wcsrchr and _mbsrchr are wide-character and multibyte-character versions of strrchr . The arguments
and return value of wcsrchr are wide-character strings; those of _mbsrchr are multibyte-character strings.

In C, these functions take a const pointer for the first argument. In C++, two overloads are available. The
overload taking a pointer to const returns a pointer to const; the version that takes a pointer to non-const
returns a pointer to non-const. The macro _CRT_CONST_CORRECT_OVERLOADS is defined if both the
const and non-const versions of these functions are available. If you require the non-const behavior for
both C++ overloads, define the symbol _CONST_RETURN.

_mbsrchr validates its parameters. If str is NULL, the invalid parameter handler is invoked, as described in
Parameter Validation. If execution is allowed to continue, errno is set to EINVAL and _mbsrchr returns 0.
strrchr and wcsrchr do not validate their parameters. These three functions behave identically otherwise.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; for more
information, see setlocale. The versions of these functions without the _l suffix use the current locale for this
locale-dependent behavior; the versions with the _l suffix are identical except that they use the locale
parameter passed in instead. For more information, see Locale.

For more information about compatibility, see Compatibility.

For an example of using strrchr , see strchr.

String Manipulation
Locale

Interpretation of Multibyte-Character Sequences
strchr, wcschr, _mbschr, _mbschr_l
strcspn, wcscspn, _mbscspn, _mbscspn_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
strpbrk, wcspbrk, _mbspbrk, _mbspbrk_l
strspn, wcsspn, _mbsspn, _mbsspn_l

strrev, wcsrev
10/31/2018 • 2 minutes to read • Edit Online

These POSIX functions are deprecated. Use the ISO C++ conformant _strrev, _wcsrev, _mbsrev, _mbsrev_l instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strrev-wcsrev.md

_strrev, _wcsrev, _mbsrev, _mbsrev_l
3/1/2019 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
char *_strrev(
 char *str
);
wchar_t *_wcsrev(
 wchar_t *str
);
unsigned char *_mbsrev(
 unsigned char *str
);
unsigned char *_mbsrev_l(
 unsigned char *str,
 _locale_t locale
);

Parameters

Return Value

Remarks

Reverses the characters of a string.

_mbsrev and _mbsrev_l cannot be used in applications that execute in the Windows Runtime. For more information, see
CRT functions not supported in Universal Windows Platform apps.

str
Null-terminated string to reverse.

locale
Locale to use.

Returns a pointer to the altered string. No return value is reserved to indicate an error.

The _strrev function reverses the order of the characters in str. The terminating null character remains in place.
_wcsrev and _mbsrev are wide-character and multibyte-character versions of _strrev. The arguments and return
value of _wcsrev are wide-character strings; those of _mbsrev are multibyte-character strings. For _mbsrev, the
order of bytes in each multibyte character in str is not changed. These three functions behave identically
otherwise.

_mbsrev validates its parameters. If either string1 or string2 is a null pointer, the invalid parameter handler is
invoked, as described in Parameter Validation. If execution is allowed to continue, _mbsrev returns NULL and
sets errno to EINVAL. _strrev and _wcsrev do not validate their parameters.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale,
_wsetlocale for more information. The versions of these functions are identical, except that the ones that don't
have the _l suffix use the current locale and the ones that do have the _l suffix instead use the locale parameter

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strrev-wcsrev-mbsrev-mbsrev-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsrev _strrev _mbsrev _wcsrev

n/a n/a _mbsrev_l n/a

Requirements
ROUTINE REQUIRED HEADER

_strrev <string.h>

_wcsrev <string.h> or <wchar.h>

_mbsrev, _mbsrev_l <mbstring.h>

Example
// crt_strrev.c
// This program checks a string to see
// whether it is a palindrome: that is, whether
// it reads the same forward and backward.
//

#include <string.h>
#include <stdio.h>

int main(void)
{
 char* string = "Able was I ere I saw Elba";
 int result;

 // Reverse string and compare (ignore case):
 result = _stricmp(string, _strrev(_strdup(string)));
 if(result == 0)
 printf("The string \"%s\" is a palindrome\n", string);
 else
 printf("The string \"%s\" is not a palindrome\n", string);
}

The string "Able was I ere I saw Elba" is a palindrome

See also

that's passed in. For more information, see Locale.

These functions might be vulnerable to buffer overrun threats. Buffer overruns can be used for system attacks because they
can cause an unwarranted elevation of privilege. For more information, see Avoiding Buffer Overruns.

For additional compatibility information, see Compatibility.

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

String Manipulation
Locale
Interpretation of Multibyte-Character Sequences
strcpy, wcscpy, _mbscpy
_strset, _strset_l, _wcsset, _wcsset_l, _mbsset, _mbsset_l

strset, wcsset
10/31/2018 • 2 minutes to read • Edit Online

These functions are deprecated. Use the ISO C++ conformant _strset, _strset_l, _wcsset, _wcsset_l, _mbsset,
_mbsset_l or security-enhanced _strset_s, _strset_s_l, _wcsset_s, _wcsset_s_l, _mbsset_s, _mbsset_s_l instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strset-wcsset.md

_strset, _strset_l, _wcsset, _wcsset_l, _mbsset,
_mbsset_l
3/1/2019 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
char *_strset(
 char *str,
 int c
);
char *_strset_l(
 char *str,
 int c,
 locale_t locale
);
wchar_t *_wcsset(
 wchar_t *str,
 wchar_t c
);
wchar_t *_wcsset_l(
 wchar_t *str,
 wchar_t c,
 locale_t locale
);
unsigned char *_mbsset(
 unsigned char *str,
 unsigned int c
);
unsigned char *_mbsset_l(
 unsigned char *str,
 unsigned int c,
 _locale_t locale
);

Parameters

Return Value

Sets characters of a string to a character. More secure versions of these functions are available; see _strset_s,
_strset_s_l, _wcsset_s, _wcsset_s_l, _mbsset_s, _mbsset_s_l.

_mbsset and _mbsset_l cannot be used in applications that execute in the Windows Runtime. For more information,
see CRT functions not supported in Universal Windows Platform apps.

str
Null-terminated string to be set.

c
Character setting.

locale
Locale to use.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strset-strset-l-wcsset-wcsset-l-mbsset-mbsset-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Remarks

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsset _strset _mbsset _wcsset

_tcsset_l _strset_l _mbsset_l _wcsset_l

Requirements
ROUTINE REQUIRED HEADER

_strset <string.h>

_strset_l <tchar.h>

_wcsset <string.h> or <wchar.h>

_wcsset_l <tchar.h>

_mbsset, _mbsset_l <mbstring.h>

Example

Returns a pointer to the altered string.

The _strset function sets all characters (except the terminating null character) of str to c, converted to char.
_wcsset and _mbsset_l are wide-character and multibyte-character versions of _strset, and the data types of
the arguments and return values vary accordingly. These functions behave identically otherwise.

_mbsset validates its parameters. If str is a null pointer, the invalid parameter handler is invoked, as
described in Parameter Validation. If execution is allowed to continue, _mbsset returns NULL and sets errno
to EINVAL. _strset and _wcsset do not validate their parameters.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale,
_wsetlocale for more information. The versions of these functions are identical, except that the ones that
don't have the _l suffix use the current locale and the ones that do have the _l suffix instead use the locale
parameter that's passed in. For more information, see Locale.

These functions might be vulnerable to buffer overrun threats. Buffer overruns can be used for system attacks because
they can cause an unwarranted elevation of privilege. For more information, see Avoiding Buffer Overruns.

For additional compatibility information, see Compatibility.

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

// crt_strset.c
// compile with: /W3

#include <string.h>
#include <stdio.h>

int main(void)
{
 char string[] = "Fill the string with something.";
 printf("Before: %s\n", string);
 _strset(string, '*'); // C4996
 // Note: _strset is deprecated; consider using _strset_s instead
 printf("After: %s\n", string);
}

Before: Fill the string with something.
After: *******************************

See also
String Manipulation
Locale
Interpretation of Multibyte-Character Sequences
_mbsnbset, _mbsnbset_l
memset, wmemset
strcat, wcscat, _mbscat
strcmp, wcscmp, _mbscmp
strcpy, wcscpy, _mbscpy
_strnset, _strnset_l, _wcsnset, _wcsnset_l, _mbsnset, _mbsnset_l

_strset_s, _strset_s_l, _wcsset_s, _wcsset_s_l,
_mbsset_s, _mbsset_s_l
3/1/2019 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
errno_t _strset_s(
 char *str,
 size_t numberOfElements,
 int c
);
errno_t _strset_s_l(
 char *str,
 size_t numberOfElements,
 int c,
 locale_t locale
);
errno_t _wcsset_s(
 wchar_t *str,
 size_t numberOfElements,
 wchar_t c
);
errno_t *_wcsset_s_l(
 wchar_t *str,
 size_t numberOfElements,
 wchar_t c,
 locale_t locale
);
errno_t _mbsset_s(
 unsigned char *str,
 size_t numberOfElements,
 unsigned int c
);
errno_t _mbsset_s_l(
 unsigned char *str,
 size_t numberOfElements,
 unsigned int c,
 _locale_t locale
);

Parameters

Sets characters of a string to a character. These versions of _strset, _strset_l, _wcsset, _wcsset_l, _mbsset,
_mbsset_l have security enhancements, as described in Security Features in the CRT.

_mbsset_s and _mbsset_s_l cannot be used in applications that execute in the Windows Runtime. For more information,
see CRT functions not supported in Universal Windows Platform apps.

str
Null-terminated string to be set.

numberOfElements
The size of the str buffer.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strset-s-strset-s-l-wcsset-s-wcsset-s-l-mbsset-s-mbsset-s-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsset_s _strset_s _mbsset_s _wcsset_s

_tcsset_s_l _strset_s_l _mbsset_s_l _wcsset_s_l

Requirements
ROUTINE REQUIRED HEADER

_strset_s <string.h>

_strset_s_l <tchar.h>

_wcsset_s <string.h> or <wchar.h>

_wcsset_s_l <tchar.h>

_mbsset_s, _mbsset_s_l <mbstring.h>

Example

c
Character setting.

locale
Locale to use.

Zero if successful, otherwise an error code.

These functions validate their arguments. If str is a null pointer, or the numberOfElements argument is less than
or equal to 0, or the block passed in is not null-terminated, then the invalid parameter handler is invoked, as
described in Parameter Validation. If execution is allowed to continue, these functions return EINVAL and set
errno to EINVAL.

The _strset_s function sets all the characters of str to c (converted to char), except the terminating null character.
_wcsset_s and _mbsset_s are wide-character and multibyte-character versions of _strset_s. The data types of
the arguments and return values vary accordingly. These functions behave identically otherwise.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for more
information. The versions of these functions without the _l suffix use the current locale for this locale-dependent
behavior ; the versions with the _l suffix are identical except that they use the locale parameter passed in instead.
For more information, see Locale.

The debug versions of these functions first fill the buffer with 0xFD. To disable this behavior, use
_CrtSetDebugFillThreshold.

For additional compatibility information, see Compatibility.

// crt_strset_s.c
#include <string.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char string[] = "Fill the string with something.";
 printf("Before: %s\n", string);
 _strset_s(string, _countof(string), '*');
 printf("After: %s\n", string);
}

Before: Fill the string with something.
After: *******************************

See also
String Manipulation
Locale
Interpretation of Multibyte-Character Sequences
_mbsnbset, _mbsnbset_l
memset, wmemset
strcat, wcscat, _mbscat
strcmp, wcscmp, _mbscmp
strcpy, wcscpy, _mbscpy
_strnset, _strnset_l, _wcsnset, _wcsnset_l, _mbsnset, _mbsnset_l

strspn, wcsspn, _mbsspn, _mbsspn_l
3/1/2019 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
size_t strspn(
 const char *str,
 const char *strCharSet
);
size_t wcsspn(
 const wchar_t *str,
 const wchar_t *strCharSet
);
size_t _mbsspn(
 const unsigned char *str,
 const unsigned char *strCharSet
);
size_t _mbsspn_l(
 const unsigned char *str,
 const unsigned char *strCharSet,
 _locale_t locale
);

Parameters

Return Value

Remarks

Returns the index of the first character, in a string, that does not belong to a set of characters.

_mbsspn and _mbsspn_l cannot be used in applications that execute in the Windows Runtime. For more information,
see CRT functions not supported in Universal Windows Platform apps.

str
Null-terminated string to search.

strCharSet
Null-terminated character set.

locale
Locale to use.

Returns an integer value specifying the length of the substring in str that consists entirely of characters in
strCharSet. If str begins with a character not in strCharSet, the function returns 0.

The strspn function returns the index of the first character in str that does not belong to the set of characters
in strCharSet. The search does not include terminating null characters.

wcsspn and _mbsspn are wide-character and multibyte-character versions of strspn. The arguments of
wcsspn are wide-character strings; those of _mbsspn are multibyte-character strings. _mbsspn validates its
parameters. If str or strCharSet is NULL, the invalid parameter handler is invoked, as described in Parameter

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strspn-wcsspn-mbsspn-mbsspn-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsspn strspn _mbsspn wcsspn

n/a n/a _mbsspn_l n/a

Requirements
ROUTINE REQUIRED HEADER

strspn <string.h>

wcsspn <string.h> or <wchar.h>

_mbsspn, _mbsspn_l <mbstring.h>

Example
// crt_strspn.c
// This program uses strspn to determine
// the length of the segment in the string "cabbage"
// consisting of a's, b's, and c's. In other words,
// it finds the first non-abc letter.
//

#include <string.h>
#include <stdio.h>

int main(void)
{
 char string[] = "cabbage";
 int result;
 result = strspn(string, "abc");
 printf("The portion of '%s' containing only a, b, or c "
 "is %d bytes long\n", string, result);
}

The portion of 'cabbage' containing only a, b, or c is 5 bytes long

See also

Validation . If execution is allowed to continue, _mbspn sets errno to EINVAL and returns 0. strspn and
wcsspn do not validate their parameters. These three functions behave identically otherwise.

The output value is affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for
more information. The versions of these functions without the _l suffix use the current locale for this locale-
dependent behavior ; the versions with the _l suffix are identical except that they use the locale parameter
passed in instead. For more information, see Locale.

For additional compatibility information, see Compatibility.

String Manipulation

Locale
Interpretation of Multibyte-Character Sequences
_strspnp, _wcsspnp, _mbsspnp, _mbsspnp_l
strcspn, wcscspn, _mbscspn, _mbscspn_l
strncat, _strncat_l, wcsncat, _wcsncat_l, _mbsncat, _mbsncat_l
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
strncpy, _strncpy_l, wcsncpy, _wcsncpy_l, _mbsncpy, _mbsncpy_l
_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
strrchr, wcsrchr, _mbsrchr, _mbsrchr_l

_strspnp, _wcsspnp, _mbsspnp, _mbsspnp_l
11/9/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
char *_strspnp(
 const char *str,
 const char *charset
);
wchar_t *_wcsspnp(
 const unsigned wchar_t *str,
 const unsigned wchar_t *charset
);
unsigned char *_mbsspnp(
 const unsigned char *str,
 const unsigned char *charset
);
unsigned char *_mbsspnp_l(
 const unsigned char *str,
 const unsigned char *charset,
 _locale_t locale
);

Parameters

Return Value

Remarks

Returns a pointer to the first character in a given string that is not in another given string.

_mbsspnp and _mbsspnp_l cannot be used in applications that execute in the Windows Runtime. For more information,
see CRT functions not supported in Universal Windows Platform apps.

str
Null-terminated string to search.

charset
Null-terminated character set.

locale
Locale to use.

_strspnp, _wcsspnp, and _mbsspnp return a pointer to the first character in str that does not belong to the set of
characters in charset. Each of these functions returns NULL if str consists entirely of characters from charset. For
each of these routines, no return value is reserved to indicate an error.

The _mbsspnp function returns a pointer to the multibyte character that is the first character in str that does not
belong to the set of characters in charset. _mbsspnp recognizes multibyte-character sequences according to the
multibyte code page currently in use. The search does not include terminating null characters.

If either str or charset is a null pointer, this function invokes the invalid parameter handler, as described in

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strspnp-wcsspnp-mbsspnp-mbsspnp-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsspnp _strspnp _mbsspnp _wcsspnp

Requirements
ROUTINE REQUIRED HEADER

_mbsspnp <mbstring.h>

_strspnp <tchar.h>

_wcsspnp <tchar.h>

Example
// crt_mbsspnp.c
#include <mbstring.h>
#include <stdio.h>

int main(void) {
 const unsigned char string1[] = "cabbage";
 const unsigned char string2[] = "c";
 unsigned char *ptr = 0;
 ptr = _mbsspnp(string1, string2);
 printf("%s\n", ptr);
}

Output

abbage

See also

Parameter Validation. If execution is allowed to continue, the function returns NULL and sets errno to EINVAL.

_strspnp and _wcsspnp are single-byte character and wide-character versions of _mbsspnp. _strspnp and
_wcsspnp behave identically to _mbsspnp otherwise; they are provided only for this mapping and should not be
used for any other reason. For more information, see Using Generic-Text Mappings and Generic-Text Mappings.

_mbsspnp_l is identical except that it uses the locale parameter passed in instead. For more information, see
Locale.

For more compatibility information, see Compatibility.

String Manipulation
Locale
Interpretation of Multibyte-Character Sequences
strspn, wcsspn, _mbsspn, _mbsspn_l
strncat_s, _strncat_s_l, wcsncat_s, _wcsncat_s_l, _mbsncat_s, _mbsncat_s_l
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
strncpy_s, _strncpy_s_l, wcsncpy_s, _wcsncpy_s_l, _mbsncpy_s, _mbsncpy_s_l

_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
strrchr, wcsrchr, _mbsrchr, _mbsrchr_l

strstr, wcsstr, _mbsstr, _mbsstr_l
10/31/2018 • 3 minutes to read • Edit Online

IMPORTANT

Syntax

Returns a pointer to the first occurrence of a search string in a string.

_mbsstr and _mbsstr_l cannot be used in applications that execute in the Windows Runtime. For more information, see
CRT functions not supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strstr-wcsstr-mbsstr-mbsstr-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

char *strstr(
 const char *str,
 const char *strSearch
); // C only
char *strstr(
 char *str,
 const char *strSearch
); // C++ only
const char *strstr(
 const char *str,
 const char *strSearch
); // C++ only
wchar_t *wcsstr(
 const wchar_t *str,
 const wchar_t *strSearch
); // C only
wchar_t *wcsstr(
 wchar_t *str,
 const wchar_t *strSearch
); // C++ only
const wchar_t *wcsstr(
 const wchar_t *str,
 const wchar_t *strSearch
); // C++ only
unsigned char *_mbsstr(
 const unsigned char *str,
 const unsigned char *strSearch
); // C only
unsigned char *_mbsstr(
 unsigned char *str,
 const unsigned char *strSearch
); // C++ only
const unsigned char *_mbsstr(
 const unsigned char *str,
 const unsigned char *strSearch
); // C++ only
unsigned char *_mbsstr_l(
 const unsigned char *str,
 const unsigned char *strSearch,
 _locale_t locale
); // C only
unsigned char *_mbsstr_l(
 unsigned char *str,
 const unsigned char *strSearch,
 _locale_t locale
); // C++ only
const unsigned char *_mbsstr_l(
 const unsigned char *str,
 const unsigned char *strSearch,
 _locale_t locale
); // C++ only

Parameters

Return Value

str
Null-terminated string to search.

strSearch
Null-terminated string to search for.

locale
Locale to use.

Remarks

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsstr strstr _mbsstr wcsstr

n/a n/a _mbsstr_l n/a

Requirements
ROUTINE REQUIRED HEADER

strstr <string.h>

wcsstr <string.h> or <wchar.h>

_mbsstr , _mbsstr_l <mbstring.h>

Example

Returns a pointer to the first occurrence of strSearch in str, or NULL if strSearch does not appear in str. If
strSearch points to a string of zero length, the function returns str.

The strstr function returns a pointer to the first occurrence of strSearch in str. The search does not include
terminating null characters. wcsstr is the wide-character version of strstr and _mbsstr is the multibyte-
character version. The arguments and return value of wcsstr are wide-character strings; those of _mbsstr are
multibyte-character strings. _mbsstr validates its parameters. If str or strSearch is NULL, the invalid parameter
handler is invoked, as described in Parameter Validation . If execution is allowed to continue, _mbsstr sets errno

to EINVAL and returns 0. strstr and wcsstr do not validate their parameters. These three functions behave
identically otherwise.

These functions might incur a threat from a buffer overrun problem. Buffer overrun problems can be used to attack a
system because they can allow the execution of arbitrary code, which can cause an unwarranted elevation of privilege. For
more information, see Avoiding Buffer Overruns.

In C, these functions take a const pointer for the first argument. In C++, two overloads are available. The
overload that takes a pointer to const returns a pointer to const; the version that takes a pointer to non-const
returns a pointer to non-const. The macro _CRT_CONST_CORRECT_OVERLOADS is defined if both the const
and non-const versions of these functions are available. If you require the non-const behavior for both C++
overloads, define the symbol _CONST_RETURN.

The output value is affected by the locale-category setting of LC_CTYPE; for more information, see setlocale,
_wsetlocale. The versions of these functions that do not have the _l suffix use the current locale for this locale-
dependent behavior ; the versions that have the _l suffix are identical except that they instead use the locale
parameter that's passed in. For more information, see Locale.

For more information about compatibility, see Compatibility.

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

// crt_strstr.c

#include <string.h>
#include <stdio.h>

char str[] = "lazy";
char string[] = "The quick brown dog jumps over the lazy fox";
char fmt1[] = " 1 2 3 4 5";
char fmt2[] = "12345678901234567890123456789012345678901234567890";

int main(void)
{
 char *pdest;
 int result;
 printf("String to be searched:\n %s\n", string);
 printf(" %s\n %s\n\n", fmt1, fmt2);
 pdest = strstr(string, str);
 result = (int)(pdest - string + 1);
 if (pdest != NULL)
 printf("%s found at position %d\n", str, result);
 else
 printf("%s not found\n", str);
}

String to be searched:
 The quick brown dog jumps over the lazy fox
 1 2 3 4 5
 12345678901234567890123456789012345678901234567890

lazy found at position 36

See also
String Manipulation
Locale
Interpretation of Multibyte-Character Sequences
strcspn, wcscspn, _mbscspn, _mbscspn_l
strcmp, wcscmp, _mbscmp
strpbrk, wcspbrk, _mbspbrk, _mbspbrk_l
strrchr, wcsrchr, _mbsrchr, _mbsrchr_l
strspn, wcsspn, _mbsspn, _mbsspn_l
basic_string::find

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/basic-string-class

_strtime, _wstrtime
10/31/2018 • 2 minutes to read • Edit Online

Syntax
char *_strtime(
 char *timestr
);
wchar_t *_wstrtime(
 wchar_t *timestr
);
template <size_t size>
char *_strtime(
 char (×tr)[size]
); // C++ only
template <size_t size>
wchar_t *_wstrtime(
 wchar_t (×tr)[size]
); // C++ only

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tstrtime _strtime _strtime _wstrtime

Copy the time to a buffer. More secure versions of these functions are available; see _strtime_s, _wstrtime_s.

timestr
Time string.

Returns a pointer to the resulting character string timestr.

The _strtime function copies the current local time into the buffer pointed to by timestr. The time is formatted as
hh:mm:ss where hh is two digits representing the hour in 24-hour notation, mm is two digits representing the
minutes past the hour, and ss is two digits representing seconds. For example, the string 18:23:44 represents 23
minutes and 44 seconds past 6 P.M. The buffer must be at least 9 bytes long.

_wstrtime is a wide-character version of _strtime; the argument and return value of _wstrtime are wide-
character strings. These functions behave identically otherwise. If timestr is a NULL pointer or if timestr is
formatted incorrectly, the invalid parameter handler is invoked, as described in Parameter Validation. If the
exception is allowed to continue, these functions return a NULL and set errno to EINVAL if timestr was a NULL
or set errno to ERANGE if timestr is formatted incorrectly.

In C++, these functions have template overloads that invoke the newer, secure counterparts of these functions.
For more information, see Secure Template Overloads.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strtime-wstrtime.md

Requirements
ROUTINE REQUIRED HEADER

_strtime <time.h>

_wstrtime <time.h> or <wchar.h>

Example
// crt_strtime.c
// compile with: /W3

#include <time.h>
#include <stdio.h>

int main(void)
{
 char tbuffer [9];
 _strtime(tbuffer); // C4996
 // Note: _strtime is deprecated; consider using _strtime_s instead
 printf("The current time is %s \n", tbuffer);
}

The current time is 14:21:44

See also

For additional compatibility information, see Compatibility.

Time Management
asctime, _wasctime
ctime, _ctime32, _ctime64, _wctime, _wctime32, _wctime64
gmtime, _gmtime32, _gmtime64
localtime, _localtime32, _localtime64
mktime, _mktime32, _mktime64
time, _time32, _time64
_tzset

_strtime_s, _wstrtime_s
10/31/2018 • 2 minutes to read • Edit Online

Syntax
errno_t _strtime_s(
 char *buffer,
 size_t numberOfElements
);
errno_t _wstrtime_s(
 wchar_t *buffer,
 size_t numberOfElements
);
template <size_t size>
errno_t _strtime_s(
 char (&buffer)[size]
); // C++ only
template <size_t size>
errno_t _wstrtime_s(
 wchar_t (&buffer)[size]
); // C++ only

Parameters

Return Value

Error Conditions

BUFFER NUMBEROFELEMENTS RETURN CONTENTS OF BUFFER

NULL (any) EINVAL Not modified

Not NULL (pointing to valid
buffer)

0 EINVAL Not modified

Not NULL (pointing to valid
buffer)

0 < size < 9 EINVAL Empty string

Copy the current time to a buffer. These are versions of _strtime, _wstrtime with security enhancements as
described in Security Features in the CRT.

buffer
A buffer, at least 10 bytes long, where the time will be written.

numberOfElements
The size of the buffer.

Zero if successful.

If an error condition occurs, the invalid parameter handler is invoked, as described in Parameter Validation. The
return value is an error code if there is a failure. Error codes are defined in ERRNO.H; see the following table for
the exact errors generated by this function. For more information on error codes, see errno Constants.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strtime-s-wstrtime-s.md

Not NULL (pointing to valid
buffer)

Size > 9 0 Current time formatted as
specified in the remarks

BUFFER NUMBEROFELEMENTS RETURN CONTENTS OF BUFFER

Security Issues

Remarks

Generic-Text Routine Mapping:

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tstrtime_s _strtime_s _strtime_s _wstrtime_s

Requirements
ROUTINE REQUIRED HEADER

_strtime_s <time.h>

_wstrtime_s <time.h> or <wchar.h>

Example

Passing in an invalid non-NULL value for the buffer will result in an access violation if the numberOfElements
parameter is greater than 9.

Passing a value for numberOfElements that is greater than the actual size of the buffer will result in buffer
overrun.

These functions provide more secure versions of _strtime and _wstrtime. The _strtime_s function copies the
current local time into the buffer pointed to by timestr. The time is formatted as hh:mm:ss where hh is two digits
representing the hour in 24-hour notation, mm is two digits representing the minutes past the hour, and ss is two
digits representing seconds. For example, the string 18:23:44 represents 23 minutes and 44 seconds past 6 P.M.
The buffer must be at least 9 bytes long; the actual size is specified by the second parameter.

_wstrtime is a wide-character version of _strtime; the argument and return value of _wstrtime are wide-
character strings. These functions behave identically otherwise.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically (eliminating the need to specify a size argument) and they can automatically replace older, non-
secure functions with their newer, secure counterparts. For more information, see Secure Template Overloads.

For additional compatibility information, see Compatibility.

// strtime_s.c

#include <time.h>
#include <stdio.h>

int main()
{
 char tmpbuf[9];
 errno_t err;

 // Set time zone from TZ environment variable. If TZ is not set,
 // the operating system is queried to obtain the default value
 // for the variable.
 //
 _tzset();

 // Display operating system-style date and time.
 err = _strtime_s(tmpbuf, 9);
 if (err)
 {
 printf("_strdate_s failed due to an invalid argument.");
 exit(1);
 }
 printf("OS time:\t\t\t\t%s\n", tmpbuf);
 err = _strdate_s(tmpbuf, 9);
 if (err)
 {
 printf("_strdate_s failed due to an invalid argument.");
 exit(1);
 }
 printf("OS date:\t\t\t\t%s\n", tmpbuf);

}

OS time: 14:37:49
OS date: 04/25/03

See also
Time Management
asctime_s, _wasctime_s
ctime_s, _ctime32_s, _ctime64_s, _wctime_s, _wctime32_s, _wctime64_s
gmtime_s, _gmtime32_s, _gmtime64_s
localtime_s, _localtime32_s, _localtime64_s
mktime, _mktime32, _mktime64
time, _time32, _time64
_tzset

strtod, _strtod_l, wcstod, _wcstod_l
10/31/2018 • 4 minutes to read • Edit Online

Syntax
double strtod(
 const char *strSource,
 char **endptr
);
double _strtod_l(
 const char *strSource,
 char **endptr,
 _locale_t locale
);
double wcstod(
 const wchar_t *strSource,
 wchar_t **endptr
);
double wcstod_l(
 const wchar_t *strSource,
 wchar_t **endptr,
 _locale_t locale
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

Convert strings to a double-precision value.

strSource
Null-terminated string to convert.

endptr
Pointer to character that stops scan.

locale
The locale to use.

strtod returns the value of the floating-point number, except when the representation would cause an overflow,
in which case the function returns +/-HUGE_VAL. The sign of HUGE_VAL matches the sign of the value that
cannot be represented. strtod returns 0 if no conversion can be performed or an underflow occurs.

wcstod returns values analogously to strtod. For both functions, errno is set to ERANGE if overflow or
underflow occurs and the invalid parameter handler is invoked, as described in Parameter Validation. See
_doserrno, errno, _sys_errlist, and _sys_nerr for more information on this and other return codes.

Each function converts the input string strSource to a double. The strtod function converts strSource to a
double-precision value. strtod stops reading the string strSource at the first character it cannot recognize as
part of a number. This may be the terminating null character. wcstod is a wide-character version of strtod; its
strSource argument is a wide-character string. These functions behave identically otherwise.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strtod-strtod-l-wcstod-wcstod-l.md

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcstod strtod strtod wcstod

_tcstod_l _strtod_l _strtod_l _wcstod_l

Requirements
ROUTINE REQUIRED HEADER

strtod, _strtod_l C: <stdlib.h> C++: <cstdlib> or <stdlib.h>

wcstod, _wcstod_l C: <stdlib.h> or <wchar.h> C++: <cstdlib>, <stdlib.h> or
<wchar.h>

Example

The LC_NUMERIC category setting of the current locale determines recognition of the radix point character in
strSource. For more information, see setlocale. The functions without the _l suffix use the current locale;
_strtod_l is identical to _strtod_l except that they use the locale passed in instead. For more information, see
Locale.

If endptr is not NULL, a pointer to the character that stopped the scan is stored at the location pointed to by
endptr. If no conversion can be performed (no valid digits were found or an invalid base was specified), the
value of strSource is stored at the location pointed to by endptr.

strtod expects strSource to point to a string of one of the following forms:

[whitespace] [sign] {digits [radix digits] | radix digits} [{e | E} [sign] digits] [whitespace] [sign] {0x | 0X} {hexdigits
[radix hexdigits] | radix hexdigits} [{p | P} [sign] hexdigits] [whitespace] [sign] {INF | INFINITY} [whitespace]
[sign] NAN [sequence]

The optional leading whitespace may consist of space and tab characters, which are ignored; sign is either plus
(+) or minus (-); digits are one or more decimal digits; hexdigits are one or more hexadecimal digits; radix is the
radix point character, either a period (.) in the default "C" locale, or the locale-specific value if the current locale
is different or when locale is specified; a sequence is a sequence of alphanumeric or underscore characters. In
both decimal and hexadecimal number forms, if no digits appear before the radix point character, at least one
must appear after the radix point character. In the decimal form, the decimal digits can be followed by an
exponent, which consists of an introductory letter (e or E) and an optionally signed integer. In the hexadecimal
form, the hexadecimal digits can be followed by an exponent, which consists of an introductory letter (p or P)
and an optionally signed hexadecimal integer that represents the exponent as a power of 2. In either form, if
neither an exponent part nor a radix point character appears, a radix point character is assumed to follow the
last digit in the string. Case is ignored in both the INF and NAN forms. The first character that does not fit one
of these forms stops the scan.

The UCRT versions of these functions do not support conversion of Fortran-style (d or D) exponent letters.
This non-standard extension was supported by earlier versions of the CRT, and may be a breaking change for
your code. The UCRT versions support hexadecimal strings and round-tripping of INF and NAN values, which
were not supported in earlier versions. This can also cause breaking changes in your code. For example, the
string "0x1a" would be interpreted by strtod as 0.0 in previous versions, but as 26.0 in the UCRT version.

For additional compatibility information, see Compatibility.

// crt_strtod.c
// This program uses strtod to convert a
// string to a double-precision value; strtol to
// convert a string to long integer values; and strtoul
// to convert a string to unsigned long-integer values.
//

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char *string, *stopstring;
 double x;
 long l;
 int base;
 unsigned long ul;

 string = "3.1415926This stopped it";
 x = strtod(string, &stopstring);
 printf("string = %s\n", string);
 printf(" strtod = %f\n", x);
 printf(" Stopped scan at: %s\n\n", stopstring);

 string = "-10110134932This stopped it";
 l = strtol(string, &stopstring, 10);
 printf("string = %s\n", string);
 printf(" strtol = %ld\n", l);
 printf(" Stopped scan at: %s\n\n", stopstring);

 string = "10110134932";
 printf("string = %s\n", string);

 // Convert string using base 2, 4, and 8:
 for(base = 2; base <= 8; base *= 2)
 {
 // Convert the string:
 ul = strtoul(string, &stopstring, base);
 printf(" strtol = %ld (base %d)\n", ul, base);
 printf(" Stopped scan at: %s\n", stopstring);
 }
}

string = 3.1415926This stopped it
 strtod = 3.141593
 Stopped scan at: This stopped it

string = -10110134932This stopped it
 strtol = -2147483648
 Stopped scan at: This stopped it

string = 10110134932
 strtol = 45 (base 2)
 Stopped scan at: 34932
 strtol = 4423 (base 4)
 Stopped scan at: 4932
 strtol = 2134108 (base 8)
 Stopped scan at: 932

See also
Data Conversion
Floating-Point Support

Interpretation of Multibyte-Character Sequences
Locale
String to Numeric Value Functions
strtol, wcstol, _strtol_l, _wcstol_l
strtoul, _strtoul_l, wcstoul, _wcstoul_l
atof, _atof_l, _wtof, _wtof_l
localeconv
_create_locale, _wcreate_locale
_free_locale

strtof, _strtof_l, wcstof, _wcstof_l
10/31/2018 • 3 minutes to read • Edit Online

Syntax
float strtof(
 const char *strSource,
 char **endptr
);
float _strtof_l(
 const char *strSource,
 char **endptr,
 _locale_t locale
);
float wcstof(
 const wchar_t *strSource,
 wchar_t **endptr
);
float wcstof_l(
 const wchar_t *strSource,
 wchar_t **endptr,
 _locale_t locale
);

Parameters

Return Value

Remarks

Converts strings to a single-precision floating-point value.

strSource
Null-terminated string to convert.

endptr
Pointer to the character that stops the scan.

locale
The locale to use.

strtof returns the value of the floating-point number, except when the representation would cause an overflow, in
which case the function returns +/-HUGE_VALF. The sign of HUGE_VALF matches the sign of the value that
cannot be represented. strtof returns 0 if no conversion can be performed or an underflow occurs.

wcstof returns values analogously to strtof. For both functions, errno is set to ERANGE if overflow or underflow
occurs and the invalid parameter handler is invoked, as described in Parameter Validation.

For more information about return codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

Each function converts the input string strSource to a float. The strtof function converts strSource to a single-
precision value. strtof stops reading the string strSource at the first character it cannot recognize as part of a
number. This may be the terminating null character. wcstof is a wide-character version of strtof; its strSource
argument is a wide-character string. Otherwise, these functions behave identically.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strtof-strtof-l-wcstof-wcstof-l.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcstof strtof strtof wcstof

_tcstof_l _strtof_l _strtof_l _wcstof_l

Requirements
ROUTINE REQUIRED HEADER

strtof, _strtof_l C: <stdlib.h> C++: <cstdlib> or <stdlib.h>

wcstof, _wcstof_l C: <stdlib.h> or <wchar.h> C++: <cstdlib>, <stdlib.h> or
<wchar.h>

Example

The LC_NUMERIC category setting of the current locale determines recognition of the radix character in
strSource; for more information, see setlocale, _wsetlocale. The functions that don't have the _l suffix use the
current locale; the ones that have the suffix are identical except that they use the locale that's passed in instead.
For more information, see Locale.

If endptr is not NULL, a pointer to the character that stopped the scan is stored at the location that's pointed to by
endptr. If no conversion can be performed (no valid digits were found or an invalid base was specified), the value
of strSource is stored at the location that's pointed to by endptr.

strtof expects strSource to point to a string of the following form:

[whitespace] [sign] [digits] [.digits] [{e | E} [sign] digits]

A whitespace may consist of space and tab characters, which are ignored; sign is either plus (+) or minus (-); and
digits are one or more decimal digits. If no digits appear before the radix character, at least one must appear after
the radix character. The decimal digits can be followed by an exponent, which consists of an introductory letter (e
or E) and an optionally signed integer. If neither an exponent part nor a radix character appears, a radix character
is assumed to follow the last digit in the string. The first character that does not fit this form stops the scan.

The UCRT versions of these functions do not support conversion of Fortran-style (d or D) exponent letters. This
non-standard extension was supported by earlier versions of the CRT, and may be a breaking change for your
code.

For additional compatibility information, see Compatibility.

// crt_strtof.c
// This program uses strtof to convert a
// string to a single-precision value.

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char *string;
 char *stopstring;
 float x;

 string = "3.14159This stopped it";
 x = strtof(string, &stopstring);
 printf("string = %s\n", string);
 printf(" strtof = %f\n", x);
 printf(" Stopped scan at: %s\n\n", stopstring);
}

string = 3.14159This stopped it
 strtof = 3.141590
 Stopped scan at: This stopped it

See also
Data Conversion
Floating-Point Support
Interpretation of Multibyte-Character Sequences
Locale
String to Numeric Value Functions
strtod, _strtod_l, wcstod, _wcstod_l
strtol, wcstol, _strtol_l, _wcstol_l
strtoul, _strtoul_l, wcstoul, _wcstoul_l
atof, _atof_l, _wtof, _wtof_l
localeconv
_create_locale, _wcreate_locale
_free_locale

_strtoi64, _wcstoi64, _strtoi64_l, _wcstoi64_l
11/8/2018 • 3 minutes to read • Edit Online

Syntax
__int64 _strtoi64(
 const char *strSource,
 char **endptr,
 int base
);
__int64 _wcstoi64(
 const wchar_t *strSource,
 wchar_t **endptr,
 int base
);
__int64 _strtoi64_l(
 const char *strSource,
 char **endptr,
 int base,
 _locale_t locale
);
__int64 _wcstoi64_l(
 const wchar_t *strSource,
 wchar_t **endptr,
 int base,
 _locale_t locale
);

Parameters

Return Value

Convert a string to an __int64 value.

strSource
Null-terminated string to convert.

endptr
Pointer to character that stops scan.

base
Number base to use.

locale
The locale to use.

_strtoi64 returns the value represented in the string strSource, except when the representation would cause an
overflow, in which case it returns _I64_MAX or _I64_MIN . The function will return 0 if no conversion can be
performed. _wcstoi64 returns values analogously to strtoi64.

_I64_MAX and _I64_MIN are defined in L IMITS.H.

If strSource is NULL or the base is nonzero and either less than 2 or greater than 36, errno is set to EINVAL.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these, and other, return codes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strtoi64-wcstoi64-strtoi64-l-wcstoi64-l.md

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcstoi64 _strtoi64 _strtoi64 _wcstoi64

_tcstoi64_l _strtoi64_l _strtoi64_l _wcstoi64_l

Requirements
ROUTINE REQUIRED HEADER

_strtoi64, _strtoi64_l <stdlib.h>

_wcstoi64, _wcstoi64_l <stdlib.h> or <wchar.h>

See also

The _strtoi64 function converts strSource to an __int64. Both functions stop reading the string strSource at the
first character they cannot recognize as part of a number. This may be the terminating null character, or it may be
the first numeric character greater than or equal to base. _wcstoi64 is a wide-character version of _strtoi64; its
strSource argument is a wide-character string. These functions behave identically otherwise.

The locale's LC_NUMERIC category setting determines recognition of the radix character in strSource; for more
information, see setlocale. The functions without the _l suffix use the current locale; _strtoi64_l and _wcstoi64_l
are identical to the corresponding function without the _l suffix except that they use the locale passed in instead.
For more information, see Locale.

If endptr is not NULL, a pointer to the character that stopped the scan is stored at the location pointed to by
endptr. If no conversion can be performed (no valid digits were found or an invalid base was specified), the value
of strSource is stored at the location pointed to by endptr.

_strtoi64 expects strSource to point to a string of the following form:

[whitespace] [{+ | -}] [0 [{ x | X }]] [digits | letters]

A whitespace may consist of space and tab characters, which are ignored; digits are one or more decimal digits;
letters are one or more of the letters 'a' through 'z' (or 'A' through 'Z'). The first character that does not fit this
form stops the scan. If base is between 2 and 36, then it is used as the base of the number. If base is 0, the initial
characters of the string pointed to by strSource are used to determine the base. If the first character is 0 and the
second character is not 'x' or 'X', the string is interpreted as an octal integer. If the first character is '0' and the
second character is 'x' or 'X', the string is interpreted as a hexadecimal integer. If the first character is '1' through
'9', the string is interpreted as a decimal integer. The letters 'a' through 'z' (or 'A' through 'Z') are assigned the
values 10 through 35; only letters whose assigned values are less than base are permitted. The first character
outside the range of the base stops the scan. For example, if base is 0 and the first character scanned is '0', an
octal integer is assumed and an '8' or '9' character will stop the scan.

For additional compatibility information, see Compatibility.

Data Conversion
Locale

localeconv
setlocale, _wsetlocale
String to Numeric Value Functions
strtod, _strtod_l, wcstod, _wcstod_l
strtoul, _strtoul_l, wcstoul, _wcstoul_l
atof, _atof_l, _wtof, _wtof_l

strtoimax, _strtoimax_l, wcstoimax, _wcstoimax_l
10/31/2018 • 3 minutes to read • Edit Online

Syntax
intmax_t strtoimax(
 const char *strSource,
 char **endptr,
 int base
);
intmax_t wcstoimax(
 const wchar_t *strSource,
 wchar_t **endptr,
 int base
);
intmax_t _strtoimax_l(
 const char *strSource,
 char **endptr,
 int base,
 _locale_t locale
);
intmax_t _wcstoimax_l(
 const wchar_t *strSource,
 wchar_t **endptr,
 int base,
 _locale_t locale
);

Parameters

Return Value

Converts a string to an integer value of the largest supported signed integer type.

strSource
Null-terminated string to convert.

endptr
Pointer to the character that stops the scan.

base
Number base to use.

locale
The locale to use.

strtoimax returns the value that's represented in the string strSource, except when the representation would
cause an overflow—in that case, it returns INTMAX_MAX or INTMAX_MIN , and errno is set to ERANGE . The
function returns 0 if no conversion can be performed. wcstoimax returns values analogously to strtoimax.

INTMAX_MAX and INTMAX_MIN are defined in stdint.h.

If strSource is NULL or the base is nonzero and either less than 2 or greater than 36, errno is set to EINVAL.

For more information about return codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strtoimax-strtoimax-l-wcstoimax-wcstoimax-l.md

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcstoimax strtoimax strtoimax wcstoimax

_tcstoimax_l strtoimax_l _strtoimax_l _wcstoimax_l

Requirements
ROUTINE REQUIRED HEADER

strtoimax, _strtoimax_l, wcstoimax, _wcstoimax_l <inttypes.h>

See also

The strtoimax function converts strSource to an intmax_t. The wide-character version of strtoimax is
wcstoimax; its strSource argument is a wide-character string. Otherwise, these functions behave identically. Both
functions stop reading the string strSource at the first character they cannot recognize as part of a number. This
may be the terminating null character, or it may be the first numeric character that's greater than or equal to base.

The locale's LC_NUMERIC category setting determines recognition of the radix character in strSource; for more
information, see setlocale, _wsetlocale. The functions that don't have the _l suffix use the current locale;
_strtoimax_l and _wcstoimax_l are identical to the corresponding functions that don't have the _l suffix except
that they instead use the locale that's passed in. For more information, see Locale.

If endptr is not NULL, a pointer to the character that stopped the scan is stored at the location that's pointed to by
endptr. If no conversion can be performed (no valid digits were found or an invalid base was specified), the value
of strSource is stored at the location that's pointed to by endptr.

strtoimax expects strSource to point to a string of the following form:

[whitespace] [{+ | -}] [0 [{ x | X }]] [digits | letters]

A whitespace may consist of space and tab characters, which are ignored; digits are one or more decimal digits;
letters are one or more of the letters 'a' through 'z' (or 'A' through 'Z'). The first character that does not fit this
form stops the scan. If base is between 2 and 36, then it is used as the base of the number. If base is 0, the initial
characters of the string pointed to by strSource are used to determine the base. If the first character is '0' and the
second character is not 'x' or 'X', the string is interpreted as an octal integer. If the first character is '0' and the
second character is 'x' or 'X', the string is interpreted as a hexadecimal integer. If the first character is '1' through
'9', the string is interpreted as a decimal integer. The letters 'a' through 'z' (or 'A' through 'Z') are assigned the
values 10 through 35; only letters whose assigned values are less than base are permitted. The first character
outside the range of the base stops the scan. For example, if base is 0 and the first character scanned is '0', an octal
integer is assumed and an '8' or '9' character would stop the scan.

For additional compatibility information, see Compatibility.

Data Conversion
Locale
localeconv
setlocale, _wsetlocale

String to Numeric Value Functions
strtod, _strtod_l, wcstod, _wcstod_l
strtol, wcstol, _strtol_l, _wcstol_l
strtoul, _strtoul_l, wcstoul, _wcstoul_l
strtoumax, _strtoumax_l, wcstoumax, _wcstoumax_l
atof, _atof_l, _wtof, _wtof_l

strtok, _strtok_l, wcstok, _wcstok_l, _mbstok,
_mbstok_l
3/26/2019 • 3 minutes to read • Edit Online

IMPORTANT

Syntax
char *strtok(
 char *strToken,
 const char *strDelimit
);
char *strtok_l(
 char *strToken,
 const char *strDelimit,
 _locale_t locale
);
wchar_t *wcstok(
 wchar_t *strToken,
 const wchar_t *strDelimit
);
wchar_t *wcstok_l(
 wchar_t *strToken,
 const wchar_t *strDelimit,
 _locale_t locale
);
unsigned char *_mbstok(
 unsigned char *strToken,
 const unsigned char *strDelimit
);
unsigned char *_mbstok_l(
 unsigned char *strToken,
 const unsigned char *strDelimit,
 _locale_t locale
);

Parameters

Return Value

Finds the next token in a string, by using the current locale or a specified locale that's passed in. More secure
versions of these functions are available; see strtok_s, _strtok_s_l, wcstok_s, _wcstok_s_l, _mbstok_s, _mbstok_s_l.

_mbstok and _mbstok_l cannot be used in applications that execute in the Windows Runtime. For more information, see
CRT functions not supported in Universal Windows Platform apps.

strToken
String containing token or tokens.

strDelimit
Set of delimiter characters.

locale
Locale to use.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strtok-strtok-l-wcstok-wcstok-l-mbstok-mbstok-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Remarks

IMPORTANT

NOTE

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcstok strtok _mbstok wcstok

_tcstok _strtok_l _mbstok_l _wcstok_l

Requirements

Returns a pointer to the next token found in strToken. The functions return NULL when no more tokens are
found. Each call modifies strToken by substituting a null character for the first delimiter that occurs after the
returned token.

The strtok function finds the next token in strToken. The set of characters in strDelimit specifies possible
delimiters of the token to be found in strToken on the current call. wcstok and _mbstok are wide-character and
multibyte-character versions of strtok. The arguments and return value of wcstok are wide-character strings;
those of _mbstok are multibyte-character strings. These three functions behave identically otherwise.

These functions incur a potential threat brought about by a buffer overrun problem. Buffer overrun problems are a
frequent method of system attack, resulting in an unwarranted elevation of privilege. For more information, see Avoiding
Buffer Overruns.

On the first call to strtok, the function skips leading delimiters and returns a pointer to the first token in strToken,
terminating the token with a null character. More tokens can be broken out of the remainder of strToken by a
series of calls to strtok. Each call to strtok modifies strToken by inserting a null character after the token
returned by that call. To read the next token from strToken, call strtok with a NULL value for the strToken
argument. The NULL strToken argument causes strtok to search for the next token in the modified strToken. The
strDelimit argument can take any value from one call to the next so that the set of delimiters may vary.

The output value is affected by the setting of the LC_CTYPE category setting of the locale. For more
information, see setlocale.

The versions of these functions without the _l suffix use the current locale for this locale-dependent behavior. The
versions with the _l suffix are identical except that they use the locale parameter passed in instead. For more
information, see Locale.

Each function uses a thread-local static variable for parsing the string into tokens. Therefore, multiple threads can
simultaneously call these functions without undesirable effects. However, within a single thread, interleaving calls to one of
these functions is highly likely to produce data corruption and inaccurate results. When parsing different strings, finish
parsing one string before starting to parse the next. Also, be aware of the potential for danger when calling one of these
functions from within a loop where another function is called. If the other function ends up using one of these functions,
an interleaved sequence of calls will result, triggering data corruption.

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

ROUTINE REQUIRED HEADER

strtok <string.h>

wcstok <string.h> or <wchar.h>

_mbstok, _mbstok_l <mbstring.h>

Example
// crt_strtok.c
// compile with: /W3
// In this program, a loop uses strtok
// to print all the tokens (separated by commas
// or blanks) in the string named "string".
//
#include <string.h>
#include <stdio.h>

char string[] = "A string\tof ,,tokens\nand some more tokens";
char seps[] = " ,\t\n";
char *token;

int main(void)
{
 printf("Tokens:\n");

 // Establish string and get the first token:
 token = strtok(string, seps); // C4996
 // Note: strtok is deprecated; consider using strtok_s instead
 while(token != NULL)
 {
 // While there are tokens in "string"
 printf(" %s\n", token);

 // Get next token:
 token = strtok(NULL, seps); // C4996
 }
}

Tokens:
A
string
of
tokens
and
some
more
tokens

See also

For additional compatibility information, see Compatibility.

String Manipulation
Locale
Interpretation of Multibyte-Character Sequences
strcspn, wcscspn, _mbscspn, _mbscspn_l
strspn, wcsspn, _mbsspn, _mbsspn_l

strtok_s, _strtok_s_l, wcstok_s, _wcstok_s_l, _mbstok_s,
_mbstok_s_l
3/26/2019 • 4 minutes to read • Edit Online

IMPORTANT

Syntax
char* strtok_s(
 char* str,
 const char* delimiters,
 char** context
);

char* _strtok_s_l(
 char* str,
 const char* delimiters,
 char** context,
 _locale_t locale
);

wchar_t* wcstok_s(
 wchar_t* str,
 const wchar_t* delimiters,
 wchar_t** context
);

wchar_t *_wcstok_s_l(
 wchar_t* str,
 const wchar_t* delimiters,
 wchar_t** context,
 _locale_t locale
);

unsigned char* _mbstok_s(
 unsigned char* str,
 const unsigned char* delimiters,
 char** context
);

unsigned char* _mbstok_s_l(
 unsigned char* str,
 const unsigned char* delimiters,
 char** context,
 _locale_t locale
);

Parameters

Finds the next token in a string, by using the current locale or a locale that's passed in. These versions of strtok,
_strtok_l, wcstok, _wcstok_l, _mbstok, _mbstok_l have security enhancements, as described in Security Features
in the CRT.

_mbstok_s and _mbstok_s_l cannot be used in applications that execute in the Windows Runtime. For more information,
see CRT functions not supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strtok-s-strtok-s-l-wcstok-s-wcstok-s-l-mbstok-s-mbstok-s-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Return Value

Error Conditions

STR DELIMITERS CONTEXT RETURN VALUE ERRNO

NULL any pointer to a null
pointer

NULL EINVAL

any NULL any NULL EINVAL

any any NULL NULL EINVAL

Remarks

str
A string containing the token or tokens to find.

delimiters
The set of delimiter characters to use.

context
Used to store position information between calls to the function.

locale
The locale to use.

Returns a pointer to the next token found in str. Returns NULL when no more tokens are found. Each call
modifies str by substituting a null character for the first delimiter that occurs after the returned token.

If str is NULL but context is a pointer to a valid context pointer, there's no error.

The strtok_s family of functions finds the next token in str. The set of characters in delimiters specifies possible
delimiters of the token to be found in str on the current call. wcstok_s and _mbstok_s are wide-character and
multibyte-character versions of strtok_s. The arguments and return values of wcstok_s and _wcstok_s_l are
wide-character strings; those of _mbstok_s and _mbstok_s_l are multibyte-character strings. These functions
behave identically otherwise.

This function validates its parameters. When an error condition occurs, as in the Error Conditions table, the
invalid parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue,
these functions set errno to EINVAL and return NULL.

On the first call to strtok_s, the function skips leading delimiters and returns a pointer to the first token in str,
terminating the token with a null character. More tokens can be broken out of the remainder of str by a series of
calls to strtok_s. Each call to strtok_s modifies str by inserting a null character after the token returned by that
call. The context pointer keeps track of which string is being read and where in the string the next token is to be
read. To read the next token from str, call strtok_s with a NULL value for the str argument, and pass the same
context parameter. The NULL str argument causes strtok_s to search for the next token in the modified str. The
delimiters argument can take any value from one call to the next so that the set of delimiters may vary.

Since the context parameter supersedes the static buffers used in strtok and _strtok_l, it's possible to parse two
strings simultaneously in the same thread.

The output value is affected by the setting of the LC_CTYPE category setting of the locale. For more
information, see setlocale.

The versions of these functions without the _l suffix use the current thread locale for this locale-dependent

Requirements
ROUTINE REQUIRED HEADER

strtok_s <string.h>

_strtok_s_l <string.h>

wcstok_s,
_wcstok_s_l

<string.h> or <wchar.h>

_mbstok_s,
_mbstok_s_l

<mbstring.h>

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcstok_s strtok_s _mbstok_s wcstok_s

_tcstok_s_l _strtok_s_l _mbstok_s_l _wcstok_s_l

Example

behavior. The versions with the _l suffix are identical except they instead use the locale specified by the locale
parameter. For more information, see Locale.

For additional compatibility information, see Compatibility.

// crt_strtok_s.c
// In this program, a loop uses strtok_s
// to print all the tokens (separated by commas
// or blanks) in two strings at the same time.

#include <string.h>
#include <stdio.h>

char string1[] =
 "A string\tof ,,tokens\nand some more tokens";
char string2[] =
 "Another string\n\tparsed at the same time.";
char seps[] = " ,\t\n";
char *token1 = NULL;
char *token2 = NULL;
char *next_token1 = NULL;
char *next_token2 = NULL;

int main(void)
{
 printf("Tokens:\n");

 // Establish string and get the first token:
 token1 = strtok_s(string1, seps, &next_token1);
 token2 = strtok_s(string2, seps, &next_token2);

 // While there are tokens in "string1" or "string2"
 while ((token1 != NULL) || (token2 != NULL))
 {
 // Get next token:
 if (token1 != NULL)
 {
 printf(" %s\n", token1);
 token1 = strtok_s(NULL, seps, &next_token1);
 }
 if (token2 != NULL)
 {
 printf(" %s\n", token2);
 token2 = strtok_s(NULL, seps, &next_token2);
 }
 }
}

Tokens:
A
 Another
string
 string
of
 parsed
tokens
 at
and
 the
some
 same
more
 time.
tokens

See also
String Manipulation

Locale
Interpretation of Multibyte-Character Sequences
strcspn, wcscspn, _mbscspn, _mbscspn_l
strspn, wcsspn, _mbsspn, _mbsspn_l

strtol, wcstol, _strtol_l, _wcstol_l
11/8/2018 • 3 minutes to read • Edit Online

Syntax
long strtol(
 const char *strSource,
 char **endptr,
 int base
);
long wcstol(
 const wchar_t *strSource,
 wchar_t **endptr,
 int base
);
long _strtol_l(
 const char *strSource,
 char **endptr,
 int base,
 _locale_t locale
);
long _wcstol_l(
 const wchar_t *strSource,
 wchar_t **endptr,
 int base,
 _locale_t locale
);

Parameters

Return Value

Remarks

Convert strings to a long-integer value.

strSource
Null-terminated string to convert.

endptr
Pointer to character that stops scan.

base
Number base to use.

locale
Locale to use.

strtol returns the value represented in the string strSource, except when the representation would cause an
overflow, in which case it returns LONG_MAX or LONG_MIN . strtol returns 0 if no conversion can be
performed. wcstol returns values analogously to strtol. For both functions, errno is set to ERANGE if overflow
or underflow occurs.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these and other return codes.

The strtol function converts strSource to a long. strtol stops reading the string strSource at the first character it

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strtol-wcstol-strtol-l-wcstol-l.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcstol strtol strtol wcstol

_tcstol_l _strtol_l _strtol_l _wcstol_l

Requirements
ROUTINE REQUIRED HEADER

strtol <stdlib.h>

wcstol <stdlib.h> or <wchar.h>

_strtol_l <stdlib.h>

Example

cannot recognize as part of a number. This may be the terminating null character, or it may be the first numeric
character greater than or equal to base.

wcstol is a wide-character version of strtol; its strSource argument is a wide-character string. These functions
behave identically otherwise.

The current locale's LC_NUMERIC category setting determines recognition of the radix character in strSource;
for more information, see setlocale. The functions without the _l suffix use the current locale; _strtol_l and
_wcstol_l are identical to the corresponding functions without the _l suffix except that they use the locale
passed in instead. For more information, see Locale.

If endptr is not NULL, a pointer to the character that stopped the scan is stored at the location pointed to by
endptr. If no conversion can be performed (no valid digits were found or an invalid base was specified), the
value of strSource is stored at the location pointed to by endptr.

strtol expects strSource to point to a string of the following form:

[whitespace] [{+ | -}] [0 [{ x | X }]] [digits | letters]

A whitespace may consist of space and tab characters, which are ignored; digits are one or more decimal digits;
letters are one or more of the letters 'a' through 'z' (or 'A' through 'Z'). The first character that does not fit this
form stops the scan. If base is between 2 and 36, then it is used as the base of the number. If base is 0, the initial
characters of the string pointed to by strSource are used to determine the base. If the first character is 0 and the
second character is not 'x' or 'X', the string is interpreted as an octal integer. If the first character is '0' and the
second character is 'x' or 'X', the string is interpreted as a hexadecimal integer. If the first character is '1' through
'9', the string is interpreted as a decimal integer. The letters 'a' through 'z' (or 'A' through 'Z') are assigned the
values 10 through 35; only letters whose assigned values are less than base are permitted. The first character
outside the range of the base stops the scan. For example, if base is 0 and the first character scanned is '0', an
octal integer is assumed and an '8' or '9' character will stop the scan.

For additional compatibility information, see Compatibility.

See the example for strtod.

See also
Data Conversion
Locale
localeconv
setlocale, _wsetlocale
String to Numeric Value Functions
strtod, _strtod_l, wcstod, _wcstod_l
strtoul, _strtoul_l, wcstoul, _wcstoul_l
atof, _atof_l, _wtof, _wtof_l

strtold, _strtold_l, wcstold, _wcstold_l
11/9/2018 • 3 minutes to read • Edit Online

Syntax
long double strtold(
 const char *strSource,
 char **endptr
);
long double _strtold_l(
 const char *strSource,
 char **endptr,
 _locale_t locale
);
long double wcstold(
 const wchar_t *strSource,
 wchar_t **endptr
);
long double wcstold_l(
 const wchar_t *strSource,
 wchar_t **endptr,
 _locale_t locale
);

Parameters

Return Value

Remarks

Converts strings to a long double-precision floating-point value.

strSource
Null-terminated string to convert.

endptr
Pointer to the character that stops the scan.

locale
The locale to use.

strtold returns the value of the floating-point number as a long double, except when the representation would
cause an overflow—in that case, the function returns +/-HUGE_VALL. The sign of HUGE_VALL matches the
sign of the value that cannot be represented. strtold returns 0 if no conversion can be performed or an underflow
occurs.

wcstold returns values analogously to strtold. For both functions, errno is set to ERANGE if overflow or
underflow occurs and the invalid parameter handler is invoked, as described in Parameter Validation.

For more information about return codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

Each function converts the input string strSource to a long double. The strtold function stops reading the string
strSource at the first character it cannot recognize as part of a number. This may be the terminating null character.
The wide-character version of strtold is wcstold; its strSource argument is a wide-character string. Otherwise,
these functions behave identically.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strtold-strtold-l-wcstold-wcstold-l.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcstold strtold strtold wcstold

_tcstold_l _strtold_l _strtold_l _wcstold_l

Requirements
ROUTINE REQUIRED HEADER

strtold, _strtold_l <stdlib.h>

wcstold, _wcstold_l <stdlib.h> or <wchar.h>

Example

The LC_NUMERIC category setting of the current locale determines the recognition of the radix character in
strSource. For more information, see setlocale, _wsetlocale. The functions without the _l suffix use the current
locale; _strtold_l and _wcstold_l are identical to _strtold and _wcstold except that they instead use the locale
that's passed in. For more information, see Locale.

If endptr is not NULL, a pointer to the character that stopped the scan is stored at the location that's pointed to by
endptr. If no conversion can be performed (no valid digits were found or an invalid base was specified), the value
of strSource is stored at the location that's pointed to by endptr.

strtold expects strSource to point to a string of the following form:

[whitespace] [sign] [digits] [.digits] [{d | D | e | E}[sign]digits]

A whitespace may consist of space and tab characters, which are ignored; sign is either plus (+) or minus (-); and
digits are one or more decimal digits. If no digits appear before the radix character, at least one must appear after
the radix character. The decimal digits can be followed by an exponent, which consists of an introductory letter (d,
D , e, or E) and an optionally signed integer. If neither an exponent part nor a radix character appears, a radix
character is assumed to follow the last digit in the string. The first character that does not fit this form stops the
scan.

For additional compatibility information, see Compatibility.

// crt_strtold.c
// Build with: cl /W4 /Tc crt_strtold.c
// This program uses strtold to convert a
// string to a long double-precision value.

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char *string;
 char *stopstring;
 long double x;

 string = "3.1415926535898This stopped it";
 x = strtold(string, &stopstring);
 printf("string = %s\n", string);
 printf(" strtold = %.13Lf\n", x);
 printf(" Stopped scan at: %s\n\n", stopstring);
}

string = 3.1415926535898This stopped it
 strtold = 3.1415926535898
 Stopped scan at: This stopped it

See also
Data Conversion
Floating-Point Support
Interpretation of Multibyte-Character Sequences
Locale
String to Numeric Value Functions
strtod, _strtod_l, wcstod, _wcstod_l
strtol, wcstol, _strtol_l, _wcstol_l
strtoul, _strtoul_l, wcstoul, _wcstoul_l
atof, _atof_l, _wtof, _wtof_l
localeconv
_create_locale, _wcreate_locale
_free_locale

strtoll, _strtoll_l, wcstoll, _wcstoll_l
10/31/2018 • 3 minutes to read • Edit Online

Syntax
long long strtoll(
 const char *strSource,
 char **endptr,
 int base
);
long long wcstoll(
 const wchar_t *strSource,
 wchar_t **endptr,
 int base
);
long long _strtoll_l(
 const char *strSource,
 char **endptr,
 int base,
 _locale_t locale
);
long long _wcstoll_l(
 const wchar_t *strSource,
 wchar_t **endptr,
 int base,
 _locale_t locale
);

Parameters

Return Value

Converts a string to a long long value.

strSource
Null-terminated string to convert.

endptr
Pointer to the character that stops the scan.

base
Number base to use.

locale
The locale to use.

strtoll returns the value that's represented in the string strSource, except when the representation would cause an
overflow—in that case, it returns LLONG_MAX or LLONG_MIN . The function returns 0 if no conversion can be
performed. wcstoll returns values analogously to strtoll.

LLONG_MAX and LLONG_MIN are defined in L IMITS.H.

If strSource is NULL or the base is nonzero and either less than 2 or greater than 36, errno is set to EINVAL.

For more information about return codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strtoll-strtoll-l-wcstoll-wcstoll-l.md

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcstoll strtoll strtoll wcstoll

_tcstoll_l _strtoll_l _strtoll_l _wcstoll_l

Requirements
ROUTINE REQUIRED HEADER

strtoll, _strtoll_l <stdlib.h>

wcstoll, _wcstoll_l <stdlib.h> or <wchar.h>

See also

The strtoll function converts strSource to a long long. Both functions stop reading the string strSource at the
first character they cannot recognize as part of a number. This may be the terminating null character, or it may be
the first numeric character that's greater than or equal to base. wcstoll is a wide-character version of strtoll; its
strSource argument is a wide-character string. Otherwise, these functions behave identically.

The locale's LC_NUMERIC category setting determines recognition of the radix character in strSource; for more
information, see setlocale, _wsetlocale. The functions that don't have the _l suffix use the current locale; _strtoll_l
and _wcstoll_l are identical to the corresponding functions that don't have the suffix, except that they instead use
the locale that's passed in. For more information, see Locale.

If endptr is not NULL, a pointer to the character that stopped the scan is stored at the location that's pointed to by
endptr. If no conversion can be performed (no valid digits were found or an invalid base was specified), the value
of strSource is stored at the location that's pointed to by endptr.

strtoll expects strSource to point to a string of the following form:

[whitespace] [{+ | -}] [0 [{ x | X }]] [digits | letters]

A whitespace may consist of space and tab characters, which are ignored; digits are one or more decimal digits;
letters are one or more of the letters 'a' through 'z' (or 'A' through 'Z'). The first character that does not fit this
form stops the scan. If base is between 2 and 36, then it is used as the base of the number. If base is 0, the initial
characters of the string that's pointed to by strSource are used to determine the base. If the first character is '0'
and the second character is not 'x' or 'X', the string is interpreted as an octal integer. If the first character is '0' and
the second character is 'x' or 'X', the string is interpreted as a hexadecimal integer. If the first character is '1'
through '9', the string is interpreted as a decimal integer. The letters 'a' through 'z' (or 'A' through 'Z') are
assigned the values 10 through 35; only letters whose assigned values are less than base are permitted. The first
character outside the range of the base stops the scan. For example, if base is 0 and the first character scanned is
'0', an octal integer is assumed and an '8' or '9' character stops the scan.

For additional compatibility information, see Compatibility.

Data Conversion
Locale

localeconv
setlocale, _wsetlocale
String to Numeric Value Functions
strtod, _strtod_l, wcstod, _wcstod_l
strtol, wcstol, _strtol_l, _wcstol_l
strtoul, _strtoul_l, wcstoul, _wcstoul_l
atof, _atof_l, _wtof, _wtof_l

_strtoui64, _wcstoui64, _strtoui64_l, _wcstoui64_l
3/1/2019 • 3 minutes to read • Edit Online

Syntax
unsigned __int64 _strtoui64(
 const char *strSource,
 char **endptr,
 int base
);
unsigned __int64 _wcstoui64(
 const wchar_t *strSource,
 wchar_t **endptr,
 int base
);
unsigned __int64 _strtoui64_l(
 const char *strSource,
 char **endptr,
 int base,
 _locale_t locale
);
unsigned __int64 _wcstoui64(
 const wchar_t *strSource,
 wchar_t **endptr,
 int base,
 _locale_t locale
);

Parameters

Return Value

Remarks

Convert a string to an unsigned __int64 value.

strSource
Null-terminated string to convert.

endptr
Pointer to character that stops scan.

base
Number base to use.

locale
Locale to use.

_strtoui64 returns the value represented in the string strSource, except when the representation would cause an
overflow, in which case it returns _UI64_MAX. _strtoui64 returns 0 if no conversion can be performed.

_UI64_MAX is defined in L IMITS.H.

If strSource is NULL or the base is nonzero and either less than 2 or greater than 36, errno is set to EINVAL.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these, and other, return codes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strtoui64-wcstoui64-strtoui64-l-wcstoui64-l.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcstoui64 _strtoui64 _strtoui64 _wstrtoui64

_tcstoui64_l _strtoui64_l _strtoui64_l _wstrtoui64_l

Requirements
ROUTINE REQUIRED HEADER

_strtoui64 <stdlib.h>

_wcstoui64 <stdlib.h> or <wchar.h>

_strtoui64_l <stdlib.h>

_wcstoui64_l <stdlib.h> or <wchar.h>

Example

The _strtoui64 function converts strSource to an unsigned __int64. _wcstoui64 is a wide-character version of
_strtoui64; its strSource argument is a wide-character string. Otherwise these functions behave identically.

Both functions stop reading the string strSource at the first character they cannot recognize as part of a number.
This may be the terminating null character, or it may be the first numeric character greater than or equal to base.

The current locale's LC_NUMERIC category setting determines recognition of the radix character in strSource; for
more information, see setlocale. The functions without the _l suffix use the current locale; _strtoui64_l and
_wcstoui64_l are identical to the corresponding functions without the _l suffix except that they use the locale
passed in instead. For more information, see Locale.

If endptr is not NULL, a pointer to the character that stopped the scan is stored at the location pointed to by
endptr. If no conversion can be performed (no valid digits were found or an invalid base was specified), the value
of strSource is stored at the location pointed to by endptr.

_strtoui64 expects strSource to point to a string of the following form:

[whitespace] [{+ | -}] [0 [{ x | X }]] [digits | letters]

A whitespace may consist of space and tab characters, which are ignored. digits are one or more decimal digits.
letters are one or more of the letters 'a' through 'z' (or 'A' through 'Z'). The first character that does not fit this
form stops the scan. If base is between 2 and 36, then it is used as the base of the number. If base is 0, the initial
characters of the string pointed to by strSource are used to determine the base. If the first character is 0 and the
second character is not 'x' or 'X', the string is interpreted as an octal integer. If the first character is '0' and the
second character is 'x' or 'X', the string is interpreted as a hexadecimal integer. If the first character is '1' through
'9', the string is interpreted as a decimal integer. The letters 'a' through 'z' (or 'A' through 'Z') are assigned the
values 10 through 35; only letters whose assigned values are less than base are permitted. The first character
outside the range of the base stops the scan. For example, if base is 0 and the first character scanned is '0', an
octal integer is assumed and an '8' or '9' character will stop the scan.

For additional compatibility information, see Compatibility.

// crt_strtoui64.c
#include <stdio.h>

unsigned __int64 atoui64(const char *szUnsignedInt) {
 return _strtoui64(szUnsignedInt, NULL, 10);
}

int main() {
 unsigned __int64 u = atoui64("18446744073709551615");
 printf("u = %I64u\n", u);
}

u = 18446744073709551615

See also
Data Conversion
Locale
localeconv
setlocale, _wsetlocale
String to Numeric Value Functions
strtod, _strtod_l, wcstod, _wcstod_l
strtoul, _strtoul_l, wcstoul, _wcstoul_l
atof, _atof_l, _wtof, _wtof_l

strtoul, _strtoul_l, wcstoul, _wcstoul_l
3/1/2019 • 3 minutes to read • Edit Online

Syntax
unsigned long strtoul(
 const char *strSource,
 char **endptr,
 int base
);
unsigned long _strtoul_l(
 const char *strSource,
 char **endptr,
 int base,
 _locale_t locale
);
unsigned long wcstoul(
 const wchar_t *strSource,
 wchar_t **endptr,
 int base
);
unsigned long _wcstoul_l(
 const wchar_t *strSource,
 wchar_t **endptr,
 int base,
 _locale_t locale
);

Parameters

Return Value

Remarks

Convert strings to an unsigned long-integer value.

strSource
Null-terminated string to convert.

endptr
Pointer to character that stops scan.

base
Number base to use.

locale
Locale to use.

strtoul returns the converted value, if any, or ULONG_MAX on overflow. strtoul returns 0 if no conversion
can be performed. wcstoul returns values analogously to strtoul. For both functions, errno is set to ERANGE
if overflow or underflow occurs.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on this, and other, return codes.

Each of these functions converts the input string strSource to an unsigned long.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strtoul-strtoul-l-wcstoul-wcstoul-l.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcstoul strtoul strtoul wcstoul

_tcstoul_l strtoul_l _strtoul_l _wcstoul_l

Requirements
ROUTINE REQUIRED HEADER

strtoul <stdlib.h>

wcstoul <stdlib.h> or <wchar.h>

_strtoul_l <stdlib.h>

_wcstoul_l <stdlib.h> or <wchar.h>

Example

strtoul stops reading the string strSource at the first character it cannot recognize as part of a number. This
may be the terminating null character, or it may be the first numeric character greater than or equal to base.
The LC_NUMERIC category setting of the locale determines recognition of the radix character in strSource;
for more information, see setlocale. strtoul and wcstoul use the current locale; _strtoul_l and _wcstoul_l are
identical except that they use the locale passed in instead. For more information, see Locale.

If endptr is not NULL, a pointer to the character that stopped the scan is stored at the location pointed to by
endptr. If no conversion can be performed (no valid digits were found or an invalid base was specified), the
value of strSource is stored at the location pointed to by endptr.

wcstoul is a wide-character version of strtoul; its strSource argument is a wide-character string. Otherwise
these functions behave identically.

strtoul expects strSource to point to a string of the following form:

[whitespace] [{+ | -}] [0 [{ x | X }]] [digits | letters]

A whitespace may consist of space and tab characters, which are ignored. digits are one or more decimal digits.
letters are one or more of the letters 'a' through 'z' (or 'A' through 'Z'). The first character that does not fit this
form stops the scan. If base is between 2 and 36, then it is used as the base of the number. If base is 0, the
initial characters of the string pointed to by strSource are used to determine the base. If the first character is 0
and the second character is not 'x' or 'X', the string is interpreted as an octal integer. If the first character is '0'
and the second character is 'x' or 'X', the string is interpreted as a hexadecimal integer. If the first character is '1'
through '9', the string is interpreted as a decimal integer. The letters 'a' through 'z' (or 'A' through 'Z') are
assigned the values 10 through 35; only letters whose assigned values are less than base are permitted. The
first character outside the range of the base stops the scan. For example, if base is 0 and the first character
scanned is '0', an octal integer is assumed and an '8' or '9' character will stop the scan. strtoul allows a plus (+)
or minus (-) sign prefix; a leading minus sign indicates that the return value is negated.

For additional compatibility information, see Compatibility.

See also

See the example for strtod.

Data Conversion
Locale
localeconv
setlocale, _wsetlocale
String to Numeric Value Functions
strtod, _strtod_l, wcstod, _wcstod_l
strtol, wcstol, _strtol_l, _wcstol_l
atof, _atof_l, _wtof, _wtof_l

strtoull, _strtoull_l, wcstoull, _wcstoull_l
10/31/2018 • 3 minutes to read • Edit Online

Syntax
unsigned long long strtoull(
 const char *strSource,
 char **endptr,
 int base
);
unsigned long long _strtoull_l(
 const char *strSource,
 char **endptr,
 int base,
 _locale_t locale
);
unsigned long long wcstoull(
 const wchar_t *strSource,
 wchar_t **endptr,
 int base
);
unsigned long long _wcstoull_l(
 const wchar_t *strSource,
 wchar_t **endptr,
 int base,
 _locale_t locale
);

Parameters

Return Value

Remarks

Converts strings to an unsigned long long-integer value.

strSource
Null-terminated string to convert.

endptr
Pointer to the character that stops the scan.

base
Number base to use.

locale
Locale to use.

strtoull returns the converted value, if any, or ULLONG_MAX on overflow. strtoull returns 0 if no conversion
can be performed. wcstoull returns values analogously to strtoull. For both functions, errno is set to ERANGE if
overflow or underflow occurs.

For more information about return codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

Each of these functions converts the input string strSource to an unsigned long long integer value.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strtoull-strtoull-l-wcstoull-wcstoull-l.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcstoull strtoull strtoull wcstoull

_tcstoull_l strtoull_l _strtoull_l _wcstoull_l

Requirements
ROUTINE REQUIRED HEADER

strtoull <stdlib.h>

wcstoull <stdlib.h> or <wchar.h>

_strtoull_l <stdlib.h>

_wcstoull_l <stdlib.h> or <wchar.h>

Example

strtoull stops reading the string strSource at the first character it cannot recognize as part of a number. This may
be the terminating null character, or it may be the first numeric character that's greater than or equal to base. The
setting of the LC_NUMERIC category of the locale determines recognition of the radix character in strSource; for
more information, see setlocale, _wsetlocale. strtoull and wcstoull use the current locale; _strtoull_l and
_wcstoull_l instead use the locale that's passed in but are identical otherwise. For more information, see Locale.

If endptr is not NULL, a pointer to the character that stopped the scan is stored at the location that's pointed to by
endptr. If no conversion can be performed (no valid digits were found or an invalid base was specified), the value
of strSource is stored at the location that's pointed to by endptr.

wcstoull is a wide-character version of strtoull and its strSource argument is a wide-character string. Otherwise,
these functions behave identically.

strtoull expects strSource to point to a string of the following form:

[whitespace] [{+ | -}] [0 [{ x | X }]] [digits | letters]

A whitespace may consist of space and tab characters, which are ignored. digits are one or more decimal digits.
letters are one or more of the letters 'a' through 'z' (or 'A' through 'Z'). The first character that does not fit this
form stops the scan. If base is between 2 and 36, then it is used as the base of the number. If base is 0, the initial
characters of the string that's pointed to by strSource are used to determine the base. If the first character is '0'
and the second character is not 'x' or 'X', the string is interpreted as an octal integer. If the first character is '0' and
the second character is 'x' or 'X', the string is interpreted as a hexadecimal integer. If the first character is '1'
through '9', the string is interpreted as a decimal integer. The letters 'a' through 'z' (or 'A' through 'Z') are assigned
the values 10 through 35; only letters whose assigned values are less than base are permitted. The first character
outside the range of the base stops the scan. For example, if base is 0 and the first character scanned is '0', an octal
integer is assumed and an '8' or '9' character stops the scan. strtoull allows a plus sign (+) or minus sign (-) prefix;
a leading minus sign indicates that the return value is negated.

For additional compatibility information, see Compatibility.

See also

See the example for strtod.

Data Conversion
Locale
localeconv
setlocale, _wsetlocale
String to Numeric Value Functions
strtod, _strtod_l, wcstod, _wcstod_l
strtol, wcstol, _strtol_l, _wcstol_l
strtoul, _strtoul_l, wcstoul, _wcstoul_l
strtoll, _strtoll_l, wcstoll, _wcstoll_l
atof, _atof_l, _wtof, _wtof_l

strtoumax, _strtoumax_l, wcstoumax, _wcstoumax_l
10/31/2018 • 3 minutes to read • Edit Online

Syntax
uintmax_t strtoumax(
 const char *strSource,
 char **endptr,
 int base
);
uintmax_t _strtoumax_l(
 const char *strSource,
 char **endptr,
 int base,
 _locale_t locale
);
uintmax_t wcstoumax(
 const wchar_t *strSource,
 wchar_t **endptr,
 int base
);
uintmax_t _wcstoumax_l(
 const wchar_t *strSource,
 wchar_t **endptr,
 int base,
 _locale_t locale
);

Parameters

Return Value

Remarks

Converts strings to an integer value of the largest supported unsigned integer type.

strSource
Null-terminated string to convert.

endptr
Pointer to the character that stops the scan.

base
Number base to use.

locale
Locale to use.

strtoumax returns the converted value, if any, or UINTMAX_MAX on overflow. strtoumax returns 0 if no
conversion can be performed. wcstoumax returns values analogously to strtoumax. For both functions, errno is
set to ERANGE if overflow or underflow occurs.

For more information about return codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

Each of these functions converts the input string strSource to a uintmax_t integer value.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strtoumax-strtoumax-l-wcstoumax-wcstoumax-l.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcstoumax strtoumax strtoumax wcstoumax

_tcstoumax_l strtoumax_l _strtoumax_l _wcstoumax_l

Requirements
ROUTINE REQUIRED HEADER

strtoumax <stdlib.h>

wcstoumax <stdlib.h> or <wchar.h>

_strtoumax_l <stdlib.h>

_wcstoumax_l <stdlib.h> or <wchar.h>

strtoumax stops reading the string strSource at the first character it cannot recognize as part of a number. This
may be the terminating null character, or it may be the first numeric character that's greater than or equal to base.
The LC_NUMERIC category setting of the locale determines the recognition of the radix character in strSource.
For more information, see setlocale, _wsetlocale. strtoumax and wcstoumax use the current locale;
_strtoumax_l and _wcstoumax_l are identical except that they instead use the locale that's passed in. For more
information, see Locale.

If endptr is not NULL, a pointer to the character that stopped the scan is stored at the location that's pointed to by
endptr. If no conversion can be performed (no valid digits were found or an invalid base was specified), the value
of strSource is stored at the location that's pointed to by endptr.

The wide-character version of strtoumax is wcstoumax; its strSource argument is a wide-character string.
Otherwise, these functions behave identically.

strtoumax expects strSource to point to a string of the following form:

[whitespace] [{+ | -}] [0 [{ x | X }]] [digits | letters]

A whitespace may consist of space and tab characters, which are ignored. digits are one or more decimal digits.
letters are one or more of the letters 'a' through 'z' (or 'A' through 'Z'). The first character that does not fit this
form stops the scan. If base is between 2 and 36, then it is used as the base of the number. If base is 0, the initial
characters of the string that's pointed to by strSource are used to determine the base. If the first character is '0'
and the second character is not 'x' or 'X', the string is interpreted as an octal integer. If the first character is '0' and
the second character is 'x' or 'X', the string is interpreted as a hexadecimal integer. If the first character is '1'
through '9', the string is interpreted as a decimal integer. The letters 'a' through 'z' (or 'A' through 'Z') are
assigned the values 10 through 35; only letters whose assigned values are less than base are permitted. The first
character outside the range of the base stops the scan. For example, if base is 0 and the first character scanned is
'0', an octal integer is assumed and an '8' or '9' character would stop the scan. strtoumax allows a plus sign (+)
or minus sign (-) prefix; a leading minus sign indicates that the return value is the two’s complement of the
absolute value of the converted string.

For additional compatibility information, see Compatibility.

Example

See also

See the example for strtod.

Data Conversion
Locale
localeconv
setlocale, _wsetlocale
String to Numeric Value Functions
strtod, _strtod_l, wcstod, _wcstod_l
strtoimax, _strtoimax_l, wcstoimax, _wcstoimax_l
strtol, wcstol, _strtol_l, _wcstol_l
strtoul, _strtoul_l, wcstoul, _wcstoul_l
strtoll, _strtoll_l, wcstoll, _wcstoll_l
atof, _atof_l, _wtof, _wtof_l

strupr, wcsupr
10/31/2018 • 2 minutes to read • Edit Online

These POSIX functions are deprecated. Use the ISO C++ conformant _strupr, _strupr_l, _mbsupr, _mbsupr_l,
_wcsupr_l, _wcsupr or security-enhanced _strupr_s, _strupr_s_l, _mbsupr_s, _mbsupr_s_l, _wcsupr_s, _wcsupr_s_l
instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strupr-wcsupr.md

_strupr, _strupr_l, _mbsupr, _mbsupr_l, _wcsupr_l,
_wcsupr
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax

Converts a string to uppercase. More secure versions of these functions are available; see _strupr_s, _strupr_s_l,
_mbsupr_s, _mbsupr_s_l, _wcsupr_s, _wcsupr_s_l.

_mbsupr and _mbsupr_l cannot be used in applications that execute in the Windows Runtime. For more information, see
CRT functions not supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strupr-strupr-l-mbsupr-mbsupr-l-wcsupr-l-wcsupr.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

char *_strupr(
 char *str
);
wchar_t *_wcsupr(
 wchar_t *str
);
unsigned char *_mbsupr(
 unsigned char *str
);
char *_strupr_l(
 char *str,
 _locale_t locale
);
wchar_t *_wcsupr_l(
 wchar_t *str,
 _locale_t locale
);
unsigned char *_mbsupr_l(
 unsigned char *str,
 _locale_t locale
);
template <size_t size>
char *_strupr(
 char (&str)[size]
); // C++ only
template <size_t size>
wchar_t *_wcsupr(
 wchar_t (&str)[size]
); // C++ only
template <size_t size>
unsigned char *_mbsupr(
 unsigned char (&str)[size]
); // C++ only
template <size_t size>
char *_strupr_l(
 char (&str)[size],
 _locale_t locale
); // C++ only
template <size_t size>
wchar_t *_wcsupr_l(
 wchar_t (&str)[size],
 _locale_t locale
); // C++ only
template <size_t size>
unsigned char *_mbsupr_l(
 unsigned char (&str)[size],
 _locale_t locale
); // C++ only

Parameters

Return Value

Remarks

str
String to capitalize.

locale
The locale to use.

Returns a pointer to the altered string. Because the modification is done in place, the pointer returned is the
same as the pointer passed as the input argument. No return value is reserved to indicate an error.

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsupr _strupr _mbsupr _wcsupr

_tcsupr_l _strupr_l _mbsupr_l _wcsupr_l

Requirements
ROUTINE REQUIRED HEADER

_strupr, _strupr_l <string.h>

_wcsupr, _wcsupr_l <string.h> or <wchar.h>

_mbsupr, _mbsupr_l <mbstring.h>

Example

See also

The _strupr function converts, in place, each lowercase letter in str to uppercase. The conversion is determined
by the LC_CTYPE category setting of the locale. Other characters are not affected. For more information on
LC_CTYPE , see setlocale. The versions of these functions without the _l suffix use the current locale; the
versions with the _l suffix are identical except that they use the locale passed in instead. For more information,
see Locale.

_wcsupr and _mbsupr are wide-character and multibyte-character versions of _strupr. The argument and
return value of _wcsupr are wide-character strings; those of _mbsupr are multibyte-character strings. These
three functions behave identically otherwise.

If str is a null pointer, the invalid parameter handler is invoked, as described in Parameter Validation . If execution
is allowed to continue, these functions return the original string and set errno to EINVAL.

In C++, these functions have template overloads that invoke the newer, secure counterparts of these functions.
For more information, see Secure Template Overloads.

For additional compatibility information, see Compatibility.

See the example for _strlwr.

Locale
String Manipulation
_strlwr, _wcslwr, _mbslwr, _strlwr_l, _wcslwr_l, _mbslwr_l

_strupr_s, _strupr_s_l, _mbsupr_s, _mbsupr_s_l,
_wcsupr_s, _wcsupr_s_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax

Converts a string to uppercase, by using the current locale or a specified locale that's passed in. These versions
of _strupr, _strupr_l, _mbsupr, _mbsupr_l, _wcsupr_l, _wcsupr have security enhancements, as described in
Security Features in the CRT.

_mbsupr_s and _mbsupr_s_l cannot be used in applications that execute in the Windows Runtime. For more information,
see CRT functions not supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strupr-s-strupr-s-l-mbsupr-s-mbsupr-s-l-wcsupr-s-wcsupr-s-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

errno_t _strupr_s(
 char *str,
 size_t numberOfElements
);
errno_t _wcsupr_s(
 wchar_t * str,
 size_t numberOfElements
);
errno_t _strupr_s_l(
 char * str,
 size_t numberOfElements,
 _locale_t locale
);
errno_t _wcsupr_s_l(
 wchar_t * str,
 size_t numberOfElements,
 _locale_t locale
);
errno_t _mbsupr_s(
 unsigned char *str,
 size_t numberOfElements
);
errno_t _mbsupr_s_l(
 unsigned char *str,
 size_t numberOfElements,
 _locale_t locale
);
template <size_t size>
errno_t _strupr_s(
 char (&str)[size]
); // C++ only
template <size_t size>
errno_t _wcsupr_s(
 wchar_t (&str)[size]
); // C++ only
template <size_t size>
errno_t _strupr_s_l(
 char (&str)[size],
 _locale_t locale
); // C++ only
template <size_t size>
errno_t _wcsupr_s_l(
 wchar_t (&str)[size],
 _locale_t locale
); // C++ only
template <size_t size>
errno_t _mbsupr_s(
 unsigned char (&str)[size]
); // C++ only
template <size_t size>
errno_t _mbsupr_s_l(
 unsigned char (&str)[size],
 _locale_t locale
); // C++ only

Parameters
str
String to capitalize.

numberOfElements
Size of the buffer.

locale
The locale to use.

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsupr_s _strupr_s _mbsupr_s _wcsupr_s

_tcsupr_s_l _strupr_s_l _mbsupr_s_l _wcsupr_s_l

Requirements
ROUTINE REQUIRED HEADER

_strupr_s, _strupr_s_l <string.h>

_wcsupr_s, _wcsupr_s_l, _mbsupr_s, _mbsupr_s_l <string.h> or <wchar.h>

Example

See also

Zero if successful; a non-zero error code on failure.

These functions validate their parameters. If str is a NULL pointer, the invalid parameter handler is invoked, as
described in Parameter Validation . If execution is allowed to continue, the functions return EINVAL and set
errno to EINVAL. If numberOfElements is less than the length of the string, the functions return ERANGE and
set errno to ERANGE .

The _strupr_s function converts, in place, each lowercase letter in str to uppercase. _wcsupr_s is the wide-
character version of _strupr_s. _mbsupr_s is the multi-byte character version of _strupr_s.

The conversion is determined by the LC_CTYPE category setting of the locale. Other characters are not
affected. For more information on LC_CTYPE , see setlocale. The versions of these functions without the _l
suffix use the current locale; the visions with the _l suffix are identical except that they use the locale passed in
instead. For more information, see Locale.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically (eliminating the need to specify a size argument) and they can automatically replace older, non-
secure functions with their newer, secure counterparts. For more information, see Secure Template Overloads.

The debug versions of these functions first fill the buffer with 0xFD. To disable this behavior, use
_CrtSetDebugFillThreshold.

For additional compatibility information, see Compatibility.

See the example for _strlwr_s, _strlwr_s_l, _mbslwr_s, _mbslwr_s_l, _wcslwr_s, _wcslwr_s_l .

Locale
Interpretation of Multibyte-Character Sequences
String Manipulation
_strlwr_s, _strlwr_s_l, _mbslwr_s, _mbslwr_s_l, _wcslwr_s, _wcslwr_s_l

strxfrm, wcsxfrm, _strxfrm_l, _wcsxfrm_l
10/31/2018 • 3 minutes to read • Edit Online

Syntax
size_t strxfrm(
 char *strDest,
 const char *strSource,
 size_t count
);
size_t wcsxfrm(
 wchar_t *strDest,
 const wchar_t *strSource,
 size_t count
);
size_t _strxfrm_l(
 char *strDest,
 const char *strSource,
 size_t count,
 _locale_t locale
);
size_t wcsxfrm_l(
 wchar_t *strDest,
 const wchar_t *strSource,
 size_t count,
 _locale_t locale
);

Parameters

Return Value

Remarks

Transform a string based on locale-specific information.

strDest
Destination string.

strSource
Source string.

count
Maximum number of characters to place in strDest.

locale
The locale to use.

Returns the length of the transformed string, not counting the terminating null character. If the return value is
greater than or equal to count, the content of strDest is unpredictable. On an error, each function sets errno
and returns INT_MAX. For an invalid character, errno is set to EILSEQ.

The strxfrm function transforms the string pointed to by strSource into a new collated form that is stored in
strDest. No more than count characters, including the null character, are transformed and placed into the
resulting string. The transformation is made using the locale's LC_COLLATE category setting. For more

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/strxfrm-wcsxfrm-strxfrm-l-wcsxfrm-l.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tcsxfrm strxfrm strxfrm wcsxfrm

_tcsxfrm_l _strxfrm_l _strxfrm_l _wcsxfrm_l

strncpy(_string1, _string2, _count);
return(strlen(_string1));

Requirements

information on LC_COLLATE , see setlocale. strxfrm uses the current locale for its locale-dependent behavior;
_strxfrm_l is identical except that it uses the locale passed in instead of the current locale. For more
information, see Locale.

After the transformation, a call to strcmp with the two transformed strings yields results identical to those of a
call to strcoll applied to the original two strings. As with strcoll and stricoll, strxfrm automatically handles
multibyte-character strings as appropriate.

wcsxfrm is a wide-character version of strxfrm; the string arguments of wcsxfrm are wide-character
pointers. For wcsxfrm, after the string transformation, a call to wcscmp with the two transformed strings
yields results identical to those of a call to wcscoll applied to the original two strings. wcsxfrm and strxfrm
behave identically otherwise. wcsxfrm uses the current locale for its locale-dependent behavior; _wcsxfrm_l
uses the locale passed in instead of the current locale.

These functions validate their parameters. If strSource is a null pointer, or strDest is a NULL pointer (unless
count is zero), or if count is greater than INT_MAX, the invalid parameter handler is invoked, as described in
Parameter Validation . If execution is allowed to continue, these functions set errno to EINVAL and return
INT_MAX.

In the "C" locale, the order of the characters in the character set (ASCII character set) is the same as the
lexicographic order of the characters. However, in other locales, the order of characters in the character set
may differ from the lexicographic character order. For example, in certain European locales, the character 'a'
(value 0x61) precedes the character 'ä' (value 0xE4) in the character set, but the character 'ä' precedes
the character 'a' lexicographically.

In locales for which the character set and the lexicographic character order differ, use strxfrm on the original
strings and then strcmp on the resulting strings to produce a lexicographic string comparison according to the
current locale's LC_COLLATE category setting. Thus, to compare two strings lexicographically in the above
locale, use strxfrm on the original strings, then strcmp on the resulting strings. Alternately, you can use
strcoll rather than strcmp on the original strings.

strxfrm is basically a wrapper around LCMapString with LCMAP_SORTKEY .

The value of the following expression is the size of the array needed to hold the strxfrm transformation of the
source string:

1 + strxfrm(NULL, string, 0)

In the "C" locale only, strxfrm is equivalent to the following:

https://docs.microsoft.com/windows/desktop/api/winnls/nf-winnls-lcmapstringa

ROUTINE REQUIRED HEADER

strxfrm <string.h>

wcsxfrm <string.h> or <wchar.h>

_strxfrm_l <string.h>

_wcsxfrm_l <string.h> or <wchar.h>

See also

For additional compatibility information, see Compatibility.

Data Conversion
localeconv
setlocale, _wsetlocale
Locale
String Manipulation
strcoll Functions
strcmp, wcscmp, _mbscmp
strncmp, wcsncmp, _mbsncmp, _mbsncmp_l

swab
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _swab instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-swab.md

_swab
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void _swab(
 char *src,
 char *dest,
 int n
);

Parameters

Return value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_swab C: <stdlib.h> C++: <cstdlib> or <stdlib.h>

Example

Swaps bytes.

src
Data to be copied and swapped.

dest
Storage location for swapped data.

n
Number of bytes to be copied and swapped.

The swab function does not return a value. The function sets errno to EINVAL if either the src or dest pointer is
null or n is less than zero, and the invalid parameter handler is invoked, as described in Parameter Validation.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on this and other return codes.

If n is even, the _swab function copies n bytes from src, swaps each pair of adjacent bytes, and stores the result at
dest. If n is odd, _swab copies and swaps the first n-1 bytes of src, and the final byte is not copied. The _swab
function is typically used to prepare binary data for transfer to a machine that uses a different byte order.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/swab.md

// crt_swab.c

#include <stdlib.h>
#include <stdio.h>

char from[] = "BADCFEHGJILKNMPORQTSVUXWZY";
char to[] = "...........................";

int main()
{
 printf("Before: %s %d bytes\n %s\n\n", from, sizeof(from), to);
 _swab(from, to, sizeof(from));
 printf("After: %s\n %s\n\n", from, to);
}

Before: BADCFEHGJILKNMPORQTSVUXWZY 27 bytes

After: BADCFEHGJILKNMPORQTSVUXWZY
 ABCDEFGHIJKLMNOPQRSTUVWXYZ.

See also
Buffer Manipulation

system, _wsystem
11/8/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int system(
 const char *command
);
int _wsystem(
 const wchar_t *command
);

Parameters

Return Value

E2BIG The argument list (which is system-dependent) is too big.

ENOENT The command interpreter cannot be found.

ENOEXEC The command-interpreter file cannot be executed because
the format is not valid.

ENOMEM Not enough memory is available to execute command; or
available memory has been corrupted; or a non-valid
block exists, which indicates that the process that's making
the call was not allocated correctly.

Remarks

Executes a command.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT
functions not supported in Universal Windows Platform apps.

command
The command to be executed.

If command is NULL and the command interpreter is found, returns a nonzero value. If the command
interpreter is not found, returns 0 and sets errno to ENOENT. If command is not NULL, system returns
the value that is returned by the command interpreter. It returns the value 0 only if the command
interpreter returns the value 0. A return value of - 1 indicates an error, and errno is set to one of the
following values:

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information about these return codes.

The system function passes command to the command interpreter, which executes the string as an

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/system-wsystem.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tsystem system system _wsystem

Requirements
ROUTINE REQUIRED HEADER

system <process.h> or <stdlib.h>

_wsystem <process.h> or <stdlib.h> or <wchar.h>

Example

// crt_system.c

#include <process.h>

int main(void)
{
 system("type crt_system.txt");
}

Input: crt_system.txt

Line one.
Line two.

Output

Line one.
Line two.

See also

operating-system command. system uses the COMSPEC and PATH environment variables to locate the
command-interpreter file CMD.exe. If command is NULL, the function just checks whether the command
interpreter exists.

You must explicitly flush, by using fflush or _flushall, or close any stream before you call system.

_wsystem is a wide-character version of system; the command argument to _wsystem is a wide-character
string. These functions behave identically otherwise.

For additional compatibility information, see Compatibility.

This example uses system to TYPE a text file.

Process and Environment Control
_exec, _wexec Functions
exit, _Exit, _exit
_flushall

_spawn, _wspawn Functions

tan, tanf, tanl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double tan(double x);
float tanf(float x);
long double tanl(long double x);

float tan(float x); // C++ only
long double tan(long double x); // C++ only

Parameters

Return value

INPUT SEH EXCEPTION MATHERR EXCEPTION

± QNAN,IND none _DOMAIN

± INF INVALID _DOMAIN

Remarks

Requirements
ROUTINE REQUIRED HEADER (C) REQUIRED HEADER (C++)

tan, tanf, tanl <math.h> <cmath> or <math.h>

Example

Calculates the tangent.

x
Angle in radians.

The tan functions return the tangent of x. If x is greater than or equal to 263, or less than or equal to -263, a loss
of significance in the result occurs.

Because C++ allows overloading, you can call overloads of tan that take and return float or long double
values. In a C program, tan always takes and returns double.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/tan-tanf-tanl.md

// crt_tan.c
// This program displays the tangent of pi / 4
// Compile by using: cl crt_tan.c

#include <math.h>
#include <stdio.h>

int main(void)
{
 double pi = 3.1415926535;
 double x;

 x = tan(pi / 4);
 printf("tan(%f) = %f\n", pi/4, x);
}

tan(0.785398) = 1.000000

See also
Floating-Point Support
acos, acosf, acosl
asin, asinf, asinl
atan, atanf, atanl, atan2, atan2f, atan2l
cos, cosf, cosl
sin, sinf, sinl
_CItan

tanh, tanhf, tanhl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double tanh(double x);
float tanhf(float x);
long double tanhl(long double x);

float tanh(float x); // C++ only
long double tanh(long double x); // C++ only

Parameters

Return value

INPUT SEH EXCEPTION MATHERR EXCEPTION

± QNAN,IND none _DOMAIN

Remarks

Requirements
ROUTINE REQUIRED HEADER (C) REQUIRED HEADER (C)

tanh, tanhf, tanhl <math.h> <cmath> or <math.h>

Example

Calculates the hyperbolic tangent.

x
Angle in radians.

The tanh functions return the hyperbolic tangent of x. There is no error return.

Because C++ allows overloading, you can call overloads of tanh that take and return float or long double
values. In a C program, tanh always takes and returns double.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/tanh-tanhf-tanhl.md

// crt_tanh.c
// This program displays the tangent of pi / 4
// and the hyperbolic tangent of the result.
// Compile by using: cl crt_tanh.c

#include <math.h>
#include <stdio.h>

int main(void)
{
 double pi = 3.1415926535;
 double x, y;

 x = tan(pi / 4);
 y = tanh(x);
 printf("tan(%f) = %f\n", pi/4, x);
 printf("tanh(%f) = %f\n", x, y);
}

tan(0.785398) = 1.000000
tanh(1.000000) = 0.761594

See also
Floating-Point Support
acosh, acoshf, acoshl
asinh, asinhf, asinhl
atanh, atanhf, atanhl
cosh, coshf, coshl
sinh, sinhf, sinhl

tell
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _tell instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/tell.md

_tell, _telli64
10/31/2018 • 2 minutes to read • Edit Online

Syntax
long _tell(
 int handle
);
__int64 _telli64(
 int handle
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

_tell, _telli64 <io.h>

Example

Get the position of the file pointer.

handle
File descriptor referring to open file.

The current position of the file pointer. On devices incapable of seeking, the return value is undefined.

A return value of -1L indicates an error. If handle is an invalid file descriptor, the invalid parameter handler is
invoked, as described in Parameter Validation. If execution is allowed to continue, these functions set errno to
EBADF and return -1L.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on this, and other, return codes.

The _tell function gets the current position of the file pointer (if any) associated with the handle argument. The
position is expressed as the number of bytes from the beginning of the file. For the _telli64 function, this value is
expressed as a 64-bit integer.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/tell-telli64.md

// crt_tell.c
// This program uses _tell to tell the
// file pointer position after a file read.
//

#include <io.h>
#include <stdio.h>
#include <fcntl.h>
#include <share.h>
#include <string.h>

int main(void)
{
 int fh;
 char buffer[500];

 if (_sopen_s(&fh, "crt_tell.txt", _O_RDONLY, _SH_DENYNO, 0))
 {
 char buff[50];
 _strerror_s(buff, sizeof(buff), NULL);
 printf(buff);
 exit(-1);
 }

 if(_read(fh, buffer, 500) > 0)
 printf("Current file position is: %d\n", _tell(fh));
 _close(fh);
}

Input: crt_tell.txt

Line one.
Line two.

Output

Current file position is: 20

See also
Low-Level I/O
ftell, _ftelli64
_lseek, _lseeki64

tempnam
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _tempnam instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/tempnam.md

_tempnam, _wtempnam, tmpnam, _wtmpnam
10/31/2018 • 4 minutes to read • Edit Online

Syntax
char *_tempnam(
 const char *dir,
 const char *prefix
);
wchar_t *_wtempnam(
 const wchar_t *dir,
 const wchar_t *prefix
);
char *tmpnam(
 char *str
);
wchar_t *_wtmpnam(
 wchar_t *str
);

Parameters

Return Value

NOTE

Remarks

Generate names you can use to create temporary files. More secure versions of some of these functions are
available; see tmpnam_s, _wtmpnam_s.

prefix
The string that will be pre-pended to names returned by _tempnam.

dir
The path used in the file name if there is no TMP environment variable, or if TMP is not a valid directory.

str
Pointer that will hold the generated name and will be identical to the name returned by the function. This is a
convenient way to save the generated name.

Each of these functions returns a pointer to the name generated or NULL if there is a failure. Failure can occur
if you attempt more than TMP_MAX (see STDIO.H) calls with tmpnam or if you use _tempnam and there is
an invalid directory name specified in the TMP environment variable and in the dir parameter.

The pointers returned by tmpnam and _wtmpnam point to internal static buffers. free should not be called to
deallocate those pointers. free needs to be called for pointers allocated by _tempnam and _wtempnam.

Each of these functions returns the name of a file that does not currently exist. tmpnam returns a name that's
unique in the designated Windows temporary directory returned by GetTempPathW. _tempnam generates a
unique name in a directory other than the designated one. Note than when a file name is pre-pended with a
backslash and no path information, such as \fname21, this indicates that the name is valid for the current

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/tempnam-wtempnam-tmpnam-wtmpnam.md
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-gettemppathw

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_ttmpnam tmpnam tmpnam _wtmpnam

_ttempnam _tempnam _tempnam _wtempnam

Requirements
ROUTINE REQUIRED HEADER

_tempnam <stdio.h>

_wtempnam, _wtmpnam <stdio.h> or <wchar.h>

tmpnam <stdio.h>

working directory.

For tmpnam, you can store this generated file name in str. If str is NULL, then tmpnam leaves the result in
an internal static buffer. Thus any subsequent calls destroy this value. The name generated by tmpnam
consists of a program-generated file name and, after the first call to tmpnam, a file extension of sequential
numbers in base 32 (.1-.vvu, when TMP_MAX in STDIO.H is 32,767).

_tempnam will generate a unique file name for a directory chosen by the following rules:

If the TMP environment variable is defined and set to a valid directory name, unique file names will be
generated for the directory specified by TMP.

If the TMP environment variable is not defined or if it is set to the name of a directory that does not
exist, _tempnam will use the dir parameter as the path for which it will generate unique names.

If the TMP environment variable is not defined or if it is set to the name of a directory that does not
exist, and if dir is either NULL or set to the name of a directory that does not exist, _tempnam will use
the current working directory to generate unique names. Currently, if both TMP and dir specify names
of directories that do not exist, the _tempnam function call will fail.

The name returned by _tempnam will be a concatenation of prefix and a sequential number, which will
combine to create a unique file name for the specified directory. _tempnam generates file names that have no
extension. _tempnam uses malloc to allocate space for the filename; the program is responsible for freeing
this space when it is no longer needed.

_tempnam and tmpnam automatically handle multibyte-character string arguments as appropriate,
recognizing multibyte-character sequences according to the OEM code page obtained from the operating
system. _wtempnam is a wide-character version of _tempnam; the arguments and return value of
_wtempnam are wide-character strings. _wtempnam and _tempnam behave identically except that
_wtempnam does not handle multibyte-character strings. _wtmpnam is a wide-character version of
tmpnam; the argument and return value of _wtmpnam are wide-character strings. _wtmpnam and
tmpnam behave identically except that _wtmpnam does not handle multibyte-character strings.

If _DEBUG and _CRTDBG_MAP_ALLOC are defined, _tempnam and _wtempnam are replaced by calls to
_tempnam_dbg and _wtempnam_dbg.

For additional compatibility information, see Compatibility.

Example
// crt_tempnam.c
// compile with: /W3
// This program uses tmpnam to create a unique filename in the
// temporary directory, and _tempname to create a unique filename
// in C:\\tmp.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char * name1 = NULL;
 char * name2 = NULL;
 char * name3 = NULL;

 // Create a temporary filename for the current working directory:
 if ((name1 = tmpnam(NULL)) != NULL) { // C4996
 // Note: tmpnam is deprecated; consider using tmpnam_s instead
 printf("%s is safe to use as a temporary file.\n", name1);
 } else {
 printf("Cannot create a unique filename\n");
 }

 // Create a temporary filename in temporary directory with the
 // prefix "stq". The actual destination directory may vary
 // depending on the state of the TMP environment variable and
 // the global variable P_tmpdir.

 if ((name2 = _tempnam("c:\\tmp", "stq")) != NULL) {
 printf("%s is safe to use as a temporary file.\n", name2);
 } else {
 printf("Cannot create a unique filename\n");
 }

 // When name2 is no longer needed:
 if (name2) {
 free(name2);
 }

 // Unset TMP environment variable, then create a temporary filename in C:\tmp.
 if (_putenv("TMP=") != 0) {
 printf("Could not remove TMP environment variable.\n");
 }

 // With TMP unset, we will use C:\tmp as the temporary directory.
 // Create a temporary filename in C:\tmp with prefix "stq".
 if ((name3 = _tempnam("c:\\tmp", "stq")) != NULL) {
 printf("%s is safe to use as a temporary file.\n", name3);
 }
 else {
 printf("Cannot create a unique filename\n");
 }

 // When name3 is no longer needed:
 if (name3) {
 free(name3);
 }

 return 0;
}

C:\Users\LocalUser\AppData\Local\Temp\sriw.0 is safe to use as a temporary file.
C:\Users\LocalUser\AppData\Local\Temp\stq2 is safe to use as a temporary file.
c:\tmp\stq3 is safe to use as a temporary file.

See also
Stream I/O
_getmbcp
malloc
_setmbcp
tmpfile
tmpfile_s

_tempnam_dbg, _wtempnam_dbg
10/31/2018 • 2 minutes to read • Edit Online

Syntax
char *_tempnam_dbg(
 const char *dir,
 const char *prefix,
 int blockType,
 const char *filename,
 int linenumber
);
wchar_t *_wtempnam_dbg(
 const wchar_t *dir,
 const wchar_t *prefix,
 int blockType,
 const char *filename,
 int linenumber
);

Parameters

Return Value

NOTE

Remarks

Function versions of _tempnam, _wtempnam, tmpnam, _wtmpnam that use the debug version of malloc,
_malloc_dbg.

dir
The path used in the file name if there is no TMP environment variable, or if TMP is not a valid directory.

prefix
The string that will be pre-pended to names returned by _tempnam.

blockType
Requested type of memory block: _CLIENT_BLOCK or _NORMAL_BLOCK.

filename
Pointer to name of source file that requested allocation operation or NULL.

linenumber
Line number in source file where allocation operation was requested or NULL.

Each function returns a pointer to the name generated or NULL if there is a failure. Failure can occur if there is an
invalid directory name specified in the TMP environment variable and in the dir parameter.

free (or free_dbg) does need to be called for pointers allocated by _tempnam_dbg and _wtempnam_dbg.

The _tempnam_dbg and _wtempnam_dbg functions are identical to _tempnam and _wtempnam except that,
when _DEBUG is defined, these functions use the debug version of malloc and _malloc_dbg, to allocate

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/tempnam-dbg-wtempnam-dbg.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_ttempnam_dbg _tempnam_dbg _tempnam_dbg _wtempnam_dbg

Requirements
ROUTINE REQUIRED HEADER

_tempnam_dbg, _wtempnam_dbg <crtdbg.h>

See also

memory if NULL is passed as the first parameter. For more information, see _malloc_dbg.

You do not need to call these functions explicitly in most cases. Instead, you can define the flag
_CRTDBG_MAP_ALLOC. When _CRTDBG_MAP_ALLOC is defined, calls to _tempnam and _wtempnam are
remapped to _tempnam_dbg and _wtempnam_dbg, respectively, with the blockType set to
_NORMAL_BLOCK. Thus, you do not need to call these functions explicitly unless you want to mark the heap
blocks as _CLIENT_BLOCK. For more information, see Types of blocks on the debug heap.

For additional compatibility information, see Compatibility.

_tempnam, _wtempnam, tmpnam, _wtmpnam
Stream I/O
Debug Versions of Heap Allocation Functions

https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details
https://docs.microsoft.com/visualstudio/debugger/debug-versions-of-heap-allocation-functions

terminate (CRT)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void terminate(void);

Remarks

Requirements
ROUTINE REQUIRED HEADER

terminate <eh.h>

Example

Calls abort or a function you specify using set_terminate.

The terminate function is used with C++ exception handling and is called in the following cases:

A matching catch handler cannot be found for a thrown C++ exception.

An exception is thrown by a destructor function during stack unwind.

The stack is corrupted after throwing an exception.

terminate calls abort by default. You can change this default by writing your own termination function and
calling set_terminate with the name of your function as its argument. terminate calls the last function given as
an argument to set_terminate. For more information, see Unhandled C++ Exceptions.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/terminate-crt.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/unhandled-cpp-exceptions

// crt_terminate.cpp
// compile with: /EHsc
#include <eh.h>
#include <process.h>
#include <iostream>
using namespace std;

void term_func();

int main()
{
 int i = 10, j = 0, result;
 set_terminate(term_func);
 try
 {
 if(j == 0)
 throw "Divide by zero!";
 else
 result = i/j;
 }
 catch(int)
 {
 cout << "Caught some integer exception.\n";
 }
 cout << "This should never print.\n";
}

void term_func()
{
 cout << "term_func() was called by terminate().\n";

 // ... cleanup tasks performed here

 // If this function does not exit, abort is called.

 exit(-1);
}

term_func() was called by terminate().

See also
Exception Handling Routines
abort
_set_se_translator
set_terminate
set_unexpected
unexpected

tgamma, tgammaf, tgammal
11/9/2018 • 2 minutes to read • Edit Online

Syntax
double tgamma(
 double x
);

float tgamma(
 float x
); //C++ only

long double tgamma(
 long double x
); //C++ only

float tgammaf(
 float x
);

long double tgammal(
 long double x
);

Parameters

Return Value

ISSUE RETURN

x = ±0 ±INFINITY

x = negative integer NaN

x = -INFINITY NaN

x = +INFINITY +INFINITY

x = NaN NaN

domain error NaN

Determines the gamma function of the specified value.

x
The value to find the gamma of.

If successful, returns the gamma of x.

A range error may occur if the magnitude of x is too large or too small for the data type. A domain error or range
error may occur if x <= 0.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/tgamma-tgammaf-tgammal.md

pole error ±HUGE_VAL, ±HUGE_VALF, or ±HUGE_VALL

overflow range error ±HUGE_VAL, ±HUGE_VALF, or ±HUGE_VALL

underflow range error the correct value, after rounding.

ISSUE RETURN

Remarks

Requirements
FUNCTION C HEADER C++ HEADER

tgamma, tgammaf, tgammal <math.h> <cmath>

See also

Errors are reported as specified in _matherr.

Because C++ allows overloading, you can call overloads of tgamma that take and return float and long double
types. In a C program, tgamma always takes and returns a double.

If x is a natural number, this function returns the factorial of (x-1).

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
lgamma, lgammaf, lgammal

time, _time32, _time64
11/8/2018 • 3 minutes to read • Edit Online

Syntax
time_t time(time_t *destTime);
__time32_t _time32(__time32_t *destTime);
__time64_t _time64(__time64_t *destTime);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED C HEADER REQUIRED C++ HEADER

time, _time32, _time64 <time.h> <ctime> or <time.h>

Example
// crt_times.c
// compile with: /W3
// This program demonstrates these time and date functions:
// time _ftime ctime_s asctime_s
// _localtime64_s _gmtime64_s mktime _tzset
// _strtime_s _strdate_s strftime
//
// Also the global variable:
// _tzname
//
// Turn off deprecated unsafe CRT function warnings
#define _CRT_SECURE_NO_WARNINGS 1

Gets the system time.

destTime
Pointer to the storage location for time.

Returns the time as seconds elapsed since midnight, January 1, 1970, or -1 in the case of an error.

The time function returns the number of seconds elapsed since midnight (00:00:00), January 1, 1970,
Coordinated Universal Time (UTC), according to the system clock. The return value is stored in the
location given by destTime. This parameter may be NULL, in which case the return value is not stored.

time is a wrapper for _time64 and time_t is, by default, equivalent to __time64_t. If you need to force
the compiler to interpret time_t as the old 32-bit time_t, you can define _USE_32BIT_TIME_T. This is
not recommended because your application may fail after January 18, 2038; the use of this macro is not
allowed on 64-bit platforms.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/time-time32-time64.md

#define _CRT_SECURE_NO_WARNINGS 1

#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/timeb.h>
#include <string.h>

int main()
{
 char tmpbuf[128], timebuf[26], ampm[] = "AM";
 time_t ltime;
 struct _timeb tstruct;
 struct tm today, gmt, xmas = { 0, 0, 12, 25, 11, 93 };
 errno_t err;

 // Set time zone from TZ environment variable. If TZ is not set,
 // the operating system is queried to obtain the default value
 // for the variable.
 //
 _tzset();

 // Display operating system-style date and time.
 _strtime_s(tmpbuf, 128);
 printf("OS time:\t\t\t\t%s\n", tmpbuf);
 _strdate_s(tmpbuf, 128);
 printf("OS date:\t\t\t\t%s\n", tmpbuf);

 // Get UNIX-style time and display as number and string.
 time(<ime);
 printf("Time in seconds since UTC 1/1/70:\t%lld\n", (long long)ltime);
 err = ctime_s(timebuf, 26, <ime);
 if (err)
 {
 printf("ctime_s failed due to an invalid argument.");
 exit(1);
 }
 printf("UNIX time and date:\t\t\t%s", timebuf);

 // Display UTC.
 err = _gmtime64_s(&gmt, <ime);
 if (err)
 {
 printf("_gmtime64_s failed due to an invalid argument.");
 }
 err = asctime_s(timebuf, 26, &gmt);
 if (err)
 {
 printf("asctime_s failed due to an invalid argument.");
 exit(1);
 }
 printf("Coordinated universal time:\t\t%s", timebuf);

 // Convert to time structure and adjust for PM if necessary.
 err = _localtime64_s(&today, <ime);
 if (err)
 {
 printf("_localtime64_s failed due to an invalid argument.");
 exit(1);
 }
 if (today.tm_hour >= 12)
 {
 strcpy_s(ampm, sizeof(ampm), "PM");
 today.tm_hour -= 12;
 }
 if (today.tm_hour == 0) // Adjust if midnight hour.
 today.tm_hour = 12;

 // Convert today into an ASCII string

 // Convert today into an ASCII string
 err = asctime_s(timebuf, 26, &today);
 if (err)
 {
 printf("asctime_s failed due to an invalid argument.");
 exit(1);
 }

 // Note how pointer addition is used to skip the first 11
 // characters and printf is used to trim off terminating
 // characters.
 //
 printf("12-hour time:\t\t\t\t%.8s %s\n",
 timebuf + 11, ampm);

 // Print additional time information.
 _ftime(&tstruct); // C4996
 // Note: _ftime is deprecated; consider using _ftime_s instead
 printf("Plus milliseconds:\t\t\t%u\n", tstruct.millitm);
 printf("Zone difference in hours from UTC:\t%u\n",
 tstruct.timezone/60);
 printf("Time zone name:\t\t\t\t%s\n", _tzname[0]); //C4996
 // Note: _tzname is deprecated; consider using _get_tzname
 printf("Daylight savings:\t\t\t%s\n",
 tstruct.dstflag ? "YES" : "NO");

 // Make time for noon on Christmas, 1993.
 if(mktime(&xmas) != (time_t)-1)
 {
 err = asctime_s(timebuf, 26, &xmas);
 if (err)
 {
 printf("asctime_s failed due to an invalid argument.");
 exit(1);
 }
 printf("Christmas\t\t\t\t%s\n", timebuf);
 }

 // Use time structure to build a customized time string.
 err = _localtime64_s(&today, <ime);
 if (err)
 {
 printf(" _localtime64_s failed due to invalid arguments.");
 exit(1);
 }

 // Use strftime to build a customized time string.
 strftime(tmpbuf, 128,
 "Today is %A, day %d of %B in the year %Y.\n", &today);
 printf(tmpbuf);
}

OS time: 13:51:23
OS date: 04/25/03
Time in seconds since UTC 1/1/70: 1051303883
UNIX time and date: Fri Apr 25 13:51:23 2003
Coordinated universal time: Fri Apr 25 20:51:23 2003
12-hour time: 01:51:23 PM
Plus milliseconds: 552
Zone difference in hours from UTC: 8
Time zone name: Pacific Standard Time
Daylight savings: YES
Christmas Sat Dec 25 12:00:00 1993

Today is Friday, day 25 of April in the year 2003.

See also
Time Management
asctime, _wasctime
asctime_s, _wasctime_s
_ftime, _ftime32, _ftime64
gmtime, _gmtime32, _gmtime64
gmtime_s, _gmtime32_s, _gmtime64_s
localtime, _localtime32, _localtime64
localtime_s, _localtime32_s, _localtime64_s
_utime, _utime32, _utime64, _wutime, _wutime32, _wutime64

timespec_get, _timespec32_get, _timespec64_get
11/9/2018 • 2 minutes to read • Edit Online

Syntax
int timespec_get(
 struct timespec* const time_spec,
 int const base
);
int _timespec32_get(
 struct _timespec32* const time_spec,
 int const base
);
int _timespec64_get(
 struct _timespec64* const time_spec,
 int const base
);

Parameters

Return Value

Remarks

Requirements

Sets the interval pointed to by the first argument to the current calendar time, based on the specified time base.

time_spec
Pointer to a struct that is set to the time in seconds and nanoseconds since the start of the epoch.

base
A non-zero implementation-specific value that specifies the time base.

The value of base if successful, otherwise it returns zero.

The timespec_get functions set the current time in the struct pointed to by the time_spec argument. All versions
of this struct have two members, tv_sec and tv_nsec. The tv_sec value is set to the whole number of seconds and
tv_nsec to the integral number of nanoseconds, rounded to the resolution of the system clock, since the start of
the epoch specified by base.

Microsoft Specific

These functions support only TIME_UTC as the base value. This sets the time_spec value to the number of
seconds and nanoseconds since the epoch start, Midnight, January 1, 1970, Coordinated Universal Time (UTC). In
a struct _timespec32, tv_sec is a __time32_t value. In a struct _timespec64, tv_sec is a __time64_t value. In a
struct timespec, tv_sec is a time_t type, which is 32 bits or 64 bits in length depending on whether the
preprocessor macro _USE_32BIT_TIME_T is defined. The timespec_get function is an inline function that calls
_timespec32_get if _USE_32BIT_TIME_T is defined; otherwise it calls _timespec64_get.

End Microsoft Specific

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/timespec-get-timespec32-get-timespec64-get1.md

ROUTINE REQUIRED HEADER

timespec_get, _timespec32_get, _timespec64_get C: <time.h>, C++: <ctime> or <time.h>

See also

For additional compatibility information, see Compatibility.

Time Management
asctime, _wasctime
asctime_s, _wasctime_s
_ftime, _ftime32, _ftime64
gmtime, _gmtime32, _gmtime64
gmtime_s, _gmtime32_s, _gmtime64_s
localtime, _localtime32, _localtime64
localtime_s, _localtime32_s, _localtime64_s
time, _time32, _time64
_utime, _utime32, _utime64, _wutime, _wutime32, _wutime64

tmpfile
10/31/2018 • 2 minutes to read • Edit Online

Syntax
FILE *tmpfile(void);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

tmpfile <stdio.h>

Example

NOTE

Creates a temporary file. This function is deprecated because a more secure version is available; see tmpfile_s.

If successful, tmpfile returns a stream pointer. Otherwise, it returns a NULL pointer.

The tmpfile function creates a temporary file and returns a pointer to that stream. The temporary file is created
in the root directory. To create a temporary file in a directory other than the root, use tmpnam or tempnam in
conjunction with fopen.

If the file cannot be opened, tmpfile returns a NULL pointer. This temporary file is automatically deleted when
the file is closed, when the program terminates normally, or when _rmtmp is called, assuming that the current
working directory does not change. The temporary file is opened in w+b (binary read/write) mode.

Failure can occur if you attempt more than TMP_MAX (see STDIO.H) calls with tmpfile.

For additional compatibility information, see Compatibility.

This example requires administrative privileges to run on Windows Vista.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/tmpfile.md

// crt_tmpfile.c
// compile with: /W3
// This program uses tmpfile to create a
// temporary file, then deletes this file with _rmtmp.
#include <stdio.h>

int main(void)
{
 FILE *stream;
 int i;

 // Create temporary files.
 for(i = 1; i <= 3; i++)
 {
 if((stream = tmpfile()) == NULL) // C4996
 // Note: tmpfile is deprecated; consider using tmpfile_s instead
 perror("Could not open new temporary file\n");
 else
 printf("Temporary file %d was created\n", i);
 }

 // Remove temporary files.
 printf("%d temporary files deleted\n", _rmtmp());
}

Temporary file 1 was created
Temporary file 2 was created
Temporary file 3 was created
3 temporary files deleted

See also
Stream I/O
_rmtmp
_tempnam, _wtempnam, tmpnam, _wtmpnam

tmpfile_s
10/31/2018 • 2 minutes to read • Edit Online

Syntax
errno_t tmpfile_s(
 FILE** pFilePtr
);

Parameters

Return Value

Error Conditions

PFILEPTR RETURN VALUE CONTENTS OF PFILEPTR

NULL EINVAL not changed

Remarks

Requirements
ROUTINE REQUIRED HEADER

tmpfile_s <stdio.h>

Creates a temporary file. It is a version of tmpfile with security enhancements as described in Security Features in
the CRT.

pFilePtr
The address of a pointer to store the address of the generated pointer to a stream.

Returns 0 if successful, an error code on failure.

If the above parameter validation error occurs, the invalid parameter handler is invoked, as described in
Parameter Validation. If execution is allowed to continue, errno is set to EINVAL and the return value is
EINVAL.

The tmpfile_s function creates a temporary file and puts a pointer to that stream in the pFilePtr argument. The
temporary file is created in the root directory. To create a temporary file in a directory other than the root, use
tmpnam_s or tempnam in conjunction with fopen.

If the file cannot be opened, tmpfile_s writes NULL to the pFilePtr parameter. This temporary file is
automatically deleted when the file is closed, when the program terminates normally, or when _rmtmp is called,
assuming that the current working directory does not change. The temporary file is opened in w+b (binary
read/write) mode.

Failure can occur if you attempt more than TMP_MAX_S (see STDIO.H) calls with tmpfile_s.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/tmpfile-s.md

Example

NOTE

// crt_tmpfile_s.c
// This program uses tmpfile_s to create a
// temporary file, then deletes this file with _rmtmp.
//

#include <stdio.h>

int main(void)
{
 FILE *stream;
 char tempstring[] = "String to be written";
 int i;
 errno_t err;

 // Create temporary files.
 for(i = 1; i <= 3; i++)
 {
 err = tmpfile_s(&stream);
 if(err)
 perror("Could not open new temporary file\n");
 else
 printf("Temporary file %d was created\n", i);
 }

 // Remove temporary files.
 printf("%d temporary files deleted\n", _rmtmp());
}

Temporary file 1 was created
Temporary file 2 was created
Temporary file 3 was created
3 temporary files deleted

See also

This example may require administrative privileges to run on Windows.

Stream I/O
_rmtmp
_tempnam, _wtempnam, tmpnam, _wtmpnam

tmpnam_s, _wtmpnam_s
10/31/2018 • 3 minutes to read • Edit Online

Syntax
errno_t tmpnam_s(
 char * str,
 size_t sizeInChars
);
errno_t _wtmpnam_s(
 wchar_t *str,
 size_t sizeInChars
);
template <size_t size>
errno_t tmpnam_s(
 char (&str)[size]
); // C++ only
template <size_t size>
errno_t _wtmpnam_s(
 wchar_t (&str)[size]
); // C++ only

Parameters

Return Value

Error Conditions

str sizeInChars Return Value Contents of str

NULL any EINVAL not modified

not NULL (points to valid
memory)

too short ERANGE not modified

Remarks

Generate names you can use to create temporary files. These are versions of tmpnam and _wtmpnam with
security enhancements as described in Security Features in the CRT.

str
Pointer that will hold the generated name.

sizeInChars
The size of the buffer in characters.

Both of these functions return 0 if successful or an error number on failure.

If str is NULL, the invalid parameter handler is invoked, as described in Parameter Validation. If execution is
allowed to continue, these functions set errno to EINVAL and return EINVAL.

Each of these functions returns the name of a file that does not currently exist. tmpnam_s returns a name unique
in the designated Windows temporary directory returned by GetTempPathW. Note than when a file name is pre-

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/tmpnam-s-wtmpnam-s.md
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-gettemppathw

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_ttmpnam_s tmpnam_s tmpnam_s _wtmpnam_s

Requirements
ROUTINE REQUIRED HEADER

tmpnam_s <stdio.h>

_wtmpnam_s <stdio.h> or <wchar.h>

Example

pended with a backslash and no path information, such as \fname21, this indicates that the name is valid for the
current working directory.

For tmpnam_s, you can store this generated file name in str. The maximum length of a string returned by
tmpnam_s is L_tmpnam_s, defined in STDIO.H. If str is NULL, then tmpnam_s leaves the result in an internal
static buffer. Thus any subsequent calls destroy this value. The name generated by tmpnam_s consists of a
program-generated file name and, after the first call to tmpnam_s, a file extension of sequential numbers in base
32 (.1-.1vvvvvu, when TMP_MAX_S in STDIO.H is INT_MAX).

tmpnam_s automatically handles multibyte-character string arguments as appropriate, recognizing multibyte-
character sequences according to the OEM code page obtained from the operating system. _wtmpnam_s is a
wide-character version of tmpnam_s; the argument and return value of _wtmpnam_s are wide-character strings.
_wtmpnam_s and tmpnam_s behave identically except that _wtmpnam_s does not handle multibyte-character
strings.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically, eliminating the need to specify a size argument. For more information, see Secure Template
Overloads.

For additional compatibility information, see Compatibility.

// crt_tmpnam_s.c
// This program uses tmpnam_s to create a unique filename in the
// current working directory.
//

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char name1[L_tmpnam_s];
 errno_t err;
 int i;

 for (i = 0; i < 15; i++)
 {
 err = tmpnam_s(name1, L_tmpnam_s);
 if (err)
 {
 printf("Error occurred creating unique filename.\n");
 exit(1);
 }
 else
 {
 printf("%s is safe to use as a temporary file.\n", name1);
 }
 }
}

C:\Users\LocalUser\AppData\Local\Temp\u19q8.0 is safe to use as a temporary file.
C:\Users\LocalUser\AppData\Local\Temp\u19q8.1 is safe to use as a temporary file.
C:\Users\LocalUser\AppData\Local\Temp\u19q8.2 is safe to use as a temporary file.
C:\Users\LocalUser\AppData\Local\Temp\u19q8.3 is safe to use as a temporary file.
C:\Users\LocalUser\AppData\Local\Temp\u19q8.4 is safe to use as a temporary file.
C:\Users\LocalUser\AppData\Local\Temp\u19q8.5 is safe to use as a temporary file.
C:\Users\LocalUser\AppData\Local\Temp\u19q8.6 is safe to use as a temporary file.
C:\Users\LocalUser\AppData\Local\Temp\u19q8.7 is safe to use as a temporary file.
C:\Users\LocalUser\AppData\Local\Temp\u19q8.8 is safe to use as a temporary file.
C:\Users\LocalUser\AppData\Local\Temp\u19q8.9 is safe to use as a temporary file.
C:\Users\LocalUser\AppData\Local\Temp\u19q8.a is safe to use as a temporary file.
C:\Users\LocalUser\AppData\Local\Temp\u19q8.b is safe to use as a temporary file.
C:\Users\LocalUser\AppData\Local\Temp\u19q8.c is safe to use as a temporary file.
C:\Users\LocalUser\AppData\Local\Temp\u19q8.d is safe to use as a temporary file.
C:\Users\LocalUser\AppData\Local\Temp\u19q8.e is safe to use as a temporary file.

See also
Stream I/O
_getmbcp
malloc
_setmbcp
tmpfile_s

toascii, __toascii
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int __toascii(
 int c
);
#define toascii __toascii

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

toascii, __toascii C: <ctype.h>

C++: <cctype> or <ctype.h>

See also

Converts characters to 7-bit ASCII by truncation.

c
Character to convert.

__toascii converts the value of c to the 7-bit ASCII range and returns the result. There is no return value reserved
to indicate an error.

The __toascii routine converts the given character to an ASCII character by truncating it to the low-order 7 bits.
No other transformation is applied.

The __toascii routine is defined as a macro unless the preprocessor macro _CTYPE_DISABLE_MACROS is
defined. For backward compatibility, toascii is defined as a macro only when __STDC__ is not defined or is
defined as 0; otherwise it is undefined.

The toascii macro is a POSIX extension, and __toascii is a Microsoft-specific implementation of the POSIX
extension. For additional compatibility information, see Compatibility.

Data Conversion
is, isw Routines
to Functions

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/toascii-toascii.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/predefined-macros

tolower, _tolower, towlower, _tolower_l, _towlower_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int tolower(
 int c
);
int _tolower(
 int c
);
int towlower(
 wint_t c
);
int _tolower_l(
 int c,
 _locale_t locale
);
int _towlower_l(
 wint_t c,
 _locale_t locale
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_totlower tolower _mbctolower towlower

Converts a character to lowercase.

c
Character to convert.

locale
Locale to use for locale-specific translation.

Each of these routines converts a copy of c to lower case if the conversion is possible, and returns the result.
There is no return value reserved to indicate an error.

Each of these routines converts a given uppercase letter to a lowercase letter if it is possible and relevant. The
case conversion of towlower is locale-specific. Only the characters relevant to the current locale are changed in
case. The functions without the _l suffix use the currently set locale. The versions of these functions that have the
_l suffix take the locale as a parameter and use that instead of the currently set locale. For more information, see
Locale.

In order for _tolower to give the expected results, __isascii and isupper must both return nonzero.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/tolower-tolower-towlower-tolower-l-towlower-l.md

_totlower_l _tolower_l _mbctolower_l _towlower_l

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

NOTE

Requirements
ROUTINE REQUIRED HEADER

tolower <ctype.h>

_tolower <ctype.h>

towlower <ctype.h> or <wchar.h>

Example

See also

_tolower_l and _towlower_l have no locale dependence and are not meant to be called directly. They are provided for
internal use by _totlower_l.

For additional compatibility information, see Compatibility.

See the example in to Functions.

Data Conversion
is, isw Routines
to Functions
Locale
Interpretation of Multibyte-Character Sequences

toupper, _toupper, towupper, _toupper_l,
_towupper_l
3/1/2019 • 2 minutes to read • Edit Online

Syntax
int toupper(
 int c
);
int _toupper(
 int c
);
int towupper(
 wint_t c
);
int _toupper_l(
 int c ,
 _locale_t locale
);
int _towupper_l(
 wint_t c ,
 _locale_t locale
);

Parameters

Return Value

Remarks

Convert character to uppercase.

c
Character to convert.

locale
Locale to use.

Each of these routines converts a copy of c, if possible, and returns the result.

If c is a wide character for which iswlower is nonzero and there is a corresponding wide character for which
iswupper is nonzero, towupper returns the corresponding wide character ; otherwise, towupper returns c
unchanged.

There is no return value reserved to indicate an error.

In order for toupper to give the expected results, __isascii and islower must both return nonzero.

Each of these routines converts a given lowercase letter to an uppercase letter if possible and appropriate. The
case conversion of towupper is locale-specific. Only the characters relevant to the current locale are changed in
case. The functions without the _l suffix use the currently set locale. The versions of these functions with the _l
suffix take the locale as a parameter and use that instead of the currently set locale. For more information, see
Locale.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/toupper-toupper-towupper-toupper-l-towupper-l.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_totupper toupper _mbctoupper towupper

_totupper_l _toupper_l _mbctoupper_l _towupper_l

NOTE

Requirements
ROUTINE REQUIRED HEADER

toupper <ctype.h>

_toupper <ctype.h>

towupper <ctype.h> or <wchar.h>

Example

See also

In order for toupper to give the expected results, __isascii and isupper must both return nonzero.

Data Conversion Routines

_toupper_l and _towupper_l have no locale dependence and are not meant to be called directly. They are provided for
internal use by _totupper_l.

For additional compatibility information, see Compatibility.

See the example in to Functions.

is, isw Routines
to Functions
Locale
Interpretation of Multibyte-Character Sequences

towctrans
10/31/2018 • 2 minutes to read • Edit Online

Syntax
wint_t towctrans(
 wint_t c,
 wctrans_t category
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

towctrans <wctype.h>

Example

See also

Transforms a character.

c
The character you want to transform.

category
An identifier that contains the return value of wctrans.

The character c, after towctrans used the transform rule in category.

The value of category must have been returned by an earlier successful call to wctrans.

For additional compatibility information, see Compatibility.

See wctrans for a sample that uses towctrans.

Data Conversion

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/towctrans.md

trunc, truncf, truncl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
double trunc(double x);
float trunc(float x); //C++ only
long double truncl(long double x);

long double trunc(long double x); //C++ only
float trunc(float x); //C++ only

Parameters

Return Value

ISSUE RETURN

x = ±INFINITY x

x = ±0 x

x = NaN NaN

Remarks

Requirements

Determines the nearest integer that is less than or equal to the specified floating-point value.

x
The value to truncate.

If successful, returns an integer value of x, rounded towards zero.

Otherwise, may return one of the following:

Errors are reported as specified in _matherr.

Because C++ allows overloading, you can call overloads of trunc that take and return float and long double
types. In a C program, trunc always takes and returns a double.

Because the largest floating-point values are exact integers, this function will not overflow on its own. However,
you may cause the function to overflow by returning a value into an integer type.

You can also round down by implicitly converting from floating-point to integral; however, doing so is limited to
the values that can be stored in the target type.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/trunc-truncf-truncl.md

FUNCTION C HEADER C++ HEADER

trunc, truncf, truncl <math.h> <cmath>

See also

For additional compatibility information, see Compatibility.

Alphabetical Function Reference
floor, floorf, floorl
ceil, ceilf, ceill
round, roundf, roundl

tzset
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _tzset instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-tzset.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_tzset
11/8/2018 • 3 minutes to read • Edit Online

IMPORTANT

Syntax
void _tzset(void);

Remarks

PARAMETER DESCRIPTION

tzn Three-letter time-zone name, such as PST. You must
specify the correct offset from local time to UTC.

hh Difference in hours between UTC and local time. Sign (+)
optional for positive values.

mm Minutes. Separated from hh by a colon (:).

ss Seconds. Separated from mm by a colon (:).

dzn Three-letter daylight-saving-time zone such as PDT. If
daylight saving time is never in effect in the locality, set TZ
without a value for dzn. The C run-time library assumes
the United States' rules for implementing the calculation of
daylight saving time (DST).

NOTE

Sets time environment variables.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT
functions not supported in Universal Windows Platform apps.

The _tzset function uses the current setting of the environment variable TZ to assign values to three global
variables: _daylight, _timezone, and _tzname. These variables are used by the _ftime and localtime
functions to make corrections from coordinated universal time (UTC) to local time, and by the time function
to compute UTC from system time. Use the following syntax to set the TZ environment variable:

set TZ=tzn [+|-]hh[:mm[:ss]][dzn]

Take care in computing the sign of the time difference. Because the time difference is the offset from local time to UTC
(rather than the reverse), its sign may be the opposite of what you might intuitively expect. For time zones ahead of
UTC, the time difference is negative; for those behind UTC, the difference is positive.

For example, to set the TZ environment variable to correspond to the current time zone in Germany, enter

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/tzset.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

GLOBAL VARIABLE DESCRIPTION DEFAULT VALUE

_daylight Nonzero value if a daylight-saving-
time zone is specified in TZ setting;
otherwise, 0.

1

_timezone Difference in seconds between local
time and UTC.

28800 (28800 seconds equals 8
hours)

_tzname[0] String value of time-zone name from
TZ environmental variable; empty if
TZ has not been set.

PST

_tzname[1] String value of daylight-saving-time
zone; empty if daylight-saving-time
zone is omitted from TZ
environmental variable.

PDT

Requirements
ROUTINE REQUIRED HEADER

_tzset <time.h>

Example

the following on the command line:

set TZ=GST-1GDT

This command uses GST to indicate German standard time, assumes that UTC is one hour behind Germany
(or in other words, that Germany is one hour ahead of UTC), and assumes that Germany observes daylight-
saving time.

If the TZ value is not set, _tzset attempts to use the time zone information specified by the operating system.
In the Windows operating system, this information is specified in the Date/Time application in Control Panel.
If _tzset cannot obtain this information, it uses PST8PDT by default, which signifies the Pacific Time zone.

Based on the TZ environment variable value, the following values are assigned to the global variables
_daylight, _timezone, and _tzname when _tzset is called:

The default values shown in the preceding table for _daylight and the _tzname array correspond to
"PST8PDT." If the DST zone is omitted from the TZ environmental variable, the value of _daylight is 0 and
the _ftime, gmtime, and localtime functions return 0 for their DST flags.

The _tzset function is Microsoft-specific. For more information, see Compatibility.

// crt_tzset.cpp
// This program uses _tzset to set the global variables
// named _daylight, _timezone, and _tzname. Since TZ is
// not being explicitly set, it uses the system time.

#include <time.h>
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 _tzset();
 int daylight;
 _get_daylight(&daylight);
 printf("_daylight = %d\n", daylight);
 long timezone;
 _get_timezone(&timezone);
 printf("_timezone = %ld\n", timezone);
 size_t s;
 char tzname[100];
 _get_tzname(&s, tzname, sizeof(tzname), 0);
 printf("_tzname[0] = %s\n", tzname);
 exit(0);
}

_daylight = 1
_timezone = 28800
_tzname[0] = Pacific Standard Time

See also
Time Management
asctime, _wasctime
_ftime, _ftime32, _ftime64
gmtime, _gmtime32, _gmtime64
localtime, _localtime32, _localtime64
time, _time32, _time64
_utime, _utime32, _utime64, _wutime, _wutime32, _wutime64

umask
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _umask or security-enhanced _umask_s instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-umask.md

_umask
11/8/2018 • 2 minutes to read • Edit Online

Syntax
int _umask(int pmode);

Parameters

Return Value

Remarks

PMODE

_S_IWRITE Writing permitted.

_S_IREAD Reading permitted.

_S_IREAD | _S_IWRITE Reading and writing permitted.

Requirements
ROUTINE REQUIRED HEADER

Sets the default file-permission mask. A more secure version of this function is available; see _umask_s.

pmode
Default permission setting.

_umask returns the previous value of pmode. There is no error return.

The _umask function sets the file-permission mask of the current process to the mode specified by pmode. The
file-permission mask modifies the permission setting of new files created by _creat, _open, or _sopen. If a bit in
the mask is 1, the corresponding bit in the file's requested permission value is set to 0 (disallowed). If a bit in the
mask is 0, the corresponding bit is left unchanged. The permission setting for a new file is not set until the file is
closed for the first time.

The integer expression pmode contains one or both of the following manifest constants, defined in SYS\STAT.H:

When both constants are given, they are joined with the bitwise-OR operator (|). If the pmode argument is
_S_IREAD , reading is not allowed (the file is write-only). If the pmode argument is _S_IWRITE , writing is not
allowed (the file is read-only). For example, if the write bit is set in the mask, any new files will be read-only.
Note that with MS-DOS and the Windows operating systems, all files are readable; it is not possible to give
write-only permission. Therefore, setting the read bit with _umask has no effect on the file's modes.

If pmode is not a combination of one of the manifest constants or incorporates an alternate set of constants, the
function will simply ignore those.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/umask.md

_umask <io.h>, <sys/stat.h>, <sys/types.h>

ROUTINE REQUIRED HEADER

Libraries

Example
// crt_umask.c
// compile with: /W3
// This program uses _umask to set
// the file-permission mask so that all future
// files will be created as read-only files.
// It also displays the old mask.
#include <sys/stat.h>
#include <sys/types.h>
#include <io.h>
#include <stdio.h>

int main(void)
{
 int oldmask;

 /* Create read-only files: */
 oldmask = _umask(_S_IWRITE); // C4996
 // Note: _umask is deprecated; consider using _umask_s instead
 printf("Oldmask = 0x%.4x\n", oldmask);
}

Oldmask = 0x0000

See also

For additional compatibility information, see Compatibility.

All versions of the C run-time libraries.

File Handling
Low-Level I/O
_chmod, _wchmod
_creat, _wcreat
_mkdir, _wmkdir
_open, _wopen

_umask_s
10/31/2018 • 2 minutes to read • Edit Online

Syntax
errno_t _umask_s(
 int mode,
 int * pOldMode
);

Parameters

Return Value

Error Conditions

MODE POLDMODE RETURN VALUE CONTENTS OF POLDMODE

any NULL EINVAL not modified

invalid mode any EINVAL not modified

Remarks

PMODE

_S_IWRITE Writing permitted.

_S_IREAD Reading permitted.

Sets the default file-permission mask. A version of _umask with security enhancements as described in Security
Features in the CRT.

mode
Default permission setting.

pOldMode
The previous value of the permission setting.

Returns an error code if mode does not specify a valid mode or the pOldMode pointer is NULL.

If one of the above conditions occurs, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, _umask_s returns EINVAL and sets errno to EINVAL.

The _umask_s function sets the file-permission mask of the current process to the mode specified by mode. The
file-permission mask modifies the permission setting of new files created by _creat, _open, or _sopen. If a bit in
the mask is 1, the corresponding bit in the file's requested permission value is set to 0 (disallowed). If a bit in the
mask is 0, the corresponding bit is left unchanged. The permission setting for a new file is not set until the file is
closed for the first time.

The integer expression pmode contains one or both of the following manifest constants, defined in SYS\STAT.H:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/umask-s.md

_S_IREAD | _S_IWRITE Reading and writing permitted.

PMODE

Requirements
ROUTINE REQUIRED HEADER

_umask_s <io.h> and <sys/stat.h> and <sys/types.h>

Example
// crt_umask_s.c
/* This program uses _umask_s to set
* the file-permission mask so that all future
* files will be created as read-only files.
* It also displays the old mask.
*/

#include <sys/stat.h>
#include <sys/types.h>
#include <io.h>
#include <stdio.h>

int main(void)
{
 int oldmask, err;

 /* Create read-only files: */
 err = _umask_s(_S_IWRITE, &oldmask);
 if (err)
 {
 printf("Error setting the umask.\n");
 exit(1);
 }
 printf("Oldmask = 0x%.4x\n", oldmask);
}

Oldmask = 0x0000

See also

When both constants are given, they are joined with the bitwise-OR operator (|). If the mode argument is
_S_IREAD , reading is not allowed (the file is write-only). If the mode argument is _S_IWRITE , writing is not
allowed (the file is read-only). For example, if the write bit is set in the mask, any new files will be read-only. Note
that with MS-DOS and the Windows operating systems, all files are readable; it is not possible to give write-only
permission. Therefore, setting the read bit with _umask_s has no effect on the file's modes.

If pmode is not a combination of one of the manifest constants or incorporates an alternate set of constants, the
function will simply ignore those.

For additional compatibility information, see Compatibility.

File Handling
Low-Level I/O
_chmod, _wchmod

_creat, _wcreat
_mkdir, _wmkdir
_open, _wopen
_umask

__uncaught_exception
10/31/2018 • 2 minutes to read • Edit Online

Syntax
bool __uncaught_exception(
);

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

__uncaught_exception eh.h

See also

Indicates whether one or more exceptions have been thrown, but have not yet been handled by the corresponding
catch block of a try-catch statement.

true from the time an exception is thrown in a try block until the matching catch block is initialized; otherwise,
false.

try, throw, and catch Statements (C++)

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/uncaught-exception.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/try-throw-and-catch-statements-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/try-throw-and-catch-statements-cpp

unexpected (CRT)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void unexpected(void);

Remarks

Requirements
ROUTINE REQUIRED HEADER

unexpected <eh.h>

See also

Calls terminate or function you specify using set_unexpected.

The unexpected routine is not used with the current implementation of C++ exception handling. unexpected
calls terminate by default. You can change this default behavior by writing a custom termination function and
calling set_unexpected with the name of your function as its argument. unexpected calls the last function
given as an argument to set_unexpected.

For additional compatibility information, see Compatibility.

Exception Handling Routines
abort
_set_se_translator
set_terminate
set_unexpected
terminate

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/unexpected-crt.md

ungetc, ungetwc
11/8/2018 • 2 minutes to read • Edit Online

Syntax
int ungetc(
 int c,
 FILE *stream
);
wint_t ungetwc(
 wint_t c,
 FILE *stream
);

Parameters

Return Value

Remarks

Pushes a character back onto the stream.

c
Character to be pushed.

stream
Pointer to FILE structure.

If successful, each of these functions returns the character argument c. If c cannot be pushed back or if no
character has been read, the input stream is unchanged and ungetc returns EOF; ungetwc returns WEOF. If
stream is NULL, the invalid parameter handler is invoked, as described in Parameter Validation. If execution is
allowed to continue, EOF or WEOF is returned and errno is set to EINVAL.

For information on these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

The ungetc function pushes the character c back onto stream and clears the end-of-file indicator. The stream
must be open for reading. A subsequent read operation on stream starts with c. An attempt to push EOF onto
the stream using ungetc is ignored.

Characters placed on the stream by ungetc may be erased if fflush, fseek, fsetpos, or rewind is called before
the character is read from the stream. The file-position indicator will have the value it had before the characters
were pushed back. The external storage corresponding to the stream is unchanged. On a successful ungetc call
against a text stream, the file-position indicator is unspecified until all the pushed-back characters are read or
discarded. On each successful ungetc call against a binary stream, the file-position indicator is decremented; if
its value was 0 before a call, the value is undefined after the call.

Results are unpredictable if ungetc is called twice without a read or file-positioning operation between the two
calls. After a call to fscanf, a call to ungetc may fail unless another read operation (such as getc) has been
performed. This is because fscanf itself calls ungetc.

ungetwc is a wide-character version of ungetc. However, on each successful ungetwc call against a text or
binary stream, the value of the file-position indicator is unspecified until all pushed-back characters are read or
discarded.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ungetc-ungetwc.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_ungettc ungetc ungetc ungetwc

Requirements
ROUTINE REQUIRED HEADER

ungetc <stdio.h>

ungetwc <stdio.h> or <wchar.h>

Example
// crt_ungetc.c
// This program first converts a character
// representation of an unsigned integer to an integer. If
// the program encounters a character that is not a digit,
// the program uses ungetc to replace it in the stream.
//

#include <stdio.h>
#include <ctype.h>

int main(void)
{
 int ch;
 int result = 0;

 // Read in and convert number:
 while(((ch = getchar()) != EOF) && isdigit(ch))
 result = result * 10 + ch - '0'; // Use digit.
 if(ch != EOF)
 ungetc(ch, stdin); // Put nondigit back.
 printf("Number = %d\nNext character in stream = '%c'",
 result, getchar());
}

 521aNumber = 521
Next character in stream = 'a'

See also

These functions are thread-safe and lock sensitive data during execution. For a non-locking version, see
_ungetc_nolock, _ungetwc_nolock.

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that
are associated with the console, stdin, stdout, and stderr, must be redirected before C run-time functions can
use them in UWP apps. For additional compatibility information, see Compatibility.

Stream I/O
getc, getwc
putc, putwc

_ungetc_nolock, _ungetwc_nolock
11/8/2018 • 2 minutes to read • Edit Online

Syntax
int _ungetc_nolock(
 int c,
 FILE *stream
);
wint_t _ungetwc_nolock(
 wint_t c,
 FILE *stream
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_ungettc_nolock _ungetc_nolock _ungetc_nolock _ungetwc_nolock

Requirements
ROUTINE REQUIRED HEADER

_ungetc_nolock <stdio.h>

Pushes a character back onto the stream.

c
Character to be pushed.

stream
Pointer to FILE structure.

If successful, each of these functions returns the character argument c. If c cannot be pushed back or if no
character has been read, the input stream is unchanged and _ungetc_nolock returns EOF; _ungetwc_nolock
returns WEOF. If stream is NULL, EOF or WEOF is returned and errno is set to EINVAL.

For information on these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

These functions are non-locking versions of ungetc and ungetwc. The versions with the _nolock suffix are
identical except that they are not protected from interference by other threads. They may be faster since they do
not incur the overhead of locking out other threads. Use these functions only in thread-safe contexts such as
single-threaded applications or where the calling scope already handles thread isolation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ungetc-nolock-ungetwc-nolock.md

_ungetwc_nolock <stdio.h> or <wchar.h>

ROUTINE REQUIRED HEADER

See also

For additional compatibility information, see Compatibility.

Stream I/O
getc, getwc
putc, putwc

ungetch
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

This POSIX function is deprecated. Use the ISO C++ conformant _ungetch instead.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ungetch.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_ungetch, _ungetwch, _ungetch_nolock,
_ungetwch_nolock
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _ungetch(
 int c
);
wint_t _ungetwch(
 wint_t c
);
int _ungetch_nolock(
 int c
);
wint_t _ungetwch_nolock(
 wint_t c
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

Pushes back the last character that's read from the console.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions
not supported in Universal Windows Platform apps.

c
Character to be pushed.

Both functions return the character c if successful. If there is an error, _ungetch returns a value of EOF and
_ungetwch returns WEOF.

These functions push the character c back to the console, causing c to be the next character read by _getch or
_getche (or _getwch or _getwche). _ungetch and _ungetwch fail if they are called more than once before the
next read. The c argument may not be EOF (or WEOF).

The versions with the _nolock suffix are identical except that they are not protected from interference by other
threads. They may be faster since they do not incur the overhead of locking out other threads. Use these
functions only in thread-safe contexts such as single-threaded applications or where the calling scope already
handles thread isolation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/ungetch-ungetwch-ungetch-nolock-ungetwch-nolock.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_ungettch _ungetch _ungetch _ungetwch

_ungettch_nolock _ungetch_nolock _ungetch_nolock _ungetwch_nolock

Requirements
ROUTINE REQUIRED HEADER

_ungetch, _ungetch_nolock <conio.h>

_ungetwch, _ungetwch_nolock <conio.h> or <wchar.h>

Example
// crt_ungetch.c
// compile with: /c
// In this program, a white-space delimited
// token is read from the keyboard. When the program
// encounters a delimiter, it uses _ungetch to replace
// the character in the keyboard buffer.
//

#include <conio.h>
#include <ctype.h>
#include <stdio.h>

int main(void)
{
 char buffer[100];
 int count = 0;
 int ch;

 ch = _getche();
 while(isspace(ch)) // Skip preceding white space.
 ch = _getche();
 while(count < 99) // Gather token.
 {
 if(isspace(ch)) // End of token.
 break;
 buffer[count++] = (char)ch;
 ch = _getche();
 }
 _ungetch(ch); // Put back delimiter.
 buffer[count] = '\0'; // Null terminate the token.
 printf("\ntoken = %s\n", buffer);
}

Whitetoken = White

See also

For additional compatibility information, see Compatibility.

Console and Port I/O
_cscanf, _cscanf_l, _cwscanf, _cwscanf_l
_getch, _getwch

unlink
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _unlink instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/unlink.md

_unlink, _wunlink
1/21/2019 • 2 minutes to read • Edit Online

Syntax
int _unlink(
 const char *filename
);
int _wunlink(
 const wchar_t *filename
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tunlink _unlink _unlink _wunlink

Requirements
ROUTINE REQUIRED HEADER

_unlink <io.h> and <stdio.h>

_wunlink <io.h> or <wchar.h>

Code Example

Delete a file.

filename
Name of file to remove.

Each of these functions returns 0 if successful. Otherwise, the function returns -1 and sets errno to EACCES,
which means the path specifies a read-only file or a directory, or to ENOENT, which means the file or path is not
found.

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these, and other, return codes.

The _unlink function deletes the file specified by filename. _wunlink is a wide-character version of _unlink; the
filename argument to _wunlink is a wide-character string. These functions behave identically otherwise.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/unlink-wunlink.md

// crt_unlink.c

#include <stdio.h>

int main(void)
{
 if(_unlink("crt_unlink.txt") == -1)
 perror("Could not delete 'CRT_UNLINK.TXT'");
 else
 printf("Deleted 'CRT_UNLINK.TXT'\n");
}

Input: crt_unlink.txt

This file will be deleted.

Sample Output

Deleted 'CRT_UNLINK.TXT'

See also

This program uses _unlink to delete CRT_UNLINK.TXT.

File Handling
_close
remove, _wremove

_unlock_file
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void _unlock_file(
 FILE* file
);

Parameters

Remarks

Requirements
ROUTINE REQUIRED HEADER

_unlock_file <stdio.h>

See also

Unlocks a file, allowing other processes to access the file.

file
File handle.

The _unlock_file function unlocks the file specified by file. Unlocking a file allows access to the file by other
processes. This function should not be called unless _lock_file was previously called on the file pointer. Calling
_unlock_file on a file that isn't locked may result in a deadlock. For an example, see _lock_file.

For additional compatibility information, see Compatibility.

File Handling
_creat, _wcreat
_open, _wopen
_lock_file

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/unlock-file.md

_utime, _utime32, _utime64, _wutime, _wutime32,
_wutime64
11/9/2018 • 3 minutes to read • Edit Online

Syntax
int _utime(
 const char *filename,
 struct _utimbuf *times
);
int _utime32(
 const char *filename,
 struct __utimbuf32 *times
);
int _utime64(
 const char *filename,
 struct __utimbuf64 *times
);
int _wutime(
 const wchar_t *filename,
 struct _utimbuf *times
);
int _wutime32(
 const wchar_t *filename,
 struct __utimbuf32 *times
);
int _wutime64(
 const wchar_t *filename,
 struct __utimbuf64 *times
);

Parameters

Return Value

ERRNO VALUE CONDITION

EACCES Path specifies directory or read-only file

EINVAL Invalid times argument

Set the file modification time.

filename
Pointer to a string that contains the path or filename.

times
Pointer to stored time values.

Each of these functions returns 0 if the file-modification time was changed. A return value of -1 indicates an
error. If an invalid parameter is passed, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, these functions return -1 and errno is set to one of the following
values:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/utime-utime32-utime64-wutime-wutime32-wutime64.md

EMFILE Too many open files (the file must be opened to change its
modification time)

ENOENT Path or filename not found

ERRNO VALUE CONDITION

Remarks

FIELD

actime Time of file access

modtime Time of file modification

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_tutime _utime _utime _wutime

_tutime32 _utime32 _utime32 _wutime32

_tutime64 _utime64 _utime64 _wutime64

Requirements

See _doserrno, errno, _sys_errlist, and _sys_nerr for more information on these, and other, return codes.

The date can be changed for a file if the change date is after midnight, January 1, 1970, and before the end date
of the function used. _utime and _wutime use a 64-bit time value, so the end date is 23:59:59, December 31,
3000, UTC. If _USE_32BIT_TIME_T is defined to force the old behavior, the end date is 23:59:59 January 18,
2038, UTC. _utime32 or _wutime32 use a 32-bit time type regardless of whether _USE_32BIT_TIME_T is
defined, and always have the earlier end date. _utime64 or _wutime64 always use the 64-bit time type, so
these functions always support the later end date.

The _utime function sets the modification time for the file specified by filename. The process must have write
access to the file in order to change the time. In the Windows operating system, you can change the access time
and the modification time in the _utimbuf structure. If times is a NULL pointer, the modification time is set to
the current local time. Otherwise, times must point to a structure of type _utimbuf, defined in SYS\UTIME.H.

The _utimbuf structure stores file access and modification times used by _utime to change file-modification
dates. The structure has the following fields, which are both of type time_t:

Specific versions of the _utimbuf structure (_utimebuf32 and __utimbuf64) are defined using the 32-bit and
64-bit versions of the time type. These are used in the 32-bit and 64-bit specific versions of this function.
_utimbuf itself by default uses a 64-bit time type unless _USE_32BIT_TIME_T is defined.

_utime is identical to _futime except that the filename argument of _utime is a filename or a path to a file,
rather than a file descriptor of an open file.

_wutime is a wide-character version of _utime; the filename argument to _wutime is a wide-character string.
These functions behave identically otherwise.

ROUTINE REQUIRED HEADERS OPTIONAL HEADERS

_utime, _utime32, _utime64 <sys/utime.h> <errno.h>

_utime64 <sys/utime.h> <errno.h>

_wutime <utime.h> or <wchar.h> <errno.h>

Example

// crt_utime.c
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/utime.h>
#include <time.h>

int main(void)
{
 struct tm tma = {0}, tmm = {0};
 struct _utimbuf ut;

 // Fill out the accessed time structure
 tma.tm_hour = 12;
 tma.tm_isdst = 0;
 tma.tm_mday = 15;
 tma.tm_min = 0;
 tma.tm_mon = 0;
 tma.tm_sec = 0;
 tma.tm_year = 103;

 // Fill out the modified time structure
 tmm.tm_hour = 12;
 tmm.tm_isdst = 0;
 tmm.tm_mday = 15;
 tmm.tm_min = 0;
 tmm.tm_mon = 0;
 tmm.tm_sec = 0;
 tmm.tm_year = 102;

 // Convert tm to time_t
 ut.actime = mktime(&tma);
 ut.modtime = mktime(&tmm);

 // Show file time before and after
 system("dir crt_utime.c");
 if(_utime("crt_utime.c", &ut) == -1)
 perror("_utime failed\n");
 else
 printf("File time modified\n");
 system("dir crt_utime.c");
}

Sample Output

For additional compatibility information, see Compatibility.

This program uses _utime to set the file-modification time to the current time.

Volume in drive C has no label.
Volume Serial Number is 9CAC-DE74

Directory of C:\test

01/09/2003 05:38 PM 935 crt_utime.c
 1 File(s) 935 bytes
 0 Dir(s) 20,742,955,008 bytes free
File time modified
Volume in drive C has no label.
Volume Serial Number is 9CAC-DE74

Directory of C:\test

01/15/2002 12:00 PM 935 crt_utime.c
 1 File(s) 935 bytes
 0 Dir(s) 20,742,955,008 bytes free

See also
Time Management
asctime, _wasctime
ctime, _ctime32, _ctime64, _wctime, _wctime32, _wctime64
_fstat, _fstat32, _fstat64, _fstati64, _fstat32i64, _fstat64i32
_ftime, _ftime32, _ftime64
_futime, _futime32, _futime64
gmtime, _gmtime32, _gmtime64
localtime, _localtime32, _localtime64
_stat, _wstat Functions
time, _time32, _time64

va_arg, va_copy, va_end, va_start
10/31/2018 • 4 minutes to read • Edit Online

Syntax
type va_arg(
 va_list arg_ptr,
 type
);
void va_copy(
 va_list dest,
 va_list src
); // (ISO C99 and later)
void va_end(
 va_list arg_ptr
);
void va_start(
 va_list arg_ptr,
 prev_param
); // (ANSI C89 and later)
void va_start(
 arg_ptr
); // (deprecated Pre-ANSI C89 standardization version)

Parameters

Return Value

Remarks

Accesses variable-argument lists.

type
Type of argument to be retrieved.

arg_ptr
Pointer to the list of arguments.

dest
Pointer to the list of arguments to be initialized from src

src
Pointer to the initialized list of arguments to copy to dest.

prev_param
Parameter that precedes the first optional argument.

va_arg returns the current argument. va_copy, va_start and va_end do not return values.

The va_arg, va_copy, va_end, and va_start macros provide a portable way to access the arguments to a
function when the function takes a variable number of arguments. There are two versions of the macros: The
macros defined in STDARG.H conform to the ISO C99 standard; the macros defined in VARARGS.H are
deprecated but are retained for backward compatibility with code that was written before the ANSI C89
standard.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/va-arg-va-copy-va-end-va-start.md

NOTE

These macros assume that the function takes a fixed number of required arguments, followed by a variable
number of optional arguments. The required arguments are declared as ordinary parameters to the function
and can be accessed through the parameter names. The optional arguments are accessed through the macros
in STDARG.H (or VARARGS.H for code that was written before the ANSI C89 standard), which sets a pointer
to the first optional argument in the argument list, retrieves arguments from the list, and resets the pointer
when argument processing is completed.

The C standard macros, defined in STDARG.H, are used as follows:

va_start sets arg_ptr to the first optional argument in the list of arguments that's passed to the function.
The argument arg_ptr must have the va_list type. The argument prev_param is the name of the
required parameter that immediately precedes the first optional argument in the argument list. If
prev_param is declared with the register storage class, the macro's behavior is undefined. va_start must
be used before va_arg is used for the first time.

va_arg retrieves a value of type from the location that's given by arg_ptr, and increments arg_ptr to
point to the next argument in the list by using the size of type to determine where the next argument
starts. va_arg can be used any number of times in the function to retrieve arguments from the list.

va_copy makes a copy of a list of arguments in its current state. The src parameter must already be
initialized with va_start; it may have been updated with va_arg calls, but must not have been reset with
va_end. The next argument that's retrieved by va_arg from dest is the same as the next argument that's
retrieved from src.

After all arguments have been retrieved, va_end resets the pointer to NULL. va_end must be called on
each argument list that's initialized with va_start or va_copy before the function returns.

The macros in VARARGS.H are deprecated and are retained only for backwards compatibility with code that was written
before the ANSI C89 standard. In all other cases, use the macros in STDARGS.H.

When they are compiled by using /clr (Common Language Runtime Compilation), programs that use these
macros may generate unexpected results because of differences between native and common language
runtime (CLR) type systems. Consider this program:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation

#include <stdio.h>
#include <stdarg.h>

void testit (int i, ...)
{
 va_list argptr;
 va_start(argptr, i);

 if (i == 0)
 {
 int n = va_arg(argptr, int);
 printf("%d\n", n);
 }
 else
 {
 char *s = va_arg(argptr, char*);
 printf("%s\n", s);
 }

 va_end(argptr);
}

int main()
{
 testit(0, 0xFFFFFFFF); // 1st problem: 0xffffffff is not an int
 testit(1, NULL); // 2nd problem: NULL is not a char*
}

-1

(null)

Requirements

Libraries

Example

Notice that testit expects its second parameter to be either an int or a char*. The arguments being passed are
0xffffffff (an unsigned int, not an int) and NULL (actually an int, not a char*). When the program is compiled
for native code, it produces this output:

Header: <stdio.h> and <stdarg.h>

Deprecated Header: <varargs.h>

All versions of the C run-time libraries.

// crt_va.c
// Compile with: cl /W3 /Tc crt_va.c
// The program below illustrates passing a variable
// number of arguments using the following macros:
// va_start va_arg va_copy
// va_end va_list

#include <stdio.h>
#include <stdarg.h>
#include <math.h>

double deviation(int first, ...);

int main(void)
{
 /* Call with 3 integers (-1 is used as terminator). */
 printf("Deviation is: %f\n", deviation(2, 3, 4, -1));

 /* Call with 4 integers. */
 printf("Deviation is: %f\n", deviation(5, 7, 9, 11, -1));

 /* Call with just -1 terminator. */
 printf("Deviation is: %f\n", deviation(-1));
}

/* Returns the standard deviation of a variable list of integers. */
double deviation(int first, ...)
{
 int count = 0, i = first;
 double mean = 0.0, sum = 0.0;
 va_list marker;
 va_list copy;

 va_start(marker, first); /* Initialize variable arguments. */
 va_copy(copy, marker); /* Copy list for the second pass */
 while (i != -1)
 {
 sum += i;
 count++;
 i = va_arg(marker, int);
 }
 va_end(marker); /* Reset variable argument list. */
 mean = sum ? (sum / count) : 0.0;

 i = first; /* reset to calculate deviation */
 sum = 0.0;
 while (i != -1)
 {
 sum += (i - mean)*(i - mean);
 i = va_arg(copy, int);
 }
 va_end(copy); /* Reset copy of argument list. */
 return count ? sqrt(sum / count) : 0.0;
}

Deviation is: 0.816497
Deviation is: 2.236068
Deviation is: 0.000000

See also
Argument Access
vfprintf, _vfprintf_l, vfwprintf, _vfwprintf_l

_vcprintf, _vcprintf_l, _vcwprintf, _vcwprintf_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _vcprintf(
 const char* format,
 va_list argptr
);
int _vcprintf_l(
 const char* format,
 locale_t locale,
 va_list argptr
);
int _vcwprintf(
 const wchar_t* format,
 va_list argptr
);
int _vcwprintf_l(
 const wchar_t* format,
 locale_t locale,
 va_list argptr
);

Parameters

Return Value

Remarks

Writes formatted output to the console by using a pointer to a list of arguments. More secure versions of these
functions are available, see _vcprintf_s, _vcprintf_s_l, _vcwprintf_s, _vcwprintf_s_l.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

format
Format specification.

argptr
Pointer to list of arguments.

locale
The locale to use.

For more information, see Format Specifications.

The number of characters written, or a negative value if an output error occurs. If format is a null pointer, the
invalid parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue,
errno is set to EINVAL and -1 is returned.

Each of these functions takes a pointer to an argument list, then formats and writes the given data to the console.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vcprintf-vcprintf-l-vcwprintf-vcwprintf-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vtcprintf _vcprintf _vcprintf _vcwprintf

_vtcprintf_l _vcprintf_l _vcprintf_l _vcwprintf_l

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADERS

_vcprintf, _vcprintf_l <conio.h> and <stdarg.h> <varargs.h>*

_vcwprintf, _vcwprintf_l <conio.h> or <wchar.h>, and
<stdarg.h>

<varargs.h>*

Example
// crt_vcprintf.cpp
// compile with: /c
#include <conio.h>
#include <stdarg.h>

// An error formatting function used to print to the console.
int eprintf(const char* format, ...)
{
 va_list args;
 va_start(args, format);
 int result = _vcprintf(format, args);
 va_end(args);
 return result;
}

int main()
{
 eprintf("(%d:%d): Error %s%d : %s\n", 10, 23, "C", 2111,
 "<some error text>");
 eprintf(" (Related to symbol '%s' defined on line %d).\n",
 "<symbol>", 5);
}

_vcwprintf is the wide-character version of _vcprintf. It takes a wide-character string as an argument.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current locale.

Ensure that format is not a user-defined string. For more information, see Avoiding Buffer Overruns.

* Required for UNIX V compatibility.

For additional compatibility information, see Compatibility.

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

(10,23): Error C2111 : <some error text>
 (Related to symbol '<symbol>' defined on line 5).

See also
Stream I/O
vprintf Functions
_cprintf, _cprintf_l, _cwprintf, _cwprintf_l
fprintf, _fprintf_l, fwprintf, _fwprintf_l
printf, _printf_l, wprintf, _wprintf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
va_arg, va_copy, va_end, va_start

_vcprintf_p, _vcprintf_p_l, _vcwprintf_p, _vcwprintf_p_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _vcprintf_p(
 const char* format,
 va_list argptr
);
int _vcprintf_p_l(
 const char* format,
 locale_t locale,
 va_list argptr
);
int _vcwprintf_p(
 const wchar_t* format,
 va_list argptr
);
int _vcwprintf_p_l(
 const wchar_t* format,
 locale_t locale,
 va_list argptr
);

Parameters

Return Value

Remarks

Writes formatted output to the console by using a pointer to a list of arguments, and supports positional
parameters in the format string.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

format
The format specification.

argptr
A pointer to a list of arguments.

locale
The locale to use.

For more information, see Format Specification Syntax: printf and wprintf Functions.

The number of characters that are written, or a negative value if an output error occurs. If format is a null pointer,
the invalid parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue,
errno is set to EINVAL and -1 is returned.

Each of these functions takes a pointer to an argument list, and then uses the _putch function to format and write

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vcprintf-p-vcprintf-p-l-vcwprintf-p-vcwprintf-p-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE AND _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vtcprintf_p _vcprintf_p _vcprintf_p _vcwprintf_p

_vtcprintf_p_l _vcprintf_p_l _vcprintf_p_l _vcwprintf_p_l

Requirements
ROUTINE REQUIRED HEADER

_vcprintf_p, _vcprintf_p_l <conio.h> and <stdarg.h>

_vcwprintf_p, _vcwprintf_p_l <conio.h> and <stdarg.h>

Example

the given data to the console. (_vcwprintf_p uses _putwch instead of _putch. _vcwprintf_p is the wide-character
version of _vcprintf_p. It takes a wide-character string as an argument.)

The versions of these functions that have the _l suffix are identical except that they use the locale parameter that's
passed in instead of the current locale.

Each argument (if any) is converted and is output according to the corresponding format specification in format.
The format specification supports positional parameters so that you can specify the order in which the arguments
are used in the format string. For more information, see printf_p Positional Parameters.

These functions do not translate line-feed characters into carriage return-line feed (CR-LF) combinations when
they are output.

Ensure that format is not a user-defined string. For more information, see Avoiding Buffer Overruns.

These functions validate the input pointer and the format string. If format or argument is NULL, or if the format
string contains invalid formatting characters, these functions invoke the invalid parameter handler, as described in
Parameter Validation. If execution is allowed to continue, these functions return -1 and set errno to EINVAL.

For more compatibility information, see Compatibility.

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

// crt_vcprintf_p.c
// compile with: /c
#include <conio.h>
#include <stdarg.h>

// An error formatting function that's used to print to the console.
int eprintf(const char* format, ...)
{
 va_list args;
 va_start(args, format);
 int result = _vcprintf_p(format, args);
 va_end(args);
 return result;
}

int main()
{
 int n = eprintf("parameter 2 = %2$d; parameter 1 = %1$s\r\n",
 "one", 222);
 _cprintf_s("%d characters printed\r\n");
}

parameter 2 = 222; parameter 1 = one
38 characters printed

See also
Console and Port I/O
_cprintf, _cprintf_l, _cwprintf, _cwprintf_l
va_arg, va_copy, va_end, va_start
printf_p Positional Parameters

_vcprintf_s, _vcprintf_s_l, _vcwprintf_s, _vcwprintf_s_l
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANT

Syntax
int _vcprintf(
 const char* format,
 va_list argptr
);
int _vcprintf(
 const char* format,
 locale_t locale,
 va_list argptr
);
int _vcwprintf_s(
 const wchar_t* format,
 va_list argptr
);
int _vcwprintf_s_l(
 const wchar_t* format,
 locale_t locale,
 va_list argptr
);

Parameters

Return Value

Writes formatted output to the console by using a pointer to a list of arguments. These versions of _vcprintf,
_vcprintf_l, _vcwprintf, _vcwprintf_l have security enhancements, as described in Security Features in the CRT.

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

format
Format specification.

argptr
Pointer to the list of arguments.

locale
The locale to use.

For more information, see Format Specification Syntax: printf and wprintf Functions.

The number of characters written, or a negative value if an output error occurs.

Like the less secure versions of these functions, if format is a null pointer, the invalid parameter handler is
invoked, as described in Parameter Validation. Additionally, unlike the less secure versions of these functions, if
format does not specify a valid format, an invalid parameter exception is generated. If execution is allowed to
continue, these functions return an error code and set errno to that error code. The default error code is EINVAL
if a more specific value does not apply.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vcprintf-s-vcprintf-s-l-vcwprintf-s-vcwprintf-s-l.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Remarks

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vtcprintf_s _vcprintf_s _vcprintf_s _vcwprintf_s

_vtcprintf_s_l _vcprintf_s_l _vcprintf_s_l _vcwprintf_s_l

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADERS

_vcprintf_s, _vcprintf_s_l <conio.h> and <stdarg.h> <varargs.h>*

_vcwprintf_s, _vcwprintf_s_l <conio.h> or <wchar.h>, and
<stdarg.h>

<varargs.h>*

Example

Each of these functions takes a pointer to an argument list, and then formats and writes the given data to the
console. _vcwprintf_s is the wide-character version of _vcprintf_s. It takes a wide-character string as an
argument.

The versions of these functions that have the _l suffix are identical except that they use the locale parameter that's
passed in instead of the current locale.

Ensure that format is not a user-defined string. For more information, see Avoiding Buffer Overruns.

* Required for UNIX V compatibility.

For additional compatibility information, see Compatibility.

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

// crt_vcprintf_s.cpp
#include <conio.h>
#include <stdarg.h>

// An error formatting function used to print to the console.
int eprintf_s(const char* format, ...)
{
 va_list args;
 va_start(args, format);
 int result = _vcprintf_s(format, args);
 va_end(args);
 return result;
}

int main()
{
 eprintf_s("(%d:%d): Error %s%d : %s\n", 10, 23, "C", 2111,
 "<some error text>");
 eprintf_s(" (Related to symbol '%s' defined on line %d).\n",
 "<symbol>", 5);
}

(10,23): Error C2111 : <some error text>
 (Related to symbol '<symbol>' defined on line 5).

See also
Stream I/O
vprintf Functions
_cprintf, _cprintf_l, _cwprintf, _cwprintf_l
fprintf, _fprintf_l, fwprintf, _fwprintf_l
printf, _printf_l, wprintf, _wprintf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
va_arg, va_copy, va_end, va_start

vfprintf, _vfprintf_l, vfwprintf, _vfwprintf_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int vfprintf(
 FILE *stream,
 const char *format,
 va_list argptr
);
int _vfprintf_l(
 FILE *stream,
 const char *format,
 locale_t locale,
 va_list argptr
);
int vfwprintf(
 FILE *stream,
 const wchar_t *format,
 va_list argptr
);
int _vfwprintf_l(
 FILE *stream,
 const wchar_t *format,
 locale_t locale,
 va_list argptr
);

Parameters

Return Value

Write formatted output using a pointer to a list of arguments. More secure versions of these functions exist; see
vfprintf_s, _vfprintf_s_l, vfwprintf_s, _vfwprintf_s_l.

stream
Pointer to FILE structure.

format
Format specification.

argptr
Pointer to list of arguments.

locale
The locale to use.

For more information, see Format Specifications.

vfprintf and vfwprintf return the number of characters written, not including the terminating null character, or
a negative value if an output error occurs. If either stream or format is a null pointer, the invalid parameter
handler is invoked, as described in Parameter Validation. If execution is allowed to continue, the functions return
-1 and set errno to EINVAL.

For information on these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vfprintf-vfprintf-l-vfwprintf-vfwprintf-l.md

Remarks

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vftprintf vfprintf vfprintf vfwprintf

_vftprintf_l _vfprintf_l _vfprintf_l _vfwprintf_l

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADERS

vfprintf, _vfprintf_l <stdio.h> and <stdarg.h> <varargs.h>*

vfwprintf, _vfwprintf_l <stdio.h> or <wchar.h>, and
<stdarg.h>

<varargs.h>*

See also

Each of these functions takes a pointer to an argument list, then formats and writes the given data to stream.

vfwprintf is the wide-character version of vfprintf; the two functions behave identically if the stream is opened
in ANSI mode. vfprintf doesn't currently support output into a UNICODE stream.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed
in instead of the current thread locale.

Ensure that format is not a user-defined string. For more information, see Avoiding Buffer Overruns.

* Required for UNIX V compatibility.

For additional compatibility information, see Compatibility.

Stream I/O
vprintf Functions
fprintf, _fprintf_l, fwprintf, _fwprintf_l
printf, _printf_l, wprintf, _wprintf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
va_arg, va_copy, va_end, va_start

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

_vfprintf_p, _vfprintf_p_l, _vfwprintf_p, _vfwprintf_p_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _vfprintf_p(
 FILE *stream,
 const char *format,
 va_list argptr
);
int _vfprintf_p_l(
 FILE *stream,
 const char *format,
 locale_t locale,
 va_list argptr
);
int _vfwprintf_p(
 FILE *stream,
 const wchar_t *format,
 va_list argptr
);
int _vfwprintf_p_l(
 FILE *stream,
 const wchar_t *format,
 locale_t locale,
 va_list argptr
);

Parameters

Return Value

Remarks

Write formatted output using a pointer to a list of arguments, with the ability to specify the order that arguments
are used in the format string.

stream
Pointer to FILE structure.

format
Format specification.

argptr
Pointer to list of arguments.

locale
The locale to use.

For more information, see Format Specifications.

_vfprintf_p and _vfwprintf_p return the number of characters written, not including the terminating null
character, or a negative value if an output error occurs.

Each of these functions takes a pointer to an argument list, then formats and writes the given data to stream.
These functions differ from the _vfprint_s and _vfwprint_s versions only in that they support positional

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vfprintf-p-vfprintf-p-l-vfwprintf-p-vfwprintf-p-l.md

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vftprintf_p _vfprintf_p _vfprintf_p _vfwprintf_p

_vftprintf_p_l _vfprintf_p_l _vfprintf_p_l _vfwprintf_p_l

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADERS

_vfprintf_p, _vfprintf_p_l <stdio.h> and <stdarg.h> <varargs.h>*

_vfwprintf_p, _vfwprintf_p_l <stdio.h> or <wchar.h>, and
<stdarg.h>

<varargs.h>*

See also

parameters. For more information, see printf_p Positional Parameters.

_vfwprintf_p is the wide-character version of _vprintf_p; the two functions behave identically if the stream is
opened in ANSI mode. _vprintf_p doesn't currently support output into a UNICODE stream.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current thread locale.

Ensure that format is not a user-defined string. For more information, see Avoiding Buffer Overruns.

If either stream or format is a null pointer, or if the format string contains invalid formatting characters, the
invalid parameter handler is invoked, as described in Parameter Validation. If execution is allowed to continue, the
functions return -1 and set errno to EINVAL.

* Required for UNIX V compatibility.

For additional compatibility information, see Compatibility.

Stream I/O
vprintf Functions
fprintf, _fprintf_l, fwprintf, _fwprintf_l
printf, _printf_l, wprintf, _wprintf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
va_arg, va_copy, va_end, va_start
printf_p Positional Parameters
_fprintf_p, _fprintf_p_l, _fwprintf_p, _fwprintf_p_l
_vsprintf_p, _vsprintf_p_l, _vswprintf_p, _vswprintf_p_l
_sprintf_p, _sprintf_p_l, _swprintf_p, _swprintf_p_l

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

vfprintf_s, _vfprintf_s_l, vfwprintf_s, _vfwprintf_s_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int vfprintf_s(
 FILE *stream,
 const char *format,
 va_list argptr
);
int _vfprintf_s_l(
 FILE *stream,
 const char *format,
 locale_t locale,
 va_list argptr
);
int vfwprintf_s(
 FILE *stream,
 const wchar_t *format,
 va_list argptr
);
int _vfwprintf_s_l(
 FILE *stream,
 const wchar_t *format,
 locale_t locale,
 va_list argptr
);

Parameters

Return Value

Write formatted output using a pointer to a list of arguments. These are versions of vfprintf, _vfprintf_l, vfwprintf,
_vfwprintf_l with security enhancements as described in Security Features in the CRT.

stream
Pointer to FILE structure.

format
Format specification.

argptr
Pointer to list of arguments.

locale
The locale to use.

For more information, see Format Specifications.

vfprintf_s and vfwprintf_s return the number of characters written, not including the terminating null character,
or a negative value if an output error occurs. If either stream or format is a null pointer, or if the format string
contains invalid formatting characters, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, the functions return -1 and set errno to EINVAL.

For information on these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vfprintf-s-vfprintf-s-l-vfwprintf-s-vfwprintf-s-l.md

Remarks

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vftprintf_s vfprintf_s vfprintf_s vfwprintf_s

_vftprintf_s_l _vfprintf_s_l _vfprintf_s_l _vfwprintf_s_l

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADERS

vfprintf_s, _vfprintf_s_l <stdio.h> and <stdarg.h> <varargs.h>*

vfwprintf_s, _vfwprintf_s_l <stdio.h> or <wchar.h>, and
<stdarg.h>

<varargs.h>*

See also

Each of these functions takes a pointer to an argument list, then formats and writes the given data to stream.

These functions differ from the non-secure versions only in that the secure versions check that the format string
contains valid formatting characters.

vfwprintf_s is the wide-character version of vfprintf_s; the two functions behave identically if the stream is
opened in ANSI mode. vfprintf_s doesn't currently support output into a UNICODE stream.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current thread locale.

Ensure that format is not a user-defined string. For more information, see Avoiding Buffer Overruns.

* Required for UNIX V compatibility.

For additional compatibility information, see Compatibility.

Stream I/O
vprintf Functions
fprintf, _fprintf_l, fwprintf, _fwprintf_l
printf, _printf_l, wprintf, _wprintf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
va_arg, va_copy, va_end, va_start

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

vfscanf, vfwscanf
11/9/2018 • 2 minutes to read • Edit Online

Syntax
int vfscanf(
 FILE *stream,
 const char *format,
 va_list argptr
);
int vfwscanf(
 FILE *stream,
 const wchar_t *format,
 va_list argptr
);

Parameters

Return Value

Remarks

Generic-Text Routine Mappings

Reads formatted data from a stream. More secure versions of these functions are available; see vfscanf_s,
vfwscanf_s.

stream
Pointer to FILE structure.

format
Format-control string.

arglist
Variable argument list.

Each of these functions returns the number of fields that are successfully converted and assigned; the return value
does not include fields that are read but not assigned. A return value of 0 indicates that no fields were assigned. If
an error occurs, or if the end of the file stream is reached before the first conversion, the return value is EOF for
vfscanf and vfwscanf.

These functions validate their parameters. If stream or format is a null pointer, the invalid parameter handler is
invoked, as described in Parameter Validation. If execution is allowed to continue, these functions return EOF and
set errno to EINVAL.

The vfscanf function reads data from the current position of stream into the locations that are given by the arglist
argument list. Each argument in the list must be a pointer to a variable of a type that corresponds to a type
specifier in format. format controls the interpretation of the input fields and has the same form and function as the
format argument for scanf; see scanf for a description of format.

vfwscanf is a wide-character version of vfscanf; the format argument to vfwscanf is a wide-character string.
These functions behave identically if the stream is opened in ANSI mode. vfscanf doesn't support input from a
UNICODE stream.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vfscanf-vfwscanf.md

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vftscanf vfscanf vfscanf vfwscanf

Requirements
FUNCTION REQUIRED HEADER

vfscanf <stdio.h>

vfwscanf <stdio.h> or <wchar.h>

Example

For more information, see Format Specification Fields: scanf and wscanf Functions.

For additional compatibility information, see Compatibility.

// crt_vfscanf.c
// compile with: /W3
// This program writes formatted
// data to a file. It then uses vfscanf to
// read the various data back from the file.

#include <stdio.h>
#include <stdarg.h>

FILE *stream;

int call_vfscanf(FILE * istream, char * format, ...)
{
 int result;
 va_list arglist;
 va_start(arglist, format);
 result = vfscanf(istream, format, arglist);
 va_end(arglist);
 return result;
}

int main(void)
{
 long l;
 float fp;
 char s[81];
 char c;

 if (fopen_s(&stream, "vfscanf.out", "w+") != 0)
 {
 printf("The file vfscanf.out was not opened\n");
 }
 else
 {
 fprintf(stream, "%s %ld %f%c", "a-string",
 65000, 3.14159, 'x');
 // Security caution!
 // Beware loading data from a file without confirming its size,
 // as it may lead to a buffer overrun situation.

 // Set pointer to beginning of file:
 fseek(stream, 0L, SEEK_SET);

 // Read data back from file:
 call_vfscanf(stream, "%s %ld %f%c", s, &l, &fp, &c);

 // Output data read:
 printf("%s\n", s);
 printf("%ld\n", l);
 printf("%f\n", fp);
 printf("%c\n", c);

 fclose(stream);
 }
}

a-string
65000
3.141590
x

See also
Stream I/O

_cscanf, _cscanf_l, _cwscanf, _cwscanf_l
fprintf, _fprintf_l, fwprintf, _fwprintf_l
scanf, _scanf_l, wscanf, _wscanf_l
sscanf, _sscanf_l, swscanf, _swscanf_l
fscanf_s, _fscanf_s_l, fwscanf_s, _fwscanf_s_l
vfscanf_s, vfwscanf_s

vfscanf_s, vfwscanf_s
11/9/2018 • 2 minutes to read • Edit Online

Syntax
int vfscanf_s(
 FILE *stream,
 const char *format,
 va_list arglist
);
int vfwscanf_s(
 FILE *stream,
 const wchar_t *format,
 va_list arglist
);

Parameters

Return Value

Remarks

Reads formatted data from a stream. These versions of vfscanf, vfwscanf have security enhancements, as
described in Security Features in the CRT.

stream
Pointer to FILE structure.

format
Format-control string.

arglist
Variable argument list.

Each of these functions returns the number of fields that are successfully converted and assigned; the return value
does not include fields that were read but not assigned. A return value of 0 indicates that no fields were assigned.
If an error occurs, or if the end of the file stream is reached before the first conversion, the return value is EOF for
vfscanf_s and vfwscanf_s.

These functions validate their parameters. If stream is an invalid file pointer, or format is a null pointer, these
functions invoke the invalid parameter handler, as described in Parameter Validation. If execution is allowed to
continue, these functions return EOF and set errno to EINVAL.

The vfscanf_s function reads data from the current position of stream into the locations that are given by the
arglist argument list (if any). Each argument in the list must be a pointer to a variable of a type that corresponds to
a type specifier in format. format controls the interpretation of the input fields and has the same form and
function as the format argument for scanf_s; see Format Specification Fields: scanf and wscanf Functions for a
description of format. vfwscanf_s is a wide-character version of vfscanf_s; the format argument to vfwscanf_s is
a wide-character string. These functions behave identically if the stream is opened in ANSI mode. vfscanf_s
doesn't currently support input from a UNICODE stream.

The main difference between the more secure functions (that have the _s suffix) and the other versions is that the
more secure functions require the size in characters of each c, C, s, S, and [type field to be passed as an argument

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vfscanf-s-vfwscanf-s.md

NOTE

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vftscanf_s vfscanf_s vfscanf_s vfwscanf_s

Requirements
FUNCTION REQUIRED HEADER

vfscanf_s <stdio.h>

vfwscanf_s <stdio.h> or <wchar.h>

Example

immediately following the variable. For more information, see scanf_s, _scanf_s_l, wscanf_s, _wscanf_s_l and scanf
Width Specification.

The size parameter is of type unsigned, not size_t.

For additional compatibility information, see Compatibility.

// crt_vfscanf_s.c
// compile with: /W3
// This program writes formatted
// data to a file. It then uses vfscanf_s to
// read the various data back from the file.

#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>

FILE *stream;

int call_vfscanf_s(FILE * istream, char * format, ...)
{
 int result;
 va_list arglist;
 va_start(arglist, format);
 result = vfscanf_s(istream, format, arglist);
 va_end(arglist);
 return result;
}

int main(void)
{
 long l;
 float fp;
 char s[81];
 char c;

 if (fopen_s(&stream, "vfscanf_s.out", "w+") != 0)
 {
 printf("The file vfscanf_s.out was not opened\n");
 }
 else
 {
 fprintf(stream, "%s %ld %f%c", "a-string",
 65000, 3.14159, 'x');
 // Security caution!
 // Beware loading data from a file without confirming its size,
 // as it may lead to a buffer overrun situation.

 // Set pointer to beginning of file:
 fseek(stream, 0L, SEEK_SET);

 // Read data back from file:
 call_vfscanf_s(stream, "%s %ld %f%c", s, _countof(s), &l, &fp, &c, 1);

 // Output data read:
 printf("%s\n", s);
 printf("%ld\n", l);
 printf("%f\n", fp);
 printf("%c\n", c);

 fclose(stream);
 }
}

a-string
65000
3.141590
x

See also

Stream I/O
_cscanf_s, _cscanf_s_l, _cwscanf_s, _cwscanf_s_l
fprintf_s, _fprintf_s_l, fwprintf_s, _fwprintf_s_l
scanf_s, _scanf_s_l, wscanf_s, _wscanf_s_l
sscanf_s, _sscanf_s_l, swscanf_s, _swscanf_s_l
fscanf, _fscanf_l, fwscanf, _fwscanf_l
vfscanf, vfwscanf

vprintf, _vprintf_l, vwprintf, _vwprintf_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int vprintf(
 const char *format,
 va_list argptr
);
int _vprintf_l(
 const char *format,
 locale_t locale,
 va_list argptr
);
int vwprintf(
 const wchar_t *format,
 va_list argptr
);
int _vwprintf_l(
 const wchar_t *format,
 locale_t locale,
 va_list argptr
);

Parameters

Return Value

Remarks

Writes formatted output by using a pointer to a list of arguments. More secure versions of these functions are
available, see vprintf_s, _vprintf_s_l, vwprintf_s, _vwprintf_s_l.

format
Format specification.

argptr
Pointer to list of arguments.

locale
The locale to use.

For more information, see Format Specifications.

vprintf and vwprintf return the number of characters written, not including the terminating null character, or a
negative value if an output error occurs. If format is a null pointer, or if the format string contains invalid
formatting characters, the invalid parameter handler is invoked, as described in Parameter Validation. If
execution is allowed to continue, the functions return -1 and set errno to EINVAL.

For information on these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

Each of these functions takes a pointer to an argument list, then formats and writes the given data to stdout.

vwprintf is the wide-character version of vprintf; the two functions behave identically if the stream is opened in
ANSI mode. vprintf doesn't currently support output into a UNICODE stream.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vprintf-vprintf-l-vwprintf-vwprintf-l.md

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vtprintf vprintf vprintf vwprintf

_vtprintf_l _vprintf_l _vprintf_l _vwprintf_l

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADERS

vprintf, _vprintf_l <stdio.h> and <stdarg.h> <varargs.h>*

vwprintf, _vwprintf_l <stdio.h> or <wchar.h>, and
<stdarg.h>

<varargs.h>*

See also

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current thread locale.

Ensure that format is not a user-defined string. For more information, see Avoiding Buffer Overruns. Note that invalid
format strings are detected and result in an error.

* Required for UNIX V compatibility.

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that
are associated with the console, stdin, stdout, and stderr, must be redirected before C run-time functions can
use them in UWP apps. For additional compatibility information, see Compatibility.

Stream I/O
vprintf Functions
fprintf, _fprintf_l, fwprintf, _fwprintf_l
printf, _printf_l, wprintf, _wprintf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
va_arg, va_copy, va_end, va_start

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

_vprintf_p, _vprintf_p_l, _vwprintf_p, _vwprintf_p_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _vprintf_p(
 const char *format,
 va_list argptr
);
int _vprintf_p_l(
 const char *format,
 locale_t locale,
 va_list argptr
);
int _vwprintf_p(
 const wchar_t *format,
 va_list argptr
);
int _vwprintf_p_l(
 const wchar_t *format,
 locale_t locale,
 va_list argptr
);

Parameters

Return Value

Remarks

Writes formatted output by using a pointer to a list of arguments, and enables specification of the order in which
the arguments are used.

format
Format specification.

argptr
Pointer to list of arguments.

locale
The locale to use.

For more information, see Format Specifications.

_vprintf_p and _vwprintf_p return the number of characters written, not including the terminating null character,
or a negative value if an output error occurs.

Each of these functions takes a pointer to an argument list, then formats and writes the given data to stdout.
These functions differ from vprintf_s and vwprintf_s only in that they support the ability to specify the order in
which the arguments are used. For more information, see printf_p Positional Parameters.

_vwprintf_p is the wide-character version of _vprintf_p; the two functions behave identically if the stream is
opened in ANSI mode. _vprintf_p doesn't currently support output into a UNICODE stream.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vprintf-p-vprintf-p-l-vwprintf-p-vwprintf-p-l.md

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vtprintf_p _vprintf_p _vprintf_p _vwprintf_p

_vtprintf_p_l _vprintf_p_l _vprintf_p_l _vwprintf_p_l

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADERS

_vprintf_p, _vprintf_p_l <stdio.h> and <stdarg.h> <varargs.h>*

_vwprintf_p, _vwprintf_p_l <stdio.h> or <wchar.h>, and
<stdarg.h>

<varargs.h>*

See also

instead of the current thread locale.

Ensure that format is not a user-defined string. For more information, see Avoiding Buffer Overruns.

If format is a null pointer, or if the format string contains invalid formatting characters, the invalid parameter
handler is invoked, as described in Parameter Validation. If execution is allowed to continue, the functions return -
1 and set errno to EINVAL.

* Required for UNIX V compatibility.

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that are
associated with the console, stdin, stdout, and stderr, must be redirected before C run-time functions can use
them in UWP apps. For additional compatibility information, see Compatibility.

Stream I/O
vprintf Functions
_fprintf_p, _fprintf_p_l, _fwprintf_p, _fwprintf_p_l
_printf_p, _printf_p_l, _wprintf_p, _wprintf_p_l
_sprintf_p, _sprintf_p_l, _swprintf_p, _swprintf_p_l
vsprintf_s, _vsprintf_s_l, vswprintf_s, _vswprintf_s_l
va_arg, va_copy, va_end, va_start
_vfprintf_p, _vfprintf_p_l, _vfwprintf_p, _vfwprintf_p_l
_printf_p, _printf_p_l, _wprintf_p, _wprintf_p_l
printf_p Positional Parameters

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

vprintf_s, _vprintf_s_l, vwprintf_s, _vwprintf_s_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int vprintf_s(
 const char *format,
 va_list argptr
);
int _vprintf_s_l(
 const char *format,
 locale_t locale,
 va_list argptr
);
int vwprintf_s(
 const wchar_t *format,
 va_list argptr
);
int _vwprintf_s_l(
 const wchar_t *format,
 locale_t locale,
 va_list argptr
);

Parameters

Return Value

Remarks

Writes formatted output by using a pointer to a list of arguments. These versions of vprintf, _vprintf_l, vwprintf,
_vwprintf_l have security enhancements, as described in Security Features in the CRT.

format
Format specification.

argptr
Pointer to list of arguments.

locale
The locale to use.

For more information, see Format Specifications.

vprintf_s and vwprintf_s return the number of characters written, not including the terminating null character,
or a negative value if an output error occurs. If format is a null pointer, or if the format string contains invalid
formatting characters, the invalid parameter handler is invoked, as described in Parameter Validation. If execution
is allowed to continue, the functions return -1 and set errno to EINVAL.

For information on these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

Each of these functions takes a pointer to an argument list, then formats and writes the given data to stdout.

The secure versions of these functions differ from vprintf and vwprintf only in that the secure versions check
that the format string contains valid formatting characters.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vprintf-s-vprintf-s-l-vwprintf-s-vwprintf-s-l.md

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vtprintf_s vprintf_s vprintf_s vwprintf_s

_vtprintf_s_l _vprintf_s_l _vprintf_s_l _vwprintf_s_l

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADERS

vprintf_s, _vprintf_s_l <stdio.h> and <stdarg.h> <varargs.h>*

vwprintf_s, _vwprintf_s_l <stdio.h> or <wchar.h>, and
<stdarg.h>

<varargs.h>*

See also

vwprintf_s is the wide-character version of vprintf_s; the two functions behave identically if the stream is
opened in ANSI mode. vprintf_s doesn't currently support output into a UNICODE stream.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current thread locale.

Ensure that format is not a user-defined string. For more information, see Avoiding Buffer Overruns.

* Required for UNIX V compatibility.

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that are
associated with the console, stdin, stdout, and stderr, must be redirected before C run-time functions can use
them in UWP apps. For additional compatibility information, see Compatibility.

Stream I/O
vprintf Functions
fprintf, _fprintf_l, fwprintf, _fwprintf_l
printf, _printf_l, wprintf, _wprintf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
va_arg, va_copy, va_end, va_start

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

vscanf, vwscanf
11/9/2018 • 2 minutes to read • Edit Online

Syntax
int vscanf(
 const char *format,
 va_list arglist
);
int vwscanf(
 const wchar_t *format,
 va_list arglist
);

Parameters

Return Value

Remarks

IMPORTANT

Reads formatted data from the standard input stream. More secure versions of these function are available; see
vscanf_s, vwscanf_s.

format
Format control string.

arglist
Variable argument list.

Returns the number of fields that are successfully converted and assigned; the return value does not include fields
that were read but not assigned. A return value of 0 indicates that no fields were assigned.

If format is a NULL pointer, the invalid parameter handler is invoked, as described in Parameter Validation. If
execution is allowed to continue, these functions return EOF and set errno to EINVAL.

For information about these and other error codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

The vscanf function reads data from the standard input stream stdin and writes the data into the locations that
are given by the arglist argument list. Each argument in the list must be a pointer to a variable of a type that
corresponds to a type specifier in format. If copying occurs between strings that overlap, the behavior is
undefined.

When you use vscanf to read a string, always specify a width for the %s format (for example, "%32s" instead of "%s");
otherwise, incorrectly formatted input can cause a buffer overrun. As an alternative, you can use vscanf_s, vwscanf_s or
fgets.

vwscanf is a wide-character version of vscanf; the format argument to vwscanf is a wide-character string.
vwscanf and vscanf behave identically if the stream is opened in ANSI mode. vscanf doesn't support input from
a UNICODE stream.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vscanf-vwscanf.md

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vtscanf vscanf vscanf vwscanf

Requirements
ROUTINE REQUIRED HEADER

vscanf <stdio.h>

vwscanf <stdio.h> or <wchar.h>

Example

For more information, see Format Specification Fields: scanf and wscanf Functions.

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that are
associated with the console, stdin, stdout, and stderr, must be redirected before C run-time functions can use
them in UWP apps. For additional compatibility information, see Compatibility.

// crt_vscanf.c
// compile with: /W3
// This program uses the vscanf and vwscanf functions
// to read formatted input.

#include <stdio.h>
#include <stdarg.h>

int call_vscanf(char *format, ...)
{
 int result;
 va_list arglist;
 va_start(arglist, format);
 result = vscanf(format, arglist);
 va_end(arglist);
 return result;
}

int call_vwscanf(wchar_t *format, ...)
{
 int result;
 va_list arglist;
 va_start(arglist, format);
 result = vwscanf(format, arglist);
 va_end(arglist);
 return result;
}

int main(void)
{
 int i, result;
 float fp;
 char c, s[81];
 wchar_t wc, ws[81];
 result = call_vscanf("%d %f %c %C %80s %80S", &i, &fp, &c, &wc, s, ws);
 printf("The number of fields input is %d\n", result);
 printf("The contents are: %d %f %c %C %s %S\n", i, fp, c, wc, s, ws);
 result = call_vwscanf(L"%d %f %hc %lc %80S %80ls", &i, &fp, &c, &wc, s, ws);
 wprintf(L"The number of fields input is %d\n", result);
 wprintf(L"The contents are: %d %f %C %c %hs %s\n", i, fp, c, wc, s, ws);
}

 71 98.6 h z Byte characters
36 92.3 y n Wide charactersThe number of fields input is 6
The contents are: 71 98.599998 h z Byte characters
The number of fields input is 6
The contents are: 36 92.300003 y n Wide characters

See also
Floating-Point Support
Stream I/O
Locale
fscanf, _fscanf_l, fwscanf, _fwscanf_l
printf, _printf_l, wprintf, _wprintf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
sscanf, _sscanf_l, swscanf, _swscanf_l
vscanf_s, vwscanf_s

vscanf_s, vwscanf_s
10/31/2018 • 3 minutes to read • Edit Online

Syntax
int vscanf_s(
 const char *format,
 va_list arglist
);
int vwscanf_s(
 const wchar_t *format,
 va_list arglist
);

Parameters

Return Value

Remarks

Reads formatted data from the standard input stream. These versions of vscanf, vwscanf have security
enhancements, as described in Security Features in the CRT.

format
Format control string.

arglist
Variable argument list.

Returns the number of fields successfully converted and assigned; the return value does not include fields that
were read but not assigned. A return value of 0 indicates that no fields were assigned. The return value is EOF for
an error, or if the end-of-file character or the end-of-string character is encountered in the first attempt to read a
character. If format is a NULL pointer, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, vscanf_s and vwscanf_s return EOF and set errno to EINVAL.

For information about these and other error codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

The vscanf_s function reads data from the standard input stream stdin and writes the data into the locations that
are given by the arglist argument list. Each argument in the list must be a pointer to a variable of a type that
corresponds to a type specifier in format. If copying occurs between strings that overlap, the behavior is
undefined.

vwscanf_s is a wide-character version of vscanf_s; the format argument to vwscanf_s is a wide-character string.
vwscanf_s and vscanf_s behave identically if the stream is opened in ANSI mode. vscanf_s doesn't support
input from a UNICODE stream.

Unlike vscanf and vwscanf, vscanf_s and vwscanf_s require the buffer size to be specified for all input
parameters of type c, C, s, S, or string control sets that are enclosed in []. The buffer size in characters is passed as
an additional parameter immediately following the pointer to the buffer or variable. The buffer size in characters
for a wchar_t string is not the same as the size in bytes.

The buffer size includes the terminating null. You can use a width-specification field to ensure that the token that's
read in will fit into the buffer. If no width specification field is used, and the token read in is too big to fit in the

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vscanf-s-vwscanf-s.md

NOTE

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vtscanf_s vscanf_s vscanf_s vwscanf_s

Requirements
ROUTINE REQUIRED HEADER

vscanf_s <stdio.h>

wscanf_s <stdio.h> or <wchar.h>

Example

buffer, nothing is written to that buffer.

The size parameter is of type unsigned, not size_t.

For more information, see scanf Width Specification.

For more information, see Format Specification Fields: scanf and wscanf Functions.

The console is not supported in Universal Windows Platform (UWP) apps. The standard stream handles that are
associated with the console, stdin, stdout, and stderr, must be redirected before C run-time functions can use
them in UWP apps. For additional compatibility information, see Compatibility.

// crt_vscanf_s.c
// compile with: /W3
// This program uses the vscanf_s and vwscanf_s functions
// to read formatted input.

#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>

int call_vscanf_s(char *format, ...)
{
 int result;
 va_list arglist;
 va_start(arglist, format);
 result = vscanf_s(format, arglist);
 va_end(arglist);
 return result;
}

int call_vwscanf_s(wchar_t *format, ...)
{
 int result;
 va_list arglist;
 va_start(arglist, format);
 result = vwscanf_s(format, arglist);
 va_end(arglist);
 return result;
}

int main(void)
{
 int i, result;
 float fp;
 char c, s[81];
 wchar_t wc, ws[81];
 result = call_vscanf_s("%d %f %c %C %s %S", &i, &fp, &c, 1,
 &wc, 1, s, _countof(s), ws, _countof(ws));
 printf("The number of fields input is %d\n", result);
 printf("The contents are: %d %f %c %C %s %S\n", i, fp, c, wc, s, ws);
 result = call_vwscanf_s(L"%d %f %hc %lc %S %ls", &i, &fp, &c, 2,
 &wc, 1, s, _countof(s), ws, _countof(ws));
 wprintf(L"The number of fields input is %d\n", result);
 wprintf(L"The contents are: %d %f %C %c %hs %s\n", i, fp, c, wc, s, ws);
}

71 98.6 h z Byte characters
36 92.3 y n Wide characters

The number of fields input is 6
The contents are: 71 98.599998 h z Byte characters
The number of fields input is 6
The contents are: 36 92.300003 y n Wide characters

See also

When this program is given the input in the example, it produces this output:

Floating-Point Support
Stream I/O
Locale
printf, _printf_l, wprintf, _wprintf_l

scanf, _scanf_l, wscanf, _wscanf_l
scanf_s, _scanf_s_l, wscanf_s, _wscanf_s_l
vscanf, vwscanf

_vscprintf, _vscprintf_l, _vscwprintf, _vscwprintf_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _vscprintf(
 const char *format,
 va_list argptr
);
int _vscprintf_l(
 const char *format,
 locale_t locale,
 va_list argptr
);
int _vscwprintf(
 const wchar_t *format,
 va_list argptr
);
int _vscwprintf_l(
 const wchar_t *format,
 locale_t locale,
 va_list argptr
);

Parameters

Return Value

Remarks

Returns the number of characters in the formatted string using a pointer to a list of arguments.

format
Format-control string.

argptr
Pointer to list of arguments.

locale
The locale to use.

For more information, see Format Specifications.

_vscprintf returns the number of characters that would be generated if the string pointed to by the list of
arguments was printed or sent to a file or buffer using the specified formatting codes. The value returned does
not include the terminating null character. _vscwprintf performs the same function for wide characters.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current thread locale.

If format is a null pointer, the invalid parameter handler is invoked, as described in Parameter Validation. If
execution is allowed to continue, the functions return -1 and set errno to EINVAL.

Each argument (if any) is converted according to the corresponding format specification in format. The format
consists of ordinary characters and has the same form and function as the format argument for printf.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vscprintf-vscprintf-l-vscwprintf-vscwprintf-l.md

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vsctprintf _vscprintf _vscprintf _vscwprintf

_vsctprintf_l _vscprintf_l _vscprintf_l _vscwprintf_l

Requirements
ROUTINE REQUIRED HEADER

_vscprintf, _vscprintf_l <stdio.h>

_vscwprintf, _vscwprintf_l <stdio.h> or <wchar.h>

Example

See also

Ensure that if format is a user-defined string, it is null terminated and has the correct number and type of parameters. For
more information, see Avoiding Buffer Overruns.

For additional compatibility information, see Compatibility.

See the example for vsprintf.

Stream I/O
fprintf, _fprintf_l, fwprintf, _fwprintf_l
printf, _printf_l, wprintf, _wprintf_l
scanf, _scanf_l, wscanf, _wscanf_l
sscanf, _sscanf_l, swscanf, _swscanf_l
vprintf Functions

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

_vscprintf_p, _vscprintf_p_l, _vscwprintf_p,
_vscwprintf_p_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _vscprintf_p(
 const char *format,
 va_list argptr
);
int _vscprintf_p _l(
 const char *format,
 locale_t locale,
 va_list argptr
);
int _vscwprintf_p (
 const wchar_t *format,
 va_list argptr
);
int _vscwprintf_p _l(
 const wchar_t *format,
 locale_t locale,
 va_list argptr
);

Parameters

Return Value

Remarks

Returns the number of characters in the formatted string using a pointer to a list of arguments, with the ability to
specify the order in which the arguments are used.

format
Format-control string.

argptr
Pointer to list of arguments.

locale
The locale to use.

For more information, see Format Specifications.

_vscprintf_p returns the number of characters that would be generated if the string pointed to by the list of
arguments was printed or sent to a file or buffer using the specified formatting codes. The value returned does not
include the terminating null character. _vscwprintf_p performs the same function for wide characters.

These functions differ from _vscprintf and _vscwprintf only in that they support the ability to specify the order in
which the arguments are used. For more information, see printf_p Positional Parameters.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current thread locale.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vscprintf-p-vscprintf-p-l-vscwprintf-p-vscwprintf-p-l.md

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vsctprintf_p _vscprintf_p _vscprintf_p _vscwprintf_p

_vsctprintf_p_l _vscprintf_p_l _vscprintf_p_l _vscwprintf_p_l

Requirements
ROUTINE REQUIRED HEADER

_vscprintf_p, _vscprintf_p_l <stdio.h>

_vscwprintf_p, _vscwprintf_p_l <stdio.h> or <wchar.h>

Example

See also

If format is a null pointer, the invalid parameter handler is invoked, as described in Parameter Validation. If
execution is allowed to continue, the functions return -1 and set errno to EINVAL.

Ensure that if format is a user-defined string, it is null terminated and has the correct number and type of parameters. For
more information, see Avoiding Buffer Overruns.

For additional compatibility information, see Compatibility.

See the example for vsprintf.

vprintf Functions
_scprintf_p, _scprintf_p_l, _scwprintf_p, _scwprintf_p_l
_vscprintf, _vscprintf_l, _vscwprintf, _vscwprintf_l

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

vsnprintf, _vsnprintf, _vsnprintf_l, _vsnwprintf,
_vsnwprintf_l
10/31/2018 • 5 minutes to read • Edit Online

Syntax
int vsnprintf(
 char *buffer,
 size_t count,
 const char *format,
 va_list argptr
);
int _vsnprintf(
 char *buffer,
 size_t count,
 const char *format,
 va_list argptr
);
int _vsnprintf_l(
 char *buffer,
 size_t count,
 const char *format,
 locale_t locale,
 va_list argptr
);
int _vsnwprintf(
 wchar_t *buffer,
 size_t count,
 const wchar_t *format,
 va_list argptr
);
int _vsnwprintf_l(
 wchar_t *buffer,
 size_t count,
 const wchar_t *format,
 locale_t locale,
 va_list argptr
);
template <size_t size>
int vsnprintf(
 char (&buffer)[size],
 size_t count,
 const char *format,
 va_list argptr
); // C++ only
template <size_t size>
int _vsnprintf(
 char (&buffer)[size],
 size_t count,
 const char *format,
 va_list argptr
); // C++ only
template <size_t size>
int _vsnprintf_l(
 char (&buffer)[size],
 size_t count,
 const char *format,

Write formatted output using a pointer to a list of arguments. More secure versions of these functions are
available; see vsnprintf_s, _vsnprintf_s, _vsnprintf_s_l, _vsnwprintf_s, _vsnwprintf_s_l.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vsnprintf-vsnprintf-vsnprintf-l-vsnwprintf-vsnwprintf-l.md

 const char *format,
 locale_t locale,
 va_list argptr
); // C++ only
template <size_t size>
int _vsnwprintf(
 wchar_t (&buffer)[size],
 size_t count,
 const wchar_t *format,
 va_list argptr
); // C++ only
template <size_t size>
int _vsnwprintf_l(
 wchar_t (&buffer)[size],
 size_t count,
 const wchar_t *format,
 locale_t locale,
 va_list argptr
); // C++ only

Parameters

Return Value

Remarks

buffer
Storage location for output.

count
Maximum number of characters to write.

format
Format specification.

argptr
Pointer to list of arguments.

locale
The locale to use.

For more information, see Format Specifications.

The vsnprintf function returns the number of characters written, not counting the terminating null character. If
the buffer size specified by count is not sufficiently large to contain the output specified by format and argptr,
the return value of vsnprintf is the number of characters that would be written, not counting the null character, if
count were sufficiently large. If the return value is greater than count - 1, the output has been truncated. A return
value of -1 indicates that an encoding error has occurred.

Both _vsnprintf and _vsnwprintf functions return the number of characters written if the number of characters
to write is less than or equal to count; if the number of characters to write is greater than count, these functions
return -1 indicating that output has been truncated.

The value returned by all these functions does not include the terminating null, whether one is written or not.
When count is zero, the value returned is the number of characters the functions would write, not including any
terminating null. You can use this result to allocate sufficient buffer space for the string and its terminating null,
and then call the function again to fill the buffer.

If format is NULL, or if buffer is NULL and count is not equal to zero, these functions invoke the invalid
parameter handler, as described in Parameter Validation. If execution is allowed to continue, these functions
return -1 and set errno to EINVAL.

IMPORTANT

NOTE

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vsntprintf _vsnprintf _vsnprintf _vsnwprintf

_vsntprintf_l _vsnprintf_l _vsnprintf_l _vsnwprintf_l

Requirements
ROUTINE REQUIRED HEADER (C) REQUIRED HEADER (C++)

vsnprintf, _vsnprintf, _vsnprintf_l <stdio.h> <stdio.h> or <cstdio>

_vsnwprintf, _vsnwprintf_l <stdio.h> or <wchar.h> <stdio.h>, <wchar.h>, <cstdio>, or
<cwchar>

Example

Each of these functions takes a pointer to an argument list, then formats the data, and writes up to count
characters to the memory pointed to by buffer. The vsnprintf function always writes a null terminator, even if it
truncates the output. When using _vsnprintf and _vsnwprintf, the buffer will be null-terminated only if there is
room at the end (that is, if the number of characters to write is less than count).

To prevent certain kinds of security risks, ensure that format is not a user-defined string. For more information, see
Avoiding Buffer Overruns.

To ensure that there is room for the terminating null when calling _vsnprintf, _vsnprintf_l, _vsnwprintf and
_vsnwprintf_l, be sure that count is strictly less than the buffer length and initialize the buffer to null prior to calling the
function.

Because vsnprintf always writes the terminating null, the count parameter may be equal to the size of the buffer.

Beginning with the UCRT in Visual Studio 2015 and Windows 10, vsnprintf is no longer identical to _vsnprintf.
The vsnprintf function complies with the C99 standard; _vnsprintf is retained for backward compatibility with
older Visual Studio code.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current thread locale.

In C++, these functions have template overloads that invoke the newer, secure counterparts of these functions.
For more information, see Secure Template Overloads.

The _vsnprintf, _vsnprintf_l, _vsnwprintf and _vsnwprintf_l functions are Microsoft specific. For additional
compatibility information, see Compatibility.

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

// crt_vsnwprintf.c
// compile by using: cl /W3 crt_vsnwprintf.c

// To turn off error C4996, define this symbol:
#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>
#include <wtypes.h>

#define BUFFCOUNT (10)

void FormatOutput(LPCWSTR formatstring, ...)
{
 int nSize = 0;
 wchar_t buff[BUFFCOUNT];
 memset(buff, 0, sizeof(buff));
 va_list args;
 va_start(args, formatstring);
 // Note: _vsnwprintf is deprecated; consider vsnwprintf_s instead
 nSize = _vsnwprintf(buff, BUFFCOUNT - 1, formatstring, args); // C4996
 wprintf(L"nSize: %d, buff: %ls\n", nSize, buff);
 va_end(args);
}

int main() {
 FormatOutput(L"%ls %ls", L"Hi", L"there");
 FormatOutput(L"%ls %ls", L"Hi", L"there!");
 FormatOutput(L"%ls %ls", L"Hi", L"there!!");
}

nSize: 8, buff: Hi there
nSize: 9, buff: Hi there!
nSize: -1, buff: Hi there!

Example

The behavior changes if you use vsnprintf instead, along with narrow-string parameters. The count parameter
can be the entire size of the buffer, and the return value is the number of characters that would have been written
if count was large enough:

// crt_vsnprintf.c
// compile by using: cl /W4 crt_vsnprintf.c
#include <stdio.h>
#include <stdarg.h> // for va_list, va_start
#include <string.h> // for memset

#define BUFFCOUNT (10)

void FormatOutput(char* formatstring, ...)
{
 int nSize = 0;
 char buff[BUFFCOUNT];
 memset(buff, 0, sizeof(buff));
 va_list args;
 va_start(args, formatstring);
 nSize = vsnprintf(buff, sizeof(buff), formatstring, args);
 printf("nSize: %d, buff: %s\n", nSize, buff);
 va_end(args);
}

int main() {
 FormatOutput("%s %s", "Hi", "there"); // 8 chars + null
 FormatOutput("%s %s", "Hi", "there!"); // 9 chars + null
 FormatOutput("%s %s", "Hi", "there!!"); // 10 chars + null
}

nSize: 8, buff: Hi there
nSize: 9, buff: Hi there!
nSize: 10, buff: Hi there!

See also
Stream I/O
vprintf Functions
Format Specification Syntax: printf and wprintf Functions
fprintf, _fprintf_l, fwprintf, _fwprintf_l
printf, _printf_l, wprintf, _wprintf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
va_arg, va_copy, va_end, va_start

vsnprintf_s, _vsnprintf_s, _vsnprintf_s_l, _vsnwprintf_s,
_vsnwprintf_s_l
3/1/2019 • 3 minutes to read • Edit Online

Syntax

Write formatted output using a pointer to a list of arguments. These are versions of vsnprintf, _vsnprintf,
_vsnprintf_l, _vsnwprintf, _vsnwprintf_l with security enhancements as described in Security Features in the CRT.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vsnprintf-s-vsnprintf-s-vsnprintf-s-l-vsnwprintf-s-vsnwprintf-s-l.md

int vsnprintf_s(
 char *buffer,
 size_t sizeOfBuffer,
 size_t count,
 const char *format,
 va_list argptr
);
int _vsnprintf_s(
 char *buffer,
 size_t sizeOfBuffer,
 size_t count,
 const char *format,
 va_list argptr
);
int _vsnprintf_s_l(
 char *buffer,
 size_t sizeOfBuffer,
 size_t count,
 const char *format,
 locale_t locale,
 va_list argptr
);
int _vsnwprintf_s(
 wchar_t *buffer,
 size_t sizeOfBuffer,
 size_t count,
 const wchar_t *format,
 va_list argptr
);
int _vsnwprintf_s_l(
 wchar_t *buffer,
 size_t sizeOfBuffer,
 size_t count,
 const wchar_t *format,
 locale_t locale,
 va_list argptr
);
template <size_t size>
int _vsnprintf_s(
 char (&buffer)[size],
 size_t count,
 const char *format,
 va_list argptr
); // C++ only
template <size_t size>
int _vsnwprintf_s(
 wchar_t (&buffer)[size],
 size_t count,
 const wchar_t *format,
 va_list argptr
); // C++ only

Parameters
buffer
Storage location for output.

sizeOfBuffer
The size of the buffer for output, as the character count.

count
Maximum number of characters to write (not including the terminating null), or _TRUNCATE.

format
Format specification.

Return Value

Error Conditions

CONDITION RETURN ERRNO

buffer is NULL -1 EINVAL

format is NULL -1 EINVAL

count <= 0 -1 EINVAL

sizeOfBuffer too small (and count !=
_TRUNCATE)

-1 (and buffer set to an empty string) ERANGE

Remarks

IMPORTANT

argptr
Pointer to list of arguments.

locale
The locale to use.

For more information, see Format Specifications.

vsnprintf_s, _vsnprintf_s and _vsnwprintf_s return the number of characters written, not including the
terminating null, or a negative value if an output error occurs. vsnprintf_s is identical to _vsnprintf_s.
vsnprintf_s is included for compliance to the ANSI standard. _vnsprintf is retained for backward compatibility.

If the storage required to store the data and a terminating null exceeds sizeOfBuffer, the invalid parameter
handler is invoked, as described in Parameter Validation, unless count is _TRUNCATE, in which case as much of
the string as will fit in buffer is written and -1 returned. If execution continues after the invalid parameter
handler, these functions set buffer to an empty string, set errno to ERANGE , and return -1.

If buffer or format is a NULL pointer, or if count is less than or equal to zero, the invalid parameter handler is
invoked. If execution is allowed to continue, these functions set errno to EINVAL and return -1.

Each of these functions takes a pointer to an argument list, then formats and writes up to count characters of the
given data to the memory pointed to by buffer and appends a terminating null.

If count is _TRUNCATE, then these functions write as much of the string as will fit in buffer while leaving room
for a terminating null. If the entire string (with terminating null) fits in buffer, then these functions return the
number of characters written (not including the terminating null); otherwise, these functions return -1 to indicate
that truncation occurred.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current thread locale.

Ensure that format is not a user-defined string. For more information, see Avoiding Buffer Overruns.

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

NOTE

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vsntprintf_s _vsnprintf_s _vsnprintf_s _vsnwprintf_s

_vsntprintf_s_l _vsnprintf_s_l _vsnprintf_s_l _vsnwprintf_s_l

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADERS

vsnprintf_s <stdio.h> and <stdarg.h> <varargs.h>*

_vsnprintf_s, _vsnprintf_s_l <stdio.h> and <stdarg.h> <varargs.h>*

_vsnwprintf_s, _vsnwprintf_s_l <stdio.h> or <wchar.h>, and
<stdarg.h>

<varargs.h>*

Example
// crt_vsnprintf_s.cpp
#include <stdio.h>
#include <wtypes.h>

void FormatOutput(LPCSTR formatstring, ...)
{
 int nSize = 0;
 char buff[10];
 memset(buff, 0, sizeof(buff));
 va_list args;
 va_start(args, formatstring);
 nSize = vsnprintf_s(buff, _countof(buff), _TRUNCATE, formatstring, args);
 printf("nSize: %d, buff: %s\n", nSize, buff);
 va_end(args);
}

int main() {
 FormatOutput("%s %s", "Hi", "there");
 FormatOutput("%s %s", "Hi", "there!");
 FormatOutput("%s %s", "Hi", "there!!");
}

To ensure that there is room for the terminating null, be sure that count is strictly less than the buffer length, or use
_TRUNCATE.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically (eliminating the need to specify a size argument) and they can automatically replace older, non-
secure functions with their newer, secure counterparts. For more information, see Secure Template Overloads.

* Required for UNIX V compatibility.

For additional compatibility information, see Compatibility.

nSize: 8, buff: Hi there
nSize: 9, buff: Hi there!
nSize: -1, buff: Hi there!

See also
Stream I/O
vprintf Functions
fprintf, _fprintf_l, fwprintf, _fwprintf_l
printf, _printf_l, wprintf, _wprintf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
va_arg, va_copy, va_end, va_start

vsprintf, _vsprintf_l, vswprintf, _vswprintf_l,
__vswprintf_l
3/1/2019 • 3 minutes to read • Edit Online

Syntax

Write formatted output using a pointer to a list of arguments. More secure versions of these functions are
available; see vsprintf_s, _vsprintf_s_l, vswprintf_s, _vswprintf_s_l.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vsprintf-vsprintf-l-vswprintf-vswprintf-l-vswprintf-l.md

int vsprintf(
 char *buffer,
 const char *format,
 va_list argptr
);
int _vsprintf_l(
 char *buffer,
 const char *format,
 locale_t locale,
 va_list argptr
);
int vswprintf(
 wchar_t *buffer,
 size_t count,
 const wchar_t *format,
 va_list argptr
);
int _vswprintf_l(
 wchar_t *buffer,
 size_t count,
 const wchar_t *format,
 locale_t locale,
 va_list argptr
);
int __vswprintf_l(
 wchar_t *buffer,
 const wchar_t *format,
 locale_t locale,
 va_list argptr
);
template <size_t size>
int vsprintf(
 char (&buffer)[size],
 const char *format,
 va_list argptr
); // C++ only
template <size_t size>
int _vsprintf_l(
 char (&buffer)[size],
 const char *format,
 locale_t locale,
 va_list argptr
); // C++ only
template <size_t size>
int vswprintf(
 wchar_t (&buffer)[size],
 const wchar_t *format,
 va_list argptr
); // C++ only
template <size_t size>
int _vswprintf_l(
 wchar_t (&buffer)[size],
 const wchar_t *format,
 locale_t locale,
 va_list argptr
); // C++ only

Parameters
buffer
Storage location for output.

count
Maximum number of characters to store, in the wide string versions of this function.

format

Return Value

Remarks

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vstprintf vsprintf vsprintf vswprintf

_vstprintf_l _vsprintf_l _vsprintf_l _vswprintf_l

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADERS

vsprintf, _vsprintf_l <stdio.h> and <stdarg.h> <varargs.h>*

vswprintf, _vswprintf_l <stdio.h> or <wchar.h>, and
<stdarg.h>

<varargs.h>*

Format specification.

argptr
Pointer to list of arguments.

locale
The locale to use.

vsprintf and vswprintf return the number of characters written, not including the terminating null character, or
a negative value if an output error occurs. If buffer or format is a null pointer, these functions invoke the invalid
parameter handler, as described in Parameter Validation. If execution is allowed to continue, these functions
return -1 and set errno to EINVAL.

For information on these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

Each of these functions takes a pointer to an argument list, and then formats and writes the given data to the
memory pointed to by buffer.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed
in instead of the current thread locale.

Using vsprintf, there is no way to limit the number of characters written, which means that code using this function is
susceptible to buffer overruns. Use _vsnprintf instead, or call _vscprintf to determine how large a buffer is needed. Also,
ensure that format is not a user-defined string. For more information, see Avoiding Buffer Overruns.

vswprintf conforms to the ISO C Standard, which requires the second parameter, count, of type size_t. To force
the old nonstandard behavior, define _CRT_NON_CONFORMING_SWPRINTFS. The old behavior may not
be in a future version, so code should be changed to use the new conformant behavior.

In C++, these functions have template overloads that invoke the newer, secure counterparts of these functions.
For more information, see Secure Template Overloads.

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

Example
// crt_vsprintf.c
// compile with: /W3
// This program uses vsprintf to write to a buffer.
// The size of the buffer is determined by _vscprintf.

#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>

void test(char * format, ...)
{
 va_list args;
 int len;
 char *buffer;

 // retrieve the variable arguments
 va_start(args, format);

 len = _vscprintf(format, args) // _vscprintf doesn't count
 + 1; // terminating '\0'

 buffer = (char*)malloc(len * sizeof(char));

 vsprintf(buffer, format, args); // C4996
 // Note: vsprintf is deprecated; consider using vsprintf_s instead
 puts(buffer);

 free(buffer);
 va_end(args);
}

int main(void)
{
 test("%d %c %d", 123, '<', 456);
 test("%s", "This is a string");
}

123 < 456
This is a string

See also

* Required for UNIX V compatibility.

For additional compatibility information, see Compatibility.

Stream I/O
vprintf Functions
Format Specification Syntax: printf and wprintf Functions
fprintf, _fprintf_l, fwprintf, _fwprintf_l
printf, _printf_l, wprintf, _wprintf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
va_arg, va_copy, va_end, va_start

_vsprintf_p, _vsprintf_p_l, _vswprintf_p, _vswprintf_p_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _vsprintf_p(
 char *buffer,
 size_t sizeInBytes,
 const char *format,
 va_list argptr
);
int _vsprintf_p_l(
 char *buffer,
 size_t sizeInBytes,
 const char *format,
 locale_t locale,
 va_list argptr
);
int _vswprintf_p(
 wchar_t *buffer,
 size_t count,
 const wchar_t *format,
 va_list argptr
);
int _vswprintf_p_l(
 wchar_t *buffer,
 size_t count,
 const wchar_t *format,
 locale_t locale,
 va_list argptr
);

Parameters

Return Value

Write formatted output using a pointer to a list of arguments, with the ability to specify the order in which the
arguments are used.

buffer
Storage location for output.

sizeInBytes
Size of buffer in characters.

count
Maximum number of characters to store, in the UNICODE version of this function.

format
Format specification.

argptr
Pointer to list of arguments.

locale
The locale to use.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vsprintf-p-vsprintf-p-l-vswprintf-p-vswprintf-p-l.md

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vstprintf_p _vsprintf_p _vsprintf_p _vswprintf_p

_vstprintf_p_l _vsprintf_p_l _vsprintf_p_l _vswprintf_p_l

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADERS

_vsprintf_p, _vsprintf_p_l <stdio.h> and <stdarg.h> <varargs.h>*

_vswprintf_p, _vswprintf_p_l <stdio.h> or <wchar.h>, and
<stdarg.h>

<varargs.h>*

Example

_vsprintf_p and _vswprintf_p return the number of characters written, not including the terminating null
character, or a negative value if an output error occurs.

Each of these functions takes a pointer to an argument list, and then formats and writes the given data to the
memory pointed to by buffer.

These functions differ from the vsprintf_s and vswprintf_s only in that they support positional parameters. For
more information, see printf_p Positional Parameters.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current thread locale.

If the buffer or format parameters are NULL pointers, if count is zero, or if the format string contains invalid
formatting characters, the invalid parameter handler is invoked, as described in Parameter Validation. If execution
is allowed to continue, the functions return -1 and set errno to EINVAL.

* Required for UNIX V compatibility.

For additional compatibility information, see Compatibility.

// crt__vsprintf_p.c
// This program uses vsprintf_p to write to a buffer.
// The size of the buffer is determined by _vscprintf_p.

#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>

void example(char * format, ...)
{
 va_list args;
 int len;
 char *buffer = NULL;

 va_start(args, format);

 // _vscprintf doesn't count the
 // null terminating string so we add 1.
 len = _vscprintf_p(format, args) + 1;

 // Allocate memory for our buffer
 buffer = (char*)malloc(len * sizeof(char));
 if (buffer)
 {
 _vsprintf_p(buffer, len, format, args);
 puts(buffer);
 free(buffer);
 }
 va_end(args);
}

int main(void)
{
 // First example
 example("%2$d %1$c %3$d", '<', 123, 456);

 // Second example
 example("%s", "This is a string");
}

123 < 456
This is a string

See also
Stream I/O
vprintf Functions
Format Specification Syntax: printf and wprintf Functions
fprintf, _fprintf_l, fwprintf, _fwprintf_l
printf, _printf_l, wprintf, _wprintf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
va_arg, va_copy, va_end, va_start

vsprintf_s, _vsprintf_s_l, vswprintf_s, _vswprintf_s_l
3/27/2019 • 2 minutes to read • Edit Online

Syntax
int vsprintf_s(
 char *buffer,
 size_t numberOfElements,
 const char *format,
 va_list argptr
);
int _vsprintf_s_l(
 char *buffer,
 size_t numberOfElements,
 const char *format,
 locale_t locale,
 va_list argptr
);
int vswprintf_s(
 wchar_t *buffer,
 size_t numberOfElements,
 const wchar_t *format,
 va_list argptr
);
int _vswprintf_s_l(
 wchar_t *buffer,
 size_t numberOfElements,
 const wchar_t *format,
 locale_t locale,
 va_list argptr
);
template <size_t size>
int vsprintf_s(
 char (&buffer)[size],
 const char *format,
 va_list argptr
); // C++ only
template <size_t size>
int vswprintf_s(
 wchar_t (&buffer)[size],
 const wchar_t *format,
 va_list argptr
); // C++ only

Parameters

Write formatted output using a pointer to a list of arguments. These are versions of vsprintf, _vsprintf_l,
vswprintf, _vswprintf_l, __vswprintf_l with security enhancements as described in Security Features in the CRT.

buffer
Storage location for output.

numberOfElements
Size of buffer in characters.

format
Format specification.

argptr

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vsprintf-s-vsprintf-s-l-vswprintf-s-vswprintf-s-l.md

Return Value

Remarks

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vstprintf_s vsprintf_s vsprintf_s vswprintf_s

_vstprintf_s_l _vsprintf_s_l _vsprintf_s_l _vswprintf_s_l

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADERS

vsprintf_s, _vsprintf_s_l <stdio.h> and <stdarg.h> <varargs.h>*

vswprintf_s, _vswprintf_s_l <stdio.h> or <wchar.h>, and
<stdarg.h>

<varargs.h>*

Example

Pointer to list of arguments.

locale
The locale to use.

vsprintf_s and vswprintf_s return the number of characters written, not including the terminating null character,
or a negative value if an output error occurs. If buffer or format is a null pointer, if numberOfElements is zero, or
if the format string contains invalid formatting characters, the invalid parameter handler is invoked, as described
in Parameter Validation. If execution is allowed to continue, the functions return -1 and set errno to EINVAL.

For information on these and other error codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

Each of these functions takes a pointer to an argument list, and then formats and writes the given data to the
memory pointed to by buffer.

vswprintf_s conforms to the ISO C Standard for vswprintf, which requires the second parameter, count, of type
size_t.

These functions differ from the non-secure versions only in that the secure versions support positional
parameters. For more information, see printf_p Positional Parameters.

The versions of these functions with the _l suffix are identical except that they use the locale parameter passed in
instead of the current thread locale.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically (eliminating the need to specify a size argument) and they can automatically replace older, non-
secure functions with their newer, secure counterparts. For more information, see Secure Template Overloads.

* Required for UNIX V compatibility.

For additional compatibility information, see Compatibility.

// crt_vsprintf_s.c
// This program uses vsprintf_s to write to a buffer.
// The size of the buffer is determined by _vscprintf.

#include <stdlib.h>
#include <stdarg.h>

void test(char * format, ...)
{
 va_list args;
 int len;
 char * buffer;

 va_start(args, format);
 len = _vscprintf(format, args) // _vscprintf doesn't count
 + 1; // terminating '\0'
 buffer = malloc(len * sizeof(char));
 vsprintf_s(buffer, len, format, args);
 puts(buffer);
 free(buffer);
 va_end(args);
}

int main(void)
{
 test("%d %c %d", 123, '<', 456);
 test("%s", "This is a string");
}

123 < 456
This is a string

See also
Stream I/O
vprintf Functions
Format Specification Syntax: printf and wprintf Functions
fprintf, _fprintf_l, fwprintf, _fwprintf_l
printf, _printf_l, wprintf, _wprintf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
va_arg, va_copy, va_end, va_start

vsscanf, vswscanf
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int vsscanf(
 const char *buffer,
 const char *format,
 va_list arglist
);
int vswscanf(
 const wchar_t *buffer,
 const wchar_t *format,
 va_list arglist
);

Parameters

Return Value

Remarks

Reads formatted data from a string. More secure versions of these functions are available; see vsscanf_s,
vswscanf_s.

buffer
Stored data

format
Format-control string. For more information, see Format Specification Fields: scanf and wscanf Functions.

arglist
Variable argument list.

Each of these functions returns the number of fields that are successfully converted and assigned; the return value
does not include fields that were read but not assigned. A return value of 0 indicates that no fields were assigned.
The return value is EOF for an error or if the end of the string is reached before the first conversion.

If buffer or format is a NULL pointer, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, these functions return -1 and set errno to EINVAL.

For information about these and other error codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

The vsscanf function reads data from buffer into the locations that are given by each argument in the arglist
argument list. Every argument in the list must be a pointer to a variable that has a type that corresponds to a type
specifier in format. The format argument controls the interpretation of the input fields and has the same form and
function as the format argument for the scanf function. If copying takes place between strings that overlap, the
behavior is undefined.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vsscanf-vswscanf.md

IMPORTANT

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vstscanf vsscanf vsscanf vswscanf

Requirements
ROUTINE REQUIRED HEADER

vsscanf <stdio.h>

vswscanf <stdio.h> or <wchar.h>

Example

When you use vsscanf to read a string, always specify a width for the %s format (for example, "%32s" instead of "%s");
otherwise, incorrectly formatted input can cause a buffer overrun.

vswscanf is a wide-character version of vsscanf; the arguments to vswscanf are wide-character strings. vsscanf
does not handle multibyte hexadecimal characters. vswscanf does not handle Unicode full-width hexadecimal or
"compatibility zone" characters. Otherwise, vswscanf and vsscanf behave identically.

For additional compatibility information, see Compatibility.

// crt_vsscanf.c
// compile with: /W3
// This program uses vsscanf to read data items
// from a string named tokenstring, then displays them.

#include <stdio.h>
#include <stdarg.h>

int call_vsscanf(char *tokenstring, char *format, ...)
{
 int result;
 va_list arglist;
 va_start(arglist, format);
 result = vsscanf(tokenstring, format, arglist);
 va_end(arglist);
 return result;
}

int main(void)
{
 char tokenstring[] = "15 12 14...";
 char s[81];
 char c;
 int i;
 float fp;

 // Input various data from tokenstring:
 // max 80 character string:
 call_vsscanf(tokenstring, "%80s", s);
 call_vsscanf(tokenstring, "%c", &c);
 call_vsscanf(tokenstring, "%d", &i);
 call_vsscanf(tokenstring, "%f", &fp);

 // Output the data read
 printf("String = %s\n", s);
 printf("Character = %c\n", c);
 printf("Integer: = %d\n", i);
 printf("Real: = %f\n", fp);
}

String = 15
Character = 1
Integer: = 15
Real: = 15.000000

See also
Stream I/O
scanf, _scanf_l, wscanf, _wscanf_l
sscanf, _sscanf_l, swscanf, _swscanf_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
vsscanf_s, vswscanf_s

vsscanf_s, vswscanf_s
10/31/2018 • 3 minutes to read • Edit Online

Syntax
int vsscanf_s(
 const char *buffer,
 const char *format,
 va_list argptr
);
int vswscanf_s(
 const wchar_t *buffer,
 const wchar_t *format,
 va_list arglist
);

Parameters

Return Value

Remarks

Reads formatted data from a string. These versions of vsscanf, vswscanf have security enhancements, as described
in Security Features in the CRT.

buffer
Stored data

format
Format-control string. For more information, see Format Specification Fields: scanf and wscanf Functions.

arglist
Variable argument list.

Each of these functions returns the number of fields that are successfully converted and assigned; the return value
does not include fields that were read but not assigned. A return value of 0 indicates that no fields were assigned.
The return value is EOF for an error or if the end of the string is reached before the first conversion.

If buffer or format is a NULL pointer, the invalid parameter handler is invoked, as described in Parameter
Validation. If execution is allowed to continue, these functions return -1 and set errno to EINVAL.

For information about these and other error codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

The vsscanf_s function reads data from buffer into the locations that are given by each argument in the arglist
argument list. The arguments in the argument list specify pointers to variables that have a type that corresponds
to a type specifier in format. Unlike the less secure version vsscanf, a buffer size parameter is required when you
use the type field characters c, C, s, S, or string-control sets that are enclosed in []. The buffer size in characters
must be supplied as an additional parameter immediately after each buffer parameter that requires it.

The buffer size includes the terminating null. A width specification field may be used to ensure that the token
that's read in will fit into the buffer. If no width specification field is used, and the token read in is too big to fit in
the buffer, nothing is written to that buffer.

For more information, see scanf_s, _scanf_s_l, wscanf_s, _wscanf_s_l and scanf Type Field Characters.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/vsscanf-s-vswscanf-s.md

NOTE

Generic-Text Routine Mappings

TCHAR.H ROUTINE
_UNICODE & _MBCS NOT
DEFINED _MBCS DEFINED _UNICODE DEFINED

_vstscanf_s vsscanf_s vsscanf_s vswscanf_s

Requirements
ROUTINE REQUIRED HEADER

vsscanf_s <stdio.h>

vswscanf_s <stdio.h> or <wchar.h>

Example

The size parameter is of type unsigned, not size_t.

The format argument controls the interpretation of the input fields and has the same form and function as the
format argument for the scanf_s function. If copying occurs between strings that overlap, the behavior is
undefined.

vswscanf_s is a wide-character version of vsscanf_s; the arguments to vswscanf_s are wide-character strings.
vsscanf_s does not handle multibyte hexadecimal characters. vswscanf_s does not handle Unicode full-width
hexadecimal or "compatibility zone" characters. Otherwise, vswscanf_s and vsscanf_s behave identically.

For additional compatibility information, see Compatibility.

// crt_vsscanf_s.c
// compile with: /W3
// This program uses vsscanf_s to read data items
// from a string named tokenstring, then displays them.

#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>

int call_vsscanf_s(char *tokenstring, char *format, ...)
{
 int result;
 va_list arglist;
 va_start(arglist, format);
 result = vsscanf_s(tokenstring, format, arglist);
 va_end(arglist);
 return result;
}

int main(void)
{
 char tokenstring[] = "15 12 14...";
 char s[81];
 char c;
 int i;
 float fp;

 // Input various data from tokenstring:
 // max 80 character string:
 call_vsscanf_s(tokenstring, "%80s", s, _countof(s));
 call_vsscanf_s(tokenstring, "%c", &c, sizeof(char));
 call_vsscanf_s(tokenstring, "%d", &i);
 call_vsscanf_s(tokenstring, "%f", &fp);

 // Output the data read
 printf("String = %s\n", s);
 printf("Character = %c\n", c);
 printf("Integer: = %d\n", i);
 printf("Real: = %f\n", fp);
}

String = 15
Character = 1
Integer: = 15
Real: = 15.000000

See also
Stream I/O
scanf, _scanf_l, wscanf, _wscanf_l
sscanf, _sscanf_l, swscanf, _swscanf_l
sscanf_s, _sscanf_s_l, swscanf_s, _swscanf_s_l
sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
vsscanf, vswscanf

wcrtomb
10/31/2018 • 2 minutes to read • Edit Online

Syntax
size_t wcrtomb(
 char *mbchar,
 wchar_t wchar,
 mbstate_t *mbstate
);
template <size_t size>
size_t wcrtomb(
 char (&mbchar)[size],
 wchar_t wchar,
 mbstate_t *mbstate
); // C++ only

Parameters

Return Value

Remarks

Convert a wide character into its multibyte character representation. A more secure version of this function is
available; see wcrtomb_s.

mbchar
The resulting multibyte converted character.

wchar
A wide character to convert.

mbstate
A pointer to an mbstate_t object.

Returns the number of bytes required to represent the converted multibyte character, otherwise a -1 if an error
occurs.

The wcrtomb function converts a wide character, beginning in the specified conversion state contained in
mbstate, from the value contained in wchar, into the address represented by mbchar. The return value is the
number of bytes required to represent the corresponding multibyte character, but it will not return more than
MB_CUR_MAX bytes.

If mbstate is null, the internal mbstate_t object containing the conversion state of mbchar is used. If the character
sequence wchar does not have a corresponding multibyte character representation, a -1 is returned and the errno
is set to EILSEQ.

The wcrtomb function differs from wctomb, _wctomb_l by its restartability. The conversion state is stored in
mbstate for subsequent calls to the same or other restartable functions. Results are undefined when mixing the
use of restartable and nonrestartable functions. For example, an application would use wcsrlen rather than
wcsnlen, if a subsequent call to wcsrtombs were used instead of wcstombs.

In C++, this function has a template overload that invokes the newer, secure counterparts of this function. For

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/wcrtomb.md

Exceptions

Example
// crt_wcrtomb.c
// compile with: /W3
// This program converts a wide character
// to its corresponding multibyte character.

#include <string.h>
#include <stdio.h>
#include <wchar.h>

int main(void)
{
 size_t sizeOfCovertion = 0;
 mbstate_t mbstate;
 char mbStr = 0;
 wchar_t* wcStr = L"Q";

 // Reset to initial conversion state
 memset(&mbstate, 0, sizeof(mbstate));

 sizeOfCovertion = wcrtomb(&mbStr, *wcStr, &mbstate); // C4996
 // Note: wcrtomb is deprecated; consider using wcrtomb_s instead
 if (sizeOfCovertion > 0)
 {
 printf("The corresponding wide character \"");
 wprintf(L"%s\"", wcStr);
 printf(" was converted to the \"%c\" ", mbStr);
 printf("multibyte character.\n");
 }
 else
 {
 printf("No corresponding multibyte character "
 "was found.\n");
 }
}

The corresponding wide character "Q" was converted to the "Q" multibyte character.

Requirements
ROUTINE REQUIRED HEADER

wcrtomb <wchar.h>

See also

more information, see Secure Template Overloads.

The wcrtomb function is multithread safe as long as no function in the current thread calls setlocale while this
function is executing and while the mbstate is null.

Data Conversion
Locale
Interpretation of Multibyte-Character Sequences
mbsinit

wcrtomb_s
10/31/2018 • 2 minutes to read • Edit Online

Syntax
errno_t wcrtomb_s(
 size_t *pReturnValue,
 char *mbchar,
 size_t sizeOfmbchar,
 wchar_t *wchar,
 mbstate_t *mbstate
);
template <size_t size>
errno_t wcrtomb_s(
 size_t *pReturnValue,
 char (&mbchar)[size],
 wchar_t *wchar,
 mbstate_t *mbstate
); // C++ only

Parameters

Return Value

Remarks

Convert a wide character into its multibyte character representation. A version of wcrtomb with security
enhancements as described in Security Features in the CRT.

pReturnValue
Returns the number of bytes written or -1 if an error occurred.

mbchar
The resulting multibyte converted character.

sizeOfmbchar
The size of the mbchar variable in bytes.

wchar
A wide character to convert.

mbstate
A pointer to an mbstate_t object.

Returns zero or an errno value if an error occurs.

The wcrtomb_s function converts a wide character, beginning in the specified conversion state contained in
mbstate, from the value contained in wchar, into the address represented by mbchar. The pReturnValue value will
be the number of bytes converted, but no more than MB_CUR_MAX bytes, or an -1 if an error occurred.

If mbstate is null, the internal mbstate_t conversion state is used. If the character contained in wchar does not
have a corresponding multibyte character, the value of pReturnValue will be -1 and the function will return the
errno value of EILSEQ.

The wcrtomb_s function differs from wctomb_s, _wctomb_s_l by its restartability. The conversion state is stored

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/wcrtomb-s.md

Exceptions

Example
// crt_wcrtomb_s.c
// This program converts a wide character
// to its corresponding multibyte character.
//

#include <string.h>
#include <stdio.h>
#include <wchar.h>

int main(void)
{
 errno_t returnValue;
 size_t pReturnValue;
 mbstate_t mbstate;
 size_t sizeOfmbStr = 1;
 char mbchar = 0;
 wchar_t* wchar = L"Q\0";

 // Reset to initial conversion state
 memset(&mbstate, 0, sizeof(mbstate));

 returnValue = wcrtomb_s(&pReturnValue, &mbchar, sizeof(char),
 *wchar, &mbstate);
 if (returnValue == 0) {
 printf("The corresponding wide character \"");
 wprintf(L"%s\"", wchar);
 printf(" was converted to a the \"%c\" ", mbchar);
 printf("multibyte character.\n");
 }
 else
 {
 printf("No corresponding multibyte character "
 "was found.\n");
 }
}

The corresponding wide character "Q" was converted to a the "Q" multibyte character.

Requirements
ROUTINE REQUIRED HEADER

wcrtomb_s <wchar.h>

in mbstate for subsequent calls to the same or other restartable functions. Results are undefined when mixing the
use of restartable and nonrestartable functions. For example, an application would use wcsrlen rather than
wcslen, if a subsequent call to wcsrtombs_s were used instead of wcstombs_s.

In C++, using this function is simplified by template overloads; the overloads can infer buffer length automatically
(eliminating the need to specify a size argument) and they can automatically replace older, non-secure functions
with their newer, secure counterparts. For more information, see Secure Template Overloads.

The wcrtomb_s function is multithread safe as long as no function in the current thread calls setlocale while this
function is executing and the mbstate is null.

See also
Data Conversion
Locale
Interpretation of Multibyte-Character Sequences
mbsinit

wcsrtombs
10/31/2018 • 2 minutes to read • Edit Online

Syntax
size_t wcsrtombs(
 char *mbstr,
 const wchar_t **wcstr,
 sizeof count,
 mbstate_t *mbstate
);
template <size_t size>
size_t wcsrtombs(
 char (&mbstr)[size],
 const wchar_t **wcstr,
 sizeof count,
 mbstate_t *mbstate
); // C++ only

Parameters

Return Value

Remarks

Convert a wide character string to its multibyte character string representation. A more secure version of this
function is available; see wcsrtombs_s.

mbstr
The resulting converted multibyte character string's address location.

wcstr
Indirectly points to the location of the wide character string to be converted.

count
The number of character to be converted.

mbstate
A pointer to an mbstate_t conversion state object.

Returns the number of bytes successfully converted, not including the null terminating null byte (if any), otherwise
a -1 if an error occurred.

The wcsrtombs function converts a string of wide characters, beginning in the specified conversion state
contained in mbstate, from the values indirect pointed to in wcstr, into the address of mbstr. The conversion will
continue for each character until: after a null terminating wide character is encountered, when a non
corresponding character is encountered or when the next character would exceed the limit contained in count. If
wcsrtombs encounters the wide-character null character (L'\0') either before or when count occurs, it converts it
to an 8-bit 0 and stops.

Thus, the multibyte character string at mbstr is null-terminated only if wcsrtombs encounters a wide character
null character during conversion. If the sequences pointed to by wcstr and mbstr overlap, the behavior of
wcsrtombs is undefined. wcsrtombs is affected by the LC_TYPE category of the current locale.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/wcsrtombs.md

Exceptions

Example
// crt_wcsrtombs.cpp
// compile with: /W3
// This code example converts a wide
// character string into a multibyte
// character string.

#include <stdio.h>
#include <memory.h>
#include <wchar.h>
#include <errno.h>

#define MB_BUFFER_SIZE 100

int main()
{
 const wchar_t wcString[] =
 {L"Every good boy does fine."};
 const wchar_t *wcsIndirectString = wcString;
 char mbString[MB_BUFFER_SIZE];
 size_t countConverted;
 mbstate_t mbstate;

 // Reset to initial shift state
 ::memset((void*)&mbstate, 0, sizeof(mbstate));

 countConverted = wcsrtombs(mbString, &wcsIndirectString,
 MB_BUFFER_SIZE, &mbstate); // C4996
 // Note: wcsrtombs is deprecated; consider using wcsrtombs_s
 if (errno == EILSEQ)
 {
 printf("An encoding error was detected in the string.\n");
 }
 else
 {
 printf("The string was successfuly converted.\n");
 }
}

The string was successfuly converted.

The wcsrtombs function differs from wcstombs, _wcstombs_l by its restartability. The conversion state is stored in
mbstate for subsequent calls to the same or other restartable functions. Results are undefined when mixing the
use of restartable and nonrestartable functions. For example, an application would use wcsrlen rather than
wcsnlen, if a subsequent call to wcsrtombs were used instead of wcstombs.

If the mbstr argument is NULL, wcsrtombs returns the required size in bytes of the destination string. If mbstate
is null, the internal mbstate_t conversion state is used. If the character sequence wchar does not have a
corresponding multibyte character representation, a -1 is returned and the errno is set to EILSEQ.

In C++, this function has a template overload that invokes the newer, secure counterpart of this function. For more
information, see Secure Template Overloads.

The wcsrtombs function is multithread safe as long as no function in the current thread calls setlocale while this
function is executing and the mbstate is not null.

Requirements
ROUTINE REQUIRED HEADER

wcsrtombs <wchar.h>

See also
Data Conversion
Locale
Interpretation of Multibyte-Character Sequences
wcrtomb
wcrtomb_s
wctomb, _wctomb_l
wcstombs, _wcstombs_l
mbsinit

wcsrtombs_s
4/22/2019 • 3 minutes to read • Edit Online

Syntax
errno_t wcsrtombs_s(
 size_t *pReturnValue,
 char *mbstr,
 size_t sizeInBytes,
 const wchar_t **wcstr,
 sizeof count,
 mbstate_t *mbstate
);
template <size_t size>
errno_t wcsrtombs_s(
 size_t *pReturnValue,
 char (&mbstr)[size],
 const wchar_t **wcstr,
 sizeof count,
 mbstate_t *mbstate
); // C++ only

Parameters

Return Value

ERROR CONDITION RETURN VALUE AND ERRNO

mbstr is NULL and sizeInBytes > 0 EINVAL

wcstr is NULL EINVAL

Convert a wide character string to its multibyte character string representation. A version of wcsrtombs with
security enhancements as described in Security Features in the CRT.

pReturnValue
The size in bytes of the converted string, including the null terminator.

mbstr
The address of a buffer for the resulting converted multibyte character string.

sizeInBytes
The size in bytes of the mbstr buffer.

wcstr
Points to the wide character string to be converted.

count
The maximum number of bytes to be stored in the mbstr buffer, or _TRUNCATE.

mbstate
A pointer to an mbstate_t conversion state object.

Zero if successful, an error code on failure.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/wcsrtombs-s.md

The destination buffer is too small to contain the converted
string (unless count is _TRUNCATE; see Remarks below)

ERANGE

ERROR CONDITION RETURN VALUE AND ERRNO

Remarks

IMPORTANT

Exceptions

Example

If any of these conditions occurs, the invalid parameter exception is invoked as described in Parameter Validation .
If execution is allowed to continue, the function returns an error code and sets errno as indicated in the table.

The wcsrtombs_s function converts a string of wide characters pointed to by wcstr into multibyte characters
stored in the buffer pointed to by mbstr, using the conversion state contained in mbstate. The conversion will
continue for each character until one of these conditions is met:

A null wide character is encountered

A wide character that cannot be converted is encountered

The number of bytes stored in the mbstr buffer equals count.

The destination string is always null-terminated (even in the case of an error).

If count is the special value _TRUNCATE, then wcsrtombs_s converts as much of the string as will fit into the
destination buffer, while still leaving room for a null terminator.

If wcsrtombs_s successfully converts the source string, it puts the size in bytes of the converted string, including
the null terminator, into *pReturnValue (provided pReturnValue is not NULL). This occurs even if the mbstr
argument is NULL and provides a way to determine the required buffer size. Note that if mbstr is NULL, count is
ignored.

If wcsrtombs_s encounters a wide character it cannot convert to a multibyte character, it puts -1 in *pReturnValue,
sets the destination buffer to an empty string, sets errno to EILSEQ, and returns EILSEQ.

If the sequences pointed to by wcstr and mbstr overlap, the behavior of wcsrtombs_s is undefined. wcsrtombs_s
is affected by the LC_TYPE category of the current locale.

Ensure that wcstr and mbstr do not overlap, and that count correctly reflects the number of wide characters to convert.

The wcsrtombs_s function differs from wcstombs_s, _wcstombs_s_l by its restartability. The conversion state is
stored in mbstate for subsequent calls to the same or other restartable functions. Results are undefined when
mixing the use of restartable and nonrestartable functions. For example, an application would use wcsrlen rather
than wcslen, if a subsequent call to wcsrtombs_s were used instead of wcstombs_s.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length
automatically (eliminating the need to specify a size argument) and they can automatically replace older, non-
secure functions with their newer, secure counterparts. For more information, see Secure Template Overloads.

The wcsrtombs_s function is multithread safe as long as no function in the current thread calls setlocale while
this function is executing and the mbstate is null.

// crt_wcsrtombs_s.cpp
//
// This code example converts a wide
// character string into a multibyte
// character string.
//

#include <stdio.h>
#include <memory.h>
#include <wchar.h>
#include <errno.h>

#define MB_BUFFER_SIZE 100

void main()
{
 const wchar_t wcString[] =
 {L"Every good boy does fine."};
 const wchar_t *wcsIndirectString = wcString;
 char mbString[MB_BUFFER_SIZE];
 size_t countConverted;
 errno_t err;
 mbstate_t mbstate;

 // Reset to initial shift state
 ::memset((void*)&mbstate, 0, sizeof(mbstate));

 err = wcsrtombs_s(&countConverted, mbString, MB_BUFFER_SIZE,
 &wcsIndirectString, MB_BUFFER_SIZE, &mbstate);
 if (err == EILSEQ)
 {
 printf("An encoding error was detected in the string.\n");
 }
 else
 {
 printf("The string was successfully converted.\n");
 }
}

The string was successfully converted.

Requirements
ROUTINE REQUIRED HEADER

wcsrtombs_s <wchar.h>

See also
Data Conversion
Locale
Interpretation of Multibyte-Character Sequences
wcrtomb
wcrtomb_s
wctomb, _wctomb_l
wcstombs, _wcstombs_l
mbsinit

wcstombs, _wcstombs_l
3/1/2019 • 2 minutes to read • Edit Online

Syntax
size_t wcstombs(
 char *mbstr,
 const wchar_t *wcstr,
 size_t count
);
size_t _wcstombs_l(
 char *mbstr,
 const wchar_t *wcstr,
 size_t count,
 _locale_t locale
);
template <size_t size>
size_t wcstombs(
 char (&mbstr)[size],
 const wchar_t *wcstr,
 size_t count
); // C++ only
template <size_t size>
size_t _wcstombs_l(
 char (&mbstr)[size],
 const wchar_t *wcstr,
 size_t count,
 _locale_t locale
); // C++ only

Parameters

Return Value

Remarks

Converts a sequence of wide characters to a corresponding sequence of multibyte characters. More secure
versions of these functions are available; see wcstombs_s, _wcstombs_s_l.

mbstr
The address of a sequence of multibyte characters.

wcstr
The address of a sequence of wide characters.

count
The maximum number of bytes that can be stored in the multibyte output string.

locale
The locale to use.

If wcstombs successfully converts the multibyte string, it returns the number of bytes written into the
multibyte output string, excluding the terminating null (if any). If the mbstr argument is NULL, wcstombs
returns the required size in bytes of the destination string. If wcstombs encounters a wide character it cannot
convert to a multibyte character, it returns -1 cast to type size_t and sets errno to EILSEQ.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/wcstombs-wcstombs-l.md

Requirements
ROUTINE REQUIRED HEADER

wcstombs <stdlib.h>

_wcstombs_l <stdlib.h>

Example

The wcstombs function converts the wide-character string pointed to by wcstr to the corresponding multibyte
characters and stores the results in the mbstr array. The count parameter indicates the maximum number of
bytes that can be stored in the multibyte output string (that is, the size of mbstr). In general, it is not known
how many bytes will be required when converting a wide-character string. Some wide characters will require
only one byte in the output string; others require two. If there are two bytes in the multibyte output string for
every wide character in the input string (including the wide character null), the result is guaranteed to fit.

If wcstombs encounters the wide-character null character (L'\0') either before or when count occurs, it
converts it to an 8-bit 0 and stops. Thus, the multibyte character string at mbstr is null-terminated only if
wcstombs encounters a wide-character null character during conversion. If the sequences pointed to by wcstr
and mbstr overlap, the behavior of wcstombs is undefined.

If the mbstr argument is NULL, wcstombs returns the required size in bytes of the destination string.

wcstombs validates its parameters. If wcstr is NULL, or if count is greater than INT_MAX, this function
invokes the invalid parameter handler, as described in Parameter Validation . If execution is allowed to
continue, the function sets errno to EINVAL and returns -1.

wcstombs uses the current locale for any locale-dependent behavior; _wcstombs_l is identical except that it
uses the locale passed in instead. For more information, see Locale.

In C++, these functions have template overloads that invoke the newer, secure counterparts of these functions.
For more information, see Secure Template Overloads.

For additional compatibility information, see Compatibility.

This program illustrates the behavior of the wcstombs function.

// crt_wcstombs.c
// compile with: /W3
// This example demonstrates the use
// of wcstombs, which converts a string
// of wide characters to a string of
// multibyte characters.

#include <stdlib.h>
#include <stdio.h>

#define BUFFER_SIZE 100

int main(void)
{
 size_t count;
 char *pMBBuffer = (char *)malloc(BUFFER_SIZE);
 wchar_t *pWCBuffer = L"Hello, world.";

 printf("Convert wide-character string:\n");

 count = wcstombs(pMBBuffer, pWCBuffer, BUFFER_SIZE); // C4996
 // Note: wcstombs is deprecated; consider using wcstombs_s instead
 printf(" Characters converted: %u\n",
 count);
 printf(" Multibyte character: %s\n\n",
 pMBBuffer);

 free(pMBBuffer);
}

Convert wide-character string:
 Characters converted: 13
 Multibyte character: Hello, world.

See also
Data Conversion
Locale
_mbclen, mblen, _mblen_l
mbstowcs, _mbstowcs_l
mbtowc, _mbtowc_l
wctomb, _wctomb_l
WideCharToMultiByte

https://docs.microsoft.com/windows/desktop/api/stringapiset/nf-stringapiset-widechartomultibyte

wcstombs_s, _wcstombs_s_l
4/22/2019 • 3 minutes to read • Edit Online

Syntax
errno_t wcstombs_s(
 size_t *pReturnValue,
 char *mbstr,
 size_t sizeInBytes,
 const wchar_t *wcstr,
 size_t count
);

errno_t _wcstombs_s_l(
 size_t *pReturnValue,
 char *mbstr,
 size_t sizeInBytes,
 const wchar_t *wcstr,
 size_t count,
 _locale_t locale
);

template <size_t size>
errno_t wcstombs_s(
 size_t *pReturnValue,
 char (&mbstr)[size],
 const wchar_t *wcstr,
 size_t count
); // C++ only

template <size_t size>
errno_t _wcstombs_s_l(
 size_t *pReturnValue,
 char (&mbstr)[size],
 const wchar_t *wcstr,
 size_t count,
 _locale_t locale
); // C++ only

Parameters

Converts a sequence of wide characters to a corresponding sequence of multibyte characters. A version of
wcstombs, _wcstombs_l with security enhancements as described in Security Features in the CRT.

pReturnValue
The size in bytes of the converted string, including the null terminator.

mbstr
The address of a buffer for the resulting converted multibyte character string.

sizeInBytes
The size in bytes of the mbstr buffer.

wcstr
Points to the wide character string to be converted.

count
The maximum number of bytes to store in the mbstr buffer, not including the terminating null character, or

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/wcstombs-s-wcstombs-s-l.md

Return Value

ERROR CONDITION RETURN VALUE AND ERRNO

mbstr is NULL and sizeInBytes > 0 EINVAL

wcstr is NULL EINVAL

The destination buffer is too small to contain the converted
string (unless count is _TRUNCATE; see Remarks below)

ERANGE

Remarks

IMPORTANT

_TRUNCATE.

locale
The locale to use.

Zero if successful, an error code on failure.

If any of these conditions occurs, the invalid parameter exception is invoked as described in Parameter Validation
. If execution is allowed to continue, the function returns an error code and sets errno as indicated in the table.

The wcstombs_s function converts a string of wide characters pointed to by wcstr into multibyte characters
stored in the buffer pointed to by mbstr. The conversion will continue for each character until one of these
conditions is met:

A null wide character is encountered

A wide character that cannot be converted is encountered

The number of bytes stored in the mbstr buffer equals count.

The destination string is always null-terminated (even in the case of an error).

If count is the special value _TRUNCATE, then wcstombs_s converts as much of the string as will fit into the
destination buffer, while still leaving room for a null terminator. If the string is truncated, the return value is
STRUNCATE , and the conversion is considered successful.

If wcstombs_s successfully converts the source string, it puts the size in bytes of the converted string, including
the null terminator, into *pReturnValue (provided pReturnValue is not NULL). This occurs even if the mbstr
argument is NULL and provides a way to determine the required buffer size. Note that if mbstr is NULL, count
is ignored.

If wcstombs_s encounters a wide character it cannot convert to a multibyte character, it puts 0 in *pReturnValue,
sets the destination buffer to an empty string, sets errno to EILSEQ, and returns EILSEQ.

If the sequences pointed to by wcstr and mbstr overlap, the behavior of wcstombs_s is undefined.

Ensure that wcstr and mbstr do not overlap, and that count correctly reflects the number of wide characters to convert.

wcstombs_s uses the current locale for any locale-dependent behavior; _wcstombs_s_l is identical to
wcstombs except that it uses the locale passed in instead. For more information, see Locale.

In C++, using these functions is simplified by template overloads; the overloads can infer buffer length

Requirements
ROUTINE REQUIRED HEADER

wcstombs_s <stdlib.h>

Example

// crt_wcstombs_s.c
// This example converts a wide character
// string to a multibyte character string.
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

#define BUFFER_SIZE 100

int main(void)
{
 size_t i;
 char *pMBBuffer = (char *)malloc(BUFFER_SIZE);
 wchar_t*pWCBuffer = L"Hello, world.";

 printf("Convert wide-character string:\n");

 // Conversion
 wcstombs_s(&i, pMBBuffer, (size_t)BUFFER_SIZE,
 pWCBuffer, (size_t)BUFFER_SIZE);

 // Output
 printf(" Characters converted: %u\n", i);
 printf(" Multibyte character: %s\n\n",
 pMBBuffer);

 // Free multibyte character buffer
 if (pMBBuffer)
 {
 free(pMBBuffer);
 }
}

Convert wide-character string:
 Characters converted: 14
 Multibyte character: Hello, world.

See also

automatically (eliminating the need to specify a size argument) and they can automatically replace older, non-
secure functions with their newer, secure counterparts. For more information, see Secure Template Overloads.

For additional compatibility information, see Compatibility.

This program illustrates the behavior of the wcstombs_s function.

Data Conversion
Locale
_mbclen, mblen, _mblen_l
mbstowcs, _mbstowcs_l
mbtowc, _mbtowc_l

wctomb_s, _wctomb_s_l
WideCharToMultiByte

https://docs.microsoft.com/windows/desktop/api/stringapiset/nf-stringapiset-widechartomultibyte

wctob
11/9/2018 • 2 minutes to read • Edit Online

Syntax
int wctob(
 wint_t wchar
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

wctob <wchar.h>

Example

Determines if a wide character corresponds to a multibyte character and returns its multibyte character
representation.

wchar
Value to translate.

If wctob successfully converts a wide character, it returns its multibyte character representation, only if the
multibyte character is exactly one byte long. If wctob encounters a wide character it cannot convert to a multibyte
character or the multibyte character is not exactly one byte long, it returns a -1.

The wctob function converts a wide character contained in wchar to the corresponding multibyte character passed
by the return int value, if the multibyte character is exactly one byte long.

If wctob was unsuccessful and no corresponding multibyte character was found, the function sets errno to
EILSEQ and returns -1.

For additional compatibility information, see Compatibility.

This program illustrates the behavior of the wcstombs function.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/wctob.md

// crt_wctob.c
#include <stdio.h>
#include <wchar.h>

int main(void)
{
 int bChar = 0;
 wint_t wChar = 0;

 // Set the corresponding wide character to exactly one byte.
 wChar = (wint_t)'A';

 bChar = wctob(wChar);
 if (bChar == WEOF)
 {
 printf("No corresponding multibyte character was found.\n");
 }
 else
 {
 printf("Determined the corresponding multibyte character to"
 " be \"%c\".\n", bChar);
 }
}

Determined the corresponding multibyte character to be "A".

See also
Data Conversion
Locale
_mbclen, mblen, _mblen_l
mbstowcs, _mbstowcs_l
mbtowc, _mbtowc_l
wctomb, _wctomb_l
WideCharToMultiByte

https://docs.microsoft.com/windows/desktop/api/stringapiset/nf-stringapiset-widechartomultibyte

wctomb, _wctomb_l
3/1/2019 • 2 minutes to read • Edit Online

Syntax
int wctomb(
 char *mbchar,
 wchar_t wchar
);
int _wctomb_l(
 char *mbchar,
 wchar_t wchar,
 _locale_t locale
);

Parameters

Return Value

Remarks

Requirements
ROUTINE REQUIRED HEADER

wctomb <stdlib.h>

Convert a wide character to the corresponding multibyte character. More secure versions of these functions
are available; see wctomb_s, _wctomb_s_l.

mbchar
The address of a multibyte character.

wchar
A wide character.

If wctomb converts the wide character to a multibyte character, it returns the number of bytes (which is never
greater than MB_CUR_MAX) in the wide character. If wchar is the wide-character null character (L'\0'),
wctomb returns 1. If the target pointer mbchar is NULL, wctomb returns 0. If the conversion is not possible
in the current locale, wctomb returns -1 and errno is set to EILSEQ.

The wctomb function converts its wchar argument to the corresponding multibyte character and stores the
result at mbchar. You can call the function from any point in any program. wctomb uses the current locale for
any locale-dependent behavior; _wctomb_l is identical to wctomb except that it uses the locale passed in
instead. For more information, see Locale.

wctomb validates its parameters. If mbchar is NULL, the invalid parameter handler is invoked, as described in
Parameter Validation. If execution is allowed to continue, errno is set to EINVAL and the function returns -1.

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/wctomb-wctomb-l.md

Example

// crt_wctomb.cpp
// compile with: /W3
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 int i;
 wchar_t wc = L'a';
 char *pmb = (char *)malloc(MB_CUR_MAX);

 printf("Convert a wide character:\n");
 i = wctomb(pmb, wc); // C4996
 // Note: wctomb is deprecated; consider using wctomb_s
 printf(" Characters converted: %u\n", i);
 printf(" Multibyte character: %.1s\n\n", pmb);
}

Convert a wide character:
 Characters converted: 1
 Multibyte character: a

See also

This program illustrates the behavior of the wctomb function.

Data Conversion
Locale
_mbclen, mblen, _mblen_l
mbstowcs, _mbstowcs_l
mbtowc, _mbtowc_l
wcstombs, _wcstombs_l
WideCharToMultiByte

https://docs.microsoft.com/windows/desktop/api/stringapiset/nf-stringapiset-widechartomultibyte

wctomb_s, _wctomb_s_l
10/31/2018 • 2 minutes to read • Edit Online

Syntax
errno_t wctomb_s(
 int *pRetValue,
 char *mbchar,
 size_t sizeInBytes,
 wchar_t wchar
);
errno_t _wctomb_s_l(
 int *pRetValue,
 char *mbchar,
 size_t sizeInBytes,
 wchar_t wchar,
 _locale_t locale
);

Parameters

Return Value

MBCHAR SIZEINBYTES RETURN VALUE PRETVALUE

NULL >0 EINVAL not modified

any >INT_MAX EINVAL not modified

any too small EINVAL not modified

Converts a wide character to the corresponding multibyte character. A version of wctomb, _wctomb_l with
security enhancements as described in Security Features in the CRT.

pRetValue
The number of bytes, or a code indicating the result.

mbchar
The address of a multibyte character.

sizeInBytes
Size of the buffer mbchar.

wchar
A wide character.

locale
The locale to use.

Zero if successful, an error code on failure.

Error Conditions

If any of the above error conditions occurs, the invalid parameter handler is invoked, as described in Parameter

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/wctomb-s-wctomb-s-l.md

Remarks

Requirements
ROUTINE REQUIRED HEADER

wctomb_s <stdlib.h>

_wctomb_s_l <stdlib.h>

Example

// crt_wctomb_s.cpp
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 int i;
 wchar_t wc = L'a';
 char *pmb = (char *)malloc(MB_CUR_MAX);

 printf_s("Convert a wide character:\n");
 wctomb_s(&i, pmb, MB_CUR_MAX, wc);
 printf_s(" Characters converted: %u\n", i);
 printf_s(" Multibyte character: %.1s\n\n", pmb);
}

Convert a wide character:
 Characters converted: 1
 Multibyte character: a

See also

Validation. If execution is allowed to continue, wctomb returns EINVAL and sets errno to EINVAL.

The wctomb_s function converts its wchar argument to the corresponding multibyte character and stores the
result at mbchar. You can call the function from any point in any program.

If wctomb_s converts the wide character to a multibyte character, it puts the number of bytes (which is never
greater than MB_CUR_MAX) in the wide character into the integer pointed to by pRetValue. If wchar is the
wide-character null character (L'\0'), wctomb_s fills pRetValue with 1. If the target pointer mbchar is NULL,
wctomb_s puts 0 in pRetValue. If the conversion is not possible in the current locale, wctomb_s puts -1 in
pRetValue.

wctomb_s uses the current locale for locale-dependent information; _wctomb_s_l is identical except that it uses
the locale passed in instead. For more information, see Locale.

For additional compatibility information, see Compatibility.

This program illustrates the behavior of the wctomb function.

Data Conversion
Locale
_mbclen, mblen, _mblen_l
mbstowcs, _mbstowcs_l

mbtowc, _mbtowc_l
wcstombs, _wcstombs_l
WideCharToMultiByte

https://docs.microsoft.com/windows/desktop/api/stringapiset/nf-stringapiset-widechartomultibyte

wctrans
10/31/2018 • 2 minutes to read • Edit Online

Syntax
wctrans_t wctrans(
 const char *property
);

Parameters

Return Value

Remarks

FUNCTION SAME AS

tolower(c) towctrans(c, wctrans("towlower"))

towupper(c) towctrans(c, wctrans("toupper"))

Requirements
ROUTINE REQUIRED HEADER

wctrans <wctype.h>

Example

Determines a mapping from one set of character codes to another.

property
A string that specifies one of the valid transformations.

If the LC_CTYPE category of the current locale does not define a mapping whose name matches the property
string property, the function returns zero. Otherwise, it returns a nonzero value suitable for use as the second
argument to a subsequent call to towctrans.

This function determines a mapping from one set of character codes to another.

The following pairs of calls have the same behavior in all locales, but it is possible to define additional mappings
even in the "C" locale:

For additional compatibility information, see Compatibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/wctrans.md

// crt_wctrans.cpp
// compile with: /EHsc
// This example determines a mapping from one set of character
// codes to another.

#include <wchar.h>
#include <wctype.h>
#include <stdio.h>
#include <iostream>

int main()
{
 wint_t c = 'a';
 printf_s("%d\n",c);

 wctrans_t i = wctrans("toupper");
 printf_s("%d\n",i);

 wctrans_t ii = wctrans("towlower");
 printf_s("%d\n",ii);

 wchar_t wc = towctrans(c, i);
 printf_s("%d\n",wc);
}

97
1
0
65

See also
Data Conversion
setlocale, _wsetlocale

wctype
10/31/2018 • 2 minutes to read • Edit Online

Syntax
wctype_t wctype(
 const char * property
);

Parameters

Return Value

Remarks

FUNCTION SAME AS

iswalnum(c) iswctype(c, wctype("alnum"))

iswalpha(c) iswctype(c, wctype("alpha"))

iswcntrl(c) iswctype(c, wctype("cntrl"))

iswdigit(c) iswctype(c, wctype("digit"))

iswgraph(c) iswctype(c, wctype("graph"))

iswlower(c) iswctype(c, wctype("lower"))

iswprint(c) iswctype(c, wctype("print"))

iswpunct(c) iswctype(c, wctype("punct"))

iswspace(c) iswctype(c, wctype("space"))

iswupper(c) iswctype(c, wctype("upper"))

Determines a classification rule for wide-character codes.

property
Property string.

If the LC_CTYPE category of the current locale does not define a classification rule whose name matches the
property string property, the function returns zero. Otherwise, it returns a nonzero value suitable for use as the
second argument to a subsequent call to towctrans.

The function determines a classification rule for wide-character codes. The following pairs of calls have the same
behavior in all locales (but an implementation can define additional classification rules even in the "C" locale):

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/wctype.md

iswxdigit(c) iswctype(c, wctype("xdigit"))

FUNCTION SAME AS

Requirements
ROUTINE REQUIRED HEADER

wctype <wctype.h>

See also

For additional compatibility information, see Compatibility.

Data Conversion
setlocale, _wsetlocale

write
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _write instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/posix-write.md

_write
10/31/2018 • 2 minutes to read • Edit Online

Syntax
int _write(
 int fd,
 const void *buffer,
 unsigned int count
);

Parameters

Return Value

Remarks

Writes data to a file.

fd
File descriptor of file into which data is written.

buffer
Data to be written.

count
Number of bytes.

If successful, _write returns the number of bytes actually written. If the actual space remaining on the disk is less
than the size of the buffer the function is trying to write to the disk, _write fails and does not flush any of the
buffer's contents to the disk. A return value of -1 indicates an error. If invalid parameters are passed, this function
invokes the invalid parameter handler, as described in Parameter Validation. If execution is allowed to continue,
the function returns -1 and errno is set to one of three values: EBADF, which means the file descriptor is invalid
or the file is not opened for writing; ENOSPC, which means there is not enough space left on the device for the
operation; or EINVAL, which means that buffer was a null pointer or that an odd count of bytes was passed to be
written to a file in Unicode mode.

For more information about these and other return codes, see errno, _doserrno, _sys_errlist, and _sys_nerr.

If the file is opened in text mode, each linefeed character is replaced with a carriage return - linefeed pair in the
output. The replacement does not affect the return value.

When the file is opened in Unicode translation mode—for example, if fd is opened by using _open or _sopen
and a mode parameter that includes _O_WTEXT, _O_U16TEXT, or _O_U8TEXT, or if it is opened by using
fopen and a mode parameter that includes ccs=UNICODE , ccs=UTF-16LE , or ccs=UTF-8, or if the mode is
changed to a Unicode translation mode by using _setmode—buffer is interpreted as a pointer to an array of
wchar_t that contains UTF-16 data. An attempt to write an odd number of bytes in this mode causes a
parameter validation error.

The _write function writes count bytes from buffer into the file associated with fd. The write operation begins at
the current position of the file pointer (if any) associated with the given file. If the file is open for appending, the
operation begins at the current end of the file. After the write operation, the file pointer is increased by the

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/write.md

Requirements
ROUTINE REQUIRED HEADER

_write <io.h>

Example

number of bytes actually written.

When writing to files opened in text mode, _write treats a CTRL+Z character as the logical end-of-file. When
writing to a device, _write treats a CTRL+Z character in the buffer as an output terminator.

For additional compatibility information, see Compatibility.

// crt__write.c
//
// This program opens a file for output and uses _write to write
// some bytes to the file.

#include <io.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include <share.h>

char buffer[] = "This is a test of '_write' function";

int main(void)
{
 int fileHandle = 0;
 unsigned bytesWritten = 0;

 if (_sopen_s(&fileHandle, "write.o", _O_RDWR | _O_CREAT,
 _SH_DENYNO, _S_IREAD | _S_IWRITE))
 return -1;

 if ((bytesWritten = _write(fileHandle, buffer, sizeof(buffer))) == -1)
 {
 switch(errno)
 {
 case EBADF:
 perror("Bad file descriptor!");
 break;
 case ENOSPC:
 perror("No space left on device!");
 break;
 case EINVAL:
 perror("Invalid parameter: buffer was NULL!");
 break;
 default:
 // An unrelated error occured
 perror("Unexpected error!");
 }
 }
 else
 {
 printf_s("Wrote %u bytes to file.\n", bytesWritten);
 }
 _close(fileHandle);
}

Wrote 36 bytes to file.

See also
Low-Level I/O
fwrite
_open, _wopen
_read
_setmode

wcsicoll
10/31/2018 • 2 minutes to read • Edit Online

This POSIX function is deprecated. Use the ISO C++ conformant _wcsicoll instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/wcsicoll.md

xor
11/9/2018 • 2 minutes to read • Edit Online

Syntax

#define xor ^

Remarks

Example
// iso646_xor.cpp
// compile with: /EHsc
#include <iostream>
#include <iso646.h>

int main()
{
 using namespace std;
 int a = 3, b = 2, result;

 result= a ^ b;
 cout << result << endl;

 result= a xor_eq b;
 cout << result << endl;
}

1
1

Requirements

An alternative to the ^ operator.

The macro yields the operator ^.

Header: <iso646.h>

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/xor.md

xor_eq
11/9/2018 • 2 minutes to read • Edit Online

Syntax

#define xor_eq ^=

Remarks

Example
// iso646_xor_eq.cpp
// compile with: /EHsc
#include <iostream>
#include <iso646.h>

int main()
{
 using namespace std;
 int a = 3, b = 2, result;

 result= a ^= b;
 cout << result << endl;

 a = 3;
 b = 2;

 result= a xor_eq b;
 cout << result << endl;
}

1
1

Requirements

An alternative to the ^= operator.

The macro yields the operator ^=.

Header: <iso646.h>

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/xor-eq.md

y0, y1, yn
10/31/2018 • 2 minutes to read • Edit Online

These POSIX functions are deprecated. Use the ISO C++ conformant Bessel Functions: _j0, _j1, _jn, _y0, _y1, _yn
instead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/y0-y1-yn.md

	Cover Page
	C Run-Time Library Reference
	CRT Library Features
	Compatibility
	UWP Apps, the Windows Runtime, and the C Run-Time
	ANSI C Compliance
	UNIX
	Windows Platforms (CRT)
	Backward Compatibility

	Required and Optional Header Files
	Files and Streams
	Text and Binary Streams
	Byte and Wide Streams
	Controlling Streams
	Stream States

	Recommendations for Choosing Between Functions and Macros
	Type Checking (CRT)
	Direction Flag
	Security Features in the CRT
	Security-Enhanced Versions of CRT Functions
	Parameter Validation
	Secure Template Overloads

	SAL Annotations
	Multithreaded Libraries Performance
	Link Options
	Potential Errors Passing CRT Objects Across DLL Boundaries
	CRT Initialization

	Universal C runtime routines by category
	Argument Access
	Buffer Manipulation
	Byte Classification
	Character Classification
	Complex math support
	Data Alignment
	Data Conversion
	Debug Routines
	Directory Control
	Error Handling (CRT)
	Exception Handling Routines
	File Handling
	Floating-Point Support
	Input and Output
	Text and Binary Mode File I-O
	Unicode Stream I-O in Text and Binary Modes
	Stream I-O
	Low-Level I-O
	Console and Port I-O
	_nolock Functions

	Internationalization
	Locale
	Code Pages
	Interpretation of Multibyte-Character Sequences
	ISO646 Operators
	Single-Byte and Multibyte Character Sets
	SBCS and MBCS Data Types
	Unicode: The Wide-Character Set
	Using Generic-Text Mappings
	A Sample Generic-Text Program
	Using TCHAR.H Data Types with _MBCS

	Memory Allocation
	Process and Environment Control
	Robustness
	Run-Time Error Checking
	Searching and Sorting
	String Manipulation (CRT)
	System Calls
	Time Management
	Windows Runtime Unsupported CRT Functions
	Internal CRT Globals and Functions
	_abnormal_termination
	_acmdln, _tcmdln, _wcmdln
	_CIatan
	_CIatan2
	_CIcos
	_CIexp
	_CIfmod
	_CIlog
	_CIlog10
	_CIpow
	_CIsin
	_CIsqrt
	_CItan
	__crtLCMapStringW
	__CxxFrameHandler
	__dllonexit
	_except_handler3
	_execute_onexit_table, _initialize_onexit_table, _register_onexit_function
	__getmainargs, __wgetmainargs
	___lc_codepage_func
	___lc_collate_cp_func
	___lc_locale_name_func
	_local_unwind2
	___mb_cur_max_func, ___mb_cur_max_l_func, __p___mb_cur_max, __mb_cur_max
	__p__commode
	__p__fmode
	__pctype_func
	__RTDynamicCast
	__set_app_type
	_set_app_type
	_setjmp3
	___setlc_active_func, ___unguarded_readlc_active_add_func
	__setusermatherr

	Global Variables and Standard Types
	Global Variables
	__argc, __argv, __wargv
	_daylight, _dstbias, _timezone, and _tzname
	errno, _doserrno, _sys_errlist, and _sys_nerr
	_environ, _wenviron
	_fmode
	_iob
	_pctype, _pwctype, _wctype, _mbctype, _mbcasemap
	_pgmptr, _wpgmptr

	Control Flags
	_CRTDBG_MAP_ALLOC
	_DEBUG
	_crtDbgFlag

	Standard Types

	Global Constants
	32-Bit Windows Time-Date Formats
	BUFSIZ
	CLOCKS_PER_SEC, CLK_TCK
	Commit-To-Disk Constants
	_CRT_DISABLE_PERFCRIT_LOCKS
	Data Type Constants
	Environmental Constants
	EOF, WEOF
	errno Constants
	Exception-Handling Constants
	EXIT_SUCCESS, EXIT_FAILURE
	File Attribute Constants
	File Constants
	File Permission Constants
	File Read-Write Access Constants
	File Translation Constants
	FILENAME_MAX
	FOPEN_MAX, _SYS_OPEN
	_FREEENTRY, _USEDENTRY
	fseek, _lseek Constants
	Heap Constants
	_HEAP_MAXREQ
	HUGE_VAL, _HUGE
	Locale Categories
	_locking Constants
	Math Constants
	Math Error Constants
	_MAX_ENV
	MB_CUR_MAX
	NULL (CRT)
	Path Field Limits
	RAND_MAX
	setvbuf Constants
	Sharing Constants
	signal Constants
	signal Action Constants
	spawn Constants
	_stat Structure st_mode Field Constants
	stdin, stdout, stderr
	TMP_MAX, L_tmpnam
	Translation Mode Constants
	_TRUNCATE
	TZNAME_MAX
	_WAIT_CHILD, _WAIT_GRANDCHILD
	WCHAR_MAX
	WCHAR_MIN

	Generic-Text Mappings
	Data Type Mappings
	Constant and Global Variable Mappings
	Routine Mappings

	Locale Names, Languages, and Country-Region Strings
	Language Strings
	Country-Region Strings

	Function Family Overviews
	_exec, _wexec Functions
	Filename Search Functions
	Format Specification Syntax: printf and wprintf Functions
	Format Specification Fields: scanf and wscanf Functions
	is, isw Routines
	_ismbb Routines
	_ismbc Routines
	operator new(CRT)
	operator new (CRT)
	operator delete(CRT)
	operator delete (CRT)
	printf_p Positional Parameters
	scanf Type Field Characters
	scanf Width Specification
	_spawn, _wspawn Functions
	strcoll Functions
	String to Numeric Value Functions
	to Functions
	vprintf Functions

	Obsolete Functions
	_cgets, _cgetws
	_get_output_format
	gets, _getws
	_heapadd
	_heapset
	inp, inpw
	_inp, _inpw, _inpd
	_lock
	outp, outpw
	_outp, _outpw, _outpd
	_set_output_format
	_unlock

	Alphabetical Function Reference
	CRT Alphabetical Function Reference
	abort
	abs, labs, llabs, _abs64
	access (CRT)
	_access, _waccess
	_access_s, _waccess_s
	acos, acosf, acosl
	acosh, acoshf, acoshl
	_aligned_free
	_aligned_free_dbg
	_aligned_malloc
	_aligned_malloc_dbg
	_aligned_msize
	_aligned_msize_dbg
	_aligned_offset_malloc
	_aligned_offset_malloc_dbg
	_aligned_offset_realloc
	_aligned_offset_realloc_dbg
	_aligned_offset_recalloc
	_aligned_offset_recalloc_dbg
	_aligned_realloc
	_aligned_realloc_dbg
	_aligned_recalloc
	_aligned_recalloc_dbg
	_alloca
	_amsg_exit
	and
	and_eq
	asctime, _wasctime
	asctime_s, _wasctime_s
	asin, asinf, asinl
	asinh, asinhf, asinhl
	assert Macro, _assert, _wassert
	_ASSERT, _ASSERTE, _ASSERT_EXPR Macros
	atan, atanf, atanl, atan2, atan2f, atan2l
	atanh, atanhf, atanhl
	atexit
	_atodbl, _atodbl_l, _atoldbl, _atoldbl_l, _atoflt, _atoflt_l
	atof, _atof_l, _wtof, _wtof_l
	atoi, _atoi_l, _wtoi, _wtoi_l
	_atoi64, _atoi64_l, _wtoi64, _wtoi64_l
	atol, _atol_l, _wtol, _wtol_l
	atoll, _atoll_l, _wtoll, _wtoll_l
	_beginthread, _beginthreadex
	Bessel Functions: _j0, _j1, _jn, _y0, _y1, _yn
	bitand
	bitor
	bsearch
	bsearch_s
	btowc
	_byteswap_uint64, _byteswap_ulong, _byteswap_ushort
	c16rtomb, c32rtomb
	cabs, cabsf, cabsl
	_cabs
	cacos, cacosf, cacosl
	cacosh, cacoshf, cacoshl
	_callnewh
	calloc
	_calloc_dbg
	carg, cargf, cargl
	casin, casinf, casinl
	casinh, casinhf, casinhl
	catan, catanf, catanl
	catanh, catanhf, catanhl
	cbrt, cbrtf, cbrtl
	_Cbuild, _FCbuild, _LCbuild
	ccos, ccosf, ccosl
	ccosh, ccoshf, ccoshl
	ceil, ceilf, ceill
	_cexit, _c_exit
	cexp, cexpf, cexpl
	cgets
	_cgets_s, _cgetws_s
	chdir
	_chdir, _wchdir
	_chdrive
	_chgsign, _chgsignf, _chgsignl
	chmod
	_chmod, _wchmod
	chsize
	_chsize
	_chsize_s
	cimag, cimagf, cimagl
	_clear87, _clearfp
	clearerr
	clearerr_s
	clock
	clog, clogf, clogl
	clog10, clog10f, clog10l
	_close
	close
	_Cmulcc, _FCmulcc, _LCmulcc
	_Cmulcr, _FCmulcr, _LCmulcr
	_commit
	compl
	_configthreadlocale
	conj, conjf, conjl
	_control87, _controlfp, __control87_2
	_controlfp_s
	copysign, copysignf, copysignl, _copysign, _copysignf, _copysignl
	cos, cosf, cosl
	cosh, coshf, coshl
	_countof Macro
	cpow, cpowf, cpowl
	cprintf
	_cprintf, _cprintf_l, _cwprintf, _cwprintf_l
	_cprintf_p, _cprintf_p_l, _cwprintf_p, _cwprintf_p_l
	_cprintf_s, _cprintf_s_l, _cwprintf_s, _cwprintf_s_l
	cproj, cprojf, cprojl
	cputs
	_cputs, _cputws
	creal, crealf, creall
	creat
	_creat, _wcreat
	_create_locale, _wcreate_locale
	_CrtCheckMemory
	_CrtDbgBreak
	_CrtDbgReport, _CrtDbgReportW
	_CrtDoForAllClientObjects
	_CrtDumpMemoryLeaks
	_CrtGetAllocHook
	_CrtGetDumpClient
	_CrtGetReportHook
	_CrtIsMemoryBlock
	_CrtIsValidHeapPointer
	_CrtIsValidPointer
	_CrtMemCheckpoint
	_CrtMemDifference
	_CrtMemDumpAllObjectsSince
	_CrtMemDumpStatistics
	_CrtReportBlockType
	_CrtSetAllocHook
	_CrtSetBreakAlloc
	_CrtSetDbgFlag
	_CrtSetDebugFillThreshold
	_CrtSetDumpClient
	_CrtSetReportFile
	_CrtSetReportHook
	_CrtSetReportHook2, _CrtSetReportHookW2
	_CrtSetReportMode
	cscanf
	_cscanf, _cscanf_l, _cwscanf, _cwscanf_l
	_cscanf_s, _cscanf_s_l, _cwscanf_s, _cwscanf_s_l
	csin, csinf, csinl
	csinh, csinhf, csinhl
	csqrt, csqrtf, csqrtl
	ctan, ctanf, ctanl
	ctanh, ctanhf, ctanhl
	ctime, _ctime32, _ctime64, _wctime, _wctime32, _wctime64
	ctime_s, _ctime32_s, _ctime64_s, _wctime_s, _wctime32_s, _wctime64_s
	cwait
	_cwait
	_CxxThrowException
	difftime, _difftime32, _difftime64
	div
	dup, dup2
	_dup, _dup2
	_dupenv_s, _wdupenv_s
	_dupenv_s_dbg, _wdupenv_s_dbg
	ecvt
	_ecvt
	_ecvt_s
	_endthread, _endthreadex
	eof
	_eof
	erf, erff, erfl, erfc, erfcf, erfcl
	execl
	_execl, _wexecl
	execle
	_execle, _wexecle
	execlp
	_execlp, _wexeclp
	execlpe
	_execlpe, _wexeclpe
	execv
	_execv, _wexecv
	execve
	_execve, _wexecve
	execvp
	_execvp, _wexecvp
	execvpe
	_execvpe, _wexecvpe
	exit, _Exit, _exit
	exp, expf, expl
	exp2, exp2f, exp2l
	_expand
	_expand_dbg
	expm1, expm1f, expm1l
	fabs, fabsf, fabsl
	fclose, _fcloseall
	_fclose_nolock
	fcloseall
	fcvt
	_fcvt
	_fcvt_s
	fdim, fdimf, fdiml
	fdopen
	_fdopen, _wfdopen
	feclearexcept
	fegetenv
	fegetexceptflag
	fegetround, fesetround
	feholdexcept
	feof
	feraiseexcept
	ferror
	fesetenv
	fesetexceptflag
	fetestexcept
	feupdateenv
	fflush
	_fflush_nolock
	fgetc, fgetwc
	_fgetc_nolock, _fgetwc_nolock
	fgetchar
	_fgetchar, _fgetwchar
	fgetpos
	fgets, fgetws
	filelength
	_filelength, _filelengthi64
	fileno
	_fileno
	_findclose
	_findfirst, _findfirst32, _findfirst32i64, _findfirst64, _findfirst64i32, _findfirsti64, _wfindfirst, _wfindfirst32, _wfindfirst32i64, _wfindfirst64, _wfindfirst64i32, _wfindfirsti64
	_findnext, _findnext32, _findnext32i64, _findnext64, _findnext64i32, _findnexti64, _wfindnext, _wfindnext32, _wfindnext32i64, _wfindnext64, _wfindnext64i32, _wfindnexti64
	Floating-point primitives
	floor, floorf, floorl
	flushall
	_flushall
	fma, fmaf, fmal
	fmax, fmaxf, fmaxl
	fmin, fminf, fminl
	fmod, fmodf
	fopen, _wfopen
	fopen_s, _wfopen_s
	_fpclass, _fpclassf
	fpclassify
	_fpieee_flt
	_fpreset
	fprintf, _fprintf_l, fwprintf, _fwprintf_l
	_fprintf_p, _fprintf_p_l, _fwprintf_p, _fwprintf_p_l
	fprintf_s, _fprintf_s_l, fwprintf_s, _fwprintf_s_l
	fputc, fputwc
	_fputc_nolock, _fputwc_nolock
	fputchar
	_fputchar, _fputwchar
	fputs, fputws
	fread
	fread_s
	_fread_nolock
	_fread_nolock_s2
	free
	_free_dbg
	_free_locale
	_freea
	freopen, _wfreopen
	freopen_s, _wfreopen_s
	frexp
	fscanf, _fscanf_l, fwscanf, _fwscanf_l
	fscanf_s, _fscanf_s_l, fwscanf_s, _fwscanf_s_l
	fseek, _fseeki64
	_fseek_nolock, _fseeki64_nolock
	fsetpos
	_fsopen, _wfsopen
	_fstat, _fstat32, _fstat64, _fstati64, _fstat32i64, _fstat64i32
	ftell, _ftelli64
	_ftell_nolock, _ftelli64_nolock
	_ftime, _ftime32, _ftime64
	_ftime_s, _ftime32_s, _ftime64_s
	_fullpath, _wfullpath
	_fullpath_dbg, _wfullpath_dbg
	_futime, _futime32, _futime64
	fwide
	fwrite
	_fwrite_nolock
	gcvt
	_gcvt
	_gcvt_s
	_get_current_locale
	_get_daylight
	_get_doserrno
	_get_dstbias
	_get_errno
	_get_FMA3_enable, _set_FMA3_enable
	_get_fmode
	_get_heap_handle
	_get_invalid_parameter_handler, _get_thread_local_invalid_parameter_handler
	_get_osfhandle
	_get_pgmptr
	_get_printf_count_output
	_get_purecall_handler, _set_purecall_handler
	_get_terminate
	_get_timezone
	_get_tzname
	_get_unexpected
	_get_wpgmptr
	getc, getwc
	_getc_nolock, _getwc_nolock
	getch
	_getch, _getwch
	_getch_nolock, _getwch_nolock
	getchar, getwchar
	_getchar_nolock, _getwchar_nolock
	getche
	_getche, _getwche
	_getche_nolock, _getwche_nolock
	getcwd
	_getcwd, _wgetcwd
	_getcwd_dbg, _wgetcwd_dbg
	_getdcwd, _wgetdcwd
	_getdcwd_dbg, _wgetdcwd_dbg
	_getdcwd_nolock, _wgetdcwd_nolock
	_getdiskfree
	_getdrive
	_getdrives
	getenv, _wgetenv
	getenv_s, _wgetenv_s
	_getmaxstdio
	_getmbcp
	getpid
	_getpid
	gets_s, _getws_s
	getw
	_getw
	gmtime, _gmtime32, _gmtime64
	gmtime_s, _gmtime32_s, _gmtime64_s
	_heapchk
	_heapmin
	_heapwalk
	hypot, hypotf, hypotl, _hypot, _hypotf, _hypotl
	ilogb, ilogbf, ilogbl2
	imaxabs
	imaxdiv
	_initterm, _initterm_e
	_invalid_parameter, _invalid_parameter_noinfo, _invalid_parameter_noinfo_noreturn, _invoke_watson
	isalnum, iswalnum, _isalnum_l, _iswalnum_l
	isalpha, iswalpha, _isalpha_l, _iswalpha_l
	isascii, __isascii, iswascii
	isatty
	_isatty
	isblank, iswblank, _isblank_l, _iswblank_l
	iscntrl, iswcntrl, _iscntrl_l, _iswcntrl_l
	_isctype, iswctype, _isctype_l, _iswctype_l
	iscsym, iscsymf, __iscsym, __iswcsym, __iscsymf, __iswcsymf, _iscsym_l, _iswcsym_l, _iscsymf_l, _iswcsymf_l
	isdigit, iswdigit, _isdigit_l, _iswdigit_l
	isfinite, _finite, _finitef
	isgraph, iswgraph, _isgraph_l, _iswgraph_l
	isgreater, isgreaterequal, isless, islessequal, islessgreater, isunordered
	isinf
	isleadbyte, _isleadbyte_l
	islower, iswlower, _islower_l, _iswlower_l
	_ismbbalnum, _ismbbalnum_l
	_ismbbalpha, _ismbbalpha_l
	_ismbbblank, _ismbbblank_l
	_ismbbgraph, _ismbbgraph_l
	_ismbbkalnum, _ismbbkalnum_l
	_ismbbkana, _ismbbkana_l
	_ismbbkprint, _ismbbkprint_l
	_ismbbkpunct, _ismbbkpunct_l
	_ismbblead, _ismbblead_l
	_ismbbprint, _ismbbprint_l
	_ismbbpunct, _ismbbpunct_l
	_ismbbtrail, _ismbbtrail_l
	_ismbcalnum, _ismbcalnum_l, _ismbcalpha, _ismbcalpha_l, _ismbcdigit, _ismbcdigit_l
	_ismbcgraph, _ismbcgraph_l, _ismbcprint, _ismbcprint_l, _ismbcpunct, _ismbcpunct_l, _ismbcblank, _ismbcblank_l, _ismbcspace, _ismbcspace_l
	_ismbchira, _ismbchira_l, _ismbckata, _ismbckata_l
	_ismbcl0, _ismbcl0_l, _ismbcl1, _ismbcl1_l, _ismbcl2, _ismbcl2_l
	_ismbclegal, _ismbclegal_l, _ismbcsymbol, _ismbcsymbol_l
	_ismbclower, _ismbclower_l, _ismbcupper, _ismbcupper_l
	_ismbslead, _ismbstrail, _ismbslead_l, _ismbstrail_l
	isnan, _isnan, _isnanf
	isnormal
	ispunct, iswpunct, _ispunct_l, _iswpunct_l
	isprint, iswprint, _isprint_l, _iswprint_l
	isspace, iswspace, _isspace_l, _iswspace_l
	isupper, _isupper_l, iswupper, _iswupper_l
	isxdigit, iswxdigit, _isxdigit_l, _iswxdigit_l
	itoa, _itoa, ltoa, _ltoa, ultoa, _ultoa, _i64toa, _ui64toa, _itow, _ltow, _ultow, _i64tow, _ui64tow
	_itoa_s, _ltoa_s, _ultoa_s, _i64toa_s, _ui64toa_s, _itow_s, _ltow_s, _ultow_s, _i64tow_s, _ui64tow_s
	j0, j1, jn
	kbhit
	_kbhit
	ldexp
	ldiv, lldiv
	lfind
	_lfind
	_lfind_s
	lgamma, lgammaf, lgammal
	localeconv
	localtime, _localtime32, _localtime64
	localtime_s, _localtime32_s, _localtime64_s
	_lock_file
	locking
	_locking
	log, logf, log10, log10f
	log1p, log1pf, log1pl2
	log2, log2f, log2l
	logb, logbf, logbl, _logb, _logbf
	longjmp
	lrint, lrintf, lrintl, llrint, llrintf, llrintl
	lround, lroundf, lroundl, llround, llroundf, llroundl
	_lrotl, _lrotr
	lsearch
	_lsearch
	_lsearch_s
	lseek
	_lseek, _lseeki64
	_makepath, _wmakepath
	_makepath_s, _wmakepath_s
	malloc
	_malloc_dbg
	_malloca
	_matherr
	__max
	_mbbtombc, _mbbtombc_l
	_mbbtype, _mbbtype_l
	_mbccpy, _mbccpy_l
	_mbccpy_s, _mbccpy_s_l
	_mbcjistojms, _mbcjistojms_l, _mbcjmstojis, _mbcjmstojis_l
	_mbclen, mblen, _mblen_l, _mbclen_l
	_mbctohira, _mbctohira_l, _mbctokata, _mbctokata_l
	_mbctolower, _mbctolower_l, _mbctoupper, _mbctoupper_l
	_mbctombb, _mbctombb_l
	mbrlen
	mbrtoc16, mbrtoc323
	mbrtowc
	_mbsbtype, _mbsbtype_l
	mbsinit
	_mbsnbcat, _mbsnbcat_l
	_mbsnbcat_s, _mbsnbcat_s_l
	_mbsnbcmp, _mbsnbcmp_l
	_mbsnbcoll, _mbsnbcoll_l, _mbsnbicoll, _mbsnbicoll_l
	_mbsnbcpy, _mbsnbcpy_l
	_mbsnbcpy_s, _mbsnbcpy_s_l
	_mbsnbicmp, _mbsnbicmp_l
	_mbsnbset, _mbsnbset_l
	_mbsnbset_s, _mbsnbset_s_l
	mbsrtowcs
	mbsrtowcs_s
	mbstowcs, _mbstowcs_l
	mbstowcs_s, _mbstowcs_s_l
	mbtowc, _mbtowc_l
	memccpy
	_memccpy
	memchr, wmemchr
	memcmp, wmemcmp
	memcpy, wmemcpy
	memcpy_s, wmemcpy_s
	memicmp
	_memicmp, _memicmp_l
	memmove, wmemmove
	memmove_s, wmemmove_s
	memset, wmemset
	__min
	mkdir
	_mkdir, _wmkdir
	_mkgmtime, _mkgmtime32, _mkgmtime64
	mktemp
	_mktemp, _wmktemp
	_mktemp_s, _wmktemp_s
	mktime, _mktime32, _mktime64
	modf, modff, modfl
	_msize
	_msize_dbg
	nan, nanf, nanl
	nearbyint, nearbyintf, nearbyintl
	nextafter, nextafterf, nextafterl, _nextafter, _nextafterf, nexttoward, nexttowardf, nexttowardl
	norm, normf, norml
	not
	not_eq
	offsetof Macro
	_onexit, _onexit_m
	open
	_open, _wopen
	_open_osfhandle
	or_eq
	or
	_pclose
	perror, _wperror
	_pipe
	_popen, _wpopen
	pow, powf, powl
	printf, _printf_l, wprintf, _wprintf_l
	_printf_p, _printf_p_l, _wprintf_p, _wprintf_p_l
	printf_s, _printf_s_l, wprintf_s, _wprintf_s_l
	_purecall
	putc, putwc
	_putc_nolock, _putwc_nolock
	putch
	_putch, _putwch
	_putch_nolock, _putwch_nolock
	putchar, putwchar
	_putchar_nolock, _putwchar_nolock
	putenv
	_putenv, _wputenv
	_putenv_s, _wputenv_s
	puts, _putws
	putw
	_putw
	_query_new_handler
	_query_new_mode
	quick_exit
	qsort
	qsort_s
	raise
	rand
	rand_s
	read
	_read
	realloc
	_realloc_dbg
	_recalloc
	_recalloc_dbg
	remainder, remainderf, remainderl
	remove, _wremove
	remquo, remquof, remquol
	rename, _wrename
	_resetstkoflw
	rewind
	rint, rintf, rintl
	rmdir
	_rmdir, _wrmdir
	rmtmp
	_rmtmp
	_rotl, _rotl64, _rotr, _rotr64
	round, roundf, roundl
	_RPT, _RPTF, _RPTW, _RPTFW Macros
	_RTC_GetErrDesc
	_RTC_NumErrors
	_RTC_SetErrorFunc
	_RTC_SetErrorFuncW
	_RTC_SetErrorType
	_scalb
	scalbn, scalbnf, scalbnl, scalbln, scalblnf, scalblnl
	scanf, _scanf_l, wscanf, _wscanf_l
	scanf_s, _scanf_s_l, wscanf_s, _wscanf_s_l
	_scprintf, _scprintf_l, _scwprintf, _scwprintf_l
	_scprintf_p, _scprintf_p_l, _scwprintf_p, _scwprintf_p_l
	_searchenv, _wsearchenv
	_searchenv_s, _wsearchenv_s
	__security_init_cookie
	_seh_filter_dll, _seh_filter_exe
	_set_abort_behavior
	setbuf
	_set_controlfp
	_set_doserrno
	_set_errno
	_set_error_mode
	_set_fmode
	_set_invalid_parameter_handler, _set_thread_local_invalid_parameter_handler
	setjmp
	setlocale, _wsetlocale
	_setmaxstdio
	_setmbcp
	setmode
	_setmode
	_set_new_handler
	_set_new_mode
	_set_printf_count_output
	_set_se_translator
	_set_SSE2_enable
	set_terminate (CRT)
	set_unexpected (CRT)
	setvbuf
	signal
	signbit
	sin, sinf, sinl
	sinh, sinhf, sinhl
	snprintf, _snprintf, _snprintf_l, _snwprintf, _snwprintf_l
	_snprintf_s, _snprintf_s_l, _snwprintf_s, _snwprintf_s_l
	_snscanf, _snscanf_l, _snwscanf, _snwscanf_l
	_snscanf_s, _snscanf_s_l, _snwscanf_s, _snwscanf_s_l
	sopen
	_sopen, _wsopen
	_sopen_s, _wsopen_s
	spawnl
	_spawnl, _wspawnl
	spawnle
	_spawnle, _wspawnle
	spawnlp
	_spawnlp, _wspawnlp
	spawnlpe
	_spawnlpe, _wspawnlpe
	spawnv
	_spawnv, _wspawnv
	spawnve
	_spawnve, _wspawnve
	spawnvp
	_spawnvp, _wspawnvp
	spawnvpe
	_spawnvpe, _wspawnvpe
	_splitpath, _wsplitpath
	_splitpath_s, _wsplitpath_s
	sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l
	_sprintf_p, _sprintf_p_l, _swprintf_p, _swprintf_p_l
	sprintf_s, _sprintf_s_l, swprintf_s, _swprintf_s_l
	sqrt, sqrtf, sqrtl
	srand
	sscanf, _sscanf_l, swscanf, _swscanf_l
	sscanf_s, _sscanf_s_l, swscanf_s, _swscanf_s_l
	_stat, _stat32, _stat64, _stati64, _stat32i64, _stat64i32, _wstat, _wstat32, _wstat64, _wstati64, _wstat32i64, _wstat64i32
	_STATIC_ASSERT Macro
	_status87, _statusfp, _statusfp2
	strcat, wcscat, _mbscat
	strcat_s, wcscat_s, _mbscat_s, _mbscat_s_l
	strchr, wcschr, _mbschr, _mbschr_l
	strcmp, wcscmp, _mbscmp, _mbscmp_l
	strcmpi
	strcoll, wcscoll, _mbscoll, _strcoll_l, _wcscoll_l, _mbscoll_l
	strcpy, wcscpy, _mbscpy
	strcpy_s, wcscpy_s, _mbscpy_s, _mbscpy_s_l
	strcspn, wcscspn, _mbscspn, _mbscspn_l
	_strdate, _wstrdate
	_strdate_s, _wstrdate_s
	_strdec, _wcsdec, _mbsdec, _mbsdec_l
	strdup, wcsdup
	_strdup, _wcsdup, _mbsdup
	_strdup_dbg, _wcsdup_dbg
	strerror, _strerror, _wcserror, __wcserror
	strerror_s, _strerror_s, _wcserror_s, __wcserror_s
	strftime, wcsftime, _strftime_l, _wcsftime_l
	stricmp, wcsicmp
	_stricmp, _wcsicmp, _mbsicmp, _stricmp_l, _wcsicmp_l, _mbsicmp_l
	_stricoll, _wcsicoll, _mbsicoll, _stricoll_l, _wcsicoll_l, _mbsicoll_l
	_strinc, _wcsinc, _mbsinc, _mbsinc_l
	strlen, wcslen, _mbslen, _mbslen_l, _mbstrlen, _mbstrlen_l
	strlwr, wcslwr
	_strlwr, _wcslwr, _mbslwr, _strlwr_l, _wcslwr_l, _mbslwr_l
	_strlwr_s, _strlwr_s_l, _mbslwr_s, _mbslwr_s_l, _wcslwr_s, _wcslwr_s_l
	strncat, _strncat_l, wcsncat, _wcsncat_l, _mbsncat, _mbsncat_l
	strncat_s, _strncat_s_l, wcsncat_s, _wcsncat_s_l, _mbsncat_s, _mbsncat_s_l
	strncmp, wcsncmp, _mbsncmp, _mbsncmp_l
	_strncnt, _wcsncnt, _mbsnbcnt, _mbsnbcnt_l, _mbsnccnt, _mbsnccnt_l
	_strncoll, _wcsncoll, _mbsncoll, _strncoll_l, _wcsncoll_l, _mbsncoll_l
	strncpy, _strncpy_l, wcsncpy, _wcsncpy_l, _mbsncpy, _mbsncpy_l
	strncpy_s, _strncpy_s_l, wcsncpy_s, _wcsncpy_s_l, _mbsncpy_s, _mbsncpy_s_l
	_strnextc, _wcsnextc, _mbsnextc, _mbsnextc_l
	strnicmp, wcsnicmp
	_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_l, _wcsnicmp_l, _mbsnicmp_l
	_strnicoll, _wcsnicoll, _mbsnicoll, _strnicoll_l, _wcsnicoll_l, _mbsnicoll_l
	_strninc, _wcsninc, _mbsninc, _mbsninc_l
	strnlen, strnlen_s, wcsnlen, wcsnlen_s, _mbsnlen, _mbsnlen_l, _mbstrnlen, _mbstrnlen_l
	strnset, wcsnset
	_strnset, _strnset_l, _wcsnset, _wcsnset_l, _mbsnset, _mbsnset_l
	_strnset_s, _strnset_s_l, _wcsnset_s, _wcsnset_s_l, _mbsnset_s, _mbsnset_s_l
	strpbrk, wcspbrk, _mbspbrk, _mbspbrk_l
	strrchr, wcsrchr, _mbsrchr, _mbsrchr_l
	strrev, wcsrev
	_strrev, _wcsrev, _mbsrev, _mbsrev_l
	strset, wcsset
	_strset, _strset_l, _wcsset, _wcsset_l, _mbsset, _mbsset_l
	_strset_s, _strset_s_l, _wcsset_s, _wcsset_s_l, _mbsset_s, _mbsset_s_l
	strspn, wcsspn, _mbsspn, _mbsspn_l
	_strspnp, _wcsspnp, _mbsspnp, _mbsspnp_l
	strstr, wcsstr, _mbsstr, _mbsstr_l
	_strtime, _wstrtime
	_strtime_s, _wstrtime_s
	strtod, _strtod_l, wcstod, _wcstod_l
	strtof, _strtof_l, wcstof, _wcstof_l
	_strtoi64, _wcstoi64, _strtoi64_l, _wcstoi64_l
	strtoimax, _strtoimax_l, wcstoimax, _wcstoimax_l
	strtok, _strtok_l, wcstok, _wcstok_l, _mbstok, _mbstok_l
	strtok_s, _strtok_s_l, wcstok_s, _wcstok_s_l, _mbstok_s, _mbstok_s_l
	strtol, wcstol, _strtol_l, _wcstol_l
	strtold, _strtold_l, wcstold, _wcstold_l
	strtoll, _strtoll_l, wcstoll, _wcstoll_l
	_strtoui64, _wcstoui64, _strtoui64_l, _wcstoui64_l
	strtoul, _strtoul_l, wcstoul, _wcstoul_l
	strtoull, _strtoull_l, wcstoull, _wcstoull_l
	strtoumax, _strtoumax_l, wcstoumax, _wcstoumax_l
	strupr, wcsupr
	_strupr, _strupr_l, _mbsupr, _mbsupr_l, _wcsupr_l, _wcsupr
	_strupr_s, _strupr_s_l, _mbsupr_s, _mbsupr_s_l, _wcsupr_s, _wcsupr_s_l
	strxfrm, wcsxfrm, _strxfrm_l, _wcsxfrm_l
	swab
	_swab
	system, _wsystem
	tan, tanf, tanl
	tanh, tanhf, tanhl
	tell
	_tell, _telli64
	tempnam
	_tempnam, _wtempnam, tmpnam, _wtmpnam
	_tempnam_dbg, _wtempnam_dbg
	terminate (CRT)
	tgamma, tgammaf, tgammal
	time, _time32, _time64
	timespec_get, _timespec32_get, _timespec64_get
	tmpfile
	tmpfile_s
	tmpnam_s, _wtmpnam_s
	toascii, __toascii
	tolower, _tolower, towlower, _tolower_l, _towlower_l
	toupper, _toupper, towupper, _toupper_l, _towupper_l
	towctrans
	trunc, truncf, truncl
	tzset
	_tzset
	umask
	_umask
	_umask_s
	__uncaught_exception
	unexpected (CRT)
	ungetc, ungetwc
	_ungetc_nolock, _ungetwc_nolock
	ungetch
	_ungetch, _ungetwch, _ungetch_nolock, _ungetwch_nolock
	unlink
	_unlink, _wunlink
	_unlock_file
	_utime, _utime32, _utime64, _wutime, _wutime32, _wutime64
	va_arg, va_copy, va_end, va_start
	_vcprintf, _vcprintf_l, _vcwprintf, _vcwprintf_l
	_vcprintf_p, _vcprintf_p_l, _vcwprintf_p, _vcwprintf_p_l
	_vcprintf_s, _vcprintf_s_l, _vcwprintf_s, _vcwprintf_s_l
	vfprintf, _vfprintf_l, vfwprintf, _vfwprintf_l
	_vfprintf_p, _vfprintf_p_l, _vfwprintf_p, _vfwprintf_p_l
	vfprintf_s, _vfprintf_s_l, vfwprintf_s, _vfwprintf_s_l
	vfscanf, vfwscanf
	vfscanf_s, vfwscanf_s
	vprintf, _vprintf_l, vwprintf, _vwprintf_l
	_vprintf_p, _vprintf_p_l, _vwprintf_p, _vwprintf_p_l
	vprintf_s, _vprintf_s_l, vwprintf_s, _vwprintf_s_l
	vscanf, vwscanf
	vscanf_s, vwscanf_s
	_vscprintf, _vscprintf_l, _vscwprintf, _vscwprintf_l
	_vscprintf_p, _vscprintf_p_l, _vscwprintf_p, _vscwprintf_p_l
	vsnprintf, _vsnprintf, _vsnprintf_l, _vsnwprintf, _vsnwprintf_l
	vsnprintf_s, _vsnprintf_s, _vsnprintf_s_l, _vsnwprintf_s, _vsnwprintf_s_l
	vsprintf, _vsprintf_l, vswprintf, _vswprintf_l, __vswprintf_l
	_vsprintf_p, _vsprintf_p_l, _vswprintf_p, _vswprintf_p_l
	vsprintf_s, _vsprintf_s_l, vswprintf_s, _vswprintf_s_l
	vsscanf, vswscanf
	vsscanf_s, vswscanf_s
	wcrtomb
	wcrtomb_s
	wcsrtombs
	wcsrtombs_s
	wcstombs, _wcstombs_l
	wcstombs_s, _wcstombs_s_l
	wctob
	wctomb, _wctomb_l
	wctomb_s, _wctomb_s_l
	wctrans
	wctype
	write
	_write
	wcsicoll
	xor
	xor_eq
	y0, y1, yn

