The Al adopfion
paracox

A data-first brief on adoption vs. trust, speed, safety, and value

Written by {§ COSINE

Executive
summary

In 2025, use of Al in software development is marked by two paradoxes: the paradox of
mistrust, and the paradox of inefficiency.

The paradox of mistrust: this year the share of developers using Al tools has risen to 84%, yet at the
same time confidence in the accuracy of Al has fallen to 33%.

The paradox of inefficiency: despite growing Al adoption, backlogs are still high, with technical debt
remaining by far the top frustration for leaders at 62%. Meanwhile security debt persists in 42% of
applications and 71% of organisations, with 48% of known vulnerabilities still open after 1 year.

Two trends are driving these dynamics.

First, off-the-shelf Al code has been proven to lead to less secure outcomes. Peer-reviewed studies
show that users of basic Al assistants not only produce less secure code, but feel more confident about
its security, versus those who don’t use Al. Separately, a large study in 2024 evaluated sixteen code-
generating models and reported package hallucination rates of 22% for open-source models (versus 5%
for commercial models) with 205,000 unique fake package names observed.

Second, only partial deployment of Al creates bottlenecks and erodes trust. Developers use Al heavily
for writing code (82%), search (68%), and debugging (57%), but far fewer use it for documentation
(40%), testing (27%) or commit and review (13%). Reviewers then face proposals without tests, policy
results, or clear rationale, and the leading blockers become trust (66%) and codebase context (63%).

There are reasons not to lose hope.

Al still has clear benefits to software developers: one enterprise-scale rollout found 9% more pull
requests per developer, a 15% higher merge rate, and an 84% increase in successful builds, while a
separate security study reduced median time to remediation by about 67%.

The secret to success is letting custom-built Al deliver orchestration rather than just
autocomplete.

Policy-aware agents should open evidence-rich pull requests, run Cl and security checks, and attach
audit trails so reviewers can approve with confidence and throughput improves. This approach both
addresses mistrust by providing context and improves throughput by enabling faster human review.

Tech leaders can drive tangible progress in 90 days.

Key steps are: 1) baseline pull request, Cl and security metrics; 2) pilot two high-volume flows such as
tests and small fixes with policy-aware agents inside your boundary; 3) require proof on every Al-
touched change; and 4) scale once merge rate rises, time to merge falls, build success rises, and aged
issues decline.

About Cosine

Cosine provides autonomous, policy aware engineering agents that work through G @ cosine cosine-monorepo s sowport ()

the software delivery pipeline. The agents open evidence rich pull requests, % Settings

generate and run tests, satisfy security and compliance checks, and attach clear

rationale so reviewers can approve with confidence. Cosine deploys inside your Implement Careers Page for Website) OPEN import React from 'react;

boundary and integrates with your existing repositories, continuous integration, and const Careers: React.FC = () => {

security tooling. Running workflows... V= By Ie::::n(sty1e={{ padding: "2rem’ }}>
cosine/add-careers-page-albs50 <hl>Careers</hl>

Cosine serves engineering leaders who need measurable throughput in complex or <p>

regulated settings. Typical owners include Heads of Engineering, Platform S ;;‘te:ez;: S“g]::;;::;f::

Engineering, and Application Security. Teams use Cosine for high volume flows such ﬂ Add a careers page oo ot meeionate ndivisuate:

as test generation and maintenance, small bug fixes, dependency and lockfile

updates, flaky test repair, documentation at scale, and targeted security careers.tsx A Stay tuned foxr job postings,

remediation. The system is asynchronous and queue driven, so it clears backlogs T vl o

without interrupting developer focus. careers@example.com.

</p>

</main>

The benefit is felt in outcomes rather than anecdotes. Organisations adopt Cosine to)
increase pull request throughput and merge rate, raise build success, shorten time Vercel Deployments 0 b
to remediation, shrink aged technical and security debt, and maintain a complete

. . 0 2 0 . . . export default Careers;
audit trail with data kept inside their boundary. Because Cosine orchestrates the © website Openin 4 9
tools teams already use, time to value is short and change management is ®
straightforward. ® dashboard il O Q
Cosine is available for free as a cloud service online, while enterprises can also O
explore proof of concept trials including virtual private cloud, on premises, and fully
air gapped deployments. This lets teams validate value in their own environment and &is

move to scale with confidence.

Give it a try Book a demo

https://cosine.sh/site
https://cal.com/team/cosine/demo?utm_source=ii&utm_campaign=aiadoption

* The paradox of mistrust @ Al use is growing, but trust in Al is declining

Use of Al in software development is marked by two
seemingly counteracting trends. Today, 84% of
developers are using Al tools - up from 70% two years
ago. But at the same time, confidence in the accuracy of
these tools is falling, and now stands at just 33%. This
pattern captures the adoption paradox in a single statistic
set. Usage increases while trust erodes.

The point of hesitation is sitting at the delivery gates.
Teams are comfortable drawing on Al inside the code
editor for drafting, searching, and minor fixes. Hesitation
emerges when proposed changes must pass tests, peer
review, security policy, and formal change management.
As Al output moves from boilerplate toward business-
critical code, reviewers confront missing repository
context, limited provenance, and incomplete audit trails.
These gaps lengthen review cycles and reduce approval
rates.

Source: 2024 Developer Survey, Stack Overflow

2023
N X X
@) © <
N N o)

% of developers using Al tools

2024 2025
N X
QA 3
< <

7% trusting Al accuracy

33%

<4 The paradox of inefficiency

Which of these company challenges causes you the most
frustration? Select all that apply

Amount of technical debt

Complexity of tech stack for
build

Complexity of tech stack for
deployment

Reliability of tools

Tracking my work

Patching / updating core
components

Number of software tools in
use

Showing my contributions

Maintaining security of
code

Maintaining security of
systems

0% 20% 40% 60%

There is a second paradox at play: the paradox of inefficiency.
Al improves drafting speed, but the gains have not yet
translated into higher throughput or smaller backlogs.

Among software engineering leaders, technical debt remains
the most frequently cited frustration at 62%, which indicates a
persistent queue of unfinished fixes and refactors.

Al use is rising, but so are technical and security backlogs

% organisations / applications with security debt

Organisations

Applications

0% 20% 40% 60% 80%

Please rate your level of agreement with the following
statement:

Strongly agree Agree

Waiting on answers
to questions often
causes interruptions
and disrupts my
workflow

Knowledge silos
prevent me from
getting ideas across
the organization

0% 20% 40% 60%

Security backlogs reinforce the same picture.
Veracode’s State of Software Security 2024 report
finds that security debt exists in 42% of applications
and a staggering 71% of organisations.

Even more concerning is the fact that 46% of
organisations have persistent, high-severity flaws that
constitute ‘critical’ security debt, and 48% of
discovered vulnerabilities still open after one year.

Al can increase the volume of code created, but
without reliable coverage at review, testing, and
remediation, risk accumulates faster than teams can
address it.

Everyday friction compounds the effect. Despite - or
sometimes because of - the introduction of Al, 53% of
developers still report that waiting for answers
interrupts their flow, while 45% say that knowledge
silos prevent them from getting ideas across the
organisation.

To date, Al has been unable to address these frictions.

Source: 2024 Developer Survey, Stack Overflow; Veracode

& Why? Quick code often means less secure code

Some of the current mistrust in Al tools is justified. Independent studies document

concrete security shortcomings in standard assistants and code-generation o)

systems. In a controlled study presented at ACM CCS, participants who used an Al 2 2 /O 2 0 5, 474
assistant produced code that was less secure than the control group and they were

ikelv to bell that thei d Average hallucination rate Unique hallucinated
ALSIS UGB AU AU SUAGORISA S S of open-source models package names across 16
(5% for commercial models) LLMs in large 2024 study

Separately, a large study in 2024 evaluated sixteen code-generating models and
measured package hallucinations that would not resolve in real repositories. The
authors reported an average hallucination rate of 22% for open-source models and
5% for commercial models, and they catalogued ~205,000 unique hallucinated
package names. The same line of research and follow-up analyses describe how
such hallucinations can be weaponised through slopsquatting, which is the
registration of the nonexistent names to deliver malicious code.

The risks to software development and to the security of the codebase are clear: E ‘

o Al assistance can increase the likelihood that insecure patterns enter the code . e
while developer confidence increases, which raises the chance that defects Overall, we find that participants who had access to

pPass review) A .
e Hallucinated dependency names expand the attack surface for supply-chain an Al aSSIStant wrote S|gn|flcantly Iegs secure code
abuse through slopsquatting, which threatens the integrity of builds and than those without access to an assistant.
releases | | Participants with access to an Al assistant were also
» Verification overhead increases because teams must confirm that . y
recommended packages exist, are trusted, and comply with policy, which more “kely to believe they Wwrote secure COde:

diverts effort from remediation and slows throughput suggesting that such tools may lead users to be
overconfident about security flaws in their code

Source: Perry et al., Do Users Write More Insecure Code with Al Assistants? (ACM CCS); We Have . . .
a Package for You! A Comprehensive Analysis of Package Hallucinations by Code Generating Perry et al., Do Users Write More Insecure Code with Al Assistants? (ACM CCS)
LLMs (Spracklen et al, 2025)

* Why? Al tools are only being deployed in parts of the workflow, creating bottlenecks

Why is Al not flowing through to overall software developer
productivity?

The primary reason is that adoption is concentrated inside the
editor rather than at the points where throughput is determined. In
recent survey data, developers report using Al for writing code at
82%, searching for answers at 68%, and debugging at 57%. Far 100%
fewer use Al for documenting code (40%) testing (27%) or °
committing and reviewing code (13%). This distribution indicates

an incomplete rollout that privileges early, individual tasks over the .
stages that decide whether changes ship. 75%

Software developer Al adoption by stage of workflow (%)

Software delivery is governed by a sequence of gates that include

commits, peer review, continuous integration, security policy, and o0%
release management. Work that is drafted with Al must still pass

these gates to produce value. When assistance is absent at these

stages, suggested changes often arrive without sufficient tests, 25%
without clear rationale, and without evidence of policy compliance.

Reviewers respond by slowing or deferring approvals, which

extends cycle times and reduces merge rates. 0%

Writing code Search for Debugging / Documenting Testing code Committing &
answers help code reviewing code

The result is a classic bottleneck. The volume of Al-assisted
changes entering the pipeline increases, while the capacity at the
review and release stages does not increase. The arrival rate rises
and the service rate does not, so queues grow and backlogs
persist. In this setting, higher adoption of cursor-based tools does
not translate into higher organisational productivity, because the
constraint lives at the gate rather than at the point of generation.

Source: 2024 Developer Survey, Stack Overflow

+ Why? Incomplete rollout harms the trustworthiness and contextual accuracy of Al

Incomplete rollout also reduces perceived accuracy at the gate.
What are the challenges to your company/whole team

Reviewers evaluate Al-generated changes when those changes . .
using Al code assistants or GenAl tools?

reach tests, peer review, security checks, and release

management. When Al is deployed mainly inside the editor,
reviewers often receive proposals without unit tests, without
policy results, and without a clear rationale tied to the repository.
In that setting, confidence falls and approval rates slow because
the evidence required for a safe decision is missing.

Survey data is consistent with this pattern. The most frequently
cited blockers are trust and context rather than training or
executive sponsorship. 66% of respondents report that they do
not trust the output of Al tools, and 63% report that the tools lack
codebase context. Additional concerns such as gaps in policy and
uneven adoption appear lower in the ranking and do not explain
the sharp drop in confidence.

Accuracy is therefore assessed as a property of the surrounding
system rather than as a property of the model. When reviewers
see tests passing, policies satisfied, and an explanation that links
the change to the relevant files, they are more likely to accept the
result as accurate. When those elements are absent, the same
code is judged as unreliable even if the underlying model is
unchanged.

Source: 2024 Developer Survey, Stack Overflow

Don't trust the output

Al tools lack context
of codebase

We don't have the
right policies

Lack of proper
training

Not everyone uses
them

They create more
work

Lack of executive
buy-in

0%

20% 40% 60%

* Why nhot to lose hope @ There are clear evidenced benefits of Al when used well

Source: GitHub

s

+9%

PRs per developer

©
+84%

Successful builds

Yo
+15%

Merge rate

&S
Vv 67%

Reduction in median time
from detection to
remediation

Al still delivers measurable benefits when it operates
through the delivery pipeline. Controlled studies show that
assistants can accelerate individual tasks. In Accenture’s
enterprise-scale rollout, GitHub reports 9% more pull requests
per developer, a 15% higher merge rate, and an 84% increase
in successful builds. These results indicate that more changes
are both produced and accepted by reviewers and
automation.

Security operations show a similar pattern. During its public
beta, Copilot Autofix reduced the median time from detection
to remediation by about 67%. This outcome demonstrates
that speed and safety can improve together when changes
carry tests, policy checks, and clear rationale through review
and continuous integration.

The practical conclusion is straightforward: speed is an
outcome of orchestration. When Al-touched changes arrive
with evidence that satisfies tests and policy, they move faster,
they merge more often, and they remain stable once released.

* The solution | Let custom-built Al fully orchestrate the developer workfloww

So what is the solution? Let custom-built, best-in-class Al, built
specifically for coding contexts, take a broader role across the delivery
pipeline so that it contributes not only to drafting but also to submission,
verification, and release.

Al adoption today and future interest by workflow stage (% of developers)

% interested in using % use today
Today the rollout is concentrated inside the editor. That pattern improves
typing speed but does not raise throughput at the gates where decisions 100%
are made. Reviewers, continuous integration, security policy, and release
management remain the determining stages, and they are often under-
served by current deployments.

o)

The corrective action is to extend coverage at the gate. Policy-aware 75%
agents should open pull requests with diffs and tests, run continuous
integration, satisfy security policy, and attach audit trails so that reviewers
can approve changes with confidence. When evidence accompanies the
change, approvals accelerate and merge rates improve. 50%

Interest data indicates that teams are ready to expand coverage. 41% of

respondents want Al to assist with commit and review, 46% want Al to

assist with testing, and 40% want Al to assist with deployment and

monitoring. Platform signals point in the same direction. 67% report that 25%
their software development life cycle is mostly or completely automated,

and 64% want to consolidate toolchains. These figures indicate demand

for orchestration rather than additional isolated tools.

The recommendation is to instrument Al rather than retreat from it. Require 0%
tests, policy results, and dependency verification on every Al-touched

change, and present the evidence in the pull request. When Al operates

through the pipeline with proof, security becomes a speed feature and the

benefits are visible in throughput metrics.

Writing code Search for Debugging / Documenting Testing code Committing &
answers help code reviewing code

Source: 2024 Developer Survey, Stack Overflow

f What do winners do difierently? Don't stop at “Al in the IDE”

The highest-performing teams don'’t stop at “Al
iIn the IDE.” They operate Al through the
pipeline - from PR creation to Cl and policy - so
changes arrive with evidence and clear
ownership.

The best Al tools touch every element of
developer activity:

Source: “Beyond Code Generation: More Efficient Software
Development”, Bain & Company

Other 7%
Developing documentation 7%
Release activities 7%
Testing 15%
Code development 41%
Ramping up hew code 7%

Work scoping & management 17%

% of developer working time spent per activity

Developing documentation: Al can generate and continuously
update architecture, API, and run-book documentation from
code, tickets, and commits, linking each document to the
relevant pull requests to preserve traceability.

Release activities: Al can assemble release notes and
changelogs from merged pull requests, verify policy and license
compliance, stage deployments after green builds, and
schedule or roll back releases according to predefined criteria.

Testing: Al can propose and maintain unit, integration, and
regression tests, expand coverage in high-risk areas identified
from incident history, stabilise flaky tests, and attach passing
evidence to each pull request.

Code development: Al can execute small, high-volume changes
such as refactors, lint fixes, and dependency updates, produce
minimal diffs with clear rationale, and ensure conformance with
security policies and coding standards before submission.

Ramping up hew code: Al can prepare onboarding briefs that
explain system boundaries, data models, and coding patterns,
generate code tours for key modules, and surface
representative examples to accelerate first contributions.

Work scoping and management: Al can triage and de-duplicate
backlog items, cluster related work into coherent packages,
estimate effort from historical data, propose owners based on
expertise, and produce short execution plans with risks and
acceptance criteria.

§ What next? | The 90-day plan for tech leaders

Objective: Extend Al from the editor to the delivery gates so that changes arrive with proof
and move through review, continuous integration, security policy, and release.

Weeks1to 2

Foundation

Appoint a single accountable owner for Al
in engineering and name platform,
security, and enablement leads.

Baseline the flow by recording pull
requests per developer, merge rate, time
to merge, build success, time to
remediation, and aged issues.

Select two high volume flows such as test
scaffolding and small bug fixes and
documentation.

Decide the execution boundary and
prefer virtual private cloud or on premises
for sensitive work.

Publish a reviewer checklist that requires
tests, policy results, dependency
verification, and a short rationale with
every Al touched change.

Weeks 3 to 6

Pilot

e Stand up the agent runtime and connect

repositories, issue tracking, continuous
integration, and code scanning.

Require evidence rich pull requests from
the pilot agents and enforce policy as
code in continuous integration.

Run the pilot with two squads and review
telemetry each day.

Hold a weekly risk review with security to
sample Al touched changes and confirm
audit trails.

Report interim results at the end of week
6 and decide whether the pilot is meeting
targets.

Weeks 7 to 12

Expand & decide

e Extend coverage to dependency

updates, flaky test repair, and security
remediation with suggested fixes.

Add two to four more squads and keep
daily telemetry and weekly governance
reviews.

Publish a single dashboard for leadership
that shows outcomes by team and
repository.

Decide on scale out at the end of week
twelve and confirm budget, ownership,
and service levels.

Success

e Every Al touched change includes
passing tests, clean security and
dependency checks, and a concise
explanation of intent and impact.

o All evidence is attached to the pull
request and stored with an audit trail.

Targets

e Pull requests per developer: ™ 15%
e Merge rate: T 15%

e Time to merge: v 30%

Build success: 1 30%

Time to remediation: ¥ 60%

Aged issues: ¥ 30%

Closing
thoughts

Al adoption across engineering is high, yet impact is still constrained because throughput
is decided at the gates. Commit and review, continuous integration, and policy are where
trust is earned or lost. IDE assistants help teams type faster. They do not, by themselves,
help teams ship faster.

The core bottleneck is incomplete rollout. Most teams deploy Al inside the editor but not at
the gates, so commit and review remain under-served where it matters most. Suggestions
enter the pipeline in greater volume, but too few arrive at the gate with the proof that
reviewers require.

Speed only counts when it reaches main. Leaders should measure pull requests per
developer, merge rate, time to merge, build success, escaped defects, and time to
remediation rather than keystrokes or suggestion counts. Security should be treated as a
speed feature by encoding it in the pipeline with policy as code, scanning, and autofix so that
cycle time falls while risk declines.

The scalable pattern is to operate Al as a pipeline participant. Policy-aware agents should
open evidence-rich pull requests, run tests and scans, satisfy policy, and present a concise
rationale to reviewers. Reviewers grant approval faster when every Al-touched pull request
arrives with proof, including passing tests, clean scans, policy compliance, and an explainable
diff. Trust then becomes a property of the system rather than of the model alone.

The quickest path to felt results is to start narrow with two high-volume flows such as test
scaffolding and small fixes or documentation. Run them inside your boundary in a virtual
private cloud or on premises to compress approvals and simplify compliance. Establish a
single source of truth by standing up a dashboard as code and reviewing it each week with
pull request, continuous integration, and security telemetry.

Reduce tool sprawl in favour of orchestration so that process seams and context gaps
shrink and Al can carry changes through the gate rather than stopping at the cursor. The
north star is simple. Throughput equals adoption multiplied by gate coverage and evidence
quality. Improving any one of these factors multiplies overall impact.

For high-performing tech leaders, the best next step is to run a ninety-day pilot that
proves merge rate up, time to merge down, builds green up, and aged debt down, and then
to scale to dependency updates and security remediation once the improvements are
verified.

{C COSINE

