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Executive 
summary

In 2025, the question for software engineering leaders is no longer “AI or no AI”. The new question is 
“specialist or generalist - and which wins on real work?”

General-purpose models are fine for drafts and brainstorming, but they’re tuned for the average case. In 
production - where accuracy, policy, and integration matter - generic outputs create rework, require heavy 
human review, and don’t move core metrics. The advantage therefore shifts to models that are trained and 
wired for your domain.

Generalist models are more likely to stall at the gate; trust and throughput break on edge cases.

Generalist models can write plausible code or text, but reviewers hesitate when a change arrives without tests, 
policy checks, or a clear rationale. Cheap tokens turn into expensive retries and human QA. The hidden cost is 
time-to-merge and confidence, not just the invoice. Post-trained LLMs can prove more cost-effective in the 
long-run.

Specialist AI/LLMs earn approval by being stack-aware - and, when justified, repo-aware.

Start by post-training an AI tool to have specialisation in your languages, frameworks, build systems, and 
patterns (e.g., Python/FastAPI, Java/Spring, C++/Bazel). This raises quality without requiring full-codebase 
ingestion. Where ROI is clear, add repository grounding - tests, design docs, incidents, standards - to maximise 
accuracy on internal tasks.

The win isn’t “better autocomplete”; it’s orchestration that ships work with proof.

Specialist models should submit evidence-rich changes: run tests, lint, and CI checks; verify dependencies; cite 
relevant policies; and explain the “why.” When every AI-touched change carries its own audit trail, reviewers 
can approve faster and with confidence.

Trade-offs exist, but they’re manageable with a narrow start and clear metrics.

There’s setup work - data hygiene, access controls, evals - and ongoing maintenance for drift. Mitigate with 
lightweight fine-tuning/adapters, smaller specialists, retrieval grounding, and scheduled regression tests. 
Measure what matters: merge rate, time-to-merge, rework, and incidents - not token price alone.


Security and IP must be first-class, not footnotes.

Keep training and inference inside your boundary (VPC/on-prem as required), enforce least-privilege access, 
and attach provenance to every artifact. Treat policy as code so speed and safety rise together.

Leaders can show progress in 90 days with a focused rollout.

1) Baseline PR, CI, and quality metrics; 2) Pilot high-volume workflows (tests, small fixes, docs) with stack-
aware models; 3) Require proof on every AI-touched change; 4) Expand to repo grounding where the business 
case is proven. Expect fewer regressions, faster merges, and lower total cost per completed task.



About Cosine
Cosine is an agentic AI software engineer for highly secure, on-premise 
environments, fine-tuned to each customer’s codebase.



Cosine provides autonomous, policy aware engineering agents that work through 
the software delivery pipeline. The agents open evidence rich pull requests, 
generate and run tests, satisfy security and compliance checks, and attach clear 
rationale so reviewers can approve with confidence. Cosine deploys inside your 
boundary and integrates with your existing repositories, continuous integration, and 
security tooling.



Cosine serves engineering leaders who need measurable throughput in complex or 
regulated settings. Typical owners include Heads of Engineering, Platform 
Engineering, and Application Security. Teams use Cosine for high volume flows such 
as test generation and maintenance, small bug fixes, dependency and lockfile 
updates, flaky test repair, documentation at scale, and targeted security 
remediation. The system is asynchronous and queue driven, so it clears backlogs 
without interrupting developer focus.



Cosine is available for free as a cloud service online, while enterprises can explore 
virtual private cloud or on premise fully air-gapped deployments. Cosine’s vertically-
integrated setup ensures no on-premise data egress.



For enterprises, Cosine can custom-train LLMs on specific coding languages and/or 
internal data. This drives higher accuracy at an efficient level of compute and cost.



Organisations adopt Cosine to increase pull request throughput and merge rate, 
raise build success, shorten time to remediation, shrink aged technical and security 
debt, and maintain a complete audit trail with data kept inside their boundary. 
Because Cosine orchestrates the tools teams already use, time to value is short and 
change management is straightforward.

Give it a try Book a demo

https://cosine.sh/site
https://cal.com/team/cosine/demo?utm_source=ii&utm_campaign=aiadoption


For the last few years, the big question inside most organisations was simply whether to deploy AI 
at all. That moment has passed: by 2025, 85% of developers are using AI tools and 80% of 
enterprises using AI RAG¹ . For most organisations AI is therefore already in the stack - in 
editors, search, support, analytics.



The new question is what kind of AI to rely on for real, gated work: a generic, broad model 
(supported by RAG) or a custom-built, stack-aware and fine-tuned one. And at the moment, it’s 
only the top 20% who are using fine-tuned² models.



On the one hand, generic models are attractive: they’re cheap to start, easy to procure, fast to 
integrate, and surprisingly capable across many tasks. They’re great for drafting, brainstorming, 
and answering open-ended questions, and you inherit improvements as the vendor upgrades the 
base model. On the other hand, they’re tuned for the average case, so they tend to miss your 
edge cases, rules, and tooling - leading to rework, slower reviews, and little defensibility since 
competitors can buy the same thing. They can also pose security and IP risks given these models 
are built for breadth and run on vendor rails you don’t control.



Custom-built models flip that trade-off: they take more setup (data hygiene, access controls, 
evals) but deliver higher accuracy and control by learning your languages/frameworks and, 
when justified, your repository patterns. They integrate with your tools to produce evidence-rich 
changes (tests run, checks passed, rationale included), which raises reviewer confidence, speeds 
merges, and creates a moat from your data and evaluations. 



In practice, many teams run a hybrid: route open-ended tasks to a strong generalist, and send 
gate-bound tasks to a specialist that knows the stack and can prove its work.

In 2025 the question isn’t “AI or no AI?” 
It’s “is your AI generalist or specialist?”     

Note: 1) Retrieval Augmented Generation, is an AI framework that enhances large language models (LLMs) by retrieving relevant, external data to augment the LLM's knowledge before it generates a response. 2) 
AI fine-tuning is the process of taking a pre-trained AI model and retraining it on a smaller, specialized dataset to adapt it to a specific task or domain

Source: 2024 Developer Survey, Stack Overflow; Wall Street Journal
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The problem with generic AI Stalling at the delivery gates

General-purpose models are optimised for breadth, not your specifics. 
They produce plausible code and text, but they don’t naturally speak your 
stack: the way your services are composed, your preferred frameworks and 
build systems, your dependency and security policies, or your review 
culture.



That shows up exactly where it hurts: tests fail, linters complain, CI turns 
red, packages aren’t pinned, secrets policies are violated, and commit 
messages lack a rationale that maps to your standards. What looked fast in 
the editor becomes slow in the pipeline as reviewers ask for tests, security 
sign-off, and context. The cost isn’t in tokens; it’s in calendar time and 
senior attention spent turning draft AI content into something that’s 
mergeable.



Custom or “specialist” models address this by being stack-aware first, 
repo-aware when justified. Trained or adapted to your languages and 
frameworks (e.g., Python/FastAPI, Java/Spring, C++/Bazel) and wired into 
your tools, they propose diffs that run the right unit/integration tests, satisfy 
formatters and SAST/DAST checks, conform to dependency allow-lists, and 
include a short explanation referencing the relevant standard or policy. 
Review becomes a judgment on engineering choices instead of a scavenger 
hunt for proof. The result is fewer back-and-forth cycles, higher first-pass 
approval, and faster merges. In other words, throughput improves where it’s 
actually decided.

Specialist AI

Writes code more 
slowly, but fuller 

context

Writes code 
quickly, but 

limited context

Fails tests / 
security sign-off

Sometimes eventually 
passes, or sometimes 

gets stuck

More consistently 
passes tests / 

security sign-off

Generic AI



The problem with generic AI Security & IP risks

Generic models also create security & IP risks. Because they are generic, they don’t necessarily 
follow your secure-coding standards, dependency allow-lists, or CI/policy checks.



This drives several issues:

Can generate code with known vulnerabilities at non-trivial rates.

Hallucinate packages/dependencies or suggest outdated ones → supply-chain exposure.

Recommend unapproved code paths or libraries that violate allow-lists.

Are susceptible to prompt/data injection if not tightly constrained.

Runs on vendor rails you don’t fully control (data retention, telemetry, silent model updates).

No built-in provenance: outputs rarely include test results, scan reports, or policy citations, so 
reviewers see “plausible code” without proof → approvals stall or silent risk slips through

Specialist models flip these 
defaults: they can keep training/
inference inside your boundary 
(VPC/on-prem), restrict the model 
to approved tools and retrieval 
indices, and teach it your secure-
coding rules, dependency allow-
lists, CI/policy checks. 



Every AI-touched change can carry 
provenance - tests run (and 
results), scanner outcomes, 
dependency verification, and a 
short rationale pointing to the 
relevant policy - so security can 
verify rather than trust. The net 
effect is less accidental exposure, 
fewer blocked reviews, and clear 
ownership of what the model is 
allowed to do.

Source: Veracode

45%
of AI-generated code 

contained known 
vulnerabilities across >100 
LLMs and 80 coding tasks

22%
Average hallucination rate 
of open-source models 


(5% for commercial models)

30%
% of real-world Copilot/AI 

snippets with security 
weaknesses in open-source 

Python/JS repos



The benefits of specialist AI Higher accuracy and more control

Source: Pieces; arXiv; Predibase; ACL

Fine-tuned Claude 
3 Haiku beat a 
stronger base 

(Claude 3.5 Sonnet) 
by ~10% on an 

internal evaluation 
and lifted F1 by 

~25%

Code Llama–Python 7B (a 
Python-specialized 

variant) outperforms 
Llama-2 70B on 

HumanEval/MBPP: 
evidence that targeted 
training beats bigger 

general models on code 
tasks

BloombergGPT (50B), 
trained on finance 

corpora, outperforms 
similar-size general 
models on financial 
benchmarks while 

remaining competitive on 
general tasks

Predibase’s Fine-Tuning 
Index shows base models 

vs. their fine-tuned 
versions across 31 tasks, 

with most fine-tuned 
open-source models 

surpassing their bases 
(and several rivaling 
larger commercial 

models) 

A growing number of studies, across many different contexts, substantiates how specialist AI delivers 
higher accuracy than generic AI:



Ease of rollout

Quality and 
control of output

Fast

Slow

Low High

A “specialist” model isn’t necessarily a smaller or cheaper model - it’s one that 
has been taught to operate like a member of your team. 



You can start by adapting it to the languages, frameworks, build systems, and 
patterns your engineers actually use (for example, Python/FastAPI, Java/Spring, 
C++/Bazel, your testing libraries, and your CI steps). This stack-aware tuning, plus 
retrieval over your docs, policies, API specs, runbooks, and architecture notes, 
gets you most of the way without touching the full codebase.  

When the return is clear, layer in repository grounding: representative services, 
test suites, design docs, post-mortems, and coding standards. The objective is 
not “more context,” it’s the right context to clear your gates reliably.
 

Because it knows the stack and the rules, a specialist behaves differently in the 
pipeline. It proposes minimal, targeted diffs; generates and runs unit/integration 
tests; conforms to formatters and static analysis; checks dependency health and 
supply-chain allow-lists; and includes a short rationale that maps trade-offs to 
your standards. It also handles the operational glue (changelog snippets, 
docstrings, migration notes, issue link) so reviewers are judging engineering 
decisions instead of asking for proof. This is where accuracy and control show up 
in practice: fewer review loops, greener CI on first attempt, and a lower all-in cost 
per completed task, even if the per-inference price is higher than a generic model.

What does a specialist AI model look like?

Generic AI 
Fast rollout, but 

low quality & 
control

Specialist AI 
Slow rollout, but 

high quality & 
control



Over the last year, the ground has shifted. Costs have fallen and tooling has matured enough that post-training 
a model for your stack is now practical for normal teams, not just labs.


On the cost side, OpenAI’s “small-but-strong” tier (e.g., GPT-4o mini) costs around $0.15 per million input 
tokens, so you can afford to run more experiments and keep iterating without blowing the budget.

On the infra side, the big clouds now make serving cheaper and simpler: for example, Batch inference on 
Bedrock is ~50% cheaper than on-demand, and managed fine-tuning for Claude 3 Haiku is generally available, 
so you can customise a fast model inside your AWS boundary instead of building a tuning pipeline from scratch.



Cheaper isn’t the whole story: the shape of spending changes, too. When you teach a smaller model your 
languages, frameworks, policies, and common workflows, you often hit target accuracy with lower per-call cost 
and fewer retries than a big generalist. You can then route work intelligently: use the generalist for open-ended 
exploration, and send gate-bound changes to the specialist that knows your rules and tools. 



Finally, post-training is more realistic because models can now carry full context. Claude Sonnet 4 supports up 
to 1 million tokens of context, which means a single call can “see” full policy packs, long runbooks, and meaningful 
repo slices. This mean the fine-tuned model isn’t guessing; it’s operating with your actual artefacts in view. Pair 
that with lightweight tuning methods (PEFT*) that cut trainable parameters and memory, and you have adaptation 
without owning a full research cluster, plus outputs that arrive evidence-rich (tests run, scans clean, policy cited) 
and are far more likely to pass review, CI, and policy on the first try.



In short, lower token prices, cheaper serving modes, bigger context windows, and mature lightweight tuning 
make custom, stack-aware LLMs a sensible default.  You can start with a capable base, post-train it on your 
rules, and use it where accuracy and control decide throughput.

Why now? | Specialist AI is more attainable than ever

Note: * PEFT = Parameter-Efficient Fine-Tuning (umbrella term for methods that train only a tiny fraction of parameters while freezing the base model) 
Source: Andreessen Horowitz

“What we’re hearing from 
customers is that they don’t 
just need bigger models to be 
good at everything. They need 
models that are actually built 
for their specific use cases”

Nick Frosst, Cohere

“[Base] models will become  
commoditised… models by 
themselves are not sufficient” 

Satya Nadella, Microsoft 



What is the right balance between specialist and generalist AI? 


The balance is clear: use a specialist when the price of being “roughly 
right” is high and happens often. If a task must clear tests, CI, security, or 
policy—and you run that task again and again—then a stack-aware model 
pays for itself. Think security-sensitive fixes, API/SDK glue that must follow 
house patterns, migrations that touch many files, reliability work driven by 
runbooks, and documentation or tests tied to standards. This works best 
when you already have the basics in place: accessible policies and 
runbooks, a sensible CI pipeline, a handful of “golden” examples to learn 
from, and somewhere to log outcomes. In that setting, specialization turns 
rework into first-pass approvals.



In contrast, stick with a generalist when the task is rare, fuzzy, or relies 
mostly on human judgment; when you don’t have clear examples or 
checks that define “good”; or when the rules and APIs change so fast the 
model would be outdated next week. Generalists are ideal for exploration, 
brainstorming, and one-off analysis. They’re also a good holding pattern 
while you clean data, write tests, and stabilize the pipeline a specialist 
would depend on.



A practical rule of thumb: if you can express the gate as checks the model 
can run (tests, linters, policy assertions) and you do dozens of these tasks 
each month, choose a specialist; otherwise route to a strong generalist and 
collect examples until the ROI is obvious. In most organisations, the winning 
setup is hybrid: generalist for open-ended work, specialist for recurring 
changes that must arrive “ready-to-merge with proof.”

Source: 2024 Developer Survey, Stack Overflow 

When is specialist AI worth it?

Incoming 
requests 
(issues, 

prompts, 

tasks)

Generic

 model

Specialist

 model Tests CI Policy

Ready to merge

Exploration, Q&A and 
brainstorming

Router

Route open-ended tasks to the generic model; send gate-bound 
changes to the specialist to pass tests, CI and policy with evidence:



If you’re going to use post-trained LLMs, think about security from the very beginning. The point 
isn’t just to avoid leaks; it’s to make the model a safe, verifiable participant in your workflow. Build 
these habits in early and the specialist will ship changes that are easier to approve - and safer - by 
default. Here are the key considerations:



1) Post-train only on clean data

Start by cleaning the corpus. Remove PII and secrets, strip anything you don’t have the rights to 
use, deduplicate near-copies, and fix obvious errors. Keep a simple manifest - where each source 
came from, who approved it, and how often it’s refreshed - so you can show, not just claim, that 
the model was trained on safe, high-quality material.



2) Teach the model your security protocol

Don’t stop at “do no harm”; make the model security-literate. Feed it your secure-coding standard, 
dependency allow-lists, secret-handling rules, auth/crypto guidance, and the exact CI/policy 
checks you run today. Post-training on these rules turns security from tribal knowledge into 
something the model can apply consistently.



3) Make security proof part of every answer

Ask the AI not only to follow the rules, but to show its work. For each change, it should run the 
relevant tests and scanners, check dependencies against allow-lists, and then explain the impact 
in plain English: which controls it satisfied, what risks it avoided, and the evidence (test results, 
scan output, policy citations) attached to the change.



4) Shift security to the start of the workflow

Once the model learns your protocol and is required to produce proof, security stops being an 
afterthought. When it touches code, it proposes safer patterns, flags risky ones, and includes the 
evidence by default. Reviewers verify rather than reconstruct, approvals move faster, and “security 
at the end” is replaced by security built in from the first diff.

Other considerations: security and IP protection



What next? The 12-month plan for tech leaders

Objective: Deploy and operationalise custom-trained, stack-aware LLMs - lightly post-trained on internal languages/frameworks, 
tools, and policies (and selectively repo-aware) - so the AI produces ready-to-merge changes with proof. This raises accuracy and 
reviewer trust, speeds up approvals, and reduces the all-in cost per completed engineering task versus generic models


Goal: Pick the data sources that actually 
flip “pass/fail” at your delivery gates, and 
post-train LLMs on this data


List top blockers at review/CI/security 
(e.g., missing tests, policy violations, 
dependency issues)

Map which docs/specs/tests would 
prevent those blockers (policies, 
runbooks, API schemas, lint rules, golden 
tests)

Shortlist the 10–20 most stable, high-
impact sources (stack-aware first; add 
repo samples only if ROI is clear)

Post-train an LLM on these high-impact 
sources

Goal: Safely prove “ready-to-merge with 
proof” on 1–2 busy, low-risk workflows


Stand up a private environment (VPC/
least-privilege/audit logs)

Target 1–2 teams or workflows that are 
high-volume and low-risk (tests/small 
fixes/SDK glue)

Require every AI change to ship with 
tests run, checks green, dependency/
allow-list verification, and a short 
rationale citing policy

Instrument a simple dashboard (merge 
rate, time-to-merge, build pass rate)

Outputs: Working pilot; per-team 
dashboards; a feedback loop that mines 
diffs/reviews into new training examples.

Success signal: +10–15% first-pass 
approvals and −10–15% time-to-merge on 
pilot flows

Goal: Expand coverage without losing 
safety or signal


Add 3–4 more repeatable workflows 
(docs to standard, safe refactors, flaky-
test fixes, policy remediation)

Introduce repo awareness where ROI is 
proven (a few representative services + 
golden tests)

Establish a monthly refresh: retrain from 
real diffs/reviews; run golden tasks + 
regression checks before deploy

Route work: generalist for exploration/
Q&A; specialist for gate-bound changes

Outputs: 4–6 workflows live, refresh 
cadence, rollback playbook, simple 
governance (data lineage, allow-lists)

Success: +15–25% first-pass approvals, 
−20–30% time-to-merge, +5–10 pts build 
pass rate, no rise in security exceptions

Goal: “Ready-to-merge with proof” is the norm 
for covered tasks


Make policy-as-code checks mandatory for 
AI-touched changes; keep training/inference 
inside boundary

Quarterly dataset reviews; supply-chain 
gates (SBOM/allow-lists); periodic red-team/
abuse tests

Cost/latency tuning: smaller specialists on 
hot paths; caching where safe; clear routing 
rules

Lightweight enablement: reviewer tips on 
reading evidence, short user playbooks

Outputs: Standard operating model, 
governance pack, org-wide dashboards

Success: Sustained +20–30% first-pass 
approvals, −25–40% time-to-merge, higher 
build health, lower cost per completed task

Define post-train data

Weeks 1 to 2 

Sandbox

Weeks 3 to 12

Scale with control

Months 4-6 Months 7 onwards

Bespoke as default



Closing 
thoughts

The question is no longer whether to use AI; it is whether to rely on a generalist 
model or a specialist one. Generalist models can produce an initial answer quickly, but 
they lack your context and standards, so the real delay shows up later at the gates - 
during review, testing, CI, and policy checks.



Speed only matters when the change actually reaches main. That is why you should 
measure outcomes like pull requests per developer, merge rate, time-to-merge, rework 
or edits per PR, build pass rate, and incident/MTTR - not keystrokes or suggestion 
counts. On these delivery metrics, specialist LLMs tend to perform better because they 
are built to satisfy the gates rather than just draft text or code.



Generic models are excellent demos, but custom-trained, stack-aware LLMs are the 
systems that earn trust. They submit evidence-rich changes by running tests, passing 
scans, citing the relevant policy, and including a concise rationale. Reviewers spend 
their time judging engineering decisions instead of chasing missing proof.



Security should be treated as a speed feature, not a brake. When policy is expressed 
as code, dependencies are controlled through allow-lists and every AI-touched artefact 
carries provenance, approvals become a matter of verifying evidence instead of 
debating guesses. This reduces risk and shortens cycle time at the same time.



To get the most out of a specialist LLM, run it as a participant in the delivery pipeline 
rather than a sidebar assistant. Orchestrate the tools it needs, reduce hand-offs, and 
set the default expectation that every change arrives “ready-to-merge with proof.”



The path forward is simple: start narrow, prove the impact, then scale. Run a focused 
90-day pilot on one or two high-volume workflows, demonstrate that merge rate goes 
up and time-to-merge goes down, and then expand to broader areas such as 
migrations, dependency hygiene, and security remediation with a controlled refresh 
cadence.




