Contents

C Run-Time Library Reference
CRT Library Features
Compatibility
UWP Apps, the Windows Runtime, and the C Run-Time
ANSI C Compliance
UNIX
Windows Platforms (CRT)
Backward Compatibility
Required and Optional Header Files
Files and Streams
Text and Binary Streams
Byte and Wide Streams
Controlling Streams
Stream States
Recommendations for Choosing Between Functions and Macros
Type Checking (CRT)
Direction Flag
Security Features in the CRT
Security-Enhanced Versions of CRT Functions
Parameter Validation
Secure Template Overloads
SAL Annotations
Multithreaded Libraries Performance
Link Options
Potential Errors Passing CRT Objects Across DLL Boundaries
CRT Initialization
Universal C runtime routines by category
Argument Access

Buffer Manipulation

Byte Classification
Character Classification
Complex math support
Data Alignment
Data Conversion
Debug Routines
Directory Control
Error Handling (CRT)
Exception Handling Routines
File Handling
Floating-Point Support
Input and Output
Text and Binary Mode File 1-O
Unicode Stream I-O in Text and Binary Modes
Stream |-O
Low-Level I-O
Console and Port I-O
_nolock Functions
Internationalization
Locale
Code Pages
Interpretation of Multibyte-Character Sequences
ISO646 Operators
Single-Byte and Multibyte Character Sets
SBCS and MBCS Data Types
Unicode: The Wide-Character Set
Using Generic-Text Mappings
A Sample Generic-Text Program
Using TCHAR.H Data Types with _"MBCS
Memory Allocation
Process and Environment Control

Robustness

Run-Time Error Checking
Searching and Sorting
String Manipulation (CRT)
System Calls
Time Management
Windows Runtime Unsupported CRT Functions
Internal CRT Globals and Functions
_abnormal_termination
_acmdIn, _tcmdIn, _-wcmdIn
_Clatan
_Clatan2
_Clcos
_Clexp
_Clfmod
_Cllog
_Cllog10
_Clpow
_Clsin
_Clsqrt
_Cltan
__crtLCMapStringW
__CxxFrameHandler
__dllonexit
_except_handler3
_execute_onexit_table, _initialize_onexit_table, _register_onexit_function
__getmainargs, __wgetmainargs
__lc_codepage_func
__lc_collate_cp_func
__lc_locale_name_func
_local_unwind?2
__mb_cur_max_func, __mb_cur_max_|_func, __p__mb_cur_max, _mb_cur_max

__p__commode

_p_fmode
__pctype_func
__RTDynamicCast

__set_app_type
_set_app_type
_setjmp3
__setlc_active_func, __unguarded_readlc_active_add_func
__setusermatherr
Global Variables and Standard Types
Global Variables
_argc, __argy, _wargv
_daylight, _dstbias, _timezone, and _tzname
errno, _doserrno, _sys_errlist, and _sys_nerr
_environ, _wenviron
_fmode
_iob
_pctype, _pwctype, _wctype, _mbctype, _mbcasemap
_pgmptr, _wpgmptr
Control Flags
_CRTDBG_MAP_ALLOC
_DEBUG
_crtDbgFlag
Standard Types
Global Constants
32-Bit Windows Time-Date Formats
BUFSIZ
CLOCKS_PER_SEC, CLK_TCK
Commit-To-Disk Constants
_CRT_DISABLE_PERFCRIT_LOCKS
Data Type Constants
Environmental Constants
EOF, WEOF

errno Constants
Exception-Handling Constants
EXIT_SUCCESS, EXIT_FAILURE
File Attribute Constants

File Constants

File Permission Constants

File Read-Write Access Constants
File Translation Constants
FILENAME_MAX
FOPEN_MAX, _SYS_OPEN
_FREEENTRY, _USEDENTRY
fseek, _lseek Constants

Heap Constants
_HEAP_MAXREQ

HUGE_VAL, _HUGE

Locale Categories

_locking Constants

Math Constants

Math Error Constants
_MAX_ENV

MB_CUR_MAX

NULL (CRT)

Path Field Limits

RAND_MAX

setvbuf Constants

Sharing Constants

signal Constants

signal Action Constants
spawn Constants

_stat Structure st mode Field Constants
stdin, stdout, stderr
TMP_MAX, L_tmpnam

Translation Mode Constants
_TRUNCATE
TZNAME_MAX
_WAIT_CHILD, _WAIT_GRANDCHILD
WCHAR_MAX
WCHAR_MIN
Generic-Text Mappings
Data Type Mappings
Constant and Global Variable Mappings
Routine Mappings
Locale Names, Languages, and Country-Region Strings
Language Strings
Country-Region Strings
Function Family Overviews
_exec, _wexec Functions
Filename Search Functions
Format Specification Syntax: printf and wprintf Functions
Format Specification Fields: scanf and wscanf Functions
Is, isw Routines
_ismbb Routines
_ismbc Routines
operator new(CRT)
operator new (CRT)
operator delete(CRT)
operator delete (CRT)
printf_p Positional Parameters
scanf Type Field Characters
scanf Width Specification
_spawn, _wspawn Functions
strcoll Functions
String to Numeric Value Functions

to Functions

vprintf Functions
Obsolete Functions

_cgets, _cgetws

_get_output_format

gets, _getws

_heapadd

_heapset

inp, inpw

_inp, _inpw, _inpd

_lock

outp, outpw

_outp, _outpw, _outpd

_set_output_format

_unlock

Alphabetical Function Reference

CRT Alphabetical Function Reference
abort
abs, labs, llabs, _abs64
access (CRT)
_access, _waccess
_access_s, _waccess_s
acos, acosf, acosl
acosh, acoshf, acoshl
_aligned_free
_aligned_free_dbg
_aligned_malloc
_aligned_malloc_dbg
_aligned_msize
_aligned_msize_dbg
_aligned_offset_malloc
_aligned_offset_malloc_dbg

_aligned_offset_realloc

_aligned_offset_realloc_dbg
_aligned_offset_recalloc
_aligned_offset_recalloc_dbg
_aligned_realloc
_aligned_realloc_dbg
_aligned_recalloc
_aligned_recalloc_dbg

_alloca

_amsg_exit

and

and_eq

asctime, _wasctime

asctime_s, _wasctime_s

asin, asinf, asinl

asinh, asinhf, asinhl

assert Macro, _assert, _wassert
_ASSERT, _ASSERTE, _ASSERT_EXPR Macros
atan, atanf, atanl, atan2, atan2f, atan2|
atanh, atanhf, atanhl

atexit

_atodbl, _atodbl_|, atoldbl, _atoldbl |, _atoflt, _atoflt_|
atof _atof |, wtof _wtof |

atoi, _atoi_|, _wtoi, wtoi |

_atoib4, atoied |, wtoie4, wtoie4d |
atol, _atol |, wtol, wtol |

atoll, _atoll_|, wtoll, wtoll_|
_beginthread, _beginthreadex

Bessel Functions: _jO, _j1, jn, _y0, _y1, _yn
bitand

bitor

bsearch

bsearch_s

btowc
_byteswap_uint64, _byteswap_ulong, _byteswap_ushort
clértomb, c32rtomb
cabs, cabsf, cabsl

_cabs

cacos, cacosf, cacosl
cacosh, cacoshf, cacoshl
_callnewh

calloc

_calloc_dbg

carg, cargf, cargl

casin, casinf, casinl
casinh, casinhf, casinhl
catan, catanf, catanl
catanh, catanhf, catanhl
cbrt, cbrtf, cbrtl
_Cbuild, _FCbuild, _LCbuild
ccos, ccosf, ccosl

ccosh, ccoshf, ccoshl
ceil, ceilf, ceill

_cexit, _c_exit

cexp, cexpf, cexpl
cgets

_cgets_s, _cgetws_s
chdir

_chdir, _wchdir
_chdrive

_chgsign, _chgsignf, _chgsignl
chmod

_chmod, _wchmod
chsize

_chsize

_chsize s

cimag, cimagf, cimagl!

_clear87, _clearfp

clearerr

clearerr_s

clock

clog, clogf, clogl

clog10, clog10f, clog10l

_close

close

_Cmulcc, _FCmulce, _LCmulcc
_Cmulcr, _FCmulcr, _LCmulcr

_commit

compl

_configthreadlocale

conj, conjf, conjl

_control87, _controlfp, __control87_2
_controlfp_s

copysign, copysignf, copysignl, _copysign, _copysignf, _copysignl
cos, cosf, cosl

cosh, coshf, coshl

_countof Macro

cpow, cpowf, cpowl

cprintf

_cprintf, _cprintf_|, _cwprintf, _cwprintf_|
_cprintf_p, _cprintf_p_|, _cwprintf_p, _cwprintf_p_|
_cprintf_s, _cprintf_s_|, _cwprintf_s, _cwprintf_s_|
cproj, cprojf, cprojl

cputs

_Cputs, _cputws

creal, crealf creall

creat

_Creat, wcreat

_create_locale, wcreate _locale
_CrtCheckMemory
_CrtDbgBreak

_CrtDbgReport, _CrtDbgReportW
_CrtDoForAllClientObjects
_CrtDumpMemoryLeaks
_CrtGetAllocHook
_CrtGetDumpClient
_CrtGetReportHook
_CrtlIsMemoryBlock
_CrtlsValidHeapPointer
_CrtlsValidPointer
_CrtMemCheckpoint
_CrtMemDifference
_CrtMemDumpAllObjectsSince
_CrtMemDumpStatistics
_CrtReportBlockType
_CrtSetAllocHook
_CrtSetBreakAlloc
_CrtSetDbgFlag
_CrtSetDebugFillThreshold
_CrtSetDumpClient
_CrtSetReportFile
_CrtSetReportHook
_CrtSetReportHook2, _CrtSetReportHookW?2
_CrtSetReportMode

cscanf

_cscanf, _cscanf |, _cwscanf, _cwscanf |
_cscanf s, cscanf s |, _cwscanf s, _cwscanf s_|
csin, csinf, csinl

csinh, csinhf csinhl

csqrt, csqrtf, csqrtl

ctan, ctanf, ctanl

ctanh, ctanhf, ctanhl

ctime, _ctime32, _ctime64, _wctime, _wctime32, _wctime64
ctime_s, _ctime32_s, _ctime64_s, _wctime_s, _wctime32_s, _wctime64_s
cwait

_cwait

_CxxThrowException

difftime, _difftime32, difftime64
div

dup, dup?2

_dup, _dup?2

_dupenv_s, _wdupenv_s
_dupenv_s_dbg, _-wdupenv_s_dbg
ecvt

_ecvt

_ecvt_s

_endthread, _endthreadex

eof

_eof

erf erff, erfl, erfc, erfcf, erfcl
execl

_execl, _wexecl

execle

_execle, wexecle

execlp

_execlp, _wexeclp

execlpe

_execlpe, _wexeclpe

execv

_execv, _wexecv

execve

_execve, _wexecve
execvp

_execvp, _wexecvp
execvpe

_execvpe, _wexecvpe
exit, Exit, exit

exp, expf, expl

exp2, exp2f, exp2l
_expand
_expand_dbg

expm1, expm1f, expm1|
fabs, fabsf, fabsl
fclose, _fcloseall
_fclose_nolock
fcloseall

fevt

_fevt

_fevt s

fdim, fdimf, fdiml
fdopen

_fdopen, _wfdopen
feclearexcept
fegetenv
fegetexceptflag
fegetround, fesetround
feholdexcept

feof

feraiseexcept

ferror

fesetenv
fesetexceptflag

fetestexcept

feupdateenv

fflush

_fflush_nolock

fgetc, fgetwc
_fgetc_nolock, _fgetwc_nolock
fgetchar

_fgetchar, _fgetwchar
fgetpos

fgets, fgetws

filelength

_filelength, _filelengthi64
fileno

_fileno

_findclose

_findfirst, findfirst32, findfirst32i64, findfirsto4, findfirst64i32, findfirstio4,
_wfindfirst, _wfindfirst32, wfindfirst32i64, wfindfirsto4, wfindfirst64i32, wfindfirstic4

_findnext, _findnext32, findnext32i64, findnext64, findnext64i32, findnexti64,
_wfindnext, wfindnext32, wfindnext32i64, wfindnext64, wfindnext64i32,
_wfindnexti64

Floating-point primitives
floor, floorf, floorl
flushall

_flushall

fma, fmaf, fmal
fmax, fmaxf, fmaxl
fmin, fminf fminl
frmod, fmodf
fopen, _wfopen
fopen_s, _wfopen_s
_fpclass, _fpclassf
fpclassify
_fpieee_flt

_fpreset

fprintf, _fprintf_|, fwprintf, _fwprintf_|
_fprintf_p, _fprintf_p_|, _fwprintf_p, _fwprintf_p_|
fprintf_s, _fprintf_s_|, fwprintf_s, _fwprintf_s_|
fputc, fputwc

_fputc_nolock, _fputwc_nolock

fputchar

_fputchar, _fputwchar

fputs, fputws

fread

fread_s

_fread_nolock

_fread_nolock_s2

free

_free_dbg

_free_locale

_freea

freopen, _wfreopen

freopen_s, _wfreopen_s

frexp

fscanf, _fscanf |, fwscanf _fwscanf |
fscanf s, fscanf_s_|, fwscanf_ s, fwscanf s |
fseek, fseeki64

_fseek_nolock, fseeki64_nolock

fsetpos

_fsopen, _wfsopen

_fstat, fstat32, fstato4, fstatio4, fstat32i64, fstat64i32
ftell, ftelli64

_ftell_nolock, ftellib4_nolock

_ftime, _ftime32, ftime64

_ftime_s, _ftime32_s, ftime64 s

_fullpath, _wfullpath

_fullpath_dbg, _wfullpath_dbg

_futime, _futime32, _futime64
fwide

fwrite

_fwrite_nolock

gevt

_gevt

_gevt s

_get_current_locale
_get_daylight

_get_doserrno

_get_dstbias

_get_errno

get FMA3_enable, _set FMA3_enable
_get_fmode

_get_heap_handle
_get_invalid_parameter_handler, _get_thread_local_invalid_parameter_handler
_get_osfhandle

_get_pgmptr
_get_printf_count_output
_get_purecall_handler, _set_purecall_handler
_get_terminate

_get_timezone

_get_tzname

_get_unexpected
_get_wpgmptr

getc, getwc

_getc_nolock, _getwc_nolock
getch

_getch, _getwch
_getch_nolock, _getwch_nolock
getchar, getwchar

_getchar_nolock, _getwchar_nolock

getche

_getche, _getwche
_getche_nolock, _getwche_nolock
getcwd

_getcwd, _wgetcwd
_getcwd_dbg, _wgetcwd_dbg
_getdcwd, _wgetdcwd
_getdcwd_dbg, _wgetdcwd_dbg
_getdcwd_nolock, _-wgetdcwd_nolock
_getdiskfree

_getdrive

_getdrives

getenv, _wgetenv

getenv_s, _wgetenv_s
_getmaxstdio

_getmbcp

getpid

_getpid

gets_s, _getws_s

getw

_getw

gmtime, _gmtime32, _gmtime64
gmtime_s, _gmtime32_s, _.gmtime64_s
_heapchk

_heapmin

_heapwalk

hypot, hypotf, hypotl, _hypot, _hypotf, _hypotl
ilogb, ilogbf, ilogbl2

imaxabs

imaxdiv

_initterm, _initterm_e

_invalid_parameter, _invalid_parameter_noinfo, _invalid_parameter_noinfo_noreturn,
_invoke_watson

isalnum, iswalnum, _isalnum_|, _iswalnum_|
isalpha, iswalpha, _isalpha_|, _iswalpha_l
isascil, __Isasclii, iswascil

Isatty

_isatty

isblank, iswblank, _isblank_|, _iswblank_|
iscntrl, iswentrl, _iscntrl |, _iswentrl_|
_isctype, iswctype, _isctype_|, _iswctype_|

iscsym, iscsymf, __iscsym, __iswcsym, __iscsymf, __iswcsymf, _iscsym_l, _iswcsym_|,
iscsymf|, _iswcsymf_|

isdigit, iswdigit, _isdigit_|, _iswdigit_|

isfinite, finite, _finitef

isgraph, iswgraph, _isgraph_|, _iswgraph_|

isgreater, isgreaterequal, isless, islessequal, islessgreater, isunordered
isinf

isleadbyte, _isleadbyte_|

islower, iswlower, _islower |, _iswlower |

_ismbbalnum, _ismbbalnum_|

_ismbbalpha, _ismbbalpha_l

_ismbbblank, _ismbbblank_|

_ismbbgraph, _ismbbgraph_|

_ismbbkalnum, _ismbbkalnum_|

_ismbbkana, _ismbbkana_|

_ismbbkprint, _ismbbkprint_|

_ismbbkpunct, _ismbbkpunct_|

_ismbblead, _ismbblead |

_ismbbprint, _ismbbprint_|

_ismbbpunct, _ismbbpunct_|

_ismbbtrail, _ismbbtrail_|

_ismbcalnum, _ismbcalnum_|, _ismbcalpha, _ismbcalpha_l, _ismbcdigit, _ismbcdigit_|

_ismbcgraph, _ismbcgraph_|, _ismbcprint, _ismbcprint_|, _ismbcpunct, _ismbcpunct_|,
_ismbcblank, _ismbcblank_|, _ismbcspace, _ismbcspace_|

_ismbchira, _ismbchira_|, .ismbckata, _ismbckata_|

_ismbcl0, _ismbclO |, _ismbcl1, _ismbcl1_|, ismbcl2, ismbcl2_|
_ismbclegal, _ismbclegal_l, _ismbcsymbol, _ismbcsymbol_|
_ismbclower, _ismbclower_|, _ismbcupper, _ismbcupper_|
_ismbslead, _ismbstrail, _ismbslead_|, _ismbstrail_|

isnan, _isnan, _isnanf

isnormal

ispunct, iswpunct, _ispunct_|, _iswpunct_|

isprint, iswprint, _isprint_|, _iswprint_|

isspace, iswspace, _isspace_|, _iswspace_|

isupper, _isupper_|, iswupper, _iswupper_|

isxdigit, iswxdigit, _isxdigit_|, _iswxdigit_|

itoa, _itoa, Itoa, Itoa, ultoa, ultoa, i64toa, uibdtoa, itow, [tow, ultow, i64tow,
_uie4tow

_itoa_s, Itoa_s, ultoa_s, i64toa_s, uib4dtoa_s, itow s, ltow s, ultow s, i64tow s,
_uie4tow s

JO, j1,jn

kbhit

_kbhit

|dexp

[div, lldiv

Ifind

_Ifind

_Ifind_s

lgamma, lgammaf, Igammal
localeconv

localtime, _localtime32, localtime64
localtime_s, localtime32_s, localtime64 s
_lock_file

locking

_locking

log, logf, log10, log10f

log1p, log1pf, log1pl2

log2, log2f, log2l

logb, logbf, logbl, _logb, _logbf

longjmp

[rint, Irintf, Irintl, llrint, lIrintf, [lrintl

Iround, Iroundf, Iround|, llround, liroundf, lIround|
_lrotl, _Irotr

Isearch

_Isearch

_Isearch_s

Iseek

_Iseek, _lseekit4

_makepath, _wmakepath

_makepath_s, _-wmakepath_s

malloc

_malloc_dbg

_malloca

_matherr

__max

_mbbtombc, _mbbtombc_|

_mbbtype, _mbbtype_|

_mbccpy, _mbccpy_|

_mbccpy_s, _mbccpy_s_|

_mbgjistojms, _mbgjistojms_|, _mbcjmstojis, _mbcjmstojis_|
_mbclen, mblen, _mblen_|, _mbclen_|
_mbctohira, _mbctohira_|, _mbctokata, _mbctokata_|
_mbctolower, _mbctolower_|, _mbctoupper, _mbctoupper_|
_mbctombb, _mbctombb |

mbrlen

mbrtoc16, mbrtoc323

mbrtowc

_mbsbtype, _mbsbtype_|

mbsinit

_mbsnbcat, _mbsnbcat_|

_mbsnbcat_s, _mbsnbcat s |
_mbsnbcmp, _mbsnbcmp_|
_mbsnbcoll, _mbsnbcoll_l, _mbsnbicoll, _mbsnbicoll_|
_mbsnbcpy, _mbsnbcpy_|
_mbsnbcpy_s, _mbsnbcpy_s_|
_mbsnbicmp, _mbsnbicmp_|
_mbsnbset, _mbsnbset_|
_mbsnbset_s, _mbsnbset_s_|
mbsrtowcs

mbsrtowcs_s

mbstowcs, _mbstowcs_|
mbstowcs_s, _mbstowcs_s_|
mbtowc, _mbtowc_|
memccpy

_memccpy

memchr, wmemchr
memcmp, wmemcmp
memcpy, wmemcpy
memcpy_s, wmemcpy_s
memicmp

_memicmp, _memicmp_|
memmove, wmemmove
memmove_s, wmemmove_s
memset, wmemset

__min

mkdir

_mkdir, _wmbkdir
_mkgmtime, _mkgmtime32, _mkgmtime64
mktemp

_mktemp, _wmktemp
_mktemp_s, _-wmktemp_s

mktime, _mktime32, _mktime64

modf modff modfl

_msize

_msize_dbg

nan, nanf, nanl

nearbyint, nearbyintf, nearbyintl

nextafter, nextafterf nextafterl, nextafter, nextafterf nexttoward, nexttowardf,
nexttoward]

norm, normf, norml

not

not_eq

offsetof Macro

_onexit, _onexit.m

open

_open, _wopen

_open_osfhandle

or_eq

or

_pclose

perror, _wperror

_pipe

_popen, _wpopen

pow, powf, powl

printf, _printf_|, wprintf, _wprintf_|
_printf_p, _printf_p_|, _wprintf_p, _wprintf_p_|
printf_s, _printf_s_|, wprintf_s, _wprintf_s_|
_purecall

putc, putwc

_putc_nolock, _putwc_nolock
putch

_putch, _putwch

_putch_nolock, _putwch_nolock
putchar, putwchar

_putchar_nolock, _putwchar_nolock

putenv

_putenv, _wputenv
_putenv_s, _wputenv_s
puts, _putws

putw

_putw
_query_new_handler
_query_new_mode
quick_exit

gsort

gsort_s

raise

rand

rand_s

read

_read

realloc

_realloc_dbg
_recalloc
_recalloc_dbg
remainder, remainderf remainderl
remove, _wremove
remquo, remquof, remquol
rename, _wrename
_resetstkoflw

rewind

rint, rintf rintl

rmdir

_rmdir, _wrmdir
rmtmp

_rmtmp

_rotl, _rotl64, rotr, rotr64

round, roundf roundl|

_RPT, _RPTF, _RPTW, _RPTFW Macros
_RTC_GetErrDesc

_RTC_NuméErrors

_RTC_SetErrorFunc

_RTC_SetErrorFuncW

_RTC_SetErrorType

_scalb

scalbn, scalbnf, scalbnl, scalbln, scalbInf, scalbinl
scanf, _scanf_|, wscanf, _wscanf_|

scanf_s, _scanf_s_|, wscanf_s, _wscanf_s_|
_scprintf, _scprintf_|, _scwprintf, _scwprintf_|
_scprintf_p, _scprintf_p_|, _scwprintf_p, _scwprintf_p_|
_searchenv, _wsearchenv

_searchenv_s, _wsearchenv_s
__security_init_cookie

_seh_filter_dll, seh filter_exe
_set_abort_behavior

setbuf

_set_controlfp

_set_doserrno

_set_errno

_set_error_mode

set fmode
_set_invalid_parameter_handler, _set_thread_local_invalid_parameter_handler
setjmp

setlocale, wsetlocale

_setmaxstdio

_setmbcp

setmode

_setmode

_set_new_handler

_set_new_mode

_set_printf_count_output
_set_se_translator

_set_SSE2_enable

set_terminate (CRT)

set_unexpected (CRT)

setvbuf

signal

signbit

sin, sinf, sinl

sinh, sinhf, sinhl

snprintf, _snprintf, _snprintf_|, _snwprintf, _snwprintf_|
_snprintf_s, _snprintf_s_|, _snwprintf_s, _snwprintf_s_|
_snscanf, _snscanf_|, _snwscanf, _snwscanf_|
_snscanf_s, _snscanf_s_|, _snwscanf_s, _snwscanf_s_|
sopen

_sopen, _wsopen

_sopen_s, _wsopen_s

spawnl

_spawnl, _wspawnl

spawnle

_spawnle, _wspawnle

spawnlp

_spawnlp, _wspawnlp

spawnlpe

_spawnlpe, _wspawnlpe

spawnv

_Sspawny, _wspawnv

spawnve

_spawnve, _wspawnve

spawnvp

_Spawnvp, _wspawnvp

spawnvpe
_Sspawnvpe, _wspawnvpe

_splitpath, _wsplitpath

_splitpath_s, _wsplitpath_s

sprintf, _sprintf_|, swprintf, _swprintf_|, __swprintf_|
_sprintf_p, _sprintf_p_|, _swprintf_p, _swprintf_p_|
sprintf_s, _sprintf_s_|, swprintf_s, _swprintf_s_|
sqrt, sqrtf, sqrtl

srand

sscanf, _sscanf_|, swscanf, _swscanf _|

sscanf_s, _sscanf_s_|, swscanf_s, _swscanf_s_|

_stat, stat32, stat64, statio4, stat32i64, stat64i32, wstat, wstat32, wstat64,
_wstatie4, wstat32i64, wstat64i32

_STATIC_ASSERT Macro

_status87, _statusfp, _statusfp2

strcat, wcscat, _mbscat

strcat_s, wcscat_s, _mbscat_s, _mbscat_s_|

strchr, weschr, _mbschr, _mbschr_|

strcmp, wesecmp, _mbscmp, _mbscmp_|

strcmpli

strcoll, wescoll, _mbscoll, _strcoll |, _wcscoll |, _mbscoll_|
strcpy, wescpy, _mbscpy

strcpy_s, wescpy_s, _mbscpy_s, _mbscpy_s_|
strcspn, wescspn, _mbscspn, _mbscspn_|
_strdate, wstrdate

_strdate_s, wstrdate s

_strdec, _wcsdec, _mbsdec, _mbsdec_|

strdup, wesdup

_strdup, _wcsdup, _mbsdup

_strdup_dbg, _wcsdup_dbg

strerror, _strerror, _wcserror, _ wcserror
strerror_s, _strerror_s, _Wcserror_s, _ WCSerror_s

strftime, wcsftime, _strftime_|, _wcsftime_|

stricmp, wcsicmp

_stricmp, _wcsicmp, _mbsicmp, _stricmp_|, _wcsicmp_|, _mbsicmp_|
_stricoll, “wcsicoll, _mbsicoll, _stricoll |, ‘wcsicoll_|, _mbsicoll_|

_strinc, _wcsinc, _mbsinc, _mbsinc_|

strlen, wcslen, _mbslen, _mbslen_|, _mbstrlen, _mbstrlen_|

strlwr, weslwr

_strlwr, _wcslwr, _mbslwr, _striwr |, _wcslwr |, _mbslwr |

_strlwr_s, _strlwr_s |, _mbslwr_s, _mbslwr_ s |, wcslwr_s, wcslwr_s_|
strncat, _strncat_|, wcsncat, _wcsncat_|, _mbsncat, _mbsncat_|

strncat_s, _strncat_s_|, wcsncat_s, _wcsncat_s_|, _mbsncat_s, _mbsncat_s_|
strncmp, wesncmp, _mbsncmp, _mbsncmp_|

_strncnt, _wcsncnt, _mbsnbcnt, _mbsnbcnt_|, _mbsncent, _mbsncent_|
_strncoll, _wcsncoll, _mbsncoll, _strncoll_l, _wcsncoll_l, _mbsncoll_|
strncpy, _strncpy_|, wesnepy, _wcesncpy_l, _mbsncpy, _mbsncpy_|
strncpy_s, _strncpy_s_|, wesncpy_s, _wesncpy_s_|, _mbsncpy_s, _mbsncpy_s_|
_strnextc, _wcsnextc, _mbsnextc, _mbsnextc_|

strnicmp, wcsnicmp

_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_|, _wcsnicmp_|, _mbsnicmp_|
_strnicoll, _wcsnicoll, _mbsnicoll, _strnicoll_|, _wcsnicoll_|, _mbsnicoll_|
_strninc, _wcsninc, _mbsninc, _mbsninc_|

strnlen, strnlen_s, wesnlen, wesnlen_s, _mbsnlen, _mbsnlen_l, _mbstrnlen, _mbstrnlen_|
strnset, wcsnset

strnset, strnset|, _wcsnset, _wcsnset |, _mbsnset, _mbsnset |

_strnset_s, strnset s |, _wcsnset_s, _wcsnset s |, _mbsnset s, _mbsnset_s_|
strpbrk, wcspbrk, _mbspbrk, _mbspbrk_|

strrchr, wesrchr, _mbsrchr, _mbsrchr_|

strrev, wcsrev

_strrev, _wcsrev, _mbsrev, _mbsrev_|

strset, wcsset

_strset, strset |, _wcsset, wcsset |, _mbsset, _mbsset_|

_strset s, strset s |, wcsset s, wcsset s |, _mbsset s, mbsset s |

strspn, wcsspn, _mbsspn, _mbsspn_|

_strspnp, _wcsspnp, _mbsspnp, _mbsspnp_|

strstr, wesstr, _mbsstr, _mbsstr |

_strtime, _wstrtime

_strtime_s, _wstrtime_s

strtod, _strtod_|, westod, _wcstod_|

strtof, _strtof_|, wcstof, _wcstof _|

_strtoib4, _wcstoib4, _strtoi64_|, _wcstoi64_|

strtoimax, _strtoimax_|, wcstoimax, _wcstoimax_|

strtok, _strtok_|, wcstok, _wcestok_|, _mbstok, _mbstok_|
strtok_s, _strtok_s_|, wecstok_s, _wcstok_s_|, _mbstok_s, _-mbstok_s_|
strtol, wcstol, _strtol_|, _wcstol_|

strtold, _strtold_|, wcstold, _wcstold_|

strtoll, _strtoll_|, wcstoll, _wcstoll_|

_strtoui64, _wcstoui64, _strtoui64_|, _wcstoui64._|

strtoul, _strtoul_|, wcstoul, _wcstoul_|

strtoull, _strtoull_l, wcstoull, _wcstoull_|

strtoumax, _strtoumax_|, wcstoumax, _wcstoumax_|
strupr, wcsupr

_strupr, _strupr_l, _mbsupr, _-mbsupr_|, _wcsupr_|, _wcsupr
_strupr_s, _strupr_s_|, _mbsupr_s, _mbsupr_s_|, ~wcsupr_s, _wcsupr_s_|
strxfrm, wesxfrm, _strxfrm_|, _wcsxfrm_|

swab

_swab

system, _wsystem

tan, tanf, tanl

tanh, tanhf tanhl

tell
_tell, _tellic4
tempnam

_tempnam, _wtempnam, tmpnam, _wtmpnam
_tempnam_dbg, _-wtempnam_dbg
terminate (CRT)

tgamma, tgammaf, tgammal

time, _time32, time64

timespec_get, _timespec32_get, _timespec64_get
tmpfile

tmpfile_s

tmpnam_s, _wtmpnam_s

toascii, __toascii

tolower, _tolower, towlower, _tolower_|, _towlower_|
toupper, _toupper, towupper, _toupper_|, _towupper_|
towctrans

trunc, truncf, truncl

tzset

_tzset

umask

_umask

_umask_s

__uncaught_exception

unexpected (CRT)

ungetc, ungetwc

_ungetc_nolock, _ungetwc_nolock

ungetch

_ungetch, _ungetwch, _ungetch_nolock, _ungetwch_nolock
unlink

_unlink, _wunlink

_unlock_file

_utime, _utime32, _utime64, wutime, _wutime32, wutime64
va_arg, va_copy, va_end, va_start

_veprintf, _vcprintf_|, _vcwprintf, _vcwprintf_|
_vecprintf_p, _vcprintf_p_|, _vcwprintf_p, _vcwprintf_p_|
_vcprintf_s, _vcprintf_s_|, _vcwprintf_s, _vcwprintf_s_|
viprintf, _vfprintf_|, vfwprintf, _vfwprintf_|

_vfprintf_p, _vfprintf_p_|, _vfwprintf_p, _vfwprintf_p_|

viprintf_s, _vfprintf_s_|, vfwprintf_s, _vfwprintf_s_|
vfscanf vfwscanf

vfscanf_s, vfwscanf_s

vprintf, _vprintf_|, vwprintf, _vwprintf_|

_vprintf_p, _vprintf_p_|, _vwprintf_p, _vwprintf_p_|
vprintf_s, _vprintf_s_|, vwprintf_s, _vwprintf_s_|

vscanf, vwscanf

vscanf_s, vwscanf_s

_vscprintf, _vscprintf_|, _vscwprintf, _vscwprintf_|
_vscprintf_p, _vscprintf_p_|, _vscwprintf_p, _vscwprintf_p_|
vsnprintf, _vsnprintf, _vsnprintf_l, _vsnwprintf, _vsnwprintf_|
vsnprintf_s, _vsnprintf_s, _vsnprintf_s_|, _vsnwprintf_s, _vsnwprintf_s_|
vsprintf, _vsprintf_|, vswprintf, _vswprintf_|, _ vswprintf_|
_vsprintf_p, _vsprintf_p_|, _vswprintf_p, _vswprintf_p_|
vsprintf_s, _vsprintf_s_|, vswprintf_s, _vswprintf_s_|
vsscanf, vswscanf

vsscanf_s, vswscanf_s

wcrtomb

wcrtomb_s

wcsrtombs

wcsrtombs_s

wcstombs, _wcestombs_|

wcstombs_s, _wcstombs s |

wctob

wctomb, wctomb |

wctomb_s, wctomb_s_|

wctrans

wctype

write

_write

wcsicoll

Xor

xor_eq

y0, y1, yn

C Run-Time Library Reference

10/31/2018 « 2 minutes to read Edit Online

The Microsoft run-time library provides routines for programming for the Microsoft Windows operating system.
These routines automate many common programming tasks that are not provided by the C and C++ languages.

Sample programs are included in the individual reference topics for most routines in the library.

In This Section

C Run-Time Libraries
Discusses the .lib files that comprise the C run-time libraries.

Universal C runtime routines by category
Provides links to the run-time library by category.

Global Variables and Standard Types
Provides links to the global variables and standard types provided by the run-time library.

Global Constants
Provides links to the global constants defined by the run-time library.

Alphabetical Function Reference

Provides a table of contents entry point into an alphabetical listing of all C run-time library functions.

Generic-Text Mappings
Provides links to the generic-text mappings defined in Tchar.h.

Language and Country/Region Strings
Describes how to use the setlocale function to setthe language and Country/Region strings.

Related Sections

Debug Routines

Provides links to the debug versions of the run-time library routines.

Run-Time Error Checking

Provides links to functions that support run-time error checks.

DLLs and Visual C++ run-time library behavior

Discusses the entry point and startup code used for a DLL.

Debugging
Provides links to using the Visual Studio debugger to correct logic errors in your application or stored procedures.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/c-run-time-library-reference.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/crt-library-features
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/run-time-routines-by-category
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/global-variables-and-standard-types
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/global-constants
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/crt-alphabetical-function-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/generic-text-mappings
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/locale-names-languages-and-country-region-strings
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/debug-routines
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/run-time-error-checking
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/run-time-library-behavior
https://docs.microsoft.com/visualstudio/debugger/debugging-in-visual-studio

CRT Library Features

4/1/2019 « 8 minutes to read « Edit Online

This topic discusses the various .lib files that comprise the C run-time libraries as well as their
associated compiler options and preprocessor directives.

C Run-Time Libraries (CRT)

The C Run-time Library (CRT) is the part of the C++ Standard Library that incorporates the ISO
C99 standard library. The Visual C++ libraries that implement the CRT support native code
development, and both mixed native and managed code. All versions of the CRT support multi-
threaded development. Most of the libraries support both static linking, to link the library directly
into your code, or dynamic linking to let your code use common DLL files.

Starting in Visual Studio 2015, the CRT has been refactored into new binaries. The Universal CRT
(UCRT) contains the functions and globals exported by the standard C99 CRT library. The UCRT is
now a Windows component, and ships as part of Windows 10. The static library, DLL import
library, and header files for the UCRT are now found in the Windows 10 SDK. When you install
Visual C++, Visual Studio setup installs the subset of the Windows 10 SDK required to use the
UCRT. You can use the UCRT on any version of Windows supported by Visual Studio 2015 and
later versions. You can redistribute it using vcredist for supported versions of Windows other than
Windows 10. For more information, see Redistributing Visual C++ Files.

The following table lists the libraries that implement the UCRT.

PREPROCESSOR
LIBRARY ASSOCIATED DLL CHARACTERISTICS OPTION DIRECTIVES
libucrt.lib None Statically links the /MT MT
UCRT into your
code.
libucrtd.lib None Debug version of /MTd _DEBUG, _MT
the UCRT for static
linking. Not
redistributable.
ucrt.lib ucrtbase.dll DLL import library /MD _MT, DLL
for the UCRT.
ucrtd.lib ucrtbased.dll DLL import library /MDd _DEBUG, _MT,
for the Debug _DLL
version of the
UCRT. Not
redistributable.

The vcruntime library contains Visual C++ CRT implementation-specific code, such as exception
handling and debugging support, runtime checks and type information, implementation details and
certain extended library functions. This library is specific to the version of the compiler used.

This table lists the libraries that implement the vcruntime library.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/crt-library-features.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/redistributing-visual-cpp-files

LIBRARY

libvcruntime.lib

libvcruntimed.lib

vcruntime.lib

vcruntimed.lib

ASSOCIATED DLL

None

None

vcruntime<versio
n>.dll

vcruntime<versio
n>d.dll

CHARACTERISTICS

Statically linked
into your code.

Debug version for
static linking. Not
redistributable.

DLL import library
for the vcruntime.

DLL import library
for the Debug

OPTION

/MT

/MTd

/MD

/Mbd

PREPROCESSOR
DIRECTIVES

_MT

_MT, _DEBUG

_MT, _DLL

_DEBUG, _MT,
_DLL

vcruntime. Not
redistributable.

NOTE

When the UCRT refactoring occurred, the Concurrency Runtime functions were moved into concrt140.dll,
which was added to the C++ redistributable package. This DLL is required for C++ parallel containers and
algorithms such as concurrency::parallel_for . In addition, the C++ Standard Library requires this DLL
on Windows XP to support synchronization primitives, because Windows XP does not have condition

variables.

The code that initializes the CRT is in one of several libraries, based on whether the CRT library is
statically or dynamically linked, or native, managed, or mixed code. This code handles CRT startup,
internal per-thread data initialization, and termination. It is specific to the version of the compiler
used. This library is always statically linked, even when using a dynamically linked UCRT.

This table lists the libraries that implement CRT initialization and termination.

PREPROCESSOR
LIBRARY CHARACTERISTICS OPTION DIRECTIVES
libemt.lib Statically links the native /MT MT
CRT startup into your
code.
libcmtd.lib Statically links the /MTd _DEBUG, _MT
Debug version of the
native CRT startup. Not
redistributable.
msvcrt.lib Static library for the /MD _MT, DLL
native CRT startup for
use with DLL UCRT and
vcruntime.
msvcrtd.lib Static library for the /MDd _DEBUG, _MT, DLL

Debug version of the
native CRT startup for
use with DLL UCRT and
vcruntime. Not
redistributable.

PREPROCESSOR
LIBRARY CHARACTERISTICS OPTION DIRECTIVES

msvemrt.lib Static library for the /clr
mixed native and
managed CRT startup
for use with DLL UCRT
and vcruntime.

msvemrtd.lib Static library for the /clr
Debug version of the
mixed native and
managed CRT startup
for use with DLL UCRT
and vcruntime. Not
redistributable.

msvcurt.lib Deprecated Static /clr:pure
library for the pure
managed CRT.

msvcurtd.lib Deprecated Static /clr:pure
library for the Debug
version of the pure
managed CRT. Not
redistributable.

If you link your program from the command line without a compiler option that specifies a C run-
time library, the linker will use the statically linked CRT libraries: libcmt.lib, libvcruntime.lib, and
libucrtlib.

Using the statically linked CRT implies that any state information saved by the C runtime library
will be local to that instance of the CRT. For example, if you use strtok, _strtok_I, westok, _wcstok_|,
_mbstok, _mbstok_| when using a statically linked CRT, the position of the strtok parser is
unrelated to the strtok state used in code in the same process (but in a different DLL or EXE) that
is linked to another instance of the static CRT. In contrast, the dynamically linked CRT shares state
for all code within a process that is dynamically linked to the CRT. This concern does not apply if
you use the new more secure versions of these functions; for example, strtok_s does not have this

problem.

Because a DLL built by linking to a static CRT will have its own CRT state, it is not recommended to
link statically to the CRT in a DLL unless the consequences of this are specifically desired and
understood. For example, if you call _set_se_translator in an executable that loads the DLL linked to
its own static CRT, any hardware exceptions generated by the code in the DLL will not be caught by
the translator, but hardware exceptions generated by code in the main executable will be caught.

If you are using the /clr compiler switch, your code will be linked with a static library, msvemrt.lib.
The static library provides a proxy between your managed code and the native CRT. You cannot use
the statically linked CRT (/MT or /MTd options) with /clr. Use the dynamically-linked libraries
(/MD or /MDd) instead. The pure managed CRT libraries are deprecated in Visual Studio 2015
and unsupported in Visual Studio 2017.

For more information on using the CRT with /clr, see Mixed (Native and Managed) Assemblies.

To build a debug version of your application, the _DEBUG flag must be defined and the application
must be linked with a debug version of one of these libraries. For more information about using the
debug versions of the library files, see CRT Debugging Techniques.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/mixed-native-and-managed-assemblies
https://docs.microsoft.com/visualstudio/debugger/crt-debugging-techniques

This version of the CRT is not fully conformant with the C99 standard. In particular, the <tgmath.h>
header and the CX_LIMITED_RANGE/FP_CONTRACT pragma macros are not supported. Certain
elements such as the meaning of parameter specifiers in standard IO functions use legacy
interpretations by default. You can use /Zc compiler conformance options and specify linker options
to control some aspects of library conformance,

C++ Standard Library

PREPROCESSOR

C++ STANDARD LIBRARY CHARACTERISTICS OPTION DIRECTIVES
libcpmt.lib Multithreaded, static /MT MT

link
msvcprt.lib Multithreaded, dynamic /MD _MT, DLL

link (import library for

MSVCPversion.dll)
libcpmtd.lib Multithreaded, static /MTd _DEBUG, _MT

link
msvcprtd.lib Multithreaded, dynamic /MDd _DEBUG, _MT, _DLL

link (import library for
MSVCPversionD.DLL)

When you build a release version of your project, one of the basic C run-time libraries (libcmt.lib,
msvcmrtlib, msvertlib) is linked by default, depending on the compiler option you choose
(multithreaded, DLL, /clr). If you include one of the C++ Standard Library header files in your code,
a C++ Standard Library will be linked in automatically by Visual C++ at compile time. For example:

#include <ios>

For binary compatibility, more than one DLL file may be specified by a single import library.
Version updates may introduce dot libraries, separate DLLs that introduce new library functionality.
For example, Visual Studio 2017 version 15.6 introduced msvcp140_1.dll to support additional
standard library functionality without breaking the ABI supported by msvcp140.dll. The msvcprtlib
import library included in the toolset for Visual Studio 2017 version 15.6 supports both DLLs, and
the vcredist for this version installs both DLLs. Once shipped, a dot library has a fixed ABI, and will

never have a dependency on a later dot library.

What problems exist if an application uses more than one CRT
version?

Every executable image (EXE or DLL) can have its own statically linked CRT, or can dynamically link
to a CRT. The version of the CRT statically included in or dynamically loaded by a particular image
depends on the version of the tools and libraries it was built with. A single process may load
multiple EXE and DLL images, each with its own CRT. Each of those CRTs may use a different
allocator, may have different internal structure layouts, and may use different storage
arrangements. This means that allocated memory, CRT resources, or classes passed across a DLL
boundary can cause problems in memory management, internal static usage, or layout
interpretation. For example, if a class is allocated in one DLL but passed to and deleted by another,
which CRT deallocator is used? The errors caused can range from the subtle to the immediately
fatal, and therefore direct transfer of such resources is strongly discouraged.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-header-files

You can avoid many of these issues by using Application Binary Interface (ABI) technologies
instead, as they are designed to be stable and versionable. Design your DLL export interfaces to
pass information by value, or to work on memory that is passed in by the caller rather than
allocated locally and returned to the caller. Use marshalling techniques to copy structured data
between executable images. Encapsulate resources locally and only allow manipulation through
handles or functions you expose to clients.

It's also possible to avoid some of these issues if all of the images in your process use the same
dynamically loaded version of the CRT. To ensure that all components use the same DLL version of
the CRT, build them by using the /MD option, and use the same compiler toolset and property
settings.

Some care is needed if your program passes certain CRT resources (such as file handles, locales
and environment variables) across DLL boundaries, even when using the same version of the CRT.
For more information on the issues involved and how to resolve them, see Potential Errors Passing
CRT Objects Across DLL Boundaries.

See also

e C Run-Time Library Reference

Compatibility

5/8/2019 » 2 minutes to read
+ Edit Online

The Universal C Run-Time Library
(UCRT) supports most of the C
standard library required for C++
conformance. It implements the
C99 (ISO/IEC 9899:1999) library,
with the exceptions of the type-
generic macros defined in
<tgmath.h>, and strict type
compatibility in <complexh>. The
UCRT also implements a large
subset of the POSIX.1 (ISO/IEC
9945-1:1996, the POSIX System
Application Program Interface) C
library, but is not fully conformant
to any specific POSIX standard. In
addition, the UCRT implements
several Microsoft-specific functions
and macros that are not part of a
standard.

Functions specific to the Microsoft
implementation of Visual C++ are
found in the vcruntime library.
Many of these functions are for
internal use and cannot be called
by user code. Some are
documented for use in debugging
and implementation compatibility.

The C++ standard reserves names
that begin with an underscore in
the global namespace to the
implementation. Because the
POSIX functions are in the global
namespace, but are not part of the
standard C runtime library, the
Microsoft-specific implementations
of these functions have a leading
underscore. For portability, the
UCRT also supports the default
names, but the Microsoft C++
compiler issues a deprecation
warning when code that uses them
is compiled. Only the default
POSIX names are deprecated, not
the functions. To suppress the

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/compatibility.md

warning, define
_CRT_NONSTDC_NO_WARNINGS before
including any headers in code that
uses the original POSIX names.

Certain functions in the standard C
library have a history of unsafe
usage, because of misused
parameters and unchecked buffers.
These functions are often the
source of security issues in code.
Microsoft created a set of safer
versions of these functions that
verify parameter usage and invoke
the invalid parameter handler when
an issue is detected at runtime. By
default, the Microsoft C++
compiler issues a deprecation
warning when a function is used
that has a safer variant available.
When you compile your code as
C++, you can define
_CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES
as 1 to eliminate most warnings.
This uses template overloads to call
the safer variants while maintaining
portable source code. To suppress
the warning, define
_CRT_SECURE_NO_WARNINGS before
including any headers in code that
uses these functions. For more
information, see Security Features
in the CRT.

Except as noted within the
documentation for specific
functions, the UCRT is compatible
with the Windows API. Certain
functions are not supported in
Windows 8 Store apps or in
Universal Windows Platform
(UWP) apps on Windows 10. These
functions are listed in CRT
functions not supported in
Universal Windows Platform apps,
which enumerates the functions
not supported by the Windows
Runtime and UWP.

Related Articles

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps
https://docs.microsoft.com/uwp

TITLE

UWP Apps, the
Windows
Runtime, and the
C Run-Time

ANSI C
Compliance

UNIX

Windows
Platforms (CRT)

Backward
Compatibility

CRT Library
Features

DESCRIPTION

Describes when
UCRT routines
are not
compatible with
Universal
Windows apps or
Microsoft Store

apps.

Describes
standard-
compliant
naming in the
UCRT.

Provides
guidelines for
porting
programs to
UNIX.

Lists the
operating
systems that are
the CRT
supports.

Describes how to
map old CRT
names to the
new ones.

Provides an
overview of the
CRT library (lib)
files and the
associated
compiler options.

UWP Apps, the Windows Runtime, and the C Run-

Time

3/11/2019 « 2 minutes to read « Edit Online

Universal Windows Platform (UWP) apps are programs that run in the Windows Runtime that executes on
Windows 8. The Windows Runtime is a trustworthy environment that controls the functions, variables, and
resources that are available to a UWP app. However, by design, Windows Runtime restrictions prevent the use of
most C Run-Time Library (CRT) features in UWP apps.

The Windows Runtime does not support the following CRT features:

e Most CRT functions that are related to unsupported functionality.
For example, a UWP app cannot create a process by using the exec and spawn families of routines.
When a CRT function is not supported in a UWP app, that fact is noted in its reference article.

e Most multibyte character and string functions.
However, both Unicode and ANSI text are supported.

e Environment variables.

® The concept of a current working directory.

e UWP apps and DLLs that are statically linked to the CRT and built by using the /MT or /MTd compiler

options.
That is, an app that uses a multithread, static version of the CRT.
e An app that's built by using the /MDd compiler option.

That is, a debug, multithread, and DLL-specific version of the CRT. Such an app is not supported on the

Windows Runtime.

For a complete list of CRT functions that are not available in a UWP app and suggestions for alternative functions,

see CRT functions not supported in Universal Windows Platform apps.

See also

Compatibility

Windows Runtime Unsupported CRT Functions
Universal C runtime routines by category

Create a Universal Windows Platform console app

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/windows-store-apps-the-windows-runtime-and-the-c-run-time.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/md-mt-ld-use-run-time-library
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/md-mt-ld-use-run-time-library
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps
https://docs.microsoft.com/windows/uwp/launch-resume/console-uwp

ANS| C Compliance

3/11/2019 « 2 minutes to read « Edit Online

The naming convention for all Microsoft-specific identifiers in the run-time system (such as functions, macros,
constants, variables, and type definitions) is ANSI-compliant. In this documentation, any run-time function that
follows the ANSI/ISO C standards is noted as being ANS| compatible. ANSI-compliant applications should only
use these ANSI| compatible functions.

The names of Microsoft-specific functions and global variables begin with a single underscore. These names can
be overridden only locally, within the scope of your code. For example, when you include Microsoft run-time
header files, you can still locally override the Microsoft-specific function named _open by declaring a local variable
of the same name. However, you cannot use this name for your own global function or global variable.

The names of Microsoft-specific macros and manifest constants begin with two underscores, or with a single
leading underscore immediately followed by an uppercase letter. The scope of these identifiers is absolute. For
example, you cannot use the Microsoft-specific identifier _UPPER for this reason.

See also

Compatibility

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/ansi-c-compliance.md

UNIX

3/11/2019 « 2 minutes to read « Edit Online

If you plan to port your programs to UNIX, follow these guidelines:

Do not remove header files from the SYS subdirectory. You can place the SYS header files elsewhere only if
you do not plan to transport your programs to UNIX.

Use the UNIX-compatible path delimiter in routines that take strings representing paths and filenames as
arguments. UNIX supports only the forward slash (/) for this purpose, whereas Win32 operating systems
support both the backslash (\) and the forward slash (/). Thus this documentation uses UNIX-compatible
forward slashes as path delimiters in #include statements, for example. (However, the Windows operating
system command shell, CMD.EXE, does not support the forward slash in commands entered at the
command prompt.)

Use paths and filenames that work correctly in UNIX, which is case sensitive. The file allocation table (FAT)
file system in Win32 operating systems is not case sensitive; the NTFS file system preserves case for
directory listings but ignores case in file searches and other system operations.

NOTE

In this version of Visual C++, UNIX compatibility information has been removed from the function descriptions.

See also

Compatibility

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/unix.md

Windows Platforms (CRT)

10/31/2018 « 2 minutes to read Edit Online

The C run-time libraries for Visual Studio support current versions of Windows and Windows Server, Windows 8,
Windows Server 2012, Windows 7, Windows Server 2008, and Windows Vista, and optionally support Windows
XP Service Pack 3 (SP3) for x86, Windows XP Service Pack 2 (SP2) for x64, and Windows Server 2003 Service
Pack 2 (SP2) for both x86 and x64. All of these operating systems support the Windows desktop APl (Win32) and
provide Unicode support. In addition, any Win32 application can use a multibyte character set (MBCS).

NOTE

The default installation of the Desktop development with C++ workload in Visual Studio 2017 does not include support
for Windows XP and Windows Server 2003 development. You must install the optional component Windows XP support
for C++ to enable a Windows XP platform toolset.

See also

Compatibility

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/windows-platforms-crt.md

Backward Compatibility

3/11/2019 « 2 minutes to read « Edit Online

For compatibility between product versions, the library OLDNAMES.LIB maps old names to new names. For
instance, open maps to _open . You must explicitly link with OLDNAMES.LIB only when you compile with the
following combinations of command-line options:

e /71 (omit default library name from object file) and /ze (the default— use Microsoft extensions)
e /1ink (linker-control), /nop (no default-library search), and /ze

For more information about compiler command-line options, see Compiler Reference.

See also

Compatibility

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/backward-compatibility.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/compiler-options

Required and Optional Header Files

3/11/2019 « 2 minutes to read « Edit Online

The description of each run-time routine includes a list of the required and optional include, or header (.H), files for
that routine. Required header files need to be included to obtain the function declaration for the routine or a
definition used by another routine called internally. Optional header files are usually included to take advantage of
predefined constants, type definitions, or inline macros. The following table lists some examples of optional header
file contents:

DEFINITION EXAMPLE

Macro definition If a library routine is implemented as a macro, the macro
definition may be in a header file other than the header file for
the original routine. For instance, the _toupper macro is
defined in the header file CTYPE.H, while the function

toupper is declared in STDLIB.H.

Predefined Constant Many library routines refer to constants that are defined in
header files. For instance, the _open routine uses constants
such as _0_cREAT , which is defined in the header file
FCNTL.H.

Type definition Some library routines return a structure or take a structure as
an argument. For example, stream input/output routines use a
structure of type FILE , which is defined in STDIO.H.

The run-time library header files provide function declarations in the ANSI/ISO C standard recommended style.
The compiler performs type checking on any routine reference that occurs after its associated function declaration.
Function declarations are especially important for routines that return a value of some type other than int , which
is the default. Routines that do not specify their appropriate return value in their declaration will be considered by
the compiler to return an int , which can cause unexpected results. See Type Checking for more information.

See also

CRT Library Features

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/required-and-optional-header-files.md

Files and Streams

3/11/2019 « 2 minutes to read « Edit Online

A program communicates with the target environment by reading and writing files. A file can be:
e A data set that you can read and write repeatedly.

e A stream of bytes generated by a program (such as a pipeline).

e A stream of bytes received from or sent to a peripheral device.

The last two items are interactive files. Files are typically the principal means by which to interact with a program.
You manipulate all these kinds of files in much the same way — by calling library functions. You include the
standard header STDIO.H to declare most of these functions.

Before you can perform many of the operations on a file, the file must be opened. Opening a file associates it with
a stream, a data structure within the Standard C Library that glosses over many differences among files of various
kinds. The library maintains the state of each stream in an object of type FILE.

The target environment opens three files before program startup. You can open a file by calling the library
function fopen, _wfopen with two arguments. (The fopen function has been deprecated, use fopen_s, _wfopen_s
instead.) The first argument is a filename. The second argument is a C string that specifies:

e Whether you intend to read data from the file or write data to it or both.

e Whether you intend to generate new contents for the file (or create a file if it did not previously exist) or
leave the existing contents in place.

e Whether writes to a file can alter existing contents or should only append bytes at the end of the file.
e Whether you want to manipulate a text stream or a binary stream.

Once the file is successfully opened, you can then determine whether the stream is byte oriented (a byte stream) or
wide oriented (a wide stream). A stream is initially unbound. Calling certain functions to operate on the stream
makes it byte oriented, while certain other functions make it wide oriented. Once established, a stream maintains
its orientation until it is closed by a call to fclose or freopen.

© 1989-2001 by P.J. Plauger and Jim Brodie. All rights reserved.

See also

Text and Binary Streams
Byte and Wide Streams
Controlling Streams
Stream States

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/files-and-streams.md

Text and Binary Streams

3/11/2019 « 2 minutes to read « Edit Online

A text stream consists of one or more lines of text that can be written to a text-oriented display so that they can be
read. When reading from a text stream, the program reads an nL (newline) at the end of each line. When writing
to a text stream, the program writes an nNL to signal the end of a line. To match differing conventions among target
environments for representing text in files, the library functions can alter the number and representations of
characters transmitted between the program and a text stream.

Thus, positioning within a text stream is limited. You can obtain the current file-position indicator by calling fgetpos
or ftell. You can position a text stream at a position obtained this way, or at the beginning or end of the stream, by
calling fsetpos or fseek. Any other change of position might well be not supported.

For maximum portability, the program should not write:
e Empty files.

e Space characters at the end of a line.

e Partial lines (by omitting the NL at the end of a file).

e characters other than the printable characters, NL, and HT (horizontal tab).

If you follow these rules, the sequence of characters you read from a text stream (either as byte or multibyte
characters) will match the sequence of characters you wrote to the text stream when you created the file.
Otherwise, the library functions can remove a file you create if the file is empty when you close it. Or they can alter
or delete characters you write to the file.

A binary stream consists of one or more bytes of arbitrary information. You can write the value stored in an
arbitrary object to a (byte-oriented) binary stream and read exactly what was stored in the object when you wrote
it. The library functions do not alter the bytes you transmit between the program and a binary stream. They can,
however, append an arbitrary number of null bytes to the file that you write with a binary stream. The program
must deal with these additional null bytes at the end of any binary stream.

Thus, positioning within a binary stream is well defined, except for positioning relative to the end of the stream.
You can obtain and alter the current file-position indicator the same as for a text stream. Moreover, the offsets used
by ftell and fseek count bytes from the beginning of the stream (which is byte zero), so integer arithmetic on these
offsets yields predictable results.

A byte stream treats a file as a sequence of bytes. Within the program, the stream looks like the same sequence of
bytes, except for the possible alterations described above.

See also

Files and Streams

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/text-and-binary-streams.md

Byte and Wide Streams

3/11/2019 « 2 minutes to read « Edit Online

A byte stream treats a file as a sequence of bytes. Within the program, the stream is the identical sequence of
bytes.

By contrast, a wide stream treats a file as a sequence of generalized multibyte characters, which can have a broad
range of encoding rules. (Text and binary files are still read and written as previously described.) Within the
program, the stream looks like the corresponding sequence of wide characters. Conversions between the two
representations occur within the Standard C Library. The conversion rules can, in principle, be altered by a call to
setlocale that alters the category Lc_cTypE . Each wide stream determines its conversion rules at the time it
becomes wide oriented, and retains these rules even if the category Lc_cTyPE subsequently changes.

Positioning within a wide stream suffers the same limitations as for text steams. Moreover, the file-position
indicator may well have to deal with a state-dependent encoding. Typically, it includes both a byte offset within the
stream and an object of type mbstate_t . Thus, the only reliable way to obtain a file position within a wide stream is
by calling fgetpos, and the only reliable way to restore a position obtained this way is by calling fsetpos.

See also

Files and Streams
setlocale, _wsetlocale

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/byte-and-wide-streams.md

Controlling Streams

3/11/2019 « 2 minutes to read « Edit Online

fopen returns the address of an object of type FILE . You use this address as the stream argument to several
library functions to perform various operations on an open file. For a byte stream, all input takes place as if each
character is read by calling fgetc, and all output takes place as if each character is written by calling fputc. For a
wide stream, all input takes place as if each character is read by calling fgetwc, and all output takes place as if each
character is written by calling fputwc.

You can close a file by calling fclose, after which the address of the FiLE objectis invalid.

A FILE object stores the state of a stream, including:

e An error indicator set nonzero by a function that encounters a read or write error.

e An end-of-file indicator set nonzero by a function that encounters the end of the file while reading.

o A file-position indicator specifies the next byte in the stream to read or write, if the file can support
positioning requests.

o A stream state specifies whether the stream will accept reads and/or writes and whether the stream is
unbound, byte oriented, or wide oriented.

e A conversion state remembers the state of any partly assembled or generated generalized multibyte
character, as well as any shift state for the sequence of bytes in the file).

o A file buffer specifies the address and size of an array object that library functions can use to improve the
performance of read and write operations to the stream.

Do not alter any value stored ina FILE object or in a file buffer that you specify for use with that object. You

cannot copy a FILE object and portably use the address of the copy as a stream argument to a library function.

See also

Files and Streams

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/controlling-streams.md

Stream States

3/11/2019 « 2 minutes to read « Edit Online

The valid states, and state transitions, for a stream are shown in the following figure.

¢Open

Unbound

WW

) Fw+1 I
F

Wide

W

Oriented

WR

Wide
Writing

Wide
Reading

y

Fwi-1
Byte BR

B Oriented
BwW U BR

y P P P
Byte [a— Byte
Writing Reading
G, e O

BW at EOF BR

FW-1 fwide (s, -1}
BR byte read
BW byte write

P P
b
W

wa at ECF WR(_)

P position

Fw+1 fwide (s, +1)
WR wide read
WW wide write

Each of the circles denotes a stable state. Each of the lines denotes a transition that can occur as the result of a

function call that operates on the stream. Five groups of functions can cause state transitions.

Functions in the first three groups are declared in <stdio.h>:

e The byte read functions — fgetc, fgets, fread, fscanf, getc, getchar, gets, scanf, and ungetc

e The byte write functions — fprintf, fputc, fputs, fwrite, printf, putc, putchar, puts, vfprintf, and vprintf

e The position functions — fflush, fseek, fsetpos, and rewind

Functions in the remaining two groups are declared in <wchar.h>:

e The wide read functions — fgetwc, fgetws, fwscanf, getwc, getwchar, ungetwc, and wscanf,

e The wide write functions — fwprintf, fputwc, fputws, putwc, putwchar, vfwprintf, vwprintf, and wprintf,

The state diagram shows that you must call one of the position functions between most write and read operations:

e You cannot call a read function if the last operation on the stream was a write.

® You cannot call a write function if the last operation on the stream was a read, unless that read operation set

the end-of-file indicator.

Finally, the state diagram shows that a position operation never decreases the number of valid function calls that

can follow.

See also

Files and Streams

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/stream-states.md

Recommendations for Choosing Between Functions

and Macros

3/11/2019 « 2 minutes to read = Edit Online

Most Microsoft run-time library routines are compiled or assembled functions, but some routines are
implemented as macros. When a header file declares both a function and a macro version of a routine, the macro
definition takes precedence, because it always appears after the function declaration. When you invoke a routine
that is implemented as both a function and a macro, you can force the compiler to use the function version in two

ways:

e Enclose the routine name in parentheses.

#include <ctype.h>
a = _toupper(a); // Use macro version of toupper.
(_toupper)(a); // Force compiler to use

// function version of toupper.

a

e "Undefine" the macro definition with the #undef directive:

#include <ctype.h>
#undef _toupper

If you need to choose between a function and a macro implementation of a library routine, consider the following
trade-offs:

e Speed versus size The main benefit of using macros is faster execution time. During preprocessing, a
macro is expanded (replaced by its definition) inline each time it is used. A function definition occurs only
once regardless of how many times it is called. Macros may increase code size but do not have the
overhead associated with function calls.

e Function evaluation A function evaluates to an address; a macro does not. Thus you cannot use a macro
name in contexts requiring a pointer. For instance, you can declare a pointer to a function, but not a pointer
to a macro.

e Type-checking When you declare a function, the compiler can check the argument types. Because you
cannot declare a macro, the compiler cannot check macro argument types; although it can check the

number of arguments you pass to a macro.

See also

CRT Library Features

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/recommendations-for-choosing-between-functions-and-macros.md

Type Checking (CRT)

3/11/2019 « 2 minutes to read « Edit Online

The compiler performs limited type checking on functions that can take a variable number of arguments, as

follows:
FUNCTION CALL TYPE-CHECKED ARGUMENTS
_cprintf_s , _cscanf_s , printf_s , scanf_s First argument (format string)
fprintf_s , fscanf_s , sprintf_s , sscanf_s First two arguments (file or buffer and format string)
_snprintf_s First three arguments (file or buffer, count, and format string)
_open First two arguments (path and _open flag)
_sopen_s First three arguments (path, _open flag, and sharing mode)
_execl , _execle, _execlp, _execlpe First two arguments (path and first argument pointer)
_spawnl , _spawnle , _spawnlp , _spawnlpe First three arguments (mode flag, path, and first argument

pointer)

The compiler performs the same limited type checking on the wide-character counterparts of these functions.

See also

CRT Library Features

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/type-checking-crt.md

Direction Flag

3/11/2019 « 2 minutes to read « Edit Online

The direction flag is a CPU flag specific to all Intel x86-compatible CPUs. It applies to all assembly instructions that
use the REP (repeat) prefix, such as MOVS, MOVSD, MOVSW, and others. Addresses provided to applicable
instructions are increased if the direction flag is cleared.

The C run-time routines assume that the direction flag is cleared. If you are using other functions with the C run-
time functions, you must ensure that the other functions leave the direction flag alone or restore it to its original
condition. Expecting the direction flag to be clear upon entry makes the run-time code faster and more efficient.

The C Run-Time library functions, such as the string-manipulation and buffer-manipulation routines, expect the
direction flag to be clear.

See also

CRT Library Features

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/direction-flag.md

Security Features in the CRT

3/11/2019 « 3 minutes to read « Edit Online

Many old CRT functions have newer, more secure versions. If a secure function exists, the older, less
secure version is marked as deprecated and the new version has the _s ("secure") suffix.

In this context, "deprecated"” just means that a function's use is not recommended; it does not indicate
that the function is scheduled to be removed from the CRT.

The secure functions do not prevent or correct security errors; rather, they catch errors when they occur.
They perform additional checks for error conditions, and in the case of an error, they invoke an error
handler (see Parameter Validation).

For example, the strcpy function has no way of telling if the string that it is copying is too big for its
destination buffer. However, its secure counterpart, strcpy_s , takes the size of the buffer as a parameter,
so it can determine if a buffer overrun will occur. If you use strcpy_s to copy eleven characters into a
ten-character buffer, that is an error on your part; strcpy_s cannot correct your mistake, but it can
detect your error and inform you by invoking the invalid parameter handler.

Eliminating deprecation warnings

There are several ways to eliminate deprecation warnings for the older, less secure functions. The
simplest is simply to define _CRT_SECURE_NO_WARNINGS or use the warning pragma. Either will disable
deprecation warnings, but of course the security issues that caused the warnings still exist. It is far better
to leave deprecation warnings enabled and take advantage of the new CRT security features.

In C++, the easiest way to do that is to use Secure Template Overloads, which in many cases will
eliminate deprecation warnings by replacing calls to deprecated functions with calls to the new secure
versions of those functions. For example, consider this deprecated call to strcpy :

char szBuf[10];
strcpy(szBuf, "test"); // warning: deprecated

Defining _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES as 1 eliminates the warning by changing the strcpy
call to strcpy_s , which prevents buffer overruns. For more information, see Secure Template

Overloads.

For those deprecated functions without secure template overloads, you should definitely consider

manually updating your code to use the secure versions.

Another source of deprecation warnings, unrelated to security, is the POSIX functions. Replace POSIX
function names with their standard equivalents (for example, change access to _access), or disable
POSIX-related deprecation warnings by defining _CRT_NONSTDC_NO_WARNINGS . For more information, see

Compatibility.

Additional Security Features

Some of the security features include the following:

® Pparameter Validation . Parameters passed to CRT functions are validated, in both secure
functions and in many preexisting versions of functions. These validations include:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/security-features-in-the-crt.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/warning

o Checking for NULL values passed to the functions.
o Checking enumerated values for validity.
o Checking that integral values are in valid ranges.

e For more information, see Parameter Validation.

e A handler for invalid parameters is also accessible to the developer. When an encountering an
invalid parameter, instead of asserting and exiting the application, the CRT provides a way to
check these problems with the _set_invalid_parameter_handler,
_set_thread_local_invalid_parameter_handler function.

® sized Buffers . The secure functions require that the buffer size be passed to any function that
writes to a buffer. The secure versions validate that the buffer is large enough before writing to it
helping to avoid dangerous buffer overrun errors that could allow malicious code to execute.
These functions usually return an errno type of error code and invoke the invalid parameter
handler if the size of the buffer is too small. Functions that read from input buffers, such as gets ,

have secure versions that require you to specify a maximum size.

® Null termination . Some functions that left potentially non-terminated strings have secure

versions which ensure that strings are properly null-terminated.

® Enhanced error reporting . The secure functions return error codes with more error information
than was available with the preexisting functions. The secure functions and many of the
preexisting functions now set errno and often return an errno code type as well, to provide

better error reporting.
® Filesystem security . Secure file I/O APIs support secure file access in the default case.
® windows security . Secure process APls enforce security policies and allow ACLs to be specified.

® Format string syntax checking .Invalid strings are detected, for example, using incorrect type

field characters in printf format strings.

See also

Parameter Validation
Secure Template Overloads
CRT Library Features

Security-Enhanced Versions of CRT Functions

3/11/2019 « 5 minutes to read « Edit Online

More secure versions of run-time library routines are available. For further information concerning security

enhancements in the CRT, see Security Features in the CRT.

Secure functions

CRT FUNCTION
_access, _waccess
_alloca

asctime, _wasctime

bsearch

_cgets, _cgetws
_chsize
clearerr

_control87, _controlfp, __control87_2

_cprintf, _cprintf_|, _cwprintf, _cwprintf_|

_cscanf, _cscanf |, _cwscanf, _cwscanf |

ctime, _ctime32, _ctime64, _wctime,
_wctime32, _wctime64

_ecvt

_fevt

fopen, _wfopen

fprintf, _fprintf_|, fwprintf, _fwprintf_|

fread

SECURITY ENHANCED FUNCTION

_access_s, _Waccess_s

_malloca

asctime_s, _wasctime_s

bsearch_s

_cgets_s, _cgetws_s

_chsize_s

clearerr_s

_controlfp_s

_cprintf_s, _cprintf_s_|, _cwprintf_s,
_cwprintf_s_|

_cscanf_s, _cscanf_s_|, _cwscanf s,
_cwscanf_s_|

_ctime_s, _ctime32_s, _ctime64_s,
_wctime_s, _wctime32_s, _wctime64_s

_ecvt_s

_fevt_s

fopen_s, _wfopen_s

fprintf_s, _fprintf_s_|, fwprintf_s,
_fwprintf_s_|

fread_s

USE

Determine file-access permission

Allocate memory on the stack

Convert time from type struct tm to
character string

Perform a binary search of a sorted
array

Get a character string from the console

Change the size of a file

Reset the error indicator for a stream

Get and set the floating-point control
word

Format and print to the console

Read formatted data from the console

Convert time from type time_t ,
__time32_t or __time64_t tO
character string

Convert a double number to a string

Converts a floating-point number to a
string

Open a file

Print formatted data to a stream

Read from a file

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/security-enhanced-versions-of-crt-functions.md

CRT FUNCTION SECURITY ENHANCED FUNCTION

_fread_nolock _fread_nolock_s

freopen, _wfreopen freopen_s, _wfreopen_s

fscanf, _fscanf |, fwscanf, _fwscanf | fscanf s, fscanf s_I, fwscanf s,
_fwscanf_s_|

_ftime, _ftime32, _ftime64 _ftime_s, _ftime32_s, _ftime64_s

_govt _gavt_s

getenv, _wgetenv getenv_s, _wgetenv_s

gets, getws gets_s, _getws_s

gmtime, _gmtime32, _gmtime64 _gmtime32_s, _gmtime64_s

itoa, _itoa, ltoa, _ltoa, ultoa, _ultoa, _itoa_s, _ltoa_s, _ultoa_s, _i64toa_s,

_ib4toa, _uib4toa, _itow, _Itow, _ultow, _uib4toa_s, _itow_s, _ltow_s, _ultow_s,

_ib4tow, _uib4tow _i64tow_s, _ui64tow_s

_Ifind _Ifind_s

localtime, _localtime32, _localtime64 localtime_s, _localtime32_s,
_localtime64_s

_Isearch _Isearch_s

_makepath, _wmakepath _makepath_s, _\wmakepath_s

_mbccpy, _mbccpy_| _mbccpy_s, _mbccpy_s_|

_mbsnbcat, _mbsnbcat_| _mbsnbcat_s, _mbsnbcat_s_|

_mbsnbcpy, _mbsnbcpy_| _mbsnbcpy_s, _mbsnbcpy_s_|

_mbsnbset, _mbsnbset_| _mbsnbset_s, _mbsnbset_s_|

mbsrtowcs mbsrtowcs_s

USE

Read from a file without using a multi-
thread write lock

Reopen the file

Read formatted data from a stream

Get the current time

Convert a floating-point value to a
string, and store it in a buffer

Get a value from the current
environment.

Get a line from the stdin stream

Convert time from type time_t to
struct tm or from type __time64_t
to struct tm

Convert an integral type to a string

Perform a linear search for the specified
key

Convert time from type time_t to
struct tm or from type __time64_t
to struct tm with local correction

Perform a linear search for a value; adds
to end of list if not found

Create a path name from components

Copy a multibyte character from one
string to another string

Append, at most, the first n bytes of
one multibyte character string to
another

Copy n bytes of a string to a
destination string

Set the first n bytes of a string to a
specified character

Convert a multibyte character string to
a corresponding wide character string

CRT FUNCTION

mbstowcs, _mbstowcs_|

memcpy, wmemcpy

memmove, wmemmove

_mktemp, _wmktemp

printf, _printf_, wprintf _wprintf_|

_putenv, _wputenv

gsort

rand

scanf, _scanf_|, wscanf, _wscanf_|

_searchenv, _wsearchenv

snprintf, _snprintf, _snprintf_|,
_snwprintf, _snwprintf_|

_snscanf, _snscanf |, _snwscanf,
_snwscanf |

_sopen, _wsopen

_splitpath, _wsplitpath

sprintf, _sprintf_|, swprintf, _swprintf_|,
__swprintf_|

sscanf, _sscanf |, swscanf, _swscanf |

strcat, wescat, _mbscat

strcpy, wescpy, _mbscpy

_strdate, _wstrdate

strerror, _strerror, _wcserror, __wcserror

SECURITY ENHANCED FUNCTION

mbstowcs_s, _mbstowcs_s_|

memcpy_s, wmemcpy_s

memmove_s, wmemmove_s

_mktemp_s, _.wmktemp_s

printf_s, _printf_s_|, wprintf_s,
_wprintf_s_|

_putenv_s, _wputenv_s

gsort_s

rand_s

scanf_s, _scanf_s_|, wscanf_s, _wscanf_s_|

_searchenv_s, _wsearchenv_s

_snprintf_s, _snprintf_s_|, _snwprintf_s,
_snwprintf_s_|

_snscanf_s, _snscanf_s_|, _snwscanf s,
_snwscanf_s_|

_sopen_s, _wsopen_s

_splitpath_s, _wsplitpath_s

sprintf_s, _sprintf_s_|, swprintf_s,
_swprintf_s_|

sscanf_s, _sscanf_s_|, swscanf s,
_swscanf_s_|

strcat_s, wescat_s, _mbscat_s

strcpy_s, wescpy_s, _mbscpy_s

_strdate_s, _wstrdate_s

strerror_s, _strerror_s, _wcserror_s,
__wcserror_s

USE

Convert a sequence of multibyte
characters to a corresponding sequence
of wide characters

Copy characters between buffers

Move one buffer to another

Create a unique filename

Print formatted output to the standard
output stream

Create, modify, or remove environment
variables

Perform a quick sort

Generate a pseudorandom number

Read formatted data from the standard
input stream

Search for a file using environment
paths

Write formatted data to a string

Read formatted data of a specified
length from a string.

Open a file for sharing

Break a path name into components

Write formatted data to a string

Read formatted data from a string

Append a string

Copy a string

Return current system date as string

Get a system error message (
strerror , _wcserror)Or print a
user-supplied error message (

_strerror , __wcserror)

CRT FUNCTION

_strlwr, _wcslwr, _mbslwr, _striwr_|,
~weslwr_|, _mbslwr_|

strncat, _strncat_|, wesncat, _wcsncat_|,
_mbsncat, _mbsncat_|

strncpy, _strncpy_l, wesnepy, _wesncpy |,
_mbsncpy, _mbsncpy_|

_strnset, _strnset_|, _wcsnset,
wcsnset|, _mbsnset, _mbsnset_|

_strset, _strset_|, wcsset, _wcsset_|,
_mbsset, _mbsset_|

_strtime, _wstrtime

strtok, _strtok_|, westok, _wcstok_|,
_mbstok, _mbstok_|

_strupr, _strupr_|, _mbsupr, _mbsupr_|,
wcsupr|, _wcsupr

tmpfile

_tempnam, _wtempnam, tmpnam,
_wtmpnam

_umask

_veprintf, _vcprintf_|, _vcwprintf,
vewprintf|

viprintf, _vfprintf_I, vfwprintf, _vfwprintf_|

vfscanf, vfwscanf

vprintf, _vprintf_|, vwprintf, _vwprintf_|

vscanf, vwscanf

vsnprintf, _vsnprintf, _vsnprintf_|,
_vsnwprintf, _vsnwprintf_|

vsprintf, _vsprintf_|, vswprintf,
vswprintf|, __vswprintf_|

vsscanf, vswscanf

SECURITY ENHANCED FUNCTION

_striwr_s, _strlwr_s_I, _mbslwr_s,

_mbslwr_s_|, _wcslwr_s, _wcslwr_s_|

strncat_s, _strncat_s_|, wesncat_s,
_wesncat_s_|, _mbsncat_s, _mbsncat_s_|

strncpy_s, _strncpy_s_|, wesncpy_s,
_wesncpy_s_l, _mbsncpy_s,
_mbsncpy_s_|

_strnset_s, _strnset_s_|, _wcsnset_s,

_wcsnset_s |, _mbsnset_s, _mbsnset_s_|

_strset_s, strset_s_|, _wcsset_s,
_wcsset_s_|, _mbsset_s, _mbsset_s_|

_strtime_s, _wstrtime_s

strtok_s, _strtok_s_|, wcstok_s,
_wcstok_s_|, _mbstok_s, _mbstok_s_|

_strupr_s, _strupr_s_|, _mbsupr_s,

_mbsupr_s_|, _wcsupr_s, _wcsupr_s_|

tmpfile_s

tmpnam_s, _wtmpnam_s

_umask_s

_veprintf_s, _vcprintf_s_|, _vcwprintf_s,
_vewprintf_s_|

vfprintf_s, _vfprintf_s_|, vfwprintf_s,
_viwprintf_s_|

vfscanf_s, vfwscanf_s

vprintf_s, _vprintf_s_|, vwprintf_s,
_vwprintf_s_|

vscanf_s, vwscanf_s

vsnprintf_s, _vsnprintf_s, _vsnprintf_s_|,
_vsnwprintf_s, _vsnwprintf_s_|

vsprintf_s, _vsprintf_s_|, vswprintf_s,
_vswprintf_s_|

vsscanf_s, vswscanf_s

USE

Convert a string to lowercase

Append characters to a string

Copy characters of one string to
another

Set the first n characters of a string to
the specified character

Set all the characters of a string to the
specified character

Return current system time as string

Find the next token in a string, using
the current locale or a locale passed in

Convert a string to uppercase

Create a temporary file

Generate names you can use to create
temporary files

Set the default file-permission mask

Write formatted output to the console
using a pointer to a list of arguments

Write formatted output using a pointer
to a list of arguments

Read formatted data from a stream

Write formatted output using a pointer
to a list of arguments

Read formatted data from the standard
input stream

Write formatted output using a pointer
to a list of arguments

Write formatted output using a pointer
to a list of arguments

Read formatted data from a string

CRT FUNCTION

wcrtomb

wcsrtombs

wcstombs, _wcstombs_|

wctomb, _wctomb_|

See also

CRT Library Features

SECURITY ENHANCED FUNCTION

wcrtomb_s

wcsrtombs_s

wcstombs_s, _wcstombs_s_|

wctomb_s, _wctomb_s_|

USE

Convert a wide character into its
multibyte character representation

Convert a wide character string to its
multibyte character string
representation

Convert a sequence of wide characters
to a corresponding sequence of
multibyte characters

Convert a wide character to the
corresponding multibyte character

Parameter Validation

3/11/2019 « 2 minutes to read « Edit Online

Most of the security-enhanced CRT functions and many of the
preexisting functions validate their parameters. This could include
checking pointers for NULL, checking that integers fall into a valid
range, or checking that enumeration values are valid. When an invalid
parameter is found, the invalid parameter handler is executed.

Invalid Parameter Handler Routine

When a C Runtime Library function detects an invalid parameter, it
captures some information about the error, and then calls a macro that
wraps an invalid parameter handler dispatch function, one of
_invalid_parameter, _invalid_parameter_noinfo, or
_invalid_parameter_noinfo_noreturn. The dispatch function called
depends on whether your code is, respectively, a debug build, a retail
build, or the error is not considered recoverable.

In Debug builds, the invalid parameter macro usually raises a failed
assertion and a debugger breakpoint before the dispatch function is
called. When the code is executed, the assertion may be reported to the
user in a dialog box that has "Abort", "Retry", and "Continue" or similar
choices, depending on the operating system and runtime library version.
These options allow the user to immediately terminate the program, to
attach a debugger, or to let the existing code continue to run, which calls
the dispatch function.

The invalid parameter handler dispatch function in turn calls the
currently assigned invalid parameter handler. By default, the invalid
parameter calls _invoke_watson which causes the application to "crash,"
that is, terminate and generate a mini-dump. If enabled by the operating
system, a dialog box asks the user if they want to load the crash dump to

Microsoft for analysis.

This behavior can be changed by using the functions
_set_invalid_parameter_handler or
_set_thread_local_invalid_parameter_handler to set the invalid
parameter handler to your own function. If the function you specify does
not terminate the application, control is returned to the function that
received the invalid parameters. In the CRT, these functions will
normally cease function execution, set errno to an error code, and
return an error code. In many cases, the errno value and the return
value are both EINVAL , indicating an invalid parameter. In some cases, a
more specific error code is returned, such as Esabr for a bad file pointer
passed in as a parameter. For more information on errno , see errno,

_doserrno, _sys_errlist, and _sys_nerr.

See also

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/parameter-validation.md

Security Features in the CRT
CRT Library Features

Secure Template Overloads

3/11/2019 « 2 minutes to read « Edit Online

Microsoft has deprecated many C Runtime library (CRT) functions in favor of security-enhanced versions.
For example, strcpy_s is the more secure replacement for strcpy . The deprecated functions are
common sources of security bugs, because they do not prevent operations that can overwrite memory. By
default, the compiler produces a deprecation warning when you use one of these functions. The CRT
provides C++ template overloads for these functions to help ease the transition to the more secure
variants.

For example, this code snippet generates a warning because strcpy is deprecated:

char szBuf[10];
strcpy(szBuf, "test"); // warning: deprecated

The deprecation warning is there to tell you that your code may be unsafe. If you have verified that your
code can't overwrite memory, you have several choices. You can choose to ignore the warning, you can
define the symbol _cRT_SECURE_NO_WARNINGS before the include statements for the CRT headers to

suppress the warning, or you can update your code to use strcpy_s :

char szBuf[10];
strcpy_s(szBuf, 10, "test"); // security-enhanced _s function

The template overloads provide additional choices. If you define _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES
to 1, this enables template overloads of standard CRT functions that call the more secure variants
automatically. If _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES is 1, then no changes to your code are
necessary. Behind the scenes, the call to strcpy is changed to a call to strcpy_s with the size argument

supplied automatically.

#define _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES 1
Jf coo

char szBuf[10];
strcpy(szBuf, "test"); // ==> strcpy_s(szBuf, 10, "test")

The macro _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES does not affect the functions that take a count, such
as strncpy . To enable template overloads for the count functions, define
_CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES_COUNT to 1. Before doing so, however, make sure that your code
passes the count of characters, not the size of the buffer (a common mistake). Also, code that explicitly
writes a null terminator at the end of the buffer after the function call is unnecessary if the secure variant is
called. If you need truncation behavior, see _TRUNCATE.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/secure-template-overloads.md

NOTE

The macro _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES_COUNT requires that
_CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES is also defined as 1. If
_CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES_COUNT is defined as 1 and
_CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES is defined as 0, the application will not perform any template

overloads.

When you define _CRT_SECURE_CPP_OVERLOAD_SECURE_NAMES to 1, it enables template overloads of the secure
variants (names ending in “_s"). In this case, if _CRT_SECURE_CPP_OVERLOAD_SECURE_NAMES is 1, then one small

change must be made to the original code:

#define _CRT_SECURE_CPP_OVERLOAD_SECURE_NAMES 1
Jf ooo
char szBuf[10];

strcpy_s(szBuf, "test"); // ==> strcpy_s(szBuf, 10, "test")

Only the name of the function needs to be changed (by adding "_s"); the template overload takes care of
providing the size argument.

By default, _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES and _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES_COUNT
are defined as 0 (disabled) and _CRT_SECURE_CPP_OVERLOAD_SECURE_NAMES is defined as 1 (enabled).

Note that these template overloads only work for static arrays. Dynamically allocated buffers require
additional source code changes. Revisiting the above examples:
#define _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES 1

Jf ooo
char *szBuf = (char*)malloc(10);

strcpy(szBuf, "test"); // still deprecated; you have to change it to
// strcpy_s(szBuf, 10, "test");

And this:

#define _CRT_SECURE_CPP_OVERLOAD_SECURE_NAMES 1
Il ooo
char *szBuf = (char*)malloc(10);

strcpy_s(szBuf, "test"); // doesn't compile; you have to change it to
// strcpy_s(szBuf, 10, "test");

See also

Security Features in the CRT
CRT Library Features

SAL Annotations

3/11/2019 « 2 minutes to read « Edit Online

If you examine the library header files, you may notice some unusual annotations, for example, _in_z and
_out_z_cap_(_size) . These are examples of the Microsoft source-code annotation language (SAL), which provides
a set of annotations to describe how a function uses its parameters, for example, the assumptions it makes about
them and the guarantees it makes on finishing. The header file <sal.h> defines the annotations.

For more information about using SAL annotations in Visual Studio, see Using SAL Annotations to Reduce C/C++

Code Defects.

See also

CRT Library Features

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/sal-annotations.md
https://docs.microsoft.com/visualstudio/code-quality/using-sal-annotations-to-reduce-c-cpp-code-defects

Multithreaded Libraries Performance

3/11/2019 « 2 minutes to read « Edit Online

The single-threaded CRT is no longer available. This topic discusses how to get the maximum performance from
the multithreaded libraries.

Maximizing performance

The performance of the multithreaded libraries has been improved and is close to the performance of the now-
eliminated single-threaded libraries. For those situations when even higher performance is required, there are
several new features.

e [ndependent stream locking allows you to lock a stream and then use _nolock Functions that access the
stream directly. This allows lock usage to be hoisted outside critical loops.

e Per-thread locale reduces the cost of locale access for multithreaded scenarios (see _configthreadlocale).

o Locale-dependent functions (with names ending in _I) take the locale as a parameter, removing substantial
cost (for example, printf, _printf_|, wprintf, _wprintf_I).

e Optimizations for common codepages reduce the cost of many short operations.

e Defining _CRT_DISABLE_PERFCRIT_LOCKS forces all I/O operations to assume a single-threaded 1/0
model and use the _nolock forms of the functions. This allows highly 1/O-based single-threaded applications
to get better performance.

e Exposure of the CRT heap handle allows you to enable the Windows Low Fragmentation Heap (LFH) for

the CRT heap, which can substantially improve performance in highly scaled scenarios.

See also

CRT Library Features

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/multithreaded-libraries-performance.md

Link Options

10/31/2018 « 2 minutes to read » Edit Online

The CRT lib directory includes a number of small object files that enable specific CRT features without any code

change. These are called "link options" since you just have to add them to the linker command line to use them.

CLR pure mode versions of these objects are deprecated in Visual Studio 2015 and unsupported in Visual Studio

2017. Use the regular versions for native and /clr code.

NATIVE AND /CLR

binmode.obj

chkstk.obj

commode.obj

exe_initialize_mta.lib

fp10.0bj

invalidcontinue.obj

loosefpmath.obj

newmode.obj

noarg.obj

nochkclr.obj

noenv.obj

PURE MODE

pbinmode.obj

n/a

pcommode.obj

n/a

n/a

pinvalidcontinue.obj

n/a

pnewmode.obj

pnoarg.obj

n/a

pnoenv.obyj

DESCRIPTION

Sets the default file-translation mode to
binary. See _fmode.

Provides stack-checking and alloca
support when not using the CRT.

Sets the global commit flag to
"commit”. See fopen, _wfopen and
fopen_s, _wfopen_s.

Initializes the MTA apartment during
EXE startup, which allows the use of
COM objects in global smart pointers.
Because this option leaks an MTA
apartment reference during shutdown,
do not use it for DLLs. Linking to this is
equivalent to including combase.h and
defining _EXE_INITIALIZE_MTA.

Changes the default precision control
to 64 bits. See Floating-Point Support.

Sets a default invalid parameter handler
that does nothing, meaning that invalid
parameters passed to CRT functions will
just set errno and return an error result.

Ensures that floating point code
tolerates denormal values.

Causes malloc to call the new handler
on failure. See _set_new_mode,
_set_new_handler, calloc, and realloc.

Disables all processing of argc and argv.

Does nothing. Remove from your
project.

Disables the creation of a cached
environment for the CRT.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/link-options.md

NATIVE AND /CLR

nothrownew.obj

setargv.obj

threadlocale.obj

wsetargv.obj

See also

e CRT Library Features

PURE MODE

pnothrownew.obj

psetargv.obj

pthreadlocale.obj

pwsetargv.obj

DESCRIPTION

Enables the non-throwing version of
new in the CRT. See new and delete
Operators.

Enables command-line argument
wildcard expansion. See Expanding
Wildcard Arguments.

Enables per-thread locale for all new
threads by default.

Enables command-line argument
wildcard expansion. See Expanding
Wildcard Arguments.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-and-delete-operators
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/expanding-wildcard-arguments
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/expanding-wildcard-arguments

Potential Errors Passing CRT Objects Across DLL

Boundaries

5/8/2019 « 3 minutes to read = Edit Online

When you pass C Run-time (CRT) objects such as file handles, locales, and environment variables into or out of a
DLL (function calls across the DLL boundary), unexpected behavior can occur if the DLL, as well as the files calling
into the DLL, use different copies of the CRT libraries.

A related problem can occur when you allocate memory (either explicitly with new or malloc , or implicitly with
strdup , strstreambuf::str ,and so on) and then pass a pointer across a DLL boundary to be freed. This can cause
a memory access violation or heap corruption if the DLL and its users use different copies of the CRT libraries.

Another symptom of this problem can be an error in the output window during debugging such as:

HEAP[]: Invalid Address specified to RtlValidateHeap(##)

Causes

Each copy of the CRT library has a separate and distinct state, kept in thread local storage by your app or DLL. As
such, CRT objects such as file handles, environment variables, and locales are only valid for the copy of the CRT in
the app or DLL where these objects are allocated or set. When a DLL and its app clients use different copies of the
CRT library, you cannot pass these CRT objects across the DLL boundary and expect them to be picked up
correctly on the other side. This is particularly true of CRT versions before the Universal CRT in Visual Studio 2015
and later. There was a version-specific CRT library for every version of Visual Studio built with Visual Studio 2013
or earlier. Internal implementation details of the CRT, for example, its data structures and naming conventions,
were different in each version. Dynamically linking code compiled for one version of the CRT to a different version
of the CRT DLL has never been supported, though occasionally it would work, more by luck than by design.

Also, because each copy of the CRT library has its own heap manager, allocating memory in one CRT library and
passing the pointer across a DLL boundary to be freed by a different copy of the CRT library is a potential cause
for heap corruption. If you design your DLL so that it passes CRT objects across the boundary or allocates
memory and expects it to be freed outside the DLL, you restrict the app clients of the DLL to use the same copy of
the CRT library as the DLL. The DLL and its clients normally use the same copy of the CRT library only if both are
linked at load time to the same version of the CRT DLL. Because the DLL version of the Universal CRT library used
by Visual Studio 2015 and later on Windows 10 is now a centrally deployed Windows component, ucrtbase.dll, it is
the same for apps built with Visual Studio 2015 and later versions. However, even when the CRT code is identical,
you can't hand off memory allocated in one heap to a component that uses a different heap.

Example

Description

This example passes a file handle across a DLL boundary.
The DLL and .exe file are built with /MD, so they share a single copy of the CRT.

If you rebuild with /MT so that they use separate copies of the CRT, running the resulting test1Main.exe results in
an access violation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/potential-errors-passing-crt-objects-across-dll-boundaries.md

// testiDll.cpp
// compile with: cl /EHsc /W4 /MD /LD testi1Dll.cpp
#include <stdio.h>
__declspec(dllexport) void writeFile(FILE *stream)
{

char s[] = "this is a string\n";

fprintf(stream, "%s", s);

fclose(stream);

// testlMain.cpp

// compile with: cl /EHsc /W4 /MD testlMain.cpp testlD1l1l.lib
#include <stdio.h>

#include <process.h>

void writeFile(FILE *stream);

int main(void)

{
FILE * stream;
errno_t err = fopen_s(&stream, "fprintf.out", "w");
writeFile(stream);
system("type fprintf.out");
}

this is a string

Example

Description

This example passes environment variables across a DLL boundary.

// test2Dll.cpp

// compile with: cl /EHsc /W4 /MT /LD test2Dll.cpp
#include <stdio.h>

#include <stdlib.h>

__declspec(dllexport) void readEnv()
{

char *1ibvar;

size_t libvarsize;

/* Get the value of the MYLIB environment variable. */
_dupenv_s(&libvar, &libvarsize, "MYLIB");

if(libvar != NULL)

printf("New MYLIB variable is: %s\n", libvar);
else

printf("MYLIB has not been set.\n");
free(libvar);

// test2Main.cpp

// compile with: cl /EHsc /W4 /MT test2Main.cpp test2dll.lib
#include <stdlib.h>

#include <stdio.h>

void readEnv();

int main(void)

{

_putenv("MYLIB=c:\\mylib;c:\\yourlib");
readEnv();

MYLIB has not been set.

If both the DLL and .exe file are built with /MD so that only one copy of the CRT is used, the program runs
successfully and produces the following output:

New MYLIB variable is: c:\mylib;c:\yourlib

See also

CRT Library Features

CRT Initialization

5/8/2019 « 2 minutes to read » Edit Online

This topic describes how the CRT initializes global states in native code.

By default, the linker includes the CRT library, which provides its own startup code. This startup code initializes the

CRT library, calls global initializers, and then calls the user-provided main function for console applications.

Initializing a Global Object

Consider the following code:

int func(void)

return 3;

int gi = func();

int main()
{

return gi;
¥

According to the C/C++ standard, func() must be called before main() is executed. But who calls it?

One way to determine this is to set a breakpointin func() , debug the application, and examine the stack. This is
possible because the CRT source code is included with Visual Studio.

When you browse the functions on the stack, you will find that the CRT is looping through a list of function
pointers and calling each one as it encounters them. These functions are either similar to func() or constructors

for class instances.

The CRT obtains the list of function pointers from the Microsoft C++ compiler. When the compiler sees a global
initializer, it generates a dynamic initializer in the .crT$xcu section (where crT is the section name and xcu is the
group name). To obtain a list of those dynamic initializers run the command dumpbin /all main.obj, and then
search the .crT$xcu section (when main.cpp is compiled as a C++ file, not a C file). It will be similar to the

following:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/crt-initialization.md

SECTION HEADER #6
.CRT$XCU name
0 physical address
0 virtual address
4 size of raw data
1F2 file pointer to raw data (©00001F2 to ©0OOOLF5)
1F6 file pointer to relocation table
0 file pointer to line numbers
1 number of relocations
@ number of line numbers
40300040 flags
Initialized Data
4 byte align
Read Only

RAW DATA #6
00000000: 00 00 00 00

RELOCATIONS #6
Symbol Symbol

Offset Type Applied To Index Name
00000000 DIR32 00000000 C ??_ Egi@@YAXXZ (void __cdecl “dynamic initializer for
'gi''(void))

The CRT defines two pointers:

® _ xc_a in .CRT$XCA

® _ xc_z in .CRT$XCZ

Both groups do not have any other symbols defined except _ xc_a and _ xc_z .

Now, when the linker reads various .crRT groups, it combines them in one section and orders them alphabetically.
This means that the user-defined global initializers (which the Microsoft C++ compiler puts in .crT$xcu) will

always come after .crT$xca and before .crT$xcz .

The section will resemble the following:

.CRT$XCA
__Xc_a
.CRT$XCU
Pointer to Global Initializer 1
Pointer to Global Initializer 2
.CRT$XCZ

XC_z

So, the CRT library uses both __xc_a and __xc_z to determine the start and end of the global initializers list

because of the way in which they are laid out in memory after the image is loaded.

See also

CRT Library Features

Universal C runtime routines by category

10/31/2018 « 2 minutes to read Edit Online

This section lists and describes Universal C runtime (UCRT) library routines by category. For reference

convenience, some routines are listed in more than one category. Multibyte-character routines and wide-

character routines are grouped with single-byte character counterparts, where they exist.

UCRT library routine categories

The main categories of UCRT library routines are:

Argument Access
Byte Classification
Complex math support
Data Alignment
Debug Routines

Error Handling

File Handling

Input and Output
Memory Allocation
Robustness

Searching and Sorting

System Calls

See also

C Run-Time Library Reference

Buffer Manipulation

Character Classification

Data Conversion

Directory Control

Exception Handling Routines

Floating-Point Support

Internationalization

Process and Environment Control

Run-Time Error Checking

String Manipulation

Time Management

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/run-time-routines-by-category.md

Argument access

10/31/2018 « 2 minutes to read » Edit Online

The va_arg, va_end, and va_start macros provide access to function arguments when the number of arguments is
variable. These macros are defined in <stdarg.h> for ANSI/ISO C compatibility and in <varargs.h> for
compatibility with UNIX System V.

Argument-access macros

MACRO USE

va_arg Retrieve argument from list

va_end Reset pointer

va_start Set pointer to beginning of argument list
See also

Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/argument-access.md

Buffer manipulation

10/31/2018 « 2 minutes to read » Edit Online

Use these routines to work with areas of memory on a byte-by-byte basis.

Buffer-manipulation routines

ROUTINE USE

_memccpy Copy characters from one buffer to another until given
character or given number of characters has been copied

memchr, wmemchr Return pointer to first occurrence, within specified number of
characters, of given character in buffer

memcmp, wmemcmp Compare specified number of characters from two buffers

memcpy, wmemcpy, memcpy_s, wmemcpy_s Copy specified number of characters from one buffer to
another

_memicmp, _memicmp_| Compare specified number of characters from two buffers

without regard to case

memmove, wmemmove,memmove_s, Wmemmove_s Copy specified number of characters from one buffer to
another

memset, wmemset Use given character to initialize specified number of bytes in
the buffer

_swab Swap bytes of data and store them at specified location

When the source and target areas overlap, only memmove is guaranteed to copy the full source properly.

See also

Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/buffer-manipulation.md

Byte classification

10/31/2018 « 2 minutes to read » Edit Online

Each of these routines tests a specified byte of a multibyte character for satisfaction of a condition. Except where
specified otherwise, the output value is affected by the setting of the LC_CTYPE category setting of the locale;
see setlocale for more information. The versions of these functions without the _I suffix use the current locale for
this locale-dependent behavior; the versions with the _I suffix are identical except that they use the locale
parameter passed in instead.

NOTE

By definition, the ASCII characters between 0 and 127 are a subset of all multibyte-character sets. For example, the

Japanese katakana character set includes ASCII as well as non-ASCII characters.

The predefined constants in the following table are defined in <ctype.h>.

Multibyte-character byte-classification routines

ROUTINE BYTE TEST CONDITION

isleadbyte, _isleadbyte_| Lead byte; test result depends on LC_CTYPE category
setting of current locale

_ismbbalnum, _ismbbalnum_| isalnum || _ismbbkalnum
_ismbbalpha, _ismbbalpha_l isalpha || _ismbbkalnum
_ismbbgraph, _ismbbgraph_| Same as _ismbbprint, but _ismbbgraph does not include

the space character (0x20)

_ismbbkalnum, _ismbbkalnum_| Non-ASClI text symbol other than punctuation. For example,
in code page 932 only, _ismbbkalnum tests for katakana
alphanumeric

_ismbbkana, _ismbbkana_| Katakana (0xA1 - OxDF), code page 932 only

_ismbbkprint, _ismbbkprint_| Non-ASClII text or non-ASCII punctuation symbol. For
example, in code page 932 only, _ismbbkprint tests for
katakana alphanumeric or katakana punctuation (range:
OxA1 - OxDF).

_ismbbkpunct, _ismbbkpunct_| Non-ASCIl punctuation. For example, in code page 932 only,
_ismbbkpunct tests for katakana punctuation.

_ismbblead, _ismbblead._| First byte of multibyte character. For example, in code page
932 only, valid ranges are 0x81 - Ox9F, OxEO - OxFC.

_ismbbprint, _ismbbprint_| isprint || _ismbbkprint. ismbbprint includes the space
character (0x20)

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/byte-classification.md

ROUTINE BYTE TEST CONDITION
_ismbbpunct, _ismbbpunct_| ispunct || _ismbbkpunct

_ismbbtrail, _ismbbtrail_| Second byte of multibyte character. For example, in code
page 932 only, valid ranges are 0x40 - 0x7E, 0x80 - OXEC.

_ismbslead, _ismbslead_| Lead byte (in string context)

ismbstrail, _ismbstrail_| Trail byte (in string context)

_mbbtype, _mbbtype_| Return byte type based on previous byte
_mbsbtype, _mbsbtype._| Return type of byte within string

mbsinit Tracks the state of a multibyte character conversion.

The MB_LEN_MAX macro, defined in <limits.h>, expands to the maximum length in bytes that any multibyte
character can have. MB_CUR_MAX, defined in <stdlib.h>, expands to the maximum length in bytes of any
multibyte character in the current locale.

See also

Universal C runtime routines by category

Character Classification

3/11/2019 « 2 minutes to read « Edit Online

Each of these routines tests a specified single-byte character, wide character, or multibyte character for
satisfaction of a condition. (By definition, the ASCII character set between 0 and 127 are a subset of all
multibyte-character sets. For example, Japanese katakana includes ASCII as well as non-ASClII characters.)

The test conditions are affected by the setting of the LC_CTYPE category setting of the locale; see setlocale for
more information. The versions of these functions without the _I suffix use the current locale for this locale-
dependent behavior; the versions with the _I suffix are identical except that they use the locale parameter
passed in instead.

Generally these routines execute faster than tests you might write and should be favored over. For example, the
following code executes slower than a call to isalpha(c) :

if ((c >= 'A') & (c <= 'Z")) || ((c >= 'a') && (c <= 'z"))
return TRUE;

Character-Classification Routines

ROUTINE CHARACTER TEST CONDITION
isalnum, iswalnum, _isalnum_|, _iswalnum_|, _ismbcalnum, Alphanumeric
ismbcalnum|, _ismbcalpha, _ismbcalpha_l, _ismbcdigit,

ismbcdigit|

_ismbcalnum, _ismbcalnum_|, _ismbcalpha, _ismbcalpha_l, Multibyte alphanumeric

_ismbcdigit, _ismbcdigit_|

isalpha, iswalpha, _isalpha_|, _iswalpha_l, _ismbcalnum, Alphabetic

ismbcalnum|, _ismbcalpha, _ismbcalpha_l, _ismbcdigit,

ismbcdigit|

isascii, __isascii, iswascii ASCII

isblank, iswblank, _isblank_|, _iswblank_|, _ismbcsblank, Blank (space or horizontal tab)
ismbcsblank|

iscntrl, iswentrl, _isentrl_l, _iswentrl_| Control

iscsym, iscsymf, __iscsym, __iswcsym, __iscsymf, __iswcsymf, Letter, underscore, or digit

iscsym|, _iswcsym_|, _iscsymf_|, _iswcsymf |

iscsym, iscsymf, __iscsym, __iswcsym, __iscsymf, __iswcsymf, Letter or underscore
iscsym|, _iswcsym_|, _iscsymf_|, _iswcsymf_|

isdigit, iswdigit, _isdigit_|, _iswdigit_, _ismbcalnum, Decimal digit
ismbcalnum|, _ismbcalpha, _ismbcalpha_|, _ismbcdigit,
ismbcdigit|

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/character-classification.md

ROUTINE

isgraph, iswgraph, _isgraph_|, _iswgraph_|, _ismbcgraph,
ismbcgraph|, _ismbcprint, _ismbcprint_|, _ismbcpunct,

ismbcpunct|, _ismbcblank, _ismbcblank_|, _ismbcspace,
ismbcspace.|

islower, iswlower, _islower_|, _iswlower_|, _ismbclower,
ismbclower|, _ismbcupper, _ismbcupper_|

_ismbchira, _ismbchira_l, _ismbckata, _ismbckata_|

_ismbchira, _ismbchira_l, _ismbckata, _ismbckata_|

_ismbclegal, _ismbclegal_|, _ismbcsymbol, _ismbcsymbol_|

_ismbcl0, _ismbclO_I, _ismbcl1, _ismbcl1_|, _ismbcl2,
ismbcl2|

_ismbcl0, _ismbclO_I, _ismbcl1, _ismbcl1_|, _ismbcl2,
ismbcl2|

_ismbcl0, _ismbclO_I, _ismbcl1, _ismbcl1_|, _ismbcl2,
ismbcl2|

_ismbclegal, _ismbclegal_|, _ismbcsymbol, _ismbcsymbol_|

isprint, iswprint, _isprint_|, _iswprint_|, _ismbcgraph,
ismbcgraph|, _ismbcprint, _ismbcprint_|, _ismbcpunct,
ismbcpunct|, _ismbcblank, _ismbcblank_|, _ismbcspace,
ismbcspace.|

ispunct, iswpunct, _ispunct_|, _iswpunct_|, _ismbcgraph,
ismbcgraph|, _ismbcprint, _ismbcprint_|, _ismbcpunct,
ismbcpunct|, _ismbcblank, _ismbcblank_|, _ismbcspace,
ismbcspace.|

isspace, iswspace, _isspace_|, _iswspace_|, _ismbcgraph,
ismbcgraph|, _ismbcprint, _ismbcprint_|, _ismbcpunct,
ismbcpunct|, _ismbcblank, _ismbcblank_|, _ismbcspace,
ismbcspace.|

isupper, iswupper, _ismbclower, _ismbclower_|, _ismbcupper,

ismbcupper|
_isctype, iswctype, _isctype_|, _iswctype._|
isxdigit, iswxdigit, _isxdigit_|, _iswxdigit_|

_mbclen, mblen, _mblen_|

See also

Universal C runtime routines by category

CHARACTER TEST CONDITION

Printable other than space

Lowercase

Hiragana

Katakana

Legal multibyte character

Japan-level 0 multibyte character

Japan-level 1 multibyte character

Japan-level 2 multibyte character

Non-alphanumeric multibyte character

Printable

Punctuation

White-space

Uppercase

Property specified by desc argument

Hexadecimal digit

Return length of valid multibyte character; result depends
on LC_CTYPE category setting of current locale

C complex math support

5/15/2019 « 3 minutes to read « Edit Online

The Microsoft C Runtime library (CRT) provides complex math library functions, including all of those required by
ISO C99. The compiler does not directly support a complex or _Complex keyword, therefore the Microsoft
implementation uses structure types to represent complex numbers.

These functions are implemented to balance performance with correctness. Because producing the correctly
rounded result may be prohibitively expensive, these functions are designed to efficiently produce a close
approximation to the correctly rounded result. In most cases, the result produced is within +/-1 ulp of the correctly
rounded result, though there may be cases where there is greater inaccuracy.

The complex math routines rely on the floating point math library functions for their implementation. These
functions have different implementations for different CPU architectures. For example, the 32-bit x86 CRT may
have a different implementation than the 64-bit x64 CRT. In addition, some of the functions may have multiple
implementations for a given CPU architecture. The most efficient implementation is selected dynamically at run-
time depending on the instruction sets supported by the CPU. For example, in the 32-bit x86 CRT, some functions
have both an x87 implementation and an SSE2 implementation. When running on a CPU that supports SSE2, the
faster SSE2 implementation is used. When running on a CPU that does not support SSE2, the slower x87
implementation is used. Because different implementations of the math library functions may use different CPU
instructions and different algorithms to produce their results, the functions may produce different results across
CPUs. In most cases, the results are within +/-1 ulp of the correctly rounded result, but the actual results may vary
across CPUs.

Types used in complex math

The Microsoft implementation of the complex.h header defines these types as equivalents for the C99 standard
native complex types:

STANDARD TYPE MICROSOFT TYPE
float complex or float _Complex _Fcomplex
double complex or double _Complex _Dcomplex
long double complex or long double _Complex _Lcomplex

The math.h header defines a separate type, struct _complex, used for the _cabs function. The struct _complex
type is not used by the equivalent complex math functions cabs, cabsf, cabsl.

Complex constants and macros

I is defined as the float complex type _Fcomplex initialized by { e.ef, 1.ef } .

Trigonometric functions

FUNCTION DESCRIPTION

cacos, cacosf, cacosl Compute the complex arc cosine of a complex number

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/complex-math-support.md

FUNCTION

casin, casinf, casinl
catan, catanf, catanl
ccos, ccosf, ccosl
csin, csinf, csinl

ctan, ctanf, ctanl

Hyperbolic functions

FUNCTION

cacosh, cacoshf, cacoshl
casinh, casinhf, casinhl
catanh, catanhf, catanhl

ccosh, ccoshf, ccoshl
csinh, csinhf, csinhl

ctanh, ctanhf, ctanhl

DESCRIPTION

Compute the complex arc sine of a complex number

Compute the complex arc tangent of a complex number

Compute the complex cosine of a complex number

Compute the complex sine of a complex number

Compute the complex tangent of a complex number

DESCRIPTION

Compute the complex arc hyperbolic cosine of a complex
number

Compute the complex arc hyperbolic sine of a complex
number

Compute the complex arc hyperbolic tangent of a complex
number

Compute the complex hyperbolic cosine of a complex number

Compute the complex hyperbolic sine of a complex number

Compute the complex hyperbolic tangent of a complex
number

Exponential and logarithmic functions

FUNCTION

cexp, cexpf, cexpl

clog, clogf, clogl

clog10, clog10f, clog10I

Power and absolute-value functions

FUNCTION

cabs, cabsf, cabsl

DESCRIPTION

Compute the complex base-e exponential of a complex
number

Compute the complex natural (base-e) logarithm of a complex
number

Compute the complex base-10 logarithm of a complex
number

DESCRIPTION

Compute the complex absolute value (also called the norm,
modulus, or magnitude) of a complex number

FUNCTION DESCRIPTION
cpow, cpowf, cpowl Compute the complex power function ¥/

csqrt, csqrtf, csqrtl Compute the complex square root of a complex number

Manipulation functions

FUNCTION DESCRIPTION
_Cbuild, _FCbuild, _LCbuild Construct a complex number from real and imaginary parts
carg, cargf, cargl Compute the argument (also called the phase angle) of a

complex number

cimag, cimagf, cimag| Compute the imaginary part of a complex number

conj, conjf, conjl Compute the complex conjugate of a complex number

cproj, cprojf, cprojl Compute a projection of a complex number onto the Riemann
sphere

creal, crealf, creall Compute the real part of a complex number

norm, normf, norml Compute the squared magnitude of a complex number

Operation functions

Because complex numbers are not a native type in the Microsoft compiler, the standard arithmetic operators are
not defined on complex types. For convenience, these complex math library functions are provided to enable
limited manipulation of complex numbers in user code:

FUNCTION DESCRIPTION

_Cmulcc, _FCmulcc, _LCmulcc Multiply two complex numbers

_Cmulcr, _FCmulcr, _LCmulcr Multiply a complex and a floating-point number
See also

Universal C runtime routines by category

Data Alignment

3/11/2019 « 2 minutes to read « Edit Online

The following C run-time functions support data alignment.

Data-Alignment Routines

ROUTINE USE

_aligned_free Frees a block of memory that was allocated with
_aligned_mallocor _aligned_offset_malloc.

_aligned_free_dbg Frees a block of memory that was allocated with
_aligned_malloc or _aligned_offset_malloc (debug only).

_aligned_malloc Allocates memory on a specified alignment boundary.

_aligned_malloc_dbg Allocates memory on a specified alignment boundary with
additional space for a debugging header and overwrite
buffers (debug version only).

_aligned_msize Returns the size of a memory block allocated in the heap.

_aligned_msize_dbg Returns the size of a memory block allocated in the heap
(debug version only).

_aligned_offset_malloc Allocates memory on a specified alignment boundary.

_aligned_offset_malloc_dbg Allocates memory on a specified alignment boundary (debug
version only).

_aligned_offset_realloc Changes the size of a memory block that was allocated with
_aligned_malloc or _aligned_offset_malloc.

_aligned_offset_realloc_dbg Changes the size of a memory block that was allocated with
_aligned_malloc or _aligned_offset_malloc (debug version
only).

_aligned_offset_recalloc Changes the size of a memory block that was allocated with
_aligned_malloc or _aligned_offset_malloc and initializes the
memory to 0.

_aligned_offset_recalloc_dbg Changes the size of a memory block that was allocated with
_aligned_malloc or _aligned_offset_malloc and initializes the
memory to 0 (debug version only).

_aligned_realloc Changes the size of a memory block that was allocated with
_aligned_malloc or _aligned_offset_malloc.

_aligned_realloc_dbg Changes the size of a memory block that was allocated with
_aligned_malloc or _aligned_offset_malloc (debug version
only).

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/data-alignment.md

ROUTINE USE

_aligned_recalloc Changes the size of a memory block that was allocated with
_aligned_malloc or _aligned_offset_malloc and initializes the
memory to 0.

_aligned_recalloc_dbg Changes the size of a memory block that was allocated with

_aligned_malloc or _aligned_offset_malloc and initializes the
memory to 0 (debug version only).

See also

Universal C runtime routines by category

Data Conversion

3/5/2019 « 2 minutes to read Edit Online

These routines convert data from one form to another. Generally these routines execute faster than
conversions you might write. Each routine that begins with a to prefix is implemented as a function and as

a macro. See Choosing Between Functions and Macros for information about choosing an implementation.

Data-conversion routines

ROUTINE

abs

atof, _atof |

atoi, _atoi_|
_atoi64, _atoi64_|
atol, _atol_|

cl6rtomb, c32rtomb

_ecvt, _ecvt_s

_fevt, _fevt s

_gevt, _gavt_s

_itoa, _ltoa, _ultoa, _i64toa, _uib4toa, _itow, _ltow, ultow,
_i64tow, _uib4tow, _itoa_s, _Itoa_s, _ultoa_s, _i64toa_s,
_uib4toa_s, _itow s, ltow_ s, ultow_s, _i64tow_s,
_uibdtow_s

labs
llabs

_mbbtombc, _mbbtombc_|

_mbgjistojms, _mbgjistojms_l, _mbcjmstojis, _mbgjmstojis_|

_mbgjistojms, _mbgjistojms_l, _mbcjmstojis, _mbcjmstojis_|

_mbctohira, _mbctohira_l, _mbctokata, _mbctokata_l

USE

Find absolute value of integer

Convert string to float

Convert string to int

Convert string to __int64 or long long
Convert string to long

Convert UTF-16 or UTF-32 character to equivalent
multibyte character

Convert double to string of specified length

Convert double to string with specified number of digits
following decimal point

Convert double number to string; store string in buffer

Convert integer types to string

Find absolute value of long integer
Find absolute value of long long integer

Convert 1-byte multibyte character to corresponding 2-
byte multibyte character

Convert Japan Industry Standard (JIS) character to Japan
Microsoft (JMS) character

Convert JMS character to JIS character

Convert multibyte character to 1-byte hiragana code

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/data-conversion.md

ROUTINE

_mbctohira, _mbctohira_l, _mbctokata, _mbctokata_|

_mbctombb, _mbctombb_|

mbrtoc16, mbrtoc32

mbstowcs, _mbstowcs_|, mbstowcs_s, _mbstowcs_s_|

mbtowc, _mbtowc_|

strtod, _strtod_|, wcstod, _wcstod_|

strtol, westol, _strtol_|, _wcstol_|

strtoul, _strtoul_|, westoul, _wcstoul_|

strxfrm, wesxfrm, _strxfrm_|, _wesxfrm_|

toascii, __toascii

tolower, _tolower, towlower, _tolower_|, _towlower |,

USE

Convert multibyte character to 1-byte katakana code

Convert 2-byte multibyte character to corresponding 1-

byte multibyte character

Convert multibyte character to equivalent UTF-16 or UTF-

32 character

Convert sequence of multibyte characters to
corresponding sequence of wide characters

Convert multibyte character to corresponding wide
character

Convert string to double

Convert string to long integer

Convert string to unsigned long integer

Transform string into collated form based on locale-
specific information

Convert character to ASCII code

Test character and convert to lowercase if currently

_mbctolower, _mbctolower_|, _mbctoupper, _mbctoupper_| uppercase

tolower, _tolower, towlower, _tolower_|, _towlower _|

Convert character to lowercase unconditionally

toupper, _toupper, towupper, _toupper_|, _towupper_|, Test character and convert to uppercase if currently
_mbctolower, _mbctolower_|, _mbctoupper, _mbctoupper_| lowercase

Convert character to uppercase unconditionally

toupper, _toupper, towupper, _toupper_|, _towupper_|

Convert sequence of wide characters to corresponding
sequence of multibyte characters

wcstombs, _wcstombs_|, westombs_s, _westombs_s_|

wctomb, _wctomb_|, wetomb_s, _wctomb_s_| Convert wide character to corresponding multibyte

character
_wtof _wtof | Convert wide-character string to a double
_wtoi, _wtoi_| Convert wide-character string to int
_wtoib4, _wtoi64_|

Convert wide-character string to __int64 or long long

_wtol, _wtol_| Convert wide-character string to long

See also

Universal C runtime routines by category

Debug routines

11/8/2018 « 4 minutes to read Edit Online

The debug version of the C runtime library supplies many diagnostic services that make debugging
programs easier and allow developers to:

e Step directly into run-time functions during debugging
e Resolve assertions, errors, and exceptions
e Trace heap allocations and prevent memory leaks

e Report debug messages to the user

Debug versions of the C runtime library routines

To use these routines, the _DEBUG flag must be defined. All of these routines do nothing in a retail build of
an application. For more information on how to use the new debug routines, see CRT Debugging Techniques.

ROUTINE USE

_ASSERT Evaluate an expression and generates a debug report when
the result is FALSE

_ASSERTE Similar to _ASSERT, but includes the failed expression in
the generated report

_CrtCheckMemory Confirm the integrity of the memory blocks allocated on
the debug heap

_CrtDbgBreak Sets a break point.

_CrtDbgReport, _CrtDbgReportW Generate a debug report with a user message and send
the report to three possible destinations

_CrtDoForAllClientObjects Call an application-supplied function for all
_CLIENT_BLOCK types on the heap

_CrtDumpMemoryLeaks Dump all of the memory blocks on the debug heap when a
significant memory leak has occurred

_CrtlsMemoryBlock Verify that a specified memory block is located within the
local heap and that it has a valid debug heap block type
identifier

_CrtlsValidHeapPointer Verifies that a specified pointer is in the local heap

_CrtlsValidPointer Verify that a specified memory range is valid for reading
and writing

_CrtMemCheckpoint Obtain the current state of the debug heap and store it in

an application-supplied _CrtMemState structure

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/debug-routines.md
https://docs.microsoft.com/visualstudio/debugger/crt-debugging-techniques

ROUTINE

_CrtMembDifference

_CrtMemDumpAllObjectsSince

_CrtMemDumpStatistics

_CrtReportBlockType

_CrtSetAllocHook

_CrtSetBreakAlloc

_CrtSetDbgFlag

_CrtSetDumpClient

_CrtSetReportFile

_CrtSetReportHook

_CrtSetReportHook?2, _CrtSetReportHookW?2

_CrtSetReportMode

_RPTI[0,1,2,3,4]

_RPTF[0,1,2,3,4]

_calloc_dbg

_expand_dbg

_free_dbg

USE

Compare two memory states for significant differences and
return the results

Dump information about objects on the heap since a
specified checkpoint was taken or from the start of
program execution

Dump the debug header information for a specified
memory state in a user-readable form

Returns the block type/subtype associated with a given
debug heap block pointer.

Install a client-defined allocation function by hooking it into
the C run-time debug memory allocation process

Set a breakpoint on a specified object allocation order
number

Retrieve or modify the state of the _crtDbgFlag flag to
control the allocation behavior of the debug heap manager

Install an application-defined function that is called every
time a debug dump function is called to dump
_CLIENT_BLOCK type memory blocks

Identify the file or stream to be used as a destination for a
specific report type by _CrtDbgReport

Install a client-defined reporting function by hooking it into
the C run-time debug reporting process

Installs or uninstalls a client-defined reporting function by
hooking it into the C run-time debug reporting process.

Specify the general destination(s) for a specific report type
generated by _CrtDbgReport

Track the application's progress by generating a debug
report by calling _CrtDbgReport with a format string and
a variable number of arguments. Provides no source file
and line number information.

Similar to the _RPTn macros, but provides the source file
name and line number where the report request originated

Allocate a specified number of memory blocks on the heap
with additional space for a debugging header and
overwrite buffers

Resize a specified block of memory on the heap by
expanding or contracting the block

Free a block of memory on the heap

ROUTINE

_fullpath_dbg, _wfullpath_dbg

_getcwd_dbg, _wgetcwd_dbg

_malloc_dbg

_msize_dbg

_realloc_dbg

_strdup_dbg, _wcsdup_dbg

_tempnam_dbg, _wtempnam_dbg

USE

Create an absolute or full path name for the specified
relative path name, using _malloc_dbg to allocate memory.

Get the current working directory, using _malloc_dbg to
allocate memory.

Allocate a block of memory on the heap with additional
space for a debugging header and overwrite buffers

Calculate the size of a block of memory on the heap

Reallocate a specified block of memory on the heap by
moving and/or resizing the block

Duplicates a string, using _malloc_dbg to allocate memory.

Generate names you can use to create temporary files,
using _malloc_dbg to allocate memory.

C runtime routines that are not available in source code form

The debugger can be used to step through the source code for most of the C runtime routines during the

debugging process. However, Microsoft considers some technology to be proprietary and, therefore, does

not provide the source code for a subset of these routines. Most of these routines belong to either the

exception handling or floating-point processing groups, but a few others are included as well. The following

table lists these routines.

acos

asinh

Bessel functions

_chgsign

copysign

Exp

floor

_fpieee_flt

_hypot

log

longjmp

acosh

atan, atan2

_cabs

_clear87, _clearfp

Ccos

fabs

fmod

_fpreset

_isnan

_logb

_matherr

asin

atanh

ceil

_control87, _controlfp

cosh

_finite

_fpclass

frexp

Idexp

log10

modf

_nextafter pow printf_s

printf _scalb scanf_s

scanf setjimp sin

sinh sqrt _status87, _statusfp
tan tanh

Although source code is available for most of the printf and scanf routines, they make an internal call to

another routine for which source code is not provided.

Routines that behave differently in a debug build of an application

Some C run-time functions and C++ operators behave differently when called from a debug build of an
application. (Note that a debug build of an application can be done by either defining the _pesuc flag or by
linking with a debug version of the C run-time library.) The behavioral differences usually consist of extra
features or information provided by the routine to support the debugging process. The following table lists
these routines.

C abort routine C++ delete operator
C assert routine C++ new operator
See also

Universal C runtime routines by category

Run-Time Error Checking

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/delete-operator-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-operator-cpp

Directory Control

3/11/2019 « 2 minutes to read « Edit Online

These routines access, modify, and obtain information about the directory structure.

Directory-Control Routines

ROUTINE

_chdir, _wchdir
_chdrive

_getcwd, _wgetcwd
_getdewd, _wgetdcwd

_getdiskfree

_getdrive

_getdrives

_mkdir, _wmkdir
_rmdir, _wrmdir

_searchenv, _wsearchenv, _searchenv_s, _wsearchenv_s

See also

Universal C runtime routines by category
File Handling
System Calls

USE

Change current working directory

Change current drive

Get current working directory for default drive

Get current working directory for specified drive

Populates a _diskfree_t structure with information about a
disk drive.

Get current (default) drive

Returns a bitmask representing the currently available disk
drives.

Make new directory

Remove directory

Search for given file on specified paths

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/directory-control.md

Error handling (CRT)

10/31/2018 « 2 minutes to read » Edit Online

Use these routines to handle program errors.

Error-handling routines

ROUTINE USE

assert macro Test for programming logic errors; available in both the
release and debug versions of the run-time library.

_ASSERT, _ASSERTE macros Similar to assert, but only available in the debug versions of
the run-time library.

clearerr Reset error indicator. Calling rewind or closing a stream also
resets the error indicator.

_eof Check for end of file in low-level I/O.

feof Test for end of file. End of file is also indicated when _read
returns 0.

ferror Test for stream 1/O errors.

_RPT, _RPTF macros Generate a report similar to printf, but only available in the

debug versions of the run-time library.

_set_error_mode Modifies __error_mode to determine a non-default location
where the C run time writes an error message for an error
that will possibly end the program.

_set_purecall_handler Sets the handler for a pure virtual function call.

See also

e Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/error-handling-crt.md

Exception Handling Routines

3/11/2019 « 2 minutes to read « Edit Online

Use the C++ exception-handling functions to recover from unexpected events during program execution.

Exception-Handling Functions

FUNCTION USE

_set_se_translator Handle Win32 exceptions (C structured exceptions) as C++
typed exceptions

set_terminate Install your own termination routine to be called by
terminate

set_unexpected Install your own termination function to be called by
unexpected

terminate Called automatically under certain circumstances after

exception is thrown. The terminate function calls abort or a
function you specify using set_terminate

unexpected Calls terminate or a function you specify using
set_unexpected. The unexpected function is not used in
current Microsoft C++ exception-handling implementation

See also

Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/exception-handling-routines.md

File Handling

3/11/2019 « 2 minutes to read « Edit Online

Use these routines to create, delete, and manipulate files and to set and check file-access permissions.

The C run-time libraries have a 512 limit for the number of files that can be open at any one time. Attempting
to open more than the maximum number of file descriptors or file streams causes program failure. Use

_setmaxstdio to change this number.

File-Handling Routines (File Descriptor)

These routines operate on files designated by a file descriptor.

ROUTINE

_chsize,_chsize_s

_filelength, _filelengthi64

_fstat, _fstat32, _fstat64, _fstati64, _fstat32i64, _fstat64i32

_get_osfhandle

_isatty

_locking

_open_osfhandle

_setmode

USE

Change file size

Get file length

Get file-status information on descriptor

Return operating-system file handle associated with existing
C run-time file descriptor

Check for character device

Lock areas of file

Associate C run-time file descriptor with existing operating-
system file handle

Set file-translation mode

File-Handling Routines (Path or Filename)

These routines operate on files specified by a path or filename.

ROUTINE

_access, _Waccess, _access_s, _Waccess_s

_chmod, _wchmod

_fullpath, _wfullpath

_makepath, _wmakepath, _makepath_s, _-wmakepath_s

_mktemp, _wmktemp, _mktemp_s, _wmktemp_s

USE

Check file-permission setting

Change file-permission setting

Expand a relative path to its absolute path name

Merge path components into single, full path

Create unique filename

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/file-handling.md

ROUTINE

remove, _wremove

rename, _wrename

_splitpath, _wsplitpath, _splitpath_s, _wsplitpath_s
_stat, _stat64, _stati64, _wstat, wstat64, _wstati64

_umask, _umask_s

_unlink, _wunlink

File-Handling Routines (Open File)

These routines open files.

ROUTINE
fopen, _wfopen, fopen_s, _wfopen_s

_fsopen, _wfsopen

_open, _wopen

_sopen, _Wsopen, _sopen_s, _wsopen_s

_pipe
freopen, _wfreopen, freopen_s, _wfreopen_s

These routines provide a way to change the representation
descriptor, and a Win32 file handle.

ROUTINE

_fdopen, _wfdopen

_fileno

_get_osfhandle
_open_osfhandle

The following Win32 functions also open files and pipes:

o CreateFile

USE

Delete file

Rename file

Parse path into components

Get file-status information on named file

Set default permission mask for new files created by
program

Delete file

USE

Opens a file and returns a pointer to the open file.

Open a stream with file sharing and returns a pointer to the
open file.

Opens a file and returns a file descriptor to the opened file.

Open a file with file sharing and returns a file descriptor to
the open file.

Creates a pipe for reading and writing.

Reassign a file pointer.

of the file between a FILE structure, a file

Associates a stream with a file that was previously opened
for low-level 1/0 and returns a pointer to the open stream.

Gets the file descriptor associated with a stream.

Return operating-system file handle associated with existing
C run-time file descriptor

Associates C run-time file descriptor with an existing
operating-system file handle.

https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-createfilea

e CreatePipe

e CreateNamedPipe

See also

Universal C runtime routines by category
Directory Control
System Calls

https://msdn.microsoft.com/library/windows/desktop/aa365152.aspx
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-createnamedpipea

Math and floating-point support

2/4/2019 « 6 minutes to read » Edit Online

The Universal C Runtime library (UCRT) provides many integral and floating-point math library
functions, including all of those required by ISO C99. The floating-point functions are implemented to
balance performance with correctness. Because producing the correctly rounded result may be
prohibitively expensive, these functions are designed to efficiently produce a close approximation to
the correctly rounded result. In most cases, the result produced is within +/-1 ulp of the correctly
rounded result, though there may be cases where there is greater inaccuracy.

Many of the floating point math library functions have different implementations for different CPU
architectures. For example, the 32-bit x86 CRT may have a different implementation than the 64-bit
x64 CRT. In addition, some of the functions may have multiple implementations for a given CPU
architecture. The most efficient implementation is selected dynamically at run-time depending on the
instruction sets supported by the CPU. For example, in the 32-bit x86 CRT, some functions have both
an x87 implementation and an SSE2 implementation. When running on a CPU that supports SSE2,
the faster SSE2 implementation is used. When running on a CPU that does not support SSE2, the
slower x87 implementation is used. Because different implementations of the math library functions
may use different CPU instructions and different algorithms to produce their results, the functions
may produce different results across CPUs. In most cases, the results are within +/-1 ulp of the
correctly rounded result, but the actual results may vary across CPUs.

Previous 16-bit versions of Microsoft C/C++ and Microsoft Visual C++ supported the long double
type as an 80-bit precision floating-point data type. In later versions of Visual C++, the long double
data type is a 64-bit precision floating-point data type identical to the double type. The compiler
treats long double and double as distinct types, but the long double functions are identical to their
double counterparts. The CRT provides long double versions of the math functions for ISO C99
source code compatibility, but note that the binary representation may differ from other compilers.

Supported math and floating-point routines

ROUTINE USE

abs, labs, llabs, _abs64 Computes the absolute value of an integer type
acos, acosf, acosl Computes the arc cosine

acosh, acoshf, acoshl Computes the hyperbolic arc cosine

asin, asinf, asinl Computes the arc sine

asinh, asinhf, asinhl Computes the hyperbolic arc sine

atan, atanf, atanl, atan2, atan2f, atan2| Computes the arc tangent

atanh, atanhf, atanhl Computes the hyperbolic arc tangent

_atodbl, _atodbl_| Converts a locale-specific string to a double

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/floating-point-support.md

ROUTINE

atof, _atof |

_atoflt, _atoflt_|, _atoldbl, _atoldbl_|

cbrt, cbrtf, cbrtl

ceil, ceilf, ceill

_chgsign, _chgsignf, _chgsignl

_clear87, _clearfp

_control87, __control87_2, _controlfp

_controlfp_s

copysign, copysignf, copysignl, _copysign, _copysignf,
_copysignl

cos, cosf, cosl

cosh, coshf, coshl

div, Idiv, lldiv

_ecvt, ecvt

_ecvt_s

erf, erff, erfl

erfc, erfcf, erfcl

exp, expf, expl

exp2, exp2f, exp2l

expm1, exom1f expm1|

fabs, fabsf, fabsl

_fevt, fovt

_fevt_s

fdim, fdimf, fdiml

feclearexcept

USE

Converts a string to a double

Converts a locale-specific string to a float or long
double

Computes the cube root

Computes the ceiling

Computes the additive inverse

Gets and clears the floating-point status register

Gets and sets the floating-point control word

Secure version of _controlfp

Returns a value that has the magnitude of one
argument and the sign of another

Computes the sine

Computes the hyperbolic sine

Computes the quotient and the remainder of two
integer values

Converts a double to a string

Secure version of _ecvt

Computes the error function

Computes the complementary error function

Computes the exponential e*

Computes the exponential 2*

Computes e*-1

Computes the absolute value of a floating-point type

Converts a floating-point number to a string

Secure version of _fevt

Determines the positive difference between two values

Clears specified floating-point exceptions

ROUTINE

fegetenv

fegetexceptflag

fegetround

feholdexcept

feraiseexcept

fesetenv

fesetexceptflag

fesetround

fetestexcept

feupdateenv

floor, floorf, floorl

fma, fmaf, fmal

frmax, fmaxf, fmaxl

fmin, fminf, fminl

fmod, fmodf, fmodl

_fpclass, _fpclassf

fpclassify

_fpieee_flt

_fpreset

frexp, frexpf, frexpl

_govt, gavt

_gavt_s

_get_FMA3_enable, _set_FMA3_enable

hypot, hypotf, hypotl, _hypot, _hypotf, _hypotl

USE

Stores the current floating-point environment

Gets the specified floating-point exception status

Gets the floating-point rounding mode

Sets non-stop floating-point exception mode

Raises the specified floating-point exceptions

Sets the current floating-point environment

Sets the specified floating-point status flags

Sets the specified floating-point rounding mode

Determines which floating-point exception status flags
are set

Restores a floating-point environment then raises
previous exceptions

Computes the floor

Computes a fused multiply-add

Computes the maximum of the arguments

Computes the minumum of the arguments

Computes the floating-point remainder

Returns the classification of a floating-point value

Returns the classification of a floating-point value

Sets a handler for floating-point exceptions

Resets the floating-point environment

Gets the mantissa and exponent of a floating-point
number

Converts a floating-point number to a string

Secure version of _gcvt

Gets or sets a flag for use of FMA3 instructions on x64

Computes the hypotenuse

ROUTINE

ilogb, ilogbf, ilogbl

imaxabs

imaxdiv

isfinite, _finite, _finitef

isgreater, isgreaterequal, isless, islessequal,
islessgreater, isunordered

isinf

isnan, _isnan, _isnanf

isnormal

Jo, j1, jn

Idexp, Idexpf, Idexpl

Ilgamma, lgammaf, Igammal

lIrint, lIrintf, llIrintl

lIround, llroundf, liroundl

log, logf, logl, log10, log10f, log10l

log1p, log1pf, log1pl

log2, log2f, log2I

logb, logbf, logbl, _logb, _logbf

Irint, Irintf, Irintl

_Irotl, _Irotr

I[round, Iroundf, Iround|

_matherr

max

USE

Computes the integer base-2 exponent

Computes the absolute value of an integer type

Computes the quotient and the remainder of two
integer values

Determines whether a value is finite

Compare the order of two floating point values

Determines whether a floating-point value is infinite

Tests a floating-point value for NaN

Tests whether a floating-point value is both finite and
not subnormal

Computes the Bessel function

Computes x*2"

Computes the natural logarithm of the absolute value
of the gamma function

Rounds a floating-point value to the nearest long
long value

Rounds a floating-point value to the nearest long
long value

Computes the natural or base-10 logarithm

Computes the natural logarithm of 1+x

Computes the base-2 logarithm

Returns the exponent of a floating-point value

Rounds a floating-point value to the nearest long
value

Rotates an integer value left or right

Rounds a floating-point value to the nearest long
value

The default math error handler

Macro that returns the larger of two values

ROUTINE

min

modf, modff, modfl

nan, nanf, nanl

nearbyint, nearbyintf nearbyintl

nextafter, nextafterf, nextafterl, _nextafter, _nextafterf

nexttoward, nexttowardf, nexttoward|

pow, powf, powl

remainder, remainderf, remainderl

remquo, remquof, remquol

rint, rintf, rintl

_rotl, _rotl64, _rotr, _rotr64

round, roundf, roundl

_scalb, _scalbf

scalbn, scalbnf, scalbnl, scalbln, scalblnf, scalbinl

_set_controlfp

_set_SSE2_enable

signbit

sin, sinf, sinl

sinh, sinhf, sinhl

sqrt, sqrtf, sqrtl

_status87, _statusfp, _statusfp2

strtof, _strtof |

strtold, _strtold_|

tan, tanf, tanl

USE

Macro that returns the smaller of two values

Splits a floating-point value into fractional and integer

parts

Returns a quiet NaN value

Returns the rounded value

Returns the next representable floating-point value

Returns the next representable floating-point value

Returns the value of ¥

Computes the remainder of the quotient of two
floating-point values

Computes the remainder of two integer values

Rounds a floating-point value

Rotates bits in integer types

Rounds a floating-point value

Scales argument by a power of 2

Multiplies a floating-point number by an integral
power of FLT_RADIX

Sets the floating-point control word

Enables or disables SSE2 instructions

Tests the sign bit of a floating-point value

Computes the sine

Computes the hyperbolic sine

Computes the square root

Gets the floating-point status word

Converts a string to a float

Converts a string to a long double

Computes the tangent

ROUTINE

tanh, tanhf, tanhl

tgamma, tgammaf, tgammal
trunc, truncf, truncl

_wtof, _wtof |

_y0, _y1, _yn

See also

Universal C runtime routines by category
Floating-point primitives

USE

Computes the hyperbolic tangent

Computes the gamma function

Truncates the fractional part

Converts a wide string to a double

Computes the Bessel function

Input and Output

3/11/2019 « 2 minutes to read « Edit Online

The 1/0 functions read and write data to and from files and devices. File /O operations take place in text mode or
binary mode. The Microsoft run-time library has three types of 1/O functions:

e Stream |/O functions treat data as a stream of individual characters.

o Low-level I/O functions invoke the operating system directly for lower-level operation than that provided
by stream 1/0.

e Console and port I/O functions read or write directly to a console (keyboard and screen) or an 1/O port
(such as a printer port).

NOTE

Because stream functions are buffered and low-level functions are not, these two types of functions are generally

incompatible. For processing a particular file, use either stream or low-level functions exclusively.

See also

Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/input-and-output.md

Text and Binary Mode File I/O

3/11/2019 « 2 minutes to read « Edit Online

File 1/O operations take place in one of two translation modes, text or binary, depending on the mode in which
the file is opened. Data files are usually processed in text mode. To control the file translation mode, one can:

e Retain the current default setting and specify the alternative mode only when you open selected files.

e Use the function _set_fmode to change the default mode for newly opened files. Use _get_fmode to find
the current default mode. The initial default setting is text mode (_O_TEXT).

e Change the default translation mode directly by setting the global variable _fmode in your program. The
function _set_fmode sets the value of this variable, but it can also be set directly.

When you call a file-open function such as _open, fopen, fopen_s, freopen, freopen_s, _fsopen or _sopen_s, you
can override the current default setting of _fmode by specifying the appropriate argument to the function
_set_fmode. The stdin, stdout, and stderr streams always open in text mode by default; you can also override
this default when opening any of these files. Use _setmode to change the translation mode using the file
descriptor after the file is open.

See also

Input and Output
Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/text-and-binary-mode-file-i-o.md

Unicode Stream I/O in Text and Binary Modes

3/11/2019 « 2 minutes to read « Edit Online

When a Unicode stream 1/O routine (such as fwprintf, fwscanf, fgetwc, fputwc, fgetws, or fputws) operates on
a file that is open in text mode (the default), two kinds of character conversions take place:

e Unicode-to-MBCS or MBCS-to-Unicode conversion. When a Unicode stream-1/O function operates in text
mode, the source or destination stream is assumed to be a sequence of multibyte characters. Therefore, the
Unicode stream-input functions convert multibyte characters to wide characters (as if by a call to the
mbtowc function). For the same reason, the Unicode stream-output functions convert wide characters to
multibyte characters (as if by a call to the wetomb function).

e Carriage return - linefeed (CR-LF) translation. This translation occurs before the MBCS - Unicode
conversion (for Unicode stream input functions) and after the Unicode - MBCS conversion (for Unicode
stream output functions). During input, each carriage return - linefeed combination is translated into a
single linefeed character. During output, each linefeed character is translated into a carriage return - linefeed
combination.

However, when a Unicode stream-1/O function operates in binary mode, the file is assumed to be Unicode, and no
CR-LF translation or character conversion occurs during input or output. Use the _setmode(_fileno(stdin),
_O_BINARY); instruction in order to correctly use wcin on a UNICODE text file.

See also

Universal C runtime routines by category
Input and Output

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/unicode-stream-i-o-in-text-and-binary-modes.md

Stream 1/O

3/11/2019 « 4 minutes to read « Edit Online

These functions process data in different sizes and formats, from single characters to large data

structures. They also provide buffering, which can improve performance. The default size of a stream

buffer is 4K. These routines affect only buffers created by the run-time library routines, and have no

effect on buffers created by the operating system.

Stream 1/O Routines

ROUTINE
clearerr, clearerr_s
fclose

_fcloseall

_fdopen, wfdopen
feof

ferror

fflush

fgetc, fgetwc

_fgetchar, _fgetwchar

fgetpos

fgets, fgetws

_fileno

_flushall

fopen, _wfopen, fopen_s, _wfopen_s

fprintf, _fprintf_|, fwprintf, _fwprintf_|, fprintf_s,
_fprintf_s_|, fwprintf_s, _fwprintf_s_|

fputc, fputwc

USE

Clear error indicator for stream

Close stream

Close all open streams except stdin, stdout, and
stderr

Associate stream with file descriptor of open file

Test for end of file on stream

Test for error on stream

Flush stream to buffer or storage device

Read character from stream (function versions of getc
and getwc)

Read character from stdin (function versions of
getchar and getwchar)

Get position indicator of stream

Read string from stream

Get file descriptor associated with stream

Flush all streams to buffer or storage device

Open stream

Write formatted data to stream

Write a character to a stream (function versions of
putc and putwc)

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/stream-i-o.md

ROUTINE

_fputchar, _fputwchar

fputs, fputws

fread

freopen, _wfreopen, freopen_s, _wfreopen_s

fscanf, fwscanf, fscanf_s, fscanf s_|, fwscanf s,
fwscanf s|

fseek, fseekib4

fsetpos

_fsopen, _wfsopen

ftell, _ftellic4

fwrite

getc, getwc

getchar, getwchar

_getmaxstdio

gets_s, _getws_s

_getw

printf, _printf_|, wprintf, _wprintf_|,printf_s, _printf_s_|,
wprintf_s, _wprintf_s_|

putc, putwc

putchar, putwchar

puts, _putws

_putw

rewind

_rmtmp

USE

Write character to stdout (function versions of
putchar and putwchar)

Write string to stream

Read unformatted data from stream

Reassign FILE stream pointer to new file or device

Read formatted data from stream

Move file position to given location

Set position indicator of stream

Open stream with file sharing

Get current file position

Write unformatted data items to stream

Read character from stream (macro versions of fgetc
and fgetwc)

Read character from stdin (macro versions of
fgetchar and fgetwchar)

Returns the number of simultaneously open files
permitted at the stream I/O level.

Read line from stdin

Read binary int from stream

Write formatted data to stdout

Write character to a stream (macro versions of fputc
and fputwc)

Write character to stdout (macro versions of fputchar
and fputwchar)

Write line to stream

Write binary int to stream

Move file position to beginning of stream

Remove temporary files created by tmpfile

ROUTINE

scanf, _scanf_|, wscanf, _wscanf |,scanf_s, scanf s_|,
wscanf_s, _wscanf_s_|

setbuf

_setmaxstdio

setvbuf

_snprintf, _snwprintf, _snprintf_s, _snprintf_s_|,
_snwprintf_s, _snwprintf_s_|

_snscanf, _snwscanf, _snscanf_s, _snscanf_s_|,
_snwscanf_s, _snwscanf_s_|

sprintf, swprintf, sprintf_s, _sprintf_s_|, swprintf_s,
_swprintf_s_|

sscanf, swscanf, sscanf_s, _sscanf_s_|, swscanf s,
_swscanf_s_|

_tempnam, _wtempnam

tmpfile, tmpfile_s

tmpnam, _wtmpnam, tmpnam_s, _wtmpnam_s

ungetc, ungetwc

_veprintf, _vewprintf, _vcprintf_s, _vcprintf_s_|,
_vewprintf_s, _vewprintf_s_|

vfprintf, viwprintf, vfprintf_s, _vfprintf_s_|, vfwprintf_s,
_vfwprintf_s_|

vprintf, vwprintf, vprintf_s, _vprintf_s_|, vwprintf_s,
_vwprintf_s_|

_vsnprintf, _vsnwprintf, vsnprintf_s, _vsnprintf_s,
_vsnprintf_s_|, _vsnwprintf_s, _vsnwprintf_s_|

USE

Read formatted data from stdin

Control stream buffering

Set a maximum for the number of simultaneously
open files at the stream I/O level.

Control stream buffering and buffer size

Write formatted data of specified length to string

Read formatted data of a specified length from the

standard input stream.

Write formatted data to string

Read formatted data from string

Generate temporary filename in given directory

Create temporary file

Generate temporary filename

Push character back onto stream

Write formatted data to the console.

Write formatted data to stream

Write formatted data to stdout

Write formatted data of specified length to buffer

Write formatted data to buffer

vsprintf, vswprintf, vsprintf_s, _vsprintf_s_|, vswprintf_s,
_vswprintf_s_|

When a program begins execution, the startup code automatically opens several streams: standard
input (pointed to by stdin), standard output (pointed to by stdout), and standard error (pointed to
by stderr). These streams are directed to the console (keyboard and screen) by default. Use freopen
to redirect stdin, stdout, or stderr to a disk file or a device.

Files opened using the stream routines are buffered by default. The stdout and stderr functions are
flushed whenever they are full or, if you are writing to a character device, after each library call. If a
program terminates abnormally, output buffers may not be flushed, resulting in loss of data. Use

fflush or _flushall to ensure that the buffer associated with a specified file or all open buffers are
flushed to the operating system, which can cache data before writing it to disk. The commit-to-disk
feature ensures that the flushed buffer contents are not lost in the event of a system failure.

There are two ways to commit buffer contents to disk:

e Link with the file COMMODE.OBJ to set a global commit flag. The default setting of the
global flag is n, for "no-commit."

e Set the mode flag to ¢ with fopen or _fdopen.

Any file specifically opened with either the c or the n flag behaves according to the flag, regardless
of the state of the global commit/no-commit flag.

If your program does not explicitly close a stream, the stream is automatically closed when the
program terminates. However, you should close a stream when your program finishes with it, as the
number of streams that can be open at one time is limited. See _setmaxstdio for information on this
limit.

Input can follow output directly only with an intervening call to fflush or to a file-positioning
function (fseek, fsetpos, or rewind). Output can follow input without an intervening call to a file-
positioning function if the input operation encounters the end of the file.

See also

Input and Output
Universal C runtime routines by category

Low-Level I/O

3/11/2019 « 2 minutes to read « Edit Online

These functions invoke the operating system directly for lower-level operation than that provided by stream 1/0.
Low-level input and output calls do not buffer or format data.

Low-level routines can access the standard streams opened at program startup using the following predefined
file descriptors.

STREAM FILE DESCRIPTOR
stdin 0
stdout 1
stderr 2

Low-level 1/0 routines set the errno global variable when an error occurs. You must include STDIO.H when you
use low-level functions only if your program requires a constant that is defined in STDIO.H, such as the end-of-
file indicator (EOF).

Low-Level I/O Functions

FUNCTION USE

_close Close file

_commit Flush file to disk

_creat, _wcreat Create file

_dup Return next available file descriptor for given file
_dup2 Create second descriptor for given file
_eof Test for end of file

_Iseek, _Iseeki64 Reposition file pointer to given location
_open, _wopen Open file

_read Read data from file

_Sopen, _Wsopen, _Sopen_s, _WSopen_s Open file for file sharing

_tell, _telli64 Get current file-pointer position

_umask, _umask_s Set file-permission mask

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/low-level-i-o.md

FUNCTION USE

_write Write data to file

_dup and _dup2 are typically used to associate the predefined file descriptors with different files.

See also

Input and Output
Universal C runtime routines by category

System Calls

Console and Port I/0

3/11/2019 « 2 minutes to read « Edit Online

These routines read and write on your console or on the specified port. The console I/O routines are not
compatible with stream 1/O or low-level I/O library routines. The console or port does not have to be opened or
closed before 1/0 is performed, so there are no open or close routines in this category. In the Windows
operating systems, the output from these functions is always directed to the console and cannot be redirected.

Console and Port I/O Routines

ROUTINE USE

_cgets, _cgetws, _cgets_s, _cgetws_s Read string from console

_cprintf, _cwprintf, _cprintf_s, _cprintf_s_|, _cwprintf_s, Write formatted data to console
_awprintf_s_|

_cputs Write string to console

_cscanf, _cwscanf, _cscanf_s, _cscanf_s_|, _cwscanf s, Read formatted data from console
_cwscanf_s_|

_getch, _getwch Read character from console

_getche, _getwche Read character from console and echo it
_inp Read one byte from specified 1/0 port
_inpd Read double word from specified 1/O port
_inpw Read 2-byte word from specified 1/0 port
_kbhit Check for keystroke at console; use before attempting to

read from console

_outp Write one byte to specified 1/O port

_outpd Write double word to specified 1/0 port

_outpw Write word to specified 1/0 port

_putch, _putwch Write character to console

_ungetch, _ungetwch "Unget" last character read from console so it becomes next

character read

See also

Input and Output

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/console-and-port-i-o.md

Universal C runtime routines by category

_nolock Functions

3/11/2019 « 2 minutes to read « Edit Online

These are functions that do not perform any locking. They are provided for users requiring maximum performance.
For more information, see Multithreaded Libraries Performance.

Use _nolock functions only if your program is truly single-threaded or if it does its own locking.

No lock routines

_fclose_nolock

_fflush_nolock

_fgetc_nolock, _fgetwc_nolock
_fread_nolock

_fseek_nolock, fseeki64 _nolock
_ftell_nolock, _ftelli64_nolock
_fwrite_nolock

_getc_nolock, _getwc_nolock
_getch_nolock, _getwch_nolock
_getchar_nolock, _getwchar_nolock
_getche_nolock, _getwche_nolock
_getdcwd_nolock, _wgetdcwd_nolock
_putc_nolock, _putwc_nolock
_putch_nolock, _putwch_nolock
_putchar_nolock, _putwchar_nolock
_ungetc_nolock, _ungetwc_nolock

_ungetch_nolock, _ungetwch_nolock

See also

Input and Output
Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/nolock-functions.md

Internationalization

3/11/2019 « 2 minutes to read « Edit Online

The Microsoft run-time library provides many routines that are useful for creating different versions of a program
for international markets. This includes locale-related routines, wide-character routines, multibyte-character
routines, and generic-text routines. For convenience, most locale-related routines are also categorized in this
reference according to the operations they perform. In this section and in the alphabetic reference, multibyte-

character routines and wide-character routines are described with single-byte-character counterparts, where they
exist.

Also included are the ISO646 operator alternatives.

See also

Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/internationalization.md

Locale

3/11/2019 « 3 minutes to read « Edit Online

Locale refers to country/region and language settings that you can use to customize
your program. Some locale-dependent categories include the display formats for
dates and monetary values. For more information, see Locale Categories.

Use the setlocale function to change or query some or all of the current program or
thread locale information while using functions without the _I suffix. The functions
with the _I suffix will use the locale parameter passed in for their locale information
during the execution of that specific function only. To create a locale for use with a
function with a _I suffix, use _create_locale. To free this locale, use _free_locale. To get
the current locale, use _get_current_locale.

Use _configthreadlocale to control whether each thread has its own locale, or all
threads in a program share the same locale. For more information, see Locales and
Code Pages.

More secure versions of the functions in the following table are available, indicated
by the _s ("secure") suffix. For more information, see Security Features in the CRT.

Locale-Dependent Routines

SETLOCALE CATEGORY

ROUTINE USE SETTING DEPENDENCE

atof, _atof |, _wtof, _wtof | Convert character to LC_NUMERIC
floating-point value

atoi, _atoi_|, _wtoi, _wtoi_| Convert character to integer LC_NUMERIC
value

_atoi64, _atoi64_|, _wtoi64, Convert character to 64-bit LC_NUMERIC

wtoi64| integer value

atol, _atol_|, _wtol, _wtol_| Convert character to long LC_NUMERIC
value

_atodbl, _atodbl_|, _atoldbl, Convert character to LC_NUMERIC

atoldbl|, _atoflt, _atoflt_| double-long value

is Routines Test given integer for LC_CTYPE
particular condition.

isleadbyte, _isleadbyte_| Test for lead byte LC_ CTYPE

localeconv

Read appropriate values for
formatting numeric
guantities

LC_MONETARY, LC_NUMERIC

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/locale.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/text/locales-and-code-pages

ROUTINE

MB_CUR_MAX

_mbccpy,
mbcepy|,_mbccpy_s,
_mbccpy_s_|

_mbclen, mblen, _mblen_|

strlen, wcslen, _mbslen,
mbslen|, _mbstrlen,
mbstrlen|

mbstowcs,
mbstowcs|,mbstowcs_s,
_mbstowcs_s_|

mbtowc, _mbtowc_|

printf functions

scanf functions

setlocale, _wsetlocale

streoll, wescoll, _mbscoll,
streoll|, _wescoll_|,
mbscoll|

_stricmp, _wcsicmp,
_mbsicmp, _stricmp_|,
_wcsicmp_l, _mbsicmp_|

_stricoll, _wcsicoll, _mbsicoll,
stricoll|, _wcsicoll_|,
mbsicoll|

_strncoll, _wcsncoll,
_mbsncoll, _strncoll_|,
~wesncoll_l, _mbsncoll_I

_strnicmp, _wcsnicmp,
_mbsnicmp, _strnicmp_|,
_wesnicmp_l, _mbsnicmp_|

USE

Maximum length in bytes of
any multibyte character in
current locale (macro defined
in STDLIB.H)

Copy one multibyte
character

Validate and return number
of bytes in multibyte
character

For multibyte-character
strings: validate each
character in string; return
string length

Convert sequence of
multibyte characters to
corresponding sequence of
wide characters

Convert multibyte character
to corresponding wide
character

Write formatted output

Read formatted input

Select locale for program

Compare characters of two
strings

Compare two strings
without regard to case

Compare characters of two
strings (case insensitive)

Compare first n characters of
two strings

Compare characters of two
strings without regard to
case.

SETLOCALE CATEGORY
SETTING DEPENDENCE

LC_ CTYPE

LC_CTYPE

LC CTYPE

LC_ CTYPE

LC CTYPE

LC CTYPE

LC_NUMERIC (determines
radix character output)

LC_NUMERIC (determines
radix character recognition)

Not applicable

LC_ COLLATE

LC_CTYPE

LC_COLLATE

LC_COLLATE

LC CTYPE

ROUTINE

_strnicoll, _wcsnicoll,
_mbsnicoll, _strnicoll_|,
_wesnicoll_I, _mbsnicoll_|

strftime, wcsftime,
strftime|, _wcsftime_|

_strlwr, _wcslwr, _mbslwr,
_striwr_l, _wceslwr_|,
mbslwr|,_strlwr_s,
_strlwr_s_|, _mbslwr_s,
_mbslwr_s_|, _wcslwr_s,
~wcslwr_s_|

strtod, _strtod_|, wcstod,
wcstod|

strtol, wcstol, _strtol_|,
wcstol|

strtoul, _strtoul_|, westoul,
wcstoul|

_strupr, _strupr_l, _mbsupr,
mbsupr|, _wcsupr_|,
_wcsupr,_strupr_s,
_strupr_s_l, _mbsupr_s,
_mbsupr_s_|, _wcsupr_s,
_wesupr_s_|

strxfrm, wesxfrm, _strxfrm_|,
wesxfrm|

tolower, _tolower, towlower,
tolower|,
towlower|,_mbctolower,
_mbctolower |,
_mbctoupper,
mbctoupper|

toupper, _toupper,
towupper, _toupper_|,
towupper|,_mbctolower,
_mbctolower |,
_mbctoupper,
mbctoupper|

wcstombs,
wcstombs|,wcstombs_s,
_wcstombs_s_|

USE

Compare first n characters of

two strings (case insensitive)

Format date and time value
according to supplied
format argument

Convert, in place, each
uppercase letter in given
string to lowercase

Convert character string to
double value

Convert character string to
long value

Convert character string to
unsigned long value

Convert, in place, each
lowercase letter in string to
uppercase

Transform string into
collated form according to
locale

Convert given character to
corresponding lowercase
character

Convert given character to
corresponding uppercase
letter

Convert sequence of wide
characters to corresponding
sequence of multibyte
characters

SETLOCALE CATEGORY
SETTING DEPENDENCE

LC_COLLATE

LC_TIME

LC_ CTYPE

LC_NUMERIC (determines
radix character recognition)

LC_NUMERIC (determines
radix character recognition)

LC_NUMERIC (determines
radix character recognition)

LC CTYPE

LC_COLLATE

LC_CTYPE

LC CTYPE

LC CTYPE

SETLOCALE CATEGORY
SETTING DEPENDENCE

ROUTINE USE
wctomb, Convert wide character to LC CTYPE
wctomb|,wctomb_s, corresponding multibyte

_wctomb_s_| character

NOTE

For multibyte routines, the multibyte code page must be equivalent to the locale set with
setlocale. _setmbcp, with an argument of _MB_CP_LOCALE makes the multibyte code page

the same as the setlocale code page.

See also

Internationalization
Universal C runtime routines by category

Code Pages

3/11/2019 « 2 minutes to read « Edit Online

A code page is a character set, which can include numbers, punctuation marks, and other glyphs. Different
languages and locales may use different code pages. For example, ANSI code page 1252 is used for English and
most European languages; OEM code page 932 is used for Japanese Kaniji.

A code page can be represented in a table as a mapping of characters to single-byte values or multibyte values.
Many code pages share the ASCII character set for characters in the range 0x00 - 0x7F.

The Microsoft run-time library uses the following types of code pages:

e System-default ANSI code page. By default, at startup the run-time system automatically sets the
multibyte code page to the system-default ANSI code page, which is obtained from the operating system.
The call:

setlocale (LC_ALL, "");

also sets the locale to the system-default ANSI code page.

e Locale code page. The behavior of a number of run-time routines is dependent on the current locale
setting, which includes the locale code page. (For more information, see Locale-Dependent Routines.) By
default, all locale-dependent routines in the Microsoft run-time library use the code page that corresponds
to the "C" locale. At run-time you can change or query the locale code page in use with a call to setlocale.

e Multibyte code page. The behavior of most of the multibyte-character routines in the run-time library
depends on the current multibyte code page setting. By default, these routines use the system-default
ANSI code page. At run-time you can query and change the multibyte code page with _getmbcp and
_setmbcp, respectively.

e The "C" locale is defined by ANSI to correspond to the locale in which C programs have traditionally
executed. The code page for the "C" locale ("C" code page) corresponds to the ASCII character set. For
example, in the "C" locale, islower returns true for the values 0x61 - 0x7A only. In another locale, islower
may return true for these as well as other values, as defined by that locale.

See also

Internationalization
Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/code-pages.md

Interpretation of Multibyte-Character Sequences

3/11/2019 « 2 minutes to read « Edit Online

Most multibyte-character routines in the Microsoft run-time library recognize multibyte-character

sequences relating to a multibyte code page. The output value is affected by the setting of the LC_CTYPE

category setting of the locale; see setlocale for more information. The versions of these functions without

the _I suffix use the current locale for this locale-dependent behavior; the versions with the _I suffix are

identical except that they use the locale parameter passed in instead.

Locale-Dependent Multibyte Routines

ROUTINE

_mbclen, mblen, _mblen_|

strlen, wcslen, _mbslen, _mbslen_|, _mbstrlen, _mbstrlen_|

mbstowcs, _mbstowcs_|, mbstowcs_s, _mbstowcs_s_|

mbtowc, _mbtowc_|

wcstombs, _wcestombs_|, westombs_s, _westombs_s_|

wctomb, _wctomb_|, wctomb_s, _wctomb_s_|

mbrtoc16, mbrtoc32

c16rtomb, c32rtomb

See also

Internationalization
Universal C runtime routines by category

USE

Validate and return number of bytes in multibyte
character

For multibyte character strings: validate each character in
string; return string length. For wide character strings:
return string length.

Convert sequence of multibyte characters to
corresponding sequence of wide characters

Convert multibyte character to corresponding wide
character

Convert sequence of wide characters to corresponding
sequence of multibyte characters

Convert wide character to corresponding multibyte
character

Convert multibyte character to equivalent UTF-16 or UTF-
32 character

Convert UTF-16 or UTF-32 character to equivalent
multibyte character

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/interpretation-of-multibyte-character-sequences.md

1SO646 Operators

3/11/2019 « 2 minutes to read « Edit Online

Provides readable alternatives to certain operators or punctuators. The standard header <iso646.h> is available
even in a freestanding implementation.

Macros
and An alternative to the && operator.
and_eq An alternative to the &= operator.
bitand An alternative to the & operator.
bitor An alternative to the | operator.
compl An alternative to the ~ operator.
not An alternative to the ! operator.
not_eq An alternative to the != operator.
or An alternative to the || operator.
or_eq An alternative to the |= operator.
xor An alternative to the ~ operator.
Xor_eq An alternative to the ~= operator.

See also

Internationalization

Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/iso646-operators.md

Single-Byte and Multibyte Character Sets

3/11/2019 « 2 minutes to read « Edit Online

The ASCII character set defines characters in the range 0x00 - Ox7F. There are a number of other character sets,
primarily European, that define the characters within the range 0x00 - Ox7F identically to the ASCII character set
and also define an extended character set from 0x80 - OxFF. Thus an 8-bit, single-byte-character set (SBCS) is
sufficient to represent the ASCII character set as well as the character sets for many European languages. However,
some non-European character sets, such as Japanese Kanji, include many more characters than can be represented
in a single-byte coding scheme, and therefore require multibyte-character set (MBCS) encoding.

NOTE

Many SBCS routines in the Microsoft run-time library handle multibyte bytes, characters, and strings as appropriate. Many
multibyte-character sets define the ASCII character set as a subset. In many multibyte character sets, each character in the
range 0x00 - Ox7F is identical to the character that has the same value in the ASCII character set. For example, in both ASCII
and MBCS character strings, the one-byte null character (\0') has value 0x00 and indicates the terminating null character.

A multibyte character set may consist of both one-byte and two-byte characters. Thus a multibyte-character string
may contain a mixture of single-byte and double-byte characters. A two-byte multibyte character has a lead byte
and a trail byte. In a particular multibyte-character set, the lead bytes fall within a certain range, as do the trail
bytes. When these ranges overlap, it may be necessary to evaluate the particular context to determine whether a
given byte is functioning as a lead byte or a trail byte.

See also

Internationalization
Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/single-byte-and-multibyte-character-sets.md

SBCS and MBCS Data Types

3/11/2019 « 2 minutes to read « Edit Online

Any Microsoft MBCS run-time library routine that handles only one multibyte character or one byte of a multibyte
character expects an unsigned int argument (where 0x00 <= character value <= OxFFFF and 0x00 <= byte value
<= 0xFF). An MBCS routine that handles multibyte bytes or characters in a string context expects a multibyte-
character string to be represented as an unsigned char pointer.

Caution

Each byte of a multibyte character can be represented in an 8-bit char. However, an SBCS or MBCS single-byte
character of type char with a value greater than Ox7F is negative. When such a character is converted directly to an
int or a long, the result is sign-extended by the compiler and can therefore yield unexpected results.

Therefore it is best to represent a byte of a multibyte character as an 8-bit unsigned char . Or, to avoid a negative
result, simply convert a single-byte character of type char to an unsigned char before convertingitto anintora
long.

Because some SBCS string-handling functions take (signed) char* parameters, a type mismatch compiler warning
will result when _MBCS is defined. There are three ways to avoid this warning, listed in order of efficiency:

1. Use the type-safe inline functions in TCHAR H. This is the default behavior.

2. Use the direct macros in TCHAR.H by defining _MB_MAP_DIRECT on the command line. If you do this,
you must manually match types. This is the fastest method but is not type-safe.

3. Use the type-safe statically linked library functions in TCHAR.H. To do so, define the constant
_NOL_INLINING on the command line. This is the slowest method, but the most type-safe.

See also

Internationalization
Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/sbcs-and-mbcs-data-types.md

Unicode: The Wide-Character Set

3/11/2019 « 2 minutes to read « Edit Online

A wide character is a 2-byte multilingual character code. Any character in use in modern computing worldwide,
including technical symbols and special publishing characters, can be represented according to the Unicode
specification as a wide character. Developed and maintained by a large consortium that includes Microsoft, the
Unicode standard is now widely accepted.

A wide character is of type wchar_t. A wide-character string is represented as a wchar_t[] array and is pointed to
by a wchar_t* pointer. You can represent any ASCII character as a wide character by prefixing the letter L to the
character. For example, L'\O' is the terminating wide (16-bit) null character. Similarly, you can represent any ASCI|
string literal as a wide-character string literal simply by prefixing the letter L to the ASCI! literal (L"Hello").

Generally, wide characters take up more space in memory than multibyte characters but are faster to process. In
addition, only one locale can be represented at a time in multibyte encoding, whereas all character sets in the world
are represented simultaneously by the Unicode representation.

See also

Internationalization

Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/unicode-the-wide-character-set.md

Using Generic-Text Mappings

3/11/2019 « 2 minutes to read « Edit Online

Microsoft Specific

To simplify code development for various international markets, the Microsoft run-time library provides
Microsoft-specific "generic-text" mappings for many data types, routines, and other objects. These mappings are
defined in TCHAR.H. You can use these name mappings to write generic code that can be compiled for any of the
three kinds of character sets: ASCII (SBCS), MBCS, or Unicode, depending on a manifest constant you define
using a #define statement. Generic-text mappings are Microsoft extensions that are not ANSI| compatible.

Preprocessor Directives for Generic-Text Mappings

#DEFINE COMPILED VERSION EXAMPLE

_UNICODE Unicode (wide-character) _tcsrev. maps to _wcsrev
_MBCS Multibyte-character _tcsrev. maps to _mbsrev
None (the default: neither _unIcoDE SBCS (ASCII) _tcsrev. maps to strrev

nor _mBcs defined)
For example, the generic-text function _tcsrev , defined in TCHAR.H, maps to mbsrev if MBcs has been defined
in your program, or to _wcsrev if _unIcODE has been defined. Otherwise _tcsrev maps to strrev .

The generic-text data type _TCHAR , also defined in TCHAR.H, maps to type char if _mBcs is defined, to type
wchar_t if _unIcoDE is defined, and to type char if neither constant is defined. Other data type mappings are
provided in TCHAR.H for programming convenience, but _TcHAR is the type that is most useful.

Generic-Text Data Type Mappings

GENERIC-TEXT DATA TYPE SBCS (_UNICODE, _MBCS NOT

NAME DEFINED) _MBCS DEFINED _UNICODE DEFINED

_TCHAR char char wchar_t

_TINT int int wint_t

_TSCHAR signed char signed char wchar_t

_TUCHAR unsigned char unsigned char wchar_t

_TXCHAR char unsigned char wchar_t

_T or _TEXT No effect (removed by No effect (removed by L (converts following
preprocessor) preprocessor) character or string to its

Unicode counterpart)

For a complete list of generic-text mappings of routines, variables, and other objects, see Generic-Text Mappings.

The following code fragments illustrate the use of _TcHAR and _tcsrev for mapping to the MBCS, Unicode, and
SBCS models.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/using-generic-text-mappings.md

_TCHAR *RetVal, *szString;
RetVal = _tcsrev(szString);

If mBcs has been defined, the preprocessor maps the preceding fragment to the following code:

char *RetVal, *szString;
RetVal = _mbsrev(szString);

If _unzcobe has been defined, the preprocessor maps the same fragment to the following code:

wchar_t *RetVal, *szString;
RetvVal = _wcsrev(szString);

If neither _mBcs nor _unicope has been defined, the preprocessor maps the fragment to single-byte ASCII code,

as follows:

char *RetVal, *szString;
Retval = strrev(szString);

Thus you can write, maintain, and compile a single source code file to run with routines that are specific to any of
the three kinds of character sets.

END Microsoft Specific

See also

Generic-Text Mappings

Data Type Mappings

Constant and Global Variable Mappings
Routine Mappings

A Sample Generic-Text Program

A Sample Generic-Text Program

3/11/2019 « 2 minutes to read « Edit Online

Microsoft Specific

The following program, GENTEXT.C, provides a more detailed illustration of the use of generic-text mappings
defined in TCHAR H:

// GENTEXT.C
// use of generic-text mappings defined in TCHAR.H

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <direct.h>
#include <errno.h>
#include <tchar.h>

int _ cdecl _tmain(int argc, _TCHAR **argv, _TCHAR **envp)
{

_TCHAR buff[_MAX_PATH];

_TCHAR *str = _T("Astring");

char *amsg = "Reversed";

wchar_t *wmsg = L"Is";

#ifdef _UNICODE
printf("Unicode version\n");
#telse /* _UNICODE */
#ifdef _MBCS
printf("MBCS version\n");
#else
printf("SBCS version\n");
#endif
#endif /* _UNICODE */

if (_tgetcwd(buff, _MAX_PATH) == NULL)

printf("Can't Get Current Directory - errno=%d\n", errno);
else

_tprintf(_T("Current Directory is '%s'\n"), buff);
_tprintf(_T("'%s"' %hs %ls:\n"), str, amsg, wmsg);
_tprintf(_T("'%s'\n"), _tcsrev(_tcsdup(str)));
return 9;

If _mBcs has been defined, GENTEXT.C maps to the following MBCS program:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/a-sample-generic-text-program.md

// crt_mbcsgtxt.c

/*
* Use of generic-text mappings defined in TCHAR.H
* Generic-Text-Mapping example program
* MBCS version of GENTEXT.C
*/

#include <stdio.h>
#include <stdlib.h>
#include <mbstring.h>
#include <direct.h>

int _ cdecl main(int argc, char **argv, char **envp)
{

char buff[_MAX_PATH];

char *str = "Astring";

char *amsg = "Reversed";

wchar_t *wmsg = L"Is";

printf("MBCS version\n");

if (_getcwd(buff, _MAX_PATH) == NULL) {
printf("Can't Get Current Directory - errno=%d\n", errno);

3
else {
printf("Current Directory is '%s'\n", buff);

printf("'%s"' %hs %ls:\n", str, amsg, wmsg);
printf("'%s'\n", _mbsrev(_mbsdup((unsigned char*) str)));
return 9;

If _unzcobe has been defined, GENTEXT.C maps to the following Unicode version of the program. For more
information about using wmain in Unicode programs as a replacement for main , see Using wmain in C Language

Reference.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/using-wmain

// crt_unicgtxt.c

/*
* Use of generic-text mappings defined in TCHAR.H
* Generic-Text-Mapping example program
* Unicode version of GENTEXT.C
*/

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <direct.h>

int __cdecl wmain(int argc, wchar_t **argv, wchar_t **envp)
{

wchar_t buff[_MAX_PATH];

wchar_t *str = L"Astring";

char *amsg = "Reversed";

wchar_t *wmsg = L"Is";

printf("Unicode version\n");

if (_wgetcwd(buff, _MAX_PATH) == NULL) {

printf("Can't Get Current Directory - errno=%d\n", errno);
}
else {

wprintf(L"Current Directory is '%s'\n", buff);

wprintf(L"'%s"' %hs %1s:\n", str, amsg, wmsg);

wprintf(L"'%s'\n", wcsrev(wcsdup(str)));

return 9;

If neither _mBcs nor _unicope has been defined, GENTEXT.C maps to single-byte ASCII code, as follows:

// crt_sbcsgtxt.c

/*
* Use of generic-text mappings defined in TCHAR.H
* Generic-Text-Mapping example program
* Single-byte (SBCS) Ascii version of GENTEXT.C
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <direct.h>

int _ cdecl main(int argc, char **argv, char **envp)
{

char buff[_MAX_PATH];

char *str = "Astring";

char *amsg = "Reversed";

wchar_t *wmsg = L"Is";

printf("SBCS version\n");

if (_getcwd(buff, _MAX_PATH) == NULL) {
printf("Can't Get Current Directory - errno=%d\n", errno);

}
else {

printf("Current Directory is '%s'\n", buff);
}

printf("'%s"' %hs %ls:\n", str, amsg, wmsg);
printf("'%s'\n", strrev(strdup(str)));
return 0;

END Microsoft Specific

See also

Generic-Text Mappings

Data Type Mappings

Constant and Global Variable Mappings
Routine Mappings

Using Generic-Text Mappings

Using TCHAR.H Data Types with _MBCS

3/12/2019 « 2 minutes to read « Edit Online

Microsoft Specific

As the table of generic-text routine mappings indicates (see Generic-Text Mappings), when the manifest constant

_MBCS is defined, a given generic-text routine maps to one of the following kinds of routines:

e An SBCS routine that handles multibyte bytes, characters, and strings appropriately. In this case, the string
arguments are expected to be of type char*. For example, _tprintf maps to printf; the string arguments to
printf are of type char*. If you use the _TCHAR generic-text data type for your string types, the formal and
actual parameter types for printf match because _TCHAR* maps to char*.

e An MBCS-specific routine. In this case, the string arguments are expected to be of type unsigned char*. For
example, _tcsrev maps to _mbsrev, which expects and returns a string of type unsigned char*. Again, if
you use the _TCHAR generic-text data type for your string types, there is a potential type conflict because
_TCHAR maps to type char.

Following are three solutions for preventing this type conflict (and the C compiler warnings or C++ compiler
errors that would result):

e Use the default behavior. TCHAR.H provides generic-text routine prototypes for routines in the run-time
libraries, as in the following example.

char *_tcsrev(char *);

In the default case, the prototype for _tcsrev maps to _mbsrev through a thunk in LIBC.LIB. This changes
the types of the _mbsrev incoming parameters and outgoing return value from _TCHAR * (such as char *)
to unsigned char *. This method ensures type matching when you are using _TCHAR, but it is relatively
slow because of the function call overhead.

e Use function inlining by incorporating the following preprocessor statement in your code.

#define _USE_INLINING

This method causes an inline function thunk, provided in TCHAR.H, to map the generic-text routine directly
to the appropriate MBCS routine. The following code excerpt from TCHAR.H provides an example of how
this is done.

__inline char *_tcsrev(char *_s1)
{return (char *)_mbsrev((unsigned char *)_s1);}

If you can use inlining, this is the best solution, because it guarantees type matching and has no additional
time cost.

e Use "direct mapping" by incorporating the following preprocessor statement in your code.

#define _MB_MAP_DIRECT

This approach provides a fast alternative if you do not want to use the default behavior or cannot use

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/using-tchar-h-data-types-with-mbcs.md

inlining. It causes the generic-text routine to be mapped by a macro directly to the MBCS version of the
routine, as in the following example from TCHAR.H.

#define _tcschr _mbschr

When you take this approach, you must be careful to ensure that appropriate data types are used for string
arguments and string return values. You can use type casting to ensure proper type matching or you can use the
_TXCHAR generic-text data type. _TXCHAR maps to type charin SBCS code but maps to type unsigned char in
MBCS code. For more information about generic-text macros, see Generic-Text Mappings.

END Microsoft Specific

See also

Internationalization

Universal C runtime routines by category

Memory Allocation

3/11/2019 « 2 minutes to read « Edit Online

Use these routines to allocate, free, and reallocate memory.

Memory-Allocation Routines

ROUTINE

_alloca, _malloca

calloc

_calloc_dbg

operator delete

operator deletel]

_expand

_expand_dbg

free

_free_dbg

_freea

_get_heap_handle

_heapadd

_heapchk

_heapmin

_heapset

_heapwalk

malloc

_malloc_dbg

USE

Allocate memory from stack

Allocate storage for array, initializing every byte in allocated
block to 0

Debug version of calloc; only available in the debug
versions of the run-time libraries

Free allocated block

Free allocated block

Expand or shrink block of memory without moving it

Debug version of _expand; only available in the debug
versions of the run-time libraries

Free allocated block

Debug version of free; only available in the debug versions
of the run-time libraries

Free allocated block from stack

Get Win32 HANDLE of the CRT heap.

Add memory to heap

Check heap for consistency

Release unused memory in heap

Fill free heap entries with specified value

Return information about each entry in heap

Allocate block of memory from heap

Debug version of malloc; only available in the debug
versions of the run-time libraries

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/memory-allocation.md

ROUTINE
_msize

_msize_dbg

new
new(]

_query_new_handler

_query_new_mode

realloc

_realloc_dbg

_set_new_handler

_set_new_mode

See also

Universal C runtime routines by category

USE

Return size of allocated block

Debug version of _msize; only available in the debug
versions of the run-time libraries

Allocate block of memory from heap

Allocate block of memory from heap

Return address of current new handler routine as set by
_set_new_handler

Return integer indicating new handler mode set by
_set_new_mode for malloc

Reallocate block to new size

Debug version of realloc; only available in the debug
versions of the run-time libraries

Enable error-handling mechanism when new operator fails
(to allocate memory) and enable compilation of C++
Standard Libraries

Set new handler mode for malloc

Process and Environment Control

3/11/2019 « 4 minutes to read « Edit Online

Use the process-control routines to start, stop, and manage processes from within a program. Use the

environment-control routines to get and change information about the operating-system environment.

Process and Environment Control Functions

ROUTINE

abort

assert

_ASSERT, _ASSERTE macros

atexit

_beginthread, _beginthreadex

_cexit

_c_exit

_cwait

_endthread, _endthreadex

_exed|, _wexec!

_execle, _wexecle

_execlp, _wexeclp

_execlpe, _wexeclpe

_execv, _wexecv

_execve, _wexecve

USE

Abort process without flushing buffers or calling functions
registered by atexit and _onexit

Test for logic error

Similar to assert, but only available in the debug versions
of the run-time libraries

Schedule routines for execution at program termination

Create a new thread on a Windows operating system
process

Perform exit termination procedures (such as flushing
buffers), then return control to calling program without
terminating process

Perform _exit termination procedures, then return control
to calling program without terminating process

Wait until another process terminates
Terminate a Windows operating system thread
Execute new process with argument list

Execute new process with argument list and given
environment

Execute new process using PATH variable and argument
list

Execute new process using PATH variable, given
environment, and argument list

Execute new process with argument array

Execute new process with argument array and given
environment

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/process-and-environment-control.md

ROUTINE

_execvp, _wexecvp

_execvpe, _wexecvpe

exit

_exit

getenv, _wgetenv, getenv_s, _wgetenv_s

_getpid

longjmp

_onexit

_pclose

perror, _wperror

_pipe

_popen, _wpopen

_puteny, _wputeny, _putenv_s, _wputenv_s

raise

setjmp

signal

_spawnl, _wspawnl

_spawnle, _wspawnle

_spawnlp, _wspawnlp

_spawnlpe, _wspawnlpe

USE

Execute new process using PATH variable and argument
array

Execute new process using PATH variable, given
environment, and argument array

Call functions registered by atexit and _onexit, flush all
buffers, close all open files, and terminate process

Terminate process immediately without calling atexit or
_onexit or flushing buffers

Get value of environment variable

Get process ID number

Restore saved stack environment; use it to execute a
nonlocal goto

Schedule routines for execution at program termination;
use for compatibility with Microsoft C/C+ + version 7.0 and
earlier

Wait for new command processor and close stream on
associated pipe

Print error message

Create pipe for reading and writing

Create pipe and execute command

Add or change value of environment variable

Send signal to calling process

Save stack environment; use to execute non local goto

Handle interrupt signal

Create and execute new process with specified argument
list

Create and execute new process with specified argument
list and environment

Create and execute new process using PATH variable and
specified argument list

Create and execute new process using PATH variable,
specified environment, and argument list

ROUTINE USE

_Spawnv, _wspawnv Create and execute new process with specified argument
array
_Sspawnve, _wspawnve Create and execute new process with specified

environment and argument array

_Spawnvp, _wspawnvp Create and execute new process using PATH variable and
specified argument array

_spawnvpe, _wspawnvpe Create and execute new process using PATH variable,
specified environment, and argument array

system, _wsystem Execute operating-system command

In the Windows operating system, the spawned process is equivalent to the spawning process. Any process
can use _cwait to wait for any other process for which the process ID is known.

The difference between the _exec and _spawn families is that a _spawn function can return control from the
new process to the calling process. In a _spawn function, both the calling process and the new process are
present in memory unless _P_OVERLAY is specified. In an _exec function, the new process overlays the
calling process, so control cannot return to the calling process unless an error occurs in the attempt to start
execution of the new process.

The differences among the functions in the _exec family, as well as among those in the _spawn family,
involve the method of locating the file to be executed as the new process, the form in which arguments are
passed to the new process, and the method of setting the environment, as shown in the following table. Use a
function that passes an argument list when the number of arguments is constant or is known at compile time.
Use a function that passes a pointer to an array containing the arguments when the number of arguments is
to be determined at run time. The information in the following table also applies to the wide-character
counterparts of the _spawn and _exec functions.

_spawn and _exec Function Families

USE PATH VARIABLE TO ARGUMENT-PASSING

FUNCTIONS LOCATE FILE CONVENTION ENVIRONMENT SETTINGS

_execl, _spawnl No List Inherited from calling
process

_execle, _spawnle No List Pointer to environment
table for new process
passed as last argument

_execlp, _spawnlp Yes List Inherited from calling
process

_execvpe, _spawnvpe Yes Array Pointer to environment
table for new process
passed as last argument

_execlpe, _spawnlpe Yes List Pointer to environment

table for new process
passed as last argument

FUNCTIONS

_execv, _spawnv

_execve, _spawnve

_execvp, _spawnvp

See also

USE PATH VARIABLETO
LOCATE FILE

No

No

Yes

Universal C runtime routines by category

ARGUMENT-PASSING
CONVENTION

Array

Array

Array

ENVIRONMENT SETTINGS

Inherited from calling
process

Pointer to environment
table for new process
passed as last argument

Inherited from calling
process

Robustness

3/11/2019 « 2 minutes to read « Edit Online

Use the following C run-time library functions to improve the robustness of your program.

Run-Time Robustness Functions

FUNCTION USE

_set_new_handler Transfers control to your error-handling mechanism if the new
operator fails to allocate memory.

_set_se_translator Handles Win32 exceptions (C structured exceptions) as C++
typed exceptions.

set_terminate Installs your own termination function to be called by
terminate.
set_unexpected Installs your own termination function to be called by
unexpected.
See also

Universal C runtime routines by category
SetUnhandledExceptionFilter

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/robustness.md
https://msdn.microsoft.com/library/windows/desktop/ms680634.aspx

Run-Time Error Checking

3/11/2019 « 2 minutes to read « Edit Online

The C run-time library contains the functions that support run-time error checks (RTC). Run-time error checking
allows you to build your program such that certain kinds of run-time errors are reported. You specify how the
errors are reported and which kinds of errors are reported. For more information, see How to: Use Native Run-
Time Checks.

Use the following functions to customize the way your program does run-time error checking.

Run-Time Error Checking Functions

FUNCTION USE
_RTC_GetErrDesc Returns a brief description of a run-time error check type.
_RTC_NumeErrors Returns the total number of errors that can be detected by

run-time error checks.

_RTC_SetErrorFunc Designates a function as the handler for reporting run-time
error checks.

_RTC_SetErrorType Associates an error that is detected by run-time error checks
with a type.

See also

Universal C runtime routines by category
/RTC (Run-Time Error Checks)
runtime_checks

Debug Routines

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/run-time-error-checking.md
https://docs.microsoft.com/visualstudio/debugger/how-to-use-native-run-time-checks
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/rtc-run-time-error-checks
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/runtime-checks

Searching and Sorting

3/11/2019 « 2 minutes to read « Edit Online

Use the following functions for searching and sorting.

Searching and Sorting Functions

FUNCTION SEARCH OR SORT

bsearch Binary search

bsearch_s A more secure version of bsearch

_Ifind Linear search for given value

_Ifind_s A more secure version of _Ifind

_Isearch Linear search for given value, which is added to array if not

found

_Isearch_s A more secure version of _Isearch

gsort Quick sort

gsort_s A more secure version of qsort
See also

Universal C runtime routines by category

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/searching-and-sorting.md

String Manipulation (CRT)

3/11/2019 « 3 minutes to read « Edit Online

These routines operate on null-terminated single-byte character, wide-character, and multibyte-character

strings. Use the buffer-manipulation routines, described in Buffer Manipulation, to work with character

arrays that do not end with a null character.

String-Manipulation Routines

ROUTINE

strcoll, wescoll, _mbscoll, _strcoll_I, _wcscoll_l, _mbscoll_|,
_stricoll, _wcsicoll, _mbsicoll, _stricoll_l, _wcsicoll_|,
_mbsicoll_l, _strncoll, _wcsncoll, _mbsncoll, _strncoll_|,
_wcesncoll_l, _mbsncoll_|, _strnicoll, _wcsnicoll, _mbsnicoll,
_strnicoll_l, _wcsnicoll_|, _mbsnicoll_|

_strdec, _wcsdec, _mbsdec, _mbsdec_|
_strinc, _wcsing, _mbsinc, _mbsinc_|

_mbsnbcat, _mbsnbcat_|, _mbsnbcat_s, _mbsnbcat_s_|

_mbsnbcmp, _mbsnbcmp_|

_strnent, _wesnent, _mbsnbent, _mbsnbent_|, _mbsncent,
mbsncent|

_mbsnbcpy, _mbsnbcpy_|, _mbsnbcpy_s, _mbsnbcpy_s _|
_mbsnbicmp, _mbsnbicmp_|
_mbsnbset, _mbsnbset_|

_strnent, _wcesnent, _mbsnbent, _mbsnbent_|, _mbsncent,
mbsncent|

_strnextc, _wcsnextc, _mbsnextc, _mbsnextc_|
_strninc, _wcsning, _mbsninc, _mbsninc_|

_strspnp, _wcsspnp, _mbsspnp, _mbsspnp_|

_scprintf, _scprintf_|, _scwprintf, _scwprintf_|

_snscanf, _snscanf_|, _snwscanf _snwscanf |, _snscanf s,
_snscanf_s_|I, _snwscanf_s, _snwscanf_s_|

USE

Compare two character strings using code page
information (_mbsicoll and _mbsnicoll are case-
insensitive)

Move string pointer back one character

Advance string pointer by one character

Append, at most, first n bytes of one character string to
another

Compare first n bytes of two character strings

Return number of character bytes within supplied
character count

Copy n bytes of string

Compare n bytes of two character strings, ignoring case

Set first n bytes of character string to specified character

Return number of characters within supplied byte count

Find next character in string

Advance string pointer by n characters

Return pointer to first character in given string that is not
in another given string

Return the number of characters in a formatted string

Read formatted data of a specified length from the
standard input stream.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/string-manipulation-crt.md

ROUTINE

sscanf, _sscanf_|, swscanf, _swscanf |, sscanf_s, _sscanf s_|,
swscanf_s, _swscanf_s_|

sprintf, _sprintf_|, swprintf, _swprintf_|, __swprintf |,
sprintf_s, _sprintf_s_|, swprintf_s, _swprintf_s_|, _sprintf_p,
_sprintf_p_|, _swprintf_p, _swprintf_p_|

strcat, wescat, _mbscat, strcat_s, wescat_s, _mbscat_s
strchr, weschr, _mbschr, _mbschr_|
strcmp, wesemp, _mbscmp

strcoll, wescoll, _mbscoll, _strcoll_I, _wescoll_l, _mbscoll_|,
_stricoll, _wcsicoll, _mbsicoll, _stricoll_|, _wcsicoll_|,
_mbsicoll_l, _strncoll, _wcsncoll, _mbsncoll, _strncoll_|,
_wesncoll_l, _mbsncoll_l, _strnicoll, _wcsnicoll, _mbsnicoll,
_strnicoll_l, _wcsnicoll_l, _mbsnicoll_|

strcpy, wesepy, _mbscpy, strcpy_s, wescpy_s, _mbscpy_s

strcspn, wescspn, _mbscspn, _mbscspn_|

_strdup, _wcsdup, _mbsdup, _strdup_dbg, _wcsdup_dbg

strerror, _strerror, _wcserror, __wcserror, strerror_s,
_strerror_s, _wcserror_s, __ Wcserror_s

strftime, wesftime, _strftime_|, _wcsftime._|

_stricmp, _wcsicmp, _mbsicmp, _stricmp_|l, _wcsicmp_|,
mbsicmp|

strlen, wcslen, _mbslen, _mbslen_|, _mbstrlen, _mbstrlen_|,
strnlen, strnlen_s, wecsnlen, wesnlen_s, _mbsnlen,
mbsnlen|, _mbstrnlen, _mbstrnlen_|

_strlwr, _wcslwr, _mbslwr, _striwr_|, _wcslwr_|, _mbslwr_|,
_strlwr_s, _strlwr_s_|, _mbslwr_s, _mbslwr_s_|, _wcslwr_s,
_wcslwr_s_|

strncat, _strncat_l, wesncat, _wesncat_|, _mbsncat,
mbsncat|, strncat_s, _strncat_s_|, wesncat_s,
_wesncat_s_|, _mbsncat_s, _mbsncat_s_|

strncmp, wesnemp, _mbsncmp, _mbsncmp_|

strncpy, _strncpy_l, wesnepy, _wesncpy_l, _mbsncpy,
mbsncpy|, strncpy_s, _strncpy_s_|, wesnepy_s,
_wesncpy_s_|, _mbsncpy_s, _mbsncpy_s_|

_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_|,
_wcesnicmp_l, _mbsnicmp_|

USE

Read formatted data of a specified length from the
standard input stream.

Write formatted data to a string

Append one string to another

Find first occurrence of specified character in string

Compare two strings

Compare two strings using current locale code page
information (_stricoll, _wesicoll, _strnicoll, and
_wecsnicoll are case-insensitive)

Copy one string to another

Find first occurrence of character from specified character
set in string

Duplicate string

Map error number to message string

Format date-and-time string

Compare two strings without regard to case

Find length of string

Convert string to lowercase

Append characters of string

Compare characters of two strings

Copy characters of one string to another

Compare characters of two strings without regard to case

ROUTINE

_strnset, _strnset_|, _wcsnset, _wcsnset_|, _mbsnset,
mbsnset|

strpbrk, wespbrk, _mbspbrk, _mbspbrk_|

strrchr, wesrchr, _mbsrchr, _mbsrchr_|
_strrev, _wcsrev, _mbsrev, _mbsrev_|
_strset, _strset_|, wcsset, _wcsset_|, _mbsset, _mbsset_|

strspn, wesspn, _mbsspn, _mbsspn_|

strstr, wesstr, _mbsstr, _mbsstr_|

strtok, _strtok_|, westok, _westok_|, _mbstok, _mbstok_|,
strtok_s, _strtok_s_|, westok_s, _wcstok_s_|, _mbstok_s,
_mbstok_s_|

_strupr, _strupr_l, _mbsupr, _mbsupr_|, _wcsupr_|, _wcsupr,
_strupr_s, _strupr_s_l, _mbsupr_s, _mbsupr_s_|, _wcsupr_s,
_wcesupr_s_|

strxfrm, wesxfrm, _strxfrm_|, _wesxfrm_|

vsprintf, _vsprintf_|, vswprintf, _vswprintf_|, _vswprintf_|,
vsprintf_s, _vsprintf_s_|, vswprintf_s, _vswprintf_s_|,
_vsprintf_p, _vsprintf_p_|, _vswprintf_p, _vswprintf_p_|

vsnprintf, _vsnprintf, _vsnprintf_|, _vsnwprintf,
vsnwprintf|, vsnprintf_s, _vsnprintf_s, _vsnprintf_s_|,
_vsnwprintf_s, _vsnwprintf_s_|

See also

Universal C runtime routines by category

USE

Set first n characters of string to specified character

Find first occurrence of character from one string in
another string

Find last occurrence of given character in string

Reverse string

Set all characters of string to specified character

Find first occurrence in a string of a character not found in
another string

Find first occurrence of specified string in another string

Find next token in string

Convert string to uppercase

Transform string into collated form based on locale-
specific information

Write formatted output using a pointer to a list of
arguments

Write formatted output using a pointer to a list of
arguments

System Calls

3/11/2019 « 2 minutes to read « Edit Online

The following functions are Windows operating system calls.

System Call Functions

FUNCTION
_findclose

_findfirst, _findfirst32, _findfirst64, _findfirsti64, _findfirst32i64,
_findfirst64i32, _wfindfirst, _wfindfirst32, wfindfirst64,
_wfindfirsti64, _wfindfirst32i64, wfindfirst64i32

_findnext, _findnext32, _findnext64, _findnexti64,
_findnext32i64, _findnext64i32, _wfindnext, _wfindnext32,
_wfindnexti64, _wfindnext64, _wfindnexti64

See also

Universal C runtime routines by category
File Handling

Directory Control

Low-Level I/O

USE

Release resources from previous find operations

Find file with specified attributes

Find next file with specified attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/system-calls.md

Time Management

5/8/2019 « 2 minutes to read « Edit Online

Use these functions to get the current time and convert, adjust, and store it as necessary. The current time is

the system time.

The _ftime and localtime routines use the TZ environment variable. If TZ is not set, the run-time library

attempts to use the time-zone information specified by the operating system. If this information is unavailable,

these functions use the default value of PST8PDT. For more information on TZ, see _tzset; also see _daylight,

timezone, and _tzname.
Time Routines

FUNCTION

asctime, _wasctime, asctime_s, _wasctime_s

clock

ctime, _ctime32, _ctime64, _wctime, _wctime32, _wctimeb64,
_ctime_s, _ctime32_s, _ctime64_s, _wctime_s, _wctime32_s,
_wctimeb4_s

difftime, _difftime32, _difftime64

_ftime, _ftime32, _ftime64,_ftime_s, _ftime32_s, ftime64_s

_futime, _futime32, _futime64

gmtime, _gmtime32, _gmtime64, gmtime_s, _gmtime32_s,
_gmtime64_s

localtime, _localtime32, _localtime64, localtime_s,
_localtime32_s, _localtime64_s

_mkgmtime, _mkgmtime32, _mkgmtime64

mktime, _mktime32, _mktime64

_strdate, _wstrdate, _strdate_s, _wstrdate_s

strftime, wesftime, _strftime_|, _wcsftime_|

_strtime, _wstrtime, _strtime_s, _wstrtime_s

USE

Convert time from type struct tm to character string. The
versions of these functions with the _s suffix are more
secure.

Return elapsed wall-clock time for process.

Convert time from type time_t, __time32_t or _time64_t
to character string. The versions of these functions with the
_s suffix are more secure.

Compute difference between two times.

Store current system time in variable of type struct _timeb
or type struct __timeb64 The versions of these functions
with the _s suffix are more secure.

Set modification time on open file

Convert time from type time_t to struct tm or from type
__time64_t to struct tm.The versions of these functions
with the _s suffix are more secure.

Convert time from type time_t to struct tm or from type
__time64_t to struct tm with local correction. The versions
of these functions with the _s suffix are more secure.

Convert time to calendar value in Greenwich Mean Time.

Convert time to calendar value.

Return current system date as string. The versions of these
functions with the _s suffix are more secure.

Format date-and-time string for international use.

Return current system time as string. The versions of these
functions with the _s suffix are more secure.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/time-management.md

FUNCTION USE

time, _time32, _time64 Get current system time as type time_t, __time32_t or as
type __time64_t.

_tzset Set external time variables from environment time variable
TZ.

_utime, _utime32, _utime64, wutime, _wutime32, Set modification time for specified file using either current

_wutime64 time or time value stored in structure.

NOTE

In all versions of Microsoft C/C++ except Microsoft C/C++ version 7.0, and in all versions of Visual C+ +, the time
function returns the current time as the number of seconds elapsed since midnight on January 1, 1970. In Microsoft
C/C++ version 7.0, time returned the current time as the number of seconds elapsed since midnight on December 31,
1899.

NOTE

In versions of Visual C++ and Microsoft C/C++ before Visual Studio 2005, time_t was a long int (32 bits) and hence
could not be used for dates past 3:14:07 January 19, 2038, UTC. time_t is now equivalent to __time64_t by default, but
defining _USE_32BIT_TIME_T changes time_t to __time32_t and forces many time functions to call versions that take
the 32-bit time_t. For more information, see Standard Types and comments in the documentation for the individual time

functions.

See also

Universal C runtime routines by category

Windows Runtime Unsupported CRT Functions

3/11/2019 « 2 minutes to read « Edit Online

Many C run-time (CRT) APIs can't be used in Universal Windows Platform (UWP) apps that execute in the
Windows Runtime. These apps are built by using the /ZW compiler flag. For a list of unsupported CRT functions,
see CRT functions not supported in Universal Windows Platform apps.

All CRT APIs are described in the Alphabetical Function Reference section of the documentation.

See also

Universal C runtime routines by category
Alphabetical Function Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/windows-runtime-unsupported-crt-functions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Internal CRT Globals and Functions

3/11/2019 « 2 minutes to read « Edit Online

The C runtime (CRT) library contains functions and global variables that are used only to support the public library
interface. Some of them are exposed in public headers as implementation details. Although these functions and
global variables are accessible through public exports, they are not intended for use by your code. We recommend
that you change any code that uses these functions and variables to use public library equivalents instead. These
functions may change from version to version. They are listed here to help you identify them. Links are provided
when additional documentation exists, but in general, these implementation details are not documented.

Internal CRT Globals and Value Macros

These global variables and macro definitions are used to implement the CRT.

NAME
__badioinfo
_acmdIn
_commode
_crtAssertBusy
_crtBreakAlloc
__initenv
__lconv
__mb_cur_max
__pioinfo
__unguarded_readlc_active
~wecmdin

__winitenv

Internal CRT Functions and Function Macros

These functions and function macros are used to implement the CRT and the C++ Standard Library.

NAME
_acrt_iob_func

__AdjustPointer

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/internal-crt-globals-and-functions.md

NAME

_assert

__BuildCatchObject

__BuildCatchObjectHelper

__C_specific_handler

_calloc_base

_chkesp

__chkstk

_chkstk

_chvalidator

chvalidator|

_Clacos

_Clasin

_Clatan

_Clatan2

_Clcos

_Clcosh

_Clexp

_Clfmod

_Cllog

_Cllog10

_Clpow

_Clsin

_Clsinh

_Clsgrt

_Cltan

NAME

_Cltanh

__clean_type_info_names_internal

_configure_narrow_argv

_configure_wide_argv

__conio_common_vcprintf

__conio_common_vcprintf_p

__conio_common_vcprintf_s

__conio_common_vcscanf

__conio_common_vecwprintf

__conio_common_vewprintf_p

__conio_common_vewprintf_s

__conio_common_vewscanf

__CppXcptFilter

__create_locale

_crt_atexit

_crt_at_quick_exit

__crtCompareStringA

__crtCompareStringEx

__crtCompareStringW

__crtCreateEventExW

__crtCreateSemaphoreExW

__crtCreateSymbolicLinkW

_crt_debugger_hook

__crtEnumSystemLocalesEx

__crtFlsAlloc

NAME

__crtFlsFree

__crtFlsGetValue

__crtFlsSetValue

_CrtGetCheckCount

__crtGetDateFormatEx

__crtGetFileInformationByHandleEx

__crtGetLocalelnfoEx

__crtGetShowWindowMode

__crtGetTickCount64

__crtGetTimeFormatEx

__crtGetUserDefaultLocaleName

__crtinitializeCriticalSectionEx

__crtlsPackagedApp

__crtlsValidLocaleName

__crtLCMapStringA

__crtLCMapStringEx

__crtLCMapStringW

_CrtSetCheckCount

_CrtSetDbgBlockType

__crtSetFileInformationByHandle

__crtSetThreadStackGuarantee

__crtSetUnhandledExceptionFilter

__crtSleep

__crtTerminateProcess

__crtUnhandledException

NAME

__CxxDetectRethrow

__CxxExceptionFilter

__ CxxFrameHandler

__CxxFrameHandler2

__CxxFrameHandler3

__CxxLongjmpUnwind

__COxxQueryExceptionSize

__CxxRegisterExceptionObject

_CxxThrowException

__COxxUnregisterExceptionObject

__daylight

_dclass

__DestructExceptionObject

__dllonexit

__doserrno

_dosmaperr

_dpcomp

_dsign

__dstbias

_dtest

_EH_prolog

_errno

_except_handler2

_except_handler3

_except_handler4_common

NAME

_except1

_execute_onexit_table

_fdclass

_fdpcomp

_fdsign

_fdtest

_filbuf

_FindAndUnlinkFrame

_flsbuf

__fpe_flt_rounds

_FPE_Raise

__fpecode

__FrameUnwindFilter

_fread_nolock_s

_free_base

_ free_locale

_freea_s

_freefls

_ftol

__get_current_locale

__get_flsindex

_get_initial_narrow_environment

_get_initial_wide_environment

_get_narrow_winmain_command_line

_get_stream_buffer_pointers

NAME

__get_tlsindex

_get_wide_winmain_command_line

_Getdays

__getmainargs

_Getmonths

__GetPlatformExceptioninfo

_getptd

_Gettnames

_global_unwind2

_inconsistency

_initialize_lconv_for_unsigned_char

_initialize_narrow_environment

_initialize_onexit_table

_initialize_wide_environment

_initptd

_invalid_parameter

_invoke_watson

__iob_func

_IsExceptionObjectToBeDestroyed

___lc_codepage_func

___lc_collate_cp_func

__Ic_locale_name_func

__lconv_init

_ldclass

_ldpcomp

NAME

_ldsign

_Ildtest

__libm_sse2_acos

_libm_sse2_acos_precise

__libm_sse2_acosf

__libm_sse2_asin

_libm_sse2_asin_precise

__libm_sse2_asinf

__libm_sse2_atan

_libm_sse2_atan_precise

__libm_sse2_atan2

__libm_sse2_atanf

__libm_sse2_cos

_libm_sse2_cos_precise

__libm_sse2_cosf

__libm_sse2_exp

_libm_sse2_exp_precise

__libm_sse2_expf

__libm_sse2_log

_libm_sse2_log_precise

__libm_sse2_log10

_libm_sse2_log10_precise

__libm_sse2_log10f

__libm_sse2_logf

__libm_sse2_pow

NAME

_libm_sse2_pow_precise

__libm_sse2_powf

__libm_sse2_sin

_libm_sse2_sin_precise

__libm_sse2_sinf

_libm_sse2_sqrt_precise

__libm_sse2_tan

_libm_sse2_tan_precise

__libm_sse2_tanf

_local_unwind2

_local_unwind4

_lock_locales

_longjmpex

_malloc_base

___mb_cur_max_func

__mb_cur_max_|_func

_mbctype

_NLG_Dispatch2

_NLG_Return

_NLG_Return2

_p__argc
_p__argv
__p___initenv

__p__mb_cur_max

__p__wargv

NAME

__p__winitenv

__p_acmdin

__p__commode

__p__crtAssertBusy

__p__crtBreakAlloc

__p__crtDbgFlag

__p__daylight

__p__dstbias

__p__environ

__p__fmode

__p__iob

__p__mbcasemap

__p__mbctype

__P__pctype

—_P_pgmptr

__p__pwctype

__p__timezone

__p__tzname

__p__wemdin

__p__wenviron

—_P_wpgmptr

_pctype

__pctype_func

_pwctype

__pwectype_func

NAME

__pxcptinfoptrs

_query_app_type

_realloc_base

_register_onexit_function

_register_thread_local_exe_atexit_callback

__report_gsfailure

__RTCastToVoid

__RTDynamicCast

__RTtypeid

_seh_filter_dll

_seh_filter_exe

_seh_longjmp_unwind

_seh_longjmp_unwind4

__set_app_type

_set_malloc_crt_max_wait

_setjmp3

__setlc_active

__setlc_active_func

__setusermatherr

_SetWinRTOutOfMemoryExceptionCallback

_sopen_dispatch

__std_exception_copy

__std_exception_destroy

__std_type_info_destroy_list

__stdio_common_vfprintf

NAME

__stdio_common_vfprintf_p

__stdio_common_vfprintf_s

__stdio_common_vfscanf

__stdio_common_vfwprintf

__stdio_common_vfwprintf_p

__stdio_common_vfwprintf_s

__stdio_common_vfwscanf

__stdio_common_vsnprintf_s

__stdio_common_vsnwprintf_s

__stdio_common_vsprintf

__stdio_common_vsprintf_p

__stdio_common_vsprintf_s

_ stdio_common_vsscanf

__stdio_common_vswprintf

__stdio_common_vswprintf_p

__stdio_common_vswprintf_s

__stdio_common_vswscanf

_Strftime

__STRINGTOLD

__STRINGTOLD_L

_ strnent

__sys_errlist

__sys_nerr

__threadhandle

__threadid

NAME

__timezone

__TypeMatch

__tzname

__unDName

__unDNameEx

__unDNameHelper

__unguarded_readlc_active

___unguarded_readlc_active_add_func

_unloaddll

_unlock_locales

_vacopy

_ValidateExecute

_ValidateRead

_ValidateWrite

_VCrtDbgReportA

_VCrtDbgReportW

_W_Getdays

_W_Getmonths

_W_Getnames

_wassert

_Woesftime

__wceshent

__wgetmainargs

_wsopen_dispatch

_Xbad_alloc

NAME

_Xlength_error

See also

Universal C runtime routines by category

_abnormal_termination

3/11/2019 « 2 minutes to read « Edit Online

Indicates whether the __finally block of a try-finally statement is entered while the system is executing an

internal list of termination handlers.

Syntax

int _abnormal_termination(

)s

Return Value

true if the system is unwinding the stack; otherwise, false.

Remarks

This is an internal function used to manage unwinding exceptions, and is not intended to be called from user code.

Requirements
ROUTINE REQUIRED HEADER
_abnormal_termination excpt.h

See also

try-finally Statement

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/abnormal-termination.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/try-finally-statement
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/try-finally-statement

_acmdIn, _tcmdin, _wcmdlin

3/11/2019 « 2 minutes to read « Edit Online

Internal CRT global variable. The command line.

Syntax

char * _acmdln;
wchar_t * _wcmdln;

#ifdef WPRFLAG

#define _tcmdln _wcmdln
#else

#define _tcmdln _acmdln

Remarks

These CRT internal variables store the complete command line. They are exposed in the exported symbols for the
CRT, but are not intended for use in your code. _acmdln stores the data as a character string. _wemdln stores the
data as a wide character string. _tcmdln can be defined as either _acmdln or _wemdln , depending on which is
appropriate.

See also

Global Variables

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/acmdln-tcmdln-wcmdln.md

_Clatan

3/11/2019 « 2 minutes to read « Edit Online

Calculates the arctangent of the top value on the stack.

Syntax

void _ cdecl _CIatan();

Remarks

This version of the atan function has a specialized calling convention that the compiler understands. It speeds up
the execution because it prevents copies from being generated and helps with register allocation.

The resulting value is pushed onto the top of the stack.

Requirements

Platform: x86

See also

Alphabetical Function Reference
atan, atanf, atanl, atan2, atan2f, atan2|

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/ciatan.md

_Clatan2

3/11/2019 « 2 minutes to read « Edit Online

Calculates the arctangent of x / y where x and y are values on the top of the stack.

Syntax

void _ cdecl _CIatan2();

Remarks

This version of the atan2 function has a specialized calling convention that the compiler understands. It speeds up
the execution because it prevents copies from being generated and helps with register allocation.

The resulting value is pushed onto the top of the stack.

Requirements

Platform: x86

See also

Alphabetical Function Reference
atan, atanf, atanl, atan2, atan2f, atan2|

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/ciatan2.md

_Clcos

2/4/2019 « 2 minutes to read » Edit Online

Calculates the cosine of the top value in the floating-point stack.

Syntax

void _ cdecl _CIcos();

Remarks

This version of the cos function has a specialized calling convention that the compiler understands. It speeds up the
execution because it prevents copies from being generated and helps with register allocation.

The resulting value is pushed onto the top of the floating-point stack.

Requirements

Platform: x86

See also

Alphabetical Function Reference
cos, cosf, cosl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/cicos.md

_Clexp

3/11/2019 « 2 minutes to read « Edit Online

Calculates the exponential of the top value on the stack.

Syntax

void _ cdecl _CIexp();

Remarks

This version of the exp function has a specialized calling convention that the compiler understands. It speeds up
the execution because it prevents copies from being generated and helps with register allocation.

The resulting value is pushed onto the top of the stack.

Requirements

Platform: x86

See also

Alphabetical Function Reference
exp, expf, expl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/ciexp.md

_Clfmod

3/11/2019 « 2 minutes to read « Edit Online

Calculates the floating-point remainder of the top two values on the stack.

Syntax

void _ cdecl _CIfmod();

Remarks

This version of the fmod function has a specialized calling convention that the compiler understands. It speeds up
the execution because it prevents copies from being generated and helps with register allocation.

The resulting value is pushed onto the top of the stack.

Requirements

Platform: x86

See also

Alphabetical Function Reference
fmod, fmodf

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/cifmod.md

_Cllog

3/11/2019 « 2 minutes to read « Edit Online

Calculates the natural logarithm of the top value in the stack.

Syntax

void _ cdecl _CIlog();

Remarks

This version of the 1og function has a specialized calling convention that the compiler understands. It speeds up
the execution because it prevents copies from being generated and helps with register allocation.

The resulting value is pushed onto the top of the stack.

Requirements

Platform: x86

See also

Alphabetical Function Reference
log, logf, log10, log10f

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/cilog.md

_Cllog10

3/11/2019 « 2 minutes to read « Edit Online

Performs a logie operation on the top value in the stack.

Syntax

void _ cdecl _CIloglo();

Remarks

This version of the 1logie function has a specialized calling convention that the compiler understands. The
function speeds up the execution because it prevents copies from being generated and helps with register
allocation.

The resulting value is pushed onto the top of the stack.

Requirements

Platform: x86

See also

Alphabetical Function Reference
log, logf, log10, log10f

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/cilog10.md

_Clpow

3/11/2019 « 2 minutes to read « Edit Online

Calculates x raised to the y power based on the top values in the stack.

Syntax

void _ cdecl _CIpow();

Remarks

This version of the pow function has a specialized calling convention that the compiler understands. It speeds up
the execution because it prevents copies from being generated and helps with register allocation.

The resulting value is pushed onto the top of the stack.

Requirements

Platform: x86

See also

Alphabetical Function Reference
pow, powf, powl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/cipow.md

_Clsin

2/4/2019 « 2 minutes to read » Edit Online

Calculates the sine of the top value in the floating-point stack.

Syntax

void _ cdecl _CIsin();

Remarks

This intrinsic version of the sin function has a specialized calling convention that the compiler understands. It
speeds up the execution because it prevents copies from being generated and helps with register allocation.

The resulting value is pushed onto the top of the floating-point stack.

Requirements

Platform: x86

See also

Alphabetical Function Reference
sin, sinf, sinl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/cisin.md

_Clsgrt

3/11/2019 « 2 minutes to read « Edit Online

Calculates the square root of the top value in the stack.

Syntax

void _ cdecl _CIsqrt();

Remarks

This version of the sqrt function has a specialized calling convention that the compiler understands. It speeds up
the execution because it prevents copies from being generated and helps with register allocation.

The resulting value is pushed onto the top of the stack.

Requirements

Platform: x86

See also

Alphabetical Function Reference
sqrt, sqrtf, sqrtl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/cisqrt.md

_Cltan

2/4/2019 « 2 minutes to read » Edit Online

Calculates the tangent of the top value on the floating-point stack.

Syntax

void _ cdecl _CItan();

Remarks

This version of the tan function has a specialized calling convention that the compiler understands. The function
speeds up the execution because it prevents copies from being generated and helps with register allocation.

The resulting value is pushed onto the top of the floating-point stack.

Requirements

Platform: x86

See also

Alphabetical Function Reference
tan, tanf, tanl

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/citan.md

__crtLCMapStringW

10/31/2018 « 2 minutes to read Edit Online

Maps one character string to another, performing a specified locale-dependent transformation. This function can

also be used to generate a sort key for the input string.

Syntax

int _ crtLCMapStringh(
LCID Locale,
DWORD dwMapFlags,
LPCWSTR 1pSrcStr,

int cchSrc,
LPWSTR 1pDestStr,
int cchDest)
Parameters
Locale

Locale identifier. The locale provides a context for the string mapping or sort key generation. An application can
use the MAKELCID macro to create a locale identifier.

dwMapFlags
The type of transformation to be used during string mapping or sort key generation.

lpSrcStr
Pointer to a source string that the function maps or uses for sort key generation. This parameter is assumed to be a
Unicode string.

cchSrc
Size, in characters, of the string pointed to by the 1psrcstr parameter. This count can include the null terminator,

or not include it.

A cchsrc value of -1 specifies that the string pointed to by 1psrcstr is null-terminated. If this is the case, and this
function is being used in its string-mapping mode, the function calculates the string's length itself, and null-

terminates the mapped string stored into *1pDestStr .

[pDestStr
Long pointer to a buffer into which the function stores the mapped string or sort key.

cchDest
Size, in characters, of the buffer pointed to by 1ppeststr .

Return Value

If the value of cchpest is nonzero, the number of characters, or bytes if LcMAP_sorRTKEY is specified, written to the

buffer indicates success. This count includes room for a null terminator.

If the value of cchpest is zero, the size of the buffer in characters, or bytes if Lcvap_sorTKEY is specified, required
to receive the translated string or sort key indicates success. This size includes room for a null terminator.

Zero indicates failure. To get extended error information, call the GetLasterror function.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/crtlcmapstringw.md

Remarks

If cchsrc is greater than zero and 1psrcstr is a null-terminated string, __crtLcMapstringWw sets cchsrc to the
length of the string. Then __crtLcMapstringw calls the wide string (Unicode) version of the LcMapstring function

with the specified parameters. For more information about the parameters and return value of this function, see

the LCMapString.

Requirements

ROUTINE REQUIRED HEADER

__crtLCMapStringW awint.h

https://docs.microsoft.com/windows/desktop/api/winnls/nf-winnls-lcmapstringa

__CxxFrameHandler

10/31/2018 « 2 minutes to read Edit Online

Internal CRT function. Used by the CRT to handle structured exception frames.

Syntax

EXCEPTION_DISPOSITION __ CxxFrameHandler(
EHExceptionRecord *pExcept,
EHRegistrationNode *pRN,
void *pContext,
DispatcherContext *pDC

Parameters
pExcept
Exception record that is passed to the possible catch statements.

PRN
Dynamic information about the stack frame that is used to handle the exception. For more information, see
ehdata.h.

pContext
Context. (Not used on Intel processors.)

pDC
Additional information about the function entry and stack frame.

Return Value

One of the filter expression values used by the try-except Statement.
Remarks

Requirements
ROUTINE REQUIRED HEADER

__CxxFrameHandler excpt.h, ehdata.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/cxxframehandler.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/try-except-statement

__dllonexit

3/11/2019 « 2 minutes to read « Edit Online

Registers a routine to be called at exit time.

Syntax

_onexit_t _ dllonexit(_onexit_t func,
_PVFV ** pbegin,
_PVFV ** pend
)

Parameters

func
Pointer to a function to be executed upon exit.

pbegin
Pointer to a variable that points to the beginning of a list of functions to execute on detach.

pend
Pointer to variable that points to the end of a list of functions to execute on detach.

Return Value

If successful, a pointer to the user’s function. Otherwise, a NULL pointer.

Remarks

The __dllonexit function is analogous to the _onexit function except that the global variables used by that
function are not visible to this routine. Instead of global variables, this function uses the pbegin and pend

parameters.

The _onexit and atexit functionsin a DLL linked with MSVCRT.LIB must maintain their own atexit/_onexit list.

This routine is the worker that gets called by such DLLs.

The _pvrv typeis defined as typedef void (__cdecl *_PVFV)(void) .

Requirements
ROUTINE REQUIRED FILE
__dllonexit onexit.c
See also

_onexit, _onexit_m

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/dllonexit.md

_except_handler3

3/11/2019 « 2 minutes to read « Edit Online

Internal CRT function. Used by a framework to find the appropriate exception handler to process the current

exception.

Syntax

int _except_handler3(
PEXCEPTION_RECORD exception_record,
PEXCEPTION_REGISTRATION registration,
PCONTEXT context,
PEXCEPTION_REGISTRATION dispatcher
)

Parameters
exception_record
[in] Information about the specific exception.

registration
[in] The record that indicates which scope table should be used to find the exception handler.

context
[in] Reserved.

dispatcher
[in] Reserved.

Return Value

If an exception should be dismissed, returns pisposiTIon_DISMISS . If the exception should be passed up a level to
the encapsulating exception handlers, returns DISPOSITION_CONTINUE_SEARCH .

Remarks

If this method finds an appropriate exception handler, it passes the exception to the handler. In this situation, this

method does not return to the code that called it and the return value is irrelevant.

See also

Alphabetical Function Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/except-handler3.md

_execute_onexit_table, _initialize_onexit_table,

_register_onexit_function

3/11/2019 « 2 minutes to read « Edit Online

Manages the routines to be called at exit time.

Syntax

int _initialize_onexit_table(
_onexit_table_t* table
)

int _register_onexit_function(
_onexit_table_t* table,
_onexit_t function

)s

int _execute_onexit_table(
_onexit_table_t* table
)s

Parameters

table
[in, out] Pointer to the onexit function table.

function
[in] Pointer to a function to add to the onexit function table.

Return Value

If successful, returns 0. Otherwise, returns a negative value.

Remarks

These functions are infrastructure implementation details used to support the C runtime, and should not be called
directly from your code. The C runtime uses an onexit function table to represent the sequence of functions
registered by calls to atexit , at_quick_exit ,and _onexit . The onexit function table data structure is an opaque
implementation detail of the C runtime; the order and meaning of its data members may change. They should not

be inspected by external code.

The _initialize onexit_table function initializes the onexit function table to its initial value. This function must be

called before the onexit function table is passed to either _register_onexit_function Or _execute_onexit_table .
The _register_onexit_function function appends a function to the end of the onexit function table.

The _execute_onexit_table function executes all of the functions in the onexit function table, clears the table, and
then returns. After a call to _execute_onexit_table , the table is in a non-valid state; it must be reinitialized by a call

to _initialize_onexit_table before itis used again.

Requirements

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/execute-onexit-table-initialize-onexit-table-register-onexit-function.md

ROUTINE REQUIRED HEADER

_initialize_onexit_table function , C, C++: <process.n>

_register_onexit_function , _execute_onexit_table

The _initialize onexit_table , _register_onexit function ,and _execute onexit_table functions are Microsoft

specific. For compatibility information, see Compatibility.

See also

atexit
exit, _Exit, _exit

_onexit, _onexit.m

__getmainargs, __wgetmainargs

11/9/2018 « 2 minutes to read « Edit Online

Invokes command-line parsing and copies the arguments to main() back through the passed pointers.

Syntax

int _ getmainargs(

int * _Argc,

char *** _Argv,

char *** _Env,

int _DoWildCard,
_startupinfo * _StartInfo);

int _ wgetmainargs (
int *_Argc,
wchar_t ***_Argv,
wchar_t ***_Env,
int _DoWildCard,
_startupinfo * _StartInfo)

Parameters

_Argc

An integer that contains the number of arguments that follow in argv . The argc parameter is always greater
than or equal to 1.

_Argv

An array of null-terminated strings representing command-line arguments entered by the user of the program. By
convention, argv[e] is the command with which the program is invoked, argv[1] is the first command-line
argument, and so on, until argv[argc], which is always NULL. The first command-line argument is always argv[1]

and the last one is argv[argc - 1] .

Env

An array of strings that represent the variables set in the user's environment. This array is terminated by a NULL
entry.

_DoWildCard

An integer that if set to 1 expands the wildcards in the command line arguments, or if set to 0 does nothing.

_StartInfo
Other information to be passed to the CRT DLL.

Return Value

0 if successful; a negative value if unsuccessful.

Remarks

Use _ getmainargs on non-wide character platforms, and _ wgetmainargs on wide-character (Unicode) platforms.

Requirements

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/getmainargs-wgetmainargs.md

ROUTINE REQUIRED HEADER

__getmainargs internal.h

__wgetmainargs internal.h

__lc_codepage_func

3/11/2019 « 2 minutes to read « Edit Online

Internal CRT function. Retrieves the current code page of the thread.

Syntax

UINT __ 1c_codepage_func(void);

Return Value

The current code page of the thread.

Remarks

__lc_codepage_func is an internal CRT function that is used by other CRT functions to get the current code page
from the thread local storage for CRT data. This information is also available by using the _get_current_locale
function.

A code page is a mapping of single-byte or double-byte codes to individual characters. Different code pages
include different special characters, typically customized for a language or a group of languages. For more
information about code pages, see Code Pages.

Internal CRT functions are implementation-specific and subject to change with each release. We don't recommend
their use in your code.

Requirements
ROUTINE REQUIRED HEADER
___1c_codepage_func crt\src\setlocal.h
See also

_get_current_locale

setlocale, _wsetlocale
_create_locale, _wcreate_locale
_free_locale

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/lc-codepage-func.md

__lc_collate_cp_func

3/11/2019 « 2 minutes to read « Edit Online

Internal CRT function. Retrieves the current collation code page of the thread.

Syntax

UINT __ 1c_codepage_func(void);

Return Value

The current collation code page of the thread.

Remarks

__lc_collate_cp_func is an internal CRT function that is used by other CRT functions to get the current collation
code page from the thread local storage for CRT data. This information is also available by using the
_get_current_locale function.

Internal CRT functions are implementation-specific and subject to change with each release. We don't recommend
their use in your code.

Requirements
ROUTINE REQUIRED HEADER
___1c_collate_cp_func crt\src\setlocal.h
See also

_get_current_|locale

setlocale, _wsetlocale
_create_locale, _wcreate_locale
_free_locale

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/lc-collate-cp-func.md

__lc_locale_name_func

3/11/2019 « 2 minutes to read « Edit Online

Internal CRT function. Retrieves the current locale name of the thread.

Syntax

wchar_t** _ 1c_locale_name_func(void);

Return Value

A pointer to a string that contains the current locale name of the thread.

Remarks

__lc_locale_name_func is an internal CRT function that is used by other CRT functions to get the current locale
name from the thread local storage for CRT data. This information is also available by using the
_get_current_locale function or the setlocale, _wsetlocale functions.

Internal CRT functions are implementation-specific and subject to change with each release. We don't recommend
their use in your code.

Requirements
ROUTINE REQUIRED HEADER
___1c_locale_name_func crt\src\setlocal.h
See also

_get_current_|locale

setlocale, _wsetlocale
_create_locale, _wcreate_locale
_free_locale

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/lc-locale-name-func.md

_local_unwind?

3/11/2019 « 2 minutes to read « Edit Online

Internal CRT Function. Runs all termination handlers that are listed in the indicated scope table.

Syntax

void _local_unwind2(
PEXCEPTION_REGISTRATION xr,
int stop

)s

Parameters
Xr
[in] A registration record that is associated with one scope table.

stop
[in] The lexical level that indicates where _local_unwind2 should stop.

Remarks

This method is used only by the run-time environment. Do not call the method in your code.

When this method executes termination handlers, it starts at the current lexical level and works its way up in lexical
levels until it reaches the level that is indicated by stop . It does not execute termination handlers at the level that is

indicated by stop .

See also

Alphabetical Function Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/local-unwind2.md

__mb_cur_ max_func, __mb_cur_max_|_func,

_p__mb_cur_max, _mb_cur_max

3/11/2019 « 2 minutes to read = Edit Online

Internal CRT function. Retrieves the maximum number of bytes in a multibyte character for the current or
specified locale.

Syntax

int __ mb_cur_max_func(void);
int __ mb_cur_max_1_func(_locale_t locale);
int * __p_ mb_cur_max(void);
#define _ mb_cur_max (__ mb_cur_max_func())

Parameters

locale The locale structure to retrieve the result from. If this value is null, the current thread locale is used.

Return Value

The maximum number of bytes in a multibyte character for the current thread locale or the specified locale.

Remarks

This is an internal function that the CRT uses to retrieve the current value of the MB_CUR_MAX macro from
thread local storage. We recommend that you use the MB_curR_MAX macro in your code for portability.

The __mb_cur_max macro is a convenient way to call the ___mb_cur_max_func() function. The __p__mb_cur_max

function is defined for compatibility with Visual C++ 5.0 and earlier versions.

Internal CRT functions are implementation-specific and subject to change with each release. We don't recommend
their use in your code.

Requirements

ROUTINE REQUIRED HEADER

___mb_cur_max_func , ___mb_cur_max_1_func , <ctype.h>, <stdlib.h>

__p___mb_cur_max

See also

MB_CUR_MAX

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/mb-cur-max-func-mb-cur-max-l-func-p-mb-cur-max-mb-cur-max.md

__p__commode

10/31/2018 « 2 minutes to read Edit Online

Points to the _commode global variable, which specifies the default file commit mode for file I/O operations.

Syntax

int * _ p_ commode(

)s

Return Value

Pointer to the _commode global variable.

Remarks

The __p_ commode function is for internal use only, and should not be called from user code.

File commit mode specifies when critical data is written to disk. For more information, see fflush.

Requirements

ROUTINE REQUIRED HEADER

__p__commode internal.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/p-commode.md

_p_fmode

2/4/2019 « 2 minutes to read « Edit Online

Points to the _fmode global variable, which specifies the default file translation mode for file I/O operations.

Syntax

int* _ p_ fmode(
)

Return Value

Pointer to the _fmode global variable.

Remarks

The __p_ fmode function is for internal use only, and should not be called from user code.

File translation mode specifies either binary or text translation for _open and _pipe I/O operations. For more

information, see _fmode.

Requirements

ROUTINE REQUIRED HEADER

__p__fmode stdlib.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/p-fmode.md

__pctype_func

3/11/2019 « 2 minutes to read « Edit Online

Retrieves a pointer to an array of character classification information.

Syntax

const unsigned short *__ pctype_func(

)

Return Value

A pointer to an array of character classification information.

Remarks

The information in the character classification table is for internal use only, and is used by various functions that
classify characters of type char . For more information, see the Rremarks section of _pctype, _pwctype, _wctype,
_mbctype, _mbcasemap.

Requirements
ROUTINE REQUIRED HEADER
__pctype_func ctype.h

See also

_pctype, _pwctype, _wctype, _mbctype, _mbcasemap

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/pctype-func.md

__RTDynamicCast

10/31/2018 « 2 minutes to read Edit Online

Runtime implementation of the dynamic_cast operator.

Syntax

PVOID _ RTDynamicCast (
PVOID inptr,
LONG VfDelta,
PVOID SrcType,
PVOID TargetType,
BOOL isReference
) throw(...)

Parameters
inptr
Pointer to a polymorphic object.

VfDelta
Offset of virtual function pointer in object.

SrcType
Static type of object pointed to by the inptr parameter.

TargetType
Intended result of cast.

isReference
true if input is a reference; false if input is a pointer.

Return Value

Pointer to the appropriate sub-object, if successful; otherwise, NULL.

Exceptions

bad_cast() if the inputto dynamic_cast<> is a reference and the cast fails.

Remarks

Converts inptr to an object of type TargetType . The type of inptr must be a pointer if TargetType is a pointer,
or an |-value if TargetType is a reference. TargetType must be a pointer or a reference to a previously defined

class type, or a pointer to void.

Requirements

ROUTINE REQUIRED HEADER

__RTDynamicCast rtti.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/rtdynamiccast.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/dynamic-cast-operator

__set_app_type

10/31/2018 « 2 minutes to read Edit Online

Sets the current application type.

Syntax

void __ set_app_type (
int at

)

Parameters
at

A value that indicates the application type. The possible values are:

VALUE DESCRIPTION
_UNKNOWN_APP Unknown application type.
_CONSOLE_APP Console (command-line) application.
_GUI_APP GUI (Windows) application.
Remarks
Requirements
ROUTINE REQUIRED HEADER

__set_app_type internal.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/internal-set-app-type.md

_set_app_type

3/11/2019 « 2 minutes to read « Edit Online

An internal function used at startup to tell the CRT whether the app is a console app or a GUI app.

Syntax

typedef enum _crt_app_type
{

_crt_unknown_app,
_crt_console_app,
_crt_gui_app

} _crt_app_type;

void _ cdecl _set_app_type(

_crt_app_type appType
)s

Parameters

appType
A value that indicates the application type. The possible values are:

VALUE DESCRIPTION
_crt_unknown_app Unknown application type.
_crt_console_a Console (command-line) application.
pp
_crt_gui_app GUI (Windows) application.
Remarks

Normally, you do not need to call this function. It is part of the C runtime startup code that executes before main is
called in your app.

Requirements

ROUTINE REQUIRED HEADER

_set_app_type process.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/set-app-type.md

_setjmp3

3/11/2019 « 2 minutes to read « Edit Online

Internal CRT function. A new implementation of the setjmp function.

Syntax

int _setjmp3(
OUT jmp_buf env,
int count,
(optional parameters)

)s

Parameters
env
[out] Address of the buffer for storing state information.

count
[in] The number of additional pworp s of information that are stored in the optional parameters .

optional parameters
[in] Additional data pushed down by the setjmp intrinsic. The first pworp is a function pointer that is used to
unwind extra data and return to a nonvolatile register state. The second pworp is the try level to be restored. Any

further data is saved in the generic data array in the jmp_buf .

Return Value

Always returns 0.

Remarks

Do not use this function in a C++ program. It is an intrinsic function that does not support C++. For more

information about how to use setjmp , see Using setjimp/longjmp.
Requirements

See also

Alphabetical Function Reference

setjmp

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/setjmp3.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/using-setjmp-longjmp

___setlc_active func,

___unguarded_readlc_active_add_func

3/11/2019 « 2 minutes to read « Edit Online

OBSOLETE. The CRT exports these internal functions only to preserve binary compatibility.

Syntax

int _ setlc_active_func(void);
int * __ unguarded_readlc_active_add_func(void);

Return Value

The value returned is not significant.

Remarks

Although the internal CRT functions __ setlc_active_func and __ unguarded_readlc_active_add_func are obsolete
and no longer used, they are exported by the CRT library to preserve binary compatibility. The original purpose of

__setlc_active_func was to return the number of currently active calls to the setlocale function. The original
purpose of __ unguarded_readlc_active_add_func was to return the number of functions that referenced the locale
without locking it.

Requirements
ROUTINE REQUIRED HEADER
___setlc_active_func , none

___unguarded_readlc_active_add_func

See also

setlocale, _wsetlocale

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/setlc-active-func-unguarded-readlc-active-add-func.md

__setusermatherr

10/31/2018 « 2 minutes to read Edit Online

Specifies a user-supplied rountine to handle math errors, instead of the _matherr routine.

Syntax

void __ setusermatherr(
_HANDLE_MATH_ERROR pf
)

Parameters

pf
Pointer to an implementation of _matherr thatis supplied by the user.

The type of the pf parameter is declared as typedef int (__cdecl * _HANDLE_MATH_ERROR)(struct _exception *) .
Remarks

Requirements
ROUTINE REQUIRED HEADER

__setusermatherr matherr.c

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/setusermatherr.md

Global Variables and Standard Types

3/11/2019 « 2 minutes to read « Edit Online

The Microsoft run-time library contains definitions for global variables, control flags, and standard types used by

library routines. Access these variables, flags, and types by declaring them in your program or by including the
appropriate header files.

See also

C Run-Time Library Reference
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/global-variables-and-standard-types.md

Global Variables

3/11/2019 « 2 minutes to read « Edit Online

The Microsoft C run-time library provides the following global variables or macros. Several of these global

variables or macros have been deprecated in favor of more-secure functional versions, which we recommend you

use instead of the global variables.

VARIABLE
__argc, __argv, __wargv

_daylight, _dstbias, _timezone, and _tzname

errno, _doserrno, _sys_errlist, and _sys_nerr

_environ, _wenviron

_fmode

_iob

_pctype, _pwctype, _wctype, _mbctype, _mbcasemap

_pgmptr, _wpgmptr

See also

C Run-Time Library Reference
Global Constants

__argc, __argy, __wargv
_get_daylight

_get_dstbias

_get_timezone

DESCRIPTION

Contains the command-line arguments.

Deprecated. Instead, use _get_daylight , _get_dstbias ,

_get_timezone ,and _get_tzname .

Adjusts for local time; used in some date and time functions.

Deprecated. Instead, use _get_errno , _set_errno ,

_get_doserrno , _set_doserrno , perror and strerror .

Stores error codes and related information.

Deprecated. Instead, use getenv_s , _wgetenv_s ,

_dupenv_s , _wdupenv_s , _putenv_s ,and _wputenv_s .

Pointers to arrays of pointers to the process environment
strings; initialized at startup.

Deprecated. Instead, use _get_fmode or _set_fmode .

Sets default file-translation mode.

Array of I/O control structures for the console, files, and
devices.

Contains information used by the character-classification
functions.

Deprecated. Instead, use _get_pgmptr Or _get_wpgmptr .

Initialized at program startup to the fully-qualified or relative
path of the program, the full program name, or the program
name without its file name extension, depending on how the
program was invoked.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/global-variables.md

_get_tzname

perror

strerror

_get_doserrno
_set_doserrno
_get_errno

_set_errno

_dupenv_s, _wdupenv_s
getenv, _wgetenv
getenv_s, _wgetenv_s
_puteny, _wputenv
_putenv_s, _wputenv_s
_get_fmode
_set_fmode

_argc, _argy, __wargv

3/11/2019 « 2 minutes to read « Edit Online

The __argc global variable is a count of the number of command-line arguments passed to the program. __argv
is a pointer to an array of single-byte-character or multi-byte-character strings that contain the program
arguments, and __wargv is a pointer to an array of wide-character strings that contain the program arguments.
These global variables provide the arguments to main or wmain .

Syntax

extern int __argc;
extern char ** _ argv;
extern wchar_t ** _ wargv;

Remarks

In a program that uses the main function, __argc and __argv areinitialized at program startup by using the
command line that's used to start the program. The command line is parsed into individual arguments, and
wildcards are expanded. The count of arguments is assigned to __argc and the argument strings are allocated on
the heap, and a pointer to the array of arguments is assigned to __argv . In a program compiled to use wide
characters and a wmain function, the arguments are parsed and wildcards are expanded as wide-character strings,
and a pointer to the array of argument strings is assigned to _ wargv .

For portable code, we recommend you use the arguments passed to main to get the command-line arguments in
your program.

Generic-Text Routine Mappings

TCHAR.H ROUTINE _UNICODE NOT DEFINED _UNICODE DEFINED
__targv __argv __wargv
Requirements
GLOBAL VARIABLE REQUIRED HEADER
__argc, __argv, __wargv <stdlib.h>, <cstdlib> (C++)

_argc, _argv,and _ wargv are Microsoft extensions. For compatibility information, see Compatibility.

See also

Global Variables
main: Program Startup
Using wmain Instead of main

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/argc-argv-wargv.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/main-program-startup
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/using-wmain-instead-of-main

_daylight, _dstbias, _timezone, and _tzname

3/11/2019 « 2 minutes to read « Edit Online

_daylight , _dstbias , _timezone ,and _tzname are used in some time and date routines to make local-time
adjustments. These global variables have been deprecated for the more secure functional versions, which should
be used in place of the global variables.

GLOBAL VARIABLE FUNCTIONAL EQUIVALENT
_daylight _get_daylight
_dstbias _get_dstbias
_timezone _get_timezone
_tzname _get_tzname

They are declared in Time.h as follows.

Syntax

extern int _daylight;
extern int _dstbias;
extern long _timezone;
extern char *_tzname[2];

Remarks

Onacallto ftime, localtime ,oOr _tzset ,the values of _daylight , _dstbias , _timezone ,and _tzname are
determined from the value of the 7z environment variable. If you do not explicitly set the value of 1z,
_tzname[@] and _tzname[1] contain the default settings of "PST" and "PDT" respectively. The time-manipulation
functions (_tzset, _ftime, and localtime) attempt to set the values of _daylight , _dstbias and _timezone by
querying the operating system for the default value of each variable. The time-zone global variable values are
shown in the following table.

VARIABLE VALUE

_daylight Nonzero if daylight saving time (DST) zone is specified in Tz

or determined from the operating system; otherwise, 0. The
default value is 1.

_dstbias Offset for daylight saving time.

_timezone Difference in seconds between coordinated universal time and
local time. The default value is 28,800.

_tzname[0@] Time-zone name derived from the Tz environment variable.
The default value is "PST".

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/daylight-dstbias-timezone-and-tzname.md

VARIABLE VALUE

_tzname[1] DST zone name derived from the Tz environment variable.
The default value is "PDT" (Pacific daylight time).

See also

Global Variables
_get_daylight
_get_dstbias
_get_timezone

_get_tzname

errno, _doserrno, _sys_errlist, and

_Sys_nerr

3/11/2019 « 2 minutes to read = Edit Online

Global macros that hold error codes that are set during program execution, and string
equivalents of the error codes for display.

Syntax

#define errno (*_errno())

#define _doserrno (*__doserrno())
#define _sys_errlist (__sys_errlist())
#define _sys_nerr (*__sys nerr())

Remarks

Both errno and _doserrno are setto O by the runtime during program startup. errno is
set on an error in a system-level call. Because errno holds the value for the last call that
set it, this value may be changed by succeeding calls. Run-time library calls that set

errno on an error do not clear errno on success. Always clear errno by calling
_set_errno(e) immediately before a call that may set it, and check it immediately after
the call.

On an error, errno is not necessarily set to the same value as the error code returned by
a system call. For I/O operations, _doserrno stores the operating-system error-code
equivalents of errno codes. For most non-1/O operations, the value of _doserrno is not

set.

Each errno value is associated with an error message in _sys_errlist that can be
printed by using one of the perror functions, or stored in a string by using one of the
strerror or strerror_s functions. The perror and strerror functions use the
_sys_errlist array and _sys_nerr —the number of elements in _sys_errlist —to
process error information. Direct access to _sys_errlist and _sys_nerr is deprecated
for code-security reasons. We recommend that you use the more secure, functional
versions instead of the global macros, as shown here:

GLOBAL MACRO FUNCTIONAL EQUIVALENTS
_doserrno _get_doserrno, _set_doserrno
errno _get_errno, _set_errno
_sys_errlist , _sys_nerr strerror_s, _strerror_s, _Wcserror_s, _ WCSerror_s

Library math routines set errno by calling _matherr. To handle math errors differently,
write your own routine according to the _matherr reference description and name it

_matherr .

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/errno-doserrno-sys-errlist-and-sys-nerr.md

All errno values in the following table are predefined constants in <errno.h>, and are
UNIX-compatible. Only ERANGE , EILSEQ ,and Ebom are specified in the ISO C99

standard.

CONSTANT SYSTEM ERROR MESSAGE VALUE
EPERM Operation not permitted 1
ENOENT No such file or directory 2
ESRCH No such process 3
EINTR Interrupted function 4
EIO 1/O error 5
ENXIO No such device or address 6
E2BIG Argument list too long 7
ENOEXEC Exec format error 8
EBADF Bad file number 9
ECHILD No spawned processes 10
EAGAIN No more processes or not 11

enough memory or maximum

nesting level reached
ENOMEM Not enough memory 12
EACCES Permission denied 13
EFAULT Bad address 14
EBUSY Device or resource busy 16
EEXIST File exists 17
EXDEV Cross-device link 18
ENODEV No such device 19
ENOTDIR Not a directory 20
EISDIR Is a directory 21
EINVAL Invalid argument 22

ENFILE Too many files open in system 23

CONSTANT SYSTEM ERROR MESSAGE VALUE

EMFILE Too many open files 24
ENOTTY Inappropriate /O control 25
operation
EFBIG File too large 27
ENOSPC No space left on device 28
ESPIPE Invalid seek 29
EROFS Read-only file system 30
EMLINK Too many links 31
EPIPE Broken pipe 32
EDOM Math argument 33
ERANGE Result too large 34
EDEADLK Resource deadlock would 36
occur
EDEADLOCK Same as EDEADLK for 36

compatibility with older
Microsoft C versions

ENAMETOOLONG Filename too long 38
ENOLCK No locks available 39
ENOSYS Function not supported 40
ENOTEMPTY Directory not empty 41
EILSEQ lllegal byte sequence 42
STRUNCATE String was truncated 80
Requirements
GLOBAL MACRO REQUIRED HEADER OPTIONAL HEADER

errno <errno.h> or <stdlib.h>,

<cerrno> or <cstdlib> (C++)

_doserrno , _sys_errlist , <stdlib.h>, <cstdlib> (C++) <errno.h>, <cerrno> (C++)

_sys_nerr

The _doserrno, _sys_errlist ,and _sys_nerr macros are Microsoft extensions. For

more compatibility information, see Compatibility.

See also

Global Variables

errno Constants

perror, _wperror

strerror, _strerror, _wcserror, __wcserror
strerror_s, _strerror_s, _Wcserror_s, __WCSerror_s
_get_doserrno

_set_doserrno

_get_errno

_set_errno

_environ, _wenviron

3/11/2019 « 3 minutes to read « Edit Online

The _environ variable is a pointer to an array of pointers to the multibyte-character strings that constitute the
process environment. This global variable has been deprecated for the more secure functional versions getenv_s,
_wgetenv_s and _putenv_s, _wputenv_s, which should be used in place of the global variable. _environ is declared
in Stdlib.h.

IMPORTANT

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not

supported in Universal Windows Platform apps.

Syntax

extern char **_environ;

Remarks

In a program that uses the main function, _environ is initialized at program startup according to settings taken

from the operating-system environment. The environment consists of one or more entries of the form
ENVVARNAME =string

getenv_s and putenv_s usethe _environ variable to access and modify the environment table. When _putenv is
called to add or delete environment settings, the environment table changes size. Its location in memory may also
change, depending on the program's memory requirements. The value of _environ is automatically adjusted

accordingly.

The _wenviron variable, declared in Stdlib.h as:
extern wchar_t **_wenviron;

is a wide-character version of _environ . In a program that uses the wmain function, _wenviron is initialized at

program startup according to settings taken from the operating-system environment.

In a program that uses main , _wenviron is initially NULL because the environment is composed of multibyte-
character strings. On the first call to _wgetenv or _wputenv , a corresponding wide-character string environment is

created and is pointed to by _wenviron .

Similarly, in a program that uses wmain , _environ is initially NULL because the environment is composed of
wide-character strings. On the first call to _getenv or _putenv , a corresponding multibyte-character string

environment is created and is pointed to by _environ .

When two copies of the environment (MBCS and Unicode) exist simultaneously in a program, the run-time
system must maintain both copies, resulting in slower execution time. For example, whenever you call _putenv , a
call to _wputenv is also executed automatically, so that the two environment strings correspond.

Caution

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/environ-wenviron.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

In rare instances, when the run-time system is maintaining both a Unicode version and a multibyte version of the
environment, these two environment versions might not correspond exactly. This is because, although any unique
multibyte-character string maps to a unique Unicode string, the mapping from a unique Unicode string to a
multibyte-character string is not necessarily unique. Therefore, two distinct Unicode strings might map to the

same multibyte string.

Polling _environ in a Unicode context is meaningless when /MD or /mMpd linkage is used. For the CRT DLL, the
type (wide or multibyte) of the program is unknown. Only the multibyte type is created because that is the most

likely scenario.

The following pseudo-code illustrates how this can happen.

int i, j;
= _wputenv("env_var_x=stringl"); // results in the implicit call:

[
|

// putenv ("env_var_z=stringl")
_wputenv("env_var_y=string2"); // also results in implicit call:

.
L}

// putenv("env_var_z=string2")

In the notation used for this example, the character strings are not C string literals; rather, they are placeholders

that represent Unicode environment string literals in the _wputenv call and multibyte environment strings in the
putenv call. The character placeholders ' x "and 'y ' in the two distinct Unicode environment strings do not map

uniquely to characters in the current MBCS. Instead, both map to some MBCS character ' z ' that is the default

result of the attempt to convert the strings.

Thus, in the multibyte environment, the value of " env_var_z " after the first implicit call to putenv would be "
stringl ", but this value would be overwritten on the second implicit call to putenv , when the value of "
env_var_z "is setto " string2 ". The Unicode environment (in _wenviron) and the multibyte environment (in

_environ) would therefore differ following this series of calls.

See also

Global Variables
getenv, _wgetenv
getenv_s, _wgetenv_s
_putenv, _wputenv

_putenv_s, _wputenv_s

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/md-mt-ld-use-run-time-library

_fmode

3/11/2019 « 2 minutes to read « Edit Online

The _fmode variable sets the default file-translation mode for text or binary translation. This global variable has

been deprecated for the more secure functional versions _get_fmode and _set_fmode, which should be used in
place of the global variable. It is declared in Stdlib.h as follows.

Syntax

extern int _fmode;

Remarks
The default setting of _fmode is _o_TExT for text-mode translation. _o_BINARY is the setting for binary mode.

You can change the value of _fmode in three ways:

e Link with Binmode.obj. This changes the initial setting of _fmode to _o_BINARY , causing all files except
stdin , stdout ,and stderr to be opened in binary mode.

e Make acall to _get_fmode or _set_fmode to getor setthe _fmode global variable, respectively.

e Change the value of _fmode directly by setting it in your program.

See also

Global Variables
_get_fmode
_set_fmode

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/fmode.md

_iob

3/11/2019 « 2 minutes to read « Edit Online

The array of stdio control structures.

Syntax

FILE _iob[_IOB_ENTRIES];

Remarks

10B_ENTRIES is defined as 20 in stdio.h.

See also

Global Variables

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/iob.md

_pctype, _pwctype, _wctype, _mbctype, _mbcasemap

3/11/2019 « 2 minutes to read « Edit Online

These global variables contain information used by the character classification functions. They are for internal use
only.

Syntax

extern const unsigned short *_pctype;
extern const wctype_t *_pwctype;
extern const unsigned short _wctype[];
extern unsigned char _mbctype[];
extern unsigned char _mbcasemap[];

Remarks

The information in _pctype , _pwctype ,and _wctype is used internally by isupper, _isupper_|, iswupper,
iswupper|, islower, iswlower, _islower_|, _iswlower_|, isdigit, iswdigit, _isdigit_|, _iswdigit_l, isxdigit, iswxdigit,
isxdigit|, _iswxdigit_|, isspace, iswspace, _isspace_|, _iswspace_|, isalnum, iswalnum, _isalnum_|, _iswalnum_|,
ispunct, iswpunct, _ispunct_|, _iswpunct_|, isgraph, iswgraph, _isgraph_|, _iswgraph_|, iscntrl, iswentrl, _iscntrl_|,
_iswentrl_l, toupper, _toupper, towupper, _toupper_|, _towupper_|, tolower, _tolower, towlower, _tolower_|, and
towlower| functions. These functions should be used instead of accessing these global variables.

The information in _mbctype and _mbcasemap is used internally by _ismbbkalnum, _ismbbkalnum_I, _ismbbkana,
_ismbbkana_l, _ismbbkpunct, _ismbbkpunct_|, _ismbbkprint, _ismbbkprint_|, _ismbbalpha, _ismbbpunct,
ismbbpunct|, _ismbbalnum, _ismbbalnum_|, _ismbbprint, _ismbbprint_|, _ismbbgraph, _ismbbgraph_|,
_ismbblead, _ismbblead_|, _ismbbtrail, _ismbbtrail_I, _ismbslead, _ismbstrail, _ismbslead_|, _ismbstrail_|,
_ismbslead, _ismbstrail, _ismbslead_|, and _ismbstrail_|. Use these functions instead of accessing the global
variables.

Requirements

Not for public use.

See also

is, isw Routines
__pctype_func

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/pctype-pwctype-wctype-mbctype-mbcasemap.md

_pgmptr, _wpgmptr

3/11/2019 « 2 minutes to read « Edit Online

The path of the executable file. Deprecated; use _get_pgmptr and _get_wpgmptr.

Syntax

extern char *_pgmptr;
extern wchar_t *_wpgmptr;

Remarks

When a program is run from the command interpreter (Cmd.exe), _pgmptr is automatically initialized to the full
path of the executable file. For example, if Hello.exe is in C:\BIN and C:\BIN is in the path, _pgmptr is setto
C:\BIN\Hello.exe when you execute:

C> hello
When a program is not run from the command line, _pgmptr might be initialized to the program name (the file's
base name without the file name extension) or to a file name, relative path, or full path.
_wpgmptr is the wide-character counterpart of _pgmptr for use with programs that use wmain .
Generic-Text Routine Mappings

_UNICODE AND _MBCS NOT

TCHAR.H ROUTINE DEFINED _MBCS DEFINED _UNICODE DEFINED
_tpgmptr _pgmptr _pgmptr _wpgmptr
Requirements
VARIABLE REQUIRED HEADER
_pgmptr , _wpgmptr <stdlib.h>
Example

The following program demonstrates the use of _pgmptr .

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/pgmptr-wpgmptr.md

// crt_pgmptr.c

// compile with: /W3

// The following program demonstrates the use of _pgmptr.
//

#include <stdio.h>

#include <stdlib.h>

int main(void)

{
printf("The full path of the executing program is : %Fs\n",
_pgmptr); // C4996
// Note: _pgmptr is deprecated; use _get_pgmptr instead
}

You could use _wpgmptr by changing %Fs to %s and main to wmain .

See also

Global Variables

Control Flags

3/11/2019 « 2 minutes to read « Edit Online

The debug version of the Microsoft C run-time library uses the following flags to control the heap allocation and
reporting process. For more information, see CRT Debugging Techniques.

FLAG DESCRIPTION

_CRTDBG_MAP_ALLOC Maps the base heap functions to their debug version
counterparts

_DEBUG Enables the use of the debugging versions of the run-time
functions

_crtDbgFlag Controls how the debug heap manager tracks allocations

These flags can be defined with a /D command-line option or with a #define directive. When the flag is defined

with #define , the directive must appear before the header file include statement for the routine declarations.

See also

Global Variables and Standard Types

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/control-flags.md
https://docs.microsoft.com/visualstudio/debugger/crt-debugging-techniques

_CRTDBG_MAP_ALLOC

3/11/2019 « 2 minutes to read « Edit Online

When the _CRTDBG_MAP_ALLOC flag is defined in the debug version of an application, the base version of the
heap functions are directly mapped to their debug versions. The flag is used in Crtdbg.h to do the mapping. This
flag is only available when the _DEBUG flag has been defined in the application.

For more information about using the debug version versus the base version of a heap function, see Using the
Debug Version Versus the Base Version.

See also

Control Flags

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/crtdbg-map-alloc.md
https://docs.microsoft.com/visualstudio/debugger/debug-versions-of-heap-allocation-functions

_DEBUG

3/11/2019 « 2 minutes to read « Edit Online

The compiler defines _bpeBuc when you specify the /MTd or /MDd option. These options specify debug
versions of the C run-time library.

For more information, see CRT Debugging Techniques.

See also

Control Flags

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/debug.md
https://docs.microsoft.com/visualstudio/debugger/crt-debugging-techniques

_crtDbgFlag

3/11/2019 « 2 minutes to read « Edit Online

The _crtDbgFlag flag consists of five bit fields that control how memory allocations on the debug version of the
heap are tracked, verified, reported, and dumped. The bit fields of the flag are set using the _CrtSetDbgFlag

function. This flag and its bit fields are declared in Crtdbg.h. This flag is only available when the _DEBUG flag has
been defined in the application.

For more information about using this flag in conjunction with other debug functions, see Heap State Reporting
Functions.

See also

Control Flags

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/crtdbgflag.md
https://docs.microsoft.com/visualstudio/debugger/crt-debug-heap-details

Standard Types

3/11/2019 « 6 minutes to read « Edit Online

The Microsoft run-time library defines the following standard types and typedefs.
Fixed-width integral types (stdint.h)

NAME EQUIVALENT BUILT-IN TYPE
int8_t, uint8_t signed char, unsigned char
int16_t, uint16_t short, unsigned short
int32_t, uint32_t int, unsigned int
int64_t, uint64_t

long long, unsigned long long

int_least8_t, uint_least8_t signed char, unsigned char

int_least16_t, uint_least16_t

int_least32_t, uint_least32_t

int_least64_t, uint_least64_t

int_fast8_t, uint_fast8_t

int_fast16_t, uint_fast16_t

int_fast32_t, uint_fast32_t

int_fast64 _t, uint_fast64_t

intmax_t, uintmax_t

TYPE

clock_t (long)

_complex structure

_CRT_ALLOC_HOOK

_CRT_DUMP_CLIENT ,

_CRT_DUMP_CLIENT_M

short, unsigned short

int, unsigned int

long long, unsigned long long

signed char, unsigned char

int, unsigned int

int, unsigned int

long long, unsigned long long

long long, unsigned long long

DESCRIPTION

Stores time values; used by clock.

Stores real and imaginary parts of
complex numbers; used by _cabs.

A type define for the user-defined
hook function. Used in
_CrtSetAllocHook.

A type define for a call-back function
that will get called in
_CrtMemDumpAllObjectsSince.

DECLARED IN

TIMEH

MATH.H

CRTDBG.H

CRTDBG.H

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/standard-types.md

TYPE

_CrtMemState structure

_CRT_REPORT_HOOK ,
_CRT_REPORT_HOOKW ,

_CRT_REPORT_HOOKW_M

dev_t , _dev_t short or unsigned
integer

_diskfree_t structure

div_t , 1ldiv_t and 1ldiv_t
structures

errno_t integer

_exception structure

_EXCEPTION_POINTERS

FILE structure

_finddata_t , _wfinddata_t ,
_finddata32_t , _wfinddata32_t ,
_finddatai64_t , _wfinddatai64_t
, __finddata64_t ,
__wfinddata64_t ,
__finddata32i64_t ,
__wfinddata32i64_t ,
__finddata64i32_t ,
__wfinddata64i32_t structures

_FPIEEE_RECORD structure

fpos_t (longinteger, __int64 , or
structure, depending on the target

platform)

DESCRIPTION

Provides information about the
current state of the C run-time debug
heap.

A type define for a call-back function
that will get called in _CrtDbgReport.

The parameters for this function are:
report type, output message and the
return value from the call-back
function.

Represents device handles.

Contains information about a disk
drive. Used by _getdiskfree.

Store values returned by div, Idiv, and
lldiv, respectively.

Used for a function return type or
parameter that deals with the error
codes of errno .

Stores error information for _matherr.

Contains an exception record. See
EXCEPTION_POINTERS for more
information.

Stores information about current state
of stream; used in all stream 1/0O
operations.

Store file-attribute information
returned by _findfirst, _wfindfirst, and
related functions and _findnext,
_wfindnext and related functions. See
Filename Search Functions for
information on structure members.

Contains information pertaining to
|IEEE floating-point exception; passed
to user-defined trap handler by
_fpieee_fit.

Used by fgetpos and fsetpos to record
information for uniquely specifying
every position within a file.

DECLARED IN

CRTDBG.H

CRTDBG.H

SYS\TYPES.H

DOS.H and DIRECT.H

STDLIB.H

STDDEF.H,

CRTDEFS.H

MATH.H

FPIEEEH

STDIO.H

10.H, WCHARH

FPIEEEH

STDIO.H

https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_exception_pointers

TYPE

_fsize_t (unsigned long integer)

_HEAPINFO structure

_HFILE (void *)

imaxdiv_t

ino_t , _ino_t (unsigned short)

intmax_t

intptr_t (longinteger or __inté4 ,

depending on the target platform)

jmp_buf array

lconv structure

_LDOUBLE ,
_LONGDOUBLE ,

_toBL12 (long double or an
unsigned char array)

_locale_t structure

mbstate_t

off_t , _off_t long integer

_onexit_t ,

_onexit_m_t pointer

_PNH pointer to function

DESCRIPTION

Used to represent the size of a file.

Contains information about next heap
entry for _heapwalk.

An operating system file handle.

The type of value that's returned by
the imaxdiv function, containing both
the quotient and the remainder.

For returning status information.

A signed integer type capable of
representing any value of any signed
integer type.

Stores a pointer (or HANDLE) on both
Win32 and Win64 platforms.

Used by setjmp and longjmp to save
and restore program environment.

Contains formatting rules for numeric
values in different countries/regions.
Used by localeconv.

Use to represent a long double value.

Stores current locale values; used in all
locale specific C run-time libraries.

Tracks the state of a multibyte
character conversion.

Represents file-offset value.

Returned by _onexit, _onexit_m.

Type of argument to
_set_new_handler.

DECLARED IN

I0.H,

WCHARH

MALLOC.H

CRTDBG.H

inttypes.h

WCHARH

stdint.h

STDDEF.H and other include files

SETJMP.H

LOCALEH

STDLIB.H

CRTDEF.H

WCHARH

WCHARH, SYS\TYPES.H

STDLIB.H

NEW.H

TYPE

ptrdiff_t (long integer or

__inte4 , depending on the target

platform)

_purecall_handler ,

_purecall_handler_m

_RTC_error_fn type define

_RTC_error_fnW type define

_RTC_ErrorNumber enumeration

_se_translator_function

sig_atomic_t integer

size_t (unsigned __int64 or

unsigned integer, depending on the

target platform)

_stat structure

__staté64 structure

_statie4 structure

terminate_function type define

DESCRIPTION

Result of subtraction of two pointers.

A type define for a call-back function
that is called when a pure virtual
function is called. Used by
_get_purecall_handler,
_set_purecall_handler. A
_purecall_handler function should
have a void return type.

A type define for a function that will
handle run-time error checks. Used in
_RTC_SetErrorFunc.

A type define for a function that will
handle run-time error checks. Used in
_RTC_SetErrorFuncW.

Defines error conditions for
_RTC_GetErrDesc and
_RTC_SetErrorType.

A type define for a call-back function
that translates an exception. The first
parameter is the exception code and
the second parameter is the exception
record. Used by _set_se_translator.

Type of object that can be modified as
atomic entity, even in presence of
asynchronous interrupts; used with
signal.

Result of sizeof operator.

Contains file-status information
returned by _stat and _fstat.

Contains file-status information
returned by _fstat64 and _stat64, and
_wstat64.

Contains file-status information
returned by _fstati64, _stati64, and
_wstati64.

A type define for a call-back function
that is called when terminate is called.
Used by set_terminate.

DECLARED IN

CRTDEFS.H

STDLIB.H

RTCAPIL.H

RTCAPI.H

RTCAPIL.H

EH.H

SIGNAL.H

CRTDEFS.H and other include files

SYS\STAT.H

SYS\STAT.H

SYS\STAT.H

EH.H

TYPE

time_t (_int64 or long integer)

__time32_t (long integer)

__time64_t (__inte4)

_timeb structure

__timeb32 structure

__timeb64 structure

tm structure

uintmax_t

DESCRIPTION

Represents time values in mktime,
time, ctime, _ctime32, _ctime64,
_wctime, _wctime32, _wctime64,
ctime_s, _ctime32_s, _ctime64_s,
_wctime_s, _wctime32_s, _wctimeb4_s,
ctime, _ctime32, _ctime64, _wctime,
_wctime32, _wctime64 and gmtime,
_gmtime32, _gmtime64. The number
of seconds since January 1, 1970, 0:00
UTC. If _USE_32BIT_TIME_T is defined,

time_t is a long integer. If not
defined, it is a 64-bit integer.

Represents time values in mktime,
_mktime32, _mktime64, ctime,
_ctime32, _ctime64, _wctime,
_wctime32, _wctimeb64, ctime_s,
_ctime32_s, _ctimeb4_s, _wctime_s,
_wctime32_s, _wctimeb4_s, gmtime,
_gmtime32, _gmtime64 and localtime,
_localtime32, _localtime64.

Represents time values in mktime,
_mktime32, _mktime64, _ctime64,
_wctimeb4, ctime_s, _ctime32_s,
_ctimeb4_s, _wctime_s, _wctime32_s,
_wctime64_s, _gmtime64, _localtime64
and _time64.

Used by _ftime and _ftime_s,
_ftime32_s, _ftime64_s to store
current system time.

Used by _ftime, _ftime32, _ftime64
and _ftime_s, _ftime32_s, _ftime64_s
to store current system time.

Used by _ftime64 and _ftime_s,
_ftime32_s, _ftime64_s to store
current system time.

Used by asctime, _wasctime,
asctime_s, _wasctime_s, gmtime,
_gmtime32, _gmtime64, gmtime_s,
_gmtime32_s, _gmtime64_s, localtime,
_localtime32, _localtime64, localtime_s,
_localtime32_s, _localtime64_s,
mktime, _mktime32, _mktime64 and
strftime, wcsftime, _strftime_|,
wesftime| to store and retrieve time
information.

An unsigned integer type capable of
representing any value of any
unsigned integer type.

DECLARED IN

TIMEH,

SYS\STAT.H,

SYS\TIMEB.H

CRTDEFS.H, SYS\STAT.H,

SYS\TIMEB.H

TIMEH,

SYS\STAT.H,

SYS\TIMEB.H

SYS\TIMEB.H

SYS\TIMEB.H

SYS\TIMEB.H

TIMEH

stdint.h

TYPE

uintptr_t (long integer or
__inte4 , depending on the target
platform)

unexpected_function

_utimbuf structure

_utimbuf32 structure

__utimbufe4 structure

va_list structure

wchar_t wide character

wctrans_t integer

wctype_t integer

wint_t integer

See also

C Run-Time Library Reference

DESCRIPTION

An unsigned integer or unsigned
__int64 version of intptr_t .

A type define for a call-back function
that is called when unexpected is
called. Used by set_unexpected.

Stores file access and modification
times used by _utime, _wutime and
_futime, _futime32, _futime64 to
change file-modification dates.

Stores file access and modification
times used by _utime, _utime32,
_utime64, _wutime, _wutime32,
_wutime64 and _futime, _futime32,
_futime64 to change file-modification
dates.

Used by _utime64, _wutime64 and
_futime64 to store the current time.

Used to hold information needed by
va_arg and va_end macros. Called
function declares variable of type
va_list that can be passed as
argument to another function.

Useful for writing portable programs
for international markets.

Represents locale-specific character
mappings.

Can represent all characters of any
language character set.

Type of data object that can hold any
wide character or wide end-of-file
value.

DECLARED IN

STDDEF.H and other include files

EH.H

SYS\UTIME.H

SYS\UTIME.H

SYS\UTIME.H

STDARG.H,

CRTDEFS.H

STDDEF.H, STDLIB.H,

CRTDEFS.H,

SYS\STAT.H

WCTYPE.H

WCHARH,

CRTDEFS.H

WCHARH,

CRTDEFS.H

Global Constants

3/11/2019 « 2 minutes to read « Edit Online

The Microsoft run-time library contains definitions for global constants used by library routines. To use
these constants, include the appropriate header files as indicated in the description for each constant. The
global constants are listed in the following table.

32-Bit Windows Time/Date Formats BUFSIZ

CLOCKS_PER SEC, CLK_TCK Commit-To-Disk Constants
_CRT_DISABLE_PERFCRIT_LOCKS Data Type Constants
Environmental Constants EOF, WEOF

errno Constants Exception-Handling Constants
EXIT_SUCCESS, EXIT_FAILURE File Attribute Constants

File Constants File Permission Constants

File Read/Write Access Constants File Translation Constants
FILENAME_MAX FOPEN_MAX, _SYS_OPEN
_FREEENTRY, _USEDENTRY fseek, _Iseek Constants

Heap Constants _HEAP_MAXREQ

HUGE_VAL, HUGE Locale Categories

_locking Constants Math Constants

Math Error Constants _MAX_ENV

MB_CUR_MAX NULL

Path Field Limits RAND_MAX

setvbuf Constants Sharing Constants

signal Constants signal Action Constants
spawn Constants _stat Structure st_mode Field Constants

stdin, stdout, stderr TMP_MAX, L_tmpnam

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/global-constants.md

Translation Mode Constants _TRUNCATE

TZNAME_MAX _WAIT_CHILD, _'WAIT_GRANDCHILD
WCHAR_MAX WCHAR_MIN
See also

C Run-Time Library Reference
Global Variables
Considerations for Writing Prolog/Epilog Code

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/considerations-for-writing-prolog-epilog-code

32-Bit Windows Time/Date Formats

3/11/2019 « 2 minutes to read « Edit Online

The file time and the date are stored individually, using unsigned integers as bit fields. File time and date are
packed as follows:

Time

BIT POSITION: 01234 56789A BCDEF

Length: 5 6 5

Contents: hours minutes 2-second increments

Value Range: 0-23 0-59 0-29 in 2-second intervals
Date

BIT POSITION: 0123456 789A BCDEF

Length: 7 4 5

Contents: year month day

Value Range: 0-119 1-12 1-31

(relative to 1980)

See also

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/32-bit-windows-time-date-formats.md

BUFSIZ

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <stdio.h>

Remarks

BUFSIZ is the required user-allocated buffer for the setvbuf routine.

See also

Stream 1/0O
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/bufsiz.md

CLOCKS_PER_SEC, CLK_TCK

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <time.h>

Remarks

The time in seconds is the value returned by the clock function, divided by cLockS_PER_SEC . CLK_TCK is

equivalent, but considered obsolete.

See also

clock
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/clocks-per-sec-clk-tck.md

Commit-To-Disk Constants

3/11/2019 « 2 minutes to read » Edit Online

Microsoft Specific

Syntax

#include <stdio.h>

Remarks

These Microsoft-specific constants specify whether the buffer associated with the open file is flushed to operating

system buffers or to disk. The mode is included in the string specifying the type of read/write access ("r", "w", "a",

r+", "w+", "a+").

The commit-to-disk modes are as follows:
® C

Writes the unwritten contents of the specified buffer to disk. This commit-to-disk functionality only occurs
at explicit calls to either the fflush or the _flushall function. This mode is useful when dealing with sensitive
data. For example, if your program terminates after a call to fflush or _flushall ,you can be sure that
your data reached the operating system's buffers. However, unless a file is opened with the ¢ option, the
data might never make it to disk if the operating system also terminates.

Writes the unwritten contents of the specified buffer to the operating system's buffers. The operating
system can cache data and then determine an optimal time to write to disk. Under many conditions, this
behavior makes for efficient program behavior. However, if the retention of data is critical (such as bank

transactions or airline ticket information) consider using the ¢ option. The n mode is the default.

NOTE

The ¢ and n options are not part of the ANSI standard for fopen , but are Microsoft extensions and should not be used

where ANSI portability is desired.

Using the Commit-to-Disk Feature with Existing Code

By default, calls to the fflush or _flushall library functions write data to buffers maintained by the operating system.
The operating system determines the optimal time to actually write the data to disk. The commit-to-disk feature of
the run-time library lets you ensure that critical data is written directly to disk rather than to the operating system's
buffers. You can give this capability to an existing program without rewriting it by linking its object files with
COMMODE.OBJ.

In the resulting executable file, calls to fflush write the contents of the buffer directly to disk, and calls to
_flushall write the contents of all buffers to disk. These two functions are the only ones affected by
COMMODE.OBJ.

END Microsoft Specific

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/commit-to-disk-constants.md

See also

Stream 1/O
_fdopen, _wfdopen
fopen, _wfopen
Global Constants

_CRT_DISABLE_PERFCRIT_LOCKS

3/11/2019 « 2 minutes to read « Edit Online

Disables performance-critical locking in I/O operations.

Syntax

#define _CRT_DISABLE_PERFCRIT_LOCKS

Remarks

Defining this symbol can improve performance in single-threaded 1/0-bound programs by forcing all I/O
operations to assume a single-threaded I/O model. For more information, see Multithreaded Libraries
Performance.

See also

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/crt-disable-perfcrit-locks.md

Data Type Constants

10/31/2018 « 3 minutes to read » Edit Online

Data type constants are implementation-dependent ranges of values allowed for integral and floating-point data

types.

Integral type constants

These constants give the ranges for the integral data types. To use these constants, include the limits.h header in

your source file:

#include <limits.h>

NOTE

The /J compiler option changes the default char type to unsigned.

CONSTANT VALUE

CHAR_BIT 8

SCHAR_MIN (-128)

SCHAR_MAX 127

UCHAR_MAX 255 (0xff)

CHAR_MIN (-128) (0 if /J option used)
CHAR_MAX 127 (255 if /) option used)
MB_LEN_MAX 5

SHRT_MIN -32768

SHRT_MAX 32767

USHRT_MAX 65535 (0xffff)

INT_MIN (-2147483647 - 1)
INT_MAX 2147483647

UINT_MAX 4294967295 (0xffffffff)
LONG_MIN (-2147483647L - 1)

DESCRIPTION

Number of bits in a char

Minimum signed char value

Maximum signed char value

Maximum unsigned char value

Minimum char value

Maximum char value

Maximum number of bytes in multibyte
char

Minimum signed short value

Maximum signed short value

Maximum unsigned short value

Minimum signed int value

Maximum signed int value

Maximum unsigned int value

Minimum signed long value

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/data-type-constants.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/j-default-char-type-is-unsigned

CONSTANT

LONG_MAX

ULONG_MAX

LLONG_MIN

LLONG_MAX

ULLONG_MAX

_18_MIN

_I8_MAX

_UI8_MAX

_116_MIN

_116_MAX

_UI16_MAX

_I132_MIN

_132_MAX

_UI32_MAX

164 MIN

_164_MAX

UI64 MAX

_1128_MIN

_1128_MAX

_UI1128_MAX

SIZE_ MAX

RSIZE_ MAX

VALUE

21474836471

4294967295UL (Oxfffffffful)

(-9223372036854775807LL - 1)

9223372036854775807LL

Oxfffffffffefefiull

(-127i8 - 1)

127i8

0xffui8

(-32767i16 - 1)

32767i16

Oxffffui16

(-2147483647i32 - 1)

2147483647i32

Oxffffffffui32

(-9223372036854775807 - 1)

9223372036854775807

Oxfffffffffffffffuios

(-
170141183460469231731687303715
884105727i128 - 1)

170141183460469231731687303715
884105727128

OXfffffffffttffui1 28

same as _UlI64_MAX if _WING64 is
defined, or UINT_MAX

same as (SIZE_MAX >> 1)

Floating-point type constants

DESCRIPTION

Maximum signed long value

Maximum unsigned long value

Minimum signed long long or __int64
value

Maximum signed long long or __int64
value

Maximum unsigned long long value

Minimum signed 8-bit value

Maximum signed 8-bit value

Maximum unsigned 8-bit value

Minimum signed 16-bit value

Maximum signed 16-bit value

Maximum unsigned 16-bit value

Minimum signed 32-bit value

Maximum signed 32-bit value

Maximum unsigned 32-bit value

Minimum signed 64-bit value

Maximum signed 64-bit value

Maximum unsigned 64-bit value

Minimum signed 128-bit value

Maximum signed 128-bit value

Maximum unsigned 128-bit value

Maximum native integer size

Maximum secure library integer size

The following constants give the range and other characteristics of the long double, double and float data types.

To use these constants, include the float.h header in your source file:

#include <float.h>

CONSTANT

DBL_DECIMAL_DIG

DBL _DIG

DBL_EPSILON

DBL_HAS_SUBNORM

DBL_MANT_DIG

DBL_MAX

DBL_MAX_10_EXP

DBL_MAX_EXP

DBL_MIN

DBL_MIN_10_EXP

DBL_MIN_EXP

_DBL_RADIX

DBL_TRUE_MIN

FLT_DECIMAL_DIG

FLT_DIG

FLT_EPSILON

FLT_HAS_SUBNORM

FLT_MANT_DIG

FLT_MAX

FLT_MAX_10_EXP

FLT_MAX_EXP

VALUE

17

15

2.2204460492503131e-016

53

1.7976931348623158e+308

308

1024

2.2250738585072014e-308

(-307)

(-1021)

4.9406564584124654e-324

1.192092896e-07F

24

3.402823466e+38F

38

128

DESCRIPTION

of decimal digits of rounding precision

of decimal digits of precision

Smallest such that 1.0 + DBL_EPSILON
1=1.0

Type supports subnormal (denormal)
numbers

of bits in significand (mantissa)

Maximum value

Maximum decimal exponent

Maximum binary exponent

Minimum normalized positive value

Minimum decimal exponent

Minimum binary exponent

Exponent radix

Minimum positive subnormal value

Number of decimal digits of rounding
precision

Number of decimal digits of precision

Smallest such that 1.0 + FLT_EPSILON
1=1.0

Type supports subnormal (denormal)
numbers

Number of bits in significand (mantissa)

Maximum value

Maximum decimal exponent

Maximum binary exponent

CONSTANT

FLT_MIN
FLT_MIN_10_EXP
FLT_MIN_EXP
FLT_RADIX
FLT_TRUE_MIN
LDBL_DIG

LDBL_EPSILON

LDBL_HAS_SUBNORM

LDBL_MANT DIG
LDBL_MAX
LDBL_MAX_10_EXP
LDBL_MAX_EXP
LDBL_MIN
LDBL_MIN_10_EXP
LDBL_MIN_EXP
_LDBL_RADIX
LDBL_TRUE_MIN

DECIMAL_DIG

See also

Global Constants

VALUE

1.175494351e-38F

(-37)

(-125)

1.401298464e-45F

15

2.2204460492503131e-016

53

1.7976931348623158e+308

308

1024

2.2250738585072014e-308

(-307)

(-1021)

4.9406564584124654e-324

same as DBL_DECIMAL_DIG

DESCRIPTION

Minimum normalized positive value

Minimum decimal exponent

Minimum binary exponent

Exponent radix

Minimum positive subnormal value

of decimal digits of precision

Smallest such that 1.0 +
LDBL_EPSILON != 1.0

Type supports subnormal (denormal)
numbers

of bits in significand (mantissa)

Maximum value

Maximum decimal exponent

Maximum binary exponent

Minimum normalized positive value

Minimum decimal exponent

Minimum binary exponent

Exponent radix

Minimum positive subnormal value

Default (double) decimal digits of
rounding precision

Environmental Constants

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <stdlib.h>

Remarks

This constant defines the environmental length for strings.

CONSTANT MEANING
_MAX_ENV Maximum string size of an environmental string.
See also

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/environmental-constants.md

EOF, WEOF

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <stdio.h>

Remarks

EOF is returned by an 1/O routine when the end-of-file (or in some cases, an error) is encountered.

WEOF yields the return value, of type wint_t, used to signal the end of a wide stream, or to report an error
condition.

See also

putc, putwc

ungetc, ungetwc

scanf, _scanf_|, wscanf,_wscanf_|

fflush

fclose, fcloseall

_ungetch, _ungetwch, _ungetch_nolock, _ungetwch_nolock
_putch, _putwch

isascii, __isascii, iswascii

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/eof-weof.md

errno Constants

3/11/2019 « 6 minutes to read « Edit Online

Syntax

#include <errno.h>

Remarks

The errno values are constants assigned to errno in the event of various error conditions.

ERRNO.H contains the definitions of the errno values. However, not all the definitions given in ERRNO.H are
used in 32-bit Windows operating systems. Some of the values in ERRNO.H are present to maintain
compatibility with the UNIX family of operating systems.

The errno values in a 32-bit Windows operating system are a subset of the values for errno in XENIX systems.
Thus, the errno value is not necessarily the same as the actual error code returned by a system call from the
Windows operating systems. To access the actual operating system error code, use the _doserrno variable, which

contains this value.

The following errno values are supported:

CONSTANT DESCRIPTION
ECHILD No spawned processes.
EAGAIN No more processes. An attempt to create a new process

failed because there are no more process slots, or there is not
enough memory, or the maximum nesting level has been

reached.
E2BIG Argument list too long.
EACCES Permission denied. The file's permission setting does not allow

the specified access. This error signifies that an attempt was
made to access a file (or, in some cases, a directory) in a way
that is incompatible with the file's attributes.

For example, the error can occur when an attempt is made to
read from a file that is not open, to open an existing read-
only file for writing, or to open a directory instead of a file.
Under MS-DOS operating system versions 3.0 and later,
EACCES may also indicate a locking or sharing violation.

The error can also occur in an attempt to rename a file or
directory or to remove an existing directory.

EBADF Bad file number. There are two possible causes: 1) The
specified file descriptor is not a valid value or does not refer
to an open file. 2) An attempt was made to write to a file or
device opened for read-only access.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/errno-constants.md

CONSTANT

EDEADLOCK

EDOM

EEXIST

EILSEQ

EINVAL

EMFILE

ENOENT

ENOEXEC

ENOMEM

ENOSPC

ERANGE

EXDEV

STRUNCATE

DESCRIPTION

Resource deadlock would occur. The argument to a math
function is not in the domain of the function.

Math argument.

Files exist. An attempt has been made to create a file that
already exists. For example, the _O_CREAT and _O_EXCL
flags are specified in an _open call, but the named file already
exists.

lllegal sequence of bytes (for example, in an MBCS string).

Invalid argument. An invalid value was given for one of the
arguments to a function. For example, the value given for the
origin when positioning a file pointer (by means of a call to
fseek) is before the beginning of the file.

Too many open files. No more file descriptors are available, so
no more files can be opened.

No such file or directory. The specified file or directory does
not exist or cannot be found. This message can occur
whenever a specified file does not exist or a component of a
path does not specify an existing directory.

Exec format error. An attempt was made to execute a file that
is not executable or that has an invalid executable-file format.

Not enough core. Not enough memory is available for the
attempted operator. For example, this message can occur
when insufficient memory is available to execute a child
process, or when the allocation request in a _getcwd call
cannot be satisfied.

No space left on device. No more space for writing is available
on the device (for example, when the disk is full).

Result too large. An argument to a math function is too large,
resulting in partial or total loss of significance in the result.
This error can also occur in other functions when an
argument is larger than expected (for example, when the
buffer argument to _getcwd is longer than expected).

Cross-device link. An attempt was made to move a file to a
different device (using the rename function).

A string copy or concatenation resulted in a truncated string.
See TRUNCATE.

The following values are supported for compatibility with Posix. They are required values on non-Posix systems.

#define E2BIG /* argument list too long */

#define EACCES /* permission denied */

#define EADDRINUSE /* address in use */

#define EADDRNOTAVAIL /* address not available */
#define EAFNOSUPPORT /* address family not supported */

#define
#define
#define
#define
#define
#tdefine
#tdefine
#define
#define
#define
#tdefine
#define
#tdefine
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#tdefine
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#tdefine
#define
#tdefine
#define
#tdefine
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

EAGAIN /* resource unavailable try again */
EALREADY /* connection already in progress */
EBADF /* bad file descriptor */

EBADMSG /* bad message */

EBUSY /* device or resource busy */
ECANCELED /* operation canceled */

ECHILD /* no child process */

ECONNABORTED /* connection aborted */
ECONNREFUSED /* connection refused */
ECONNRESET /* connection reset */

EDEADLK /* resource deadlock would occur */
EDESTADDRREQ /* destination address required */
EDOM /* argument out of domain */

EEXIST /* file exists */

EFAULT /* bad address */

EFBIG /* file too large */

EHOSTUNREACH /* host unreachable */

EIDRM /* identifier removed */

EILSEQ /* illegal byte sequence */
EINPROGRESS /* operation in progress */
EINTR /* interrupted */

EINVAL /* invalid argument */

EIO /* io error */

EISCONN /* already connected */

EISDIR /* is a directory */

ELOOP /* too many synbolic link levels */
EMFILE /* too many files open */

EMLINK /* too many links */

EMSGSIZE /* message size */

ENAMETOOLONG /* filename too long */
ENETDOWN /* network down */

ENETRESET /* network reset */

ENETUNREACH /* network unreachable */
ENFILE /* too many files open in system */
ENOBUFS /* no buffer space */

ENODATA /* no message available */

ENODEV /* no such device */

ENOENT /* no such file or directory */
ENOEXEC /* executable format error */
ENOLCK /* no lock available */

ENOLINK /* no link */

ENOMEM /* not enough memory */

ENOMSG /* no message */

ENOPROTOOPT /* no protocol option */

ENOSPC /* no space on device */

ENOSR /* no stream resources */

ENOSTR /* not a stream */

ENOSYS /* function not supported */
ENOTCONN /* not connected */

ENOTDIR /* not a directory */

ENOTEMPTY /* directory not empty */
ENOTRECOVERABLE /* state not recoverable */
ENOTSOCK /* not a socket */

ENOTSUP /* not supported */

ENOTTY /* inappropriate io control operation */
ENXIO /* no such device or address */
EOPNOTSUPP /* operation not supported */
EOTHER /* other */

EOVERFLOW /* value too large */

EOWNERDEAD /* owner dead */

EPERM /* operation not permitted */

EPIPE /* broken pipe */

EPROTO /* protocol error */

EPROTONOSUPPORT /* protocol not supported */
EPROTOTYPE /* wrong protocol type */

ERANGE /* result out of range */

EROFS /* read only file system */

ESPIPE /* invalid seek */

ESRCH /* no such process */

#define ETIME /* stream timeout */

#define ETIMEDOUT /* timed out */

#tdefine ETXTBSY /* text file busy */

#define EWOULDBLOCK /* operation would block */
#define EXDEV /* cross device link */

See also

Global Constants

Exception-Handling Constants

3/11/2019 « 2 minutes to read « Edit Online

The constant EXCEPTION_CONTINUE_SEARCH , EXCEPTION_CONTINUE_EXECUTION , Or EXCEPTION_EXECUTE_HANDLER is returned
when an exception occurs during execution of the guarded section of a try-except statement. The return value

determines how the exception is handled. For more information, see try-except Statement in the C++ Language
Reference.

See also

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/exception-handling-constants.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/try-except-statement

EXIT_SUCCESS, EXIT_FAILURE

10/31/2018 « 2 minutes to read Edit Online

Required header

#include <stdlib.h>

Remarks

These are arguments for the exit and _exit functions, and the return values for the atexit and _onexit functions.

CONSTANT DEFINED VALUE
EXIT_SUCCESS 0
EXIT_FAILURE 1

See also

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/exit-success-exit-failure.md

File Attribute Constants

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <io.h>

Remarks
These constants specify the current attributes of the file or directory specified by the function.

The attributes are represented by the following manifest constants:

CONSTANT DESCRIPTION

_A_ARCH Archive. Set whenever the file is changed, and cleared by the
BACKUP command. Value: 0x20

_A_HIDDEN Hidden file. Not normally seen with the DIR command, unless
the /AH option is used. Returns information about normal files
as well as files with this attribute. Value: 0x02

_A_NORMAL Normal. File can be read or written to without restriction.
Value: 0x00
_A_RDONLY Read-only. File cannot be opened for writing, and a file with

the same name cannot be created. Value: 0x01

_A_SUBDIR Subdirectory. Value: 0x10

_A_SYSTEM System file. Not normally seen with the DIR command, unless
the /AS option is used. Value: 0x04

Multiple constants can be combined with the OR operator (|).

See also

Filename Search Functions
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/file-attribute-constants.md

File Constants

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <fcntl.h>

Remarks

The integer expression formed from one or more of these constants determines the type of reading or writing
operations permitted. It is formed by combining one or more constants with a translation-mode constant.

The file constants are as follows:
CONSTANT DESCRIPTION

_O_APPEND Repositions the file pointer to the end of the file before every
write operation.

_O_CREAT Creates and opens a new file for writing; this has no effect if
the file specified by filename exists.

_0_EXCL Returns an error value if the file specified by filename exists.
Only applies when used with _0_CREAT .

_O_RDONLY Opens file for reading only; if this flag is given, neither
_O_RDWR NOr _O_WRONLY can be given.

_O_RDWR Openis file for both reading and writing; if this flag is given,
neither _0_RDONLY nor _O_WRONLY can be given.

_O_TRUNC Opens and truncates an existing file to zero length; the file
must have write permission. The contents of the file are
destroyed. If this flag is given, you cannot specify _o_RDONLY .

_O_WRONLY Openis file for writing only; if this flag is given, neither
_O_RDONLY nOr _O_RDWR can be given.

See also

_open, _wopen
_sopen, _wsopen
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/file-constants.md

File Permission Constants

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <sys/stat.h>

Remarks

One of these constants is required when _o_cReAT (_open, _sopen) is specified.

The pmode argument specifies the file's permission settings as follows.

CONSTANT MEANING

_S_IREAD Reading permitted

_S_IWRITE Writing permitted

_S_IREAD | _S_IWRITE Reading and writing permitted

When used as the pmode argument for _umask , the manifest constant sets the permission setting, as follows.

CONSTANT MEANING

_S_IREAD Writing not permitted (file is read-only)

_S_IWRITE Reading not permitted (file is write-only)

_S_IREAD | _S_IWRITE Neither reading nor writing permitted
See also

_open, _wopen
_sopen, _wsopen
_umask

Standard Types
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/file-permission-constants.md

File Read/Write Access Constants

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <stdio.h>

Remarks

These constants specify the access type ("a", "r", or "w") requested for the file. Both the translation mode ("b" or "t")

and the commit-to-disk mode ("c" or "n") can be specified with the type of access.

The access types are described in this table:

ACCESS TYPE DESCRIPTION

r Opens for reading. If the file does not exist or cannot be
found, the call to open the file fails.

w Opens an empty file for writing. If the given file exists, its
contents are destroyed.

a Opens for writing at the end of the file (appending); creates
the file first if it does not exist. All write operations occur at the
end of the file. Although the file pointer can be repositioned
using fseek or rewind , it is always moved back to the end

of the file before any write operation is carried out.

"r+" Opens for both reading and writing. If the file does not exist
or cannot be found, the call to open the file fails.

"w+" Opens an empty file for both reading and writing. If the given
file exists, its contents are destroyed.

"a+" The same as "a" but also allows reading.

When the "r+", "w+", or "a+" type is specified, both reading and writing are allowed (the file is said to be open for
"update"). However, when you switch between reading and writing, there must be an intervening fflush , fsetpos

, fseek ,Or rewind operation. The current position can be specified for the fsetpos or fseek operation.

See also

_fdopen, _wfdopen
fopen, _wfopen
freopen, _wfreopen
_fsopen, _wfsopen
_popen, _wpopen
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/file-read-write-access-constants.md

File Translation Constants

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <stdio.h>

Remarks

These constants specify the mode of translation (*b" or “t"). The mode is included in the string specifying the type

of access ("r", "w", "a", "r+", "w+", "a+").

The translation modes are as follows:
o t

Opens in text (translated) mode. In this mode, carriage-return/linefeed (CR-LF) combinations are translated
into single linefeeds (LF) on input, and LF characters are translated into CR-LF combinations on output.
Also, CTRL+Z is interpreted as an end-of-file character on input. In files opened for reading or
reading/writing, fopen checks for CTRL+Z at the end of the file and removes it, if possible. This is done
because using the fseek and ftell functions to move within a file ending with CTRL+Z may cause

fseek to behave improperly near the end of the file.

NOTE

The t option is not part of the ANSI standard for fopen and freopen . It is a Microsoft extension and should not

be used where ANSI portability is desired.

e b
Opens in binary (untranslated) mode. The above translations are suppressed.

If t or b is not given in mode, the translation mode is defined by the default-mode variable _fmode. For more

information about using text and binary modes, see Text and Binary Mode File 1/0.

See also

_fdopen, _wfdopen
fopen, _wfopen
freopen, _wfreopen
_fsopen, _wfsopen
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/file-translation-constants.md

FILENAME_MAX

3/11/2019 « 2 minutes to read « Edit Online

The maximum permissible length for a filename string buffer size.

Syntax

#include <stdio.h>

See also

Path Field Limits
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/filename-max.md

FOPEN_MAX, _SYS_OPEN

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <stdio.h>

Remarks

This is the maximum number of files that can be opened simultaneously. Fopen_max is the ANSI-compatible name.
_Sys_opeN is provided for compatibility with existing code.

See also

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/fopen-max-sys-open.md

_FREEENTRY, _USEDENTRY

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <malloc.h>

Remarks
These constants represent values assigned by the _heapwalk routines to the _useflag element of the _"HEAPINFO

structure. They indicate the status of the heap entry.

See also

_heapwalk
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/freeentry-usedentry.md

fseek, Iseek Constants

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <stdio.h>

Remarks

The origin argument specifies the initial position and can be one of the following manifest constants:

CONSTANT MEANING
SEEK_END End of file
SEEK_CUR Current position of file pointer
SEEK_SET Beginning of file

See also

fseek, fseeki64
_Iseek, _Iseekib4

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/fseek-lseek-constants.md

Heap Constants

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <malloc.h>

Remarks

These constants give the return value indicating status of the heap.

CONSTANT

_HEAPBADBEGIN
_HEAPBADNODE

_HEAPBADPTR

_HEAPEMPTY

_HEAPEND

_HEAPOK

See also

_heapchk
_heapset
_heapwalk

Global Constants

MEANING

Initial header information was not found or was invalid.

Bad node was found, or heap is damaged.

_pentry field of "HEAPINFO structure does not contain valid
pointer into heap (_heapwalk routine only).

Heap has not been initialized.

End of heap was reached successfully (_heapwalk routine
only).

Heap is consistent (_heapset and _heapchk routines only).
No errors so far; _HEAPINFO structure contains information
about next entry (_heapwalk routine only).

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/heap-constants.md

_HEAP_MAXREQ

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <malloc.h>

Remarks

The maximum size of a user request for memory that can be granted.

See also

malloc
calloc

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/heap-maxreq.md

HUGE_VAL, _"HUGE

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <math.h>

Remarks

HUGE_VAL is the largest representable double value. This value is returned by many run-time math functions when
an error occurs. For some functions, - HUGE_VAL is returned. HUGE_VAL is defined as _HUGE , but run-time math
functions return HuGe_vAL . You should also use HUGE_VAL in your code for consistency.

See also

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/huge-val-huge.md

Locale Categories

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <locale.h>

Remarks

Locale categories are manifest constants used by the localization routines to specify which portion of a program's
locale information will be used. The locale refers to the locality (or Country/Region) for which certain aspects of
your program can be customized. Locale-dependent areas include, for example, the formatting of dates or the
display format for monetary values.

LOCALE CATEGORY PARTS OF PROGRAM AFFECTED
LC_ALL All locale-specific behavior (all categories)
LC_COLLATE Behavior of strcoll and strxfrm functions
LC_CTYPE Behavior of character-handling functions (except isdigit ,

isxdigit , mbstowcs , and mbtowc , which are unaffected)

LC_MAX Same as LC_TIME
LC_MIN Same as LC_ALL
LC_MONETARY Monetary formatting information returned by the

localeconv function

LC_NUMERIC Decimal-point character for formatted output routines (for
example, printf), data conversion routines, and
nonmonetary formatting information returned by

localeconv function

LC_TIME Behavior of strftime function

See setlocale, _wsetlocale for an example.

See also

localeconv

setlocale, _wsetlocale

strcoll Functions

strftime, wesftime, _strftime_l, _wcsftime_|
strxfrm, wesxfrm, _strxfrm_|l, _wesxfrm_|
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/locale-categories.md

_locking Constants

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <sys/locking.h>

Remarks

The mode argument in the call to the _locking function specifies the locking action to be performed.

The mode argument must be one of the following manifest constants.

_LK_LOCK Locks the specified bytes. If the bytes cannot be locked, the
function tries again after 1 second. If, after 10 attempts, the
bytes cannot be locked, the function returns an error.

_LK_RLCK Same as _LK_LOCK .

_LK_NBLCK Locks the specified bytes. If bytes cannot be locked, the
function returns an error.

_LK_NBRLCK Same as _LK_NBLCK .

_LK_UNLCK Unlocks the specified bytes. (The bytes must have been
previously locked.)

See also

_locking
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/locking-constants.md

Math Constants

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#tdefine _USE_MATH_DEFINES // for C++
#include <cmath>

#define _USE_MATH_DEFINES // for C
#include <math.h>

Remarks

The following symbols are defined for the values of their indicated expressions:

SYMBOL EXPRESSION VALUE

M_E e 2.71828182845904523536
M_LOG2E log2(e) 1.44269504088896340736
M_LOG10E log10(e) 0.434294481903251827651
M_LN2 In(2) 0.693147180559945309417
M_LN10 In(10) 2.30258509299404568402
M_PI pi 3.14159265358979323846
M_PI_2 pi/2 1.57079632679489661923
M_PI_4 pi/4 0.785398163397448309616
M_1_PI 1/pi 0.318309886183790671538
M_2_PI 2/pi 0.636619772367581343076
M_2_SQRTPI 2/sqrt(pi) 1.12837916709551257390
M_SQRT2 sqrt(2) 1.41421356237309504880
M_SQRT1_2 1/5qrt(2) 0.707106781186547524401

Math Constants are not defined in Standard C/C++. To use them, you must first define _use_MATH_DEFINES and
then include cmath or math.h.

The file ATLComTime.h includes math.h when your project is built in Release mode. If you use one or more of the
math constants in a project that also includes ATLComTime.h, you must define _use_MATH_DEFINES before you
include ATLComTime.h.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/math-constants.md

See also

Global Constants

Math Error Constants

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <math.h>

Remarks

The math routines of the run-time library can generate math error constants.

These errors, described as follows, correspond to the exception types defined in MATH.H and are returned by the
_matherr function when a math error occurs.

CONSTANT MEANING

_DOMAIN Argument to function is outside domain of function.
_OVERFLOW Result is too large to be represented in function's return type.
_PLOSS Partial loss of significance occurred.

_SING Argument singularity: argument to function has illegal value.

(For example, value 0 is passed to function that requires
nonzero value.)

_TLOSS Total loss of significance occurred.
_UNDERFLOW Result is too small to be represented.
See also
_matherr

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/math-error-constants.md

_MAX_ENV

3/11/2019 « 2 minutes to read « Edit Online

The maximum permissible string length of an environmental variable.

Syntax

#include <stdio.h>

See also

Environmental Constants
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/max-env.md

MB_CUR_MAX

3/11/2019 « 2 minutes to read « Edit Online

A macro that indicates the maximum number of bytes in a multibyte character for the current locale.

Syntax

#include <stdlib.h>

Remarks
Context: ANSI multibyte- and wide-character conversion functions

The value of MB_cur_MAX is the maximum number of bytes in a multibyte character for the current locale.

See also

_mbclen, mblen, _mblen_|

mbstowcs, _mbstowcs_|

mbtowc, _mbtowc_|

___mb_cur_max_func, ___mb_cur_max_|_func, __p___mb_cur_max, __mb_cur_max
Standard Types

wcstombs, _wcstombs_|

wctomb, _wctomb_|

Data Type Constants

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/mb-cur-max.md

NULL (CRT)

3/11/2019 « 2 minutes to read « Edit Online

NULL is the null-pointer value used with many pointer operations and functions. It is equivalent to 0. NULL is
defined in the following header files: CRTDBG.H, LOCALE.H, STDDEF.H, STDIO.H, STDLIB.H, STRING.H,
TCHAR.H, TIME.H and WCHAR.H.

See also

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/null-crt.md

Path Field Limits

10/31/2018 « 2 minutes to read Edit Online

Syntax

#include <stdlib.h>

Remarks

These constants define the maximum length for the path and for the individual fields within the path.

CONSTANT MEANING

_MAX_DIR Maximum length of directory component
_MAX_DRIVE Maximum length of drive component
_MAX_EXT Maximum length of extension component
_MAX_FNAME Maximum length of filename component
_MAX_PATH Maximum length of full path

NOTE

The C Runtime supports path lengths up to 32768 characters in length, but it is up to the operating system, specifically the
file system, to support these longer paths. The sum of the fields should not exceed _max_paTH for full backwards
compatibility with FAT32 file systems. The Windows NTFS file system supports paths up to 32768 characters in length, but
only when using the Unicode APIs. When using long path names, prefix the path with the characters \\?\ and use the
Unicode versions of the C Runtime functions.

See also

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/path-field-limits.md

RAND_MAX

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <stdlib.h>

Remarks

The constant RAND_MAX is the maximum value that can be returned by the rand function. ranp_max is defined as
the value 0x7fff.

See also

rand
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/rand-max.md

setvbuf Constants

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <stdio.h>

Remarks

These constants represent the type of buffer for setvbuf .

The possible values are given by the following manifest constants:
CONSTANT MEANING

_IOFBF Full buffering: Buffer specified in call to setvbuf is used and
its size is as specified in setvbuf call. If buffer pointer is
NULL, automatically allocated buffer of specified size is used.

_IOLBF Same as _IOFBF .

_IONBF No buffer is used, regardless of arguments in call to setvbuf .
See also
setbuf

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/setvbuf-constants.md

Sharing Constants

3/11/2019 « 2 minutes to read « Edit Online

Constants for file-sharing modes.

Syntax

#include <share.h>

Remarks

The shflag argument determines the sharing mode, which consists of one or more manifest constants. These can

be combined with the oflag arguments (see File Constants).

The following table lists the constants and their meanings:

CONSTANT

_SH_DENYRW
_SH_DENYWR
_SH_DENYRD
_SH_DENYNO

_SH_SECURE

See also

_sopen, _wsopen
_fsopen, _wfsopen
Global Constants

MEANING

Denies read and write access to file

Denies write access to file

Denies read access to file

Permits read and write access

Sets secure mode (shared read, exclusive write access).

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/sharing-constants.md

signal Constants

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <signal.h>

Remarks

The sig argument must be one of the manifest constants listed below (defined in SIGNAL.H).

SIGABRT Abnormal termination. The default action terminates the
calling program with exit code 3.

SIGABRT_COMPAT Same as SIGABRT. For compatibility with other platforms.

SIGFPE Floating-point error, such as overflow, division by zero, or
invalid operation. The default action terminates the calling
program.

SIGILL lllegal instruction. The default action terminates the calling
program.

SIGINT CTRL+C interrupt. The default action terminates the calling

program with exit code 3.

SIGSEGV lllegal storage access. The default action terminates the calling
program.
SIGTERM Termination request sent to the program. The default action

terminates the calling program with exit code 3.

SIG_ERR A return type from a signal indicating an error has occurred.

See also

signal
raise
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/signal-constants.md

signal Action Constants

3/11/2019 « 2 minutes to read « Edit Online

The action taken when the interrupt signal is received depends on the value of func .

Syntax

#include <signal.h>

Remarks

The func argument must be either a function address or one of the manifest constants listed below and defined in
SIGNAL.H.

SIG_DFL Uses system-default response. If the calling program uses
stream 1/O, buffers created by the run-time library are not
flushed.

SIG_IGN Ignores interrupt signal. This value should never be given for

SIGFPE , since the floating-point state of the process is left
undefined.

SIG_SGE Indicates an error occurred in the signal.

SIG_ACK Indicates an acknowledgement was received.

SIG_ERR A return type from a signal indicating an error has occurred.

See also
signal

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/signal-action-constants.md

spawn Constants

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <process.h>

Remarks

The mode argument determines the action taken by the calling process before and during a spawn operation. The
following values for mode are possible:

CONSTANT MEANING

_P_OVERLAY Overlays calling process with new process, destroying calling
process (same effect as _exec calls).

_P_WAIT Suspends calling thread until execution of new process is
complete (synchronous _spawn).

_P_NOWAIT , _P_NOWAITO Continues to execute calling process concurrently with new
process (asynchronous _spawn).

_P_DETACH Continues to execute calling process; new process is run in
background with no access to console or keyboard. Calls to
_cwait against new process will fail. This is an asynchronous

_spawn .

See also

_spawn, _wspawn Functions
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/spawn-constants.md

_stat Structure st mode Field Constants

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <sys/stat.h>

Remarks

These constants are used to indicate file type in the st_mode field of the _stat structure.

The bit mask constants are described below:

CONSTANT MEANING
_S_IFMT File type mask
_S_IFDIR Directory
_S_IFCHR Character special (indicates a device if set)
_S_IFREG Regular
_S_IREAD Read permission, owner
_S_IWRITE Write permission, owner
_S_TIEXEC Execute/search permission, owner
See also

_stat, _wstat Functions

_fstat, fstat32, fstat64, fstati64, fstat32i64, fstat64i32
Standard Types

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/stat-structure-st-mode-field-constants.md

stdin, stdout, stderr

3/11/2019 « 2 minutes to read « Edit Online

Syntax

FILE *stdin;
FILE *stdout;
FILE *stderr;
#include <stdio.h>

Remarks

These are standard streams for input, output, and error output.

By default, standard input is read from the keyboard, while standard output and standard error are printed to the

screen.

The following stream pointers are available to access the standard streams:

POINTER STREAM
stdin Standard input
stdout Standard output
stderr Standard error

These pointers can be used as arguments to functions. Some functions, such as getchar and putchar, use stdin

and stdout automatically.

These pointers are constants, and cannot be assigned new values. The freopen function can be used to redirect the
streams to disk files or to other devices. The operating system allows you to redirect a program's standard input

and output at the command level.

See also

Stream 1/0O
Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/stdin-stdout-stderr.md

TMP_MAX, L_tmpnam

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <stdio.h>

Remarks

TMP_MAX is the maximum number of unique filenames that the tmpnam function can generate. L_tmpnam is the
length of temporary filenames generated by tmpnam .

See also

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/tmp-max-l-tmpnam.md

Translation Mode Constants

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <fcntl.h>

Remarks

The _o BINARY and _0_TEXT manifest constants determine the translation mode for files (_open and _sopen) or
the translation mode for streams (_setmode).

The allowed values are:

_O_TEXT Opens file in text (translated) mode. Carriage return - linefeed
(CR-LF) combinations are translated into a single linefeed (LF)
on input. Linefeed characters are translated into CR-LF
combinations on output. Also, CTRL+Z is interpreted as an
end-of-file character on input. In files opened for reading and
reading/writing, fopen checks for CTRL+Z at the end of the
file and removes it, if possible. This is done because using the

fseek and ftell functions to move within a file ending
with CTRL+Z may cause fseek to behave improperly near
the end of the file.

_O_BINARY Opens file in binary (untranslated) mode. The above
translations are suppressed.

_O_RAW Same as _0_BINARY . Supported for C 2.0 compatibility.

For more information, see Text and Binary Mode File I/O and File Translation.

See also

_open, _wopen
_pipe

_sopen, _wsopen
_setmode

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/translation-mode-constants.md

_TRUNCATE

3/11/2019 « 2 minutes to read « Edit Online

Specifies string truncation behavior.

Syntax

#include <stdlib.h>

Remarks

_TRUNCATE enables truncation behavior when passed as the count parameter to these functions:
strncpy_s, _strncpy_s_|, wesnepy_s, _wesncpy_s_l, _mbsncpy_s, _mbsncpy_s_|

strncat_s, _strncat_s_|, wesncat_s, _wcesncat_s_|, _mbsncat_s, _mbsncat_s_|

mbstowcs_s, _mbstowcs_s_|

mbsrtowcs_s

wcstombs_s, _wcstombs_s_|

wcesrtombs_s

_snprintf_s, _snprintf_s_|, _snwprintf_s, _snwprintf_s_|

vsnprintf_s, _vsnprintf_s, _vsnprintf_s_|, _vsnwprintf_s, _vsnwprintf_s_|

If the destination buffer is too small to hold the entire string, the normal behavior of these functions is to treat it
as an error situation (see Parameter Validation). However, if string truncation is enabled by passing _TRUNCATE ,
these functions will copy only as much of the string as will fit, leaving the destination buffer null-terminated, and

return successfully.

String truncation changes the return values of the affected functions. The following functions return 0 if no

truncation occurs, or STRUNCATE if truncation does occur:

strncpy_s, _strncpy_s_|, wesnepy_s, _wesnepy_s_l, _mbsncpy_s, _mbsncpy_s_|
strncat_s, _strncat_s_|, wesncat_s, _wcesncat_s_|, _mbsncat_s, _mbsncat_s_|
wcestombs_s, _wcstombs_s_|

mbstowcs_s, _mbstowcs_s_|

The following functions return the number of characters copied if no truncation occurs, or -1 if truncation does
occur (matching the behavior of the original snprintf functions):

_snprintf_s, _snprintf_s_|, _snwprintf_s, _snwprintf_s_|

vsnprintf_s, _vsnprintf_s, _vsnprintf_s_|, _vsnwprintf_s, _vsnwprintf_s_|

Example

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/truncate.md

// crt_truncate.c
#include <stdlib.h>
#include <errno.h>

int main()
{
char src[] = "1234567890";
char dst[5];
errno_t err = strncpy_s(dst, _countof(dst), src, _TRUNCATE);
if (err == STRUNCATE)
printf("truncation occurred!\n");
printf("'%s'\n", dst);

truncation occurred!
'1234"

See also

Global Constants

TZNAME_MAX

3/11/2019 « 2 minutes to read « Edit Online

Obsolete. The maximum permissible string length for a time zone name variable. This macro was defined in
<limits.h> in Visual Studio 2012 and earlier versions. It is not defined in Visual Studio 2013 and later versions. To
get the length required to hold the current time zone name, use _get_tzname.

Syntax

#include <limits.h>

See also

Environmental Constants
Global Constants
_get_tzname

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/tzname-max.md

_WAIT_CHILD, _WAIT_GRANDCHILD

3/11/2019 « 2 minutes to read « Edit Online

Syntax

#include <process.h>

Remarks

The _cwait function can be used by any process to wait for any other process (if the process ID is known). The

action argument can be one of the following values:

CONSTANT

_WAIT_CHILD

_WAIT_GRANDCHILD

See also

_cwait
Global Constants

MEANING

Calling process waits until specified new process terminates.

Calling process waits until specified new process, and all
processes created by that new process, terminate.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/wait-child-wait-grandchild.md

WCHAR_MAX

3/11/2019 « 2 minutes to read « Edit Online

Maximum value for type wchar_t .

Syntax

#include <wchar.h>

See also

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/wchar-max.md

WCHAR_MIN

3/11/2019 « 2 minutes to read « Edit Online

Minimum value for type wchar_t .

Syntax

#include <wchar.h>

See also

Global Constants

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/wchar-min.md

Generic-Text Mappings

3/11/2019 « 2 minutes to read « Edit Online

To simplify writing code for international markets, generic-text mappings are defined in TCHAR.H for:
e Data types
e Constants and global variables

® Routine mappings

For more information, see Using Generic-Text Mappings. Generic-text mappings are Microsoft extensions that
are not ANSI| compatible.

See also

Data Type Mappings
A Sample Generic-Text Program

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/generic-text-mappings.md

Data Type Mappings

3/11/2019 « 2 minutes to read « Edit Online

These data-type mappings are defined in TCHAR.H and depend on whether the constant _unicope or _mBcs has

been defined in your program.

For related information, see Using TCHAR.H Data Types with _MBCS Code.

Generic-Text Data Type Mappings

GENERIC-TEXT

DATA TYPE NAME

_TCHAR
_tfinddata_t
_tfinddata64_t
_tfinddatai64_t
_TINT

_TSCHAR

_TUCHAR

_TXCHAR

_T or _TEXT

See also

Generic-Text Mappings

SBCS (_UNICODE,
_MBCS NOT

DEFINED)

char

_finddata_t

__finddata64_t

_finddatai64_t

int

signed char

unsigned char

char

No effect (removed by
preprocessor)

Constant and Global Variable Mappings

Routine Mappings

A Sample Generic-Text Program

Using Generic-Text Mappings

_MBCS

DEFINED

char

_finddata_t

__finddata64_t

_finddatai64_t

int

signed char

unsigned char

unsigned char

No effect (removed by
preprocessor)

_UNICODE

DEFINED

wchar_t

_wfinddata_t

__wfinddata64_t

_wfinddatai64_t

wint_t

wchar_t

wchar_t

wchar_t

L (converts following
character or string to its
Unicode counterpart)

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/data-type-mappings.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/text/using-tchar-h-data-types-with-mbcs-code

Constant and Global Variable Mappings

3/11/2019 « 2 minutes to read « Edit Online

These generic-text constant, global variable, and standard-type mappings are defined in TCHAR.H and depend on
whether the constant _unicobe or _mBcs has been defined in your program.

Generic-Text Constant and Global Variable Mappings

SBCS (_(UNICODE, _MBCS NOT

GENERIC-TEXT - OBJECT NAME DEFINED) _MBCS DEFINED _UNICODE DEFINED
_TEOF EOF EOF WEOF
_tenviron _environ _environ _wenviron
_tpgmptr _pgmptr _pgmptr _wpgmptr
See also

Generic-Text Mappings

Data Type Mappings

Routine Mappings

A Sample Generic-Text Program
Using Generic-Text Mappings

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/constant-and-global-variable-mappings.md

Routine Mappings

3/11/2019 « 5 minutes to read « Edit Online

The generic-text routine mappings are defined in TCHAR.H. _tccpy and _tclen map to functions in the MBCS

model; they are mapped to macros or inline functions in the SBCS and Unicode models for completeness. For

information on a generic text routine, see the help topic about the corresponding sBcs -, _MBCS -, Or _UNICODE -

related routine.

More specific information about individual routines listed in the left column in the following table is not available

in this documentation. However, you can easily look up the information on a corresponding sBcs -, _MBcs -, or

_UnIcopE -related routine. Use the Search command on the Help menu to look up any generic-text routine listed

below.

For related information, see Generic-Text Mappings in TCHAR.H.

Generic-Text Routine Mappings

GENERIC-TEXT ROUTINE

NAME

_cgetts

_cgetts_s

_cputts

_fgettc

_fgettchar

_fgetts

_fputtc

_fputtchar

_fputts

_ftprintf

_ftprintf_s

_ftscanf

_ftscanf_s

_gettc

_gettch

SBCS (_LUNICODE & MBCS NOT
DEFINED)

_cgets

_cgets_s

_cputs

fgetc

_fgetchar

fgets

fputc

_fputchar

fputs

fprintf

fprintf_s

fscanf

fscanf_s

getc

_getch

_MBCS DEFINED

_cgets

_cgets_s

_cputs

fgetc

_fgetchar

fgets

fputc

_fputchar

fputs

fprintf

fprintf_s

fscanf

fscanf_s

getc

_getch

_UNICODE DEFINED

_cgetws

_cgetws_s

_cputws

fgetwc

_fgetwchar

fgetws

fputwc

_fputwchar

fputws

fwprintf

fwprintf_s

fwscanf

fwscanf_s

getwc

_getwch

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/routine-mappings.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/text/generic-text-mappings-in-tchar-h

GENERIC-TEXT ROUTINE SBCS (_(UNICODE & MBCS NOT

NAME DEFINED) _MBCS DEFINED _UNICODE DEFINED
_gettchar getchar getchar getwchar
_gettche _getche _getche _getwche
_getts gets gets getws
_getts_s gets_s gets_s getws_s
_istalnum isalnum _ismbcalnum iswalnum
_istalpha isalpha _ismbcalpha iswalpha
_istascii isascii isascii iswascii
_istcntrl iscntrl iscntrl iswentrl
_istdigit isdigit _ismbcdigit iswdigit
_istgraph isgraph _ismbcgraph iswgraph
_istlead Always returns false _ismbblead Always returns false
_istleadbyte Always returns false isleadbyte Always returns false
_istlegal Always returns true _ismbclegal Always returns true
_istlower islower _ismbclower iswlower
_istprint isprint _ismbcprint iswprint
_istpunct ispunct _ismbcpunct iswpunct
_istspace isspace _ismbcspace iswspace
_istupper isupper _ismbcupper iswupper
_istxdigit isxdigit isxdigit iswxdigit
_itot _itoa _itoa _itow
_itot_s _itoa_s _itoa_s _itow_s
_ltot _ltoa _ltoa _ltow
_ltot_s _ltoa_s _ltoa_s _ltow_s

_puttc putc putc putwc

GENERIC-TEXT ROUTINE
NAME

_puttch

_puttchar

_putts

_sctprintf

_sntprintf

_sntprintf_s

_sntscanf

_sntscanf_s

_stprintf

_stprintf_s

_stscanf

_stscanf_s

_taccess

_taccess_s

_tasctime

_tasctime_s

_tccmp

_tccpy

_tccpy_s

_tchdir

_tclen

_tchmod

_tcprintf

SBCS (_UNICODE & MBCS NOT

DEFINED) _MBCS DEFINED _UNICODE DEFINED
_putch _putch _putwch

putchar putchar putwchar

puts puts _putws

_scprintf _scprintf _scwprintf

_snprintf _snprintf _snwprintf
_snprintf_s _snprintf_s _snwprintf_s
_snscanf _snscanf _snwscanf

_snscanf_s _snscanf_s _snwscanf_s

sprintf sprintf swprintf

sprintf_s sprintf_s swprintf_s

sscanf sscanf swscanf

sscanf_s sscanf_s swscanf_s

_access _access _waccess

_access_s _access_s _waccess_s

asctime asctime _wasctime

asctime_s asctime_s _wasctime_s

Maps to macro or inline _mbsncmp Maps to macro or inline
function function

Maps to macro or inline _mbccpy Maps to macro or inline
function function

strcpy_s _mbccpy_s wcscpy_s

_chdir _chdir _wchdir

Maps to macro or inline _mbclen Maps to macro or inline
function function

_chmod _chmod _wchmod

_cprintf _cprintf _cwprintf

GENERIC-TEXT ROUTINE SBCS (_(UNICODE & MBCS NOT

NAME DEFINED) _MBCS DEFINED _UNICODE DEFINED
_tcprintf_s _cprintf_s _cprintf_s _cwprintf_s
_tcreat _creat _creat _wcreat
_tcscanf _cscanf _cscanf _cwscanf
_tcscanf_s _cscanf_s _cscanf_s _cwscanf_s
_tcscat strcat _mbscat wcscat
_tcscat_s strcat_s _mbscat_s wcscat_s
_tcschr strchr _mbschr wcschr
_tcsclen strlen _mbslen wcslen
_tcsclen_s strlen_s _mbslen_s wcslen_s
_tcscmp strcmp _mbscmp wcscmp
_tcscoll strcoll _mbscoll wcscoll
_tcscpy strcpy _mbscpy wcscpy
_tecscpy_s strcpy_s _mbscpy_s wcscpy_s
_tcscspn strcspn _mbscspn wcscspn
_tcsdec _strdec _mbsdec _wcsdec
_tcsdup _strdup _mbsdup _wcsdup
_tcserror strerror strerror _wcserror
_tcserror_s strerror_s strerror_s _wcserror_s
_tcsftime strftime strftime wcsftime
_tcsicmp _stricmp _mbsicmp _wcsicmp
_tcsicoll _stricoll _mbsicoll _wcsicoll
_tcsinc _strinc _mbsinc _wcsinc
_tcslen strlen strlen wcslen

_tcslwr _strlwr _mbslwr _wcslwr

GENERIC-TEXT ROUTINE SBCS (_(UNICODE & MBCS NOT

NAME DEFINED) _MBCS DEFINED _UNICODE DEFINED
_tcslwr_s _strlwr_s _mbslwr_s _wecslwr_s
_tcsnbent _strncnt _mbsnbcnt _wecsnent
_tcsncat strncat _mbsnbcat wcsncat
_tcsncat_s strncat_s _mbsnbcat_s wcsncat_s
_tcsnccat strncat _mbsncat wcsncat
_tcsncemp strncmp _mbsncmp wcsncmp
_tcsncemp_s strncmp_s _mbsncmp_s wcsncmp_s
_tcsnccoll _strncoll _mbsncoll _wcsncoll
_tcsncmp strncmp _mbsnbcmp wcsncmp
_tcsncent _strncnt _mbsnccnt _wcsnent
_tcsncepy strncpy _mbsncpy wcsncpy
_tcsncepy_s strncpy_s _mbsncpy_s wcsncpy_s
_tcsncicmp _strnicmp _mbsnicmp _wcsnicmp
_tcsncicoll _strnicoll _mbsnicoll _wcsnicoll
_tcsncpy strncpy _mbsnbcpy wcsncpy
_tcsncpy_s strncpy_s _mbsnbcpy_s wcsncpy_s
_tcsncset _strnset _mbsnset _wcsnset
_tcsnextc _strnextc _mbsnextc _wcsnextc
_tcsnicmp _strnicmp _mbsnbicmp _wcsnicmp
_tcsnicoll _strnicoll _mbsnbicoll _wcsnicoll
_tcsninc _strninc _mbsninc _wecsninc
_tcsncent _strncnt _mbsnccnt _wecsnent
_tcsnset _strnset _mbsnbset _wcsnset

_tcspbrk strpbrk _mbspbrk wcspbrk

GENERIC-TEXT ROUTINE SBCS (_(UNICODE & MBCS NOT

NAME DEFINED) _MBCS DEFINED _UNICODE DEFINED
_tcsspnp _strspnp _mbsspnp _wcsspnp
_tcsrchr strrchr _mbsrchr wcsrchr
_tcsrev _strrev _mbsrev _wcsrev
_tcsset _strset _mbsset _wcsset
_tcsspn strspn _mbsspn wcsspn
_tcsstr strstr _mbsstr wcsstr
_tcstod strtod strtod wcstod
_tcstoi6bd _strtoi6d _strtoi6d _wcstoi6bd
_tcstok strtok _mbstok wcstok
_tcstok_s strtok_s _mbstok_s wcstok_s
_tcstol strtol strtol wcstol
_tcstouibs _strtoui64 _strtoui6d _wcstoui6bd
_tcstoul strtoul strtoul wcstoul
_tcsupr _strupr _mbsupr _wcsupr
_tcsupr_s _strupr_s _mbsupr_s _wcsupr_s
_tcsxfrm strxfrm strxfrm wesxfrm
_tctime ctime ctime _wctime
_tctime_s ctime_s ctime_s _wctime_s
_tctime32 _ctime32 _ctime32 _wctime32
_tctime32_s _ctime32_s _ctime32_s _wctime32_s
_tctime64d _ctime64 _ctime64 _wctime64
_tctimeb4_s _ctime64_s _ctime64_s _wctime64_s
_texecl _execl _execl _wexecl

_texecle _execle _execle _wexecle

GENERIC-TEXT ROUTINE SBCS (_(UNICODE & MBCS NOT

NAME DEFINED) _MBCS DEFINED _UNICODE DEFINED
_texeclp _execlp _execlp _wexeclp
_texeclpe _execlpe _execlpe _wexeclpe
_texecv _execv _execv _wexecv
_texecve _execve _execve _wexecve
_texecvp _execvp _execvp _wexecvp
_texecvpe _execvpe _execvpe _wexecvpe
_tfdopen _fdopen _fdopen _wfdopen
_tfindfirst _findfirst _findfirst _wfindfirst
_tfindnext _findnext _findnext _wfindnext
_tfindnext32 _findnext32 _findnext32 _wfindnext32
_tfindnext64 _findnext64 _findnext64 _wfindnext64
_tfindnexti64 _findnexti64 _findnexti64 _wfindnexti64
_tfindnexti6432 _findnexti6432 _findnexti6432 _wfindnexti6432
_tfindnext32i64 _findnext32i64 _findnext32i64 _wfindnext32i64
_tfopen fopen fopen _wfopen
_tfopen_s fopen_s fopen_s _wfopen_s
_tfreopen freopen freopen _wfreopen
_tfreopen_s freopen_s freopen_s _wfreopen_s
_tfsopen _fsopen _fsopen _wfsopen
_tfullpath _fullpath _fullpath _wfullpath
_tgetcwd _getcwd _getcwd _wgetcwd
_tgetdcwd _getdcwd _getdcwd _wgetdcwd
_tgetenv getenv getenv _wgetenv

_tgetenv_s getenv_s getenv_s _wgetenv_s

GENERIC-TEXT ROUTINE

NAME

_tmain

_tmakepath

_tmakepath_s

_tmkdir

_tmktemp

_tmktemp_s

_topen

_topen_s

_totlower

_totupper

_tperror

_tpopen

_tprintf

_tprintf_s

_tputenv

_tputenv_s

_tremove

_trename

_trmdir

_tsearchenv

_tsearchenv_s

_tscanf

_tscanf_s

_tsetlocale

SBCS (_(UNICODE & MBCS NOT

DEFINED)

main

_makepath

_makepath_s

_mkdir

_mktemp

_mktemp_s

_open

_open_s

tolower

toupper

perror

_popen

printf

printf_s

_putenv

_putenv_s

remove

rename

_rmdir

_searchenv

_searchenv_s

scanf

scanf_s

setlocale

_MBCS DEFINED

main

_makepath

_makepath_s

_mkdir

_mktemp

_mktemp_s

_open

_open_s

_mbctolower

_mbctoupper

perror

_popen

printf

printf_s

_putenv

_putenv_s

remove

rename

_rmdir

_searchenv

_searchenv_s

scanf

scanf_s

setlocale

_UNICODE DEFINED

wmain

_wmakepath

_wmakepath_s

_wmkdir

_wmktemp

_wmktemp_s

_wopen

_wopen_s

towlower

towupper

_wperror

_wpopen

wprintf

wprintf_s

_wputenv

_wputenv_s

_wremove

_wrename

_wrmdir

_wsearchenv

_wsearchenv_s

wscanf

wscanf_s

_wsetlocale

GENERIC-TEXT ROUTINE SBCS (_(UNICODE & MBCS NOT

NAME DEFINED) _MBCS DEFINED _UNICODE DEFINED
_tsopen _sopen _sopen _wsopen
_tsopen_s _sopen_s _sopen_s _wsopen_s
_tspawnl _spawnl _spawnl _wspawnl
_tspawnle _spawnle _spawnle _wspawnle
_tspawnlp _spawnlp _spawnlp _wspawnlp
_tspawnlpe _spawnlpe _spawnlpe _wspawnlpe
_tspawnv _spawnv _Sspawnv _wspawnv
_tspawnve _spawnve _spawnve _wspawnve
_tspawnvp _spawnvp _spawnvp _Wspawnvp
_tspawnvpe _spawnvpe _spawnvpe _wspawnvpe
_tsplitpath _splitpath _splitpath _wsplitpath
_tstat _stat _stat _wstat
_tstat32 _stat32 _stat32 _wstat32
_tstati32 _stati32 _stati32 _wstati32
_tstat64 _stat64 _stat64 _wstaté4
_tstati6es _stati6d _stati64d _wstati6d
_tstof atof atof _wtof
_tstoi atoi atoi _wtoi
_tstoi64d _atoi64 _atoi64 _wtoi64
_tstol atol atol _wtol
_tstrdate _strdate _strdate _wstrdate
_tstrdate_s _strdate_s _strdate_s _wstrdate_s
_tstrtime _strtime _strtime _wstrtime

_tstrtime_s _strtime_s _strtime_s _wstrtime_s

GENERIC-TEXT ROUTINE SBCS (_(UNICODE & MBCS NOT

NAME DEFINED) _MBCS DEFINED _UNICODE DEFINED
_tsystem system system _wsystem
_ttempnam _tempnam _tempnam _wtempnam
_ttmpnam tmpnam tmpnam _wtmpnam
_ttmpnam_s tmpnam_s tmpnam_s _wtmpnam_s
_ttoi atoi atoi _wtoi
_ttoi6d _atoi64 _atoi64 _wtoi6d
_ttol atol atol _wtol
_tunlink _unlink _unlink _wunlink
_tutime _utime _utime _wutime
_tutime32 _utime32 _utime32 _wutime32
_tutime64 _utime64 _utime64 _wutime64
_tWinMain WinMain WinMain wWinMain
_ui64tot _uib4toa _uib4toa _uib4dtow
_uib4tot_s _uib4toa_s _uib4toa_s _uib4dtow_s
_ultot _ultoa _ultoa _ultow
_ultot_s _ultoa_s _ultoa_s _ultow_s
_ungettc ungetc ungetc ungetwc
_ungettch _ungetch _ungetch _ungetwch
_vftprintf vfprintf vfprintf vfwprintf
_vftprintf_s vfprintf_s vfprintf_s vfwprintf_S
_vsctprintf _vscprintf _vscprintf _vscwprintf
_vsctprintf_s _vscprintf_s _vscprintf_s _vscwprintf_S
_vsntprintf _vsnprintf _vsnprintf _vsnwprintf

_vsntprintf_s _vsnprintf_s _vsnprintf_s _vsnwprintf_s

GENERIC-TEXT ROUTINE SBCS (_(UNICODE & MBCS NOT

NAME DEFINED) _MBCS DEFINED _UNICODE DEFINED

_vstprintf vsprintf vsprintf vswprintf

_vstprintf_s vsprintf_s vsprintf_s vswprintf_s

_vtprintf vprintf vprintf vwprintf

_vtprintf_s vprintf_s vprintf_s vwprintf_s
See also

Generic-Text Mappings

Data Type Mappings

Constant and Global Variable Mappings
A Sample Generic-Text Program

Using Generic-Text Mappings

UCRT Locale names, Languages, and

Country/Region strings

12/11/2018 « 3 minutes to read « Edit Online

The locale argument to the setlocale, _wsetlocale, _create_locale, and _wcreate_|locale functions can be set by using
the locale names, languages, country/region codes, and code pages that are supported by the Windows NLS API.
The locale argument takes the following form:

locale :: "locale-name"
| "languagel_country-region[.code-pagell"
| ".code-page"
|"C
K
| NULL

The locale-name form is a short, IETF-standardized string; for example, en-us for English (United States) or

bs-cyrl-BA for Bosnian (Cyrillic, Bosnia and Herzegovina). These forms are preferred. For a list of supported
locale names by Windows operating system version, see the Language tag column of the table in Appendix A:
Product Behavior in [MS-LCID]: Windows Language Code Identifier (LCID) Reference. This resource lists the
supported language, script, and region parts of the locale names. For information about the supported locale
names that have non-default sort orders, see the Locale name column in Sort Order Identifiers. Under Windows
10 or later, locale names that correspond to valid BCP-47 language tags are allowed. For example, jp-us is a
valid BCP-47 tag, but it is effectively only us for locale functionality.

The languagel_country-region[.code-pagel] form is stored in the locale setting for a category when a language
string, or language string and country or region string, is used to create the locale. The set of supported language
strings is described in Language Strings, and the list of supported country and region strings is listed in
Country/Region Strings. If the specified language is not associated with the specified country or region, the
default language for the specified country or region is stored in the locale setting. We do not recommend this
form for locale strings embedded in code or serialized to storage, because these strings are more likely to be

changed by an operating system update than the locale name form.

The code-page is the ANSI/OEM code page that's associated with the locale. The code page is determined for you
when you specify a locale by language or by language and country/region alone. The special value .Acp specifies
the ANSI code page for the country/region. The special value .ocp specifies the OEM code page for the
country/region. For example, if you specify "Greek_Greece.AcP" as the locale, the locale is stored as
Greek_Greece.1253 (the ANSI code page for Greek), and if you specify "Greek_Greece.ocr" as the locale, it is
stored as Greek_Greece.737 (the OEM code page for Greek). For more information about code pages, see Code

Pages. For a list of supported code pages on Windows, see Code Page Identifiers.

If you use only the code page to specify the locale, the user's default language and country/region as reported by
GetUserDefaultLocaleName are used. For example, if you specify ".1254" (ANSI Turkish) as the locale for a user
that's configured for English (United States), the locale that's stored is English_United States.1254 . We do not
recommend this form, because it could lead to inconsistent behavior.

A locale argument value of c specifies the minimal ANSI conforming environment for C translation. The ¢
locale assumes that every char data type is 1 byte and its value is always less than 256. If locale points to an
empty string, the locale is the implementation-defined native environment.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/locale-names-languages-and-country-region-strings.md
https://msdn.microsoft.com/library/cc233982.aspx
https://docs.microsoft.com/windows/desktop/Intl/sort-order-identifiers
https://tools.ietf.org/html/bcp47
https://docs.microsoft.com/windows/desktop/Intl/code-page-identifiers
https://docs.microsoft.com/windows/desktop/api/winnls/nf-winnls-getuserdefaultlocalename

You can specify all of the locale categories at the same time for the setlocale and _wsetlocale functions by
using the Lc_ALL category. The categories can all be set to the same locale, or you can set each category
individually by using a locale argument that has this form:

LC-ALL-specifier :: locale
| [LC_COLLATE=locale][;LC_CTYPE=locale][;LC_MONETARY =locale][;LC_NUMERIC=locale]
LC_TIME=locale]

You can specify multiple category types, separated by semicolons. Category types that are not specified use the
current locale setting. For example, this code snippet sets the current locale for all categories to de-DE , and then

sets the categories LC_MONETARY to en-GB and LC_TIME tO es-ES :

_wsetlocale(LC_ALL, L"de-DE");
_wsetlocale(LC_ALL, L"LC_MONETARY=en-GB;LC_TIME=es-ES");

See also

C Run-Time Library Reference
_get_current_locale

setlocale, wsetlocale
_create_locale, _wcreate_locale
Language Strings
Country/Region Strings

Language Strings

10/31/2018 « 2 minutes to read Edit Online

The setlocale and _create_locale functions can use the Windows NLS API supported languages on operating
systems that do not use the Unicode code page. For a list of supported languages by operating system version,
see Appendix A: Product Behavior in [MS-LCID]: Windows Language Code Identifier (LCID) Reference. The
language string can be any of the values in the Language and Language tag columns of the list of supported
languages. For an example of code that enumerates available locale names and related values, see NLS: Name-
based APIs Sample.

Additional supported language strings

The Microsoft C run-time library implementation also supports these language strings:

LANGUAGE STRING EQUIVALENT LOCALE NAME
american en-US
american english en-US
american-english en-US
australian en-AU
belgian nl-BE
canadian en-CA
chh zh-HK
chi zh-SG
chinese zh
chinese-hongkong zh-HK
chinese-simplified zh-CN
chinese-singapore zh-SG
chinese-traditional zh-TW
dutch-belgian nl-BE
english-american en-US
english-aus en-AU

english-belize en-BZ

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/language-strings.md
https://msdn.microsoft.com/library/cc233982.aspx
https://docs.microsoft.com/windows/desktop/intl/nls--name-based-apis-sample

LANGUAGE STRING

english-can

english-caribbean

english-ire

english-jamaica

english-nz

english-south africa

english-trinidad y tobago

english-uk

english-us

english-usa

french-belgian

french-canadian

french-luxembourg

french-swiss

german-austrian

german-lichtenstein

german-luxembourg

german-swiss

irish-english

italian-swiss

norwegian

norwegian-bokmal

norwegian-nynorsk

portuguese-brazilian

spanish-argentina

EQUIVALENT LOCALE NAME

en-CA

en-029

en-IE

en-JM

en-NZ

en-ZA

en-TT

en-GB

en-US

en-US

fr-BE

fr-CA

fr-LU

fr-CH

de-AT

de-LI

de-LU

de-CH

en-lE

it-CH

no

nb-NO

nn-NO

pt-BR

es-AR

LANGUAGE STRING EQUIVALENT LOCALE NAME

spanish-bolivia es-BO
spanish-chile es-CL
spanish-colombia es-CO
spanish-costa rica es-CR
spanish-dominican republic es-DO
spanish-ecuador es-EC
spanish-el salvador es-SV
spanish-guatemala es-GT
spanish-honduras es-HN
spanish-mexican es-MX
spanish-modern es-ES

spanish-nicaragua es-NI

spanish-panama es-PA
spanish-paraguay es-PY
spanish-peru es-PE

spanish-puerto rico es-PR
spanish-uruguay es-UY
spanish-venezuela es-VE
swedish-finland sv-Fl

swiss de-CH
uk en-GB
us en-US
usa en-US

See also

Locale Names, Languages, and Country/Region Strings
Country/Region Strings

setlocale, _wsetlocale
_create_locale, _wcreate_locale

Country/Region Strings

10/31/2018 « 2 minutes to read » Edit Online

Country and region strings can be combined with a language string to create a locale specification for the
setlocale , _wsetlocale , _create_locale ,and _wcreate_locale functions. For lists of country and region names
that are supported by various Windows operating system versions, see the Language, Location, and Language

tag columns of the table in Appendix A: Product Behavior in [MS-LCID]: Windows Language Code Identifier
(LCID) Reference. For an example of code that enumerates available locale names and related values, see NLS:
Name-based APIs Sample.

Additional supported country and region strings

The Microsoft C run-time library implementation also supports the following additional country/region strings
and abbreviations:

COUNTRY/REGION STRING ABBREVIATION EQUIVALENT LOCALE NAME
america USA en-US
britain GBR en-GB
china CHN zh-CN
czech CZE cs-CZ
england GBR en-GB
great britain GBR en-GB
holland NLD nl-NL
hong-kong HKG zh-HK
new-zealand NZL en-NZ
nz NZL en-NZ
pr china CHN zh-CN
pr-china CHN zh-CN
puerto-rico PRI es-PR
slovak SVK sk-SK
south africa ZAF af-ZA

south korea KOR ko-KR

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/country-region-strings.md
https://msdn.microsoft.com/library/cc233982.aspx
https://docs.microsoft.com/windows/desktop/intl/nls--name-based-apis-sample

COUNTRY/REGION STRING ABBREVIATION EQUIVALENT LOCALE NAME

south-africa ZAF af-ZA
south-korea KOR ko-KR
trinidad & tobago TTO en-TT
uk GBR en-GB
united-kingdom GBR en-GB
united-states USA en-US
us USA en-US
See also

Locale Names, Languages, and Country/Region Strings
Language Strings
setlocale, _wsetlocale

_create_locale, _wcreate_locale

Function Family Overviews

10/31/2018 « 2 minutes to read Edit Online

Insert introduction here.

Section Heading

Insert section body here.

Subsection Heading

Insert subsection body here.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/function-family-overviews.md

_exec, _wexec Functions

3/11/2019 « 7 minutes to read « Edit Online

Each function in this family loads and executes a new process:

_execl, _wexec! _execv, _wexecv
_execle, _wexecle _execve, _wexecve
_execlp, _wexeclp _Eexecvp, _wexecvp
_execlpe, _wexeclpe _execvpe, _wexecvpe

The letter at the end of the function name determines the variation.

_EXEC FUNCTION SUFFIX DESCRIPTION

e envp , array of pointers to environment settings, is passed
to the new process.

1 Command-line arguments are passed individually to
_exec function. Typically used when the number of
parameters to the new process is known in advance.

P PATH environment variable is used to find the file to
execute.
v argv , array of pointers to command-line arguments, is

passed to _exec . Typically used when the number of
parameters to the new process is variable.

Remarks

Each _exec function loads and executes a new process. All _exec functions use the same operating-system
function (CreateProcess). The _exec functions automatically handle multibyte-character string arguments as
appropriate, recognizing multibyte-character sequences according to the multibyte code page currently in use.
The _wexec functions are wide-character versions of the _exec functions. The _wexec functions behave

identically to their _exec family counterparts except that they do not handle multibyte-character strings.
Generic-Text Routine Mappings

_UNICODE AND _MBCS NOT

TCHAR.H ROUTINE DEFINED _MBCS DEFINED _UNICODE DEFINED
_texecl _execl _execl _wexecl
_texecle _execle _execle _wexecle

_texeclp _execlp _execlp _wexeclp

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/exec-wexec-functions.md
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createprocessa

_UNICODE AND _MBCS NOT

TCHAR.H ROUTINE DEFINED _MBCS DEFINED _UNICODE DEFINED
_texeclpe _execlpe _execlpe _wexeclpe
_texecv _execv _execv _wexecv
_texecve _execve _execve _wexecve
_texecvp _execvp _execvp _wexecvp
_texecvpe _execvpe _execvpe _wexecvpe

The cmdname parameter specifies the file to be executed as the new process. It can specify a full path (from the
root), a partial path (from the current working directory), or a file name. If cmdname does not have a file name
extension or does not end with a period (), the _exec function searches for the named file. If the search is
unsuccessful, it tries the same base name with the .com file name extension and then with the .exe, .bat, and
.cmd file name extensions. If cmdname has a file name extension, only that extension is used in the search. If
cmdname ends with a period, the _exec function searches for cmdname with no file name extension. _execlp ,
_execlpe , _execvp ,and _execvpe search for cmdname (using the same procedures) in the directories specified
by the paTH environment variable. If cmdname contains a drive specifier or any slashes (that is, if it is a relative

path), the _exec call searches only for the specified file; the path is not searched.

Parameters are passed to the new process by giving one or more pointers to character strings as parameters
inthe _exec call. These character strings form the parameter list for the new process. The combined length of
the inherited environment settings and the strings forming the parameter list for the new process must not
exceed 32 kilobytes. The terminating null character (\0') for each string is not included in the count, but space
characters (inserted automatically to separate the parameters) are counted.

NOTE
Spaces embedded in strings may cause unexpected behavior; for example, passing _exec the string "hi there" will
result in the new process getting two arguments, "hi" and "there" . If the intent was to have the new process open

a file named "hi there", the process would fail. You can avoid this by quoting the string: “\"hi there\"" .

IMPORTANT

Do not pass user input to _exec without explicitly checking its content. _exec will result in a call to CreateProcess so

keep in mind that unqualified path names could lead to potential security vulnerabilities.

The _exec functions validate their parameters. If expected parameters are null pointers, empty strings, or
omitted, the _exec functions invoke the invalid parameter handler as described in Parameter Validation. If
execution is allowed to continue, these functions set errno to EINVAL and return -1. No new process is
executed.

The argument pointers can be passed as separate parameters (in _execl , _execle , _execlp ,and _execlpe)
or as an array of pointers (in _execv , _execve , _execvp ,and _execvpe). Atleast one parameter, arge , must
be passed to the new process; this parameter is argv [0] of the new process. Usually, this parameter is a copy
of cmdname . (A different value does not produce an error.)

The _execl, _execle, _execlp ,and _execlpe calls are typically used when the number of parameters is
known in advance. The parameter arge is usually a pointer to cmdname . The parameters argi through argn

https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createprocessa

point to the character strings forming the new parameter list. A null pointer must follow argn to mark the end

of the parameter list.

The _execv, _execve , _execvp ,and _execvpe calls are useful when the number of parameters to the new
process is variable. Pointers to the parameters are passed as an array, argv . The parameter argv [0] is usually
a pointer to cmdname . The parameters argv [1] through argv [n] point to the character strings forming the
new parameter list. The parameter argv [n +1] must be a NULL pointer to mark the end of the parameter
list.

Files that are open when an _exec call is made remain open in the new process. In _execl , _execlp , _execv ,
and _execvp calls, the new process inherits the environment of the calling process. _execle , _execlpe ,
_execve ,and _execvpe calls alter the environment for the new process by passing a list of environment
settings through the envp parameter. envp is an array of character pointers, each element of which (except
for the final element) points to a null-terminated string defining an environment variable. Such a string usually
has the form NAME = value where NaME is the name of an environment variable and value is the string value
to which that variable is set. (Note that value is notenclosed in double quotation marks.) The final element of
the envp array should be NULL. When envp itself is NULL, the new process inherits the environment

settings of the calling process.

A program executed with one of the _exec functions is always loaded into memory as if the maximum
allocation field in the program's .exe file header were set to the default value of OXFFFFH.

The _exec calls do not preserve the translation modes of open files. If the new process must use files
inherited from the calling process, use the _setmode routine to set the translation mode of these files to the
desired mode. You must explicitly flush (using fflush or _flushall) or close any stream before the _exec
function call. Signal settings are not preserved in new processes that are created by calls to _exec routines.
The signal settings are reset to the default in the new process.

Example

// crt_args.c

// Illustrates the following variables used for accessing
// command-line arguments and environment variables:

// argc argv envp

// This program will be executed by crt_exec which follows.

#include <stdio.h>

int main(int argc, // Number of strings in array argv

char *argv[], // Array of command-line argument strings
char **envp) // Array of environment variable strings
{

int count;

// Display each command-line argument.
printf("\nCommand-line arguments:\n");
for(count = @; count < argc; count++)
printf(" argv[%d] %s\n", count, argv[count]);

// Display each environment variable.
printf("\nEnvironment variables:\n");
while(*envp != NULL)

printf(" %s\n", *(envp++));

return;

Run the following program to execute Crt_args.exe:

// crt_exec.c
// Illustrates the different versions of exec, including

// _execl _execle _execlp _execlpe
// _execv _execve _execvp _execvpe
//

// Although CRT_EXEC.C can exec any program, you can verify how
// different versions handle arguments and environment by

// compiling and specifying the sample program CRT_ARGS.C. See
// "_spawn, _wspawn Functions" for examples of the similar spawn
// functions.

#include <stdio.h>
#include <conio.h>
#include <process.h>

char *my_env[] = // Environment for exec?e
{

"THIS=environment will be",

"PASSED=to new process by",

"the EXEC=functions",

NULL

3

int main(int ac, char* av[])
{
char *args[4];
int ch;
if(ac !'= 3){
fprintf(stderr, "Usage: %s <program> <number (1-8)>\n", av[0]
return;

// Arguments for _execv?
args[0] = av[1];

args[1] = "exec??";
args[2] = "two";

args[3] = NULL;

switch(atoi(av[2]))

{

case 1:
_execl(av[1], av[1l], "_execl", "two", NULL);
break;

case 2:

_execle(av[1], av[1l], "_execle", "two", NULL, my_env);
break;

case 3:
_execlp(av[1l], av[1l], "_execlp", "two", NULL);
break;

case 4:
_execlpe(av[1], av[1],
break;

_execlpe", "two", NULL, my_env);

case 5:
_execv(av[1l], args);
break;
case 6:
_execve(av[1l], args, my_env);
break;
case 7:
_execvp(av[1], args);
break;
case 8:
_execvpe(av[1l], args, my_env);
break;
default:
break;

// This point is reached only if exec fails.
printf("\nProcess was not execed.");
exit(0);

Requirements

Header: process.h

See also

Process and Environment Control
abort

atexit

exit, Exit, _exit

_onexit, _onexit_m

_spawn, _wspawn Functions

system, _wsystem

Filename Search Functions

3/11/2019 « 4 minutes to read « Edit Online

These functions search for and close searches for specified file names:
e _findnext, _wfindnext
o findfirst, _wfindfirst

e findclose

Remarks

The _findfirst function provides information about the first instance of a file name that matches the file
specified in the filespec argument. You can usein filespec any combination of wildcard characters that is
supported by the host operating system.

The functions return file information in a _finddata_t structure, which is defined in 10.h. Various functions in the
family use many variations on the _finddata_t structure. The basic _finddata_t structure includes the following
elements:

unsigned attrib

File attribute.

time_t time_create
Time of file creation (-1L for FAT file systems). This time is stored in UTC format. To convert to the local time, use
localtime_s.

time_t time_access
Time of the last file access (-1L for FAT file systems). This time is stored in UTC format. To convert to the local

time, use localtime_s .

time_t time_write

Time of the last write to file. This time is stored in UTC format. To convert to the local time, use 1localtime_s .

_fsize_t size

Length of the file in bytes.
char name [_Max_PATH] Null-terminated name of matched file or directory, without the path.

In file systems that do not support the creation and last access times of a file, such as the FAT system, the

time_create and time_access fields are always -1L.
_mMAX_PATH is defined in Stdlib.h as 260 bytes.

You cannot specify target attributes (such as _a_roonLy) to limit the find operation. These attributes are returned
inthe attrib field of the _finddata_t structure and can have the following values (defined in 10.h). Users should
not rely on these being the only values possible for the attrib field.

_A_ARCH

Archive. Set whenever the file is changed and cleared by the BACKUP command. Value: 0x20.

_A_HIDDEN

Hidden file. Not generally seen with the DIR command, unless you use the /AH option. Returns information

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/filename-search-functions.md

about normal files and files that have this attribute. Value: 0x02.

_A_NORMAL

Normal. File has no other attributes set and can be read or written to without restriction. Value: 0x00.

_A_RDONLY

Read-only. File cannot be opened for writing and a file that has the same name cannot be created. Value: 0x01.

_A_SUBDIR
Subdirectory. Value: 0x10.

_A_SYSTEM

System file. Not ordinarily seen with the DIR command, unless the /A or /A:S option is used. Value: 0x04.

_findnext finds the next name, if any, that matches the filespec argument specified in an earlier call to
_findfirst . The fileinfo argument should point to a structure initialized by the previous call to _findfirst .Ifa
match is found, the fileinfo structure contents are changed as described earlier. Otherwise, it is left unchanged.
_findclose closes the specified search handle and releases all associated resources for both _findfirst and
_findnext . The handle returned by either _findfirst or _findnext must first be passed to _findclose , before

modification operations, such as deleting, can be performed on the directories that form the paths passed to them.

You can nest the _find functions. For example, if a call to _findfirst or _findnext finds the file thatis a

subdirectory, a new search can be initiated with another call to _findfirst or _findnext .

_wfindfirst and _wfindnext are wide-character versions of _findfirst and _findnext . The structure argument
of the wide-character versions has the _wfinddata_t data type, which is defined in 10.h and in Wchar.h. The fields
of this data type are the same as those of the _finddata_t data type, exceptthatin _wfinddata_t the name field is
of type wchar_t instead of type char . Otherwise _wfindfirst and _wfindnext behave identically to _findfirst

and _findnext .

_findfirst and _findnext use the 64-bittime type. If you must use the old 32-bit time type, you can define
_USE_32BIT_TIME_T . The versions of these functions that have the 32 suffix in their names use the 32-bit time

type, and those with the 64 suffix use the 64-bit time type.

Functions _findfirst32i64 , _findnext32i64 , _wfindfirst32i64 ,and _wfindnext32i64 also behave identically to
the 32-bit time type versions of these functions except they use and return 64-bit file lengths. Functions
_findfirst64i32 , _findnext64i32 , _wfindfirste4i32 ,and _wfindnext64i32 use the 64-bit time type but use 32-bit
file lengths. These functions use appropriate variations of the _finddata_t type in which the fields have different
types for the time and the file size.

_finddata_t is actually a macro that evaluates to _finddata64i32_t (or _finddata32_t if _USE_32BIT TIME_T is

defined). The following table summarizes the variations on _finddata_t :

STRUCTURE TIME TYPE FILE SIZE TYPE
_finddata_t , _wfinddata_t __time64_t _fsize_t
_finddata32_t , _wfinddata32_t __time32_t _fsize_t
__finddata64_t , __wfinddata64_t __time64_t __int64
_finddata32i64_t , __time32_t __int64

_wfinddata32i64_t

STRUCTURE

_finddata64i32_t ,
_wfinddata64i32_t

TIME TYPE

__time64_t

_fsize t isa typedef for unsigned long (32 bits).

Example

// crt_find.c

// This program uses the 32-bit _find functions to print

// a list of all files (and their attributes) with a .C extension
// in the current directory.

#include <stdio.h>
#include <stdlib.h>
#include <io.h>
#include <time.h>

int main(void)

{

struct _finddata_t c_file;

intptr_t hFile;

// Find first .c file in current directory
if((hFile = _findfirst("*.c", &c_file)) == -1L)
printf("No *.c files in current directory!\n");

else

{
printf("Listing of

printf("RDO HID SYS ARC FILE
PRt (A S S

do {
char buffer[30];

printf((c_file.
printf((c_file.
printf((c_file.
printf((c_file.

.c files\n\n");

attrib & _A_RDONLY) ? " Y
attrib & _A_HIDDEN) ? " Y
attrib & _A SYSTEM) ? " Y
attrib & A ARCH) 2?2 " Y

DATE %25c SIZE\n", '
---- %25C ----\n",

=2 =z 2

N "

ctime_s(buffer, _countof(buffer), &c_file.time_write);
printf(" %-12s %.24s %91d\n",
c_file.name, buffer, c_file.size);

} while(_findnext(

_findclose(hFile);

Listing of .c files
RDO HID SYS ARC FILE

N N N Y blah.c
N N N Y test.c

See also

System Calls

hFile, &c_file) == 0);

DATE

Wed Feb 13 09:21:42 2002
Wed Feb 06 14:30:44 2002

SIZE

1715
312

")
")

);
)5
)s
)5

FILE SIZE TYPE

_fsize_t

Format specification syntax: printf and wprintf

functions

3/11/2019 « 16 minutes to read « Edit Online

The various printf and wprintf functions take a format string and optional arguments and produce a
formatted sequence of characters for output. The format string contains zero or more directives, which are
either literal characters for output or encoded conversion specifications that describe how to format an
argument in the output. This topic describes the syntax used to encode conversion specifications in the format
string. For a listing of these functions, see Stream 1/0.

A conversion specification consists of optional and required fields in this form:
%lflagsllwidth][.precision][sizeltype

Each field of the conversion specification is a character or a number that signifies a particular format option
or conversion specifier. The required type field specifies the kind of conversion to be applied to an argument.
The optional flags, width, and precision fields control additional format aspects such as leading spaces or
zeroes, justification, and displayed precision. The size field specifies the size of the argument consumed and
converted.

A basic conversion specification contains only the percent sign and a type character. For example, %s
specifies a string conversion. To print a percent-sign character, use %% . If a percent sign is followed by a
character that has no meaning as a format field, the invalid parameter handler is invoked. For more
information, see Parameter Validation.

IMPORTANT

For security and stability, ensure that conversion specification strings are not user-defined. For example, consider a
program that prompts the user to enter a name and stores the input in a string variable that's named user_name . To

print user_name , do not do this:
printf(user_name); /* Danger! If user_name contains "%s", program will crash */
Instead, do this:

printf("%s", user_name);

Type conversion specifier

The type conversion specifier character specifies whether to interpret the corresponding argument as a
character, a string, a pointer, an integer, or a floating-point number. The type character is the only required
conversion specification field, and it appears after any optional fields.

The arguments that follow the format string are interpreted according to the corresponding type character
and the optional size prefix. Conversions for character types char and wchar_t are specified by using c or C,
and single-byte and multi-byte or wide character strings are specified by using s or S, depending on which
formatting function is being used. Character and string arguments that are specified by using c and s are
interpreted as char and char* by printf family functions, or as wchar_t and wchar_t* by wprintf family
functions. Character and string arguments that are specified by using C and S are interpreted as wchar_t and
wchar_t* by printf family functions, or as char and char* by wprintf family functions. This behavior is
Microsoft specific.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/format-specification-syntax-printf-and-wprintf-functions.md

Integer types such as short , int, long, long long, and their unsigned variants, are specified by usingd, i,

o, u, X, and X. Floating-point types such as float , double ,and long double , are specified by using a, A, e, E,

f. F, g, and G. By default, unless they are modified by a size prefix, integer arguments are coerced to int type,

and floating-point arguments are coerced to double . On 64-bit systems, an int is a 32-bit value; therefore,

64-bit integers will be truncated when they are formatted for output unless a size prefix of Il or 164 is used.

Pointer types that are specified by p use the default pointer size for the platform.

NOTE

Microsoft Specific The Z type character, and the behavior of the ¢, C, s, and S type characters when they are used
with the printf and wprintf functions, are Microsoft extensions. The ISO C standard uses ¢ and s consistently for

narrow characters and strings, and C and S for wide characters and strings, in all formatting functions.

Type field characters

TYPE CHARACTER ARGUMENT
c Character

C Character

d Integer

i Integer

o Integer

u Integer

X Integer

X Integer

e Floating-point
E Floating-point

OUTPUT FORMAT

When used with printf functions,
specifies a single-byte character;
when used with wprintf functions,
specifies a wide character.

When used with printf functions,
specifies a wide character; when used
with wprintf functions, specifies a
single-byte character.

Signed decimal integer.

Signed decimal integer.

Unsigned octal integer.

Unsigned decimal integer.

Unsigned hexadecimal integer; uses
“abcdef”

Unsigned hexadecimal integer; uses
"ABCDEF."

Signed value that has the form [-
ld.ddddexdd[d] where d is one
decimal digit, dddd is one or more
decimal digits depending on the
specified precision, or six by default,
and ddl[d] is two or three decimal
digits depending on the output
format and size of the exponent.

Identical to the e format except that E
rather than e introduces the
exponent.

TYPE CHARACTER ARGUMENT

f Floating-point
F Floating-point
g Floating-point
G Floating-point
a Floating-point
A Floating-point
n Pointer to integer

OUTPUT FORMAT

Signed value that has the form [-
ldddd.dddd, where dddd is one or
more decimal digits. The number of
digits before the decimal point
depends on the magnitude of the
number, and the number of digits
after the decimal point depends on
the requested precision, or six by
default.

Identical to the f format except that
infinity and nan output is capitalized.

Signed values are displayed in f or e
format, whichever is more compact
for the given value and precision. The
e format is used only when the
exponent of the value is less than -4
or greater than or equal to the
precision argument. Trailing zeros are
truncated, and the decimal point
appears only if one or more digits
follow it.

Identical to the g format, except that
E rather than e, introduces the
exponent (where appropriate).

Signed hexadecimal double-precision
floating-point value that has the form
[-10xh.hhhhp+dd, where h.hhhh are
the hex digits (using lower case
letters) of the mantissa, and dd are
one or more digits for the exponent.
The precision specifies the number of
digits after the point.

Signed hexadecimal double-precision
floating-point value that has the form
[-10Xh.hhhhP=*dd, where h.hhhh are
the hex digits (using capital letters) of
the mantissa, and dd are one or more
digits for the exponent. The precision
specifies the number of digits after
the point.

Number of characters that are
successfully written so far to the
stream or buffer. This value is stored
in the integer whose address is given
as the argument. The size of the
integer pointed to can be controlled
by an argument size specification
prefix. The n specifier is disabled by
default; for information see the
important security note.

TYPE CHARACTER ARGUMENT

p Pointer type

s String

S String

Y4 ANSI_STRING Or UNICODE_STRING
structure

OUTPUT FORMAT

Displays the argument as an address
in hexadecimal digits.

When used with printf functions,
specifies a single-byte or multi-byte
character string; when used with
wprintf functions, specifies a wide-
character string. Characters are
displayed up to the first null character
or until the precision value is reached.

When used with printf functions,
specifies a wide-character string;
when used with wprintf functions,
specifies a single-byte or multi-byte
character string. Characters are
displayed up to the first null character
or until the precision value is reached.

When the address of an ANSI_STRING
or UNICODE_STRING structure is
passed as the argument, displays the
string contained in the buffer pointed
to by the Buffer field of the
structure. Use a size modifier prefix of
w to specify a UNICODE_STRING
argument—for example, %wz . The

Length field of the structure must
be set to the length, in bytes, of the
string. The MaximumLength field of
the structure must be set to the
length, in bytes, of the buffer.

Typically, the Z type character is used
only in driver debugging functions
that use a conversion specification,
such as dbgPrint and kdPrint .

Starting in Visual Studio 2015, if the argument that corresponds to a floating-point conversion specifier (a, A,

e E, f F, g, G) is infinite, indefinite, or NaN, the formatted output conforms to the C99 standard. This table

lists the formatted output:

VALUE OUTPUT
infinity inf

Quiet NaN nan
Signalling NaN nan(snan)

Indefinite NaN nan(ind)

Any of these values may be prefixed by a sign. If a floating-point type conversion specifier character is a

capital letter, then the output is also formatted in capital letters. For example, if the format specifier is %F

instead of %f , an infinity is formatted as INF instead of inf .The scanf functions can also parse these

https://docs.microsoft.com/windows/desktop/api/ntdef/ns-ntdef-_string
https://docs.microsoft.com/windows-hardware/drivers/ddi/content/wudfwdm/ns-wudfwdm-_unicode_string

strings, so these values can make a round-trip through printf and scanf functions.

Before Visual Studio 2015, the CRT used a different, non-standard format for output of infinite, indefinite, and

NaN values:
VALUE OUTPUT
+ infinity 1.#INF random-digits
- infinity -1.#INF random-digits
Indefinite (same as quiet NaN) digit .#IND random-digits
NaN digit .#NAN random-digits

Any of these may have been prefixed by a sign, and may have been formatted slightly differently depending
on field width and precision, sometimes with unusual effects. For example, printf("%.2f\n", INFINITY) would
print 1.#3 because the #INF would be "rounded" to a precision of 2 digits.

NOTE
If the argument that corresponds to %s or %s , or the Buffer field of the argument that corresponds to %z , is a

null pointer, "(null)" is displayed.

NOTE

In all exponential formats, the minimum number of digits of exponent to display is two, using three only if necessary.
By using the _set_output_format function, you can set the number of digits displayed to three for backward
compatibility with code written for Visual Studio 2013 and before.

IMPORTANT
Because the %n format is inherently insecure, it is disabled by default. If %n is encountered in a format string, the
invalid parameter handler is invoked, as described in Parameter Validation. To enable %n support, see

_set_printf_count_output.

Flag directives

The first optional field in a conversion specification contains flag directives, zero or more flag characters that
specify output justification and control output of signs, blanks, leading zeros, decimal points, and octal and
hexadecimal prefixes. More than one flag directive may appear in a conversion specification, and the flag

characters can appear in any order.

Flag characters

FLAG MEANING DEFAULT
- Left align the result within the given Right align.
field width.
+ Use a sign (+ or -) to prefix the Sign appears only for negative signed

output value if it is of a signed type. values (-).

FLAG

blank (' ')

Width specification

MEANING

If width is prefixed by 0, leading zeros
are added until the minimum width is
reached. If both 0 and - appear, the 0
is ignored. If 0 is specified for an
integer format (i, u, x, X, o, d) and a
precision specification is also present
—for example, %e4.d —the 0 is
ignored. If 0 is specified for the a or A
floating-point format, leading zeros
are prepended to the mantissa, after
the ex or ex prefix.

Use a blank to prefix the output value
if it is signed and positive. The blank is
ignored if both the blank and + flags
appear.

When it's used with the o, x, or X
format, the # flag uses 0, Ox, or 0X,
respectively, to prefix any nonzero
output value.

When it's used with thee, E f, F, a or
A format, the # flag forces the output
value to contain a decimal point.

When it's used with the g or G
format, the # flag forces the output
value to contain a decimal point and
prevents the truncation of trailing
Zeros.

Ignored when used with ¢, d, i, u, or
s.

DEFAULT

No padding.

No blank appears.

No blank appears.

Decimal point appears only if digits
follow it.

Decimal point appears only if digits
follow it. Trailing zeros are truncated.

In a conversion specification, the optional width specification field appears after any flags characters. The

width argument is a non-negative decimal integer that controls the minimum number of characters that are

output. If the number of characters in the output value is less than the specified width, blanks are added to the

left or the right of the values—depending on whether the left-alignment flag (-) is specified—until the

minimum width is reached. If width is prefixed by 0, leading zeros are added to integer or floating-point

conversions until the minimum width is reached, except when conversion is to an infinity or NaN.

The width specification never causes a value to be truncated. If the number of characters in the output value is

greater than the specified width, or if width is not given, all characters of the value are output, subject to the

precision specification.

If the width specification is an asterisk (*), an int argument from the argument list supplies the value. The

width argument must precede the value that's being formatted in the argument list, as shown in this example:
printf("%0*f", 5, 3); /* 00003 is output */

A missing or small width value in a conversion specification does not cause the truncation of an output value.
If the result of a conversion is wider than the width value, the field expands to contain the conversion result.

Precision specification

In a conversion specification, the third optional field is the precision specification. It consists of a period ()

followed by a non-negative decimal integer that, depending on the conversion type, specifies the number of

string characters, the number of decimal places, or the number of significant digits to be output.

Unlike the width specification, the precision specification can cause either truncation of the output value or

rounding of a floating-point value. If precision is specified as 0 and the value to be converted is O, the result is

no characters output, as shown in this example:

printf("%.ed", @); /* No characters output */

If the precision specification is an asterisk (*), an int argument from the argument list supplies the value. In

the argument list, the precision argument must precede the value that's being formatted, as shown in this

example:

printf("%.*f", 3, 3.14159265); /* 3.142 output */

The type character determines either the interpretation of precision or the default precision when precision is

omitted, as shown in the following table.

How Precision Values Affect Type

TYPE

a A

c C

diouxX

e E

fF

9 G

s, S

MEANING

The precision specifies the number of
digits after the point.

The precision has no effect.

The precision specifies the minimum
number of digits to be printed. If the
number of digits in the argument is
less than precision, the output value
is padded on the left with zeros. The
value is not truncated when the
number of digits exceeds precision.

The precision specifies the number of
digits to be printed after the decimal
point. The last printed digit is
rounded.

The precision value specifies the
number of digits after the decimal
point. If a decimal point appears, at
least one digit appears before it. The
value is rounded to the appropriate
number of digits.

The precision specifies the maximum
number of significant digits printed.

The precision specifies the maximum
number of characters to be printed.
Characters in excess of precision are
not printed.

DEFAULT

Default precision is 13. If precision is
0, no decimal point is printed unless
the # flag is used.

Character is printed.

Default precision is 1.

Default precision is 6. If precision is 0
or the period () appears without a
number following it, no decimal point
is printed.

Default precision is 6. If precision is O,
or if the period () appears without a
number following it, no decimal point
is printed.

Six significant digits are printed, and
any trailing zeros are truncated.

Characters are printed until a null
character is encountered.

Argument size specification

In a conversion specification, the size field is an argument length modifier for the type conversion specifier.
The size field prefixes to the type field—hh, h, j, | (lowercase L), L, Il, t, w, z, | (uppercase i), 132, and 164—
specify the "size" of the corresponding argument—Ilong or short, 32-bit or 64-bit, single-byte character or
wide character—depending on the conversion specifier that they modify. These size prefixes are used with
type characters in the printf and wprintf families of functions to specify the interpretation of argument
sizes, as shown in the following table. The size field is optional for some argument types. When no size prefix
is specified, the formatter consumes integer arguments—for example, signed or unsigned char , short , int
. long , and enumeration types—as 32-bit int types, and float , double ,and long double floating-point
arguments are consumed as 64-bit double types. This matches the default argument promotion rules for
variable argument lists. For more information about argument promotion, see Ellipses and Default
Arguments in Postfix expressions. On both 32-bit and 64-bit systems, the conversion specification of a 64-bit
integer argument must include a size prefix of Il or 164. Otherwise, the behavior of the formatter is undefined.

Some types are different sizes in 32-bit and 64-bit code. For example, size_t is 32 bits long in code
compiled for x86, and 64 bits in code compiled for x64. To create platform-agnostic formatting code for
variable-width types, you can use a variable-width argument size modifier. Alternatively, use a 64-bit
argument size modifier and explicitly promote the variable-width argument type to 64 bits. The Microsoft-
specific I (uppercase i) argument size modifier handles variable-width integer arguments, but we recommend
the type-specific j, t, and z modifiers for portability.

Size Prefixes for printf and wprintf Format-Type Specifiers

TO SPECIFY USE PREFIX WITH TYPE SPECIFIER

char hh d, i, 0 u x orX

unsigned char

short int h d,io uxorX

short unsigned int

__int32

unsigned __int32

__inte4

unsigned __int64

intmax_t

uintmax_t

long double

long int

long unsigned int

long long int

unsigned long long int

ptrdiff_t

size_t

132

164

jorled

| (lowercase L) or L

I (lowercase L)

Il (lowercase LL)

tor | (uppercase i)

z or | (uppercase i)

d, i, 0, u x or X

d,iouxorX

d, i,o ux orX

a,AeEfFgorG

d i, 0o ux orX

d, i, o, u x or X

d iouxorX

d, i, 0, u x or X

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/postfix-expressions

TO SPECIFY USE PREFIX

Single-byte character h
Wide character I lowercase L) or w
Single-byte character string h
Wide-character string I (lowercase L) or w

WITH TYPE SPECIFIER

corC

corC

s, S, orZ

s, S, orZ

The ptrdiff_t and size_t typesare _ int32 or unsigned _ int32 on 32-bit platforms,and __inte4 or

unsigned _ int64 on 64-bit platforms. The I (uppercase i), j, t, and z size prefixes take the correct argument

width for the platform.

In Visual C++, although 1long double is a distinct type, it has the same internal representation as double .

An hc or hC type specifier is synonymous with cin printf functions and with C in wprintf functions. Anlc,

IC, wc or wC type specifier is synonymous with C in printf functions and with cin wprintf functions. An

hs or hS type specifier is synonymous with sin printf functions and with S in wprintf functions. Anls, IS,

ws or wS type specifier is synonymous with S in printf functions and with sin wprintf functions.

NOTE

used with data of type double are Microsoft extensions.

Microsoft Specific The I (uppercase i), 132, 164, and w argument size modifier prefixes are Microsoft extensions and
are not I1SO C-compatible. The h prefix when it's used with data of type char and the I (lowercase L) prefix when it's

See also

printf, _printf_l, wprintf, _wprintf_|
printf_s, _printf_s_|, wprintf_s, _wprintf_s_|
printf_p Positional Parameters

Format Specification Fields: scanf and wscanf

Functions

3/11/2019 « 3 minutes to read = Edit Online

The information here applies to the entire scanf family of functions, including the secure versions and describes
the symbols used to tell the scanf functions how to parse the input stream, such as the input stream stdin for
scanf , into values that are inserted into program variables.

A format specification has the following form:
% [*1[widthl {h [] 1] 164 | L}type
The format argument specifies the interpretation of the input and can contain one or more of the following:

e White-space characters: blank (' *); tab (\t'); or newline ("\n'). A white-space character causes scanf to
read, but not store, all consecutive white-space characters in the input up to the next non-white-space
character. One white-space character in the format matches any number (including 0) and combination of
white-space characters in the input.

e Non-white-space characters, except for the percent sign (%). A non-white-space character causes scanf
to read, but not store, a matching non-white-space character. If the next character in the input stream does
not match, scanf terminates.

e Format specifications, introduced by the percent sign (%). A format specification causes scanf to read
and convert characters in the input into values of a specified type. The value is assigned to an argument in
the argument list.

The format is read from left to right. Characters outside format specifications are expected to match the sequence
of characters in the input stream; the matching characters in the input stream are scanned but not stored. If a
character in the input stream conflicts with the format specification, scanf terminates, and the character is left in
the input stream as if it had not been read.

When the first format specification is encountered, the value of the first input field is converted according to this
specification and stored in the location that is specified by the first argument . The second format specification
causes the second input field to be converted and stored in the second argument , and so on through the end of
the format string.

An input field is defined as all characters up to the first white-space character (space, tab, or newline), or up to the
first character that cannot be converted according to the format specification, or until the field width (if specified)
is reached. If there are too many arguments for the given specifications, the extra arguments are evaluated but
ignored. The results are unpredictable if there are not enough arguments for the format specification.

Each field of the format specification is a single character or a number signifying a particular format option. The
type character, which appears after the last optional format field, determines whether the input field is
interpreted as a character, a string, or a number.

The simplest format specification contains only the percent sign and a type character (for example, %s).Ifa
percent sign (%) is followed by a character that has no meaning as a format-control character, that character and
the following characters (up to the next percent sign) are treated as an ordinary sequence of characters, that is, a
sequence of characters that must match the input. For example, to specify that a percent-sign character is to be
input, use %% .

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/format-specification-fields-scanf-and-wscanf-functions.md

An asterisk (*) following the percent sign suppresses assignment of the next input field, which is interpreted as a
field of the specified type. The field is scanned but not stored.

The secure versions (those with the _s suffix) of the scanf family of functions require that a buffer size
parameter be passed immediately following each parameter of type ¢, ¢, s, s or [.For moreinformation

on the secure versions of the scanf family of functions, see scanf_s, _scanf_s_|, wscanf_s, _wscanf_s_|.

See also

scanf Width Specification

scanf Type Field Characters

scanf, _scanf_|, wscanf, _wscanf_|

scanf_s, scanf s_|, wscanf_s, _wscanf_s_|

IS, isw Routines

3/11/2019 « 9 minutes to read « Edit Online

isalnum, iswalnum, _isalnum_|, _iswalnum_| isgraph, iswgraph, _isgraph_|, _iswgraph_|
isalpha, iswalpha, _isalpha_|, _iswalpha_| isleadbyte, _isleadbyte._|

isascii, __isascii, iswascii islower, iswlower, _islower_|, _iswlower_|
isblank, iswblank, _isblank_|, _iswblank_| isprint, iswprint, _isprint_|, _iswprint_|
iscntrl, iswentrl, _isentrl_l, _iswentrl_| ispunct, iswpunct, _ispunct_|, _iswpunct_|
iscsym, iscsymf, __iscsym, __iswcsym, __iscsymf, __iswcsymf, isspace, iswspace, _isspace_|, _iswspace._|

iscsym|, _iswesym_|, _iscsymf |, _iswcsymf |

_isctype, iswctype, _isctype_|, _iswctype._| isupper, _isupper_|, iswupper, _iswupper_|
isdigit, iswdigit, _isdigit_|, _iswdigit_| isxdigit, iswxdigit, _isxdigit_|, _iswxdigit_|
Remarks

These routines test characters for specified conditions.

The is routines produce meaningful results for any integer argument from -1 (eor) to UCHAR_MAX (OxFF),

inclusive. The expected argument type is int .

Caution

For the is routines, passing an argument of type char may yield unpredictable results. An SBCS or MBCS
single-byte character of type char with a value greater than Ox7F is negative. If a char is passed, the compiler
may convert the value to a signed int or asigned long. This value may be sign-extended by the compiler,

with unexpected results.

The isw routines produce meaningful results for any integer value from - 1 (WEOF) to OxFFFF, inclusive. The
wint_t data type is defined in WCHAR.H as an unsigned short; it can hold any wide character or the wide-
character end-of-file (WEOF) value.

The output value is affected by the setting of the Lc_cTyPE category setting of the locale; see setlocale for more
information. The versions of these functions without the _I suffix use the current locale for this locale-
dependent behavior; the versions with the _I suffix are identical except that they use the locale parameter
passed in instead.

In the "C" locale, the test conditions for the is routines are as follows:

isalnum

Alphanumeric (A-Z,a-z0r0-9).

isalpha
Alphabetic (A -Z or a - 2).

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/is-isw-routines.md

__isascii

ASCII character (0x00 - Ox7F).

isblank

Horizontal tab or space character (0x09 or 0x20).

iscntrl

Control character (0x00 - Ox1F or Ox7F).

__iscsym

Letter, underscore, or digit.

__iscsymf

Letter or underscore.

isdigit
Decimal digit (0 - 9).

isgraph
Printable character except space ().

islower

Lowercase letter (a - 2).

isprint

Printable character including space (0x20 - 0x7E).

ispunct

Punctuation character.

isspace

White-space character (0x09 - 0x0D or 0x20).

isupper

Uppercase letter (A - Z).

isxdigit

Hexadecimal digit (A - F,a-f,or 0 - 9).

For the isw routines, the result of the test for the specified condition is independent of locale. The test

conditions for the isw functions are as follows:

iswalnum

iswalpha Or iswdigit .

iswalpha
Any wide character that is one of an implementation-defined set for which none of iswentrl, iswdigit,
iswpunct , OF iswspace IS nonzero. iswalpha returns nonzero only for wide characters for which iswupper or

iswlower IS nonzero.

iswascii

Wide-character representation of ASCII character (0x0000 - 0x007F).

iswblank
Wide character that corresponds to the standard space character or is one of an implementation-defined set of
wide characters for which iswalnum is false. Standard blank characters are space (L' ') and horizontal tab (L'\t').

iswentrl

Control wide character.

__iswcsym

Any wide character for which isalnum is true, or the'_' character.

__iswcsymf

Any wide character for which iswalpha is true, or the '_' character.

iswctype
Character has property specified by the desc argument. For each valid value of the desc argument of

iswctype , there is an equivalent wide-character classification routine, as shown in the following table:

Equivalence of iswctype(c, desc) to Other isw Testing Routines

VALUE OF DESC ARGUMENT ISWCTYPE(C, DESC) EQUIVALENT
_ALPHA iswalpha(¢)
_ALPHA | _DIGIT iswalnum(¢)
_BLANK iswblank(¢)
_CONTROL iswentrl(¢)
_DIGIT iswdigit(¢)
_ALPHA | _DIGIT | _PUNCT iswgraph(c)
_LOWER iswlower(c)
_ALPHA | _BLANK | _DIGIT | _PUNCT iswprint(¢)
_PUNCT iswpunct(¢)
_BLANK iswblank(¢)
_SPACE iswspace(c)
_UPPER iswupper(c)
_HEX iswxdigit(¢)
iswdigit

Wide character corresponding to a decimal-digit character.

iswgraph

Printable wide character except space wide character (L'").

iswlower
Lowercase letter, or one of implementation-defined set of wide characters for which none of iswcntrl ,
iswdigit , iswpunct ,Or iswspace iS nonzero. iswlower returns nonzero only for wide characters that

correspond to lowercase letters.

iswprint

Printable wide character, including space wide character (L' ").

iswpunct
Printable wide character that is neither space wide character (L' ') nor wide character for which iswalnum is

nonzero.

iswspace
Wide character that corresponds to standard white-space character or is one of implementation-defined set of
wide characters for which iswalnum is false. Standard white-space characters are: space (L'), formfeed (L'\f),
newline (L'\n"), carriage return (L'\r'), horizontal tab (L"\t'), and vertical tab (L"\V").

iswupper
Wide character that is uppercase or is one of an implementation-defined set of wide characters for which none
of iswentrl, iswdigit, iswpunct ,Or iswspace isnonzero. iswupper returns nonzero only for wide characters

that correspond to uppercase characters.

iswxdigit

Wide character that corresponds to a hexadecimal-digit character.

Example

// crt_isfam.c

/* This program tests all characters between 0x0

* and Ox7F, then displays each character with abbreviations
* for the character-type codes that apply.

*/

#include <stdio.h>
#include <ctype.h>

int main(void)

{

int ch;

for(ch = @; ch <= Ox7F; ch++)

{
printf("%.2x ", ch);
printf(" %c", isprint(ch) ? ch g % %)3
printf("%4s", isalnum(ch) ? "AN" : "");
printf("%3s", isalpha(ch) ? "A" : "");
printf("%3s", __isascii(ch) ? "AS" : "");
printf("%3s", iscntrl(ch) ? "C" : "");
printf("%3s", __iscsym(ch) ? "CS " : "");
printf("%3s", __iscsymf(ch) ? "CSF" : "");
printf("%3s", isdigit(ch) ? "D" : "");
printf("%3s", isgraph(ch) ? "G" : "");
printf("%3s", islower(ch) ? "L" = "");
printf("%3s", ispunct(ch) ? "PU" : "");
printf("%3s", isspace(ch) ? "S" : "");
printf("%3s", isprint(ch) ? "PR"™ : "");
printf("%3s", isupper(ch) ? "u" : "");
printf("%3s", isxdigit(ch) ? "X" = "");
printf(".\n");

}

}

Output

00 AS C
o1 AS C
02 AS C
03 AS C
04 AS C
13 A

AS

06

AS

07

AS

08

n nn N n n

AS

09

AS

Qa

AS

ob

AS

oc

AS

od

AS

Qe

AS

of
10
11
12
13

AS

AS

AS

AS

AS

14
15
16
17
18
19
la

AS

AS

AS

AS

AS

AS

AS

1b
1c

AS

AS

1d
le

AS

AS

1f
20
21

PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR

AS

PU
PU
PU
PU
PU
PU
PU
PU
PU
PU
PU
PU
PU
PU
PU

AS

AS

22

AS

23

AS

24
25

AS

AS

26
27

AS

AS

28
29
2a

AS

AS

AS

2b

AS

2c

AS

2d
2e

AS

AS

2f
30
31

cs
@S]
cs
@S}
cs
@S}
cs
cs
cs
@S}

AS

AN

AS

AN

AS

AN

32
33

AS

AN

AS

AN

34
35
36
37
38
39
3a

AS

AN

AS

AN

AS

AN

AS

AN

AS

AN

PU
PU
PU
PU
PU
PU
PU

AS

AS

3b
3c

AS

AS

3d
3e

AS

AS

3f
40

AS
A AN A AS
B AN A AS
C AN A AS
D AN A AS
E AN A AS
F AN A AS
G AN A AS
H AN A AS
I AN AAS

PR U X.
PR U X.
PR U X.
PR U X.
PR U X.
PR U X.

PR
PR
PR

G
G
G
G
G
G
G
G
G

CS CSF
CS CSF
CS CSF
CS CSF
CS CSF
CS CSF
CS CSF
CS CSF
CS CSF

41

42

43

44

45

46

47

48

49

4d J AN
4b K AN
4c L AN
4d M AN
4e N AN
4f 0O AN
50 P AN
51 Q AN
52 R AN
53 S AN
54 T AN
55 U AN
56 V AN
57 W AN
58 X AN
59 Y AN
5a Z AN
5b [
5¢c \
5d 1
Se n
5 _
60)
61 a AN
62 b AN
63 c AN
64 d AN
65 e AN
66 f AN
67 g AN
68 h AN
69 i AN
6a j AN
6b k AN
6cC 1 AN
6d m AN
6e n AN
6f o AN
70 p AN
71 q AN
72 r AN
73 s AN
74 t AN
75 u AN
76 v AN
77 w AN
78 X AN
79 'y AN
7a z AN
7b A
7c |
7d }
7e ~
7f

See also

> > > > > > > > > > > > > > > > I

> > > > > > > > > > > > > > > > > > >> > > > > > P>

AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS

=)
cs
cs
cs
@S]
cs
@S]
cs
@S}
cs
@S}
cs
cs
cs
@S}
cs
@S}

cs

cs
cs
cs
cs
cs
cs
cs
cs
cs
cs
cs
cs
cs
cs
cs
cs
cs
cs
@S}
cs
@S}
cs
@S}
cs
@S}
cs

Character Classification

Locale

setlocale, wsetlocale

wSr
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF

CSF

CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF

OO0 60006060060006000060000600000000606000600606000000600060o60o60o0o60Oooo6oCda

rrrr - rrrr - - - - -~ - - - - - - -

PU
PU
PU
PU
PU
PU

PU
PU
PU
PU

P
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR

CcC Cccccccccccccocccocococ

Interpretation of Multibyte-Character Sequences

to Functions

X X X X X X

_ismbb Routines

3/11/2019 « 2 minutes to read « Edit Online

Tests the given integer value ¢ for a particular condition, by using the current locale or a specified LC_CTYPE

conversion state category.

_ismbbalnum, _ismbbalnum_| _ismbbkprint, _ismbbkprint_|

_ismbbalpha, _ismbbalpha_| _ismbbkpunct, _ismbbkpunct_|

_ismbbblank, _ismbbblank_| _ismbblead, _ismbblead_|

_ismbbgraph, _ismbbgraph_| _ismbbprint, _ismbbprint_|

_ismbbkalnum, _ismbbkalnum_| _ismbbpunct, _ismbbpunct_|

_ismbbkana, _ismbbkana_| _ismbbtrail, _ismbbtrail_|
Remarks

Every routine in the _ismbb family tests the given integer value ¢ for a particular condition. The test result
depends on the multibyte code page that's in effect. By default, the multibyte code page is set to the ANSI code
page that's obtained from the operating system at program startup. You can use _getmbcp to query for the
multibyte code page that's in use, or _setmbcp to change it.

The output value is affected by the setting of the Lc_cType category setting of the locale; for more information,
see setlocale, _wsetlocale. The versions of these functions that don't have the _I suffix use the current locale for
this locale-dependent behavior; the versions that do have the _I suffix are identical except that instead they use
the locale parameter that's passed in.

The routines in the _ismbb family test the given integer ¢ as follows.

ROUTINE BYTE TEST CONDITION

_ismbbalnum isalnum || _ismbbkalnum .

_ismbbalpha isalpha || _ismbbkalnum .

_ismbbblank isblank

_ismbbgraph Same as _ismbbprint , but _ismbbgraph does not include

the space character (0x20).

_ismbbkalnum Non-ASCII text symbol other than punctuation. For example,
in code page 932 only, _ismbbkalnum tests for katakana
alphanumeric.

_ismbbkana Katakana (0xA1 - OxDF). Specific to code page 932.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/ismbb-routines.md

ROUTINE

_ismbbkprint

_ismbbkpunct

_ismbblead

_ismbbprint

_ismbbpunct

_ismbbtrail

BYTE TEST CONDITION

Non-ASClII text or non-ASCII punctuation symbol. For
example, in code page 932 only, _ismbbkprint tests for

katakana alphanumeric or katakana punctuation (range:
OxA1 - OxDF).

Non-ASCIl punctuation. For example, in code page 932 only,
_ismbbkpunct tests for katakana punctuation.

First byte of multibyte character. For example, in code page
932 only, valid ranges are 0x81 - 0x9F, OxEQ - OxFC.

isprint || _ismbbkprint .ismbbprintincludes the space
character (0x20).

ispunct || _ismbbkpunct

Second byte of multibyte character. For example, in code
page 932 only, valid ranges are 0x40 - 0x7E, 0x80 - OxEC.

The following table shows the ORed values that compose the test conditions for these routines. The manifest

constants _BLANK , _DIGIT , _LOWER , _PUNCT ,and _UPPER are defined in Ctype.h.

ROUTINE

_ismbbalnum

_ismbbalpha

_ismbbblank

_ismbbgraph

_ismbbkalnum

_ismbbkprint

_ismbbkpunct

_ismbbprint

_ismbbpunct

_BLANK

_DIGIT

LOWER

NON- NON-
ASCll ASCIl
_PUNCT UPPER TEXT PUNCT
— X X —
— X X —
X X X X
— — X —
— — X X
- - - X
X X X X
X - - X

The _ismbb routines are implemented both as functions and as macros. For more information about how to

choose either implementation, see Recommendations for Choosing Between Functions and Macros.

See also

Byte Classification

is, isw Routines
_mbbtombc, _mbbtombc_|
_mbctombb, _mbctombb_|

_ismbc Routines

3/11/2019 « 3 minutes to read « Edit Online

Each _ismbc routine tests a given multibyte character ¢ for a particular condition.

_ismbcalnum, _ismbcalnum_|, _ismbcalpha, _ismbcalpha_|, _ismbcl0, _ismbcl0_I, _ismbcl1, _ismbcl1_|, _ismbcl2, _ismbcl2_I
_ismbcdigit, _ismbcdigit_|

_ismbcgraph, _ismbcgraph_|, _ismbcprint, _ismbcprint_|, _ismbclegal, _ismbclegal_|, _ismbcsymbol, _ismbcsymbol_|
_ismbcpunct, _ismbcpunct_|, _ismbcblank, _ismbcblank_|,
_ismbcspace, _ismbcspace._|

_ismbchira, _ismbchira_l, _ismbckata, _ismbckata_l _ismbclower, _ismbclower_|, _ismbcupper, _ismbcupper_|

Remarks

The test result of each _ismbc routine depends on the multibyte code page in effect. Multibyte code pages have
single-byte alphabetic characters. By default, the multibyte code page is set to the system-default ANSI code page
obtained from the operating system at program startup. You can query or change the multibyte code page in use
with _getmbcp or _setmbcp, respectively.

The output value is affected by the Lc_cTyPe category setting of the locale; see setlocale for more information.
The versions of these functions without the _I suffix use the current locale for this locale-dependent behavior; the
versions with the _I suffix are identical except that they use the locale parameter passed in instead.

ROUTINE TEST CONDITION CODE PAGE 932 EXAMPLE

_ismbcalnum, _ismbcalnum_| Alphanumeric Returns nonzero if and only if ¢ isa
single-byte representation of an ASCII
English letter: See examples for
_ismbcdigit and _ismbcalpha .

_ismbcalpha, _ismbcalpha_| Alphabetic Returns nonzero if and only if ¢ isa
single-byte representation of an ASCII
English letter: See examples for
_ismbcupper and _ismbclower ;oOra
katakana letter: 0OxA6<= ¢ <=0xDF.

_ismbcdigit, _ismbcdigit_| Digit Returns nonzero if and only if ¢ isa

single-byte representation of an ASCII
digit: 0x30<= ¢ <=0x39.

_ismbcgraph, _ismbcgraph_| Graphic Returns nonzero if and only if ¢ isa
single-byte representation of any ASCII
or katakana printable character except a
white space (). See examples for
_ismbcdigit , _ismbcalpha , and

_ismbcpunct .

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/ismbc-routines.md

ROUTINE

_ismbclegal, _ismbclegal_|

_ismbclower, _ismbclower_|

_ismbcprint, _ismbcprint_|

_ismbcpunct, _ismbcpunct_|

_ismbcblank, _ismbcblank_|,

_ismbcspace, _ismbcspace._|

_ismbcsymbol, _ismbcsymbol_|

_ismbcupper, _ismbcupper_|

Code Page 932 Specific

TEST CONDITION

Valid multibyte character

Lowercase alphabetic

Printable

Punctuation

Space or horizontal tab

Whitespace

Multibyte symbol

Uppercase alphabetic

The following routines are specific to code page 932.

ROUTINE

_ismbchira, _ismbchira_l

_ismbckata, _ismbckata_|

_ismbclO, _ismbclO_|

_ismbcl1, _ismbcl1_|

CODE PAGE 932 EXAMPLE

Returns nonzero if and only if the first

byte of ¢ is within ranges 0x81 - 0x9F
or OxEO - OxFC, while the second byte is
within ranges 0x40 - Ox7E or 0x80 - FC.

Returns nonzero if and only if ¢ isa
single-byte representation of an ASCII
lowercase English letter: 0x61<= ¢
<=0x7A.

Returns nonzero if and only if ¢ isa
single-byte representation of any ASCII
or katakana printable character
including a white space (): See
examples for _ismbcspace ,
_ismbcdigit , _ismbcalpha , and

_ismbcpunct .

Returns nonzero if and only if ¢ isa
single-byte representation of any ASCII
or katakana punctuation character.

Returns nonzero if and only if ¢ isa

single-byte representation of a space
character or a horizontal tab character:
¢ =0x20 or ¢ =0x09.

Returns nonzero if and only if ¢ isa
white space character: ¢ =0x20 or
0x09<= ¢ <=0x0D.

Returns nonzero if and only if
0x8141<= ¢ <=0x81AC.

Returns nonzero if and only if ¢ isa
single-byte representation of an ASCII
uppercase English letter: 0x41<= ¢
<=0x5A.

TEST CONDITION (CODE PAGE 932 ONLY)

Double-byte Hiragana: 0x829F<= ¢ <=0x82F1.

Double-byte katakana: 0x8340<= ¢ <=0x8396.

JIS non-Kanji: 0x8140<= ¢ <=0x889E.

JIS level-1: 0x889F<= ¢ <=0x9872.

ROUTINE TEST CONDITION (CODE PAGE 932 ONLY)

_ismbcl2, _ismbcl2_| JIS level-2: 0x989F<= ¢ <=0xEA9E.

_ismbcle , _ismbcll ,and _ismbcl2 check that the specified value ¢ matches the test conditions described in the
preceding table, but do not check that ¢ is a valid multibyte character. If the lower byte is in the ranges 0x00 -
0x3F, 0x7F, or OxFD - OxFF, these functions return a nonzero value, indicating that the character satisfies the test

condition. Use _ismbbtrail, _ismbbtrail_| to test whether the multibyte character is defined.

END Code Page 932 Specific

See also

Character Classification
is, isw Routines
_ismbb Routines

operator new(CRT)

10/31/2018 « 2 minutes to read Edit Online

Beginning in Visual Studio 2013, the Universal C Runtime (UCRT) no longer supports the C++-specific operator
new and operator delete functions. These are now part of the C++ Standard Library. For more information, see
new and delete operators and new operator in the C++ Language Reference.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/new-operator-crt.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-and-delete-operators
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-operator-cpp

operator new (CRT)

3/11/2019 « 2 minutes to read « Edit Online

Beginning in Visual Studio 2013, the Universal C Runtime (UCRT) no longer supports the C++-specific operator
new and operator delete functions. These are now part of the C++ Standard Library. For more information, see
new and delete operators and new operator in the C++ Language Reference.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/operator-new-crt.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-and-delete-operators
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-operator-cpp

operator delete(CRT)

10/31/2018 « 2 minutes to read Edit Online

Beginning in Visual Studio 2013, the Universal C Runtime (UCRT) no longer supports the C++-specific operator
new and operator delete functions. These are now part of the C++ Standard Library. For more information, see
new and delete operators and delete operator in the C++ Language Reference.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/delete-operator-crt.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-and-delete-operators
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/delete-operator-cpp

operator delete (CRT)

3/11/2019 « 2 minutes to read « Edit Online

Beginning in Visual Studio 2013, the Universal C Runtime (UCRT) no longer supports the C++-specific operator
new and operator delete functions. These are now part of the C++ Standard Library. For more information, see
new and delete operators and delete operator in the C++ Language Reference.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/operator-delete-crt.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-and-delete-operators
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/delete-operator-cpp

printf_p Positional Parameters

3/11/2019 « 2 minutes to read « Edit Online

Positional parameters provide the ability to specify by number which of the arguments is to be substituted into a

field in a format string. The following positional parameter printf functions are available:

NON-POSITIONAL PRINTF FUNCTIONS POSITIONAL PARAMETER EQUIVALENTS

printf, _printf_|, wprintf, _wprintf_| _printf_p, _printf_p_l, _wprintf_p, _wprintf_p_|

sprintf, _sprintf_|, swprintf, _swprintf_|, __swprintf_| _sprintf_p, _sprintf_p_|, _swprintf_p, _swprintf_p_|
_cprintf, _cprintf_l, _cwprintf, _cwprintf_| _cprintf_p, _cprintf_p_|, _cwprintf_p, _cwprintf_p_|
fprintf, _fprintf_|, fwprintf, _fwprintf_| _fprintf_p, _fprintf_p_|, _fwprintf_p, _fwprintf_p_|
vprintf, _vprintf_|, vwprintf, _vwprintf_| _vprintf_p, _vprintf_p_|, _vwprintf_p, _vwprintf_p_|
viprintf, _vfprintf_|, vfwprintf, _vfwprintf_| _vfprintf_p, _vfprintf_p_|, _vfwprintf_p, _vfwprintf_p_|
vsprintf, _vsprintf_|, vswprintf, _vswprintf_|, __vswprintf_| _vsprintf_p, _vsprintf_p_|, _vswprintf_p, _vswprintf_p_|

How to specify positional parameters

Parameter indexing

By default, if no positional formatting is present, the positional functions behave identically to the non-positional
ones. You specify the positional parameter to format by using %n$ at the beginning of the format specifier,
where n is the position of the parameter to format in the parameter list. The parameter position starts at 1 for
the first argument after the format string. The remainder of the format specifier follows the same rules as the
printf format specifier. For more information about format specfiers, see Format Specification Syntax: printf

and wprintf Functions.

Here's an example of positional formatting:
_printf_p("%1$s %2$s", "November", "10");
This prints:
November 10

The order of the numbers used doesn't need to match the order of the arguments. For example, this is a valid

format string:

_printf_p("%2%$s %1$s", "November", "10");

This prints:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/printf-p-positional-parameters.md

10 November

Unlike traditional format strings, positional parameters may be used more than once in a format string. For
example,

_printf_p("%1$d times %1$d is %2$d", 10, 100);
This prints:
10 times 10 is 100

All arguments must be used at least once somewhere in the format string. The maximum number of positional
parameters allowed in a format string is given by _ARGMAX .

Width and precision

You can use *n$ to specify a positional parameter as a width or precision specifier, where n is the position of
the width or precision parameter in the parameter list. The position of the width or precision value must appear
immediately following the * symbol. For example,

_printf_p("%1$*2$s","Hello", 10);
or
_printf_p("%2$*1$s", 10, "Hello");

Mixing positional and non-positional arguments

Positional parameters may not be mixed with non-positional parameters in the same format string. If any
positional formatting is used, all format specifiers must use positional formatting. However, printf_p and

related functions still support non-positional parameters in format strings containing no positional parameters.

Example

// positional_args.c

// Build by using: cl /W4 positional_args.c

// Positional arguments allow the specification of the order
// in which arguments are consumed in a formatting string.

#include <stdio.h>

int main()
{
int i=1,
J =2,
k = 3;
double x = 0.1,
y = 2.22,
z = 333.3333;
char *s1l = "abc",
*s2 = "def",
*s3 = "ghi";

// If positional arguments are unspecified,
// normal input order is used.
_printf_p("%d %d %d\n", i, j, k);

// Positional arguments are numbers followed by a $ character.
_printf_p("%3%$d %1%$d %2%$d\n", i, j, k);

// The same positional argument may be reused.
_printf_p("%1$d %2%d %1$d\n", i, J);

// The positional arguments may appear in any order.
_printf_p("%1$s %2$s %3$s\n", s1, s2, s3);
_printf_p("%3%s %1%$s %2$s\n", sl1l, s2, s3);

// Precision and width specifiers must be int types.
_printf_p("%3$*5%$f %2%.*4$f %1$*4$.*5$F\n", x, y, z, j, k);

123

312

121

abc def ghi

ghi abc def
333.333300 2.22 0.100

See also

Format Specification Syntax: printf and wprintf Functions

scanf Type Field Characters

3/11/2019 « 3 minutes to read « Edit Online

The following information applies to any of the scanf family of functions, including the secure versions, such as

scanf_s .

The type character is the only required format field; it appears after any optional format fields. The type

character determines whether the associated argument is interpreted as a character, string, or number.

Type Characters for scanf functions

CHARACTER

TYPE OF INPUT EXPECTED

Character. When used with
scanf functions, specifies
single-byte character; when
used with wscanf
functions, specifies wide
character. White-space
characters that are ordinarily
skipped are read when ¢ is
specified. To read next non-
white-space single-byte
character, use %1s ; to read
next non-white-space wide
character, use %1iws .

Opposite size character.
When used with scanf
functions, specifies wide
character; when used with

wscanf functions, specifies
single-byte character. White-
space characters that are
ordinarily skipped are read
when ¢ is specified. To
read next non-white-space
single-byte character, use

%1s ; to read next non-
white-space wide character,
use %1iws .

Decimal integer.

An integer. Hexadecimal if
the input string begins with
"0x" or "0X", octal if the
string begins with "0",
otherwise decimal.

Octal integer.

TYPE OF ARGUMENT

Pointer to char when used
with scanf functions,
pointer to wchar_t when
used with wscanf
functions.

Pointer to wchar_t when

used with scanf functions,
pointer to char when used
with wscanf functions.

Pointer to int .

Pointer to int .

Pointer to int .

SIZE ARGUMENT IN SECURE
VERSION?

Required. Size does not
include space for a null
terminator.

Required. Size argument
does not include space for a
null terminator.

No.

No.

No.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/scanf-type-field-characters.md

CHARACTER
p

u

X

e, E, f,
a, A

TYPE OF INPUT EXPECTED

A pointer address in
hexadecimal digits. The
maximum number of digits
read depends on the size of
a pointer (32 or 64 bits),
which depends on the
machine architecture. "0x" or
"0X" are accepted as
prefixes.

Unsigned decimal integer.

Hexadecimal integer.

Floating-point value
consisting of optional sign
(+ or -), series of one or
more decimal digits
containing decimal point,
and optional exponent ("e"
or "E") followed by an
optionally signed integer
value.

Floating-point value
consisting of a series of one
or more hexadecimal digits
containing an optional
decimal point, and an
exponent ("p" or "P")
followed by a decimal value.

No input read from stream
or buffer.

String, up to first white-
space character (space, tab
or newline). To read strings
not delimited by space
characters, use set of square
brackets ([1), as
discussed in scanf Width
Specification.

TYPE OF ARGUMENT

Pointer to void* .

Pointer to unsigned int .

Pointer to int .

Pointer to float .

Pointer to float .

Pointer to int , into which

is stored number of

characters successfully read

from stream or buffer up to

that point in current call to
scanf functions or

wscanf functions.

When used with scanf
functions, signifies single-
byte character array; when
used with wscanf
functions, signifies wide-
character array. In either
case, character array must
be large enough for input
field plus terminating null
character, which is
automatically appended.

SIZE ARGUMENT IN SECURE
VERSION?

No.

No.

No.

No.

No.

No.

Required. Size includes space
for a null terminator.

CHARACTER TYPE OF INPUT EXPECTED

s Opposite-size character
string, up to first white-
space character (space, tab
or newline). To read strings
not delimited by space
characters, use set of square
brackets ([1), as
discussed in scanf Width
Specification.

TYPE OF ARGUMENT

When used with scanf
functions, signifies wide-
character array; when used
with wscanf functions,
signifies single-byte-
character array. In either
case, character array must
be large enough for input
field plus terminating null
character, which is
automatically appended.

SIZE ARGUMENT IN SECURE
VERSION?

Required. Size includes space
for a null terminator.

The size arguments, if required, should be passed in the parameter listimmediately following the argument they

apply to. For example, the following code:

char stringl[11], string2[9];
scanf_s("%10s %8s", stringl, 11, string2, 9);

reads a string with a maximum length of 10 into stringl , and a string with a maximum length of 8 into string2 .

The buffer sizes should be at least one more than the width specifications since space must be reserved for the

null terminator.

The format string can handle single-byte or wide character input regardless of whether the single-byte character

or wide-character version of the function is used. Thus, to read single-byte or wide characters with scanf

functions and wscanf functions, use format specifiers as follows.

TO READ CHARACTER AS USE THIS FUNCTION

single byte scanf functions
single byte wscanf functions
wide wscanf functions
wide scanf functions

WITH THESE FORMAT SPECIFIERS

hc

hc

lc

1c

, Or hcC

,or 1c

To scan strings with scanf functions, and wscanf functions, use the above table with format type-specifiers s

and s instead of ¢ and c.

See also

scanf, _scanf_|, wscanf, _wscanf_|

scanf Width Specification

3/11/2019 « 5 minutes to read « Edit Online

This information applies to the interpretation of format strings in the scanf family of functions, including the
secure versions such as scanf_s . These functions normally assume the input stream is divided into a sequence
of tokens. Tokens are separated by whitespace (space, tab, or newline), or in the case of numerical types, by the
natural end of a numerical data type as indicated by the first character that cannot be converted into numerical
text. However, the width specification may be used to cause parsing of the input to stop before the natural end of
a token.

The width specification consists of characters between the % and the type field specifier, which may include a
positive integer called the width field and one or more characters indicating the size of the field, which may also
be considered as modifiers of the type of the field, such as an indication of whether the integer type is short or
long. Such characters are referred to as the size prefix.

The Width Field

The width field is a positive decimal integer controlling the maximum number of characters to be read for that
field. No more than width characters are converted and stored at the corresponding argument . Fewer than width
characters may be read if a whitespace character (space, tab, or newline) or a character that cannot be converted
according to the given format occurs before width is reached.

The width specification is separate and distinct from the buffer size argument required by the secure versions of
these functions (i.e, scanf_s , wscanf_s , etc). In the following example, the width specification is 20, indicating
that up to 20 characters are to be read from the input stream. The buffer length is 21, which includes room for
the possible 20 characters plus the null terminator:

char str[21];
scanf_s("%20s", str, 21);

If the width field is not used, scanf_s will attempt to read the entire token into the string. If the size specified is
not large enough to hold the entire token, nothing will be written to the destination string. If the width field is
specified, then the first width characters in the token will be written to the destination string along with the null
terminator.

The Size Prefix

The optional prefixes h, 1, II, 164, and L indicate the size of the argument (long or short, single-byte character or
wide character, depending upon the type character that they modify). These format-specification characters are
used with type characters in scanf or wscanf functions to specify interpretation of arguments as shown in the
following table. The type prefix 164 is a Microsoft extension and is not ANS| compatible. The type characters and
their meanings are described in the "Type Characters for scanf functions" table in scanf Type Field Characters.

NOTE

The h, |, and L prefixes are Microsoft extensions when used with data of type char .

Size Prefixes for scanf and wscanf Format-Type Specifiers

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/scanf-width-specification.md

TO SPECIFY USE PREFIX WITH TYPE SPECIFIER

double | e EfgorG
long double (same as double) L e EfgorG
long int | d i o x orX
long unsigned int | u

long long] d i o0 x orX
short int h d, i, 0, x, or X
short unsigned int h u
__int64 164 d i o uxorX
Single-byte character with scanf h corC
Single-byte character with wscanf h corC
Wide character with scanf 1 corC
Wide character with wscanf | corC
Single-byte - character string with h sorS

scanf
Single-byte - character string with h sorS

wscanf
Wide-character string with scanf | sorS
Wide-character string with wscanf | sorS

The following examples use h and I with scanf_s functions and wscanf_s functions:

scanf_s("%1ls", &x, 2); // Read a wide-character string
wscanf_s(L"%hC", &x, 2); // Read a single-byte character

If using an unsecure function in the scanf family, omit the size parameter indicating the buffer length of the

preceding argument.

Reading Undelimited strings

To read strings not delimited by whitespace characters, a set of characters in brackets ([1) can be substituted for
the s (string) type character. The set of characters in brackets is referred to as a control string. The corresponding
input field is read up to the first character that does not appear in the control string. If the first character in the set
is a caret (7), the effect is reversed: The input field is read up to the first character that does appear in the rest of
the character set.

Note that %[a-z] and %[z-a] are interpreted as equivalent to %[abcde...z]. This is a common scanf function
extension, but note that the ANSI standard does not require it.

Reading Unterminated strings

To store a string without storing a terminating null character (\0'), use the specification %nc where n is a decimal
integer. In this case, the ¢ type character indicates that the argument is a pointer to a character array. The nextn
characters are read from the input stream into the specified location, and no null character (\0') is appended. If n
is not specified, its default value is 1.

When scanf stops reading a field

The scanf function scans each input field, character by character. It may stop reading a particular input field

before it reaches a space character for a variety of reasons:

e The specified width has been reached.

e The next character cannot be converted as specified.

e The next character conflicts with a character in the control string that it is supposed to match.
e The next character fails to appear in a given character set.

For whatever reason, when the scanf function stops reading an input field, the next input field is considered to
begin at the first unread character. The conflicting character, if there is one, is considered unread and is the first
character of the next input field or the first character in subsequent read operations on the input stream.

See also

scanf, _scanf_|, wscanf, _wscanf_|

scanf_s, scanf_s_|, wscanf_s, _wscanf_s_|

Format Specification Fields: scanf and wscanf Functions
scanf Type Field Characters

_Spawn, _wspawn Functions

3/11/2019 « 7 minutes to read « Edit Online

Each of the _spawn functions creates and executes a new process:

_spawnl, _wspawnl _Sspawnvy, _wspawnv
_spawnle, _wspawnle _Spawnve, _wspawnve
_spawnlp, _wspawnlp _Spawnvp, _wspawnvp
_spawnlpe, _wspawnlpe _Spawnvpe, _wspawnvpe

The letters at the end of the function name determine the variation.

LETTER VARIANT

e envp , array of pointers to environment settings, is passed
to new process.

1 Command-line arguments are passed individually to
_spawn function. This suffix is typically used when a
number of parameters to a new process is known in

advance.

p PATH environment variable is used to find the file to
execute.

v argv , array of pointers to command-line arguments, is

passed to _spawn function. This suffix is typically used
when a number of parameters to a new process is variable.

Remarks

The _spawn functions each create and execute a new process. They automatically handle multibyte-character
string arguments as appropriate, recognizing multibyte-character sequences according to the multibyte code
page currently in use. The _wspawn functions are wide-character versions of the _spawn functions; they do
not handle multibyte-character strings. Otherwise, the _wspawn functions behave identically to their _spawn
counterparts.

Generic-Text Routine Mappings

_UNICODE AND _MBCS NOT
TCHAR.H ROUTINE DEFINED _MBCS DEFINED _UNICODE DEFINED

_tspawnl _spawnl _spawnl _wspawnl

_tspawnle _spawnle _spawnle _wspawnle

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/spawn-wspawn-functions.md

_UNICODE AND _MBCS NOT

TCHAR.H ROUTINE DEFINED _MBCS DEFINED _UNICODE DEFINED
_tspawnlp _spawnlp _spawnlp _wspawnlp
_tspawnlpe _Sspawnlpe _spawnlpe _wspawnlpe
_tspawnv _spawnv _spawnv _wspawnv
_tspawnve _spawnve _spawnve _wspawnve
_tspawnvp _spawnvp _spawnvp _Wspawnvp
_tspawnvpe _spawnvpe _Spawnvpe _wspawnvpe

Enough memory must be available for loading and executing the new process. The mode argument
determines the action taken by the calling process before and during _spawn . The following values for mode
are defined in Process.h:

_P_OVERLAY Overlays a calling process with a new process, destroying
the calling process (same effect as _exec calls).

_P_WAIT Suspends a calling thread until execution of the new
process is complete (synchronous _spawn).

_P_NOWAIT Or _P_NOWAITO Continues to execute a calling process concurrently with
the new process (asynchronous _spawn).

_P_DETACH Continues to execute the calling process; the new process is
run in the background with no access to the console or
keyboard. Calls to _cwait against the new process fail

(asynchronous _spawn).

The cmdname argument specifies the file that is executed as the new process and can specify a full path (from
the root), a partial path (from the current working directory), or just a file name. If cmdname does not have a
file name extension or does not end with a period (.), the _spawn function first tries the .com file name
extension and then the .exe file name extension, the .bat file name extension, and finally the .cmd file name
extension.

If cmdname has a file name extension, only that extension is used. If cmdname ends with a period, the _spawn
call searches for cmdname with no file name extension. The _spawnlp , _spawnlpe , _spawnvp ,and _spawnvpe
functions search for cmdname (using the same procedures) in the directories specified by the pATH
environment variable.

If cmdname contains a drive specifier or any slashes (that is, if it is a relative path), the _spawn call searches
only for the specified file; no path searching is done.

In the past, some of these functions set errno to zero on success; the current behavior is to leave errno
untouched on success, as specified by the C standard. If you need to emulate the old behavior, set errno to

zero just before calling these functions.

NOTE

To ensure proper overlay initialization and termination, do not use the setjmp or longjmp function to enter or leave

an overlay routine.

Arguments for the Spawned Process

To pass arguments to the new process, give one or more pointers to character strings as arguments in the
_spawn call. These character strings form the argument list for the spawned process. The combined length of
the strings forming the argument list for the new process must not exceed 1024 bytes. The terminating null
character (\0') for each string is not included in the count, but space characters (automatically inserted to
separate arguments) are included.

NOTE
Spaces embedded in strings may cause unexpected behavior; for example, passing _spawn the string "hi there" will
result in the new process getting two arguments, "hi" and "there" . If the intent was to have the new process open

a file named "hi there", the process would fail. You can avoid this by quoting the string: "\"hi there\"" .

IMPORTANT

Do not pass user input to _spawn without explicitly checking its content. _spawn will result in a call to CreateProcess

so keep in mind that unqualified path names could lead to potential security vulnerabilities.

You can pass argument pointers as separate arguments (in _spawnl , _spawnle , _spawnlp ,and _spawnlpe) Or
as an array of pointers (in _spawnv , _spawnve , _spawnvp ,and _spawnvpe). You must pass at least one
argument, arge or argv [0], to the spawned process. By convention, this argument is the name of the
program as you would type it on the command line. A different value does not produce an error.

The _spawnl, _spawnle , _spawnlp ,and _spawnlpe calls are typically used in cases where the number of
arguments is known in advance. The arge argument is usually a pointer to cmdname . The arguments arg1
through argn are pointers to the character strings forming the new argument list. Following argn , there

must be a NULL pointer to mark the end of the argument list.

The _spawnv , _spawnve , _spawnvp ,and _spawnvpe calls are useful when there is a variable number of
arguments to the new process. Pointers to the arguments are passed as an array, argv . The argument argv
[0] is usually a pointer to a path in real mode or to the program name in protected mode, and argv [1]
through argv [n] are pointers to the character strings forming the new argument list. The argument argv [

n +1] must be a NULL pointer to mark the end of the argument list.

Environment of the Spawned Process

Files that are open when a _spawn call is made remain open in the new process. In the _spawnl , _spawnlp ,
_spawnv , and _spawnvp calls, the new process inherits the environment of the calling process. You can use the
_spawnle , _spawnlpe , _spawnve ,and _spawnvpe calls to alter the environment for the new process by passing
a list of environment settings through the envp argument. The argument envp is an array of character
pointers, each element (except the final element) of which points to a null-terminated string defining an
environment variable. Such a string usually has the form NAME = value where NAME is the name of an
environment variable and value is the string value to which that variable is set. (Note that value is not
enclosed in double quotation marks.) The final element of the envp array should be NULL. When envp itself
is NULL, the spawned process inherits the environment settings of the parent process.

https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createprocessa

The _spawn functions can pass all information about open files, including the translation mode, to the new
process. This information is passed in real mode through the c_riLE_inFo entry in the environment. The
startup code normally processes this entry and then deletes it from the environment. However, if a _spawn
function spawns a non-C process, this entry remains in the environment. Printing the environment shows
graphics characters in the definition string for this entry because the environment information is passed in
binary form in real mode. It should not have any other effect on normal operations. In protected mode, the
environment information is passed in text form and therefore contains no graphics characters.

You must explicitly flush (using fflush or _flushall) or close any stream before callinga _spawn function.

New processes created by calls to _spawn routines do not preserve signal settings. Instead, the spawned
process resets signal settings to the default.

Redirecting Output

If you are calling _spawn from a DLL or a GUI application and want to redirect the output to a pipe, you have
two options:

e Use the Win32 API to create a pipe, then call AllocConsole, set the handle values in the startup
structure, and call CreateProcess.

e Call _popen, _wpopen which will create a pipe and invoke the app using cmd.exe /c (or
command.exe /c).

Example

// crt_spawn.c

// This program accepts a number in the range

// 1-8 from the command line. Based on the number it receives,
// it executes one of the eight different procedures that

// spawn the process named child. For some of these procedures,
// the CHILD.EXE file must be in the same directory; for

// others, it only has to be in the same path.

//

#include <stdio.h>
#include <process.h>

char *my_env[] =

{
"THIS=environment will be",
"PASSED=to child.exe by the",
"_SPAWNLE=and",
" _SPAWNLPE=and",
"_SPAWNVE=and",
"_SPAWNVPE=functions",
NULL

¥

int main(int argc, char *argv[])

{

char *args[4];

// Set up parameters to be sent:
args[@] = "child";

args[1] = "spawn??";

args[2] = "two";

args[3] = NULL;

if (argc <= 2)
{
printf("SYNTAX: SPAWN <1-8> <childprogram>\n");

https://docs.microsoft.com/windows/console/allocconsole
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createprocessa

exit(1);

}
switch (argv[1][@]) // Based on first letter of argument
{
case '1':
_spawnl(_P_WAIT, argv[2], argv[2], "_spawnl", "two", NULL);
break;
case '2":
_spawnle(_P_WAIT, argv[2], argv[2], "_spawnle", "two",
NULL, my_env);
break;
case '3":
_spawnlp(_P_WAIT, argv[2], argv[2], "_spawnlp", "two", NULL);
break;
case '4':
_spawnlpe(_P_WAIT, argv[2], argv[2], "_spawnlpe", "two",
NULL, my_env);
break;
case '5':
_spawnv(_P_OVERLAY, argv[2], args);
break;
case '6":
_spawnve(_P_OVERLAY, argv[2], args, my_env);
break;
case '7':
_spawnvp(_P_OVERLAY, argv[2], args);
break;
case '8":
_spawnvpe(_P_OVERLAY, argv[2], args, my_env);
break;
default:
printf("SYNTAX: SPAWN <1-8> <childprogram>\n");
exit(1);
}

printf("from SPAWN!\n");

child process output
from SPAWN!

See also

Process and Environment Control
abort

atexit

_exec, _wexec Functions

exit, Exit, _exit

_flushall

_getmbcp

_onexit, _onexit_m

_setmbcp

system, _wsystem

strcoll Functions

3/11/2019 « 2 minutes to read « Edit Online

Each of the strcoll and wcscoll functions compares two strings according to the Lc_coLLATE category setting
of the locale code page currently in use. Each of the _mbscoll functions compares two strings according to the
multibyte code page currently in use. Use the coll functions for string comparisons when there is a difference
between the character set order and the lexicographic character order in the current code page and this
difference is of interest for the comparison. Use the corresponding cmp functions to test only for string equality.

strcoll Functions

SBCS UNICODE MBCS DESCRIPTION

strcoll wcscoll _mbscoll Collate two strings

_stricoll _wasicoll _mbsicoll Collate two strings (case
insensitive)

_strncoll _wcesncoll _mbsncoll Collate first count

characters of two strings

_strnicoll _wecshicoll _mbsnicoll Collate first count
characters of two strings
(case-insensitive)

Remarks

The single-byte character (SBCS) versions of these functions (strcoll , stricoll , _strncoll ,and _strnicoll)
compare stringl and string2 accordingtothe Lc_coLLATE category setting of the current locale. These
functions differ from the corresponding stremp functions in that the strcoll functions use locale code page
information that provides collating sequences. For string comparisons in locales in which the character set order
and the lexicographic character order differ, the strcoll functions should be used rather than the corresponding

strecmp functions. For more information on Lc_COLLATE , see setlocale.

For some code pages and corresponding character sets, the order of characters in the character set may differ
from the lexicographic character order. In the "C" locale, this is not the case: the order of characters in the ASCII
character set is the same as the lexicographic order of the characters. However, in certain European code pages,
for example, the character 'a' (value 0x61) precedes the character 'a' (value 0xE4) in the character set, but the
character 'a' precedes the character 'a' lexicographically. To perform a lexicographic comparison in such an
instance, use strcoll rather than strcmp . Alternatively, you can use strxfrm on the original strings, then use

strcmp on the resulting strings.

strcoll , stricoll , _strncoll ,and _strnicoll automatically handle multibyte-character strings according to
the locale code page currently in use, as do their wide-character (Unicode) counterparts. The multibyte-character
(MBCS) versions of these functions, however, collate strings on a character basis according to the multibyte code
page currently in use.

Because the coll functions collate strings lexicographically for comparison, whereas the cmp functions simply
test for string equality, the col1l functions are much slower than the corresponding cmp versions. Therefore, the
coll functions should be used only when there is a difference between the character set order and the

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/strcoll-functions.md

lexicographic character order in the current code page and this difference is of interest for the string comparison.

See also

Locale

String Manipulation

localeconv

_mbsnbcoll, _mbsnbcoll_I, _mbsnbicoll, _mbsnbicoll_|I

setlocale, _wsetlocale

strcmp, wesecmp, _mbscmp

strncmp, wesnemp, _mbsncmp, _mbsncmp_|

_strnicmp, _wcsnicmp, _mbsnicmp, _strnicmp_|l, _wcsnicmp_|, _mbsnicmp_|
strxfrm, wesxfrm, _strxfrm_l, _wesxfrm_|

String to Numeric Value Functions

3/11/2019 « 3 minutes to read « Edit Online

strtod, _strtod_|, wcstod, _wcstod_|

strtol, westol, _strtol |, _wcstol_|

strtoul, _strtoul_l, westoul, _wcstoul_|

_strtoi64, wcstoi64, strtoi64 |, _wcstoi64 |

_strtoui64, _wcstoui64, _strtoui64_|, _wcstoui64_|

Remarks

Each function in the strtod family converts a null-terminated string to a numeric value. The available functions
are listed in the following table.

FUNCTION DESCRIPTION

strtod Convert string to double-precision floating point value
strtol Convert string to long integer

strtoul Convert string to unsigned long integer

_strtoi64 Convert string to 64-bit __inte4 integer
_strtoui6a Convert string to unsigned 64-bit __inte4 integer

wcstod , westol , westoul ,and _wcstoissa are wide-character versions of strtod , strtol , strtoul , and
_strtoie4 , respectively. The string argument to each of these wide-character functions is a wide-character string;
each function behaves identically to its single-byte-character counterpart otherwise.

The strtod function takes two arguments: the first is the input string, and the second a pointer to the character
which ends the conversion process. strtol , strtoul , _strtoi64 and _strtoui64 take a third argument as the

number base to use in the conversion process.

The input string is a sequence of characters that can be interpreted as a numerical value of the specified type.
Each function stops reading the string at the first character it cannot recognize as part of a number. This may be
the terminating null character. For strtol , strtoul , _strtoi64 ,and _strtouié4 , this terminating character can
also be the first numeric character greater than or equal to the user-supplied number base.

If the user-supplied pointer to an end-of-conversion character is not set to NULL at call time, a pointer to the
character that stopped the scan will be stored there instead. If no conversion can be performed (no valid digits
were found or an invalid base was specified), the value of the string pointer is stored at that address.

strtod expects a string of the following form:
[whitespace] [sign] [digits] [. digits 1[{d | D | e | E}[sign] digits]

A whitespace may consist of space or tab characters, which are ignored; sign is either plus (+) or minus (-); and
digits are one or more decimal digits. If no digits appear before the radix character, at least one must appear

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/string-to-numeric-value-functions.md

after the radix character. The decimal digits can be followed by an exponent, which consists of an introductory
letter (d, D, e, or E) and an optionally signed integer. If neither an exponent part nor a radix character appears, a
radix character is assumed to follow the last digit in the string. The first character that does not fit this form stops
the scan.

The strtol , strtoul , _strtoie4 ,and _strtouies functions expect a string of the following form:
[whitespace] [{+ | -}1 [0 { x | X }]] [digits]

If the base argument is between 2 and 36, then it is used as the base of the number. If itis 0, the initial characters
referenced to by the end-of-conversion pointer are used to determine the base. If the first character is 0 and the
second character is not 'x' or ‘X', the string is interpreted as an octal integer; otherwise, it is interpreted as a
decimal number. If the first character is '0' and the second character is 'x' or ‘X', the string is interpreted as a
hexadecimal integer. If the first character is '1' through '9', the string is interpreted as a decimal integer. The letters
‘a' through 'z' (or 'A' through 'Z') are assigned the values 10 through 35; only letters whose assigned values are
less than base are permitted. strtoul and _strtouie4 allow a plus (+) or minus (=) sign prefix; a leading minus
sign indicates that the return value is negated.

The output value is affected by the setting of the Lc_NUMERIC category setting of the locale; see setlocale for more
information. The versions of these functions without the _I suffix use the current locale for this locale-dependent
behavior; the versions with the _I suffix are identical except that they use the locale parameter passed in instead.

When the value returned by these functions would cause an overflow or underflow, or when conversion is not
possible, special case values are returned as shown:

FUNCTION CONDITION VALUE RETURNED
strtod Overflow +/- HUGE_VAL
strtod Underflow or no conversion 0
strtol + Overflow LONG_MAX
strtol - Overflow LONG_MIN
strtol Underflow or no conversion 0
_strtoi64 + Overflow _l64_MAX
_strtoi64 - Overflow _164_MIN
_strtoi64 No conversion 0
_strtoui6d Overflow _Ule4_MAX
_strtouie4d No conversion 0

_164_MAX, 164 MIN, and _Ul64 MAX are defined in LIMITS .H.

wcstod , westol , wcstoul , _wcstoi6b4 , and _wcstouibd are wide-character versions of strtod , strtol , strtoul ,
_strtoie4 ,and _strtouie4 , respectively; the pointer to an end-of-conversion argument to each of these wide-
character functions is a wide-character string. Otherwise, each of these wide-character functions behaves
identically to its single-byte-character counterpart.

See also

Data Conversion

Locale

Interpretation of Multibyte-Character Sequences
Floating-Point Support

atof, _atof I, _wtof, _wtof |

to Functions

3/11/2019 « 2 minutes to read « Edit Online

Each of the to functions and its associated macro, if any, converts a single character to another character.

__toascii toupper, _toupper, towupper

tolower, _tolower, towlower

Remarks

The to functions and macro conversions are as follows.

ROUTINE MACRO DESCRIPTION

__toascii __toascii Converts ¢ to ASCII character
tolower tolower Converts ¢ to lowercase if appropriate
_tolower _tolower Converts c to lowercase

towlower None Converts ¢ to corresponding wide-

character lowercase letter

toupper toupper Converts c¢ to uppercase if
appropriate

_toupper _toupper Converts ¢ to uppercase

towupper None Converts ¢ to corresponding wide-

character uppercase letter

To use the function versions of the to routines that are also defined as macros, either remove the macro
definitions with #undef directives or do notinclude CTYPE.H. If you use the /Za compiler option, the compiler

uses the function version of toupper or tolower . Declarations of the toupper and tolower functions arein
STDLIB.H.

The _ toascii routine sets all but the low-order 7 bits of ¢ to 0, so that the converted value represents a
character in the ASCII character set. If ¢ already represents an ASCII character, ¢ is unchanged.

The tolower and toupper routines:

e Are dependent on the Lc_cTyPE category of the current locale (tolower calls isupper and toupper calls

islower).

e Convert c if ¢ represents a convertible letter of the appropriate case in the current locale and the
opposite case exists for that locale. Otherwise, ¢ is unchanged.

The _tolower and _toupper routines:

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/to-functions.md

e Are locale-independent, much faster versions of tolower and toupper.
e Can be used only when isascii(¢) and either isupper(c) or islower(c), respectively, are nonzero.
e Have undefined results if ¢ is notan ASCII letter of the appropriate case for converting.

The towlower and towupper functions return a converted copy of ¢ if and only if both of the following

conditions are nonzero. Otherwise, ¢ is unchanged.

e c is awide character of the appropriate case (that is, for which iswupper or iswlower, respectively, is

nonzero).

e There is a corresponding wide character of the target case (that is, for which iswlower or iswupper,

respectively, is nonzero).

Example

// crt_toupper.c

/* This program uses toupper and tolower to
* analyze all characters between 0x0 and ©x7F. It also
* applies _toupper and _tolower to any code in this
* range for which these functions make sense.

*/

#include <ctype.h>
#include <string.h>

char msg[] = "Some of THESE letters are Capitals.”;
char *p;

int main(void)
{
printf("%s\n", msg);

/* Reverse case of message. */
for(p = msg; p < msg + strlen(msg); p++)
{
if(islower(*p))
putchar(_toupper(*p));
else if(isupper(*p))
putchar(_tolower(*p));
else
putchar(*p);

Some of THESE letters are Capitals.
sOME OF these LETTERS ARE cAPITALS.

See also

Data Conversion
Locale
is, isw Routines

vprintf Functions

3/11/2019 « 3 minutes to read « Edit Online

Each of the vprintf functions takes a pointer to an argument list, then formats and writes the given data to a
particular destination. The functions differ in the parameter validation performed, whether the functions take
wide or single-byte character strings, the output destination, and the support for specifying the order in which

parameters are used in the format string.

_veprintf, _vewprintf vfprintf, viwprintf
_vfprintf_p, _vfprintf_p_|, _vfwprintf_p, _vfwprintf_p_| vfprintf_s, _vfprintf_s_|, vfwprintf_s, _vfwprintf_s_|
vprintf, vwprintf _vprintf_p, _vprintf_p_l, _vwprintf_p, _vwprintf_p_|
vprintf_s, _vprintf_s_|, vwprintf_s, _vwprintf_s_| vsprintf, vswprintf
_vsprintf_p, _vsprintf_p_|, _vswprintf_p, _vswprintf_p_| vsprintf_s, _vsprintf_s_|, vswprintf_s, _vswprintf_s_|
_vscprintf, _vscprintf_|, _vscwprintf, _vscwprintf_| _vsnprintf, _vsnwprintf

Remarks

The vprintf functions are similar to their counterpart functions as listed in the following table. However, each
vprintf function accepts a pointer to an argument list, whereas each of the counterpart functions accepts an

argument list.

These functions format data for output to destinations as follows.

COUNTERPART PARAMETER POSITIONAL
FUNCTION FUNCTION OUTPUT DESTINATION VALIDATION PARAMETER SUPPORT
_veprintf _cprintf console Check for null. no
_vewprintf _cwprintf console Check for null. no
vfprintf fprintf Stream Check for null. no
viprintf_p fprintf_p Stream Check for null and yes
valid format.
vfprintf_s fprintf_s Stream Check for null and no
valid format.
vfwprintf fwprintf Stream Check for null. no
viwprintf_p fwprintf_p Stream Check for null and yes

valid format.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/vprintf-functions.md

FUNCTION

vfwprintf_s

vprintf

vprintf_p

vprintf_s

vwprintf

vwprintf_p

vwprintf_s

vsprintf

vsprintf_p

vsprintf_s

vswprintf

vswprintf_p

vswprintf_s

_vscprintf

_vscwprintf

_vsnprintf

_vsnwprintf

COUNTERPART
FUNCTION

fwprintf_s

printf

printf_p

printf_s

wprintf

wprintf_p

wprintf_s

sprintf

sprintf_p

sprintf_s

swprintf

swprintf_p

swprintf_s

_vscprintf

_vscwprintf

_snprintf

_snwprintf

OUTPUT DESTINATION

Stream

Stdout

Stdout

Stdout

Stdout

Stdout

Stdout

memory pointed to
by buffer

memory pointed to
by buffer

memory pointed to
by buffer

memory pointed to
by buffer

memory pointed to
by buffer

memory pointed to
by buffer

memory pointed to
by buffer

memory pointed to
by buffer

memory pointed to
by buffer

memory pointed to
by buffer

PARAMETER
VALIDATION

Check for null and
valid format.

Check for null.

Check for null and
valid format.

Check for null and
valid format.

Check for null.

Check for null and
valid format.

Check for null and
valid format.

Check for null.

Check for null and
valid format.

Check for null and
valid format.

Check for null.

Check for null and

valid format.

Check for null and

valid format.

Check for null.

Check for null.

Check for null.

Check for null.

POSITIONAL
PARAMETER SUPPORT

no

no

yes

no

no

yes

no

no

yes

no

no

yes

no

no

no

no

no

The argptr argument has type va_list , which is defined in VARARGS.H and STDARG.H. The argptr variable
must be initialized by va_start, and may be reinitialized by subsequent va_arg calls; argptr then points to the

beginning of a list of arguments that are converted and transmitted for output according to the corresponding

specifications in the format argument. format has the same form and function as the format argument for
printf. None of these functions invokes va_end . For a more complete description of each vprintf function, see

the description of its counterpart function as listed in the preceding table.
_vsnprintf differs from vsprintf in that it writes no more than count bytes to buffer.

The versions of these functions with the w infix in the name are wide-character versions of the corresponding
functions without the w infix; in each of these wide-character functions, buffer and format are wide-character
strings. Otherwise, each wide-character function behaves identically to its SBCS counterpart function.

The versions of these functions with _s and _p suffixes are the more secure versions. These versions validate the
format strings and will generate an exception if the format string is not well formed (for example, if invalid

formatting characters are used).

The versions of these functions with the _p suffix provide the ability to specify the order in which the supplied

arguments are substituted in the format string. For more information, see printf_p Positional Parameters.

For vsprintf, vswprintf , _vsnprintf and _vsnwprintf , if copying occurs between strings that overlap, the

behavior is undefined.

IMPORTANT
Ensure that format is not a user-defined string. For more information, see Avoiding Buffer Overruns. If using the secure
versions of these functions (either the _s or _p suffixes), a user-supplied format string could trigger an invalid parameter

exception if the user-supplied string contains invalid formatting characters.

See also

Stream 1/O

fprintf, _fprintf_|, fwprintf, _fwprintf_|

printf, _printf_|, wprintf, _wprintf_|

sprintf, _sprintf_l, swprintf, _swprintf_|, __swprintf_|
va_arg, va_copy, va_end, va_start

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

Obsolete Functions

2/4/2019 « 2 minutes to read » Edit Online

Certain library functions are obsolete and have more recent equivalents. We recommend you change these to the
updated versions. Other obsolete functions have been removed from the CRT. This topic lists the functions
deprecated as obsolete, and the functions removed in a particular version of Visual Studio.

Deprecated as obsolete in Visual Studio 2015

OBSOLETE FUNCTION ALTERNATIVE

is_wctype iswctype

_loaddll LoadLibrary, LoadLibraryEx, or LoadPackagedLibrary
_unloaddll FreeLibrary

_getdllprocaddr GetProcAddress

_seterrormode SetErrorMode

_beep Beep

_sleep Sleep

_getsystime GetLocalTime

_setsystime SetLocalTime

Removed from the CRT in Visual Studio 2015

OBSOLETE FUNCTION ALTERNATIVE
_cgets, _cgetws _cgets_s, _cgetws_s
gets, _getws gets_s, _getws_s
_get_output_format None

_heapadd None

_heapset None

inp, inpw None

_inp, _inpw, _inpd None

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/obsolete-functions.md
https://docs.microsoft.com/windows/desktop/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://docs.microsoft.com/windows/desktop/api/libloaderapi/nf-libloaderapi-loadlibraryexa
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-loadpackagedlibrary
https://docs.microsoft.com/windows/desktop/api/libloaderapi/nf-libloaderapi-freelibrary
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/getprocaddress
https://msdn.microsoft.com/library/windows/desktop/ms680621
https://docs.microsoft.com/windows/desktop/api/utilapiset/nf-utilapiset-beep
https://docs.microsoft.com/windows/desktop/api/synchapi/nf-synchapi-sleep
https://docs.microsoft.com/windows/desktop/api/sysinfoapi/nf-sysinfoapi-getlocaltime
https://docs.microsoft.com/windows/desktop/api/sysinfoapi/nf-sysinfoapi-setlocaltime

OBSOLETE FUNCTION ALTERNATIVE

outp, outpw None
_outp, _outpw, _outpd None
_set_output_format None

Removed from the CRT in earlier versions of Visual Studio

_lock

_unlock

_cgets, _cgetws

3/11/2019 « 2 minutes to read « Edit Online

Gets a character string from the console. More secure versions of these functions are available; see _cgets_s,

_cgetws_s.

IMPORTANT
These functions are obsolete. Beginning in Visual Studio 2015, they are not available in the CRT. The secure versions of
these functions, _cgets_s and _cgetws_s, are still available. For information on these alternative functions, see _cgets_s,

_cgetws_s.

IMPORTANT

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not
supported in Universal Windows Platform apps.

Syntax

char *_cgets(
char *buffer
)5
wchar_t *_cgetws(
wchar_t *buffer
)
template <size t size>
char *_cgets(
char (&buffer)[size]
); // C++ only
template <size t size>
wchar_t *_cgetws(
wchar_t (&buffer)[size]
); // C++ only

Parameters

buffer
Storage location for data.

Return Value

_cgets and _cgetws return a pointer to the start of the string, at buffer[2] . If buffer is NULL, these functions
invoke the invalid parameter handler, as described in Parameter Validation. If execution is allowed to continue,
they return NULL and set errno to EINVAL .

Remarks

These functions read a string of characters from the console and store the string and its length in the location
pointed to by buffer . The buffer parameter must be a pointer to a character array. The first element of the
array, buffer[e] , must contain the maximum length (in characters) of the string to be read. The array must
contain enough elements to hold the string, a terminating null character ("\0'), and 2 additional bytes. The

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/cgets-cgetws.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

function reads characters until a carriage return-line feed (CR-LF) combination or the specified number of
characters is read. The string is stored starting at buffer[2] . If the function reads a CR-LF, it stores the null

character (\0'). The function then stores the actual length of the string in the second array element, buffer[1] .

Because all editing keys are active when _cgets or _cgetws is called while in a console window, pressing the F3

key repeats the last entered entry.

In C++, these functions have template overloads that invoke the newer, secure counterparts of these functions.

For more information, see Secure Template Overloads.

Generic-Text Routine Mappings

_UNICODE AND _MBCS NOT
TCHAR.H ROUTINE DEFINED

_cgetts _cgets

Requirements

ROUTINE
_cgets
_cgetws

For more compatibility information, see Compatibility.

Example

_MBCS DEFINED _UNICODE DEFINED

_cgets _cgetws

REQUIRED HEADER

<conio.h>

<conio.h> or <wcharh>

// crt_cgets.c

// compile with: /c /W3

// This program creates a buffer and initializes

// the first byte to the size of the buffer. Next, the

// program accepts an input string using _cgets and displays
// the size and text of that string.

#include <conio.h>
#include <stdio.h>

#include <errno.h>

int main(void)

{
char buffer[83] = { 80 }; // Maximum characters in 1st byte
char *result;
printf("Input line of text, followed by carriage return:\n");
// Input a line of text:
result = _cgets(buffer); // C4996
// Note: _cgets is deprecated; consider using _cgets_s
if (!result)
{
printf("An error occurred reading from the console:"
" error code %d\n", errno);
}
else
{
printf("\nLine length = %d\nText = %s\n",
buffer[1], result);
}
}

A line of input.Input line of text, followed by carriage return:
Line Length = 16
Text = A line of input.

See also

Console and Port I/0
_getch, _getwch

_get_output_format

3/11/2019 « 2 minutes to read « Edit Online

Gets the current value of the output format flag.

IMPORTANT

This function is obsolete. Beginning in Visual Studio 2015, it is not available in the CRT.

Syntax

unsigned int _get_output_format();

Return Value

The current value of the output format flag.

Remarks

The output format flag controls features of formatted 1/0. At present the flag has two possible values: 0 and

_TWO_DIGIT_EXPONENT . If _TWO_DIGIT_EXPONENT is set, the floating point numbers is printed with only two digits in the
exponent unless a third digit is required by the size of the exponent. If the flag is zero, the floating point output
displays three digits of exponent, using zeroes if necessary to pad the value to three digits.

Requirements
ROUTINE REQUIRED HEADER
_get_output_format <stdio.h>

For more compatibility information, see Compatibility in the Introduction.

See also

Format Specification Syntax: printf and wprintf Functions
printf, _printf_|, wprintf, _wprintf_|

printf_s, _printf_s_|, wprintf_s, _wprintf_s_|
_set_output_format

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/get-output-format.md

gets, _getws

3/11/2019 « 2 minutes to read « Edit Online

Gets a line from the stdin stream. More secure versions of these functions are available; see gets_s, _getws_s.

IMPORTANT

These functions are obsolete. Beginning in Visual Studio 2015, they are not available in the CRT. The secure versions of

these functions, gets_s and _getws_s, are still available. For information on these alternative functions, see gets_s, _getws_s.

IMPORTANT

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not

supported in Universal Windows Platform apps.

Syntax

char *gets(
char *buffer
)
wchar_t *_getws(
wchar_t *buffer
)5
template <size_t size>
char *gets(
char (&buffer)[size]
); // C++ only
template <size_t size>
wchar_t *_getws(
wchar_t (&buffer)[size]
); // C++ only

Parameters

buffer
Storage location for input string.

Return Value

Returns its argument if successful. A NULL pointer indicates an error or end-of-file condition. Use ferror or feof
to determine which one has occurred. If buffer is NULL, these functions invoke an invalid parameter handler, as
described in Parameter Validation. If execution is allowed to continue, these functions return NULL and set errno
to EINVAL .

Remarks

The gets function reads a line from the standard input stream stdin and stores itin buffer . The line consists
of all characters up to and including the first newline character ("\n'). gets then replaces the newline character
with a null character ("\0') before returning the line. In contrast, the fgets function retains the newline character.

_getws is a wide-character version of gets ;its argument and return value are wide-character strings.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/gets-getws.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

IMPORTANT

Because there is no way to limit the number of characters read by gets, untrusted input can easily cause buffer overruns.

Use fgets instead.

In C++, these functions have template overloads that invoke the newer, secure counterparts of these functions.

For more information, see Secure Template Overloads.
Generic-Text Routine Mappings

_UNICODE & _MBCS NOT

TCHAR.H ROUTINE DEFINED _MBCS DEFINED _UNICODE DEFINED
_getts gets gets _getws
Requirements
ROUTINE REQUIRED HEADER
gets <stdio.h>
_getws <stdio.h> or <wcharh>

For additional compatibility information, see Compatibility.

Example

// crt_gets.c
// compile with: /WX /W3

#include <stdio.h>

int main(void)

{
char line[21]; // room for 20 chars + '\@'

gets(line); // C4996

// Danger: No way to limit input to 20 chars.
// Consider using gets_s instead.

printf("The line entered was: %s\n", line);

Note that input longer than 20 characters will overrun the line buffer and almost certainly cause the program to

crash.

Hello there!The line entered was: Hello there!

See also

Stream /O

fgets, fgetws
fputs, fputws
puts, _putws

_heapadd

3/11/2019 « 2 minutes to read « Edit Online

Adds memory to the heap.

IMPORTANT

This function is obsolete. Beginning in Visual Studio 2015, it is not available in the CRT.

Syntax

int _heapadd(
void *memblock,
size_t size

)s

Parameters
memblock
Pointer to the heap memory.

size

Size of memory to add, in bytes.

Return Value

If successful, _heapadd returns O; otherwise, the function returns -1 and sets errno to ENOSYS .

For more information about this and other return codes, see _doserrno, errno, _sys_errlist, and _sys_nerr.

Remarks

Beginning with Visual C++ version 4.0, the underlying heap structure was moved to the C run-time libraries to
support the new debugging features. As a result, _heapadd is no longer supported on any platform that is based
on the Win32 API.

Requirements
ROUTINE REQUIRED HEADER OPTIONAL HEADER
_heapadd <malloc.h> <errno.h>

For more compatibility information, see Compatibility in the Introduction.

See also

Memory Allocation
free

_heapchk
_heapmin

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/heapadd.md

_heapset
_heapwalk
malloc
realloc

_heapset

3/11/2019 « 2 minutes to read « Edit Online

Checks heaps for minimal consistency and sets the free entries to a specified value.

IMPORTANT

This function is obsolete. Beginning in Visual Studio 2015, it is not available in the CRT.

Syntax

int _heapset(
unsigned int fill

)s
Parameters

fill
Fill character.

Return Value

_heapset returns one of the following integer manifest constants defined in Malloc.h.

_HEAPBADBEGIN Initial header information invalid or not found.
_HEAPBADNODE Heap damaged or bad node found.
_HEAPEMPTY Heap not initialized.

_HEAPOK Heap appears to be consistent.

In addition, if an error occurs, _heapset sets errno tO ENOSYS .

Remarks

The _heapset function shows free memory locations or nodes that have been unintentionally overwritten.

_heapset checks for minimal consistency on the heap and then sets each byte of the heap's free entries to the
£i11 value. This known value shows which memory locations of the heap contain free nodes and which contain
data that were unintentionally written to freed memory. If the operating system does not support _heapset (for
example, Windows 98), the function returns _Heapok and sets errno to ENOSYS .

Requirements

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/heapset.md

ROUTINE REQUIRED HEADER

_heapset <malloc.h>

For more compatibility information, see Compatibility in the Introduction.

Example

// crt_heapset.c
// This program checks the heap and
// fills in free entries with the character 'Z'.

#include <malloc.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)

{
int heapstatus;
char *buffer;

if((buffer = malloc(1)) == NULL) // Make sure heap is
exit(0); // initialized
heapstatus = _heapset('Z'); // Fill in free entries
switch(heapstatus)
{
case _HEAPOK:
printf("OK - heap is fine\n");
break;
case _HEAPEMPTY:
printf("OK - heap is empty\n");
break;
case _HEAPBADBEGIN:
printf("ERROR - bad start of heap\n");
break;
case _HEAPBADNODE:
printf("ERROR - bad node in heap\n");
break;

}
free(buffer);

OK - heap is fine

See also

Memory Allocation
_heapadd
_heapchk
_heapmin

_heapwalk

OPTIONAL HEADER

<errno.h>

inp, iInpw

10/31/2018 « 2 minutes to read Edit Online

These POSIX functions are deprecated. Use the ISO C++ conformant _inp, _inpw, _inpd instead.

IMPORTANT

These functions are obsolete. Beginning in Visual Studio 2015, they are not available in the CRT.

IMPORTANT
This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not

supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/inp-inpw.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_inp, _inpw, _inpd

3/11/2019 « 2 minutes to read « Edit Online

Inputs, from a port, a byte (_inp), a word (_inpw), or a double word (_inpd).

IMPORTANT

These functions are obsolete. Beginning in Visual Studio 2015, they are not available in the CRT.

IMPORTANT

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not

supported in Universal Windows Platform apps.

Syntax

int _inp(
unsigned short port
)
unsigned short _inpw(
unsigned short port
)
unsigned long _inpd(
unsigned short port

)s

Parameters

port
I/O port number.

Return Value

The functions return the byte, word, or double word read from port . There is no error return.

Remarks

The _inp, _inpw,and _inpd functions read a byte, a word, and a double word, respectively, from the specified

input port. The input value can be any unsigned short integer in the range 0 - 65,535.

Because these functions read directly from an 1/O port, they cannot be used in user code.

Requirements
ROUTINE REQUIRED HEADER
_inp <conio.h>

_inpw <conio.h>

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/inp-inpw-inpd.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

ROUTINE

_inpd

For more compatibility information, see Compatibility.

Libraries

All versions of the C run-time libraries.

See also

Console and Port I/0
_outp, _outpw, _outpd

REQUIRED HEADER

<conio.h>

_lock

3/11/2019 « 2 minutes to read « Edit Online

Acquires a multi-thread lock.

IMPORTANT

This function is obsolete. Beginning in Visual Studio 2015, it is not available in the CRT.

Syntax

void _ cdecl _lock
int locknum

)s

Parameters
locknum
[in] The identifier of the lock to acquire.

Remarks

If the lock has already been acquired, this method acquires the lock anyway and causes an internal C run-time
(CRT) error. If the method cannot acquire a lock, it exits with a fatal error and sets the error code to _RT_Lock .

Requirements

Source: mlock.c

See also

Alphabetical Function Reference

_unlock

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/lock.md

outp, outpw

10/31/2018 « 2 minutes to read Edit Online

These POSIX functions are deprecated. Use the ISO C++ conformant _outp, _outpw, _outpd instead.

IMPORTANT

These functions are obsolete. Beginning in Visual Studio 2015, they are not available in the CRT.

IMPORTANT
This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not

supported in Universal Windows Platform apps.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/outp-outpw.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

_outp, _outpw, _outpd

3/11/2019 « 2 minutes to read « Edit Online

Outputs, at a port, a byte (_outp), a word (_outpw), or a double word (_outpd).

IMPORTANT

These functions are obsolete. Beginning in Visual Studio 2015, they are not available in the CRT.

IMPORTANT

This API cannot be used in applications that execute in the Windows Runtime. For more information, see CRT functions not

supported in Universal Windows Platform apps.

Syntax

int _outp(
unsigned short port,
int databyte
)s
unsigned short _outpw(
unsigned short port,
unsigned short dataword
)
unsigned long _outpd(
unsigned short port,
unsigned long dataword

)s

Parameters

port
Port number.

databyte, dataword
Output values.

Return Value

The functions return the data output. There is no error return.

Remarks

The _outp, _outpw,and _outpd functions write a byte, a word, and a double word, respectively, to the specified
output port. The port argument can be any unsigned integer in the range 0 - 65,535; databyte can be any integer
in the range 0 - 255; and dataword can be any value in the range of an integer, an unsigned short integer, and an
unsigned long integer, respectively.

Because these functions write directly to an 1/O port, they cannot be used in user code. For information about
using 1/O ports in these operating systems, search for "Serial Communications in Win32" at MSDN.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/outp-outpw-outpd.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps

Requirements

ROUTINE REQUIRED HEADER
_outp <conio.h>
_outpw <conio.h>
_outpd <conio.h>

For more compatibility information, see Compatibility.

Libraries

All versions of the C run-time libraries.

See also

Console and Port I/O
_inp, _inpw, _inpd

_set_output_format

3/11/2019 « 2 minutes to read « Edit Online

Customizes output formats used by formatted 1/O functions.

IMPORTANT

This function is obsolete. Beginning in Visual Studio 2015, it is not available in the CRT.

Syntax

unsigned int _set_output_format(
unsigned int format

)s

Parameters
format
[in] An value representing the format to use.

Return value

The previous output format.

Remarks

_set_output_format is used to configure the output of formatted I/O functions such as printf_s. At present, the
only formatting convention that can be changed by this function is the number of digits displayed in exponents in
the output of floating point numbers.

By default, the output of floating point numbers by functions such as printf_s , wprintf_s , and related functions
in the Visual C++ Standard C library prints three digits for the exponent, even if three digits are not required to
represent the value of the exponent. Zeroes are used to pad the value to three digits. _set_output_format allows
you to change this behavior so that only two digits are printed in the exponent unless a third digit is required by
the size of the exponent.

To enable two-digit exponents, call this function with the parameter _Two_DIGIT_EXPONENT , as shown in the
example. To disable two digit exponents, call this function with an argument of 0.

Requirements
ROUTINE REQUIRED HEADER
_set_output_format <stdio.h>

For more compatibility information, see Compatibility in the Introduction.

Example

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/set-output-format.md

// crt_set_output_format.c
#include <stdio.h>

void printvalues(double x, double y)
{
printf_s("%11.4e %11.4e\n", X, y);
printf_s("%11.4E %11.4E\n", X, y);
printf_s("%11.4g %11.4g\n", X, Yy);
printf_s("%11.4G %11.4G\n", X, y);

int main()
{
double x = 1.211E-5;
double y = 2.3056E-112;
unsigned int old_exponent_format;

// Use the default format
printvalues(x, y);

// Enable two-digit exponent format
old_exponent_format = _set_output_format(_TWO_DIGIT_EXPONENT);

printvalues(x, y);

// Disable two-digit exponent format
_set_output_format(old_exponent_format);

printvalues(x, y);

.2110e-005 2.3056e-112
.2110E-005 2.3056E-112
.211e-005 2.306e-112
.211E-005 2.306E-112
.2110e-05 2.3056e-112
.2110E-05 2.3056E-112
1.211e-05 2.306e-112
1.211E-05 2.306E-112
.2110e-005 2.3056e-112
.2110E-005 2.3056E-112
.211e-005 2.306e-112
.211E-005 2.306E-112

R R R PR R

R R R R

See also

printf_s, _printf_s_I, wprintf_s, _wprintf_s_|
_get_output_format

_unlock

3/11/2019 « 2 minutes to read « Edit Online

Releases a multi-thread lock.

IMPORTANT

This function is obsolete. Beginning in Visual Studio 2015, it is not available in the CRT.

Syntax

void _ cdecl _unlock(
int locknum

)s

Parameters

locknum
[in] The identifier of the lock to release.

Requirements

Source: mlock.c

See also

Alphabetical Function Reference

_lock

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/unlock.md

UCRT alphabetical function reference

2/4/2019 « 8 minutes to read « Edit Online

The Universal C Runtime (UCRT, often just CRT) Library reference documentation is arranged
alphabetically by routine. To find a CRT routine based on functionality, see Universal C runtime

routines by category.

A

abort

abs

_abs64

access

_access

_access_s

acos

acosf

acosh

acoshf

acoshl

acos|

_aligned_free
_aligned_free_dbg
_aligned_malloc
_aligned_malloc_dbg
_aligned_msize
_aligned_msize_dbg
_aligned_offset_malloc
_aligned_offset_malloc_dbg
_aligned_offset_realloc
_aligned_offset_realloc_dbg
_aligned_offset_recalloc
_aligned_offset_recalloc_dbg
_aligned_realloc

_aligned_realloc_dbg

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/reference/crt-alphabetical-function-reference.md

_aligned_recalloc
_aligned_recalloc_dbg
_alloca
_amsg_exit
and
and_eq
asctime
asctime_s
asin

asinf

asinh
asinhf
asinhl

asinl
assert
_assert
_ASSERT
_ASSERT_EXPR
_ASSERTE
atan

atan2
atan2f
atan2|
atanf
atanh
atanhf
atanhl
atanl

atexit
_atodbl
atodbl|
atof

_atof |

_atoflt
atoflt|
atoi
atoi|
_atoi64
atoi64|
atol
atol|
_atoldbl
atoldbl|
atoll

atoll|

B

_beginthread
_beginthreadex
bitand

bitor

bsearch

bsearch_s

btowc
_byteswap_uint64
_byteswap_ulong

_byteswap_ushort

C
_c_exit
cl6rtomb
c32rtomb
_cabs
cabs
cabsf
cabs|
cacos

cacosf

cacosh
cacoshf
cacoshl
cacosl
_callnewh
calloc
_calloc_dbg
carg
cargf
cargl
casin
casinf
casinh
casinhf
casinhl
casinl
catan
catanf
catanh
catanhf
catanhl
catanl
cbrt
cbrtf
cbrtl
ccos
ccosf
ccosh
ccoshf
ccoshl
ccosl
ceil

ceilf

ceill
_cexit
cexp
cexpf
cexpl
cgets
_cgets_s
_cgetws_s
chdir
_chdir
_chdrive
_chgsign
_chgsignf
_chgsignl
chmod
_chmod
chsize
_chsize
_chsize_s
cimag
cimagf
cimag|
_clear87
clearerr
clearerr_s
_clearfp
clock
clog
clog10
clog10f
clog10l
clogf

clogl

close
_close
_commit
compl
_configthreadlocale
conj

conjf

conjl
_control87
__control87_2
_controlfp
_controlfp_s
copysign
_copysign
copysignf
_copysignf
copysignl
_copysignl
cos

cosf

cosh
coshf
coshl

cosl
_countof
cpow
cpowf
cpowl
cprintf
_cprintf
cprintf|
_cprintf_p

_cprintf_p_|

_cprintf_s

_cprintf_s_|

cproj

cprojf

cprojl

cputs

_cputs

_cputws

creal

crealf

creall

creat

_creat

_create_locale
_CrtCheckMemory
_CrtDbgBreak
_CrtDbgReport
_CrtDbgReportW
_CrtDoForAllClientObjects
_CrtDumpMemoryLeaks
_CrtGetAllocHook
_CrtGetDumpClient
_CrtGetReportHook
_CrtlsMemoryBlock
_CrtlsValidHeapPointer
_CrtlsValidPointer
_CrtMemCheckpoint
_CrtMemDifference
_CrtMemDumpAllObjectsSince
_CrtMemDumpStatistics
_CrtReportBlockType
_CrtSetAllocHook

_CrtSetBreakAlloc

_CrtSetDbgFlag
_CrtSetDebugFillThreshold
_CrtSetDumpClient
_CrtSetReportFile
_CrtSetReportHook
_CrtSetReportHook?2
_CrtSetReportHookW?2
_CrtSetReportMode
cscanf

_cscanf

cscanf|

_cscanf_s
_cscanf_s_|

csin

csinf

csinh

csinhf

csinhl

csinl

csqrt

csqrtf

csqrtl

ctan

ctanf

ctanh

ctanhf

ctanhl

ctanl

ctime

ctime_s

_ctime32
_ctime32_s

_ctime64

_ctimeb64_s
_cwait

cwait
_cwprintf
cwprintf|
_cwprintf_p
_cwprintf_p_|
_cwprintf_s
_cwprintf_s_|
_cwscanf
cwscanf|
_cwscanf_s
_cwscanf_s_

_CxxThrowException

D

difftime
_difftime32
_difftime64
div

_dup

dup
_dup2
dup?2
_dupenv_s

_dupenv_s_dbg

E

_ecvt

ecvt

_ecvt_s
_endthread
_endthreadex
eof

_eof

erf

erfc
erfcf
erfcl
erff

erfl
execl
_exec!
execle
_execle
execlp
_execlp
execlpe
_execlpe
execv
_execv
execve
_execve
execvp
_execvp
execvpe
_execvpe
exit
_Exit
_exit
exp
exp2
exp2f
exp2|
_expand
_expand_dbg
expf

expm’1

expm1f

expm1l

F

fabs

fabsf

fclose
_fclose_nolock
_fcloseall
fcloseall

_fevt

fevt

_fevt s

fdim

fdimf

fdiml

fdopen
_fdopen
feclearexcept
fegetenv
fegetexceptflag
fegetround
feholdexcept
feof
feraiseexcept
ferror
fesetenv
fesetexceptflag
fesetround
fetestexcept
feupdateenv
fflush
_fflush_nolock

fgetc

_fgetc_nolock
fgetchar
_fgetchar
fgetpos

fgets

fgetwc
_fgetwc_nolock
_fgetwchar
fgetws
filelength
_filelength
_filelengthi64
fileno

_fileno
_findclose
_findfirst
_findfirst32
_findfirst32i64
_findfirst64
_findfirst64i32
_findfirstic4
_findnext
_findnext32
_findnext32i64
_findnext64
_findnext64i32
_findnexti64
_finite

_finitef

floor

floorf

floorl

flushall

_flushall
fma

fmaf

fmal

fmax
fmaxf
fmaxl

fmin

fminf
fminl
fmod
fmodf
fopen
fopen_s
_fpclass
_fpclassf
fpclassify
_fpieee_flt
_fpreset
fprintf
fprintf|
_fprintf_p
_fprintf_p_|
fprintf_s
_fprintf_s_|
fputc
_fputc_nolock
fputchar
_fputchar
fputs
fputwc
_fputwc_nolock

_fputwchar

fputws

fread
_fread_nolock
_fread_nolock_s
fread_s

free
_free_dbg
_free_locale
_freea
freopen
freopen_s
frexp

fscanf
fscanf|
fscanf_s
_fscanf_s_|
fseek
_fseek_nolock
_fseekio4
_fseekib4_nolock
fsetpos
_fsopen

_fstat

_fstat32
_fstat32i64
_fstatb64
_fstat64i32
_fstati64

ftell
_ftell_nolock
_ftellie4
_ftelli4_nolock

_ftime

_ftime_s
_ftime32
_ftime32_s
_ftime64
_ftime64_s
_fullpath
_fullpath_dbg
_futime
_futime32
_futime64
fwide
fwprintf
fwprintf|
_fwprintf_p
_fwprintf_p_|
fwprintf_s
_fwprintf_s_|
fwrite
_fwrite_nolock
fwscanf
fwscanf|
fwscanf_s

_fwscanf_s_|

G

gevt

_gavt

_gavts
_get_current_locale
_get_daylight
_get_doserrno
_get_dstbias
_get_errno

_get_FMA3_enable

_get_fmode
_get_heap_handle
_get_invalid_parameter_handler
_get_osfhandle
_get_pgmptr
_get_printf_count_output
_get_terminate
_get_thread_local_invalid_parameter_handler
_get_timezone
_get_tzname
_get_unexpected
_get_wpgmptr
getc

_getc_nolock
getch

_getch
_getch_nolock
getchar
_getchar_nolock
getche

_getche
_getche_nolock
getcwd

_getcwd
_getcwd_dbg
_getdcwd
_getdcwd_dbg
_getdcwd_nolock
_getdiskfree
_getdrive
_getdrives

getenv

getenv_s

_getmaxstdio
_getmbcp
_getpid

getpid

gets_s

_getw

getw

getwc
_getwc_nolock
_getwch
_getwch_nolock
getwchar
_getwchar_nolock
_getwche
_getwche_nolock
_getws_s
gmtime
gmtime_s
_gmtime32
_gmtime32_s
_gmtime64

_gmtime64_s

H

_heapchk
_heapmin
_heapwalk
hypot
_hypot
hypotf
_hypotf
hypotl

_hypotl

_i64toa
_ib4toa_s
_i64tow
_i64tow_s

ilogb

ilogbf

ilogbl

imaxabs
imaxdiv
_initterm
_initterm_e
_invalid_parameter
_invalid_parameter_noinfo
_invalid_parameter_noinfo_noreturn
_invoke_watson
isalnum
isalnum|
isalpha
isalpha|
isascii

__isascii

_isatty

isatty

isblank
isblank|

iscntrl

isentrl|
__iscsym

iscsym
iscsym|
__iscsymf

iscsymf

iscsymf|
_isctype
isctype|
isdigit
isdigit|
isfinite
isgraph
isgraph|
isgreater
isgreaterequal
isinf
isleadbyte
isleadbyte|
isless
islessequal
islessgreater
islower
islower|
_ismbbalnum
ismbbalnum|
_ismbbalpha
ismbbalpha|
_ismbbblank
ismbbblank|
_ismbbgraph
ismbbgraph|
_ismbbkalnum
ismbbkalnum|
_ismbbkana
ismbbkana|
_ismbbkprint
ismbbkprint|

_ismbbkpunct

ismbbkpunct|
_ismbblead
ismbblead|
_ismbbprint
ismbbprint|
_ismbbpunct
_ismbbpu