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Fig. 1. Vidgets widgets.We design a family of physical widgets that are modular, power efficient, (a) compact, and (b) thin. (c) These widgets can be attached
to a smartphone’s protective case in a modular fashion. (d) The widgets can be used to construct a wide range of user interfaces and adapt to individual’s
preferences. (e) As just one example, here we use a Vidgets knob to zoom a camera’s field of view and a Vidgets button to trigger the capture. In this way, the
user can easily take a photo with a desired focus using a single hand, without needing another hand to pinch on the screen. We demonstrate several more
applications in the paper.

We present Vidgets, a family of mechanical widgets, specifically push buttons
and rotary knobs that augment mobile devices with tangible user interfaces.
When these widgets are attached to a mobile device and a user interacts
with them, the widgets’ nonlinear mechanical response shifts the device
slightly and quickly, and this subtle motion can be detected by the accelerom-
eter commonly equipped on mobile devices. We propose a physics-based
model to understand the nonlinear mechanical response of widgets. This
understanding enables us to design tactile force profiles of these widgets
so that the resulting accelerometer signals become easy to recognize. We
then develop a lightweight signal processing algorithm that analyzes the
accelerometer signals and recognizes how the user interacts with the wid-
gets in real time. Vidgets widgets are low-cost, compact, reconfigurable,
and power efficient. They can form a diverse set of physical interfaces that
enrich users’ interactions with mobile devices in various practical scenarios.
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We demonstrate their use in three applications: photo capture with single-
handed zoom, control of mobile games, and making a playable mobile music
instrument.
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1 INTRODUCTION
The quest to have the maximum possible screen size and thinnest
possible bezel is dominating today’s smartphonemarket. Both Apple
and Samsung removed the Home button and HTC has removed all
physical buttons from their latest smartphones. Hardware widgets
such as buttons on mobile devices appear to be going extinct.

Yet, there are still many aspects of physical widgets that their dig-
ital counterparts have not improved on, or even equalled: Physical
widgets give us a reassuring feeling of control, a touching sense of
the phone’s orientation, and are provably more efficient for appli-
cations such as gaming [Chu and Wong 2011; Lee and Oulasvirta
2016; Zaman et al. 2010]. Physical widgets also often complement
software widgets, in cases where it is just inconvenient for the user
to touch the screen—for example, when the user’s hands are wet or
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covered by gloves, or when the user is playing a game or watching
a full-screen video: any finger touching the screen would occlude
the displayed content and disrupt the user. Moreover, restricted by
the often small touchscreen size, software widgets such as buttons
might be too compact to be touched precisely—an issue generally
known as the fat finger problem [Siek et al. 2005].

Therefore, a natural question is how to reconcile physical widgets
with the current trend of mobile device design. We argue that to uti-
lize physical widgets on modern mobile devices, several desiderata
are of importance. 1) Physical widgets must be easy to manufacture
and have a low cost. 2) Just like the mobile application’s icon button
can be dragged and relocated on the screen, physical widgets should
be able to be repositioned, added, and/or removed to meet each
individual’s preference—a left-handed person will certainly prefer
a different user interface layout from a right-handed person. 3)
Physical widgets should have small form factors since smartphones
themselves are becoming thinner and lighter. And 4) they must be
power efficient, ideally requiring no power input at all. In other
words, they should be completely passive.

In this work, we introduce Vidgets, a family of mechanical widgets,
specifically a set of push buttons and rotary knobs, that satisfies all
these desiderata.
Our design of Vidgets is based on a key observation. When the

user presses a tactile button on a mobile device, the button’s resis-
tance force is nonlinear with respect to the depth it was pressed.
The complex interplay between this nonlinear force and the fin-
ger’s muscle force causes a small shift of the device. This shift,
albeit subtle and transient, can be detected by the accelerometer
commonly equipped on mobile devices, and the detected signal is
largely shaped by the button’s resistance force profile.

In light of this, we design a set of mechanical buttons and knobs
shown in Fig. 2. Our basic idea is to use a spring to push a steel ball
against a set of teeth that can slide as a button or rotate as a knob.We
propose a simple physics-based model to analyze how this design
affects its resistance force profile. Gaining insight from this model,
we identify a few design parameters that render the user interaction
events easily recognizable and the widgets distinguishable from
each other. This is achieved through a lightweight computational
algorithm that analyzes the accelerometer signals. The use of Vidgets
is illustrated in Fig. 1, featuring a number of attributes:
Low cost. The widgets are assembled using 3D-printed com-

ponents and mass-produced springs, balls, and ball bearings, all of
which are low-cost. The total cost of each widget is about 70¢ (USD).

Small form factor. The widgets are compact. Our prototype is
20×16×3mm in size, the size of a finger nail.

Reconfiguration. Instead of squeezing the widgets in the al-
ready crowded mobile hardware layout, Vidgets can be attached
to the device’s protective case, with no direct touch to the device.
Today, about 80% of the smartphone users use protective cases1.
Thus, the case offers a natural “real estate”, where the widgets can be
attached as individual modules. With a number of slots preallocated
on the back side of the case (see Fig. 1-c), the user can choose which

1See the survey published at Statista (www.statista.com).
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Fig. 2. Vidgets design. The basic design of Vidgets is simple. We use a
spring to push a steel ball against a tooth (to make a button shown in
the middle) or a circle of teeth (to make a knob shown on the right). For
the button, we use an additional spring on the bottom to reset. As we will
analyze in §2, this simple setup produces a nonlinear resistance force. By
changing the design parameters, we are able to tune the resistance force
profiles, and obtain a set of variants for each type of widgets. This design
has a small form factor; each Vidgets widget is as large as a finger nail.

widgets to insert into which slots to customize the user interface lay-
out. If needed, the layout can be reconfigured to adapt to a specific
application or individual’s preference (see video).

Low power consumption. Consisting of merely mechanical
structures, Vidgets require no power supply nor wired connection
to the phone. They rely only on the device’s accelerometer, which
is always on at all time [Google Inc. 2018], and consumes power
as low as a few milliwatts—significantly lower than other mobile
sensors such as WiFi radios, Bluetooth, and microphones (none of
which are always on).

Diverse functionality. Thanks to Vidgets’ modularity, a di-
verse set of user interfaces can be configured. We demonstrate how
Vidgets can be used in several practical scenarios: to enable easier
single-handed photo capture, to construct a mobile game controller,
as well as to customize a smartphone into a playable music instru-
ment (see §4).

1.1 Related Work
Our work is related to an area generally known as around-device in-
teraction [Kratz and Rohs 2009]. The idea is to extend the interaction
possibilities beyond the mobile device itself and include the space
around it. Most of the proposed solutions requires additional sensors
and other hardware attached or connected to the mobile device. For
example, HoverFlow [Kratz and Rohs 2009] uses infrared proximity
sensors to track hand and finger positions. SideSight [Butler et al.
2008] uses an array of infrared sensors and LED lights for tracking
objects in proximity. And ShiftIO [Strasnick et al. 2017] utilizes re-
configurable tactile elements attached on the edge of a mobile device
to enable physical control and tactile feedback. MagGetz [Hwang
et al. 2013], Bianchi et al. [2013] and Liang et al. [2014] detecting the
magnetic field generated by user’s interaction on their customized
controllers attached around the device. In general, the assumption
(and expectation) is that with time those additional sensors will be
miniaturized to fit in the increasingly small form factor of a mobile
device. Our work makes no such assumption.

Another line of work aims to enable user interaction on the back
of the device by, for example, attaching a keypad or touch pad on the
backside [Baudisch and Chu 2009; Hiraoka et al. 2003; Li et al. 2008;
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Sugimoto and Hiroki 2006] or placing a camera that looks at the
backside [Matsushima et al. 2017; Wigdor et al. 2007]. However, we
notice that a majority of mobile products such as smartphones now
use protective cases that cover almost entirely the backside of the
device. It is unclear how those backside sensors can be used together
with the case. In contrast, our Vidgets widgets can be attached to the
backside of the case itself, thereby retaining the protection provided
by the case.

Instead of using additional sensors, researchers have also sought
to enrich user interaction using sensors already existing on a mobile
device. One idea is to use microphones. Physical objects can be
designed to emit specific, detectable sounds. During interaction, a
microphone captures the sounds, and by analyzing the sound pattern
or frequency, the mobile device is able to recognize the object [Li
et al. 2016] and user interactions [Harrison et al. 2012; Murray-
Smith et al. 2008; Savage et al. 2015; Xiao et al. 2014]. However,
microphone signals are likely contaminated by ambient noise, which
can become a prominent issue in a noisy environment. Laput et
al. [2015] instead used a smartphone speaker to actively emit a sound,
and redirected the sound to a microphone through an acoustic wave
guide. User interactions with the wave guide can be recognized from
the received sound. This approach is more robust against noise, but
have to occupy both the microphone and speaker when it is in use.
Moreover, mobile device microphones consume more power than
accelerometers and are not always on.

Previous works have also explored the use of accelerometers for
user interaction. ViBand [Laput et al. 2016] customizes the OS kernel
of a smartwatch to enable its accelerometer to sample at 4kHz and
thereby recognize hand gestures. Unfortunately, kernel customiza-
tion is not always possible on locked systems such as iOS and on
most of the Android devices. We show that the default sampling
rate (400Hz) is sufficient for users interacting with Vidgets. In addi-
tion, Zhang el al. [2016; 2015] used signals from the accelerometer,
gyroscope, and microphone all together to enable additional tap-
ping and sliding inputs. They also rely on a machine-learning based
algorithm for the recognition, although it seems collecting training
data for their method requires a considerable effort.
In comparison to previous works, we focus on user interaction

with physical widgets such as buttons and knobs rather than track-
pads or gestures. Our approach relies on the on-device accelerometer
only, which is more power efficient. While our method also needs
to collect training data for recognizing user interaction, the training
process is lightweight: the user only needs to use each widget a few
times.
Recently, Piovarči et al. [2018] proposed a physics-based data-

driven model to understand stylus-surface interaction for designing
digital drawing tools. Our work shares a similar spirit of modeling
tangible forms, but focuses on buttons and knobs. Our design is
also partially inspired by the rich design of mechanical keyboards
dating back to 1870s [Norman 2013]. While the switch mechanisms
(e.g., [Cherry GmbH 2018; Harris 1978]) used on the keyboard are too
bulky to be directly transferred to mobile devices, their nonlinear
resistance force profiles pose an intriguing question of how the
user’s finger would interact with them, which motivates our design.

Contributions. In summary, we contribute:
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Fig. 3. Accelerometer signals. (a) An accelerometer measures the device
acceleration in the device’s local frame of reference. We use it to record
X-, Y-, and Z-channel signals when pressing three buttons on the phone
(labeled by A, B, and C, and indicated in the circles). (b,c,d) The recorded
accelerometer signals along three channels are plotted. These plots show that
when different buttons are pressed, the recorded signals differ. Therefore,
there is a good chance to recognize button events from the signals.

• the design of a family of mechanical widgets that can form a rich
set of physical user interfaces for mobile devices,

• a physics-based model that guides and justifies the choice of
widget design,

• a computational algorithm that analyzes accelerometer signals
and identifies which user interaction events and onwhichwidgets
they are triggered on, and

• three applications that demonstrate the use of Vidgets widgets
in practical scenarios.

2 THEORY OF OPERATION
This section first presents our understanding of why pressing a
mechanical button generates accelerometer signals to motivate the
design of Vidgets.We then propose a physics-basedmodel to analyze
the force profiles of Vidgets widgets, which in turn guides our design
choices.

2.1 Cause of Subtle Motion
When the user presses a mechanical button or turns a knob, the
interplay between the finger’s muscle group and widget’s mechan-
ical response causes the device to slightly shift. As demonstrated
in Fig. 3, this subtle motion can be captured by the device’s ac-
celerometer. To understand the signal generation process, we start
by describing how a mechanical button resists pressing.

2.1.1 Resistance force of a tactile button. Among numerous designs
of mechanical buttons, one type of buttons, called tactile button,
is of particular relevance to our Vidgets design. Widely used in
keyboards, tactile button has a nonlinear force response curve with
respect to the pressing depth (see Fig. 4). When the button is being
pressed, its resistance force increases nearly linearly, until a certain
pressing depth is reached (e.g., typically 1.5∼2mm for keyboard). At
that point, referred as the actuation point, the resistance force drops
dramatically. Historically, the force profile at the actuation point
is designed for fast keyboard typing, allowing the user to quickly
switch keys without pressing the key all the way down [Cherry
GmbH 2018; Kim et al. 2018; Rempel et al. 1994]. It turns out that
similar force profiles also play a key role for the generation of
accelerometer signals that we will harness, as elaborated next.
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Fig. 4. Nonlinear mechanical switch. Many mechanical switch has a
nonlinear force response. Here we illustrate the force nonlinearity using
the IBM’s buckling spring switch (b), a classic switch design historically
used on IBM’s Model M keyboard. Its force response curve is qualitatively
plotted in (a). As the switch is being pressed, the resistance force increases
until the actuation point (indicated by the red cross mark) is reached. At
that point, the resistance force drops dramatically. This force nonlinearity
inspires our design of Vidgets.

2.1.2 Generation of accelerometer signal. The nonlinear force re-
sponse does not by itself produce detectable signals for the ac-
celerometer, although one might imagine that pressing a button
may always cause elastic vibrations (or waves) to propagate through
the device body to the accelerometer. We confirm that the internal
vibration is not the cause of accelerometer signals through exper-
iments: we press a smartphone button while clamping the phone
firmly on a table. In this case, there are still elastic vibrations, but
no signal is detected by the accelerometer. The signal emerges only
when one presses the button while holding the phone in the hand.

Moreover, notice in Fig. 3 that the accelerometer measures accel-
erations along X-, Y-, and Z-direction (in the phone’s local frame of
reference) separately. We find that the three channels of signals de-
pend only on the button’s pressing direction, but not the orientation
of the widget’s internal mechanism. For example, if we horizontally
flip the button mechanism in Fig. 2-a such that the steel ball pushes
against the button from a different side, the resulting signal remains
largely unchanged.

In fact, it is the interplay between the user’s fingers and the wid-
get’s force response that produces the accelerometer signals. As
an example, consider a phone hold by a user’s hand (see Fig. 5-a).
Suppose that the user’s thumb is pressing a button with a force Fp
while other fingers and the palm provide support, and the support
forces are denoted by F̂1, ..., F̂5. If the button is pressed slowly (or
quasi-statically), then Fp needs to balance against the button’s resis-
tance force Fb . Meanwhile, to keep the phone still, the net force on
the phone needs to be nearly zero. Thus, in this case we have the
relationship, Fb ≈ −Fp ≈

∑5
i=1 F̂i . As the button is being pressed

deeper, this relationship remains satisfied until the actuation point
is reached (recall Fig. 4). At that point, Fb drops immediately, but it
takes a longer time for the finger muscles to adjust and rebalance
against Fb . For example, in our estimation (described in §2.2) it takes
about 10ms for Fb to drop, while our finger’s response time to tactile
stimuli is on the order of 100ms [Ng and Chan 2012]. During the
response time, the total force on the phone is imbalanced, causing
the phone to accelerate (and decelerate). This acceleration, although
in a very short time, is detected by the accelerometer (see Fig. 6).
Remark. In a real scenario, our hand will never hold a phone

completely still. As a result, the signal recorded by the accelerometer
also includes the acceleration (and deceleration) of the hand and

(a) (b) (c)

Fig. 5. Force analysis. (a) When a phone is held by a hand and a button
(in the red circle) is pressed, a set of forces are applied on the phone to keep
the phone almost still. The pressing force Fp from the thumb is exerted to
the button’s switch mechanism shown in (b) (after a 90°rotation), where the
notation will be used in the main text. (c) After the button is pressed down,
the spring on the bottom pushes the button up to reset. At this point, F2
needs to be sufficiently large to overcome the resistance from Fb .

body locomotion such as walking. We note that the acceleration
due to body locomotion occurs at a time scale much larger than the
finger-button interaction. The acceleration signal we are interested
in happens within less than 50ms (Fig. 6-b,c). Therefore, a simple
high-pass filter can separate it from the signals due to locomotion.
This detail will be discussed later in §5.3.

2.2 Physics-Based Force Model
We now introduce a physics-based model that describes the resis-
tance force profile of our Vidgets designs. This model is not meant
to predict the accelerometer signal. After all, it is very challenging,
if not impossible, to accurately model the finger’s muscle reaction
to the widget resistance. Rather, our goal is to use this model to
understand the widget force profile near the actuation point and
inform our design choices.
Consider the setup and notation shown in Fig. 5-b, which also

depicts the Vidgets button design in Fig. 2-b. Let k1 and k2 be the
coefficients of springs on the side and bottom, respectively. Note
that if the bottom spring vanishes (k2 = 0), the same diagram reflects
the Vidgets knob design showing in Fig. 2-c (after rotated by 90°).
Therefore, the force model derived here can be applied to both types
of widgets. When the widget is in a quasi-static state, its net force

0 200ms 0 200ms

2m/s2

0

-2m/s2

2m/s2

0

-2m/s2

Press Release

Fig. 6. A close look of the X-axis signal when pressing and releasing the
volume button on a smartphone. On the left is the signal generated by
pressing the button down (downstroke), and on the right is the signal from
releasing the button (upstroke). Notice the short durations of these signals,
typically under 50ms. It is also worth noting that the two signals are opposite
with respect to each other, in the sense that downstrokes begin with a
negative acceleration, while upstroke begins with a positive acceleration—a
feature useful for distinguish downstrokes from upstrokes.
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Fig. 7. The force profile zoo. Here we show four different designs of the
tooth shape used in Vidgets buttons (Fig. 2-b) and their estimated resis-
tance force profiles. As we vary the tooth shape, the force profile changes
considerably.

must be zero, meaning

Fp + F2 + Fb sinα + τ · µ · Fb cosα = 0, (1)

where Fp is the pressing force exerted by the user, F2 is the force
from the bottom spring, Fb is the contact force between the ball
and slider, and α is the contact angle (see Fig. 5 for the notation).
In addition, µ denotes the Coulomb friction coefficient between
the slider and the container, and τ indicates the sliding direction:
τ = −1 when the button is being pressed, and τ = 1 when it is
being released. Here we neglect the frictional force between the ball
and slider, as the mass-produced steel ball is sufficiently smooth.
Meanwhile, the force balance of the ball is written as

F1 + Fb cosα = 0, (2)

where F1 is the force from side spring. Combining (1) and (2) yields
an expression of the widget’s resistance force Fr , namely,

Fr = −Fp = F2 − F1 tanα − τ · µ · F1. (3)

Thewidget’s force profile Fr (d) is the resistance force Fr changing
with respect to the pressing depth d . It can be evaluated using (3)
because F1, F2, and α all depend on d . In particular, F2(d) = k2 · d if
we let d = 0 correspond to the rest state of the bottom spring. F1 and
α are evaluated as follows. Suppose that the boundary of the slider
(when not pressed) is given by the parameterization (x(t),y(t)), t ∈
[0, 1). If the slider is pressed down by a distanced , then the ball-slider
contact point (x(t0),y(t0)), parameterized by t0, can be computed
by solving the following system of equations:

[xc − x(t0)]
2 + [yc − y(t0) + d]

2 = R2,

x ′(t0) [xc − x(t0)] + y
′(t0) [yc − y(t0) + d] = 0.

(4)

The first equation constrains the contact point at (x(t0),y(t0)), while
the second equation requires the tangent direction of the ball to align
with that of the slider at the contact point. Here the Y-coordinate of
the ball, yc , is fixed, as it moves horizontally. Therefore, solving (4)
yields the values of t0 and the ball’s X-coordinate xc . Finally, we
obtain α = arctan y(t0)−yc

x (t0)−xc
and F1 = k1 · (x(t0)−L0), where L0 is the

rest length of the side spring. Note that since the equations in (4)

a(t)

0.5s0.0s

5N

3m/s2

0.5s0.0s 0.5s0.0s 0.5s0.0s

Fig. 8. Force profile vs. accelerometer signals. Here we show the force
profiles of four tooth shapes (the same as Fig. 7) and their accelerometer
signals when these tooth shapes are used in a Vidgets button. Notice the
correlation and temporal alignment between the estimated actuation points
of the force profiles and the recorded signals. For example, a quicker force
drop at an actuation point results in a stronger accelerometer signal, and
dual force drops result in two peaks in the signal.

depend on the pressing depth d , both α and F1 are functions of d ,
and so is Fr .

2.3 Widget Design
The physics-based model allows us to estimate the widget’s force
profile of a specific design. For instance, an important design choice
is the shape of the teeth (to provide resistance against the push
from the ball) on the button and the knob (Fig. 2). Figure 7 shows
force profiles of four teeth shapes. By changing the teeth’s shape,
we are able to tune the position of the actuation point as well as
how quickly the resistance force drops after the actuation point—the
main cause of acceleration signals (as discussed in §2.1.2).
The force profile at the actuation point directly affects the ac-

celerometer signals when we press the button or rotate the knob.
For example, the four tooth shapes in Fig. 7 leads to different acceler-
ation signals shown in Fig. 8. The correlation between the estimated
actuation points and the recorded signals (shown in Fig. 8) is evi-
dence that our force model is able to inform the performance of the
widgets. Those force profiles also contrast starkly to the case shown
in Fig. 9-a, where the button has no teeth at all. In that case, the
actuation point vanishes and the accelerometer captures no signal.

Design choices. A few factors are crucial to the widget’s perfor-
mance. First, we wish to receive strong accelerometer signals when
the widget is in use, because the signals are likely contaminated by
noise. This can be achieved by deepening the teeth or strengthening
the side spring, as predicted by our force model and confirmed by
the recorded signals (Fig. 8 and Fig. 9).

0.5s0.0s 0.5s0.0s 0.5s0.0s0.5s0.0s

5N

3m/s k1+ k2+ R-Flat

a(t)
2

(a) (b) (c) (d)
Fig. 9. Force profile dependence on design parameters. The top row
shows the estimated force profiles when various designs are used in the
button mechanism. The bottom row shows the corresponding accelerometer
signals when those designs are used. (a) With no teeth, the force is linear,
and no signal is detected by the accelerometer. In (b), (c), and (d), we use
the same tooth shape as shown in the first plot of Fig. 7, but change other
design parameters, including an increase of side spring (k1+) and bottom
spring (k2+) as well as a reduction of the steel ball radius (R−).
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Fig. 10. Button reset. Given a tooth shape shown on the left, blue curves
are the estimated force profile Fr (d ). The orange curves indicate the vertical
component Fb sinα of the force exerted by the ball. and the green curves
indicate the negated force from the bottom spring (i.e., −F2). (Left) If F2 is
insufficient, the green curve intersects with the curve of Fb sinα (orange
curve), meaning the button can not reset. (Right) To ensure the button reset,
we must increase the spring coefficient k2 to eliminate the intersection
between orange and green curves.

It is also interesting to note that the effect of the bottom spring is
counter-intuitive. Intuitively, one might expect a stronger bottom
string to produce a stronger signal. However, our force model pre-
dicts that a stronger bottom spring tends to flatten the force profile
near the actuation point, therefore weakening the accelerometer
signals. This prediction is also confirmed by our recorded signals
(Fig. 9-c).

Equally important is guaranteeing that the button resets itself
when it is released. This is illustrated in Fig. 10, wherein the orange
curve indicates the vertical force (i.e., Fb sinα ) exerted by the steel
ball (shown in Fig. 5). After the button is pressed down, the steel
ball tends to block it from resetting, since at that point Fb sinα is
downward (Fig. 5-c). The green curve in Fig. 10 shows the bottom
spring’s force. If it intersects with the orange curve (Fig. 10-left), the
spring force will not be sufficient to overcome the blocking force,
and as a result, the button will be stuck by the ball. Therefore, our
force model also helps check if a particular design is mechanically
sound.
Through these analyses, we identify four distinct tooth shapes

that result in different force profiles (Fig. 7). The difference among
these force profiles in turn leads to disparate signals captured by the
accelerometer when they are in use. We appreciate the difference
because it makes the widgets easily distinguishable from each other
using the signals, especially when they are located near each other
in the phone’s case. We will discuss the runtime widget recognition
in §3.2.

3 SIGNAL PROCESSING AT RUNTIME
Vidgets’ design allows us to process smartphones’ accelerometer
signals in a simplemanner. This section presents a lightweight signal
processing algorithm that runs in real time on mobile devices. The
goal is to identify which user interaction events (i.e., downstroke,
upstroke, or knob rotation) triggered, and on which widget they are
triggered on.
On most mobile devices, the accelerometer samples at a rate of

hundreds of hertz. For example, the Android device that we use
in our examples works at 400Hz. Our algorithm runs at 25 Hz,
although a higher rate is also possible. Each time it runs, it loads

the accelerometer’s samples from the past 0.5sec and detects user
interaction events from those samples.

The detection algorithm has two steps, summarized in Fig. 11. The
first step identifies time regions in which Vidgets usage events may
occur. The second step then analyzes each time region to recognize
the event type and the widget that produced the event. For each
widget, we also maintain a timestamp that indicates the time of
the most recent event produced by that widget. These timestamps
will be used to cull events in the current time window but already
detected in previous runs. We now elaborate the two steps.

3.1 Segmentation
For each time window, the accelerometer supplies three channels of
signals, corresponding to the accelerations along X-, Y-, and Z-axes.
The output of this step is a set of time regions, called event regions,
wherein Vidgets usage events may happen. Each event region has a
length of 50ms. We choose this time length according to [Killourhy
and Maxion 2009], which reports that the typical time duration for
pressing a mechanical keyboard is 50∼300ms. We use the lower
bound for the finest time granularity.
First, we apply a high-pass filter to the three channels, respec-

tively, removing the signal components lower than 20Hz. This is
because each output event region (of 50ms length) resolves signal
components higher than 20Hz, and this filter effectively removes
acceleration components introduced by other motions such as the
human body locomotion.

Next, we estimate the total power P i =
∑
j (x

i
j )
2 of each channel i ,

where j indexes the individual samples. We then choose the channel
with the highest power (or the largest signal-to-noise ratio) to ana-
lyze. This is motivated by the fact that the user’s interaction with
the widget almost always generates a dominant signal along one
direction—for example, the pressing direction for a button or the
sliding direction for a knob. We denote the samples of that channel
as x̃ j .
Then, we identify event regions. Inspired by a commonly used

object recognition technique in computer vision [Felzenszwalb et al.
2010], we apply non-maxima suppression to the samples x̃ j . Con-
cretely, we locate all the local maxima of the power samples (i.e.,
x̃2j ) over time, and include their time indices in the set T = {ti }

K
i=1.

Next, we iteratively choose a time t from T and include the time
region [t − ∆, t + ∆] as one of the output event regions, where ∆ is
set to be 25ms. In each iteration, we choose from the current set T
the time that has the highest power sample (i.e., t = argmaxt ∈T x̃2t ),
and remove all the time points that are in the range of [t − ∆, t + ∆]
from T . The output of this process is a number of event regions.

3.2 Event Detection
Next, we recognize which type of event, if any, occurs in each event
region. The event could be a press or release of a button, or a (single
tooth “tick”) rotation of a knob toward either of the two rotational
directions. If any of these events happen, we also need to identify
the specific widget that produces it. An detected event region could
also be a false positive in which no event occurs. Our goal here is
to recognize all these possibilities.
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Fig. 11. Overview of runtime detection. Our detection algorithm takes as input the raw accelerometer signals. After applying a high-pass filter (a), the
signals are processed through non-maxima suppression (b) and segmented at the local maximum (c). The segmented signal is then classified using k-NN
classification to determine what Vidgets interaction event, if any, occurs (d).

As discussed in §2.1, a mechanical widget produces accelerometer
signals through the user’s finger muscles reacting to the widget’s
mechanical response. In general, the signal generation depends on
how the mobile device is held, where the widgets are, and what
type of widget are in use. Our analysis in §2 is to design the widgets
such that their resulting signals are easily recognizable. Indeed, a
lightweight recognition algorithm suffices for the recognition.

Training. After the widgets are mounted on the device (e.g., on
its protective case), they are calibrated through a simple training
process. In this process, the user is asked to use each widget five
times in the poses they are comfortable with. Each use is guided
by the system (e.g., a mobile application) so it knows what event is
expected to happen. For each use, the system identifies the event
region (as described above in the segmentation step), which includes
20 samples (400Hz in 50ms) in three accelerometer channels. This
process results in a 20×3 vector for each training event. Each vector
is associated with the event type and a widget ID and is stored for
runtime use.

Recognition. At runtime, after we identify the event regions from
the segmentation step, we recognize each event region by perform-
ing standard k-nearest neighbor (k-NN) classification [Nasrabadi
2007]. This algorithm computes the classic Dynamic Time Warping
(DTW) similarity [Berndt and Clifford 1994] between the samples
in each event region and the pre-stored calibration vectors, and
classifies the region via a majority vote. The DTW similarity is more
robust than L2 distance for comparing two time series signals. Even
if one signal (e.g., the signal in a event region) is time shifted or
scaled, the DTW distance remains invariant whereas the L2 distance
changes significantly. If the minimum similarity between the event
region samples and all calibration vectors is larger than a threshold,
we treat that event region as a false positive and ignore it. The choice
of the threshold and its validation will be discussed later in §5.3. We
will show that this simple recognition algorithm runs in real time
on mobile devices while providing a high recognition accuracy.

Remark. Even if two widgets are exactly the same, as long as
they are located at different positions on the phone case, our k-
NN recognition algorithm is still able to distinguish them. This is
because for widgets at various locations, we tend to use different

fingers or poses to interact with them, that is, the muscle forces used
in the interactions are different. If the twowidgets are closely located
(e.g., next to each other), we have to rely on different widget designs
to make sure they generate distinguishable signals. For this purpose,
the various tooth shapes (such as those in Fig. 7) are particularly
helpful. Thereby, the various designs of Vidgets widgets ensure that
they are always recognizable regardless of their intended layout on
the phone case.

4 APPLICATIONS
Vidgets are building blocks of a diverse set of user interfaces and
thereby offer some unique advantages. To bring Vidgets into con-
crete use scenarios, consider, for example, a simple case wherein
the user is wearing a glove, and thus can not interact with the
touchscreen. A Vidgets interface is able to save the user from this
hassle, allowing them to interact with the device without taking
off the glove (see video). In what follows, we demonstrate three
concrete applications: photo capture, gaming, and music playing.
Throughout, we will discuss the features brought by Vidgets.

Zoom-in/out of photo capture. When capturing a photo or video
with a smartphone, oftentimes we need to zoom the camera’s field of
view in or out to focus on a target scene. Perhaps ironically, in most
camera applications such a simple and common task requires two
hands to accomplish: one hand holds the phone while two fingers
from the other hand pinch on the screen to zoom in or out. This
becomes rather inconvenient if one hand is occupied—think about
trying to capture a photo while holding a cup of coffee in another
hand.
By attaching a push button and a rotary knob on the phone’s

protective case, as in Fig. 12, we are able to construct an one-handed
interface for zooming and capturing photos. We place a knob near
the thumb to zoom in and out and a button to trigger the capture.
Remarkably, this interface can easily accommodate left-handed

and right-handed users. Thanks to the Vidgets’ modularity, one
can reposition the button and knob on the phone case to fit their
personal preference, as shown in the video.
Discussion. Although Vidgets button will cause a subtle shift of

the phone when taking photos, no negative impact is observed on
the captured photo quality. We believe that this is due to short time
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Fig. 12. Camera zoom. When taking a photo or video, the user can zoom
the field of view in and out using a Vidgets knob (inwhite box) and trigger the
shot using a Vidgets button (in white circle), all with single hand. In contrast,
most of the current smartphone cameras require two hands to zoom in/out
(with the second hand’s fingers pinching the screen), which is not always
feasible. In addition, the knob and button can be easily repositioned to
accommodate both left-handed and right-handed users (see video).

scale of the shift and the help of optical image stabilization system
already existed in most of the smartphones on the market. After all,
handshake and subtle motions are almost unavoidable even when
we capture a photon with the touchscreen button.

Mobile game controller. Another important application of Vidgets
is mobile gaming. Currently, most mobile games rely on graphical
user interfaces (GUIs) such as a set of software buttons showing
on the screen to receive user input (e.g., shooting bullets). Yet, the
GUI for mobile gaming suffers from a few limitations. Not only
does it take a part of the already limited screen space away from
displaying interesting visual content, certain areas of the screen
will also be occluded whenever the user touches the GUI. As the
game becomes intense, the player’s hand sweats, and the wetness
further deteriorates the sensitivity of the touchscreen. Indeed, it is
these reasons that motivate some companies to make mobile trigger
buttons2, a joystick-like accessory that can be clipped on the mobile
screen for game control, although they are generally bulky, still
consume some screen space, and support only a particular set of
games and smartphone models.
Using Vidgets, we can easily assemble a mobile game controller

that adapts to a specific game and provide a more natural way of
control, without sacrificing any screen space (see Fig. 13 and the
video).

Virtual instrument. Wang [2009] demonstrated the concept of
“The iPhone’s Magic Flute”, aiming to re-imagine an ancient acous-
tic instrument, flute, in the context of modern mobile technology for
expressive music-making. Their demonstration is truly impressive,

2For example, see the products from this Amazon link.

Fig. 13. Mobile gaming. (top)When controlling a game on amobile device,
the player’s fingers often occlude the display (e.g., in red circles) and cause
disruption. (down) Vidgets interface (in white circles) enables the player to
control game more efficiently without occluding the screen.

while their flute interface is a GUI displayed on the screen. Moti-
vated by previous studies showing that tactile feedback provides
more efficient handheld input than touchscreens [Brewster et al.
2007; Hoggan et al. 2008; Zaman et al. 2010], we extend Wang’s con-
cept and introduce the “smartphone’s saxophone” (see Fig. 14 and
the supplementary video), which has tactile keys made of Vidgets
buttons. Different combinations of the keys are mapped to produce
different music notes, allowing the user to play a melody.

5 EVALUATION
We now report our experiments toward understanding Vidgets’
accuracy, robustness, and system responsiveness. We also discuss
some rules of thumb that affect Vidgets’ robustness.

Hardware. All our experiments are conducted on a Samsung
Galaxy S8 smartphone, which equips a STMicroelectronics LSM6DSL

Fig. 14. Saxophone app. We demonstrate a 4-key “smartphone’s saxo-
phone”. Each Vidgets button serves as a saxophone key. By detecting the
downstroke and upstroke of each Vidgets button, this smartphone applica-
tion can recognize which keys (and key combinations) are pressed and play
the corresponding music notes.
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Fig. 15. (left) We use eight widgets, including six buttons and two knobs,
on a smartphone case. Their relative positions are indicated by boxes (for
buttons) and circles (for knobs). We use ‘b#’ and ‘g#’ (where # is a number)
as the widget IDs. (right) We report the recognition accuracy when using
different k values in the k-NN algorithm. In general, k = 1 yields higher
accuracy than higher k values. On each row from top to bottom, we report
the accuracy when increasingly more widgets are disabled (i.e., fewer wid-
gets are in use). The second column indicates the widgets that are excluded
in each test. As fewer widgets are used, the recognition accuracy increases.

inertial measurement unit. The same series of accelerometers has
been widely used in many other popular smartphones and wear-
able devices, including the Google Pixel 2/2XL, Samsung Gear S3,
Samsung Galaxy Note9, and others. The maximum sampling rate
obtained through the Android API is 400Hz [Google Inc. 2018].

5.1 Accuracy
Participants. To understand the accuracy of using Vidgets widgets,

we recruited 13 participants, including six females. Their mean age
is 24.3, and two are left-handed.

Procedure. We use an 8-widget layout on the smartphone case,
as shown in Fig. 15-left. This layout includes six push buttons and
two rotary widgets. Each widget can produce two events: down-
stroke/upstroke for the button widgets and forward/backward rota-
tion for the knob widgets. In total, there are 8×2=16 distinct user
interaction events in this layout.
At the beginning of the study, we asked each participant to per-

form a calibration procedure involving five pushes for each button
(which generate five downstrokes and five upstrokes) and five for-
ward and backward rotations for each knob. The signals collected in
this step (after segmentation) are used by our k-NN user interaction
event classification.

Afterwards, we ask the participants to press each button around
ten times and rotate each knob around ten times in each direction.
These interactions are performed in a random order, and each par-
ticipant repeats these tasks for three runs. We do not restrict how
the participants hold the phone—we simply ask them to use the
poses they feel most comfortable with and keep them consistent
across the three runs. The collected signals are then processed by
our k-NN-based recognition algorithm, and the reported events are
compared with the true events to evaluate the algorithm’s recogni-
tion accuracy (reported in Fig. 15). We also evaluated the accuracy
when choosing different k-NN parameters, and found that k = 1 in
the k-NN algorithm yields higher accuracy than other k values. The
confusion matrix when k = 1 is reported in Fig. 16.

Another trend that we observed is that as we use fewer widgets,
the widget events become easier to recognize. We note that in most
cases, such as those described in §4, we need only up to four widgets,
meaning that we are able to achieve an accuracy above 98%. In

b1a b1b b2a b2b b3a b3b b4a b4b b5a b5b b6a b6b g1a g1b g2a g2b
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b1
b
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b4
b

b5
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b5
b
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g1
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g1
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g2
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Fig. 16. Confusion matrix for detecting user interaction events on 8 wid-
gets. The layout of the widgets is shown in Fig. 15-left, and the k-NN
classification used here has k = 1. In each of the row and column label, the
first letter indicates the widget type (’b’ for button, ’g’ for knob), and the
next number indicates the widget position corresponding to Fig. 15-left, and
the last letter indicates the event type: for button, ’a’ means downstroke
and ’b’ means upstroke; for knob, ’a’ means forward rotation, and ’b’ means
backward rotation.

general, our recognition accuracy seems higher than previously
reported passive interaction widgets [Laput et al. 2016; Savage et al.
2015], although the underlying operation principles are different.

Other classification algorithms. We tested other classification al-
gorithms including support vector machine (SVM) and neural net-
works. We found that, given the limited training dataset (five trials
per widget event), both the SVM and neural network have worse
performance than k-NN classification. If we increase the size of the
training dataset to 30 trials per widget event, the accuracy of SVM
becomes comparable to k-NN, and so does the neural network’s ac-
curacy if we tune its hyperparameter values carefully. Since limiting
the required amount of user calibration is crucial for the usefulness
of the widgets in practice, we conclude that the k-NN algorithm is
the most suitable one for detecting Vidgets usage events.

Discussion. Our 8-widgets evaluation is to 1) demonstrate that
many widgets can be used simultaneously on a phone case, and 2)
show the trend that the accuracy increases when fewer widgets are
used.

It is worth noting that although we record the data first and then
run the processing algorithm, the processing algorithm is exactly
the same as what we run in our realtime demo (i.e., we used the
same algorithm to process the same data). In other words, the results
have no difference from what we get on the device in realtime. By
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Fig. 17. Eliminating false events.We collect signals generated by other
events from the daily life (e.g., walking, taking the subway, and gaming), and
plot (in red) the distribution of k-NN distances between those events and
the calibration vectors. In comparison, we also plot (in blue) the distribution
of k-NN distances between true widget events and the calibration vectors. It
is evident that the two distributions are well separated. Thus, our algorithm
is able to distinguish the widget events from other random events.

using this test scheme, we can easily collect accuracy statistics from
multiple users and multiple use cases within a single device.

The performance of certain interaction scenarios can be inferred
from our experiment in Fig15. For example, the camera app uses g1,
g2, b3, and b6. We can account for the accuracy of these widgets
and ignore data from others, and get a 98.2% accuracy.

5.2 Response Time
We also measured the responsiveness of our system on a Samsung
Galaxy S8 phone. The measurement is based on the time delay from
the beginning of a Vidgets usage event to the point at which the
event is detected by our signal processing algorithm. We estimate
the event’s start time using the starting time of the segmented event
region (i.e., t −∆ in §3.1). Note that this is a conservative estimation,
as the true starting time of an event is always later than that value.
We found that the time delay is less than 56ms in average, far below
the well-known 100ms limit for people recognizing a system as
acting instantaneously [Card et al. 1991; Miller 1968].

5.3 Robustness
Body locomotion and environmental vibration such as car motion
also generate accelerometer signals. As discussed in §3.2, we avoid
detecting such false positive events by enforcing a distance (i.e.,
DTW similarity) threshold in the k-NN feature space. If the signal
from a segmented event region is not within this threshold distance
from any of the training data signal, we discard that event region.
To justify the choice of the threshold, we ask participants to record
accelerometer signals in 30 minutes of their daily life, including
the scenarios of walking, taking a bus or subway, and playing a
mobile game using the touchscreen. As shown in Fig. 19, accelerom-
eter signals generated by these daily life activities all have distinct
characteristics from those Vidgets usage events.
Moreover, given the segmented event regions from those unre-

lated daily events (recall §3.1), we plot the distribution of their k-NN
distances (i.e., the minimum DTW distance between the signal in
the event region and all the calibration vectors) in Fig. 17, together

Fig. 18. (top) We recorded accelerometer signals when using the widgets
on a running subway train. (bottom) The noise introduced by the train
motion can be largely eliminated through a high-pass filter, since the widget
interaction events occur at a much shorter time scale.

with the distance distribution of true widget event regions. It shows
that the distance distribution of true widget events is well separated
from that generated by other types of events. By setting the distance
threshold to 10, we reject 95.1% of the false positive events when
using the 8-widget interface shown in Fig. 15-left. More specifically,
during the 30 minutes * 13 participants = 390 minutes time period
(including standing in a bus and running subway), we detected 122
false positive responses, and 116 of them are correctly rejected by
our algorithm. This means that there are only 6 false positives for
the entire 390 minutes.
We also tested our system in a very dynamic environment—a

running subway with 5 participants. The test was performed on a
running subway in a US city. The average speed is about 27km/h
and the top speed is 89km/h according to the subway’s website.
For this test, our participants performed the calibration in a static
environment as usual, but evaluated the system’s accuracy by asking
the participants to perform the test when they are on a running
train. Although the train’s motion introduces additional signals,
they can be largely cleaned through a high-pass filter as presented
in §3.1. Figure 18 shows an example of the recorded signals before
and after we apply the high-pass filter. When using the 8-widget
interface shown in Fig. 15-left, we observed a slight drop in accuracy
from 93.2% to 89.1%.

Interaction speed. Vidgets have no restriction on how quickly
the user should interact with them. Since each user might have a
different interaction speed, we wish to understand if the interaction
speed would impact Vidgets performance. To this end, we asked
the participants to change their interaction speeds intentionally.
We found that the widget’s accelerometer signal pattern is largely
independent from the interaction speed, probably because the time
scale of the event (less than 50ms) is much shorter than the highest
user interaction frequency. The fastest user in our experiments can
press a Vidgets button 4 times per second. This corresponds to 8
events per second (including both the downstrokes and upstrokes),
and a 125ms gap between the events, significantly larger than the
50ms detection window we use. Therefore, our algorithm has no
difficulty to response to even the fastest user. Nevertheless, a Vidgets
knob can be rotated very fast. We found that if the user rotate the
knob faster than 50mm/s, the event segmentations start to overlap
and the detection will fail. In practice, this rarely happens though.

5.4 Discussion about Layout and Robustness
We close the section by discussing a few rules of thumb that we
learned throughout the experiments on where to place multiple wid-
gets for maximal robustness. First, a widget generates the strongest
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Fig. 19. Visual differences between widget signals and others. In the first three columns, each plot visualizes 20 accelerometer signals generated by a
widget event. The event is indicated by the ID in the bottom-right corner of the plot (in the same way as those used in Fig. 15). Each curve is a concatenation
of the three channels (X-, Y-, and Z-channel) of accelerometer signals after align them on the time axis. It can be seen that each individual widget event
produces signals sharing similar characteristics. In the last column, the two plots show the signal curves in the same way but for other events collected when
the user is playing a mobile game (top-right) and walking/taking a subway train (bottom-right).

motion along the finger pressing (for buttons) or sliding (for knobs)
direction, called the operation direction. Therefore, aligning the
operation direction with one of the accelerometer axes could pro-
duce stronger signals and better SNRs. For the same reason, if
there are multiple widgets, it is desired to arrange them in a way
such that their operation directions align with different axes of the
accelerometer—thus, it becomes easier to distinguish the signals
produced by different widgets. If two widgets have to be placed
closely and their operation directions are the same, then it is bet-
ter to use tooth shapes that have clearly distinct resistance force
profiles, such as those shown in Fig. 7.

6 CONCLUSION AND FUTURE WORK
We have presented Vidgets, a set of modular mechanical widgets
that can be used to construct a wide range of physical user inter-
faces for mobile devices. During their use, Vidgets widgets cause
a slight shift of the device which can be detected by the on-device
accelerometer. Thus, they are fully passive and power efficient. Vid-
gets are also low-cost and have small form factors. These features
make them ideal for working in tandemwith modern mobile devices.
For example, they can be attached to the device’s protective cases
to customize personalized user interfaces and ease user interactions
in many applications. Given the fact that more and more factories
have removed most of the physical button on their mobile prod-
ucts, Vidgets provide an extensible option for tactile input on the
commonly used phone cases. Because Vidgets are modular (on the
phone case) and low-cost, the user can choose to use themwhenever
and however they need, and renew them if necessary.

Limitations and future work. A potential limitation of Vidgets
widgets is processing simultaneous user interaction events. In the-
ory, if two events from different widgets occur simultaneously, the
resulting signal would be a mix of both, and it will be hard to decom-
pose it. In practice, though, we found this to hardly be a problem,

because the time length for each event region is 50ms, and in our
tests, it is hard for the user to trigger user interaction events within
a time window as short as 50ms, even when the user intentionally
tries to do so. However, when the user constantly rotates a knob
while simultaneously pressing a button, the multiple interaction
events may confuse the detection algorithm.

We observed a slight drop in detection accuracy when the widgets
are used in a dynamical environment such as a running subway. It
is possible that this drop can be reduced if the accelerometer can
sample at a higher rate. In fact, most inertia measurement units on
current mobile devices are able to sample at a higher rate [Laput et al.
2016], yet we are limited by the APIs exposed from the operational
system. Therefore, how to process accelerometer signals at a higher
sampling rate is a worthy direction of future research.

Since our algorithm can distinguish downstrokes of Vidgets but-
tons from upstrokes, the mobile application is able to know when
the user is “holding” a button. But recognizing “holding” state de-
pends on correctly detecting the downstroke event. If a downstroke
is missed, the “holding” state would be completely lost. This is a lim-
itation in comparison to the standard switch mechanism in which
the state of a electronic circuit is changed when the switch is pressed
down, after which an electronic signal is triggered continually as
long as the switch is being hold.
Lastly, while we demonstrated the design of push buttons and

rotary knobs, other types of mechanical widgets can be realized
using a similar operational principle. An interesting future work
would be to explore a wider range of widgets including sliders,
joysticks, and more.
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