## CAST IRON PIPE RESEARCH ASSOCIATION

## HANDBOOK

## Ductile Iron Pipe Cast Iron Pipe



Fifth Edition

Oak Brook, Illinois 60521

# (C) Copyright 1967, 1976, 1978 <br> By Cast Iron Pipe Research Association Oak Brook. Illinois 

All Rights Reserved
This book. or parts thereof, may not be reproduced in any form without permission of the publishers.

ISBN - $0-916+42-01-2$
Library of Congress No. 75-405-82

Printed in the United Seates of America

## PREFACE

The Cast Iron Pipe Research Association (CIPRA) is a non-profit corporation whose members are manufacturers of gray and ductile cast iron pressure pipe. Throughout its 60 years of operation, the Association has served its members, the engineering profession, private and public utilities, industry and the public by providing sound engineering and research information at the highest level of integrity, thus setting an example of good business conduct. Results have included steady improvements in cast and ductile iron pipe, significant contributions to public health and safety through research and education.

CIPRA's staff of professional engineers and researchers provide services to consulting engineers, utilities and industry through the following activities:

1. Participation in national standards development by American National Standards Institute (ANSI), American Water Works Association (AWWA), and American Society for Testing and Materials (ASTM).
2. Presentation of engineering seminars on design, specifications and pipeline construction, corrosion control, and special applications and problems.
3. Provision of field services, such as soil and environmental investigations, flow tests, consultation with engineers on piping problems, including pipe and system design.
4. Publication of research and engineering information in technical papers, brochures, manuals and the Ductile Iron Pipe News.
Engineering services are available by request through member companies or by direct request to the President of CIPRA.

This Handbook is furnished to design engineers and purchasers of cast and ductile iron pipe as a complete reference for use in development of piping design and specifications. Unabridged ANSI and AWWA Standards are included, together with other helpful reference material.

## Membership Directory

## CAST IRON PIPE RESEARCH ASSOCIATION

AMERICAN CAST IRON PIPE COMPANY
General Office, Birmingham, Alabama
atlantic states cast IRON PIPE COMPANY
General Office, Phillipsburg, New Jersey
CLOW CORPORATION
CAST IRON PIPE \& FOUNDRY DIVISION, General Office, Bensenville, Illinois
McWANE CAST IRON PIPE COMPANY
General Offices, Birmingham, Alabama
PACIFIC STATES CAST IRON PIPE COMPANY
General Office, Provo, Utah
UNITED STATES PIPE AND FOUNDRY COMPANY
General Office, Birmingham, Alabama


## TABLE OF CONTENTS

## Preface

| Section I |  | Gray and Ductile Iron Pip |  |
| :---: | :---: | :---: | :---: |
| Page | 9 | Evolution and History |  |
| Section II |  | Gray Cast Iron Pipe |  |
| Page | 13 | Introduction |  |
| Page | 13 | Metallurgy |  |
| Page | 15 | ANSI/AWWA C101 | American National Standard for Thickness Design of Cast-Iron Pipe |
| Page 1 |  | ANSI/AWWA C106 | American National Standard for CastIron Pipe Centrifugally Cast in Metal Molds, for Water or Other Liquids |
| Page 1 |  | Bell \& Spigot Dimensi | sional Information |
| Page 1 | 132 | 21/45 Iron Strength T | Tables |
| Page 1 |  | Federal Standards for | Cast Iron Pipe |
| Section III |  | Ductile Iron Pipe |  |
| Page 1 |  | Introduction |  |
| Page 1 |  | Metallurgy |  |
| Page 1 | 138 | Ductile Iron Pipe Des | sign |
| Page 1 | 141 | ANSI/AWWA C150 | American National Standard for the Thickness Design of Ductile-Iron Pipe |
| Page 1 | 181 | ANSI/AWWA C151 | American National Standard for Duc-tile-lron Pipe, Centrifugally Cast in Metal Molds or Sand-Lined Molds, for Water or Other Liquids |
| Page 2 | 209 | ANSI A21.52 | American National Standard for Duc-tile-Iron Pipe Centrifugally Cast, in Metal Molds or Sand-Lined Molds, for Gas |

Page 227
Page 228
Page 233

Section V
Page 259
I'age 295

Section VI
Page 315
Page 317

Page 335

Page 347

Section VII
Page 351
Page 363

Section VIII

P'age 385
Page 390
Page 392
Page 395

Page 406

Ductile Iron Pipe for Gravity Flow Service
Ductile Iron Gravity Sewer Pipe
ASTM Standard for Ductile Iron Culvert Pipe
ASTMI Standard for Ductile Iron Gravity Sewer Pipe

Gray and Ductile Iron Fittings
Introduction
ANSI/AIIWA C110 American National Standard for GrayIron and Ductile-Iron Fittings, 3 in. Through 48 in . for Water and Other Liquids

Joints for Gray and Ductile Iron Pipe
Introduction
ANSI/AWUWA C111 American National Standard for Rubber Gasket Joints for Cast-Iron and Ductile-Iron Pressure Pipe and Fittings
ANSI/AWWA C115 American National Standard for Flanged Cast-Iron and Ductile-Pipe with Threaded Flanges
Thrust Restraint for Underground Piping Systems

Installation Procedures for Gray and Ductile Iron Pipe
Introduction
ANSI/AWWA C600 American National Standard for Installation of Gray and Ductile CastIron Water Mains and Appurtenances Environmental Factors Related to the Design and Use of Gray and Ductile Iron Pipe

Flow of Liquid in Pipelines
Nomograph for Pipe Size, Head Loss and Discharge
Surge in Pipelines
ANSI/AWWA C104 American National Standard for Ce-ment-Mortar Lining for Cast-Iron and Ductile-Iron Pipe and Fittings for Water
External Corrosion
and Other Liquids

Page 421
Page 423

Section IX Engineering Data
Page $428 \quad$ Equation of Pipe

Page 429 Pressure-head Conversion
Page $430 \quad$ Contents of Pipe
Page 431 Linear Expansion - Ductile Iron and Cast Iron
Page 432 Rounding Tolerances
Page 432 Metric Conversion
Page 444 Index

Cast Iron Pipe Installed 1664 Versailles


# SECTION I <br> EVOLUTION AND HISTORY OF GRAY AND DUCTILE CAST IRON PIPE 

## Early Uses of Cast Iron as Pipe

Man's ability to cast pipe probably developed from or coincidentally with the manufacture of cannons, which is reported as early as the year 1313. There is an official record of cast iron pipe manufactured at Siegerland, Germany, in 1455 for installation at the Dillenburg Castle.

## A Revolutionary Experiment

In the year 1664, King Louis XIV of France ordered the construction of a cast iron pipe main extending fifteen miles from a pumping station at Marly-onSeine to Versailles to supply water for the fountains and town. This cast iron pipe is still functioning after more than 300 years of continuous service. When the line was begun (1664), the production of iron required the use of expensive charcoal for the reduction of the iron ore; however, by 1738 success had been achieved in the production of lower cost iron through the use of coke instead of charcoal. Immediately thereafter, the more progressive cities installed cast iron mains.

## Invention of Bell \& Spigot Joint

The joints of these early cast iron lines were of the flanged type, with lead gaskets. These joints were used until Sir Thomas Simpson, engineer of the Chelsea Water Company, London, invented the bell and spigot joint in 1785. The bell and spigot joint is assembled by caulking yarn or braided hemp into the base of the annular bell cavity, then pouring molten lead into the remaining space inside the bell. Upon solidification, the lead is compacted by caulking, thus effecting a water-tight seal. This joint was used extensively until recent years. Many of the original bell and spigot lines are still in use and apparently will serve for many more years.

## Extensive Use of Cast Iron Pipe

There are more than 170 water and gas utilities in the United States that have cast iron distribution mains with continuous service records of more than 100 years.

Since the introduction of cast iron in this country, shortly after 1816, various other materials have been offered as suitable for water distribution mains. That none of these has proved able to supplant cast iron in the confidence and preference of water works engineers is demonstrated by a survey of the kinds of pipe in service in water distribution systems of the 100 largest U.S. cities. This survey revealed that cast iron pipe represented more than 90 percent of the pipe in service in these 100 cities.

Because of such strong evidence and the cumulative experience of generations of water works engineers, cast iron pipe remains more firmly entrenched than ever in its acknowledged position as the standard material for water distribution mains.

## Development of Joints

Flanged. Originally, cast iron pipe was made with flanged joints, using lead gaskets. Much improved joints of this type are still used for many above ground plant installations using rubber, fiber, metal or other types of gaskets.
Bell and Spigot. The bell and spigot joint was developed in 1785 and was extensively used for new installations until the 1930's.
Mechanical Joint. The mechanical joint was developed for gas industry use in the late 1920's, but has since been used extensively in the water industry. This joint utilizes the basic principle of the stuffing box.
Roll-on Joint. The roll-on joint was developed in 1937 and was in use approximately 20 years. Assembly of the joint involved a compressed rubber gasket rolled under a restriction ring, followed by caulked square braided jute, with the remainder of the joint packed with a bituminous compound.
Push-on Joint. The push-on joint was developed in 1956 and represented an extremely important advance in the water distribution field. This joint consists of a single rubber gasket placed in a groove inside the bell end of the pipe. By pushing the plain end of the pipe through the lubricated rubber gasket, the gasket is compressed and the joint becomes pressure tight. Assembly of the pushon joint is simple and fast. Large bell holes are not required for this joint, and it may be assembled under wet-trench conditions or even under water.
Special Joints. Several special joints are available. These joints include ball and socket for submarine or stream crossings, plain end coupled, threaded and coupled, and various restrained type joints (see Section VI).

## Ductile Iron Pipe

The advent of ductile iron pipe in 1948 was the most significant development in the pressure pipe industry. Quickly recognized as a pipe material with all of the good qualities of gray cast iron pipe plus additional strength coupled with ductility, it was first used for special and severe conditions of high pressure, water hammer and excessive external loads. More than 25 years of experience have proved it to be completely trouble-free as an underground pressure pipe material, and today it is used in the transportation of raw and potable water, sewage, gas, slurries and process chemicals.

Ductile iron pipe is designed as a flexible conduit and separate and distinct American National Standards were developed and have been available since 1965. Casting processes are similar to those for gray cast iron pipe; however, ductile iron pipe requires significant refinement in casting, higher quality raw materials, treatment with special additives, and a higher level of quality control.

It has an ultimate tensile strength of $60,000 \mathrm{psi}$, a yield strength of $42,000 \mathrm{psi}$ with 10 percent elongation, and is available with standard joints and many types of special joints.

The high level of operational dependability of ductile iron pipe stems from its major advantages of machineability, impact and corrosion resistance and high strength, making it a pipe material that is rugged and durable with high resistance to impact requiring virtually no maintenance.

## Manufacture of Ductile and Cast Iron Pipe

The centrifugal casting methods used in manufacturing ductile and cast iron pipe have been in the process of commercial development and refinement since 1925. The steady improvements that have led to the present state of the art have heen covered by literally hundreds of patents and technical papers, and represent the ingenuity of many dedicated engineers, metallurgists, and foundrymen.

In the centrifugal casting process, a controlled amount of molten metal having the proper characteristics is introduced into a rotating metal or sandlined mold, fitted with a socket core, in such way as to distribute the metal over the interior of the mold surface by centrifugal force. This force holds the metal in place until solidification occurs. Pipe removed from the mold is furnaceannealed to produce the prescribed physical and mechanical properties and eliminate any casting stresses that may have been present.

After cleaning, hydrostatic testing, dimensional gaging, weighing, coating, lining and marking, the pipe is ready for shipment.


Ductile Iron


# SECTION II 

## Gray Cast Iron Pipe

## Introduction

Cast iron pipe is widely used for water transmission and distribution, gravity sewers and force mains, water and sewage treatment plants and industrial piping. Its characteristics make it an ideal piping material for underground, underwater and aboveground installations. It is available with a wide variety of joints, each suited for specific service conditions. Linings are available for protection against aggressive liquid; and external corrosion control measures can be provided where severe conditions prevail (see Section VIII).

Advantages of cast iron pipe include machineability, which provides ease of field cutting and tapping; convenient pipe lengths for ease of installation; and

1 3 inherent corrosion resistance, assuring long service life.

Cast iron pressure pipe is designed in accordance with ANSI Standard A21.1 (AWWA C101) and manufactured in accordance with ANSI Standards A2 1.6 (AWWA C106).

## Metallurgy of Gray Cast Iron Pipe

## Structure

Gray cast iron is essentially an alloy of iron and carbon containing appropriate amounts of silicon, manganese, phosphorus and sulfur. In gray cast iron, a major part of the carbon content occurs as free carbon or graphite in the form of flakes interspersed throughout the metal. The engineering properties specific to gray cast iron are principally due to the presence of these graphite flakes.

The excellent corrosion resistance of cast iron pipe in underground service is well known. The corrosion products of cast iron pipe are tightly adherent and help protect the metal beneath. The appreciable amount of graphite, about 10 percent by volume, together with relz iively inert iron oxides and phosphides, causes gray cast iron to be characteristically corrosion resistant.

In corrosive environments where the metallic content of cast iron pipe is reduced by corrosion, the corrosion products of cast iron form an interlocking mat of graphite, phosphides and iron oxides, which is dense and strong enough to enable the pipe to continue to serve indefinitely as an effective conduit in many instances.

Machineability of any metal structure is important, particularly where it must be drilled, tapped, or cut with ordinary tools. At a given hardness level
cast iron is more easily machined than most other metals because the graphite flakes break up the chips and lubricate the cutting tool.

## Chemistry

Carbon. Carbon in cast iron may vary from about 3.00 to 3.75 percent. In general, the carbon content is adjusted to suit the particular method of manufacture and the cooling rate of a given size of casting.
Silicon. Silicon promotes graphitization, and, therefore, is a very useful element to control the properties of gray cast iron. The proper use of silicon permits a wide range of different castings to be made with uniform strength and hardness properties.
1 Phosphorus. Phosphorus in cast iron pipe ranges up to a maximum of 0.90 percent. Phosphorus increases the fluidity of the molten iron and is useful for wear and corrosion resistance.

Manganese and Sulfur. Manganese content is related to the content of sulfur and other elements in the control of physical properties. Sulfur is limited to 0.12 percent maximum in the current pipe standards.

Several other elements may be present and affect the physical properties. For this reason, the acceptance test requirements of cast iron pipe standards are based on the physical properties.

## Quality Control

Modern metallurgical control enables the foundry to produce quality castings with the desired combination of properties. Tests carried out as a guide to metallurgical control include: frequent chemical analyses for each mix used in the cupola, chill tests for graphitizing tendency, Talbot strips from the pipe wall, ring tests on rings cut from the pipe, full length bursting tests of pipe, impact tests, direct tensile tests, and others. One of the routine tests of the finished product is the hydrostatic test to which every length is subjected. Correlation of the values obtained from all of these tests with service performance of the castings have enabled the cast iron pressure pipe industry to produce progressively better and more reliable cast iron pipe and fittings.

# AMERICAN NATIONAL STANDARD <br> <br> for <br> <br> for <br> THICKNESS DESIGN OF CAST-IRON PIPE 

With Tables of Pipe Thicknesses ..... 1 ..... 5
In Four Parts
Sec. 1-1-Thickness Tables for Standard Conditions
Sec. 1-2-General Procedure for Thickness Determination
Sec. 1-3-Design Theory—Determination of Nei Thickness, Earth Load, and Truck Superload
Sec. 1-4-Thickness Determination for Pipe on Piers or Piling
Aboveground or Underground
SPONSORS
American Gas Association
American Society for Testing and Materials
American Water Works AssociationNew England Water Works AssociationApproved by The American National Standard Institute, Nov. 10, 1967Reaffirmed without revision Jul. 6, 1972
NOTICE
This Standard has been especially printed by the American Water Works Association for incorporation into this volume. It is current as of December 1, 1975. It should be noted, however, that all AWWA Standards are updated at least once in every five years. Therefore, before applying this Standard it is suggested that you confirm its currency with the American Water Works Association.

AMERICAN WATER WORKS ASSOCIATION 6666 West Quincy Avenue, Denver, Colorado 80235

## American National Standard

An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether he has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review, and users are cautioned to obtain the latest editions. Producers of goods made in conformity with an American National Standard are encouraged to state on their own responsibility in advertising and promotion material or on tags or labels that the goods are produced in conformity with particular American National Standards.

CAUTION NOTICE. This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than five (5) years from the date of publication. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute, 1430 Broadway, New York, N.Y. 10018, (212) 868-1220.

## Committee Personnel

Subcommittee 1-Pipe, which reviewed and recommended reaffirmation of this standard without revision, had the following personnel at that time:

Edward C. Sears, Chairman<br>Walter Amory, Vice-Chairman

| User Members | Producer Members |
| :--- | :---: |
| Frank E. Dolson | Carl A. Henrikson |
| Jack D. Hasler | Thomas D. Holmes |
| George F. Keenan | Thomas P. Norwood |
| Leonard Orlando, Jr. | Sidney P. Teague |
| James D. Powers |  |
| Miles R. Suchomel |  |

Standards Committee A21-Cast Iron Pipe and Fittings, which reviewed and approved this standard, had the following personnel at the time of approval:

Walter Amory, Chairman
Carl A. Henrikson, Vice-Chairman
James B. Ramsey, Secretary

Organization Represented
American Gas Association
American Society of Civil Engineers
American Society of Mechanical Engineers
American Society for Testing and Materials
American Water Works Association
Cast Iron Pipe Research Association

Inclividual Producers
Manufacturers' Standardization Society of the Valve and Fittings Industry
New England Water Works Association
Naval Facilities Engineering Command
Unclerwriters' Laboratories, Inc.
Canadian Standards Association

Name of Representative
Leonard Orlando, Jr.
Kenneth W. Henderson
Charles R. Velzy
(Vacant)
Vance C. Lischer
Carl A. Henrikson
Edward C. Sears
W. Harry Smith

Frank J. Camerota
William T. Maher
Abraitam Fenster
Walter Amory
Stanley C. Baker
Miles R. Suchomel
W. F. Semenchuk *

* Liaison representative without vote.


## Table of Contents

|  | Section |
| :---: | :---: |
|  | Foreword Page |
| 8 | History of Standard ............. vii |
|  | Major Features of 1967 Revision .... viii |
|  | Standard Thicknesses of Pit-Cast Pipe ix |
|  | References and Bibliography ........ $x$ |
|  | Sec. 1-1—Thickness Tables for Standard Conditions |
|  | 1-1.1-General |
|  | 1-1.2-Trench Load and Internal Pres- sure ....................... |
|  | 1-1.3-Traffic Superload and Surge Pressure ......................... 2 |
|  | 1-1.4-Corrosion Allowance and Casting Tolerance ................ 2 |
|  | Table |
|  | 1-1-Schedule of Barrel Thickness for |
|  | Water Pipe of 18/40 Iron |
|  | Strength ...................... |
|  | 1-2-Schedule of Barrel Thickness for |
|  | Water Pipe of 21/45 Iron |
|  | Strength ..................... 18 |
|  | 1-3-Schedule of Barrel Thickness for |
|  | Gas Pipe of 18/40 Iron Strength 33 |
|  | Sec. 1-2-General Procedure for Thickness Determination |
|  | Section |
|  | 1-2.1-Scope .......................... 45 |


| on | Pagr |
| :---: | :---: |
| 1-2.2-Procedure for Thickness Determination | 45 |
| 1-2.3-Example for Determining Thickness of $18-\mathrm{in}$. Water Pipe .... | 46 |
| Table |  |
| 1-4-Ring Test Load Equivalents (w) of Trench Loads-1b/lin ft .... |  |
| 1-5-Internal Pressure (p) |  |
| 1-6-Allowances for Casting Tolerance | 49 |
| 1-7-Standard Thickness Classes of Cast-Iron Pipe ................. |  |
| Figure |  |
| 1-1-Thickness Nomogram for Pipe of 18/40 Iron Strength, Low-Range |  |
| Load | 50 |
| 1-2-Thickness Nomogram for Pipe of 18/40 Iron Strength, High-Range Load $\qquad$ | 51 |
| 1-3-Thickness Nomogram for Pipe of 21/45 Iron Strength, Low-Range Load $\qquad$ | 52 |
| 1-4-Thickness Nomogram for Pipe of 21/45 Iron Strength, MediumRange Load ...................... | 53 |
| 5-Thickness Nomogram for Pipe of 21/45 Iron Strength, High-Range Load |  |


| Sec. 1-3-Design Theory-Determination of Net Thickness, Earth Load, and Truck Superload | Figure <br> 1-8 - Calculation Coefficients ( $C_{d}$ ) for Ditch Condition $\qquad$ |
| :---: | :---: |
| Section Page | 1-9 -Calculation Coefficients ( $C_{0}$ ) for |
| 1-3.1-Determination of Net Thickness ............................. 55 | Positive-Projection Condition . 69 1-10—Earth Loads on Pipe for Trench |
| 1-3.2-Earth Loads (W.) ............ 57 | Width ( $d+2$ ) ft ........... 70 |
| 1-3.3-Truck Superloads ( $W_{t}$ ) ....... 60 | 1-11-Earth Loads on Pipe for Trench Width $(d+1) \mathrm{ft} \ldots \ldots . \ldots$. |
| Table | 1-12-Earth Loads on Pipe in Trench |
| 1-8 -Earth Loads ( $W_{\text {。 }}$ ) and Truck | With 1:1 Side Slopes ........ 72 |
| Superloads ( $W_{t}$ ) - $\mathrm{lb} / \mathrm{lin} \mathrm{ft} \ldots 62$ | 1-13-Earth Loads on Pipe in Trench With 2:1 Side Slopes ........ 73 |
| in Ditch and Embankment Conditions ................... 63 | 1-14-Calculation Coefficients $\left(C_{n}\right)$ for Negative Projection Condition 74 |
| 1-10-Allowances for Surge Pressure .. 63 | Sec. 1-4-Thickness Determination for |
| 1-11-Surface Load Factors (C) for One Truck on Unpaved Road or Flexible Pavement ......... 64 | Pipe on Piers or Piling Aboveground or Underground |
| 1-12-Surface Load Factors (C) for | 1-4.1-Scope ........................ 75 |
| Two Passing Trucks on Unpaved Road or Flexible Pavement $\qquad$ 65 | 1-4.2-Pipe Installed Aboveground Without Earth Cover .............. 75 <br> 1-4.3-Pipe Installed Underground With |
| 1-13--Reduction Factors ( $R$ ) ........ 66 | Earth Cover ................ 75 |
| 1 14-Surface Load Factors ( $K$ ) for | 1-4.4-Design Examples .............. 76 |
| One Truck and Two Passing Trucks on Rigid Pavement ... 66 | $1-4.5-$ Calculation of Beam Stress and Deflection.................. 76 |
| 1-15-Outside Diameters of Cast-Iron | Table Page |
| Pipe ........................ 67 | 1-16-Weights of Pipe and Contained Water for Design of Above- |
| 1 1/URE | ground Pipe ................. 77 |
| 1-6 -Load-Pressure Curve ........... 67 | 1-17-Load Factors for Pipe on Spaced |
| 1-7 -Installation Conditions for Earth | Supports Aboveground and |
| Load Calculations ........... 68 | Underground ................ 78 |

## Foreword

## This foreword is provided for information only and is not a part of ANSI A21.1-1967 (AWW A C101-67).

## History of Standard

On Sep. 10, 1902, NEWWA adopted a "Standard Specification for CastIron Pipe and Special Castings," covering bell-and-spigot pit-cast pipe and fittings of ten thickness classes. The thickness classes were based on allowable internal pressures varying by increments of 50 ft of head.

On May 12, 1908, AWWA adopted a "Standard Specification for Cast-Iron Pipe and Special Castings," covering bell-and-spigot pit-cast pipe and fittings of eight classes, A through H , with allowable working pressures varying by increments of 100 ft of head from 100 to 800 ft . Dimensions and weights were given for pipe and fittings.

In 1926, ASA Sectional Committee (now ANSI Standards Committee) A21 on Cast-Iron Pipe and Fittings was organized under the sponsorship of AGA, ASTM, AWWA, and NEWWA. The present scope of Committee A21 is:

Standardization of specifications for cast-iron and ductile-iron pressure pipe for gas, water, and other liquids, and fittings for use with such pipe. These specifications to include design, dimensions, materials, coatings, linings, joints, accessories, and methods of inspection and test.

Sectional Committee A21 sponsored many tests of pipe and fittings; these included subjection of pipe to combined earth load and internal pressures (which form the basis of pipe-thickness design), corrosion tests, measurement of hydraulic friction loss in fittings, and tests of bursting strengths of pipe and fittings. After exhaustive study of the test results and other research, the committee in 1939 issued A21.1, "American Standard Practice Manual for the Computation of Strength and Thickness of Cast-Iron Pipe." The manual included nomograms and thickness tables for pit-cast pipe with $11 / 31 *$ iron strength. As stated in the preface to that manual, however, the design method was applicable to pipe of any iron strength.

Discussions and interpretations ${ }^{1,2}$ of the methnd of design of cast-iron pipe were published in 1939 and presented to AWWA and AGA. As a result of these publications and because of the general acceptance of A21.1, a substantial volume of cast-iron pipe was designed by the new method and furnished to manufacturers' standards between 1939 and 1953. A standard (A21.2) for pit-cast pipe with $11 / 31$ iron strength also was issued in 1939. Work on standards for centrifugally cast pipe with $18 / 40$ iron strength was started after the design was completed in 1939, but, owing to the intervention of World War II and other causes, they were not formally issued until 1953.

[^0]In 1957, a revision of A21.1 was issued. In that revision, designated ASA A21.1-1957 (AWWA H1-57) the major change was the addition of a method for computing earth loads on pipe laid under embankments and of nomograms and thickness tables for centrifugally cast pipe with $18 / 40$ iron strength.

In 1958, Sectional Committee A21 was reorganized. Subcommittees were established to study each group of standards in accordance with the review and revision policy of ASA (now ANSI). The scope of Subcommittee 1-Pipe is:

To include the periodic review of all current A21 standards for pipe, the preparation of revisions or new standards when needed, as well as other matters pertaining to pipe standards.

As a result of the work of Subcommittee No. 1 on this assignment, revisions of the cast-iron pipe standards A21.6 (AWWA C106), A21.7, A21.8 (AWWA C108), and A21.9 were issued in 1962 and again in 1970. Revision of A21.11957 (AWWA H1-57) was delayed in order for the subcommittee to carry out a new assignment from the sectional committee to develop a design standard and pipe standards for ductile-iron pipe. Subsequently, the subcommittee completed its study and a revision of A21.1 was issued in 1967.

In 1971, Subcommittee No. 1 reviewed the 1967 edition and submitted a recommendation to Committee A21 that the standard be reaffirmed without change. Therefore, this reaffirmed edition is unchanged from the 1967 edition, except for the updating of this foreword. For convenience, the major features listed in the foreword of the 1967 edition are repeated here.

## Major Features of 1967 Revision

Although ANSI A21.1-1967 (AWWA H1-67) contained no changes in the basic design method, a number of revisions were incorporated to simplify the design procedure and to reflect changes in technology. Major features of the 1967 revision are discussed.

1. Format. This revision is divided into four major sections: Sec. $1-1$ gives thickness tables for standard conditions; Sec. 1-2 gives the general procedure for thickness determination; Sec. 1-3 gives design theory and provides methods for determining pipe thicknesses, earth loads, and truck superloads for both standard and special conditions; and Sec. 1-4 gives the design procedure for a special installation condition, pipe on piers aboveground or underground.
2. Iron strength. Thickness tables, nomograms, and other data for pit-cast pipe ( $11 / 31$ iron strength) were deleted, as this type of pipe is seldom furnished today.

Centrifugally cast pipe covered under ANSI Standards A21.6 (AWWA C106), A21.7, A21.8 (AWWA C108), and A21.9 are specified to have an iron strength of not less than 18/40. Advances in production technology have enabled the manufacturers to furnish pipe with greater strength, and pipe with $21 / 45$ iron strength has been available for many years. Thus, for the con-
venience of users, tables and figures in the standard cover pipe with iron strengths of both $18 / 40$ and $21 / 45$.
3. Laying conditions. Laying conditions C, D, and E (also called "field conditions" in the 1957 revision) were deleted. Conditions C and D were for pipe laid on blocks, a method sometimes used in the 1920 s and 1930 s. This method has been recognized as undesirable and is seldom used today. Condition $E$ was for pipe laid with special bedding but without tamping the backfill. It was felt that this combination would rarely be used today; when special bedding is used, the backfill is almost always tamped, giving laying condition F , which was retained in this revision.
4. Earth loads. Formulas and procedures were added (Sec. 1-3) for determining earth loads for standard and special conditions. Earth loads shown in Table $1-8$ are the same as those given in the 1957 revision, except that loads for 20 and 24 ft of cover were added.
5. Allowance for truck superloads. Formulas and procedures were added (Sec. 1-3) for determining truck superloads for standard and special conditions. These procedures may be used to compute truck superloads for unpaved roads, flexible pavement, or rigid pavement; one truck or two passing trucks; and any wheel load and impact factor, including $\triangle A S H O$ truck loadings. Truck superloads for standard conditions are shown in Table $1-8$ and are the same as given in the 1957 revision, except that loads for 20 and 24 ft of cover were added.
6. Allozance for surge pressure. The allowances for surge pressure (water hammer), shown in Table $1-10$, are unchanged from those given in the 1957 revision.
7. Allowance for corrosion. A standard allowance for soil corrosion of 0.08 in., based on judgment and experience of early engineers. was used in the 1939 manual and continued in the 1957 revision. The allowance of 0.08 in . was also retained in this edition. It is very conservative for many soils, and has proved to be adequate in most. In areas suspected or known to be highly corrosive, however, the designer should take special precautions. Where unusually corrosive soil conditions are anticipated, a soil survey is recommended.
8. Pipe on piers. A new section (Sec. 1-4) was added to provide procedures for computing thicknesses of pipe installed on piers or piling, a condition sometimes encountered in laying pipe in unstable soil, across streams or swamps, either aboveground or underground, and in installing pipe on bridges and other aboveground structures.

## Standard Thicknesses of Pit-Cast Pipe

As stated in the foregoing, thickness tables for pit-cast pipe were deleted in the 1967 edition. During the review of this standard in 1971. it was determined that some standards and codes refer to the table of standard thickness classes for pit-cast pipe shown as Table 10 in the 1957 edition of A21.1. For reference, the contents of that table are reproduced on the next page:

Standard Thickness Classes for Pit-Cast Pipe*

| Pipe Size in. | Pipe-Wall Thickness (in.) for Standard Thickness Class No.: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| 3 | 0.37 | 0.40 | 0.43 | 0.46 | 0.50 | 0.54 | 0.58 | 0.63 | 0.68 | 0.73 | 0.79 | 0.85 | 0.92 | 0.99 |
| 4 | 0.40 | 0.43 | 0.46 | 0.50 | 0.54 | 0.58 | 0.63 | 0.68 | 0.73 | 0.79 | 0.85 | 0.92 | 0.99 | 1.07 |
| 6 | 0.43 | 0.46 | 0.50 | 0.54 | 0.58 | 0.63 | 0.68 | 0.73 | 0.79 | 0.85 | 0.92 | 0.99 | 1.07 | 1.16 |
| 8 | 0.46 | 0.50 | 0.54 | 0.58 | 0.63 | 0.68 | 0.73 | 0.79 | 0.85 | 0.92 | 0.99 | 1.07 | 1.16 | 1.25 |
| 10 | 0.50 | 0.54 | 0.58 | 0.63 | 0.68 | 0.73 | 0.79 | 0.85 | 0.92 | 0.99 | 1.07 | 1.16 | 1.25 | 1.35 |
| 12 | 0.54 | 0.58 | 0.63 | 0.68 | 0.73 | 0.79 | 0.85 | 0.92 | 0.99 | 1.07 | 1.16 | 1.25 | 1.35 | 1.46 |
| 14 | 0.54 | 0.58 | 0.63 | 0.68 | 0.73 | 0.79 | 0.85 | 0.92 | 0.99 | 1.07 | 1.16 | 1.25 | 1.35 | 1.46 |
| 16 | 0.58 | 0.63 | 0.68 | 0.73 | 0.79 | 0.85 | 0.92 | 0.99 | 1.07 | 1.16 | 1.25 | 1.35 | 1.46 | 1.58 |
| 18 | 0.63 | 0.68 | 0.73 | 0.79 | 0.85 | 0.92 | 0.99 | 1.07 | 1.16 | 1.25 | 1.35 | 1.46 | 1.58 | 1.71 |
| 20 | 0.66 | 0.71 | 0.77 | 0.83 | 0.90 | 0.97 | 1.05 | 1.13 | 1.22 | 1.32 | 1.43 | 1.54 | 1.66 | 1.79 |
| 24 | 0.74 | 0.80 | 0.86 | 0.93 | 1.00 | 1.08 | 1.17 | 1.26 | 1.36 | 1.47 | 1.59 | 1.72 | 1.86 | 2.01 |
| 30 | 0.87 | 0.94 | 1.02 | 1.10 | 1.19 | 1.29 | 1.39 | 1.50 | 1.62 | 1.75 | 1.89 | 2.04 | 2.20 | 2.38 |
| 36 | 0.97 | 1.05 | 1.13 | 1.22 | 1.32 | 1.43 | 1.54 | 1.66 | 1.79 | 1.93 | 2.08 | 2.25 | 2.43 | 2.62 |
| 42 | 1.07 | 1.16 | 1.25 | 1.35 | 1.46 | 1.58 | 1.71 | 1.85 | 2.00 | 2.16 | 2.33 | 2.52 | 2.72 | 2.94 |
| 48 | 1.18 | 1.27 | 1.37 | 1.48 | 1.60 | 1.73 | 1.87 | 2.02 | 2.18 | 2.35 | 2.54 | 2.74 | 2.96 | 3.20 |
| 54 | 1.30 | 1.40 | 1.51 | 1.63 | 1.76 | 1.90 | 2.05 | 2.21 | 2.39 | 2.58 | 2.79 | 3.01 | 3.25 | 3.51 |
| 60 | 1.39 | 1.50 | 1.62 | 1.75 | 1.89 | 2.04 | 2.20 | 2.38 | 2.57 | 2.78 | 3.00 | 3.24 | 3.50 | 3.78 |

* Each class is made 8 per cent heavier than the preceding class, starting with the thinnest, i.e., minimum thickness, as the base class.


## References

1. Wiggin, T. H.; Enger, M. L.; \& Schlick, W. J. A Proposed New Method for Determining Barrel Thickness of Cast-Iron Pipe. Jour. AWW A, $31: 841$ (May 1939).
2. Moore, W. D. Discussion of the New Law of Design of Cast-Iron Pipe. Jour. AWW A, 31:1655 (Oct. 1939).
3. Schlick, W. J. Supporting Strength of Cast-Iron Pipe for Water and Gas. Iozva State College Eng. Exp. Sta. Bul. 146 (1940).

## Bibliography

Marston, Anson. The Theory of External Loads on Closed Conduits in the Light of the Latest Experiments. Iowa State College Eng, Exp. Sta. Bul. 96 (1930).
Schlick, W. J. Loads on Pipe in Wide Ditches. Iozea State College Eng. Exp. Sta. Bul. 108 (1932).
Schlick, W. J. \& Moore, B. A. Strength and Elastic Properties of Cast-Iron. Iozor State College Eng. Exp. Sta. Bul. 127 (1936).
Spangler, M. G. Soil Engineering. International Textbook Co., Scranton, Pa. (2nd ed., 19n(1).
Spangler, M. G. The Supporting Strength of Rigid Pipe Culverts. Iozua State College Eng. Exp. Sta. Bul. 112 (1933).
Spangler, M. G., et al. Experimental Determination of Static and Impact Loads Transmitted to Culverts. Iowa State College Eng. Exp. Sta. Bul. 79 (1926).
Spangler, M. G. \& Schlick, W. J. Negative Projecting Conduits. Iozca State College Eng. Report No. 14 (1952-53).
Standard Specifications for Highway Bridges. American Association of State Highway Officials, Washington, D.C. (8th ed., 1961).
Vertical Pressure on Culverts Under Wheel Loads on Concrete Pavement Slabs. Bul. ST 65. Portland Cement Assn., Chicago, Ill. (1951).

# American National Standard for <br> Thickness Design of Cast-Iron Pipe 

## Sec. 1-1-Thickness Tables for Standard Conditions

## Sec. 1-1.1-General

Tables $1-1,1-2$, and $1-3$, as applicable, permit the direct determination of the required thickness of cast-iron pipe limited to the following conditions:
a. Vertical-sided trench of width at top of pipe not greater than the nominal pipe diameter plus 2 ft
b. Unit weight of soil $120 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
c. $K \mu=0.1924, K \mu^{\prime}=0.130$ (see Sec. 1-3.2 for definition)
d. Truck superload based on two passing trucks with adjacent wheels 3 ft apart, $9,000 \mathrm{lb}$ wheel load, unpaved road or flexible pavement, 1.50 impact factor
$e$. Surge allowances as shown in Table 1-10
f. Iron strengths of $18 / 40$ and 21/45*
$g$. The three most common laying conditions:

A-Pipe laid on flat-bottom trench, backfill not tamped

B-Pipe laid on flat-bottom trench, hackfill tamped

[^1]F-Pipe bedded in gravel or sand. backfill tamped
$h$. Allowances for casting tolerance as shown in Table 1-6
i. A corrosion allowance of 0.08 in .

Sec. 1-1.2-Trench Load and Internal Pressure
The required thickness of cast-iron pressure pipe is determined from a consideration of trench load and internal pressure in combination. Trench load is considered to consist of the earth load on the pipe plus any superload resulting from traffic over the trench. Internal pressure is considered to consist of the design working pressure plus an additional allowance for surge pressure. Two different combinations of trench load and internal pressure are considered in the design :

Case 1. Trench load (earth load but no truck superload) in combination with internal pressure (working pressure plus surge pressure) and with 2.5 factor of safety applied to both trench load and internal pressure

Case 2. Trench load (earth load plus truck superload) in combination with internal pressure (working pressure but no surge pressure) and with
a 2.5 factor of safety applied to both trench load and internal pressure.

## Sec. 1-1.3-Traffic Superload and

## Surge Pressure

In designing water pipe it is customary to assume that neither traffic superload nor surge pressure will occur in important magnitude simultaneously. Thus, calculations for the required thickness of water pipe are made for both conditions independently, and the greater of the two thicknesses thus determined is chosen as the net thickness.

In designing gas pipe the procedure is the same, except that surge pressure is not a factor and only Case 2 is considered.

## Sec. 1-1.4-Corrosion Allowance and Casting Tolerance

To the net thickness determined as explained above, a corrosion allowance and a casting tolerance are added to obtain the calculated thickness shown in Tables $1-1,1-2$, and $1-3$. The standard thickness class and/or the nominal thickness for this class shown in Tables $1-1,1-2$, and $1-3$ are used for specifying and ordering pipe.

For other than standard conditions the formulas, tables, and diagrams in Sec. 1-2 may be used. The design theory on which Tables $1-1,1-2$, and $1-3$ are based is presented in Sec. 1-3. Procedures for determining the net thickness of pipe on piers or piling above- or belowground are presented in Sec. 1-4.

TABLE 1-1
Schedule of Barrel Thickness for Waker Pipe of 18/40 Iron Strength

| Laying Condition | Depth of Cover fi | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 50 | 100 | 150 | 200 | 250 | 300 | 350 |
|  |  |  | Barrel Thicknesses--in. |  |  |  |  |  |  |
| Three-Inch Water Pipe |  |  |  |  |  |  |  |  |  |
| A | 21 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $.21{ }^{\text {¢ }}$ ( <br> .32 <br> .32 | $.21 *$ .22 .32 | $.22 *$ 22 .32 | $.22 *$ .32 .32 | $.22^{*}$ <br> .22 <br> .32 | $.22^{*}$ <br> .22 <br> .32 | .23 <br> .82 <br> .32 |
|  | $3 \frac{1}{2}$ | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ |  | ${ }_{\text {. } 211^{*}}$ | $.22^{*}$ .32 .32 | $.22 *$ 22 .32 | $.22^{*}$ .32 .32 | $.22^{*}$ .32 .32 | .23 28 .32 |
|  | 5 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $.21^{*}$ 22 .32 | .$^{.21}{ }^{\text {¢ }}$ | ${ }^{.22^{\text {¹ }}}$ | $.22 *$ 22 .32 | .23 .22 .32 | .23 .22 .32 | .24 22 .32 |
|  | 8 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $.22^{\text {¹ }}$ <br> $\mathbf{2 2}$ <br> .32 | $.23 *$ <br> .22 <br> .32 | $.23 *$ <br> 22 <br> .32 | .27 22 .32 | .24 22 .32 | .24 .22 .32 | .25 .22 .32 |
|  | 12 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $.2 .7 *$ <br> 22 <br> .32 | $.25 *$ <br> 22 <br> .32 | $\begin{aligned} & .25 * \\ & .22 \\ & .32 \\ & \hline \end{aligned}$ | $\begin{array}{r}.26 \\ 22 \\ .32 \\ \hline\end{array}$ | $\begin{array}{r}.26 \\ .22 \\ .32 \\ \hline\end{array}$ | .27 .22 .32 | $\begin{array}{r}.28 \\ .32 \\ .32 \\ \hline\end{array}$ |
|  | 16 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | .27 22 .32 | .27 22 .32 | .28 22 .32 | .28 22 .32 | .28 .22 .32 | .29 .22 .32 | $\begin{array}{r} .29 \\ 22 \\ .32 \end{array}$ |
| B | 21 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickners } \end{array}\right. \end{aligned}$ | $\begin{gathered} .21^{*} \\ 22 \\ .32 \end{gathered}$ | $\begin{gathered} .21^{*} \\ 22 \\ .32 \end{gathered}$ | $.22^{*}$ <br> 22 <br> .32 | $.22^{*}$ .32 .32 | $.22^{*}$ <br> 22 <br> .32 | $.22^{*}$ 22 .32 | $.23 *$ .32 . |
|  | 3. | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $\begin{aligned} & .21^{*} \\ & 22 \\ & .32 \end{aligned}$ | $\begin{aligned} & .21^{*} \\ & 22 \\ & .32 \end{aligned}$ | $\begin{aligned} & .22^{*} \\ & 22 \\ & .32 \end{aligned}$ | .29 22 .32 | 22* .22 .32 | $\begin{aligned} & .22^{*} \\ & 22 \\ & .32 \end{aligned}$ | $\begin{aligned} & .23^{*} \\ & 22 \\ & .32 \end{aligned}$ |
|  | 5 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $\begin{gathered} .21^{4} \\ 22 \\ .32 \\ \hline \end{gathered}$ | $\begin{gathered} .21^{*} \\ 22 \\ .32 \end{gathered}$ | $\begin{aligned} & 22^{*} \\ & 22 \\ & .32 \\ & \hline \end{aligned}$ | $.22^{*}$ <br> 22 <br> .32 | $\begin{array}{r}.23 \\ .22 \\ .32 \\ \hline\end{array}$ | $\begin{array}{r}.23 \\ 22 \\ .32 \\ \hline\end{array}$ | $\begin{array}{r}.24 \\ .32 \\ .32 \\ \hline\end{array}$ |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} .22^{*} \\ 22 \\ .32 \end{gathered}$ | $.22^{*}$ .22 .32 | $\begin{gathered} .23^{*} \\ 22 \\ .32 \end{gathered}$ | $.23 *$ 22 .32 | .27 .32 .32 | .24 .22 .32 | .2 .4 .32 .32 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} .27^{*} \\ 22 \\ .32 \end{gathered}$ | $\begin{gathered} .24^{*} \\ 22 \\ .32 \end{gathered}$ | $\begin{array}{r} .25 \\ 22 \\ .32 \end{array}$ | .25 22 .32 | .26 22 .32 | .26 .22 .32 | .27 .22 .32 |
|  | 16 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{array}{r} .26 \\ 22 \\ .32 \end{array}$ | .26 22 .32 | $\begin{aligned} & .27 \\ & 22 \\ & .32 \end{aligned}$ | .27 22 .32 | .28 .22 .32 | .28 22 .32 | .29 22 .32 |
| F | 21 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $\begin{aligned} & .2 I^{\text { }} \\ & 22 \\ & .32 \end{aligned}$ | $\begin{gathered} .2 I^{*} \\ 22 \\ .32 \end{gathered}$ | $\begin{gathered} .21^{*} \\ 22 \\ .32 \end{gathered}$ | $\begin{aligned} & .21^{*} \\ & 22 \\ & .32 \end{aligned}$ | $.22^{*}$ 22 .32 | $.22^{*}$ 22 .32 | .23 22 .32 |
|  | 31 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickntss } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .21 * \\ & 22 \\ & .32 \end{aligned}$ | $\begin{gathered} .21^{*} \\ 22 \\ .32 \end{gathered}$ | $\begin{aligned} & .21^{*} \\ & 22 \\ & .32 \end{aligned}$ | $\begin{aligned} & .21^{*} \\ & 22 \\ & .32 \end{aligned}$ | $\begin{gathered} .22^{\text {¹ }} \\ 22 \\ .32 \end{gathered}$ | $.22^{\text {® }}$ .32 .32 | .23 22 .32 |
|  | 5 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .21^{*} \\ & 22 \\ & .32 \end{aligned}$ | $\begin{aligned} & .21^{*} \\ & .32 \\ & .32 \end{aligned}$ | $\begin{aligned} & .21^{*} \\ & 22 \\ & .32 \end{aligned}$ | $\begin{aligned} & 22^{*} \\ & 22 \\ & .32 \end{aligned}$ | $\begin{aligned} & .22^{*} \\ & 22 \\ & .32 \end{aligned}$ | $.22^{\text { }}$ .32 .32 | $\begin{array}{r} .23 \\ 22 \\ .32 \end{array}$ |
|  | 8 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .21 \\ & 22 \\ & .32 \end{aligned}$ | $\begin{array}{r} .21 \\ 22 \\ .32 \end{array}$ | .22 22 .32 | $\begin{array}{r} 22 \\ 22 \\ .32 \end{array}$ | 23 22 32 | .23 22 .32 | $\begin{aligned} & .27 \\ & 22 \\ & .32 \end{aligned}$ |
|  | 12 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{array}{r} .23 \\ 22 \\ .32 \end{array}$ | $\begin{aligned} & .23 \\ & 22 \\ & .32 \end{aligned}$ | $\begin{array}{r} .23 \\ 22 \\ .32 \end{array}$ | $\begin{array}{r} .21 \\ 22 \\ .32 \end{array}$ | .24 22 .32 | $\begin{array}{r} .27 \\ 22 \\ .32 \end{array}$ | $\begin{array}{r}.25 \\ .32 \\ .32 \\ \hline\end{array}$ |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .24 \\ 22 \\ .32 \end{array}$ | $\begin{array}{r} 21 \\ 22 \\ .32 \end{array}$ | $\begin{array}{r} .25 \\ 22 \\ .32 \end{array}$ | $\begin{array}{r} .25 \\ 22 \\ .32 \end{array}$ | $\begin{array}{r} .26 \\ 22 \\ .32 \end{array}$ | $\begin{aligned} & .26 \\ & 22 \\ & 32 \end{aligned}$ | $\begin{array}{r} .27 \\ 22 \\ .32 \end{array}$ |

* Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor When total calculated thickness is not followed by asterisk, surge pressure (Case 1) is the controlling factor. See Sec. 1-2.1.

TABLE 1-1 (Continued)
Schedule of Barrel Thickness for Water Pipe of 18/40 Iron Strength

| Laying Condition | $\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { Cover } \\ & f t \end{aligned}$ | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 50 | 100 | 150 | 200 | 250 | 300 | 350 |
|  |  |  | Barrel Thicknesses-in. |  |  |  |  |  |  |
| Four-Inch Water Pipe |  |  |  |  |  |  |  |  |  |
| A | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .23^{*} \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .23^{*} \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .24^{*} \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .24 * \\ & .22 \\ & .35 \end{aligned}$ | $.24 *$ 22 .35 | $.25 *$ .22 .35 | .27 .22 .35 |
|  | 3) | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickneas } \end{array}\right.$ | $\begin{aligned} & .23^{*} \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .23 * \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .23^{*} \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .24 \\ & 22 \\ & .35 \end{aligned}$ | .24 .22 .35 | .25 .22 .35 | .27 .22 .35 |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .23^{*} \\ & .32 \end{aligned}$ | $\begin{aligned} & .24^{*} \\ & .22 \end{aligned}$ | $\begin{aligned} & .24^{*} \\ & .32 \end{aligned}$ | $\begin{aligned} & .25 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .26 \\ & 22 \\ & .35 \end{aligned}$ | .27 .22 .35 | .28 .22 .35 |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .25^{*} \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .26 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .27 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .28 \\ & 22 \\ & .35 \end{aligned}$ | .28 .22 .35 | .29 .22 .35 | .30 .22 .35 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .29 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{array}{r} .29 \\ 22 \\ .35 \end{array}$ | $\begin{array}{r} .30 \\ .22 \\ .35 \end{array}$ | $\begin{aligned} & .30 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .31 \\ & .32 \\ & .35 \end{aligned}$ | $\begin{aligned} & .31 \\ & .32 \\ & .35 \end{aligned}$ | .32 .22 .35 |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .31 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .31 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .32 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .32 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .33 \\ & .22 \\ & .35 \end{aligned}$ | .33 .22 .35 | .34 .22 .35 |
| B | 2\} | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .23 * \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .23 * \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .23^{*} \\ & .32 \\ & \hline \end{aligned}$ | $\begin{aligned} & .23 * \\ & 22 \\ & .35 \end{aligned}$ | .27* .22 .35 | .25 .22 .35 | .27 .22 .35 |
|  | 34 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .23^{*} \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .23 * \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .23^{*} \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .24 \\ & .22 \\ & .35 \end{aligned}$ | .25 .22 .35 | .26 .22 .35 | .27 .22 .35 |
|  | 5 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .23 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .24 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .24 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .25 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .26 \\ & .22 \\ & .35 \end{aligned}$ | .27 .22 .35 | .28 .22 .35 |
|  | 8 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .25 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .26 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .27 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .27 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .28 \\ & .22 \\ & .35 \end{aligned}$ | .29 .22 .35 | .29 .22 .35 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .28 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .28 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .29 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{array}{r} .30 \\ 22 \\ .35 \end{array}$ | $\begin{aligned} & .30 \\ & .22 \\ & .35 \end{aligned}$ | .31 .22 .35 | .32 .22 .35 |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .30 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .31 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .31 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .32 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .32 \\ & 22 \\ & 35 \end{aligned}$ | $\begin{aligned} & .33 \\ & .22 \\ & .35 \end{aligned}$ | .33 .22 .35 |
| F | 21 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .23^{*} \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .23 * \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .23^{*} \\ & .32 \\ & .35 \end{aligned}$ | $\begin{aligned} & .24^{*} \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .24 \\ & 22 \\ & .35 \end{aligned}$ | .25 .22 .35 | .26 .22 .35 |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .23^{\text { }} \\ & 22 \\ & .35 \end{aligned}$ | $\begin{gathered} .23^{*} \\ 22 \\ .35 \end{gathered}$ | $\begin{aligned} & .23 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{array}{r} .24 \\ 22 \\ .35 \end{array}$ | $\begin{aligned} & .24 \\ & 22 \\ & .35 \end{aligned}$ | .25 .22 .35 | .26 .22 .35 |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .23 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .23 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .23 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .24 \\ & .22 \\ & .35 \end{aligned}$ | .24 .22 .35 | .25 .22 .35 | .26 .25 .35 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .24 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .24 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .25 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .25 \\ & .22 \\ & .35 \end{aligned}$ | .25 .22 .35 | .26 .22 .35 | $\begin{array}{r}.27 \\ .22 \\ .35 \\ \hline\end{array}$ |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .25 \\ & 22 \\ & .35 \end{aligned}$ | .26 .22 .35 | .27 .22 .35 | .28 .22 .35 | $\begin{aligned} & .28 \\ & 22 \\ & .35 \end{aligned}$ | .29 .22 .35 | .30 .22 .35 |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .28 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .28 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .29 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .29 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .30 \\ & .22 \\ & .35 \end{aligned}$ | .30 .32 .35 | .31 .22 .35 |

* Asteriak following total calculated thickness indicates that truck superload (Case 2) is the controlling factor. When total calculated thickness is not followed by asterisk, surge pressure (Case 1) is the controlling factor. See Sec. 1-2.1.

TABLE 1-1 (Continued)
Schedule of Barrel Thickness for Water Pipe of 18/40 Iron Strength
2
8


Six-Inch Water Pipe

| A | 21 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .29^{*} \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .29^{*} \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .30^{*} \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .31^{*} \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .32 \neq \$ \\ & .32 \\ & .38 \end{aligned}$ | $\begin{aligned} & .33^{*} \\ & 22 \\ & .38 \end{aligned}$ | .34 <br> 22 <br> .38 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 ) | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .28^{*} \\ & .22 \end{aligned}$ | $\begin{aligned} & .28^{*} \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .29^{*} \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .30^{*} \\ & .32 \\ & .38 \end{aligned}$ | $\begin{aligned} & .31^{*} \\ & .22 \end{aligned}$ | $\begin{aligned} & .32 * \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .34 \\ & .22 \\ & .38 \end{aligned}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .29 * \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .29^{*} \\ & .22 \end{aligned}$ | $\begin{aligned} & .30^{*} \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .31^{*} \\ & .32 \\ & . \end{aligned}$ | $\begin{aligned} & .33 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .34 \\ & .22 \\ & .38 \end{aligned}$ | .35 .22 .38 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .32 \\ .22 \\ .38 \end{array}$ | $\begin{aligned} & .33 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .34 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .35 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{array}{r} .36 \\ 22 \\ .38 \end{array}$ | $\begin{aligned} & .37 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{array}{r}.38 \\ .32 \\ .38 \\ \hline\end{array}$ |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .36 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .37 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .38 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .38 \\ & .32 \\ & .38 \end{aligned}$ | $\begin{aligned} & .39 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .40 \\ & 23 \\ & .41 \end{aligned}$ | .41 <br> .23 <br> .41 |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .39 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{array}{r} .40 \\ 23 \\ .41 \end{array}$ | $\begin{array}{r} .41 \\ 23 \\ .41 \end{array}$ | $\begin{aligned} & .42 \\ & 23 \\ & .41 \end{aligned}$ | $\begin{aligned} & .42 \\ & 23 \\ & .41 \end{aligned}$ | $\begin{array}{r} .43 \\ 24 \\ .44 \end{array}$ | .44 .44 .44 |
| B | 2) | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & .28^{*} \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .28^{*} \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .29^{*} \\ & .38 \end{aligned}$ | $\begin{aligned} & .30^{*} \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .3 I^{*} \\ & .22 \end{aligned}$ | $\begin{aligned} & .32 * \\ & .32 \end{aligned}$ | $.33 *$ <br> .22 <br> .38 |
|  | $3{ }^{3}$ | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .27 * \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .28 * \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .28^{*} \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .29 * \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .30^{*} \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .32 \\ & .22 \\ & .38 \end{aligned}$ | .34 .22 .38 |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .28^{*} \\ & 22 \\ & 38 \end{aligned}$ | $\begin{array}{r} .29 \\ 22 \\ .38 \end{array}$ | $\begin{gathered} .30 \\ 22 \\ .38 \end{gathered}$ | $\begin{array}{r} .31 \\ 22 \\ .38 \end{array}$ | $\begin{array}{r} .32 \\ 22 \\ .38 \end{array}$ | $\begin{array}{r} .33 \\ .22 \\ .38 \end{array}$ | .34 .22 .38 |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .31 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .32 \\ & 22 \\ & 38 \end{aligned}$ | $\begin{array}{r} .33 \\ 22 \\ .38 \end{array}$ | $\begin{array}{r} .34 \\ 22 \\ .38 \end{array}$ | $\begin{aligned} & .35 \\ & .22 \\ & .38 \end{aligned}$ | .36 .32 .38 | .37 .22 .38 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .35 \\ 22 \\ .38 \end{array}$ | $\begin{aligned} & .35 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .36 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .37 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .38 \\ & .32 \\ & .38 \end{aligned}$ | $\begin{aligned} & .39 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{array}{r}.40 \\ 23 \\ .41 \\ \hline\end{array}$ |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .38 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .38 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .39 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{array}{r} .40 \\ 23 \\ .41 \end{array}$ | $\begin{aligned} & .11 \\ & 23 \\ & .41 \end{aligned}$ | $\begin{array}{r} .42 \\ 23 \\ .41 \end{array}$ | .43 .44 .44 |
| $F$ | 21 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .26^{*} \\ & .32 \\ & .38 \end{aligned}$ | $\begin{aligned} & .27 * \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .28 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .29 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .30 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{array}{r} .32 \\ .22 \\ .38 \end{array}$ | .34 22 .38 |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .27 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{array}{r} .27 \\ 22 \\ .38 \end{array}$ | $\begin{aligned} & .28 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .29 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{array}{r} .30 \\ 22 \\ .38 \end{array}$ | $\begin{aligned} & .32 \\ & .32 \\ & .38 \end{aligned}$ | .34 .22 .38 |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .28 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .28 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .29 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .29 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .30 \\ & .32 \\ & .38 \end{aligned}$ | $\begin{aligned} & .32 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{array}{r}.35 \\ .22 \\ .38 \\ \hline\end{array}$ |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & .29 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .30 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .31 \\ & .32 \\ & .38 \end{aligned}$ | $\begin{aligned} & .32 \\ & .32 \\ & .38 \end{aligned}$ | $\begin{aligned} & .33 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .34 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{array}{r}.35 \\ .32 \\ .38 \\ \hline\end{array}$ |
|  | 12 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .32 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .33 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & 34 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & 35 \\ & 22 \\ & 38 \end{aligned}$ | $\begin{aligned} & .36 \\ & .32 \\ & .38 \end{aligned}$ | $\begin{aligned} & .37 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{array}{r}.38 \\ .32 \\ .38 \\ \hline\end{array}$ |
|  | 16 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .35 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .35 \\ & .32 \\ & .38 \end{aligned}$ | $\begin{aligned} & .36 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .37 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .38 \\ & .32 \\ & .38 \end{aligned}$ | $\begin{aligned} & .39 \\ & .22 \\ & .38 \end{aligned}$ | .40 .23 .41 |

* Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor. When total calculated thickress is not followed by asterisk, surge pressure (Case 1) is the controlling factor. See Sec. 1-2.1.

TABLE 1-1 (Continued)
Schedule of Barrel Thickness for Water Pipe of 18/40 Iron Strength

| Laying Condition | Depth Cover fl | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 50 | 100 | 150 | 200 | 250 | 300 | 350 |
|  |  |  | Barrel Thicknesses-in. |  |  |  |  |  |  |

Eight-Inch Water Pipe

| A | 2ł | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $\begin{aligned} & .34^{*} \\ & .42 \\ & .41 \end{aligned}$ | $\begin{aligned} & .35 * \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .36^{*} \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .37 * \\ & .22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .38 * \\ & .22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .30^{*} \\ & 22 \\ & .41 \end{aligned}$ | $.40 *$ .22 .41 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .33^{*} \\ & .22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .34 * \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .34^{*} \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .35 * \\ & .22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .36^{*} \\ & 222 \\ & .41 \end{aligned}$ | $\begin{aligned} & .39 \\ & 22 \\ & .41 \end{aligned}$ | .41 22 .41 |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .34^{*} \\ & .22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .35 * \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .36^{*} \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .37^{*} \\ & .22 \end{aligned}$ | $\begin{aligned} & .39 \\ & .22 \\ & .41 \end{aligned}$ | $\begin{array}{r} .41 \\ 22 \\ .41 \end{array}$ | .43 <br> 23 <br> .44 |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & .38 \\ & .22 \\ & .41 \end{aligned}$ | $\begin{array}{r} .39 \\ 22 \\ .41 \end{array}$ | $\begin{aligned} & .40 \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .41 \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .+3 \\ & .23 \\ & .44 \end{aligned}$ | $\begin{array}{r} .44 \\ 23 \\ .44 \end{array}$ | .46 <br> 24 <br> .48 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .43 \\ .23 \\ .44 \end{array}$ | $\begin{array}{r} .44 \\ 23 \\ .44 \end{array}$ | $\begin{aligned} & .45 \\ & 23 \\ & .44 \end{aligned}$ | $\begin{aligned} & .46 \\ & 24 \\ & .48 \end{aligned}$ | $\begin{aligned} & .47 \\ & .44 \\ & .48 \end{aligned}$ | $\begin{array}{r} .49 \\ 24 \\ .48 \end{array}$ | .50 <br> 25 <br> .52 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .46 \\ & .24 \\ & .48 \end{aligned}$ | $\begin{aligned} & .47 \\ & 24 \\ & .48 \end{aligned}$ | $\begin{aligned} & .48 \\ & 24 \\ & .48 \end{aligned}$ | $\begin{aligned} & .49 \\ & 24 \\ & .48 \end{aligned}$ | $\begin{aligned} & .51 \\ & .55 \\ & .52 \end{aligned}$ | $\begin{aligned} & .52 \\ & .55 \\ & .52 \end{aligned}$ | .53 .25 .52 |
| B | $2 \frac{1}{1}$ | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .32 * \\ & .22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .33^{*} \\ & .22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .34^{*} \\ & .42 \end{aligned}$ | $\begin{aligned} & .35^{*} \\ & .42 \end{aligned}$ | $\begin{aligned} & .36 * \\ & .22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .38^{*} \\ & .42 \end{aligned}$ | $.30 *$ .22 .41 |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & .32^{*} \\ & .42 \\ & . \end{aligned}$ | $\begin{aligned} & .33^{*} \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .33^{*} \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .34^{*} \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .36^{*} \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .38 \\ & 22 \\ & .41 \end{aligned}$ | .40 .42 .41 |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .33^{*} \\ & .22 \\ & \hline \end{aligned}$ | $\begin{aligned} & .34 * \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .35 \\ & .42 \\ & .41 \end{aligned}$ | $\begin{aligned} & .36 \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .38 \\ & .22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .40 \\ & .22 \\ & .41 \end{aligned}$ | .42 <br> .42 <br> .41 |
|  | 8 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .36 \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .37 \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .38 \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .40 \\ & 22 \\ & .41 \end{aligned}$ | $\begin{array}{r} .41 \\ .22 \\ .41 \end{array}$ | $\begin{array}{r} .43 \\ 23 \\ .44 \end{array}$ | .45 .23 .44 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .41 \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .42 \\ & 22 \\ & .41 \end{aligned}$ | $\begin{array}{r} .43 \\ 23 \\ .44 \end{array}$ | $\begin{aligned} & .44 \\ & 23 \\ & .44 \end{aligned}$ | $\begin{aligned} & .46 \\ & .44 \\ & .48 \end{aligned}$ | $\begin{array}{r} .47 \\ 24 \\ .48 \end{array}$ | .48 .44 .48 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .44 \\ & .23 \\ & .44 \end{aligned}$ | $\begin{aligned} & .45 \\ & 23 \\ & .44 \end{aligned}$ | $\begin{aligned} & .46 \\ & .24 \\ & .48 \end{aligned}$ | $\begin{aligned} & .47 \\ & 24 \\ & .48 \end{aligned}$ | $\begin{aligned} & .48 \\ & .24 \\ & .48 \end{aligned}$ | $\begin{aligned} & .50 \\ & 25 \\ & .52 \end{aligned}$ | .51 .25 .52 |
| F | 2! | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .30^{*} \\ & .22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .31^{*} \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .32^{*} \\ & .42 \end{aligned}$ | $\begin{aligned} & .33^{*} \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .35 \\ & .22 \\ & .41 \end{aligned}$ | $\begin{array}{r} .37 \\ .42 \\ .41 \end{array}$ | .39 <br> .32 <br> .41 |
|  | 31 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .29 * \\ & .22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .30^{*} \\ & .22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .31 \\ & .22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .33 \\ & .22 \\ & .41 \end{aligned}$ | $\begin{array}{r} .35 \\ .22 \\ .41 \end{array}$ | $\begin{aligned} & .37 \\ & .22 \\ & .41 \end{aligned}$ | $\begin{array}{r}.39 \\ .22 \\ .41 \\ \hline\end{array}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickncss Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .30 * \\ & .22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .31^{*} \\ & .22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .32 \\ & .41 \end{aligned}$ | $\begin{aligned} & .34 \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .36 \\ & .22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .38 \\ & .22 \\ & .41 \end{aligned}$ | $\begin{array}{r}.40 \\ .42 \\ .41 \\ \hline\end{array}$ |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .34 \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .35 \\ & .22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .36 \\ & .22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .37 \\ & .22 \\ & .41 \end{aligned}$ | $\begin{gathered} .39 \\ .22 \\ .41 \end{gathered}$ | $\begin{array}{r} .41 \\ 22 \\ .41 \end{array}$ | .43 <br> .23 <br> .44 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .38 \\ 22 \\ .41 \end{array}$ | $\begin{aligned} & .39 \\ & 22 \\ & .41 \end{aligned}$ | $\begin{array}{r} .40 \\ 22 \\ .41 \end{array}$ | $\begin{aligned} & .41 \\ & 22 \\ & .41 \end{aligned}$ | $\begin{array}{r} .43 \\ .23 \\ .44 \end{array}$ | $\begin{aligned} & .44 \\ & 23 \\ & .44 \end{aligned}$ | .46 .48 .48 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .40 \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .41 \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .12 \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .43 \\ & 23 \\ & .44 \end{aligned}$ | $\begin{aligned} & .45 \\ & .23 \\ & .44 \end{aligned}$ | $\begin{aligned} & .46 \\ & 24 \\ & .48 \end{aligned}$ | .48 .48 .48 |

* Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor. When total calculated thickness is not followed by asterisk, surge pressure (Case 1) is the controling factor. See Sec. 1-2.1.

TABLE 1-1 (Continued)
Schedule of Barrel Thickness for Water Pipe of $18 / 40$ Iron Strength

| Laying Condition | Depth of Cover ft | Thickness Specifications | Internal Pressure - psi |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 50 | 100 | 150 | 200 | 250 | 300 | 350 |
|  |  |  | Barrel Thicknesses-in. |  |  |  |  |  |  |

Ten-Inch Water Pipe

3
0

| A | $2{ }^{21}$ | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .40^{*} \\ & .22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .41 * \\ & .44 \end{aligned}$ | $\begin{aligned} & .42 * \\ & .42 \\ & .44 \end{aligned}$ | $\begin{aligned} & .43^{*} \\ & .42 \\ & .44 \end{aligned}$ | $\begin{aligned} & .45^{*} \\ & .22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .46^{*} \\ & 23 \\ & .48 \end{aligned}$ | $.48 *$ .48 .48 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 31 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .32 * \\ & .24 \\ & .44 \end{aligned}$ | $\begin{aligned} & .40^{*} \\ & .42 \end{aligned}$ | $\begin{aligned} & .4!* \\ & .42 \\ & .44 \end{aligned}$ | $\begin{aligned} & .42 * \\ & .44 \end{aligned}$ | $\begin{aligned} & .44 * \\ & .44 \end{aligned}$ | $\begin{aligned} & .46 \\ & .43 \\ & .48 \end{aligned}$ | .48 <br> .23 <br> .48 |
|  | 5 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .40^{*} \\ & .22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .4 I^{*} \\ & .44 \end{aligned}$ | $\begin{aligned} & .42 * \\ & \hline 32 \\ & .44 \end{aligned}$ | $\begin{aligned} & .47 \\ & .42 \\ & .44 \end{aligned}$ | $\begin{aligned} & .46 \\ & 23 \\ & .48 \end{aligned}$ | $\begin{aligned} & .48 \\ & 23 \\ & .48 \end{aligned}$ | .51 <br> .24 <br> .52 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .44 \\ & .42 \\ & .44 \end{aligned}$ | $\begin{aligned} & .46 \\ & 23 \\ & .48 \end{aligned}$ | $\begin{aligned} & .47 \\ & 23 \\ & .48 \end{aligned}$ | $\begin{aligned} & .49 \\ & 23 \\ & .48 \end{aligned}$ | $\begin{aligned} & .51 \\ & 24 \\ & .52 \end{aligned}$ | $\begin{aligned} & .53 \\ & 24 \\ & .52 \end{aligned}$ | .55 <br> .25 <br> .56 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .51 \\ & 24 \\ & .52 \end{aligned}$ | $\begin{aligned} & .52 \\ & \hline 24 \\ & .52 \end{aligned}$ | $\begin{aligned} & .53 \\ & .24 \\ & .52 \end{aligned}$ | $\begin{aligned} & .55 \\ & .25 \\ & .56 \end{aligned}$ | $\begin{aligned} & .56 \\ & .25 \\ & .56 \end{aligned}$ | $\begin{aligned} & .58 \\ & .26 \\ & .60 \end{aligned}$ | $\begin{aligned} & .60 \\ & .26 \\ & .60 \end{aligned}$ |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .53 \\ & .24 \\ & .52 \end{aligned}$ | $\begin{aligned} & .54 \\ & .25 \\ & .56 \end{aligned}$ | $\begin{aligned} & .56 \\ & .25 \\ & .56 \end{aligned}$ | $\begin{aligned} & .57 \\ & .25 \\ & .56 \end{aligned}$ | $\begin{aligned} & .59 \\ & .26 \\ & .60 \end{aligned}$ | $\begin{aligned} & .60 \\ & .26 \\ & .60 \end{aligned}$ | $\begin{aligned} & .62 \\ & 26 \\ & .60 \end{aligned}$ |
| B | $2{ }^{2}$ | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .38 * \\ & .42 \\ & .44 \end{aligned}$ | $.30 *$ .22 .44 . | $\begin{aligned} & .40^{*} \\ & .42 \end{aligned}$ | $\begin{aligned} & .4 I^{*} \\ & .42 \\ & .44 \end{aligned}$ | $\begin{aligned} & .+33^{*} \\ & .22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .45^{*} \\ & .22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .477 \\ & 23 \\ & 48 \end{aligned}$ |
|  | $3{ }^{3}$ | Calculated Thickness <br> Use $\begin{aligned} & \text { Thickness Class } \\ & \text { Thickness }\end{aligned}$ <br> Thickness | $\begin{aligned} & .37 * \\ & .22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .38^{*} \\ & 22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .399^{*} \\ & .44 \\ & .44 \end{aligned}$ | $\begin{aligned} & .40 * \\ & .42 \end{aligned}$ | $\begin{aligned} & .42^{*} \\ & 22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .44 \\ & 22 \\ & .44 \end{aligned}$ | $\begin{array}{r}.48 \\ .23 \\ .48 \\ \hline\end{array}$ |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class Thickness | $\begin{aligned} & .38^{*} \\ & 22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .39 * \\ & .22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .40^{*} \\ & .42 \\ & \hline \end{aligned}$ | $\begin{array}{r} .42 \\ 22 \\ .44 \end{array}$ | $\begin{aligned} & .45 \\ & .22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .47 \\ & 23 \\ & .48 \end{aligned}$ | .50 <br> 24 <br> .52 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ <br> Thickness | $\begin{aligned} & .41^{*} \\ & .22 \end{aligned}$ | $\begin{aligned} & .44 \\ & 22 \\ & .+4 \end{aligned}$ | $\begin{aligned} & .45 \\ & 22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .47 \\ & .23 \\ & .48 \end{aligned}$ | $\begin{aligned} & .49 \\ & 23 \\ & .48 \end{aligned}$ | $\begin{aligned} & \hline .51 \\ & 24 \\ & .52 \end{aligned}$ | .53 <br> .54 <br> .52 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .48 \\ & .43 \\ & \hline .48 \end{aligned}$ | $\begin{aligned} & .49 \\ & .43 \\ & .48 \end{aligned}$ | $\begin{aligned} & .51 \\ & \hline 24 \\ & .52 \end{aligned}$ | $\begin{aligned} & .52 \\ & 24 \\ & .52 \end{aligned}$ | $\begin{aligned} & .54 \\ & 25 \\ & .56 \end{aligned}$ | $\begin{aligned} & .56 \\ & .25 \\ & .56 \end{aligned}$ | $\begin{array}{r}.58 \\ .26 \\ .60 \\ \hline\end{array}$ |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & .50 \\ & 24 \\ & .52 \end{aligned}$ | $\begin{aligned} & .52 \\ & 24 \\ & .52 \end{aligned}$ | $\begin{aligned} & .53 \\ & 24 \\ & .55 \end{aligned}$ | $\begin{aligned} & .54 \\ & .25 \\ & .56 \end{aligned}$ | $\begin{aligned} & .56 \\ & .25 \\ & .56 \end{aligned}$ | $\begin{aligned} & .58 \\ & .26 \\ & .60 \end{aligned}$ | $\begin{aligned} & .60 \\ & 26 \\ & .60 \end{aligned}$ |
| F | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .35 * \\ & .22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .36 * \\ & .42 \\ & .44 \end{aligned}$ | $\begin{aligned} & .37 * \\ & .42 \end{aligned}$ | $\begin{aligned} & .38 * \\ & .22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .41 \\ & .22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .44 \\ & 22 \\ & .44 \end{aligned}$ | .47 <br> 23 <br> .48 |
|  | 31 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 37^{\prime *} \\ & 22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .35 * \\ & 22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .36^{*} \\ & .42 \end{aligned}$ | $\begin{aligned} & .38 \\ & .22 \\ & \hline .44 \end{aligned}$ | $\begin{aligned} & .41 \\ & 22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .44 \\ & 22 \\ & .44 \end{aligned}$ | .47 <br> .43 <br> .48 |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & .35 * \\ & .22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .36^{*} \\ & .22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .38 \\ & 22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .40 \\ & 22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .42 \\ & .22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .46 \\ & 23 \\ & .48 \end{aligned}$ | .48 <br> .43 <br> .48 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Thickness | $\begin{aligned} & .39 \\ & 22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .41 \\ & 22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .42 \\ & .42 \\ & .44 \end{aligned}$ | $\begin{aligned} & .44 \\ & .22 \\ & \hline .44 \end{aligned}$ | $\begin{aligned} & .46 \\ & 23 \\ & .48 \end{aligned}$ | $\begin{aligned} & .48 \\ & 23 \\ & .48 \end{aligned}$ | .51 <br> 24 <br> .52 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .44 \\ & .22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .45 \\ & 22 \\ & .44 \end{aligned}$ | $\begin{gathered} .46 \\ 23 \\ .48 \end{gathered}$ | $\begin{aligned} & .18 \\ & 23 \\ & .48 \end{aligned}$ | $\begin{aligned} & .50 \\ & .24 \\ & .52 \end{aligned}$ | $\begin{aligned} & .52 \\ & \hline 24 \\ & .52 \end{aligned}$ | .54 <br> .25 <br> .56 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .46 \\ & .23 \\ & .48 \end{aligned}$ | $\begin{aligned} & .47 \\ & 23 \\ & .48 \end{aligned}$ | $\begin{aligned} & .49 \\ & .43 \\ & .48 \end{aligned}$ | $\begin{aligned} & .51 \\ & 24 \\ & .52 \end{aligned}$ | $\begin{aligned} & .52 \\ & .54 \\ & .52 \end{aligned}$ | $\begin{aligned} & .54 \\ & 25 \\ & .56 \end{aligned}$ | .56 .56 .56 |

* Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor. When total calculated thickness is not followed by asterisk, surge pressure (Case 1) is the controlling factor. Sen Wher. 1-2.1.

TABLE 1-1 (Continued)
Schedule of Barrel Thickness for Water Pipe of 18/40 Iron Strength

| Laying Condition | $\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { Cover } \\ & f t \end{aligned}$ | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 50 | 100 | 150 | 200 | 250 | 300 | 350 |
|  |  |  | Barrel Thicknesses-in. |  |  |  |  |  |  |
| Twelve-Inch Water Pipe |  |  |  |  |  |  |  |  |  |
| A | 21 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $.45 *$ 22 .48 | $.46 *$ <br> 22 <br> .48 | $.47 *$ .22 .48 | $\begin{aligned} & .40^{*} \\ & .22 \end{aligned}$ | $.51 *$ 23 .52 | $.53 *$ .23 .52 | $.55 *$ .24 .56 |
|  | 31 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .43^{*} \\ & .22 \\ & .48 \end{aligned}$ | $\begin{aligned} & .45^{*} \\ & 22 \\ & .48 \end{aligned}$ | $.46 *$ .42 .48 | $\begin{aligned} & .48^{*} \\ & 22 \\ & .48 \end{aligned}$ | $\begin{aligned} & .50^{*} \\ & 23 \\ & .52 \end{aligned}$ | .51 .23 .52 | .55 24 .56 |
|  | 5 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{gathered} .45 * \\ 22 \\ .48 \end{gathered}$ | $\begin{aligned} & .46^{*} \\ & 22 \\ & .48 \end{aligned}$ | $\begin{aligned} & .47 * \\ & .22 \\ & .48 \end{aligned}$ | $\begin{aligned} & .49 \\ & 22 \\ & .48 \end{aligned}$ | $\begin{array}{r}.52 \\ .53 \\ .52 \\ \hline\end{array}$ | $\begin{array}{r}.54 \\ 24 \\ .56 \\ \hline\end{array}$ | $\begin{array}{r}.57 \\ .24 \\ .56 \\ \hline\end{array}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .50 \\ & 23 \\ & .52 \end{aligned}$ | $\begin{aligned} & .52 \\ & .23 \\ & .52 \end{aligned}$ | .53 .23 .52 | $\begin{aligned} & .55 \\ & 24 \\ & .56 \end{aligned}$ | .57 .24 .56 | $\begin{aligned} & .60 \\ & 25 \\ & .60 \end{aligned}$ | .62 .25 .60 |
|  | 12 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | .56 .24 .56 | .57 .24 .56 | .59 .25 .60 | $\begin{aligned} & .60 \\ & 25 \\ & .60 \end{aligned}$ | .62 .25 .60 | .64 .26 .65 | .67 26 .65 |
|  | 16 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | .59 .25 .60 | .60 25 .60 | .61 .25 .60 | .63 .26 .65 | .65 .26 .65 | .67 .66 .65 | .69 27 .70 |
| B | 21 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $.42 *$ .42 .48 | $.44 *$ .42 .48 | $.45 *$ <br> .42 <br> .48 | $\begin{aligned} & .46^{*} \\ & .22 \end{aligned}$ | $.48{ }^{*}$ .48 .48 | $.50{ }^{\text {23 }}$ .23 .52 | $.53 *$ <br> 23 <br> .58 |
|  | $3 \frac{1}{1}$ | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | ${ }^{.411^{*}}$ | $\begin{aligned} & .42^{*} \\ & 22 \\ & .48 \end{aligned}$ | $.44 *$ <br> .22 <br> .48 | $.45 *$ <br> .48 <br> .48 | $\begin{aligned} & .47 * \\ & .22 \\ & .48 \end{aligned}$ | $\begin{array}{r}.51 \\ .23 \\ .52 \\ \hline\end{array}$ | .5 .5 <br> 24 <br> .56 |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .42^{*} \\ & .22 \end{aligned}$ | $\begin{aligned} & .43^{*} \\ & .22 \end{aligned}$ | $\begin{aligned} & .45 * \\ & 22 \\ & .48 \end{aligned}$ | $\begin{aligned} & .+77 \\ & .42 \end{aligned}$ | $\begin{array}{r} .50 \\ 23 \\ .52 \end{array}$ | $\begin{array}{r}.53 \\ .23 \\ .52 \\ \hline\end{array}$ | $\begin{array}{r}.56 \\ .24 \\ .56 \\ \hline\end{array}$ |
|  | 8 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{array}{r} .78 \\ 22 \\ .48 \end{array}$ | $\begin{array}{r} .49 \\ 22 \\ .48 \end{array}$ | $\begin{aligned} & .51 \\ & .23 \\ & .52 \end{aligned}$ | $\begin{aligned} & .53 \\ & 23 \\ & .52 \end{aligned}$ | .55 .24 .56 | .57 .24 .56 | .60 25 .60 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .53 \\ & .53 \\ & .52 \end{aligned}$ | $\begin{aligned} & .54 \\ & 24 \\ & .56 \end{aligned}$ | $\begin{aligned} & .56 \\ & 24 \\ & .56 \end{aligned}$ | $\begin{gathered} .57 \\ 24 \\ .56 \end{gathered}$ | .59 .25 .60 | .61 25 .60 | .64 26 .65 |
|  | 16 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | .55 .24 .56 | .57 .24 .56 | .58 25 .60 | $\begin{aligned} & .00 \\ & 25 \\ & .60 \end{aligned}$ | $\begin{aligned} & .62 \\ & .65 \\ & .60 \end{aligned}$ | .64 26 .65 | .66 26 .65 |
| F | 23 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $.39 *$ .22 .48 | $.40 *$ .22 .48 | $\begin{aligned} & .41^{*} \\ & .22 \\ & .48 \end{aligned}$ | $\begin{aligned} & .43 * \\ & .22 \\ & .48 \end{aligned}$ | $.45 *$ .22 .48 | .78 .42 .48 | $\begin{array}{r}.53 \\ 23 \\ .52 \\ \hline\end{array}$ |
|  | 3) | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $.38 *$ <br> .22 <br> .48 | $\begin{aligned} & .30 * \\ & 22 \\ & .48 \end{aligned}$ | $\begin{aligned} & .40^{*} \\ & 22 \\ & .48 \end{aligned}$ | $\begin{aligned} & .42^{*} \\ & 22 \\ & .48 \end{aligned}$ | .45 .22 .48 | .50 <br> 23 <br> .52 | $\begin{array}{r}.53 \\ .23 \\ .52 \\ \hline\end{array}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .39 * \\ & 22 \\ & .48 \end{aligned}$ | $\begin{aligned} & .40^{*} \\ & .22 \\ & .48 \end{aligned}$ | $\begin{aligned} & .41^{*} \\ & 22 \\ & .48 \end{aligned}$ | $\begin{aligned} & .43^{*} \\ & 22 \\ & .48 \end{aligned}$ | $\begin{aligned} & .46 \\ & .22 \\ & .48 \end{aligned}$ | $\begin{aligned} & .50 \\ & 23 \\ & .52 \end{aligned}$ | .54 .24 .56 |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .+4 \\ & 22 \\ & .48 \end{aligned}$ | $\begin{array}{r} .45 \\ 22 \\ .48 \end{array}$ | $\begin{array}{r} .47 \\ 22 \\ .48 \end{array}$ | $\begin{aligned} & .49 \\ & 22 \\ & .48 \end{aligned}$ | $\begin{array}{r}.52 \\ .23 \\ .52 \\ \hline\end{array}$ | .55 .24 .56 | .58 25 .60 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .48 \\ 22 \\ .48 \end{array}$ | $\begin{aligned} & .40 \\ & 22 \\ & .48 \end{aligned}$ | $\begin{aligned} & .51 \\ & 23 \\ & .52 \end{aligned}$ | $\begin{aligned} & .53 \\ & 23 \\ & .52 \end{aligned}$ | $\begin{aligned} & .55 \\ & 24 \\ & .56 \end{aligned}$ | .58 25 .60 | .61 25 .60 |
|  | 16 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | .50 23 .52 | $\begin{aligned} & .52 \\ & .53 \\ & .52 \end{aligned}$ | .53 .23 .52 | .55 .24 .56 | .57 .24 .56 | .59 .65 .60 | .62 25 .60 |

* Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor. When total calculated thickness is not followed by asterisk, surge pressure (Case 1) is the controlling factor. See Sec. 1-2.1.

TABLE 1-1 (Continued)
Schedule of Barrel Thickness for Water Pipe of 18/40 Iron Sirength


[^2]TABLE 1-1 (Continued)
Schedule of Barrel Thickness for Water Pipe of 18/40 Iron Strength

| Laying <br> Condi- <br> tion | Depth <br> of <br> over <br> $f t$ | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


*Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor. When total calculated thickness is not followed by asterisk, Burge pressure (Case 1) is the controlling factor. See Sec. 1-2.1.

TABLE 1-1 (Continued)
Schedule of Barrel Thickness for Water Pipe of 18/40 Iron Strength

| Laying Condition | Depth of Cover fi | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 50 | 100 | 150 | 200 | 250 | 300 | 350 |
|  |  |  | Barrel Thicknesses--in. |  |  |  |  |  |  |


| Eighteen-Inch Water Pipe |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | $2 \frac{1}{1}$ | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $.58 *$ 22 .58 | $.60^{*}$ 22 .58 | $.62^{*}$ 23 .63 | $.65 *$ 23 .63 | $.67 *$ 24 .68 | $.70 *$ 24 .68 | $.74 *$ 25 .73 |
|  | 3 y | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $.58 *$ 22 .58 | $.59 *$ 22 .58 | $.62^{*}$ 23 .63 | $.07 *$ 23 .63 | $.67 *$ 24 .68 | .70 24 .68 | .76 26 .79 |
|  | 5 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | . $60{ }^{*}$ 22 .58 | $\begin{aligned} & .62^{*} \\ & 23 \\ & .63 \end{aligned}$ | $\begin{aligned} & .6 \not 7^{*} \\ & 23 \\ & .63 \end{aligned}$ | $\begin{array}{r} .67 \\ 24 \\ .68 \end{array}$ | $\begin{array}{r} .70 \\ 24 \\ .68 \end{array}$ | $\begin{array}{r} .75 \\ 25 \\ .73 \end{array}$ | $\begin{array}{r} .79 \\ 26 \\ .79 \end{array}$ |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | .67 24 .68 | $\begin{array}{r} .69 \\ 24 \\ .68 \end{array}$ | $\begin{array}{r} .72 \\ 25 \\ .73 \end{array}$ | $\begin{array}{r} .7+ \\ 25 \\ .73 \end{array}$ | $\begin{array}{r} .77 \\ 26 \\ .79 \end{array}$ | $\begin{array}{r} .81 \\ 26 \\ .79 \end{array}$ | .85 27 .85 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | .73 25 .73 | $\begin{array}{r} .75 \\ 25 \\ .73 \end{array}$ | $\begin{array}{r} .78 \\ 26 \\ .79 \end{array}$ | $\begin{array}{r} .80 \\ 26 \\ .79 \end{array}$ | $\begin{array}{r} .83 \\ 27 \\ .85 \end{array}$ | $\begin{array}{r} .86 \\ 27 \\ .85 \end{array}$ | .90 28 .92 |
|  | 16 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{gathered} .77 \\ 26 \\ .79 \end{gathered}$ | .80 26 .79 | $\begin{array}{r} .82 \\ 27 \\ .85 \end{array}$ | .85 27 .85 | $\begin{array}{r} .88 \\ 27 \\ .85 \end{array}$ | $\begin{aligned} & .91 \\ & 28 \\ & 92 \end{aligned}$ | $\begin{array}{r} .95 \\ 28 \\ .92 \end{array}$ |
| E | $2 \frac{1}{2}$ | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .5 f^{*} \\ & 21 \\ & .54 \end{aligned}$ | $\begin{aligned} & .56^{*} \\ & 22 \\ & .58 \end{aligned}$ | $\begin{aligned} & .58^{*} \\ & 22 \\ & .58 \end{aligned}$ | $\begin{aligned} & .60^{*} \\ & 22 \\ & .58 \end{aligned}$ | $.63 *$ 23 .63 | $\begin{array}{r} .67 \\ 24 \\ .68 \end{array}$ | $\begin{array}{r} .73 \\ 25 \\ .73 \end{array}$ |
|  | $3 \frac{1}{3}$ | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} .53^{*} \\ 21 \\ .54 \end{gathered}$ | $\begin{aligned} & .55 * \\ & 21 \\ & .54 \end{aligned}$ | $\begin{aligned} & .57^{*} \\ & 22 \\ & .58 \end{aligned}$ | $\begin{array}{r} .60 \\ 22 \\ .58 \end{array}$ | $\begin{array}{r} .04 \\ 23 \\ .63 \end{array}$ | $\begin{array}{r} .69 \\ 24 \\ .68 \end{array}$ | $\begin{array}{r} .75 \\ 25 \\ .73 \end{array}$ |
|  | 5 | Calculated Thickness U'se $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .55 * \\ & 21 \\ & .54 \end{aligned}$ | $\begin{aligned} & .58^{*} \\ & 22 \\ & .58 \end{aligned}$ | $\begin{array}{r} .60 \\ 22 \\ .58 \end{array}$ | $\begin{array}{r} .63 \\ 23 \\ .63 \end{array}$ | $\begin{array}{r} .67 \\ 24 \\ .68 \end{array}$ | $\begin{array}{r} .72 \\ 25 \\ .73 \end{array}$ | .77 .26 .79 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .62 \\ 23 \\ .63 \end{array}$ | $\begin{gathered} .64 \\ 23 \\ .63 \end{gathered}$ | $\begin{aligned} & .67 \\ & 24 \\ & .68 \end{aligned}$ | $\begin{array}{r} .70 \\ 24 \\ .68 \end{array}$ | $\begin{array}{r} .77 \\ 25 \\ .73 \end{array}$ | $\begin{array}{r} .77 \\ 26 \\ .79 \end{array}$ | .82 27 .85 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .68 \\ 24 \\ .68 \end{array}$ | $\begin{array}{r} .70 \\ 24 \\ .68 \end{array}$ | $\begin{array}{r} .73 \\ 25 \\ .73 \end{array}$ | $\begin{array}{r} .75 \\ 25 \\ .73 \end{array}$ | $\begin{array}{r} .78 \\ 26 \\ .79 \end{array}$ | $\begin{array}{r} .82 \\ 27 \\ .85 \end{array}$ | .86 27 .85 |
|  | 16 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{array}{r} .72 \\ 25 \\ .73 \end{array}$ | $\begin{array}{r} .74 \\ 25 \\ .73 \end{array}$ | .76 26 .79 | .79 26 .79 | $\begin{array}{r} .82 \\ 27 \\ .85 \end{array}$ | $\begin{array}{r} .85 \\ 27 \\ .85 \end{array}$ | .89 28 .92 |
| F | $2 \frac{1}{2}$ | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .50^{*} \\ & 21 \\ & .54 \end{aligned}$ | $\begin{aligned} & .5 I^{*} \\ & 21 \\ & .54 \end{aligned}$ | $.53 *$ 21 .54 | $\begin{aligned} & .56^{*} \\ & 22 \\ & .58 \end{aligned}$ | $\begin{array}{r} .01 \\ 23 \\ .63 \end{array}$ | $\begin{array}{r} .67 \\ 24 \\ .68 \end{array}$ | .73 25 .73 |
|  | $3 \frac{1}{2}$ | Calculated Thickness $\text { Cse }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{gathered} .40^{*} \\ 21 \\ .54 \end{gathered}$ | $\begin{array}{r} .51 \\ 21 \\ .54 \end{array}$ | $\begin{array}{r} .53 \\ 21 \\ .54 \end{array}$ | $\begin{array}{r} .57 \\ 22 \\ .58 \end{array}$ | $\begin{array}{r} .62 \\ 23 \\ .63 \end{array}$ | $\begin{array}{r} .67 \\ 24 \\ .68 \end{array}$ | .73 25 .73 |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} .51^{*} \\ 21 \\ .54 \end{gathered}$ | $\begin{array}{r} .53 \\ 21 \\ .54 \end{array}$ | .57 22 .58 | .60 22 .58 | $\begin{array}{r} .65 \\ 23 \\ .6 .3 \end{array}$ | $\begin{array}{r} .70 \\ 24 \\ .68 \end{array}$ | .75 25 .73 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .57 \\ 22 \\ .58 \end{array}$ | $\begin{array}{r} .59 \\ 22 \\ .58 \end{array}$ | $\begin{aligned} & .62 \\ & 23 \\ & .63 \end{aligned}$ | $\begin{array}{r} .65 \\ 2.3 \\ .63 \end{array}$ | $\begin{array}{r} .69 \\ 24 \\ .68 \end{array}$ | $\begin{array}{r} .74 \\ 25 \\ .73 \end{array}$ | .78 26 .79 |
|  | 12 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{gathered} .61 \\ 23 \\ .63 \end{gathered}$ | $\begin{array}{r} .64 \\ 23 \\ .63 \end{array}$ | $\begin{array}{r} .67 \\ 24 \\ 68 \end{array}$ | $\begin{array}{r} .70 \\ 24 \\ .68 \end{array}$ | $\begin{array}{r} .73 \\ 25 \\ .73 \end{array}$ | $\begin{array}{r} .77 \\ 26 \\ .79 \end{array}$ | .81 26 .79 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .65 \\ 23 \\ .63 \end{array}$ | $\begin{array}{r} .67 \\ 24 \\ .68 \end{array}$ | $\begin{array}{r} .69 \\ 24 \\ .68 \end{array}$ | $\begin{array}{r} .72 \\ 25 \\ .73 \end{array}$ | $\begin{array}{r} .76 \\ 26 \\ .79 \end{array}$ | $\begin{array}{r} .80 \\ 26 \\ .79 \end{array}$ | $\begin{array}{r} .84 \\ 27 \\ .85 \end{array}$ |

* Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor. Sec. 1-2.1.

TABLE 1-1 (Continued)
Schedule of Bartel Thickness for Water Pipe of 18/40 Iron Strength

| Laying Condition | Depth of Cover ft | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 50 | 100 | 150 | 200 | 250 | 300 | 350 |
|  |  |  | Barrel Thicknesses-in. |  |  |  |  |  |  |

Twenty-Inch Water Pipe

| A | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .62^{*} \\ & .62 \end{aligned}$ | $\begin{aligned} & .6 .5 * \\ & 23 \\ & .67 \end{aligned}$ | $\begin{aligned} & .67 * \\ & 23 \\ & .67 \end{aligned}$ | $\begin{aligned} & .70^{*} \\ & 24 \\ & .72 \end{aligned}$ | $\begin{aligned} & .73 * \\ & 24 \\ & .72 \end{aligned}$ | $\begin{aligned} & .76^{*} \\ & 25 \\ & .78 \end{aligned}$ | $\begin{aligned} & .80^{*} \\ & 25 \\ & .78 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .62 * \\ & 22 \\ & .62 \end{aligned}$ | $\begin{aligned} & .64^{*} \\ & .22 \end{aligned}$ | $\begin{aligned} & .66^{*} \\ & .23 \\ & .67 \end{aligned}$ | $\begin{aligned} & .60^{*} \\ & .23 \\ & .67 \end{aligned}$ | $\begin{aligned} & .72^{*} \\ & .74 \end{aligned}$ | $\begin{aligned} & .76^{*} \\ & 25 \\ & .78 \end{aligned}$ | .80 26 .84 |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & .65 * \\ & 23 \\ & .67 \end{aligned}$ | $\begin{aligned} & .67 * \\ & 23 \\ & .67 \end{aligned}$ | $\begin{aligned} & .69 * \\ & .23 \\ & .67 \end{aligned}$ | $\begin{aligned} & .72^{*} \\ & .74 \\ & .72 \end{aligned}$ | $\begin{aligned} & .75 * \\ & 25 \\ & .78 \end{aligned}$ | .80 <br> 25 <br> .78 | .85 .86 .84 |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .71 \\ .24 \\ .72 \end{array}$ | $\begin{array}{r} .73 \\ 24 \\ .72 \end{array}$ | $\begin{aligned} & .76 \\ & 25 \\ & .78 \end{aligned}$ | $\begin{aligned} & .79 \\ & 25 \\ & .78 \end{aligned}$ | $\begin{aligned} & .83 \\ & .86 \\ & .84 \end{aligned}$ | $\begin{aligned} & .87 \\ & 26 \\ & .84 \end{aligned}$ | .91 .27 .91 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .78 \\ & 25 \\ & .78 \end{aligned}$ | $\begin{array}{r} .80 \\ 25 \\ .78 \end{array}$ | $\begin{aligned} & .83 \\ & 26 \\ & .84 \end{aligned}$ | $\begin{aligned} & .86 \\ & 26 \\ & .84 \end{aligned}$ | $\begin{aligned} & .89 \\ & 27 \\ & .91 \end{aligned}$ | $\begin{aligned} & .23 \\ & 27 \\ & .91 \end{aligned}$ | $\begin{array}{r}.97 \\ 28 \\ .98 \\ \hline\end{array}$ |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .83 \\ & 26 \\ & .84 \end{aligned}$ | $\begin{array}{r} .86 \\ 26 \\ .84 \end{array}$ | $\begin{aligned} & .88 \\ & 27 \\ & .91 \end{aligned}$ | $\begin{aligned} & .91 \\ & 27 \\ & .91 \end{aligned}$ | $\begin{aligned} & \hline .94 \\ & 27 \\ & .91 \end{aligned}$ | $\begin{aligned} & .97 \\ & .98 \\ & .98 \end{aligned}$ | $\begin{array}{r} 1.01 \\ 28 \\ .98 \end{array}$ |


| B | $2 \frac{1}{1}$ | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .57 * \\ & .51 \\ & .57 \end{aligned}$ | $\begin{aligned} & .59 * \\ & 21 \\ & .57 \end{aligned}$ | $\begin{aligned} & .62^{*} \\ & 22 \\ & .62 \end{aligned}$ | $\begin{aligned} & .65 * \\ & 23 \\ & .67 \end{aligned}$ | $\begin{aligned} & .68 * \\ & .67 \end{aligned}$ | $\begin{aligned} & .72 \\ & .82 \\ & .72 \end{aligned}$ | $\begin{array}{r}.78 \\ .85 \\ .78 \\ \hline\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $3{ }^{3}$ | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .57 * \\ & .51 \\ & .57 \end{aligned}$ | $\begin{aligned} & .58 * \\ & 21 \\ & .57 \end{aligned}$ | $\begin{aligned} & .62^{*} \\ & .62 \end{aligned}$ | $\begin{aligned} & .04^{*} \\ & 22 \\ & .62 \end{aligned}$ | $\begin{aligned} & .68 \\ & 23 \\ & .67 \end{aligned}$ | .74 <br> .74 <br> .72 | .80 .85 .78 |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .59 * \\ & .51 \\ & .57 \end{aligned}$ | $\begin{aligned} & .6 I^{*} \\ & .62 \end{aligned}$ | $\begin{aligned} & .64 * \\ & .82 \\ & .62 \end{aligned}$ | $\begin{aligned} & .67 \\ & .63 \\ & .67 \end{aligned}$ | $\begin{aligned} & .72 \\ & .24 \\ & .72 \end{aligned}$ | .77 <br> .85 <br> .78 | .82 .86 .84 |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .65 \\ & .23 \\ & .67 \end{aligned}$ | $\begin{aligned} & .68 \\ & .23 \\ & .67 \end{aligned}$ | $\begin{aligned} & .71 \\ & 24 \\ & .72 \end{aligned}$ | $\begin{aligned} & .74 \\ & .24 \\ & .72 \end{aligned}$ | $\begin{aligned} & .78 \\ & .75 \\ & .78 \end{aligned}$ | .82 <br> .82 <br> .84 <br> .84 | .87 <br> .86 <br> .84 |
|  | 12 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thicknese Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .71 \\ & .74 \\ & .72 \end{aligned}$ | $\begin{aligned} & .74 \\ & .74 \\ & .72 \end{aligned}$ | $\begin{aligned} & .77 \\ & .25 \\ & .78 \end{aligned}$ | $\begin{aligned} & .80 \\ & .85 \\ & .78 \end{aligned}$ | $\begin{aligned} & .84 \\ & .86 \\ & .84 \end{aligned}$ | .87 <br> .86 <br> .84 <br> 8 | .92 .27 .91 |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .76 \\ & .25 \\ & .78 \end{aligned}$ | $\begin{aligned} & .78 \\ & .75 \\ & .78 \end{aligned}$ | $\begin{aligned} & .81 \\ & .86 \\ & .84 \end{aligned}$ | $\begin{aligned} & .84 \\ & .86 \\ & .84 \end{aligned}$ | $\begin{aligned} & .87 \\ & .86 \\ & .84 \end{aligned}$ | .81 .81 .81 .91 | .95 .28 .98 |
| F | 2 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .51 * \\ & .51 \\ & .57 \end{aligned}$ | $\begin{aligned} & .53 * \\ & .57 \end{aligned}$ | $\begin{aligned} & .57 * \\ & 21 \\ & .57 \end{aligned}$ | $\begin{aligned} & .60 * \\ & .02 \\ & .62 \end{aligned}$ | $\begin{aligned} & .64 \\ & .22 \\ & .62 \end{aligned}$ | .70 <br> 24 <br> .72 | .77 .25 .78 |
|  | 3 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .52 \\ & .21 \\ & .57 \end{aligned}$ | $\begin{aligned} & .54 \\ & .21 \\ & .57 \end{aligned}$ | $\begin{aligned} & .57 \\ & .51 \\ & .57 \end{aligned}$ | $\begin{aligned} & .61 \\ & .62 \\ & .62 \end{aligned}$ | $\begin{aligned} & .66 \\ & .23 \\ & .67 \end{aligned}$ | .72 <br> .82 <br> .72 | $\begin{array}{r}.78 \\ 25 \\ .78 \\ \hline\end{array}$ |
|  | 5 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $\begin{aligned} & .53 \\ & .21 \\ & .57 \end{aligned}$ | $\begin{aligned} & .56 \\ & 21 \\ & .57 \end{aligned}$ | $\begin{aligned} & .60 \\ & .62 \\ & .62 \end{aligned}$ | $\begin{aligned} & .64 \\ & .62 \\ & .62 \end{aligned}$ | $\begin{aligned} & .69 \\ & 23 \\ & .67 \end{aligned}$ | .74 .84 .72 .7 | $\begin{array}{r}.80 \\ .85 \\ .78 \\ \hline\end{array}$ |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .60 \\ & .22 \\ & .62 \\ & \hline \end{aligned}$ | $\begin{aligned} & .62 \\ & .22 \\ & .62 \end{aligned}$ | $\begin{aligned} & .65 \\ & .23 \\ & .67 \end{aligned}$ | $\begin{aligned} & .69 \\ & .63 \\ & .67 \end{aligned}$ | $\begin{aligned} & .73 \\ & .74 \\ & .72 \end{aligned}$ | .78 <br> .78 <br> .78 <br> 8 | $\begin{array}{r}.83 \\ .86 \\ .84 \\ \hline\end{array}$ |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .65 \\ & .23 \\ & .67 \\ & \hline \end{aligned}$ | $\begin{aligned} & .08 \\ & .23 \\ & .67 \end{aligned}$ | $\begin{aligned} & .71 \\ & .74 \\ & .72 \end{aligned}$ | $\begin{aligned} & .74 \\ & .24 \\ & .72 \end{aligned}$ | $\begin{aligned} & .78 \\ & .75 \\ & .78 \end{aligned}$ | .82 <br> .88 <br> .84 <br> 8 | .87 <br> .86 <br> .84 |
|  | 16 | $\begin{aligned} & \text { Cal-ulated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $\begin{aligned} & .69 \\ & .23 \\ & .67 \end{aligned}$ | $\begin{aligned} & .71 \\ & 24 \\ & .72 \end{aligned}$ | $\begin{aligned} & .74 \\ & .74 \\ & .72 \end{aligned}$ | $\begin{aligned} & .77 \\ & .75 \\ & .78 \end{aligned}$ | $\begin{aligned} & .81 \\ & .86 \\ & .84 \end{aligned}$ | .85 <br> .85 <br> .84 <br> .84 | .90 27 .91 |

* Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor When total calculated thickness is not followed by asterisk, surge presgure (Case 1) is the controlling factor. See Sec. 1-2.1.

TABLE 1-1 (Continued)
Schedule of Barrel Thickness for Water Pipe of 18/40 Iron Strength


Twenty-four-Inch Water Pipe
3
6

> 1 wity-hour-imer water Ipe

| A | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .69 * \\ & 22 \\ & .68 \end{aligned}$ | $\begin{aligned} & .72 * \\ & 23 \\ & .73 \end{aligned}$ | $\begin{aligned} & .75 * \\ & 23 \\ & .73 \end{aligned}$ | $\begin{aligned} & .78 * \\ & 24 \\ & .79 \end{aligned}$ | $\begin{aligned} & .82^{*} \\ & .25 \\ & .85 \end{aligned}$ | $\begin{aligned} & .86^{*} \\ & 25 \\ & .85 \end{aligned}$ | $\begin{aligned} & .91^{*} \\ & .26 \\ & .92 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 31 | Calculated Thickneas <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .69 * \\ & .22 \\ & .68 \end{aligned}$ | $\begin{aligned} & .71^{*} \\ & 23 \\ & .73 \end{aligned}$ | $\begin{gathered} .74 * \\ 23 \\ .73 \end{gathered}$ | $\begin{aligned} & .78 * \\ & 24 \\ & .79 \end{aligned}$ | $\begin{aligned} & .81^{*} \\ & 24 \\ & .79 \end{aligned}$ | $\begin{aligned} & .86 \\ & 25 \\ & .85 \end{aligned}$ | .93 .26 .92 |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .72^{*} \\ & 23 \\ & .73 \end{aligned}$ | $\begin{aligned} & .75 * \\ & 23 \\ & .73 \end{aligned}$ | $\begin{aligned} & .78^{*} \\ & 24 \\ & .79 \end{aligned}$ | $\begin{aligned} & .81^{*} \\ & 24 \\ & .79 \end{aligned}$ | $\begin{aligned} & .85 * \\ & 25 \\ & .85 \end{aligned}$ | $\begin{array}{r} .91 \\ .26 \\ .92 \end{array}$ | .96 <br> .97 <br> .99 |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .80 \\ & 24 \\ & .79 \end{aligned}$ | $\begin{aligned} & .82 \\ & 25 \\ & .85 \end{aligned}$ | $\begin{aligned} & .80 \\ & 25 \\ & .85 \end{aligned}$ | $\begin{array}{r} .90 \\ .26 \\ .92 \end{array}$ | $\begin{gathered} .94 \\ 26 \\ .92 \end{gathered}$ | $\begin{array}{r} .99 \\ .27 \\ .99 \end{array}$ | 1.04 <br> 28 <br> 1.07 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .88 \\ & 25 \\ & .85 \end{aligned}$ | $\begin{aligned} & .91 \\ & 26 \\ & .92 \end{aligned}$ | $\begin{array}{r} .94 \\ 26 \\ .92 \end{array}$ | $\begin{gathered} .98 \\ 27 \\ .99 \end{gathered}$ | $\begin{array}{r} 1.02 \\ 27 \\ .99 \end{array}$ | $\begin{array}{r} 1.06 \\ 28 \\ 1.07 \end{array}$ | $\begin{array}{r} 1.10 \\ 28 \\ 1.07 \end{array}$ |
|  | 16 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{gathered} .94 \\ 26 \\ .92 \end{gathered}$ | $\begin{aligned} & .97 \\ & .97 \\ & .99 \end{aligned}$ | $\begin{array}{r} 1.00 \\ 27 \\ .99 \end{array}$ | $\begin{array}{r} 1.03 \\ 28 \\ 1.07 \end{array}$ | $\begin{array}{r} 1.07 \\ 28 \\ 1.07 \end{array}$ | $\begin{aligned} & 1.11 \\ & 1.07 \\ & 1 . \end{aligned}$ | $\begin{aligned} & 1.15 \\ & 29 \\ & 1.16 \end{aligned}$ |
| B | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .63^{*} \\ & 21 \\ & .63 \end{aligned}$ | $\begin{aligned} & .05 * \\ & 21 \\ & .63 \end{aligned}$ | $\begin{aligned} & .68^{*} \\ & .22 \end{aligned}$ | $\begin{aligned} & .72^{*} \\ & 23 \\ & .73 \end{aligned}$ | $\begin{aligned} & .76^{*} \\ & 24 \\ & .79 \end{aligned}$ | $\begin{aligned} & .82 \\ & 25 \\ & .85 \end{aligned}$ | .90 <br> .26 <br> .92 |
|  |  | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .62^{*} \\ & .61 \end{aligned}$ | $\begin{aligned} & .65 * \\ & .61 \end{aligned}$ | $\begin{aligned} & .68 * \\ & 22 \\ & .68 \end{aligned}$ | $\begin{aligned} & .71^{*} \\ & 23 \\ & .73 \end{aligned}$ | $\begin{aligned} & .77 \\ & 24 \\ & .79 \end{aligned}$ | .84 .85 .85 | .91 <br> .26 <br> .92 |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & .65 * \\ & 21 \\ & .63 \end{aligned}$ | $\begin{aligned} & .67 * \\ & .22 \\ & .68 \end{aligned}$ | $\begin{aligned} & .71^{*} \\ & 23 \\ & .73 \end{aligned}$ | $\begin{gathered} .76 \\ 24 \\ .79 \end{gathered}$ | .81 24 .79 | .88 25 .85 | .94 <br> .96 <br> .92 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .72 \\ & 23 \\ & .73 \end{aligned}$ | $\begin{aligned} & .75 \\ & 23 \\ & .73 \end{aligned}$ | $\begin{array}{r} .79 \\ 24 \\ .79 \end{array}$ | $\begin{aligned} & .83 \\ & 25 \\ & .85 \end{aligned}$ | .88 25 .85 | .0 .7 .26 .92 | .99 27 .99 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .79 \\ & 24 \\ & .79 \end{aligned}$ | $\begin{aligned} & .82 \\ & 25 \\ & .85 \end{aligned}$ | $\begin{aligned} & .86 \\ & 25 \\ & .85 \end{aligned}$ | $\begin{gathered} .90 \\ .96 \\ .92 \end{gathered}$ | $\begin{aligned} & .97 \\ & 26 \\ & .92 \end{aligned}$ | .99 .27 .99 | 1.04 <br> 28 <br> 1.07 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .85 \\ & 25 \\ & .85 \end{aligned}$ | $\begin{aligned} & .88 \\ & 25 \\ & .85 \end{aligned}$ | $\begin{gathered} .91 \\ 26 \\ .92 \end{gathered}$ | $\begin{gathered} .95 \\ 26 \\ .92 \end{gathered}$ | $\begin{array}{r} .99 \\ 27 \\ .99 \end{array}$ | $\begin{aligned} & 1.03 \\ & 28 \\ & 1.07 \end{aligned}$ | 1.08 28 1.07 |
| F | 23 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $\begin{aligned} & .56^{*} \\ & 21 \\ & .63 \end{aligned}$ | $\begin{aligned} & .58 * \\ & 21 \\ & .63 \end{aligned}$ | $\begin{aligned} & .63^{*} \\ & 21 \\ & .63 \end{aligned}$ | $\begin{aligned} & .67 * \\ & 22 \\ & .68 \end{aligned}$ | $\begin{array}{r} .73 \\ 23 \\ .73 \end{array}$ | $\begin{aligned} & .81 \\ & 24 \\ & .79 \end{aligned}$ | $\begin{array}{r}.89 \\ .86 \\ .92 \\ \hline\end{array}$ |
|  | 37 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .56^{*} \\ & 21 \\ & .63 \end{aligned}$ | $\begin{aligned} & .59 \\ & 21 \\ & .63 \end{aligned}$ | $\begin{aligned} & .63 \\ & 21 \\ & .63 \end{aligned}$ | $\begin{array}{r} .69 \\ 22 \\ .68 \end{array}$ | $\begin{aligned} & .75 \\ & 23 \\ & .73 \end{aligned}$ | .82 25 .85 | $\begin{array}{r}.90 \\ .26 \\ .92 \\ \hline\end{array}$ |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .59 \\ & .51 \\ & .63 \end{aligned}$ | $\begin{aligned} & .03 \\ & 21 \\ & .63 \end{aligned}$ | $\begin{aligned} & .67 \\ & 22 \\ & .68 \end{aligned}$ | $\begin{aligned} & .72 \\ & 23 \\ & .73 \end{aligned}$ | .78 .48 .79 | .87 .85 .85 | .92 <br> .92 <br> .92 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .66 \\ & 22 \\ & .08 \end{aligned}$ | $\begin{aligned} & .69 \\ & 22 \\ & .68 \end{aligned}$ | $\begin{array}{r} .73 \\ 23 \\ .73 \end{array}$ | $\begin{aligned} & .77 \\ & 24 \\ & .79 \end{aligned}$ | $\begin{aligned} & .83 \\ & 25 \\ & .85 \end{aligned}$ | .89 26 .92 | .95 <br> .26 <br> .92 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .72 \\ 23 \\ .73 \end{array}$ | $\begin{aligned} & .75 \\ & 23 \\ & .73 \end{aligned}$ | $\begin{array}{r} .79 \\ 24 \\ .79 \end{array}$ | $\begin{array}{r} .83 \\ 25 \\ .85 \end{array}$ | $\begin{aligned} & .88 \\ & 25 \\ & .85 \end{aligned}$ | $\begin{array}{r}.93 \\ .96 \\ .92 \\ \hline\end{array}$ | $\begin{array}{r}.99 \\ .97 \\ .99 \\ \hline\end{array}$ |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .77 \\ .24 \\ .79 \end{array}$ | $\begin{aligned} & .80 \\ & 24 \\ & .79 \end{aligned}$ | $\begin{aligned} & .83 \\ & 25 \\ & .85 \end{aligned}$ | $\begin{aligned} & .87 \\ & 25 \\ & .85 \end{aligned}$ | $\begin{gathered} .91 \\ 26 \\ .92 \end{gathered}$ | $\begin{array}{r} 96 \\ 27 \\ .99 \end{array}$ | 1.02 27 .99 |

*Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor. When total calculated thickness is not followed by asterisk, surge pressure (Case 1) is the controlling factor. See Sec. 1-2.1.

TABLE 1-1 (Continued)
Schedule of Barrel Thickness for Water Pipe of 18/40 Iron Strength

|  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Laying <br> Condi- <br> tion | Depth <br> of <br> Cover <br> $f t$ | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |

Thirty-Inch Water Pipe

| A | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .83^{\star 4} \\ & 23 \\ & .85 \end{aligned}$ | $\begin{aligned} & .86^{*} \\ & 23 \\ & .85 \end{aligned}$ | $\begin{aligned} & .90^{*} \\ & .94 \end{aligned}$ | $\begin{aligned} & .9 .4^{*} \\ & .24 \\ & .92 \end{aligned}$ | $\begin{gathered} .98^{*} \\ 25 \\ .99 \end{gathered}$ | $\begin{aligned} & 1.04 * \\ & 26 \\ & 1.07 \end{aligned}$ | 1.10 26 1.07 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $3 \frac{1}{2}$ | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .82^{*} \\ & 23 \\ & .85 \end{aligned}$ | $\begin{aligned} & .85 * \\ & 23 \\ & .85 \end{aligned}$ | $\begin{gathered} .80 * \\ 24 \\ .92 \end{gathered}$ | $\begin{aligned} & .93 * \\ & .24 \\ & .92 \end{aligned}$ | $\begin{aligned} & .98^{*} \\ & .25 \end{aligned}$ | $\begin{aligned} & 1.07 \\ & 26 \\ & 1.07 \end{aligned}$ | 1.12 27 1.16 |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .86^{*} \\ & 23 \\ & .85 \end{aligned}$ | $\begin{aligned} & .90^{*} \\ & 24 \\ & .92 \end{aligned}$ | $\begin{aligned} & .93^{*} \\ & .94 \end{aligned}$ | $\begin{aligned} & .97^{*} \\ & .25 \\ & .99 \end{aligned}$ | $\begin{gathered} 1.03 \\ 26 \\ 1.07 \end{gathered}$ | $\begin{aligned} & 1.10 \\ & 26 \\ & 1.07 \end{aligned}$ | 1.18 27 1.10 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .94^{*} \\ & 24 \\ & .92 \end{aligned}$ | $\begin{aligned} & .98 \\ & 25 \\ & .99 \end{aligned}$ | $\begin{array}{r} 1.02 \\ 25 \\ .99 \end{array}$ | $\begin{aligned} & 1.07 \\ & 26 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.12 \\ & 27 \\ & 1.16 \end{aligned}$ | $\begin{aligned} & 1.19 \\ & 27 \\ & 1.16 \end{aligned}$ | 1.25 28 1.25 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 1.05 \\ 26 \\ 1.07 \end{array}$ | $\begin{array}{r} 1.08 \\ 26 \\ 1.07 \end{array}$ | $\begin{aligned} & 1.12 \\ & 27 \\ & 1.16 \end{aligned}$ | $\begin{aligned} & 1.17 \\ & 27 \\ & 1.16 \end{aligned}$ | $\begin{aligned} & 1.22 \\ & 28 \\ & 1.25 \end{aligned}$ | $\begin{aligned} & 1.28 \\ & 288 \\ & 1.25 \end{aligned}$ | 1.33 29 1.35 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.13 \\ & 27 \\ & 1.16 \end{aligned}$ | $\begin{array}{r} 1.17 \\ 27 \\ 1.16 \end{array}$ | $\begin{array}{r} 1.20 \\ 27 \\ 1.16 \end{array}$ | $\begin{array}{r} 1.25 \\ 28 \\ 1.25 \end{array}$ | $\begin{array}{r} 1.29 \\ 28 \\ 1.25 \end{array}$ | $\begin{aligned} & 1.35 \\ & 29 \\ & 1.35 \end{aligned}$ | 1.40 29 1.35 |
| B | 21 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .74 * \\ & 21 \\ & .73 \end{aligned}$ | $\begin{aligned} & .77 * \\ & 22 \\ & .79 \end{aligned}$ | $\begin{aligned} & .81^{*} \\ & 22 \\ & .79 \end{aligned}$ | $\begin{aligned} & .85 * \\ & 23 \\ & .85 \end{aligned}$ | $\begin{aligned} & .90^{*} \\ & .94 \end{aligned}$ | .99 .25 .99 | $\begin{array}{r}1.09 \\ 26 \\ 1.07 \\ \hline\end{array}$ |
|  | 34 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .73^{*} \\ & .21 \end{aligned}$ | $\begin{aligned} & .76^{*} \\ & 22 \\ & .79 \end{aligned}$ | $\begin{aligned} & .80^{*} \\ & 22 \\ & .79 \end{aligned}$ | $\begin{aligned} & .85 * \\ & 23 \\ & .85 \end{aligned}$ | $\begin{aligned} & .92 \\ & 24 \\ & .92 \end{aligned}$ | $\begin{array}{r} 1.01 \\ 25 \\ .99 \end{array}$ | 1.10 26 1.07 |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .77 * \\ & 22 \\ & .79 \end{aligned}$ | $\begin{aligned} & .80^{*} \\ & 22 \\ & .79 \end{aligned}$ | $\begin{aligned} & .84 * \\ & 23 \\ & .85 \end{aligned}$ | $\begin{array}{r} .90 \\ 24 \\ .92 \end{array}$ | $\begin{aligned} & .97 \\ & 25 \\ & .99 \end{aligned}$ | $\begin{aligned} & 1.05 \\ & 26 \\ & 1.07 \end{aligned}$ | 1.07 1.13 27 1.16 |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .87 \\ & 23 \\ & .85 \end{aligned}$ | $\begin{array}{r} .88 \\ 23 \\ .85 \end{array}$ | $\begin{array}{r} .93 \\ 24 \\ .92 \end{array}$ | $\begin{aligned} & .98 \\ & .95 \\ & .99 \end{aligned}$ | $\begin{aligned} & 1.05 \\ & 26 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.11 \\ & 26 \\ & 1.07 \end{aligned}$ | 1.18 27 1.16 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} .93 \\ 24 \\ .92 \end{gathered}$ | $\begin{aligned} & .97 \\ & 25 \\ & .99 \end{aligned}$ | $\begin{array}{r} 1.01 \\ 25 \\ .99 \end{array}$ | $\begin{aligned} & 1.06 \\ & 26 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.12 \\ & 27 \\ & 1.16 \end{aligned}$ | $\begin{gathered} 1.18 \\ 27 \\ 1.16 \end{gathered}$ | 1.25 28 1.25 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 1.00 \\ 25 \\ .99 \end{array}$ | $\begin{array}{r} 1.07 \\ 26 \\ 1.07 \end{array}$ | $\begin{array}{r} 1.08 \\ 266 \\ 1.07 \end{array}$ | $\begin{array}{r} 1.13 \\ 27 \\ 1.16 \end{array}$ | $\begin{aligned} & 1.18 \\ & 27 \\ & 1.16 \end{aligned}$ | $\begin{aligned} & 1.28 \\ & 28 \\ & 1.25 \end{aligned}$ | 1.30 29 1.35 |
| F | 2f | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .66^{*} \\ & 21 \\ & .73 \end{aligned}$ | $\begin{aligned} & .70^{*} \\ & 21 \\ & .73 \end{aligned}$ | $\begin{aligned} & .74^{*} \\ & 21 \\ & .73 \end{aligned}$ | $\begin{aligned} & .79 * \\ & 22 \\ & .79 \end{aligned}$ | $\begin{aligned} & .88 \\ & 23 \\ & .85 \end{aligned}$ | $\begin{gathered} .98 \\ .95 \\ .99 \end{gathered}$ | 1.08 26 1.07 |
|  | 3i | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .06 * \\ & 21 \\ & .73 \end{aligned}$ | $\begin{aligned} & .70^{*} \\ & 21 \\ & .73 \end{aligned}$ | $\begin{aligned} & .74 * \\ & 21 \\ & .73 \end{aligned}$ | $\begin{array}{r} .80 \\ 22 \\ .79 \end{array}$ | $\begin{array}{r} .90 \\ 24 \\ .92 \end{array}$ | $\begin{array}{r} 1.00 \\ 25 \\ .99 \end{array}$ | 1.10 20 1.07 |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .70^{* *} \\ & 21 \\ & .73 \end{aligned}$ | $\begin{aligned} & .73^{*} \\ & 21 \\ & .73 \end{aligned}$ | $\begin{gathered} .79 \\ 22 \\ .79 \end{gathered}$ | $\begin{aligned} & .86 \\ & 23 \\ & .85 \end{aligned}$ | $\begin{aligned} & .93 \\ & 24 \\ & .92 \end{aligned}$ | $\begin{array}{r} 1.01 \\ 25 \\ .99 \end{array}$ | 1.11 <br> 26 <br> 1.07 <br> 1.15 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{array}{r} .77 \\ 22 \\ .79 \end{array}$ | $\begin{aligned} & .81 \\ & 22 \\ & .79 \end{aligned}$ | $\begin{gathered} .80 \\ 23 \\ .85 \end{gathered}$ | $\begin{array}{r} .93 \\ 24 \\ .92 \end{array}$ | $\begin{array}{r} 1.00 \\ 25 \\ .99 \end{array}$ | $\begin{aligned} & 1.07 \\ & 26 \\ & 1.07 \end{aligned}$ | 1.15 27 1.16 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .85 \\ & 23 \\ & .85 \end{aligned}$ | $\begin{aligned} & .89 \\ & 24 \\ & .92 \end{aligned}$ | $\begin{aligned} & .97 \\ & 24 \\ & .92 \end{aligned}$ | $\begin{aligned} & .90 \\ & 25 \\ & .99 \end{aligned}$ | $\begin{aligned} & 1.05 \\ & 26 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.12 \\ & 27 \\ & 1.16 \end{aligned}$ | 1.20 27 1.10 |
|  | 16 | Ca culated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} .91 \\ 24 \\ .92 \end{gathered}$ | $\begin{gathered} .95 \\ .94 \\ .92 \end{gathered}$ | $\begin{aligned} & .99 \\ & 25 \\ & .99 \end{aligned}$ | $\begin{aligned} & 1.04 \\ & 26 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.10 \\ & 26 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.16 \\ & 27 \\ & 1.16 \end{aligned}$ | 1.23 28 1.25 |

* Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor. When total calculated thickness is not followed by asterisk, surge pressure (Case 1) is the controlling factor. See Sec. 1-2.1.

TABLE 1-1 (Continued)
Schedule of Barrel Thickness for Water Pipe of $18 / 40$ Iron Strength

| Laying Condition | Depth of Cover fi | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 50 | 100 | 150 | 200 | 250 | 300 | 350 |
|  |  |  | Barrel Thicknesses-in. |  |  |  |  |  |  |
| Thirty-six-Inch Water Pipe |  |  |  |  |  |  |  |  |  |
| A | $2 \frac{1}{2}$ | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $.94 *$ 23 .94 | $.98 *$ 24 1.02 | $1.02 *$ 24 1.02 | $1.07 *$ 25 1.10 | $1.13 *$ 25 1.10 | $1.19 *$ 26 1.19 | $\begin{array}{r} 1.27 \\ 27 \\ 1.29 \end{array}$ |
|  | 3) | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $.03 *$ 23 .94 | $.97 *$ 23 .94 | $\begin{aligned} & 1.02^{*} \\ & 24 \\ & 1.02 \end{aligned}$ | $1.07 *$ 25 1.10 | $1.122^{*}$ 25 1.10 | 1.19 26 1.19 | 1.31 1.29 |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $.08 *$ 24 1.02 | $\begin{aligned} & 1.02^{*} \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{gathered} 1.07 * \\ 25 \\ 1.10 \end{gathered}$ | $1.12^{*}$ 25 1.10 | $\begin{aligned} & 1.17 * \\ & 26 \\ & 1.19 \end{aligned}$ | $\begin{array}{r} 1.26 \\ 27 \\ 1.29 \end{array}$ | $\begin{array}{r} 1.35 \\ 28 \\ 1.39 \end{array}$ |
|  | 8 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $1.07 *$ 25 1.10 | $1.11^{*}$ 25 1.10 | $\begin{array}{r} 1.16 \\ 26 \\ 1.19 \end{array}$ | $\begin{array}{r} 1.22 \\ 26 \\ 1.19 \end{array}$ | $\begin{array}{r} 1.28 \\ 27 \\ 1.29 \end{array}$ | $\begin{array}{r} 1.36 \\ 28 \\ 1.39 \end{array}$ | 1.44 28 1.39 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | 1.19 26 1.19 | $\begin{array}{r} 1.24 \\ 27 \\ 1.29 \end{array}$ | $\begin{array}{r} 1.28 \\ 27 \\ 1.29 \end{array}$ | $\begin{array}{r} 1.37 \\ 28 \\ 1.39 \end{array}$ | $\begin{array}{r} 1.40 \\ 28 \\ 1.39 \end{array}$ | $\begin{array}{r} 1.47 \\ 29 \\ 1.50 \end{array}$ | $\begin{array}{r} 1.54 \\ 29 \\ 1.50 \end{array}$ |
|  | 1 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 1.29 \\ 27 \\ 1.29 \end{array}$ | $\begin{array}{r} 1.33 \\ 27 \\ 1.29 \end{array}$ | $\begin{aligned} & 1.38 \\ & 28 \\ & 1.39 \end{aligned}$ | $\begin{array}{r} 1.43 \\ 28 \\ 1.39 \end{array}$ | $\begin{array}{r} 1.40 \\ 29 \\ 1.50 \end{array}$ | $\begin{array}{r} 1.55 \\ 29 \\ 1.50 \end{array}$ | 1.62 30 1.62 |
| 8 | 2 l | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $\begin{aligned} & .82 * \\ & 21 \\ & .81 \end{aligned}$ | $.86 *$ 22 .87 | $.91 *$ 23 .94 | $.97 *$ .23 .94 | $\begin{aligned} & 1.0 .3^{*} \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{array}{r} 1.17 \\ 25 \\ 1.10 \end{array}$ | 1.26 27 1.29 |
|  | 3) | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $.81 *$ 21 .81 | $.85 *$ .82 .87 | $.00 *$ 22 .87 | $.96 *$ 23 .94 | $\begin{array}{r} 1.07 \\ 24 \\ 1.02 \end{array}$ | $\begin{array}{r} 1.15 \\ 26 \\ 1.19 \end{array}$ | 1.28 27 1.29 |
|  | 5 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $.80^{*}$ 22 .87 | $.90 *$ .82 .87 | $\begin{aligned} & .97 * \\ & 23 \\ & .94 \end{aligned}$ | $\begin{array}{r} 1.01 \\ 24 \\ 1.02 \end{array}$ | $\begin{array}{r} 1.10 \\ 25 \\ 1.10 \end{array}$ | $\begin{array}{r} 1.20 \\ 26 \\ 1.19 \end{array}$ | $\begin{array}{r} 1.30 \\ 27 \\ 1.29 \end{array}$ |
|  | 8 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{array}{r} .94 \\ 23 \\ .94 \end{array}$ | $\begin{array}{r} .09 \\ 24 \\ 1.02 \end{array}$ | $\begin{array}{r} 1.05 \\ 24 \\ 1.02 \end{array}$ | $\begin{array}{r} 1.11 \\ 25 \\ 1.10 \end{array}$ | $\begin{array}{r} 1.18 \\ 26 \\ 1.19 \end{array}$ | $\begin{array}{r} 1.27 \\ 27 \\ 1.29 \end{array}$ | 1.36 28 1.39 |
|  | 12 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $\begin{array}{r} 1.05 \\ 24 \\ 1.02 \end{array}$ | $\begin{array}{r} 1.09 \\ 25 \\ 1.10 \end{array}$ | $\begin{array}{r} 1.14 \\ 25 \\ 1.10 \end{array}$ | $\begin{array}{r} 1.20 \\ 26 \\ 1.19 \end{array}$ | $\begin{array}{r} 1.27 \\ 27 \\ 1.29 \end{array}$ | $\begin{array}{r} 1.34 \\ 28 \\ 1.39 \end{array}$ | 1.43 28 1.39 |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 1.12 \\ 25 \\ 1.10 \end{array}$ | $\begin{array}{r} 1.17 \\ 26 \\ 1.19 \end{array}$ | $\begin{array}{r} 1.22 \\ 26 \\ 1.19 \end{array}$ | $\begin{array}{r} 1.27 \\ 27 \\ 1.29 \end{array}$ | $\begin{array}{r} 1.34 \\ 28 \\ 1.39 \end{array}$ | $\begin{array}{r} 1.40 \\ 28 \\ 1.39 \end{array}$ | 1.48 29 1.50 |
| F | 21 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $\begin{aligned} & .73^{*} \\ & 21 \\ & .81 \end{aligned}$ | $\begin{aligned} & .79^{*} \\ & 21 \\ & .81 \end{aligned}$ | $\begin{aligned} & .84 *^{*} \\ & 222 \\ & .87 \end{aligned}$ | $\begin{array}{r} .89 \\ 22 \\ .87 \end{array}$ | $\begin{array}{r} 1.01 \\ 24 \\ 1.02 \end{array}$ | $\begin{array}{r} 1.13 \\ 25 \\ 1.10 \end{array}$ | 1.25 27 1.29 |
|  | 31 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{gathered} .73^{\ddagger} \\ 21 \\ .81 \end{gathered}$ | $\begin{aligned} & .78^{\ddagger} \\ & 21 \\ & .81 \end{aligned}$ | $.8 .3 *$ 21 .81 | .92 23 .94 | $\begin{array}{r} 1.03 \\ 24 \\ 1.02 \end{array}$ | $\begin{aligned} & 1.14 \\ & 25 \\ & 1.10 \end{aligned}$ | 1.26 27 1.29 |
|  | 5 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{gathered} .78^{*} \\ 21 \\ .81 \end{gathered}$ | $\begin{aligned} & .82^{*} \\ & 21 \\ & .81 \end{aligned}$ | $\begin{array}{r} .89 \\ 22 \\ .87 \end{array}$ | $\begin{array}{r} 97 \\ 23 \\ .94 \end{array}$ | $\begin{array}{r} 1.07 \\ 25 \\ 1.10 \end{array}$ | $\begin{aligned} & 1.17 \\ & 26 \\ & 1.19 \end{aligned}$ | 1.28 27 1.29 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | .86 22 .87 | $\begin{array}{r} .91 \\ 23 \\ .94 \end{array}$ | $\begin{gathered} .97 \\ 23 \\ .94 \end{gathered}$ | $\begin{gathered} 1.04 \\ 24 \\ 1.02 \end{gathered}$ | $\begin{array}{r} 1.13 \\ 25 \\ 1.10 \end{array}$ | $\begin{array}{r} 1.22 \\ 26 \\ 1.19 \end{array}$ | 1.33 27 1.29 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} .95 \\ 23 \\ .94 \end{gathered}$ | $\begin{array}{r} 1.00 \\ 24 \\ 1.02 \end{array}$ | $\begin{array}{r} 1.06 \\ 25 \\ 1.10 \end{array}$ | $\begin{array}{r} 1.12 \\ 25 \\ 1.10 \end{array}$ | $\begin{array}{r} 1.20 \\ 26 \\ 1.19 \end{array}$ | $\begin{array}{r} 1.28 \\ 27 \\ 1.29 \end{array}$ | 1.37 28 1.39 |
|  | 16 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{array}{r} 1.02 \\ 24 \\ 1.02 \end{array}$ | $\begin{array}{r} 1.07 \\ 25 \\ 1.10 \end{array}$ | $\begin{aligned} & 1.12 \\ & 25 \\ & 1.10 \end{aligned}$ | $\begin{array}{r} 1.18 \\ 26 \\ 1.19 \end{array}$ | $\begin{array}{r} 1.25 \\ 27 \\ 1.29 \end{array}$ | $\begin{array}{r} 1.33 \\ 27 \\ 1.29 \end{array}$ | $\begin{array}{r} I+2 \\ 28 \\ 1.39 \end{array}$ |

* Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor. When total calculated thickness is not followed by asterisk, surge pressure (Case 1) is the controlling factor. See Sec. 1-2.1.

TABLE 1-1 (Continued)
Schedule of Barrel Thickness for Water Pipe of 18/40 Iron Strength

| Laying Condition | Depth of Cover ft | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 50 | 100 | 150 | 200 | 250 | 300 | 350 |
|  |  |  | Barrel Thicknesses-in. |  |  |  |  |  |  |
| Forty-two-Inch Water Pipe |  |  |  |  |  |  |  |  |  |
| A | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.04 * \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.08 * \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.14 * \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{gathered} 1.20^{*} \\ 25 \\ 1.22 \end{gathered}$ | $1.27 *$ <br> 26 <br> 1.32 <br> 1.27 | 1.34* <br> 126 <br> 1.32 <br> 1.3 | 1.43 <br> 27 <br> 1.43 <br> 1.4 |
|  | $3 \frac{1}{2}$ | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.04^{*} \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.08 * \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.14 * \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{aligned} & 1.20 * \\ & 25 \\ & 1.22 \end{aligned}$ | $1.27 *$ 1.36 1.32 | 1.32 <br> 1.36 <br> 1.32 | 1.46 27 1.43 |
|  | 5 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & 1.09 * \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{aligned} & 1.14 * \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{aligned} & 1.19 * \\ & 25 \\ & 1.22 \end{aligned}$ | $\begin{aligned} & 1.25 * \\ & 25 \\ & 1.22 \end{aligned}$ | $\begin{aligned} & 1.32 * \\ & 26 \\ & 1.32 \end{aligned}$ | $\begin{array}{r} 1.43 \\ 27 \\ 1.43 \end{array}$ | 1.52 <br> 28 <br> 1.54 |
|  | 8 | Ca!culated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.10 * \\ & 25 \\ & 1.22 \end{aligned}$ | $\begin{gathered} 1.24 * \\ 25 \\ 1.22 \end{gathered}$ | $\begin{aligned} & 1.30 \\ & 26 \\ & 1.32 \end{aligned}$ | $\begin{aligned} & 1.37 \\ & 26 \\ & 1.32 \end{aligned}$ | 1.45 <br> 27 <br> 1.43 <br> 1.58 | 1.53 28 1.54 | 1.63 29 1.66 |
|  | 12 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & 1.33 \\ & 26 \\ & 1.32 \end{aligned}$ | $\begin{array}{r} 1.38 \\ 27 \\ 1.43 \end{array}$ | $\begin{aligned} & 1.44 \\ & 27 \\ & 1.43 \end{aligned}$ | $\begin{array}{r} 1.50 \\ 28 \\ 1.54 \end{array}$ | $\begin{aligned} & 1.58 \\ & 28 \\ & 1.54 \end{aligned}$ | 1.65 29 1.66 | 1.74 300 1.79 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.46 \\ & 27 \\ & 1.43 \end{aligned}$ | $\begin{array}{r} 1.51 \\ 28 \\ 1.54 \end{array}$ | $\begin{array}{r} 1.56 \\ 28 \\ 1.54 \end{array}$ | $\begin{array}{r} 1.62 \\ 29 \\ 1.66 \end{array}$ | $\begin{gathered} 1.68 \\ 29 \\ 1.66 \end{gathered}$ | 1.75 30 1.79 | 1.83 30 1.79 |
| B | 21 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .89 * \\ & 21 \\ & .90 \end{aligned}$ | $\begin{aligned} & .04 * \\ & .22 \\ & .97 \end{aligned}$ | $\begin{gathered} 1.00^{*} \\ .22 \\ .97 \end{gathered}$ | $\begin{gathered} 1.07 * \\ 23 \\ 1.05 \end{gathered}$ | $\begin{aligned} & 1.17 \\ & 24 \\ & 1.13 \end{aligned}$ | 1.28 26 1.32 | 1.42 27 1.43 |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .89 * \\ & 21 \\ & .90 \end{aligned}$ | $\begin{aligned} & .94^{*} \\ & 22 \\ & .97 \end{aligned}$ | $\begin{gathered} 1.00^{*} \\ 22 \\ .97 \end{gathered}$ | $\begin{gathered} 1.07 * \\ 23 \\ 1.05 \end{gathered}$ | $\begin{aligned} & 1.17 \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{aligned} & 1.30 \\ & 26 \\ & 1.32 \end{aligned}$ | 1.43 27 1.43 |
|  | 5 | Calculated Thickress $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .97 * \\ & 22 \\ & .97 \end{aligned}$ | $\begin{aligned} & .98 * \\ & 22 \\ & .97 \end{aligned}$ | $\begin{aligned} & 1.04^{*} \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{array}{r} 1.13 \\ 24 \\ 1.13 \end{array}$ | $\begin{array}{r} 1.23 \\ 25 \\ 1.22 \end{array}$ | $\begin{array}{r} 1.34 \\ 26 \\ 1.32 \end{array}$ | 1.47 <br> 27 <br> 1.43 <br> 1 |
|  | 8 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{array}{r} 1.04 \\ 23 \\ 1.05 \end{array}$ | $\begin{array}{r} 1.00 \\ 24 \\ 1.13 \end{array}$ | $\begin{aligned} & 1.16 \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{array}{r} 1.23 \\ 25 \\ 1.22 \end{array}$ | $\begin{aligned} & 1.32 \\ & 26 \\ & 1.32 \end{aligned}$ | $\begin{aligned} & 1.42 \\ & 27 \\ & 1.43 \end{aligned}$ | 1.53 <br> 28 <br> 1.54 <br> 1.00 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.15 \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{array}{r} 1.21 \\ 25 \\ 1.22 \end{array}$ | $\begin{array}{r} 1.27 \\ 26 \\ 1.32 \end{array}$ | $\begin{aligned} & 1.33 \\ & 26 \\ & 1.32 \end{aligned}$ | $\begin{aligned} & 1.42 \\ & 27 \\ & 1.43 \end{aligned}$ | $\begin{aligned} & 1.51 \\ & 28 \\ & 1.54 \end{aligned}$ | 1.60 29 1.66 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.25 \\ & 25 \\ & 1.22 \end{aligned}$ | $\begin{aligned} & 1.30 \\ & 26 \\ & 1.32 \end{aligned}$ | $\begin{array}{r} 1.36 \\ 26 \\ 1.32 \end{array}$ | $\begin{array}{r} 1.43 \\ 27 \\ 1.43 \end{array}$ | $\begin{aligned} & 1.50 \\ & 28 \\ & 1.54 \end{aligned}$ | $\begin{aligned} & 1.58 \\ & 28 \\ & 1.54 \end{aligned}$ | 1.67 29 1.66 |
| F | $2 \frac{1}{2}$ | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .80^{*} \\ & 21 \\ & .90 \end{aligned}$ | $\begin{aligned} & .86^{*} \\ & 21 \\ & .90 \end{aligned}$ | $\begin{aligned} & .92^{*} \\ & 21 \\ & .90 \end{aligned}$ | $\begin{array}{r} 1.00 \\ 22 \\ .97 \end{array}$ | $\begin{aligned} & 1.15 \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{aligned} & 1.28 \\ & 1.32 \\ & 1.26 \end{aligned}$ | 1.42 1.43 1.43 |
|  | 3! | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .80^{*} \\ & 21 \\ & .90 \end{aligned}$ | $\begin{aligned} & .86^{*} \\ & .91 \end{aligned}$ | $\begin{aligned} & .92^{*} \\ & .21 \\ & .90 \end{aligned}$ | $\begin{array}{r} 1.07 \\ 23 \\ 1.05 \end{array}$ | $\begin{gathered} 1.17 \\ 24 \\ 1.13 \end{gathered}$ | $\begin{aligned} & 1.29 \\ & 26 \\ & 1.32 \end{aligned}$ | 1.43 27 1.43 |
|  | 5 | Calculated Thickness <br> Use 'Thickness Class | $\begin{aligned} & .85 * \\ & 21 \\ & .90 \end{aligned}$ | $\begin{aligned} & .90^{*} \\ & 21 \\ & .90 \end{aligned}$ | $\begin{array}{r} .98 \\ 22 \\ .97 \end{array}$ | $\begin{aligned} & 7.08 \\ & 2.3 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.19 \\ & 25 \\ & 1.22 \end{aligned}$ | $\begin{aligned} & 1.32 \\ & 26 \\ & 1.32 \end{aligned}$ | 1.75 27 1.43 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .94 \\ 22 \\ .97 \end{array}$ | $\begin{array}{r} 1.00 \\ 22 \\ .97 \end{array}$ | $\begin{array}{r} 1.08 \\ 23 \\ 1.05 \end{array}$ | $\begin{array}{r} 1.16 \\ 24 \\ 1.13 \end{array}$ | $\begin{aligned} & 1.26 \\ & 25 \\ & 1.22 \end{aligned}$ | $\begin{aligned} & 1.36 \\ & 26 \\ & 1.32 \end{aligned}$ | 1.49 <br> 1.88 <br> 1.54 |
|  | 12 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & 1.05 \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.10 \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{aligned} & 1.17 \\ & 1.14 \\ & 1.13 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \end{aligned}$ | $\begin{aligned} & 1.34 \\ & 26 \\ & 1.32 \end{aligned}$ | $\begin{array}{r} 1.73 \\ 27 \\ 1.43 \end{array}$ | 1.54 <br> 28 <br> 1.54 |
|  | 16 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & 1.13 \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{aligned} & 1.18 \\ & 25 \\ & 1.22 \end{aligned}$ | $\begin{aligned} & 1.24 \\ & 25 \\ & 1.22 \end{aligned}$ | $\begin{aligned} & 1.32 \\ & 26 \\ & 1.32 \end{aligned}$ | $\begin{array}{r} 1.40 \\ 27 \\ 1.43 \end{array}$ | $\begin{aligned} & 1.49 \\ & 28 \\ & 1.54 \end{aligned}$ | $\begin{aligned} & 1.59 \\ & 28 \\ & 1.54 \end{aligned}$ |

* Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor. When total calculated thickness is not followed by asterisk, surge pressure (Case 1) is the controlling factor. See When total

TABLE 1-1 (Continued)
Schedule of Barrel Thickness for Water Pipe of 18/40 Iron Strength

| Laying Condition | Depth of Cover ft | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 50 | 100 | 150 | 200 | 250 | 300 | 350 |
|  |  |  | Barrel Thicknesses--in. |  |  |  |  |  |  |
| Forty-eight-Inch Water Pipe |  |  |  |  |  |  |  |  |  |
| A | $2 \frac{1}{2}$ | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $1.14^{*}$ 23 1.14 | $1.19{ }^{*}$ 24 1.23 | $1.25 *$ 24 1.23 | $1.32 *$ 25 1.33 | $1.40^{*}$ 26 1.44 | $1.49 *$ 26 1.44 | 1.61 27 1.56 |
|  | 3) | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickress Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $\begin{aligned} & 1.14^{*} \\ & 23 \\ & 1.14 \end{aligned}$ | $\begin{gathered} 1.20^{*} \\ 24 \\ 1.23 \end{gathered}$ | $1.26 *$ 24 1.23 | 1.33 25 1.33 | $1.40{ }^{\text {\% }}$ 26 1.44 | $\begin{array}{r} 1.50 \\ 27 \\ 1.56 \end{array}$ | 1.66 28 1.68 |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.22^{*} \\ & 24 \\ & 1.23 \end{aligned}$ | 1.27* <br> 24 <br> 1.23 | $1.32 *$ 1.35 | $1.39 *$ 26 1.44 | 1.47 26 1.44 | 1.58 27 1.56 | 1.71 28 1.68 |
|  | 8 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{gathered} 1.33 * \\ 25 \\ 1.33 \end{gathered}$ | $\begin{aligned} & 1.38 * \\ & 25 \\ & 1.33 \end{aligned}$ | $\begin{array}{r} 1.44 \\ 26 \\ 1.44 \end{array}$ | $\begin{array}{r} 1.53 \\ 27 \\ 1.56 \end{array}$ | $\begin{array}{r} 1.61 \\ 27 \\ 1.56 \end{array}$ | $\begin{array}{r} 1.71 \\ 28 \\ 1.68 \end{array}$ | 1.83 29 1.81 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 1.49 \\ 26 \\ 1.44 \end{array}$ | $\begin{array}{r} 1.55 \\ 27 \\ 1.56 \end{array}$ | $\begin{array}{r} 1.61 \\ 27 \\ 1.56 \end{array}$ | $\begin{array}{r} 1.69 \\ 28 \\ 1.68 \end{array}$ | 1.77 29 1.81 | $\begin{array}{r} 1.85 \\ 29 \\ 1.81 \end{array}$ | 1.96 30 1.95 |
|  | 16 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{array}{r} 1.63 \\ 28 \\ 1.68 \end{array}$ | $\begin{array}{r} 1.68 \\ 28 \\ 1.68 \end{array}$ | $\begin{aligned} & 1.74 \\ & 28 \\ & 1.68 \end{aligned}$ | $\begin{aligned} & 1.81 \\ & 29 \\ & 1.81 \end{aligned}$ | $\begin{array}{r} 1.89 \\ 30 \\ 1.95 \end{array}$ | $\begin{array}{r} 1.98 \\ 30 \\ 1.95 \end{array}$ | 2.08 |
| B | 21 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $\begin{aligned} & .97^{*} \\ & 21 \\ & .98 \end{aligned}$ | $\begin{gathered} 1.03^{*} \\ 22 \\ 1.06 \end{gathered}$ | $\begin{aligned} & 1.09 * \\ & 22 \\ & 1.06 \end{aligned}$ | $\begin{gathered} 1.17^{*} \\ 23 \\ 1.14 \end{gathered}$ | $\begin{array}{r} 1.28 \\ 25 \\ 1.33 \end{array}$ | $\begin{array}{r} 1.43 \\ 26 \\ 1.44 \end{array}$ | 1.59 27 1.56 |
|  | 34 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .98^{*} \\ & 21 \\ & .98 \end{aligned}$ | $\begin{aligned} & 1.03 * \\ & 22 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & 1.10^{*} \\ & 23 \\ & 1.14 \end{aligned}$ | $\begin{array}{r} 1.17 \\ 23 \\ 1.14 \end{array}$ | $\begin{array}{r} 1.31 \\ 25 \\ 1.33 \end{array}$ | $\begin{array}{r} 1.45 \\ 26 \\ 1.44 \end{array}$ | 1.61 27 1.56 |
|  | 5 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & 1.03^{*} \\ & 22 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & 1.09 * \\ & 22 \\ & 1.06 \end{aligned}$ | $\begin{gathered} 1.15 * \\ 23 \\ 1.14 \end{gathered}$ | $\begin{array}{r} 1.25 \\ 24 \\ 1.23 \end{array}$ | $\begin{array}{r} 1.37 \\ 25 \\ 1.33 \end{array}$ | $\begin{array}{r} 1.50 \\ 27 \\ 1.56 \end{array}$ | 1.65 28 1.68 |
|  | 8 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{array}{r} 1.13 \\ 23 \\ 1.14 \end{array}$ | $\begin{array}{r} 1.20 \\ 24 \\ 1.23 \end{array}$ | $\begin{array}{r} 1.28 \\ 25 \\ 1.33 \end{array}$ | $\begin{array}{r} 1.37 \\ 25 \\ 1.33 \end{array}$ | $\begin{array}{r} 1.47 \\ 26 \\ 1.44 \end{array}$ | $\begin{aligned} & 1.58 \\ & 27 \\ & 1.56 \end{aligned}$ | 1.72 28 1.68 |
|  | 12 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{array}{r} 1.28 \\ 25 \\ 1.33 \end{array}$ | $\begin{array}{r} 1.34 \\ 25 \\ 1.33 \end{array}$ | $\begin{array}{r} 1.41 \\ 26 \\ 1.44 \end{array}$ | 1.49 20 1.44 | 1.58 27 1.56 | $\begin{array}{r} 1.69 \\ 28 \\ 1.68 \end{array}$ | 1.80 29 1.81 |
|  | 16 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{array}{r} 1.38 \\ 25 \\ 1.33 \end{array}$ | $\begin{array}{r} 1.43 \\ 26 \\ 1.44 \end{array}$ | $\begin{array}{r} 1.50 \\ 27 \\ 1.56 \end{array}$ | $\begin{array}{r} 1.58 \\ 27 \\ 1.56 \end{array}$ | $\begin{array}{r} 1.67 \\ 28 \\ 1.68 \end{array}$ | $\begin{array}{r} 1.77 \\ 29 \\ 1.81 \end{array}$ | 187 29 1.81 |
| F | $2 \frac{1}{2}$ | Calculated Thickness <br> U'se $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .88^{*} \\ & 21 \\ & .98 \end{aligned}$ | $\begin{gathered} .93^{*} \\ 21 \\ .98 \end{gathered}$ | $\begin{gathered} 1.00^{*} \\ 21 \\ .98 \end{gathered}$ | $\begin{array}{r} 1.12 \\ 23 \\ 1.14 \end{array}$ | $\begin{array}{r} 1.27 \\ 24 \\ 1.23 \end{array}$ | $\begin{array}{r} 1.43 \\ 26 \\ 1.44 \end{array}$ | 1.59 27 1.56 |
|  | 32 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} .88^{*} \\ 21 \\ .98 \end{gathered}$ | $\begin{aligned} & .94 * \\ & 21 \\ & .98 \end{aligned}$ | $\begin{gathered} 1.011^{*} \\ 21 \\ .98 \end{gathered}$ | $\begin{array}{r} 1.17 \\ 23 \\ 1.14 \end{array}$ | $\begin{array}{r} 1.29 \\ 25 \\ 1.3 .3 \end{array}$ | $\begin{array}{r} 1.44 \\ 26 \\ 1.44 \end{array}$ | 1.60 27 1.56 |
|  | . | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & .93^{*} \\ & 21 \\ & .98 \end{aligned}$ | $\begin{aligned} & .90 * \\ & 21 \\ & .98 \end{aligned}$ | $\begin{aligned} & 1.08 \\ & 22 \\ & 1.06 \end{aligned}$ | $\begin{array}{r} 1.20 \\ 24 \\ 1.23 \end{array}$ | $\begin{array}{r} 1.33 \\ 25 \\ 1.33 \end{array}$ | $\begin{array}{r} 1.48 \\ 26 \\ 1.44 \end{array}$ | 1.63 28 1.68 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 1.03 \\ 22 \\ 1.06 \end{array}$ | $\begin{array}{r} 1.10 \\ 23 \\ 1.14 \end{array}$ | $\begin{array}{r} 1.19 \\ 24 \\ 1.23 \end{array}$ | $\begin{array}{r} 1.28 \\ 25 \\ 1.33 \end{array}$ | $\begin{array}{r} 1.40 \\ 26 \\ 1.44 \end{array}$ | $\begin{array}{r} 1.52 \\ 27 \\ 1.56 \end{array}$ | 1.67 28 1.68 |
|  | 12 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{array}{r} 1.15 \\ 23 \\ 1.14 \end{array}$ | $\begin{array}{r} 1.22 \\ 24 \\ 1.23 \end{array}$ | $\begin{aligned} & 1.29 \\ & 25 \\ & 1.33 \end{aligned}$ | $\begin{array}{r} 1.39 \\ 26 \\ 1.44 \end{array}$ | $\begin{aligned} & 1.48 \\ & 26 \\ & 1.44 \end{aligned}$ | $\begin{array}{r} 1.60 \\ 27 \\ 1.56 \end{array}$ | 1.73 28 1.68 |
|  | 16 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{array}{r} 1.25 \\ 24 \\ 1.23 \end{array}$ | $\begin{array}{r} 1.31 \\ 25 \\ 1.33 \end{array}$ | $\begin{array}{r} 1.38 \\ 25 \\ 1.33 \end{array}$ | $\begin{array}{r} 1.46 \\ 26 \\ 1.44 \end{array}$ | $\begin{aligned} & 1.56 \\ & 27 \\ & 1.56 \end{aligned}$ | $\begin{array}{r} 1.67 \\ 28 \\ 1.68 \end{array}$ | 1.78 29 1.81 |

* Asterisk following cotal calculated thickness indicates that truck superload (Case 2) is the controlling factor. When total calculated thickness is not followed by asterisk, surge pressure (Case 1) is the controlting factor. See When tota

TABLE 1-2
Schedule of Barrel Thickness for Water Pipe of 21/45 Iron Strength

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Laying Condition} \& \multirow{3}{*}{Depth of Cover fi} \& \multirow{3}{*}{Thickness Specifications} \& \multicolumn{7}{|c|}{Internal Pressure-psi} <br>
\hline \& \& \& 50 \& 100 \& 150 \& 200 \& 250 \& 300 \& 350 <br>
\hline \& \& \& \multicolumn{7}{|c|}{Barrel Thickness-in.} <br>
\hline \multicolumn{10}{|c|}{Three-Inch Water Pipe} <br>
\hline \multirow{6}{*}{A} \& 2\} \& Calculated Thickness
$$
\text { Use }\left\{\begin{array}{l}
\text { Thickness Class } \\
\text { Thickness }
\end{array}\right.
$$ \& $$
\begin{aligned}
& 0.20^{*} \\
& 22.32
\end{aligned}
$$ \& $$
\begin{gathered}
0.20^{*} \\
22 \\
0.32
\end{gathered}
$$ \& $$
\begin{aligned}
& 0.20^{*} \\
& 22.32
\end{aligned}
$$ \& $$
\begin{aligned}
& 0.20^{*} \\
& 22 \\
& 0.32
\end{aligned}
$$ \& $0.21 *$
22
0.32 \& $$
\begin{gathered}
0.21^{*} \\
22 \\
0.32
\end{gathered}
$$ \& $$
\begin{aligned}
& 0.21 \\
& 22 \\
& 0.32
\end{aligned}
$$ <br>
\hline \& 37 \& Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ \& 0.20 22
2.
0.32 \& 0.20

22

0.32 \& $$
\begin{aligned}
& 0.20^{*} \\
& 22 \\
& 0.32
\end{aligned}
$$ \& 0.21 *

0.32

0.3 \& $$
\begin{gathered}
0.21^{*} \\
22 \\
0.32
\end{gathered}
$$ \& \[

$$
\begin{gathered}
0.22^{*} \\
22 \\
0.32
\end{gathered}
$$
\] \& 0.22

0.32 <br>

\hline \& 5 \& Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ \& \[
$$
\begin{aligned}
& 0.21 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
0.21 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 0.21 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.22 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
0.22 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 0.23 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
0.23 \\
22 \\
0.32
\end{array}
$$
\] <br>

\hline \& 8 \& Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ \& \[
$$
\begin{array}{r}
0.22 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.23 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.23 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.23 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 0.24 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
0.24 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.25 \\
22 \\
0.32
\end{array}
$$
\] <br>

\hline \& 12 \& Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ \& \[
$$
\begin{array}{r}
0.24 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 0.25 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
0.25 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 0.25 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.26 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
0.26 \\
22 \\
0.32
\end{array}
$$
\] \& 0.26

22
0.32 <br>

\hline \& 16 \& Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ \& \[
$$
\begin{aligned}
& 0.26 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.26 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.27 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
0.27 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 0.27 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.28 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
0.28 \\
22 \\
0.32
\end{array}
$$
\] <br>

\hline \multirow{6}{*}{B} \& 2 ${ }^{1}$ \& Calculated Thickness

$$
\text { Use }\left\{\begin{array}{l}
\text { Thickness Class } \\
\text { Thickness }
\end{array}\right.
$$ \& \[

$$
\begin{aligned}
& 0.19 * \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0.20^{*} \\
22 \\
0.32
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0.20^{*} \\
22 \\
0.32
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0.20^{*} \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.21 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
0.22 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.22 \\
22 \\
0.32
\end{array}
$$
\] <br>

\hline \& 3年 \& Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ \& \[
$$
\begin{gathered}
0.19 * \\
22 \\
0.32
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0.20^{*} \\
22 \\
0.32
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
0.20 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.21 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.21 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 0.22 \\
& 22 \\
& 0.32
\end{aligned}
$$
\] \& 0.22

22
0.32 <br>

\hline \& 5 \& Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ \& \[
$$
\begin{array}{r}
0.21 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.21 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.21 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 0.21 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.22 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.22 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.23 \\
& 22 \\
& 0.32
\end{aligned}
$$
\] <br>

\hline \& 8 \& Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ \& \[
$$
\begin{array}{r}
0.22 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 0.22 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
0.22 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 0.23 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
0.23 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 0.24 \\
& 22 \\
& 0.32
\end{aligned}
$$
\] \& 0.24

22
0.32 <br>
\hline \& 12 \& Calculated Thickness

$$
\text { Use }\left\{\begin{array}{l}
\text { Thickness Class } \\
\text { Thickness }
\end{array}\right.
$$ \& \[

$$
\begin{array}{r}
0.24 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.24 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.24 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.25 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.25 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.25 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.26 \\
22 \\
0.32
\end{array}
$$
\] <br>

\hline \& 16 \& Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ \& \[
$$
\begin{array}{r}
0.25 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.26 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.26 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.26 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.27 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.27 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.27 \\
22 \\
0.32
\end{array}
$$
\] <br>

\hline \multirow{6}{*}{F} \& 21 \& Calculated Thickness

$$
\text { Use }\left\{\begin{array}{l}
\text { Thickness Class } \\
\text { Thickness }
\end{array}\right.
$$ \& \[

$$
\begin{gathered}
0.19^{*} \\
22 \\
0.32
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0.19 * \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
0.19 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.20 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.20 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.21 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.22 \\
22 \\
0.32
\end{array}
$$
\] <br>

\hline \& 3 ${ }^{2}$ \& Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ \& \[
$$
\begin{aligned}
& 0.19 * \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
0.19 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.19 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.20 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.20 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.21 \\
22 \\
0.32
\end{array}
$$
\] \& 0.22

22
0.32 <br>

\hline \& 5 \& Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ \& \[
$$
\begin{array}{r}
0.19 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.20 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.20 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 0.21 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
0.21 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.22 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.22 \\
22 \\
0.32
\end{array}
$$
\] <br>

\hline \& 8 \& Calculated Thickness

$$
\text { Use }\left\{\begin{array}{l}
\text { Thickness Class } \\
\text { Thickness }
\end{array}\right.
$$ \& \[

$$
\begin{aligned}
& 0.21 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.21 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
0.21 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.22 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.22 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.23 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.23 \\
22 \\
0.32
\end{array}
$$
\] <br>

\hline \& 12 \& Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ \& \[
$$
\begin{aligned}
& 0.22 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
0.22 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.23 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.23 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 0.24 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.24 \\
& 22 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
0.25 \\
22 \\
0.32
\end{array}
$$
\] <br>

\hline \& 16 \& $$
\begin{aligned}
& \text { Calculated Thickness } \\
& \text { Use }\left\{\begin{array}{l}
\text { Thickness Class } \\
\text { Thickness }
\end{array}\right.
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
0.24 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.24 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.24 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.25 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.25 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.25 \\
22 \\
0.32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.26 \\
22 \\
0.32
\end{array}
$$
\] <br>

\hline hen total c. 1-2.1 \& $k$ follo alculat \& tal calculated thickness ckness is not followed by \& ates th risk, su \& | truck |
| :--- |
| pre | \& | perloa |
| :--- |
| (Ca | \& | Case |
| :--- |
| 1) is | \& the cont \& trollir

ing fa \& | factor |
| :--- |
| or. | <br>

\hline
\end{tabular}

TABLE 1-2 (Continued)
Schedule of Barrel Thickness for Water Pipe of 21/45 Iron Strength

|  | Laying |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Condi- <br> tion | Depth <br> of <br> ofer <br> $f t$ | Thickness Specifications | 50 | 100 | 150 | 200 | 250 | 300 | 350 |


| Four-Inch Water Pipe |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 2\% | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 0.22^{*} \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.23^{*} \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.23^{*} \\ & 2.35 \\ & 0.35 \end{aligned}$ | $0.24 *$ 22 0.35 | $\begin{aligned} & 0.24 * \\ & 22 \\ & 0.35 \end{aligned}$ | $0.25 *$ 22 0.35 | 0.25* 22 0.35 |
|  | $3{ }^{\text {a }}$ | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.22 * \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.22^{*} \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.23 * \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.23 * \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{array}{r} 0.24 \\ 22 \\ 0.35 \end{array}$ | 0.25 22 0.35 | 0.26 22 0.35 |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.23^{*} \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.23^{*} \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.24^{*} \\ & 2 . \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.24^{*} \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.25 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.26 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.26 \\ & 22 \\ & 0.35 \end{aligned}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.25 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.26 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.26 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{array}{r} 0.27 \\ 0.32 \\ 0.35 \end{array}$ | $\begin{aligned} & 0.27 \\ & 0.32 \end{aligned}$ | $\begin{array}{r} 0.28 \\ 22 \\ 0.35 \end{array}$ | 0.28 22 0.35 |
|  | 12 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & 0.28 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.28 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{array}{r} 0.29 \\ 0.35 \\ 0.29 \end{array}$ | $\begin{gathered} 0.29 \\ 0.35 \end{gathered}$ | $\begin{aligned} & 0.29 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{array}{r} 0.30 \\ 22 \\ 0.35 \end{array}$ | 0.31 22 0.35 |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.30 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.31 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.31 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 22 \\ & 0.35 \end{aligned}$ | 0.32 22 0.35 | $\begin{aligned} & 0.33 \\ & 22 \\ & 0.35 \end{aligned}$ |
| B | $2{ }^{4}$ | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.22 * \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.22 * \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.23 * \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.23 * \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.24 * \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.24 * \\ & 22 \\ & 0.35 \end{aligned}$ | 0.24 22 0.35 |
|  | 3) | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.22 * \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.22 * \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.22 * \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.23 * \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.24 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.24 \\ & 2.22 \\ & 0.35 \end{aligned}$ | 0.25 22 0.35 |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 0.22 \\ 22 \\ 0.35 \end{array}$ | $\begin{aligned} & 0.23 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.23 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.24 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{array}{r} 0.25 \\ 22 \\ 0.35 \end{array}$ | $\begin{aligned} & 0.25 \\ & 22 \\ & 0.35 \end{aligned}$ | 0.26 22 0.35 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.25 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.25 \\ & 0.22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.25 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.26 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.27 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.28 \\ & 22 \\ & 0.35 \end{aligned}$ | 0.28 22 0.35 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.27 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.27 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.28 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.28 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.29 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.29 \\ & .22 \\ & 0.35 \end{aligned}$ | 0.30 0.32 0.35 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.29 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.29 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{array}{r} 0.31 \\ 22 \\ 0.35 \end{array}$ | $\begin{aligned} & 0.31 \\ & 22 \\ & 0.35 \end{aligned}$ | 0.32 0.32 0.35 |
| F | 24 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.21^{*} \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.21^{*} \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.21^{*} \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.22 * \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{array}{r} 0.23 \\ 22 \\ 0.35 \end{array}$ | $\begin{aligned} & 0.24 \\ & 0.32 \\ & 0.55 \end{aligned}$ | 0.25 0.22 0.35 |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.20^{*} \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.21 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{array}{r} 0.21 \\ 22 \\ 0.35 \end{array}$ | $\begin{aligned} & 0.22 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{array}{r} 0.23 \\ 22 \\ 0.35 \end{array}$ | $\begin{array}{r} 0.24 \\ 22 \\ 0.35 \end{array}$ | 0.25 .22 0.35 |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.21 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.22 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.22 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{array}{r} 0.23 \\ 22 \\ 0.35 \end{array}$ | $\begin{aligned} & 0.24 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.25 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.25 \\ & 22 \\ & 0.35 \end{aligned}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 0.23 \\ 22 \\ 0.35 \end{array}$ | $\begin{aligned} & 0.24 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.24 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.25 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.25 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.26 \\ & 22 \\ & 0.35 \end{aligned}$ | 0.27 0.32 0.35 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.25 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.26 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.26 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.27 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.27 \\ & 0.35 \\ & 0.35 \end{aligned}$ | $\begin{array}{r} 0.28 \\ 22 \\ 0.35 \end{array}$ | 0.28 0.22 0.35 |
|  | 16 | Calculates Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.27 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.27 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.28 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.28 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{gathered} 0.29 \\ 22 \\ 0.35 \end{gathered}$ | $\begin{aligned} & 0.29 \\ & 22 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 22 \\ & 0.35 \end{aligned}$ |

* Asterisk following total calculated thickness indicates that truck supperload (Case 2) is the controlling factor When total calculated thickness is not followed by asterisk, surge pressure (Case 1) is the controlling factor. See Sec .1-2.1.

TABLE 1-2 (Continued)
Schedule of Barrel Thickness for Water Pipe of 21/45 Iron Strength

| Laying <br> Condi- <br> tion | Depth <br> of <br> Cover <br> $f t$ | Thickness Specifications | -50 | 100 | 150 | 200 | 250 | 300 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$| 350$


| Six-Inch Water Pipe |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.28^{*} \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.28 * \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.29 * \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.30^{*} \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.30^{*} \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.31 * \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.32^{*} \\ & 21 \\ & 0.35 \end{aligned}$ |
|  | $3{ }^{3}$ | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.27^{*} \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.27^{*} \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.28^{*} \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.29 * \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.29 * \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.30^{*} \\ & 21 \\ & 0.35 \end{aligned}$ | 0.32 0.31 0.35 |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.28 * \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.28 * \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{gathered} 0.29 \\ 0.35 \end{gathered}$ | $\begin{aligned} & 0.30 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.31 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 21 \\ & 0.35 \end{aligned}$ | 0.33 0.31 0.35 |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.31 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.31 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.33 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.34 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.35 \\ & 21 \\ & 0.35 \end{aligned}$ | 0.36 0.31 0.35 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.34 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.35 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.36 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.36 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.37 \\ & 22 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.38 \\ & 22 \\ & 0.38 \end{aligned}$ | 0.39 0.22 0.38 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.38 \\ & 22 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.38 \\ & 22 \\ & 0.38 \end{aligned}$ | $\begin{array}{r} 0.39 \\ 22 \\ 0.38 \end{array}$ | $\begin{aligned} & 0.39 \\ & 22 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.40 \\ & 23 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.41 \\ & 23 \\ & 0.41 \end{aligned}$ | $\begin{gathered} 0.42 \\ 23 \\ 0.41 \end{gathered}$ |
| B | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.27^{*} \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.27 * \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.28^{*} \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.29 * \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.29 * \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.30 * \\ & 21 \\ & 0.35 \end{aligned}$ | 0.31* 21 0.35 |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.26^{*} \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.27 * \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.27 * \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.28^{*} \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.29 * \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 21 \\ & 0.35 \end{aligned}$ | 0.31 21 0.35 |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.27 * \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.27 * \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.28^{*} \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.29 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.31 \\ & 21 \\ & 0.35 \end{aligned}$ | 0.32 21 0.35 |
|  | 8 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.31 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.33 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.34 \\ & 21 \\ & 0.35 \end{aligned}$ | 0.35 0.31 0.35 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 0.33 \\ 21 \\ 0.35 \end{array}$ | $\begin{aligned} & 0.34 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.34 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.35 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.36 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.37 \\ & 22 \\ & 0.38 \end{aligned}$ | 0.38 2.38 0.38 |
|  | 16 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & 0.36 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.37 \\ & 0.32 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.37 \\ & 2.32 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.38 \\ & 2.38 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.39 \\ & 0.22 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.39 \\ & 0.32 \\ & 0.38 \end{aligned}$ | $\begin{array}{r} 0.40 \\ 23 \\ 0.41 \end{array}$ |
| F | 24 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.25^{*} \\ & 0.31 \end{aligned}$ | $\begin{aligned} & 0.26^{*} \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.26^{*} \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.27^{*} \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.28 * \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.29 * \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 21 \\ & 0.35 \end{aligned}$ |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.24^{*} \\ & 2.31 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.25 * \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.25 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.26 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.28 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.29 \\ & 21 \\ & 0.35 \end{aligned}$ | 0.31 21 0.35 |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.25 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.26 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.27 \\ & 2.35 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.28 \\ & 2.31 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.29 \\ & 2.35 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 21 \\ & 0.35 \end{aligned}$ | 0.31 2.31 0.35 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.28 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.28 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{array}{r} 0.29 \\ 21 \\ 0.35 \end{array}$ | $\begin{aligned} & 0.30 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.31 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.33 \\ & 21 \\ & 0.35 \end{aligned}$ |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.31 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.31 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.33 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.34 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.34 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.35 \\ & 21 \\ & 0.35 \end{aligned}$ |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.33 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.34 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.34 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.35 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.36 \\ & 21 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.37 \\ & 22 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.38 \\ & 22 \\ & 0.38 \end{aligned}$ |

* Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor. When total

TABLE 1-2 (Continued)
Schedule of Barrel Thickness for Water Pipe of 21/45 Iron Strength

| Laying Condition | Depth of Cover fb | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 50 | 100 | 150 | 200 | 250 | 300 | 350 |
|  |  |  | Barre! Thickness-in. |  |  |  |  |  |  |

Eight-Inch Water Pipe

| A | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} 0.33 * \\ 20 \\ 0.35 \end{gathered}$ | $\begin{aligned} & 0.33^{*} \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.34 * \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.35 * \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.36 * \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.37 * \\ & 21 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.38 * \\ & 21 \\ & 0.38 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 31 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.32 * \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.32 * \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.33 * \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.34 * \\ & 2.30 \end{aligned}$ | $\begin{aligned} & 0.35 * \\ & 20.35 \end{aligned}$ | $\begin{aligned} & 0.36 * \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.38 \\ & 21 \\ & 0.38 \end{aligned}$ |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.32^{*} \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.33 * \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.34 * \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{array}{r} 0.35 \\ 20 \\ 0.35 \end{array}$ | $\begin{aligned} & 0.36 \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.38 \\ & 21 \\ & 0.38 \end{aligned}$ | $\begin{array}{r} 0.39 \\ 21 \\ 0.38 \end{array}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.36 \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{array}{r} 0.37 \\ 21 \\ 0.38 \end{array}$ | $\begin{aligned} & 0.38 \\ & 21 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.39 \\ & 21 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.40 \\ & 22 \\ & 0.41 \end{aligned}$ | $\begin{array}{r} 0.41 \\ 22 \\ 0.41 \end{array}$ | $\begin{aligned} & 0.43 \\ & 23 \\ & 0.44 \end{aligned}$ |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.41 \\ & 22 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.42 \\ & 22 \\ & 0.41 \end{aligned}$ | $\begin{array}{r} 0.43 \\ 23 \\ 0.44 \end{array}$ | $\begin{array}{r} 0.44 \\ 23 \\ 0.44 \end{array}$ | $\begin{aligned} & 0.45 \\ & 23 \\ & 0.44 \end{aligned}$ | $\begin{gathered} 0.46 \\ 24 \\ 0.48 \end{gathered}$ | $\begin{aligned} & 0.47 \\ & 24 \\ & 0.48 \end{aligned}$ |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.44 \\ & 23 \\ & 0.44 \end{aligned}$ | $\begin{array}{r} 0.45 \\ 23 \\ 0.44 \end{array}$ | $\begin{array}{r} 0.46 \\ 24 \\ 0.48 \end{array}$ | $\begin{aligned} & 0.47 \\ & 24 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.47 \\ & 24 \\ & 0.48 \end{aligned}$ | $\begin{array}{r} 0.48 \\ 24 \\ 0.48 \end{array}$ | $\begin{array}{r} 0.50 \\ 25 \\ 0.52 \end{array}$ |
| B | 21 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.31^{*} \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{gathered} 0.32 * \\ 20 \\ 0.35 \end{gathered}$ | $\begin{aligned} & 0.33^{*} \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.34 * \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.35 * \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.36 * \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.37 * \\ & 21 \\ & 0.38 \end{aligned}$ |
|  | 3) | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.30^{*} \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.31^{*} \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.32^{*} \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.33^{*} \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.34 * \\ & 0.35 \end{aligned}$ | $\begin{array}{r} 0.35 \\ 20 \\ 0.35 \end{array}$ | $\begin{array}{r} 0.37 \\ 21 \\ 0.38 \end{array}$ |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.31 * \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.32 * \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.33 \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.34 \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.35 \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{array}{r} 0.37 \\ 21 \\ 0.38 \end{array}$ | $\begin{aligned} & 0.38 \\ & 21 \\ & 0.38 \end{aligned}$ |
|  | 8 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $\begin{array}{r} 0.35 \\ 20 \\ 0.35 \end{array}$ | $\begin{aligned} & 0.35 \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.36 \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.37 \\ & 21 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.39 \\ & 21 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.40 \\ & 22 \\ & 0.41 \end{aligned}$ | $\begin{array}{r} 0.41 \\ 22 \\ 0.41 \end{array}$ |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 0.39 \\ 21 \\ 0.38 \end{array}$ | $\begin{aligned} & 0.40 \\ & 22 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & \hline 0.41 \\ & 22 \\ & 0.41 \end{aligned}$ | $\begin{array}{r} 0.42 \\ 22 \\ 0.41 \end{array}$ | $\begin{aligned} & 0.43 \\ & 23 \\ & 0.44 \end{aligned}$ | $\begin{array}{r} 0.44 \\ 23 \\ 0.44 \end{array}$ | $\begin{aligned} & 0.45 \\ & 23 \\ & 0.44 \end{aligned}$ |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 0.42 \\ 22 \\ 0.41 \end{array}$ | $\begin{aligned} & 0.43 \\ & 23 \\ & 0.44 \end{aligned}$ | $\begin{array}{r} 0.44 \\ 23 \\ 0.44 \end{array}$ | $\begin{aligned} & 0.44 \\ & 23 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 23 \\ & 0.44 \end{aligned}$ | $\begin{array}{r} 0.46 \\ 24 \\ 0.48 \end{array}$ | $\begin{array}{r} 0.48 \\ 24 \\ 0.48 \end{array}$ |
| F | 2\% | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} 0.29 * \\ 20 \\ 0.35 \end{gathered}$ | $\begin{aligned} & 0.30 * \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.30 * \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.31 * \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.32 * \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{array}{r} 0.34 \\ 20 \\ 0.35 \end{array}$ | $\begin{aligned} & 0.36 \\ & 20 \\ & 0.35 \end{aligned}$ |
|  | 3 f | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & 0.28 * \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.29 * \\ & 0.35 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.30^{*} \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.31 * \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{array}{r} 0.33 \\ 20 \\ 0.35 \end{array}$ | $\begin{array}{r} 0.35 \\ 20 \\ 0.35 \end{array}$ | $\begin{aligned} & 0.36 \\ & 20 \\ & 0.35 \end{aligned}$ |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.29 * \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.31 \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.34 \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.36 \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{array}{r} 0.37 \\ 21 \\ 0.38 \end{array}$ |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.32 \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.33 \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{array}{r} 0.34 \\ 20 \\ 0.35 \end{array}$ | $\begin{aligned} & 0.35 \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.36 \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{array}{r} 0.38 \\ 21 \\ 0.38 \end{array}$ | $\begin{array}{r} 0.39 \\ 21 \\ 0.38 \end{array}$ |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.36 \\ & 20 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.37 \\ & 21 \\ & 0.38 \end{aligned}$ | $\begin{gathered} 0.38 \\ 21 \\ 0.38 \end{gathered}$ | $\begin{aligned} & 0.39 \\ & 21 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.40 \\ & 22 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.41 \\ & 22 \\ & 0.41 \end{aligned}$ | $\begin{array}{r} 0.42 \\ 22 \\ 0.41 \end{array}$ |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.38 \\ & 21 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.39 \\ & 21 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.40 \\ & 22 \\ & 2.41 \end{aligned}$ | $\begin{aligned} & 0.41 \\ & 22 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.42 \\ & 22 \\ & 0.41 \end{aligned}$ | $\begin{array}{r} 0.43 \\ 23 \\ 0.44 \end{array}$ | $\begin{array}{r} 0.44 \\ 23 \\ 0.44 \end{array}$ |

* Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor When total calculated thickness is not followed by asterisk, surge pressute (Case 1) is the controlling factor. See Sec. 1-2.1.

TABLE 1-2 (Continued)
Schedule of Barrel Thickness for Water Pipe of 21/45 Iron Strength

| Laying | Depth <br> Condi- <br> of <br> tion <br> fl | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Ten-Inch Water Pipe

| A | 23 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.38 * \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.39 * \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.40^{*} \\ & 21 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.41 * \\ & 21 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.42^{*} \\ & 21 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.44^{*} \\ & 22 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.45 * \\ & 22 \\ & 0.44 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3) | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.37 * \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.38 * \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.39 * \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.40^{*} \\ & 21 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.41^{*} \\ & 2.41 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.43 * \\ & 22 \\ & 0.44 \end{aligned}$ | 0.44 22 0.44 |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.38 * \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{gathered} 0.39 * \\ 20 \\ 0.38 \end{gathered}$ | $\begin{aligned} & 0.40^{*} \\ & 21 \\ & 0.41 \end{aligned}$ | $\begin{gathered} 0.41 \\ 21 \\ 0.41 \end{gathered}$ | $\begin{aligned} & 0.43 \\ & 22 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.44 \\ & 22 \\ & 0.44 \end{aligned}$ | $\begin{array}{r} 0.46 \\ 23 \\ 0.48 \end{array}$ |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.42 \\ & 21 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.44 \\ & 22 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 22 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.46 \\ & 23 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.47 \\ & 23 \\ & 0.48 \end{aligned}$ | $\begin{array}{r} 0.49 \\ 23 \\ 0.48 \end{array}$ | 0.51 24 0.52 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 0.48 \\ 23 \\ 0.48 \end{array}$ | $\begin{aligned} & 0.49 \\ & 23 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 24 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.51 \\ & 24 \\ & 0.52 \end{aligned}$ | $\begin{array}{r} 0.53 \\ 24 \\ 0.52 \end{array}$ | $\begin{aligned} & 0.54 \\ & 25 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 25 \\ & 0.56 \end{aligned}$ |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 0.51 \\ 24 \\ 0.52 \\ c \end{array}$ | $\begin{aligned} & 0.52 \\ & 24 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.53 \\ & 24 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.54 \\ & 25 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.55 \\ & 25 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 25 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.58 \\ & 26 \\ & 0.60 \end{aligned}$ |
| B | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.36 * \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.37 * \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.38 * \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.39 * \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.41^{*} \\ & 2.41 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.42 * \\ & 21 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.44^{*} \\ & 22 \\ & 0.44 \end{aligned}$ |
|  | 33 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.35 * \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.36 * \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.37 * \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.39 * \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.40^{*} \\ & 21 \\ & 0.41 \end{aligned}$ | $\begin{array}{r} 0.41 \\ 21 \\ 0.41 \end{array}$ | $\begin{array}{r} 0.44 \\ 22 \\ 0.44 \end{array}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.36 * \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.37 * \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{gathered} 0.38 * \\ 20 \\ 0.38 \end{gathered}$ | $\begin{aligned} & 0.40 \\ & 21 \\ & 0.41 \end{aligned}$ | $\begin{array}{r} 0.41 \\ 21 \\ 0.41 \end{array}$ | $\begin{array}{r} 0.43 \\ 22 \\ 0.44 \end{array}$ | $\begin{array}{r} 0.46 \\ 23 \\ 0.48 \end{array}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 0.40 \\ 21 \\ 0.41 \end{array}$ | $\begin{aligned} & 0.42 \\ & 21 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.43 \\ & 22 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.44 \\ & 22 \\ & 0.44 \end{aligned}$ | $\begin{array}{r} 0.46 \\ 23 \\ 0.48 \end{array}$ | $\begin{array}{r} 0.47 \\ 23 \\ 0.48 \end{array}$ | $\begin{array}{r} 0.49 \\ 23 \\ 0.48 \end{array}$ |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 0.46 \\ 23 \\ 0.48 \end{array}$ | $\begin{array}{r} 0.47 \\ 23 \\ 0.48 \end{array}$ | $\begin{array}{r} 0.48 \\ 23 \\ 0.48 \end{array}$ | $\begin{aligned} & 0.49 \\ & 23 \\ & 0.48 \end{aligned}$ | $\begin{array}{r} 0.50 \\ 24 \\ 0.52 \end{array}$ | $\begin{aligned} & 0.52 \\ & 24 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.53 \\ & 24 \\ & 0.52 \end{aligned}$ |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.48 \\ & 23 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.49 \\ & 23 \\ & 0.48 \end{aligned}$ | $\begin{array}{r} 0.50 \\ 24 \\ 0.52 \end{array}$ | $\begin{aligned} & 0.51 \\ & 24 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 24 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.54 \\ & 25 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.55 \\ & 25 \\ & 0.56 \end{aligned}$ |
| F | 23 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.33^{*} \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.34^{*} \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.35 * \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.37 * \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.38 * \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{array}{r} 0.40 \\ 21 \\ 0.41 \end{array}$ | $\begin{array}{r} 0.43 \\ 0.42 \\ 0.44 \end{array}$ |
|  | 3\% | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.33^{*} \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.33 * \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.35 * \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.36 * \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.38 \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{array}{r} 0.40 \\ 21 \\ 0.41 \end{array}$ | $\begin{aligned} & 0.43 \\ & 22 \\ & 0.44 \end{aligned}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.33 * \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.34 \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.36 \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.38 \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.40 \\ & 21 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.42 \\ & 21 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.37 \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.38 \\ & 20 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.40 \\ & 21 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.41 \\ & 21 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.43 \\ & 0.44 \\ & 0.42 \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 22 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.47 \\ & 23 \\ & 0.48 \end{aligned}$ |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.42 \\ & 21 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.43 \\ & 22 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.44 \\ & 22 \\ & 0.44 \end{aligned}$ | $\begin{array}{r} 0.45 \\ 22 \\ 0.44 \end{array}$ | $\begin{aligned} & 0.47 \\ & 23 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.48 \\ & 23 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 24 \\ & 0.52 \end{aligned}$ |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.44 \\ & 22 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 22 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.46 \\ & 238 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.47 \\ & 23 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.48 \\ & 23 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 24 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 24 \\ & 0.52 \end{aligned}$ |

* Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor, When total calculated thickness is not followed by asterisk, surge pressure (Case 1 ) is the controlling factor. See Sec. 1-2.1.

TABLE 1-2 (Continued)
Schedule of Barrel Thickness for Water Pipe of 21/45 Iron Strength

| Laying Condi tion | Depth of Cover ft | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 50 | 100 | 150 | 200 | 250 | 300 | 350 |
|  |  |  | Barrel Thickness-in. |  |  |  |  |  |  |

Twelve-Inch Water Pipe

| A | $2{ }^{2}$ | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.43^{*} \\ & 21 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.44^{*} \\ & 21 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.45 * \\ & 21 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.47 * \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.48 * \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.49 * \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.51^{*} \\ & 0.52 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3需 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.42 * \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.43^{*} \\ & 21 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.44^{*} \\ & 21 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.45 * \\ & 21 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.47 * \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.48 * \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.50^{*} \\ & 23 \\ & 0.52 \end{aligned}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.43^{*} \\ & 21 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.44^{*} \\ & 21 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.45^{*} \\ & 21 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.46^{*} \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{gathered} 0.48 \\ 22 \\ 0.48 \end{gathered}$ | $\begin{aligned} & 0.50 \\ & 23 \\ & 0.52 \end{aligned}$ | $\begin{array}{r} 0.52 \\ 23 \\ 0.52 \end{array}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.48 \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.49 \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 23 \\ & 0.52 \end{aligned}$ | $\begin{array}{r} 0.52 \\ 23 \\ 0.52 \end{array}$ | $\begin{aligned} & 0.54 \\ & 24 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.55 \\ & 24 \\ & 0.56 \end{aligned}$ | $\begin{array}{r} 0.57 \\ 24 \\ 0.56 \end{array}$ |
|  | 12 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & 0.53 \\ & 23 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.54 \\ & 24 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 24 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.57 \\ & 24 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.58 \\ & 2.5 \\ & 0.60 \end{aligned}$ | $\begin{aligned} & 0.60 \\ & 25 \\ & 0.60 \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 25 \\ & 0.60 \end{aligned}$ |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.56 \\ & 24 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.57 \\ & 24 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.58 \\ & 25 \\ & 0.60 \end{aligned}$ | $\begin{aligned} & 0.60 \\ & 25 \\ & 0.60 \end{aligned}$ | $\begin{array}{r} 0.61 \\ 25 \\ 0.60 \end{array}$ | $\begin{array}{r} 0.63 \\ 26 \\ 0.65 \end{array}$ | $\begin{aligned} & 0.64 \\ & 26 \\ & 0.65 \end{aligned}$ |
| B | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.41^{*} \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.42 * \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.43^{*} \\ & 21 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.44^{*} \\ & 21 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.46 * \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.47 * \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.49^{*} \\ & 22 \\ & 0.48 \end{aligned}$ |
|  | 3) | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \text { Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.39 * \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.40^{*} \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.42^{*} \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.43 * \\ & 21 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.45^{*} \\ & 21 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.46^{*} \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.49 \\ & 22 \\ & 0.48 \end{aligned}$ |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.40^{*} \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.41^{*} \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.42^{*} \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.44 * \\ & 21 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.46 \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.48 \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.51 \\ & 23 \\ & 0.52 \end{aligned}$ |
|  | 8 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 21 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.46 \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.48 \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.49 \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.51 \\ & 23 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.53 \\ & 23 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.55 \\ & 24 \\ & 0.56 \end{aligned}$ |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.50 \\ & 23 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.51 \\ & 23 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 23 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.54 \\ & 24 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 24 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.57 \\ & 24 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.59 \\ & 25 \\ & 0.60 \end{aligned}$ |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.52 \\ & 23 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.54 \\ & 24 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.55 \\ & 24 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 24 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.58 \\ & 25 \\ & 0.60 \end{aligned}$ | $\begin{aligned} & 0.60 \\ & 25 \\ & 0.60 \end{aligned}$ | $\begin{aligned} & 0.61 \\ & 25 \\ & 0.60 \end{aligned}$ |
| F | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.37 * \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.38 * \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.39^{*} \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.41^{*} \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.42 * \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.44 * \\ & 21 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.48 \\ & 22 \\ & 0.48 \end{aligned}$ |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{gathered} 0.36 * \\ 20 \\ 0.41 \end{gathered}$ | $\begin{aligned} & 0.37 * \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.38 * \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.40^{*} \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.42 \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 21 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.48 \\ & 22 \\ & 0.48 \end{aligned}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.37 * \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.38 * \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.39 * \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.42 \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.44 \\ & 21 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.47 \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.49 \\ & 22 \\ & 0.48 \end{aligned}$ |
|  | 8 | Calculated Tjickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.41 \\ & 20 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.43 \\ & 21 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.44 \\ & 21 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.46 \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.48 \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 23 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.53 \\ & 23 \\ & 0.52 \end{aligned}$ |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.45 \\ & 21 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.47 \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{array}{r} 0.48 \\ 22 \\ 0.48 \end{array}$ | $\begin{aligned} & 0.50 \\ & 23 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 23 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.54 \\ & 24 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 24 \\ & 0.56 \end{aligned}$ |
|  | 16 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & 0.48 \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.49 \\ & 22 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 23 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 23 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.54 \\ & 24 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.55 \\ & 24 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.57 \\ & 24 \\ & 0.56 \end{aligned}$ |

* Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor. When total calculated thickness is not followed by asterisk, surge pressure (Case 1) is the controlling factor. See
fec. 1-2.1.

TABLE 1-2 (Continued)
Schedule of Barrel Thickness for Water Pipe of 21/45 Iron Strength

| Laying Condition | Depth of Cover $f t$ | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 50 | 100 | 150 | 200 | 250 | 300 | 350 |
|  |  |  | Barrel Thickness-in. |  |  |  |  |  |  |


| A | 2k | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.48 * \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.50^{*} \\ & 22 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 0.51^{*} \\ & 22 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 0.53 * \\ & 23 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.54 * \\ & 23 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.56 * \\ & 23 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.58 * \\ & 24 \\ & 0.59 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3年 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.47 * \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.49 * \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.50^{*} \\ & 22 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 0.52 * \\ & 22 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 0.53 * \\ & 23 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.55 * \\ & 23 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.58 \\ & 24 \\ & 0.59 \end{aligned}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.49 * \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.51^{*} \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.52 * \\ & 22 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 0.53 * \\ & 23 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.55 * \\ & 23 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.58 \\ & 24 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.60 \\ & 24 \\ & 0.59 \end{aligned}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 0.55 \\ 23 \\ 0.55 \end{array}$ | $\begin{aligned} & 0.56 \\ & 23 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.58 \\ & 24 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.60 \\ & 24 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 25 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 0.64 \\ & 25 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 25 \\ & 0.64 \end{aligned}$ |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 0.60 \\ 24 \\ 0.59 \end{array}$ | $\begin{array}{r} 0.61 \\ 24 \\ 0.59 \end{array}$ | $\begin{aligned} & 0.63 \\ & 25 \\ & 0.64 \end{aligned}$ | $\begin{array}{r} 0.65 \\ 25 \\ 0.64 \end{array}$ | $\begin{aligned} & 0.67 \\ & 26 \\ & 0.69 \end{aligned}$ | $\begin{aligned} & 0.68 \\ & 26 \\ & 0.69 \end{aligned}$ | $\begin{aligned} & 0.71 \\ & 26 \\ & 0.69 \end{aligned}$ |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.63 \\ & 25 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 25 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 25 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 0.68 \\ & 26 \\ & 0.69 \end{aligned}$ | $\begin{aligned} & 0.69 \\ & 26 \\ & 0.69 \end{aligned}$ | $\begin{aligned} & 0.71 \\ & 26 \\ & 0.69 \end{aligned}$ | $\begin{aligned} & 0.73 \\ & 0.77 \end{aligned}$ |
| B | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.45 * \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.47 * \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.48 * \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.50 * \\ & 0.51 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 0.51 * \\ & 22 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 0.53 * \\ & 23 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.56 * \\ & 23 \\ & 0.55 \end{aligned}$ |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.44^{*} \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.46 * \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.47 * \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.49 * \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.51 * \\ & 0.51 \\ & 0.51 \end{aligned}$ | $\begin{array}{r} 0.53 \\ 23 \\ 0.55 \end{array}$ | $\begin{array}{r} 0.57 \\ 24 \\ 0.59 \end{array}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.46^{*} \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.47 * \\ & 0.48 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.49 * \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 22 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 0.53 \\ & 23 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 23 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.59 \\ & 24 \\ & 0.59 \end{aligned}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.52 \\ & 22 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 0.53 \\ & 23 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.55 \\ & 23 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.57 \\ & 24 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.59 \\ & 24 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.61 \\ & 24 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.64 \\ & 25 \\ & 0.64 \end{aligned}$ |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.56 \\ & 23 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.57 \\ & 24 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.59 \\ & 24 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.61 \\ & 24 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 25 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 25 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 0.67 \\ & 26 \\ & 0.69 \end{aligned}$ |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.59 \\ & 24 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.60 \\ & 24 \\ & 0.59 \end{aligned}$ | $\begin{array}{r} 0.62 \\ 25 \\ 0.64 \end{array}$ | $\begin{aligned} & 0.64 \\ & 25 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 25 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 0.67 \\ & 26 \\ & 0.69 \end{aligned}$ | $\begin{aligned} & 0.70 \\ & 0.66 \\ & 0.69 \end{aligned}$ |
| F | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.42 * \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.43^{*} \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.44^{*} \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.46 * \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.48^{*} \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.51 \\ & 22 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 0.55 \\ & 23 \\ & 0.55 \end{aligned}$ |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.41 * \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.42^{*} \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.44 * \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.45 * \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{array}{r} 0.48 \\ 21 \\ 0.48 \end{array}$ | $\begin{aligned} & 0.52 \\ & 2.22 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 23 \\ & 0.55 \end{aligned}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.42 * \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.43 * \\ & 2.48 \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.48 \\ & 21 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.51 \\ & 22 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 0.54 \\ & 23 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.57 \\ & 0.54 \\ & 0.59 \end{aligned}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 0.47 \\ 21 \\ 0.48 \end{array}$ | $\begin{array}{r} 0.49 \\ 21 \\ 0.48 \end{array}$ | $\begin{aligned} & 0.51 \\ & 22 \\ & 0.51 \end{aligned}$ | $\begin{array}{r} 0.53 \\ 23 \\ 0.55 \end{array}$ | $\begin{array}{r} 0.55 \\ 23 \\ 0.55 \end{array}$ | $\begin{array}{r} 0.58 \\ 24 \\ 0.59 \end{array}$ | $\begin{aligned} & 0.61 \\ & 24 \\ & 0.59 \end{aligned}$ |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.51 \\ & 22 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 0.53 \\ & 23 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.54 \\ & 23 \\ & 0.55 \end{aligned}$ | $\begin{array}{r} 0.56 \\ 23 \\ 0.55 \end{array}$ | $\begin{aligned} & 0.59 \\ & 24 \\ & 0.59 \end{aligned}$ | $\begin{array}{r} 0.61 \\ 24 \\ 0.59 \end{array}$ | $\begin{array}{r} 0.63 \\ 25 \\ 0.64 \end{array}$ |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.54 \\ & 23 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.55 \\ & 23 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.57 \\ & 24 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.59 \\ & 24 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.61 \\ & 24 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 0.64 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 25 \\ & 0.64 \end{aligned}$ |

* Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor. When total calculated thickness is not followed by asterisk, surge pressure (Case 1) is the controlling factor. See Sec. 1-2.1.

TABLE 1-2 (Continued)
Schedule of Barrel Thickness for Water Pipe of 21/45 Iron Strength

| LayingCondition | $\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { Cover } \\ & f f \end{aligned}$ | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 50 | 100 | 150 | 200 | 250 | 300 | 350 |
|  |  |  | Barrel Thickness-in. |  |  |  |  |  |  |
| Sixteen-Inch Water Pipe |  |  |  |  |  |  |  |  |  |
| A | $2\}$ | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickrress Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.52^{*} \\ & 0.54 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.53 * \\ & 0.52 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.55 * \\ & 0.52 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.57 * \\ & 0.58 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.59 * \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.61 * \\ & 24 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.63 * \\ & 24 \\ & 0.63 \end{aligned}$ |
|  | $3 \frac{1}{2}$ | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.51^{*} \\ & 2 . \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 0.53 * \\ & 0.52 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & \begin{array}{l} 0.54 * \\ 2.22 \\ 0.54 \end{array} \end{aligned}$ | $\begin{aligned} & 0.56 * \\ & 23 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.58 * \\ & 2.58 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.60 * \\ & 23 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.63 * \\ & 0.63 \\ & 0.63 \end{aligned}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.53 * \\ & 0.52 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.55 * \\ & 0.54 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.56 * \\ & 0.58 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.58 * \\ & 0.53 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.60 * \\ & 23 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 0.64 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 0.65 \\ & 0.88 \end{aligned}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.59 \\ & 0.53 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.61 \\ & 0.64 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 0.24 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.64 \\ & 0.64 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.67 \\ & 0.65 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.69 \\ & 0.25 \\ & 0.68 \end{aligned}$ | 0.72 <br> 0.86 <br> 0.73 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ <br> Thickness | $\begin{aligned} & 0.64 \\ & 0.64 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 0.65 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.68 \\ & 0.65 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.70 \\ & 0.75 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.72 \\ & 0.76 \\ & 0.72 \end{aligned}$ | $\begin{aligned} & 0.74 \\ & 0.76 \\ & 0.73 \end{aligned}$ | 0.77 0.77 0.79 |
|  | 16 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & \begin{array}{l} 0.68 \\ 0.65 \\ 0.68 \end{array} \end{aligned}$ | $\begin{aligned} & 0.70 \\ & 0.75 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.71 \\ & 0.76 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & \begin{array}{l} 0.73 \\ 0.66 \end{array} \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.75 \\ & 0.76 \\ & 0.76 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.77 \\ & 0.77 \end{aligned}$ | 0.80 0.77 0.79 |
| B | 24 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.48 * \\ & 21 \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 0.50 * \\ & 21 \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 0.51^{21} \\ & 0.50 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.53^{*} \\ & 0.52 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.55 * \\ & 22 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.58 * \\ & 23 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.60 * \\ & 23 \\ & 0.58 \end{aligned}$ |
|  | $3 \frac{1}{4}$ | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.48 * \\ & 2 . \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 0.49 * \\ & 21 \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 0.51^{*} \\ & 2.1 \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 0.53 * \\ & 0.54 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.55 * \\ & 0.52 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.57 \\ & 0.53 \\ & 0.58 \end{aligned}$ | 0.61 <br> 0.64 <br> 0.63 <br> 0.64 |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.49 * \\ & 2 . \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 0.51 * \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 0.53 * \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.54 \\ & 0.52 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.57 \\ & 0.23 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.60 \\ & 0.63 \\ & 0.58 \end{aligned}$ | 0.64 <br> 24 <br> 0.63 |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.55 \\ & 0.52 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.57 \\ & 0.53 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.59 \\ & 0.53 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.61 \\ & 0.64 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 0.64 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 25 \\ & 0.68 \end{aligned}$ | 0.69 0.65 0.68 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.60 \\ & 23 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 24 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 0.64 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 0.64 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 0.68 \\ & 0.65 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.70 \\ & 0.65 \\ & 0.68 \end{aligned}$ | 0.73 0.86 0.73 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ (Thickness | $\begin{aligned} & 0.63 \\ & 0.64 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 0.64 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.67 \\ & 0.25 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.69 \\ & 0.65 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.71 \\ & 0.76 \\ & 0.76 \end{aligned}$ | $\begin{aligned} & 0.73 \\ & 0.76 \\ & 0.73 \end{aligned}$ | 0.76 0.77 0.79 |
| F | $2{ }^{2}$ | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.44^{*} \\ & 2 . \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 0.46 * \\ & 21 \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 0.47 * \\ & 21 \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 0.49 * \\ & 21 \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 0.52 * \\ & 0.54 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.55 \\ & 0.52 \\ & 0.54 \end{aligned}$ | 0.60 <br> 0.23 <br> 0.58 <br> 0.60 |
|  | 34 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.44^{*} \\ & 0.50 \\ & 0 . \end{aligned}$ | $\begin{aligned} & 0.45 * \\ & 0.51 \\ & 0.50 \end{aligned}$ | $\begin{aligned} & \begin{array}{l} 0.47 * \\ 21 \\ 0.50 \end{array} \end{aligned}$ | $\begin{aligned} & 0.49 * \\ & 0.50 \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 0.22 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 0.53 \\ & 0.58 \end{aligned}$ | 0.60 <br> 0.63 <br> 0.58 |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.45 * \\ & 0.51 \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 0.47 * \\ & 0.50 \end{aligned}$ | $\begin{aligned} & \begin{array}{l} 0.49 \\ 0.21 \\ 0.50 \end{array} \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 0.52 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 0.22 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.58 \\ & 0.53 \\ & 0.58 \end{aligned}$ | 0.62 0.64 0.63 0.68 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.50 \\ & 21 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 0.22 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.54 \\ & 0.52 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.57 \\ & 0.53 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.59 \\ & 0.53 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 242 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 258 \\ & 0.68 \end{aligned}$ |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.55 \\ & 0.52 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 0.53 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & \begin{array}{l} 0.58 \\ 23 \\ 0.58 \end{array} \end{aligned}$ | $\begin{aligned} & 0.61 \\ & 0.64 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 0.64 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 0.65 \\ & 0.68 \end{aligned}$ | 0.69 0.65 0.68 0.7 |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.58 \\ & 23 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.59 \\ & 0.53 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.61 \\ & 0.64 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 0.64 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 255 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.68 \\ & \hline 255 \\ & 0.68 \end{aligned}$ | 0.71 0.26 0.73 |

* Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor, When total calculated thickness is not fohowed by asterisk, surge pressure (Case 1) is the controling factor. See sec. 1-2.1.

TABLE 1-2 (Continued)
Schedule of Barrel Thickness for Water Pipe of 21/45 Iron Strength

| Laying Condition | $\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { Cover } \\ & f! \end{aligned}$ | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 50 | 100 | 150 | 200 | 250 | 300 | 350 |
|  |  |  | Barrel Thickness-in. |  |  |  |  |  |  |

Eighteen-Inch Water Pipe

| A | 2d | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 0.56 * \\ & 22 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.57 * \\ & 22 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.59^{*} \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.61^{*} \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.63^{*} \\ & 23 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.66^{*} \\ & 24 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.68^{*} \\ & 24 \\ & 0.68 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3) | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.55^{*} \\ & 21 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.57 * \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.58 * \\ & 22 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.60^{*} \\ & 22 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.63 * \\ & 23 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.65 * \\ & 23 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.68 \\ & 24 \\ & 0.68 \end{aligned}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.57 * \\ & 22 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.59 * \\ & 0.52 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.61^{*} \\ & 23 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.63^{*} \\ & 23 \\ & 0.63 \end{aligned}$ | $\begin{array}{r} 0.65 \\ 23 \\ 0.63 \end{array}$ | $\begin{array}{r} 0.68 \\ 24 \\ 0.68 \end{array}$ | $\begin{aligned} & 0.72 \\ & 25 \\ & 0.73 \end{aligned}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.63^{*} \\ & 23 \\ & 0.63 \end{aligned}$ | $\begin{array}{r} 0.65 \\ 23 \\ 0.63 \end{array}$ | $\begin{array}{r} 0.67 \\ 24 \\ 0.68 \end{array}$ | $\begin{aligned} & 0.69 \\ & 24 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.72 \\ & 25 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.75 \\ & 25 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.78 \\ & 26 \\ & 0.79 \end{aligned}$ |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.69 \\ & 24 \\ & 0.68 \end{aligned}$ | $\begin{array}{r} 0.71 \\ 25 \\ 0.73 \end{array}$ | $\begin{aligned} & 0.73 \\ & 25 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.75 \\ & 25 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.78 \\ & 26 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 26 \\ & 0.79 \end{aligned}$ | $\begin{array}{r} 0.83 \\ 27 \\ 0.85 \end{array}$ |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.73 \\ & 25 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.75 \\ & 0.75 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 26 \\ & 0.79 \end{aligned}$ | $\begin{gathered} 0.79 \\ 26 \\ 0.79 \end{gathered}$ | $\begin{array}{r} 0.82 \\ 27 \\ 0.85 \end{array}$ | $\begin{aligned} & 0.84 \\ & 27 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.87 \\ & 27 \\ & 0.85 \end{aligned}$ |
| B | 23 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.51^{*} \\ & 21 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.53 * \\ & 21 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.55^{*} \\ & 21 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.57 * \\ & 22 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.59 * \\ & 22 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.62 * \\ & 23 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 23 \\ & 0.63 \end{aligned}$ |
|  | 3) | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.51 * \\ & 21 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.53^{*} \\ & 21 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.54 * \\ & 21 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.56^{*} \\ & 22 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.59 * \\ & 22 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 23 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.67 \\ & 24 \\ & 0.68 \end{aligned}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.53 * \\ & 21 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.54 * \\ & 21 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.56^{*} \\ & 22 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.59 \\ & 22 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 23 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 24 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.70 \\ & 24 \\ & 0.68 \end{aligned}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.58 \\ & 22 \\ & 0.58 \end{aligned}$ | $\begin{array}{r} 0.60 \\ 22 \\ 0.58 \end{array}$ | $\begin{array}{r} 0.62 \\ 23 \\ 0.63 \end{array}$ | $\begin{array}{r} 0.65 \\ 23 \\ 0.63 \end{array}$ | $\begin{array}{r} 0.68 \\ 24 \\ 0.68 \end{array}$ | $\begin{aligned} & 0.71 \\ & 25 \\ & 0.73 \end{aligned}$ | 0.74 25 0.73 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickneas }\end{array}\right.$ | $\begin{aligned} & 0.64 \\ & 23 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 24 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.68 \\ & 24 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.70 \\ & 24 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.73 \\ & 25 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.76 \\ & 26 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.79 \\ & 26 \\ & 0.79 \end{aligned}$ |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.68 \\ & 24 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.70 \\ & 24 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.72 \\ & 25 \\ & 0.73 \end{aligned}$ | $\begin{array}{r} 0.74 \\ 25 \\ 0.73 \end{array}$ | $\begin{aligned} & 0.76 \\ & 26 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.79 \\ & 26 \\ & 0.79 \end{aligned}$ | $\begin{gathered} 0.82 \\ 27 \\ 0.85 \end{gathered}$ |
| F | 2d | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.47 * \\ & 21 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.49 * \\ & 21 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.50 * \\ & 21 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.53 * \\ & 21 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.55 * \\ & 21 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.60 \\ & 22 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 23 \\ & 0.63 \end{aligned}$ |
|  | 31 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 0.46 * \\ & 21 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.48 * \\ & 21 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.50^{*} \\ & 21 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.52 * \\ & 21 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 22 \\ & 0.58 \end{aligned}$ | $\begin{array}{r} 0.61 \\ 23 \\ 0.63 \end{array}$ | $\begin{aligned} & 0.66 \\ & 24 \\ & 0.68 \end{aligned}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.48^{*} \\ & 21 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.50^{*} \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 21 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 22 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.59 \\ & 0.52 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 23 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.68 \\ & 24 \\ & 0.68 \end{aligned}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.54 \\ & 21 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 22 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.58 \\ & 22 \\ & 0.58 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.61 \\ & 23 \\ & 0.63 \end{aligned}$ | $\begin{array}{r} 0.64 \\ 23 \\ 0.63 \end{array}$ | $\begin{aligned} & 0.67 \\ & 24 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.71 \\ & 25 \\ & 0.73 \end{aligned}$ |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.58 \\ & 22 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.60 \\ & 22 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 23 \\ & 0.63 \end{aligned}$ | $\begin{array}{r} 0.65 \\ 23 \\ 0.63 \end{array}$ | $\begin{aligned} & 0.68 \\ & 24 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.71 \\ & 25 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.74 \\ & 25 \\ & 0.73 \end{aligned}$ |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.61 \\ & 23 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 23 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 24 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.68 \\ & 24 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.71 \\ & 25 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.74 \\ & 25 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 26 \\ & 0.79 \end{aligned}$ |

* Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor. When total calculated thickness is not followed by asterisk, surge pressure (Case 1) is the controlling factor. See Sec. 1-2.1.

TABLE 1－2（Continued）
Schedule of Barrel Thickness for Water Pipe of 21／45 Iron Strength

| Laying Condi tion | $\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { Cover } \\ & f t \end{aligned}$ | Thickness Specifications | Internal Pressure－psi |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 50 | 100 | 150 | 200 | 250 | 300 | 350 |
|  |  |  | Barrel Thickness－－in． |  |  |  |  |  |  |

Twenty－Inch Water Pipe

| A | $2\}$ | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.59 * \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.61 * \\ & 22 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.63 * \\ & 22 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.65 * \\ & 23 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 0.68 * \\ & 23 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 0.71 * \\ & 24 \\ & 0.72 \end{aligned}$ | $\begin{aligned} & 0.74^{*} \\ & 0.72 \\ & 0.72 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $3 \frac{1}{3}$ | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.59 * \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.61 * \\ & 22 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.63^{*} \\ & 22 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.65 * \\ & 23 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 0.68 * \\ & 23 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 0.70^{*} \\ & 24 \\ & 0.72 \end{aligned}$ | $\begin{aligned} & 0.73 * \\ & 24 \\ & 0.72 \end{aligned}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.62 * \\ & 22 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.64 * \\ & 22 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.65 * \\ & 23 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 0.67 * \\ & 23 \\ & 0.07 \end{aligned}$ | $\begin{aligned} & 0.70^{*} \\ & 24 \\ & 0.72 \end{aligned}$ | $\begin{aligned} & 0.73 \\ & 24 \\ & 0.72 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 25 \\ & 0.78 \end{aligned}$ |
|  | 8 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & 0.67 * \\ & 23 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 0.69 \\ & 23 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 0.71 \\ & 24 \\ & 0.72 \end{aligned}$ | $\begin{aligned} & 0.74 \\ & 24 \\ & 0.72 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 25 \\ & 0.78 \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 25 \\ & 0.78 \end{aligned}$ | 0.83 26 0.84 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.74 \\ & 24 \\ & 0.72 \end{aligned}$ | $\begin{aligned} & 0.76 \\ & 25 \\ & 0.78 \end{aligned}$ | $\begin{array}{r} 0.78 \\ 25 \\ 0.78 \end{array}$ | $\begin{aligned} & 0.80 \\ & 25 \\ & 0.78 \end{aligned}$ | $\begin{aligned} & 0.83 \\ & 26 \\ & 0.84 \end{aligned}$ | $\begin{aligned} & 0.86 \\ & 26 \\ & 0.84 \end{aligned}$ | $\begin{aligned} & 0.89 \\ & 27 \\ & 0.91 \end{aligned}$ |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 0.78 \\ 25 \\ 0.78 \end{array}$ | $\begin{aligned} & 0.80 \\ & 25 \\ & 0.78 \end{aligned}$ | $\begin{aligned} & 0.83 \\ & 26 \\ & 0.84 \end{aligned}$ | $\begin{aligned} & 0.85 \\ & 26 \\ & 0.84 \end{aligned}$ | $\begin{aligned} & 0.87 \\ & 26 \\ & 0.84 \end{aligned}$ | $\begin{aligned} & 0.90 \\ & 27 \\ & 0.91 \end{aligned}$ | $\begin{aligned} & 0.93 \\ & 27 \\ & 0.91 \end{aligned}$ |
| B | $2 \frac{1}{1}$ | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.55 * \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.56 * \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.58^{*} \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.61 * \\ & 22 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.63 * \\ & 22 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 0.66 * \\ & 23 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 0.70^{*} \\ & 24 \\ & 0.72 \end{aligned}$ |
|  | 3年 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 0.54 * \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.56 * \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.58^{*} \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.60^{*} \\ & 22 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.63 * \\ & 22 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.66 * \\ & 23 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 0.71 * \\ & 24 \\ & 0.72 \end{aligned}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.57 * \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.58 * \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.60 * \\ & 22 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.63 * \\ & 22 \\ & 0.62 \end{aligned}$ | $\begin{array}{r} 0.66 \\ 23 \\ 0.67 \end{array}$ | $\begin{aligned} & 0.70 \\ & 24 \\ & 0.72 \end{aligned}$ | 0.74 <br> 24 <br> 0.72 |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.62 \\ & 22 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.64 \\ & 22 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.60 \\ & 23 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 0.69 \\ & 23 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 0.72 \\ & 24 \\ & 0.72 \end{aligned}$ | $\begin{aligned} & 0.76 \\ & 24 \\ & 0.78 \end{aligned}$ | $\begin{aligned} & 0.79 \\ & 25 \\ & 0.78 \end{aligned}$ |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 0.68 \\ 23 \\ 0.67 \end{array}$ | $\begin{aligned} & 0.70 \\ & 24 \\ & 0.72 \end{aligned}$ | $\begin{array}{r} 0.72 \\ 24 \\ 0.72 \end{array}$ | $\begin{array}{r} 0.75 \\ 25 \\ 0.78 \end{array}$ | $\begin{aligned} & 0.77 \\ & 25 \\ & 0.78 \end{aligned}$ | $\begin{aligned} & 0.81 \\ & 26 \\ & 0.84 \end{aligned}$ | 0.84 <br> 26 <br> 0.84 |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{array}{r} 0.72 \\ 24 \\ 0.72 \end{array}$ | $\begin{aligned} & 0.74 \\ & 24 \\ & 0.72 \end{aligned}$ | $\begin{array}{r} 0.76 \\ 25 \\ 0.78 \end{array}$ | $\begin{aligned} & 0.78 \\ & 25 \\ & 0.78 \end{aligned}$ | $\begin{aligned} & 0.81 \\ & 25 \\ & 0.84 \end{aligned}$ | $\begin{aligned} & 0.84 \\ & 26 \\ & 0.84 \end{aligned}$ | $\begin{aligned} & 0.87 \\ & 26 \\ & 0.84 \end{aligned}$ |
| F | 2娄 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.50 * \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.52 * \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.54 * \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.56 * \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.59 * \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{gathered} 0.64 \\ 22 \\ 0.62 \end{gathered}$ | $\begin{gathered} 0.69 \\ 23 \\ 0.67 \end{gathered}$ |
|  | 3年 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.49 * \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.51^{*} \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.53 * \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.56 * \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.60 \\ & 22 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 23 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 0.70 \\ & 24 \\ & 0.72 \end{aligned}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.51^{*} \\ & 2 . \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.53 \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.55 \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.59 \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 0.62 \\ & 0.62 \end{aligned}$ | $\begin{array}{r} 0.67 \\ 23 \\ 0.67 \end{array}$ | $\begin{aligned} & 0.72 \\ & 0.74 \\ & 0.72 \end{aligned}$ |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 0.56 \\ 21 \\ 0.57 \end{array}$ | $\begin{aligned} & 0.59 \\ & 21 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.61 \\ & 22 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.64 \\ & 22 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.68 \\ & 23 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 0.72 \\ & 24 \\ & 0.72 \end{aligned}$ | $\begin{aligned} & 0.76 \\ & 25 \\ & 0.78 \end{aligned}$ |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right\}$ | $\begin{aligned} & 0.61 \\ & 22 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.64 \\ & 22 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 23 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 0.69 \\ & 23 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 0.72 \\ & 24 \\ & 0.72 \end{aligned}$ | $\begin{aligned} & 0.75 \\ & 25 \\ & 0.78 \end{aligned}$ | $\begin{aligned} & 0.79 \\ & 25 \\ & 0.78 \end{aligned}$ |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{array}{r} 0.65 \\ 23 \\ 0.67 \end{array}$ | $\begin{array}{r} 0.67 \\ 23 \\ 0.67 \end{array}$ | $\begin{aligned} & 0.70 \\ & 24 \\ & 0.72 \end{aligned}$ | $\begin{aligned} & 0.72 \\ & 24 \\ & 0.72 \end{aligned}$ | $\begin{aligned} & 0.75 \\ & 25 \\ & 0.78 \end{aligned}$ | $\begin{aligned} & 0.78 \\ & 25 \\ & 0.78 \end{aligned}$ | $\begin{aligned} & 0.82 \\ & 26 \\ & 0.84 \end{aligned}$ |

＊Asterisk following total calculated thickness indicates that truck superload（Case 2 ）is the controlling factor． When total calculated thickness is not followed by asterisk，surge pressure（Case 1）is che controlling factor．See Sec．1－2．1．

TABLE 1-2 (Continued)
Schedule of Barrel Thickness for Water Pipe of 21/45 Iron Strength

|  | Lnternal Pressure-psi |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Laying <br> Condi- <br> tion | Depth <br> of <br> over <br> $f t$ | Thickness Specifications | 50 | 100 | 150 | 200 | 250 | 300 |

Twenty-four-Inch Water Pipe

| A | 2才 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 0.66^{*} \\ & 22 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.68 * \\ & 22 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.71 * \\ & 23 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.73 * \\ & 23 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.76^{*} \\ & 0.74 \end{aligned}$ | $\begin{aligned} & 0.80^{*} \\ & 24 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.84^{*} \\ & 25 \\ & 0.85 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3i | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.66^{*} \\ & 22 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.68 * \\ & 22 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.70^{*} \\ & 22 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.73^{*} \\ & 23 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.76^{*} \\ & 24 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.79 * \\ & 24 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.83^{*} \\ & 25 \\ & 0.85 \end{aligned}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 0.69 * \\ & 22 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.71^{*} \\ & 23 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.74^{*} \\ & 23 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.76^{*} \\ & 24 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.79 * \\ & 24 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.83 \\ & 25 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.88 \\ & 25 \\ & 0.85 \end{aligned}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.75^{*} \\ & 23 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 24 \\ & 0.79 \end{aligned}$ | $\begin{array}{r} 0.80 \\ 24 \\ 0.79 \end{array}$ | $\begin{aligned} & 0.83 \\ & 25 \\ & 0.85 \end{aligned}$ | $\begin{array}{r} 0.87 \\ 25 \\ 0.85 \end{array}$ | $\begin{array}{r} 0.91 \\ 26 \\ 0.92 \end{array}$ | $\begin{array}{r} 0.95 \\ 26 \\ 0.92 \end{array}$ |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 0.83 \\ 25 \\ 0.85 \end{array}$ | $\begin{array}{r} 0.85 \\ 25 \\ 0.85 \end{array}$ | $\begin{array}{r} 0.88 \\ 25 \\ 0.85 \end{array}$ | $\begin{aligned} & 0.91 \\ & 26 \\ & 0.92 \end{aligned}$ | $\begin{gathered} 0.94 \\ 26 \\ 0.92 \end{gathered}$ | $\begin{array}{r} 0.98 \\ 0.97 \end{array}$ | $\begin{array}{r} 1.01 \\ 27 \\ 0.99 \end{array}$ |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 0.89 \\ & 26 \\ & 0.92 \end{aligned}$ | $\begin{gathered} 0.91 \\ 26 \\ 0.92 \end{gathered}$ | $\begin{array}{r} 0.94 \\ 26 \\ 0.92 \end{array}$ | $\begin{array}{r} 0.96 \\ 27 \\ 0.99 \end{array}$ | $\begin{aligned} & 0.99 \\ & 27 \\ & 0.99 \end{aligned}$ | $\begin{array}{r} 1.03 \\ 28 \\ 1.07 \end{array}$ | $\begin{aligned} & 1.06 \\ & 28 \\ & 1.07 \end{aligned}$ |
| E | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 0.60 * \\ & 21 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.62^{*} \\ & 21 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.65^{*} \\ & 21 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.67 * \\ & 22 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.71^{*} \\ & 23 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.74^{*} \\ & 23 \\ & 0.73 \end{aligned}$ | $\begin{array}{r} 0.80 \\ 24 \\ 0.79 \end{array}$ |
|  | $3 \frac{1}{1}$ | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 0.59 * \\ & 21 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.62 * \\ & 21 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.64 * \\ & 21 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.67 * \\ & 22 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.70^{*} \\ & 22 \\ & 0.68 \end{aligned}$ | $\begin{array}{r} 0.75 \\ 23 \\ 0.73 \end{array}$ | 0.81 0.84 0.79 |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 0.62 * \\ & 21 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.65 * \\ & 21 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.67 * \\ & 22 \\ & 0.68 \end{aligned}$ | $\begin{array}{r} 0.70 \\ 22 \\ 0.68 \end{array}$ | $\begin{aligned} & 0.74 \\ & 23 \\ & 0.73 \end{aligned}$ | $\begin{array}{r} 0.79 \\ 24 \\ 0.79 \end{array}$ | 0.85 0.85 0.85 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} 0.68 \\ 22 \\ 0.68 \end{gathered}$ | $\begin{aligned} & 0.71 \\ & 23 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.74 \\ & 23 \\ & 0.73 \end{aligned}$ | $\begin{array}{r} 0.77 \\ 24 \\ 0.79 \end{array}$ | $\begin{aligned} & 0.81 \\ & 24 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.85 \\ & 25 \\ & 0.85 \end{aligned}$ | 0.90 0.86 0.92 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 0.75 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.78 \\ & 24 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 24 \\ & 0.79 \end{aligned}$ | $\begin{array}{r} 0.83 \\ 25 \\ 0.85 \end{array}$ | $\begin{gathered} 0.87 \\ 25 \\ 0.85 \end{gathered}$ | $\begin{array}{r} 0.91 \\ 0.96 \end{array}$ | 0.95 0.96 0.92 |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{array}{r} 0.80 \\ 24 \\ 0.79 \end{array}$ | $\begin{aligned} & 0.82 \\ & 25 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.85 \\ & 25 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.88 \\ & 25 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.91 \\ & 26 \\ & 0.92 \end{aligned}$ | $\begin{array}{r} 0.95 \\ 26 \\ 0.92 \end{array}$ | 0.99 27 0.99 |
| F | 23 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.54 * \\ & 21 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.57 * \\ & 21 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.59^{*} \\ & 21 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.62 * \\ & 21 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.66 * \\ & 22 \\ & 0.68 \end{aligned}$ | $\begin{array}{r} 0.72 \\ 23 \\ 0.73 \end{array}$ | 0.79 24 0.79 |
|  | 33 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.54 * \\ & 21 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.56 * \\ & 21 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.59^{*} \\ & 21 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.62 * \\ & 21 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.67 \\ & 22 \\ & 0.68 \end{aligned}$ | $\begin{array}{r} 0.73 \\ 23 \\ 0.72 \end{array}$ | 0.80 24 0.79 |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.57 * \\ & 21 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.59 * \\ & 0.61 \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 21 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 22 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.71 \\ & 2.73 \\ & 0.73 \end{aligned}$ | $\begin{array}{r} 0.76 \\ 24 \\ 0.79 \end{array}$ | $\begin{aligned} & 0.82 \\ & 25 \\ & 0.85 \end{aligned}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.62 \\ & 21 \\ & 0.63 \end{aligned}$ | $\begin{gathered} 0.65 \\ 21 \\ 0.63 \end{gathered}$ | $\begin{aligned} & 0.68 \\ & 22 \\ & 0.68 \end{aligned}$ | $\begin{array}{r} 0.72 \\ 23 \\ 0.73 \end{array}$ | $\begin{array}{r} 0.76 \\ 24 \\ 0.79 \end{array}$ | $\begin{array}{r} 0.81 \\ 24 \\ 0.79 \end{array}$ | 0.86 25 0.85 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 0.68 \\ & 22 \\ & 0.68 \end{aligned}$ | $\begin{array}{r} 0.71 \\ 23 \\ 0.73 \end{array}$ | $\begin{aligned} & 0.74 \\ & 23 \\ & 0.73 \end{aligned}$ | $\begin{array}{r} 0.77 \\ 24 \\ 0.79 \end{array}$ | $\begin{aligned} & 0.81 \\ & 0.74 \end{aligned}$ | $\begin{array}{r} 0.85 \\ 25 \\ 0.85 \end{array}$ | $\begin{aligned} & 0.90 \\ & 26 \\ & 0.92 \end{aligned}$ |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.72 \\ & 23 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.75 \\ & 23 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.78 \\ & 24 \\ & 0.79 \end{aligned}$ | $\begin{array}{r} 0.81 \\ 24 \\ 0.79 \end{array}$ | $\begin{aligned} & 0.85 \\ & 25 \\ & 0.85 \end{aligned}$ | $\begin{array}{r} 0.89 \\ 25 \\ 0.92 \end{array}$ | 0.93 0.96 0.92 |

* Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor. When total calculated thickness is not followed by asterisk, surge pressure (Case 1) is the controlling factor. See Sec. 1-2.1.

TABLE 1-2 (Continued)
Schedule of Barrel Thickness for Water Pipe of 21/45 Iron Strength

| Laying Condition | Depth of Cover $f t$ | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 50 | 100 | 150 | 200 | 250 | 300 | 350 |
|  |  |  | Barrel Thickness-in. |  |  |  |  |  |  |

Thirty-Inch Water Pipe

5
2

| A | 23 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $\begin{aligned} & 0.79 * \\ & 22 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.81^{*} \\ & 22 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.84^{*} \\ & 23 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.88 * * \\ & 23 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.92 * \\ & 24 \\ & 0.92 \end{aligned}$ | $\begin{aligned} & 0.96 * \\ & 25 \\ & 0.99 \end{aligned}$ | $\begin{aligned} & 1.01 * \\ & 25 \\ & 0.99 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $3{ }^{3}$ | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & 0.78^{*} \\ & 22 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.81 * \\ & 22 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.84^{*} \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.87 * \\ & 23 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.91^{*} \\ & 2.9 \\ & 0.92 \end{aligned}$ | $\begin{aligned} & 0.95 * \\ & 24 \\ & 0.92 \end{aligned}$ | $\begin{aligned} & 1.00 \\ & 25 \\ & 0.99 \end{aligned}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.82^{*} \\ & 23 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.85 * \\ & 23 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.88 * \\ & 23 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.91^{*} \\ & 24 \\ & 0.92 \end{aligned}$ | $\begin{gathered} 0.94 \\ 24 \\ 0.92 \end{gathered}$ | $\begin{aligned} & 1.00 \\ & 25 \\ & 0.99 \end{aligned}$ | 1.06 26 1.06 |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.89 * \\ & 24 \\ & 0.92 \end{aligned}$ | $\begin{aligned} & 0.92 \\ & 24 \\ & 0.92 \end{aligned}$ | $\begin{aligned} & 0.95 \\ & 24 \\ & 0.92 \end{aligned}$ | $\begin{aligned} & 0.99 \\ & 25 \\ & 0.99 \end{aligned}$ | $\begin{aligned} & 1.04 \\ & 26 \\ & 1.07 \end{aligned}$ | $\begin{array}{r} 1.09 \\ 26 \\ 1.07 \end{array}$ | 1.14 27 1.16 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 0.99 \\ 25 \\ 0.99 \end{array}$ | $\begin{array}{r} 1.02 \\ 25 \\ 0.99 \end{array}$ | $\begin{aligned} & 1.05 \\ & 1.07 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & 1.09 \\ & 26 \\ & 1.07 \end{aligned}$ | $\begin{array}{r} 1.13 \\ 27 \\ 1.16 \end{array}$ | $\begin{aligned} & 1.17 \\ & 27 \\ & 1.16 \end{aligned}$ | 1.22 28 1.25 |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.06 \\ & 26 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.09 \\ & 26 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.12 \\ & 27 \\ & 1.16 \end{aligned}$ | $\begin{aligned} & 1.16 \\ & 27 \\ & 1.16 \end{aligned}$ | $\begin{aligned} & 1.20 \\ & 27 \\ & 1.16 \end{aligned}$ | $\begin{aligned} & 1.24 \\ & 28 \\ & 1.25 \end{aligned}$ | 1.29 25 1.29 |
| B | 2ł | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.70 * \\ & 20 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.73 * \\ & 21 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.76 * * \\ & 22 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.80 * \\ & 22 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.84 * \\ & 23 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.89 * \\ & 24 \\ & 0.92 \end{aligned}$ | $\begin{array}{r} 0.88 \\ 25 \\ 0.99 \end{array}$ |
|  | 33 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.69 * \\ & 20 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.72 * \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.75 * \\ & 21 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.79 * \\ & 22 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.83 * \\ & 0.83 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.90 \\ & 24 \\ & 0.92 \end{aligned}$ | $\begin{array}{r} 0.98 \\ 0.95 \\ 0.99 \end{array}$ |
|  | 5 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $\begin{aligned} & 0.73 * \\ & 21 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.76 * \\ & 22 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.79^{*} \\ & 22 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.83 * \\ & 23 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.88 \\ & 23 \\ & 0.85 \end{aligned}$ | $\begin{gathered} 0.95 \\ 24 \\ 0.92 \end{gathered}$ | $\begin{array}{r} 1.02 \\ 25 \\ 0.99 \end{array}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.79 \\ & 22 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.83 \\ & 23 \\ & 0.85 \end{aligned}$ | $\begin{array}{r} 0.86 \\ 23 \\ 0.85 \end{array}$ | $\begin{aligned} & 0.91 \\ & 24 \\ & 0.92 \end{aligned}$ | $\begin{aligned} & 0.96 \\ & 25 \\ & 0.99 \end{aligned}$ | $\begin{aligned} & 1.01 \\ & 25 \\ & 0.99 \end{aligned}$ | 1.07 26 1.07 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} 0.88 \\ 23 \\ 0.85 \end{gathered}$ | $\begin{aligned} & 0.91 \\ & 24 \\ & 0.92 \end{aligned}$ | $\begin{aligned} & 0.95 \\ & 24 \\ & 0.92 \end{aligned}$ | $\begin{array}{r} 0.99 \\ 25 \\ 0.99 \end{array}$ | $\begin{aligned} & 1.03 \\ & 26 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.08 \\ & 26 \\ & 1.07 \end{aligned}$ | $\begin{array}{r} 1.14 \\ 27 \\ 1.16 \end{array}$ |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.94 \\ & 24 \\ & 0.92 \end{aligned}$ | $\begin{aligned} & 0.97 \\ & 25 \\ & 0.99 \end{aligned}$ | $\begin{array}{r} 1.01 \\ 25 \\ 0.99 \end{array}$ | $\begin{aligned} & 1.05 \\ & 26 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.09 \\ & 26 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.13 \\ & 27 \\ & 1.16 \end{aligned}$ | $\begin{array}{r} 1.18 \\ 27 \\ 1.16 \end{array}$ |
| F | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.64^{*} \\ & 20 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.67 * \\ & 20 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.70^{*} \\ & 0.08 \end{aligned}$ | $\begin{aligned} & 0.74 * \\ & 21 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.79 * \\ & 0.72 \\ & 0.79 \end{aligned}$ | $\begin{array}{r} 0.87 \\ 23 \\ 0.85 \end{array}$ | $\begin{aligned} & 0.96 \\ & 25 \\ & 0.99 \end{aligned}$ |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.63^{*} \\ & 20 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.66 * \\ & 20 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.69^{*} \\ & 20 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.73 * \\ & 21 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.81 \\ & 22 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.88 \\ & 23 \\ & 0.85 \end{aligned}$ | $\begin{array}{r} 0.97 \\ 0.95 \\ 0.99 \end{array}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.66^{*} \\ & 20 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.69 * \\ & 20 \\ & 0.68 \end{aligned}$ | $\begin{array}{r} 0.73 \\ 21 \\ 0.73 \end{array}$ | $\begin{aligned} & 0.78 \\ & 22 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.85 \\ & 23 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.92 \\ & 24 \\ & 0.92 \end{aligned}$ | $\begin{gathered} 0.99 \\ 25 \\ 0.99 \end{gathered}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{gathered} 0.72 \\ 21 \\ 0.73 \end{gathered}$ | $\begin{aligned} & 0.76 \\ & 0.72 \\ & 0.79 \end{aligned}$ | $\begin{array}{r} 0.80 \\ 0.72 \\ 0.79 \end{array}$ | $\begin{aligned} & 0.85 \\ & 23 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.90 \\ & 24 \\ & 0.92 \end{aligned}$ | $\begin{aligned} & 0.96 \\ & 25 \\ & 0.99 \end{aligned}$ | 1.03 26 1.07 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{array}{r} 0.80 \\ 22 \\ 0.79 \end{array}$ | $\begin{aligned} & 0.84 \\ & 23 \\ & 0.85 \end{aligned}$ | $\begin{array}{r} 0.87 \\ 23 \\ 0.85 \end{array}$ | $\begin{array}{r} 0.91 \\ 24 \\ 0.92 \end{array}$ | $\begin{array}{r} 0.96 \\ 25 \\ 0.99 \end{array}$ | $\begin{aligned} & 1.02 \\ & 25 \\ & 0.99 \end{aligned}$ | 1.08 26 1.07 |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.85 \\ & 23 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.89 \\ & 24 \\ & 0.92 \end{aligned}$ | $\begin{aligned} & 0.92 \\ & 24 \\ & 0.92 \end{aligned}$ | $\begin{aligned} & 0.96 \\ & 0.95 \\ & 0.99 \end{aligned}$ | $\begin{aligned} & 1.01 \\ & 25 \\ & 0.99 \end{aligned}$ | $\begin{aligned} & 1.06 \\ & 26 \\ & 1.07 \end{aligned}$ | $\begin{array}{r} 1.12 \\ 27 \\ 1.91 \end{array}$ |

* Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor. When tota.
Sec. 1-2.1.

TABLE 1-2 (Continued)
Schedule of Barrel Thickness for Water Pipe of 21/45 Iron Strength

|  | Laying |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lays <br> Condi- <br> tion | Depth <br> of <br> Cover <br> $f f$ | Thickness Specifications | 50 | 100 | 150 | 200 | 250 | 300 | 350 |

Thirty-six-Inch Water Pipe

| A | 2 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.89 * \\ & 22 \\ & 0.87 \end{aligned}$ | $\begin{aligned} & 0.92 * \\ & 23 \\ & 0.94 \end{aligned}$ | $\begin{aligned} & 0.96 * \\ & 23 \\ & 0.94 \end{aligned}$ | $\begin{aligned} & 1.00 * \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{aligned} & 1.05 * \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{aligned} & 1.10 * \\ & 25 \\ & 1.10 \end{aligned}$ | $\begin{aligned} & 1.16^{*} \\ & 26 \\ & 1.19 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $3{ }^{3}$ | Calculated Thickness <br> Use $\begin{aligned} & \text { Thickness } \\ & \text { Thickness }\end{aligned}$ Class | $\begin{aligned} & 0.88^{*} \\ & 22 \\ & 0.87 \end{aligned}$ | $\begin{aligned} & 0.92 * \\ & 23 \\ & 0.94 \end{aligned}$ | $\begin{aligned} & 0.95 * \\ & 23 \\ & 0.94 \end{aligned}$ | $\begin{aligned} & 1.00^{*} \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{gathered} 1.04^{*} \\ 24 \\ 1.02 \end{gathered}$ | $\begin{aligned} & 1.10^{*} \\ & 25 \\ & 1.10 \end{aligned}$ | 1.15 1.26 1.19 |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.93 * \\ & 23 \\ & 0.94 \end{aligned}$ | $\begin{aligned} & 0.96 * \\ & 23 \\ & 0.94 \end{aligned}$ | $\begin{aligned} & 1.00 * \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{aligned} & 1.04 * \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{aligned} & 1.09 * \\ & 25 \\ & 1.10 \end{aligned}$ | $\begin{array}{r} 1.14 \\ 25 \\ 1.10 \end{array}$ | $\begin{aligned} & 1.22 \\ & 26 \\ & 1.19 \end{aligned}$ |
|  | 8 | Caiculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 1.01^{*} \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{aligned} & 1.04 * \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{array}{r} 1.08 \\ 25 \\ 1.10 \end{array}$ | $\begin{aligned} & 1.13 \\ & 25 \\ & 1.10 \end{aligned}$ | $\begin{aligned} & 1.18 \\ & 26 \\ & 1.19 \end{aligned}$ | $\begin{aligned} & 1.24 \\ & 27 \\ & 1.29 \end{aligned}$ | 1.31 27 1.29 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 1.13 \\ & 25 \\ & 1.10 \end{aligned}$ | $\begin{aligned} & 1.16 \\ & 26 \\ & 1.19 \end{aligned}$ | $\begin{aligned} & 1.20 \\ & 26 \\ & 1.19 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 27 \\ & 1.29 \end{aligned}$ | $\begin{array}{r} 1.30 \\ 27 \\ 1.29 \end{array}$ | $\begin{aligned} & 1.35 \\ & 28 \\ & 1.39 \end{aligned}$ | $\begin{array}{r} 1.41 \\ 28 \\ 1.39 \end{array}$ |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 1.22 \\ & 26 \\ & 1.19 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 27 \\ & 1.29 \end{aligned}$ | $\begin{array}{r} 1.29 \\ 27 \\ 1.29 \end{array}$ | $\begin{aligned} & 1.33 \\ & 27 \\ & 1.29 \end{aligned}$ | $\begin{aligned} & 1.38 \\ & 28 \\ & 1.39 \end{aligned}$ | 1.43 28 1.39 | $\begin{array}{r} 1.48 \\ 20 \\ 1.50 \end{array}$ |
| B | 23 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.78 * \\ & 21 \\ & 0.81 \end{aligned}$ | $\begin{aligned} & 0.81^{*} \\ & 21 \\ & 0.81 \end{aligned}$ | $\begin{aligned} & 0.85^{*} \\ & 22 \\ & 0.87 \end{aligned}$ | $\begin{aligned} & 0.90^{*} \\ & 22 \\ & 0.87 \end{aligned}$ | $\begin{aligned} & 0.95 * \\ & 23 \\ & 0.94 \end{aligned}$ | $\begin{aligned} & 1.01 * \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{array}{r} 1.12 \\ 25 \\ 1.10 \end{array}$ |
|  | 3) | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.77 * \\ & 20 \\ & 0.75 \end{aligned}$ | $\begin{aligned} & 0.81 * \\ & 21 \\ & 0.81 \end{aligned}$ | $\begin{aligned} & 0.85 * \\ & 22 \\ & 0.87 \end{aligned}$ | $\begin{aligned} & 0.89 * \\ & .22 \\ & 0.87 \end{aligned}$ | $\begin{aligned} & 0.95 * \\ & 23 \\ & 0.94 \end{aligned}$ | $\begin{array}{r} 1.03 \\ 24 \\ 1.02 \end{array}$ | $\begin{aligned} & 1.12 \\ & 25 \\ & 1.10 \end{aligned}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} 0.81 * \\ 21 \\ .81 \end{gathered}$ | $\begin{gathered} 0.85 * \\ 22 \\ .87 \end{gathered}$ | $\begin{gathered} 0.89 * \\ .82 \\ .87 \end{gathered}$ | $\begin{gathered} 0.93^{*} \\ 23 \\ .94 \end{gathered}$ | $\begin{gathered} 1.00 \\ 24 \\ 1.02 \end{gathered}$ | $\begin{array}{r} 1.08 \\ 25 \\ 1.10 \end{array}$ | $\begin{array}{r} 1.16 \\ 26 \\ 1.19 \end{array}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right\}$ | $\begin{aligned} & 0.88 \\ & 22 \\ & 0.87 \end{aligned}$ | $\begin{aligned} & 0.92 \\ & 23 \\ & 0.94 \end{aligned}$ | $\begin{array}{r} 0.97 \\ 03 \\ 0.94 \end{array}$ | $\begin{aligned} & 1.02 \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{aligned} & 1.08 \\ & 25 \\ & 1.10 \end{aligned}$ | $\begin{aligned} & 1.15 \\ & 26 \\ & 1.19 \end{aligned}$ | 1.22 26 1.19 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} 0.99 \\ 24 \\ 1.02 \end{gathered}$ | $\begin{aligned} & 1.02 \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{array}{r} 1.07 \\ 25 \\ 1.10 \end{array}$ | $\begin{array}{r} 1.12 \\ 25 \\ 1.10 \end{array}$ | $\begin{aligned} & 1.17 \\ & 26 \\ & 1.19 \end{aligned}$ | $\begin{array}{r} 1.23 \\ 26 \\ 1.19 \end{array}$ | $\begin{aligned} & 1.30 \\ & 27 \\ & 1.29 \end{aligned}$ |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 1.06 \\ & 25 \\ & 1.10 \end{aligned}$ | $\begin{aligned} & 1.10 \\ & 25 \\ & 1.10 \end{aligned}$ | $\begin{aligned} & 1.14 \\ & 25 \\ & 1.10 \end{aligned}$ | $\begin{aligned} & 1.19 \\ & 26 \\ & 1.19 \end{aligned}$ | $\begin{aligned} & 1.24 \\ & 27 \\ & 1.29 \end{aligned}$ | $\begin{aligned} & 1.29 \\ & 27 \\ & 1.29 \end{aligned}$ | $\begin{aligned} & 1.35 \\ & 1.38 \\ & 1.99 \end{aligned}$ |
| F | 23 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.71^{*} \\ & 20 \\ & 0.75 \end{aligned}$ | $\begin{aligned} & 0.74 * \\ & 20 \\ & 0.75 \end{aligned}$ | $\begin{aligned} & 0.78 * \\ & 21 \\ & 0.81 \end{aligned}$ | $\begin{aligned} & 0.83 * \\ & 21 \\ & 0.81 \end{aligned}$ | $\begin{aligned} & 0.90 \\ & 22 \\ & 0.87 \end{aligned}$ | $\begin{array}{r} 1.00 \\ 24 \\ 1.02 \end{array}$ | $\begin{aligned} & 1.10 \\ & 25 \\ & 1.10 \end{aligned}$ |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 0.70^{*} \\ & 20 \\ & 0.75 \end{aligned}$ | $\begin{aligned} & 0.74^{*} \\ & 20 \\ & 0.75 \end{aligned}$ | $\begin{aligned} & 0.78^{*} \\ & 21 \\ & 0.81 \end{aligned}$ | $\begin{aligned} & 0.83 \\ & 21 \\ & 0.81 \end{aligned}$ | $\begin{array}{r} 0.92 \\ 23 \\ 0.94 \end{array}$ | $\begin{array}{r} 1.01 \\ 24 \\ 1.02 \end{array}$ | $\begin{array}{r} 1.11 \\ 25 \\ 1.10 \end{array}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.74 * \\ & 20 \\ & 0.75 \end{aligned}$ | $\begin{aligned} & 0.77 * \\ & 20 \\ & 0.75 \end{aligned}$ | $\begin{aligned} & 0.82 \\ & 21 \\ & 0.81 \end{aligned}$ | $\begin{aligned} & 0.88 \\ & 22 \\ & 0.87 \end{aligned}$ | $\begin{array}{r} 0.96 \\ 0.93 \\ 0.94 \end{array}$ | $\begin{aligned} & 1.05 \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{aligned} & 1.14 \\ & 25 \\ & 1.10 \end{aligned}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickens Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.81 \\ & 21 \\ & 0.81 \end{aligned}$ | $\begin{aligned} & 0.85 \\ & 22 \\ & 0.87 \end{aligned}$ | $\begin{array}{r} 0.90 \\ 22 \\ 0.87 \end{array}$ | $\begin{array}{r} 0.96 \\ 23 \\ 0.94 \end{array}$ | $\begin{aligned} & 1.02 \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{array}{r} 1.10 \\ 25 \\ 1.10 \end{array}$ | $\begin{aligned} & 1.18 \\ & 26 \\ & 1.19 \end{aligned}$ |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 0.90 \\ & 22 \\ & 0.87 \end{aligned}$ | $\begin{array}{r} 0.94 \\ 23 \\ 0.94 \end{array}$ | $\begin{aligned} & 0.98 \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{aligned} & 1.04 \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{aligned} & 1.09 \\ & 25 \\ & 1.10 \end{aligned}$ | $\begin{aligned} & 1.16 \\ & 26 \\ & 1.19 \end{aligned}$ | $\begin{aligned} & 1.23 \\ & 26 \\ & 1.19 \end{aligned}$ |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} 0.96 \\ 23 \\ 0.94 \end{gathered}$ | $\begin{aligned} & 1.00 \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{aligned} & 1.04 \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{aligned} & 1.09 \\ & 25 \\ & 1.10 \end{aligned}$ | $\begin{aligned} & 1.15 \\ & 26 \\ & 1.19 \end{aligned}$ | $\begin{aligned} & 1.21 \\ & 26 \\ & 1.19 \end{aligned}$ | $\begin{array}{r} 1.28 \\ 27 \\ 1.29 \end{array}$ |

*Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor When total calculated thickness is not followed by asterisk, surge pressure (Case 1) is the controlling factor. See jec. 1-2.1.

TABLE 1-2 (Continued)
Schedule of Barrel Thickness for Water Pipe of 21/45 Iron Strength

| Laying Condition | $\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { Cover } \\ & f t \end{aligned}$ | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 50 | 100 | 150 | 200 | 250 | 300 | 350 |
|  |  |  | Barrel Thickness-in. |  |  |  |  |  |  |
| Forty-two-Inch Water Pipe |  |  |  |  |  |  |  |  |  |
| A | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.99 * \\ & 0.92 \\ & 0.97 \end{aligned}$ | $\begin{aligned} & 1.02 * \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.07 * \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.12 * \\ & 24 \\ & 1.13 \end{aligned}$ | $1.17 *$ 24 1.13 | $1.24 *$ 25 1.22 | $1.31 *$ <br> 26 <br> 1.32 |
|  | $3{ }^{2}$ | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & 0.99 * \\ & 0.97 \end{aligned}$ | $\begin{aligned} & 1.02 * \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.07 * \\ & 23 \\ & 1.05 \end{aligned}$ | $1.12 *$ <br> 1.13 <br> 1.1 | $1.17 *$ 24 1.13 | $1.24 *$ <br> 1.25 <br> 1.22 | 1.30 26 1.32 |
|  | 5 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & 1.04^{*} \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.08 * \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.12 * \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{aligned} & 1.17 * \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{aligned} & 1.22 * \\ & 25 \\ & 1.22 \end{aligned}$ | $\begin{aligned} & 1.28 * \\ & 26 \\ & 1.32 \end{aligned}$ | 1.37 <br> 26 <br> 1.32 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickress }\end{array}\right.$ | $\begin{aligned} & 1.13 * \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{aligned} & 1.17 * \\ & 24 \\ & 1.13 \end{aligned}$ | 1.21 <br> 1.25 <br> 1.22 <br> 1 | 1.27 26 1.32 | 1.33 26 1.32 | 1.40 27 1.43 | 1.48 1.37 1.43 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.26 \\ & 25 \\ & 1.22 \end{aligned}$ | $\begin{array}{r} 1.30 \\ 26 \\ 1.32 \end{array}$ | $\begin{aligned} & 1.35 \\ & 26 \\ & 1.32 \end{aligned}$ | $\begin{array}{r} 1.40 \\ 27 \\ 1.43 \end{array}$ | $\begin{array}{r} 1.46 \\ 27 \\ 1.43 \end{array}$ | 1.52 <br> 28 <br> 1.54 | 1.59 <br> 28 <br> 1.54 |
|  | 16 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $\begin{aligned} & 1.37 \\ & 26 \\ & 1.32 \end{aligned}$ | $\begin{array}{r} 1.41 \\ 27 \\ 1.43 \end{array}$ | 1.46 1.43 1.43 | 1.51 28 1.54 | 1.56 28 1.54 | 1.62 29 1.66 | 1.68 29 1.66 |
| B | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.85 * \\ & 20 \\ & 0.83 \end{aligned}$ | $\begin{aligned} & 0.89 * \\ & 21 \\ & 0.90 \end{aligned}$ | $\begin{aligned} & 0.94 * \\ & 22 \\ & 0.97 \end{aligned}$ | $0.99 *$ <br> 0.92 <br> 0.9 <br> 0 | $\begin{aligned} & 1.05 * \\ & 23 \\ & 1.05 \end{aligned}$ | 1.13 24 1.13 | 1.25 <br> 25 <br> 1.22 <br> 1.27 |
|  | $3 \frac{1}{3}$ | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.85 * \\ & 20 \\ & 0.83 \end{aligned}$ | $\begin{aligned} & 0.89 * \\ & 21 \\ & 0.90 \end{aligned}$ | $\begin{aligned} & 0.94 * \\ & 22 \\ & 0.97 \end{aligned}$ | $\begin{aligned} & 0.99 * \\ & 22 \\ & 0.97 \end{aligned}$ | $\begin{aligned} & 1.05 \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.15 \\ & 24 \\ & 1.13 \end{aligned}$ | 1.27 <br> 26 <br> 1.32 |
|  | 5 | Calculated Thickness $\text { Use } \begin{aligned} & \text { Thickness Class } \\ & \text { Thickness } \end{aligned}$ | $\begin{aligned} & 0.89 * \\ & 21 \\ & 0.90 \end{aligned}$ | $\begin{aligned} & 0.93 * \\ & 21 \\ & 0.90 \end{aligned}$ | $\begin{aligned} & 0.98 * \\ & 22 \\ & 0.97 \end{aligned}$ | $\begin{aligned} & 1.03^{*} \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{array}{r} 1.11 \\ 24 \\ 1.13 \end{array}$ | $\begin{aligned} & 1.21 \\ & 25 \\ & 1.22 \end{aligned}$ | $\begin{array}{r} 1.31 \\ 26 \\ 1.32 \end{array}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.97 \\ & 2.92 \end{aligned}$ | $\begin{aligned} & 1.02 \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.07 \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{array}{r} 1.13 \\ 24 \\ 1.13 \end{array}$ | $\begin{aligned} & 1.21 \\ & 25 \\ & 1.22 \end{aligned}$ | 1.29 <br> 26 <br> 1.32 | 1.37 <br> 26 <br> 1.32 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 1.09 \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{array}{r} 1.13 \\ 24 \\ 1.13 \end{array}$ | $\begin{array}{r} 1.18 \\ 25 \\ 1.22 \end{array}$ | $\begin{aligned} & 1.24 \\ & 25 \\ & 1.22 \end{aligned}$ | $\begin{aligned} & 1.30 \\ & 26 \\ & 1.32 \end{aligned}$ | $\begin{array}{r} 1.38 \\ 27 \\ 1.43 \end{array}$ | 1.45 <br> 27 <br> 1.43 <br> 1.52 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.18 \\ & 25 \\ & 1.22 \end{aligned}$ | $\begin{aligned} & 1.22 \\ & 25 \\ & 1.22 \end{aligned}$ | 1.27 26 1.32 | $\begin{array}{r} 1.32 \\ 26 \\ 1.32 \end{array}$ | $\begin{array}{r} 1.38 \\ 27 \\ 1.43 \end{array}$ | 1.43 <br> 1.47 <br> 1.43 | 1.52 28 1.54 |
| F | 2! | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickncss } \\ \text { Thickness }\end{array}\right\}$ | $\begin{aligned} & 0.77 * \\ & 20 \\ & 0.83 \end{aligned}$ | $\begin{aligned} & 0.81 * \\ & 20 \\ & 0.83 \end{aligned}$ | $\begin{aligned} & 0.86 * \\ & 20 \\ & 0.83 \end{aligned}$ | $\begin{aligned} & 0.92 * \\ & 21 \\ & 0.90 \end{aligned}$ | $\begin{gathered} 1.00 \\ 22 \\ 0.97 \end{gathered}$ | $\begin{aligned} & 1.12 \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{array}{r} 1.24 \\ 25 \\ 1.22 \end{array}$ |
|  | 31 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} 0.77 * \\ 20 \\ 0.83 \end{gathered}$ | $\begin{gathered} 0.81^{*} \\ 20 \\ 0.83 \end{gathered}$ | $\begin{aligned} & 0.86 * \\ & 20 \\ & 0.83 \end{aligned}$ | $\begin{aligned} & \hline 0.92^{*} \\ & 21 \\ & 0.90 \end{aligned}$ | $\begin{aligned} & 1.02 \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.14 \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 25 \\ & 1.22 \end{aligned}$ |
|  | 5 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $\begin{aligned} & 0.81^{*} \\ & 20 \\ & 0.83 \end{aligned}$ | $\begin{gathered} 0.85 * \\ 20 \\ 0.83 \end{gathered}$ | $\begin{aligned} & 0.90 \\ & 21 \\ & 0.90 \end{aligned}$ | $\begin{aligned} & 0.98 \\ & 22 \\ & 0.97 \end{aligned}$ | $\begin{aligned} & 1.07 \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.17 \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{aligned} & 1.28 \\ & 26 \\ & 1.32 \end{aligned}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{array}{r} \hline 0.89 \\ 21 \\ 0.90 \end{array}$ | $\begin{aligned} & 0.94 \\ & 22 \\ & 0.97 \end{aligned}$ | $\begin{aligned} & 0.99 \\ & 22 \\ & 0.97 \end{aligned}$ | $\begin{array}{r} 1.06 \\ 23 \\ 1.05 \end{array}$ | $\begin{array}{r} 1.14 \\ 24 \\ 1.13 \end{array}$ | $\begin{aligned} & 1.23 \\ & 25 \\ & 1.22 \end{aligned}$ | $\begin{aligned} & 1.33 \\ & 26 \\ & 1.32 \end{aligned}$ |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.99 \\ & 22 \\ & 0.97 \end{aligned}$ | $\begin{array}{r} 1.03 \\ 23 \\ 1.05 \end{array}$ | $\begin{aligned} & 1.09 \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{aligned} & 1.15 \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{array}{r} 1.22 \\ 25 \\ 1.22 \end{array}$ | $\begin{array}{r} \hline 1.30 \\ 26 \\ 1.32 \end{array}$ | $\begin{array}{r} 1.39 \\ 27 \\ 1.43 \end{array}$ |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.07 \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.11 \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{array}{r} 1.16 \\ 24 \\ 1.13 \end{array}$ | $\begin{aligned} & 1.21 \\ & 25 \\ & 1.22 \end{aligned}$ | $\begin{aligned} & 1.28 \\ & 26 \\ & 1.32 \end{aligned}$ | $\begin{aligned} & 1.36 \\ & 26 \\ & 1.32 \end{aligned}$ | $\begin{array}{r} 1.44 \\ 27 \\ 1.43 \end{array}$ |

* Asterisk following total caiculated thickness indicates that truck superload (Case 2) is the controlling factor. Whentotal calculated thickness is not followed by asterisk, surge pressure (Case 1) is che controlling factor. Sec Sec. 1-2.1.

TABLE 1-2 (Continued)
Schedule of Barrel Thickness for Water Pipe of 21/45 Iron Strength

| Laying <br> Condi- <br> tion | Depth <br> of <br> ofer <br> $f$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Forty-eight-Inch Water Pipe

| A | 2\% | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.08 * \\ & 22 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & 1.12 * \\ & 23 \\ & 1.14 \end{aligned}$ | $\begin{aligned} & 1.17 * \\ & 23 \\ & 1.14 \end{aligned}$ | $\begin{aligned} & 1.23^{*} \\ & 24 \\ & 1.23 \end{aligned}$ | $\begin{aligned} & 1.29 * \\ & 25 \\ & 1.33 \end{aligned}$ | $\begin{aligned} & 1.37 * \\ & 1.35 \end{aligned}$ | $\begin{aligned} & 1.45 * \\ & 26 \\ & 1.44 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.09 * \\ & 22 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & 1.13^{*} \\ & 23 \\ & 1.14 \end{aligned}$ | $\begin{aligned} & 1.18^{*} \\ & 23 \\ & 1.14 \end{aligned}$ | $\begin{aligned} & 1.24^{*} \\ & 24 \\ & 1.23 \end{aligned}$ | $\begin{aligned} & 1.30^{*} \\ & 25 \\ & 1.33 \end{aligned}$ | $\begin{aligned} & 1.37 * \\ & 25 \\ & 1.33 \end{aligned}$ | 1.46 26 1.44 |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.15 * \\ & 23 \\ & 1.14 \end{aligned}$ | $\begin{aligned} & 1.19 * \\ & 24 \\ & 1.23 \end{aligned}$ | $\begin{aligned} & 1.24 * \\ & 24 \\ & 1.23 \end{aligned}$ | $\begin{aligned} & 1.30^{*} \\ & 1.33 \end{aligned}$ | $\begin{aligned} & 1.36^{*} \\ & 25 \\ & 1.33 \end{aligned}$ | $\begin{aligned} & 1.43 \\ & 26 \\ & 1.44 \end{aligned}$ | $\begin{aligned} & 1.53 \\ & 27 \\ & 1.56 \end{aligned}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.25 * \\ & 24 \\ & 1.23 \end{aligned}$ | $\begin{gathered} 1.29 * \\ 25 \\ 1.33 \end{gathered}$ | $\begin{aligned} & 1.34 \\ & 25 \\ & 1.33 \end{aligned}$ | $\begin{aligned} & 1.41 \\ & 26 \\ & 1.44 \end{aligned}$ | $\begin{aligned} & 1.48 \\ & 26 \\ & 1.44 \end{aligned}$ | $\begin{aligned} & 1.56 \\ & 27 \\ & 1.56 \end{aligned}$ | 1.65 28 1.68 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 1.41 \\ 26 \\ 1.44 \end{array}$ | $\begin{array}{r} 1.45 \\ 26 \\ 1.44 \end{array}$ | $\begin{aligned} & 1.51 \\ & 27 \\ & 1.56 \end{aligned}$ | $\begin{aligned} & 1.57 \\ & 27 \\ & 1.56 \end{aligned}$ | $\begin{aligned} & 1.63 \\ & 28 \\ & 1.68 \end{aligned}$ | $\begin{aligned} & 1.70 \\ & 28 \\ & 1.68 \end{aligned}$ | $\begin{array}{r} 1.77 \\ 29 \\ 1.81 \end{array}$ |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.53 \\ & 27 \\ & 1.56 \end{aligned}$ | $\begin{aligned} & 1.58 \\ & 27 \\ & 1.56 \end{aligned}$ | $\begin{array}{r} 1.63 \\ 28 \\ 1.68 \end{array}$ | $\begin{array}{r} 1.68 \\ 28 \\ 1.68 \end{array}$ | $\begin{array}{r} 1.75 \\ 29 \\ 1.81 \end{array}$ | $\begin{aligned} & 1.81 \\ & 29 \\ & 1.81 \end{aligned}$ | 1.89 30 1.95 |
| B | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.92^{*} \\ & 20 \\ & 0.91 \end{aligned}$ | $\begin{aligned} & 0.97 * \\ & 21 \\ & 0.98 \end{aligned}$ | $\begin{aligned} & 1.02 * \\ & 22 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & 1.08 * \\ & 22 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & 1.16^{*} \\ & 23 \\ & 1.14 \end{aligned}$ | $\begin{aligned} & 1.26 \\ & 24 \\ & 1.23 \end{aligned}$ | $\begin{aligned} & 1.40 \\ & 26 \\ & 1.44 \end{aligned}$ |
|  | 31. | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.93 * \\ & 20 \\ & 0.91 \end{aligned}$ | $\begin{aligned} & 0.97 * \\ & 21 \\ & 0.98 \end{aligned}$ | $\begin{aligned} & 1.03^{*} \\ & 22 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & 1.09 * \\ & 22 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & 1.17 \\ & 23 \\ & 1.14 \end{aligned}$ | $\begin{aligned} & 1.29 \\ & 25 \\ & 1.33 \end{aligned}$ | $\begin{array}{r} 1.42 \\ 26 \\ 1.44 \end{array}$ |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.98 * \\ & 21 \\ & 0.98 \end{aligned}$ | $\begin{aligned} & 1.02 * \\ & 22 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & 1.08^{*} \\ & 1.06 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & 1.14 \\ & 23 \\ & 1.14 \end{aligned}$ | $\begin{aligned} & 1.23 \\ & 24 \\ & 1.23 \end{aligned}$ | $\begin{aligned} & 1.34 \\ & 25 \\ & 1.33 \end{aligned}$ | $\begin{aligned} & 1.46 \\ & 26 \\ & 1.44 \end{aligned}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 1.06 \\ & 22 \\ & 1.06 \end{aligned}$ | $\begin{array}{r} 1.12 \\ 23 \\ 1.14 \end{array}$ | $\begin{array}{r} 1.18 \\ 23 \\ 1.14 \end{array}$ | $\begin{array}{r} 1.25 \\ 24 \\ 1.23 \end{array}$ | $\begin{aligned} & 1.34 \\ & 25 \\ & 1.33 \end{aligned}$ | $\begin{array}{r} 1.43 \\ 26 \\ 1.44 \end{array}$ | $\begin{array}{r} 1.53 \\ 27 \\ 1.56 \end{array}$ |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{array}{r} 1.20 \\ 24 \\ 1.23 \end{array}$ | $\begin{aligned} & 1.25 \\ & 24 \\ & 1.23 \end{aligned}$ | $\begin{aligned} & 1.31 \\ & 25 \\ & 1.33 \end{aligned}$ | $\begin{aligned} & 1.37 \\ & 25 \\ & 1.33 \end{aligned}$ | $\begin{array}{r} 1.45 \\ 26 \\ 1.44 \end{array}$ | $\begin{aligned} & 1.53 \\ & 27 \\ & 1.56 \end{aligned}$ | 1.62 28 1.68 |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & 1.30 \\ & 25 \\ & 1.33 \end{aligned}$ | $\begin{aligned} & 1.35 \\ & 25 \\ & 1.33 \end{aligned}$ | $\begin{array}{r} 1.41 \\ 26 \\ 1.44 \end{array}$ | $\begin{aligned} & 1.47 \\ & 26 \\ & 1.44 \end{aligned}$ | $\begin{aligned} & 1.54 \\ & 27 \\ & 1.56 \end{aligned}$ | $\begin{aligned} & 1.61 \\ & 27 \\ & 1.56 \end{aligned}$ | $\begin{aligned} & 1.70 \\ & 28 \\ & 1.68 \end{aligned}$ |
| F | 2 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} 0.83 * \\ 20 \\ 0.91 \end{gathered}$ | $\begin{aligned} & 0.88 * \\ & 20 \\ & 0.91 \end{aligned}$ | $\begin{aligned} & 0.94^{*} \\ & 20 \\ & 0.91 \end{aligned}$ | $\begin{gathered} 1.01^{*} \\ 21 \\ 0.98 \end{gathered}$ | $\begin{aligned} & 1.12 \\ & 23 \\ & 1.14 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 24 \\ & 1.23 \end{aligned}$ | $\begin{array}{r} 1.39 \\ 26 \\ 1.44 \end{array}$ |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right\}$ | $\begin{aligned} & 0.84 * \\ & 20 \\ & 0.91 \end{aligned}$ | $\begin{aligned} & 0.89 * \\ & 20 \\ & 0.91 \end{aligned}$ | $\begin{aligned} & 0.94^{*} \\ & 20 \\ & 0.91 \end{aligned}$ | $\begin{array}{r} 1.02 \\ 22 \\ 1.06 \end{array}$ | $\begin{array}{r} 1.14 \\ 23 \\ 1.14 \end{array}$ | $\begin{aligned} & 1.27 \\ & 24 \\ & 1.23 \end{aligned}$ | $\begin{aligned} & 1.40 \\ & 26 \\ & 1.44 \end{aligned}$ |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 0.88^{*} \\ & 0.91 \end{aligned}$ | $\begin{aligned} & 0.93 * \\ & 0.90 \\ & 0.91 \end{aligned}$ | $\begin{array}{r} 0.99 \\ 21 \\ 0.98 \end{array}$ | $\begin{aligned} & 1.08 \\ & 22 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & 1.19 \\ & 24 \\ & 1.23 \end{aligned}$ | $\begin{aligned} & 1.30 \\ & 25 \\ & 1.33 \end{aligned}$ | 1.43 <br> 26 <br> 1.44 <br> 1.48 |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 0.97 \\ 21 \\ 0.98 \end{array}$ | $\begin{aligned} & 1.03 \\ & 22 \\ & 1.06 \end{aligned}$ | $\begin{gathered} 1.09 \\ 22 \\ 1.06 \end{gathered}$ | $\begin{aligned} & 1.17 \\ & 23 \\ & 1.14 \end{aligned}$ | $\begin{aligned} & 1.27 \\ & 24 \\ & 1.23 \end{aligned}$ | $\begin{aligned} & 1.37 \\ & 25 \\ & 1.33 \end{aligned}$ | $\begin{array}{r} 1.48 \\ 26 \\ 1.44 \end{array}$ |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.09 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & 1.14 \\ & 23 \\ & 1.14 \end{aligned}$ | $\begin{array}{r} 1.20 \\ 24 \\ 1.23 \end{array}$ | $\begin{aligned} & 1.27 \\ & 24 \\ & 1.23 \end{aligned}$ | $\begin{aligned} & 1.35 \\ & 1.35 \end{aligned}$ | $\begin{array}{r} 1.45 \\ 26 \\ 1.44 \end{array}$ | $\begin{array}{r} 1.55 \\ 27 \\ 1.56 \end{array}$ |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 1.17 \\ 1.14 \end{array}$ | $\begin{aligned} & 1.23 \\ & 24 \\ & 1.23 \end{aligned}$ | $\begin{aligned} & 1.28 \\ & 25 \\ & 1.33 \end{aligned}$ | $\begin{aligned} & 1.35 \\ & 25 \\ & 1.33 \end{aligned}$ | $\begin{aligned} & 1.43 \\ & 26 \\ & 1.44 \end{aligned}$ | $\begin{aligned} & 1.51 \\ & 27 \\ & 1.56 \end{aligned}$ | $\begin{aligned} & 1.60 \\ & 27 \\ & 1.56 \end{aligned}$ |

* Asterisk following total calculated thickness indicates that truck superload (Case 2) is the controlling factor. When total calculated thickness is not followed by asterisk, surge pressure (Case 1) is the controlling factor. See Sec. 1-2.1.

TABLE 1-3
Schedule of Barrel Thickness for Gas Pipe of 18/40 Iron Strength

| Laying Condition | $\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { Cover } \\ & f t \end{aligned}$ | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 10 | 50 | 100 | 150 | 200 | 250 |
|  |  |  | Barrel Thicknesses-in. |  |  |  |  |  |
| Four-Inch Gas Pipe |  |  |  |  |  |  |  |  |
| A | $2 \frac{1}{3}$ | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | .23 22 .35 | $\begin{array}{r} .23 \\ 22 \\ .35 \end{array}$ | .23 .22 .35 | .24 .22 .35 | .27 .22 .35 | .24 22 .35 |
|  | 3. | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | .22 .22 .35 | $\begin{array}{r} .23 \\ 22 \\ .35 \end{array}$ | .23 <br> .22 <br> .35 | $\begin{aligned} & .23 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{array}{r}.23 \\ .32 \\ .35 \\ \hline\end{array}$ | .23 .22 .35 |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | .23 .22 .35 | $\begin{array}{r}.23 \\ .22 \\ .35 \\ \hline\end{array}$ | .24 .22 .35 | $\begin{aligned} & .24 \\ & 22 \\ & .35 \end{aligned}$ | .24 .32 .35 | .25 .22 .35 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .25 \\ 22 \\ .35 \end{array}$ | $\begin{array}{r} .25 \\ 22 \\ .35 \end{array}$ | .25 .22 .35 | $\begin{array}{r} .26 \\ 22 \\ .35 \end{array}$ | .26 .22 .35 | .27 .22 .35 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .27 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{gathered} .28 \\ 22 \\ .35 \end{gathered}$ | .28 .22 .35 | $\begin{aligned} & .2 \\ & 22 \\ & .35 \end{aligned}$ | .29 .22 .35 | .29 .22 .35 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | .30 .22 .35 | .30 22 .35 | .30 .22 .35 | .31 .32 .35 | .31 .32 .35 | .32 .32 .35 |
|  | 23 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | .23 22 .35 | .23 .22 .35 | .23 .22 .35 | $\begin{gathered} .23 \\ 22 \\ .35 \end{gathered}$ | .23 .22 .35 | .24 .22 .35 |
|  | 3 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .22 \\ & .32 \\ & .35 \end{aligned}$ | $\begin{aligned} & .23 \\ & 22 \\ & .35 \end{aligned}$ | .23 .22 .35 | $\begin{aligned} & .23 \\ & .22 \\ & .35 \end{aligned}$ | .24 .22 .35 | .24 .32 .35 |
| B | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .23 \\ 22 \\ .35 \end{array}$ | $\begin{aligned} & .23 \\ & 22 \\ & .35 \end{aligned}$ | .23 .22 .35 | $\begin{aligned} & .23 \\ & 22 \\ & .35 \end{aligned}$ | .27 .22 .35 | .24 .22 .35 |
| B | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .24 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .24 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{array}{r}.24 \\ .22 \\ .35 \\ \hline\end{array}$ | $\begin{array}{r} .25 \\ 22 \\ .35 \end{array}$ | .25 .22 .35 | .26 .22 .35 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .28 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .29 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{array}{r} .29 \\ 22 \\ .35 \end{array}$ | $\begin{aligned} & .29 \\ & 22 \\ & .35 \end{aligned}$ | .30 <br> .22 <br> .35 | .30 .22 .35 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thick ness }\end{array}\right.$ | $\begin{aligned} & .29 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .29 \\ & 22 \\ & .35 \end{aligned}$ | .29 .22 .35 | $\begin{aligned} & .30 \\ & 22 \\ & .35 \end{aligned}$ | .30 22 .35 | .31 .32 .35 |
|  | 23 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .22 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{gathered} .22 \\ .22 \\ .35 \end{gathered}$ | $\begin{aligned} & .22 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .22 \\ & .22 \\ & .35 \end{aligned}$ | .23 22 .35 | .23 .22 .35 |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .22 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .22 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .22 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .22 \\ & .22 \\ & .35 \end{aligned}$ | .23 <br> 22 <br> .35 | $\begin{array}{r}.23 \\ .32 \\ .35 \\ \hline\end{array}$ |
| F | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .22 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .22 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{array}{r} .22 \\ 22 \\ .35 \\ \hline \end{array}$ | $\begin{aligned} & .22 \\ & 22 \\ & .35 \end{aligned}$ | .23 .22 .35 | $\begin{array}{r}.23 \\ .22 \\ .35 \\ \hline\end{array}$ |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .23 \\ & .32 \\ & .35 \end{aligned}$ | $\begin{aligned} & .23 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .23 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .24 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .27 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{array}{r}.24 \\ .22 \\ .35 \\ \hline\end{array}$ |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .24 \\ & .22 \\ & .35 \\ & \hline \end{aligned}$ | $\begin{aligned} & .24 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{array}{r} .25 \\ 22 \\ .35 \\ \hline \end{array}$ | $\begin{aligned} & .25 \\ & 22 \\ & .35 \\ & \hline \end{aligned}$ | $\begin{aligned} & .26 \\ & 22 \\ & .35 \end{aligned}$ | .27 <br> .32 <br> .35 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .26 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .26 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .27 \\ & .22 \\ & .35 \end{aligned}$ | $\begin{aligned} & .28 \\ & 22 \\ & .35 \end{aligned}$ | $\begin{array}{r} .28 \\ 22 \\ .35 \end{array}$ | .29 .22 .35 |

TABLE 1-3 (Continued)
Schedule of Barrel Thickness for Gas Pipe of 18/40 Iron Strength

| Laying Condition | $\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { Cover } \\ & f f \end{aligned}$ | Thickness Specifications | Internal Pressure - psi |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 10 | 50 | 100 | 150 | 200 | 250 |
|  |  |  | Barrel Thicknesses-in. |  |  |  |  |  |
| Six-Inch Gas Pipe |  |  |  |  |  |  |  |  |
| A | 2\} | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & .28 \\ & 22 \\ & .38 \end{aligned}$ | .29 .22 .38 | $\begin{array}{r} .29 \\ 22 \\ .38 \end{array}$ | $\begin{array}{r} .30 \\ .22 \\ .38 \end{array}$ | $\begin{aligned} & .30 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .32 \\ & .22 \\ & .38 \end{aligned}$ |
|  | 31 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | .27 .22 .38 | .28 .22 .38 | .28 .22 .38 | $\begin{array}{r}.29 \\ .22 \\ .38 \\ \hline\end{array}$ | .30 .22 .38 | .31 .22 .38 |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | .28 .22 .38 | .29 .22 .38 | .29 .22 .38 | .30 .22 .38 | .31 .22 .38 | .32 .22 .38 |
|  | 8 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | .31 .32 .38 | .31 .32 .38 | .32 .32 .38 | $\begin{array}{r}.33 \\ .22 \\ .38 \\ \hline\end{array}$ | $\begin{array}{r}.33 \\ .22 \\ .38 \\ \hline\end{array}$ | $\begin{array}{r}.34 \\ 22 \\ .38 \\ \hline\end{array}$ |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .34 \\ & 22 \\ & .38 \end{aligned}$ | .38 .32 .38 | $\begin{aligned} & .35 \\ & .32 \\ & .38 \end{aligned}$ | $\begin{array}{r}.36 \\ 22 \\ .38 \\ \hline\end{array}$ | .37 <br> .32 <br> .38 | $\begin{array}{r}.38 \\ .22 \\ .38 \\ \hline\end{array}$ |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .38 \\ & 22 \\ & .38 \end{aligned}$ | .38 .32 .38 | .39 .32 .38 | .39 .22 .38 | .40 .23 .41 | .41 .23 .41 |
| B | 21 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .27 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .28 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .28 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{array}{r} .29 \\ .22 \\ .38 \end{array}$ | $\begin{array}{r} .30 \\ 22 \\ .38 \end{array}$ | .31 .22 .38 |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .27 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .27 \\ & .32 \\ & .38 \end{aligned}$ | $\begin{aligned} & .28 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .28 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .29 \\ & 22 \\ & .38 \end{aligned}$ | .30 .32 .38 |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .28 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{array}{r} .28 \\ .22 \\ .38 \end{array}$ | $\begin{array}{r} .28 \\ 22 \\ .38 \\ \hline \end{array}$ | $\begin{aligned} & .29 \\ & .32 \\ & .38 \end{aligned}$ | $\begin{aligned} & .30 \\ & .32 \\ & .38 \end{aligned}$ | $\begin{array}{r}.31 \\ .32 \\ .38 \\ \hline\end{array}$ |
|  | 8 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{array}{r} .29 \\ 22 \\ .38 \end{array}$ | $\begin{aligned} & .30 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{array}{r} .31 \\ 22 \\ .38 \end{array}$ | $\begin{aligned} & .31 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .32 \\ & 22 \\ & .38 \end{aligned}$ | .33 .22 .38 |
|  | 12 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .33 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .34 \\ & .32 \\ & .38 \end{aligned}$ | $\begin{array}{r} .34 \\ 22 \\ .38 \end{array}$ | $\begin{aligned} & .35 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .35 \\ & .22 \\ & .38 \end{aligned}$ | .36 .22 .38 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .36 \\ & .32 \\ & .38 \end{aligned}$ | $\begin{array}{r} .36 \\ 22 \\ .38 \end{array}$ | $\begin{aligned} & .37 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .38 \\ & .32 \\ & .38 \end{aligned}$ | $\begin{aligned} & .38 \\ & .32 \\ & .38 \end{aligned}$ | .39 .32 .38 |
| F | $2 \frac{1}{2}$ | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .26 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{array}{r} .26 \\ 22 \\ .38 \end{array}$ | $\begin{aligned} & .27 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .27 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{array}{r} .28 \\ 22 \\ .38 \end{array}$ | .29 .22 .38 |
|  | $3 \frac{1}{3}$ | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .26 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .26 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{array}{r} .26 \\ 22 \\ .38 \end{array}$ | $\begin{aligned} & .27 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .28 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{array}{r}.29 \\ 22 \\ .38 \\ \hline\end{array}$ |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .26 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .27 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .27 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .28 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .28 \\ & .22 \\ & .38 \end{aligned}$ | .29 .22 .38 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .28 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & 28 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .29 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .29 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{array}{r} .30 \\ 22 \\ .38 \\ \hline \end{array}$ | $\begin{array}{r}.31 \\ .32 \\ .38 \\ \hline\end{array}$ |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .30 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .31 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .31 \\ & .32 \\ & .38 \end{aligned}$ | $\begin{aligned} & .32 \\ & .22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .33 \\ & 22 \\ & .38 \end{aligned}$ | .34 .22 .38 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .33 \\ & 22 \\ & .38 \end{aligned}$ | $\begin{aligned} & .33 \\ & .32 \\ & .38 \end{aligned}$ | .34 .22 .38 | $\begin{aligned} & .35 \\ & .22 \\ & .38 \end{aligned}$ | .35 22 .38 | .36 .32 .38 |

TABLE 1-3 (Continued)
Schedule of Barrel Thickness for Gas Pipe of $18 / 40$ Iron Strength

| Laying Condition | DepthofCover$f t$ | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 10 | 50 | 100 | 150 | 200 | 250 |
|  |  |  | Barrel Thicknesses-in. |  |  |  |  |  |
| Eight-Inch Gas Pipe |  |  |  |  |  |  |  |  |
|  | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .33 \\ 22 \\ .41 \end{array}$ | .34 22 .41 | $\begin{array}{r}.35 \\ 22 \\ .41 \\ \hline\end{array}$ | .36 .22 .41 | .37 .22 .41 | .38 .32 .41 |
|  | 31 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .32 \\ & 22 \\ & .41 \end{aligned}$ | .33 .32 .41 | .34 .22 .41 | .34 .22 .41 | .35 .22 .41 | .36 .22 .41 |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .33 \\ & 22 \\ & .41 \end{aligned}$ | .34 22 .41 | .35 <br> .22 <br> .41 | .36 .22 .41 | .37 .22 .41 | .38 .22 .41 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .36 \\ 22 \\ .41 \end{array}$ | .37 .22 .41 | .37 .22 .41 | .38 .22 .41 | .39 .22 .41 | .40 .42 .41 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .41 \\ & .42 \\ & .41 \end{aligned}$ | .42 .22 .41 | .42 .22 .41 | .43 23 .44 | .44 .23 .44 | .45 23 .44 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .44 \\ & 23 \\ & .44 \end{aligned}$ | .45 .43 .44 | .45 .23 .44 | .46 .44 .48 | .47 .48 .48 | .48 .48 .48 |
| ( ${ }^{\text {A }}$ | 21 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $\begin{aligned} & .32 \\ & .22 \\ & .41 \end{aligned}$ | .32 <br> 22 <br> .41 | $\begin{array}{r}.33 \\ 22 \\ .41 \\ \hline\end{array}$ | .34 <br> .22 <br> .41 | $\begin{array}{r}.35 \\ 22 \\ .41 \\ \hline\end{array}$ | .36 <br> .22 <br> .41 |
|  | 31 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .31 \\ & 22 \\ & .41 \end{aligned}$ | .32 .22 .41 | .33 .22 .41 | .33 .22 .41 | .34 .22 .41 | .36 .22 .41 |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .32 \\ 22 \\ .41 \end{array}$ | .33 <br> .32 <br> .41 | .34 <br> .22 <br> .41 | $\begin{array}{r} .34 \\ 22 \\ .41 \end{array}$ | $\begin{array}{r}.35 \\ .22 \\ .41 \\ \hline\end{array}$ | $\begin{array}{r}.37 \\ .22 \\ .41 \\ \hline\end{array}$ |
|  | 8 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .35 \\ & 22 \\ & .41 \end{aligned}$ | .35 .22 .41 | .36 .22 .41 | .37 .22 .41 | .38 .22 .41 | .39 .22 .41 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .39 \\ 22 \\ .41 \end{array}$ | $\begin{array}{r} .39 \\ 22 \\ .41 \end{array}$ | $\begin{array}{r}.40 \\ .41 \\ .41 \\ \hline\end{array}$ | $\begin{array}{r} .41 \\ 22 \\ .41 \end{array}$ | .42 <br> .22 <br> .41 | .43 .23 .44 |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .42 \\ & 22 \\ & .4! \end{aligned}$ | .42 .42 .41 | .43 .23 .44 | $\begin{array}{r} .44 \\ 23 \\ .44 \end{array}$ | .45 .43 .44 | .46 .48 .48 |
| F | 23 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .20 \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .30 \\ & 22 \\ & .41 \end{aligned}$ | .31 .22 .41 | $\begin{aligned} & .32 \\ & .22 \\ & .41 \end{aligned}$ | .33 .22 .41 | .34 .22 .41 |
|  | 3. | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} .29 \\ 22 \\ .41 \end{gathered}$ | $\begin{aligned} & .29 \\ & 22 \\ & .41 \end{aligned}$ | $\begin{array}{r}.30 \\ .22 \\ .41 \\ \hline\end{array}$ | $\begin{aligned} & .30 \\ & 22 \\ & .41 \end{aligned}$ | .31 <br> .22 <br> .41 | .33 .22 .41 |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .29 \\ 22 \\ .41 \end{array}$ | $\begin{array}{r} .30 \\ 22 \\ .41 \end{array}$ | .31 <br> .32 <br> .41 | $\begin{array}{r} .32 \\ .22 \\ .41 \end{array}$ | .33 <br> .22 <br> .41 | .34 .22 .41 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} .32 \\ .22 \\ .41 \end{gathered}$ | $\begin{aligned} & 33 \\ & .22 \\ & .41 \end{aligned}$ | .33 <br> .22 <br> .41 | $\begin{array}{r} .34 \\ 22 \\ .41 \end{array}$ | .35 <br> .22 <br> .41 | .36 .22 .41 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .35 \\ 22 \\ .41 \end{array}$ | $\begin{array}{r}.36 \\ 22 \\ .41 \\ \hline\end{array}$ | .37 <br> .22 <br> .41 | .37 <br> .22 <br> .41 | .38 <br> .32 <br> .41 | $\begin{array}{r}.39 \\ .22 \\ .41 \\ \hline\end{array}$ |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .38 \\ 22 \\ .41 \end{array}$ | $\begin{aligned} & .38 \\ & 22 \\ & .41 \end{aligned}$ | .39 .22 .41 | $\begin{aligned} & .40 \\ & 22 \\ & .41 \end{aligned}$ | $\begin{aligned} & .41 \\ & 22 \\ & .41 \end{aligned}$ | .42 .42 .41 |

TABLE 1-3 (Continued)
Schedule of Barrel Thickness for Gas Pipe of $18 / 40$ Iron Strength

| Laying Condition | Depth of Cover $f t$ | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 10 | 50 | 100 | 150 | 200 | 250 |
|  |  |  | Barrel Thicknesses-in. |  |  |  |  |  |
| Ten-Inch Gas Pipe |  |  |  |  |  |  |  |  |
| A | 21 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | .30 .22 .44 | .40 22 .44 | .41 .42 .44 | .42 .42 .44 | .43 .22 .44 | .45 22 .44 |
|  | 31 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | .38 .32 .44 | .39 .22 .44 | .40 22 .44 | .41 .22 .44 | .42 .42 .44 | .44 22 .44 |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | .39 .22 .44 | .40 .22 .44 | .41 .22 .44 | .42 .42 .44 | .43 .22 .44 | .44 .22 .44 |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .43 \\ 22 \\ .44 \end{array}$ | .43 .42 .44 | .44 .22 .44 | .46 23 .48 | .47 .23 .48 | .48 .43 .48 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .48 \\ & 23 \\ & .48 \end{aligned}$ | .49 .43 .48 | .49 .23 .48 | .50 .24 .52 | .51 .24 .52 | .52 .24 .52 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .50 \\ & 24 \\ & .52 \end{aligned}$ | .51 .24 .52 | .52 .24 .52 | .53 .54 .52 | $\begin{aligned} & .54 \\ & .25 \\ & .56 \end{aligned}$ | .56 .25 .56 |
| B | 2 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .37 \\ & 22 \\ & .44 \end{aligned}$ | .38 .22 .44 | .39 .22 .44 | .40 22 .44 | .41 .22 .44 | 43 22 .44 |
|  | 33 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .36 \\ & 22 \\ & .44 \end{aligned}$ | .37 .22 .44 | .38 .22 .44 | .39 .22 .44 | .40 .22 .44 | .42 .22 .44 |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .37 \\ & .22 \\ & .44 \end{aligned}$ | .38 .22 .44 | $\begin{aligned} & .30 \\ & 22 \\ & .44 \end{aligned}$ | .40 .22 .44 | .41 .42 .44 | .43 .22 .44 |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .40 \\ .22 \\ .44 \end{array}$ | .41 .42 .44 | .42 .22 .44 | .43 .22 .44 | .44 .22 .44 | .46 .23 .48 |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .45 \\ 22 \\ .44 \end{array}$ | $\begin{array}{r} .46 \\ 23 \\ .48 \end{array}$ | $\begin{aligned} & .47 \\ & 23 \\ & .48 \end{aligned}$ | $\begin{aligned} & .48 \\ & 23 \\ & .48 \end{aligned}$ | $\begin{array}{r} 49 \\ 23 \\ .48 \end{array}$ | .50 24 .52 |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .47 \\ & 23 \\ & .48 \end{aligned}$ | .48 .43 .48 | $\begin{array}{r} .49 \\ 23 \\ .48 \end{array}$ | $\begin{aligned} & .50 \\ & 24 \\ & .52 \end{aligned}$ | $\begin{aligned} & .5 I \\ & .54 \\ & .52 \end{aligned}$ | .53 .24 .52 |
| F | 23 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .34 \\ 22 \\ .44 \end{array}$ | $\begin{aligned} & .35 \\ & .22 \\ & .44 \end{aligned}$ | .36 .22 .44 | .37 .22 .44 | $\begin{aligned} & .38 \\ & .22 \\ & .44 \end{aligned}$ | .40 22 .44 |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .33 \\ 22 \\ .44 \end{array}$ | .34 .22 .44 | .35 .22 .44 | .36 22 .44 | $\begin{aligned} & .37 \\ & .42 \\ & .44 \end{aligned}$ | .39 .22 .44 |
|  | 5 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .34 \\ & 22 \\ & .44 \end{aligned}$ | .35 .22 .44 | .36 .22 .44 | .37 .22 .44 | .38 .22 .44 | .40 22 .44 |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .36 \\ & 22 \\ & .44 \end{aligned}$ | $\begin{aligned} & .37 \\ & .22 \\ & .44 \end{aligned}$ | .38 .22 .44 | .39 .22 .44 | .41 .22 .44 | .42 .22 .44 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | .41 .22 .44 | $\begin{array}{r}.42 \\ .42 \\ .44 \\ \hline\end{array}$ | .43 <br> .22 <br> .44 | .44 .22 .44 | .45 .22 .44 | .46 .43 .48 |
|  | 16 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{array}{r} .43 \\ 22 \\ .44 \end{array}$ | .44 .42 .44 | .45 .42 .44 | .46 .23 .48 | .47 .43 .48 | .48 .43 .48 |

TABLE 1-3 (Continued)
Schedule of Barrel Thickness for Gas Pipe of 18/40 Iron Strength

| Laying Condition | $\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { Cover } \\ & f t \end{aligned}$ | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 10 | 50 | 100 | 150 | 200 | 250 |
|  |  |  | Barrel Thicknesses-in. |  |  |  |  |  |
| Twelve-Inch Gas Pipe |  |  |  |  |  |  |  |  |
| A | 23 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | .44 22 .48 | .45 .22 .48 | .46 .22 .48 | .47 .22 .48 | .49 .42 .48 | .51 23 .52 |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | .43 .42 .48 | .43 .22 .48 | .45 .22 .48 | .46 .22 .48 | .48 .22 .48 | .50 23 .52 |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .44 \\ & 22 \\ & .48 \end{aligned}$ | .45 .22 .48 | .46 .42 .48 | .47 .22 .48 | .48 .22 .48 | .50 23 .52 |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickiess }\end{array}\right.$ | .48 .22 .48 | .49 .22 .48 | .50 .23 .52 | .52 .23 .52 | . 53 .23 .52 | .55 24 .56 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .53 \\ & 23 \\ & .52 \end{aligned}$ | .54 .24 .56 | .55 .24 .56 | .57 .24 .56 | .58 .25 .60 | .59 .25 .60 |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .56 \\ & 24 \\ & .56 \end{aligned}$ | .56 .24 .56 | .58 .25 .60 | .59 .25 .60 | .60 25 .60 | .62 25 .60 |
|  | $2{ }^{3}$ | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .41 \\ & 22 \\ & .48 \end{aligned}$ | .42 .22 .48 | .44 .22 .48 | $\begin{array}{r} .45 \\ 22 \\ .48 \end{array}$ | .46 22 .48 | .48 22 .48 |
|  | $3{ }^{3}$ | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .40 \\ & 22 \\ & .48 \end{aligned}$ | $\begin{aligned} & .41 \\ & 22 \\ & .48 \end{aligned}$ | .42 .22 .48 | .44 .22 .48 | .45 <br> .22 <br> .48 | .47 .22 .48 |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .41 \\ & 22 \\ & .48 \end{aligned}$ | .42 .42 .48 | .43 .22 .48 | .45 22 .48 | .46 22 .48 | .48 .48 .48 |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .45 \\ 22 \\ .48 \end{array}$ | $\begin{array}{r} .46 \\ 22 \\ .48 \end{array}$ | .47 .22 .48 | .49 22 .48 | .50 23 .52 | .52 .23 .52 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .50 \\ & 23 \\ & .52 \end{aligned}$ | $\begin{aligned} & .51 \\ & 23 \\ & .52 \end{aligned}$ | $\begin{aligned} & .52 \\ & 23 \\ & .52 \end{aligned}$ | $\begin{array}{r} .53 \\ .23 \\ .52 \end{array}$ | .55 .24 .56 | .56 24 .56 |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .52 \\ 23 \\ .52 \end{array}$ | $\begin{array}{r} .53 \\ 23 \\ .52 \end{array}$ | .54 .24 .56 | $\begin{aligned} & .56 \\ & 24 \\ & .56 \end{aligned}$ | .57 .24 .56 | .59 .25 .60 |
|  | 23 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .38 \\ & 22 \\ & .48 \end{aligned}$ | $\begin{array}{r} .39 \\ 22 \\ .48 \end{array}$ | .40 22 .48 | $\begin{aligned} & .41 \\ & 22 \\ & .48 \end{aligned}$ | $\begin{array}{r}.43 \\ .22 \\ .48 \\ \hline\end{array}$ | .45 .22 .48 |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .37 \\ & 22 \\ & .48 \end{aligned}$ | $\begin{aligned} & .38 \\ & 22 \\ & .48 \end{aligned}$ | .39 <br> 22 <br> .48 | $\begin{aligned} & .40 \\ & 22 \\ & .48 \end{aligned}$ | .42 .22 .48 | .44 .42 .48 |
| F | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .38 \\ & 22 \\ & .48 \end{aligned}$ | $\begin{aligned} & .39 \\ & 22 \\ & .48 \end{aligned}$ | $\begin{aligned} & .40 \\ & .42 \\ & .48 \end{aligned}$ | $\begin{aligned} & .41 \\ & 22 \\ & .48 \end{aligned}$ | .43 .22 .48 | .45 22 .48 |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .41 \\ & 22 \\ & .48 \end{aligned}$ | .42 .42 .48 | .43 .22 .48 | $\begin{aligned} & .45 \\ & 22 \\ & .48 \end{aligned}$ | .46 22 .48 | .48 .42 .48 |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .45 \\ & 22 \\ & .48 \end{aligned}$ | $\begin{aligned} & .40 \\ & 22 \\ & .48 \end{aligned}$ | $\begin{aligned} & .47 \\ & 22 \\ & .48 \end{aligned}$ | $\begin{array}{r} .48 \\ 22 \\ .48 \end{array}$ | .50 23 .52 | .52 .23 .52 |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .47 \\ & 22 \\ & .48 \end{aligned}$ | $\begin{aligned} & .48 \\ & 22 \\ & .48 \end{aligned}$ | .49 .22 .48 | $\begin{aligned} & .50 \\ & 23 \\ & .52 \end{aligned}$ | .52 23 52 | .53 .23 .52 |

TABLE 1-3 (Continued)
Schedule of Barrel Thickness for Gas Pipe of 18/40 Iron Strength

| Laying Condition | Depth of Cover ft | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 10 | 50 | 100 | 150 | 200 | 250 |
|  |  |  | Barrel Thicknesses-ir. |  |  |  |  |  |
| Sixteen-Inch Gas Pipe |  |  |  |  |  |  |  |  |
| A | 2 \% | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | .53 22 .54 | .54 22 .54 | .56 23 .58 | .58 23 .58 | .60 23 .58 |  |
|  | $3 \frac{1}{2}$ | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | .52 .22 .54 | .54 22 .54 | .55 22 .54 | .57 23 .58 | .59 23 .58 |  |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | .54 .22 .54 | .55 22 .54 | .57 23 .58 | .59 .23 .58 | .61 24 .63 |  |
|  | 8 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | .60 23 .58 | .61 24 .63 | .63 24 .63 | .65 24 .63 | .67 25 .68 |  |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | .65 24 .63 | .66 25 .68 | .67 25 .68 | .69 25 .68 | .71 .76 .73 |  |
|  | 16 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | .68 25 .68 | .69 25 .68 | .71 26 .73 | .73 .26 .73 | .75 26 .73 |  |
| 8 | 21 $\frac{1}{2}$ | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{array}{r} .49 \\ 21 \\ .50 \end{array}$ | .50 21 .50 | .52 22 .54 | .54 .22 .54 | 56 23 .58 |  |
|  | 31 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{array}{r} .49 \\ 21 \\ .50 \end{array}$ | .50 21 .50 | .52 22 .54 | .53 22 .54 | .56 23 .58 |  |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | .51 21 .50 | .51 21 .50 | .53 .22 .54 | .55 .22 .54 | .57 23 .58 |  |
|  | 8 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | .55 22 .54 | .56 23 .58 | .58 23 .58 | .60 23 .58 | .62 24 .63 |  |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .60 \\ 23 \\ .58 \end{array}$ | .61 24 .63 | .62 24 .63 | .64 .24 .63 | .66 25 .68 |  |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | .63 24 .63 | .64 24 .63 | .66 25 .68 | .67 25 .68 | .69 25 .68 |  |
| $\mathbf{F}$ | $2 \frac{1}{3}$ | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{array}{r} .46 \\ 21 \\ .50 \end{array}$ | .47 21 .50 | .48 21 .50 | .50 21 .50 | .52 22 .54 |  |
|  | $3 \frac{1}{2}$ | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{array}{r} .45 \\ 21 \\ .50 \end{array}$ | $\begin{array}{r} .46 \\ 21 \\ .50 \end{array}$ | $\begin{array}{r} .47 \\ 21 \\ .50 \end{array}$ | .49 21 .50 | .52 22 .54 |  |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .47 \\ 21 \\ .50 \end{array}$ | .48 21 .50 | .49 21 .50 | .51 21 .50 | .53 .22 .54 |  |
|  | 8 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{array}{r} .51 \\ 21 \\ .50 \end{array}$ | .52 .22 .54 | .53 22 .54 | .55 .22 .54 | .57 23 .58 |  |
|  | 12 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{array}{r} .54 \\ 22 \\ .54 \end{array}$ | .55 .22 .54 | .57 23 .58 | .59 .23 .58 | .61 24 .63 |  |
|  | 16 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | .57 23 .58 | .58 .23 .58 | .59 23 .58 | .61 24 .63 | .63 24 .63 |  |

TABLE 1-3 (Continued)
Schedule of Barrel Thickness for Gas Pipe of 18/40 Iron Strength


TABLE 1-3 (Continued)
Schedule of Barrel Thickness for Gas Pipe of 18/40 Iron Strength

| Laying <br> Condition | Depth of Cover $f t$ | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 10 | 50 | 100 | 150 | 200 | 250 |
|  |  |  | Barrel Thicknesses-ir. |  |  |  |  |  |
| Twenty-four-Inch Gas Pipe |  |  |  |  |  |  |  |  |
| A | $2{ }^{1}$ | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | .67 22 .68 | .69 22 .68 | .72 23 .73 | .75 23 .73 | .78 24 .79 |  |
|  | 3) | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .67 \\ & 22 \\ & .68 \end{aligned}$ | .69 .22 .68 | .71 .23 .73 | .74 .23 .73 | .78 .74 .79 |  |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .7 I \\ & 23 \\ & .73 \end{aligned}$ | .72 .73 .73 | .75 .23 .73 | .78 .74 .79 | .81 24 .79 |  |
|  | 8 | $\begin{aligned} & \text { Calculated Thickness } \\ & \text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right. \end{aligned}$ | $\begin{aligned} & .77 \\ & 24 \\ & .79 \end{aligned}$ | .79 .24 .79 | .81 .24 .79 | .84 25 .85 | .87 .25 .85 |  |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .84 \\ & .25 \\ & .85 \end{aligned}$ | .86 25 .85 | .88 .85 .85 | .91 .26 .92 | .94 26 .92 |  |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .90 \\ & .26 \\ & .92 \end{aligned}$ | .81 26 .92 | .94 .26 .92 | .97 .27 .99 | 1.00 27 .99 |  |
| B | 21 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | .01 21 .63 | .63 21 .63 | .65 21 .63 | .68 22 .68 | .72 .23 .73 |  |
|  | $3 \frac{1}{4}$ | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .59 \\ & 21 \\ & .63 \end{aligned}$ | $\begin{aligned} & .62 \\ & 21 \\ & .63 \end{aligned}$ | .65 21 .63 | .68 22 .68 | .71 23 .73 |  |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .03 \\ & 21 \\ & .63 \end{aligned}$ | .65 21 .63 | .67 .62 .68 | .71 .23 .73 | .75 23 .73 |  |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .69 \\ & .22 \\ & .68 \end{aligned}$ | .71 .73 .73 | .73 23 .73 | .76 24 .79 | .79 24 .79 |  |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .75 \\ & 23 \\ & .73 \end{aligned}$ | .77 .24 .79 | .79 24 .79 | .82 25 .85 | .85 .25 .85 |  |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .80 \\ & 24 \\ & .79 \end{aligned}$ | .81 24 .79 | .84 25 .85 | .87 .85 .85 | .90 .86 .92 |  |
| F | 21 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & .55 \\ & 21 \\ & .63 \end{aligned}$ | $\begin{aligned} & .56 \\ & 21 \\ & .63 \end{aligned}$ | .58 .21 .63 | .63 21 .63 | .67 22 .68 |  |
|  | 31 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .54 \\ & 21 \\ & .63 \end{aligned}$ | .56 21 .63 | .58 .61 .63 | .62 .21 .63 | .66 22 .68 |  |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .57 \\ & 21 \\ & .63 \end{aligned}$ | $\begin{aligned} & .58 \\ & 21 \\ & .63 \end{aligned}$ | .62 .61 .63 | .65 21 .63 | $\begin{array}{r}.68 \\ 22 \\ .68 \\ \hline\end{array}$ |  |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .62 \\ & .61 \\ & .63 \end{aligned}$ | $\begin{aligned} & .64 \\ & 21 \\ & .63 \end{aligned}$ | .67 .22 .68 | .70 .22 .68 | .73 .23 .73 |  |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .67 \\ & 22 \\ & .68 \end{aligned}$ | .69 .22 .68 | .72 .23 .73 | .75 .23 .73 | .78 .24 .79 |  |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .71 \\ 23 \\ .73 \end{array}$ | .73 23 .73 | .76 .24 .79 | .79 .74 .79 | .82 25 .85 |  |

TABLE 1-3 (Continued)
Schedule of Barrel Thickness for Gas Pipe of 18/40 Iron Sirength
6
4

| Laying Condi tion | Depth Cover $f t$ | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 10 | 50 | 100 | 150 | 200 | 250 |
|  |  |  | Barrel Thicknesses-in. |  |  |  |  |  |
| Thirty-lnch Gas Pipe |  |  |  |  |  |  |  |  |
| A | 23 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | .80 22 .79 | .83 23 .85 | .86 <br> 23 <br> .85 | .90 24 .92 |  |  |
|  | $3 \frac{1}{2}$ | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .79 \\ & 22 \\ & .79 \end{aligned}$ | .82 .83 .85 | .85 .85 23 .85 | .89 24 .92 |  |  |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} .87 \\ 23 \\ .85 \end{gathered}$ | .86 23 .85 | .90 24 .92 | .93 .24 .92 |  |  |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .92 \\ & 24 \\ & .92 \end{aligned}$ | .97 .94 .92 | .97 .25 .99 | 1.01 25 .99 |  |  |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} 1.01 \\ 25 \\ .99 \end{array}$ | $\begin{aligned} & 1.03 \\ & 26 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.06 \\ & 26 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.09 \\ & 26 \\ & 1.07 \end{aligned}$ |  |  |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.07 \\ & 26 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.09 \\ & 26 \\ & 1.07 \end{aligned}$ | 1.12 27 1.16 | 1.15 27 1.16 |  |  |
| B | 21 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} .69 \\ 21 \\ .73 \end{gathered}$ | .74 21 .73 | .77 .22 .79 | .81 22 .79 |  |  |
|  | $3 \frac{1}{2}$ | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .69 \\ 21 \\ .73 \end{array}$ | .73 21 .73 | .76 22 .79 | .80 22 .79 |  |  |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{array}{r} .75 \\ .71 \\ .73 \end{array}$ | .77 .72 .79 | .80 .22 .79 | .85 23 .85 |  |  |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .81 \\ & 22 \\ & .79 \end{aligned}$ | .83 23 .85 | .86 23 .85 | .90 24 .92 |  |  |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .88 \\ & .33 \\ & .85 \end{aligned}$ | .90 .94 .92 | .93 .84 .92 | .97 .95 .99 |  |  |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .94 \\ & 24 \\ & .92 \end{aligned}$ | .96 25 .99 | .99 .25 .99 | 1.03 26 1.07 |  |  |
| F | 2 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .63 \\ 21 \\ .73 \end{array}$ | - 66 .21 .73 | .70 21 .73 | $\begin{aligned} & .74 \\ & 21 \\ & .73 \end{aligned}$ |  |  |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .63 \\ .21 \\ .73 \end{array}$ | .66 21 .73 | .70 21 .73 | .74 .21 .73 |  |  |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .68 \\ & .61 \\ & .73 \end{aligned}$ | .70 21 .73 | .73 .21 .73 | $\begin{aligned} & .77 \\ & 22 \\ & .79 \end{aligned}$ |  |  |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .73 \\ 21 \\ .73 \end{array}$ | .75 21 .73 | .79 22 .79 | .83 .83 .85 |  |  |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .79 \\ & .72 \\ & .79 \end{aligned}$ | $\begin{gathered} .81 \\ 22 \\ .79 \end{gathered}$ | .85 23 .85 | .88 .83 .85 |  |  |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .84 \\ & 23 \\ & .85 \end{aligned}$ | .86 23 .85 | .90 24 .92 | .93 24 .92 |  |  |

TABLE 1-3 (Continued)
Schedule of Barrel Thickness for Gas Pipe of 18/40 Iron Strength

| Laying <br> Condi- <br> tion | Depth <br> of <br> Cover <br> $f t$ | Thickness Specifications | 10 | 50 | 100 | 150 | 200 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Thirty-six-Inch Gas Pipe

| A | 23 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & .91 \\ & .23 \\ & .94 \end{aligned}$ | $\begin{gathered} .94 \\ 23 \\ .94 \end{gathered}$ | $\begin{array}{r} .98 \\ 24 \\ 1.02 \end{array}$ | $\begin{aligned} & 1.02 \\ & 24 \\ & 1.02 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 33 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .90 \\ & 22 \\ & .87 \end{aligned}$ | .93 .23 .94 | .97 .23 .94 | $\begin{aligned} & 1.02 \\ & 24 \\ & 1.02 \end{aligned}$ |  |  |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .95 \\ .23 \\ .94 \end{array}$ | $\begin{array}{r} .98 \\ 24 \\ 1.02 \end{array}$ | $\begin{aligned} & 1.02 \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{aligned} & 1.07 \\ & 25 \\ & 1.10 \end{aligned}$ |  |  |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.04 \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{array}{r} 1.07 \\ 25 \\ 1.10 \end{array}$ | $\begin{aligned} & 1.11 \\ & 25 \\ & 1.10 \end{aligned}$ | $\begin{aligned} & 1.15 \\ & 26 \\ & 1.19 \end{aligned}$ |  |  |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.15 \\ & 26 \\ & 1.19 \end{aligned}$ | $\begin{aligned} & 1.17 \\ & 26 \\ & 1.19 \end{aligned}$ | $\begin{aligned} & 1.21 \\ & 26 \\ & 1.19 \end{aligned}$ | $\begin{array}{r} 1.25 \\ 27 \\ 1.29 \end{array}$ |  |  |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.23 \\ & 1.19 \end{aligned}$ | $\begin{aligned} & 1.26 \\ & 27 \\ & 1.29 \end{aligned}$ | $\begin{aligned} & 1.29 \\ & 27 \\ & 1.29 \end{aligned}$ | $\begin{array}{r} 1.33 \\ 27 \\ 1.29 \end{array}$ |  |  |
| B | 23 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | .79 21 .81 | .82 21 .81 | .86 .82 .87 | .91 .23 .94 |  |  |
|  | 33 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .79 \\ & 21 \\ & .81 \end{aligned}$ | .81 .81 .81 | $\begin{array}{r} .85 \\ 22 \\ .87 \end{array}$ | .90 22 .87 |  |  |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .83 \\ & 21 \\ & .81 \end{aligned}$ | $\begin{aligned} & .86 \\ & 22 \\ & .87 \end{aligned}$ | .90 .22 .87 | .94 23 .94 |  |  |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .90 \\ & 22 \\ & .87 \end{aligned}$ | .93 .93 .94 | .96 .23 .94 | $\begin{aligned} & 1.01 \\ & 24 \\ & 1.02 \end{aligned}$ |  |  |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .99 \\ 24 \\ 1.02 \end{array}$ | $\begin{gathered} 1.01 \\ 24 \\ 1.02 \end{gathered}$ | $\begin{aligned} & 1.05 \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{aligned} & 1.10 \\ & 25 \\ & 1.10 \end{aligned}$ |  |  |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.06 \\ & 25 \\ & 1.10 \end{aligned}$ | $\begin{aligned} & 1.08 \\ & 25 \\ & 1.10 \end{aligned}$ | $\begin{aligned} & 1.13 \\ & 25 \\ & 1.10 \end{aligned}$ | $\begin{array}{r} 1.17 \\ 26 \\ 1.19 \end{array}$ |  |  |
| F | 21 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .71 \\ & 21 \\ & .81 \end{aligned}$ | .73 21 .81 | .79 21 .81 | .84 22 .87 |  |  |
|  | 31 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & .71 \\ & 21 \\ & .81 \end{aligned}$ | $\begin{gathered} .73 \\ 21 \\ .81 \end{gathered}$ | .78 21 .81 | $\begin{gathered} .83 \\ 21 \\ .81 \end{gathered}$ |  |  |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | .75 21 .81 | .78 .81 .81 | .82 .81 .81 | .87 .82 .87 |  |  |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | .81 .81 .81 | .84 .82 .87 | .88 22 .87 | $\begin{gathered} .93 \\ 23 \\ .94 \end{gathered}$ |  |  |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{array}{r} .89 \\ 22 \\ .87 \end{array}$ | .91 23 .94 | .95 .23 .94 | $\begin{aligned} & 1.00 \\ & 24 \\ & 1.02 \end{aligned}$ |  |  |
|  | 16 | Calculated Thickneas <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | .95 .83 .94 | .97 .94 .94 | $\begin{aligned} & 1.01 \\ & 24 \\ & 1.02 \end{aligned}$ | $\begin{array}{r} 1.06 \\ 25 \\ 1.10 \end{array}$ |  |  |

TABLE 1-3 (Continued)
Schedule of Barrel Thickness for Gas Pipe of $18 / 40$ Iron Strength

| Laying Condition | Depth of Cover fl | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 10 | 50 | 100 | 150 | 200 | 250 |
|  |  |  | Barrel Thicknesses-in. |  |  |  |  |  |
| Forty-two-Inch Gas Pipe |  |  |  |  |  |  |  |  |
| A | 2) | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.01 \\ & 23 \\ & 1.05 \end{aligned}$ | 1.04 23 1.05 | 1.08 23 1.05 | 1.14 24 1.13 |  |  |
|  | 3) | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.01 \\ & 23 \\ & 1.05 \end{aligned}$ | 1.04 23 1.05 | 1.08 23 1.05 | 1.14 1.13 |  |  |
|  | 5 | Calculated Thickness $\text { Use }\left\{\begin{array}{l} \text { Thickness Class } \\ \text { Thickness } \end{array}\right.$ | $\begin{aligned} & 1.07 \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.09 \\ & 24 \\ & 1.13 \end{aligned}$ | 1.14 24 1.13 | $\begin{aligned} & 1.19 \\ & 25 \\ & 1.22 \end{aligned}$ |  |  |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.16 \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{aligned} & 1.19 \\ & 25 \\ & 1.22 \end{aligned}$ | 1.24 25 1.22 | 1.29 1.26 1.32 |  |  |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.29 \\ & 1.32 \end{aligned}$ | $\begin{aligned} & 1.32 \\ & 26 \\ & 1.32 \end{aligned}$ | $\begin{aligned} & 1.36 \\ & 26 \\ & 1.32 \end{aligned}$ | $\begin{aligned} & 1.41 \\ & 1.47 \end{aligned}$ |  |  |
|  | 16 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.39 \\ & 27 \\ & 1.43 \end{aligned}$ | $\begin{aligned} & 1.42 \\ & 27 \\ & 1.43 \end{aligned}$ | 1.46 27 1.43 | $\begin{aligned} & 1.51 \\ & 28 \\ & 1.54 \end{aligned}$ |  |  |
| B | 23 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{gathered} .86 \\ 21 \\ .90 \end{gathered}$ | .89 21 .90 | .94 .22 .97 | 1.00 22 .97 |  |  |
|  | $3{ }^{3}$ | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .86 \\ & 21 \\ & .90 \end{aligned}$ | .89 21 .90 | .94 .22 .97 | 1.00 22 .97 |  |  |
|  | 5 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .91 \\ & .21 \\ & .90 \end{aligned}$ | .94 22 .97 | .98 .92 .97 | $\begin{aligned} & 1.04 \\ & 23 \\ & 105 \end{aligned}$ |  |  |
|  | 8 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .99 \\ & .22 \\ & .97 \end{aligned}$ | $\begin{aligned} & 1.02 \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{array}{r} 1.07 \\ 23 \\ 1.05 \end{array}$ | $\begin{aligned} & 1.12 \\ & 24 \\ & 1.13 \end{aligned}$ |  |  |
|  | 12 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.10 \\ & 24 \\ & 1.13 \end{aligned}$ | $\begin{aligned} & 1.13 \\ & 24 \\ & 1.13 \end{aligned}$ | 1.17 24 1.13 | 1.22 1.25 1.22 |  |  |
|  | 16 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.18 \\ & 25 \\ & 1.22 \end{aligned}$ | $\begin{aligned} & 1.21 \\ & 25 \\ & 1.22 \end{aligned}$ | $\begin{array}{r} 1.25 \\ 25 \\ 1.22 \end{array}$ | 1.30 26 1.32 |  |  |
| F | 21 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & .77 \\ & 21 \\ & .90 \end{aligned}$ | .80 21 .90 | .86 21 .90 | .92 21 .90 |  |  |
|  | 31) | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ Class | $\begin{aligned} & .77 \\ & .21 \\ & .90 \end{aligned}$ | .80 21 .90 | .86 .81 .90 | .92 .91 .90 |  |  |
|  | 5 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .82 \\ .21 \\ .90 \end{array}$ | .85 21 .90 | .90 .91 .90 | .96 .22 .97 |  |  |
|  | 8 | Calculated Thickness Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & .89 \\ & 21 \\ & .90 \end{aligned}$ | .92 .91 .90 | .97 .22 .97 | $\begin{array}{r} 1.03 \\ 23 \\ 1.05 \end{array}$ |  |  |
|  | 12 | Calculated Thickness <br> Use $\left\{\begin{array}{l}\text { Thickness Class } \\ \text { Thickness }\end{array}\right.$ | $\begin{array}{r} .98 \\ .22 \\ .97 \end{array}$ | $\begin{aligned} & 1.01 \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.06 \\ & 23 \\ & 1.05 \end{aligned}$ | 1.11 24 1.13 |  |  |
|  | 16 | Calculated Thickners <br> Use $\left\{\begin{array}{l}\text { Thickness } \\ \text { Thickness }\end{array}\right.$ | $\begin{aligned} & 1.06 \\ & 23 \\ & 1.05 \end{aligned}$ | $\begin{array}{r} 1.08 \\ 23 \\ 1.05 \end{array}$ | 1.13 24 1.13 | 1.18 <br> 25 <br> 1.22 |  |  |

TABLE 1-3 (Coniinued)
Schcdule of Barrel Thickness for Gas Pipe of 18/40 Iron Strength

| Laying Condition | Depth of Cover ft | Thickness Specifications | Internal Pressure-psi |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 10 | 50 | 100 | 150 | 200 | 250 |
|  |  |  | Barrel Thicknesses-in. |  |  |  |  |  |

Forty-eight-Inch Gas Pipe


## Sec. 1-2-General Procedure for Thickness Determination

Sec. 1-2.1-Scope
This section gives the general method for determining the thicknesses of castiron pressure pipe. Thickness nomograms (Fig. 1-1 through 1-5) are included for two commonly used iron strengths ( $18 / 40$ and $21 / 45$ ) ; thicknesses for other iron strengths may be computed by the method presented in Sec. 1-3.1.

The required thickness of cast-iron pipe is determined by considering trench load and internal pressure in combination, and calculations of net thickness are made for two cases, namely:

Case 1. Trench load (earth load but no truck superload) in combination with internal pressure (working pressure plus surge pressure) and with a 2.5 factor of safety applied to both trench load and internal pressure

Case 2. Trench load (earth load plus truck superload) in combination with internal pressure (working pressure but no surge pressure) and with a 2.5 factor of safety applied to both trench load and internal pressure.

The larger thickness thus determined is chosen as the net thickness (only Case 2 is used for gas pipe). To the net thickness is added a corrosion allowance to obtain the minimum manufacturing thickness and a casting tolerance to obtain the total calculated thickness. Finally, the thickness for specifying and ordering is selected from a table of standard class thicknesses.

An example of this method is shown in Sec. 1-2.3.

## Sec. 1-2.2-Procedure for Thickness

## Determination

This section gives the procedure for determining total calculated thick-
nesses and standard class thicknesses for pipe. This procedure was used in calculating the values shown in Sec. $1-1$, Tables $1-1,1-2$ and $1-3$.

## 1-2.2.1-Determination of Net Thickness

The net thickness for the more usual conditions may be readily determined using Tables $1-4$ and $1-5$ and the nomograms in Fig. 1-1 through 1-5. The bases for these tables and nomograms are described in Sec. 1-3. The three most commonly used methods of laying pipe, called "laying conditions," are defined below :

| Laying <br> Condition | Description |
| :---: | :---: |
| A | Pipe laid on flat-bottom trench, <br> backfill not tamped |
| B | Pipe laid on flat-bottom trench, <br> backfill tamped |
| F | Pipe bedded in gravel or sand, <br> backfill tamped |

After the pipe size, working pressure, iron strength, laying condition, and depth of cover have been established, the procedure for determining net thickness is as follows:
a. From Table 1-4, select for both Case 1 and Case 2 the value of $w$, which is the ring test load equivalent of trench load including a 2.5 safety factor (see Sec. 1-3.1 for definition of ring test load equivalent).
b. From Table 1-5, select for both Case 1 and Case 2 the value of $p$, which is the internal pressure including a 2.5 safety factor.
c. Thickness nomograms are provided in Fig. 1-1 through 1-5 for iron strengths of $18 / 40^{*}$ and $21 / 45$.* Se-

[^3]lect the nomogram for the desired iron strength and range of loads and pressures. Locate the values of $w$ and $p$ for Case 1 on the vertical scales. Connect these values with a straightedge and read the required thickness for Case 1.
d. Repeat this procedure using the above values of $w$ and $p$ for Case 2 and read the required thickness for Case 2.
$e$. The larger thickness, as determined for Cases 1 and 2, is the net thickness for water pipe. (For gas pipe, only Case 2 is applicable.)

## 1-2.2.2-Addition of Allowances to Net Thickness

a. A corrosion allowance of 0.08 in . is added to the net thickness. The resulting thickness is the minimum manufacturing thickness. Where severe corrosion is anticipated, an analysis of the condition should be made.
b. A casting tolerance from Table $1-6$ is added to the minimum manufacturing thickness and the resulting thickness is the total calculated thickness.

## 1-2.2.3-Selection of Standard Thickness

Refer to Table 1-7 and select the standard class thickness nearest to the total calculated thickness. When the calculated thickness is halfway between two standard thicknesses, the larger of these is selected. When the calculated thickness is less than the smallest standard thickness, the smallest standard thickness is selected.

Sec. 1-2.3-Example for Determining Thickness of 18 -in. Water Pipe
Determine the thickness for $18-\mathrm{in}$. cast-iron pipe laid on flat-bottom trench with tamped backfill (laying condition B), under 5 ft of cover for a working pressure of 200 psi . Iron strength is $18 / 40$.

## 1-2.3.1-Step 1-Determination of Net Thickness

a. From Table 1-4, the ring test load equivalents of trench load, including a safety factor of 2.5 , are

> For Case $1, w=2,786 \mathrm{lb} / \mathrm{linft}$
> For Case $2, w=3,876 \mathrm{lb} / \mathrm{linft}$
b. From Table 1-5, the internal pressures, including a safety factor of 2.5 , are

$$
\text { For Case } 1, p=750 \text { psi }
$$

For Case 2, $p=500 \mathrm{psi}$
c. Using Fig. 1-1, locate $w=2,786$ and $p=750$ on the vertical scales. Connect these values with a straightedge and read the thickness for Case 1 , which is 0.47 in .
d. Using Fig. 1~1, locate $w=3,876$ and $p=500$ and read the thickness for Case 2, which is 0.46 in .
$e$. The larger of these two thicknesses is the net thickness. The controlling one in this example is 0.47 in. (Case 1).
1-2.3.2-Step 2-Addition of Allowances to Net Thickness
The total calculated thickness, as shown in Table 1-1, is determined as follows:

| Net thickness | 0.47 in. |
| :--- | :--- |
| Corrosion allowance | 0.08 in. |
| Minimum manufacturing thickness | 0.55 in. |
| Casting tolerance (Table 1-6) | 0.08 in. |
| Total calculated thickness | $\overline{0.63} \mathrm{in}$. |

1-2.3.3-Step 3-Selection of Standard Thickness
From Table 1-7, the total calculated thickness of 0.63 in . is exactly the same as Class 23. Therefore, Class 23 is the standard thickness class for the pipe in this example.

In ordering or specifying, the foregoing pipe is identified as 18 -in. size, thickness Class 23, conforming to ANSI Standard A21.6 or A21.8 as applicable.

TABLE 1-4
Ring Test Load Equivalents (w) of Trench Loads-lb/lin ft*

| Laying Condition | Pipe Size $i n$. | Depth of Cover-ft |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2) | 3) | 5 | 8 | 12 | 16 | 20 | 24 |
| Case 1-Ring Test Load Equivalent of Earth Load (Use With Surge Pressure) |  |  |  |  |  |  |  |  |  |
| A | 3 | 396 | 565 | 817 | 1,324 | 2,000 | 2,674 | 3.343 | 4,026 |
|  | 4 | 491 | 704 | 1,024 | 1,663 | 2,515 | 3,367 | 4,222 | 5,074 |
|  | 6 | 672 | 974 | 1,428 | 2,337 | 3,548 | 4,756 | 5.487 | 5,754 |
|  | 8 | 826 | 1,211 | 1,791 | 2.948 | 4.491 | 5,635 | 6.120 | 6.446 |
|  | 10 | 974 | 1,448 | 2,157 | 3,576 | 5,376 | 6,198 | 6,770 | 7.163 |
|  | 12 | 1,111 | 1,674 | 2,520 | 4,239 | 5,839 | 6,774 | 7.433 | 7.902 |
|  | 14 | 1,235 | 1,887 | 2,865 | 4,822 | 6,304 | 7,356 | 8,115 | 8.659 |
|  | 16 | 1,341 | 2,085 | 3,196 | 5.176 | 6,776 | 7.954 | 8,804 | 9.433 |
|  | 18 | 1,446 | 2,265 | 3,513 | 5,506 | 7.250 | 8,548 | 9,509 | 10.224 |
|  | 20 | 1,552 | 2,433 | 3,815 | 5,839 | 7,728 | 9,150 | 10,224 | 11,033 |
|  | 24 | 1,770 | 2,730 | 4,372 | 6,509 | 8.693 | 10,378 | 11,678 | 12,680 |
|  | 30 | 2,093 | 3,167 | 5,087 | 7.520 | 10.161 | 12,256 | 13.915 | 15.237 |
|  | 36 | 2,437 | 3,626 | 5,713 | 8,537 | 11.643 | 14,167 | 16,220 | 17.882 |
|  | 42 | 2,761 | 4,083 | 6,341 | 9.556 | 13.078 | 16,104 | 18.554 | 20,560 |
|  | 48 | 3,102 | 4,550 | 6,991 | 10.580 | 14.646 | 18.061 | 20,928 | 23,354 |
|  | 54 | 3,437 | 5,022 | 7,650 | 11.609 | 16,161 | 20,039 | 23,346 | 26,161 |
|  | 60 | 3,778 | 5,493 | 8,313 | 12,643 | 17.815 | 22,028 | 25,776 | 28,998 |
| B | 3 | 355 | 508 | 734 | 1.189 | 1.797 | 2,402 | 3.004 | 3,617 |
|  |  | 438 |  | 913 | 1.483 | 2,242 | 3,002 | 3.764 | 4,523 |
|  | 6 | 585 | 848 | 1,244 | 2.036 | 3.091 | 4,144 | 4.780 | 5.014 |
|  | 8 | 709 | 1,039 | 1,537 | 2,530 | 3.855 | 4,836 | 5.252 | 5,531 |
|  | 10 | 824 | 1,224 | 1,823 | 3,024 | 4.546 | 5,241 | 5.724 | 6,057 |
|  | 12 | 926 | 1,395 | 2.100 | 3,533 | 4.866 | 5,645 | 6,194 | 6.586 |
|  |  |  | 1,539 | 2,337 | 3,933 | 5.142 | 6,000 | 6,618 | 7.062 |
|  | 16 | 1,079 | 1.677 | 2,570 | 4.163 | 5,449 5,750 | 6,397 | 7.080 | 7.586 8.109 |
|  | 18 | 1.147 | 1.797 | 2,786 | 4,367 | 5,750 | 6,779 | 7.541 | 8.109 |
|  | 20 | 1,214 | 1,903 | 2,985 | 4.568 | 6,046 | 7.158 | 7.998 | 8,631 |
|  | 24 | 1,339 | 2.066 | 3,307 | 4,924 | 6,577 | 7.852 | 3.836 | 9,593 |
|  | 30 | 1,524 | 2.305 | 3,703 | 5,473 | 7,396 | 8,921 | 10,128 | 11,090 |
|  | 36 | 1,709 | 2.543 | 4,006 | 5,986 | 8,165 | 9.935 | 11.373 | 12.540 |
|  | 42 | 1,879 | 2,778 | 4.315 | 6,503 | 8,899 | 10.959 | 12.626 | 14,015 |
|  | 48 | 2,074 | 3,042 | 4.674 | 7.074 | 9,792 | 12,076 | 13,993 | 15,615 |
|  | 54 | 2,259 | 3,300 | 5,027 | 7.629 | 10,620 | 13,169 | 15,342 | 17.191 |
|  | 60 | 2,455 | 3,569 | 5,401 | 8,215 | 11,575 | 14,312 | 16,747 | 18,841 |
| $F$ | 3 | 261 | 374 | 540 | 875 | 1,322 | 1,767 | 2.210 | 2.661 |
|  | 4 | 323 | 463 | 673 | 1.093 | 1,653 | 2,213 | 2.774 | 3,334 |
|  | 6 | 434 | 629 | 923 | 1,510 | 2.292 | 3,073 | 3.545 | 3.718 |
|  | 8 | 528 | 774 | 1.144 | 1,883 | 2,869 | 3,600 | 3.910 | 4,118 |
|  | 10 | 612 | 910 | 1,355 | 2.247 | 3,378 | 3,895 | 4,254 | 4,502 |
|  | 12 | 691 | 1,041 | 1,566 | 2,635 | 3,630 | 4,211 | 4,620 | 4,912 |
|  | 14 | 755 | 1,154 | 1.753 | 2,949 | 3,856 | 4.500 | 4,964 | 5,297 |
|  | 16 | 812 | 1,262 | 1,934 | 3,133 | 4,101 | 4.815 | 5.329 | 5.709 |
|  | 18 | 861 | 1,350 | 2,093 | 3,281 | 4,320 | 5,093 | 5.666 | 6,092 |
|  | 20 | 915 | 1,435 | 2,250 | 3,444 | 4,558 | 5,396 | 6,029 | 6,506 |
|  | 24 | 1,018 | 1,570 | 2,514 | 3,742 | 4,999 | 5,968 | 6.715 | 7.291 |
|  | 30 | 1,157 | 1,751 | 2,812 | 4,157 | 5.618 | 6,776 | 7.693 | 8.424 |
|  | 36 | 1,310 | 1.949 | 3,070 | 4.588 | 6.257 | 7.613 | 8,716 | 9,610 |
|  | 42 | 1.443 | 2.134 | 3,315 | 4,996 | 6,837 | 8.418 | 9,699 | 10,760 |
|  | 48 | 1,586 | 2,326 | 3,573 | 5.408 | 7.485 | 9.231 | 10,697 | 11,937 |
|  | 54 | 1.726 | 2,522 | 3,842 | 5,830 | 8.116 | 10,063 | 11.724 | 13,138 |
|  | 60 | 1,881 | 2,735 | 4,139 | 6,295 | 8,869 | 10,967 | 12,832 | 14,436 |

* A safety factor of 2.5 is included. These ring test load equivalents are based on the earth loads in Table 1-8.

TABLE 1-4 (Continued)
Ring Test Load Equivalents (w) of Trench Loads-lb/lin ft*

| $\begin{aligned} & \text { Laying } \\ & \text { Condi- } \\ & \text { tion } \end{aligned}$ | $\begin{aligned} & \text { Pipe } \\ & \text { Size } \\ & \text { in. } \end{aligned}$ | Depth of Cover-ft |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 21 | $3{ }^{3}$ | 5 | 8 | 12 | 16 | 20 | 24 |
| Case 2-Ring Test Load Equivalent of Earth Load Plus Truck Superload (Use Without Surge Pressure) $\dagger$ |  |  |  |  |  |  |  |  |  |
| A | 3 | 748 | 741 | 935 | 1,411 | 2,059 | 2,704 | 3.363 | 4,041 |
|  | 4 | 1,137 | 1,057 | 1,200 | 1,780 | 2,602 | 3.426 | 4,261 | 5,104 |
|  | 6 | 1,904 | 1,678 | 1,839 | 2,541 | 3,696 | 4,843 | 5,543 | 5,798 |
|  | 8 | 2,528 | 2.267 | 2,437 | 3,270 | 4,696 | 5.752 | 6,198 | 6,506 |
|  | 10 | 3,087 | 2,798 | 2,978 | 3,987 | 5,611 | 6,346 | 6.867 | 7,239 |
|  | 12 | 3.635 | 3,317 | 3.517 | 4,767 | 6.104 | 6,950 | 7,548 | 7.991 |
|  | 14 | 3,880 | 3,641 | 4.039 | 5,409 | 6,598 | 7.561 | 8,250 | 8,763 |
|  | 16 | 4.183 | 3.996 | 4.478 | 5,880 | 7.128 | 8.220 | 8,980 | 9.567 |
|  | 18 | 4.489 | 4,361 | 4.887 | 6,298 | 7.661 | 8.841 | 9,702 | 10,374 |
|  | 20 | 4,865 | 4,772 | 5.400 | 6,730 | 8.198 | 9,502 | 10,456 | 11,213 |
|  | 24 | 5,383 | 5.250 | 6,043 | 7.513 | 9.250 | 10.761 | 11.930 | 12,876 |
|  | 30 | 6,278 | 6.115 | 7.083 | 8,746 | 10,865 | 12,726 | 14,226 | 15,476 |
|  | 36 | 7.180 | 7.054 | 8.083 | 9.911 | 12.465 | 14.724 | 16,587 | 18,167 |
|  | 42 | 7,878 | 7,887 | ${ }^{9,035}$ | 11,115 | 14,076 | 16,778 | 19,000 | 20,939 |
|  | 48 | 8,596 | 8,728 | 10,035 | 12,350 | 15,761 | 18,824 | 21,432 | 23,743 |
|  | 54 | 9.165 | 9,483 | 10,967 | 13,563 | 17.452 | 20.861 | 23,902 | 26,572 |
|  | 60 | 9,789 | 10,237 | 11,904 | 14,783 | 19.193 | 22,909 | 26,393 | 29.437 |
| B | 3 | 672 | 666 | 840 | 1,268 | 1,850 | 2,430 | 3,021 | 3.631 |
|  | 4 | 1.014 1.659 | 942 1.462 | 1,070 1,602 | 1,587 2,214 | 1,320 3,220 | 3,054 4,220 | 3,798 4,830 | ${ }_{5}^{4,550}$ |
|  | 8 | 1,659 2,170 | 1,462 1,946 | 1,602 2,091 | 2,214 2,806 | 3,220 4,030 | 4,220 4,937 | 4,830 5,319 | 5,584 |
|  | 10 | 2,610 | 2.366 | 2,518 | 3,371 | 4,744 | 5,366 | 5,807 | 6.121 |
|  | 12 | 3,029 | 2.765 | 2,931 | 3.973 | 5,087 | 5.792 | 6,290 | ${ }^{6} .659$ |
|  | 14 | 3,165 | 2,970 | 3,294 | 4,411 | 5,381 | 6,160 | 6.729 | 7.147 |
|  | 16 | 3,364 | 3,213 | 3,601 | 4,729 | 5,733 | 6.610 | 7.222 | 7,694 |
|  | 18 | 3,560 | 3,459 | 3,876 | 4,995 | 6,076 | 7.012 | 7.695 | 8,228 |
|  | 20 | 3,806 | 3.733 | 4,225 | 5.265 | 6.413 | 7,434 | 8,180 | 8,772 |
|  | 24 | 4,072 | 3.972 | 4.572 | 5,684 | 6,998 | 8.141 | 9,026 | 9,742 |
|  | 30 | 4,570 | 4.451 | 5,155 | 6,366 | 7,908 | 9,263 | 10,354 | 11,264 |
|  | 36 | 5,035 | 4,947 | 5,668 | 6,950 | 8,741 | 10,325 | 11,631 | 12,739 |
|  | 42 | 5,361 | 5,367 | 6,148 | 7.564 | 9,578 | 11,417 | 12,929 | 14,248 |
|  | 48 | 5,747 | 5.836 | 6.709 | 8,257 | 10,538 | 12,586 | 14,330 | 15,875 |
|  | 54 | 6,023 | 6,232 | 7.207 | 8.913 | 11.469 | 13.709 | 15,707 | 17.461 |
|  | 60 | 6,360 | 6,651 | 7.734 | 9.604 | 12,470 | 14,884 | 17.148 | 19.126 |
| F |  | 494 | 490 | 618 | 932 | 1.361 | 1,787 | 2.223 | 2,671 |
|  | 4 | 747 | 694 | 789 | 1.170 | 1.710 | 2.251 | 2.800 | 3,354 |
|  | 6 | 1,230 | 1,084 | 1,188 | 1,642 | 2.388 | 3.129 | 3,581 | 3.746 |
|  | 8 | 1,615 | 1,449 | 1,557 | 2,089 | 3,000 | 3.675 | 3,960 | 4.157 |
|  | 10 | 1,940 | 1,758 | 1,872 | 2,505 | 3.526 | 3,988 | 4,316 | 4,549 |
|  | 12 | 2,260 | 2,062 | 2,187 | 2,964 | 3,795 | 4,320 | 4,692 | 4,968 |
|  | 14 | 2,374 | 2.227 | 2.471 | 3,309 | 4.036 | 4.625 | 5,046 | 5,360 |
|  | 16 | 2.532 | 2.418 | 2.711 | 3,559 | 4.315 | 4.975 | 5,436 | 5,791 |
|  | 18 | 2,675 | 2,598 | 2.912 | 3,752 | 4,565 | 5.268 | 5.781 | 6,181 |
|  | 20 | 2,869 | 2,814 | 3,185 | 3,969 | 4,835 | 5.604 | 6,167 | 6.613 |
|  | 24 | 3.095 | 3.019 | 3.475 | 4,320 | 5.319 | 6.188 | 6,860 | 7.404 |
|  | 30 | 3.471 3.859 | 3,381 | 3,916 | 4,835 | 6,007 | 7.036 | 7,865 | 8,556 |
|  | 36 | 3,859 | 3,791 | 4.343 | 5.326 | 6.698 | 7.912 | 8,914 | 9,763 |
|  | 48 | 4,118 4,393 | 4,123 4,461 | 4.723 5.129 | 5,810 6,312 | 7,358 8,055 | 8,771 9,621 | 9,932 10,954 | 10,945 12,136 |
|  | 54 60 | 4,603 4.874 | 4,762 5,097 | 5,508 $\mathbf{5 , 9 2 7}$ | 6,811 7,360 | 8,764 $\mathbf{9 , 5 5 6}$ | 10.476 11.405 | 12,003 13,140 | 13,344 14,655 |

*A safety factor of 2.5 is included. These ring test load equivalents are based on the earth loads and truck superloads in Table $1-8$. load on unpaved road or flexible pavement and an impact factor of 1.50 (see Sec. $1-3.3$ ).

TABLE 1-5
Internal Pressures ( p )*

| Pipe Size in. | Rated Working Pressure-psi |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 | 50 | 100 | 150 | 200 | 250 | 300 | 350 |
| Case 1-Internal Pressure With Surge Pressure Allowancest |  |  |  |  |  |  |  |  |
| 3 | - | 425 | 550 | 675 | 800 | 925 | 1,050 | 1,175 |
| 4 | - | 425 | 550 | 675 | 800 | 925 | 1,050 | 1,175 |
| 6 | - | 425 | 550 | 675 | 800 | 925 | 1,050 | 1,175 |
| 8 | - | 425 | 550 | 675 | 800 | 925 | 1,050 | 1,175 |
| 10 | - | 425 | 550 | 675 | 800 | 925 | 1,050 | 1,175 |
| 12 | -- | 400 | 525 | 650 | 775 | 900 | 1,025 | 1,150 |
| 14 | - | 400 | 525 | 650 | 775 | 900 | 1,025 | 1,150 |
| 16 | - | 375 | 500 | 625 | 750 | 875 | 1,000 | 1,125 |
| 18 | - | 375 | 500 | 625 | 750 | 875 | 1,000 | 1,125 |
| 20 | - | 350 | 475 | 600 | 725 | 850 | 975 | 1,100 |
| 24 | - | 338 | 463 | 588 | 713 | 838 | 963 | 1,088 |
| 30 | - | 325 | 450 | 575 | 700 | 825 | 950 | 1,075 |
| 36 | - | 313 | 438 | 563 | 688 | 813 | 938 | 1,063 |
| 42 | - | 300 | 425 | 550 | 675 | 800 | 925 | 1,050 |
| 48 | - | 300 | 425 | 550 | 675 | 800 | 925 | 1,050 |
| 54 | - | 300 | 425 | 550 | 675 | 800 | 925 | 1,050 |
| 60 | - | 300 | 425 | 550 | 675 | 800 | 925 | 1,050 |

Case 2-Internal Pressure Without Surge Pressure Allowances

| $3-60$ <br> all | 25 | 125 | 250 | 375 | 500 | 625 | 750 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$| 875$

* Safety factor of 2.5 included.
$\dagger$ For surge pressure allowances, see Table 1~10.

TABLE 1-6
Allowances For Casting Tolerance

| Pipe Size <br> in. | Casting Tolerance <br> in. | Pipe Size <br> in. | Casting Tolerance <br> in. |
| :---: | :---: | :---: | :---: |
| $3-8$ | 0.05 | $14-24$ <br> $10-12$ | 0.06 |

TABLE 1-7-Standard Thickness Classes of Cast-Iron Pipe
(See note on facing page)

| Pipe Size in. | Thickness for Standard Thickness Class Number-in. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 3 |  |  | 0.32* | 0.35 | 0.38 | 0.41 | 0.44 | 0.48 | 0.52 | 0.56 | 0.60 |
| 4 |  |  | 0.35* | 0.38 | 0.41 | 0.44 | 0.48 | 0.52 | 0.56 | 0.60 | 0.65 |
| 6 |  | 0.35* | 0.38 | 0.41 | 0.44 | 0.48 | 0.52 | 0.56 | 0.60 | 0.65 | 0.70 |
| 8 | 0.35* | 0.38 | 0.41 | 0.44 | 0.48 | 0.52 | 0.56 | 0.60 | 0.65 | 0.70 | 0.76 |
| 10 | 0.38* | 0.41 | 0.44 | 0.48 | 0.52 | 0.56 | 0.60 | 0.65 | 0.70 | 0.76 | 0.82 |
| 12 | 0.41* | 0.44 | 0.48 | 0.52 | 0.56 | 0.60 | 0.65 | 0.70 | 0.76 | 0.82 | 0.89 |
| 14 | 0.43 | 0.48* | 0.51 | 0.55 | 0.59 | 0.64 | 0.69 | 0.75 | 0.81 | 0.87 | 0.94 |
| 16 | 0.46 | 0.50* | 0.54 | 0.58 | 0.63 | 0.68 | 0.73 | 0.79 | 0.85 | 0.92 | 0.99 |
| 18 | 0.50 | 0.54* | 0.58 | 0.63 | 0.68 | 0.73 | 0.79 | 0.85 | 0.92 | 0.99 | 1.07 |
| 20 | 0.53 | 0.57* | 0.62 | 0.67 | 0.72 | 0.78 | 0.84 | 0.91 | 0.98 | 1.06 | 1.14 |
| 24 | 0.58 | 0.63* | 0.68 | 0.73 | 0.79 | 0.85 | 0.92 | 0.99 | 1.07 | 1.16 | 1.25 |
| 30 | 0.68* | 0.73 | 0.79 | 0.85 | 0.92 | 0.99 | 1.07 | 1.16 | 1.25 | 1.35 | 1.46 |
| 36 | 0.75* | 0.81 | 0.87 | 0.94 | 1.02 | 1.10 | 1.19 | 1.29 | 1.39 | 1.50 | 1.62 |
| 42 | 0.83* | 0.90 | 0.97 | 1.05 | 1.13 | 1.22 | 1.32 | 1.43 | 1.54 | 1.66 | 1.79 |
| 48 | 0.91* | 0.98 | 1.06 | 1.14 | 1.23 | 1.33 | 1.44 | 1.56 | 1.68 | 1.81 | 1.95 |



Fig. 1-1. Thickness Nomogram for Pipe of 18/40 Iron Strength, Low-Range Load
Thicknesses are net, and computations are made using nominal pipe diameter for inside diameter. S equals $18,000, \mathrm{R}$ equals 40,000 . The encircled values at the end of each curve are for pipe size, in inches.
7
4


Fig. 1-2. Thickness Nomogram for Pipe of 18/40 Iron Strength, High-Range Load
Thicknesses are net, and computations are made using nominal pipe diameter for inside diameter. S equals $18,000, \mathrm{R}$ equals 40,000 . The encircled values at the end of each curve are for pipe size, in inches.

## Explanatory Note to Table 1-7

Irrespective of calculated thickness, standard thicknesses are not made less than certain minimums, which are the smallest thickness classes shown in the table. They have been chosen by judgment based on experience with the shocks received by pipe in handling and transporting. ANSI Standards A21.6, A21.7, A21.8, and A21.9 are based on iron strength of $18 / 40$. The recommended minimum nominal thicknesses for such pipe are shown in boldface type. Pipe of $21 / 45$ iron strength for water service may have thicknesses less than those pipe of $18 / 40$ iron strength. Pipe of such reduced thickness should be used only after consideration of possible adverse conditions of installation and environment. The recommended minimum nominal thicknesses for such pipe are shown with an asterisk. Pipe with $21 / 45$ iron strength in Thickness Class 20 are sometimes used in sizes 14-24 in., when the calculated thicknesses permit and where provisions are made for special handling.


Fig. 1-3. Thickness Nomogram for Pipe of $21 / 45$ Iron Strength, Low-Range Load
Thicknesses are net, and computations are made using nominal pipe diameter for inside diameter. S equals 21,000 . R equals 45,000 . The encircled values at the end of each curve are for pipe size, in inches.
$N \infty$


Fig. 1-4. Thicmess Nomogram for Pipe of $21 / 45$ Iron Strength, Modium-Range Load
Thicknesses are net, and computations are made using nominal pipe diameter for inside diameter. S equals $21,000, \mathrm{R}$ equals 45,000 . The encircled values at the end of each curve are for pipe size, in inches.


Fig. 1-5. Thickness Nomogram for Pipe of $21 / 45$ Iron Strength, High-Range Load
$T$ hickncsses are net, and computations are made using nominal pipe diameter for inside diameter. S equals $21,000 . \mathrm{R}$ equals 45,000 . The encircled values at the end of each curve are for pipe size, in inches.

## Sec. 1-3-Design Theory-Determination of Net Thickness, Earth Load, and Truck Superload

## Sec. 1-3.1-Determination of Net

 ThicknessTests made for ANSI Committee A21* showed that, when a pipe has both an external load applied in threeedge bearing (such as the laboratory ring test) and an internal pressure, 8 the relation between external load and internal pressure at the point of breaking can be represented, with sufficient accuracy, by a parabola drawn as in Fig. 1-6.

The mathematical relationships expressed by the formula for the loadpressure curve are the basis for the whole system of pipe thickness calculations used in this standard.

The equation of the load-pressure parabola is

$$
\begin{equation*}
w=W \sqrt{\frac{P-p}{P}} \tag{1}
\end{equation*}
$$

in which:

$$
\begin{aligned}
& W=\text { ring test crushing load with } \\
& \text { no internal pressure (lb/ } \\
& \text { lin } \mathrm{ft} \text { ) } \\
& P=\text { bursting pressure with no } \\
& \text { external load (psi) } \\
& p \text { and } w \text { are any combination of } \\
& \text { internal pressure and ex- } \\
& \text { ternal load that will just } \\
& \text { cause fracture. }
\end{aligned}
$$

The values of $W$ and $P$ are calculated as follows:

$$
\begin{align*}
W & =\frac{R t^{2}}{0.0795(d+t)}  \tag{2}\\
P & =\frac{2 S t}{d} \tag{3}
\end{align*}
$$

[^4]in which:
\[

$$
\begin{aligned}
R & =\underset{(\mathrm{ring}}{\text { (psi) }} \text { modulus of rupture } \\
S & =\text { bursting tensile strength } \\
& \text { (psi) } \\
t & =\text { net thickness (in.) } \\
d & =\text { nominal pipe size (in.). }
\end{aligned}
$$
\]

The symbols $S$ and $R$ denote the strength of the iron in the pipe and are based on periodic full-length bursting tests and ring tests as specified in ANSI Standards A21.6 (AWWA C106), A21.7, A21.8 (AWWA C108), and A21.9.

The design values of $w$ to be used in solving Eq 1, either by nomogram or by trial calculation, are determined as follows:

For Case 1,

$$
\begin{equation*}
w=\frac{2.5 W_{4}}{L_{f}} \tag{4}
\end{equation*}
$$

For Case 2,

$$
\begin{equation*}
w=\frac{2.5\left(W_{0}+W_{t}\right)}{L_{f}} \tag{5}
\end{equation*}
$$

in which:

$$
\begin{aligned}
w= & \text { ring test load equivalent of } \\
& \text { trench load (lb/lin ft), in- } \\
& \text { cluding a } 2.5 \text { safety factor } \\
W_{t}= & \text { earth load (lb/ft) (Table } \\
& 1-8 \text { and Sec. } 1-3.2) \\
W_{t}= & \text { truck superload (lb/ft) } \\
& \text { (Table } 1-8 \text { and Sec. } 1-3.3) \\
L_{f}= & \text { load factor dependent on } \\
& \text { laying condition (Table } \\
& 1-9) \\
2.5= & \text { safety factor. }
\end{aligned}
$$

The load factor $L_{f}$ converts the trench load (earth load only or earth
load plus truck superload) to an equivalent load in the laboratory ring test. Table 1-4 gives values of $w$ computed from Eq 4 and 5 for standand depths of cover using the earth loads and truck superloads in Table $1-8$ and the load factors in Table 1-9.

The design values of $p$ to be used in solving Eq 1 , either by nomogram or by trial calculation, are determined as follows:

For Case 1,

$$
\begin{equation*}
p=2.5\left(p_{w}+p_{s}\right) \tag{6}
\end{equation*}
$$

For Case 2,

$$
\begin{equation*}
p=2.5 p_{w} \tag{7}
\end{equation*}
$$

in which :
$p=$ internal pressure ( psi ), including a 2.5 safety factor $p_{w}=$ working pressure (psi)
$p_{1}=$ allowance for surge pressure (psi) (Table 1-10)
$2.5=$ safety factor.
Table 1-5 gives values of $p$ computed by Eq 6 and 7 for standard working pressures using the allowances for surge pressure in Table 1-10.

As described in Sec. 1-2.2, calculations for net thickness for water pipe are made for two conditions of combined loading: Case 1 , which includes surge pressure but not truck superload; and Case 2, which includes truck superload but not surge pressure. The larger of the two thicknesses is used for design. Truck superload and surge pressure are transient and occasional loads, and it is considered extremely unlikely that they will occur simultaneously.

When Eq 2 and 3 are substituted in Eq 1, the result is a high-order equation which cannot be solved directly for the net thickness $t$ by conventional mathematical procedure. It is necessary to resort to graphical solution
or to successive approximation. The more convenient method for routine work is to use a nomogram as shown in Fig. 1-1 through 1-5. Such nomograms are prepared by the following steps:
$a$. Using the appropriate iron strength values of $S$ and $R$, calculate $W$ and $P$ for a series of thicknesses for each pipe size by means of Eq 2 and 3.
$b$. For each thickness select two values of $p$ and compute the corresponding values of $w$ using Eq 1 .
$c$. Set up parallel scales for $w$ and $p$, using linear increments for the $p$ scale and increments proportional to the square of the load for the $w$ scale.
$d$. Using a straightedge to connect the corresponding values of $w$ and $p$, locate and mark the intersection of the two lines determined by the two sets of values for each thickness.
$e$. Repeat for the full series of thicknesses to lay out the curve for each pipe size.

If it is desired to determine net thickness for iron strengths or loads and pressures not covered in the nomograms in Fig. 1-1 through 1-5, a trial calculation method may be used to solve Eq 1, as follows:
$a$. Based on the values of $w$ and $p$ corresponding to the design conditions, assume a trial value of $t$.
$b$. Using the known iron strength values $S$ and $R$ and the trial value of $t$, calculate $W$ and $P$ from Eq 2 and 3 .
$c$. Using these values of $W$ and $P$ and the design value of $p$, solve Eq 1 for $w$.
d. Compare this calculated value of $w$ to the design value of $w$ and assume a smaller or larger value of $t$, as required, for the second trial calculation.
e. Continue until a change in assumed thickness of less than 0.01 in. results in a calculated $w$ equal to or greater than the design $w$.

A graphical method may also be used for determining thicknesses for conditions not covered in the nomograms in Fig. 1-1 through 1-5. The parabolic graphical method is described in Sec. 1-12.3 of ANSI A21.11957 (AWWA H1-57).

## Sec. 1-3.2-Earth Loads ( $W_{\text {o }}$ )

For computation of earth loads on cast-iron pipe the type of installation is identified as shown in Fig. 1-7. Ditch condition (Fig. 1-7a, b, c) denotes pipe laid in a relatively narrow trench and backfilled to the original ground surface. The trench width at the top of the pipe determines the load and the ditch may be widened above the top of the pipe for installation convenience (Fig. 1-7 b, c) without increasing the load on the pipe. Embankment condition includes two types of installation: positive projection condition (Fig. 1-7d) which denotes pipe laid on top of a subgrade and covered with fill, and negative projection condition (Fig. 1-7e) which denotes pipe laid in a trench in the subgrade and covered with fill, which extends substantially above the subgrade. Methods for calculating earth loads for these three installation conditions are given below:

## 1-3.2.1-Ditch Condition

The ditch condition is the most common method of installing castiron pipe and is the basis of the earth loads shown in Table 1-8. The load is obtained by selecting the lesser of the two loads computed by Eq 8 and 9.

$$
\begin{array}{ll}
W_{0}=C_{d} w B_{d}^{2} & \text { (ditch condition) } \\
W_{c}=C_{c} w B_{c}^{2} & \begin{array}{c}
\text { (positive projection } \\
\text { condition })
\end{array}
\end{array}
$$

in which:

$$
\begin{aligned}
W_{d}= & \text { earth load, lb per linear } \mathrm{ft} \\
C_{d}= & \text { calculation coefficient }, \\
& \text { ditch condition } \\
C_{d}= & \text { calculation coefficient, } \\
& \text { positive projection condi- } \\
& \text { tion } \\
w= & \text { soil density (120 } \mathrm{lb} / \mathrm{cu} \mathrm{ft} \\
& \text { assumed in standard cal- } \\
& \text { culations) } \\
B_{d}= & \text { width of trench at top of } \\
& \text { pipe ( } \mathrm{ft}) \text { (for standard cal- } \\
& \text { culations use nominal pipe } \\
& \text { diameter plus } 2 \mathrm{ft}) \\
B_{c}= & \text { outside diameter of pipe } \\
& \mathrm{ft} .
\end{aligned}
$$

This procedure was established by work done at Iowa State College,* which proved that for certain combinations of pipe size, trench width, and depth of cover, the load given by Eq 9 for positive projection condition should be used when it is the lesser of the two loads even though the pipe is laid in a trench.
The calculation coefficient $C_{d}$ is obtained from Fig. 1-8 or from the following equation:

$$
\begin{equation*}
C_{d}=\frac{1-e^{-2 K \mu^{\prime} \frac{H}{B_{d}}}}{2 K \mu^{\prime}} \tag{10}
\end{equation*}
$$

in which :

$$
\left.\begin{array}{rl}
K= & \text { ratio of active horizontal } \\
\text { pressure at any point in } \\
\text { the fill to the vertical }
\end{array}\right\}
$$

[^5]$e=$ the base of natural logarithms in which: (2.71828)
$H=$ depth of cover to top of pipe (ft).

The calculation coefficient, $C_{c}$, is obtained from Fig. 1-9 or from the following equation :

$$
\begin{equation*}
C_{c}=\frac{e^{2 K \mu \frac{H}{B_{c}}}-1}{2 K \mu} \tag{11}
\end{equation*}
$$

or

$$
\begin{equation*}
C_{c}=\frac{e^{2 K \mu \frac{H_{c}}{B_{c}}}-1}{2 K_{\mu}}+\left(\frac{H}{B_{c}}-\frac{H_{c}}{B_{c}}\right) e^{2 K_{\mu} \frac{H_{c}}{B_{c}}} \tag{12}
\end{equation*}
$$

in which:

$$
\begin{aligned}
\mu & =\begin{array}{l}
\text { coefficient of internal fric- } \\
\text { tion in fill materials }
\end{array} \\
K \mu & =\begin{array}{l}
0.1924 \text { for standard calcu- } \\
\\
\\
\text { lations }
\end{array}
\end{aligned}
$$

$H_{c}=$ Height of equal settlement (ft) (vertical height from the top of conduit to the level at and above which the fill materials directly over the conduit settle equally with the adjacent fill materials).

Equation 11 is used when the height of fill, $H$, is equal to or less than the height of equal settlement, $H_{c}$. Equation 12 is used when the height of fill, $H$, is greater than the height of equal settlement, $H_{\text {e }}$.

The height of equal settlement, $H_{e}$, is obtained from the following equation:

$$
\begin{equation*}
e^{2 K_{\mu} \frac{H_{0}}{B_{0}}}-2 K \mu \frac{H_{0}}{B}=2 K_{\mu}\left(r_{m} p\right)+1 \tag{13}
\end{equation*}
$$

$$
\begin{aligned}
r_{s d} & =\text { settlement ratio* } \\
p & =\text { projection ratio* }
\end{aligned}
$$

For standard calculations the value of the product $r_{a d} p$ is taken to be 0.75 . For this value, the height of equal settlement calculated by Eq 13 is, $H_{\text {。 }}$ $=1.75 B_{c}$ and Eq 12 reduces to:

$$
\begin{equation*}
C_{c}=1.961 \frac{H}{B_{c}}-0.934 \tag{12a}
\end{equation*}
$$

In most cases Eq 12a is used to calculate $C_{e}$ becuase the depth of cover usually exceeds 1.75 times the pipe outside diameter.
Table 1-8 and Fig. 1-10 show earth loads computed by the above procedures for cast-iron pipe laid in trenches with widths, $B_{d}$, equal to the nominal pipe diameter plus 2 ft . Figure 1-11 shows a chart of earth loads computed by the above procedures for pipe installed in trenches where $B_{d}$ is equal to the nominal pipe diameter plus 1 ft .

Figures 1-12 and 1-13 show charts computed by the above procedures for pipe laid in trenches with sides sloped $1: 1$ and $2: 1$, respectively.

For standard calculations, $K_{\mu}$ $=0.1924$ is used for $C_{c}$ and $K \mu^{\prime}$ $=0.130$ is used for $C_{d}$ in order to obtain conservative earth loads. Other values of $K \mu$ and $K \mu^{\prime}$, which may be used in calculating earth loads for special soil conditions, are shown below with the corresponding soil type:

| Soil Type | Value of <br> $K_{\mu}$ or $K \mu^{\prime}$ |
| :---: | :---: |
| Granular materials without <br> cohesion | 0.1924 |
| Sand and gravel, maximum | 0.165 |

[^6]| Saturated top soil, maximum | 0.150 |
| :--- | :--- |
| Clay, ordinary maximum | 0.130 |
| Saturated clay, maximum | 0.110 |

## 1-3.2.2-Positive-Projection Embankment

The positive-projection condition may be encountered with pipe laid on top of a subgrade and covered with fill for highway or dam construction. The earth load is calculated from Eq 9 using Eq 12a for calculation of $C_{c}$ when standard values of $r_{s d} p$ and $K \mu$
the load may also be read directly from Fig. 1-12 which was constructed from loads computed by Eq 9. The loads in Fig. 1-12 are based on soil weighing $110 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$ and may be adjusted to soil of $120 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$ by multiplying the graph load by $120 / 110$. For calculation of pipe thicknesses, special load factors are used for positive projection embankment condition as shown in Table 1-9.

## 1-3.2.3-Negative-Projection Embankment Condition

The negative-projection embankment condition may be encountered in highway or dam construction when the pipe is laid in a relatively narrow trench cut in the subgrade, a more desirable method than installation directly on top of the subgrade. Loads for negative projection are calculated as follows.

$$
\begin{equation*}
W_{d}=C_{n} w B_{d}{ }^{2} \tag{14}
\end{equation*}
$$

in which:

$$
C_{n}=\text { calculation coefficient (neg- }
$$ ative projection condition).

Other terms are as defined for Eq 8 and 9.

The calculation coefficient, $C_{n}$, is read from Fig. 1-14 after the values
of $p^{\prime}$ and $H / B_{d}$ have been determined as follows:

$$
\begin{aligned}
& p^{\prime}= h / B_{d} \\
& h= \text { depth of cover in trench } \\
& \text { from top of pipe to sub- } \\
& \text { grade (ft) } \\
& H= \text { total height of fill from top } \\
& \text { of pipe to top of embank- } \\
& \text { ment ( } \mathrm{ft} \text { ) } \\
& B_{d}= \text { width of subgrade trench at } \\
& \text { top of pipe ( } \mathrm{ft} \text { ) }
\end{aligned}
$$

Equation 14 is considered to give the maximum load that could occur on pipe laid in trenches under embankment conditions such as the case of embankment or additional fill added at some time, generally years, after the pipe was laid as a ditch conduit and backfill placed. In many embankment cases, Eq 14 may give loads which are too conservative.

In cases where pipe is laid in a subgrade trench with the embankment completed shortly thereafter, the load may be closer to that given by Eq 8 for ditch condition, and the embankment fill above the subgrade trench may be considered as equivalent to an increase of the trench width above the top of the pipe without significant effect on the earth load.

For other cases the load may lie somewhere between those given by Eq 8 and Eq 14. The correct load depends largely on relative soil compaction in the subgrade trench and overlying embankment and selection of the proper load for pipe design will be governed by engineering judgment based on the specific factors in each installation.

[^7]in a flat-bottom trench $(d+2) \mathrm{ft}$ wide.

Step 1. Calculate earth load for ditch condition using Eq 8.

$$
\begin{align*}
& C_{d}=\frac{1-e^{-2 K \mu^{\prime} \frac{H}{B_{d}}}}{2 K \mu^{\prime}}  \tag{10}\\
& K_{\mu^{\prime}}=0.130 \\
& H=5 \mathrm{ft} \\
& B_{d}=\frac{12}{12}+2=3 \mathrm{ft} \\
& C_{d}=\frac{1-e^{-2(0.130)}\left(\frac{5}{3}\right)}{2(0.130)}=\frac{0.3516}{0.260}=1.35 \\
& \begin{aligned}
W_{d} & =C_{d} w B_{d^{2}} \\
& =1.35(120)(3)^{2} \\
& =1,460 \mathrm{lb} / \mathrm{ft}
\end{aligned} \tag{8}
\end{align*}
$$

Step 2. Calculate earth load for projection condition using Eq 9.

$$
\begin{aligned}
H_{\mathrm{c}}=1.75 B_{e}=1.75( & \left.\frac{13.20}{12}\right) \\
& =1.75(1.10)=1.92 \mathrm{ft}
\end{aligned}
$$

$H$ is greater than $H_{e}$, therefore use Eq 12 or 12 a to calculate $C_{c}$. Using Eq 12a:

$$
\begin{align*}
C_{c} & =1.961 \frac{H}{B_{c}}-0.934  \tag{12a}\\
& =1.961\left(\frac{5}{1.10}\right)-0.934 \\
& =7.98 \\
W_{c} & =C_{c} w B_{c}^{2}  \tag{9}\\
& =7.98(120)(1.10)^{2} \\
& =1,159 \mathrm{lb} / \mathrm{ft}
\end{align*}
$$

Step 3. Select lesser load from Step 1 or 2. The load for projection condition is the lesser. Therefore, the earth load, $W_{o}$, is $1,159 \mathrm{lb} / \mathrm{ft}$. This load is shown in Table 1-8.

Sec. 1-3.3—Truck Superloads ( $W_{t}$ )
The procedures in this section may be used to compute truck superioads
for unpaved roads, flexible pavement or rigid pavement; one truck or two passing trucks; and any wheel load and impact factor. For unpaved road or flexible pavement Eq 15 is used. For rigid pavement Eq 16 is used.

$$
\begin{align*}
& W_{t}=C R P F  \tag{15}\\
& W_{t}=K B_{0} P F \tag{16}
\end{align*}
$$

in which:

$$
\begin{aligned}
W_{t}= & \text { Truck superload (lb/lin ft) } \\
C= & \text { Surface load factor for un- } \\
& \text { paved road or flexible pave- } \\
& \text { ment (for one truck, see } \\
& \text { Table 1-11; for two trucks, } \\
& \text { see Table 1-12). } \\
R= & \text { Reduction factor which } \\
& \text { takes account of the fact } \\
& \text { that the part of the pipe } \\
& \text { directly below the wheels } \\
& \text { receives the truck super- } \\
& \text { load in its full intensity but } \\
& \text { is aided in carrying the } \\
& \text { load by adjacent parts of } \\
& \text { the pipe that receive little } \\
& \text { or no load from the truck. } \\
& \text { (See Table 1-13.) } \\
P= & \text { Wheel load (lb) } \\
F= & \text { Impact factor } \\
K= & \text { Surface load factor for } \\
& \text { rigid pavement (see Table } \\
& 1-14 \text { ). } \\
B_{c}= & \text { Outside diameter of pipe } \\
& \text { (ft) (see Table 1-15). }
\end{aligned}
$$

Equations 15 and 16 may be used in computing AASHO truck loading which is described in "Standard Specifications for Highway Bridges," American Assn. of State Highway Officials, 1961. The wheel loads and impact factors to be used in the equations are given in Art. 1.2.5 and
1.2.12 of the AASHO specification, as

## 8

follows:

| AASHO Truck | Gross Weight | Wheel Load, $P$ |
| :---: | :---: | :---: |
| H-10 | 10 tons | $8,000 \mathrm{lb}$ |
| H-15 | 15 tons | $12,000 \mathrm{lb}$ |
| H-20 | 20 tons | 16,000 lb |
| Depth of Cover |  | Impact <br> Factor, $F$ |
| 0 ft to $1 \mathrm{ft}, 0 \mathrm{in}$. |  | 1.30 |
| $1 \mathrm{ft}, 1 \mathrm{in}$., to $2 \mathrm{ft}, 0 \mathrm{in}$. |  | 1.20 |
| $2 \mathrm{ft}, 1 \mathrm{in}$, to $2 \mathrm{ft}, 11 \mathrm{in}$. |  | 1.10 |
| $3 \mathrm{ft}, 0$ in., or more |  | 1.00 |
| The truck superload |  | allowa |
| given in Tables 1-4 and tended for standard |  | $1-8$ ar condit |

They are based on two passing trucks with adjacent wheels 3 ft apart, $9,000-\mathrm{lb}$ wheel load, unpaved road or flexible pavement, 1.50 impact factor. These loads in most cases equal or exceed the static load from a single AASHO H-20 truck with $16,000 \mathrm{lb}$ on each rear wheel. These truck superloads are based on having the design depth of cover over the pipe. Consideration should be given to the loads that may be transmitted to the pipe if either truck superloads or heavy construction equipment is permitted to pass over the pipe at less than the design depth of cover.

TABLE 1-8
Earth Loads $\left(\mathrm{W}_{\mathrm{e}}\right)$ and Truck Superloads ( $\mathrm{W}_{\mathrm{\imath}}$ )-lb/lin ft

| $\begin{aligned} & \text { Pipe } \\ & \text { Size } \\ & \text { in. } \end{aligned}$ | Depth of Cover-ft |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 21 |  | 31 |  | 5 |  | 8 |  | 12 |  | 16 |  | 20 |  | 24 |  |
|  | W. | Wı | W. | W: | W. | Wt | W. | W: | W. | Wt | W. | Wt | W. | Wt | W. | W: |
| 3 | 182 | 162 | 260 | 81 | 376 | 54 | 609 | 40 | 920 | 27 | 1,230 | 14 | 1,538 | 9 | 1,852 | 7 |
| 4 | 226 | 297 | 324 | 162 | 471 | 81 | 765 | 54 | 1,157 | 40 | 1,549 | 27 | 1,942 | 18 | 2,334 | 14 |
| 6 | 309 | 567 | 448 | 324 | 657 | 189 | 1,075 | 94 | 1,632 | 68 | 2,188 | 40 | 2,524 | 26 | 2,647 | 20 |
| 8 | 380 | 783 | 557 | 486 | 824 | 297 | 1,356 | 148 | 2,066 | 94 | 2,592 | 54 | 2,815 | 36 | 2,965 | 28 |
| 10 | 448 | 972 | 666 | 621 | 992 | 378 | 1,645 | 189 | 2,473 | 108 | 2,851 | 68 | 3,114 | 45 | 3,295 | 35 |
| 12 | 511 | 1,161 | 770 | 756 | 1,159 | 459 | 1,950 | 243 | 2,686 | 122 | 3,116 | 81 | 3,419 | 53 | 3,635 | 41 |
| 14 | 568 | 1,217 | 868 | 807 | 1,318 | 540 | 2,218 | 270 | 2,900 | 135 | 3,384 | 94 | 3,733 | 62 | 3,983 | 48 |
| 16 | 617 | 1,307 | 959 | 879 | 1,470 | 590 | 2,381 | 324 | 3,117 | 162 | 3,659 | 122 | 4,050 | 81 | 4,339 | 62 |
| 18 | 665 | 1,400 | 1,042 | 964 | 1,616 | 632 | 2,533 | 364 | 3,335 | 189 | 3,932 | 135 | 4,374 | 89 | 4,703 | 69 |
| 20 | 714 | 1,524 | 1,119 | 1,076 | 1,755 | 729 | 2,686 | 410 | 3,555 | 216 | 4,209 | 162 | 4,703 | 107 | 5,075 | 83 |
| 24 | 814 | 1,662 | 1,256 | 1,159 | 2,011 | 769 | 2,994 | 462 | 3,999 | 256 | 4,774 | 176 | 5,372 | 116 | 5,833 | 90 |
| 30 | 963 | 1,925 | 1,457 | 1,356 | 2,340 | 918 | 3,459 | 564 | 4,674 | 324 | 5,638 | 216 | 6,401 | 143 | 7,009 | 110 |
| 36 | 1,121 | 2,182 | 1,668 | 1,577 | 2,628 | 1,090 | 3,927 | 632 | 5,356 | 378 | 6,517 | 256 | 7,461 | 169 | 8,226 | 131 |
| 42 | 1,270 | 2,354 | 1,878 | 1,750 | 2,917 | 1,239 | 4,396 | 717 | 6,016 | 459 | 7,408 | 310 | 8,535 | 205 | 9,474 | 158 |
| 48 | 1,427 | 2,527 | 2,093 | 1,922 | 3,216 | 1,400 | 4,867 | 814 | 6,737 | 513 | 8,308 | 351 | 9,627 | 232 | 10,743 | 179 |
| 54 | 1,581 | 2,635 | 2,310 | 2,052 | 3,519 | 1,526 | 5,340 | 899 | 7,434 | 594 | 9,218 | 378 | 10,739 | 256 | 12,034 | 189 |
| 60 | 1,738 | 2,765 | 2,527 | 2,182 | 3,824 | 1,652 | 5,816 | 984 | 8,195 | 634 | 10,133 | 405 | 11,857 | 284 | 13,339 | 202 |

* Earth loads are based on the following conditions: trench width ( $B_{d}$ ) equal to nominal pipe diameter plus 2 ft ; unit weight of soil, $120 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$; $K \mu$ equal to 0.1924
 ment and a 1.50 impact factor.

TABLE 1-9
Load Factors for Cast-Iron Pipe in Ditch and Embankment Conditions


* $H$ is depth of cover to top of pipe, in feet; $B_{0}$ is outside diameter of pipe, in feet (see Table 1-15).
$\dagger$ See Fig. 1-7 and See Sec. 1-3.2.

TABLE 1-10
Allowances for Surge Pressure

| Pipe Size <br> $i n$. | Surge Pressure <br> $p s i$ | Pipe Size <br> in. | Surge Pressure <br> $p s i$ |
| :---: | :---: | :---: | :---: |
| $3-10$ | 120 | 24 | 85 |
| $12-14$ | 110 | 30 | 80 |
| $16-18$ | 100 | 36 |  |
| 20 | 90 | $42-60$ | 75 |

TABLE 1-11
Surface Load Factors (C) for One Truck on Unpaved Road or Flexible Pavement*

| Pipe Size in. | Depth of Cover-ft |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 23 | 3 | 3) | 4 | 5 | 6 | 8 | 10 | 12 | 16 | 20 | 24 |
|  | Surface Load Factor |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 0.028 | 0.020 | 0.014 | 0.011 | 0.009 | 0.006 | 0.004 | 0.002 | 0.0015 | 0.001 | 0.0006 | 0.0004 | 0.0002 |
| 4 | 0.034 | 0.024 | 0.017 | 0.013 | 0.011 | 0.007 | 0.005 | 0.003 | 0.002 | 0.0015 | 0.0008 | 0.0005 | 0.0003 |
| 6 | 0.048 | 0.034 | 0.025 | 0.020 | 0.015 | 0.010 | 0.007 | 0.004 | 0.003 | 0.002 | 0.001 | 0.0007 | 0.0004 |
| 8 | 0.062 | 0.044 | 0.033 | 0.026 | 0.020 | 0.013 | 0.009 | 0.006 | 0.0035 | 0.0025 | 0.0013 | 0.0008 | 0.0005 |
| 10 | 0.074 | 0.054 | 0.040 | 0.031 | 0.025 | 0.016 | 0.012 | 0.007 | 0.004 | 0.003 | 0.0016 | 0.001 | 0.0006 |
| 12 | 0.087 | 0.063 | 0.048 | 0.036 | 0.030 | 0.019 | 0.014 | 0.008 | 0.005 | 0.0035 | 0.002 | 0.0012 | 0.0007 |
| 14 | 0.099 | 0.072 | 0.055 | 0.042 | 0.034 | 0.022 | 0.016 | 0.010 | 0.006 | 0.004 | 0.0025 | 0.0015 | 0.0008 |
| 16 | 0.110 | 0.082 | 0.061 | 0.047 | 0.038 | 0.025 | 0.018 | 0.011 | 0.007 | 0.005 | 0.003 | 0.0017 | 0.001 |
| 18 | 0.122 | 0.090 | 0.068 | 0.052 | 0.042 | 0.028 | 0.020 | 0.012 | 0.008 | 0.0055 | 0.0035 | 0.002 | 0.0012 |
| 20 | 0.132 | 0.098 | 0.075 | 0.058 | 0.046 | 0.031 | 0.022 | 0.013 | 0.009 | 0.006 | 0.004 | 0.0025 | 0.0015 |
| 24 | 0.150 | 0.113 | 0.087 | 0.068 | 0.054 | 0.037 | 0.026 | 0.015 | 0.010 | 0.007 | 0.0045 | 0.003 | 0.0017 |
| 30 | 0.171 | 0.132 | 0.102 | 0.081 | 0.065 | 0.045 | 0.031 | 0.019 | 0.012 | 0.009 | 0.005 | 0.0035 | 0.002 |
| 36 | 0.188 | 0.148 | 0.117 | 0.093 | 0.076 | 0.052 | 0.037 | 0.022 | 0.015 | 0.010 | 0.006 | 0.004 | 0.0025 |
| 42 | 0.200 | 0.160 | 0.129 | 0.103 | 0.085 | 0.059 | 0.043 | 0.025 | 0.017 | 0.012 | 0.007 | 0.0045 | 0.003 |
| 48 | 0.210 | 0.170 | 0.139 | 0.113 | 0.093 | 0.066 | 0.048 | 0.029 | 0.019 | 0.013 | 0.008 | 0.005 | 0.0033 |
| 54 | 0.216 | 0.178 | 0.147 | 0.120 | 0.101 | 0.072 | 0.053 | 0.032 | 0.021 | 0.015 | 0.0085 | 0.0055 | 0.0036 |
| 60 | 0.222 | 0.184 | 0.153 | 0.126 | 0.107 | 0.077 | 0.057 | 0.035 | 0.023 | 0.016 | 0.009 | 0.006 | 0.004 |

eftive pipe 24.20
and Chap. 16 of M. G. Spangler's Soil Engineering (2nd ed., 1960; International Textbook Co., Scranton, Pa.).

TABLE 1-12
Surface Load Factors (C) for Two Passing Trucks on Unpaved Road or Flexible Pavement*

| Pipe Size $i n$. | Depth of Cover-ft |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 24 | 3 | $3{ }^{3}$ | 4 | 5 | 6 | 8 | 10 | 12 | 16 | 20 | 24 |
|  | Surface Load Factor |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 0.019 | 0.012 | 0.008 | 0.006 | 0.005 | 0.004 | 0.0035 | 0.003 | 0.0025 | 0.002 | 0.001 | 0.0007 | 0.0005 |
| 4 | 0.032 | 0.022 | 0.016 | 0.012 | 0.009 | 0.006 | 0.005 | 0.004 | 0.0035 | 0.003 | 0.002 | 0.0013 | 0.0010 |
| 6 | 0.058 | 0.042 | 0.032 | 0.024 | 0.020 | 0.014 | 0.010 | 0.007 | 0.006 | 0.005 | 0.003 | 0.0019 | 0.0015 |
| 8 | 0.076 | 0.058 | 0.044 | 0.036 | 0.030 | 0.022 | 0.017 | 0.011 | 0.009 | 0.007 | 0.004 | 0.0027 | 0.0021 |
| 10 | 0.092 | 0.072 | 0.056 | 0.046 | 0.039 | 0.028 | 0.021 | 0.014 | 0.011 | 0.008 | 0.005 | 0.0033 | 0.0026 |
| 12 | 0.108 | 0.086 | 0.070 | 0.056 | 0.047 | 0.034 | 0.027 | 0.018 | 0.012 | 0.009 | 0.006 | 0.0039 | 0.0030 |
| 14 | 0.122 | 0.098 | 0.078 | 0.065 | 0.055 | 0.040 | 0.031 | 0.020 | 0.014 | 0.010 | 0.007 | 0.0046 | 0.0036 |
| 16 | 0.136 | 0.110 | 0.090 | 0.074 | 0.062 | 0.046 | 0.036 | 0.024 | 0.016 | 0.012 | 0.009 | 0.0060 | 0.0046 |
| 18 | 0.149 | 0.122 | 0.101 | 0.084 | 0.070 | 0.052 | 0.041 | 0.027 | 0.019 | 0.014 | 0.010 | 0.0066 | 0.0051 |
| 20 | 0.162 | 0.136 | 0.115 | 0.096 | 0.080 | 0.060 | 0.048 | 0.032 | 0.022 | 0.016 | 0.012 | 0.0079 | 0.0061 |
| 24 | 0.185 | 0.152 | 0.126 | 0.106 | 0.091 | 0.067 | 0.053 | 0.036 | 0.026 | 0.019 | 0.013 | 0.0086 | 0.0067 |
| 30 | 0.212 | 0.176 | 0.146 | 0.124 | 0.107 | 0.080 | 0.064 | 0.044 | 0.032 | 0.024 | 0.016 | 0.0106 | 0.0081 |
| 36 | 0.235 | 0.202 | 0.169 | 0.146 | 0.127 | 0.095 | 0.075 | 0.052 | 0.038 | 0.028 | 0.019 | 0.0125 | 0.0097 |
| 42 | 0.251 | 0.218 | 0.188 | 0.162 | 0.140 | 0.108 | 0.087 | 0.059 | 0.044 | 0.034 | 0.023 | 0.0152 | 0.0117 |
| 48 | 0.264 | 0.234 | 0.205 | 0.178 | 0.157 | 0.122 | 0.097 | 0.067 | 0.050 | 0.038 | 0.026 | 0.0172 | 0.0132 |
| 54 | 0.274 | 0.214 | 0.216 | 0.190 | 0.170 | 0.133 | 0.108 | 0.074 | 0.057 | 0.044 | 0.028 | 0.0190 | 0.0140 |
| 60 | 0.281 | 0.256 | 0.228 | 0.202 | 0.181 | 0.144 | 0.117 | 0.081 | 0.061 | 0.047 | 0.030 | 0.0210 | 0.0150 |

* The factors are for two trucks with 6 -ft rear wheel spacing passing with inside rear wheels 3 ft apart. Effective pipe length is 3 ft, coinciding with the distance between (

TABLE 1-13
Reduction Factors ( R )

| Pipe Size in. | Depth of Cover-ft |  |  |  | Pipe Size <br> Size <br> in | Depth of Cover-ft |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2i-3i | 4-7 | 8-10 | >10 |  | 2t-3年 | 4-7 | 8-10 | $>10$ |
|  | Reduction Factor |  |  |  |  | Reduction Factor |  |  |  |
| 3-12 | 1.00 | 1.00 | 1.00 | 1.00 | 20 | 0.83 | 0.90 | 0.95 | 1.00 |
| 14 | 0.92 | 1.00 | 1.00 | 1.00 | 24-30 | 0.81 | 0.85 | 0.95 | 1.00 |
| 16 | 0.88 | 0.95 | 1.00 | 1.00 | 36-60 | 0.80 | 0.85 | 0.90 | 1.00 |
| 18 | 0.85 | 0.90 | 1.00 | 1.00 |  |  |  |  |  |

TABLE 1-14
Surface Load Factors (K) For One Truck and Two Passing Trucks on Rigid Pavement*

| $\begin{gathered} \text { Depth } \\ \text { of } \\ \text { Cover } \\ f t \end{gathered}$ | One Truck |  |  |  | Two Passing Trucks |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pavement Thickness-in. |  |  |  | Pavement Thickness-in. |  |  |  |
|  | 4 | 6 | 8 | 10 | 4 | 6 | 8 | 10 |
|  | Surface Load Factor |  |  |  |  |  |  |  |
| 2 | 0.0244 | 0.0149 | 0.0101 | 0.0076 | 0.0410 | 0.0263 | 0.0186 | 0.0142 |
| 21 ${ }^{\frac{1}{2}}$ | 0.0213 | 0.0139 | 0.0097 | 0.0072 | 0.0364 | 0.0246 | 0.0177 | 0.0136 |
| 3 | 0.0186 | 0.0126 | 0.0090 | 0.0070 | 0.0333 | 0.0228 | 0.0167 | 0.0129 |
| 37 | 0.0164 | 0.0114 | 0.0085 | 0.0066 | 0.0290 | 0.0206 | 0.0156 | 0.0122 |
| 4 | 0.0144 | 0.0102 | 0.0079 | 0.0061 | 0.0262 | 0.0187 | 0.0146 | 0.0117 |
| 5 | 0.0114 | 0.0084 | 0.0066 | 0.0054 | 0.0210 | 0.0156 | 0.0123 | 0.0102 |
| 6 | 0.0093 | 0.0071 | 0.0057 | 0.0047 | 0.0170 | 0.0133 | 0.0107 | 0.0088 |
| 8 | 0.0065 | 0.0052 | 0.0043 | 0.0036 | 0.0114 | 0.0097 | 0.0081 | 0.0069 |
| 10 | 0.0046 | 0.0039 | 0.0033 | 0.0029 | 0.0080 | 0.0070 | 0.0062 | 0.0055 |
| 12 | 0.0034 | 0.0030 | 0.0026 | 0.0023 | 0.0059 | 0.0054 | 0.0049 | 0.0045 |
| 16 | 0.0022 | 0.0019 | 0.0017 | 0.0016 | 0.0034 | 0.0032 | 0.0030 | 0.0028 |
| 20 | 0.0013 | 0.0011 | 0.0010 | 0.0009 | 0.0024 | 0.0023 | 0.0022 | 0.0021 |
| 24 | 0.0008 | 0.0007 | 0.0006 | 0.0005 | 0.0015 | 0.0014 | 0.0013 | 0.0012 |

* These factors were computed by the methods explained in "Vertical Pressure on Culverts under Wheel Loads on Concrete-Pavement Slabs"." Bull. ST65, Portland Cement Assn., Chicago, Ill. In Bulletin ST65, K if Loads on Concrete-Pavement Slabs ${ }^{\text {. }}$ Bul. ST 65 , Portland Cement Assn., Chicago, Ill. In Bulletin ST65, $K$ if expressed $25 c / L^{2}$. These factors are based on a modulus of subgrade reaction of $100 \mathrm{lb} / \mathrm{cu}$ in. and a modulus os elasticicy wheels passing 3 ft apart.

TABLE 1-15
Outside Diameters of Cast-Iron Pipe

| $\begin{aligned} & \text { Pipe } \\ & \text { Size } \\ & \text { in. } \end{aligned}$ | Outside Diameter in. | $\begin{aligned} & \text { Outside } \\ & \text { Diameter }\left(B_{a}\right) \end{aligned}$ | ${ }_{\text {Pipe }}^{\text {Size }}$ in. | Outside Diameter in. | $\underset{\substack{\text { fiameter }}}{\text { Outside }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 3.96 | 0.330 | 20 | 21.60 | 1.800 |
| 4 | 4.80 | 0.400 | 24 | 25.80 | 2.150 |
| 6 | 6.90 | 0.575 | 30 | 32.00 | 2.667 |
| 8 | 9.05 | 0.754 | 36 | 38.30 | 3.192 |
| 10 | 11.10 | 0.925 | 42 | 44.50 | 3.708 |
| 12 | 13.20 | 1.100 | 48 | 50.80 | 4.233 |
| 14 | 15.30 | 1.275 | 54 | 57.10 | 4.758 |
| 16 | 17.40 | 1.450 | 60 | 63.40 | 5.283 |
| 18 | 19.50 | 1.625 |  |  |  |



Fig. 1-6. Load-Pressure Curve
The parabola represents the relation between external load and internal pressure at the point of breaking.


Fig. 1-7. Installation Conditions for Earth Load Calculations

Fig. 1-7(a)-(c) are for ditch conditions; Fig. 1-7(d) and (e) are for positive and negative projection embankment conditions, respectively.



Fig. 1-9. Oalculation Coefficients ( $C_{0}$ ) for Positive-Projection Condition
The values of $\mathrm{C}_{\mathrm{c}}$ may also be determined by Eq 11 or Eq 12, given in the text.


Fig. 1-10. Earth Loads on Pipe for Trench Width of $(d+2) \mathrm{ft}$
$V$ alues associated with each curve are for pipe size, in inches. It is assumed that the unit weight of fill is $120 \mathrm{lb} / \mathrm{cu} f t$, that $\mathrm{K}_{\mu}$ equals 0.1924 and $\mathrm{K}_{\mu}{ }^{\prime}$ equals 0.130 , and that $\mathrm{r}_{\mathrm{sd}} \mathrm{P}$ is 0.75 for all sises. $\mathrm{B}_{\mathrm{c}}$ is pipe $O D$. For 3-and 8-60-in. pipe, $O D$ is as shown in Table 1-15. OD of 4-and 6-in. pipe is 5.00 and 7.10 in., respectively.


Fig. 1-11. Earth Loads on Pipe for Trench Width of $(d+1) \mathrm{ft}$
$V$ alues associated with each curve are for pipe size, in inches. It is assumed that the unit weight of fill is $120 \mathrm{lb} / \mathrm{cu} f t$, that $\mathrm{K}_{\mu}$ equals 0.1924 and $\mathrm{K}_{\mu}^{\prime}$ equals 0.130. For wide ditches, $\mathrm{r}_{\mathrm{gd}} \mathrm{p}$ is 0.75. $\mathrm{B}_{\mathrm{c}}$ is pipe $O D$. For 3- and $8-60-\mathrm{in}$. pipe, $O D$ is as shown in Table 1-15. OD of 4 - and 6-in. pipe is 5.00 and 7.10 in ., respectively.


Fig. 1-12. Earth Loads on Pipe in Trench With 1:1 side Slopes
Values associated with each curve are for pipe size, in inches. It is assumed that the unit weight of fill is $110 \mathrm{lb} / \mathrm{cuft}$; this load may be adjusted to soil of $120 \mathrm{lb} / \mathrm{cuft}$ by multiplying the graph load by 120/110. For wide ditches, $\mathrm{r}_{\mathrm{ud}} \mathrm{p}$ is $0.75 . \mathrm{K} \mu$ equals $0.1924, \mathrm{~K}^{\prime}$ equals 0.130. $\mathrm{B}_{\mathrm{c}}$ is pipe $O D$. For 3- and 8-60-in. pipe, $O D$ is as shown in Table 1-15. OD of 4-and 6-in. pipe is 5.00 and 7.10 in ., respectively.


Fig. 1-13. Earth Loads on Pipe in Trench With 2:1 Slde Slopes
$V$ alues associated with each curve are for pipe size, in inches. It is assumed that the unit weight of fill is $120 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$. For wide ditches, $\mathrm{r}_{\mathrm{sd}} \mathrm{p}$ equals $0.75 . \mathrm{K} \mu$ equals 0.1924, $\mathrm{K}_{\mu}$ ' equals 0.130. $\mathrm{B}_{\mathrm{c}}$ is pipe $O D$. For 3- and 8-60-in. pipe, $O D$ is as shown in Table 1-15. OD of 4 - and 6-in. pipe is 5.00 and 7.10 in ., respectively.


Fig. 1-14. Oalculation Ooefficients ( $\mathrm{O}_{n}$ ) for Negative-Projection Conditions

The values associated with the five curves to the right are for $\mathrm{p}^{\prime}$. $\mathrm{K} \mu^{\prime}$ equals 0.130. $\mathrm{r}_{\mathrm{nd}} \mathrm{p}$ equals 0.0.

## Sec. 1-4-Thickness Determination for Pipe on Piers or Piling Aboveground or Underground

## Sec. 1-4.1-Scope

This section gives the procedures for determining the net thickness of cast-iron pipe supported at intervals rather than continuously. These procedures are applicable to pipe installed on piling bents and piers, with or without earth cover, as well as to pipe installed on bridges and other structures with hangers and other types of spaced supports.

Sec. 1-4.2-Pipe Installed ABoveground Without Earth Cover
a. Determine the ring test load equivalent of external load, including 2.5 safety factor, as follows:

$$
\begin{equation*}
w=\frac{2.5\left(W_{p}+W_{w}\right)}{L_{f}} \tag{17}
\end{equation*}
$$

in which:

$$
\begin{aligned}
w= & \underset{(\mathrm{lb} / \mathrm{ft})}{\text { ring tead equivalent }} \\
W_{p}= & \text { weight of pipe ( } \mathrm{lb} / \mathrm{ft} \text { ) (see } \\
& \text { Table } 1-16) \\
W_{w}= & \text { weight of contained water } \\
& (\mathrm{lb} / \mathrm{ft}) \text { (see Table } 1-16) \\
L_{f}= & \begin{array}{l}
\text { load factor (see Table } \\
\\
\\
1-17)
\end{array}
\end{aligned}
$$

b. Select the internal pressure for Case 1 from Table 1-5 which includes surge pressure and 2.5 safety factor.
c. Enter the above values of ring test load equivalent and internal pressure in the appropriate nomogram and read the net thickness. To obtain total calculated thickness, corrosion allowance and casting tolerance are added to this net thickness as described in Sec. 1-2.2.

## Sec. 1-4.3-Pipe Installed Underground With Earth Cover

Thicknesses are computed for two cases as described in Sec. 1-2.2 and the larger of the two thicknesses is used for design.

## Case 1:

a. Determine the ring test load equivalent from the following formula :

$$
\begin{equation*}
w=\frac{2.5 W_{f}}{L_{f}} \tag{18}
\end{equation*}
$$

in which:

$$
\begin{aligned}
w= & \text { ring test load equivalent } \\
& (\mathrm{lb} / \mathrm{ft}) \\
W_{e}= & \text { earth load (see Table 1-8) } \\
L_{f}= & \text { load factor (see Table } \\
& 1-17)
\end{aligned}
$$

b. Select the internal pressure to Case 1 from Table 1-5 which includes surge pressure and 2.5 safety factor.
c. Enter the above values of ring test load equivalent and internal pressure in the appropriate nomogram and read the net thickness.

## Case 2 :

a. Determine the ring test load equivalent from the following formula:

$$
\begin{equation*}
w=\frac{2.5\left(W_{0}+W_{t}\right)}{L_{f}} \tag{19}
\end{equation*}
$$

in which $W_{t}$ is the truck superload in pounds per foot (see Table 1-8) and other factors are as defined for Eq 18 .
b. Select the internal pressure for Case 2 from Table 1-5 which includes a safety factor of 2.5 .
c. Enter the values of ring test load equivalent and internal pressure in the appropriate nomogram and read the net thickness.

The net thickness is selected from Case 1 or Case 2, whichever gives the greater computed thickness. To obtain total calculated thickness, corrosion allowance and casting tolerance are added to this net thickness as described in Sec. 1-2.2.

## Sec. 1-4.4-Design Examples

a. Calculate the thickness of 24 -in. cast-iron pipe, 18/40 iron strength, installed aboveground on piers spaced 18 ft apart on centers with $60-\mathrm{deg}$ saddle support. Working pressure is 150 psi.

Load factor (Table 1-17),

$$
\begin{aligned}
L_{f} & =0.29 \times 1.55 \\
& =0.45
\end{aligned}
$$

Ring test load equivalent,

$$
\begin{aligned}
w & =\frac{2.5(177+196)}{0.45} \\
& =2,071 \mathrm{lb} / \mathrm{ft}
\end{aligned}
$$

Internal pressure (Table 1-5),

$$
p=588 \mathrm{psi}
$$

Using the above values of $w$ and $p$ in the nomogram, Fig. 1-1, the net thickness is determined to be 0.49 in. Adding 0.08 in. corrosion allowance and 0.08 in. casting tolerance, the total calculated thickness is determined to be 0.65 in.
b. Calculate the thickness of $16-\mathrm{in}$. cast-iron pipe, 18/40 iron strength, installed underground on piers spaced 18 ft apart on centers with $120-\mathrm{deg}$ saddle support, with $5-\mathrm{ft}$ cover. Working pressure is 150 psi .

Case 1:
Load factor (Table 1-17),

$$
\begin{aligned}
L_{f} & =0.24 \times 2.13 \\
& =0.51
\end{aligned}
$$

Ring test load equivalent,

$$
\begin{aligned}
w & =\frac{2.5 \times 1470}{0.51} \\
& =7,206 \mathrm{lb} / \mathrm{ft}
\end{aligned}
$$

Internal pressure (Table 1-5),

$$
p=625 \mathrm{psi}
$$

Using the above values of $w$ and $p$ in the nomogram, Fig. 1-1, the net thickness is determined to be 0.57 in .

## Case 2:

Ring test load equivalent,

$$
\begin{aligned}
w & =\frac{2.5(1,470+590)}{0.51} \\
& =10,980 \mathrm{lb} / \mathrm{ft}
\end{aligned}
$$

Internal pressure (Table 1-5),

$$
p=375 \mathrm{psi}
$$

Using the above values of $w$ and $p$ in the nomogram, Fig. 1-2, the net thickness is determined to be 0.65 in .

Case 2 gives the larger computed thickness, 0.65 in ., which is selected as the net thickness. Adding 0.08 in . corrosion allowance and 0.08 in. casting tolerance, the total calculated thickness is determined to be 0.81 in .

## Sec. 1-4.5-Calculation of Beam Stress and Deflection

For small-diameter pipe, generally 3 in . through 8 in ., a check of the beam stress may be required. If the calculated beam stress exceeds $14,000 \mathrm{psi}$, the thickness is increased or the span between supports is decreased to limit the beam stress to $14,000 \mathrm{psi}$. In
some types of installations, such as gravity flow sewers, beam deflection may be a significant factor in the design. Beam stress and deflection are calculated from the following two formulas:

$$
\begin{align*}
& f=\frac{15.28 W D L^{2}}{D^{4}-d^{4}}  \tag{20}\\
& y=\frac{30 f L^{2}}{D E} \tag{21}
\end{align*}
$$

in which:

$$
\begin{aligned}
f= & \text { beam stress } \quad(14,000 \quad \text { psi } \\
& \text { maximum })
\end{aligned}
$$

$W=$ external load, lb per ft (for aboveground pipe $W=W_{p}$ $+W_{w}$; for underground pipe, $\left.W=W_{\bullet}+W_{\ell}\right)$
$L=$ distance on centers between supports (ft)
$D=$ outside diameter of pipe (in.)
$d=$ inside diameter ( $D-2 t$ ) (in.)
$t=$ net thickness (in.)
$y=$ deflection at mid-span (in.)
$E=$ modulus of elasticity, $15,000,000 \mathrm{psi}$.

TABLE 1-16
Weights of Pipe and Contained Water for Design of Aboveground Pipe

| Pipe <br> Size <br> in. | Weight-lb/ft |  | Pipe Size ${ }^{3} \mathrm{n}$. | Weight-lb/ft |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pipe ( $\left.W_{P}\right)^{*}$ | Water ( $W_{w}$ ) $\dagger$ |  | Pipe ( $\left.W^{*}\right)^{*}$ | Water ( $\left.W_{0}\right)^{\dagger}$ |
| 3 | 12 | 3 | 18 | 114 | 110 |
| 4 | 16 | 6 | 20 | 135 | 136 |
| 6 | 26 | 12 | 24 | 177 | 196 |
| 8 | 37 | 22 | 30 | 257 | 307 |
| 10 | 49 | 34 | 36 | 339 | 442 |
| 12 | 63 | 49 | 42 | 439 | 601 |
| 14 | 78 | 67 | 48 | 545 | 785 |
| 16 | 94 | 88 |  |  |  |

[^8]TABLE 1-17
Load Factors for Pipe on Spaced Supports Aboveground and Underground

| $\begin{aligned} & \text { Pipe } \\ & \text { Size } \\ & \text { Sin. } \end{aligned}$ | Distance on Centers Between Supports-ft |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6 | 8 | 9 | 10 | 12 | 16 | 18 | 20 |
|  | Load Factor for Flat Support |  |  |  |  |  |  |  |
| 3 | 0.19 | 0.14 | 0.13 | 0.11 | 0.10 | 0.07 | 0.06 | 0.06 |
| 4 | 0.22 | 0.17 | 0.15 | 0.13 | 0.11 | 0.08 | 0.07 | 0.07 |
| 6 | 0.31 | 0.23 | 0.21 | 0.19 | 0.16 | 0.12 | 0.10 | 0.09 |
| 8 | 0.40 | 0.30 | 0.27 | 0.24 | 0.20 | 0.15 | 0.13 | 0.12 |
| 10 | 0.50 | 0.38 | 0.33 | 0.30 | 0.25 | 0.19 | 0.17 | 0.15 |
| 12 | 0.60 | 0.45 | 0.40 | 0.36 | 0.30 | 0.23 | 0.20 | 0.18 |
| 14 | 0.67 | 0.50 | 0.45 | 0.40 | 0.33 | 0.25 | 0.22 | 0.20 |
| 16 | 0.73 | 0.55 | 0.49 | 0.44 | 0.36 | 0.27 | 0.24 | 0.22 |
| 18 | 0.78 | 0.59 | 0.52 | 0.47 | 0.39 | 0.29 | 0.26 | 0.23 |
| 20 | 0.81 | 0.61 | 0.54 | 0.49 | 0.40 | 0.30 | 0.27 | 0.24 |
| 24 | 0.87 | 0.65 | 0.58 | 0.52 | 0.43 | 0.33 | 0.29 | 0.26 |
| 30 | 0.93 | 0.70 | 0.62 | 0.56 | 0.46 | 0.35 | 0.31 | 028 |
| 36 | 0.96 | 0.72 | 0.64 | 0.58 | 0.48 | 0.36 | 0.32 | 029 |
| 42 | 0.98 | 0.73 | 0.65 | 0.59 | 0.49 | 0.37 | 0.33 | 0.29 |
| 48 | 0.99 | 0.74 | 0.66 | 0.60 | 0.50 | 0.37 | 0.33 | 0.30 |

Explanatory Note. 1. Load factor for saddle support is obtained by multiplying the load factor for flat support by the following modifiers:

| Saddle <br> Angle <br> dex. |  |
| :---: | :---: |
| 30 | Modifier |
| 45 | 1.25 |
| 60 | 1.40 |
| 90 | 1.55 |
| 120 | 1.87 |
| 180 | 2.13 |
|  | 2.35 |

2. Load factors for other distances between supports or for other saddle angles may be obtained by interpolation between tabulated values.
3. The load factor for flat support is equal to the load factor for laying condition C, A21.1-1957, multiplied by the ratio of $6-\mathrm{ft}$, the block spacing of laying condition C , to the distance between supports. The modifier for saddle support is obtained from Table 2 of Stresses in Pressure Pipelines and Protective Casing Pipes [M. G. Spangler, J. Struct. Div. A SCE, Vol. 82, No. ST5 (Sep. 1956)], by dividing $K_{b}$ for 180 deg load and 0 deg support by $K_{b}$ for 180 deg load and a support angle equal to the saddle angle.
4. The recommended minimum axial bearing length of supports, for underground pipe is 6 in . for $3-8$ - in. pipe, 12 in . for $10-24-\mathrm{in}$. pipe, and 18 in . for $30-48$ - in . pipe.


# AMERICAN NATIONAL STANDARD 

# for <br> CAST-IRON PIPE CENTRIFUGALLY CAST IN METAL MOLDS, FOR WATER OR OTHER LIQUIDS 

Administrative Secretariat

AMERICAN WATER WORKS ASSOCIATION

Co-Secretariats
AMERICAN GAS ASSOCIATION
NEW ENGLAND WATER WORKS ASSOCIATION

Revised edition approved by American National Standards Institute. Inc., May 28, 1975.

## NOTICE

This Standard has been especially printed by the American Water Works Association for incorporation into this volume. It is current as of December 1, 1975. It should be noted, however, that all AWWA Standards are updated at least once in every five years. Therefore, before applying this Standard it is suggested that you confirm its currency with the American Water Works Association.

## PUBLISHED BY

AMERICAN WATER WORKS ASSOCIATION 6666 West Quincy Avenue, Denver, Colorado 80235

## Table of Contents



## American National Standard

An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether he has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review, and users are cautioned to obtain the latest editions. Producers of goods made in conformity with an American National Standard are encouraged to state on their own responsibility in advertising, promotion material, or on tags or labels that the goods are produced in conformity with particular American National Standards.

CAUTION NOTICE. This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than five (5) years from the date of publication. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute, 1430 Broadway, New York, N. Y. 10018, (212) 868-1220.

## Foreword

## This foreword is provided for information only and is not a part of ANSI A21.6-1975 (AWWA C106-75).

## I-History of Standard

On Sep. 10, 1902, NEWWA adopted a "Standard Specification for CastIron Pipe and Special Castings," covering bell-and-spigot pit-cast pipe and fittings of ten thickness classes. The thickness classes were based on allowable internal pressures varying by increments of 50 ft of head.

On May 12, 1908, AWWA adopted a "Standard Specification for CastIron Pipe and Special Castings," covering bell-and-spigot pit-cast pipe and fittings of eight classes, A through H , with allowable working pressures varying by increments of 100 ft of head from 100 to 800 ft . Dimensions and weights were given for pipe and fittings.

In 1926, ASA Sectional Committee (now American National Standards Committee) A21 on Cast-Iron Pipe and Fittings was organized under the sponsorship of A.G.A., ASTM, AWWA, and NEWWA and was assigned the following scope:

Unification of specifications for castiron pipe, including materials; dimensions; pressure ratings; methods of manufacture (including such new developments as centrifugal casting) insofar as they may be necessary to secure satisfactory specifications; elimination of unnecessary sizes and varieties; consideration of the possibility of developing a coordinated scheme of metallic pipe and fittings applicable to all common mediums; and methods of making up joints insofar as they are determining as to the dimensional design of cast-iron pipe.

The types of cast-iron pipe [are] to include bell-and-spigot pipe, flanged pipe, flanged and bell mouth fittings and wall castings, pipe elbows, tees, wyes, return bends, and other fittings not now included in standard lists; cast-iron pipe threaded for flanges or couplings. The standardization is not to include methods of installing pipe and similar matters, except as to the making up of joints in its relationship to the dimensional standardization of pipe and fittings, as noted above.

Sectional Committee A21 sponsored many tests of pipe and fittings; these included subjection of pipe to combined earth load and internal pressures (which form the basis of pipe thickness design), corrosion tests, measurement of hydraulic friction loss in fittings, and tests of bursting strengths of pipe and fittings. After exhaustive study of the test results and other research, the committee in 1939 issued A21.1, "American Standard Practice Manual for the Computation of Strength and Thickness of Cast Iron Pipe." The manual included nomograms and thickness tables for pit-cast pipe with $11 / 31$ * iron strength. As stated in the preface to that manual, however, the design method was applicable to pipe of any iron strength.

Discussions and interpretations of the method of design of cast-iron pipe

[^9]were published in 1939 and presented to AWWA and A.G.A. As a result of these publications and because of the general acceptance of A21.1, a substantial volume of cast-iron pipe was designed by the new method and furnished to manufacturers' standards between 1939 and 1953. A standard (A21.2) for pit-cast pipe with $11 / 31$ iron strength also was issued in 1939. Work on standards for centrifugally cast pipe with $18 / 40$ iron strength was started after the design was completed in 1939, but, owing to the intervention
and reaffirmed without revision in 1972. Revisions of the 1962 cast-iron pipe standards were issued in 1970. The major revisions of A21.6-1970 were: pipe with push-on joints were added; laying conditions C and D were deleted and condition F was added; and, the tables were revised to include the pipe lengths then being produced.

In 1974, Subcommittee 1 reviewed the 1970 edition and recommended minor editorial changes. Therefore, this edition is unchanged from the 1970 edition except for minor editorial changes and the updating of this foreword.
The tables and strength test requirements in this standard are for pipe with $18 / 40$ iron strength. Advances in production technology have enabled the manufacturers to furnish pipe with greater strength. Pipe with $21 / 45$ iron strength has been furnished for many years. Design details and standard thicknesses for pipe with $21 / 45$ iron strength are shown in A21.1-1957 (AWWA C10167), reaffirmed in 1972.

## II-Acceptance Tests

Acceptance tests were established as routine control measures to ensure the design burst and ring strengths. The acceptance tests specified in this standard are the Talbot strip test and the hardness test. In establishing the acceptance values for the Talbot strip test, A21 Committee in the 1940s reviewed detailed data, including burst, ring, and Talbot strip tests on more than 400 pipe centrifugally cast in metal molds. Correlations of the data showed that the Talbot strip modulus of rupture and secant modulus of elasticity values specified in this standard represent acceptable pipe which meet the design burst and ring strengths.

The hardness test was specified as a means of assuring the ferritic matrix which is characteristic of the microstructure of pipe cast in metal molds. The specified acceptance values for the Talbot strip test provide additional control of the microstructure to ensure satisfactory machinability.

## III-Options

This standard includes certain options which, if desired, must be specified in the invitation for bids and on the purchase order. Also, a number of items must be specified to describe completely the pipe required. The following summarizes these details and available options and lists the sections of the standard where they can be found:

1. Size, joint type, thickness or class, and laying lengths (Tables)
2. Special joints (Sec. 6-1)
3. Certification by manufacturer (Sec. 6-4)
4. Inspection by purchaser (Sec. 6-5)
5. Cement lining (Sec. 6-8.2) Experience has indicated that bituminous inside coating is not complete protection against loss in pipe capacity caused by tuberculation. Cement linings are 1 recommended for most waters. 0
6. Special coatings and linings (Sec. 7 6-8.4)
7. Special marking on pipe (Sec. 6-10)
8. Written transcripts of foundry records (Sec. 6-15)
9 Special tests (Sec 6-16).

## Committee Personnel

Subcommittee 1, Pipe, which reviewed this standard, had the following personnel at that time:

Edward C. Sears, Chairman<br>Walter Amory, Vice-Chairman

User Members Producer Members
Robert S. Bryant W. D. Goode
Frank E. Dolson Carl A. Henrikson

George F. Keenan Leonard Orlando Jr. Thomas D. Holmes Sidney P. Teague John E. Perry

Standards Committee A21, Cast-Iron Pipe and Fittings, which reviewed and approved this standard, had the following personnel at the time of approval:

Lloyd W. Weller, Chairman<br>Carl A. Henrikson, Vice-Chairman<br>James B. Ramsey, Secretary

Organization Represented
American Gas Association
American Society of Civil Engineers
American Society of Mechanical Engineers
American Society for Testing and Materials
American Water Works Association
Cast Iron Pipe Research Association

Individual Producer
Manufacturers' Standardization Society of the Valve and Fittings Industry
New England Water Works Association
Naval Facilities Engineering Command
Underwriters' Laboratories, Inc.
Canadian Standards Association

Name of Representative
Leonard Orlando Jr.
Kenneth W. Henderson
James S. Vanick
Albert H. Smith Jr.
Arnold M. Tinkey
Lloyd W. Weller
Carl A. Henrikson
Edward C. Sears
W. Harry Smith

Alfred F. Case
Abraham Fenster
Walter Amory
Stanley C. Baker
John E. Perry
W. F. Semenchuk*

[^10]Revision of
A21.6-1970

# Cast-Iron Pipe Centrifugally Cast in Metal Molds, for Water or Other Liquids 

## Sec. 6-1—Scope

This standard covers 3 -in. through 24 -in. cast-iron pipe centrifugally cast in metal molds for water or other liquids. Characteristics of such pipe with push-on joints, mechanical joints and bell-and-spigot joints are given in the tables. This standard may be used for pipe with such other types of joints as may be agreed upon at the time of purchase. The thicknesses, weights, and strength test requirements shown in this standard are for pipe with $18 / 40$ iron strength (18 000 psi minimum bursting tensile and 40000 psi minimum ring modulus of rupture).

## Sec. 6-2-Definitions

Under this standard, the following definitions shall apply:

6-2.1. Purchaser. The party entering into a contract or agreement to purchase pipe according to this standard.

6-2.2 Manufacturer. The party that produces the pipe.

6-2.3. Inspector. The representative of the purchaser, authorized to inspect in behalf of the purchaser to determine whether or not the pipe meet this standard.

6-2.4. Cast iron. The unqualified term cast iron shall apply to gray cast iron which is a cast ferrous material in which a major part of the carbon content occurs as free carbon in the form of flakes interspersed through the metal.

6-2.5. Push-on joint. The single rubber-gasket joint as described in ANSI A21.11 (AWWA C111) of latest revision.

6-2.6. Mechanical joint. The gasketed and bolted joint as detailed in ANSI A21.11 (AWWA C111) of latest revision.

6-2.7. Bell-and-spigot joint. The poured or caulked joint as detailed in Table 6.6.

## Sec. 6-3-General Requiremente

6-3.1. Pipe with push-on joints, mechanical joints, and bell-and-spigot joints shall conform to the applicable dimensions and weights shown in the tables in this standard and to the applicable requirements of ANSI A21.11 (AWWA C111) of latest revision. Pipe with other types of joints shall comply with the joint dimensions and weights agreed upon at the time of purchase, but in all other respects shall fulfill the requirements of this standard.
$6-3.2$. The nominal laying length of the pipe shall be as shown in the tables. A maximum of 10 per cent of the total number of pipe of each size specified in an order may be furnished by as much as 24 in . shorter than the nominal laying length, and an additional 10 per cent may be furnished by as much as 3 in. shorter than nominal laying length.

Sec. 6-4-Inspection and Certification by Manufacturer
$6-4.1$. The manufacturer shall establish the necessary quality control and inspection practice to assure compliance with this standard.

6-4.2. The manufacturer shall, if required on the purchase order, furnish a sworn statement that the inspection and all of the specified tests have been made and the results thereof comply with the requirements of this standard.

6-4.3. All pipe shall be clean and sound without defects which will impair their service. Repairing of defects by welding or other method shall not be allowed if such repairs will adversely affect the serviceability of the pipe or its capability to meet strength requirements of this standard.

## Sec. 6-5-Inspection by Purchaser

$6-5.1$. If the purchaser desires to inspect pipe at the manufacturer's plant, the purchaser shall so specify on the purchase order, stating the conditions (such as time, and the extent of inspection) under which the inspection shall be made.
$6-5.2$. The inspector shall have free access to those parts of the manufacturer's plant that are necessary to assure compliance with this standard. The manufacturer shall make available for the inspector's use such gages as are necessary for inspection. The
manufacturer shall provide the inspector with assistance as necessary for the handling of pipe.

## Sec. 6-6-Delivery and Acceptance

All pipe and accessories shall comply with this standard. Pipe and accessories not complying with this standard shall be replaced by the manufacturer at the agreed point of delivery. The manufacturer shall not be liable for shortages or damaged pipe after acceptance at the agreed point of delivery except as recorded on the delivery receipt or similar document by the carrier's agent.

## Sec. 6-7-Tolerances or Permitted Variations

6-7.1. Dimensions. The spigotend, bell, and socket of the pipe and the accessories shall be gaged with suitable gages at sufficiently frequent intervals to ensure that the dimensions comply with the requirements of this standard. The smallest inside diameter of the sockets and the outside of the spigot ends shall be tested with circular gages. Other socket dimensions shall be gaged as appropriate.

6-7.2. Thickness. Minus thickness tolerances of pipe and bell shall not exceed those shown below:

| Pipe Size <br> in. | Minus Toleranct |
| :---: | :---: |
| in. |  |
| $3-8$ | 0.05 |
| $10-12$ | 0.06 |
| $14-24$ | 0.08 |

Note: An additional tolerance of 0.02 in . shall be permitted over areas not exceeding 8 in . in any direction.
$6-7.3$. Weight. The weight of any single pipe shall not be less than the tabulated weight by more than 5 per cent for pipe 12 in . or smaller in diameter, nor by more than 4 per cent for pipe larger than 12 in . in diameter.

## Sec. 6-8-Coatings and Linings

6-8.1. Outside coating. The outside coating for use under normal conditions shall be a bituminous coating approximately 1 mil thick. The coating shall be applied to the outside of all pipe, unless otherwise specified. The finished coating shall be continuous, smooth, neither brittle when cold nor sticky when exposed to the sun and shall be strongly adherent to the pipe.
6-8.2. Cement-mortar linings. Cement linings shall be in accordance with ANSI A21.4 (AWWA C104) of latest revision. If desired, cement linings shall be specified in the invitation for bids and on the purchase order.
6-8.3. Inside coating. Unless otherwise specified, the inside coating for pipe not cement lined shall be a bituminous material as thick as practicable (at least 1 mil ) and conforming to all appropriate requirements for seal coat in ANSI A21.4 of latest revision.

6-8.4. Special coatings and linings. For special conditions, other types of coatings and linings may be available. Such special coatings and linings shall be specified in the invitation for bids and on the purchase order.

## Sec. 6-9-Hydrostatic Test

Each pipe shall be subjected to a hydrostatic test of not less than 500 psi. This test may be made either before or after the outside coating and the inside coating have been applied, but shall be made before the application of cement lining or of a special lining.

The pipe shall be under the full test pressure for at least 10 s . Suitable controls and recording devices shall be provided so that the test pressure and duration may be adequately ascertained. Any pipe that leaks or does
not withstand the test pressure shall be rejected.

In addition to the hydrostatic test before application of a cement lining or special lining, the pipe may be retested, at the manufacturer's option, after application of such lining.

## Sec. 6-10-Marking Pipe

The weight, class or nominal thickness, and sampling period shall be shown on each pipe. The manufacturer's mark and the year in which the pipe was produced shall be cast or stamped on the pipe. When specified on the purchase order, initials not exceeding four in number shall be cast or stamped on the pipe. All required markings shall be clear and legible and all cast marks shall be on or near the bell. All letters and numerals on pipe sizes 8 in . and larger shall be not less than $\frac{1}{2} \mathrm{in}$. in height.

## Sec. 6-1l-Weighing Pipe

Each pipe shall be weighed before the application of any lining or coating other than the bituminous coating and the weight shall be shown on the outside or inside of the bell or spigot end.

## Sec. 6-12-Acceptance Tests

The standard acceptance tests for the physical characteristics of the pipe shall be as follows:

6-12.1. Talbot strip tests. Talbot strip tests shall be used to determine the acceptability of 3-24 in. pipe for modulus of rupture and secant modulus of elasticity.

6-12.1.1. Sampling. At least one sample shall be taken during each period iof approximately 3 hr . The sample for the first period shall be taken during the first hour, or if casting is direct from the melting unit, from the first ladle. Samples shall be
taken so that each size of pipe continously cast for 2 hr or longer and each source of iron continuously used for 2 hr or longer shall be fairly represented.

6-12.1.2. Acceptance values. The modulus of rupture as determined by the Talbot strip test shall be 40000 psi minimum.

The secant modulus of elasticity value shall not exceed 300 times the actual value of the modulus of rupture. (For example: when the modulus of rupture is 40000 psi , the secant modulus of elasticity shall not exceed 12000000 psi.)

6-12.1.3. Test method. Talbot strips (Fig. 6.1) shall be machined


Fig. 6.1. Position From Which Talbot Strip is Cut
longitudinally from each pipe specimen selected for testing by this method. The Talbot strips may be cut from a part of the ring little stressed in the ring test-that is, near one of the elements marked $a$ in the illustration of the ring test (Fig. 6.3). The strips in any case shall be in cross section as indicated in Fig. 6.1-that is, shall have for their width the thickness of the pipe and for their depth 0.50 in . Their length shall be at least $10 \frac{1}{2}$ in. The strips shall be tested as beams on supports 10 in . apart with loads applied perpendicularly to the machined faces at two points $3 \frac{1}{3}$ in. from the supports. The breaking load and the deflection shall be observed and recorded.

The strip shall be accurately calipered at the point of rupture and the modulus of rupture, $R$, shall be calculated by the usual beam formula.
which for this case reduces to the expression

$$
R=\frac{10 W}{t d^{2}}
$$

The secant modulus of elasticity, $E_{3}$, in pounds per square inch, shall be computed by the formula

$$
E_{s}=\frac{21.3 R}{d y}
$$

In the above formulas, $R$ is the modulus of rupture (psi) ; $E_{s}$, the secant modulus of elasticity (psi) ; $W$, the breaking load (lb) ; $d$, the depth (in.) of the strip (intended to be 0.50 in.) ; $t$, the width (in.) of the strip (pipe thickness) ; and $y$, the deflection (in.) of the strip at the center at breaking load.

Deflection measurements shall be that of the specimen and shall not include any compression of the supports or loading blocks, or backlash or distortion of the testing machine.

6-12.2. Hardness tests. Hardness tests shall be made on the outside surface of pipe. A sufficient number of pipe shall be tested to assure that the hardness does not exceed Rockwell B-95, or its equivalent. Pipe may be heat-treated to meet this requirement.

For the purpose of foundry records, hardness tests shall be made on a specimen from each Talbot strip selected for testing in Sec. 6-12.11. Rockwell B hardness determinations shall be made in accordance with ASTM E18-67 on the following surfaces at their approximate centers: (a) the outside pipe surface, (b) the inside pipe surface, and (c) either of the two cut surfaces. These three determinations shall be made at three locations (1-2-3) along the length of the specimen, as shown in Fig. 6.2. The three determinations for each surface shall be averaged and no average value shall exceed Rockwell B-95. No single


Fig. 6.2. Location of Rockwell Hardness Tests on Talbot Strip Specimen
determination on the Talbot strip shall exceed B-98.

## Sec. 6-13-Ring Tests and FullLength Bursting Tests

6-13.1. The manufacturer shall make bursting tests and ring tests in conjunction with strip tests so that he can certify the design values of the modulus of rupture ( 40000 psi ) and the bursting tensile strength of the iron in the pipe ( 18000 psi ). These tests shall be made in accordance with dimensions and methods given in Sec. $6-13.2$ and Sec. 6-13.3. At least one pipe sample for the ring and bursting tests shall be selected from each of the following size groups from each calendar month's cast:

| Group | Size <br> in. |
| :---: | :--- |
| 1 | 6,8 |
| 2 | 10,12 |
| 3 | $14,16,18$ |
| 4 | 20,24 |

When no pipe in a size group are manufactured during the calendar month, no tests on these sizes are required. Ring tests and bursting tests are not required on 3- and 4 -in. pipe. At least three Talbot strips shall be tested from each pipe selected for bursting. Tests and records shall include the modulus of rupture of
each strip and ring and the modulus of elasticity and hardness of each strip.

6-13.2. Ring test method. The maximum length of any ring shall not exceed 12 in .; for pipe 14 in . and larger, the minimum length shall be $10 \frac{1}{2}$ in.; for pipe 12 in . and smaller, the minimum length shall be one half the nominal diameter of the pipe. Each ring shall be tested by the threeedge bearing method as indicated in Fig. 6.3. The lower bearing for the


Fig. 6.3. Assembly for Ring Test
ring shall consist of two strips with vertical sides having their interior top edges rounded to a radius of approximately $\frac{1}{2} \mathrm{in}$. The strips shall be of hard wood or metal. If of metal, a piece of fabric or leather approximately $\frac{3}{16}$ in. thick shall be laid over them. They shall be straight and shall be securely fastened to a rigid block, with their interior vertical faces the following distances apart:

$$
\begin{gathered}
\text { Pipe Size } \\
\text { in. } \\
6-12 \\
14-24
\end{gathered}
$$

Bearing Strip
Spacing
in.
$\frac{1}{2}$
1

The upper bearing shall be a hard wood block, straight and true from end to end. The upper and lower bearings shall extend the full length of the ring. The ring shall be placed symmetrically between the two bearings, and the center of application of the load shall
be so placed that the vertical deformation at the two ends of the ring shall be approximately equal. If the ring is not uniform in thickness, it shall be so placed that the thick and thin portions are near the ends of the horizontal diameter.

For purposes of Sec. 6-15, a record of the breaking load of each ring tested shall be made. The modulus of rupture is computed from the formula

$$
R=0.954 \frac{W(d+t)}{b t^{2}}
$$

in which $R$ is the modulus of rupture (psi); $W$, the breaking load (lb); $d$, the average inside diameter (in.) of the ring; $t$, the average thickness (in.) of metal along the line of fracture; and $b$, the length (in.) of the ring.

6-13.3. Burst test method. The bursting tensile strength shall be determined by testing full-length pipe (less the amount cut off for ring and strip test specimens) to destruction by hydraulic pressure. Bells may be removed to facilitate testing. A suitable means for holding the end thrust shall be used which will not subject the pipe to endwise tension or compression, or other parasitic stresses. A calibrated pressure gage shall be used for determining the bursting pressure. The gage shall be connected to the interior of the test pipe by a separate connection from that which supplies water for the test. The unit tensile strength in bursting shall be obtained by the use of the formula

$$
S=\frac{P d}{2 t}
$$

in which $S$ is the bursting tensile strength (psi) of the iron; $P$, the internal pressure (psi) at bursting; $d$, the average inside diameter (in.) of the pipe; and $t$, the minimum average
thickness (in.) of the pipe along the principal line of break.

Measurements of thickness shall be taken along the principal line of break at 1 - ft intervals.

The minimum average thickness along the principal line of break shall be obtained by averaging the measurements at the thinnest section at a weight of two and at the adjacent sections on each side at a weight of one each; or, if the thinnest section is at the end of the break, by averaging the thinnest-section measurement at a weight of two and the measurements of the adjacent section and the next section at a weight of one each.

## Sec. 6-14-Chemical Analyses

Analyses of the iron shall be made at sufficiently frequent intervals to determine compliance with the following limits:

| Substance | Maximum Limit <br> per ceni |
| :--- | :---: |
| Phosphorus | 0.90 |
| Sulfur | 0.12 |

Control of the other chemical constituents shall be maintained to meet the physical property requirements of this standard. Samples for chemical analyses shall be representative and shall be obtained from either acceptance test specimens or specimens cast for this purpose.

## Sec. 6-15-Foundry Records

The results of the following tests shall be recorded and retained for one year and shall be available to the purchaser at the foundry. Written transscripts of the results of these tests shall be furnished when specified on the purchase order:

6-15.1. Talbot strip tests (see Sec. 6-12.1)
6-15.2. Hardness tests (see Sec. 6-12.2)

## 6-15.3. Ring tests and full-length bursting tests (see Sec. 6-13) <br> 6-15.4. Chemical analyses (see Sec 6-14).

## Sec. 6-16-Additional Tests Re quired by Purchaser

When tests other than those provided in this standard are required by the purchaser, such tests shall be specified in the invitation for bids and on the purchase order.

## Sec. 6-17-Defective Specimens and Retests

When any physical test specimen shows defective machining or lack of continuity of metal, it shall be discarded and replaced by another specimen. When any sound test specimen fails to meet the specified requirements, the pipe from which it was taken shall be rejected and a retest may be made on two additional sound specimens from pipe cast in the same sampling period as the specimen which failed. Both of the additional speci-
mens shall meet the prescribed tests to qualify the pipe produced in that sampling period.

## Sec. 6-18-Rejection of Pipe

When any routine chemical analysis fails to meet the requirements of Sec. $6-14$ or when any physical acceptance test fails to meet the requirements of Sec. 6-12.1, 6-12.2, or $6-17$, the pipe cast in the same sampling period shall be rejected except as subject to the provision of Sec. 6-19.

## Sec. 6-19-Determining Rejection

The manufacturer may determine the amount of rejection by making similar additional tests of pipe of the same size as that rejected until the rejected lot is bracketed in order of manufacture by an acceptable test at each end of the interval in question. When pipe of one size is rejected from a sampling period, the acceptability of pipe of different sizes from that same period may be established by making the routine acceptance tests for these sizes.

TABLE 6.1
Selection Table for Push-On Joint Cast-Iron Pipe§
These thicknesses and welghts are for pipe laid without blocks, on flat-bottom trench, with camped backfill (laying condition B), under 5 ft of cover. For other conditions see tables 6.3 and 6.4 hereof and ANSI A21,1 (AWWA C101).

| Size | Thickness | OD | Welght Based on 18-ft Laying Length |  | Welght Based on 20-ft Laying Length |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Per Length $\dagger$ | Avg. per Foot ${ }^{+}$ | Per Length $\dagger$ | Avg. Der Foot $\ddagger$ |
|  | in. |  | $l b$ |  |  |  |
| Working Pressure 50 psl - 115 ft Head |  |  |  |  |  |  |
| 3* | 0.32 | 3.96 | 215 | 12.0 | 240 | 11.9 |
| 4 | 0.35 | 4.80 | 290 | 16.1 | 320 | 16.0 |
| 6 | 0.38 | 6.90 | 460 | 25.6 | 510 | 25.6 |
| 8 | 0.41 | 9.05 | 665 | 36.9 | 735 | 36.8 |
| 10 | 0.44 | I1.10 | 880 | 49.0 | 975 | 48.7 |
| 12 | 0.48 | 13.20 | 1,140 | 63.4 | 1,260 | 63.1 |
| 14 | 0.48 | 15.30 | 1,335 | 74.1 | 1,470 | 73.6 |
| 16 | 0.54 | 17.40 | 1.700 | 94.5 | 1,880 | 94.0 |
| 18 | 0.54 | 19.50 | 1,920 | 106.7 | 2,120 | 106.1 |
| 20 | 0.57 | 21.60 | 2,250 | 124.9 | 2,485 | 124.2 |
| 24 | 0.63 | 25.80 | 2,975 | 165.3 | 3,285 | 164.4 |
| Working Pressure $100 \mathrm{psi}-231 \mathrm{ft}$ Head |  |  |  |  |  |  |
| 3* | 0.32 | 3.96 | 215 | 12.0 | 240 | 11.9 |
| 4 | 0.35 | 4,80 | 290 | 16.1 | 320 | 16.0 |
| 6 | 0.38 | 6.90 | 460 | 25.6 | 510 | 25.6 |
| 8 | 0.41 | 9.05 | 665 | 36.9 | 735 | 36.8 |
| 10 | 0.44 | 11.10 | 880 | 49.0 | 975 | 48.7 |
| 12 | 0.48 | 13.20 | 1,140 | 63.4 | 1,260 | 63.1 |
| 14 | 0.51 | 15.30 | 1,410 | 78.2 | 1,555 | 77.8 |
| 16 | 0.54 | 17.40 | 1,700 | 94.5 | 1,880 | 94.0 |
| 18 | 0.58 | 19.50 | 2,050 | 113.9 | 2,265 | 113.3 |
| 20 | 0.62 | 21.60 | 2,430 | 134.9 | 2,685 | 134.2 |
| 24 | 0.68 | 25.80 | 3,190 | 177.3 | 3,525 | 176.4 |
| Working Pressure 150 psi-346 fi Head |  |  |  |  |  |  |
| 3* | 0.32 | 3.96 | 215 | 12.0 | 240 | 11.9 |
| 4 | 0.35 | 4.80 | 290 | 16.1 | 320 | 16.0 |
| 6 | 0.38 | 6.90 | 460 | 25.6 | 510 | 25.6 |
| 8 | 0.41 | 9.05 | 665 | 36.9 | 735 | 36.8 |
| 10 | 0.44 | 11.10 | 880 | 49.0 | 975 | 48.7 |
| 12 | 0.48 | 13.20 | 1,140 | 63.4 | 1,260 | 63.1 |
| 14 | 0.51 | 15.30 | 1,410 | 78.2 | 1,555 | 77.8 |
| 16 | 0.54 | 17.40 | 1,700 | 94.5 | 1,880 | 94.0 |
| 18 | 0.58 | 19.50 | 2,050 | 113.9 | 2,265 | 113.3 |
| 20 | 0.62 | 21.60 | 2.430 | 134.9 | 2,685 | 134.2 |
| 24 | 0.73 | 25.80 | 3,410 | 189.4 | 3,765 | 188.4 |
| Working Pressure 200 psi-462 ft Head |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| $3^{\text {4 }}$ | 0.32 0.35 | 3.96 4.80 | 215 290 | 12.0 16.1 | 240 320 | 11.9 |
| 4 6 | 0.35 0.38 | 4.80 6.90 | 290 460 | 16.1 25.6 | 320 | 16.0 |
| 8 | 0.41 | 6.90 9.05 | 460 665 | 25.6 36.9 | 510 735 | 25.6 36.8 |
| 10 | 0.44 | 11.10 | 880 | 49.0 | 975 | 48.7 |
| 12 | 0.48 | 13.20 | 1,140 | 63.4 | 1,260 | 63.1 |
| 14 | 0.55 | 15.30 | 1,510 | 83.8 | 1,670 | 83.4 |
| 16 | 0.58 | 17.40 | 1,815 | 100.9 | 2.010 | 100.4 |
| 18 | 0.63 | 19.50 | 2,210 | 122.8 | 2.445 | 122.2 |
| 20 | 0.67 | 21.60 | 2,610 | 144.9 | 2,885 | 144.2 |
| 24 | 0.79 | 25.80 | 3,665 | 203.6 | 4.055 | 202.6 |

* Pide of 3 -In. size also available in $12-f t$ laying length. Weight per lengtht is 150 lb : average weight per foot is 12.5 lb for all working pressures and heads.

Including bell. Calculated weight of pipe rounded oft to nearest 5 lb
I Including bell. Average welght per foot based on calculated weight of pipe before rounding
hats ahown for puahoon joint plpe are alao applicable to bell-aod-qpigot inlnt pipe.

PIPE CENTRIFUGALLY CAST IN METAL MOLDS
TABLE 6.1-(contd.)
Selection Table for Push-On Joint Cast-Iron Pipe§
These thickesses and welghts are for plpe lald without blocks, on fiat-bottom trench, with tamped backfill (Laying Condition B), under 5 ft of cover. For other condlions see Tables 6.3 and 6.4 hereof and ANSI A21.1
AWWA C101).

| Size | Thickness | OD | Weight Based on 18-ft Laying Length |  | Weight Based on $20-\mathrm{ft}$ Laying Length |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Per Length $\dagger$ | Avg. per Foot | Per Length $\dagger$ | Avg. per Foot $\ddagger$ |
| in. |  |  | lb |  |  |  |
| Working Pressure $250 \mathrm{psl}-577 \mathrm{ft}$ Head |  |  |  |  |  |  |
| $3^{\text {+ }}$ | 0.32 | 3.96 | 215 | 12.0 | 240 | 11.9 |
| 4 | 0.35 | 4.80 | 290 | 16.1 | 320 | 16.0 |
| 6 | 0.38 | 6.90 | 460 | 25.6 | 510 | 25.6 |
| 8 | 0.41 | 9.05 | 665 | 36.9 | 735 | 36.8 |
| 10 | 0.44 | 11.10 | 880 | 49.0 | $\begin{array}{r}975 \\ \hline\end{array}$ | 48.7 |
| 12 | 0.52 | 13.20 | 1,230 | 68.3 | 1.360 | 67.9 |
| 14 | 0.59 | 15.30 | 1,610 | 89.5 | 1,780 | 89.0 |
| 16 | 0.63 | 17.40 | 1,960 | 109.0 | 2,170 | 108.4 |
| 18 | 0.68 | 19.50 | 2,370 | 131.8 | 2,620 | 131.1 |
| 20 | 0.72 | 21.60 | 2,785 | 154.8 | 3,080 | 154.0 |
| 24 | 0.79 | 25.80 | 3,665 | 203.6 | 4,055 | 202.6 |
| Working Pressure $\mathbf{3 0 0}$ pal-693 ft Head |  |  |  |  |  |  |
| $3^{\text {he }}$ | 0.32 | 3.96 | 215 | 12.0 | 240 | 11.9 |
| 4 | 0.35 | 4.80 | 290 | 16.1 | 320 | 16.0 |
| 6 | 0.38 | 6.90 | 460 | 25.6 | 510 | 25.6 |
| 8 | 0.41 | 9.05 | 665 | 36.9 | 735 | 36.8 |
| 10 | 0.48 | 11.10 | 955 | 53.0 | 1.055 | 52.7 |
| 12 | 0.52 | 13.20 | 1.230 | 68.3 | 1,360 | 67.9 |
| 14 | 0.59 | 15.30 | 1.610 | 89.5 | 1,780 | 89.0 |
| 16 | 0.68 | 17.40 | 2,100 | 116.8 | 2,325 | 116.2 |
| 18 | 0.73 | 19.50 | 2,530 | 140.6 | 2,800 | 140.0 |
| 20 | 0.78 | 21.60 | 3,000 | 166.6 | 3,315 | 165.8 |
| 24 | 0.85 | 25.80 | 3,920 | 217.8 | 4,335 | 216.8 |
| Working Pressure $350 \mathrm{psf}-808 \mathrm{ft} \mathrm{Head}$ |  |  |  |  |  |  |
| $3^{\text {+ }}$ | 0.32 | 3.96 | 215 | 12.0 | 240 | 11.9 |
| 4 | 0.35 | 4.80 | 290 | 16.1 | 320 | 16.0 |
| 6 | 0.38 | 6.90 | 460 | 25.6 | 510 | 25.6 |
| 8 | 0.41 | 9.05 | 665 | 36.9 | 735 | 36.8 |
| 10 | 0.52 | 11.10 | 1,025 | 56.9 | 1,130 | 56.6 |
| 12 | 0.56 | 13.20 | 1,315 | 73.1 | 1,455 | 72.7 |
| 14 | 0.64 | 15.30 | 1,735 | 96.3 | 1,920 | 95.9 |
| 16 | 0.68 | 17.40 | 2,100 | 116.8 | 2,325 | 116.2 |
| 18 | 0.79 | 19.50 | 2,720 | 151.2 | 3,010 | 150.6 |
| 20 | 0.84 | 21.60 | 3,210 | 178.4 | 3,550 | 177.6 |
| 24 | 0.92 | 25.80 | 4,220 | 234.4 | 4,665 | 233.4 |

Plpe of 3-in. size also avallable in 12-ft laying length. Weight per length $\dagger$ is 150 lb ; average weight per foot $f$ 12.5 lb for all working pressures and heads.
t Including bell. Calculated weight of pipe rounded of to nearest 5 lb .
Including bell. Average weight per foot based on calculated wieght of pipe before rounding.
Weights shown for push-on joint plpe are also applicable to bell-and-spigot joint pipe.

TABLE 6.2
Selection Table for Mechanical-Joint Cast-Iron Pipe
These thlcknesses and weights are for pipe lald without blocks, on flat-bottom trench, with tamped back fil Laying Condition B), under 5 ft of cover. For other conditions see Tables 6.3 and 6.5 hereof and ANSI A21.1 (AWWA C101).

| Size | Thickness | OD | Weight Based on 18-ft Laying Length |  | Weight Based on $20-\mathrm{ft}$ Laying Length |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Per Length $\dagger$ | Avg. per Foot $\ddagger$ | Per Length $\dagger$ | Avg. per Footif |
|  | ir. |  | $l b$ |  |  |  |
| Working Pressure 50 psi-m 115 ft Head |  |  |  |  |  |  |
| 3* | 0.32 | 3.96 | 215 | 12.0 | 240 | 11.9 |
| 4 | 0.35 | 4.80 | 290 | 16.2 | 320 | 16.1 |
| 6 | 0.38 | 6.90 | 460 | 25.5 | 510 | 25.4 |
| 8 | 0.41 | 9.05 | 655 | 36.4 | 725 | 36.2 |
| 10 | 0.44 | 11.10 | $\begin{array}{r}870 \\ \hline 125\end{array}$ | 48.2 | +960 | 48.0 |
| 12 | 0.48 | 13.20 | 1.125 | 62.6 | 1,245 | 62.3 |
| 14 | 0.48 | 15.30 | 1,335 | 74.0 | 1,470 | 73.6 |
| 16 | 0.54 | 17.40 | 1,700 | 94.5 | 1,880 | 94.0 |
| 18 | 0.54 | 19.50 | 1,920 | 106.7 | 2,120 | 106.0 |
| 20 | 0.57 | 21.60 | 2,250 | 124.9 | 2,485 | 124.2 |
| 24 | 0.63 | 25.80 | 2,975 | 165.2 | 3,285 | 164.2 |

Working Pressure $100 \mathrm{psi}-231 \mathrm{ft}$ Head

| 3* | 0.32 | 3.96 | 215 | 12.0 | 240 | 11.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 0.35 | 4.80 | 290 | 16.2 | 320 | 16.1 |
| 6 | 0.38 | 6.90 | 460 | 25.5 | 510 | 25.4 |
| 8 | 0.41 | 9.05 | 655 | 36.4 | 725 | 36.2 |
| 10 | 0.44 | 11.10 | 870 | 48.2 | 960 | 48.0 |
| 12 | 0.48 | 13.20 | 1,125 | 62.6 | 1,245 | 62.3 |
| 14 | 0.51 | 15.30 | 1.410 | 78.2 | 1,555 | 77.8 |
| 16 | 0.54 | 17.40 | 1,700 | 94.5 | 1,880 | 94.0 |
| 18 | 0.58 | 19.50 | 2,050 | 113.9 | 2,265 | 113.2 |
| 20 | 0.62 | 21.60 | 2,430 | 134.9 | 2,685 | 134.2 |
| 24 | 0.68 | 25.80 | 3,190 | 177.2 | 3.525 | 176.2 |

Working Pressure 150 psi- 346 ft Head

| 3* | 0.32 | 3.96 | 215 | 12.0 | 240 | 11.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 0.35 | 4.80 | 290 | 16.2 | 320 | 16.1 |
| 6 | 0.38 | 6.90 | 460 | 25.5 | 510 | 25.4 |
| 8 | 0.41 | 9.05 | 655 | 36.4 | 725 | 36.2 |
| 10 | 0.44 | 11.10 | 870 | 48.2 | 960 | 48.0 |
| 12 | 0.48 | 13.20 | 1,125 | 62.6 | 1,245 | 62.3 |
| 14 | 0.51 | 15.30 | 1.410 | 78.2 | 1.555 | 77.8 |
| 16 | 0.54 | 17.40 | 1,700 | 94.5 | 1,880 | 94.0 |
| 18 | 0.58 | 19.50 | 2,050 | 113.9 | 2.265 | 113.2 |
| 2 C | 0.62 | 21.60 | 2,430 | 134.9 | 2,685 | 134.2 |
| 24 | 0.73 | 25.80 | 3.405 | 189.2 | 3,765 | 188.2 |

Working Pressure $200 \mathrm{psi}-462 \mathrm{ft}$ Head

| 3* | 0.32 | 3.96 | 215 | 12.0 | 240 | 11.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 0.35 | 4.80 | 290 | 16.2 | 320 | 16.1 |
| 6 | 0.38 | 6.90 | 460 | 25.5 | 510 | 25.4 |
| 8 | 0.41 | 9.05 | 655 | 36.4 | 725 | 36.2 |
| 10 | 0.44 | 11.10 | 870 | 48.2 | 960 | 48.0 |
| 12 | 0.48 | 13.20 | 1,125 | 62.6 | 1,245 | 62.3 |
| 14 | 0.55 | 15.30 | 1,510 | 83.8 | 1,670 | 83.4 |
| 16 | 0.58 | 17.40 | 1,815 | 100.9 | 2,005 | 100.3 |
| 18 | 0.63 | 19.50 | 2,210 | 122.8 | 2,445 | 122.2 |
| 20 | 0.67 | 21.60 | 2,610 | 144.9 | 2,885 | 144.2 |
| 24 | 0.79 | 25.80 | 3,665 | 203.5 | 4,050 | 202.6 |

* Pipe of 3 -in, size also available in $12-\mathrm{ft}$ laying length. Weight per lengtht is 1501 b ; average weight per foots Lo 12.3 Ib for all working pressures and heads.
+ Including bell. Calculated weight of plpe rounded off to nearest 5 lb .
I Including bell. A verage weight per foot based on calculated weight of plpe before rounding

TABLE 6.2-(contd.)
Selection Table for Mechanical-Joint Cast-Iron Pipe
These thicknesoes and weights are for pipe laid without blocks, on flat-bottom trench, with tamped backfil (Laying Condition B), under 5 ft of cover For other conditions see Tables 6.3 and 6.5 bereof and ANSI A2I (AWWWA C10i)

| Size | Thickness | OD | Weight Based on $18-\mathrm{ft}$ Laying Length |  | Weight Based on 20-ft Laving Length |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Per Length $\dagger$ | Avg. Der Foott | Per Length $\dagger$ | Avg. per Foot $\ddagger$ |
|  | in. |  | $b$ |  |  |  |
| Working Pressure $250 \mathrm{psi}-577 \mathrm{ft} \mathrm{Head}$ |  |  |  |  |  |  |
| 3* | 0.32 | 3.96 | 215 | 12.0 | 240 | 11.9 |
| 4 | 0.35 | 4.80 | 290 | 16.2 | 320 | 16.1 |
| 6 | 0.38 | 6.90 | 460 | 25.5 | 510 | 25.4 |
| 8 | 0.41 | 9.05 | 655 | 36.4 | 725 | 36.2 |
| 10 | 0.44 | 11.10 | 870 | 48.2 | 960 | 48.0 |
| 12 | 0.52 | 13.20 | 1.215 | 67.4 | 1,340 | 67.1 |
| 14 | 0.59 | 15.30 | 1,610 | 89.4 | 1,780 | 89.0 |
| 16 | 0.63 | 17.40 | 1,960 | 108.9 | 2,165 | 108.3 |
| 18 | 0.68 | 19.50 | 2,370 | 131.7 | 2,620 | 131.0 |
| 20 | 0.72 | 21.60 | 2,785 | 154.8 | 3,080 | 154.1 |
| 24 | 0.79 | 25.80 | 3,665 | 203.5 | 4,050 | 202.6 |
| Working Pressure 300 psi-693 ft Head |  |  |  |  |  |  |
| 3* | 0.32 | 3.96 | 215 | 12.0 | 240 | 11.9 |
| 4 | 0.35 | 4.80 | 290 | 16.2 | 320 | 16.1 |
| 6 | 0.38 | 6.90 | 460 | 25.5 | 510 | 25.4 |
| 8 | 0.41 | 9.05 | 655 | 36.4 | 725 | 36.2 |
| 10 | 0.48 | 11.10 | 940 | 52.2 | 1,040 | 52.0 |
| 12 | 0.52 | 13.20 | 1,215 | 67.4 | 1,340 | 67.1 |
| 14 | 0.59 | 15.30 | 1,610 | 89.4 | 1,780 | 89.0 |
| 16 | 0.68 | 17.40 | 2,100 | 116.7 | 2,325 | 116.2 |
| 18 | 0.73 | 19.50 | 2,530 | 140.6 | 2,800 | 140.0 |
| 20 | 0.78 | 21.60 | 3,000 | 166.6 | 3,320 | 165.9 |
| 24 | 0.85 | 25.80 | 3.920 | 217.7 | 4,335 | 216.8 |
| Working Pressure 350 psi -808 ft Head |  |  |  |  |  |  |
| $3^{*}$ | 0.32 | 3.96 | 215 | 12.0 | 240 | 11.9 |
| 4 | 0.35 | 4.80 | 290 | 16.2 | 320 | 16.1 |
| 6 | 0.38 | 6.90 | 460 | 25.5 | 510 | 25.4 |
| 8 | 0.41 | 9.05 | 655 | 36.4 | 725 | 36.2 |
| 10 | 0.52 | 11.10 | 1,010 | 56.1 | 1,120 | 55.9 |
| 12 | 0.56 | 13.20 | 1,300 | 72.2 | 1.440 | 71.9 |
| 14 | 0.64 | 15.30 | 1,735 | 96.3 | 1,920 | 95.9 |
| 16 | 0.68 | 17.40 | 2,100 | 116.7 | 2,325 | 116.2 |
| 18 | 0.79 | 19.50 | 2,720 | 151.2 | 3,010 | 150.6 |
| 20 | 0.84 | 21.60 | 3,210 | 178.3 | 3,550 | 177.6 |
| 24 | 0.92 | 25.80 | 4,215 | 234.2 | 4,665 | 233.2 |

- Pipe of $3-\mathrm{ln}$. slze also avallable in $12-f \mathrm{t}$ laying length. Weight per length $\dagger$ is 150 ib ; average weight per foott is 12.3 lb for all working pressures and heads.

Including bell. Calculated welght of pipe rounded off to nearest 5 lb
Including bell. Average weight per foot based on calculated weight of pipe before rounding.

TABLE 6.3
Standard Thickness* Selection Table for Cast-Iron Pipe


* Thicknesses include allowances for foundry oractice. corroalon. and edther water hammer ar cruck lond.

TABLE 6.3-(contd.)
Standard Thickness* Selection Table for Cast-Iron Pipe

|  | Laying <br> Laying <br> Laying | ondi ondit ondi |  |  |  | thou thou sand | cks, <br> cks, <br> ding |  | ackfi <br> fill <br> ped |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size in. | Working Pressure psi | 34 -ft Cover |  |  | 5-ft Cover |  |  | 8-ft Cover |  |  |
|  |  | Laying Condition |  |  | Laylng Condition |  |  | Laying Condition |  |  |
|  |  | A | B | F | A | B | F | A | B | $F$ |
|  |  | Thickness*-in. |  |  |  |  |  |  |  |  |
| 16 | 50 | 0.54 | 0.50 | 0.50 | 0.58 | 0.54 | 0.50 | 0.63 | 0.58 | 0.54 |
|  | 100 | 0.54 | 0.54 | 0.50 | 0.58 | 0.54 | 0.50 | 0.63 | 0.58 | 0.54 |
|  | 150 | 0.58 | 0.54 | 0.50 | 0.58 | 0.54 | 0.54 | 0.68 | 0.63 | 0.58 |
|  | 200 | 0.58 | 0.58 | 0.54 | 0.63 | 0.58 | 0.58 | 0.68 | 0.63 | 0.63 |
|  | 250 | 0.63 | 0.58 | 0.58 | 0.63 | 0.63 | 0.58 | 0.73 | 0.68 | 0.63 |
|  | 300 | 0.63 | 0.63 | 0.63 |  | 0.68 | 0.63 | 0.73 | 0.73 | 0.68 |
|  |  | 0.68 | 0.68 | 0.68 | 0.73 | 0.68 | 0.68 | 0.79 | 0.73 | 0.73 |
| 18 | 50 | 0.58 | 0.54 | 0.54 | 0.58 | 0.54 | 0.54 | 0.68 | 0.63 | 0.58 |
|  | 100 | 0.58 | 0.54 | 0.54 | 0.63 | 0.58 | 0.54 | 0.68 | 0.63 | 0.58 |
|  | 150 | 0.63 | 0.58 | 0.54 | 0.63 | 0.58 | 0.58 | 0.73 | 0.68 | 0.63 |
|  |  | 0.63 | 0.58 | 0.58 | 0.68 | 0.63 | 0.58 | 0.73 | 0.68 | 0.63 |
|  | 250 | 0.68 | 0.63 | 0.63 | 0.68 | 0.68 | 0.63 | 0.79 | 0.73 | 0.68 |
|  | 300 | 0.68 | 0.68 | 0.68 | 0.73 | 0.73 | 0.68 | 0.79 | 0.79 | 0.73 |
|  | 350 | 0.79 | 0.73 | 0.73 | 0.79 | 0.79 | 0.73 | 0.85 | 0.85 | 0.79 |
| 20 | 50 | 0.62 | 0.57 | 0.57 | 0.67 | 0.57 | 0.57 | 0.72 | 0.67 | 0.62 |
|  | 100 | 0.62 | 0.57 | 0.57 | 0.67 | 0.62 | 0.57 | 0.72 | 0.67 | 0.62 |
|  | 150 | 0.67 | 0.62 | 0.57 | 0.67 | 0.62 | 0.62 | 0.78 | 0.72 | 0.67 |
|  | 200 | 0.67 | 0.62 | 0.62 | 0.72 | 0.67 | 0.62 | 0.78 | 0.72 | 0.67 |
|  | 250 | 0.72 | 0.67 | 0.67 | 0.78 | 0.72 | 0.67 | 0.84 | 0.78 | 0.72 |
|  | 300 | 0.78 | 0.72 | 0.72 | 0.78 | 0.78 | 0.72 | 0.84 | 0.84 0.84 | 0.78 |
|  | 350 | 0.84 | 0.78 | 0.78 | 0.84 | 0.84 | 0.78 | 0.91 | 0.84 | 0.84 |
| 24 | 50 | 0.68 | 0.63 | 0.63 | 0.73 | 0.63 | 0.63 | 0.79 | 0.73 | 0.68 |
|  | 100 | 0.73 | 0.63 | 0.63 | 0.73 | 0.68 | 0.63 | 0.85 | 0.73 | 0.68 |
|  | 150 | 0.73 | 0.68 | 0.63 | 0.79 | 0.73 | 0.68 | 0.85 | 0.79 | 0.73 |
|  | 200 | 0.79 | 0.73 | 0.68 | 0,79 | 0.79 | 0.73 | 0.92 | 0.85 | 0.79 |
|  | 250 300 | 0.79 0.85 | 0.79 0.85 | 0.73 0.85 | 0.85 0.92 | 0.79 0.85 | 0.79 0.85 | 0.92 0.99 | 0.85 | 0.85 |
|  | 300 350 | 0.85 0.92 | 0.85 0.92 | 0.85 0.92 | 0.92 0.99 | 0.85 0.92 | 0.85 0.92 | 0.99 1.07 | 0.92 0.99 | 0.92 0.92 |

* Thicienesses include allowances for foundry practice, corrosion, and either water hammer or truck load.

TABLE 6.4
Standard Dimensions and Weights of Push-On Joint Cast-Iron Pipell

| Slze in. | Thickness Clas | Thickness | OD $\dagger$ | Weight of Barrel per Foot | Weight of Bell | Weight Based on 18-ft Laying Length |  | Weight Based on 20-ft Laying Length |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Per Length $\ddagger$ | Avg. per Foots | Per Length $\ddagger$ | Avg. per Foot§ |
|  |  | in. |  | ${ }^{1}$ |  |  |  |  |  |
| 3* | 22 | 0.32 | 3.96 | 11.4 | 11 | 215 | 12.0 | 240 | 11.9 |
|  | 23 | 0.35 | 3.96 | 12.4 | 11 | 235 | 13.0 | 260 | 12.9 |
|  | 24 | 0.38 | 3.96 | 13.3 | 11 | 250 | 13.9 | 275 | 13.8 |
| 4 | 22 | 0.35 | 4.80 | 15.3 | 14 | 290 | 16.1 | 320 | 16.0 |
|  | 23 | 0.38 | 4.80 | 16.5 | 14 | 310 | 17.3 | 345 | 17.2 |
|  | 24 | 0.41 | 4.80 | 17.6 | 14 | 330 | 18.4 | 365 | 18.3 |
|  | 25 | 0.44 | 4.80 | 18.8 | 14 | 350 | 19.5 | 390 | 19.5 |
| 6 | 22 | 0.38 | 6.90 | 24.3 | 25 | 460 | 25.6 | 510 | 25.6 |
|  | 23 | 0.41 | 6.90 | 26.1 | 25 | 495 | 27.5 | 545 | 27.4 |
|  | 24 | 0.44 | 6.90 | 27.9 | 25 | 525 | 29.3 | 585 | 29.2 |
|  | 25 | 0.48 | 6.90 | 30.2 | 25 | 570 | 31.7 | 630 | 31.4 |
|  | 26 | 0.52 | 6.90 | 32.5 | 25 | 610 | 33.9 | 675 | 33.8 |
| 8 | 22 | 0.41 | 9.05 | 34.7 | 41 | 665 | 36.9 | 735 | 36.8 |
|  | 23 | 0.44 | 9.05 | 37.1 | 41 | 710 | 39.4 | 785 | 39.2 |
|  | 24 | 0.48 | 9.05 | 40.3 | 41 | 765 | 42.6 | 845 | 42.4 |
|  | 25 | 0.52 | 9.05 | 43.5 | 41 | 825 | 45.8 | 910 | 45.6 |
|  | 26 | 0.56 | 9.05 | 46.6 | 41 | 880 | 48.9 | 975 | 48.6 |
|  | 27 | 0.60 | 9.05 | 49.7 | 41 | 935 | 52.0 | 1,035 | 51.8 |
| 10 | 22 | 0.44 | 11.10 | 46.0 | 54 | 880 | 49.0 | 975 | 48.7 |
|  | 23 | 0.48 | 11.10 | 50.0 | 54 | 955 | 53.0 | 1,055 | 52.7 |
|  | 24 | 0.52 | 11.10 | 53.9 | 54 | 1,025 | 56.9 | 1,130 | 56.6 |
|  | 25 | 0.56 | 11.10 | 57.9 | 54 | 1,095 | 60.9 | 1,210 | 60.6 |
|  | 26 | 0.60 | 11.10 | 61.8 | 54. | 1,165 | 64.8 | 1,290 | 64.5 |
|  | 27 | 0.65 | 11.10 | 66.6 | 54 | 1,255 | 69.6 | 1,385 | 69.3 |
| 12 | 22 | 0.48 | 13.20 | 59.8 | 66 | 1,140 | 63.4 | 1,260 | 63.1 |
|  | 23 | 0.52 | 13.20 | 64.6 | 66 | 1,230 | 68.3 | 1,360 | 67.9 |
|  | 24 | 0.56 | 13.20 | 69.4 | 66 | 1,315 | 73.1 | 1,455 | 72.7 |
|  | 25 | 0.60 | 13.20 | 74.1 | 66 | 1,400 | 77.8 | 1,550 | 77.4 |
|  | 26 | 0.65 | 13.20 | 80.0 | 66 | 1,505 | 83.7 | 1,665 | 83.3 |
|  | 27 | 0.70 | 13.20 | 85.8 | 66 | 1,610 | 89.5 | 1,780 | 89.1 |
|  | 28 | 0.76 | 13.20 | 92.7 | 66 | 1,735 | 96.4 | 1,920 | 96.0 |

* Pipe of 3 -in. size also available in $12-\mathrm{ft}$ laying length. Weight (ib) per lengthf for thickness class 22 is 150 for 23.160 ; for 24,170 . Average weight (lh) per foot 8 for thickness class 22 is 12.5 ; for $23,13.5$; for $24,14.3$.
$\pm$ lncluding bell. Calculated weight of pipe rounded off to nearest 5 lb .
Including bell. Calculated weight of pipe rounded off to nearest 5 lb .
Including bell. Average weight per foot based on calculated weight of pipe before rounding.
$\uparrow$ Tolerances of $O D$ of spigot end $: 3-12 \mathrm{in} ., \pm 0.06 \mathrm{in} ., i 14-24 \mathrm{in}$., $+0.05 \mathrm{in} .,-0.08 \mathrm{in}$.
I Weights shown for push-on joint pipe are also applicable to bell-and-spigot joint pipe.

TABLE 6.4-(contd.)
Standard Dimensions and Weights of Push-On Joint Cast-Iron Pipell

| Size in. | Thick ness Class | Thickness | OD $\dagger$ | Weight of Barrel per Foot | Wetght <br> of Bell | Weight Based on 18-ft Laying Length |  | Weight Based on 20-ft Laying Length |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\underset{\text { Length } \ddagger}{\text { Per }}$ | Avg. per Foot§ | Per Length $\ddagger$ | Avg. per Foot8 |
|  |  | in. |  | $l b$ |  |  |  |  |  |
| 14 | 21 | 0.48 | 15.30 | 69.7 | 78 | 1,335 | 74.1 | 1,470 | 73.6 |
|  | 22 | 0.51 | 15.30 | 73.9 | 78 | 1,410 | 78.2 | 1,555 | 77.8 |
|  | 23 | 0.55 | 15.30 | 79.5 | 78 | 1,510 | 83.8 | 1,670 | 83.4 |
|  | 24 | 0.59 | 15.30 | 85.1 | 78 | 1,610 | 89.5 | 1,780 | 89.0 |
|  | 25 | 0.64 | 15.30 | 92.0 | 78 | 1,735 | 96.3 | 1,920 | 95.9 |
|  | 26 | 0.69 | 1.530 | 98.8 | 78 | 1,855 | 103.1 | 2,055 | 102.7 |
|  | 27 | 0.75 | 15.30 | 107.0 | 78 | 2,005 | 111.3 | 2,220 | 110.9 |
|  | 28 | 081 | 15.30 | 115.0 | 78 | 2,150 | 119.3 | 2,380 | 118.9 |
| 16 | 21 | 0.50 | 17.40 | 82.8 | 96 | 1,585 | 88.1 | 1,750 | 87.6 |
|  | 22 | 0.54 | 17.40 | 89.2 | 96 | 1,700 | 94.5 | 1,880 | 94.0 |
|  | 23 | 0.58 | 17.40 | 95.6 | 96 | 1,815 | 100.9 | 2,010 | 100.4 |
|  | 24 | 0.63 | 17.40 | 103.6 | 96 | 1,960 | 109.0 | 2,170 | 108.4 |
|  | 25 | 0.68 | 17.40 | 111.4 | 96 | 2,100 | 116.8 | 2,325 | 116.2 |
|  | 26 | 0.73 | 17.40 | 119.3 | 96 | 2,245 | 124.6 | 2,480 | 124.1 |
|  | 27 | 0.79 | 17.40 | 128.6 | 96 | 2,410 | 133.9 | 2,670 | 133.4 |
|  | 28 | 0.85 | 17.40 | 137.9 | 96 | 2,580 | 143.2 | 2,855 | 142.7 |
| 18 | 21 | 0.54 | 19.50 | 100.4 | 114 | 1,920 | 106.7 | 2,120 | 106.1 |
|  | 22 | 0.58 | 19.50 | 107.6 | 114 | 2,050 | 113.9 | 2,265 | 113.3 |
|  | 23 | 0.63 | 19.50 | 116.5 | 114 | 2,210 | 122.8 | 2,445 | 122.2 |
|  | 24 | 0.68 | 19.50 | 125.4 | 114 | 2,370 | 131.8 | 2,620 | 131.1 |
|  | 25 | 0.73 | 19.50 | 134.3 | 114 | 2,530 | 140.6 | 2,800 | 140.0 |
|  | 26 | 0.79 | 19.50 | 144.9 | 114 | 2,720 | 151.2 | 3,010 | 150.6 |
|  | 27 | 0.85 | 19.50 | 155.4 | 114 | 2,910 | 161.7 | 3,220 | 161.1 |
|  | 28 | 0.92 | 19.50 | 167.5 | 114 | 3,130 | 173.8 | 3,465 | 173.2 |
| 20 | 21 | 0.57 | 21.60 | 117.5 | 133 | 2,250 | 124.9 | 2,485 | 124.2 |
|  | 22 | 0.62 | 21.60 | 127.5 | 133 | 2,430 | 134.9 | 2,685 | 134.2 |
|  | 23 | 0.67 | 21.60 | 137.5 | 133 | 2,610 | 144.9 | 2,885 | 144.2 |
|  | 24 | 0.72 | 21.60 | 147.4 | 133 | 2,785 | 154.8 | 3,080 | 154.0 |
|  | 25 | 0.78 | 21.60 | 159.2 | 133 | 3,000 | 166.6 | 3,315 | 165.8 |
|  | 26 | 0.84 | 21.60 | 170.9 | 133 | 3,210 | 178.4 | 3,550 | 177.6 |
|  | 27 | 0.91 | 21.60 | 184.5 | 133 | 3,455 | 191.9 | 3,825 | 191.2 |
|  | 28 | 0.98 | 21.60 | 198.1 | 133 | 3,700 | 205.5 | 4,095 | 204.8 |
| 24 | 21 | 0.63 | 25.80 | 155.4 | 179 | 2,975 | 165.3 | 3,285 | 164.4 |
|  | 22 | 0.68 | 25.80 | 167.4 | 179 | 3,190 | 177.3 | 3,525 | 176.4 |
|  | 23 | 0.73 | 25.80 | 179.4 | 179 | 3,410 | 189.4 | 3,765 | 188.4 |
|  | 24 | 0.79 | 25.80 | 193.7 | 179 | 3,665 | 203.6 | 4,055 | 202.6 |
|  | 25 | 0.85 | 25.80 | 207.9 | 179 | 3,920 | 217.8 | 4,335 | 216.8 |
|  | 26 | 0.92 | 25.80 | 224.4 | 179 | 4,220 | 234.4 | 4,665 | 233.4 |
|  | 27 | 0.99 | 25.80 | 240.8 | 179 | 4,515 | 250.7 | 4,995 | 249.8 |
|  | 28 | 1.07 | 25.80 | 259.4 | 179 | 4,850 | 269.3 | 5,365 | 268.4 |

[^11]TABLE 6.5
Standard Dimensions and Weights of Mechanical-Joint Cast-Iron Pipe

| Size in. | Thickness Class | Thicknes | OD $\dagger$ | Weight of Barrel per Foot | Weight of Bell | Weight Based on 18-ft Laylng Length |  | Welght Based on 20-ft Laylng Length |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\underset{\text { Length } \ddagger}{\text { Per }}$ | Avg. per Foot | $\underset{\text { Lengtht }}{\text { Per }}$ | Avg. per Foot |
|  |  | in. |  | 16 |  |  |  |  |  |
| 3* | 22 | 0.32 | 3.96 | 11.4 | 11 | 215 | 12.0 | 240 | 11.9 |
|  | 23 | 0.35 | 3.96 | 12.4 | 11 | 235 | 13.0 | 260 | 12.9 |
|  | 24 | 0.38 | 3.96 | 13.3 | 11 | 250 | 13.9 | 275 | 13.8 |
| 4 | 22 | 0.35 | 4.80 | 15.3 | 16 | 290 | 16.2 | 320 | 16.1 |
|  | 23 | 0.38 | 4.80 | 16.5 | 16 | 315 | 17.4 | 345 | 17.3 |
|  | 24 | 0.41 | 4.80 | 17.6 | 16 | 335 | 18.5 | 370 | 18.4 |
|  | 25 | 0.44 | 4.80 | 18.8 | 16 | 355 | 19.7 | 390 | 19.6 |
| 6 | 22 | 0.38 | 6.90 | 24.3 | 22 | 460 | 25.5 | 510 | 25.4 |
|  | 23 | 0.41 | 6.90 | 26.1 | 22 | 490 | 27.3 | 545 | 27.2 |
|  | 24 | 0.44 | 6.90 | 27.9 | 22 | 525 | 29.1 | 580 | 29.0 |
|  | 25 | 0.48 | 6.90 | 30.2 | 22 | 565 | 31.4 | 625 | 31.3 |
|  | 26 | 0.52 | 6.90 | 32.5 | 22 | 605 | 33.7 | 670 | 33.6 |
| 8 | 22 | 0.41 | 9.05 | 34.7 | 30 | 655 | 36.4 | 725 | 36.2 |
|  | 23 | 0.44 | 9.05 | 37.1 | 30 | 700 | 38.8 | 770 | 38.6 |
|  | 24 | 0.48 | 9.05 | 40.3 | 30 | 755 | 42.0 | 835 | 41.8 |
|  | 25 | 0.52 | 9.05 | 43.5 | 30 | 815 | 45.2 | 900 | 45.0 |
|  | 26 | 0.56 | 9.05 | 46.6 | 30 | 870 | 48.3 | 960 | 48.1 |
|  | 27 | 0.60 | 9.05 | 49.7 | 30 | 925 | 51.4 | 1,025 | 51.2 |
| 10 | 22 | 0.44 | 11.10 | 46.0 | 40 | 870 | 48.2 | 960 | 48.0 |
|  | 23 | 0.48 | 11.10 | 50.0 | 40 | 940 | 52.2 | 1,040 | 52.0 |
|  | 24 | 0.52 | 11.10 | 53.9 | 40 | 1,010 | 56.1 | 1,120 | 55.9 |
|  | 25 | 0.56 | 11.10 | 57.9 | 40 | 1,080 | 60.1 | 1,200 | 59.9 |
|  | 26 | 0.60 | 11.10 | 61.8 | 40 | 1,150 | 64.0 | 1,275 | 63.8 |
|  | 27 | 0.65 | 11.10 | 66.6 | 40 | 1,240 | 68.8 | 1,370 | 68.6 |
| 12 | 22 | 0.48 | 13.20 | 59.8 | 50 | 1,125 | 62.6 | 1,245 | 62.3 |
|  | 23 | 0.52 | 13.20 | 64.6 | 50 | 1,215 | 67.4 | 1,340 | 67.1 |
|  | 24 | 0.56 | 13.20 | 69.4 | 50 | 1,300 | 72.2 | 1,440 | 71.9 |
|  | 25 | 0.60 | 13.20 | 74.1 | 50 | 1,385 | 76.9 | 1,530 | 76.6 |
|  | 26 | 0.65 | 13.20 | 80.0 | 50 | 1,490 | 82.8 | 1,650 | 82.5 |
|  | 27 | 0.70 | 13.20 | 85.8 | 50 | 1,595 | 88.6 | 1,765 | 88.3 |
|  | 28 | 0.76 | 13.20 | 92.7 | 50 | 1,720 | 95.5 | 1,905 | 95.2 |

* Pipe of 3 -in size also available in 12 -ft laying length. Weight (b) per length $\ddagger$ for thickness class 22 is 150 for 23,160 ; for 24,170 . Average weight (lb) per foots for thickness class 22 is 12.3 ; for $23,13.3$; for 24, 14.2.

Including bell. Calcuiated weight of pipe rounded off to nearest 5 lb .
Including bel. Calculated weight of pipe rounded our to nearest


TABLE 6.5-(contd.)
Standard Dimensions and Weights of Mechanical-Joint Cast-Iron Pipe

| $\underset{\substack{\text { Size } \\ \text { in. }}}{\text { 位 }}$ | ThicknessClass Class | Thickness | OD $\dagger$ | Welght of Barrel per Foot | Weight of Bel | Weight Based on 18-ft Laylng Length |  | Welght Based on 20-ft Laying Length |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{gathered} \text { Per } \\ \text { Length } \ddagger \end{gathered}$ | $\begin{aligned} & \text { Avg. per } \\ & \text { Foot } \end{aligned}$ | $\begin{gathered} \text { Per } \\ \text { Lengtht } \end{gathered}$ | $\begin{aligned} & \text { Avg. per } \\ & \text { Foot } \end{aligned}$ |
|  |  | in. |  | 16 |  |  |  |  |  |
| 14 | 21 | 0.48 | 15.30 | 69.7 | 78 | 1.335 | 74.0 | 1,470 | 73.6 |
|  | 22 | 0.51 | 15.30 | 73.9 | 78 | 1,410 | 78.2 | 1,555 | 77.8 |
|  | 23 | 0.55 | 15.30 | 79.5 | 78 | 1,510 | 83.8 | 1,670 | 83.4 |
|  | 24 | 0.59 | 15.30 | 85.1 | 78 | 1,610 | 89.4 | 1,780 | 89.0 |
|  | 25 | 0.64 | 15.30 | 92.0 | 78 | 1,735 | 96.3 | 1,920 | 95.9 |
|  | 26 | 0.69 | 15.30 | 98.8 | 78 | 1,855 | 103.1 | 2,055 | 102.7 |
|  | 27 | 0.75 | 15.30 | 107.0 | 78 | 2,005 | 111.3 | 2,220 | 110.9 |
|  | 28 | 0.81 | 15.30 | 115.0 | 78 | 2,150 | 119.3 | 2,380 | 118.9 |
| 16 | 21 | 0.50 | 17.40 | 82.8 | 95 | 1,585 | 88.1 | 1,750 | 87.6 |
|  | 22 | 0.54 | 17.40 | 89.2 | 95 | 1,700 | 94.5 | 1,880 | 94.0 |
|  | 23 | 0.58 | 17.40 | 95.6 | 95 | 1,815 | 100.9 | 2,005 | 100.3 |
|  | 24 | 0.63 | 17.40 | 103.6 | 95 | 1,960 | 108.9 | 2,165 | 108.3 |
|  | 25 | 0.68 | 17.40 | 111.4 | 95 | 2,100 | 116.7 | 2,325 | 116.2 |
|  | 26 | 0.73 | 17.40 | 119.3 | 95 | 2,240 | 124.6 | 2,480 | 124.0 |
|  | 27 | 0.79 | 17.40 | 128.6 | 95 | 2,410 | 133.9 | 2,665 | 133.3 |
|  | 28 | 0.85 | 17.40 | 137.9 | 95 | 2,575 | 143.2 | 2,855 | 142.7 |
| 18 | 21 | 0.54 | 19.50 | 100.4 | 113 | 1,920 | 106.7 | 2,120 | 106.0 |
|  | 22 | 0.58 | 19.50 | 107.6 | 113 | 2,050 | 113.9 | 2,265 | 113.2 |
|  | 23 | 0.63 | 19.50 | 116.5 | 113 | 2,210 | 122.8 | 2,445 | 122.2 |
|  | 24 | 0.68 | 19.50 | 125.4 | 113 | 2,370 | 131.7 | 2,620 | 131.0 |
|  | 25 | 0.73 | 19.50 | 134.3 | 113 | 2,530 | 140.6 | 2,800 | 140.0 |
|  | 26 | 0.79 | 19.50 | 144.9 | 113 | 2,720 | 151.2 | 3,010 | 150.6 |
|  | 27 | 0.85 | 19.50 | 155.4 | 113 | 2,910 | 161.7 | 3,220 | 161.0 |
|  | 28 | 0.92 | 19.50 | 167.5 | 113 | 3,130 | 173.8 | 3,465 | 173.2 |
| 20 | 21 | 0.57 | 21.60 | 117.5 | 134 | 2,250 | 124.9 | 2,485 | 124.2 |
|  | 22 | 0.62 | 21.60 | 127.5 | 134 | 2,430 | 134.9 | 2,685 | 134.2 |
|  | 23 | 0.67 | 21.60 | 137.5 | 134 | 2,610 | 144.9 | 2,885 | 144.2 |
|  | 24 | 0.72 | 21.60 | 147.4 | 134 | 2,785 | 154.8 | 3,080 | 154.1 |
|  | 25 | 0.78 | 21.60 | 159.2 | 134 | 3,000 | 166.6 | 3,320 | 165.9 |
|  | 26 | 0.84 | 21.60 | 170.9 | 134 | 3,210 | 178.3 | 3,550 | 177.6 |
|  | 27 | 0.91 | 21.60 | 184.5 | 134 | 3,455 | 191.9 | 3,825 | 191.2 |
|  | 28 | 0.98 | 21.60 | 198.1 | 134 | 3,700 | 205.5 | 4,095 | 204.8 |
| 24 | 21 | 0.63 | 25.80 | 155.4 | 177 | 2,975 | 165.2 | 3,285 | 164.2 |
|  | 22 | 0.68 | 25.80 | 167.4 | 177 | 3,190 | 177.2 | 3,525 | 176.2 |
|  | 23 | 0.73 | 25.80 | 179.4 | 177 | 3,405 | 189.2 | 3,765 | 188.2 |
|  | 24 | 0.79 | 25.80 | 193.7 | 177 | 3,665 | 203.5 | 4,050 | 202.6 |
|  | 25 | 0.85 | 25.80 | 207.9 | 177 | 3,920 | 217.7 | 4,335 | 216.8 |
|  | 26 | 0.92 | 25.80 | 224.4 | 177 | 4,215 | 234.2 | 4,665 | 233.2 |
|  | 27 | 0.99 | 25.80 | 240.8 | 177 | 4,510 | 250.6 | 4,995 | 249.7 |
|  | 28 | 1.07 | 25.80 | 259.4 | 177 | 4,845 | 269.2 | 5,365 | 268.2 |



TABLE 6.6
Standard Bell-and-Spigot Joint Dimensions
For weights of bell-and-spigot joint pipe see Tables 6.1 and $6,4$.

| Size | Pipe OD $\dagger$ | $\underset{a \dagger}{\text { Socket Diam. }}$ | $\begin{aligned} & \text { Thickness } \\ & \text { of Joint } \\ & L \end{aligned}$ | $\mathrm{Socket}_{d}$ Depth | Centering Shoulder |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\underset{e}{\text { Depth }}$ | ID |
| in. |  |  |  |  |  |  |
| 3 | 3.96 | 4.76 | 0.40 | 3.30 | 0.30 | 4.10 |
| 4 | 4.80 | 5.60 | 0.40 | 3.30 | 0.30 | 4.94 |
| 6 | 6.90 | 7.70 | 0.40 | 3.88 | 0.38 | 7.06 |
| 8 | 9.05 | 9.85 | 0.40 | 4.38 | 0.38 | 9.21 |
| 10 | 11.10 | 11.90 | 0.40 | 4.38 | 0.38 | 11.28 |
| 12 | 13.20 | 14.00 | 0.40 | 4.38 | 0.38 | 13.38 |
| 14 | 15.30 | 16.10 | 0.40 | 4.50 | 0.50 | 15.52 |
| 16 | 17.40 | 18.40 | 0.50 | 4.50 | 0.50 | 17.62 |
| 18 | 19.50 | 20.50 | 0.50 | 4.50 | 0.50 | 19.72 |
| 20 | 21.60 | 22.60 | 0.50 | 4.50 | 0.50 | 21.82 |
| 24 | 25.80 | 26.80 | 0.50 | 4.50 | 0.50 | 26.02 |

$\dagger$ Tolerances for outside diameter of spigot ends, socket diameter $a$, and centering shoulder inslde diameter thall be $\pm 0.06 \mathrm{in}$. for sizes $3-12 \mathrm{in}$. $\pm 0.08 \mathrm{in}$. for sizes $14-24 \mathrm{in}$.

Dimensions of Pit Cast Pipe only
Not of current manufacture or standard
Dimensions of A. W. W. A. Standard Bell and Spigot Pipe


Table No. 1

| Nominal <br> Diameter Inches | Class | Dimensions, Inches |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A | B | C | D | E | F | G | T | W |
| 3 | A | 3.80 | 4.60 | 7.20 | 1.25 | 3.50 | . 65 | . 40 | . 39 | 4.18 |
|  | B | 3.96 | 4.76 | 7.36 | 1.25 | 3.50 | . 65 | . 40 | . 42 | 4.34 |
|  | C | 3.96 | 4.76 | 7.36 | 1.25 | 3.50 | . 65 | . 40 | . 45 | 4.34 |
|  | D | 3.96 | 4.76 | 7.36 | 1.25 | 3.50 | . 65 | . 40 | . 48 | 4.34 |
| 4 | A | 4.80 | 5.60 | 8.20 | 1.50 | 3.50 | . 65 | . 40 | . 42 | 5.18 |
|  | B | 5.00 | 5.80 | 8.40 | 1.50 | 3.50 | . 65 | . 40 | . 45 | 5.38 |
|  | C | 5.00 | 5.80 | 8.40 | 1.50 | 3.50 | . 65 | . 40 | . 48 | 5.38 |
|  | D | 5.00 | 5.80 | 8.40 | 1.50 | 3.50 | . 65 | . 40 | . 52 | 5.38 |
| 6 | A | 6.90 | 7.70 | 10.50 | 1.50 | 3.50 | . 70 | . 40 | . 44 | 7.28 |
|  | ${ }^{\text {B }}$ | 7.10 | 7.90 | 10.70 | 1.50 | 3.50 | . 70 | . 40 | . 48 | 7.48 |
|  | C |  | 7.90 7.90 | 10.70 | 1.50 | 3.50 3.50 | . 70 | . 40 | . 51 | 7.48 7.48 |
|  | D | 7.10 | 7.90 | 10.70 | 1.50 | 3.50 | . 70 | . 40 | . 55 | 7.48 |
| 8 | A | 9.05 | 9.85 | 12.85 | 1.50 | 4.00 | . 75 | . 40 | . 46 | 9.55 |
|  | B | 9.05 | 9.85 | 12.85 | 1.50 | 4.00 | . 75 | . 40 | . 51 | 9.55 |
|  | C | 9.30 | 10.10 | 13.10 | 1.50 | 4.00 | . 75 | . 40 | . 56 | 9.80 |
|  | D |  |  |  | 1.50 | 4.00 | . 75 | . 40 | . 60 | 9.80 |

Dimensions continued on next page.

Dimensions of Pit Cast Pipe only
Not of current manufacture or standard

Dimensions of A. W. W. A. Standard Bell and Spigot Pipe
Classes A, B, C and D
Table No. 1 (continued)

| Nominal Diameter Inches | Class | Dimensions, Inches |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A | B | C | D | E | F | G | T | WV |
| 10 | A | 11.10 | 11.90 | 14.90 | 1.50 | 4.00 | . 75 | . 40 | . 50 | 11.60 |
|  | B | 11.10 | 11.90 | 14.90 | 1.50 | 4.00 | . 75 | . 40 | . 57 | 11.60 |
|  | C | 11.40 | 12.20 | 15.40 | 1.50 | 4.00 | . 80 | . 40 | . 62 | 11.90 |
|  | D | 11.40 | 12.20 | 15.40 | 1.50 | 4.00 | . 80 | . 40 | . 68 | 11.90 |
| 12 | A | 13.20 | 14.00 | 17.20 | 1.50 | 4.00 | . 80 | . 40 | . 54 | 13.70 |
|  | B | 13.20 | 14.00 | 17.20 | 1.50 | 4.00 | . 80 | . 40 | . 62 | 13.70 |
|  | C | 13.50 | 14.30 | 17.70 | 1.50 | 4.00 | . 8.5 | . 40 | . 68 | 14.00 |
|  | D | 13.50 | 14.30 | 17.70 | 1.50 | 4.00 | . 85 | . 40 | . 75 | 14.00 |
| 14 | A | 15.30 | 16.10 | 19.50 | 1.50 | 4.00 | . 85 | . 40 | . 57 | 15.80 |
|  | B | 15.30 | 16.10 | 19.50 | 1.50 | 4.00 | . 85 | . 40 | . 66 | 15.80 |
|  | C | 15.65 | 16.45 | 20.05 | 1.50 | 4.00 | . 90 | . 40 | . 74 | 16.15 |
|  | D | 15.65 | 16.45 | 20.05 | 1.50 | 4.00 | . 90 | . 40 | . 82 | 16.15 |
| 16 | A | 17.40 | 18.40 | 22.00 | 1.75 | 4.00 | . 90 | . 50 | . 60 | 17.90 |
|  | B | 17.40 | 18.40 | 22.00 | 1.75 | 4.00 | . 90 | . 50 | . 70 | 17.90 |
|  | C | 17.80 | 18.80 | 22.60 | 1.75 | 4.00 | 1.00 | . 50 | . 80 | 18.30 |
|  | D | 17.80 | 18.80 | 22.60 | 1.75 | 4.00 | 1.00 | . 50 | . 89 | 18.30 |
| 18 | A | 19.50 | 20.50 | 24.30 | 1.75 | 4.00 | . 95 | . 50 | . 64 | 20.00 |
|  | B | 19.50 | 20.50 | 24.30 | 1.75 | 4.00 | . 95 | . 50 | . 75 | 20.00 |
|  | C | 19.92 | 20.92 | 25.12 | 1.75 | 4.00 | 1.05 | . 50 | . 87 | 20.42 |
|  | D | 19.92 | 20.92 | 25.12 | 1.75 | 4.00 | 1.05 | . 50 | . 96 | 20.42 |
| 20 | A | 21.60 | 22.60 | 26.60 | 1.75 | 4.00 | 1.00 | . 50 | . 67 | 22.10 |
|  | B | 21.60 | 22.60 | 26.60 | 1.75 | 4.00 | 1.00 | . 50 | . 80 | 22.10 |
|  | C | 22.06 | 2.3 .06 | 27.66 | 1.75 | 4.00 | 1.15 | . 50 | . 92 | 22.56 |
|  | D | 22.06 | 23.06 | 27.66 | 1.75 | 4.00 | 1.15 | . 50 | 1.03 | 22.56 |
| 24 | A | 25.80 | 26.80 | 31.00 | 2.00 | 4.00 | 1.05 | . 50 | . 76 | 26.30 |
|  | B | 25.80 | 26.80 | 31.00 | 2.00 | 4.00 | 1.05 | . 50 | . 89 | 26.30 |
|  | C | 26.32 | 27.32 | 32.32 | 2.00 | 4.00 | 1.25 | . 50 | 1.04 | 26.82 |
|  | D | 26.32 | 27.32 | 32.32 | 2.00 | 4.00 | 1.25 | . 50 | 1.16 | 26.82 |
| 30 | A | 31.74 | 32.74 | 37.34 | 2.00 | 4.50 | 1.15 | . 50 | . 88 | 32.24 |
|  | B | 32.00 | 33.00 | 37.60 | 2.00 | 4.50 | 1.15 | . 50 | 1.03 | 32.50 |
|  | C | 32.40 | 33.40 | 38.60 | 2.00 | 4.50 | 1.32 | . 50 | 1.20 | 32.90 |
|  | D | 32.74 | 33.74 | 39.74 | 2.00 | 4.50 | 1.50 | . 50 | 1.37 | 33.24 |
| 36 | A | 37.96 | 38.96 | 43.96 | 2.00 | 4.50 | 1.25 | . 50 | . 99 | 38.46 |
|  | B | 38.30 | 39.30 | 44.90 | 2.00 | 4.50 | 1.40 | . 50 | 1.15 | 38.80 |
|  | C | 38.70 | 39.70 | 45.90 | 2.00 | 4.50 | 1.60 | . 50 | 1.36 | 39.20 |
|  | D | 39.16 | 40.16 | 46.96 | 2.00 | 4.50 | 1.80 | . 50 | 1.58 | 39.66 |

Dimensions continued on next page.

## Dimensions of Pit Cast Pipe only

Not of current manufacture or standard

Dimensions of A. W. W. A. Standard<br>Bell and Spigot Pipe

> Classes A, B, C and D

Table No. 1 (continued)

| Nominal Diameter Inches | Class | Dimensions, Inches |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A | B | C | D | E | $F$ | G | T | W |
| 42 | A | 44.20 | 45.20 | 50.80 | 2.00 | 5.00 | 1.40 | . 50 | 1.10 | 44.70 |
|  | B | 44.50 | 45.50 | 51.50 | 2.00 | 5.00 | 1.50 | . 50 | 1.28 | 4.5 .00 |
|  | C | 45.10 | 46.10 | 52.90 | 2.00 | 5.00 | 1.75 | . 50 | 1.54 | 45.60 |
|  | D | 45.58 | 46.58 | 54.18 | 2.00 | 5.00 | 1.95 | . 50 | 1.78 | 46.08 |
| 48 | A | 50.50 | 51.50 | 57.50 | 2.00 | 5.00 | 1.50 | . 50 | 1.26 | 51.00 |
|  | B | 50.80 | 51.80 | 58.40 | 2.00 | 5.00 | 1.65 | . 50 | 1.42 | 51.30 |
|  | C | 51.40 | 52.40 | 60.00 | 2.00 | 5.00 | 1.95 | . 50 | 1.71 | 51.90 |
|  | D | 51.98 | 52.98 | 61.38 | 2.00 | 5.00 | 2.20 | . 50 | 1.96 | 52.48 |
| 54 | A | 56.66 | 57.66 | 64.06 | 2.25 | 5.50 | 1.60 | . 50 | 1.35 | 57.16 |
|  | B | 57.10 | 58.10 | 65.30 | 2.25 | 5.50 | 1.80 | . 50 | 1.55 | 57.60 |
|  | C | 57.80 | 58.80 | 66.80 | 2.25 | 5.50 | 2.15 | . 50 | 1.90 | 58.30 |
|  | D | 58.40 | 59.40 | 68.20 | 2.25 | 5.50 | 2.45 | . 50 | 2.23 | 58.90 |
| - 60 | A | 62.80 | 63.80 | 70.60 | 2.25 | 5.50 | 1.70 | . 50 | 1.39 | 63.30 |
|  | B | 6.3 .40 | 64.40 | 71.80 | 2.25 | 5.50 | 1.90 | . 50 | 1.67 | 63.90 |
|  | C | $6+.20$ | 65.20 | 73.60 | 2.25 | 5.50 | 2.25 | . 50 | 2.00 | 6.4.70 |
|  | D | 64.82 | 65.82 | 75.22 | 2.25 | 5.50 | 2.60 | . 50 | 2.38 | 65.32 |
| 72 | A | 75.34 | 76.59 | 84.19 | 2.25 | 5.50 | 1.87 | . 63 | 1.62 | 75.84 |
|  | B | 76.00 | 77.25 | 8.5.6.5 | 2.25 | 5.50) | 2.20 | . 63 | 1.95 | 76.50 |
|  | C | 76.88 | 78.13 | 87.33 | 2.25 | 5.50 | 2.64 | . 63 | 2.39 | 77.38 |
| 84 |  | 87.54 | 88.79 | 96.99 | 2.50 | 5.50 | 2.10 | . 63 | 1.72 | 88.04 |
|  | B | 88.54 | 89.79 | 98.79 | 2.50 | 5.50 | 2.60 | . 63 | 2.22 | 89.04 |

Dimensions of Pit Cast Pipe only Not of current manufacture or standard


| Nominal Diameter Inches | Class | Dimensions, Inches |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A | B | C | D | F | F | G | T | W |
| 6 | E | 7.22 | 8.02 | 11.52 | 1.50 | 4.00 | . 75 | . 40 | . 58 | 7.72 |
|  | F | 7.22 | 8.02 | 11.52 | 1.50 | 4.00 | . 75 | . 40 | . 61 | 7.72 |
|  | $\stackrel{\mathrm{G}}{\mathrm{H}}$ | 7.38 7.38 | 8.18 8.18 | 11.88 | 1.50 | 4.00 | . 85 | . 40 | . 65 | 7.88 |
|  | H | 7.38 | 8.18 | 11.88 | 1.50 | 4.00 | . 85 | . 40 | . 69 | 7.88 |
| 8 | E | 9.42 | 10.22 | 13.92 | 1.50 | 4.00 | . 85 | . 40 | . 66 | 9.92 |
|  | F | 9.42 | 10.22 | 13.92 | 1.50 | 4.00 | . 85 | . 40 | . 71 | 9.92 |
|  | G | 9.60 | 10.40 | 14.30 | 1.50 | 4.00 | . 95 | . 40 | . 75 | 10.10 |
|  | H | 9.60 | 10.40 | 14.30 | 1.50 | 4.00 | . 95 | . 40 | . 80 | 10.10 |
| 10 | E | 11.60 | 12.40 | 16.30 | 1.75 | 4.50 | . 95 | . 40 | . 74 | 12.10 |
|  | $\stackrel{\text { F }}{ }$ | 11.60 | 12.40 | 16.30 | 1.75 | 4.50 | . 95 | . 40 | . 80 | 12.10 |
|  | G | 11.84 | 12.64 | 16.74 | 1.75 | 4.50 | 1.05 | . 40 | . 86 | 12.34 |
|  | H | 11.84 | 12.64 | 16.74 | 1.75 | 4.50 | 1.05 | . 40 | . 92 | 12.34 |
| 12 | E | 13.78 | 14.58 | 18.68 | 1.75 | 4.50 | 1.05 | . 40 | . 82 | 14.28 |
|  | F | 13.78 | 14.58 | 18.68 | 1.75 | 4.50 | 1.05 | . 40 | . 89 | 14.28 |
|  | G | 14.08 | 14.88 | 19.28 | 1.75 | 4.50 | 1.20 | . 40 | . 97 | 14.58 |
|  | H | 14.08 | 14.88 | 19.28 | 1.75 | 4.50 | 1.20 | . 40 | 1.04 | 14.58 |
| 14 | E | 15.98 | 16.78 | 21.08 | 2.00 | 4.50 | 1.15 | . 40 | . 90 | 16.48 |
|  | F | 15.98 | 16.78 | 21.08 | 2.00 | 4.50 | 1.15 | . 40 | . 99 | 16.48 |
|  | G | 16.32 | 17.12 | 21.82 | 2.00 | 4.50 | 1.35 | . 40 | 1.07 | 16.82 |
|  | H | 16.32 | 17.12 | 21.82 | 2.00 | 4.50 | 1.35 | . 40 | 1.16 | 16.82 |

## Dimensions of Pit Cast Pipe only

Not of current manufacture or standard

Dimensions of A. W. W. A. Standard<br>Bell and Spigot Pipe<br>Classes E, F, G and H

Table No. 4 (continued)

| Nominal Diameter Inches | Class | Dimensions, Inches |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A | B | C | D | E | $F$ | G | T | W |
| 16 | E | 18.16 | 18.96 | 23.56 | 2.00 | 4.50 | 1.25 | . 40 | . 98 | 18.66 |
|  | F | 18.16 | 18.96 | 23.56 | 2.00 | 4.50 | 1.25 | . 40 | 1.08 | 18.66 |
|  | G | 18.54 | 19.34 | 24.44 | 2.00 | 4.50 | 1.45 | . 40 | 1.18 | 19.04 |
|  | H | 18.54 | 19.34 | 24.44 | 2.00 | 4.50 | 1.45 | . 40 | 1.27 | 19.04 |
| 18 | E | 20.34 | 21.14 | 26.04 | 2.25 | 4.50 | 1.40 | . 40 | 1.07 | 20.84 |
|  | F | 20.34 | 21.14 | 26.04 | 2.25 | 4.50 | 1.40 | . 40 | 1.17 | 20.84 |
|  | G | 20.78 | 21.58 | 27.08 | 2.25 | 4.50 | 1.65 | . 40 | 1.28 | 21.28 |
|  | H | 20.78 | 21.58 | 27.08 | 2.25 | 4.50 | 1.65 | . 40 | 1.39 | 21.28 |
| 20 | E | 22.54 | 23.34 | 28.44 | 2.25 | 4.50 | 1.50 | . 40 | 1.15 | 23.04 |
|  | F | 22.54 | 23.34 | 28.44 | 2.25 | 4.50 | 1.50 | . 40 | 1.27 | 23.04 |
|  | G | 23.02 | 23.82 | 29.52 | 2.25 | 4.50 | 1.75 | . 40 | 1.39 | 23.52 |
|  | H | 23.02 | 23.82 | 29.52 | 2.25 | 4.50 | 1.75 | : 40 | 1.51 | 23.52 |
| 24 | E | 26.90 | 27.90 | 33.40 | 2.25 | 5.00 | 1.70 | . 50 | 1.31 | 27.40 |
|  | F | 26.90 | 27.90 | 33.40 | 2.25 | 5.00 | 1.70 | . 50 | 1.45 | 27.40 |
|  | G | 27.76 | 28.56 | 34.86 | 2.25 | 5.00 | 1.95 | . 50 | 1.75 | 28.26 |
|  | H | 27.76 | 28.56 | 34.86 | 2.25 | 5.00 | 1.95 | . 50 | 1.88 | 28.26 |
| 30 | E | 33.10 | 34.10 | 40.60 | 2.25 | 5.00 | 1.80 | . 50 | 1.55 | 33.60 |
|  | $F$ | 33.46 | 34.46 | 41.46 | 2.25 | 5.00 | 2.00 | . 50 | 1.73 | 33.96 |
| 36 | E | 39.60 | 40.60 | 48.00 | 2.25 | 5.00 | 2.05 | . 50 | 1.80 | 40.10 |
|  | $F$ | 40.04 | 41.04 | 49.04 | 2.25 | 5.00 | 2.30 | . 50 | 2.02 | 40.54 |

# STANDARD ANSI CLASS THICKNESSES OF 21/45 STRENGTH <br> gray cast IRON PIPE <br> American National Standards Institute Standard A21.1 <br> (AWWA C101) 

The tables below are reproduced from ANSI Standard A21.1 (AWWA C101) and are repeated here for convenience. They are computed for metal of $21,000 \mathrm{psi}$ minimum burst tensile strength and $45,000 \mathrm{psi}$ minimum modulus of rupture.

Laying Conditions
A-Flat bottom trench, untamped backfill. F-Bedded in gravel or aand, backfill tamped.

| Nominal Inside Diameter Inches | Working Pressure psi | $21 / 2$ Feet of Cover Laying Condition |  |  | $31 / 2$ Feet of Cover Laying Condition |  |  | 5 Feet of Cover Laying Condition |  |  | 8 Feet of Cover Laying Condition |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | A | B | F | A | B | F | A | B | F | A | B | F |
|  |  | ANSI Class Thickness* |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 50 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
|  | 100 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
|  | 150 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
|  | 200 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | '22 | 22 | 22 | '22 | 22 |
|  | 250 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
|  | 300 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
|  | 350 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
| 4 | 50 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
|  | 100 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
|  | 150 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
|  | 200 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
|  | 250 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | ${ }^{2} 2$ |
|  | 300 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
|  | 350 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
| 6 | 50 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 |
|  | 100 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 |
|  | 150 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 |
|  | 200 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 |
|  | 250 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 |
|  | 300 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 |
|  | 350 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 |
| 8 | 50 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
|  | 100 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 21 | 20 | 20 |
|  | 150 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 21 | 20 | 20 |
|  | 200 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 21 | 21 | 20 |
|  | 250 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 22 | 21 | 20 |
|  | 300 | 21 | 20 | 20 | 20 | 20 | 20 | 21 | 21 | 20 | 22 | 22 | 21 |
|  | 350 | 21 | 21 | 20 | 21 | 21 | 20 | 21 | 21 | 21 | 23 | 22 | 21 |
| 10 | 50 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 21 | 21 | 20 |
|  | 100 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 22 | 21 | 20 |
|  | 150 | 21 | 20 | 20 | 20 | 20 | 20 | 21 | 20 | 20 | 22 | 22 | 21 |
|  | 200 | 21 | 20 | 20 | 21 | 20 | 20 | 21 | 21 | 20 | 23 | 22 | 21 |
|  | 250 | 21 | 21 | 20 | 21 | 21 | 20 | 22 | 21 | 21 | 23 | 23 | 22 |
|  | 300 | 22 | 21 | 21 | 22 | 21 | 21 | 22 | 22 | 21 | 23 | 23 | 22 |
|  | 350 | 22 | 22 | 22 | 22 | 22 | 22 | 23 | 23 | 22 | 24 | 23 | 23 |
| 12 | 50 | 21 | 20 | 20 | 20 | 20 | 20 | 21 | 20 | 20 | 22 | 21 | 20 |
|  | 100 | 21 | 20 | 20 | 21 | 20 | 20 | 21 | 20 | 20 | 22 | 22 | 21 |
|  | 150 | 21 | 21 | 20 | 21 | 20 | 20 | 21 | 20 | 20 | 23 | 22 | 21 |
|  | 200 | 22 | 21 | 20 | 21 | 21 | 20 | 22 | 21 | 20 | 23 | 22 | 22 |
|  | 250 | 22 | 22 | 20 | 22 | 21 | 20 | 22 | 22 | 21 | 24 | 23 | 22 |
|  | 300 | 22 | 22 | 21 | 22 | 22 | 21 | 23 | 22 | 22 | 24 | 23 | 23 |
|  | 350 | 23 | 22 | 22 | 23 | 22 | 22 | 23 | 23 | 22 | 24 | 24 | 23 |

*Thickness class includes allowances for foundry practice, corrosion, and either water hammer or truck load, whichever is greater.

# STANDARD ANSI CLASS THICKNESSES OF 21/45 STRENGTH GRAY CAST IRON PIPE 

American National Standards Institute Manual A21.1 (AWWA H1)

| Nominal Inside Diameter Inches | Working Pressure psi | $21 / 2$ Feet of Cover Laying Condition |  |  | $31 / 2$ Feet of Cover Laying Condition |  |  | 5 Feet of Cover Laying Condition |  |  | 8 Feet of Cover |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Laying Condition |  |  |  |
|  |  | A | B | F |  |  |  | A | B | F | A | B | F | A | B |  | F |
|  |  | ANSI Class Thickness* |  |  |  |  |  |  |  |  |  |  |  |  |
| 14 | 50 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 23 | 22 |  | 1 |
|  | 100 | 22 | 21 | 21 | 21 | 21 | 21 | 22 | 21 | 21 | 23 | 23 |  | 1 |
|  | 150 | 22 | 21 | 21 | 22 | 21 | 21 | 22 | 21 | 21 | 24 | 23 |  | 2 |
|  | 200 | 23 | 22 | 21 | 22 | 21 | 21 | 23 | 22 | 21 | 24 | 24 |  | 3 |
|  | 250 | 23 | 22 | 21 | 23 | 22 | 21 | 23 | 23 | 22 | 25 | 24 |  | 3 |
|  | 300 | 23 | 23 | 22 | 23 | 23 | 22 | 24 | 23 | 23 | 25 | 24 |  | 4 |
|  | 350 | 24 | 23 | 23 | 24 | 24 | 23 | 24 | 24 | 24 | 25 | 25 |  | 4 |
| 16 | 50 | 22 | 21 | 21 | 21 | 21 | 21 | 22 | 21 | 21 | 23 | 22 |  | 1 |
|  | 100 | 22 | 21 | 21 | 22 | 21 | 21 | 22 | 21 | 21 | 24 | 23 |  | 2 |
|  | 150 | 22 | 21 | 21 | 22 | 21 | 21 | 23 | 22 | 21 | 24 | 23 |  | 2 |
|  | 200 | 23 | 22 | 21 | 23 | 22 | 21 | 23 | 22 | 22 | 24 | 24 |  | 3 |
|  | 250 | 23 | 22 | 22 | 23 | 22 | 22 | 23 | 23 | 22 | 25 | 24 |  | 3 |
|  | 300 | 24 | 23 | 22 | 23 | 23 | 23 | 24 | 23 | 23 | 25 | 25 |  | 4 |
|  | 350 | 24 | 23 | 23 | 24 | 24 | 23 | 25 | 24 | 24 | 26 | 25 |  | 5 |
| 18 | 50 | 22 | 21 | 21 | 21 | 21 | 21 | 22 | 21 | 21 | 23 | 22 |  | 1 |
|  | 100 | 22 | 21 | 21 | '22 | 21 | 21 | 22 | 21 | 21 | 23 | 22 |  | 2 |
|  | 150 | 22 | 21 | 21 | 22 | 21 | 21 | 23 | 22 | 21 | 24 | 23 |  | 2 |
|  | 200 | 23 | 22 | 21 | 22 | 22 | 21 | 23 | 22 | 22 | 24 | 23 |  | 3 |
|  | 250 | 23 | 22 | 21 | 23 | 22 | 22 | 23 | 23 | 22 | 25 | 24 |  | 3 |
|  | 300 | 24 | 23 | 22 | 23 | 23 | 23 | 24 | 24 | 23 | 25 | 25 |  | 4 |
|  | 350 | 24 | 23 | 23 | 24 | 24 | 24 | 2.5 | 24 | 24 | 26 | 25 |  | 5 |
| 20 | 50 | 21 | 21 | 21 | 21 | 21 | 21 | 22 | 21 | 21 | 23 | 22 |  | 1 |
|  | 100 | 22 | 21 | 21 | 22 | 21 | 21 | 22 | 21 | 21 | 23 | 22 |  | 1 |
|  | 150 | 22 | 21 | 21 | 22 | 21 | 21 | 23 | 22 | 21 | 24 | 23 |  | 2 |
|  | 200 | 23 | 22 | 21 | 23 | 22 | 21 | 23 | 22 | 21 | 24 | 23 |  | 2 |
|  | 250 | 23 | 22 | 21 | 23 | 22 | 22 | 24 | 23 | 22 | 25 | 24 |  | 3 |
|  | 300 | 24 | 23 | 22 | 24 | 23 | 23 | 24 | 24 | 23 | 25 | 24 |  | 4 |
|  | 350 | 24 | 24 | 23 | 24 | 24 | 24 | 25 | 24 | 24 | 26 | $25^{\circ}$ |  | 5 |
| 24 | 50 | 22 | 21 | 21 | 22 | 21 | 21 | 22 | 21 | 21 | 23 | 22 |  | 1 |
|  | 100 | 22 | 21 | 21 | 22 | 21 | 21 | 23 | 21 | 21 | 24 | 23 |  | 1 |
|  | 150 | 23 | 21 | 21 | 22 | 21 | 21 | 23 | 22 | 21 | 24 | 23 |  | 2 |
|  | 200 | 23 | 22 | 21 | 23 | 22 | 21 | 24 | 22 | 22 | 25 | 24 |  | 3 |
|  | 250 | 24 | 23 | 22 | 24 | 22 | 22 | 24 | 23 | 23 | 25 | 24 |  | 4 |
|  | 300 | 24 | 23 | 23 | 24 | 23 | 23 | 25 | 24 | 24 | 26 | 25 |  | 4 |
|  | 350 | 25 | 24 | 24 | 25 | 24 | 24 | 25 | 25 | 25 | 26 | 26 |  | 5 | or truck load, whichever is greater.

STANDARD THICKNESS CLASS FOR GRAY CAST IRON PIPE

| Nominal Diameter Inches | Standard Class Thickness |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
|  |  |  |  |  |  |  |  |  |  |  |
| 3 |  |  | . 32 | . 35 | . 38 | . 41 | . 44 | . 48 | . 52 | . 56 |
| 4 | $\cdots$ | . 32 | . 35 | . 38 | . 41 | . 44 | . 48 | . 52 | . 56 | . 60 |
| 6 |  | . 35 | . 38 | . 41 | . 44 | . 48 | . 52 | . 56 | . 60 | . 65 |
| 8 | . 35 | . 38 | . 41 | 44 | 48 | . 52 | . 56 | . 60 | . 65 | 70 |
| 10 | . 38 | . 41 | . 44 | . 48 | . 52 | . 56 | . 60 | . 65 | . 70 | . 76 |
| 12 | . 41 | . 44 | . 48 | . 52 | . 56 | . 60 | . 65 | . 70 | . 76 | . 82 |
| 14 | . 43 | . 48 | . 51 | . 55 | . 59 | . 64 | . 69 | . 75 | . 81 | . 87 |
| 16 | 46 | . 50 | . 54 | . 58 | 63 | . 68 | . 73 | 79 | . 85 | . 92 |
| 18 | . 50 | . 54 | . 58 | . 63 | . 68 | . 73 | . 79 | . 85 | . 92 | . 99 |
| 20 | . 53 | . 57 | . 62 | . 67 | . 72 | . 78 | . 84 | . 91 | . 98 | 1.06 |
| 24 | . 58 | . 63 | . 68 | 73 | . 79 | . 85 | 92 | . 99 | 1.07 | 1.16 |

## Federal Standards for Cast Iron Pipe

WW-P-421 Federal Specification for Pipe: Water Cast Iron (Bell and Spigot) adopted in July, 19.31, contains tables showing pipe wall thicknesses for diameters 4 inches through 24 inches for Class 150 and Class 250 pipe. These thickness classes are now obsolete. Emergency Standard EWW-P-421 was used during World War II. The thickness classes in the original 1931 standard were revised in WW-P-421b (March, 1955) to include thickness classes which corresponded to those in ANSI Standards. At that time, ANSI Standards for cast iron pipe were made a part of the Federal Specification by reference. WW-P-421d (1977) also incorporates ANSI Standards for Gray and Ductile Cast Iron Pipe by reference. WW-I'-421d does not list pipe wall thicknesses but rather specifies that the pipe shall be furnished for installation with five feet of cover, laying condition B, unless otherwise stated, and that pipe wall thicknesses shown in ANSI Standards A21.1 and A21.51 shall be used.

## SECTION III

## Ductile Iron Pipe

## Introduction

Ductile iron was originally invented by a member company of CIPRA and the first ductile iron pipe was cast experimentally in 1948. Years of metallurgical, casting and quality control refinement followed and in 1955 ductile iron pipe was introduced into the .market place.

Its phenomenal strength and impact resistance, along with many other advantages, created a rapid increase in demand for this product as engineers and utility officials realized that it could be transported, handled and installed with virtually no damage to the pipe. In service, ductile iron pipe showed that expense of repair was practically eliminated. Its corrosion resistance exceeds that of gray cast iron, a pipe product with a reputation of centuries of service in the transmission and distribution of water and gas. Evidence of wide acceptance of ductile iron pipe is demonstrated by its adoption throughout the world as an accepted underground pressure pipe for the transportation of water, wastes, gas and many industrial materials.

Ductile iron pipe with dimensions that make it compatible with gray iron pipe and fittings is available with a wide variety of joints which equip it for specific types of service (see Section VI). As with gray cast iron pipe, protection from severe environmental factors is available (see Section VIII).

Ductile iron pipe provides versatility in design and while it may be designed in accordance with details of ANSI A21.50 (AWWA C150), it is not confined to this specific system. Engineers may choose other use conditions such as those recommended by the American Society of Civil Engineers (ASCE) and, observing the available strength and ductility of ductile iron pipe, follow the general procedure of ANSI A21.50.

Ductile iron pipe is manufactured in accordance with ANSI Standards A21.51 (AWWA C 151), A21.52 and Federal Specification WW-P-421d. The outstanding characteristics of ductile iron pipe result from its unique metallurgical properties effected during the manufacturing process.

## Metallurgy of Ductile Iron Pipe

## Structure

Ductile iron is usually defined as cast iron with primary graphite in the nodular or spheroidal form. This change in the graphite form is accomplished by adding an inoculant, usually magnesium, to molten iron of appropriate composition.

The matrix is predominantly ferritic for maximum impact resistance and ductility.

The chemical composition of ductile iron is similar to gray cast iron except for the inoculant addition. The chemistry is adjusted to meet the physical test requirements of the Standards.


The high strength and ruggedness
of Ductile Iron Pipe are demonstrated


Comparison of Graphite Particles
The gray cast iron on the left shows flake graphitic particles. The ductile iron on the right has spheroidal graphite.

## Propertics

Ferritic ductile iron as compared to gray cast iron, will have about twice the strength as determined by tensile test, beam test, ring bending test, and bursting test. The tensile elongation and impact strength of ductile iron are many times that of gray cast iron.


## Acceptance Test Requirements

The acceptance test requirements of the ANSI A21.51 (AWWA C151) and ANSI A21.52 Ductile Iron Pipe Standards are:

1. Strength and ductility properties of specimens machined from the pipe wall: ultimate strength, 60,000 psi minimum; yield strength, $42,000 \mathrm{psi}$ minimuin; elongation, 10 percent minimun.
2. Charpy V-Notch impact strengths on specimens cut from the pipe wall: 7 [t.-lb. minimum at $70^{\circ} \mathrm{F} ; 3 \mathrm{ft}$.-lb. minimum at $-40^{\circ} \mathrm{F}$.

## Quality Control

In addition to the acceptance tests, the manufacturers conduct other quality control tests to assure quality castings having the desired combination of properties.

A great deal of corrosion testing of ductile iron has been made since its commercial introduction. It has been found that the soil corrosion resistance of ductile iron pipe generally exceeds that of gray cast iron pipe.

## Ductile Iron Pipe Design

The method of thickness design of ductile iron pipe presented in ANSI A21.50 (AWWA C150) is based on flexible-pipe principles. The principal characteristics that distinguish flexible pipe from more rigid types of pipe are as follows:

1. In a flexible pipe the bending stress from trench load is reduced by the lateral soil reaction that is developed as the pipe deflects under the trench load and pushes outward against the sidefill soil.
2. A flexible pipe, initially deflected by trench load, is partially rerounded by internal pressure, and the bending stress of trench load is thus reduced.
3. A flexible pipe is usually required to carry less carth load than a more rigid pipe because the flexible pipe, in deflecting under the earth load, transfers a significant part of the load to the sidefill soil columns.
These characteristics are expressed mathematically in equations from which may be calculated the earth loads on flexible pipe and the bending stresses and deflections of flexible pipe when subjected to: (1) external trench load and no internal pressure and (2) external trench load in combination with internal pressure. These equations are applicable to pipe made of various elastic metals, of which cluctile iron is one.

During the development of the design procedures in this standard, a thorough investigation was carried out to establish conservative design criteria, metal stresses, and soil mechanics factors for use in applying the equations to the design of ductile iron pipe. This investigation included the following studies: ring-bending tests on a large number of ductile iron pipe; a review of the litcrature on the structural behavior of ductile iron pipe and other flexible pipe; and numerous calculations of pipe thicknesses, stresses, and deflections for various design criteria and loading conditions. Fron this investigation the design criteria and factors used in this standard were established as described below.

1. Design criterion for external trench load. The appropriate criterion for design of ductile iron pipe asainst extemal load is the bending stress developed at the pipe invert. This approach provides a uniform stress level in contrast to a design based on a uniform percentage deflection, which results in wide variations in stress and can result in undesirably high bending stresses. The standard provides a formula for supplementary calculation of deflection. if desired. Numorous calculations have shown, however, that the deflection of 3 -in. through 54 -in. pipe designed for bending stress according to the procedure in the standard will not exceed 3 percent of the outside diameter of the piper a deflection at
which the cement linings will not be damaged. Cement linings are not used for gas pipe.
2. Design bending stress. Results of a large number of ring-bending tests of ductile iron pipe of various sizes and thicknesses showed that a design bending stress of 48,000 psi is appropriate and conservative.
3. Trench factors. The design equation for bending stress contains the modulus of soil reaction and coefficients determined by the bedding angle, all of which are governed by the laying condition. The bedding angle is the angle subtended by the pipe surface that carries the load reaction at the bottom of the trench. Appropriate criteria are shown in Table 50.2 of the standard.
The design equation for bending stress, which incorporates the effect of lateral soil support, applies to the full range of sizes and thicknesses available in ductile iron pipe. For pipe with small diameter-thickness ratios, the effect of sidefill soil support is relatively small. For pipe with larger ratios of diameter to thickness the effect of lateral support in the equation is correspondingly larger.
4. Separate stress design. Because of partial rerounding by the internal pressure, the total stress in the pipe wall at the design pressure is less than the stress at zero pressure with external load only. Calculations showed that the larger of the two thicknesses obtained by designing separately for (1) external load with no internal pressure and (2) internal pressure with no external load is greater than the thickness calculated by the appropriate equation for combined external load and internal pressure. Therefore, the separate stress design detailed in the standard was selected.
5. Design for internal pressure. Results of a large number of wall tensile tests conducted in conjunction with full-length bursting tests of ductile iron pipe of various sizes and thicknesses showed that a design safety factor of 2 for internal pressure is appropriate and conservative. Internal pressures used for calculation of the thicknesses in ANSI A21.51 (AWWA C151) include an allowance of 100 psi for surges.
6. Earth loads. As stated previously, the deflection of a flexible pipe reduces the earth load to less than that imposed on a more rigid pipe in the same condition, because the sidefills carry a part of the trench load transferred to them by the deflection of the pipe. In the standard, the prism load is used for pipe laid in trenches of any width. This is conservative practice because it does not take into account friction forces on the trench walls.
In the calculations for earth loads, the unit weight of 120 lbs . per cubic foot for backfill soil is used. Soil weights generally vary from 110 to 130 lbs . per cubic foot. Experience has shown that 120 lbs . per cubic foot is commonly considered to be a conservative value for most installations.
7. Allowance for truck superload. In computing ductile iron pipe thicknesses, truck loads are added to earth loads. The truck superload allowance is a single AASHO H-20 truck with $16,000 \mathrm{lbs}$. on each rear wheel with an impact factor of 1.5 . These truck superloads are based on having the design depth of cover over the pipe and are applied at all depths of cover. Consideration should be given to the loads that may be transmitterl to the pipe if either truck superloads or heavy construction equipment is permitted to pass over the pipe at less than the design clepth of cover.
8. Beam load. Beam stress may be calculated using standard engineering beam formulas, and the deflection may be calculated using a modulus of elasticity of $24,000,000 \mathrm{psi}$.
9. Service allowance. Comparative corrosion tests of cast iron and ductile iron pipe have proved that the corrosion resistance of ductile iron pipe is greater than that of gray cast iron pipe. ANSI design thickness is increased by 0.08 in . to provide an arbitrary service allowance. CIPRA studies have shown that most soils are not corrosive to ductile iron pipe. In those soils, the service allowance serves as an added safety factor. Some of the remaining soils are moderately aggressive and the service allowance serves as a protection against corrosion of the designed pipe wall thickness. In severely corrosive soils, special corrosion protection procedures must be employed (see Section VIII).
10. Thickness tolerance. The standard thickness includes a casting tolerance, and the standard weight is calculated from this thickness. The average thickness of a pipe is controlled by the minimum-weight limitation. The minimum thickness is limited by the casting tolerance.
11. Thickness for tapping. The number of threads for taps of various sizes in different pipe thicknesses are provided in ductile iron pipe Standards ANSI A21.51 (AWWA C151) and ANSI A21.52. Tests have demonstrated that standard $;$ directly into all classes of ductile iron pipe for pressures through 350 psi. Installation torque may be reduced significantly by using teflon tape as a thread lubricant.

American Society of Civil Engineers' trench classes B and C as well as other commonly used trench conditions are also used for ductile iron pipe. These trench conditions may be used in any design for underground ductile iron pipe.

Revision of
A21.50-1971
(AWWA C150-71)

# AMERICAN NATIONAL STANDARD <br> tor the <br> THICKNESS DESIGN OF DUCTILE-IRON PIPE 

Secretariats<br>AMERICAN GAS ASSOCIATION AMERICAN WATER WORKS ASSOCIATION NEW ENGLAND WATER WORKS ASSOCIATION

Revised edition approved by American National Standards Institute, Inc. Aug. 4, 1976

## NOTICE

This Standard has been especially printed by the American Water Works Association for incorporation into this volume. It is current as of December 1, 1975. It should be noted, however, that all AWWA Standards are updated at least once in every five years. Therefore, before applying this Standard it is suggested that you confirm its currency with the American Water Works Association.

PUBLISHED BY
AMERICAN WATER WORKS ASSOCIATION
6666 West Quincy Avenue, Denver, Colorado 80235

## American National Standard

An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether he has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review, and users are cautioned to obtain the latest editions. Producers of goods made in conformity with an American National Standard are encouraged to state on their own responsibility in advertising and promotion material or on tags or labels that the goods are produced in conformity with particular American National Standards.

CAUTION NOTICE. This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than five (5) years from the date of publication. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute, 1430 Broadway, New York, N.Y. 10018, (212) $868-1220$.

Subcommittee 1, Pipe, which reviewed this standard, had the following personnel at that time:

Edward C. Sears, Chairman<br>Walter Amorx, Vice-Chairman

User Members
Roblert S. Bryant
Frank E. Dolson
George F. Keenan
Leonard Orlando Jk.
Join E. Perry

Producer Members
Alfren F. Case
W. I). Goone

Thomas D. Holmes
Harold Kennedy Jk.
W. Hakry Smith

Sidney P. Trague

1
4

Standards Committee A21, Cast-Iron Pipe and Fittings, which reviewed and approved this standard, had the following personnel at the time of approval:

Lloyd W. Weller, Chairman<br>Edward C. Sears, Vice-Chairman<br>James B. Ramsey, Secretary

## Organization Represented

American Gas Association
American Society of Civil Engineers
American Society of Mechanical Engineers
American Society for Testing and Materials American Water Works Association

Cast Iron Pipe Research Association

Individual Producer
Manufacturers' Standardization Society of the Valve and Fittings Industry
New England Water Works Association
Naval Facilities Engineering Command
Underwriters' Laboratories, Inc.
Canadian Standards Association

Name of Representative
Leonard Orlando Jr.
Kenneth W. Henderson
James S. Vanick
H. M. Cobr*

Arnold M. Tinkey
Lloys W. Wellek
Thomas I). Holmes
Haruld Kennedy Jr.
Emward C. Sears
W. Harry Smith

Alfred F. Case
Abraham Fenstier
Walter Amoky
Stanley C. Baker
John E. Perry
W. F. Semenchuk $\dagger$

## * Alternate

+ Liaison representative without vote


## Table of Contents

| 1 | sec. |  | page | sec. |  | page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | Foreword |  | vii | 50.6 | Surface-Load Factors for Single |  |
| 4 | Standard |  |  | 50.7 | Truck on Unpaved Road. | 11 |
|  | 50-1 | Scope | 1 |  | Diameter-Thickness Ratios for Laying Condition Type 1... | 12 |
|  | 50-2 | Procedure for Calculating Thickness. | 1 | 50.8 | Diameter-Thickness Ratios for Laying Condition Type 2. |  |
|  | 50-3 | Design Example for Calculating Thickness. | 2 | 50.9 | Diameter-Thickness Ratios for Laying Condition Type 3. | 16 |
|  | 50-4 | Design Method | 3 | 50.10 | Diameter-Thickness Ratios for Laying Condition Type 4 | 19 |
|  | Tables |  | 6 | 50.11 | Diameter-Thickness Ratios for |  |
|  | 50.1 | Earth Loads $P_{e}$ Truck Loads $P_{\mathrm{r}}$, and Trench Loads $P_{\mathrm{r}}$... |  | 50.12 | Thickness for Earth Load Plus Truck Load | , |
|  | 50.2 | Design Values for Standard Laying Conditions. | 8 | 50.13 50.14 | Thickness for Internal Pressure | 31 |
|  | $\begin{aligned} & 50.3 \\ & 50.4 \end{aligned}$ | Allowances for Casting Tolerance | 8 | 50.14 | Rated Working Pressure and Maximum Depth of Cover. | 32 |
|  |  | Reduction Factors $R$ for TruckLoad Calculations. | 8 | Figures |  |  |
|  | 50.5 | Standard Thickness Classes of Ductile-Iron Pipe | 10 | 1. St | andard Pipe Laying Conditions. |  |

## Foreword

This foreword is for information only and is not a part of A NSI A21.50 (AWWA C150).

American National Standards Committee A21, Cast-Iron Pipe and Fittings, was organized in 1926 under the sponsorship of the American Gas Association, the American Society for Testing and Materials, the American Water Works Association, and the New England Water Works Association. Since 1972, the co-secretariats have been A.G.A., AWWA, and NEWWA, with AWWA serving as the administrative secretariat. The present scope of Committee A21 activity is

Standardization of specifications for cast-iron and ductile-iron pressure pipe for gas, water and other liquids, and fittings for use with such pipe. These specifications to include design, dimensions, materials, coatings, linings, joints, accessories and methods of inspection and test.

The work of Committee A21 is conducted by subcommittees. The directive to Subcommittee 1 -Pipe is that

The scope of the subcommittee activity shall include the periodic review of all current A21 standards for pipe, the preparation of revisions and new standards when needed, as well as other matters pertaining to pipe standards.

The first edition of $A 21.50$, the standard for thickness design of duc-tile-iron pipe, was issued in 1965 and a revision was issued in 1971. Subcommittee 1 reviewed the 1971 edition and submitted a proposed revision to American National Standards Committee A21 in 1975.

## Major Revisions

The basic design procedures are unchanged from the 1965 and 1971
editions. Certain design parameters have been changed to the following.

1. Trench load, which includes earth load and truck load, is expressed as vertical pressure in pounds per square inch. Earth loads for all pipe sizes are based on the prism load concept. Truck load is based on a single AASHTO* H-20 truck with $16000-\mathrm{lb}$ wheel load and 1.5 impact factor. Truck load is included at all depths of cover. In addition to tabulated truck loads, equations are included for complete calculation of truck loads.
2. The design ring bending stress is 48000 psi , which provides safety factors under trench loading of at least 1.5 based on ring yield strength, and at least 2.0 based on ultimate strength of the material.
3. The design pipe deflection is 3 per cent of the outside diameter. Tests have shown that 3 per cent deflection is permissible without causing any damage to cement linings of ductile-iron pipe.
4. The standard laying conditions have been expanded to include five types. Types 1, 2, and 5 replace A, B, and S , respectively, in A21.50-1971. Types 3 and 4 have been added to provide a wider selection of laying conditions.
5. The design for internal pressure is based on a 2.0 safety factor. The design pressure is obtained by adding 100 -psi surge allowance to the working pressure and multiplying the sum by the 2.0 safety factor. (If anticipated surge pressures are greater than 100

[^12]psi, the maximum anticipated pressure must be used.) The resulting design pressure is then applied to the minimum yield strength in tension of 42000 psi .
6. The standard thickness classes have been renumbered. Class 1 becomes Class 51, Class 2 becomes Class 52 , and so on. Class 50 has been added for $6-54$-in. pipe and Class 51
has been expanded to include $3-12-\mathrm{in}$. pipe.
7. The tables have been modified to reflect the preceding changes. Also, a table has been added to show rated working pressure and maximum depth of cover for all the standard laying conditions and standard thickness classes.

Revision of
A21.50-1971
(AWWA C150-71)

## American National Standard

for the<br>Thickness Design of Ductile-Iron Pipe

## Sec. 50-1-Scope

This standard covers the thickness design of ductile-iron pipe complying with the requirements of ANSI A21.51 (AWWA, C151), "Ductile-Iron Pipe, Centrifugally Cast in Metal Molds or Sand-Lined Molds for Water or Other Liquids."

Section 50-2 outlines the design procedure and Sec. 50-3 gives a design example.

Section 50-4 explains the bases of design.

As opposed to using procedures in Sec. $50-2$ or $50-4$, the designer may reference Tables 12-14 directly.

Table 12 lists thicknesses for standard laying conditions and depths of cover up to 32 ft .

Table 13 lists thicknesses for 150 350 psi water working pressure.

The greater thickness from Table 12 or 13 for given trench load or internal pressure should be used.

Table 14 lists working pressures and maximum depths of cover for standard laying conditions and thickness classes.

Sec. 50-2-Procedure for Calculating Thickness

The thickness of ductile-iron pipe is determined by considering trench load and internal pressure separately.

50-2.1 Step 1-Design for trench load.
a. Determine trench load $P_{v}$. Table 1 gives trench load, including earth load, $P_{e}$, plus truck load $P_{t}$, for 2.5-32 ft cover.
b. Determine the standard laying condition from the descriptions in Table 2 and select the appropriate table for diameter-thickness ratios from Tables 7-11. Each table lists diameter-thickness ratios calculated for both bending stress and deflection over a range of trench loads.
c. For bending stress design, enter the column headed "Bending Stress Design" in the appropriate table of Tables $7-11$ and locate the tabulated trench load, $P_{v}$, nearest to the calculated $P_{\text {。 }}$ from paragraph $50-$ 2.1.a. (If the calculated $P_{\mathrm{D}}$ is halfway between two tabulated values, use the larger $P$, value.)

Select the corresponding $\frac{D}{t}$ value for this $P_{r}$.
Divide the pipe's outside diameter $D$ (Table 5) by the $\frac{D}{t}$ value to obtain the net thickness $t$.
d. For deflection design, enter the column headed "Deflection Design" in the appropriate table of Tables 7-11 and locate the tabulated trench load, $P_{v}$, nearest to the calculated $P_{v}$ from paragraph 50-2.1.a. (If the calculated $P_{v}$ is less than the minimum $P_{v}$ listed in the table, design for trench load is not controlled by deflection and this determination need not be completed.) If the calculated $P_{v}$ is halfway between two tabulated values, use the larger $P_{v}$ value.
Select the corresponding $\frac{D}{t_{1}}$ value for this $P_{v}$.

Divide the pipe's outside diameter $D$ (Table 5) by the $\frac{D}{t_{1}}$ value to obtain minimum manufacturing thickness $t_{1}$. Deduct 0.08 -in. service allowance to obtain net thickness $t$.
e. Compare the net thicknesses from steps $c$ and $d$ and select the larger of the two. This will be the net thickness required for trench load.
50-2.2 Step 2-Design for internal pressure. Calculate the net thickness required for internal pressure using the equation for hoop stress:

$$
t=\frac{P_{i} D}{2 S}
$$

in which $t$ is net thickness in inches; $P_{i}$ is the design internal pressure, which is equal to the safety factor of 2.0 times the sum of working pressure ( $P_{w}$ ) in pounds per square inch, plus 100 psi surge allowance $\left(P_{\theta}\right)$ for water pipe. That is, $P_{i}=2.0\left(P_{w}+P_{s}\right)$.

If anticipated surge pressures are greater than 100 psi , then the maximum anticipated pressure must be used. $D$ is outside diameter of pipe in inches, and $S$ is minimum yield strength in tension (42000 psi).

50-2.3 Step 3-Selection of net thickness and addition of allowances.
a. Select the net thickness $t$ from step 1 or 2 , whichever thickness is larger.
b. Add the service allowance of 0.08 in . to the net thickness $t$. The resulting thickness is the minimum manufacturing thickness $t_{1}$.
c. Add the casting tolerance from Table 3 to the minimum manufacturing thickness $t_{1}$. The resulting thickness is the total calculated thickness.
50-2.4 Step 4-Selection of standard thickness and class. Use the total calculated thickness from Sec. 50-2.3.c to select a standard class thickness from Table 5. Select the standard thickness nearest to the calculated thickness. When the calculated thickness is halfway between two standard thicknesses, select the larger of the two.

In specifying and ordering pipe, use the class number listed in Table 5 for this standard thickness.

## Sec. 50-3-Design Example for Calculating Thickness

Problem: Calculate the thickness for 30 -in. ductile-iron pipe laid on a flatbottom trench with backfill lightly consolidated to centerline of pipe, laying condition Type 2, under 10 ft of cover for a working pressure of 200 psi.

50-3.1 Step 1-Design for trench load.
a. Earth load (Table 1) $P_{e}=8.3 \mathrm{psi}$

Truck load (Table 1) $P_{t}=0.7 \mathrm{psi}$
Trench load, $P_{\mathrm{v}}=P_{\mathrm{t}}+P_{\mathrm{t}}=\overline{9.0 \text { psi }}$
b. Select Table 8 for diameterthickness ratios for laying condition Type 2.
c. Entering $P_{0}$ of 9.0 psi in Table 8 , the bending stress design requires $\frac{D}{t}$ of 128 . From Table 5, diameter $D$ of $30-\mathrm{in}$. pipe is 32.00 in .

Net thickness $t$ for bending stress $=\frac{D}{\frac{D}{t}}=\frac{32.00}{128}=0.25 \mathrm{in}$.
d. Also, from Table 8, the deflection design requires $\frac{D}{t_{1}}$ of 108 .

Minimum thickness $t_{1}$ for deflection design

$$
=\frac{D}{\frac{D}{\iota_{1}}}=\frac{32.00}{108}=0.30 \mathrm{in} .
$$

Deduct service allowance $\quad-0.08 \mathrm{in}$.
Net thickness $\ell$ for deflection control 0.22 in.
e. The larger net thickness is 0.25 in., obtained by the design for bending stress.

50-3.2 Step 2-Design for internal pressure.
$P_{i}=2.0$ (Working pressure +100 psi surge allowance)
(If anticipated surge pressures are greater than 100 psi , then the actual anticipated pressures must be used.)

$$
\begin{aligned}
P_{i} & =2.0(200+100) \\
& =600 \mathrm{psi} \\
t & =\frac{P_{\mathbf{i}} D}{2 S}=\frac{600 \times 32.00}{2 \times 42000}=0.23 \mathrm{in} .
\end{aligned}
$$

Net thickness $t$ for internal pressure is 0.23 in .

50-3.3 Step 3-Selection of net thickness and addition of allowances. The larger of the thicknesses is given 'כy the design for trench load, Step 1, and 0.25 in . is selected.

| Net thickness | $=0.25 \mathrm{in}$. |
| :--- | :--- |
| Service allowance | $=0.08 \mathrm{in}$. |
| Minimum thickness | $=\overline{0.33 \mathrm{in} .}$ |
| Casting tolerance | $=\underline{0.07 \mathrm{in} .}$ |
| Total calculated thickness | $=\overline{0.40 \mathrm{in} .}$ |

50-3.4 Step 4-Selection of standard thickness and class. The total calculated thickness of 0.40 in . is nearest to 0.39 , Class 50 , in Table 5. Therefore, Class 50 is selected for specifying and ordering.

## Sec. 50-4—Design Method

50-4.1 The thickness of ductileiron pipe is determined by considering trench load and internal pressure separately.

Calculations are made for the thicknesses required to resist the bending stress and the deflection caused by trench load. The larger of the two is selected as the thickness required to resist trench load. Calculations are then made for the thickness required to resist the hoop stress of internal pressure.

The larger of these is selected as the net design thickness. To this net thickness is added a service allowance to obtain the minimum manufacturing thickness and a casting tolerance to obtain the total calculated thickness.

The standard thickness and the thickness class for specifying and ordering are selected from a table of standard class thicknesses.

The reverse of the preceding procedure is used to determine the rated working pressure and maximum depth of cover for pipe of a given thickness class.

50-4.2 Trench load, Pv. Trench load is expressed as vertical pressure in pounds per square inch, and is equal to the sum of earth load $P_{0}$ and truck load $P_{t}$.

50-4.3 Earth load, $\mathrm{P}_{\mathrm{e}}$. Earth load is computed by Eq 4 for the weight of the unit prism of soil with a height equal to the distance from the top of the pipe to the ground surface. The unit weight of backfill soil is taken to be $120 \mathrm{lb} / \mathrm{cuft}$. If the designer antici-
pates additional loads because of frost, the design load should be increased accordingly.

50-4.4 Truck load, $\mathrm{P}_{\mathrm{t}}$. The truck loads shown in Table 1 were computed by Eq 5 using the surface load factors in Table 6 and the reduction factors $R$ from Table 4 for a single AASHTO H-20 truck on unpaved road or flexible pavement, $16000-\mathrm{lb}$ wheel load, and 1.5 impact factor. The surface load factors in Table 6 were calculated by Eq 6 for a single concentrated wheel load centered over an effective pipe length of 3 ft .

50-4.5 Design for trench load. Tables $7-11$, the tables of diameterthickness ratios used to design for trench load, were computed by Eq 2 and 3. Equation 2 is based on the bending stress at the bottom of the pipe. The design bending stress $f$ is

48000 psi, which provides at least a 1.5 safety factor based on minimum ring yield strength and a 2.0 safety factor based on ultimate strength. Equation 3 is based on the deflection of the pipe ring section. The design deflection $\Delta \chi$ is 3 per cent of the outside diameter of the pipe, which is well below the deflection that might damage cement linings. Design values of the trench parameters $E^{\prime}, K_{b}$, and $K_{x}$ are given in Table 2.

Tables similar to Tables $7-11$ may be compiled for laying conditions other than those shown in this standard by calculating the trench loads $P_{0}$ for a series of diameter-thickness ratios, $\frac{D}{t}$ and $\frac{D}{t_{1}}$, using Eq 2 and 3 with values of $E^{\prime}, K_{b}$, and $K_{x}$ appropriate to the bedding and backfill conditions.

## Design Equations

$$
\begin{align*}
& t=\frac{P_{i} D}{2 S}  \tag{1}\\
& P_{v}=\frac{f}{3\left(\frac{D}{t}\right)\left(\frac{D}{t}-1\right)\left[K_{b}-\frac{K_{z}}{\frac{8 E}{E^{\prime}\left(\frac{D}{t}-1\right)^{3}}+0.732}\right]}  \tag{2}\\
& P_{v}=\frac{\Delta x}{\frac{D}{12 K_{x}}}\left[\frac{8 E}{\left(\frac{D}{\iota_{1}}-1\right)^{3}}+0.732 E^{\prime}\right]  \tag{3}\\
& P_{e}=\frac{w H}{144}=\frac{120 H}{144}=\frac{H}{1.2}  \tag{4}\\
& P_{t}=\frac{C \cdot R \cdot P \cdot F}{12 D}  \tag{5}\\
& C=\frac{1}{3}-\frac{2}{3 \pi} \arcsin \left[H \sqrt{\frac{A^{2}+H^{2}+1.5^{2}}{\left(A^{2}+H^{2}\right)\left(H^{2}+1.5^{2}\right)}}\right] \\
& +\frac{A H}{\pi \sqrt{A^{2}+H^{2}+1.5^{2}}}\left[\frac{1}{A^{2}+H^{2}}+\frac{1}{H^{2}+1.5^{2}}\right] \tag{6}
\end{align*}
$$

## Explanation of Symbols for Equations

```
\(A=\) Outside radius of pipe in feet \(=\frac{D}{24}\)
\(C=\) Surface load factor (Table 6)
\(D=\) Outside diameter in inches (Table 5)
\(E=\) Modulus of elasticity ( \(24 \times 10^{6} \mathrm{psi}\) )
\(E^{\prime}=\) Modulus of soil reaction in pounds per square inch (Table 2)
\(F=\) Impact factor- 1.5
\(f=\) Design bending stress-48 000 psi
\(H=\) Depth of cover in feet
\(K_{b}=\) Bending moment coefficient (Table 2)
\(K_{x}=\) Deflection coefficient (Table 2)
\(P=\) Wheel load-16 000 lb
\(P_{e}=\) Earth load in pounds per square inch
\(P_{i}=\) Design internal pressure in pounds per square inch \(=2.0\) (working pressure +100
        psi surge allowance)
\(P_{t}=\) Truck load in pounds per square inch
\(P_{v}=\) Trench load in pounds per square inch \(=P_{e}+P_{t}\)
\(R=\) Reduction factor which takes account of the fact that the part of the pipe directly
        below the wheels is aided in carrying the truck load by adjacent parts of the
        pipe that receive little or no load from the wheels (Table 4)
\(S=\) Minimum yield strength in tension-42000 psi
\(t=\) Net thickness in inches
\(t_{1}=\) Minimum thickness in inches \((t+0.08)\)
\(w=\) Soil weight- 120 pounds per cubic foot
\(\Delta x=\) Design deflection in inches \(\left(\frac{\Delta x}{D}=0.03\right)\)
```

Note: In Eq 6, angles are in radians.

TABLE 50.1
Earth Loads $\mathrm{P}_{\mathrm{e}}$, Truck Loads $\mathrm{P}_{\mathrm{v}}$, and Trench Loads $\mathrm{P}_{\mathrm{v}}-\mathrm{psi}$

| Depth of Cover $f t$ | $P_{\text {e }}$ | 3-in. Pipe |  | 4 -in. Pipe |  | 6-in. Pipe |  | 8-in. Pipe |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $P_{1}$ | $P_{g}$ | $P_{t}$ | $P_{v}$ | $P_{6}$ | $P_{v}$ | $P_{1}$ | $P_{v}$ |
| 2.5 | 2.1 | 9.9 | 12.0 | 9.9 | 12.0 | 9.9 | 12.0 | 9.8 | 11.9 |
| 3 | 2.5 | 7.4 | 9.9 | 7.4 | 9.9 | 7.3 | 9.8 | 7.3 | 9.8 |
| 4 | 3.3 | 4.4 | 7.7 | 4.5 | 7.8 | 4.4 | 7.7 | 4.4 | 7.7 |
| 5 | 4.2 | 3.0 | 7.2 | 3.0 | 7.2 | 3.0 | 7.2 | 3.0 | 7.2 |
| 6 | 5.0 | 2.1 | 7.1 | 2.1 | 7.1 | 2.1 | 7.1 | 2.1 | 7.1 |
| 7 | 5.8 | 1.6 | 7.4 | 1.6 | 7.4 | 1.6 | 7.4 | 1.6 | 7.4 |
| 8 | 6.7 | 1.2 | 7.9 | 1.2 | 7.9 | 1.2 | 7.9 | 1.2 | 7.9 |
| 9 | 7.5 | 1.0 | 8.5 | 1.0 | 8.5 | 1.0 | 8.5 | 1.0 | 8.5 |
| 10 | 8.3 | 0.8 | 9.1 | 0.8 | 9.1 | 0.8 | 9.1 | 0.8 | 9.1 |
| 12 | 10.0 | 0.6 | 10.6 | 0.6 | 10.6 | 0.6 | 10.6 | 0.6 | 10.6 |
| 14 | 11.7 | 0.4 | 12.1 | 0.4 | 12.1 | 0.4 | 12.1 | 0.4 | 12.1 |
| 16 | 13.3 | 0.3 | 13.6 | 0.3 | 13.6 | 0.3 | 13.6 | 0.3 | 13.6 |
| 20 | 16.7 | 0.2 | 16.9 | 0.2 | 16.9 | 0.2 | 16.9 | 0.2 | 16.9 |
| 24 | 20.0 | 0.2 | 20.2 | 0.1 | 20.1 | 0.1 | 20.1 | 0.1 | 20.1 |
| 28 | 23.3 | 0.1 | 23.4 | 0.1 | 23.4 | 0.1 | 23.4 | 0.1 | 23.4 |
| 32 | 26.7 | 0.1 | 26.8 | 0.1 | 26.8 | 0.1 | 26.8 | 0.1 | 26.8 |
| Depth of Cover $f t$ | $P_{8}$ | 10-in. Pipe |  | 12-in. Pipe |  | 14-in. Pipe |  | 16-in. Pipe |  |
|  |  | $P_{t}$ | $p_{0}$ | Pt | $P_{v}$ | $P_{t}$ | $P_{v}$ | $P_{t}$ | $P_{*}$ |
| 2.5 | 2.1 | 9.7 | 11.8 | 9.6 | 11.7 | 8.7 | 10.8 | 8.2 | 10.3 |
| 3 | 2.5 | 7.2 | 9.7 | 7.2 | 9.7 | 6.6 | 9.1 | 6.2 | 8.7 |
| 4 | 3.3 | 4.4 | 7.7 | 4.4 | 7.7 | 4.4 | 7.7 | 4.1 | 7.4 |
| 5 | 4.2 | 2.9 | 7.1 | 2.9 | 7.1 | 2.9 | 7.1 | 2.8 | 7.0 |
| 6 | 5.0 | 2.1 | 7.1 | 2.1 | 7.1 | 2.1 | 7.1 | 2.0 | 7.0 |
| 7 | 5.8 | 1.6 | 7.4 | 1.6 | 7.4 | 1.6 | 7.4 | 1.5 | 7.3 |
| 8 | 6.7 | 1.2 | 7.9 | 1.2 | 7.9 | 1.2 | 7.9 | 1.2 | 7.9 |
| 9 | 7.5 | 1.0 | 8.5 | 1.0 | 8.5 | 1.0 | 8.5 | 1.0 | 8.5 |
| 10 | 8.3 | 0.8 | 9.1 | 0.8 | 9.1 | 0.8 | 9.1 | 0.8 | 9.1 |
| 12 | 10.0 | 0.5 | 10.5 | 0.5 | 10.5 | 0.5 | 10.5 | 0.5 | 10.5 |
| 14 | 11.7 | 0.4 | 12.1 | 0.4 | 12.1 | 0.4 | 12.1 | 0.4 | 12.1 |
| 16 | 13.3 | 0.3 | 13.6 | 0.3 | 13.6 | 0.3 | 13.6 | 0.3 | 13.6 |
| 20 | 16.7 | 0.2 | 16.9 | 0.2 | 16.9 | 0.2 | 16.9 | 0.2 | 16.9 |
| 24 | 20.0 | 0.1 | 20.1 | 0.1 | 20.1 | 0.1 | 20.1 | 0.1 | 20.1 |
| 28 | 23.3 | 0.1 | 23.4 | 0.1 | 23.4 | 0.1 | 23.4 | 0.1 | 23.4 |
| 32 | 26.7 | 0.1 | 26.8 | 0.1 | 26.8 | 0.1 | 26.8 | 0.1 | 26.8 |

## THICKNESS DESIGN OF DUCTILE-IRON PIPE

TABLE 50.1-(cont.)

| Depth of Cover $f t$ | $P_{e}$ | 18-in. Pipe |  | 20-in. Pipe |  | 24-in. Pipe |  | 30-in. Pipe |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $P$ | $P_{v}$ | $P_{1}$ | $P_{v}$ | $P_{1}$ | $P_{0}$ | $P_{1}$ | $P_{\text {v }}$ |
| 2.5 | 2.1 | 7.8 | 9.9 | 7.5 | 9.6 | 7.1 | 9.2 | 6.7 | 8.8 |
| 3 | 2.5 | 5.9 | 8.4 | 5.7 | 8.2 | 5.4 | 7.9 | 5.2 | 7.7 |
| 4 | 3.3 | 3.9 | 7.2 | 3.9 | 7.2 | 3.6 | 6.9 | 3.5 | 6.8 |
| 5 | 4.2 | 2.6 | 6.8 | 2.6 | 6.8 | 2.4 | 6.6 | 2.4 | 6.6 |
| 6 | 5.0 | 1.9 | 6.9 | 1.9 | 6.9 | 1.7 | 6.7 | 1.7 | 6.7 |
| 7 | 5.8 | 1.4 | 7.2 | 1.4 | 7.2 | 1.3 | 7.1 | 1.3 | 7.1 |
| 8 | 6.7 | 1.2 | 7.9 | 1.1 | 7.8 | 1.1 | 7.8 | 1.1 | 7.8 |
| 9 | 7.5 | 1.0 | 8.5 | 0.9 | 8.4 | 0.9 | 8.4 | 0.9 | 8.4 |
| 10 | 8.3 | 0.8 | 9.1 | 0.7 | 9.0 | 0.7 | 9.0 | 0.7 | 9.0 |
| 12 | 10.0 | 0.5 | 10.5 | 0.5 | 10.5 | 0.5 | 10.5 | 0.5 | 10.5 |
| 14 | 11.7 | 0.4 | 12.1 | 0.4 | 12.1 | 0.4 | 12.1 | 0.4 | 12.1 |
| 16 | 13.3 | 0.3 | 13.6 | 0.3 | 13.6 | 0.3 | 13.6 | 0.3 | 13.6 |
| 20 | 16.7 | 0.2 | 16.9 | 0.2 | 16.9 | 0.2 | 16.9 | 0.2 | 16.9 |
| 24 | 20.0 | 0.1 | 20.1 | 0.1 | 20.1 | 0.1 | 20.1 | 0.1 | 20.1 |
| 28 | 23.3 | 0.1 | 23.4 | 0.1 | 23.4 | 0.1 | 23.4 | 0.1 | 23.4 |
| 32 | 26.7 | 0.1 | 26.8 | 0.1 | 26.8 | 0.1 | 26.8 | 0.1 | 26.8 |
| Depth of Cover ft | $P_{0}$ | 36-in. Pipe |  | 42-in. Pipe |  | 48-in. Pipe |  | 54-in. Pipe |  |
|  |  | $P_{1}$ | $P_{0}$ | $P_{6}$ | $P_{0}$ | $P_{t}$ | $P_{\text {F }}$ | $P_{1}$ | $P=$ |
| 2.5 | 2.1 | 6.2 | 8.3 | 5.8 | 7.9 | 5.4 | 7.5 | 5.0 | 7.1 |
| 3 | 2.5 | 4.9 | 7.4 | 4.6 | 7.1 | 4.4 | 6.9 | 4.1 | 6.6 |
| 4 | 3.3 | 3.4 | 6.7 | 3.3 | 6.6 | 3.1 | 6.4 | 3.0 | 6.3 |
| 5 | 4.2 | 2.3 | 6.5 | 2.3 | 6.5 | 2.2 | 6.4 | 2.1 | 6.3 |
| 6 | 5.0 | 1.7 | 6.7 | 1.7 | 6.7 | 1.6 | 6.6 | 1.6 | 6.6 |
| 7 | 5.8 | 1.3 | 7.1 | 1.3 | 7.1 | 1.2 | 7.0 | 1.2 | 7.0 |
| 8 | 6.7 | 1.1 | 7.8 | 1.0 | 7.7 | 1.0 | 7.7 | 1.0 | 7.7 |
| 9 | 7.5 | 0.8 | 8.3 | 0.8 | 8.3 | 0.8 | 8.3 | 0.8 | 8.3 |
| 10 | 8.3 | 0.7 | 9.0 | 0.7 | 9.0 | 0.7 | 9.0 | 0.7 | 9.0 |
| 12 | 10.0 | 0.5 | 10.5 | 0.5 | 10.5 | 0.5 | 10.5 | 0.5 | 10.5 |
| 14 | 11.7 | 0.4 | 12.1 | 0.4 | 12.1 | 0.4 | 12.1 | 0.4 | 12.1 |
| 16 | 13.3 | 0.3 | 13.6 | 0.3 | 13.6 | 0.3 | 13.6 | 0.3 | 13.6 |
| 20 | 16.7 | 0.2 | 16.9 | 0.2 | 16.9 | 0.2 | 16.9 | 0.2 | 16.9 |
| 24 | 20.0 | 0.1 | 20.1 | 0.1 | 20.1 | 0.1 | 20.1 | 0.1 | 20.1 |
| 28 | 23.3 | 0.1 | 23.4 | 0.1 | 23.4 | 0.1 | 23.4 | 0.1 | 23.4 |
| 32 | 26.7 | 0.1 | 26.8 | 0.1 | 26.8 | 0.1 | 26.8 | 0.1 | 26.8 |

TABLE 50.2
Design Values for Standard Laying Conditions

| Laying Condition* | Description | $E^{\prime}$ | Bedding Angle deg | Kb | $K_{x}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Type 1 $\dagger$ | Flat-bottom trench. $\ddagger$ Loose backfill. | 150 | 30 | 0.235 | 0.108 |
| Type 2 | Flat-bottom trench. Backfill lightly consolidated to centerline of pipe. | 300 | 45 | 0.210 | 0.105 |
| Type 3 | Pipe bedded in 4-in.-minimum loose soil.§ Backfill lightly consolidated to top of pipe. | 400 | 60 | 0.189 | 0.103 |
| Type 4 | Pipe bedded in sand, gravel, or crushed stone to depth of $\frac{f}{8}$ pipe diameter, 4 -in. minimum. Backfill compacted to top of pipe. (Approx. 80 per cent Standard Proctor, AASHTO T-99)** | 500 | 90 | 0.157 | 0.096 |
| Type 5 | Pipe bedded to its centerline in compacted granular material, 4 -in. minimum under pipe. Compacted granular or select§ material to top of pipe. (Approx. 90 per cent Standard Proctor, AASHTO T-99)** | 700 | 150 | 0.128 | 0.085 |

[^13]TABLE 50.3
Allowances for Casting Tolerance

| Size <br> in. | Casting Tolerance |
| :---: | :---: |
| in. |  |
| $3-8$ | 0.05 |
| $10-12$ | 0.06 |
| $14-42$ | 0.07 |
| 48 | 0.08 |
| 54 | 0.09 |

TABLE 50.4
Reduction Factors R for Truck Load Calculations

|  | Depth of Cover-ft |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Size <br> in. | $<4$ | $4-7$ | $8-10$ | $>10$ |
|  | Reduction Factor |  |  |  |
| $3-12$ | 1.00 | 1.00 | 1.00 | 1.00 |
| 14 | 0.92 | 1.00 | 1.00 | 1.00 |
| 16 | 0.88 | 0.95 | 1.00 | 1.00 |
| 18 | 0.85 | 0.90 | 1.00 | 1.00 |
| 20 | 0.83 | 0.90 | 0.95 | 1.00 |
| $24-30$ | 0.81 | 0.85 | 0.95 | 1.00 |
| $36-54$ | 0.80 | 0.85 | 0.90 | 1.00 |



Type 1


Type 2


Type 3


Figure 1. Standard Pipe Laying Conditions
See Table 2

TABLE 50.5
Standard Thickness Classes of Ductile-Iron Pipe

| Size in. | Outside <br> Diameter-in. | Thickness Class |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 50 | 51 | 52 | 53 | 54 | 55 | 56 |
|  |  | Thickness-in. |  |  |  |  |  |  |
| 3 | 3.96 | - | 0.25 | 0.28 | 0.31 | 0.34 | 0.37 | 0.40 |
| 4 | 4.80 | - | 0.26 | 0.29 | 0.32 | 0.35 | 0.38 | 0.41 |
| 6 | 6.90 | 0.25 | 0.28 | 0.31 | 0.34 | 0.37 | 0.40 | 0.43 |
| 8 | 9.05 | 0.27 | 0.30 | 0.33 | 0.36 | 0.39 | 0.42 | 0.45 |
| 10 | 11.10 | 0.29 | 0.32 | 0.35 | 0.38 | 0.41 | 0.44 | 0.47 |
| 12 | 13.20 | 0.31 | 0.34 | 0.37 | 0.40 | 0.43 | 0.46 | 0.49 |
| 14 | 15.30 | 0.33 | 0.36 | 0.39 | 0.42 | 0.45 | 0.48 | 0.51 |
| 16 | 17.40 | 0.34 | 0.37 | 0.40 | 0.43 | 0.46 | 0.49 | 0.52 |
| 18 | 19.50 | 0.35 | 0.38 | 0.41 | 0.44 | 0.47 | 0.50 | 0.53 |
| 20 | 21.60 | 0.36 | 0.39 | 0.42 | 0.45 | 0.48 | 0.51 | 0.54 |
| 24 | 25.80 | 0.38 | 0.41 | 0.44 | 0.47 | 0.50 | 0.53 | 0.56 |
| 30 | 32.00 | 0.39 | 0.43 | 0.47 | 0.51 | 0.55 | 0.59 | 0.63 |
| 36 | 38.30 | 0.43 | 0.48 | 0.53 | 0.58 | 0.63 | 0.68 | 0.73 |
| 42 | 44.50 | 0.47 | 0.53 | 0.59 | 0.65 | 0.71 | 0.77 | 0.83 |
| 48 | 50.80 | 0.51 | 0.58 | 0.65 | 0.72 | 0.79 | 0.86 | 0.93 |
| 54 | 57.10 | 0.57 | 0.65 | 0.73 | 0.81 | 0.89 | 0.97 | 1.05 |

TABLE 50.6
Surface Load Factors for Single. Truck on Unpaved Road

| Depth of ${ }_{f t}$ | Pipe Size-in. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 4 | 6 | 8 | 10 | 12 | 14 | 16 |
|  | Surface Load Factor-C |  |  |  |  |  |  |  |
| 2.5 | 0.0196 | 0.0238 | 0.0340 | 0.0443 | 0.0538 | 0.0634 | 0.0726 | 0.0814 |
| 3 | 0.0146 | 0.0177 | 0.0253 | 0.0330 | 0.0402 | 0.0475 | 0.0546 | 0.0614 |
| 4 | 0.0088 | 0.0107 | 0.0153 | 0.0201 | 0.0245 | 0.0290 | 0.0335 | 0.0379 |
| 5 | 0.0059 | 0.0071 | 0.0102 | 0.0134 | 0.0163 | 0.0194 | 0.0224 | 0.0254 |
| 6 | 0.0042 | 0.0050 | 0.0072 | 0.0095 | 0.0116 | 0.0138 | 0.0159 | 0.0181 |
| 7 | 0.0031 | 0.0038 | 0.0054 | 0.0071 | 0.0087 | 0.0103 | 0.0119 | 0.0135 |
| 8 | 0.0024 | 0.0029 | 0.0042 | 0.0055 | 0.0067 | 0.0079 | 0.0092 | 0.0104 |
| 9 | 0.0019 | 0.0023 | 0.0033 | 0.0043 | 0.0053 | 0.0063 | 0.0073 | 0.0083 |
| 10 | 0.0015 | 0.0019 | 0.0027 | 0.0035 | 0.0043 | 0.0051 | 0.0060 | 0.0068 |
| 12 | 0.0011 | 0.0013 | 0.0019 | 0.0025 | 0.0030 | 0.0036 | 0.0042 | 0.0047 |
| 14 | 0.0008 | 0.0010 | 0.0014 | 0.0018 | 0.0022 | 0.0027 | 0.0031 | 0.0035 |
| 16 | 0.0006 | 0.0007 | 0.0011 | 0.0014 | 0.0017 | 0.0020 | 0.0024 | 0.0027 |
| 20 | 0.0004 | 0.0005 | 0.0007 | 0.0009 | 0.0011 | 0.0013 | 0.0015 | 0.0017 |
| 24 | 0.0003 | 0.0003 | 0.0005 | 0.0006 | 0.0008 | 0.0009 | 0.0011 | 0.0012 |
| 28 | 0.0002 | 0.0002 | 0.0003 | 0.0005 | 0.0006 | 0.0007 | 0.0008 | 0.0009 |
| 32 | 0.0002 | 0.0002 | 0.0003 | 0.0003 | 0.0004 | 0.0005 | 0.0006 | 0.0007 |
| Depth ofCover ft | Pipe Size-in. |  |  |  |  |  |  |  |
|  | 18 | 20 | 24 | 30 | 36 | 42 | 48 | 54 |
|  | Suriace Load Factor-C |  |  |  |  |  |  |  |
| 2.5 | 0.0899 | 0.0980 | 0.1130 | 0.1321 | 0.1479 | 0.1604 | 0.1705 | 0.1784 |
| 3 | 0.0681 | 0.0746 | 0.0867 | 0.1028 | 0.1169 | 0.1286 | 0.1384 | 0.1466 |
| 4 | 0.0422 | 0.0464 | 0.0545 | 0.0657 | 0.0761 | 0.0853 | 0.0936 | 0.1008 |
| 5 | 0.0283 | 0.0312 | 0.0369 | 0.0449 | 0.0525 | 0.0595 | 0.0661 | 0.0720 |
| 6 | 0.0202 | 0.0223 | 0.0264 | 0.0323 | 0.0381 | 0.0435 | 0.0486 | 0.0534 |
| 7 | 0.0151 | 0.0167 | 0.0198 | 0.0243 | 0.0288 | 0.0329 | 0.0370 | 0.0409 |
| 8 | 0.0117 | 0.0129 | 0.0154 | 0.0189 | 0.0224 | 0.0258 | 0.0290 | 0.0322 |
| 9 | 0.0093 | 0.0103 | 0.0122 | 0.0151 | 0.0179 | 0.0206 | 0.0233 | 0.0259 |
| 10 | 0.0076 | 0.0084 | 0.0100 | 0.0123 | 0.0147 | 0.0169 | 0.0191 | 0.0213 |
| 12 | 0.0053 | 0.0059 | 0.0070 | 0.0086 | 0.0103 | 0.0119 | 0.0135 | 0.0151 |
| 14 | 0.0039 | 0.0043 | 0.0052 | 0.0064 | 0.0076 | 0.0088 | 0.0100 | 0.0112 |
| 16 | 0.0030 | 0.0033 | 0.0040 | 0.0049 | 0.0059 | 0.0068 | 0.0077 | 0.0087 |
| 20 | 0.0019 | 0.0021 | 0.0025 | 0.0032 | 0.0038 | 0.0044 | 0.0050 | 0.0056 |
| 24 | 0.0013 | 0.0015 | 0.0018 | 0.0022 | 0.0026 | 0.0030 | 0.0035 | 0.0039 |
| 28 | 0.0010 | 0.0011 | 0.0013 | 0.0016 | 0.0019 | 0.0022 | 0.0026 | 0.0029 |
| 32 | 0.0008 | 0.0008 | 0.0010 | 0.0012 | 0.0015 | 0.0017 | 0.0020 | 0.0022 |

TABLE 50.7
Diameter-Thickness Ratios for Laying Condition Type 1*

| Trench Load ( $P_{v}$ )-psi |  |  | Trench Load ( $P_{v}$ ) - $p s i$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bending Stress Design | Deflection Design | $\frac{D+}{t}$ or $\frac{D}{t_{1}}$ | Bending Stress Design | Deflection Design | $\frac{D+}{t}$ or $\frac{D}{l_{1}}$ |
| 4.40 | 3.46 | 170 | 6.33 | 4.71 | 128 |
| 4.43 | 3.48 | 169 | 6.40 | 4.76 | 127 |
| 4.46 | 3.50 | 168 | 6.46 | 4.82 | 126 |
| 4.50 | 3.51 | 167 |  |  |  |
| 4.54 | 3.53 | 166 | 6.53 | 4.87 | 125 |
|  |  |  | 6.60 | 4.93 | 124 |
| 4.57 | 3.55 | 165 | 6.67 | 4.99 | 123 |
| 4.61 | 3.57 | 164 | 6.74 | 5.05 | 122 |
| 4.64 | 3.59 | 163 | 6.82 | 5.11 | 121 |
| 4.68 | 3.61 | 162 |  |  |  |
| 4.72 | 3.63 | 161 | 6.89 | 5.18 | 120 |
|  |  |  | 6.97 | 5.25 | 119 |
| 4.76 | 3.65 | 160 | 7.05 | 5.32 | 118 |
| 4.80 | 3.67 | 159 | 7.13 | 5.39 | 117 |
| 4.84 | 3.69 | 158 | 7.21 | 5.46 | 116 |
| 4.88 | 3.71 | 157 |  |  |  |
| 4.92 | 3.74 | 156 | 7.29 | 5.54 | 115 |
|  |  |  | 7.38 | 5.62 | 114 |
| 4.96 | 3.76 | 155 | 7.47 | 5.71 | 113 |
| 5.00 | 3.78 | 154 | 7.56 | 5.79 | 112 |
| 5.04 | 3.81 | 153 | 7.65 | 5.88 | 111 |
| 5.08 | 3.83 | 152 |  |  |  |
| 5.13 | 3.86 | 151 | 7.75 | 5.97 | 110 |
|  |  |  | 7.85 | 6.07 | 109 |
| 5.17 | 3.89 | 150 | 7.95 | 6.17 | 108 |
| 5.21 | 3.91 | 149 | 8.05 | 6.27 | 107 |
| 5.26 | 3.94 | 148 | 8.16 | 6.38 | 106 |
| 5.30 | 3.97 | 147 |  |  |  |
| 5.35 | 4.00 | 146 | 8.27 | 6.49 | 105 |
|  |  |  | 8.38 | 6.61 | 104 |
| 5.40 | 4.03 | 145 | 8.49 | 6.73 | 103 |
| 5.45 | 4.06 | 144 | 8.61 | 6.86 | 102 |
| 5.49 | 4.09 | 143 | 8.74 | 6.99 | 101 |
| 5.54 | 4.13 | 142 |  |  | 100 |
| 5.59 | 4.16 | 141 | 8.86 8.99 | 7.12 | 100 99 |
| 5.65 | 4.20 | 140 | 9.13 | 7.41 | 98 |
| 5.70 | 4.20 4.23 | 139 | 9.27 | 7.57 | 97 |
| 5.75 | 4.27 | 138 | 9.41 | 7.73 | 96 |
| 5.80 | 4.31 | 137 | 9.56 | 7.89 | 95 |
| 5.86 | 4.35 | 136 | 9.71 | 8.07 | 94 |
|  |  |  | 9.87 | 8.25 | 93 |
| 5.91 | 4.39 | 135 | 10.03 | 8.44 | 92 |
| 5.97 | 4.43 | 134 | 10.20 | 8.64 | 91 |
| 6.03 | 4.47 | 133 |  |  |  |
| 6.09 | 4.52 | 132 | 10.37 | 8.85 | 90 |
| 6.15 | 4.56 | 131 | 10.55 | 9.06 | 89 |
|  |  |  | 10.74 | 9.29 | 88 |
| 6.21 | 4.61 | 130 | 10.93 | 9.53 | 87 |
| 6.27 | 4.66 | 129 | 11.13 | 9.78 | 86 |

THICKNESS DESIGN OF DUCTILE-IRON PIPE
TABLE 50.7-(cont.)

| Trench Load ( $P_{\mathrm{v}}$ ) -psi |  |  | Trench Load ( $P_{\mathrm{r}}$ )-psi |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bending Stress Design | Deflection Design | $\frac{D t}{t}$ or $\frac{D}{t_{1}}$ |  | Deflection Design | $\frac{D+}{l}$ or $\frac{D}{h_{1}}$ |
| 11.34 | 10.04 | 85 | 21.91 | 26.54 | 58 |
| 11.55 | 10.31 | 84 | 22.63 | 27.85 | 57 |
| 11.78 | 10.60 | 83 | 23.38 | 29.26 | 56 |
| 12.01 | 10.90 | 82 |  |  |  |
| 12.25 | 11.22 | 81 | 24.18 | 30.77 | 55 |
|  |  |  | 25.02 | 32.39 | 54 |
| 12.50 | 11.56 | 80 | 25.92 | 34.15 | 53 |
| 12.76 | 11.91 | 79 | 26.86 | 36.05 | 52 |
| 13.03 | 12.28 | 78 | 27.87 | 38.10 | 51 |
| 13.31 | 12.67 | 77 |  |  |  |
| 13.60 | 13.08 | 76 | 28.94 | 40.32 | 50 |
|  |  |  | 30.07 | 42.73 | 49 |
| 13.91 | 13.51 | 75 | 31.28 | 45.35 | 48 |
| 14.23 | 13.97 | 74 | 32.57 | 48.20 | 47 |
| 14.56 | 14.45 | 73 | 33.95 | 51.31 | 46 |
| 14.91 | 14.96 | 72 |  |  |  |
| 15.27 | 15.50 | 71 | 35.42 | 54.72 | 45 |
|  |  |  | 37.00 | 58.44 | 44 |
| 15.65 | 16.07 | 70 | 38.69 | 62.53 | 43 |
| 16.05 | 16.68 | 69 | 40.50 | 67.03 | 42 |
| 16.46 | 17.32 | 68 | 42.46 | 71.99 | 41 |
| 16.89 | 18.00 | 67 |  | 77.47 |  |
| 17.35 | 18.73 | 66 | 44.56 46.84 | 77.47 83.54 | 40 39 |
|  |  |  | 49.30 | 90.28 | 38 |
| 17.83 | 19.50 | 65 | 51.96 | 97.80 | 37 |
| 18.33 | 20.32 | 64 | 54.86 | 106.20 | 36 |
| 18.85 | 21.19 | 63 |  |  |  |
| 19.40 | 22.12 | 62 | 58.02 | 115.62 | 35 |
| 19.98 | 23.12 | 61 | 61.46 | 126.21 | 34 |
|  |  |  | 65.23 | 138.18 | 33 |
| 20.59 | 24.18 | 60 | 69.36 | 151.73 | 32 |
| 21.23 | 25.32 | 59 | 73.92 | 167.15 | 31 |

* $E^{\prime}=150 ; K_{b}=0.235 ; K_{z}=0.108$.
$\dagger$ The $\frac{D}{l}$ for the tabulated $P_{v}$ nearest to the calculated $P_{v}$ is selected; when the calculated $P_{v}$ is halfway between
two tabulated values, the smaller $\frac{D}{t}$ should be used.

TABLE 50.8
Diameter-Thickness Ratios for Laying Condition Type 2*

| Trench Load ( $P_{r}$ )-psi |  |  | Trench Load ( $P_{v}$ )--psi |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\substack{\text { Bending Stress } \\ \text { Design }}}{ }$ | $\begin{aligned} & \text { Deflection } \\ & \text { Design } \end{aligned}$ | $\frac{D \dagger}{t}$ or $\frac{D}{t_{1}}$ | Bending Stress Design | Deflection Design | $\frac{D \dagger}{l}$ or $\frac{D}{h_{1}}$ |
| 6.29 | 6.18 | 170 | 8.99 | 7.46 | 128 |
| 6.34 | 6.19 | 169 | 9.07 | 7.51 | 127 |
| 6.39 | 6.21 | 168 | 9.16 | 7.57 | 126 |
| 6.44 | 6.23 | 167 |  |  |  |
| 6.50 | 6.25 | 166 | 9.25 | 7.63 | 125 |
|  |  |  | 9.33 | 7.69 | 124 |
| 6.55 | 6.26 | 165 | 9.42 | 7.75 | 123 |
| 6.60 | 6.28 | 164 | 9.51 | 7.81 | 122 |
| 6.66 | 6.30 | 163 | 9.60 | 7.87 | 121 |
| 6.71 | 6.32 | 162 |  |  |  |
| 6.77 | 6.34 | 161 | 9.70 | 7.94 | 120 |
|  |  |  | 9.79 | 8.01 | 119 |
| 6.82 | 6.37 | 160 | 9.89 | 8.08 | 118 |
| 6.88 | 6.39 | 159 | 9.99 | 8.16 | 117 |
| 6.94 | 6.41 | 158 | 10.09 | 8.23 | 116 |
| 6.99 | 6.43 | 157 |  |  |  |
| 7.05 | 6.46 | 156 | 10.19 | 8.31 | 115 |
|  |  |  | 10.29 | 8.40 | 114 |
| 7.11 | 6.48 | 155 | 10.40 | 8.48 | 113 |
| 7.17 | 6.50 | 154 | 10.51 | 8.57 | 112 |
| 7.23 | 6.53 | 153 | 10.62 | 8.66 | 111 |
| 7.29 | 6.56 | 152 |  |  |  |
| 7.35 | 6.58 | 151 | 10.73 | 8.76 | 110 |
|  |  |  | 10.84 | 8.86 | 109 |
| 7.42 | 6.61 | 150 | 10.96 | 8.96 | 108 |
| 7.48 | 6.64 | 149 | 11.08 | 9.07 | 107 |
| 7.54 | 6.67 | 148 | 11.21 | 9.18 | 106 |
| 7.61 | 6.70 | 147 |  |  |  |
| 7.67 | 6.73 | 146 | 11.33 | 9.29 | 105 |
|  |  |  | 11.46 | 9.41 | 104 |
| 7.74 | 6.76 | 145 | 11.59 | 9.54 | 103 |
| 7.80 | 6.79 | 144 | 11.73 | 9.67 | 102 |
| 7.87 | 6.83 | 143 | 11.87 | 9.80 | 101 |
| 7.94 | 6.86 | 142 |  |  |  |
| 8.01 | 6.89 | 141 | 12.01 | 9.94 | 100 99 |
|  |  |  | 12.16 | 10.09 | 99 |
| 8.08 | 6.93 | 140 | 12.31 | 10.24 | 98 |
| 8.15 | 6.97 | 139 | 12.46 | 10.40 | 97 |
| 8.22 | 7.01 | 138 | 12.62 | 10.56 | 96 |
| 8.29 | 7.05 | 137 | 12.79 | 10.73 | 95 |
| 8.37 | 7.09 | 136 | 12.96 | 10.91 | 94 |
|  |  |  | 13.13 | 11.10 | 93 |
| 8.44 | 7.13 | 135 | 13.31 | 11.29 | 92 |
| 8.52 | 7.17 | 134 | 13.49 | 11.50 | 91 |
| 8.59 | 7.22 | 133 |  |  |  |
| 8.67 | 7.26 | 132 | 13.68 | 11.71 | 90 |
| 8.75 | 7.31 | 131 | 13.88 | 11.94 | 89 |
|  |  |  | 14.08 | 12.17 | 88 |
| 8.83 | 7.36 | 130 | 14.30 | 12.42 | 87 |
| 8.91 | 7.41 | 129 | 14.51 | 12.67 | 86 |

THICKNESS DESIGN OF DUCTILE-IRON PIPE
TABLE 50.8-(cont.)

| Trench Load ( $P_{r}$ )-psi |  |  | Trench Load ( $P_{v}$ ) - psi $^{\text {i }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bending Stress Design | Deflection Design | $\frac{D+}{t}$ or $\frac{D}{l_{1}}$ | Bending Stress Design | Deflection Design | $\frac{D+}{t}$ or $\frac{D}{t_{1}}$ |
| 14.74 | 12.94 | 85 | 26.95 | 31.26 | 57 |
| 14.97 | 13.22 | 84 | 27.77 | 32.71 | 56 |
| 15.21 | 13.52 | 83 |  |  |  |
| 15.46 | 13.83 | 82 | 28.64 | 34.26 | 55 |
| 15.72 | 14.16 | 81 | 29.56 | 35.93 | 54 |
|  |  |  | 30.53 | 37.74 | 53 |
| 15.99 | 14.50 | 80 | 31.57 | 39.69 | 52 |
| 16.28 | 14.86 | 79 | 32.67 | 41.80 | 51 |
| 16.57 | 15.24 | 78 |  |  |  |
| 16.87 | 15.64 | 77 | 33.84 | 44.09 | 50 |
| 17.19 | 16.06 | 76 | 33.84 35.08 | 44.09 | 49 |
| 17.52 | 16.51 | 75 | 36.41 | 49.26 | 48 |
| 17.86 | 16.98 | 74 | 37.83 | 52.19 | 47 |
| 18.22 | 17.48 | 73 | 39.34 | 55.40 | 46 |
| 18.59 | 18.00 | 72 |  |  |  |
| 18.98 | 18.56 | 71 | 40.96 | 58.89 | 45 |
|  |  |  | 42.70 | 62.73 | 44 |
| 19.39 | 19.14 | 70 | 44.57 | 66.93 | 43 |
| 19.82 | 19.77 | 69 | 46.57 | 71.56 | 42 |
| 20.27 | 20.43 | 68 | 48.73 | 76.66 | 41 |
| 20.73 | 21.13 | 67 |  |  |  |
| 21.23 | 21.87 | 66 | 51.06 | 82.29 | 40 |
|  |  |  | 53.57 | 88.54 | 39 |
| 21.74 | 22.67 | 65 | 56.30 | 95.48 | 38 |
| 22.28 | 23.51 | 64 | 59.25 | 103.21 | 37 |
| 22.85 | 24.41 | 63 | 62.46 | 111.85 | 36 |
| 23.45 | 25.37 | 62 |  |  |  |
| 24.07 | 26.39 | 61 | 65.96 | 121.54 | 35 |
|  |  |  | 69.79 | 132.44 | 34 |
| 24.74 | 27.49 | 60 | 73.98 | 144.74 | 33 |
| 25.43 | 28.66 | 59 | 78.57 | 158.68 | 32 |
| 26.17 | 29.91 | 58 | 83.64 | 174.54 | 31 |

* $E^{\prime}=300 ; K_{b}=0.210 ; K_{x}=0.105$.
$\dagger$ The $\frac{D}{l}$ for the tabulated $P_{v}$ nearest to the calculated $P_{v}$ is selected; when the calculated $P_{v}$ is halfway between
two tabulated values, the smaller $\frac{D}{t}$ should be used.

TABLE 50.9
Diameter-Thickness Ratios for Laying Condition Type 3*


TABLE 50.9-(cont.)

| Trench Load ( $P_{v}$ )-psi |  |  | Trench Load ( $P_{\mathrm{v}}$ ) --psi |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bending Stress Design | $\begin{aligned} & \text { Deflection } \\ & \text { Design } \end{aligned}$ | $\frac{D t}{t}$ or $\frac{D}{l_{1}}$ |  | $\begin{aligned} & \text { Deflection } \\ & \text { Design } \end{aligned}$ | $\frac{D t}{1}$ or $\frac{D}{l_{1}}$ |
| 9.62 | 8.38 | 155 | 13.71 | 10.51 | 112 |
| 9.69 | 8.41 | 154 | 13.83 | 10.61 | 111 |
| 9.77 | 8.43 | 153 |  |  |  |
| 9.85 | 8.46 | 152 | 13.96 | 10.71 | 110 |
| 9.92 | 8.49 | 151 | 14.09 | 10.81 | 109 |
|  |  |  | 14.22 | 10.91 | 108 |
| 10.00 | 8.52 | 150 | 14.36 | 11.02 | 107 |
| 10.08 | 8.54 | 149 | 14.50 | 11.13 | 106 |
| 10.16 | 8.57 | 148 |  |  |  |
| 10.24 | 8.60 | 147 | 14.64 | 11.25 | 105 |
| 10.33 | 8.64 | 146 | 14.78 | 11.37 | 104 |
|  |  |  | 14.93 | 11.50 | 103 |
| 10.41 | 8.67 | 145 | 15.08 | 11.63 | 102 |
| 10.49 | 8.70 | 144 | 15.23 | 11.77 | 101 |
| 10.58 | 8.73 | 143 | 15.23 |  |  |
| 10.66 | 8.77 | 142 | 15.39 | 11.91 | 100 |
| 10.75 | 8.81 | 141 | 15.55 | 12.06 | 99 |
|  | 8.84 | 140 | 15.71 | 12.21 | 98 |
| 10.92 | 8.84 8.88 | 140 | 15.88 | 12.37 | 97 |
| 10.92 11.01 | 8.88 8.92 | 139 138 | 16.06 | 12.54 | 96 |
| 11.10 | 8.96 | 137 |  |  |  |
| 11.19 | 9.00 | 136 | 16.23 | 12.72 | 95 |
|  | 9.00 | 136 | 16.42 | 12.90 | 94 |
| 11.28 | 9.04 | 135 | 16.61 | 13.09 | 93 |
| 11.37 | 9.09 | 134 | 16.80 | 13.29 | 92 |
| 11.46 | 9.13 | 133 | 17.00 | 13.50 | 91 |
| 11.56 | 9.18 | 132 |  |  |  |
| 11.65 | 9.23 | 131 | 17.21 | 13.72 | 90 |
|  |  |  | 17.42 | 13.95 | 89 |
| 11.75 | 9.28 | 130 | 17.64 | 14.18 | 88 |
| 11.84 | 9.33 | 129 | 17.86 | 14.43 | 87 |
| 11.94 | 9.38 | 128 | 18.10 | 14.70 | 86 |
| 12.04 | 9.44 | 127 |  |  |  |
| 12.14 | 9.49 | 126 | 18.34 | 14.97 | 85 |
|  |  |  | 18.59 | 15.26 | 84 |
| 12.25 | 9.55 | 125 | 18.85 | 15.56 | 83 |
| 12.35 | 9.61 | 124 | 19.12 | 15.88 | 82 |
| 12.45 | 9.67 | 123 | 19.40 | 16.21 | 81 |
| 12.56 | 9.74 | 122 |  |  |  |
| 12.67 | 9.80 | 121 | 19.68 | 16.56 | 80 |
|  |  |  | 19.99 | 16.93 | 79 |
| 12.78 | 9.87 | 120 | 20.30 | 17.31 | 78 |
| 12.89 | 9.94 | 1.19 | 20.62 | 17.72 | 77 |
| 13.00 | 10.02 | 118 | 20.96 | 18.15 | 76 |
| 13.11 | 10.09 | 117 |  |  |  |
| 13.23 | 10.17 | 116 | 21.31 | 18.61 | 75 |
|  |  |  | 21.68 | 19.09 | 74 |
| 13.34 | 10.25 | 115 | 22.07 | 19.59 | 73 |
| 13.46 | 10.34 | 114 | 22.47 | 20.13 | 72 |
| 13.58 | 10.42 | 113 | 22.88 | 20.69 | 71 |

TABLE 50.9-(cont.)


* $E^{\prime}=400 ; K_{b}=0.189 ; K_{x}=0.103$.
$\dagger$ The $\frac{D}{l}$ for the tabulated $P_{v}$ nearest to the calculated $P_{v}$ is selected; when the calculated $P_{v}$ is halfway between two tabulated values, the smaller $\frac{D}{l}$ should be used.

THICKNESS DESIGN OF DUCTILE-IRON PIPE
TABLE 50.10
Diameter-Thickness Ratios for Laying Condition Type 4*

| Trench Load ( $P_{0}$ ) - psi |  |  | Trench Load ( $P_{v}$ ) - psi $^{\text {c }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bending Stress Design | Deflection Design | $\frac{D t}{l}$ or $\frac{D}{l_{1}}$ | Bending Stress Design | $\begin{aligned} & \text { Deflection } \\ & \text { Design } \end{aligned}$ | $\frac{D+}{t}$ or $\frac{D}{U_{1}}$ |
| 5.93 | 9.70 | 310 | 9.95 | 9.97 | 226 |
| 6.00 | 9.70 | 308 | 10.08 | 9.98 | 224 |
| 6.07 | 9.71 | 306 | 10.21 | 9.99 | 222 |
| 6.14 | 9.71 | 304 |  |  |  |
| 6.21 | 9.71 | 302 | 10.35 | 10.01 | 220 |
|  |  |  | 10.49 | 10.02 | 218 |
| 6.29 | 9.72 | 300 | 10.62 | 10.03 | 216 |
| 6.36 | 9.72 | 298 | 10.77 | 10.05 | 214 |
| 6.43 | 9.73 | 296 | 10.91 | 10.06 | 212 |
| 6.51 | 9.73 | 294 |  |  |  |
| 6.59 | 9.73 | 292 | 11.05 | 10.08 | 210 |
|  |  |  | 11.20 | 10.09 | 208 |
| 6.67 | 9.74 | 290 | 11.35 | 10.11 | 206 |
| 6.74 | 9.74 | 288 | 11.50 | 10.13 | 204 |
| 6.83 | 9.75 | 286 | 11.66 | 10.15 | 202 |
| 6.91 | 9.75 | 284 |  |  |  |
| 6.99 | 9.76 | 282 | 11.81 | 10.17 | 200 |
|  |  |  | 11.97 | 10.19 | 198 |
| 7.08 | 9.76 | 280 | 12.13 | 10.21 | 196 |
| 7.16 | 9.77 | 278 | 12.29 | 10.23 | 194 |
| 7.25 | 9.77 | 276 | 12.45 | 10.25 | 192 |
| 7.34 | 9.78 | 274 |  |  |  |
| 7.43 | 9.78 | 272 | 12.62 | 10.27 | 190 |
|  |  |  | 12.79 | 10.30 | 188 |
| 7.52 | 9.79 | 270 | 12.96 | 10.32 | 186 |
| 7.61 | 9.79 | 268 | 13.13 | 10.35 | 184 |
| 7.71 | 9.80 | 266 | 13.30 | 10.37 | 182 |
| 7.80 | 9.81 | 264 |  |  |  |
| 7.90 | 9.81 | 262 | 13.48 | 10.40 | 180 |
|  |  |  | 13.66 | 10.43 | 178 |
| 8.00 | 9.82 | 260 | 13.84 | 10.46 | 176 |
| 8.10 | 9.83 | 258 | 14.02 | 10.50 | 174 |
| 8.20 | 9.83 | 256 | 14.20 | 10.53 | 172 |
| 8.31 | 9.84 | 254 |  |  |  |
| 8.41 | 9.85 | 252 | 14.39 | 10.57 | 170 |
|  |  |  | 14.48 | 10.59 | 169 |
| 8.52 | 9.86 | 250 | 14.57 | 10.60 | 168 |
| 8.63 | 9.86 | 248 | 14.67 | 10.62 | 167 |
| 8.74 | 9.87 | 246 | 14.76 | 10.64 | 166 |
| 8.85 | 9.88 | 244 | 14.86 | 10.66 | 165 |
| 8.97 | 9.89 | 242 | 14.86 | 10.66 10.69 | 164 |
|  |  |  | 15.05 | 10.71 | 163 |
| 9.08 | 9.90 | 240 | 15.15 | 10.73 | 162 |
| 9.20 9.32 | 9.91 9.92 | 238 | 15.25 | 10.75 | 161 |
| 9.32 | 9.92 | 236 | 15.25 | 10.75 | 161 |
| 9.44 | 9.93 | 234 | 15.34 | 10.78 | 160 |
| 9.57 | 9.94 | 232 | 15.44 | 10.80 | 159 |
|  |  |  | 15.54 | 10.82 | 158 |
| 9.69 | 9.95 | 230 | 15.64 | 10.85 | 157 |
| 9.82 | 9.96 | 228 | 15.74 | 10.87 | 156 |

TABLE 50.10-- (cont.)


TABLE 50.10-(cont.)

| Trench Load ( $P_{v}$ )—psi |  |  | Trench Load ( $P_{v}$ )-psi |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Bending Stress } \\ & \text { Design } \end{aligned}$ | $\begin{aligned} & \text { Deflection } \\ & \text { Design } \end{aligned}$ | $\frac{D+}{l}$ or $\frac{D}{i_{1}}$ | Bending Stress Design | Deflection Design | $\frac{D+}{t}$ or $\frac{D}{t_{1}}$ |
| 31.11 | 24.75 | 70 | 49.11 | 52.03 | 50 |
| 31.62 | 25.43 | 69 | 50.70 | 54.74 | 49 |
| 32.16 | 26.16 | 68 | 52.41 | 57.69 | 48 |
| 32.72 | 26.92 | 67 | 54.23 | 60.90 | 47 |
| 33.32 | 27.74 | 66 | 56.18 | 64.40 | 46 |
| 33.95 | 28.60 | 65 | 58.27 | 68.23 | 45 |
| 34.61 | 29.53 | 64 | 60.52 | 72.42 | 44 |
| 35.30 | 30.51 | 63 | 62.93 | 77.02 | 43 |
| 36.04 | 31.56 | 62 | 65.54 | 82.08 | 42 |
| 36.81 | 32.68 | 61 | 68.35 | 87.66 | 41 |
| 37.63 | 33.88 | 60 | 71.39 | 93.82 | 40 |
| 38.50 | 35.16 | 59 | 74.67 | 100.65 | 39 |
| 39.42 | 36.53 | 58 | 78.24 | 108.24 | 38 |
| 40.39 | 38.00 | 57 | 82.11 | 116.70 | 37 |
| 41.42 | 39.58 | 56 | 86.33 | 126.15 | 36 |
| 42.51 | 41.28 | 55 | 90.93 | 136.74 | 35 |
| 43.67 | 43.12 | 54 | 95.97 | 148.66 | 34 |
| 44.91 | 45.09 | 53 | 101.49 | 162.12 | 33 |
| 46.22 | 47.22 | 52 | 107.56 | 177.37 | 32 |
| 47.62 | 49.53 | 51 | 114.25 | 194.72 | 31 |

* $E^{\prime}=500 ; K_{b}=0.157 ; K_{x}=0.096$.
$\dagger$ The $\frac{D}{t}$ for the tabulated $P_{v}$ nearest to the calculated $P_{v}$ is selected; when the calculated $P_{v}$ is halfway between two tabulated values, the smaller $\frac{D}{l}$ should be used.

TABLE 50.11
Diameter-Thickness Ratios for Laying Condition Type 5*

| Trench Load ( $P_{v}$ ) -psi |  |  | Trench Load ( $P_{v}$ ) - psi |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bending Stress Design | Deflection Design | $\frac{D+}{l}$ or $\frac{D}{h_{1}}$ | $\begin{gathered} \text { Bending Stress } \\ \text { Design } \end{gathered}$ | Deflection Design | $\frac{D+}{t}$ or $\frac{D}{t_{1}}$ |
| 3.06 | 15.09 | 660 | 6.41 | 15.13 | 450 |
| 3.10 | 15.09 | 655 | 6.54 | 15.14 | 445 |
| 3.15 | 15.09 | 650 | 6.68 | 15.14 | 440 |
| 3.20 | 15.09 | 645 |  |  |  |
| 3.25 | 15.09 | 640 | 6.83 | 15.14 | 435 |
|  |  |  | 6.98 | 15.14 | 430 |
| 3.30 | 15.09 | 635 | 7.13 | 15.14 | 425 |
| 3.35 | 15.09 | 630 | 7.29 | 15.15 | 420 |
| 3.40 | 15.09 | 625 | 7.46 | 15.15 | 415 |
| 3.46 | 15.09 | 620 |  |  |  |
| 3.51 | 15.09 | 615 | 7.63 | 15.15 | 410 |
|  |  |  | 7.80 | 15.16 | 405 |
| 3.57 | 15.10 | 610 | 7.98 | 15.16 | 400 |
| 3.63 | 15.10 | 605 | 8.17 | 15.16 | 395 |
| 3.68 | 15.10 | 600 | 8.36 | 15.17 | 390 |
| 3.75 | 15.10 | 595 |  |  |  |
| 3.81 | 15.10 | 590 | 8.56 | 15.17 | 385 |
|  |  |  | 8.77 | 15.17 | 380 |
| 3.87 | 15.10 | 585 | 8.98 | 15.18 | 375 |
| 3.94 | 15.10 | 580 | 9.20 | 15.18 | 370 |
| 4.00 | 15.10 | 575 | 9.43 | 15.19 | 365 |
| 4.07 | 15.10 | 570 |  |  |  |
| 4.14 | 15.10 | 565 | 9.66 | 15.19 | 360 |
|  |  |  | 9.91 | 15.20 | 355 |
| 4.21 | 15.10 | 560 | 10.16 | 15.20 | 350 |
| 4.29 | 15.10 | 555 | 10.42 | 15.21 | 345 |
| 4.36 | 15.10 | 550 | 10.69 | 15.22 | 340 |
| 4.44 | 15.11 | 545 |  |  |  |
| 4.52 | 15.11 | 540 | 10.97 | 15.22 | 335 330 |
|  |  |  | 11.26 | 15.23 | 330 |
| 4.60 | 15.11 | 535 | 11.56 | 15.24 | 325 |
| 4.69 | 15.11 | 530 | 11.87 | 15.24 | 320 315 |
| 4.77 | 15.11 | 525 | 12.19 | 15.25 | 315 |
| 4.86 | 15.11 | 520 |  | 15.26 | 310 |
| 4.95 | 15.11 | 515 | 12.66 | 15.26 15.27 | 308 |
| 5.05 | 15.11 | 510 | 12.80 | 15.27 | 306 |
| 5.14 | 15.11 | 505 | 12.94 | 15.27 | 304 |
| 5.24 | 15.12 | 500 | 13.08 | 15.28 | 302 |
| 5.35 | 15.12 | 495 | 13.23 | 15.28 | 300 |
| 5.45 | 15.12 | 490 | 13.37 | 15.29 | 298 |
|  |  |  | 13.52 | 15.29 | 296 |
| 5.56 | 15.12 | 485 | 13.67 | 15.30 | 294 |
| 5.67 | 15.12 | 480 | 13.83 | 15.30 | 292 |
| 5.78 | 15.12 | 475 |  |  |  |
| 5.90 | 15.13 | 470 | 13.98 | 15.30 | 290 |
| 6.02 | 15.13 | 465 | 14.14 | 15.31 | 288 |
|  |  |  | 14.30 | 15.31 | 286 |
| 6.15 | 15.13 | 460 | 14.46 | 15.32 | 284 |
| 6.28 | 15.13 | 455 | 14.62 | 15.33 | 282 |

thickness design of ductile-Iron pipe
TABLE 50.11-(cont.)

| Trench Load ( $P_{0}$ ) -psi |  |  | Trench Load ( $P_{v}$ ) - $\mathrm{pssi}^{\text {i }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bending Stress Design | $\begin{aligned} & \text { Deflection } \\ & \text { Design } \end{aligned}$ | $\frac{D+}{t}$ or $\frac{D}{l_{1}}$ | $\underset{\substack{\text { Bending } \\ \text { Design }}}{\text { Stress }}$ | Deflection Design | $\frac{D+}{l}$ or $\frac{D}{\ell_{1}}$ |
| 14.79 | 15.33 | 280 | 24.24 | 15.86 | 194 |
| 14.96 | 15.34 | 278 | 24.50 | 15.88 | 192 |
| 15.13 | 15.34 | 276 |  |  |  |
| 15.30 | 15.35 | 274 | 24.77 | 15.91 | 190 |
| 15.48 | 1535 | 272 | 25.04 | 15.93 | 188 |
|  |  |  | 25.31 | 15.96 | 186 |
| 15.65 | 15.36 | 270 | 25.59 | 15.99 | 184 |
| 15.83 | 15.37 | 268 | 25.86 | 16.02 | 182 |
| 16.02 | 15.37 | 266 |  |  |  |
| 16.20 | 15.38 | 264 | 26.13 | 16.06 | 180 |
| 16.39 | 15.39 | 262 | 26.41 | 16.09 | 178 |
|  |  |  | 26.68 | 16.12 | 176 |
| 16.58 | 15.40 | 260 | 26.96 | 16.16 | 174 |
| 16.77 | 15.40 | 258 | 27.23 | 16.20 | 172 |
| 16.97 | 15.41 | 256 |  |  |  |
| 17.16 | 15.42 | 254 | 2751 | 16.24 | 170 |
| 17.36 | 15.43 | 252 | 27.51 27.65 | 16.24 | 169 |
|  |  |  | 27.78 | 16.28 | 168 |
| 17.57 | 15.44 | 250 | 27.92 | 16.31 | 167 |
| 17.77 17.98 | 15.45 15.45 | 248 | 28.06 | 16.33 | 166 |
| 18.19 | 15.46 | 244 |  |  |  |
| 18.40 | 15.47 | 242 | 28.19 | 16.35 | 165 |
|  |  |  | 28.33 | 16.37 | 164 |
| 18.62 | 15.48 | 240 | 28.47 | 16.40 | 163 |
| 18.84 | 15.49 | 238 | 28.60 | 16.42 | 162 |
| 19.06 | 15.51 | 236 | 28.74 | 16.45 | 161 |
| 19.28 | 15.52 | 234 |  |  |  |
| 19.51 | 15.53 | 232 | 28.87 | 16.48 | 160 |
|  |  |  | 29.01 | 16.50 | 159 |
| 19.73 | 15.54 | 230 | 29.15 | 16.53 | 158 |
| 19.97 | 15.55 | 228 | 29.28 | 16.56 | 157 |
| 20.20 | 15.57 | 226 | 29.41 | 16.59 | 156 |
| 20.43 | 15.58 | 224 |  |  |  |
| 20.67 | 15.59 | 222 | 29.55 | 16.62 | 155 |
|  |  |  | 29.68 | 16.65 | 154 |
| 20.91 | 15.61 | 220 | 29.82 | 16.68 | 153 |
| 21.16 | 15.62 | 218 | 29.95 | 16.71 | 152 |
| 21.40 | 15.64 | 216 | 30.08 | 16.74 | 151 |
| 21.65 | 15.65 | 214 |  |  |  |
| 21.90 | 15.67 | 212 | 30.21 | 16.78 | 150 |
|  |  |  | 30.34 | 16.81 | 149 |
| 22.15 | 15.69 | 210 | 30.48 | 16.85 | 148 |
| 22.40 | 15.71 | 208 | 30.61 | 16.89 | 147 |
| 22.66 | 15.73 | 206 | 30.74 | 16.92 | 146 |
| 22.92 | 15.75 | 204 |  |  |  |
| 23.18 | 15.77 | 202 | 30.87 | 16.96 | 145 |
|  |  |  | 30.99 | 17.00 | 144 |
| 23.44 | 15.79 | 200 | 31.12 | 17.04 | 143 |
| 23.70 | 15.81 | 198 | 31.25 | 17.09 | 142 |
| 23.97 | 15.83 | 196 | 31.38 | 17.13 | 141 |

TABLE 50.11-(cont.)

| Trench Load ( $P_{v}$ ) - psi |  |  | Trench Load ( $P_{0}$ ) - psi |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bending Stress Design | Deflection Design | $\frac{D t}{l}$ or $\frac{D}{l_{1}}$ | Bending Stress Design | Deflection Design | $\frac{D \dagger}{t}$ or $\frac{D}{t_{1}}$ |
| 31.50 | 17.17 | 140 | 37.01 | 21.45 | 97 |
| 31.63 | 17.22 | 139 | 37.17 | 21.66 | 96 |
| 31.76 | 17.27 | 138 |  |  |  |
| 31.88 | 17.32 | 137 | 37.34 | 21.87 | 95 |
| 32.01 | 17.37 | 136 | 37.52 | 22.09 | 94 |
|  |  |  | 37.70 | 22.32 | 93 |
| 32.13 | 17.42 | 135 | 37.89 | 22.56 | 92 |
| 32.25 | 17.47 | 134 | 38.08 | 22.82 | 91 |
| 32.38 | 17.53 | 133 |  |  |  |
| 32.50 | 17.58 | 132 | 38.28 | 23.08 | 90 |
| 32.62 | 17.64 | 131 | 38.49 | 23.36 | 89 |
|  |  |  | 38.71 | 23.65 | 88 |
| 32.75 | 17.70 | 130 | 38.93 | 23.95 | 87 |
| 32.87 | 17.76 | 129 | 39.17 | 24.27 | 86 |
| 32.99 | 17.83 | 128 |  |  |  |
| 33.11 | 17.89 | 127 | 39.41 | 24.60 | 85 |
| 33.23 | 17.96 | 126 | 39.67 | 24.95 | 84 |
| 33.35 | 18.03 | 125 | 39.94 | 25.31 | 83 |
| 33.35 33.47 | 18.03 18.11 | 125 | 40.22 | 25.70 | 82 |
| 33.47 33.59 | 18.11 18.18 | 124 | 40.51 | 26.10 | 81 |
| 33.71 | 18.26 | 122 |  |  |  |
| 33.83 | 18.34 | 121 | 40.82 | 26.52 | 80 |
|  |  |  | 41.14 | 26.97 | 79 |
| 33.95 | 18.42 | 120 | 41.48 | 27.44 | 78 |
| 34.07 | 18.51 | 119 | 41.84 | 27.93 | 77 |
| 34.19 | 18.60 | 118 | 42.21 | 28.46 | 76 |
| 34.31 | 18.69 | 117 |  |  |  |
| 34.43 | 18.78 | 116 | 42.60 | 29.01 | 75 |
|  |  |  | 43.02 | 29.59 | 74 |
| 34.55 | 18.88 | 115 | 43.45 | 30.20 | 73 |
| 34.68 | 18.98 | 114 | 43.92 | 30.85 | 72 |
| 34.80 | 19.09 | 113 | 44.40 | 31.53 | 71 |
| 34.92 | 19.20 | 112 |  |  |  |
| 35.05 | 19.31 | 111 | 44.91 | 32.26 | 70 |
|  |  |  | 45.46 | 33.03 | 69 |
| 35.17 | 19.43 | 110 | 46.03 | 33.85 | 68 |
| 35.30 | 19.55 | 109 | 46.64 | 34.71 | 67 |
| 35.43 | 19.68 | 108 | 47.28 | 35.63 | 66 |
| 35.56 | 19.81 | 107 |  |  |  |
| 35.69 | 19.95 | 106 | 47.96 | 36.61 | 65 |
|  |  |  | 48.68 | 37.65 | 64 |
| 35.83 | 20.09 | 105 | 49.44 | 38.77 | 63 |
| 35.96 | 20.24 | 104 | 50.25 | 39.95 | 62 |
| 36.10 | 20.39 | 103 | 51.11 | 41.21 | 61 |
| 36.25 | 20.55 | 102 |  |  |  |
| 36.39 | 20.72 | 101 | 52.02 | 42.57 | 60 |
|  |  |  | 52.99 | 44.01 | 59 |
| 36.54 | 20.89 | 100 | 54.02 | 45.56 | 58 |
| 36.69 | 21.07 | 99 | 55.12 | 47.23 | 57 |
| 36.85 | 21.26 | 98 | 56.28 | 49.01 | 56 |

TABLE 50.11-(cont.)

| Trench Load ( $P_{v}$ )-psi |  |  | Trench Load ( $P_{v}$ )-psi |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bending Stress Design | Deflection Design | $\frac{D+}{t}$ or $\frac{D}{t_{1}}$ | Bending Stress Design | Deflection Design | $\frac{D+}{l}$ or $\frac{D}{l_{3}}$ |
| 57.53 | 50.93 | 55 | 84.50 | 97.01 | 42 |
| 58.86 | 53.00 | 54 | 87.85 | 103.31 | 41 |
| 60.28 | 55.23 | 53 |  |  |  |
| 61.79 | 57.64 | 52 |  |  |  |
| 63.41 | 60.25 | 51 | 91.47 95.40 | 110.27 117.98 | 40 39 |
|  |  |  | 95.40 | 117.98 | 39 |
| 65.14 | 63.07 | 50 | 99.67 | 126.56 | 38 |
| 67.00 | 66.13 | 49 | 104.32 | 136.11 | 37 |
| 68.99 | 69.46 | 48 | 109.40 | 146.78 | 36 |
| 71.12 | 73.09 | 47 |  |  |  |
| 73.41 | 77.04 | 46 | 114.94 | 158.75 | 35 |
|  |  |  | 121.02 | 172.21 | 34 |
| 75.88 | 81.36 | 45 | 127.69 | 187.41 | 33 |
| 78.54 | 86.10 | 44 | 135.03 | 204.63 | 32 |
| 81.40 | 91.29 | 43 | 143.14 | 224.22 | 31 |

7
7

[^14]TABLE 50.12
Thickness for Earth Load Plus Truck Load

| Size in. | Depth Cover ft | Laying Condition |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Type 1 |  | Type 2 |  | Type 3 |  | Type 4 |  | Type 5 |  |
|  |  | Total Calculated Thickness* in. | $\begin{aligned} & \text { Use } \\ & \text { Class } \end{aligned}$ |  | Use Class | Total Calculated Thickness* in. | Use Class | Total Calculated Thickness* in | $\begin{aligned} & \text { Use } \\ & \text { Class } \end{aligned}$ | Total Calculated Thickness* in. | Use Class |
| 3 | 2.5 | 0.18 | 51 | 0.17 | 51 | 0.16 | 51 | 0.15 | 51 | 0.14 | 51 |
|  | 3 | 0.17 | 51 | 0.16 | 51 | 0.16 | 51 | 0.15 | 51 | 0.14 | 51 |
|  | 4 | 0.17 | 51 | 0.16 | 51 | 0.15 | 51 | 0.14 | 51 | 0.14 | 51 |
|  | 5 | 0.16 | 51 | 0.16 | 51 | 0.15 | 51 | 0.14 | 51 | 0.14 | 51 |
|  | 6 | 0.16 | 51 | 0.16 | 51 | 0.15 | 51 | 0.14 | 51 | 0.14 | 51 |
|  | 7 | 0.16 | 51 | 0.16 | 51 | 0.15 | 51 | 0.14 | 51 | 0.14 | 51 |
|  | 8 | 0.17 | 51 | 0.16 | 51 | 0.15 | 51 | 0.15 | 51 | 0.14 | 51 |
|  | 9 | 0.17 | 51 | 0.16 | 51 | 0.15 | 51 | 0.15 | 51 | 0.14 | 51 |
|  | 10 | 0.17 | 51 | 0.16 | 51 | 0.15 | 51 | 0.15 | 51 | 0.14 | 51 |
|  | 12 | 0.17 | 51 | 0.17 | 51 | 0.16 | 51 | 0.15 | 51 | 0.14 | 51 |
|  | 14 | 0.18 | 51 | 0.17 | 51 | 0.16 | 51 | 0.15 | 51 | 0.14 | 51 |
|  | 16 | 0.18 | 51 | 0.17 | 51 | 0.17 | 51 | 0.15 | 51 | 0.14 | 51 |
|  | 20 | 0.19 | 51 | 0.18 | 51 | 0.17 | 51 | 0.16 | 51 | 0.15 | 51 |
|  | 24 | 0.19 | 51 | 0.19 | 51 | 0.18 | 51 | 0.16 | 51 | 0.15 | 51 |
|  | 28 | 0.20 | 51 | 0.19 | 51 | 0.19 | 51 | 0.17 | 51 | 0.15 | 51 |
|  | 32 | 0.21 | 51 | 0.20 | 51 | 0.19 | 51 | 0.18 | 51 | 0.15 | 51 |
| 4 | 2.5 | 0.19 | 51 | 0.18 | 51 | 0.17 | 51 | 0.15 | 51 | 0.15 | 51 |
|  | 3 | 0.18 | 51 | 0.17 | 51 | 0.16 | 51 | 0.15 | 51 | 0.14 | 51 |
|  | 4 | 0.17 | 51 | 0.16 | 51 | 0.16 | 51 | 0.15 | 51 | 0.14 | 51 |
|  | 5 | 0.17 | 51 | 0.16 | 51 | 0.15 | 51 | 0.15 | 51 | 0.14 | 51 |
|  | 6 | 0.17 | 51 | 0.16 | 51 | 0.15 | 51 | 0.15 | 51 | 0.14 | 51 |
|  | 7 | 0.17 | 51 | 0.16 | 51 | 0.16 | 51 | 0.15 | 51 | 0.14 | 51 |
|  | 8 | 0.17 | 51 | 0.16 | 51 | 0.16 | 51 | 0.15 | 51 | 0.14 | 51 |
|  | 9 | 0.18 | 51 | 0.17 | 51 | 0.16 | 51 | 0.15 | 51 | 0.14 | 51 |
|  | 10 | 0.18 | 51 | 0.17 | 51 | 0.16 | 51 | 0.15 | 51 | 0.14 | 51 |
|  | 12 | 0.18 | 51 | 0.17 | 51 | 0.16 | 51 | 0.15 | 51 | 0.14 | 51 |
|  | 14 | 0.19 | 51 | 0.18 | 51 | 0.17 | 51 | 0.15 | 51 | 0.15 | 51 |
|  | 16 | 0.19 | 51 | 0.18 | 51 | 0.17 | 51 | 0.16 | 51 | 0.15 | 51 |
|  | 20 | 0.20 | 51 | 0.19 | 51 | 0.18 | 51 | 0.16 | 51 | 0.15 | 51 |
|  | 24 | 0.21 | 51 | 0.20 | 51 | 0.19 | 51 | 0.17 | 51 | 0.15 | 51 |
|  | 28 | 0.22 | 51 | 0.21 | 51 | 0.20 | 51 | 0.18 | 51 | 0.15 | 51 |
|  | 32 | 0.22 | 51 | 0.21 | 51 | 0.21 | 51 | 0.19 | 51 | 0.16 | 51 |
| 6 | 2.5 | 0.21 | 50 | 0.20 | 50 | 0.18 | 50 | 0.16 | 50 | 0.15 | 50 |
|  | 3 | 0.20 | 50 | 0.19 | 50 | 0.18 | 50 | 0.16 | 50 | 0.15 | 50 |
|  | 4 | 0.19 | 50 | 0.18 | 50 | 0.17 | 50 | 0.16 | 50 | 0.15 | 50 |
|  | 5 | 0.19 | 50 | 0.17 | 50 | 0.17 | 50 | 0.15 | 50 | 0.15 | 50 |
|  | 6 | 0.19 | 50 | 0.17 | 50 | 0.17 | 50 | 0.15 | 50 | 0.15 | 50 |
|  | 7 | 0.19 | 50 | 0.18 | 50 | 0.17 | 50 | 0.16 | 50 | 0.15 | 50 |
|  | 8 | 0.19 | 50 | 0.18 | 50 | 0.17 | 50 | 0.16 | 50 | 0.15 | 50 |
|  | 9 | 0.20 | 50 | 0.18 | 50 | 0.17 | 50 | 0.16 | 50 | 0.15 | 50 |
|  | 10 | 0.20 | 50 | 0.18 | 50 | 0.17 | 50 | 0.16 | 50 | 0.15 | 50 |
|  | 12 | 0.21 | 50 | 0.19 | 50 | 0.18 | 50 | 0.16 | 50 | 0.15 | 50 |
|  | 14 | 0.21 | 50 | 0.20 | 50 | 0.18 | 50 | 0.17 | 50 | 0.15 | 50 |
|  | 16 | 0.22 | 50 | 0.21 | 50 | 0.19 | 50 | 0.17 | 50 | 0.15 | 50 |
|  | 20 | 0.23 | 50 | 0.22 | 50 | 0.21 | 50 | 0.18 | 50 | 0.16 | 50 |
|  | 24 | 0.24 | 50 | 0.23 | 50 | 0.22 | 50 | 0.19 | 50 | 0.16 | 50 |
|  | 28 | 0.25 | 50 | 0.24 | 50 | 0.23 | 50 | 0.20 | 50 | 0.16 | 50 |
|  | 32 | 0.26 | 50 | 0.25 | 50 | 0.24 | 50 | 0.22 | 50 | 0.17 | 50 |

[^15]THICKNESS DESIGN OF DUCTILE-IRON PIPE
TABLE 50.12-(cont.)

| Size in. | $\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { Cover } \\ & f t \end{aligned}$ | Laying Condition |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Type 1 |  | Type 2 |  | Type 3 |  | Type 4 |  | Type 5 |  |
|  |  | Total Calculated Thickness* in. | Use Class | Total <br> Calculated <br> Thickness* <br> in. | Use Class |  | Use Class | Calculal <br> Thickness <br> in. | Use Class | Total Calculated Thickness* 14. | Use Class |
| 8 | 2.5 | 0.24 | 50 | 0.22 | 50 | 0.20 | 50 | 0.18 | 50 | 0.16 | 50 |
|  | 3 | 0.23 | 50 | 0.21 | 50 | 0.19 | 50 | 0.17 | 50 | 0.16 | 50 |
|  | 4 | 0.21 | 50 | 0.19 | 50 | 0.18 | 50 | 0.16 | 50 | 0.15 | 50 |
|  | 5 | 0.21 | 50 | 0.19 | 50 | 0.18 | 50 | 0.16 | 50 | 0.15 | 50 |
|  | 6 | 0.21 | 50 | 0.19 | 50 | 0.18 | 50 | 0.16 | 50 | 0.15 | 50 |
|  | 7 | 0.21 | 50 | 0.19 | 50 | 0.18 | 50 | 0.16 | 50 | 0.15 | 50 |
|  | 8 | 0.21 | 50 | 0.19 | 50 | 0.18 | 50 | 0.16 | 50 | 0.15 | 50 |
|  | 9 | 0.22 | 50 | 0.20 | 50 | 0.18 | 50 | 0.17 | 50 | 0.15 | 50 |
|  | 10 | 0.22 | 50 | 0.20 | 50 | 0.19 | 50 | 0.17 | 50 | 0.15 | 50 |
|  | 12 | 0.23 | 50 | 0.21 | 50 | 0.19 | 50 | 0.17 | 50 | 0.16 | 50 |
|  | 14 | 0.24 | 50 | 0.22 | 50 | 0.20 | 50 | 0.18 | 50 | 0.16 | 50 |
|  | 16 | 0.25 | 50 | 0.23 | 50 | 0.21 | 50 | 0.18 | 50 | 0.16 | 50 |
|  | 20 | 0.27 | 50 | 0.25 | 50 | 0.23 | 50 | 0.19 | 50 | 0.17 | 50 |
|  | 24 | 0.28 | 50 | 0.26 | 50 | 0.24 | 50 | 0.21 | 50 | 0.17 | 50 |
|  | 28 | 0.29 | 51 | 0.28 | 50 | 0.26 | 50 | 0.23 | 50 | 0.18 | 50 |
|  | 32 | 0.30 | 51 | 0.29 | 51 | 0.27 | 50 | 0.24 | 50 | 0.18 | 50 |
| 10 | 2.5 | 0.27 | 50 | 0.25 | 50 | 0.23 | 50 | 0.20 | 50 | 0.17 | 50 |
|  | 3 | 0.26 | 50 | 0.23 | 50 | 0.21 | 50 | 0.19 | 50 | 0.17 | 50 |
|  | 4 | 0.24 | 50 | 0.22 | 50 | 0.20 | 50 | 0.18 | 50 | 0.17 | 50 |
|  | 5 | 0.23 | 30 | 0.21 | 50 | 0.20 | 50 | 0.18 | 50 | 0.17 | 50 |
|  | 6 | 0.23 | 50 | 0.21 | 50 | 0.20 | 50 | 0.18 | 50 | 0.17 | 50 |
|  | 7 | 0.24 | 50 | 0.21 | 50 | 0.20 | 50 | 0.18 | 50 | 0.17 | 50 |
|  | 8 | 0.24 | 50 | 0.22 | 50 | 0.20 | 50 | 0.18 | 50 | 0.17 | 50 |
|  | 9 | 0.25 | 50 | 0.22 | 50 | 0.20 | 50 | 0.18 | 50 | 0.17 | 50 |
|  | 10 | 0.25 | 50 | 0.23 | 50 | 0.21 | 50 | 0.19 | 50 | 0.17 | 50 |
|  | 12 | 0.26 | 50 | 0.24 | 50 | 0.22 | 50 | 0.19 | 50 | 0.17 | 50 |
|  | 14 | 0.28 | 50 | 0.25 | 50 | 0.23 | 50 | 0.20 | 50 | 0.18 | 50 |
|  | 16 | 0.29 | 50 | 0.26 | 50 | 0.24 | 50 | 0.20 | 50 | 0.18 | 50 |
|  | 20 | 0.31 | 51 | 0.28 | 50 | 0.26 | 50 | 0.22 | 50 | 0.18 | 50 |
|  | 24 | 0.32 | 51 | 0.30 | 50 | 0.28 | 50 | 0.24 | 50 | 0.19 | 50 |
|  | 28 | 0.34 | 52 | 0.32 | 51 | 0.30 | 50 | 0.26 | 50 | 0.20 | 50 |
|  | 32 | 0.35 | 52 | 0.33 | 51 | 0.32 | 51 | 0.28 | 50 | 0.20 | 50 |
| 12 | 2.5 | 0.30 | 50 | 0.27 | 50 | 0.24 | 50 | 0.21 | 50 | 0.18 | 50 |
|  | 3 | 0.28 | 50 | 0.25 | 50 | 0.23 | 50 | 0.20 | 50 | 0.18 | 50 |
|  | 4 | 0.26 | 50 | 0.23 | 50 | 0.21 | 50 | 0.19 | 50 | 0.17 | 50 |
|  | 5 | 0.25 | 50 | 0.23 | 50 | 0.21 | 50 | 0.19 | 50 | 0.17 | 50 |
|  | 6 | 0.25 | 50 | 0.23 | 50 | 0.21 | 50 | 0.19 | 50 | 0.17 | 50 |
|  | 7 | 0.26 | 50 | 0.23 | 50 | 0.21 | 50 | 0.19 | 50 | 0.17 | 50 |
|  | 8 | 0.26 | 50 | 0.23 | 50 | 0.21 | 50 | 0.19 | 50 | 0.17 | 50 |
|  | 9 | 0.27 | 50 | 0.24 | 50 | 0.22 | 50 | 0.19 | 50 | 0.17 | 50 |
|  | 10 | 0.27 | 50 | 0.24 | 50 | 0.22 | 50 | 0.20 | 50 | 0.18 | 50 |
|  | 12 | 0.29 | 50 | 0.26 | 50 | 0.23 | 50 | 0.20 | 50 | 0.18 | 50 |
|  | 14 | 0.30 | 50 | 0.27 | 50 | 0.24 | 50 | 0.21 | 50 | 0.18 | 50 |
|  | 16 | 0.31 | 50 | 0.29 | 50 | 0.26 | 50 | 0.21 | 50 | 0.18 | 50 |
|  | 20 | 0.34 | 51 | 0.31 | 50 | 0.28 | 50 | 0.23 | 50 | 0.19 | 50 |
|  | 24 | 0.36 | 52 | 0.33 | 51 | 0.31 | 50 | 0.25 | 50 | 0.20 | 50 |
|  | 28 | 0.38 | 52 | 0.35 | 51 | 0.33 | 51 | 0.28 | 50 | 0.21 | 50 |
|  | 32 | 0.39 | 53 | 0.37 | 52 | 0.35 | 51 | 0.30 | 50 | 0.23 | 50 |

[^16]TABLE 50.12-(cont.)

| Size in. | Depth Cover fl | Laying Condition |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Type 1 |  | Type 2 |  | Type 3 |  | Type 4 |  | Type 5 |  |
|  |  |  | $\begin{aligned} & \text { Use } \\ & \text { Class } \end{aligned}$ |  | Use Class | Total Calculated Thickness* in. | Use Class | Total Calculated Thickness* in. | Use Class |  | Use Class |
| 14 | 2.5 | 0.32 | 50 | 0.29 | 50 | 0.26 | 50 | 0.22 | 50 | 0.20 | 50 |
|  | 3 | 0.31 | 50 | 0.27 | 50 | 0.24 | 50 | 0.21 | 50 | 0.19 | 50 |
|  | 4 | 0.29 | 50 | 0.26 | 50 | 0.23 | 50 | 0.21 | 50 | 0.19 | 50 |
|  | 5 | 0.28 | 50 | 0.25 | 50 | 0.23 | 50 | 0.20 | 50 | 0.19 | 50 |
|  | 6 | 0.28 | 50 | 0.25 | 50 | 0.23 | 50 | 0.20 | 50 | 0.19 | 50 |
|  | 7 | 0.28 | 50 | 0.25 | 50 | 0.23 | 50 | 0.21 | 50 | 0.19 | 50 |
|  | 8 | 0.29 | 50 | 0.26 | 50 | 0.23 | 50 | 0.21 | 50 | 0.19 | 50 |
|  | 9 | 0.30 | 50 | 0.26 | 50 | 0.24 | 50 | 0.21 | 50 | 0.19 | 50 |
|  | 10 | 0.31 | 50 | 0.27 | 50 | 0.24 | 50 | 0.21 | 50 | 0.19 | 50 |
|  | 12 | 0.32 | 50 | 0.29 | 50 | 0.26 | 50 | 0.22 | 50 | 0.19 | 50 |
|  | 14 | 0.34 | 50 | 0.30 | 50 | 0.27 | 50 | 0.23 | 50 | 0.20 | 50 |
|  | 16 | 0.35 | 51 | 0.32 | 50 | 0.29 | 50 | 0.24 | 50 | 0.20 | 50 |
|  | 20 | 0.38 | 52 | 0.35 | 51 | 0.32 | 50 | 0.26 | 50 | 0.21 | 50 |
|  | 24 | 0.40 | 52 | 0.38 | 52 | 0.34 | 50 | 0.28 | 50 | 0.22 | 50 |
|  | 28 | 0.42 | 53 | 0.40 | 52 | 0.37 | 51 | 0.31 | 50 | 0.24 | 50 |
|  | 32 | 0.44 | 54 | 0.42 | 53 | 0.39 | 52 | 0.34 | 50 | 0.26 | 50 |
| 16 | 2.5 | 0.34 | 50 | 0.30 | 50 | 0.27 | 50 | 0.23 | 50 | 0.20 | 50 |
|  | 3 | 0.32 | 50 | 0.28 | 50 | 0.25 | 50 | 0.22 | 50 | 0.20 | 50 |
|  | 4 | 0.30 | 50 | 0.27 | 50 | 0.24 | 50 | 0.21 | 50 | 0.19 | 50 |
|  | 5 | 0.30 | 50 | 0.26 | 50 | 0.24 | 50 | 0.21 | 50 | 0.19 | 50 |
|  | 6 | 0.30 | 50 | 0.26 | 50 | 0.24 | 50 | 0.21 | 50 | 0.19 | 50 |
|  | 7 | 0.30 | 50 | 0.26 | 50 | 0.24 | 50 | 0.21 | 50 | 0.19 | 50 |
|  | 8 | 0.31 | 50 | 0.27 | 50 | 0.25 | 50 | 0.22 | 50 | 0.19 | 50 |
|  | 9 | 0.32 | 50 | 0.28 | 50 | 0.25 | 50 | 0.22 | 50 | 0.20 | 50 |
|  | 10 | 0.33 | 50 | 0.29 | 50 | 0.26 | 50 | 0.22 | 50 | 0.20 | 50 |
|  | 12 | 0.35 | 50 | 0.31 | 50 | 0.27 | 50 | 0.23 | 50 | 0.20 | 50 |
|  | 14 | 0.36 | 51 | 0.33 | 50 | 0.29 | 50 | 0.24 | 50 | 0.20 | 50 |
|  | 16 | 0.38 | 51 | 0.34 | 50 | 0.30 | 50 | 0.25 | 50 | 0.21 | 50 |
|  | 20 | 0.41 | 52 | 0.38 | 51 | 0.34 | 50 | 0.27 | 50 | 0.22 | 50 |
|  | 24 | 0.44 | 53 | 0.41 | 52 | 0.37 | 51 | 0.30 | 50 | 0.24 | 50 |
|  | 28 | 0.46 | 54 | 0.43 | 53 | 0.40 | 52 | 0.33 | 50 | 0.27 | 50 |
|  | 32 | 0.48 | 55 | 0.46 | 54 | 0.43 | 53 | 0.36 | 51 | 0.29 | 50 |
| 18 | 2.5 | 0.36 | 50 | 0.32 | 50 | 0.28 | 50 | 0.24 | 50 | 0.20 | 50 |
|  | 3 | 0.34 | 50 | 0.29 | 50 | 0.26 | 50 | 0.23 | 50 | 0.20 | 50 |
|  | 4 | 0.32 | 50 | 0.28 | 50 | 0.25 | 50 | 0.22 | 50 | 0.20 | 50 |
|  | 5 | 0.31 | 50 | 0.27 | 50 | 0.25 | 50 | 0.22 | 50 | 0.19 | 50 |
|  | 6 | 0.31 | 50 | 0.27 | 50 | 0.25 | 50 | 0.22 | 50 | 0.19 | 50 |
|  | 7 | 0.32 | 50 | 0.28 | 50 | 0.25 | 50 | 0.22 | 50 | 0.20 | 50 |
|  | 8 | 0.33 | 50 | 0.29 | 50 | 0.26 | 50 | 0.22 | 50 | 0.20 | 50 |
|  | 9 | 0.34 | 50 | 0.30 | 50 | 0.26 | 50 | 0.23 | 50 | 0.20 | 50 |
|  | 10 | 0.35 | 50 | 0.30 | 50 | 0.27 | 50 | 0.23 | 50 | 0.20 | 50 |
|  | 12 | 0.37 | 51 | 0.32 | 50 | 0.29 | 50 | 0.24 | 50 | 0.21 | 50 |
|  | 14 | 0.39 | 51 | 0.35 | 50 | 0.30 | 50 | 0.25 | 50 | 0.21 | 50 |
|  | 16 | 0.41 | 52 | 0.37 | 51 | 0.32 | 50 | 0.26 | 50 | 0.22 | 50 |
|  | 20 | 0.44 | 53 | 0.40 | 52 | 0.36 | 50 | 0.29 | 50 | 0.23 | 50 |
|  | 24 | 0.47 | 34 | 0.44 | 53 | 0.40 | 52 | 0.32 | 50 | 0.26 | 50 |
|  | 28 | 0.50 | 55 | 0.46 | 54 | 0.43 | 53 | 0.36 | 50 | 0.29 | 50 |
|  | 32 | 0.53 | 56 | 0.49 | 55 | 0.46 | 54 | 0.39 | 51 | 0.32 | 50 |

* Total calculated thickness includes service allowance and casting tolerance added to net thickness.

THICKNESS DESIGN OF DUCTILE-IRON PIPE
TABLE 50.12-(cont.)

| Size <br> in. | $\begin{gathered} \text { Depth } \\ \text { of } \\ \text { cover } \\ f t \end{gathered}$ | Laying Condition |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Type 1 |  | Type 2 |  | Type 3 |  | Type 4 |  | Type 5 |  |
|  |  | $\begin{gathered} \text { Total } \\ \begin{array}{c} \text { Calculated } \\ \text { Thickness } \\ \text { inn } \end{array} \end{gathered}$ | $\begin{aligned} & \text { Use } \\ & \text { Class } \end{aligned}$ | Total Calculated Thickness* Thickness | $\begin{aligned} & \text { Use } \\ & \text { Class } \end{aligned}$ | Total <br> Clulated <br> Thickness <br> in. <br> $i n$. | $\begin{gathered} \text { Use } \\ \text { Class } \end{gathered}$ |  | Class | $\begin{gathered} \text { Total } \\ \text { Calculated } \\ \text { Thickness* } \\ \text { in. } \end{gathered}$ | Use |
| 20 | 2.5 | 0.38 | 51 | 0.33 | 50 | 0.29 | 50 | 0.24 | 50 | 0.21 | 50 |
|  | 3 | 0.35 | 50 | 0.31 | 50 | 0.27 | 50 | 0.23 | 50 | 0.20 | 50 |
|  | 4 | 0.34 | 50 | 0.29 | 50 | 0.26 | 50 | 0.23 | 50 | 0.20 | 50 |
|  | 5 | 0.33 | 50 | 0.28 | 50 | 0.26 | 50 | 0.23 | 50 | 0.20 | 50 |
|  | 6 | 0.33 | 50 | 0.29 | 50 | 0.26 | 50 | 0.23 | 50 | 0.20 | 50 |
|  | 7 | 0.34 | 50 | 0.29 | 50 | 0.26 | 50 | 0.23 | 50 | 0.20 | 50 |
|  | 8 | 0.35 | 50 | 0.30 | 50 | 0.27 | 50 | 0.23 | 50 | 0.20 | 50 |
|  | 9 | 0.36 | 50 | 0.31 | 50 | 0.28 | 50 | 0.24 | 50 | 0.21 | 50 |
|  | 10 | 0.37 | 50 | 0.32 | 50 | 0.28 | 50 | 0.24 | 50 | 0.21 | 50 |
|  | 12 | 0.39 | 51 | 0.34 | 50 | 0.30 | 50 | 0.25 | 50 | 0.21 | 50 |
|  | 14 | 0.41 | 52 | 0.37 | 50 | 0.32 | 50 | 0.26 | 50 | 0.22 | 50 |
|  | 16 | 0.43 | 52 | 0.39 | 51 | 0.34 | 50 | 0.27 | 50 | 0.22 | 50 |
|  | 20 | 0.47 | 54 | 0.43 | 52 | 0.39 | 51 | 0.31 | 50 | 0.23 | 50 |
|  | 24 | 0.50 | 55 | 0.47 | 54 | 0.42 | 52 | 0.34 | 50 | 0.28 | 50 |
|  | 28 | 0.54 | 56 | 0.50 | 55 | 0.46 | 53 | 0.38 | 51 | 0.31 | 50 |
|  | 32 | 0.57 | - | 0.53 | 56 | 0.49 | 54 | 0.42 | 52 | 0.34 | 50 |
| 24 | 2.5 | 0.42 | 51 | 0.35 | 50 | 0.31 | 50 | 0.26 | 50 | 0.22 | 50 |
|  | 3 | 0.39 | 50 | 0.33 | 50 | 0.29 | 50 | 0.25 | 50 | 0.21 | 50 |
|  | 4 | 0.37 | 50 | 0.31 | 50 | 0.28 | 50 | 0.24 | 50 | 0.21 | 50 |
|  | 5 | 0.36 | 50 | 0.31 | 50 | 0.28 | 50 | 0.24 | 50 | 0.21 | 50 |
|  | 6 | 0.36 | 50 | 0.31 | 50 | 0.28 | 50 | 0.24 | 50 | 0.21 | 50 |
|  | 7 | 0.37 | 50 | 0.32 | 50 | 0.28 | 50 | 0.24 | 50 | 0.21 | 50 |
|  | 8 | 0.39 | 50 | 0.33 | 50 | 0.29 | 50 | 0.25 | 50 | 0.21 | 50 |
|  | 9 | 0.40 | 51 | 0.34 | 50 | 0.30 | 50 | 0.25 | 50 | 0.22 | 50 |
|  | 10 | 0.41 | 51 | 0.35 | 50 | 0.31 | 50 | 0.26 | 50 | 0.22 | 50 |
|  | 12 | 0.44 | 52 | 0.38 | 50 | 0.33 | 50 | 0.27 | 50 | 0.23 | 50 |
|  | 14 | 0.46 | 53 | 0.41 | 51 | 0.35 | 50 | 0.28 | 50 | 0.23 | 50 |
|  | 16 | 0.49 | 54 | 0.44 | 52 | 0.38 | 50 | 0.31 | 50 | 0.24 | 50 |
|  | 20 | 0.54 | 55 | 0.49 | 54 | 0.43 | 52 | 0.36 | 50 | 0.25 | 50 |
|  | 24 | 0.57 | 56 | 0.53 | 55 | 0.48 | 53 | 0.40 | 51 | 0.32 | 50 |
|  | 28 | 0.61 | - | 0.57 | 56 | 0.52 | 55 | 0.43 | 52 | 0.36 | 50 |
|  | 32 | 0.65 | - | 0.60 | - | 0.56 | 56 | 0.47 | 53 | 0.40 | 51 |
| 30 | 2.5 | $\dagger$ | $\dagger$ | 0.40 | 50 | 0.34 | 50 | 0.28 | 50 | 0.23 | 50 |
|  | 3 |  |  | 0.37 | 50 | 0.32 | 50 | 0.27 | 50 | 0.23 | 50 |
|  | 4 |  |  | 0.35 | 50 | 0.31 | 50 | 0.26 | 50 | 0.22 | 50 |
|  | 5 |  |  | 0.35 | 50 | 0.31 | 50 | 0.26 | 50 | 0.22 | 50 |
|  | 6 |  |  | 0.35 | 50 | 0.31 | 50 | 0.26 | 50 | 0.22 | 50 |
|  | 7 |  |  | 0.36 | 50 | 0.31 | 50 | 0.26 | 50 | 0.23 | 50 |
|  | 8 |  |  | 0.37 | 50 | 0.33 | 50 | 0.27 | 50 | 0.23 | 50 |
|  | 9 |  |  | 0.39 | 50 | 0.34 | 50 | 0.28 | 50 | 0.23 | 50 |
|  | 10 |  |  | 0.40 | 50 | 0.35 | 50 | 0.28 | 50 | 0.24 | 50 |
|  | 12 |  |  | 0.44 | 51 | 0.37 | 50 | 0.30 | 50 | 0.24 | 50 |
|  | 14 |  |  | 0.47 | 52 | 0.40 | 50 | 0.32 | 50 | 0.25 | 50 |
|  | 16 |  |  | 0.51 | 53 | 0.43 | 51 | 0.37 | 50 | 0.26 | 50 |
|  | 20 |  |  | 0.57 | 55 | 0.50 | 53 | 0.43 | 51 | 0.29 | 50 |
|  | 24 |  |  | 0.62 | 56 | 0.56 | 54 | 0.48 | 52 | 0.37 | 50 |
|  | 28 |  |  | 0.67 | - | 0.61 | 56 | 0.51 | 53 | 0.43 | 51 |
|  | 32 |  |  | 0.71 | - | 0.66 | - | 0.55 | 54 | 0.47 | 52 |

* Total calculated thickness includes service allowance and casting tolerance added to net thickness.
$\dagger$ For pipe 30 in. and larger, consideration should be given to laying conditions other than Type 1.

TABLE 50.12-(cont.)


* Total calculated thickness includes service allowance and casting tolerance added to net thickness.
$\dot{\gamma}$ For pipe 30 in . and larger, consideration should be given to laying conditions other than Type 1.

THICKNESS DESIGN OF DUCTILE-IRON PIPF
TABLE 50.12-(cont.)

| Size in. | $\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { Cover } \\ & \text { ft } \end{aligned}$ | Laying Condition |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Type 1 |  | Tyue 2 |  | Type 3 |  | Type 4 |  | Type 5 |  |
|  |  |  | Use Class |  | Use Class | Total Calculated Thickness* ir. | Use Class | Total Calculated Thickness* in. | Use Class | Total Calculated Thickness* in. | Use |
| 54 | 2.5 | $\dagger$ | $\dagger$ | 0.54 | 50 | 0.46 | 50 | 0.37 | 50 | 0.30 | 50 |
|  | 3 |  |  | 0.52 | 50 | 0.45 | 50 | 0.37 | 50 | 0.30 | 50 |
|  | 4 |  |  | 0.51 | 50 | 0.44 | 50 | 0.36 | 50 | 0.30 | 50 |
|  | 5 |  |  | 0.51 | 50 | 0.44 | 50 | 0.36 | 50 | 0.30 | 50 |
|  | 6 |  |  | 0.52 | 50 | 0.45 | 50 | 0.37 | 50 | 0.30 | 50 |
|  | 7 |  |  | 0.53 | 50 | 0.46 | 50 | 0.37 | 50 | 0.30 | 50 |
|  | 8 |  |  | 0.56 | 50 | 0.48 | 50 | 0.38 | 50 | 0.31 | 50 |
|  | 9 |  |  | 0.59 | 50 | 0.50 | 50 | 0.39 | 50 | 0.32 | 50 |
|  | 10 |  |  | 0.62 | 51 | 0.52 | 50 | 0.41 | 50 | 0.32 | 50 |
|  | 12 |  |  | 0.68 | 51 | 0.60 | 50 | 0.43 | 50 | 0.34 | 50 |
|  | 14 |  |  | 0.74 | 52 | 0.67 | 51 | 0.54 | 50 | 0.35 | 50 |
|  | 16 |  |  | 0.80 | 53 | 0.72 | 52 | 0.62 | 51 | 0.36 | 50 |
|  | 20 |  |  | 0.91 | 54 | 0.81 | 53 | 0.73 | 52 | 0.48 | 50 |
|  | 24 |  |  | 1.01 | 56 | 0.89 | 54 | 0.81 | 53 | 0.63 | 51 |
|  | 28 |  |  | 1.09 | - | 0.99 | 55 | 0.88 | 54 | 0.73 | 52 |
|  | 32 |  |  | 1.17 | - | 1.08 | - | 0.94 | 55 | 0.81 | 53 |

*Total calculated thickness includes service allowance and casting tolerance added to net thiekness. $\dagger$ For pipe 30 in . and larger, consideration should be given to laying condit ons other than Type 1 .

TABLE 50.13
Thickness for Internal Pressure

| Pipe Size in. | Rated Water Working Pressure*-psi |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 150 |  | 200 |  | 250 |  | 300 |  | . 350 |  |
|  | Total Calculated Thickness in. $\dagger$ | Use Class | Total Calculated Thickness in. $\dagger$ | Use Class | Total Calculated Thickness in. $\dagger$ | Use Class | Total Calculated Thickness in. $\dagger$ | Use Class | Total Calculated Thickness in. $\dagger$ | Use Class |
| 3 | 0.15 | 51 | 0.16 | 51 | 0.16 | 51 | 0.17 | 51 | 0.17 | 51 |
| 4 | 0.16 | 51 | 0.16 | 51 | 0.17 | 51 | 0.18 | 51 | 0.18 | 51 |
| 6 | 0.17 | 50 | 0.18 | 50 | 0.19 | 50 | 0.20 | 50 | 0.20 | 50 |
| 8 | 0.18 | 50 | 0.19 | 50 | 0.21 | 50 | 0.22 | 50 | 0.23 | 50 |
| 10 | 0.21 | 50 | 0.22 | 50 | 0.23 | 50 | 0.25 | 50 | 0.26 | 50 |
| 12 | 0.22 | 50 | 0.23 | 50 | 0.25 | 50 | 0.27 | 50 | 0.28 | 50 |
| 14 | 0.24 | 50 | 0.26 | 50 | 0.28 | 50 | 0.30 | 50 | 0.31 | 50 |
| 16 | 0.25 | 50 | 0.27 | 50 | 0.30 | 50 | 0.32 | 50 | 0.34 | 50 |
| 18 | 0.27 | 50 | 0.29 | 50 | 0.31 | 50 | 0.34 | 50 | 0.36 | 50 |
| 20 | 0.28 | 50 | 0.30 | 50 | 0.33 | 50 | 0.36 | 50 | 0.38 | 51 |
| 24 | 0.30 | 50 | 0.33 | 50 | 0.37 | 50 | 0.40 | 51 | 0.43 | 52 |
| 30 | 0.34 | 50 | 0.38 | 50 | 0.42 | 51 | 0.45 | 52 | 0.49 | 53 |
| 36 | 0.38 | 50 | 0.42 | 50 | 0.47 | 51 | 0.51 | 52 | 0.56 | 53 |
| 42 | 0.41 | 50 | 0.47 | 50 | 0.52 | 51 | 0.57 | 52 | 0.63 | 53 |
| 48 | 0.46 | 50 | 0.52 | 50 | 0.58 | 51 | 0.64 | 52 | 0.70 | 53 |
| 54 | 0.51 | 50 | 0.58 | 50 | 0.65 | 51 | 0.71 | 52 | 0.78 | 53 |

*These pipe are adequate for the rated working preaure plus a surge allowance of 100 psi
† Total calculated thickness includes service allowance and casting tolerance added to net thickness

TABLE 50.14
Rated Working Pressure and Maximum Depth of Cover

| $\begin{aligned} & \text { Pipe } \\ & \text { Size } \\ & \text { in. } \end{aligned}$ | ThicknessClass | $\begin{aligned} & \text { Nominal } \\ & \text { Thickness } \\ & \text { in. } \end{aligned}$ | Rated Water Working Pressure Ds㴖 | Laying Condition |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Type 1 | Type 2 | Type 3 | Type 4 | Type 5 |
|  |  |  |  | Maximum Depth of Cover-ft $\dagger$ |  |  |  |  |
| 3 | 51 | 0.25 | 350 | 98 | $100 \ddagger$ | $100 \ddagger$ | $100 \ddagger$ | $100 \ddagger$ |
|  | 52 | 0.28 | 350 | $100 \ddagger$ | $100 \ddagger$ | $100 \ddagger$ | $100 \ddagger$ | $100 \downarrow$ |
|  | 53 | 0.31 | 350 | $100 \ddagger$ | $100 \ddagger$ | $100 \%$ | $100 \ddagger$ | $100 \ddagger$ |
|  | 54 | 0.34 | 350 | $100 \ddagger$ |
|  | 55 | 0.37 | 350 | $100 \ddagger$ | $100 \ddagger$ | 100t | $100 \ddagger$ | $100 \ddagger$ |
|  | 56 | 0.40 | 350 | $100 \ddagger$ | $100 \ddagger$ | 1004 | $100 \ddagger$ | $100 \ddagger$ |
| 4 | 51 | 0.26 | 350 | 76 | 86 | 96 | $100 \ddagger$ | $100 \ddagger$ |
|  | 52 | 0.29 | 350 | $100 \ddagger$ |
|  | 53 | 0.32 | 350 | $100 \ddagger$ |
|  | 54 | 0.35 | 350 | $100 \ddagger$ | $100 \ddagger$ | $100 \ddagger$ | $100 \ddagger$ | $100 \pm$ |
|  | 55 | 0.38 | 350 | $100 \ddagger$ |
|  | 56 | 0.41 | 350 | $100 \ddagger$ |
| 6 | 50 | 0.25 | 350 | 32 | 38 | 44 | 56 | 75 |
|  | 51 | 0.28 | 350 | 49 | 57 | 64 | 80 | $100 \ddagger$ |
|  | 52 | 0.31 | 350 | 67 | 77 | 86 | $100 \ddagger$ | $100 \ddagger$ |
|  | 53 | 0.34 | 350 | 91 | $100 \ddagger$ | $100 \ddagger$ | $100 \ddagger$ | $100 \ddagger$ |
|  | 54 | 0.37 | 350 | $100 \ddagger$ |
|  | 55 | 0.40 | 350 | $100 \ddagger$ |
|  | 56 | 0.43 | 350 | $100 \ddagger$ |
| 8 | 50 | 0.27 | 350 | 25 | 30 | 36 | 46 | 64 |
|  | 51 | 0.30 | 350 | 36 | 42 | 49 | 61 | 81 |
|  | 52 | 0.33 | 350 | 47 | 54 | 62 | 77 | 99 |
|  | 53 | 0.36 | 350 | 64 | 73 | 82 | $100 \ddagger$ | $100 \ddagger$ |
|  | 54 | 0.39 | 350 | 80 | 91 | $100 \ddagger$ | $100 \ddagger$ | $100 \ddagger$ |
|  | 55 | 0.42 | 350 | 98 | $100 \ddagger$ | $100 \ddagger$ | $100 \ddagger$ | $100 \ddagger$ |
|  | 56 | 0.45 | 350 | $100 \ddagger$ |
| 10 | 50 | 0.29 | 350 | 19 | 24 | 29 | 38 | 55 |
|  | 51 | 0.32 | 350 | 27 | 32 | 38 | 49 | 66 |
|  | 52 | 0.35 | 350 | 35 | 41 | 47 | 59 | 79 |
|  | 53 | 0.38 | 350 | 45 | 52 | 59 | 74 | 95 |
|  | 54 | 0.41 | 350 | 57 | 65 | 74 | 91 | $100 \ddagger$ |
|  | 55 | 0.44 | 350 | 67 | 77 | 86 | $100 \ddagger$ | $100 \ddagger$ |
|  | 56 | 0.47 | 350 | 81 | 92 | $100 \pm$ | $100 \ddagger$ | $100 \ddagger$ |
| 12 | 50 | 0.31 | 350 | 17 | 22 | 27 | 36 | 52 |
|  | 51 | 0.34 | 350 | 23 | 28 | 33 | 43 | 60 |
|  | 52 | 0.37 | 350 | 30 | 35 | 41 | 53 | 71 |
|  | 53 | 0.40 | 350 | 36 | 42 | 49 | 61 | 81 |
|  | 54 | 0.43 | 350 | 45 | 52 | 59 | 74 | 95 |
|  | 55 | 0.46 | 350 | 54 | 62 | 71 | 87 | $100 \ddagger$ |
|  | 56 | 0.49 | 350 | 64 | 73 | 83 | $100 \ddagger$ | $100 \ddagger$ |

* These pipe are adequate for the rated working pressure plus a surge allowance of 100 psi . Ductile-iron pipe for working pressures higher than 350 psi is available.
$\dagger$ An allowance for a single $\mathrm{H}-20$ truck with 1.5 impact factor is included for all depths of cover.
$\ddagger$ Calculated maximum depth of cover exceeds 100 ft .

THICKNESS DESIGN OF DUCTILE-IRON PIPE
TABLE 50.14-(cont.)

| Pipe <br> Size in. | Thickness Class | $\begin{gathered} \text { Nominal } \\ \text { Thickness } \\ \text { in. } \end{gathered}$ | Rated Water $\underset{\text { psi* }}{\text { Worksing Pre }}$ | Laying Condition |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Type 1 | Type 2 | Type 3 | Type 4 | Type 5 |
|  |  |  |  | Maximum Depth of Cover- $f t \dagger$ |  |  |  |  |
| 14 | 50 | 0.33 | 350 | 15 | 19 | 24 | 33 | 49 |
|  | 51 | 0.36 | 350 | 19 | 23 | 28 | 38 | 55 |
|  | 52 | 0.39 | 350 | 24 | 29 | 34 | 44 | 62 |
|  | 53 | 0.42 | . 350 | 30 | 35 | 41 | 53 | 71 |
|  | 54 | 0.45 | 350 | 36 | 42 | 49 | 61 | 81 |
|  | 55 | 0.48 | 350 | 43 | 50 | 57 | 71 | 92 |
|  | 56 | 0.51 | 350 | \$2 | 59 | 67 | 83 | $100 \ddagger$ |
| 16 | 50 | 0.34 | 350 | 13 | 17 | 21 | 30 | 47 |
|  | 51 | 0.37 | 350 | 16 | 21 | 25 | 34 | 51 |
|  | 52 | 0.40 | 350 | 20 | 25 | 30 | 40 | 57 |
|  | 53 | 0.43 | 350 | 25 | 30 | 36 | 46 | 64 |
|  | 54 | 0.46 | 350 | 30 | 35 | 41 | 53 | 71 |
|  | 55 | 0.49 | 350 | 35 | 41 | 47 | 59 | 79 |
|  | 56 | 0.52 | 350 | 41 | 48 | 55 | 68 | 89 |
| 18 | 50 | 0.35 | 350) | 11 | 15 | 20 | 29 | 4 |
|  | 51 | 0.38 | 350 | 14 | 19 | 23 | 32 | 49 |
|  | 52 | 0.41 | 350 | 18 | 22 | 27 | 36 | 53 |
|  | 53 | 0.44 | 350 | 22 | 26 | 31 | 41 | 58 |
|  | 54 | 0.47 | 350 | 25 | 30 | 36 | 46 | 64 |
|  | 55 | 0.50 | 350 | 30 | 35 | 41 | 53 | 71 |
|  | 56 | 0.53 | 350 | 35 | 41 | 47 | 59 | 79 |
| 20 | 50 | 0.36 | 300 | 10 | 14 | 18 | 27 | 38 |
|  | 51 | 0.39 | 350 | 13 | 17 | 21 | 30 | 44 |
|  | 52 | 0.42 | 350 | 16 | 20 | 25 | 34 | 50 |
|  | 53 | 0.45 | 350 | 19 | 23 | 28 | 38 | 54 |
|  | 54 | 0.48 | 350 | 22 | 27 | 32 | 42 | 59 |
|  | 55 | 0.51 | 350 | 26 | 31 | 37 | 47 | 65 |
|  | 56 | 0.54 | 350 | 30 | 35 | 41 | 53 | 71 |
| 24 | 50 | 0.38 | 250 | 8 | 12 | 17 | 23 | 31 |
|  | 51 | 0.41 | 300 | 10 | 15 | 19 | 27 | 36 |
|  | 52 | 0.44 | 350 | 13 | 17 | 21 | 30 | 41 |
|  | 53 | 0.47 | 350 | 15 | 19 | 24 | 33 | 47 |
|  | 54 | 0.50 | 350 | 18 | 22 | 27 | 36 | 53 |
|  | 55 | 0.53 | 350 | 20 | 25 | 30 | 40 | 57 |
|  | 56 | 0.56 | 350 | 24 | 29 | 34 | 44 | 61 |
| 30 | 50 | 0.39 | 200 | 8 | 10 | 14 | 18 | 25 |
|  | 51 | 0.43 | 250 |  | 12 | 16 | 21 | 29 |
|  | 52 | 0.47 | 300 |  | 14 | 19 | 24 | 33 |
|  | 53 | 0.51 | 350 |  | 17 | 21 | 29 | 38 |
|  | 54 | 0.55 | 350 |  | 19 | 24 | 33 | 44 |
|  | 55 | 0.59 | 350 |  | 22 | 27 | 36 | 51 |
|  | 56 | 0.63 | 350 |  | 26 | 31 | 41 | 57 |

* These pipe are adequate for the rated working pressure plus a surge allowance of 100 psi. Ductile-iron pipe or working pressures higher than 350 psi is available.

An allowance for a single $\mathrm{H}-20$ truck with 1.5 impact factor is included for all depths of cover.
Calculated maximum depth of cover exceeds 100 ft .
For pipe 30 in . and larger. consideration should be given to laying conditions other than Type 1.

AMERICAN NATIONAL STANDARD
TABLE 50.14-(cont.)


* These pipe are adequate for the rated working pressure plus a surge allowance of 100 psi. Ductile-iron pipe for working pressures higher than 350 psi is available.
$t$ An allowance for a single $\mathrm{H}-20$ truck with 1.5 impact factor is included for all depths of cover
Calculated maximum depth of cover exceeds 100 ft
8 For pipe 30 in. and larger, consideration should be given to laying conditions other than Type 1.


# AMERICAN NATIONAL STANDARD 

# for <br> DUCTILE-IRON PIPE, CENTRIFUGALLY CAST IN METAL MOLDS OR SAND-LINED MOLDS, FOR WATER OR OTHER LIQUIDS 

Secretariats<br>AMERICAN GAS ASSOCIATION<br>AMERICAN WATER WORKS ASSOCIATION NEW ENGLAND WATER WORKS ASSOCIATION

Reviscd edition approved by American National Standards Institute, Inc., Aug. 4, 1976

NOTICE
This Standard has been especially printed by the American Water Works Association for incorporation into this volume. It is current as of December 1, 1975. It should be noted, however, that all AWWA Standards are updated at least once in every five years. Therefore, before applying this Standard it is suggested that you confirm its currency with the American Water Works Association.

PUBLISHED BY
AMERICAN WATER WORKS ASSOCIATION
6666 West Quincy Avenue, Denver, Colorado 80235

## American National Standard

An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether he has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review and users are cautioned to obtain the latest editions. Producers of goods made in conformity with an American National Standard are encouraged to state on their own responsibility in advertising, promotion material, or on tags or labels, that the goods are produced in conformity with particular American National Standards.
CAUTION NOTICE. This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than 5 yr from the date of publication. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute, 1430 Broadway, New York, N.Y. 10018, (212) 868-1220.

## Committee Personnel

Subcommittee 1, Pipe, which reviewed this standard, had the following personnel at that time:

Edward C. Sears, Chairman
Walter Amory, Vice-Chairman

User Members
Robert S. Bryant
Frank E. Dorson
George F. Keenan
Leonard Orlando Jr.
John E. Perry

Producer Members
Alfred F. Case
W. D. Goode

Thomas D. Holmes
Harold Kennedy Jr.
W. Harry Smith

Sidney P. Teague

1
8
3

Standards Committee A21, Cast-Iron Pipe and Fittings, which reviewed and approved this standard, had the following personnel at the time of approval:

> Lloyd W. Weller, Chairman
> Edward C. Sears, Vice-Chairman
> James B. Ramsey, Secretary

Organization Represented
American Gas Association
American Society of Civil Engineers
American Society of Mechanical Engineers
American Society for Testing and Materials
American Water Works Association
Cast Iron Pipe Research Association

Individual Producer
Manufacturers' Standardization Society of the Valve and Fittings Industry
New England Water Works Association
Naval Facilities Engineering Command
Underwriters' Laboratories, Inc.
Canadian Standards Association

Name of Representative
Leonard Orlando Jr.
Kenneth W. Henderson
James S. Vanick
H. M. Совв *

Arnold M. Tinkey
Lloyd W. Weller
Thomas D. Holmes
Harold Kennedy Jr.
Edward C. Sears
W. Harry Smith

Alfred F. Case
Abraham Fenster
Walter Amory
Stanley C. Baker
John E. Perry
W. F. Semenchuk $\dagger$

* Alternate
$\dagger$ Liaison representative without vote


## Table of Contents

| SEC. | PAGE |  | SEC. |  | PAGE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Foreword | v | 2. | pact Test Specimen |  |
|  |  |  | 3. St | tandard Laying Conditions | 11 |
|  | Standard |  |  |  |  |
| 51-1 | Scope | 1 |  | ables |  |
| 51-2 | Definitions | 1 | 51.1 | Standard Thickness for Earth Load |  |
| 51-3 | General Requirements | 1 |  | Plus Truck Lozu | 7 |
| 51-4 | Inspection and Certification by Manufacturer | 2 | 51.2 | Standard Thickness for Internal Pressure | 12 |
| 51-5 | Inspection by Purchaser | 2 | 51.3 | Rated Working Pressure and |  |
| 51-6 | Delivery and Acceptance | 2 |  | Maximum Depth of Cover | 13 |
| 51-7 | Tolerances or Permitted Variations | 2 | 1.4 | Standard Dimensions and Weights of Push-On-Joint Ductile-Iron |  |
| 51-8 | Coatings and Linings | 2 |  | Pipe | 15 |
| 51-9 | Hydrostatic Test ... | 3 | 51.5 | Standard Dirensions and Weights |  |
| 51-10 | Narking Pipe | 3 |  | of Mechanical-Jvint Ductile-Iron |  |
| 51-11 | Weighing Pipe | 3 |  | Pipe | 8 |
| 51-12 | Acceptance Tests | 3 | . 1 | Pipe Thicknesses Required for |  |
| 51-13 | Additional Control Tests by Manufacturer | 5 |  | Different Tap Sizes as per ANSI B2.1 for Standard Taper Pipe |  |
| 51-14 | Foundry Records | 6 |  | Threads With Two, Three, and | 20 |
| 51-15 | Additional Tests Required by Purchaser | 6 | A. 2 | Pipe Thicknesses Required for Different Tap Sizes as per |  |
| 51-16 | Defective Specimens and Retests | 6 |  | AWWVA C800 for Standard |  |
| 51-17 | Rejection of Pipe | 6 |  | Corporation Stop Threads |  |
| 51-18 | Determining Rejection | 6 |  | With Two, Three, and Four Full Threads | 21 |
|  | gures |  |  |  |  |
| 1. Te | nsile-Test Specimen | 4 |  | Appendix | 20 |

## Foreword

This foreword is for information only and is not a part of ANSI A21.51 (AWWA C151).

American National Standards Committee A21 on Cast-Iron Pipe and Fittings was organized in 1926 under the sponsorship of the American Gas Association, The American Society for Testing and Materials, the American Water Works Association, and the New England Water Works Association. Since 1972, the co-secretariats have been A.G.A., AWWA, and NEWWA, with AWWA serving as the administrative secretariat. The present scope of Committee A21 activity is
Standardization of specifications for cast-iron and ductile-iron pressure pipe for gas, water and other liquids, and fittings for use with such pipe. These specifications to include design, dimensions, materials, coatings, linings, joints, accessories and methods of inspection and test.

The work of Committee A21 is conducted by subcommittees. The directive to Subcommittee 1 -Pipe is that The scope of the subcommittee activity shall include the periodic review of all current A21 standards for pipe, the preparation of revisions and new standards when needed, as well as other matters pertaining to pipe standards.

The first edition of A21.51, the standard for ductile-iron pipe for water and other liquids, was issued in 1965, and a revision was issued in 1971. Subcommittee 1 reviewed the 1971 edition and submitted a proposed revision to American National Standards Committee A21 in 1975.

## Major Revisions

1. An additional minus tolerance of 0.02 in. is permitted along the barrel of the pipe for a distance not to ex-
ceed 12 in . The weight tolerance permitted for any single pipe is 6 per cent for pipe 12 in . or smaller and 5 per cent for pipe larger than 12 in.
2. The tables include data for the five standard laying conditions covered in A21.50-1976. Types 1, 2, and 3 replace $\mathrm{A}, \mathrm{B}$, and S , respectively, in A21.51-1971. Types 3 and 4 have been added to provide a wider selection of laying conditions.
3. The pipe thickness selection tables have been revised to reflect the changes in the 1976 edition of A21.50, the standard for thickness design of ductile-iron pipe.
4. The standard thickness classes have been renumbered. Class 1 becomes Class 51 ; Class 2 becomes Class 52; and so on. Class 50 has been added for 6-54-in. pipe, and Class 51 has been added for 3-12-in. pipe.
5. Pipe weights have been adjusted for $3-24-i n$. push-on joint pipe to reflect lighter bell weights based on pushon joint bells, which are more compatible with the barrel thicknesses of ductile-iron pipe.
6. A table (Table 3) has been added to show rated working pressure and maximum depth of cover of the standard laying conditions and standard thickness classes.

## Options

This standard includes certain options that, if desired, must be specified on the purchase order. Also, a number of items must be specified to describe completely the pipe required. The following summarizes the details and
available options and lists the sections of the standard where they can be found.

1. Size, joint type, thickness or class, and laying length (Tables).
2. a. Special joints (Sec. 51-3.1).
b. Specifying ductile-iron gland, if required (Sec. 51-3.1).
3. Certification by manufacturer (Sec. 51-4.2).
4. Inspection by purchaser (Sec. 51-5).
5. a. No requirement for outside coating (Sec. 51-8.1).
b. Cement lining (Sec. 51-8.2). Ex-
perience has indicated that bituminous inside coating is not complete protection against loss in pipe capacity caused by tuberculation. Cement linings are recommended for most waters.
c. No requirement for inside coating (Sec. 51-8.3).
d. Special coatings and linings (Sec. 51-8.4).
6. Special marking on pipe (Sec. 5110).
7. Written transcripts of foundry records (Sec. 51-14).
8. Special tests (Sec. 51-15).

# American National Standard for <br> Ductile-Iron Pipe, Centrifugally Cast in Metal Molds or Sand-Lined Molds, for Water or Other Liquids 

## Sec. 51-1—Scope

This standard covers 3 -in. through 54 -in. ductile-iron pipe centrifugally cast in metal molds or sand-lined molds for water or other liquids with push-on joints or mechanical joints. This standard may be used for pipe with such other types of joints as may be agreed upon at the time of purchase.

## Sec. 51-2-Definitions

Under this standard, the following definitions shall apply:

51-2.1 Purchaser. The party entering into a contract or agreement to purchase pipe according to this standard.

51-2.2 Manufacturer. The party that produces the pipe.

51-2.3 Inspector. The representative of the purchaser, authorized to inspect on behalf of the purchaser to determine whether or not the pipe meets this standard.

51-2.4 Ductile iron. A cast ferrous material in which a major part of the carbon content occurs as free carbon in nodular or spheroidal form.

51-2.5 Mechanical joint. The gasketed and bolted joint as detailed in

ANSI A21.11 (AWWA C111) of latest revision.

51-2.6 Push-on joint. The single rubber-gasket joint as described in ANSI A21.11 (AWWA C111) of latest revision.

## Sec. 51-3-General Requirements

51-3.1 Pipe with mechanical joints or push-on joints shall conform to the applicable dimensions and weights shown in the tables in this standard and to the applicable requirements of ANSI A21.11 (AWWA C111) of latest revision. Unless otherwise specified, the mechanical-joint glands shall be cast iron in accordance with ANSI A21.11 of latest revision and bolts shall conform to the requirements of the same standard. Pipe with other types of joints shall comply with the joint dimensions and weights agreed upon at the time of purchase but in all other respects shall fulfill the requirements of this standard.

51-3.2 The nominal laying length of the pipe shall be as shown in the tables. A maximum of 20 per cent of the total number of pipe of each size specified in an order may be furnished by as much as 24 in . shorter than the
nominal laying length, and an additional 10 per cent may be furnished by as much as 6 in. shorter than nominal laying length.

## Sec. 51-4-Inspection and Certification by Manufacturer

51-4.1 The manufacturer shall establish the necessary quality-control and inspection practice to ensure compliance with this standard.

51-4.2 The manufacturer shall, if required on the purchase order, furnish a sworn statement that the inspection and all of the specified tests have been made and the results thereof comply with the requirements of this standard.

51-4.3 All pipe shall be clean and sound without defects that could impair service. Repairing of defects by welding or other methods shall not be allowed if such repairs could adversely affect the serviceability of the pipe or its capability to meet strength requirements of this standard.

## Sec. 51-5-Inspection by Purchaser

51-5.1 If the purchaser desires to inspect pipe at the manufacturer's plant, the purchaser shall so specify on the purchase order, stating the conditions (such as time and the extent of inspection) under which the inspection shall be made.
51-5.2 The inspector shall have free access to those parts of the manufacturer's plant that are necessary to ensure compliance with this standard. The manufacturer shall make available for the inspector's use such gages as are necessary for inspection. The manufacturer shall provide the inspector with assistance as necessary for handling of pipe.

Sec. 51-6-Delivery and Acceptance
All pipe and accessories shall com-
ply with this standard. Pipe and accessories not complying with this standard shall be replaced by the manufacturer at the agreed point of delivery. The manufacturer shall not be liable for shortages or damaged pipe after acceptance at the agreed point of delivery, except as recorded on the delivery receipt or similar document by the carrier's agent.

## Sec. 51-7-Tolerances or Permitted Variations

51-7.1 Dimensions. The spigot end, bell, and socket of the pipe and the accessories shall be gaged with suitable gages at sufficiently frequent intervals to ensure that the dimensions comply with the requirements of this standard. The smallest inside diameter of the sockets and the outside of the spigot ends shall be tested with circular gages. Other socket dimensions shall be gaged as may be appropriate.

51-7.2 Thickness. Minus thickness tolerances of pipe and bell shall not exceed the following:

| Size <br> in. | Minus <br> Tolerance <br> in. |
| :---: | :---: |
| $3-8$ | 0.05 |
| $10-12$ | 0.06 |
| $14-42$ | 0.07 |
| 48 | 0.08 |
| 54 | 0.09 |

An additional minus tolerance of 0.02 in. shall be permitted along the barrel of the pipe for a distance not to exceed 12 in.

51-7.3 Weight. The weight of any single pipe shall not be less than the tabulated weight by more than 6 per cent for pipe 12 in . or smaller in diameter, or by more than 5 per cent for pipe larger than 12 in . in diameter.

## Sec. 51-8-Coatings and Linings

51-8.1 Outside coating. The out-
side coating for use under normal conditions shall be a bituminous coating approximately 1 mil thick. The coating shall be applied to the outside of all pipe, unless otherwise specified. The finished coating shall be continuous, smooth, neither brittle when cold nor sticky when exposed to the sun, and shall be strongly adherent to the pipe.

51-8.2 Cement-mortar linings. Cement linings shall be in accordance with ANSI A21.4 (AWWA C104) of latest revision. If desired by the purchaser, cement linings shall be specified in the invitation for bids and on the purchase order.

51-8.3 Inside coating. Unless otherwise specified, the inside coating for pipe that is not cement-lined shall be a bituminous material as thick as practicable (at least 1 mil) which conforms to all appropriate requirements for seal coat in ANSI A21.4 of latest revision.

51-8.4 Special coatings and linings. For special conditions, other types of coatings and linings may be available. Such special coatings and linings shall be specified in the invitation for bids and on the purchase order.

## Sec. 51-9—Hydrostatic Test

Each pipe shall be subjected to a hydrostatic test of not less than 500 psi. This test may be made either before or after the outside coating and inside coating have been applied, but shall be made before the application of cement lining or of a special lining.

The pipe shall be under the full test pressure for at least 10 s . Suitable controls and recording devices shall be provided so that the test pressure and duration may be adequately ascertained. Any pipe that leaks or cloes not withstand the test pressure shall be rejected.

In addition to the hydrostatic test before application of a cement lining or special lining, the pipe may be retested, at the manufacturer's option, after application of such lining.

## Sec. 51-10-Marking Pipe

The weight, class or nominal thickness, and casting period shall be shown on each pipe. The manufacturer's mark, the year in which the pipe was produced, and the letters "DI" or "DUCTIIE" shall be cast or stamped on the pipe. When specified on the purchase orcler, initials not exceeding tour in number shall be cast or stamped on the pipe. All required markings shall be clear and legible, and all cast marks shall be on or near the bell. All letters and numerals on pipe sizes 14 in . and larger shall be not less than $\frac{1}{2}$ in. in height.

## Sec. 51-11-Weighing Pipe

Each pipe shall be weighed before the application of any lining or coating other than the bituminous coating and the weight shown on the outside or inside of the bell or spigot end.

## Sec. 51-12—Acceptance Tests

The standard acceptance tests for the physical characteristics of the pipe shall be as follows:

51-12.1 Tensile test. A tensile test specimen slall be cut longitudinally from the midsection of the pipe wall. This specimen shall be machined and tested $i_{13}$ accordance with Fig. 1 and ASTM E8-69, "Tension Testing of Metallic Materials." The yield strength shall be cletermined by the 0.2 per cent offset, hall-of-pointer, or extension-11n-der-load method. If check tests are to be made, the 0.2 per cent offset


Fig. 1. Tensile-Test Specimen
The tensile-test specimen dimensions are given in the following table:

| Dimension | Standard Specimen 0.500 in . round | Small-Size Specimens Proportional to Standard |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0.350 in . round | 0.250 in , round | 0.175 in . round | 0.125 in . round |
|  | Dimensions-in. |  |  |  |  |
| $T^{*}$ | 0.71 and greater | $0.50-0.70$ | 0.35-0.49 | 0.25-0.34 | 0.18-0.24 |
| $G$ | $2.000 \pm 0.005$ | $1.400 \pm 0.005$ | $1.000 \pm 0.005$ | $0.700 \pm 0.005$ | $0.500 \pm 0.005$ |
| D | $0.500 \pm 0.010$ | $0.350 \pm 0.007$ | $0.250 \pm 0.005$ | $0.175 \pm 0.005$ | $0.125 \pm 0.005$ |
| $R$ | $\frac{3}{8}$ (min.) | $\frac{1}{4}$ (min.) | $\frac{3}{16}$ (min.) | $\frac{3}{32}$ (min.) | $\frac{3}{32}$ (min.) |
| A | 21 (min.) | 13 (min.) | 11 ${ }^{1}$ (min.) | $\frac{3}{4}$ (min.) | $\frac{5}{8}$ (min.) |

* Thickness of the section from the wall of the pipe from which the tensile specimen is to be machined. more than 0.005 in . larger in diameter than the center on the standard specimen and not more than 0.003 in . larger in diameter than the center on the small size specimens.

Nole. ?. If desired, on the small size specimens the length of the reduced section may be increased to accommodate an extensometer. However, reference marks for the measurement of elongation should nevertheless be spaced at the indicated gage leneth $G$.

Note. 3. The gage length and fillets shall be as shown, but the ends may be of any form to fit the holders of the testing machine in such a way that the ioad shall be axial. If the ends are to be held in grips it is desirable if possible, to make the length of the grip section great enough to allow the specimen to extend into the grips a distance equal to two thirds or more of the length of the grips.
method shall be used. All specimens shall be tested at room temperature $[70 \mathrm{~F} \pm 10(21 \mathrm{C} \pm 6)]$.

51-12.1.1 Acceptance values. The acceptance values for test specimens shall be as follows:

Grade of iron: 60-42-10

1. Minimum tensile strength : 60000 psi.
2. Minimum yield strength: 42000 psi.
3. Minimum elongation: 10 per cent. 51-12.2 Impact test. Tests shall be made in accordance with ASTM E23-72 "Notched Charpy Tests," ex-
cept that specimens shall be 0.500 in. by full thickness of pipe wall. The notched impact test specimen shall be in accordance with Fig. 2. If the pipe wall thickness exceeds 0.40 in ., the impact specimen may be machined to a nominal thickness of 0.40 in . In all tests, impact values are to be corrected to 0.40 -in. wall thickness by calcula. tions as follows:
Impact value (corrected)

$$
=\frac{0.40}{t} \times \text { impact value (actual) }
$$

in which $t$ is the thickness of the specimen in inches (wall thickness of pipe).


Fig. 2. Impact Test Specimen
In Diagrams (a) and (b) the symbol t is for the pipe-rall thickness.

The Charpy test machine anvil shall not be moved to compensate for the variation of cross section dimensions of the test specimen.

51-12.2.1 Acceptance value. The corrected acceptance value for notched impact test specimens shall be a minimum of $7 \mathrm{ft}-\mathrm{lb}$ for tests conducted at $70 \mathrm{~F} \pm 10(21 \mathrm{C} \pm 6)$.

51-12.3 Sampling. At least one tensile and impact sample shall be taken during each casting period of approximately 3 hr . Samples shall be selected
to represent extremes of pipe diameters and thicknesses properly.
Sec. 51-13-Additional Control Tests by Manufacturer
Low-temperature impact tests shall be made from at least one third of the test pipe specified in Sec. $51-12.3$ to ensure compliance with a minimum corrected value of $3 \mathrm{ft}-\mathrm{lb}$ for tests conducted at $-40 \mathrm{~F}(-40 \mathrm{C})$. Test specimens shall be prepared and tested in accordance with Sec. 51-12.2.

In addition, the manufacturer shall conduct such other control tests as necessary to assure continuing compliance with this standard.

## Sec. 5l-14-Foundry Records

The results of the acceptance tests (Sec. 51-12) and low-temperature impact tests (Sec. 51-13) shall be recorded and retained for one year and shall be available to the purchaser at
fails to meet the specified requirements, the pipe from which it was taken shall be rejected, and a retest may be made on two additional sound specimens from pipe cast in the same period as the specimen that failed. Both of the additional specimens shall meet the prescribed tests to qualify the pipe produced in that period.

## Sec. 51-17-Rejection of Pipe

If the results of any physical acceptance test fail to meet the requirements of Sec. $51-12$ or Sec. $51-16$, the pipe cast in the same period shall be rejected, except as provided in Sec. 5118.

## Sec. 51-18-Determining Rejection

The manufacturer may determine the amount of rejection by making similar additional tests of pipe of the same size until the rejected lot is bracketed, in order of manufacture, by an acceptable test at each end of the interval in question. When pipe of one size is rejected from a casting period, the acceptability of pipe of different sizes from that same period may be established by making the acceptance tests for these sizes as specified in Sec. 51-12.

TABLE 51.1
Standard Thickness for Earth Load Plus Truck Load*


* Truckloads used in computing this table are based on a single H-20 truck with $16000-\mathrm{lb}$ wheel load and 1.5
$t$ See corresponding illustrations in Fig. 3 of types of laying conditions.

TABLE 51．1—（cont．）

| $\bar{a}$ |  | $\rightarrow \infty=$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 「 | $\stackrel{\sim}{\sim}$ | $\stackrel{\rightharpoonup}{\circ}$ | －W |  |  |
|  |  |  |  | Foc |  |  |
| 0000000000000000 <br>  | 0000000000000000 <br>  | 0000000000000000 <br>  | 0000000000000000 <br>  |  |  |  |
|  |  |  |  |  |  |  |
| 0000000000000000 <br>  | 0000000000000000 A | 0000000000000000 <br>  | 0000000000000000 NiNoNodindiodiogo ivodo | F萝空 | ¢ |  |
|  |  |  |  |  | $\stackrel{\sim}{\sim}$ |  |
| 0000000000000000 <br>  | 0000000000000000 <br>  | 0000000000000000 <br>  | 0000000000000000 Nopdio | Fie | $\stackrel{\rightharpoonup}{⿺}$ |  |
|  |  |  |  |  | $\stackrel{\sim}{\sim}$ |  |
| 0000000000000000 <br>  | 0000000000000000 <br>  | 0000000000000000 $\omega_{\omega}^{\omega} \omega_{\omega}^{\omega} \omega_{\omega}^{\omega} \omega_{0}^{\omega} \omega_{\omega}^{\omega} \omega_{\omega}^{\omega} \omega \omega_{\omega}^{\omega} \omega_{\omega}^{\omega} \omega_{\omega}^{\omega} \omega_{\omega}^{\omega}$ | 0000000000000000 onodiviodivino |  | H |  |
|  |  |  |  |  | $\stackrel{+}{+}$ |  |
| 0000000000000000 <br>  | 0000000000000000 <br>  | 0000000000000000 <br>  | 0000000000000000 Nondodoodiodo 00000 |  | －$\substack{\text { ¢ } \\ 0 \\+4 \\+4}$ |  |
|  |  |  |  |  |  |  |

$\dagger$ See corresponding illustrations in Fig． 3 of types of laying conditions．

TABLE 51.1-(cont.)

| Size in. | Depth of Cover $f i$. | Laying Condition |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Type 1 $\dagger$ |  | Type $2 \dagger$ |  | Type $3 \dagger$ |  | Type 4 $\dagger$ |  | Type 5 $\dagger$ |  |
|  |  | Thick ness in. | Thick ness Class | Thickness in. | Thickness Class | Thickness in. | Thickness Class | Thickness in. | Thickness Class | Thickness in. | 'Thickness Class |
| 18 | 2.5 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 |
|  | 3 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 |
|  | 4 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 |
|  | 5 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 |
|  | 6 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 |
|  | 7 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 |
|  | 8 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 |
|  | 9 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 |
|  | 10 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 |
|  | 12 | 0.38 | 51 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 |
|  | 14 | 0.38 | 51 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 |
|  | 16 | 0.41 | 52 | 0.38 | 51 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 |
|  | 20 | 0.44 | 53 | 0.41 | 52 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 |
|  | 24 | 0.47 | 54 | 0.44 | 53 | 0.41 | 52 | 0.35 | 50 | 0.35 | 50 |
|  | 28 | 0.50 | 55 | 0.47 | 54 | 0.44 | 53 54 | 0.35 0.38 | 50 51 | 0.35 0.35 | 50 50 |
|  | 32 | 0.53 | 56 | 0.50 | 55 | 0.47 | 54 | 0.38 | 51 | 0.35 | 50 |
| 20 | 2.5 | 0.39 | 51 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 |
|  | 3 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 |
|  | 4 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 |
|  | 5 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 |
|  | 6 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 |
|  | 7 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 | ${ }_{0}^{0.36}$ | 50 | 0.36 | 50 |
|  | 8 | 0.36 0.36 | 50 | 0.36 0.36 | 50 50 | 0.36 0.36 | 50 50 | 0.36 0.36 | 50 50 | 0.36 0.36 | 50 50 |
|  | 10 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 |
|  | 12 | 0.39 | 51 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 |
|  | 14 | 0.42 | 52 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 |
|  | 16 | 0.42 | 52 | 0.39 | 51 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 |
|  | 20 | 0.48 | 54 | 0.42 | 52 | 0.39 | 51 | 0.36 | 50 | 0.36 | 50 |
|  | 24 | 0.51 | 55 | 0.48 | 54 | 0.42 | 52 | 0.36 | 50 | 0.36 | 50 |
|  | 28 | 0.54 | 56 | 0.51 | 55 | 0.45 | 53 | 0.39 | 51 | 0.36 | 50 |
|  | 32 | - |  | 0.54 | 56 | 0.48 | 54 | 0.42 | 52 | 0.36 | 50 |
| 24 | 2.5 | 0.41 | 51 | 0.38 | 50 | 0.38 | 50 | 0.38 | 50 | 0.38 | 50 |
|  | 3 | 0.38 | 50 | 0.38 | 50 | 0.38 | 50 | 0.38 | 50 | 0.38 | 50 |
|  | 4 | 0.38 | 50 | 0.38 | 50 | 0.38 | 50 | 0.38 | 50 | 0.38 | 50 |
|  | 5 6 | 0.38 0.38 | 50 | 0.38 0.38 | 50 50 | 0.38 0.38 | 50 | 0.38 0.38 | 50 50 | 0.38 0.38 | 50 50 |
|  | 6 | 0.38 0.38 | 50 50 | 0.38 0.38 | 50 50 | 0.38 0.38 | 50 50 | 0.38 0.38 | 50 50 | 0.38 0.38 | 50 50 |
|  | 8 | 0.38 | 50 | 0.38 | 50 | 0.38 | 50 | 0.38 | 50 | 0.38 | 50 |
|  | 9 | 0.41 | 51 | 0.38 | 50 | 0.38 | 50 | 0.38 | 50 | 0.38 | 50 |
|  | 10 | 0.41 | 51 | 0.38 | 50 | 0.38 | 50 | 0.38 | 50 | 0.38 | 50 |
|  | 12 | 0.44 | 52 | 0.38 | 50 | 0.38 | 50 | 0.38 | 50 | 0.38 | 50 |
|  | 14 | 0.47 | 53 | 0.41 | 51 | 0.38 | 50 | 0.38 | 50 | 0.38 | 50 50 |
|  | 16 20 | 0.50 | 54 | 0.44 | 52 <br> 54 | 0.38 0.44 | 50 | 0.38 0.38 | 50 | 0.38 0.38 | 50 50 |
|  | 20 | 0.53 0.56 | 55 56 | 0.50 0.53 | 54 55 | 0.44 0.47 | 52 53 | 0.38 0.41 | 50 51 | 0.38 0.38 | 50 50 |
|  | 28 |  | - | 0.56 | 56 | 0.53 | 55 | 0.44 | 52 | 0.38 | 50 |
|  | 32 | - | - | - |  | 0.56 | 56 | 0.47 | 53 | 0.41 | 51 |
| 30 | 2.5 | + | $\ddagger$ | 0.39 | 50 | 0.39 | 50 | 0.39 | 50 | 0.39 | 50 |
|  | 3 | + | $\pm$ | 0.39 | 50 | 0.39 | 50 | 0.39 | 50 | 0.39 | 50 |
|  | 4 5 |  |  | 0.39 0.39 0.39 | 50 50 | 0.39 0.39 | 50 50 | 0.39 0.39 | 50 50 | 0.39 0.39 | 50 50 50 |
|  | 6 |  |  | 0.39 | 50 | 0.39 | 50 | 0.39 | 50 | 0.39 | 50 |
|  | 7 |  |  | 0.39 | 50 | 0.39 | 50 | 0.39 | 50 | 0.39 | 50 |
|  | 8 |  |  | 0.39 | 50 | 0.39 | 50 | 0.39 | 50 | 0.39 | 50 |
|  | 9 |  |  | 0.39 | 50 | 0.39 | 50 | 0.39 | 50 | 0.39 0.39 | 50 |
|  | 10 12 |  |  | 0.39 0.43 | 50 51 | 0.39 0.39 | 50 50 | 0.39 0.39 | 50 50 | 0.39 0.39 | 50 50 |
|  | 14 |  |  | 0.43 0.47 | 5 | ${ }_{0}^{0.39}$ | 50 | ${ }_{0}^{0.39}$ | 50 | 0.39 | 50 |
|  | 16 |  |  | 0.51 | 53 | 0.43 | 51 | 0.39 | 50 | 0.39 | 50 |
|  | 20 |  |  | 0.59 | 55 | 0.51 | 53 | 0.43 0.47 | 51 | 0.39 0.39 | 50 50 |
|  | 24 28 |  |  | 0.63 | 56 | 0.55 0.63 | 54 56 | 0.47 0.51 | 52 53 | 0.39 0.43 | 50 51 |
|  | 32 |  |  | - | - | 0.63 | 56 | 0.55 | 54 | 0.47 | 52 |

$\pm$ See corresponding illustrations in Fig. 3 of types of laying conditions.
$\ddagger$ For pipe 30 in . and larger, consideration should be given to the use of laying conditions other than Type 1 .

TABLE 51.1-(cont.)
$0 \times=$

| Size in. | Depth of Cover ft. | Laying Condition |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Type $1^{\dagger}$ |  | Type $2 \dagger$ |  | Type 3† |  | Type 4† |  | Type 5† |  |
|  |  | Thickness $3 n$. | Thickness Class | Thickness $2 n$. | Thickness Class | Thickness in. | Thickness Class | Thickness in. | Thickness Class | Thickness 12 . | Thickness Class |
| 36 | 2.5 | $\ddagger$ | $\ddagger$ | 0.43 | 50 | 0.43 | 50 | 0.43 | 50 | 0.43 | 50 |
|  | 3 |  |  | 0.43 | 50 | 0.43 | 50 | 0.43 | 50 | 0.43 | 50 |
|  | 4 |  |  | 0.43 | 50 | 0.43 | 50 | 0.43 | 50 | 0.43 | 50 |
|  | 5 |  |  | 0.43 | 50 | 0.43 | 50 | 0.43 | 50 | 0.43 | 50 |
|  | 6 |  |  | 0.43 | 50 | 0.43 | 50 | 0.43 | 50 | 0.43 | 50 |
|  | 7 |  |  | 0.43 | 50 | 0.43 | 50 | 0.43 | 50 | 0.43 | 50 |
|  | 8 |  |  | 0.43 | 50 | 0.43 | 50 | 0.43 | 50 | 0.43 | 50 |
|  | 9 |  |  | 0.43 | 50 | 0.43 | 50 | 0.43 | 50 | 0.43 | 50 |
|  | 10 |  |  | 0.43 | 50 | 0.43 | 50 | 0.43 | 50 | 0.43 | 50 |
|  | 12 |  |  | 0.48 | 51 | 0.43 | 50 | 0.43 | 50 | 0.43 | 50 |
|  | 14 |  |  | 0.53 | 52 | 0.48 | 51 | 0.43 | 50 | 0.43 | 50 |
|  | 16 |  |  | 0.58 | 53 | 0.48 | 51 | 0.43 | 50 | 0.43 | 50 |
|  | 20 |  |  | 0.63 | 54 | 0.58 | 53 | 0.48 | 51 | 0.43 | 50 |
|  | 24 |  |  | 0.73 | 56 | 0.63 | 54 | 0.53 | 52 | 0.43 | 50 |
|  | 28 |  |  | 0.7 | 5 | 0.68 | 55 | 0.58 | 53 | 0.48 | 51 |
|  | 32 |  |  | - | - |  | . | 0.63 | 54 | 0.53 | 52 |
| 42 | 2.5 | $\ddagger$ | $\ddagger$ | 0.47 | 50 | 0.47 | 50 | 0.47 | 50 | 0.47 | 50 |
|  | 3. |  |  | 0.47 | 50 | 0.47 | 50 | 0.47 | 50 | 0.47 | 50 |
|  | 4 |  |  | 0.47 | 50 | 0.47 | 50 | 0.47 | 50 | 0.47 | 50 |
|  | 5 |  |  | 0.47 | 50 | 0.47 | 50 | 0.47 | 50 | 0.47 | 50 |
|  | 6 |  |  | 0.47 | 50 | 0.47 | 50 | 0.47 | 50 | 0.47 | 50 50 |
|  | 7 |  |  | 0.47 | 50 | 0.47 | 50 | 0.47 | 50 | 0.47 | 50 |
|  | 8 |  |  | 0.47 | 50 | 0.47 | 50 | 0.47 | 50 | 0.47 | 50 |
|  | 9 |  |  | 0.47 | 50 | 0.47 | 50 | 0.47 | 50 | 0.47 | 50 |
|  | 10 |  |  | 0.53 | 51 | 0.47 | 50 | 0.47 | 50 | 0.47 | 50 |
|  | 12 |  |  | 0.53 | 51 | 0.47 | 50 | 0.47 | 50 | 0.47 | 50 |
|  | 14 |  |  | 0.59 | 52 | 0.53 | 51 | 0.47 | 50 | 0.47 | 50 50 |
|  | 16 |  |  | 0.65 | 53 | 0.59 | 52 | 0.47 | 50 | 0.47 | 50 50 |
|  | 20 |  |  | 0.71 | 54 | 0.65 | 53 | 0.59 | 52 | 0.47 | 50 |
|  | 24 |  |  | 0.83 | 56 | 0.71 | 54 | 0.65 | 53 54 | 0.47 0.59 | 50 52 |
|  | 28 32 |  |  | - | - | 0.77 | 55 | 0.71 0.71 | 54 54 | 0.59 0.65 | 53 |
| 48 | 2.5 | $\ddagger$ | $\ddagger$ | 0.51 | 50 | 0.51 | 50 | 0.51 0.51 | 50 50 | 0.51 0.51 | 50 50 |
|  | 3 4 |  |  | 0.51 0.51 | 50 50 | 0.51 0.51 | 50 50 | 0.51 0.51 | 50 50 | 0.51 0.51 | 50 50 |
|  | 5 |  |  | 0.51 | 50 | 0.51 | 50 | 0.51 | 50 | 0.51 | 50 |
|  | 6 |  |  | 0.51 | 50 | 0.51 | 50 | 0.51 | 50 | 0.51 | 50 |
|  | 7 |  |  | 0.51 | 50 | 0.51 | 50 | 0.51 | 50 | 0.51 | 50 |
|  | 8 |  |  | 0.51 | 50 | 0.51 | 50 | 0.51 | 50 | 0.51 | 50 |
|  | 9 |  |  | 0.51 | 50 | 0.51 | 50 | 0.51 | 50 | 0.51 | 50 |
|  | 10 |  |  | 0.58 | 51 | 0.51 | 50 | 0.51 | 50 | 0.51 | 50 50 |
|  | 12 |  |  | 0.58 | 51 | 0.51 | 50 | 0.51 | 50 | 0.51 | 50 50 |
|  | 14 |  |  | 0.65 | 52 | 0.58 | 51 | 0.51 | 50 | 0.51 | 50 |
|  | 16 |  |  | 0.72 | 53 | 0.65 | 52 | 0.58 | 51 | 0.51 | 50 |
|  | 20 |  |  | 0.79 | 54 | 0.72 | 53 | 0.65 | 52 | 0.51 | 50 |
|  | 24 28 |  |  | 0.93 | 56 | 0.79 0.86 | 54 55 | 0.72 0.79 | 53 54 | 0.58 0.65 | 52 |
|  | 32 |  |  | - | - | 0.86 | 5 | 0.86 | 55 | 0.72 | 53 |
| 54 | 2.5 | $\ddagger$ | $\ddagger$ | 0.57 | 50 | 0.57 | 50 | 0.57 | 50 | 0.57 | 50 |
| 54 | 3.5 |  |  | 0.57 | 50 | 0.57 | 50 | 0.57 | 50 | 0.57 | 50 |
|  | 4 |  |  | 0.57 | 50 | 0.57 | 50 | 0.57 | 50 | 0.57 | 50 50 |
|  | 5 |  |  | 0.57 | 50 | 0.57 0.57 | 50 50 | 0.57 0.57 | 50 50 | 0.57 0.57 | 50 50 |
|  | 6 |  |  | 0.57 0.57 | 50 50 | 0.57 0.57 | 50 50 | 0.57 0.57 | 50 50 | 0.57 0.57 | 50 |
|  | 8 |  |  | 0.57 | 50 | 0.57 | 50 | 0.57 | 50 | 0.57 | 50 |
|  | 9 |  |  | 0.57 | 50 | 0.57 | 50 | 0.57 | 50 | 0.57 | 50 |
|  | 10 |  |  | 0.65 | 51 | 0.57 | 50 | 0.57 | 50 | 0.57 0.57 | 50 |
|  | 12 |  |  | 0.65 | 51 | 0.57 | 50 | 0.57 | 50 | 0.57 0.57 | 50 50 |
|  | 14 |  |  | 0.73 | 52 | 0.65 | 51 | 0.57 | 50 | 0.57 | 50 50 |
|  | 16 |  |  | 0.81 0.89 | 53 54 | 0.73 0.81 | 52 53 | 0.65 0.73 | 51 52 | 0.57 0.57 | 50 50 |
|  | 20 |  |  | 0.89 1.05 | 54 56 | 0.81 0.89 | 53 54 | 0.73 0.81 | 52 53 | 0.57 0.65 | 51 |
|  | 28 |  |  | - | - | 0.97 | 55 | 0.89 | 54 | 0.73 | 52 |
|  | 32 |  |  | - | - | 0.9 | - | 0.97 | 55 | 0.81 | 53 |

$\dagger$ See corresponding illustrations in Fig. 3 of types of laying conditions.
$\ddagger$ See corresponding ilfustrations in Fig. $\$$ For pipe 30 in . and larger, consideration should be given to the use of laying conditions other than Type 1


Type 1* Flat-bottom trench. $\dagger$ Loose backfill.


Type 2 Flat-bottom trench. $\dagger$ Backfill lightly consolidated to centerline of pipe.


Type 3 Pipe bedded in 4-in.-minimum loose soil. $\ddagger$ Backfill lightly consolidated to top of pipe.


Type 4 Pipe bedded in sand, gravel, or crushed stone to depth of 8 pipe diameter, 4 -in. minimum. Backfill compacted to top of pipe. (Approx. 80 per cent Standard Proctor, AASHTO § T-99)


Type 5 Pipe bedded to its centerline in compacted granular material, 4 -in. minimum under pipe. Compacted granular or select $\ddagger$ material to top of pipe. (Approx. 90 per cent Standard Proctor, AASHTO § T-99)

Fig. 3. Standard Laying Conditions

[^17]TABLE 51.2
Standard Thickness for Internal Pressure

| Pipe Size in. | Rated Water Working Pressure*-psi |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 150 |  | 200 |  | 250 |  | 300 |  | 350 |  |
|  | Thickness in. | Thickness Class | Thick ness $i n$. | Thickness Class | Thickness in. | Thickness Class | Thickness in. | Thickness Class | Thickness in. | Thickness Class |
| 3 | 0.25 | 51 | 0.25 | 51 | 0.25 | 51 | 0.25 | 51 | 0.25 | 51 |
| 4 | 0.26 | 51 | 0.26 | 51 | 0.26 | 51 | 0.26 | 51 | 0.26 | 51 |
| 6 | 0.25 | 50 | 0.25 | 50 | 0.25 | 50 | 0.25 | 50 | 0.25 | 50 |
| 8 | 0.27 | 50 | 0.27 | 50 | 0.27 | 50 | 0.27 | 50 | 0.27 | 50 |
| 10 | 0.29 | 50 | 0.29 | 50 | 0.29 | 50 | 0.29 | 50 | 0.29 | 50 |
| 12 | 0.31 | 50 | 0.31 | 50 | 0.31 | 50 | 0.31 | 50 | 0.31 | 50 |
| 14 | 0.33 | 50 | 0.33 | 50 | 0.33 | 50 | 0.33 | 50 | 0.33 | 50 |
| 16 | 0.34 | 50 | 0.34 | 50 | 0.34 | 50 | 0.34 | 50 | 0.34 | 50 |
| 18 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 | 0.35 | 50 |
| 20 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 | 0.36 | 50 | 0.39 | 51 |
| 24 | 0.38 | 50 | 0.38 | 50 | 0.38 | 50 | 0.41 | 51 | 0.44 | 52 |
| 30 | 0.39 | 50 | 0.39 | 50 | 0.43 | 51 | 0.47 | 52 | 0.51 | 53 |
| 36 | 0.43 | 50 | 0.43 | 50 | 0.48 | 51 | 0.53 | 52 | 0.58 | 53 |
| 42 | 0.47 | 50 | 0.47 | 50 | 0.53 | 51 | 0.59 | 52 | 0.65 | 53 |
| 48 | 0.51 | 50 | 0.51 | 50 | 0.58 | 51 | 0.65 | 52 | 0.72 | 53 |
| 54 | 0.57 | 50 | 0.57 | 50 | 0.65 | 51 | 0.73 | 52 | 0.81 | 53 |

* These pipe are adequate for the rated working pressure plus a surge allowance of 100 psi .

TABLE 51.3
Rated Working Pressure and Maximum Depth of Cover

| Pipe Size in. | Thickness Class | Nominal Thickness $i n$. | Rated Water Working Pressure* psi | Laying Condition |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Type 1 | Type 2 | Type 3 | Type 4 | Type 5 |
|  |  |  |  | Maximum Depth of Cover-ft $\dagger$ |  |  |  |  |
| 3 | 51 | 0.25 | 350 | 98 | $100 \pm$ | $100 \pm$ | $100 \pm$ | $100 \pm$ |
|  | 52 | 0.28 | 350 | $100 \pm$ |
|  | 53 | 0.31 | 350 | $100 \pm$ | $100 \pm$ | $100 \pm$ | $100 \pm$ | 1007 |
|  | 54 | 0.34 | 350 | 100 | $100 \pm$ | 1007 | $100 \ddagger$ | 1007 |
|  | 55 56 | 0.37 0.40 | 350 350 | $100 \pm$ | $100 \pm$ | $100 \ddagger$ | $100 \pm$ | $100 \pm$ |
|  |  |  |  |  | $100 \pm$ |  | $100 \pm$ |  |
| 4 | 51 | 0.26 | 350 | 76 | 86 | 96 | $100 \pm$ | $100 \pm$ |
|  | 52 | 0.29 | 350 |  | $100 \pm$ | $100 \pm$ | $100 \pm$ | 1007 |
|  | 53 | 0.32 0.35 | 350 350 | $100 \pm$ | $100 \pm$ | $100 \pm$ | 1007 | 1007 |
|  | 54 55 | 0.35 0.38 | 350 350 | 100才 | 1001 | ${ }_{100 \pm}$ | 1007 | 1007 |
|  | 56 | $\stackrel{0}{0.81}$ | 350 350 | ${ }_{100}^{107}$ | 1007 | $100 \pm$ | 1007 | 1007 |
| 6 | 50 | 0.25 | 350 | 32 | 38 | 44 | 56 | 75 |
|  | 51 | 0.28 | 350 | 49 | 57 | 64 | 80 | $100 \pm$ |
|  | 52 | 0.31 | 350 | 67 | 77 | 86 | $100 \ddagger$ | 1007 |
|  | 53 | 0.34 0.37 | 350 350 | 91 | $100 \pm$ | $100 \ddagger$ | $100 \ddagger$ | 1007 |
|  | 54 55 | 0.37 0.40 | 350 350 | $100 \ddagger$ | 100\% | 100才 | $100 \pm$ $100 \pm$ | $100 \pm$ |
|  | 56 | 0.43 | 350 | $100 \pm$ | $100 \pm$ | $100 \pm$ | $100 \ddagger$ | 1007 |
| 8 | 50 | 0.27 | 350 | 25 | 30 | 36 | 46 | 64 |
|  | 51 | 0.30 | 350 | 36 | 42 | 49 | 61 | 81 |
|  | 52 | 0.33 | 350 | 47 | 54 | 62 | 77 | 99 |
|  | 53 | 0.36 | 350 | 64 | 73 | 82 | $100 \ddagger$ | $100 \ddagger$ |
|  | 54 55 | 0.39 0.42 | 350 350 | 80 98 | 91 $100 t$ | $100 \pm$ | $100 \pm$ | $100 \pm$ |
|  | 56 | 0.45 | 350 | $100 \ddagger$ | 100\% | $100 \ddagger$ | $100 \pm$ | $100 \ddagger$ |
| 10 | 50 | 0.29 | 350 | 19 | 24 | 29 | 38 | 55 |
|  |  |  | 350 | 27 | 32 | 38 | 49 | 66 |
|  | 52 | 0.35 | 350 | 35 | 41 | 47 | 59 | 79 |
|  | 53 | 0.38 | 350 | 45 | 52 | 59 | 74 | 95 |
|  | 54 | 0.41 | 350 | 57 | 65 | 74 | 91 | 100 |
|  | 56 | 0.44 0.47 | 350 | 81 | 92 | $\stackrel{86}{100} \ddagger$ | ${ }_{100 \ddagger}^{100}$ | 100\% |
| 12 | 50 | 0.31 |  |  | 22 | 27 | 36 | 52 |
|  | 51 | 0.34 | 350 | 23 | 28 | 33 | 43 | 60 |
|  | 52 | 0.37 | 350 | 30 | 35 | 41 | 53 | 71 |
|  | 53 | 0.40 | 350 | 36 | 42 | 49 | 61 | 81 |
|  | 54 55 | 0.43 0.46 | 350 350 | 45 54 | 52 62 | 59 71 | 74 87 | 95 $100 \pm$ |
|  | 56 | 0.49 | 350 | 64 | 73 | 83 | $100 \ddagger$ | $100 \ddagger$ |
| 14 | 50 | 0.33 | 350 | 15 | 19 | 24 | 33 | 49 |
|  | 51 | 0.36 | 350 | 19 | 23 | 28 | 38 | 55 |
|  | 52 | 0.39 | 350 | 24 | 29 | 34 | 44 | 62 |
|  | 53 | 0.42 | 350 | 30 | 35 | 41 | 53 | 71 |
|  | 54 55 | 0.45 0.48 | 350 350 | 36 43 | 42 50 | 49 57 | 61 71 | 81 92 |
|  | 56 | 0.51 | 350 | 52 | 59 | 67 | 83 | $100 \ddagger$ |
| 16 | 50 | 0.34 | 350 | 13 | 17 | 21 | 30 | 47 |
|  | 51 | 0.37 | 350 | 16 | 21 | 25 | 34 | 51 |
|  | 52 | 0.40 | 350 | 20 | 25 | 30 | 40 | 57 |
|  | 53 | 0.43 | 350 350 | 25 | 30 | 36 | 46 | 64 |
|  | 54 55 | 0.46 0.49 | 350 350 | 30 35 | 35 | 41 | 53 59 | 71 |
|  | 56 | 0.52 | 350 | 41 | 48 | 55 | 68 | 89 |
| 18 | 50 | 0.35 | 350 | 11 | 15 | 20 | 29 | 42 |
|  | 51 | 0.38 | 350 | 14 | 19 | 2.3 | 32 | 49 |
|  | 52 53 | 0.41 0.44 | 350 350 | ${ }_{22}^{18}$ | 22 | 27 31 | 36 41 | 53 58 |
|  | 54 | 0.47 | 350 | 25 | 30 | 36 | 46 | 64 |
|  | 55 | 0.50 | 350 | 30 | 35 | 41 | 53 | 71 |
|  | 56 | 0.53 | 350 | 35 | 41 | 47 | 59 | 79 |

*These pipe are adequate for the rated working pressure plus a surge allowance of 100 psi. Ductile-iron pipe or working pressures higher than 350 psi is a vailable.
$\dagger$ An allowance for a single $H-20$ truck with 1.5 impact factor is included for all depths of cover.
Calculated maximum depth of cover exceeds 100 ft .

TABLE 51.3-(cont.)

| Pipe Size in. | ThicknessClass | $\begin{gathered} \text { Nominal } \\ \text { Thickness } \end{gathered}$in. | Rated Water Working Pressure* psi | Laying Condition |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Type 1 | Type 2 | Type 3 | Type 4 | Type 5 |
|  |  |  |  | Maximum Depth of Cover-fit |  |  |  |  |
| 20 | 50 | 0.36 | 300 | 10 | 14 | 18 | 27 | 38 |
|  | 51 | 0.39 | 350 | 13 | 17 | 21 | 30 | 44 |
|  | 52 | 0.42 0.45 | 350 350 | 16 | 20 | 25 28 | 34 38 | 50 54 |
|  | 54 | 0.48 | 350 | 22 | 27 | 32 | 42 | 59 |
|  | 55 | 0.51 | 350 | 26 | 31 | 37 | 47 | 65 |
|  | 56 | 0.54 | 350 | 30 | 35 | 41 | 53 | 71 |
| 24 | 50 | 0.38 | 250 | 8 | 12 | 17 | 23 | 31 |
|  | 51 | 0.41 | 300 | 10 | 15 | 19 | 27 | 36 |
|  | 52 | 0.44 | 350 350 | 13 | 17 | 21 | 30 33 | 41 |
|  | 53 | 0.47 | 350 | 15 | 19 | 24 | 33 | 47 |
|  | 54 55 | 0.50 0.53 | 350 350 | 18 | 22 | 27 30 | 36 40 | 53 57 |
|  | 56 | 0.56 | 350 | 24 | 29 | 34 | 44 | 61 |
| 30 | 50 | 0.39 | 200 | § | 10 | 14 | 18 | 25 |
|  | 51 | 0.43 | 250 |  | 12 | 16 | 21 | 29 |
|  | 52 | 0.47 | 300 |  | 14 | 19 | 24 | 33 |
|  | 55 | 0.59 | 350 |  | 22 | 27 | 36 | 51 |
|  | 56 | 0.63 | 350 |  | 26 | 31 | 41 | 57 |
| 36 | 50 | 0.43 | 200 | 8 | 10 | 13 | 17 | 25 |
|  | 51 | 0.48 | 250 |  | 12 | 16 | 20 | 28 |
|  | 52 | 0.53 | 300 350 |  | 15 | 19 | 24 | 32 |
|  | 5.3 | 0.58 | 350 350 |  | 17 | 21 | 28 | 37 43 |
|  | 54 55 | 0.63 0.68 | 350 350 |  | 20 23 | 28 | 37 | 50 |
|  | 56 | 0.73 | 350 |  | 26 | 31 | 41 | 59 |
| 42 |  | 0.47 | 200 | 8 | 9 | 13 | 16 | 24 |
|  | 51 | 0.53 | 250 |  | 12 | 15 | 19 | 27 |
|  | 52 | 0.59 | 300 |  | 14 | 18 | 22 | 30 35 |
|  | 53 | 0.65 | 350 |  | 17 | 22 | 27 | 35 |
|  | 54 55 | 0.71 0.77 | 350 350 |  | 20 | 28 | 38 | 48 |
|  | 56 | 0.83 | 350 |  | 26 | 31 | 41 | 57 |
| 48 | 50 | 0.51 | 200 | 8 | 9 | 12 | 15 | 23 |
|  | 51 | 0.58 | 250 |  | 12 | 14 | 18 | 26 |
|  | 52 | 0.65 | 300 350 |  | 14 | 18 | 21 | 30 |
|  | 53 | 0.72 0.79 | 350 350 |  | 20 | 21 | 30 | 40 |
|  | 55 | 0.86 | 350 |  | 23 | 28 | 37 | 47 |
|  | 56 | 0.93 | 350 |  | 26 | 31 | 41 | 55 |
| 54 | 50 | 0.57 | 200 | 8 | 9 | 12 | 15 | 23 |
|  | 51 | 0.65 | 250 |  | 12 | 14 | 18 | 25 |
|  | 52 | 0.73 | 300 |  | 14 | 17 | 21 | 29 |
|  | 53 | 0.81 | 350 |  | 17 | 21 | 25 | 34 |
|  | 54 | 0.89 | 350 |  | 20 | 25 | 30 | 40 |
|  | 55 | 0.97 | 350 |  | 23 | 28 | 37 | 47 |
|  | 56 | 1.05 | 350 |  | 27 | 32 | 42 | 55 |

* These pipe are adequate for the rated working pressure plus a surge allowance of 100 psi . Ductile-iron pipe for working pressures higher than 350 psi is avaliable.

An allowance for a single $\mathrm{H}-20$ truck with 1.5 impact factor is included for all depths of cover.
For pipe 30 in . and larger, consideration should be given to the use of laying conditions other than Type 1.

## DUCTILE-IRON PIPE

TABLE 51.4
Standard Dimensions and Weights of Push-On-Joint Ductile-Iron Pipe

| Size in. | Thick- <br> ness <br> Class | Thickness in. | $\begin{aligned} & \text { OD* } \\ & \text { in. } \end{aligned}$ | Wt. of $\underset{\text { Ber }}{\substack{\text { Barrel }}}$ ${ }^{i} b$ | $\underset{\substack{\text { Wt. of } \\ \text { Bell } \\ l b}}{ }$ | $18-\mathrm{Ft}$ <br> Laying Length |  | $\stackrel{20-\mathrm{Ft}}{\text { Laying Length }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Wt. Per $\operatorname{Lg}_{l b}^{\text {th. }} \dagger$ | $\begin{aligned} & \text { Avg. Wt. } \\ & { }_{\text {Per }}^{\text {Fib }} \end{aligned}$ | Wt. Per $\underset{l b}{\mathrm{Lg} \text { th. } \dagger}$ | Avg. Wt. <br> Per Ft $\ddagger$ lb |
| 38 | 51 | 0.25 | 3.96 | 8.9 | 9 | 170 | 9.4 | 185 | 9.4 |
|  | 52 | 0.28 | 3.96 | 9.9 | 9 | 185 | 10.4 | 205 | 10.4 |
|  | 53 | 0.31 | 3.96 | 10.9 | 9 | 205 | 11.4 | 225 | 11.4 |
|  | 54 | 0.34 | 3.96 | 11.8 | 9 | 220 | 12.3 | 245 | 12.2 |
|  | 55 | 0.37 | 3.96 | 12.8 | 9 | 240 | 13.3 | 265 | 13.2 |
|  | 56 | 0.40 | 3.96 | 13.7 | 9 | 255 | 14.2 | 285 | 14.2 |
| 4 | 51 | 0.26 | 4.80 | 11,3 | 11 | 215 | 11.9 | 235 | 11.8 |
|  | 52 | 0.29 | 4.80 | 12.6 | 11 | 240 | 13.2 | 265 | 13.2 |
|  | 53 | 0.32 | 4.80 | 13.8 | 11 | 260 | 14.4 | 285 | 14.4 |
|  | 54 | 0.35 | 4.80 | 15.0 | 11 | 280 | 15.6 | 310 | 15.6 |
|  | 55 | 0.38 | 4.80 | 16.1 | 11 | 300 | 16.7 | 335 355 | 16.6 |
|  | 56 | 0.41 | 4.80 | 17.3 | 11 | 320 | 17.9 | 355 | 17.8 |
| 6 | 50 | 0.25 | 6.90 |  | 18 | 305 | 17.0 |  | 16.9 |
|  | 51 | 0.28 | 6.90 | 17.8 | 18 | 340 | 18.8 | 375 | 18.7 |
|  | 52 | 0.31 | 6.90 | 19.6 | 18 | 370 | 20.6 | 410 | 20.5 |
|  | 53 | 0.34 | 6.90 | 21.4 | 18 | 405 | 22.4 | 445 | 22.3 |
|  | 54 | 0.37 | 6.90 | 23.2 | 18 | 435 | 24.2 | 480 | 24.1 |
|  | 55 | 0.40 | 6.90 | 25.0 | 18 | 470 | 26.0 | 520 | 25.9 |
|  | 56 | 0.43 | 6.90 | 26.7 | 18 | 500 | 27.7 | 550 | 27.6 |
| 8 | 50 | 0.27 | 9.05 | 22.8 |  |  | 24.2 | 480 | 24.1 |
|  | 51 | 0.30 | 9.05 | 25.2 | 26 | 480 | 26.6 | 530 | 26.5 |
|  | 52 | 0.33 | 9.05 | 27.7 | 26 | 525 | 29.1 | 580 | 29.0 |
|  | 53 | 0.36 | 9.05 | 30.1 | 26 | 570 | 31.5 33 | 630 | 31.4 |
|  | 54 | 0.39 | 9.05 | 32.5 34 | 26 | 610 | 33.9 | 675 | 33.8 |
|  | 55 56 | 0.42 0.45 | 9.05 9.05 | 34.8 37.2 | 26 |  | 36.2 38.6 | 720 770 | 36.1 38.5 |
|  |  | 0.45 |  |  |  |  |  |  | 38.5 |
| 10 | 50 | 0.29 | 11.10 | 30.1 | 34 | 575 | 32.0 | 635 | 31.8 |
|  | 51 | 0.32 | 11.10 | 33.2 | 34 | 630 | 35.1 | 700 | 34.9 |
|  | 52 | 0.35 | 11.10 | 36.2 | 34 | 685 | 38.1 | 700 | 37.9 |
|  | 53 | 0.38 | 11.10 | 39.2 | 34 | 740 | 41.1 | 820 | 40.9 |
|  | 54 | 0.41 | 11.10 | 42.1 | 34 | 790 | 44.0 | 875 | 43.8 |
|  | 55 | 0.44 | 11.10 | 45.1 | 34 34 | 845 | 47.0 49.9 | 935 | 46.8 |
|  | 56 | 0.47 | 11.10 | 48.0 | 34 | 900 | 49.9 | 995 | 49.7 |

 -0.06 in .
$t$ Including bell; calculated welght of pipe rounded off to nearest $\$ \mathrm{lb}$.
Including bell; calculated weight of pipe rounded off to nearest $\$ \mathrm{lb}$.
Including bell; average weight, per foot, based on calculated welght of pe before rounding.
Including bell; average weight, per foot, based on calculated welght of plpe
8 Pipe of 3 -in, size also available in $12-\mathrm{ft}$ laying length with following weights:

| Thickness Class | Thickness in. | $\text { Wt. Per Lgth. } \dagger$ | Avg. Wt. Per Ft $\ddagger$ $l b$ |
| :---: | :---: | :---: | :---: |
| 51 | 0.25 | 115 | 9.6 |
| 52 | 0.28 | 130 | 10.6 |
| 53 | 0.31 | 140 | 11.6 |
| 54 | 0.34 | 150 | 12.6 |
| 55 | 0.37 | 165 | 13.6 |
| 56 | 0.40 | 175 | 14.4 |

TABLE 51.4-(cont.)

*Tolerance of OD of spizot end: $3-12 \mathrm{in} ., \pm 0.06 \mathrm{in} . ; 14-24 \mathrm{in} .,+0.05 \mathrm{in} .,-0.08 \mathrm{in}$; $30-54 \mathrm{in} .,+0.08 \mathrm{in}$., -0.06 in .

+ Including bell; calculated weizht of pipe rounded off to nearest 5 lb .
$\ddagger$ Including bell; average weight per foot, based on calculated weight of pipe before rounding.

TABLE 51.4-(cont.)

| Size in. | Thickness Class | Thickness in. | $\begin{aligned} & \text { OD* } \\ & \text { in. } \end{aligned}$ | Wt. of ${ }_{\text {Per }}{ }^{\text {Barel }}$ $\underset{l b}{\text { Per }} \mathrm{Ft}^{2}$ | Wt. of Bell | 18-Ft <br> Laying Length |  | $20-\mathrm{Ft}$ <br> Laying Lentglı |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Wt. Per $\underset{l b}{\text { Lgth. } \dagger}$ | $\begin{aligned} & \text { Avg. Wt. } \\ & \text { Per } \mathrm{Ftj} \end{aligned}$ | Wt. Per Lgth.i lb | $\begin{aligned} & \text { Avg. Wt. } \\ & \text { Per } \operatorname{Ft} \ddagger \end{aligned}$ |
| 24 | 50 | 0.38 | 25.80 | 92.9 | 120 | 1790 | 99.6 | 1980 | 98.9 |
|  | 51 | 0.41 | 25.80 | 100.1 | 120 | 1920 | 106.8 | 2120 | 106.1 |
|  | 52 | 0.44 | 25.80 | 107.3 | 120 | 2050 | 114.0 | 2255 | 113.3 |
|  | 53 | 0.47 | 25.80 | 114.4 | 120 | 2180 | 121.1 | 2410 | 120.4 |
|  | 54 | 0.50 | 25.80 | 121.6 | 120 | 2310 | 128.3 | 2550 | 127.6 |
|  | 55 | 0.53 | 25.80 | 128.8 | 120 | 2440 | 135.5 | 2695 | 134.8 |
|  | 56 | 0.56 | 25.80 | 135.9 | 120 | 2565 | 142.6 | 2840 | 141.9 |
| 30 | 50 | 0.39 | 32.00 | 118.5 | ** | 2350 |  | 2535 | 126.6 |
|  | 51 | 0.43 | 32.00 | 130.5 |  | 2565 | 142.5 | 2775 | 138.6 |
|  | 52 | 0.47 | 32.00 | 142.5 |  | 2780 | 154.5 | 3015 | 150.6 |
|  | 53 | 0.51 | 32.00 | 154.4 |  | 2995 | 166.4 | 3250 | 162.6 |
|  | 54 | 0.55 | 32.00 | 166.3 |  | 3210 | 178.3 | 3490 | 174.4 |
|  | 55 | 0.59 | 32.00 | 178.2 |  | 3425 | 190.2 | 3725 395 | 186.4 |
|  | 56 | 0.63 | 32.00 | 190.0 |  | 3635 | 202.0 | 3965 | 198.2 |
| 36 | 50 | 0.43 | 38.30 | 156.5 | $\dagger \dagger$ | 3110 | 172.7 | 3345 | 167.3 |
|  | 51 | 0.48 | 38.30 | 174.5 |  | 3435 | 190.7 | 3705 | 185.3 |
|  | 52 | 0.53 | 38.30 | 192.4 |  | 3755 | 208.6 | 4065 | 203.2 |
|  | 53 | 0.58 | 38.30 | 210.3 |  | 4075 | 226.5 | 4420 | 221.1 |
|  | 54 | 0.63 | 38.30 | 228.1 |  | 4400 | 244.3 | 4780 | 238.9 |
|  | 55 | 0.68 | 38.30 | 245.9 |  | 4720 | 262.1 | 5135 | 256.7 |
|  | 56 | 0.73 | 38.30 | 263.7 |  | 5040 | 279.9 | 5490 | 274.5 |
| 42 | 50 | 0.47 | 44.50 | 198.9 | 261 |  |  | 4240 | 212.0 |
|  | 51 | 0.53 | 44.50 | 224.0 | 261 |  |  | 4740 | 237.0 |
|  | 52 | 0.59 | 44.50 | 249.1 | 261 |  |  | 5245 | 262.2 |
|  | 53 | 0.65 | 44.50 | 274.0 | 261 |  |  | 5740 | 287.0 |
|  | 54 | 0.71 | 44.50 | 298.9 | 261 |  |  | 6240 | 312.0 |
|  | 55 | 0.77 | 44.50 | 323.7 | 261 |  |  | 6735 | 336.8 |
|  | 56 | 0.83 | 44.50 | 348.4 | 261 |  |  | 7230 | 361.4 |
| 48 | 50 | 0.51 | 50.80 | 246.6 | 316 |  |  | 5250 | 262.4 |
|  | 51 | 0.58 | 50.80 | 280.0 | 316 |  |  | 5915 | 295.8 |
|  | 52 | 0.65 | 5 | 313.4 | 316 316 |  |  | 6585 | 329.2 |
|  | 53 | 0.72 | 53.80 | 346.6 | 316 |  |  | 7250 | 362.4 |
|  | 54 | 0.79 | 50.80 | 379.8 | 316 |  |  | 7910 | 395.6 |
|  | 55 | 0.86 | 50.80 5 | 412.9 | 316 316 |  |  | 8575 | 428.7 |
|  | 56 | 0.93 | 53.80 | 445.9 | 316 |  |  | 9235 | 461.7 |
| 54 | 50 | 0.57 | 57.10 |  | 370 |  |  | 6565 | 328.3 |
|  | 51 | 0.65 | 57.10 | 352.7 | 370 |  |  | 7425 | 371.2 |
|  | 52 | 0.73 | 57.10 | 395.6 | 370 |  |  | 8280 | 414.1 |
|  | 53 | 0.81 | 57.10 | 438.3 | 370 |  |  | 9135 | 456.8 |
|  | 54 | 0.89 | 57.10 57 | 480.9 | 370 |  |  | $\begin{array}{r}9990 \\ \hline 10840\end{array}$ | 499.4 |
|  | 55 | 0.97 | 57.10 | 52.3 .4 | 370 |  |  | 10840 | 541.9 |
|  | 56 | 1.05 | 57.10 | 565.8 | 370 |  |  | 11685 | 584.3 |

* Tolerances of OD of spigot end: $3-12 \mathrm{in} ., \pm 0.06 \mathrm{in} . ; 14-24 \mathrm{in} .,+0.05 \mathrm{in} .,-0.08 \mathrm{in} . ; 30-54 \mathrm{in} .,+0.08 \mathrm{in}$. -0.06 in .
$t$ Including bell; calculated weight of pipe rounded off to nearest 5 lb .
Including bell; average weight per foot, based on calculated weight of pipe before rounding.
** Weight of $30-\mathrm{in}$. bell is 216 lb for $18-\mathrm{ft}$ pipe and 163 lb for $20-\mathrm{ft}$ pipe.
t+ Weight of 36 -in. bell is 292 lb for 18 -ft pipe and 216 lb for $20-\mathrm{ft}$ pipe.
tt Weight of $35-\mathrm{in}$. bell is 292 lb for 18 -ft pipe and 216 lb for $20-\mathrm{ft}$ pipe.

TABLE 51.5
Standard Dimensions and Weights of Mechanical-Joint Ductile-Iron Pipe

| Size in. | Thickness Class | Thickness in. | $\begin{aligned} & \mathrm{OD} \\ & \text { in. } \end{aligned}$ | Wt, of Barrel Per Ft lb | Wt. of Bell lb | Laying Length |  | $\begin{gathered} 20-\mathrm{ft} \\ \text { Laying Length } \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Wt. Per $\underset{l b}{\text { Lgth. }} \dagger$ | Avg. Wt. <br> Per Ft $\ddagger$ $l b$ | Wt. Per Lgth. $\dagger$ lb | Avg. Wt. <br> Per Ft $\ddagger$ bb |
| 38 | 51 | 0.25 | 3.96 | 8.9 | 11 | 170 | 9.5 | 190 | 9.4 |
|  | 52 | 0.28 | 3.96 | 9.9 | 11 | 190 | 10.5 | 210 | 10.4 |
|  | 53 | 0.31 | 3.96 | 10.9 | 11 | 205 | 11.5 | 230 | 11.4 |
|  | 54 | 0.34 | 3.96 | 11.8 | 11 | 225 | 12.4 | 245 | 12.4 |
|  | 55 | 0.37 | 3.96 | 12.8 | 11 | 240 | 13.4 | 265 | 13.4 |
|  | 56 | 0.40 | 3.96 | 13.7 | 11 | 260 | 14.3 | 285 | 14.2 |
| 4 | 51 | 0.26 | 4.80 | 11.3 | 16 | 220 | 12.2 | 240 | 12.1 |
|  | 52 | 0.29 | 4.80 | 12.6 | 16 | 245 | 13.5 | 270 | 13.4 |
|  | 53 | 0.32 | 4.80 | 13.8 | 16 | 265 | 14.7 | 290 | 14.6 |
|  | 54 | 0.35 | 4.80 | 15.0 | 16 | 285 | 15.9 | 315 | 15.8 |
|  | 55 | 0.38 | 4.80 | 16.1 | 16 | 305 | 17.0 | 340 | 16.9 |
|  | 56 | 0.41 | 4.80 | 17.3 | 16 | 325 | 18.2 | 360 | 18.1 |
| 6 | 50 | 0.25 | 6.90 | 16.0 | 22 | 310 | 17.2 | 340 | 17.1 |
|  | 51 | 0.28 | 6.90 | 17.8 | 22 | 340 | 19.0 | 380 | 18.9 |
|  | 52 | 0.31 | 6.90 | 19.6 | 22 | 375 | 20.8 | 415 | 20.7 |
|  | 53 | 0.34 | 6.90 | 21.4 | 22 | 405 | 22.6 | 450 | 22.5 |
|  | 54 | 0.37 | 6.90 | 23.2 | 22 | 440 | 24.4 | 485 | 24.3 |
|  | 55 | 0.40 | 6.90 | 25.0 | 22 | 470 | 26.2 | 520 | 26.1 |
|  | 56 | 0.43 | 6.90 | 26.7 | 22 | 505 | 27.9 | 555 | 27.8 |
| 8 | 50 | 0.27 | 9.05 | 22.8 | 29 | 440 | 24.4 | 485 | 24.2 |
|  | 51 | 0.30 | 9.05 | 25.2 | 29 | 485 | 26.8 | 535 | 26.6 |
|  | 52 | 0.33 | 9.05 | 27.7 | 29 | 530 | 29.3 | 585 | 29.2 |
|  | 53 | 0.36 | 9.05 | 30.1 | 29 | 570 | 31.7 | 630 | 31.6 |
|  | 54 | 0.39 | 9.05 | 32.5 | 29 | 615 | 34.1 | 680 | 34.0 |
|  | 55 | 0.42 | 9.05 | 34.8 | 29 | 655 | 36.4 | 725 | 36.2 |
|  | 56 | 0.45 | 9.05 | 37.2 | 29 | 700 | 38.8 | 775 | 38.6 |
| 10 | 50 | 0.29 | 11.10 | 30.1 | 39 | 580 | 32.3 | 640 | 32.0 |
|  | 51 | 0.32 | 11.10 | 33.2 | 39 | 635 | 35.4 | 705 | 35.2 |
|  | 52 | 0.35 | 11.10 | 36.2 | 39 | 690 | 38.4 | 765 | 38.2 |
|  | 53 | 0.38 | 11.10 | 39.2 | 39 | 745 | 41.4 | 825 | 41.2 |
|  | 54 | 0.41 | 11.10 | 42.1 | 39 | 795 | 44.3 | 880 | 44.0 |
|  | 55 | 0.44 | 11.10 | 45.1 | 39 | 850 | 47.3 | 940 | 47.0 |
|  | 56 | 0.47 | 11.10 | 48.0 | 39 | 905 | 50.2 | 1000 | 50.0 |
| 12 | 50 | 0.31 | 13.20 | 38.4 | 49 | 740 | 41.1 | 815 | 40.8 |
|  | 51 | 0.34 | 13.20 | 42.0 | 49 | 805 | 44.7 | 890 | 44.4 |
|  | 52 | 0.37 | 13.20 | 45.6 | 49 | 870 | 48.3 | 960 | 48.0 |
|  | 53 | 0.40 | 13.20 | 49.2 | 49 | 935 | 51.9 | 1035 | 51.6 |
|  | 54 | 0.43 | 13.20 | 52.8 | 49 | 1000 | 55.5 | 1105 | 55.2 |
|  | 55 | 0.46 | 13.20 | 56.3 | 49 | 1060 | 59.0 | 1175 | 58.8 |
|  | 56 | 0.49 | 13.20 | 59.9 | 49 | 1125 | 62.6 | 1245 | 62.3 |
| 14 | 50 51 | 0.33 0.36 | 15.30 15.30 | 47.5 51.7 | 76 | 930 1005 | 51.7 55.9 | 1025 10 |  |
|  | 51 52 | 0.36 0.39 | 15.30 15.30 | 51.7 55.9 | 76 76 | 1005 1080 | 55.9 60.1 | $\begin{array}{ll}1 & 110 \\ 1 & 195\end{array}$ | 51.5 59.7 |
|  | 53 | 0.42 | 15.30 15.30 | 60.1 | 76 | 1080 1160 | 64.3 | 1280 | 63.9 |
|  | 54 | 0.45 | 15.30 | 64.2 | 76 | 1230 | 68.4 | 1360 | 68.0 |
|  | 55 | 0.48 | 15.30 | 68.4 | 76 | 1305 | 72.6 | 1445 | $72.2$ |
|  | 56 | 0.51 | 15.30 | 72.5 | 76 | 1380 | 76.7 | 1525 | 76.3 |
| Tolerances of $O D$ of spigot end: $3-12 \mathrm{in} ., \pm 0.06 \mathrm{in}$; $14-24 \mathrm{in} .,+0.05 \mathrm{in} .,-0.08 \mathrm{in} . ; 30-48 \mathrm{in} .,+0.08 \mathrm{in}$. -0.06 in. |  |  |  |  |  |  |  |  |  |
| $\dagger$ Including bell; calculated weight of pipe rounded off to nearest 5 lb . <br> $\ddagger$ Including bell; average weight, per foot, based on calculated weight of pipe before rounding. <br> 8 Pipe of 3 -in. size also available in $12-\mathrm{ft}$ laying length with following weights: |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Thickness Class |  |  | Thickness in. |  | $\text { Wt. Per Lgth. } \dagger$ |  |  | Avg. Wt. Per $\mathrm{Ft} \ddagger$ 16 |  |
| 51 |  |  | 0.25 |  | 120 |  |  | 9.8 |  |
| 52 |  |  | 0.28 |  |  | 130 |  | 10.8 |  |
| 53 |  |  |  |  |  | 140 |  | 11.8 |  |
| 54 |  |  |  |  |  | 155 |  | 12.7 |  |
| 55 |  |  |  |  |  | 165 |  | 13.7 |  |
| 56 |  |  |  |  |  | 175 |  | 14.6 |  |

DUCTILE-IRON PIPE
TABLE 51.5-(cont.)

| Size in. | Thickness Class | Thickness in. | $\begin{aligned} & \text { OD* } \\ & \text { in. } \end{aligned}$ | Wt. of Barrel Per Ft lb | Wt. of $\underset{l b}{\text { Belltt }}$ | Laying Length |  | $\begin{gathered} 20-\mathrm{ft} \\ \text { Laying Length } \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Wt. Per $\underset{l b}{\text { Lgth. } \dagger}$ | $\begin{aligned} & \text { Avg. Wt. } \\ & \underset{l b}{\text { Per } F t} \end{aligned}$ | $\begin{aligned} & \text { Wt. Per } \\ & \text { Lgth.t } \\ & l b \end{aligned}$ | $\underset{l b}{\text { Avg. Wt. }}$ |
| 16 | 50 | 0.34 | 17.40 | 55.8 | 93 | 1095 | 61.0 | 1210 | 60.4 |
|  | 51 | 0.37 | 17.40 | 60.6 | 93 | 1185 | 65.8 | 1305 | 65.2 |
|  | 52 | 0.40 | 17.40 | 65.4 | 93 | 1270 | 70.6 | 1400 | 70.0 |
|  | 53 | 0.43 | 17.40 | 70.1 | 93 | 1355 | 75.3 | 1495 | 74.8 |
|  | 54 | 0.46 | 17.40 | 74.9 | 93 | 1440 | 80.1 | 1590 | 79.6 |
|  | 55 | 0.49 | 17.40 | 79.7 | 93 | 1530 | 84.9 | 1685 | 84.4 |
|  | 56 | 0.52 | 17.40 | 84.4 | 93 | 1610 | 89.6 | 1780 | 89.0 |
| 18 | 50 | 0.35 | 19.50 | 64.4 | 111 | 1270 | 70.6 | 1400 | 70.0 |
|  | 51 | 0.38 | 19.50 | 69.8 | 111 | 1365 | 76.0 | 1505 | 75.4 |
|  | 52 | 0.41 | 19.50 | 75.2 | 111 | 1465 | 81.4 | 1615 | 80.8 |
|  | 53 | 0.44 | 19.50 | 80.6 | 111 | 1560 | 86.8 | 1725 | 86.2 |
|  | 54 | 0.47 | 19.50 | 86.0 | 111 | 1660 | 92.2 | 1830 | 91.6 |
|  | 55 | 0.50 | 19.50 | 91.3 | 111 | 1755 | 97.5 | 1935 | 96.8 |
|  |  | 0.53 | 19.50 | 96.7 | 111 | 1850 | 102.9 | 2045 | 102.2 |
| 20 | 50 | 0.36 | 21.60 | 73.5 | 131 | 1455 | 80.8 | 1600 | 80.0 |
|  | 51 | 0.39 | 21.60 | 79.5 | 131 | 1560 | 86.8 | 1720 | 86.0 |
|  | 52 | 0.42 | 21.60 | 85.5 | 131 | 1670 | 92.8 | 1840 | 92.0 |
|  | 53 | 0.45 | 21.60 | 91.5 | 131 | 1780 | 98.8 | 1960 | 98.0 |
|  | 54 | 0.48 | 21.60 | 97.5 | 131 | 1885 | 104.8 | 2080 | 104.0 |
|  | 55 | 0.51 | 21.60 | 103.4 | 131 | 1990 | 110.7 | 2200 | 110.0 |
|  | 56 | 0.54 | 21.60 | 109.3 | 131 | 2100 | 116.6 | 2315 | 115.8 |
| 24 | 50 | 0.38 | 25.80 | 92.9 | 174 | 1845 | 102.6 | 2030 | 101.6 |
|  | 51 | 0.41 | 25.80 | 100.1 | 174 | 1975 | 109.8 | 2175 | 108.8 |
|  | 52 | 0.44 | 25.80 | 107.3 | 174 | 2105 | 117.0 | 2320 | 116.0 |
|  | 53 | 0.47 | 25.80 | 114.4 | 174 | 2235 | 124.1 | 2460 | 123.1 |
|  | 54 | 0.50 | 25.80 | 121.6 | 174 | 2365 | 131.3 | 2605 | 130.3 |
|  | 55 | 0.53 0.56 | 25.80 | 128.8 | 174 | 2490 | 138.5 | 2750 | 137.5 |
|  | 56 | 0.56 | 25.80 | 135.9 | 174 | 2620 | 145.6 | 2890 | 144.6 |
| 30 | 50 | 0.39 | 32.00 | 118.5 | 216 | 2350 | 130.5 | 2585 | 129.3 |
|  |  |  | 32.00 |  | 216 |  |  | 2825 | 141.3 |
|  | 52 | 0.47 | 32.00 | 142.5 | 216 | 2780 | 154.5 | 3065 | 153.3 |
|  | 53 | 0.51 | 32.00 | 154.4 | 216 | 2995 | 166.4 | 3305 | 165.2 |
|  | 54 | 0.55 | 32.00 | 166.3 | 216 | 3210 | 178.3 | 3540 | 177.1 |
|  | 55 | 0.59 | 32.00 | 178.2 | 216 | 3425 | 190.2 | 3780 4015 | 189.0 |
|  | 56 | 0.63 | 32.00 | 190.0 | 216 | 3635 | 202.0 | 4015 | 200.8 |
| 36 | 50 | 0.43 | 38.30 | 156.5 | 310 | 3125 | 173.7 | 3440 | 172.0 |
|  | 51 | 0.48 | 38.30 | 174.5 | 310 | 3450 | 191.7 | 3800 | 190.0 |
|  | 52 | 0.53 | 38.30 | 192.4 | 310 | 3775 | 209.6 | 4160 | 207.9 |
|  | 53 | 0.58 | 38,30 | 210.3 | 310 | 4095 | 227.5 | 4515 | 225.8 |
|  | 54 | 0.63 | 38.30 | 228.1 | 310 | 4415 | 245.3 | 4870 | 243.6 |
|  | 55 | 0.68 | 38.30 | 245.9 | 310 | 4735 | 263.1 | 5230 | 261.4 |
|  | 56 | 0.73 | 38.30 | 263.7 | 310 | 5055 | 280.9 | 5585 | 279.2 |
| 42 | 50 51 | 0.47 0.53 | 44.50 44.50 | 198.9 224.0 | 405 405 |  |  | 4385 4885 | 219.2 244.2 |
|  | 52 | $\stackrel{0.59}{0.59}$ | 44.50 | 249.1 | 405 |  |  | 5385 | 269.4 |
|  | 53 | 0.65 | 44.50 | 274.0 | 405 |  |  | 5885 | 294.2 |
|  | 54 | 0.71 | 44.50 | 298.9 | 405 |  |  | 6385 | 319.2 |
|  | 55 | 0.77 | 44.50 | 323.7 | 405 |  |  | 6880 | 344.0 |
|  | 56 | 0.83 | 44.50 | 348.4 | 405 |  |  | 7375 | 368.6 |
| 48 | 50 | 0.51 | 50.80 | 246.6 | 505 |  |  | 5435 | 271.8 |
|  | 51 | 0.58 | 50.80 | 280.0 | 505 |  |  | 6105 | 305.2 |
|  | 52 | 0.65 | 50.80 | 313.4 | 505 |  |  | 6775 | 338.6 |
|  | 53 | 0.72 | 50.80 50 |  | 505 |  |  | 7435 | 371.8 |
|  | 54 55 | 0.79 0.86 | 50.80 50.80 | 379.8 412.9 | 505 505 |  |  | 8100 8765 | 405.0 |
|  | 55 56 | 0.86 0.93 | 50.80 50.80 | 412.9 445.9 | 505 505 |  |  | 8765 9425 | 438.2 471.2 |
|  |  |  |  |  |  |  |  |  |  |

* Tolerances of $O D$ of spigot end : $3-12 \mathrm{in} ., \pm 0.06 \mathrm{in}$.; $14-24 \mathrm{in} .,+0.05 \mathrm{in} .,-0.08 \mathrm{in} . ; 30-48 \mathrm{in} .,+0.08 \mathrm{in} .$, -0.06 in .
$\dagger$ The mechanical joint bell for $30-48 \mathrm{in}$. sizes of ductile-iron pipe have thicknesses different from those shown in ANSI A21.11 (AWWA C111), which are based on gray-iron pipe. These reduced thicknesses provide a lighter weight bell, which is compatible with the wall thicknesses of ductile-iron pipe. The internal socket dimensions, bolt circle and bolt holes of the redesigned bell remain identical to those specified in A21.11 (AWWA C111) to assure interchangeability of the joint.

Including bell; calculated weight of pipe rounded off to nearest 5 lb .
Including bell; average weight per foot, based on calculated weight of pipe before rounding.

## Appendix

This appendix is for information and is not a part of ANSI A21.51 (AWW A C151).
TABLE A. 1
Pipe Thicknesses Required for Different Tap Sizes as per A NSI B2.1 for Standard
Taper Pipe Threads With Two, Three, and Four Full Threads

| $\begin{aligned} & \text { Pipe Size } \\ & \text { in. } \end{aligned}$ | No. of Threads | Tap Size-in. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\pm$ | ! | 1 | 1 | $1 \frac{1}{2}$ | 2 | ${ }^{23}$ | 3 | 31 | 4 |
|  |  | Pipe Thickness-in. |  |  |  |  |  |  |  |  |  |
| 3 | ${ }_{3}^{2}$ | 0.18 | 0.21 | 0.28 |  |  |  |  |  |  |  |
| ${ }_{3}^{3}$ | 3 4 | 0.26 0.33 | 0.29 0.36 | 0.37 0.46 0.8 |  |  |  |  |  |  |  |
| 4 | 2 | 0.17 0.25 | 0.19 | $\stackrel{0.26}{0.35}$ | 0.31 0.40 |  |  |  |  |  |  |
| 4 | 4 | 0.32 | 0.34 | ${ }_{0}^{0.44}$ | 0.49 0.4 |  |  |  |  |  |  |
| 6 | ${ }_{3}$ | 0.17 | 0.18 | 0.23 | 0.27 | 0.30 |  |  |  |  |  |
| 6 | 4 | 0.25 0.32 | 0.26 0.33 | 0.32 0.41 | 0.36 0.45 | 0.39 0.48 |  |  |  |  |  |
| 8 | 2 | 0.16 | 0.17 | 0.22 | 0.24 | 0.27 | 0.33 |  |  |  |  |
| 8 | 3 4 | 0.24 0.31 0.1 | 0.25 0.32 | 0.31 0.40 | 0.33 0.42 | 0.36 0.45 | 0.42 0.51 |  |  |  |  |
| 10 | 2 | 0.15 | 0.17 | 0.21 | 0.23 | 0.25 | 0.30 | 0.44 |  |  |  |
| 10 10 | 3 4 | 0.23 0.30 | 0.25 0.32 | 0.30 0.39 | 0.32 0.41 | 0.34 0.43 | 0.39 0.48 | 0.56 0.69 |  |  |  |
| 12 | 2 | 0.15 | 0.16 | 0.20 | 0.22 | 0.24 | 0.28 | 0.40 | 0.48 |  |  |
| ${ }_{12}^{12}$ | 3 4 | 0.23 0.30 | 0.24 0.31 0.1 | 0.29 0.38 | 0.31 0.40 | 0.33 0.42 | 0.37 0.46 | 0.52 0.65 | 0.60 0.73 |  |  |
| 14 | 2 | 0.15 | 0.16 | 0.20 | 0.22 | 0.23 | 0.26 | 0.38 | 0.45 | 0.51 | 0.58 |
| ${ }_{14}^{14}$ | ${ }_{4}$ | 0.23 0.30 | 0.24 0.31 0.1 | 0.29 0.38 | 0.31 0.40 | 0.32 0.41 | 0.35 0.44 | 0.50 0.63 | 0.58 0.70 | 0.54 0.76 | 0.83 |
| 16 |  | 0.15 | 0.16 | 0.20 | 0.21 | 0.22 | 0.25 | 0.37 | 0.43 | 0.48 | 0.54 |
| 16 | 3 | 0.23 | 0.24 | 0.29 | 0.30 | 0.31 | 0.34 | 0.50 | 0.56 0.68 | 0.60 0.73 | 0.66 |
|  | 4 | 0.30 | 0.31 | 0.38 | 0.39 | 0.40 | 0.43 | 0.62 |  |  |  |
|  |  | 0.15 | 0.15 | 0.19 | 0.21 | 0.22 | 0.24 | 0.35 | 0.41 | 0.46 | 0.51 |
| 18 18 | 3 4 | 0.15 0.23 0.30 | 0.15 0.23 0.30 | 0.28 0.37 0.37 | 0.31 0.30 0.39 | 0.32 0.40 0.40 | 0.23 0.42 0.3 | 0.48 0.48 0.60 | 0.54 0.66 | ${ }_{0}^{0.58}$ | 0.64 |
|  |  |  |  |  | 0.39 |  |  |  |  |  |  |
|  |  | 0.15 | 0.15 | 0.19 | 0.20 | 0.21 | 0.23 | 0.34 | 0.39 | 0.44 |  |
| ${ }_{20}^{20}$ | 3 4 | 0.15 0.30 0.30 | 0.15 0.23 0.30 | 0.18 0.38 0.37 | 0.29 0.38 0.38 | 0.31 0.30 0.39 | 0.23 0.32 0.41 | 0.36 0.46 0.59 | 0.52 0.64 | 0.56 0.69 | 0.62 |
|  |  | 0.30 | 0.30 | 0.37 | 0.38 | 0.39 | 0.41 |  |  |  |  |
|  |  | 0.14 | 0.15 | 0.19 | 0.20 | 0.21 | 0.22 | 0.32 | 0.37 |  | 0.75 0.58 0.58 |
| 24 24 | ${ }_{4}^{3}$ | 0.22 0.29 | 0.23 0.30 | 0.28 0.37 | 0.29 0.38 0.38 | 0.30 0.39 | 0.31 0.40 | 0.44 0.57 | 0.50 0.62 | 0.52 0.65 | 0.78 |
| 30 |  | 0.14 | 0.15 | 0.19 | 0.19 | 0.20 | 0.21 | 0.31 | 0.34 | 0.37 | 0.41 |
| 30 | 3 | 0.22 | 0.23 | 0.28 | 0.28 | 0.29 | 0.30 | 0.44 | 0.46 | 0.50 | 0.54 |
| 30 | 4 | 0.29 | 0.30 | 0.37 | 0.37 | 0.38 | 0.39 | 0.56 | 0.59 | 0.62 |  |
|  |  |  |  |  |  |  |  |  |  |  | 0.38 |
| $\begin{aligned} & 36 \\ & 36 \end{aligned}$ | 3 4 | 0.22 0.29 0.29 | 0.12 0.29 0.29 | 0.18 0.27 0.36 | 0.28 0.37 | 0.29 0.29 0.38 | 0.31 0.39 | 0.42 0.45 0.55 | 0.46 0.58 | 0.48 0.60 | 0.50 0.63 |
|  |  |  |  |  |  |  |  | 0.29 | 0.32 | 0.34 |  |
| 42 | 3 | 0.22 | 0.22 | 0.27 | 0.28 | 0.28 | 0.29 | 0.42 | 0.44 | 0.46 | 0.48 |
|  | 4 | 0.29 | 0.29 | 0.36 | 0.37 | 0.37 | 0.38 | 0.54 | 0.57 | 0.59 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 48 48 | 3 | 0.14 0.22 0.29 | 0.14 0.22 0.29 | $\begin{aligned} & 0.18 \\ & 0.27 \\ & 0.36 \end{aligned}$ | 0.18 0.27 0.36 | 0.19 0.28 0.37 | 0.29 0.29 0.38 | 0.29 0.42 0.54 | 0.44 0.44 0.56 | 0.34 0.44 0.57 | 0.48 0.60 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 54 54 | 3 4 | 0.14 0.21 0.29 | 0.14 0.21 0.29 | $\begin{aligned} & 0.17 \\ & 0.26 \\ & 0,35 \end{aligned}$ | 0.18 0.27 0.35 | 0.18 0.27 0.36 | 0.19 0.28 0.37 | 0.28 0.41 0.53 | 0.3 0.43 0.55 | 0.32 0.44 0.57 | 0.47 0.47 0.59 |

## DUCTILE-IRON PIPE

TABLE A. 2
Pipe Thicknesses Required for Different Tap Sizes as per AWWA C800 for Standard Corporation Stop Threads* With Two, Three, and Four Full Threads

| Pipe Size in. | No. of Threads | Tap Size-in. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\frac{1}{1}$ | 1 | 1 | 1 | $1\}$ | 13 | 2 |
|  |  | Pipe Thickness-in. |  |  |  |  |  |  |
| 3 | 2 | 0.21 | 0.24 | 0.25 | 0.33 |  |  |  |
| 3 | 3 | 0.29 | 0.32 | 0.33 | 0.41 |  |  |  |
| 3 | 4 | 0.36 | 0.39 | 0.40 | 0.49 |  |  |  |
| 4 | 2 | 0.19 | 0.22 | 0.23 | 0.30 | 0.36 |  |  |
| 4 | 3 | 0.27 | 0.30 | 0.31 | 0.38 | 0.45 |  |  |
| 4 | 4 | 0.34 | 0.37 | 0.38 | 0.46 | 0.54 |  |  |
| 6 | 2 | 0.18 | 0.20 | 0.20 | 0.26 | 0.30 | 0.35 |  |
| 6 | 3 | 0.26 | 0.28 | 0.28 | 0.34 | 0.39 | 0.44 |  |
| 6 | 4 | 0.33 | 0.35 | 0.35 | 0.42 | 0.48 | 0.53 |  |
| 8 | 2 | 0.17 | 0.18 | 0.19 | 0.24 | 0.27 | 0.31 | 0.39 |
| 8 | 3 | 0.25 | 0.26 | 0.27 | 0.32 | 0.36 | 0.40 | 0.48 |
| 8 | 4 | 0.32 | 0.33 | 0.34 | 0.40 | 0.45 | 0.49 | 0.57 |
| 10 | 2 | 0.17 | 0.17 | 0.18 | 0.23 | 0.25 | 0.28 | 0.35 |
| 10 | 3 | 0.25 | 0.25 | 0.26 | 0.31 | 0.34 | 0.37 | 0.44 |
| 10 | 4 | 0.32 | 0.32 | 0.33 | 0.39 | 0.43 | 0.46 | 0.53 |
| 12 | 2 | 0.16 | 0.17 | 0.17 | 0.22 | 0.24 | 0.26 | 0.32 |
| 12 | 3 | 0.24 | 0.25 | 0.25 | 0.30 | 0.33 | 0.35 | 0.41 |
| 12 | 4 | 0.31 | 0.32 | 0.32 | 0.38 | 0.42 | 0.44 | 0.50 |
| 14 | 2 | 0.16 | 0.17 | 0.17 | 0.21 | 0.23 | 0.25 | 0.30 |
| 14 | 3 | 0.24 | 0.25 | 0.25 | 0.29 | 0.32 | 0.34 | 0.39 |
| 14 | 4 | 0.31 | 0.32 | 0.32 | 0.37 | 0.41 | 0.43 | 0.48 |
| 16 | 2 | 0.16 | 0.16 | 0.17 | 0.21 | 0.22 | 0.24 | 0.28 |
| 16 | 3 | 0.24 | 0.24 | 0.25 | 0.29 | 0.31 | 0.33 | 0.37 |
| 16 | 4 | 0.31 | 0.31 | 0.32 | 0.37 | 0.40 | 0.42 | 0.46 |
| 18 | 2 | 0.15 | 0.16 | 0.16 | 0.20 | 0.21 | 0.23 | 0.27 |
| 18 | 3 | 0.23 | 0.24 | 0.24 | 0.28 | 0.30 | 0.32 | 0.36 |
| 18 | 4 | 0.30 | 0.31 | 0.31 | 0.36 | 0.39 | 0.41 | 0.45 |
| 20 | 2 | 0.15 | 0.16 | 0.16 | 0.20 | 0.21 | 0.23 | 0.26 |
| 20 | 3 | 0.23 | 0.24 | 0.24 | 0.28 | 0.30 | 0.32 | 0.35 |
| 20 | 4 | 0.30 | 0.31 | 0.31 | 0.36 | 0.39 | 0.41 | 0.44 |
| 24 | 2 | 0.15 | 0.15 | 0.16 | 0.19 | 0.21 | 0.22 | 0.24 |
| 24 | 3 | 0.23 | 0.23 | 0.24 | 0.27 | 0.30 | 0.31 | 0.33 |
| 24 | 4 | 0.30 | 0.30 | 0.31 | 0.35 | 0.39 | 0.40 | 0.42 |
| 30 | 2 | 0.15 | 0.15 | 0.16 | 0.19 | 0.20 | 0.21 | 0.23 |
| 30 | 3 | 0.23 | 0.23 | 0.24 | 0.27 | 0.29 | 0.30 | 0.32 |
| 30 | 4 | 0.30 | 0.30 | 0.31 | 0.35 | 0.38 | 0.39 | 0.41 |
| 36 | 2 | 0.14 | 0.15 | 0.15 | 0.19 | 0.20 | 0.20 | 0.22 |
| 36 | 3 | 0.22 | 0.23 | 0.23 | 0.27 | 0.29 | 0.29 | 0.31 |
| 36 | 4 | 0.29 | 0.30 | 0.30 | 0.35 | 0.38 | 0.38 | 0.40 |
| 42 | 2 | 0.14 | 0.14 | 0.15 | 0.18 | 0.19 | 0.20 | 0.21 |
| 42 | 3 | 0.22 | 0.22 | 0.23 | 0.26 | 0.28 | 0.29 | 0.30 |
| 42 | 4 | 0.29 | 0.29 | 0.30 | 0.34 | 0.37 | 0.38 | 0.39 |
| 48 | 2 | 0.14 | 0.14 | 0.15 | 0.18 | 0.18 | 0.19 | 0.20 |
| 48 | 3 | 0.22 | 0.22 | 0.23 | 0.26 | 0.27 | 0.28 | 0.29 |
| 48 | 4 | 0.29 | 0.29 | 0.30 | 0.34 | 0.36 | 0.37 | 0.38 |
|  |  |  |  |  |  | 0.18 | 0.19 |  |
| 54 | 3 | 0.22 | 0.22 | 0.22 | 0.25 | 0.27 | 0.28 | 0.29 |
| 54 | 4 | 0.29 | 0.29 | 0.29 | 0.34 | 0.36 | 0.36 | 0.38 |

* This thread is commonly known to the trade as the Mueller thread.

$22$


# for <br> DUCTILE-IRON PIPE, CENTRIFUGALLY CAST, IN METAL MOLDS OR SAND-LINED MOLDS, FOR GAS 

SECRETARIATS<br>American Gas Association<br>American Water Works Association<br>New England Water Works Association

Revised Edition Approved By
American National Standards Institute June 25, 1976

## FOREWORD

This foreword is for information and is not a part of ANSI A21.52.

American National Standards Committee A21 on Cast-Iron Pipe and Fittings was organized in 1926 under the sponsorship of the American Gas Association, the American Society for Testing and Materials, the American Water Works Association and the New England Water Works Association. The present scope of Committee A21 activity is: Since 1972 the co-secretariats have been AGA, AWWA and NEWWA. AWWA is the administrative secretariat.

Standarclization of specifications for cast-iron and ductile-iron pressure pipe for gas, water and other liquids, and fittings for use with such pipe. These specifications to include design, dimensions, materials, coatings, linings, joints, accessories, and methods of inspection and test.

The work of Committee A21 is carried out by subcommittees. The directive to Subcommittee 1-Pipe is that:

The scope of the Subcommittee activity shall include the periodic review of all current A21 standards for pipe, the preparation of revisions or new standards when needed, as well as other matters pertaining to pipe standards.

The first edition of A21.52, the standard for ductile-iron pipe for gas, was issued in 1965 and a revision was issued in 1971. Subcommittee 1 reviewed this standard and submitted a proposed revision to American National Standards Committee A21 in 1975.

## Revisions

1. An additional minus tolerance of 0.02 in . is permitted along the barrel of the pipe for a distance not to exceed $12-\mathrm{in}$. The weight tolerance permitted for any single pipe is 6 percent for $12-\mathrm{in}$. or smaller pipe and 5 percent for pipe larger than 12 -in.
2. The standard laying conditions have been renamed. A becomes Type 1 and B becomes Type 2.
3. The standard thickness classes have been renumbered. Class 1 becomes Class 51, Class 2 becomes Class 52, etc.
4. Some thicknesses have been changed to reflect the effects of the following changes in A21.50: (a) change to AASHO H-20 truck loads; (b) change to prism earth loads for all pipe sizes; (c) change to $45^{\circ}$ bedding angle for Laying Condition Type 2. The design stresses and design safety factors are unchanged from the 1971 edition.

## Options

This standard includes certain options which, if desired, must be specified on the purchase order. Also, a number of items must be specified to describe
completely the pipe required. The following summarizes these details and available options, and lists the sections of the standard where they can be found.

1. Size, thickness or class and laying length-Tables
2. a. Special Joints-Sec. 52-3.1
b. Specify ductile-iron gland if required-Sec. 52-3.1
3. Certification by manufacturer-Sec. 52-4.2
4. Inspection by purchaser-Sec. 52-5
5. Coating-Sec. 52-8.1
6. Special Coating-Sec. 52-8.2
7. Special marking on pipe-Sec. 52-11

2
8. Written transcripts of foundry records-Sec. 52-14
9. Special tests-Sec. 52-15

# AMERICAN NATIONAL STANDARD 

## for <br> DUCTILE-IRON PIPE CENTRIFUGALLY CAST, IN METAL MOLDS OR SAND-LINED MOLDS FOR GAS

## Section 52-1-Scope

This standard covers 3 inch through 24 inch Mechanical Joint ductile-iron pipe, centrifugally cast, in metal molds or sand-lined molds for gas. This standard may be used for pipe with such other types of joints as may be agreed upon at the time of purchase.

## Section 52-2-Definitions

Under this standard, the following definitions shall apply:
52-2.1 Purchaser. The party entering into a contract or agreement to purchase pipe according to this standard.

52-2.2 Manufacturer. The party that produces the pipe.
52-2.3 Inspector. The representative of the purchaser, authorized to inspect in behalf of the purchaser, to determine whether or not the pipe meet this standard.

52-2.4 Ductile Iron. A cast ferrous material in which a major part of the carbon content occurs as free carbon in nodular or spheroidal form.

52-2.5 Mechanical-Joint. The gasketed and bolted joint as detailed in ANSI A21.11 of latest revision.

## Section 52-3-General Requirements

52-3.1 Pipe with mechanical joints shall conform to the applicable dimensions and weights shown in the tables in this standard and to the applicable re-
quirements of ANSI A21.11 of latest revision. Unless otherwise specified, the mechanical-joint glands shall be cast iron in accordance with ANSI A21.11 of latest revision and bolts shall conform to the requirements of the same standard. Pipe with other types of joints shall comply with the joint dimensions and weights agreed upon at the time of purchase, but in all other respects shall fulfill the requirements of this standard.

52-3.2 The nominal laying length of the pipe shall be as shown in the tables. A maximum of 20 percent of the total number of pipe of each size specified in an order may be furnished as much as 24 inches shorter than the nominal laying length and an additional 10 percent may be furnished as much as 6 inches shorter than nominal laying length.

## Section 52-4-Inspection and Certification by Manufacturer

52-4.1 The manufacturer shall establish the necessary quality control and inspection practice to assure compliance with this standard.

52-4.2 The manufacturer shall, if required on the purchase order, furnish a sworn statement that the inspection and all of the specified tests have been made and the results thereof comply with the requirements of this standard.

52-4.3 All pipe shall be clean and sound without defects which will impair their service. Repairing of defects by welding or other method shall not be allowed if such repairs will adversely affect the serviceability of the pipe or its capability to meet strength requirements of this standard.

## Section 52-5-Inspection by Purchaser

52-5.1 When the purchaser desires to inspect pipe at the manufacturer's plant, the purchaser shall so specify on the purchase order, stating the conditions (such as time, and the extent of inspection) under which the inspection shall be made.

52-5.2 The inspector shall have free access to those parts of the manufacturer's plant which are necessary to assure compliance with this standard. The manufacturer shall make available for the inspector's use such gages as are necessary for inspection. The manufacturer shall provide the inspector with assistance as necessary for handling of pipe.

## Section 52-6-Delivery and Acceptance

All pipe and accessories shall comply with this standard. Pipe and accessories not complying with this standard shall be replaced by the manufacturer at the agreed point of delivery. The manufacturer shall not be liable for shortages or damaged pipe after acceptance at the agreed point of delivery except as recorded on the delivery receipt or similar document by the carrier's agent.

## Section 52-7-Tolerances or Permitted Variations

52-7.1 Dimensions. The spigot end, bell and socket of the pipe and the accessories shall be gaged with suitable gages at sufficiently frequent intervals to assure that the dimensions comply with the requirements of this standard.

The smallest inside diameter of the sockets and the outside of the spigot ends shall be tested with circular gages. Other socket dimensions shall be gaged as appropriate.

52-7.2 Thickness. Minus thickness tolerances of pipe and bell shall not exceed those shown below:

| Size, <br> Inch | Minus Tolerance, <br> Inch |
| :---: | :---: |
|  | 0.05 |
| $10-12$ | 0.06 |
| $14-24$ | 0.07 |

An additional minus tolerance of .02 in . shall be permitted along the barrel of the pipe for a distance not to exceed 12 in.

52-7.3 Weight. The weight of any single pipe shall not be less than the tabulated weight by more than 6 percent for pipe 12 inches or smaller in diameter, nor by more than 5 percent for pipe larger than 12 inches in diameter.

## Section 52-8-Coating

52-8.1 Outside Coating. Unless otherwise specified on the purchase order, pipe may be coated on the outside at the manufacturer's option with a bituminous coating approximately one mil thick. The finished coating shall be continuous, smooth, neither brittle when cold nor sticky when exposed to the sun and shall he strongly adherent to the pipe.

52-8.2 Special Coating. For special conditions, other types of coatings may be available. Such special coatings shall be specified in the invitation for bids and on the purchase order.

## Section 52-9-Hydrostatic Test

Each pipe shall be subjected to a hydrostatic test of not less than 500 psi. The pipe shall be under the full test pressure for at least 10 seconds. Suitable controls and recording devices shall be provided so that the test pressure and duration may be adequately ascertained. Any pipe that leaks or does not withstand the test pressure shall be rejected.

## Section 52-10—Air Test

In addition to the hydrostatic test, each length of pipe and its socket sealing surface shall be subjected to an air test prior to coating. These tests may be
made simultaneously or separately at the manufacturer's option. The air test pressure shall be a minimum of 50 psi. The joint sealing surface test shall be made in such a manner as to assure no leakage when the joint is properly assembled. The pipe shall be under the test pressure a sufficient length of time to permit careful inspection for leakage. While under this air pressure, the pipe shall be immersed in water or covered with a soapy water solution. Any length of pipe that leaks shall be rejected.

## Section 52-11-Marking Pipe

The weight, class or nominal thickness, and casting period shall be shown on each pipe. The manufacturer's mark, the year in which the pipe was produced and the letters "DI" or "DUC'TILE" shall be cast or stamped on the pipe. When specified on the purchase order initials not exceeding four in number shall be cast or stamped on the pipe. All required markings shall be clear and legible and all cast marks shall be on or near the bell.

All letters and numerals on pipe sizes 8 -in. and larger shall be not less than $1 / 2$-in. in height.

## Section 52-12-Acceptance Tests

The standard acceptance tests for the physical characteristics of the pipe shall be as follows:

52-12.1 Tensile Test. A tensile test specimen shall be eut longitudinally from the midsection of the pipe wall. This specimen shall be machined and tested in accordance with Figure 1 and ASTM (American Society for Testing and Materials! designation E8-69 Tension Testing of Metallic Materials. The yield strength shall be determined by the $0.2 \%$ offset, halt of pointer, or extension under load methods. If check tests are to be made, the $0.2 \%$ offset method shall be used. All specintens shall be tested at room temperature ( $70 \pm 10 \mathrm{~F}$ ).

52-12.1.1 Acceptance Values. The acceptance values for test specimens shall be as follows:

| Grade of <br> Iron | Tensile <br> Strength, <br> Minimum <br> psi | Yield <br> Strenyth, <br> Miniunum <br> psi | Per cent <br> Elongation, <br> Minimum |
| :---: | :---: | :---: | :---: |
| $60-42-10$ | 60,000 | $42,(00)$ | 10 |

52-12.2 Impact Test. Tests shall be made in accordance with ASTM designation E23-66 Notched Charpy Tests, except that specimens shall be 0.500 inch and full thickness of pipe wall. The notehed impact test specimen shall be in accordance with Figure 2. In cases when the pipe wall thickness exceeds 0.40 inch, the impact specinen may be machined to a nominal thickness of 0.40 inch.

In all cases, impact values are to be corrected to 0.40 inch wall thickness by calculation as follows:

Impact valuc corrected $=\frac{0.40 \text { inch }}{t} \times$ Impact value actual
where $t=$ thickness of the specimen in inches (wall thickness of pipe).
Charpy test machine anvil shall not be moved to compensate for the variation of cross section dimensions of the test specimen.

52-12.2.1 Acceptance I'alue'. The corrected acceptance value for notched impact test specimens shall be a minimum of 7 foot pounds for tests conducted at $70 \pm 10 \mathrm{~F}$.

52-12.3 Sampling. At least one tensile and impact sample shall be taken during each casting period of approximately three hours. Samples shall be selected to properly represent extremes of pipe diameters and thicknesses.

## Section 52-13-Additional Control Tests by Manufacturer

Low temperature impact tests shall be made from at least one-third of the test pipe specified in Section 52-12.3 to assure compliance with a minimum corrected value of 3 foot pounds for tests conducted at -40 F. Test specimens shall be prepared and tested in accordance with Section 52-12.2.

In addition, the manufacturer shall conduct such other control tests as necessary to assure continuing compliance with this standard.

## Section 52-14-Foundry Records

The results of the following tests shall be recorded and retained for one year and shall be available to the purchaser at the foundry. Written transcripts of the results of the following tests shall be furnished when specified on the purchase order:

Acceptance tests, Section 52-12
Low-temperature impact tests, Section 52-13.

## Section 52-15-Additional Tests Required by Purchaser

When tests other than those provided in this standard are reguired by the purchaser, such tests shall be specified in the invitation for bids and on the purchase order.

## Section 52-16-Defective Specimens and Retests

When any physical test specimen shows defective machining or lack of continuity of metal, it shall be discarded and replaced by another specimen. When any sound test specimen fails to meet the specified requirements, the pipe from
which it was taken shall be rejected and a retest may be made on two additional sound specimens from pipe cast in the same period as the specimen which failed. Both of the additional specimens shall meet the prescribed tests to qualify the pipe produced in that period.

## Section 52-17-Rejection of Pipe

When any physical acceptance test fails to mect the requirements of Section 52-12 or Section 52-16, the pipe cast in the same period shall be rejected except as subject to the provision of Section 52-18.

## Section 52-18-Determining Rejection

The manufacturer may determine the amount of rejection by making similar additional tests of pipe, of the same size, until the rejected lot is bracketed, in order of manufacture, by an acceptable test at each end of the interval in question. When pipe of one size is rejected from a casting period, the acceptability of pipe of different sizes from that same period may be established by making the acceptance tests for these sizes specified in Section 52-12.

## DIMENSIONS



NOTE 1. The reduced section may have a gradual taper from the ends toward the center with the ends not more than 0.005 in . larger in diameter than the eenter on the standard specimen and not more than 0.003 in . larger in diameter than the center on the small size specimens.
NOTE 2. If desired, on the small size specimens the length of the reduced section may be increased to accommodate an extensometer. Howeyer, reference marks for the measurement of elongation should nevertheless be spaced at the indicated gage length.
NOTE 3. The gage length and fillets shall be as shown. but the ends nay be of any form to fit the hold ers of the testing machine in such a way that the load shall be axial. If the ends are to be held in grips it is desirable, if possible, to make the length of the grip section great enough to allow the specimen to extend into the grips a distance equal to two thirds or more of the length of the grips.


Figure 1. Tensile Test Specimen


Figure 2. Impact Test Specimen

## TABLE 1

## Selection Table for Mechanical-Joint Ductile Iron Pipe

The thicknesses in this table are equal to or in excess of those required to withstand 250 psi working pressure.

All pipe in this table for the depths of cover indicated are adequate for trench loads including truck superloads under laying condition Type 2 (flat-bottom trench, backfill lightly consolidated to centerline of pipe).

For other depths of cover and laying condition Type 1 see Table 2. The basis of design is ANSI A2 1.50 except that for gas pipe the bending stress, $f$, is 36,000 psi and the safety factor for internal pressure is 2.5. A surge allowance is not required for gas pipe.

Thread engagement in taps for service connections and bag holes may require consideration in selecting pipe thicknesses. See Appendix.

| Size, in. | Thickness Class | Thickness | OD | Weight Based on 18 -ft. <br> Laying Length |  | Weight Based on $20-\mathrm{ft}$. <br> Laying Length |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { Per } \\ \text { Length } \dagger \end{gathered}$ | Avg. Per Foot* | $\underset{\text { Length } \dagger}{\text { Per }}$ | $\begin{aligned} & \text { Avg. Per } \\ & \text { Foot** } \end{aligned}$ |
| 5 ft . Cover |  |  |  |  |  |  |  |
| 3** | 52 | 0.28 | 3.96 | 190 | 10.5 | 210 | 10.4 |
| 4 | 52 | 0.29 | 4.80 | 245 | 13.5 | 270 | 13.4 |
| 6 | 52 | 0.31 | 6.90 | 375 | 20.8 | 415 | 20.7 |
| 8 | 52 | 0.33 | 9.05 | 530 | 29.3 | 585 | 29.2 |
| 10 | 52 | 0.35 | 11.10 | 690 | 38.4 | 765 | 38.2 |
| 12 | 52 | 0.37 | 13.20 | 870 | 48.3 | 960 | 48.0 |
| 14 | 51 | 0.36 | 15.30 | 1005 | 55.9 | 1110 | 55.5 |
| 16 | 51 | 0.37 | 17.40 | 1185 | 65.8 | 1305 | 65.2 |
| 18 | 51 | 0.38 | 19.50 | 1365 | 76.0 | 1505 | 75.4 |
| 20 | 51 | 0.39 | 21.60 | 1560 | 86.8 | 1720 | 86.0 |
| 24 | 51 | 0.41 | 25.80 | 1975 | 109.8 | 2175 | 108.8 |
| $8-\mathrm{ft}$. Cover |  |  |  |  |  |  |  |
| 3** | 52 | 0.28 | 3.96 | 190 | 10.5 | 210 | 10.4 |
| 4 | 52 | 0.29 | 4.80 | 245 | 13.5 | 270 | 13.4 |
| 6 | 52 | 0.31 | 6.90 | 375 | 20.8 | 415 | 20.7 |
| 8 | 52 | 0.33 | 9.05 | 530 | 29.3 | 585 | 29.2 |
| 10 | 52 | 0.35 | 11.10 | 690 | 38.4 | 765 | 38.2 |
| 12 | 52 | 0.37 | 13.20 | 870 | 48.3 | 960 | 48.0 |
| 14 | 51 | 0.36 | 15.30 | 1005 | 55.9 | 1110 | 55.5 |
| 16 | 51 | 0.37 | 17.40 | 1185 | 65.8 | 1305 | 65.2 |
| 18 | 51 | 0.38 | 19.50 | 1365 | 76.0 | 1505 | 75.4 |
| 20 | 51 | 0.39 | 21.60 | 1560 | 86.8 | 1720 | 86.0 |
| 24 | 51 | 0.41 | 25.80 | 1975 | 109.8 | 2175 | 108.8 |

$\dagger$ Including bell. Calculated weights of pipe rounded off to nearest 5 lb .

* Including bell. Average weight, per foot, based on calculated weight before rounding.
**Pipe of 3 -in. size also available in 12 -ft. laying length. Weight, per length $\dagger$ is 130 Ht , and average weight, per foot*, is 10.8 lb . for all standard depths of cover.


## TABLE 1 (Continued)

## Selection Table for Mechanical-Joint Ductile Iron-Pipe

The thicknesses in this table are equal to or in excess of those required to withstand 250 psi working pressure.

All pipe in this table for the depths of cover indicated are adequate for trench loads including truck superloads under laving condition Type 2 (flat-bottom trench, backfill lightly consolidated to centerline of pipe).

For other depths of cover and laying condition Type 1 sce Table 2. The basis of design is ANSI A21.50 except that for gas pipe the bending stress, $f$, is 36,000 psi and the safety factor for internal pressure is 2.5 . A surge allowance is not required for gas pipe.

Thread engagement in taps for service connections and bag holes may require consideration in selecting pipe thicknesses. See Appendix.

| Size, in. | Thickness Class | Thickness | OD | Weight Based on $18-\mathrm{ft}$. <br> Laying Length |  | Weight Based on $20-\mathrm{ft}$. <br> Laying Length |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Per Length $\dagger$ | $\begin{gathered} \text { Avg. Per } \\ \text { Foot* } \end{gathered}$ | Length $\dagger$ | Avg. Per Foot* |
| 12-ft. Cover |  |  |  |  |  |  |  |
| 3** | 52 | 0.28 | 3.96 | 190 | 10.5 | 210 | 10.4 |
| 4 | 52 | 0.29 | 4.80 | 245 | 13.5 | 270 | 13.4 |
| 6 | 52 | 0.31 | 6.90 | 375 | 20.8 | 415 | 20.7 |
| 8 | 52 | 0.33 | 9.05 | 530 | 29.3 | 585 | 29.2 |
| 10 | 52 | 0.35 | 11.10 | 690 | 38.4 | 765 | 38.2 |
| 12 | 52 | 0.37 | 13.20 | 870 | 48.3 | 960 | 48.0 |
| 14 | 51 | 0.36 | 15.30 | 1005 | 55.9 | 1110 | 55.5 |
| 16 | 51 | 0.37 | 17.40 | 1185 | 65.8 | 1305 | 65.2 |
| 18 | 51 | 0.38 | 19.50 | 1365 | 76.0 | 1505 | 75.4 |
| 20 | 51 | 0.39 | 21.60 | 1560 | 86.8 | 1720 | 86.0 |
| 24 | 52 | 0.44 | 25.80 | 2105 | 117.0 | 2320 | 116.0 |
| 16-ft. Cover |  |  |  |  |  |  |  |
| 3** | 52 | 0.28 | 3.96 | 190 | 10.5 | 210 | 10.4 |
| 4 | 52 | 0.29 | 4.80 | 245 | 13.5 | 270 | 13.4 |
| 6 | 52 | 0.31 | 6.90 | 375 | 20.8 | 415 | 20.7 |
| 8 | 52 | 0.33 | 9.05 | 530 | 29.3 | 585 | 29.2 |
| 10 | 52 | 0.35 | 11.10 | 690 | 38.4 | 765 | 38.2 |
| 12 | 52 | 0.37 | 13.20 | 870 | 48.3 | 960 | 48.0 |
| 14 | 51 | 0.36 | 15.30 | 1005 | 55.9 | 1110 | 55.5 |
| 16 | 52 | 0.40 | 17.40 | 1270 | 70.6 | 1400 | 70.0 |
| 18 | 52 | 0.41 | 19.50 | 1465 | 81.4 | 1615 | 80.8 |
| 20 | 53 | 0.45 | 21.60 | 1780 | 98.8 | 1960 | 98.0 |
| 24 | 54 | 0.50 | 25.80 | 2365 | 131.3 | 2605 | 130.3 |

$\dagger$ Including bell. Calculated weights of pipe rounded off to nearest 5 lb .

* Including bell. Average weight, per foot, based on calculated weight before rounding
**Pipe of 3 -in. size also available in 12 -ft. laying length. Weight, per length $\dagger$ is 130 Hf . and average weight, per foot* is 10.8 lb . for all standard depths of cover.


## Standard Thickness Selection Table for Ductile-Iron Pipe

Laying Condition Type 1-flat-bottom trench, loose backfill.
Laying Condition Type 2-flat-bottom trench, backfill lightly consolidated to centerline of pipe.

The thicknesses in this table are equal to or in excess of those required to withstand 250 psi working pressure.

All thicknesses shown in this table for the depths of cover indicated are adequate for trench lnads including truck superloads.

The basis of design is ANSI A21.50 except that for gas pipe the bending stress, $[$, is 36.000 psi and the safety factor for interna! pressure is 2.5. A surge allowance is not required for gas pipe.

Thread engagement in taps for service connections and bag holes may require consideration in selecting pipe thicknesses. See Appendix.

| Size, in. | Laying Condition | Depth of Cover-ft. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 21/2 | $31 / 2$ | 5 | 8 | 12 | 16 | 20 | 24 |
| 3 | 1 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 |
|  | 2 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 |
| 4 | 1 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 |
|  | 2 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 |
| 6 | 1 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 |
|  | 2 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 |
| 8 | 1 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
|  | 2 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
| 10 | 1 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
|  | 2 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
| 12 | 1 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.40 |
|  | 2 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 |
| 14 | 1 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.39 | 0.42 | 0.45 |
|  | 2 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.39 | 0.42 |
| 16 | 1 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.43 | 0.46 | 0.49 |
|  | 2 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.40 | 0.43 | 0.46 |
| 18 | 1 | 0.41 | 0.38 | 0.38 | 0.38 | 0.41 | 0.44 | 0.50 | 0.53 |
|  | 2 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.41 | 0.47 | 0.50 |
| 20 | 1 | 0.42 | 0.39 | 0.39 | 0.39 | 0.45 | 0.48 | 0.54 |  |
|  | 2 | 0.39 | 0.39 | 0.39 | 0.39 | 0.39 | 0.45 | 0.48 | 0.54 |
| 24 | 1 | 0.47 | 0.41 | 0.41 | 0.44 | 0.50 | 0.56 |  |  |
|  | 2 | 0.41 | 0.41 | 0.41 | 0.41 | 0.44 | 0.50 | 0.56 |  |

TABLE 3
Standard Dimensions and Weights of Mechanical-Joint Ductike-Iron Pipe

| Size, in. | Thickness Class | Thickness | OD | Weight of Barrel per Foot | Weight of Bell | Weight Based on 18-ft. Laying Length |  | Weight Based on $20-\mathrm{ft}$. Laying Length |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\xrightarrow{\substack{\text { Per } \\ \text { Length } \dagger \\ 1 b .}}$ | Avg. per Foot* | Per Length $\dagger$ | Avg. per Foot* |
| 3** | 52 | 0.28 | 3.96 | 9.9 | 11 | 190 | 10.5 | 210 | 10.4 |
|  | 53 | 0.31 | 3.96 | 10.9 | 11 | 205 | 11.5 | 230 | 11.4 |
|  | 54 | 0.34 | 3.96 | 11.8 | 11 | 225 | 12.4 | 245 | 12.4 |
|  | 55 | 0.37 | 3.96 | 12.8 | 11 | 240 | 13.4 | 265 | 13.4 |
|  | 56 | 0.40 | 3.96 | 13.7 | 11 | 260 | 14.3 | 285 | 14.2 |
| 4 | 52 | 0.29 | 4.80 | 12.6 | 16 | 245 | 13.5 | 270 | 13.4 |
|  | 53 | 0.32 | 4.80 | 13.8 | 16 | 265 | 14.7 | 290 | 14.6 |
|  | 54 | 0.35 | 4.80 | 15.0 | 16 | 285 | 15.9 | 315 | 15.8 |
|  | 55 | 0.38 | 4.80 | 16.1 | 16 | 305 | 17.0 | 340 | 16.9 |
|  | 56 | 0.41 | 4.80 | 17.3 | 16 | 325 | 18.2 | 360 | 18.1 |
| 6 | 52 | 0.31 | 6.90 | 19.6 | 22 | 375 | 20.8 | 415 | 20.7 |
|  | 53 | 0.34 | 6.90 | 21.4 | 22 | 405 | 22.6 | 450 | 22.5 |
|  | 54 | 0.37 | 6.90 | 23.2 | 22 | 440 | 24.4 | 485 | 24.3 |
|  | 5.5 | 0.40 | 6.90 | 25.0 | 22 | 470 | 26.2 | 520 | 26.1 |
|  | 56 | 0.43 | 6.90 | 26.7 | 22 | 505 | 27.9 | 555 | 27.8 |
| 8 | 52 | 0.33 | 9.05 | 27.7 | 29 | 530 | 29.3 | 585 | 29.2 |
|  | 53 | 0.36 | 9.05 | 30.1 | 29 | 570 | 31.7 | 630 | 31.6 |
|  | 54 | 0.39 | 9.05 | 32.5 | 29 | 615 | 34.1 | 680 | 34.0 |
|  | 55 | 0.42 | 9.05 | 34.8 | 29 | 655 | 36.4 | 725 | 36.2 |
|  | 56 | 0.45 | 9.05 | 37.2 | 29 | 700 | 38.8 | 775 | 38.6 |
| 10 | 52 | 0.35 | 11.10 | 36.2 | 39 | 690 | 38.4 | 765 | 38.2 |
|  | 53 | 0.38 | 11.10 | 39.2 | 39 | 745 | 41.4 | 825 | 41.2 |
|  | 54 | 0.41 | 11.10 | 42.1 | 39 | 795 | 44.3 | 880 | 44.0 |
|  | 55 | 0.44 | 11.10 | 45.1 | 39 | 850 | 47.3 | 940 | 47.0 |
|  | 56 | 0.47 | 11.10 | 48.0 | 39 | 905 | 50.2 | 1000 | 50.0 |

$\dagger$ Including bell. Calculated weight of pipe rounded off to nearest 5 lb .

* Including bell. Average weight, per foot, based on calculated weight of pipe before rounding.
**Pipe of 3 -in. size alsn available in 12 - ft . laying length with following weights:

| Thickness <br> Class | Thickness, <br> in. | Per Length $\dagger$ | Wcight (lb.) |
| :---: | :---: | :---: | :---: |
| 52 | 0.28 | 130 | 10.8 |
| 53 | 0.31 | 140 | 11.8 |
| 54 | 0.34 | 155 | 12.7 |
| 55 | 0.37 | 165 | 13.7 |
| 56 | 0.40 | 175 | 14.6 |

TABLE 3 (Continued)
Standard Dimensions and Weights of Mechanical-Joint Ductile-Iron Pipe

|  |  |  |  |  |  |  | Weight 18-ft. $\qquad$ | Based on Laying gth | Weight $20-\mathrm{ft}$ $\qquad$ | Based on <br> Laying <br> ghth |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Size, in. | $\begin{gathered} \text { Thick- } \\ \text { ness } \\ \text { Class } \end{gathered}$ | Thickness $\qquad$ | OD | Weight of Barrel per Foot | Weight of Bell | $\begin{array}{r} \text { Per } \\ \text { L.ength } \dagger \\ \quad 1 \mathrm{lb} \\ \hline \end{array}$ | Avg. per Foot* $\qquad$ | $\underset{\text { Pength } \dagger}{\text { Per }}$ | $\begin{aligned} & \text { Avg. per } \\ & \text { Foot } \end{aligned}$ |
|  | 12 | 52 | 0.37 | 13.20 | 45.6 | 49 | 870 | 48.3 | 960 | 48.0 |
|  |  | 53 | 0.40 | 13.20 | 49.2 | 49 | 935 | 51.9 | 1035 | 51.6 |
|  |  | 54 | 0.43 | 13.20 | 52.8 | 19 | 1000 | 55.5 | 1105 | 55.2 |
|  |  | 55 | 0.46 | 13.20 | 56.3 | 49 | 1060 | 59.0 | 1175 | 58.8 |
| 2 |  | 56 | 0.49 | 13.20 | 59.9 | 49 | 112.5 | 62.6 | 124.5 | 62.3 |
| 2 | 14 | 51 | 0.36 | 15.30 | 51.7 | 76 | 1005 | 55.9 | 1110 | 55.5 |
| 4 |  | 52 | 0.39 | 15.30 | 55.9 | 76 | 1080 | 60.1 | 1195 | 59.7 |
|  |  | 53 | 0.42 | 15.30 | 60.1 | 76 | 1160 | 64.3 | 1280 | 63.9 |
|  |  | 54 | 0.45 | 15.30 | 64.2 | 76 | 1230 | 68.4 | 1360 | 68.0 |
|  |  | 55 | 0.48 | 15.30 | 68.4 | 76 | 1305 | 72.6 | 1445 | 72.2 |
|  |  | 56 | 0.51 | 15.30 | 72.5 | 76 | 1380 | 76.7 | 1.52 .5 | 76.3 |
|  | 16 | 51 | 0.37 | 17.40 | 60.6 | 93 | 1185 | 65.8 | 1305 | 65.2 |
|  |  | 52 | 0.40 | 17.40 | 65.4 | 93 | 1270 | 70.6 | 1400 | 70.0 |
|  |  | 53 | 0.43 | 17.40 | 70.1 | 93 | 1355 | 75.3 | 1495 | 74.8 |
|  |  | 54 | 0.46 | 17.40 | 74.9 | 93 | 1440 | 80.1 | 1590 | 79.6 |
|  |  | 55 | 0.49 | 17.40 | 79.7 | 93 | 1530 | 84.9 | 168.5 | 84.4 |
|  |  | 56 | 0.52 | 17.40 | 84.4 | 93 | 1610 | 89.6 | 1780 | 89.0 |
|  | 18 | 51 | 0.38 | 19.50 | 69.8 | 111 | 1365 | 76.0 | 1505 | 75.4 |
|  |  | 52 | 0.41 | 19.50 | 75.2 | 111 | 1465 | 81.4 | 161.5 | 80.8 |
|  |  | 53 | 0.44 | 19.50 | 80.6 | 111 | 1560 | 86.8 | 1725 | 86.2 |
|  |  | 54 | 0.47 | 19.50 | 86.0 | 111 | 1660 | 92.2 | 1830 | 91.6 |
|  |  | 55 | 0.50 | 19.50 | 91.3 | 111 | 1755 | 97.5 | 1935 | 96.8 |
|  |  | 56 | 0.53 | 19.50 | 96.7 | 111 | 1850 | 102.9 | 2045 | 102.2 |
|  | 20 | 51 | 0.39 | 21.60 | 79.5 | 131 | 1560 | 86.8 | 1720 | 86.0 |
|  |  | 52 | 0.42 | 21.60 | 85.5 | 131 | 1670 | 92.8 | 1840 | 92.0 |
|  |  | 53 | 0.45 | 21.60 | 91.5 | 131 | 1780 | 98.8 | 1960 | 98.0 |
|  |  | 54 | 0.48 | 21.60 | 97.5 | 131 | 1885 | 104.8 | 2080 | 104.0 |
|  |  | 55 | 0.51 | 21.60 | 103.4 | 131 | 1990 | 110.7 | 2200 | 110.0 |
|  |  | 56 | 0.54 | 21.60 | 109.3 | 131 | 2100 | 116.6 | 2315 | 115.8 |
|  | 24 | 51 | 0.41 | 25.80 | 100.1 | 174 | 1975 | 109.8 | 2175 | 108.8 |
|  |  | 52 | 0.44 | 25.80 | 107.3 | 174 | 2105 | 117.0 | 2320 | 116.0 |
|  |  | 53 | 0.47 | 25.80 | 114.4 | 174 | 2235 | 124.1 | 2460 | 123.1 |
|  |  | 54 | 0.50 | 25.80 | 121.6 | 174 | 2365 | 131.3 | 2605 | 130.3 |
|  |  | 55 | 0.53 | 25.80 | 128.8 | 174 | 2490 | 138.5 | 2750 | 137.5 |
|  |  | 56 | 0.56 | 25.80 | 135.9 | 174 | 2620 | 145.6 | 2890 | 144.6 |

$\dagger$ Including bell. Calculated weight of pipe rounded off to nearest 5 lb .

* Including bell. Average weight. per foot, based on calculated weight of pipe before rounding.


## APPENDIX

This appendix is for information and is not a part of A21.52 American National Standard for Ductile-Iron Pipe, Centrifugally Cast, in Metal Molds or Sand-Lined Molds for Gas.

PIPE THICKNESS REQUIRED FOR DIFFERENT TAP SIZES USING AMERIGAN NATIONAL STANDARD B2.1 STANDARD TAPER PIPE THREADS WITH 2 , 3 AND 4 FULL THREADS.

| Pipe <br> Size | No. of Threads | Tap Sizes |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1/2" | $3 / 4$ " | $1^{\prime \prime}$ | 11/4" | $11 / 2 \prime \prime$ | 2" | $21 / 2^{\prime \prime}$ | 3" | $31 / 2$ " | 4" |  |
| $3 \prime \prime$ | 2 | . 18 | . 21 | . 28 |  |  |  |  |  |  |  |  |
|  | 3 | . 26 | . 29 | . 37 |  |  |  |  |  |  |  | 2 |
|  | 4 | . 33 | . 36 | . 46 |  |  |  |  |  |  |  | 5 |
| $4^{\prime \prime}$ | 2 | . 17 | . 19 | . 26 | . 31 |  |  |  |  |  |  |  |
|  | 3 | . 25 | . 27 | . 35 | . 40 |  |  |  |  |  |  |  |
|  | 4 | . 32 | . 34 | . 44 | . 49 |  |  |  |  |  |  |  |
| $6^{\prime \prime}$ | 2 | . 17 | . 18 | . 23 | . 27 | . 30 |  |  |  |  |  |  |
|  | 3 | . 25 | . 26 | . 32 | . 36 | . 39 |  |  |  |  |  |  |
|  | 4 | . 32 | . 33 | . 41 | . 45 | . 48 |  |  |  |  |  |  |
| $8^{\prime \prime}$ | 2 | . 16 | . 17 | . 22 | . 24 | . 27 | . 33 |  |  |  |  |  |
|  | 3 | . 24 | . 25 | . 31 | . 33 | . 36 | . 42 |  |  |  |  |  |
|  | 4 | . 31 | . 32 | . 40 | . 42 | . 45 | . 51 |  |  |  |  |  |
| $10^{\prime \prime}$ | 2 | . 15 | . 17 | . 21 | . 23 | . 25 | . 30 | . 44 |  |  |  |  |
|  | 3 | . 23 | . 25 | . 30 | . 32 | . 34 | . 39 | . 56 |  |  |  |  |
|  | 4 | . 30 | . 32 | . 39 | . 41 | . 43 | . 48 | . 69 |  |  |  |  |
| $12^{\prime \prime}$ | 2 | . 15 | . 16 | . 20 | . 22 | . 24 | . 28 | . 40 | . 48 |  |  |  |
|  | 3 | . 23 | . 24 | . 29 | . 31 | . 33 | . 37 | . 52 | . 60 |  |  |  |
|  | 4 | . 30 | . 31 | . 38 | . 40 | . 42 | . 46 | . 65 | . 73 |  |  |  |
| $14^{\prime \prime}$ | 2 | . 15 | . 16 | . 20 | . 22 | . 23 | . 26 | . 38 | . 45 | . 51 | . 58 |  |
|  | 3 | . 23 | . 24 | . 29 | . 31 | . 32 | . 35 | . 50 | . 58 | . 64 | . 70 |  |
|  | 4 | . 30 | . 31 | . 38 | . 40 | . 41 | . 44 | . 63 | . 70 | . 76 | . 83 |  |
| $16^{\prime \prime}$ | 2 | . 15 | . 16 | . 20 | . 21 | . 22 | . 25 | . 37 | . 43 | . 48 | . 54 |  |
|  | 3 | . 23 | . 24 | . 29 | . 30 | . 31 | . 34 | . 50 | . 56 | . 60 | . 66 |  |
|  | 4 | . 30 | . 31 | . 38 | . 39 | . 40 | . 43 | . 62 | . 68 | . 73 | . 79 |  |
| $18^{\prime \prime}$ | 2 | . 15 | . 15 | . 19 | . 21 | . 22 | . 24 | . 35 | . 41 | . 46 | . 51 |  |
|  | 3 | . 23 | . 23 | . 28 | . 30 | . 31 | . 33 | . 48 | . 54 | . 58 | . 64 |  |
|  | 4 | . 30 | . 30 . | 37 | . 39 | . 40 | . 42 | . 60 | . 66 | . 71 | . 76 |  |

APPENDIX (Continucd)

|  |  |  |  |  |  | Tap | Sizes |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pipe Size | No. of Threads | 1/2" | 3/4" | 1" | 11/4" | 11/2' | $\underline{2 \prime}$ | $\underline{21 / 2 "}$ | 3' | $31 / 2$ " | 4 |
| $20^{\prime \prime}$ | 2 | . 1.5 | . 15 | . 19 | 20 | .21 | . 23 | . $3+$ | . 39 | . 44 | . 4 |
|  | 3 | . 23 | . 23 | . 28 | . 29 | . 30 | . 32 | 46 | . 52 | . 56 | . 62 |
|  | 4 | . 30 | . 30 | . 37 | . 38 | . 39 | . 41 | . 59 | . $6+$ | . 69 | .74 |
| $24^{\prime \prime}$ | 2 | . 14 | . 1.5 | .19) | 20 | . 21 | . 22 | . 32 | . 37 | 40 | 45 |
|  | 3 | . 22 | . 23 | . 28 | . 29 | . 30 | . 31 | .tt | . 50 | . 52 | . 58 |
|  | 4 | . 29 | . 30 | . 37 | . 38 | .39 | .7) | . 57 | . 62 | 65 | . 70 |
| $30^{\prime \prime}$ | 2 | . 14 | . 15 | 19. | . 19 | 20 | . 21 | . 31 | . 3.4 | . 37 | 41 |
|  | 3 | . 22 | . 23 | . 28 | . 28 | . 29 | . 30 | . 44 | . 46 | . 50 | . 5.4 |
|  | 4 | . 29 | . 30 | . 37 | . 37 | . 38 | . 39 | . 56 | . 59 | . 62 | . 66 |
| $36^{\prime \prime}$ | 2 | . 14 | . 14 | . 18 | . 19 | 20 | . 21 | . 30 | . 3 | 3 | . 38 |
|  | 3 | . 22 | . 22 | . 27 | . 28 | 29 | . 30 | 42 | . 46 | . 48 | . 30 |
|  | 4 | . 29 | . 29 | . 36 | . 37 | . 38 | . 39 | 5 | . 58 | . 60 | . 63 |
| $42^{\prime \prime}$ | 2 | . 14 | . 14 | . 18 | . 19 | . 19 | . 20 | . 29 | . 32 | . 34 | . 36 |
|  | 3 | . 22 | . 22 | . 27 | . 28 | 28 | . 29 | . 42 | . $4+$ | . 46 | . 48 |
|  | 4 | . 29 | . 29 | . 36 | . 37 | . 37 | . 38 | . 54 | . 57 | . 59 | . 61 |
| $48^{\prime \prime}$ | 2 | . 14 | . 14 | . 18 | . 18 | . 19 | . 20 | . 29 | . 31 | . 32 | . 35 |
|  | 3 | . 22 | . 22 | . 27 | . 27 | 28 | . 29 | . 42 | . 44 | . 4. | . 48 |
|  | 4 | . 29 | . 29 | . 36 | . 36 | . 37 | . 38 | . 5.4 | . 56 | . 57 | . 60 |

## SECTION IV

## Ductile Iron Pipe for Gravity Flow Service

Because of its high strength and ability to carry great earth loads, ductile iron pipe has found wide acceptance in service as gravity flow waste lines and culvert pipes.

In sewer service, ductile iron pipe with standard push-on joints has virtually eliminated infiltration as well as exfiltration. Its resistance to impact, convenient pipe lengths and easy joint assembly have caused engineers and those responsible for construction to become aware of its many advantages and its use in sewer service has increased rapidly in recent years.

Ductile iron pipe joints are ideally suited for gravity flow pipelines as exhibited by the following test results:

$$
\begin{aligned}
& 1,000 \mathrm{psi} \text { internal pressure } \\
& 430 \mathrm{psi} \text { external pressure } \\
& 14 \mathrm{psi} \text { negative air pressure } \\
& \text { No leakage-No infiltration }
\end{aligned}
$$

An advantage of ductile iron pipe in sewer service is the fact that its inside diameter is greater than nominal. This results in greater flow capacity for a given pipe size and thus considerable savings may be effected.

Ductile iron pipe is available with standard shop linings or cement-mortar linings for normal domestic sewage. Special linings are available for more aggressive wastes.

Still another valuable feature of ductile iron pipe in sewer service is its ability to withstand great depths of earth cover under nominal laying conditions (see ASTM A746 Table 12).

Ductile iron gravity flow pipelines should be designed and specified in accordance with ASTM Standard Specification A746-75.

Exceptional ring and beam strengths make ductile iron pipe an ideal structure for culvert pipes. ASTM Standard Specification A716 is a useful reference when specifying culvert piping.

Reprinted by permission of the
AMERICAN SOCIETY FOR TESTING AND MATERIALS
1916 Race St., Phlladelphia, Pa., 19103
K:prizted trom the Anntid Book of ASTM Standards. Copyright ASTM
It mot thwed if the vurreni combined Index. will appeat in the next edition

## Standard Specification for DUCTILE IRON CULVERT PIPE ${ }^{1}$

This Standard is issued under the fixed designation A 716 : the number immediately following the designation indicates the year of original adoption or. in the case of revision. the year of last revision. A number in parentheses indicates the year of last reapproval.

## 1. Scope

1.1 This specification covers 14 to 54 -in. ( 0.356 to $1.372-\mathrm{m}$ ) ductile-iron culvert pipe centrifugally cast in metal mokis or sandlined molds.

## 2. Applicable Documents

2.1 ASIM Standards.

A 377. Specification for Cast Iron and Ductile Iron Pressure Pipe ${ }^{2}$
E 8. Tension Testing of Metallic Material ${ }^{3}$
E 23. Notch and Bar Impact Testing of Metallic Materials ${ }^{3}$
2.2 ANSI Standurds:

A21.50, Thickness Design of Ductile Iron Pipe ${ }^{*}$
A21.51. Ductile-Iron Pipe Centrifugally Cast in Metal Molds or Sand-Lined Molds for Water or Other Liquids ${ }^{4}$

## 3. General Requirements

3.1 The pipe shall be manufactured of ductile iron that meets the requirements of ANSI A21.51.
3.2 The pipe shall be provided with suitable joints. such as push-on or other types of joints that prevent lateral displacement. Plain-end pipe for use with suitable couplings may be furnished.
3.3 Unless otherwise specified, pipe shall have a nominal length of 18 or 20 ft 15.5 or 6.1 m ) and may be shorter than nominal in accordance with ANSI A21.51.

## 4. Inspection and Certification by Manufac-

 turer4.1 The manufacturer shall establish the necessary quality-control and inspection pracThis standard has been included in this handbook by and Materials.
and Materials.

* This standard is being revised at the time of this gested that you confirm its currency with As'M.
tice to assure compliance with this standard specification.
4.2 The manufacturer shall, if required on the purchase order. furnish a sworn statement that the inspection and all of the specified tests have been made and the results thereof comply with the requirements of this standard specification.
4.3 All pipes shall be clean and sound without defects that will impair their service. Repairing of defects by welding or another method shall not he allowed if such repairs will affect the serviceability of the pipe or its capability to meet strength requirements of this standard specification.


## 5. Inspection by Purchaser

5.1 If the purchaser desires to inspect pipe at the manufacturer's plant. the purchaser shall so specify on the purchase order. stating the conditions (such as time and the extent of inspection) under which the inspection shall be made.
$\leq .2$ The inspector shall have free access to those parts of the manufacturer's plant that are necessary to assure compliance with this standard specification. The manufacturer shall make available for the inspector's use such gages as are necessary for inspection. The manufacturer shall provide the inspector
' This specification is under the jurisdiction of ASTM Committee A-4 on Iron Castings.
Current edition approved Aug. 29. 1975. Published Ocwher 1975.
${ }_{3}^{2}$ Annual Book of ASTM Standards. Par 2.
${ }^{3}$ Antual Book of ASTM Standards. Part 10.
"A vailahle from the American National Standards Instilute. 1430 Broadway. New York. N. Y. 10018.
with assistance as necessary for handing of pipe.

## 6. Delivery and Acceptance

6.1 All pipe and accessories shall comply with this standard specification. Pipe and accessories not complying with this standard specitication shall be replaced by the manufacturer at the agreed point of delivery. The manufacturer shall not be liable for shortages or damaged pipe after acceptance at the agreed point of delivery, except as recorded on the delivery receipt or similar document by the carrier's agent.

## 7. Tolerances or Permitted Variations

7.1 Dimensions - The spigot end. bell, and socket of the pipe and the accessories shall be gaged with suitable gages at sufficiently frequent intervals to assure that the dimensions comply with the requirements of this standard specification. The smallest inside diameter of the sockets and the outside of the spigot ends shall be tested with circular gages. Other socket dimensions shall be gaged as appropriate.
7.2 Thickness-Minus thickness tolerances of pipe and bell shall not exceed those shown below:

| Nominal | Minus <br> Size. |
| :---: | :---: |
| in. | Tolerance, |
| 14 to 42 | $0.07(1.8)$ |
| .8 | $0.08(2.0)$ |
| 54 | $0.09(2.3)$ |

7.3 Weight - The weight of any single pipe shall not be less than the tabulated weigh by more than $4 \%$.

## 8. Coating and lining

8.1 All pipe shall he coated inside and outside with a bituminous material approximately 1 mil $(0.025 \mathrm{~mm})$ thick. The finished coating shall be continuous. smooth. neither brittle when cold nor sticky when exposed to the sun. and shall be strongly adherent to the pipe.

## 9. Acceptance Tests

9.1 The standard acceptance tests for the physical characteristics of the pipe shall be as follows:
9.1.1 Tension Test-A tension test specimen shall be cut longitudinally from the midsection of the pipe wall. This specimen shall be machined and tested in accordance with Fig. 1 and Specification E 8. The yield strength shall be determined by the $0.2 \%$ offset, halt-of-pointer, or extension-underload methods. If check tests are to be made. the $0.2 \%$ offset method shall be used. All specimens shall be tested at room temperature $\left(70 \pm 10^{\circ} \mathrm{F}\left(21.1 \pm 5.5^{\circ} \mathrm{C}\right)\right)$.
9.1.2 Acceptance Values-The acceptance values for test specimens shall be as follows:

| Grade of Ductile Iron: <br> Minimum tensile strength, <br> psi (kPa): | $60-42-10$ |
| :--- | :--- |
| Minimum yield strength. <br> psi (kPa) | $60000(414)$ |
| Minimum elongation, \%: | $42000(290)$ |

be made from at least one third of the lest pipe specified in 9.2 to assure compliance with a minimum corrected value of 3 thf. $\mathrm{ft}(4$ J) for tent conducted at $-40^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right)$. Test specimens shall be prepared and tested in accordance with 9.1.3.
10.2 In addition. the manufacturer shall conduct such other control tests as necessary to assure continuing compliance with this standard specification.

## 11. Foundry Records

11.1 The results of the acceptance tests (Section 9) and low-temperature impact tests (Section 10) shall be recorded and retained

## 14. Additional Tests Required by Purchaser

14.1 When tests other than those required in the standard specification are required by the purchaser such tests shall be specified in the invitation for bids and on the purchase order.

## 15. Defective Specimens and Retests

15.1 When any physical-test specimen shows defective machining or lack of continuity of metal, it shall be discarded and replaced by another specimen. When any sound test specimen fails to meet the specified requirements. the pipe from which it was taken shall be rejected, and a retest may be made on two additional sound specimens from pipe cast in the same period as the specimen that failed. Both of the additional specimens shall meet the prescribed tests to qualify the pipe produced in that period.

## 16. Rejection of Pipe

16.1 If the results of any physical acceptance test fail to meet the requirements of Section 9 or Section 15. the pipe cast in the same period shall be rejected. except as provided in Section 17.

## 17. Determining Rejection

17.1 The manufacturer may determine the amount of rejection by making similar additional tests of pipe, of the same size as the rejected pipe, until the rejected lot is bracketed. in order of manufacture. by an acceptable iest at each end of the interval in question. When pipe of one size is rejected from a casting period, the acceptability of pipe of different sizes from that same period may be established by making the acceptance tests for these sizes as specified in Section 9.

[^18] for I year. and shall be availabie to the purchaser at the foundry. Written transcripts shall be furnished. if specified on the purchase order.

## 12. Marking Pipe

12.1 The weight, class or nominal thickness. and casting period shall be shown on each pipe. The manufacturer's mark, the year in which the pipe was produced, and the letters "DI" or "DUCTILE" shall be cast or stamped on the pipe. When specified on the purchase order, initials not exceeding four in number shall be cast or stamped on the pipe. All required markings shall be clear and legible and all cast marks shall be on or near the bell. All letters and numerals shall be not less than $1 / 2$ in. $(12.7 \mathrm{~mm})$ in height.

## 13. Weighing the Pipe

13.1 Each pipe shall be weighed and the weight shown on the outside or inside of the bell or spigot end.

TABLE 1 Standard Wall Thicknes" and Weghte of Push-On Joint Ductile-Iron Culvert Pipe

| Nominal Diameter, |  | Nominal Thickness for Depths of Cover, 2 to 30 ft . in. (mm) |  | Thickness Class | $18-\mathrm{ft}(5.5-\mathrm{m})$ Laying Length Weight per Length, lb (kg) |  | $20-\mathrm{ft}(6 \mathrm{~m})$ Laying Length Weight per Length, lb (kg) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | (356) | 0.36 | (9.1) | , | 1005 | (456) | 1110 | (503) |
| 16 | (406) | 0.37 | (9.4) | , | 1185 | (538) | 1305 | (592) |
| 18 | (457) | 0.38 | (9.7) | 1 | 1370 | (621) | 1510 | (685) |
| 20 | (508) | 0.39 | (9.9) | 1 | 1560 | (708) | 1720 | (780) |
| 24 | (610) | 0.41 | (10.4) | 1 | 1970 | (894) | 2170 | (984) |
| 30 | (762) | 0.43 | (10.9) | 1 | 2565 | (1163) | 2775 | (1259) |
| 36 | (914) | 0.48 | (12.2) | 1 | 3435 | (1558) | 3705 | (1681) |
| 42 | (1067) | 0.53 | (13.5) | 1 | - |  | 4740 | (2150) |
| 48 | (1219) | 0.58 | (12.2) | 1 | - |  | 5915 | (2683) |
| 54 | (1372) | 0.65 | (16.5) | 1 | - |  | 7425 | (3368) |

[^19]
 enter on the standard specimen and not more than 0.003 in . ( 0.08 mm ) larger in diameter than the center on the small size specimens.
Note 2-If desired, on the small size specimens the length of the reduced section may be increased to accommodate an extensometer. However, reference marks for the measurement of elongation should nevertheless be spaced at the indicated gage length ( $G$ ).
NOTE 3-The gage lengthand fillets shall be as shown, but the ends may be of any form to fit the holders of the testing machine in such a way that the load shall be axial. If the ends are to be held in gripsit is desirable, if possible to make the length of the grip section great enough to allow the specimen to extend into the grips a distance equal to two thirds or more of the length of the grips.


FIG. 1 Tension-Test Specimen.
(a)

(b)
(c)

in.
-0.100
+0.000
0.001
0.002
0.010

| mm | in. | mm |
| :---: | :---: | :---: |
| -2.54 | 0.100 | 2.54 |
| +0.00 | 0.421 | 10.69 |
| 0.03 | 0.500 | 12.70 |
| 0.05 | 2.165 | 54.99 |
| 0.25 |  |  |

FIG. 2 Impact Test Specimen. in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validiry of any such patemt rights, and the risk of infringement of such rights is entirely their own responsibility.

This Standard is issued under the fixed designation A 746; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval.

## 1. Scope

1.1 This specification covers 4 to $54-\mathrm{in}$. ductile iron gravity sewer pipe centrifugally cast in metal molds or sand-lined molds with push-on joints. This specification may be used for pipe with other types of joints, as may be agreed upon at the time of purchase.
1.2 This specification covers trench load design procedures for both cement-lined pipe and flexible-lined pipe. Maximum depth of cover tables are included for both types of linings.

## 2. Applicable Documents

2.1 ASTM Standards:

A 377 Specification for Cast Iron and Ductile Iron Pressure Pipe ${ }^{2}$
E 8 Tension Testing of Metallic Materials ${ }^{3}$
E 23 Notched Bar Impact Testing of Metallic Materials ${ }^{4}$
2.2 ANSI Standards ${ }^{5}$ :

A 21.4 Cement-Mortar Lining for CastIron and Ductile-Iron Pipe and Fittings for Water
A 21.11 Rubber-Gasket Joints for CastIron and Ductile-Iron Pressure Pipe and Fittings
A 21.50 Thickness Design of Ductile-Iron Pipe
2.3 ASCE Standards ${ }^{6}$ :

Manuals and Reports on Engineering Practice, No. 37, (WPCF Manual of Practice No. 9). "Design and Construction of Sanitary and Storm Sewers."

## 3. Symbols

$P_{r}=$ trench load, $\mathrm{psi}=P_{e}+P_{t}$
$f=$ design bending stress, 48000 psi (331

MPa )
$\Delta \chi=$ design deflection, in. $(\Delta x / D=0.03)$ or ( $\Delta x / D=0.05$ (for flexible linings))
$t=$ net thickness, in
$t_{1}=$ minimum thickness, in. $(t+0.08)$
$D=$ outside diameter, in. (Table 5)
$E=$ modulus of elasticity, $24 \times 10^{6} \mathrm{psi}$ ( 165 GPa )
$E^{\prime}=$ modulus of soil reaction, psi (Table 2)
$K_{b}=$ bending moment coefficient (Table 2)
$K_{x}=$ deflection coefficient (Table 2)
$I_{e}=$ earth load, psi
$H=$ depth of cover, ft
$w=$ soil weight, $120 \mathrm{lb} / \mathrm{ft}^{3}\left(54 \mathrm{~kg} / \mathrm{m}^{3}\right)$
$P_{t}=$ truck load, psi
$C=$ surface load factor (Table 6)
$R=$ reduction factor that takes into account the fact that the part of the pipe directly below the wheels is aided in carrying the truck load by adjacent parts of the pipe that receive little or no load from the wheels (Table 4)
$P=$ wheel load, $16000 \mathrm{lbf}(71.2 \mathrm{kN})$
$F=$ impact factor, 1.5
$A=$ outside radius of pipe, $\mathrm{ft}=D / 24$

## 4. General Requirements

4.1 The pipe shall be ductile iron in accordance with Section 9
4.2 Push-on joints shall comply with all ap-

[^20][^21]plicable requirements of ANSI A21.11. Pipe with other types of joints shall comply with the joint dimensions and weights agreed upon at the time of purchase, but in all other respects shall fulfill the requirements of this specification.
4.3 Unless otherwise specified, pipe shall have a nominal length of 18 or 20 ft ( 5.5 or 6.1 m ). A maximum of $20 \%$ of the total number of pipe of each size specified in an order may be furnished as much as 24 in . ( 610 mm ) shorter than the nominal laying length, and an additional $10 \%$ may be furnished as much as 6 in . ( 152 mm ) shorter than the nominal laying length.

## 5. Tolerances or Permitted Variations

5.1 Dimensions - The plain end, bell, and socket of the pipe shall be gaged with suitable gages at sufficiently frequent intervals to assure that the dimensions comply with the requirements of this specification.
5.2 Thickness - Minus thickness tolerances of pipe and bell shall not exceed those shown in Table 3.

Note - An additional minus tolerance of 0.02 in . ( 0.51 mm ) shall be permitted along the barrel of the pipe for a distance not to exceed 12 in . ( 305 mm )
5.3 Weight - The weight of any single pipe shall not be less than the tabulated weight by more than $6 \%$ for pipe 12 in . or smaller in diameter, nor by more than $5 \%$ for pipe larger than 12 in . in diameter.

## 6. Coating and Lining

6.1 Outside Coating - The outside coating for use under normal conditions shall be a bituminous coating approximately 1 mil $(0.025 \mathrm{~mm})$ thick. The coating shall be applied to the outside of all pipe, unless otherwise specified. The finished coating shall be continuous, smooth, neither brittle when cold nor sticky when exposed to the sun, and shall be strongly adherent to the pipe.
6.2 Cement-Mortar Linings - If desired, cement linings shall be specified in the invitation for bids and on the purchase order. Cement linings shall be in accordance with ANSI A21.4.
6.3 Bituminous Lining - Unless otherwise specified, the lining for pipe not cement-lined shall be a bituminous material, minimum 1
mil $(0.025 \mathrm{~mm})$ thick, and conforming to all appropriate requirements for seal coat in ANSI A21.4.
6.4 Unless otherwise specified, the manufacturer at his option may furnish either ce-ment-mortar-lined or bituminous-lined pipe.
6.5 Special Linings - For severely aggressive wastes, other types of linings may be available. Such special linings shall be specified in the invitation for bids and on the purchase order.

## 7. Pipe Design

7.1 This section covers the design of ductile iron pipe for trench loads.
7.2 Determining the Total Calculated Thickness and Standard Thickness:
7.2.1 Determine the trench load, $P_{r}$. Table 1 gives the trench load, including the earth load, $P_{c}$, plus the truck load, $P_{t}$, for 2.5 to 32 $\mathrm{ft}(0.76$ to 9.75 m$)$ of cover.
7.2.2 Determine the standard trench class from the descriptions in Table 2 and select the appropriate table of diameter-thickness ratios from Tables 7 to 11 . Enter the calculated trench load, $P_{r}$, in the column headed "Bending Stress Design" and read the required ratio $D / t$. Divide the pipe outside diameter, $D$, (Table 5) by the ratio $D / t$ to obtain the net thickness, $t$, required by the design for bending stress.
7.2.3 Enter the calculated trench load, $P_{r}$, in the appropriate column headed "Deflection Design" and read the required $D / t_{1}$. Divide the outside diameter, $D$, by the ratio $D / t_{1}$ to obtain the minimum thickness, $t_{1}$, required by the design for deflection. Deduct the $0.08-\mathrm{in}$. $(2.0-\mathrm{mm})$ service allowance to obtain the corresponding net thickness, $t$. (If the calculated $P_{r}$ is less than the minimum $P_{r}$ listed in the table, the design for the trench load is not controlled by deflection and this determination need not be completed.)
7.2.4 Compare the net thicknesses from 7.2.2 and 7.2.3 and select the larger of the two. This will be the net thickness, $t$.
7.2.5 Add the service allowance of 0.08 in . $(2.0 \mathrm{~mm})$ to the net thickness, $t$. The resulting thickness is the minimum manufacturing thickness, $t_{1}$.
7.2.6 Add the casting tolerance from Table 3 to the minimum manufacturing thickness, $t_{1}$.

The resulting thickness is the total calculated :nickness.
7.2.7 In specifying and ordering pipe, use the total calculated thickness to select one of the standard class thicknesses in Table 5. Select the standard thickness nearest to the calculated thickness. When the calculated thickness is halfway between two standard thicknesses, select the larger of the two.
7.3 Design Example - Calculate the thickness for 3() -in. cement-lined ductile iron pipe laid on a flat-bottom trench with backfill lightly tamped to the centerline of pipe, Lay-. ing Condition Type 2 , under $10 \mathrm{ft}(3 \mathrm{~m})$ of cover.
7.3.1

Earth load, Table 1, $P_{c}=8.3 \mathrm{psi}$
Truck load, Table 1, $P_{t}=0.7 \mathrm{psi}$
Trench load, $P_{r}=P_{e}+P_{t}=9.0 \mathrm{psi}$
7.3.2 Entering $P_{r}$ of 9.0 psi in Table 8, the bending stress design requires $D / t$ of 128 .
Net thickness, $t$, for bending stress

$$
=D /(D / t)=32.00 / 128=0.25
$$

7.3.3 Reentering $P_{r}$ of 9.0 psi in Table 8, the deflection design requires $D / t_{1}$ of 108 .
Minimum thickness $t_{1}$ for deflection design

| $=D /\left(D / t_{1}\right)$ | $=32.00 / 108$ |
| ---: | :--- |
|  | $=0.30 \mathrm{in}$. |
| Deduct service allowance | $\frac{-0.08 \mathrm{in} .}{0.22 \mathrm{in} .}$ | control

7.3.4 The larger net thickness is 0.25 in., obtained by the design for bending stress.

| 7.3.5 | Net thickness | 0.25 in. |
| :---: | :---: | :---: |
|  | Service allowance | 0.08 in. |
|  | Minimum thickness | $=0.33 \mathrm{in}$. |
| 7.3.6 | Casting tolerance | $=0.07 \mathrm{in}$. |
|  | Total calculated thickness | $=0.40 \mathrm{in}$. |

7.3.7 The total calculated thickness of 0.40 in is nearest to 0.39 , Class 50 , in Table 5. Therefore, Class 50 is selected for specifying and ordering.
7.4 Design Method:
7.4.1 Calculations are made for the thicknesses required to resist the bending stress and the deflection due to trench load. The larger of the two is selected as the thickness required to resist trench load.
7.4.2 To this net thickness is added a service allowance to obtain the minimum manu-
facturing hickress and a casting tolerance to obtain the total calculated thickness.
7.4.3 The theksess for specifying and ordering 1. seiected frosi a table of standard clase thicknesses.
7.4.4 The reverse of the above procedure is used to determine the maximum depth of cover for pipe of a given thickness class.
7.4.5 Trench Load, $P_{r}$...Trench load is expressed as vertical pressure, psi, and is equal to the sum of earth load, $P_{e}$, and truck load, $P_{1}$.
7.4.6 Earth Load, $P_{e}$-- Earth load is computed by Eq 3 for the weight of the unit prism of soil with a height equal to the distance from the top of the pipe to the ground surface. The unit weight of backfill soil is taken to be 120 $\mathrm{lb} / \mathrm{ft}^{3}\left(54 \mathrm{~kg} / \mathrm{m}^{3}\right)$.
7.4.7 Truck Load, $P_{t}-$ The truck loads shown in Table 1 were computed by Eq 4 using the surface load factors in Table 6 for a single AASHO H-20 truck on an unpaved road or flexible pavement, $16000-\mathrm{lbf}$ ( 71.2 kN ) wheel load and 1.5 impact factor. The surface load factors in Table 6 were calculated by Eq 5 for a single concentrated wheel load centered over an effective pipe length of 3 ft ( 0.91 m ).
7.4.8 Design for Trench Load - Tables 7 through 11, the tables of diameter-thickness ratios used to design for trench load, were computed by Eqs 1 and 2. Equation 1 is based on the bending stress at the bottom of the pipe. The design bending stress, $f$, is 48000 psi ( 331 MPa ) which provides at least 1.5 safety factor based on minimum yield strength and 2.0 safety factor based on ultimate strength. Equation 2 is based on the deflection of the pipe ring section. The design deflection $\Delta \chi$ is $3 \%$ of the outside diameter of the pipe for cement-lined pipe and $5 \%$ for pipe with flexible linings. Design values of the trench parameters, $E^{\prime}, K_{b}$, and $K_{x}$ are given in Table 2.
7.4.9 Tables similar to Tables 7 through 11 may be compiled for laying conditions other than those shown in this specification by calculating the trench loads, $P_{n}$, for a series of diameter-thickness ratios, $D / t$ and $D / t_{1}$, using Eqs 1 and 2 with values of $E^{\prime}, K_{b}$, and $K_{x}$ appropriate to the bedding and backfill conditions.
7.5 Design Equations:

$$
\begin{align*}
& P_{r}= \\
& \overline{3\left(\frac{D}{t}\right)\left(\frac{D}{t}-1\right)} \frac{f}{\left[K_{b}-\frac{K_{x}}{\frac{8 E}{E^{\prime}\left(\frac{D}{t}-1\right)^{3}}+0.732}\right]}  \tag{1}\\
& P_{r}=\frac{\Delta x / D}{12 K_{r}}\left[\frac{8 E}{\left(\frac{\bar{D}}{t_{1}}-1\right)^{3}}+0.732 E^{\prime}\right]  \tag{2}\\
& P_{r}=\frac{w H}{144}=\frac{120 \mathrm{H}}{144}=\begin{array}{c}
\mathrm{H} \\
1.2
\end{array}  \tag{3}\\
& P_{t}=\frac{C R P F}{12 D}  \tag{4}\\
& C=\frac{1}{3}-\frac{2}{3 \pi} \arcsin \left[H \sqrt{\left(A^{2}+H^{2}+1.5^{2}\right)\left(H^{2}+1.5^{2}\right)}\right] \\
& +\frac{A H}{\pi \sqrt{A^{2}+H^{2}+1.5^{2}}}\left[\begin{array}{c}
1 \\
A^{2}+H^{2}
\end{array}\right.  \tag{5}\\
& \left.+\frac{1}{H^{2}+1.5^{2}}\right]
\end{align*}
$$

Note - In Eq 5, angles are in radians.

## 8. Hydrostatic Test

8.1 Each pipe shall be subjected to a hydrostatic test of not less than 500 psi (3.43 MPa). This test may be made either before or after the outside coating and the bituminous lining have been applied, but shall be made before the application of cement lining or of a special lining.
8.2 The pipe shall be under the full test pressure for at least 10 s . Suitable controls and recording devices shall be provided so that the test pressure and duration may be adequately ascertained. Any pipe that leaks or does not withstand the test pressure shall be rejected.
8.3 In addition to the hydrostatic test before application of a cement lining or special lining, the pipe may be retested, at the manufacturer's option, after application of such lining.

## 9. Acceptance Tests

9.1 The standard acceptance tests for the physical characteristics of the pipe shall be as follows:
9.2 Tension Test - A tension test specimen shall be cut longitudinally from the midsection of the pipe wall. This specimen shall be ma-
chined and tested in accordance with Fig. 1 and Method E 8. The yield strength shall be determined by the $0.2 \%$ offset, halt-ofpointer, or extension-under-load methods. If check tests are to be made, the $0.2 \%$ offset method shall be used. All specimens shall be tested at room temperature $70 \pm 10^{\circ} \mathrm{F}(21.1$ $\pm 5.5^{\circ} \mathrm{C}$ ).
9.2.1 Acceptable Values - The acceptance values for test specimens shall be as follows:

Grade of Iron:
Minimum tensile strength, psi (MPa) 60000 (414)
$\begin{array}{ll}\text { Minimum yield strength, psi (MPa): } & 42000(290) \\ \text { Minimum elongation, } \% \text { : }\end{array}$ Minimum elongation, $\%$ :
9.3 Impact Test-Tests shall be made in accordance with Method E23, except that specimens shall be 0.500 in . $(12.70 \mathrm{~mm})$ and full thickness of pipe wall. The notched impact test specimen shall be in accordance with Fig. 2. If the pipe wall thickness exceeds 0.40 in. ( 10.2 mm ), the impact specimen may be machined to a nominal thickness of 0.40 in . In all tests, impact values are to be corrected to 0.40 -in. wall thickness by calculations as follows:
Impact value (corrected)

$$
=(0.40 / t) \times \text { impact value (actual) }
$$

where:
$t=$ thickness of the specimen, in. (wall thickness of pipe).
The Charpy test machine anvil shall not be moved to compensate for the variation of cross-sectional dimensions of the test specimen.
9.3.1 Acceptance Value - The corrected acceptance value for notched impact test specimens shall be a minimum of $7 \mathrm{ft} \cdot \mathrm{lbf}(9 \mathrm{~J})$ for tests conducted at $70 \pm 10^{\circ} \mathrm{F}\left(21.1 \pm 5.5^{\circ} \mathrm{C}\right)$.
9.4 Sampling-At least one tension and impact sample shall be taken during each casting period of approximately 3 h . Samples shall be selected to represent extremes of pipe diameters and thicknesses properly.

## 10. Additional Control Tests by Manufacturer

10.1 Low-temperature impact tests shall be made from at least one third of the test pipe specified in 9.4 to assure compliance with a minimum corrected value of $3 \mathrm{ft} \cdot \mathrm{lbf}(4 \mathrm{~J})$ for tests conducted at $-40^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right)$. Test specimens shall be prepared and tested in accordance with 9.3.
10.2 In addition, the manufacturer shall conduct such other control tests as necessary to assure continuing compliance with this specification.

## 11. Additional Tests Required by Purchaser

11.1 When tests other than those required in this specification are required by the purchaser, such tests shall be specified in the invitation for bids and on the purchase order.

## 12. Inspection and Certification by Manufacturer

12.1 The manufacturer shall establish the necessary quality-control and inspection practice to ensure compliance with this specification.
12.2 The manufacturer shall, if required on the purchase order, furnish a sworn statement that the inspection and all of the specified tests have been made and the results thereof comply with the requirements of this specification.
12.3 All pipes shall be clean and sound without defects that will impair their service. Repairing of defects by welding or other method shall not be allowed if such repairs will adversely affect the serviceability of the pipe or its capability to meet strength requirements of this specification.

## 13. Inspection by Purchaser

13.1 If the purchaser desires to inspect pipe at the manufacturer's plant, the purchaser shall so specify on the purchase order, stating the conditions (such as time and the extent of inspection) under which the inspection shall be made.
13.2 The inspector shall have free access to those parts of the manufacturer's plant that are necessary to assure compliance with this specification. The manufacturer shall make available for the inspector's use such gages as are necessary for inspection. The manufacturer shall provide the inspector with assistance as necessary for handling of pipe.

## 14. Delivery and Acceptance

14.1 All pipe and accessories shall comply with this specification. Pipe and accessories not complying with this specification shall be replaced by the manufacturer at the agreed
point of delivery. The manufacturer shall not be liable for shortages or damaged pipe after acceptance at the agreed point of delivery, except as recorded on the delivery receipt or similar document by the carrier's agent.

## 15. Foundry Records

15.1 The results of the acceptance tests (Section 9) and low-temperature impact tests (Section 10) shall be recorded and retained for 1 year, and shall be available to the purchaser at the foundry. Written transcripts shall be furnished, if specified on the purchase order

## 16. Defective Specimens and Retests

16.1 When any physical test specimen shows defective machining or lack of continuity of metal, it shall be discarded and replaced by another specimen. When any sound test specimen fails to meet the specified requirements, the pipe from which it was taken shall be rejected, and a retest may be made on two additional sound specimens from pipe cast in the same period as the specimen that failed. Both of the additional specimens shall meet the prescribed tests to qualify the pipe produced in that period.

## 17. Rejection of Pipe

17.1 If the results of any physical acceptance test fail to meet the requirements of Section 9 or 16 , the pipe cast in the same period shall be rejected, except as provided in Section 18.

## 18. Determining Rejection

18.1 The manufacturer may determine the amount of rejection by making similar additional tests of pipe, of the same size as the rejected pipe, until the rejected lot is bracketed, in order of manufacture, by an acceptable test at each end of the interval in question. When pipe of one size is rejected from a casting period, the acceptability of pipe of different sizes from that same period may be established by making the acceptance tests for these sizes as specified in Section 9.

## 19. Marking Pipe

19.1 The weight, class or nominal thick-
ness, and casting period shall be shown on each pipe. The manufacturer's mark, the year in which the pipe was produced, and the letters "DI" or "DUCTILE" shall be cast or stamped on the pipe. Markings shall be clear and legible and all cast marks shall be on or near the bell. All letters and numerals on pipe sizes 14 in . and larger shall not be less than $1 / 2$
in. $(12.7 \mathrm{~mm})$ in height

## 20. Weighing Pipe

20.1 Each pipe shall be weighed before the application of any lining or coating other than the bituminous coating and the weight shown on the outside or inside of the bell or plain end.

TABLE 1 Earth Loads $\left(P_{e}\right)$, Truck Loads ( $P_{i}$ ), and Trench Loads ( $P_{r}$ ), psi

| Depth of Cover, ft (m) | $P_{\text {e }}$ | 4-in. Pipe |  |  |  | 6 -in. Pipe |  | 8 -in. Pipe |  | 10-in. Pipe |  | 12-in. Pipe |  |  |  | 14-in. Pipe |  |  | 16-in. Pipe |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $P_{t}$ |  | $P_{r}$ |  | $P_{t}$ | $P_{r}$ | $P_{t}$ | $P_{r}$ | $P_{t}$ | $P_{\mathrm{r}}$ |  | $P_{1}$ |  | $P_{r}$ | $P_{1}$ |  | $P_{r}$ | $P_{t}$ | $P_{r}$ |
| 2.5(0.76) | 2.1 | 9.9 |  | 12.0 |  | 9.9 | 12.0 | 9.8 | 11.9 | 9.7 | 11.8 |  | 9.6 |  | 11.7 | 8.7 |  | 10.8 | 8.2 | 10.3 |
| 3 (0.91) | 2.5 | 7.4 |  | 9.9 |  | 7.3 | 9.8 | 7.3 | 9.8 | 7.2 | 9.7 |  | 7.2 |  | 9.7 | 6.6 |  | 9.1 | 6.2 | 8.7 |
| 4 (1.21) | 3.3 | 4.5 |  | 7.8 |  | 4.4 | 7.7 | 4.4 | 7.7 | 4.4 | 7.7 |  | 4.4 |  | 7.7 | 4.4 |  | 7.7 | 4.1 | 7.4 |
| 5 (1.52) | 4.2 | 3.0 |  | 7.2 |  | 3.0 | 7.2 | 3.0 | 7.2 | 2.9 | 7.1 |  | 2.9 |  | 7.1 | 2.9 |  | 7.1 | 2.8 | 7.0 |
| 6 (1.82) | 5.0 | 2.1 |  | 7.1 |  | 2.1 | 7.1 | 2.1 | 7.1 | 2.1 | 7.1 |  | 2.1 |  | 7.1 | 2.1 |  | 7.1 | 2.0 | 7.0 |
| 7 (2.13) | 5.8 | 1.6 |  | 7.4 |  | 1.6 | 7.4 | 1.6 | 7.4 | 1.6 | 7.4 |  | 1.6 |  | 7.4 | 1.6 |  | 7.4 | 1.5 | 7.3 |
| 8 (2.43) | 6.7 | 1.2 |  | 7.9 |  | 1.2 | 7.9 | 1.2 | 7.9 | 1.2 | 7.9 |  | 1.2 |  | 7.9 | 1.2 |  | 7.9 | 1.2 | 7.9 |
| 9 (2.74) | 7.5 | 1.0 |  | 8.5 |  | 1.0 | 8.5 | 1.0 | 8.5 | 1.0 | 8.5 |  | 1.0 |  | 8.5 | 1.0 |  | 8.5 | 1.0 | 8.5 |
| 10 (3.04) | 8.3 | 0.8 |  | 9.1 |  | 0.8 | 9.1 | 0.8 | 9.1 | 0.8 | 9.1 |  | 0.8 |  | 9.1 | 0.8 |  | 9.1 | 0.8 | 9.1 |
| 12 (3.65) | 10.0 | 0.6 |  | 10.6 |  | 0.6 | 10.6 | 0.6 | 10.6 | 0.5 | 10.5 |  | 0.5 |  | 10.5 | 0.5 |  | 10.5 | 0.5 | 10.5 |
| 14 (4.26) | 11.7 | 0.4 |  | 12.1 |  | 0.4 | 12.1 | 0.4 | 12.1 | 0.4 | 12.1 |  | 0.4 |  | 12.1 | 0.4 |  | 12.1 | 0.4 | 12.1 |
| 16 (4.87) | 13.3 | 0.3 |  | 13.6 |  | 0.3 | 13.6 | 0.3 | 13.6 | 0.3 | 13.6 |  | 0.3 |  | 13.6 | 0.3 |  | 13.6 | 0.3 | 13.6 |
| 20 (6.09) | 16.7 | 0.2 |  | 16.9 |  | 0.2 | 16.9 | 0.2 | 16.9 | 0.2 | 16.9 |  | 0.2 |  | 16.9 | 0.2 |  | 16.9 | 0.2 | 16.9 |
| 24 (7.3?) | 20.0 | 0.1 |  | 20.1 |  | 0.1 | 20.1 | 0.1 | 20.1 | 0.1 | 20.1 |  | 0.1 |  | 20.1 | 0.1 |  | 20.1 | 0.1 | 20.1 |
| 28 (8.53) | 23.3 | 0.1 |  | 23.4 |  | 0.1 | 23.4 | 0.1 | 23.4 | 0.1 | 23.4 |  | 0.1 |  | 23.4 | 0.1 |  | 23.4 | 0.1 | 23.4 |
| 32 (9.75) | 26.7 | 0.1 |  | 26.8 |  | 0.1 | 26.8 | 0.1 | 26.8 | 0.1 | 26.8 |  | 0.1 |  | 26.8 | 0.1 |  | 26.8 | 0.1 | 26.8 |
| Depth of Cover, ft (m) | $P_{e}$ | 18 -in. Pipe |  | 20-in. Pipe |  |  | 24-in. Pipe |  | 30-in. Pipe |  | 36-in. Pipe |  | 42-in. Pipe |  |  | 48 -in. Pipe |  |  | 54-in. Pipe |  |
|  |  | $P_{1}$ | $P_{r}$ |  | $P_{t}$ | $P_{r}$ | $P_{t}$ | $P_{\text {r }}$ | $P_{1}$ | $P_{r}$ | $P_{1}$ | $P_{\text {r }}$ |  | $P_{r}$ | $P_{r}$ |  | $P$, | $P_{r}$ | $P_{1}$ | $P_{r}$ |
| 2.5(0.76) | 2.1 | 7.8 | 9.9 |  | 7.5 | 9.6 | 7.1 | 9.2 | 6.7 | 8.8 | 6.2 | 8.3 |  | 5.8 | 7.9 |  | 5.4 | 7.5 | 5.0 | 7.1 |
| 3 (0.91) | 2.5 | 5.9 | 8.4 |  | 5.7 | 8.2 | 5.4 | 7.9 | 5.2 | 7.7 | 4.9 | 7.4 |  | 4.6 | 7.1 |  | 4.4 | 6.9 | 4.1 | 6.6 |
| 4 (1.21) | 3.3 | 3.9 | 7.2 |  | 3.9 | 7.2 | 3.6 | 6.9 | 3.5 | 6.8 | 3.4 | 6.7 |  | 3.3 | 6.6 |  | 3.1 | 6.4 | 3.0 | 6.3 |
| 5 (1.52) | 4.2 | 2.6 | 6.8 |  | 2.6 | 6.8 | 2.4 | 6.6 | 2.4 | 6.6 | 2.3 | 6.5 |  | 2.3 | 6.5 |  | 2.2 | 6.4 | 2.1 | 6.3 |
| 6 (1.82) | 5.0 | 1.9 | 6.9 |  | 1.9 | 6.9 | 1.7 | 6.7 | 1.7 | 6.7 | 1.7 | 6.7 |  | 1.7 | 6.7 |  | 1.6 | 6.6 | 1.6 | 6.6 |
| 7 (2.13) | 5.8 | 1.4 | 7.2 |  | 1.4 | 7.2 | 1.3 | 7.1 | 1.3 | 7.1 | 1.3 | 7.1 |  | 1.3 | 7.1 |  | 1.2 | 7.0 | 1.2 | 7.0 |
| 8 (2.43) | 6.7 | 1.2 | 7.9 |  | 1.1 | 7.8 | 1.1 | 7.8 | 1.1 | 7.8 | 1.1 | 7.8 |  | 1.0 | 7.7 |  | 1.0 | 7.7 | 1.0 | 7.7 |
| 9 (2.74) | 7.5 | 1.0 | 8.5 |  | 0.9 | 8.4 | 0.9 | 8.4 | 0.9 | 8.4 | 0.8 | 8.3 |  | 0.8 | 8.3 |  | . 8 | 8.3 | 0.8 | 8.3 |
| 10 (3.04) | 8.3 | 0.8 | 9.1 |  | 0.7 | 9.0 | 0.7 | 9.0 | 0.7 | 9.0 | 0.7 | 9.0 |  | 0.7 | 9.0 |  | 0.7 | 9.0 | 0.7 | 9.0 |
| 12 (3.65) | 10.0 | 0.5 | 10.5 |  | 0.5 | 10.5 | 0.5 | 10.5 | 0.5 | 10.5 | 0.5 | 10.5 |  | 0.5 | 10.5 |  | 0.5 | 10.5 | 0.5 | 10.5 |
| 14 (4.26) | 11.7 | 0.4 | 12.1 |  | 0.4 | 12.1 | 0.4 | 12.1 | 0.4 | 12.1 | 0.4 | 12.1 |  | 0.4 | 12.1 |  | 0.4 | 12.1 | 0.4 | 12.1 |
| 16 (4.87) | 13.3 | 0.3 | 13.6 |  | 0.3 | 13.6 | 0.3 | 13.6 | 0.3 | 13.6 | 0.3 | 13.6 |  | 0.3 | 13.6 |  | 0.3 | 13.6 | 0.3 | 13.6 |
| 20 (6.09) | 16.7 | 0.2 | 16.9 |  | 0.2 | 16.9 | 0.2 | 16.9 | 0.2 | 16.9 | 0.2 | 16.9 |  | 0.2 | 16.9 |  | 0.2 | 16.9 | 0.2 | 16.9 |
| 24 (7.31) | 20.0 | 0.1 | 20.1 |  | 0.1 | 20.1 | 0.1 | 20.1 | 0.1 | 20.1 | 0.1 | 20.1 |  | 0.1 | 20.1 |  | 0.1 | 20.1 | 0.1 | 20.1 |
| 28 (8.53) | 23.3 | 0.1 | 23.4 |  | 0.1 | 23.4 | 0.1 | 23.4 | 0.1 | 23.4 | 0.1 | 23.4 |  | 0.1 | 23.4 |  | 0.1 | 23.4 | 0.1 | 23.4 |
| 32 (9.75) | 26.7 | 0.1 | 26.8 |  | 0.1 | 26.8 | 0.1 | 26.8 | 0.1 | 26.8 | 0.1 | 26.8 |  | 0.1 | 26.8 |  | 0.1 | 26.8 | 0.1 | 26.8 |

TABLE 2 Design Values for Standard Laying Conditions

| Laying Condition | Description |  |  |  | $E^{\prime}$ | Bedding Angle, deg | $K_{b}$ | $K_{r}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Flat-bottom tamped. | trench. ${ }^{\text {. }}$ | Backfill | not | 150 | 30 | 0.235 | $0.108$ |

Type $1^{4}$


Flat-bottom trench. ${ }^{*}$ Backfill !ightly $300 \quad 450.210$ tamped ${ }^{C}$ to centerline of pipe.

Type? loose soil." Backfill lightly tarıped" to top of pipe.


400
60
0.189
0.103

Type 3


Pipe bedded in sand, gravel, or crushed $500 \quad 90 \quad 0.157 \quad 0.096$ stone to depth of $1 / 8$ pipe diameter, 4 -in. (102 mm) min. Backfill lightly compacted" to top of pipe.


Pipe bedded in compacted granular
$700 \quad 150$
0.128
0.085 material to centerlinc of pipe. Carefully compacted" granular or select" material to top of pipe

[^22]|  |  | A 746 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TABLE 3 Allowances for Casting Tolerance |  | TABLE | 4 Reduction Factors (R) for Truck Load Calculations |  |  |  |
| Size, in. | Casting Tolerance, in. (mm) |  |  |  |  |  |
| 4-8 | 0.05 (1.3) | Size, in. | Depth of Cover, $\mathrm{ft}(\mathrm{m})$ |  |  |  |
| 10-12 | 0.06 (1.5) |  |  | 4 to 7 | 8 to 10 |  |
| 14-42 | 0.07 (1.8) |  | $\begin{gathered} <4 \\ (1.21) \end{gathered}$ | $\text { ( } 1.21 \text { to }$ | (2.43 to | $\begin{gathered} >10 \\ (3.04) \end{gathered}$ |
| 48 | 0.08 (2.0) |  | (1.21) | 2.13) | $3.04)$ | (3.04) |
| 54 | $0.09(2.3)$ |  | Reduction Factor |  |  |  |
|  |  |  |  |  |  |  |
|  |  | 4 to 12 | 1.00 | 1.00 | 1.00 | 1.00 |
|  |  | 14 | 0.92 | 1.00 | 1.00 | 1.00 |
|  |  | 16 | 0.88 | 0.95 | 1.00 | 1.00 |
|  |  | 18 | 0.85 | 0.90 | 1.00 | 1.00 |
|  |  | 20 | 0.83 | 0.90 | 0.95 | 1.00 |
|  |  | 24 to 30 | 0.81 | 0.85 | 0.95 | 1.00 |
|  |  | 36 to 54 | 0.80 | 0.85 | 0.90 | 1.00 |

TABLE 5 Standard Outside Diameters and Thickness Classes

| Size, in. | Outside diameter, in. (mm) | Thickness Class |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 50 | 51 | 52 |
|  |  | Thickness, in. (mm) |  |  |
| 4 | 4.80 (121.9) |  | 0.26 (6.6) | 0.29 (7.4) |
| 6 | 6.90 (175.2) | 0.25 (6.4) | 0.28 (7.1) | 0.31 (7.9) |
| 8 | 9.05 (229.9) | 0.27 (6.9) | 0.30 (7.6) | 0.33 (8.4) |
| 10 | 11.10 (281.9) | 0.29 (7.4) | 0.32 (8.1) | 0.35 (8.9) |
| 12 | 13.20 (335.2) | 0.31 (7.9) | 0.34 (8.6) | 0.37 (9.4) |
| 14 | 15.30 (388.6) | 0.33 (8.4) | 0.36 (9.1) | 0.39 (9.9) |
| 16 | 17.40 (441.9) | 0.34 (8.6) | 0.37 (9.4) | 0.40 (10.1) |
| 18 | 19.50 (495.3) | 0.35 (8.9) | 0.38 (9.7) | 0.41 (10.4) |
| 20 | 21.60 (548.6) | 0.36 (9.1) | 0.39 (9.9) | 0.42 (10.7) |
| 24 | 25.80 (655.3) | 0.38 (9.7) | 0.41 (10.4) | 0.44 (11.1) |
| 30 | 32.00 (812.8) | 0.39 (9.9) | 0.43 (10.9) | 0.47 (11.9) |
| 36 | 38.30 (972.8) | 0.43 (10.9) | 0.48 (12.2) | 0.33 (13.5) |
| 42 | 44.50 (1130.3) | 0.47 (11.9) | 0.53 (13.5) | 0.59 (15.1) |
| 48 | 50.80 (1290.3) | 0.51 (12.9) | 0.58 (14.7) | 0.65 (16.5) |
| 54 | 57.10 (1450.3) | 0.57 (14.5) | 0.65 (16.5) | 0.73 (18.5) |

TABLE 6 Surface Load Factors for Single Truck on Unpaved Road

| Depth of Cover, ft (m) | Pipe Size |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4-in. | $6-\mathrm{in}$. | 8 -in. | 10-in. | 12-in. | 14-in. | 16-in. | 18-in. | 20-in. | 24-in. | 30 -in. | 36-in. | 42-in. | 48-in. | 54-in. |
| Surface Load Factor, $C$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2.5(0.76) | 0.0238 | 0.0340 | 0.0443 | 0.0538 | 0.0634 | 0.0726 | 0.0814 | 0.0899 | 0.0980 | 0.1130 | 0.1321 | 0.1479 | 0.1604 | 0.1705 | 0.1784 |
| 3 (0.91) | 0.0177 | 0.0253 | 0.0330 | 0.0402 | 0.0475 | 0.0546 | 0.0614 | 0.0681 | 0.0746 | 0.0867 | 0.1028 | 0.1169 | 0.1286 | 0.1384 | 0.1466 |
| 4 (1.21) | 0.0107 | 0.0153 | 0.0201 | 0.0245 | 0.0290 | 0.0335 | 0.0379 | 0.0422 | 0.0464 | 0.0545 | 0.0657 | 0.0761 | 0.0853 | 0.0936 | 0.1008 |
| 5 (1.52) | 0.0071 | 0.0102 | 0.0134 | 0.0163 | 0.0194 | 0.0224 | 0.0254 | 0.0283 | 0.0312 | 0.0369 | 0.0449 | 0.0525 | 0.0595 | 0.0661 | 0.0720 |
| 6 (1.82) | 0.0050 | 0.0072 | 0.0095 | 0.0116 | 0.0138 | 0.0159 | 0.0181 | 0.0202 | 0.0223 | 0.0264 | 0.0323 | 0.0381 | 0.0435 | 0.0486 | 0.0534 |
| 7 (2.13) | 0.0038 | 0.0054 | 0.0071 | 0.0087 | 0.0103 | 0.0119 | 0.0135 | 0.0151 | 0.0167 | 0.0198 | 0.0243 | 0.0288 | 0.0329 | 0.0370 | 0.0409 |
| 8 (2.43) | 0.0029 | 0.0042 | 0.0055 | 0.0067 | 0.0079 | 0.0092 | 0.0104 | 0.0117 | 0.0129 | 0.0154 | 0.0189 | 0.0224 | 0.0258 | 0.0290 | 0.0322 |
| 9 (2.74) | 0.0023 | 0.0033 | 0.0043 | 0.0053 | 0.0063 | 0.0073 | 0.0083 | 0.0093 | 0.0103 | 0.0122 | 0.0151 | 0.0179 | 0.0207 | 0.0233 | 0.0259 |
| 10 (3.04) | 0.0019 | 0.0027 | 0.0035 | 0.0043 | 0.0051 | 0.0060 | 0.0068 | 0.0076 | 0.0084 | 0.0100 | 0.0123 | 0.0147 | 0.0169 | 0.0191 | 0.0213 |
| 12 (3.65) | 0.0013 | 0.0019 | 0.0025 | 0.0030 | 0.0036 | 0.0042 | 0.0047 | 0.0053 | 0.0059 | 0.0070 | 0.0086 | 0.0103 | 0.0119 | 0.0135 | 0.0151 |
| 14 (4.26) | 0.0010 | 0.0014 | 0.0018 | 0.0022 | 0.0027 | 0.0031 | 0.0035 | 0.0039 | 0.0043 | 0.0052 | 0.0064 | 0.0076 | 0.0088 | 0.0100 | 0.0112 |
| 16 (4.87) | 0.0007 | 0.0011 | 0.0014 | 0.0017 | 0.0020 | 0.0024 | 0.0027 | 0.0030 | 0.0033 | 0.0040 | 0.0049 | 0.0059 | 0.0068 | 0.0077 | 0.0087 |
| 20 (6.09) | 0.0005 | 0.0007 | 0.0009 | 0.0011 | 0.0013 | 0.0015 | 0.0017 | 0.0019 | 0.0021 | 0.0025 | 0.0032 | 0.0038 | 0.0044 | 0.0050 | 0.0056 |
| 24 (7.31) | 0.0003 | 0.0005 | 0.0006 | 0.0008 | 0.0009 | 0.0011 | 0.0012 | 0.0013 | 0.0015 | 0.0018 | 0.0022 | 0.0026 | 0.0030 | 0.0035 | 0.0039 |
| 28 (8.53) | 0.0002 | 0.0003 | 0.0005 | 0.0006 | 0.0007 | 0.0008 | 0.0009 | 0.0010 | 0.0011 | 0.0013 | 0.0016 | 0.0019 | 0.0022 | 0.0026 | 0.0029 |
| $32 \quad(9.75)$ | 0.0002 | 0.0003 | 0.0004 | 0.0004 | 0.0005 | 0.0006 | 0.0007 | 0.0008 | 0.0008 | 0.0010 | 0.0012 | 0.0015 | 0.0017 | 0.0020 | 0.0022 |

TABLE 7 Diameter-Thickness Ratios for Laying Condition Type 1
Note- $E^{\prime}=150 \quad K_{b}=0.235 \quad K_{x}=0.108$

| Trench Load $P_{v}$, psi |  |  |  | Trench Load $P_{\mathrm{r}}$, psi |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bending Stress Design | Deflection Design |  |  | Bending Stress Design | Deflection Design |  | $D / t^{c}$ or $D / t_{1}$ |
|  | $3 \%^{4}$ max | $5 \%^{8}$ max |  |  | $3 \%^{4}$ max | $5 \%^{8} \max$ |  |
| 5.17 | 3.89 | 6.48 | 150 | 8.86 | 7.12 | 11.87 | 100 |
| 5.21 | 3.91 | 6.52 | 149 | 8.99 | 7.26 | 12.11 | 99 |
| 5.26 | 3.94 | 6.57 | 148 | 9.13 | 7.41 | 12.35 | 98 |
| 5.30 | 3.97 | 6.62 | 147 | 9.27 | 7.57 | 12.61 | 97 |
| 5.35 | 4.00 | 6.67 | 146 | 9.41 | 7.73 | 12.88 | 96 |
| 5.40 | 4.03 | 6.72 | 145 | 9.56 | 7.89 | 13.15 | 95 |
| 5.45 | 4.06 | 6.77 | 144 | 9.71 | 8.07 | 13.45 | 94 |
| 5.49 | 4.09 | 6.82 | 143 | 9.87 | 8.25 | 13.75 | 93 |
| 5.54 | 4.13 | 6.88 | 142 | 10.03 | 8.44 | 14.07 | 92 |
| 5.59 | 4.16 | 6.94 | 141 | 10.20 | 8.64 | 14.40 | 91 |
| 5.65 | 4.20 | 6.99 | 140 | 10.37 | 8.85 | 14.74 | 90 |
| 5.70 | 4.23 | 7.05 | 139 | 10.55 | 9.06 | 15.11 | 89 |
| 5.75 | 4.27 | 7.12 | 138 | 10.74 | 9.29 | 15.48 | 88 |
| 5.80 | 4.31 | 7.18 | 137 | 10.93 | 9.53 | 15.88 | 87 |
| 5.86 | 4.35 | 7.25 | 136 | 11.13 | 9.78 | 16.30 | 86 |
| 5.91 | 4.39 | 7.31 | 135 | 11.34 | 10.04 | 16.73 | 85 |
| 5.97 | 4.43 | 7.38 | 134 | 11.55 | 10.31 | 17.19 | 84 |
| 6.03 | 4.47 | 7.46 | 133 | 11.78 | 10.60 | 17.67 | 83 |
| 6.09 | 4.52 | 7.53 | 132 | 12.01 | 10.90 | 18.17 | 82 |
| 6.15 | 4.56 | 7.61 | 131 | 12.25 | 11.22 | 18.70 | 81 |
| 6.21 | 4.61 | 7.69 | 130 | 12.50 | 11.56 | 19.26 | 80 |
| 6.27 | 4.66 | 7.77 | 129 | 12.76 | 11.91 | 19.85 | 79 |
| 6.33 | 4.71 | 7.85 | 128 | 13.03 | 12.28 | 20.46 | 78 |
| 6.40 | 4.76 | 7.94 | 127 | 13.31 | 12.67 | 21.11 | 77 |
| 6.46 | 4.82 | 8.03 | 126 | 13.60 | 13.08 | 21.79 | 76 |
| 6.53 | 4.87 | 8.12 | 125 | 13.91 | 13.51 | 22.52 | 75 |
| 6.60 | 4.93 | 8.22 | 124 | 14.23 | 13.97 | 23.28 | 74 |
| 6.67 | 4.99 | 8.32 | 123 | 14.56 | 14.45 | 24.08 | 73 |
| 6.74 | 5.05 | 8.42 | 122 | 14.91 | 14.96 | 24.93 | 72 |
| 6.82 | 5.11 | 8.52 | 121 | 15.27 | 15.50 | 25.83 | 71 |
| 6.89 | 5.18 | 8.63 | 120 | 15.65 | 16.07 | 26.78 | 70 |
| 6.97 | 5.25 | 8.74 | 119 | 16.05 | 16.68 | 27.79 | 69 |
| 7.05 | 5.32 | 8.86 | 118 | 16.46 | 17.32 | 28.86 | 68 |
| 7.13 | 5.39 | 8.98 | 117 | 16.89 | 18.00 | 30.00 | 67 |
| 7.21 | 5.46 | 9.11 | 116 | 17.35 | 18.73 | 31.21 | 66 |
| 7.29 | 5.54 | 9.24 | 115 | 17.83 | 19.50 | 32.49 | 65 |
| 7.38 | 5.62 | 9.37 | 114 | 18.33 | 20.32 | 33.86 | 64 |
| 7.47 | 5.71 | 9.51 | 113 | 18.85 | 21.19 | 35.32 | 63 |
| 7.56 | 5.79 | 9.65 | 112 | 19.40 | 22.12 | 36.87 | 62 |
| 7.65 | 5.88 | 9.80 | 111 | 19.98 | 23.12 | 38.53 | 61 |
| 7.75 | 5.97 | 9.96 | 110 | 20.59 | 24.18 | 40.30 | 60 |
| 7.85 | 6.07 | 10.12 | 109 | 21.23 | 25.32 | 42.20 | 59 |
| 7.95 | 6.17 | 10.28 | 108 | 21.91 | 26.54 | 44.23 | 58 |
| 8.05 | 6.27 | 10.46 | 107 | 22.63 | 27.85 | 46.42 | 57 |
| 8.16 | 6.38 | 10.63 | 106 | 23.38 | 29.26 | 48.76 | 56 |
| 8.27 | 6.49 | 10.82 | 105 | 24.18 | 30.77 | 51.28 | 55 |
| 8.38 | 6.61 | 11.01 | 104 | 25.02 | 32.39 | 53.99 | 54 |
| 8.49 | 6.73 | 11.22 | 103 | 25.92 | 34.15 | 56.92 | 53 |
| 8.61 | 6.86 | 11.43 | 102 | 26.86 | 36.05 | 60.08 | 52 |
| 8.74 | 6.99 | 11.64 | 101 | 27.87 | 38.10 | 63.50 | 51 |

TABLE 7 Continued

| Trench Load $P_{v}$, psi |  |  |  | Trench Load $P_{r}$, psi |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bending Stress Design | Deflection Design |  |  | Bending Stress Design | Deflection Design |  |  |
|  | $3 \%^{4}$ max | $5 \%^{B} \max$ | $D / r_{1}$ |  | $3 \%^{4}$ max | $5 \%^{8}$ max | $D / t^{C}$ or $D / /_{1}$ |
| 28.94 | 40.32 | 67.20 | 50 | 46.84 | 83.54 | 139.23 | 39 |
| 30.07 | 42.73 | 71.22 | 49 | 49.30 | 90.28 | 150.47 | 38 |
| 31.28 | 45.35 | 75.58 | 48 | 51.96 | 97.80 | 163.00 | 37 |
| 32.57 | 48.20 | 80.34 | 47 | 54.86 | 106.20 | 177.00 | 36 |
| 33.95 | 51.31 | 85.52 | 46 |  |  |  |  |
|  |  |  |  | 58.02 | 115.62 | 192.70 | 35 |
| 35.42 | 54.72 | 91.19 | 45 | 61.46 | 126.21 | 210.36 | 34 |
| 37.00 | 58.44 | 97.40 | 44 | 65.23 | 138.18 | 230.29 | 33 |
| 38.69 | 62.53 | 104.22 | 43 | 69.36 | 151.73 | 252.88 | 32 |
| 40.50 | 67.03 | 111.71 | 42 | 73.92 | 167.15 | 278.58 | 31 |
| 42.46 | 71.99 | 119.98 | 41 | 78.94 | 184.77 | 307.96 | 30 |
| 44.56 | 77.47 | 129.11 | 40 |  |  |  |  |

${ }^{\wedge}$ Maximum $3 \%$ deflection is recommended for rigid or semirigid linings such as cement mortar and most epoxies.
${ }^{8}$ Maximum $5 \%$ deflection is recommended for flexible linings such as bituminous and plastic.
${ }^{c}$ The $D / t$ for the tabulated $P_{r}$ nearest to the calculated $P_{r}$ is selected. When the calculated $P_{r}$ is halfway between two tabulated values, the smaller $D / /$ should be used.

TABLE 8 Diameter-Thickness Ratios for Laying Condition Type 2
Note $-E^{\prime}=300 \quad K_{b}=0.210 \quad K_{s}=0.105$

| Trench Load $P_{v}$, psi |  |  |  | Trench Load, $P_{r}$, psi |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bending Stress Design | Deflection Design |  | $-D / t^{c} \text { or } D / t_{1}$ | Bending Stress Design | Deflection Design |  |  |
|  | $3 \%^{A} \max$ | $5 \%^{B} \max$ |  |  | $3 \%^{4} \max$ | $5 \%^{8}$ max | $D / t^{c}$ or $D / t_{1}$ |
| 7.42 | 6.61 | 11.02 | 150 | 12.01 | 9.94 | 16.57 | 100 |
| 7.48 | 6.64 | 11.06 | 149 | 12.16 | 10.09 | 16.81 | 99 |
| 7.54 | 6.67 | 11.11 | 148 | 12.31 | 10.24 | 17.06 | 98 |
| 7.61 | 6.70 | 11.16 | 147 | 12.46 | 10.40 | 17.33 | 97 |
| 7.67 | 6.73 | 11.21 | 146 | 12.62 | 10.56 | 17.60 | 96 |
| 7.74 | 6.76 | 11.27 | 145 | 12.79 | 10.73 | 17.89 | 95 |
| 7.80 | 6.79 | 11.32 | 144 | 12.96 | 10.91 | 18.19 | 94 |
| 7.87 | 6.83 | 11.38 | 143 | 13.13 | 11.10 | 18.50 | 93 |
| 7.94 | 6.86 | 11.43 | 142 | 13.31 | 11.29 | 18.82 | 92 |
| 8.01 | 6.89 | 11.49 | 141 | 13.49 | 11.50 | 19.17 | 91 |
| 8.08 | 6.93 | 11.55 | 140 | 13.68 | 11.71 | 19.52 | 90 |
| 8.15 | 6.97 | 11.61 | 139 | 13.88 | 11.94 | 19.89 | 89 |
| 8.22 | 7.01 | 11.68 | 138 | 14.08 | 12.17 | 20.28 | 88 |
| 8.29 | 7.05 | 11.74 | 137 | 14.30 | 12.42 | 20.69 | 87 |
| 8.37 | 7.09 | 11.81 | 136 | 14.51 | 12.67 | 21.12 | 86 |
| 8.44 | 7.13 | 11.88 | 135 | 14.74 | 12.94 | 21.57 | 85 |
| 8.52 | 7.17 | 11.95 | 134 | 14.97 | 13.22 | 22.04 | 84 |
| 8.59 | 7.22 | 12.03 | 133 | 15.21 | 13.52 | 22.53 | 83 |
| 8.67 | 7.26 | 12.10 | 132 | 15.46 | 13.83 | 23.05 | 82 |
| 8.75 | 7.31 | 12.18 | 131 | 15.72 | 14.16 | 23.60 | 81 |
| 8.83 | 7.36 | 12.26 | 130 | 15.99 | 14.50 | 24.17 | 80 |
| 8.91 | 7.41 | 12.35 | 129 | 16.28 | 14.86 | 24.77 | 79 |
| 8.99 | 7.46 | 12.43 | 128 | 16.57 | 15.24 | 25.40 | 78 |
| 9.07 | 7.51 | 12.52 | 127 | 16.87 | 15.64 | 26.07 | 77 |
| 9.16 | 7.57 | 12.62 | 126 | 17.19 | 16.06 | 26.77 | 76 |
| 9.25 | 7.63 | 12.71 | 125 | 17.52 | 16.51 | 27.52 | 75 |
| 9.33 | 7.69 | 12.81 | 124 | 17.86 | 16.98 | 28.30 | 74 |
| 9.42 | 7.75 | 12.91 | 123 | 18.22 | 17.48 | 29.13 | 73 |
| 9.51 | 7.81 | 13.02 | 122 | 18.59 | 18.00 | 30.00 | 72 |
| 9.60 | 7.87 | 13.12 | 121 | 18.98 | 18.56 | 30.93 | 71 |
| 9.70 | 7.94 | 13.24 | 120 | 19.39 | 19.14 | 31.91 | 70 |
| 9.79 | 8.01 | 13.35 | 119 | 19.82 | 19.77 | 32.95 | 69 |
| 9.89 | 8.08 | 13.47 | 118 | 20.27 | 20.43 | 34.05 | 68 |
| 9.99 | 8.16 | 13.60 | 117 | 20.73 | 21.13 | 35.22 | 67 |
| 10.09 | 8.23 | 13.72 | 116 | 21.23 | 21.87 | 36.46 | 66 |
| 10.19 | 8.31 | 13.86 | 115 | 21.74 | 22.67 | 37.78 | 65 |
| 10.29 | 8.40 | 13.99 | 114 | 22.28 | 23.51 | 39.18 | 64 |
| 10.40 | 8.48 | 14.14 | 113 | 22.85 | 24.41 | 40.68 | 63 |
| 10.51 | 8.57 | 14.29 | 112 | 23.45 | 25.37 | 42.28 | 62 |
| 10.62 | 8.66 | 14.44 | 111 | 24.07 | 26.39 | 43.99 | 61 |
| 10.73 | 8.76 | 14.60 | 110 | 24.74 | 27.49 | 45.81 | 60 |
| 10.84 | 8.86 | 14.76 | 109 | 25.43 | 28.66 | 47.76 | 59 |
| 10.96 | 8.96 | 14.93 | 108 | 26.17 | 29.91 | 49.86 | 58 |
| 11.08 | 9.07 | 15.11 | 107 | 26.95 | 31.26 | 52.10 | 57 |
| 11.21 | 9.18 | 15.30 | 106 | 27.77 | 32.71 | 54.51 | 56 |
| 11.33 | 9.29 | 15.49 | 105 | 28.64 | 34.26 | 57.10 | 55 |
| 11.46 | 9.41 | 15.69 | 104 | 29.56 | 35.93 | 59.89 | 54 |
| 11.59 | 9.54 | 15.89 | 103 | 30.53 | 37.74 | 62.90 | 53 |
| 11.73 | 9.67 | 16.11 | 102 | 31.57 | 39.69 | 66.15 | 52 |
| 11.87 | 9.80 | 16.33 | 101 | 32.67 | 41.80 | 69.67 | 51 |

Table 8 Cominued


A Maximum $3 \%$ deflection is recommended for rigid or semirigid linings such as cement mortar and most epoxies.
${ }^{\text {a }}$ Maximum $5 \%$ deflection is recommended for flexible linings such as bituminous and plastic.
" The $D / /$ for the tabulated $P_{r}$ nearest to the calculated $P_{r}$ is selected. When the calculated $P_{r}$ is halfway between two labulated values, the smaller $D / h$ should be used.

TABLE 9 Diameter-Thickness Ratios for Laying Condition Type 3


TABLE 9 Continued

| Trench Load $P_{v}$, psi |  |  |  | Trench Load $P_{r}$, psi |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bending Stress Design | Deflection Design |  | $D / t^{c}$ or $D / t_{1}$ | Bending Stress Design | Deflection Design |  | $D / t^{c}$ or $D / t_{1}$ |
|  | $3 \%^{4}$ max | $5 \%^{8}$ max |  |  | $3 \%^{4}$ max | $5 \%^{8}$ max |  |
| 43.33 | 54.98 | 91.64 | 47 | 63.61 | 99.11 | 165.18 | 38 |
| 44.98 | 58.25 | 97.08 | 46 | 66.86 | 106.99 | 178.32 | 37 |
|  |  |  |  | 70.40 | 115.80 | 193.00 | 36 |
| 46.76 | 61.81 | 103.02 | 45 |  |  |  |  |
| 48.66 | 65.72 | 109.53 | 44 | 74.27 | 125.67 | 209.46 | 35 |
| 50.71 | 70.01 | 116.68 | 43 | 78.49 | 136.78 | 227.97 | 34 |
| 52.91 | 74.72 | 124.54 | 42 | 83.11 | 149.32 | 248.87 | 33 |
| 55.28 | 79.92 | 133.20 | 41 | 88.19 | 163.54 | 272.56 | 32 |
|  |  |  |  | 93.79 | 179.71 | 299.51 | 31 |
| 57.84 | 85.67 | 142.78 | 40 | 99.97 | 198.18 | 330.31 | 30 |
| 60.61 | 92.04 | 153.39 | 39 |  |  |  |  |

${ }^{1}$ Maximum $3 \%$ deflection is recommended for rigid or semirigid linings such as cement mortar and most epoxies.
${ }^{*}$ Maximum $5 \%$ deflection is recommended for flexible linings such as bituminous and plastic.
${ }^{c}$ The $D / t$ for the tabulated $P_{r}$ nearest to the calculated $P_{r}$ is selected. When the calculated $P_{r}$ is halfway between two tabulated values, the smaller $D / t$ should be used.

TABLE 10 Diameter-Thickness Ratios for Laying Condition Type 4
Note $-E^{\prime}=500 \quad K_{b}=0.157 \quad K_{x}=0.096$

| Trench Load $P_{v}$, psi |  |  |  | Trench Load $P_{r}$, psi |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bending Stress Design | Deflection Design |  | $-D / t^{c} \text { or } D / t_{i}$ | Bending Stress Design | Deflection Design |  | $D / t^{c}$ or $D / t_{1}$ |
|  | $3 \%{ }^{4} \max$ | $5 \%^{8}$ max |  |  | $3 \%^{A} \max$ | $5 \%^{8} \max$ |  |
| 16.34 | 11.04 | 18.40 | 150 | 22.83 | 15.01 | 25.02 | 98 |
| 16.45 | 11.07 | 18.46 | 149 | 23.01 | 15.18 | 25.30 | 97 |
| 16.55 | 11.11 | 18.51 | 148 | 23.20 | 15.36 | 25.61 | 96 |
| 16.65 | 11.14 | 18.56 | 147 |  |  |  |  |
| 16.76 | 11.17 | 18.62 | 146 | 23.38 | 15.55 | 25.92 | 95 |
|  |  |  |  | 23.58 | 15.75 | 26.25 | 94 |
| 16.86 | 11.21 | 18.68 | 145 | 23.78 | 15.95 | 26.59 | 93 |
| 16.96 | 11.24 | 18.74 | 144 | 23.99 | 16.17 | 26.94 | 92 |
| 17.07 | 11.28 | 18.80 | 143 | 24.20 | 16.39 | 27.32 | 91 |
| 17.18 | 11.31 | 18.86 | 142 |  |  |  |  |
| 17.28 | 11.35 | 18.92 | 141 | 24.42 | 16.62 | 27.71 | 90 |
|  |  |  |  | 24.64 | 16.87 | 28.11 | 89 |
| 17.39 | 11.39 | 18.99 | 140 | 24.88 | 17.12 | 28.54 | 88 |
| 17.50 | 11.43 | 19.06 | 139 | 25.12 | 17.39 | 28.99 | 87 |
| 17.60 | 11.48 | 19.13 | 138 | 25.37 | 17.67 | 29.45 | 86 |
| 17.71 | 11.52 | 19.20 | 137 |  |  |  |  |
| 17.82 | 11.56 | 19.27 | 136 | 25.63 | 17.97 | 29.95 | 85 |
|  |  |  |  | 25.90 | 18.28 | 30.46 | 84 |
| 17.93 | 11.61 | 19.35 | 135 | 26.18 | 18.60 | 31.00 | 83 |
| 18.04 | 11.66 | 19.43 | 134 | 26.47 | 18.94 | 31.57 | 82 |
| 18.15 | 11.71 | 19.51 | 133 | 26.77 | 19.30 | 32.16 | 81 |
| 18.26 | 11.76 | 19.59 | 132 |  |  |  |  |
| 18.37 | 11.81 | 19.68 | 131 | 27.09 | 19.67 | 32.79 | 80 |
|  |  |  |  | 27.42 | 20.07 | 33.45 | 79 |
| 18.49 | 11.86 | 19.77 | 130 | 27.76 | 20.48 | 34.14 | 78 |
| 18.60 | 11.92 | 19.86 | 129 | 28.11 | 20.92 | 34.87 | 77 |
| 18.72 | 11.97 | 19.95 | 128 | 28.49 | 21.38 | 35.64 | 76 |
| 18.83 | 12.03 | 20.05 | 127 |  |  |  |  |
| 18.95 | 12.09 | 20.15 | 126 | 28.87 | 21.87 | 36.45 | 75 |
|  |  |  |  | 29.28 | 22.38 | 37.31 | 74 |
| 19.06 | 12.15 | 20.26 | 125 | 29.70 | 22.93 | 38.21 | 73 |
| 19.18 | 12.22 | 20.36 | 124 | 30.15 | 23.50 | 39.17 | 72 |
| 19.30 | 12.28 | 20.47 | 123 | 30.62 | 24.11 | 40.18 | 71 |
| 19.42 | 12.35 | 20.59 | 122 |  |  |  |  |
| 19.54 | 12.42 | 20.71 | 121 | 31.11 | 24.75 | 41.25 | 70 |
|  |  |  |  | 31.62 | 25.43 | 42.39 | 69 |
| 19.66 | 12.50 | 20.83 | 120 | 32.16 | 26.16 | 43.59 | 68 |
| 19.78 | 12.57 | 20.96 | 119 | 32.72 | 26.92 | 44.87 | 67 |
| 19.91 | 12.65 | 21.09 | 118 | 33.32 | 27.74 | 46.23 | 66 |
| 20.04 | 12.73 | 21.22 | 117 |  |  |  |  |
| 20.16 | 12.82 | 21.36 | 116 | 33.95 | 28.60 | 47.67 | 65 |
|  |  |  |  | 34.61 | 29.53 | 49.21 | 64 |
| 20.29 | 12.91 | 21.51 | 115 | 35.30 | 30.51 | 50.85 | 63 |
| 20.42 | 13.00 | 21.66 | 114 | 36.04 | 31.56 | 52.60 | 62 |
| 20.55 | 13.09 | 21.82 | 113 | 36.81 | 32.68 | 54.47 | 61 |
| 20.69 | 13.19 | 21.98 | 112 |  |  |  |  |
| 20.82 | 13.29 | 22.15 | 111 | 37.63 | 33.88 | 56.46 | 60 |
|  |  |  |  | 38.50 | 35.16 | 58.60 | 59 |
| 20.96 | 13.39 | 22.32 | 110 | 39.42 | 36.53 | 60.88 | 58 |
| 21.10 | 13.50 | 22.50 | 109 | 40.39 | 38.00 | 63.34 | 57 |
| 21.24 | 13.61 | 22.69 | 108 | 41.42 | 39.58 | 65.97 | 56 |
| 21.39 | 13.73 | 22.88 | 107 |  |  |  |  |
| 21.54 | 13.85 | 23.08 | 106 | 42.51 | 41.28 | 68.81 | 55 |
|  |  |  |  | 43.67 | 43.12 | 71.86 | 54 |
| 21.69 | 13.98 | 23.29 | 105 | 44.91 | 45.09 | 75.15 | 53 |
| 21.84 | 14.11 | 23.51 | 104 | 46.22 | 47.22 | 78.71 | 52 |
| 22.00 | 14.24 | 23.74 | 103 | 47.62 | 49.53 | 82.55 | 51 |
| 22.16 | 14.38 | 23.97 | 102 |  |  |  |  |
| 22.32 | 14.53 | 24.22 | 101 | 49.11 | 52.03 | 86.72 | 50 |
|  |  |  |  | 50.70 | 54.74 | 91.24 | 49 |
| 22.49 | 14.68 | 24.47 | 100 | 52.41 | 57.69 | 96.15 | 48 |
| 22.66 | 14.84 | 24.74 | 99 |  |  |  |  |

TABLE 10 Continued

${ }^{*}$ Maximum $3 \%$ deflection is recommended for rigid or semirigid linings such as cement mortar and most epoxies.
${ }^{8}$ Maximum $5 \%$ deflection is recommended for flexible linings such as bituminous and plastic.
${ }^{C}$ The $D / t$ for the tabulated $P_{r}$ nearest to the calculated $P_{r}$ is selected. When the calculated $P_{r}$ is halfway between two tabulated values, the smaller $D / t$ should be used.



TABLE 12 Pipe Selection Table (Cement-Lined Pipe)

| Pipe Size, in. | Thickness Class | Nominal Thickness, in. | !aying Condition |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Type 1 | Type 2 | Type 3 | Type 4 | Type 5 |
|  |  |  | Maximum Depth of Cover, $\mathrm{ft}(\mathrm{m})^{1}$ |  |  |  |  |
| 4 | 51 | 0.26 | 76 (23.1) | 86 (26.0) | 96 (29.2) | ${ }^{\text {B }}$ | ${ }^{\text {s }}$ |
|  | 52 | 0.29 | ${ }^{8}$ | ${ }^{8}$ | ${ }^{8}$ | ${ }^{8}$ | ${ }^{\text {a }}$ |
| 6 | 50 | 0.25 | 32 (9.7) | 38 (11.6) | 44 (13.4) | 56 (17.0) | 75 (22.9) |
|  | 51 | 0.28 | 49 (14.9) | 57 (17.4) | 64 (19.5) | 80 (24.3) | 8 (22.9) |
|  | 52 | 0.31 | 67 (20.4) | 77 (23.5) | 86 (26.0) | ${ }_{B}$ | B |
| 8 | 50 | 0.27 | 25 (7.6) | 30 (9.1) | 36 (11.0) | 46 (14.0) | 64 (19.5) |
|  | 51 | 0.30 | 36 (10.9) | 42 (12.9) | 49 (14.9) | 61 (18.6) | 81 (24.7) |
|  | 52 | 0.33 | 47 (14.3) | 54 (16.5) | 62 (189) | 77 (23.5) | 99 (30.1) |
| 10 | 50 | 0.29 | 19 (5.8) | 24 (7.3) | 29 (8.9) | 38 (11.6) | 55 (16.8) |
|  | 51 | 0.32 | 27 (8.2) | 32 (9.8) | 38 (116) | 49 (15.0) | 66 (20.1) |
|  | 52 | 0.35 | 35 (10.6) | 41 (12.5) | 47 (14.3) | 59 (18.0) | 79 (24.0) |
| 12 | 50 | 0.31 | 17 (5.1) | 22 (6.7) | 27 (82) | 36 (11.0) | 52 (15.9) |
|  | 51 | 0.34 | 23 (7.0) | 28 (8.5) | 33 (10.0) | 43 (13.1) | 60 (18.2) |
|  | 52 | 0.37 | 30 (9.1) | 35 (10.7) | 41 (12.5) | 53 (16.1) | 71 (21.6) |
| 14 | 50 | 0.33 | 15 (4.6) | 19 (5.8) | 24 (7.3) | 33 (10.0) | 49 (14.9) |
|  | 51 | 0.36 | 19 (5.8) | 23 (7.0) | 28 (8.5) | 38 (11.6) | 55 (16.8) |
|  | 52 | 0.39 | 24 (7.3) | 29 (8.9) | 34 (10.3) | 44 (13.4) | 62 (18.9) |
| 16 | 50 | 0.34 | 13 (4.0) | 17 (5.1) | 21 (6.4) | 30 (0.1) | 47 (14.3) |
|  | 51 | 0.37 | 16 (4.9) | 21 (6.4) | 25 (7.6) | 34 (19.4) | 51 (15.5) |
|  | 52 | 0.40 | 20 (6.1) | 25 (7.6) | 30 (9.1) | 40 (12.1) | 57 (17.3) |
| 18 | 50 | 0.35 | 11 (3.3) | 15 (4.6) | 20 (0.1) | 29 (8.9) | 42 (12.8) |
|  | 51 | 0.38 | 14 (4.2) | 19 (5.8) | 23 (7.0) | 32 (9.7) | 49 (14.9) |
|  | 52 | 0.41 | 18 (5.5) | 22 (6.7) | 27 (8.2) | 36 (11.0) | 53 (16.2) |
| 20 | 50 | 0.36 | 10 (3.0) | 14 (4.3) | 18 (5.5) | 27 (8.2) | 38 (11.6) |
|  | 51 | 0.39 | 13 (4.0) | 17 (5.1) | 21 (6.4) | 30 (9.1) | 44 (13.4) |
|  | 52 | 0.42 | 16 (4.9) | 20 (6.1) | 25 (7.6) | 34 (10.4) | 50 (15.2) |
| 24 | 50 | 0.38 | 8 (2.4) | 12 (3.7) | 17 (5.1) | 23 (7.0) | 31 (9.4) |
|  | 51 | 0.41 | 10 (3.0) | 15 (4.6) | 19 (5.8) | 27 (8.2) | 36 (11.0) |
|  | 52 | 0.44 | 13 (4.0) | 17 (5.1) | 21 (6.4) | 30 (9.1) | 41 (12.5) |
| $31)$ | 50 | 0.39 | $c$ | 10 (3.5) | 14 (3.7) | 18 (5.5) | 25 (7.6) |
|  | 51 | 0.43 |  | 12 (3.7) | 16 (4.9) | 21 (6.4) | $29 \text { (8.9) }$ |
|  | 52 | 0.47 |  | 14 (4.3) | 19 (5.8) | 24 (7.3) | 33 (10.0) |
| 36 |  | 0.43 | ${ }^{\prime}$ |  |  | 17 (5.1) |  |
|  | 51 | 0.48 |  | 12 (3.7) | 16 (4.9) | 20 (6.0) | 28 (8.5) |
|  | 52 | 0.53 |  | 15 (4.6) | 19 (5.8) | 24 (7.3) | 32 (9.8) |
| 42 | 50 | 0.47 | $c$ | 9 (2.7) | 13 (4.0) | 16 (4.9) | 24 (7.3) |
|  | 51 | 0.53 |  | 12 (3.7) | 15 (4.6) | 19 (5.8) | 27 (8.2) |
|  | 52 | 0.59 |  | 14 (4.3) | 18 (5.5) | 22 (6.7) | 30 (9.1) |
| 48 |  | 0.51 | $c$ |  |  | 15 (4.6) | 23 (7.0) |
|  | 51 | 0.58 |  | 12 (3.7) | 14 (4.3) | 18 (5.5) | 26 (7.9) |
|  | 52 | 0.65 |  | 14 (4.3) | 18 (5.5) | 21 (6.4) | 30 (9.1) |
| 54 | 50 | 0.57 | $c$ | 9 (2.7) | 12 (3.7) | 15 (4.6) | 23 (7.0) |
|  | 51 | 0.65 |  | 12 (3.7) | 14 (4.3) | 18 (5.5) | 25 (7.6) |
|  | 52 | 0.73 |  | 14 (4.3) | 17 (5.1) | 21 (6.4) | 29 (8.9) |

${ }^{4}$ These pipes are adequate for depths of cover from $2.5 \mathrm{ft}(0.76 \mathrm{~m}) \mathrm{up}$ to the maximum shown including an allowance for single $\mathrm{H}-20$ truck with 1.5 impact factor.
${ }^{B}$ Calculated maximum depth of cover exceeds $100 \mathrm{ft}(30.5 \mathrm{~m})$.
${ }^{c}$ Laying Condition Type 1 is limited to 24 in. and smaller pipe.

TABLE 13 Pipe Selection Table (Pipe with Flexible Lining)

| Pipe Size, in. | Thickness Class | Nominal Thickness, in. | Laying Condition |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Type 1 | Type 2 | Type 3 | Type 4 | Type 5 |
|  |  |  | Maximum Depth of Cover, $\mathrm{ft}(\mathrm{m})^{4}$ |  |  |  |  |
| 4 | 51 | 0.26 | 76 (23.1) | 86 (26.0) | 96 (29.2) | ${ }_{B}$ | B |
|  | 52 | 0.29 | ${ }_{8}$ | ${ }_{\text {a }}(26.0)$ | ${ }_{8}(2)$ | ${ }_{\text {H }}$ | B |
| 6 | 50 | 0.25 |  |  |  |  |  |
|  | 51 | 0.28 | $49(14.9)$ | $57(17.4)$ | $64 \text { (19.5) }$ | $80(24.3)$ | $\because$ |
|  | 52 | 0.31 | 67 (20.4) | 77 (23.5) | $86 \text { (26.0) }$ |  | $\stackrel{\square}{ }$ |
| 8 | 50 | 0.27 | 25 (7.6) | 30 (9.1) | 36 (11.0) | 46 (14.0) | 64 (19.5) |
|  | 51 | 0.30 | 36 (10.9) | 42 (12.9) | 49 (14.9) | 61 (18.6) | 81 (24.7) |
|  | 52 | 0.33 | 47 (14.3) | 54 (16.5) | 62 (18.9) | 77 (23.5) | 99 (30.1) |
| 10 | 50 | 0.29 | 19 (5.8) | 24 (7.3) | 29 (8.9) | 38 (11.6) | 55 (16.8) |
|  | 51 | 0.32 | 27 (8.2) | 32 (9.8) | 38 (11.6) | 49 (15.0) | 66 (20.1) |
|  | 52 | 0.35 | 35 (10.6) | 41 (12.5) | 47 (14.3) | 59 (18.0) | 79 (24.0) |
| 12 | 50 | 0.31 | 17 (5.1) | 22 (6.7) | 27 (8.2) | 36 (11.0) | 52 (15.9) |
|  | 51 | 0.34 | 23 (7.0) | 28 (8.5) | 33 (10.0) | 43 (13.1) | 60 (18.2) |
|  |  |  | $30(9.1)$ | 35 (10.7) | 41 (12.5) | 53 (16.1) | 71 (21.6) |
| 14 | 50 | 0.33 | 15 (4.6) | $19(5.8)$ | 24 (7.3) | 33 (10.0) | 49 (14.9) |
|  | 51 | 0.36 | 19 (5.8) | 23 (7.0) | 28 (8.5) | 38 (11.6) | 55 (16.8) |
|  | 52 | 0.39 | 24 (7.3) | 29 (8.9) | $3+(10.3)$ | 44 (13.4) | 62 (18.9) |
| 16 | 50 | 0.34 |  |  |  | 30 (9.1) |  |
|  | 51 | 0.37 | 16 (4.9) | 21 (6.4) | 25 (7.6) | 34 (10.4) | 51 (15.5) |
|  | 52 | 0.40 | 20 (6.1) | 25 (7.6) | 30 (9.1) | 40 (12.1) | 57 (17.3) |
| 18 | 50 | 0.35 | 11 (3.3) | 15 (4.6) | 20 (6.1) | 29 (8.9) | 45 (13.7) |
|  | 51 | 0.38 | 14 (4.2) | 19 (5.8) | 23 (7.0) | 32 (9.7) | 49 (14.9) |
|  | 52 | 0.41 | 18 (5.5) | 22 (6.7) | 27 (8.2) | 36 (11.0) | 53 (16.2) |
| 20 | 50 | 0.36 |  | 14 (4.3) | 18 (5.5) | 27 (8.2) | $44 \text { (13.4) }$ |
|  | 51 | 0.39 | $13(4.0)$ | $17 \text { (5.1) }$ | $21(6,4)$ | 30 (9.1) | $47(14.3)$ |
|  | 52 | 0.42 | $16(4.9)$ | 20 (6.1) | 25 (7.6) | 34 (10.4) | 50 (15.2) |
| 2.4 | 50 | 0.38 |  | 12 (3.7) | 17 (5.1) | 25 (7.6) |  |
|  | 51 | 0.41 | 10 (3.0) | 15 (4.6) | 19 (5.8) | 28 (8.5) | 45 (13.7) |
|  | 52 | 0.44 | 13 (4.0) | 17 (5.1) | 21 (6.4) | 30 (9.1) | 47 (14.3) |
| 30 | 50 | 0.39 | c |  |  |  |  |
|  | 51 | 0.43 |  | $12 \text { (3.7) }$ | $16(4.9)$ | 25 (7.6) | $42 \text { (12.8) }$ |
|  | 52 | 0.47 |  | 14 (4.3) | 19 (5.8) | 27 (8.2) | 44 (13.4) |
| 36 | 50 | 0.43 | $c$ | 10 (3.5) | 14 (3.7) | 22 (6.7) | 39 (11.9) |
|  | 51 | 0.48 |  | 12 (3.7) | 16 (4.9) | 25 (7.6) | 42 (12.8) |
|  | 52 | 0.53 |  | 15 (4.6) | 19 (5.8) | 27 (8.2) | 44 (13.4) |
| 42 | $50$ | 0.47 | c |  |  |  |  |
|  | 51 | 0.53 |  | $12 \text { (3.7) }$ | $16 \text { (4.9) }$ | 25 (7.6) | 42 (12.8) |
|  | 52 | 0.59 |  | 14 (4.3) | 18 (5.5) | 27 (8.2) | 44 (13.4) |
| 48 |  | 0.51 | c | 9 (2.7) | 13 (4.0) | 21 (6.4) | 39 (11.9) |
|  | 51 | 0.58 |  | 12 (3.7) | 16 (4.9) | 24 (7.3) | 41 (12.8) |
|  | 52 | 0.65 |  | 14 (4.3) | 18 (5.5) | 27 (8.2) | 44 (13.4) |
| 54 | 50 | 0.57 | c | 9 (2.7) | 13 (4.0) | 21 (6.4) | 38 (11.6) |
|  | 51 | 0.65 |  | 12 (3.7) | 16 (4.9) | 24 (7.3) | 41 (12.8) |
|  | 52 | 0.73 |  | 14 (4.3) | 18 (5.5) | 27 (8.2) | 44 (13.4) |

[^23] for single $\mathrm{H}-20$ truck with 1.5 impact factor.
${ }^{8}$ Calculated maximum depth of cover exceeds $100 \mathrm{ft}(30.5 \mathrm{~m})$
${ }^{c}$ Laying Condition Type 1 is limited to 24 in. and smaller pipe

TABLE 14 Standard Dimensions and Weights of Push-on-Joint Ductile Iron Pipe

| Size, in. | Thickness Class | Thickness, in. (mm) | Outside Diameter, ${ }^{1}$ in. (mm) | Weight of Barrel per ft, lb (kg) | Weight of Bell, ib (kg) | 18-ft Laying Length |  | 20-ft Laying Length |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Weight per Length, ${ }^{B}$ lb (kg) | Average Weight per $\mathrm{ft},{ }^{c} \mathrm{lb}(\mathrm{kg})$ | Weight per Length, ${ }^{B} \mathrm{Ib}(\mathrm{kg})$ | Average Weight per $\mathrm{ft},{ }^{c} \mathrm{lb}^{\mathrm{lb}}(\mathrm{kg})$ |
| 4 | 51 | 0.26 (6.6) | 4.80 (121.9) | 11.3 (5.12) | 11 (4.98) | 215 (97.52) | 11.9 (5.39) | 235 (106.59) | 11.8 (5.35) |
|  | 52 | 0.29 (7.4) | 4.80 (121.9) | 12.6 (5.71) | 11 (4.98) | 240 (108.86) | 13.2 (5.98) | 265 (120.20) | 13.2 (5.98) |
| 6 | 50 | 0.25 (6.4) | 6.90 (175.2) | 16.0 (7.25) | 18 (8.16) | 305 (138.34) | 17.0 (7.71) | 340 (154.22) | 16.9 (7.66) |
|  | 51 | 0.28 (7.1) | 6.90 (175.2) | 17.8 (8.07) | 18 (8.16) | 340 (154.22) | 18.8 (8.52) | 375 (170.10) | 18.7 (8.48) |
|  | 52 | 0.31 (7.9) | 6.90 (175.2) | 19.6 (8.89) | 18 (8.16) | 370 (168.73) | 20.6 (9.34) | 410 (185.97) | 20.5 (9.29) |
| 8 | 50 | 0.27 (6.9) | 9.05 (229.8) | 22.8 (10.34) | 26 (11.79) | 435 (197.31) | 24.2 (10.97) | 480 (217.72) | 24.1 (10.93) |
|  | 51 | 0.30 (7.6) | 9.05 (229.8) | 25.2 (11.43) | 26 (11.79) | 480 (217.78) | 26.6 (12.06) | 530 (240.40) | 26.5 (12.03) |
|  | 52 | 0.33 (8.4) | 9.05 (229.8) | 27.7 (12.56) | 26 (11.79) | 525 (238.14) | 29.1 (13.19) | 580 (263.08) | 29.0 (13.15) |
| 10 | 50 | 0.29 (7.3) | 11.10 (281.9) | 30.1 (13.65) | 34 (15.42) | 575 (260.82) | 32.0 (14.51) | 635 (288.03) | 31.8 (14.42) |
|  | 51 | 0.32 (8.1) | 11.10 (281.9) | 33.2 (15.05) | 34 (15.42) | 630 (285.76) | 35.1 (15.92) | 700 (317.52) | 34.9 (15.83) |
|  | 52 | 0.35 (8.9) | 11.10 (281.9) | 36.2 (16.42) | 34 (15.42) | 685 (310.71) | 38.1 (17.28) | 760 (344.73) | 37.9 (17.19) |
| 12 | 50 | 0.31 (7.9) | 13.20 (335.2) | 38.4 (17.41) | 43 (19.50) | 735 (333.39) | 40.8 (18.50) | 810 (367.41) | 40.6 (18.41) |
|  | 51 | 0.34 (8.6) | 13.20 (335.2) | 42.0 (19.05) | 43 (19.50) | 800 (362.88) | 44.4 (20.13) | 885 (401.43) | 44.2 (20.04) |
|  | 52 | 0.37 (9.4) | 13.20 (335.2) | 45.6 (20.68) | 43 (19.50) | 865 (392.36) | 48.0 (21.77) | 955 (433.18) | 47.8 (21.68) |
| 14 | 50 | 0.33 (8.4) | 15.30 (388.6) | 47.5 (21.54) | 63 (28.57) | 920 (417.31) | 51.0 (23.13) | 1015 (460.40) | 50.6 (22.95) |
|  | 51 | 0.36 (9.1) | 15.30 (388.6) | 51.7 (23.45) | 63 (28.57) | 995 (451.33) | 55.2 (25.03) | 1095 (496.69) | 54.8 (24.85) |
|  | 52 | 0.39 (9.9) | 15.30 (388.6) | 55.9 (25.35) | 63 (28.57) | 1070 (485.35) | 59.4 (26.94) | 1180 (535.24) | 59.0 (26.76) |
| 16 |  |  |  |  |  |  |  |  | 59.6 (27.03) |
|  | 51 | 0.37 (9.4) | 17.40 (441.9) | 60.6 (27.48) | 76 (34.47) | 1165 (528.44) | 64.8 (29.39) | 1290 (585.14) | 64.4 (29.21) |
|  | 52 | 0.40 (10.1) | 17.40 (441.9) | 65.4 (29.66) | 76 (34.47) | 1255 (569.26) | 69.6 (31.57) | 1385 (628.23) | 69.2 (31.38) |
| 18 | 50 | 0.35 (8.9) | 19.50 (495.3) | 64.4 (29.21) | 87 (39.46) | 1245 (564.73) | 69.2 (31.38) | 1375 (623.70) | 68.8 (31.20) |
|  | 51 | 0.38 (9.7) | 19.50 (495.3) | 69.8 (31.66) | 87 (39.46) | 1345 (610.09) | 74.6 (33.83) | 1485 (673.59) | 74.2 (33.65) |
|  | 52 | 0.41 (10.4) | 19.50 (495.3) | 75.2 (34.11) | 87 (39.46) | 1440 (653.18) | 80.0 (36.28) | 1590 (721.22) | 79.6 (34.88) |
| 20 | 50 | 0.36 (9.1) | 21.60 (548.6) | 73.5 (33.33) | 97 (43.99) | 1420 (644.11) | 78.9 (35.78) | 1565 (709.88) | 78.4 (35.56) |
|  | 51 | 0.39 (9.9) | 21.60 (548.6) | 79.5 (36.06) | 97 (43.99) | 1530 (694.00) | 84.9 (38.51) | 1685 (764.31) | 84.4 (38.28) |
|  | 52 | 0.42 (10.7) | 21.60 (548.6) | 85.5 (38.78) | 97 (43.99) | 16.35 (741.63) | 90.9 (41.23) | 1805 (818.74) | 90.4 (41.00) |
| 24 | 50 |  | 25.80 (655.3) | 92.9 (42.13) | 120 (54.43) | 1790 (811.94) | 99.6 (45.17) | 1980 (898.12) | 98.9 (44.86) |
|  | 51 | 0.41 (10.4) | 25.80 (655.3) | 100.1 (45.40) | 120 (54.43) | 1920 (870.91) | 106.8 (48.44) | 2120 (961.63) | 106.1 (48.12) |
|  | 52 | 0.44 (11.1) | 25.80 (655.3) | 107.3 (48.67) | 120 (54.43) | 2050 (929.88) | 114.0 (51.71) | 2265 (1027.40) | 113.3 (51.39) |
| 30 | 50 | 0.39 (9.9) | 32.00 (812.8) | 118.5 (53.75) | D | 2350 (1065.96) | 130.5 (59.19) | 2535 (1149.87) | 126.6 (57.42) |
|  | 51 | 0.43 (10.9) | 32.00 (812.8) | 130.5 (59.19) |  | 2565 (1163.48) | 142.5 (64.63) | 2775 (1258.74) | 138.6 (62.86) |
|  | 52 | 0.47 (11.9) | 32.00 (812.8) | 142.5 (64.63) |  | 2780 (1261.00) | 154.5 (70.08) | 3015 (1367.60) | 150.6 (68.31) |

TABLE 14 Continued

${ }^{4}$ Tolerances of outside diameter of spigot end: 4 to $12 \mathrm{in} ., \pm 0.06 \mathrm{in}$. $( \pm 1.5 \mathrm{~mm}) ; 14$ to $24 \mathrm{in} .,+0.05 \mathrm{in} .(+1.3 \mathrm{~mm}),-0.08 \mathrm{in} .(-2.0 \mathrm{~mm}) ; 30 \mathrm{to} 54 \mathrm{in} .,+0.08 \mathrm{in} .(+2.0$ $\mathrm{mm}),-0.06 \mathrm{in} .(-1.5 \mathrm{~mm})$
${ }_{B}^{B}$ Including bell; calculated weight of pipe rounded off to nearest $5 \mathrm{lb}(2.3 \mathrm{~kg})$.
${ }^{\prime}$ Including bell; average weight per foot, based on calculated weight of pipe before rounding.
${ }^{n}$ Weight of 30 -in. bell is $216 \mathrm{lb}(97.97 \mathrm{~kg}$ ) for $18-\mathrm{ft}$ pipe and 163 lb ( 73.93 kg ) for $20-\mathrm{ft}$ pipe.
E Weight of 36 -in. bell is $292 \mathrm{lb}(132.45 \mathrm{~kg})$ for $18-\mathrm{ft}$ pipe and $216 \mathrm{lb}(97.97 \mathrm{~kg})$ for 20 -ft pipe.


NOTE 1-The reduced section (A) may have a gradual taper from the ends toward the center with the ends not more than 0.005 in. ( 0.13 mm ) larger in diameter than the center on the standard specimen and not more than 0.003 in. $(0.08 \mathrm{~mm})$ larger in diameter than the center on the small size specimens.
NOTE 2-If desired, on the small size specimens the length of the reduced section may be increased to accommodate anextensometer. However. reference marks for the measurement of elongation should neverthetess be spaced at the indicated gage length ( $G$ ).
Note 3-The gage length and fillets shall be as shown, but the ends may be of any form to fit the holders of the testing machine in such a way that the load shall be axial. If the ends are to be held in gnips it is desirable. if possibie to make the length of the gnip section great enough to allow the specimen to extend into the grips a distance equal to two thirds or more of the length of the grips.

| Dimension | Standard Specimen <br> $0.50-\mathrm{in} .(12.7-\mathrm{mm})$ Round | Small-Size Specimens Proportional to Standard |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & 0.350-\mathrm{in} .(8.89-\mathrm{mm}) \\ & \text { Round } \end{aligned}$ | $\begin{aligned} & 0.250-\mathrm{in} .(6.3 .5-\mathrm{mm}) \\ & \text { Round } \end{aligned}$ | $\begin{gathered} 0.175-\mathrm{in} .(4.45-\mathrm{mm}) \\ \text { Round } \end{gathered}$ | $\begin{aligned} & 0.125-\mathrm{in} .(3.18-\mathrm{mm}) \\ & \text { Round } \end{aligned}$ |
|  |  |  | Dimensions in. (mm) |  |  |
| G | $2.000 \pm 0.005(50.80 \pm 0.13)$ | $1.400 \pm 0.005(33.56 \pm 013)$ | $1.000 \pm 0.005(25.40 \pm 0.13)$ | $0.700 \pm 0.005(12.78 \pm 0.13)$ | $0.500 \pm 0.005(12.70 \pm 0.13)$ |
| D | $0.500 \pm 0.010(12.70 \pm 0.25)$ | $0.350 \pm 0.007(16.89 \pm 0.18)$ | $0.250 \pm 0.005(6.35 \pm 0.13)$ | $0.175 \pm 0.005(4.44 \pm 0.13)$ | $0.125 \pm 0.005(3.18 \pm 0.13)$ |
| $\boldsymbol{R}$, min | $3 / 8 \quad$ (9.5) | $1 / 4 \quad 16.4)$ | $3 / 16$ | $3 / 32$ (2.4) | $3 / 32$ (2.4) |
| A, min | $2^{1 / 4} \quad(57.2)$ | $13 / 4 \quad(44.4)$ | $11 / 4 \quad(31.8)$ | $3 / 4$ | $5 / 8 \quad(15.9)$ |
| ${ }^{\text {a }}$ | $\begin{aligned} & 0.71 \text { and } \\ & \text { greater } \end{aligned}$ | 0.50 to 0.70 (12.2 to 17.8) | 0.35 to $0.49 \quad$ (8.9 to 12.4) | 0.25 to 0.34 (6.4 to 8.6) | 0.18 to 0.24 (4.6 to 6.1) |

FIG. 1 Tension Test Specimen.
(a)


in.
-0.100
+0.000
0.001
0.002
0.010
(c)


mm
-2.54
+0.00
0.03
0.05
0.25


FIG. 2 Impact Test Specimen.

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights is entirely their own responsibility.

## SECTION V

## GRAY AND DUCTILE IRON FITTINGS

## Introduction

Fittings are produced in accordance with ANSI/AWWA Standard C110, ANSI Standard B1.6.1 as well as manufacturers' standards. Due to their irregular shapes, fittings are statically cast. They are available in either gray or ductile iron and are equipped with mechanical, push-on, flanged joints, or plain ends.

Preparatory to pouring iron, molds forming the outside contours of the fittings are assembled with cores that form the openings through the fittings. Iron is poured into the mold assembly and flows into the void surrounding the core. After cooling, the fittings are removed from the mold, cleaned, inspected, gauged for dimensional accuracy, weighed, lined and coated as required.

In general, gray and ductile iron fittings of the following configurations are furnished in accordance with the ANSI/AWWA C110 Standard: bends; tees; crosses; base bends; reducers; sleeves; caps; plugs; offsets; and tapped tees. Included in the fittings manufactured in accordance with ANSI B16.1 are the following: long-radius fittings, reducing elbows, reducing on-the-run tees; side outlet fittings; eccentric reducers and laterals; and true wyes. Manufacturers' standards govern other fittings and in some cases fittings are produced with ANSI B16.1 overall dimensions and ANSI/AWWA C110 thicknesses. All flanged fittings manufactured using ANSI/AWWA C110 have a minimum safety factor of 3.0 times the rated working pressure. Pressure ratings shown in ANSI/ AWWA C110 should not be confused with $250-\mathrm{lb}$. flange ratings covered by ANSI B16.1 which are rated for steam working pressure.

The minimum grade of cast iron used in fittings is $25,000 \mathrm{psi}$ iron strength with higher grades where necessary to secure higher pressure ratings. Ductile iron used in fittings must have an ultimate tensile strength of 70,000 psi, a yield strength of $50,000 \mathrm{psi}$ and a minimum elongation of $5 \%$.


## AMERICAN NATIONAL

STANDARD

# for <br> GRAY-IRON AND DUCTILE-IRON FITTINGS, <br> <br> 3 in. THROUGH 48 in.. <br> <br> 3 in. THROUGH 48 in.. <br> FOR WATER AND OTHER LIQUIDS 

Recised edition approved by American National Standards Institute, Inc., Apr. 7, 1977.

Administrative Secretariat
AMERICAN WATER WORKS ASSOCIATION

Co-Secretariats
AMERICAN GAS ASSOCIATION
NEW ENGLAND WATER WORKS ASSOCIATION

## NOTICE

This Standard has been especially printed by the American Water Works Association for incorporation into this volume. It is current as of December 1, 1975. It should be noted, however, that all AWWA Standards are updated at least once in every five years. Therefore, before applying this Standard it is suggested that you confirm its currency with the American Water Works Association.

AMERICAN WATER WORKS ASSOCIATION
6666 West Quincy Avenue, Denver, Colorado 80235

## American National Standard

An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether he has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review, and users are cautioned to obtain the latest editions. Producers of goods made in conformity with an American National Standard are encouraged to state on their own responsibility in advertising, promotion material, or on tags or labels that the goods are produced in conformity with particular American National Standards.

CAUTION NOTICE. This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than five (5) years from the date of publication. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute, 1430 Broadway, New York, N. Y. 10018, (212) 868-1220.

[^24]
## Committee Personnel

Subcommittee 3, Fittings, which reviewed this standard, had the following personnel at that time:

Harold Kennedy Jr., Chairman
Walter Amory, Vice-Chairman
User Members Producer Members
Walter Amory
(George F. Keenan
Leonard Orlando Jr.
Arnold M. Tinkey
Robert D. Wilroy

Abraham Fenster
W. D. Goode

Thomas D. Holmes
llarold Kennedy Jr.
T. M. Kiley

Edwaris C. Sears

Standards Committec A21, Cast-Iron Pipe and Fittings, which reviewed and approved this standard, had the following personnel at the time of approval:

Lloyd W. Weller, Chairman
Edward C. Sears, Vice-Chairman
Paul A. Schulte, Secretary

Organization Represented
American Gas Association American Society of Civil Engineers American Society of Mechanical Engineers American Society for Testing and Materials American Water Works Association

Cast Iron Pipe Research Association

Individual Producer
Manufacturers' Standardization Society of the Valve and Fittings Industry
New England Water Works Association
Naval Facilities Engineering Command
Underwriters' Laboratories, Inc.
Canadian Standards Association

## Name of Representative

Leonard Orlando Jr.
Kenneth W. Henderson
James S. Vanick
Ben C. Helton
Raymond J. Kocol
Arnold M. Tinkey
Lloyd W. Weller
Thomas D. Holmes
Harold Kennedy Jr.
Edward C. Sears
W. Harry Smith

Alfred F. Case
Abraham Fenster
Walter Amory
Stanley C. Baker
John E. Perry
W. F. Semenchuk*

[^25]
## Table of Contents

sec.

## Foreword

I. History of Standard..... v
II. Latest Revision of A21.10. vi
III. Major Revisions......... . vii
IV. Options. ................ vii
V. Special Service Require-
ments................. viii

## Standard

10-1 Scope
10-2 Definitions................ 1
10-3 (jeneral Requirements.... 2
10-4 Inspection and Certification by Manufacturer. . 2
10-5 Inspection by Purchaser. . 2
10-6 Delivery and Acceptance. 2

PACE SEC. PAGE
10-7 Tolerances or Permitted Variations............. 3
10-8 Coatings and Linings.... 3
10-9 Markings on Fittings... 3
10-10 Acceptance Tests........ 4
10-11 Chemical Limitations for Cray-Iron Fittings....... 4
10-12 Additional Tests Required by the Purchaser4

10-13 Defective Specimens and Retests................ 5
10-14 Special Requirements for Flanged Fittings...... 5

Tables
Index to Tables 5

American National Standards Committee A21 on Cast-Iron Pipe and Fittings was organized in 1926 under the sponsorship of the American Gas Association, the American Society for Testing and Materials, the American Water Works Association, and the New England Water Works Association. Since 1972, the Co-Secretariats have been A.G.A., AWWA, and NEWWA, with AWWA serving as Administrative Secretariat. The present scope of Committee A21 activity is

Standardization of specifications for castiron and ductile-iron pressure pipe for gas, water, and other liquids, and fittings for use with such pipe. These specifications to include design, dimensions, materials, coatings, linings, joints, accessories, and methods of inspection and tests.

The work of Committee A21 is conducted by subcommittees. The directive of Subcommittee 3-Fittings is that

The scope of the subcommittee activity shall include the periodic review of all current A21 standards for fittings and the preparation of revisions and new standards, when needed, for fittings to be used with cast-iron and ductile-iron pressure pipe included in A21 standards.

## I. History of Standard

The evolution of AWWA and ANSI standards for fittings is presented in this foreword to provide information relative to systems having aged castiron pipe and fittings still in service.

The earliest record of an AWWA standard for cast-iron pipe is contained in the proceedings for 1890.

In 1902, NEWWA adopted a more detailed standard entitled "Standard Specification for Cast Iron Pipe and Special Castings."

The next AWWA standard for pipe and fittings, 7C.1-1908, was approved May 12, 1908. A second edition, C100-52T, was approved by AWWA Dec. 31, 1952, and by NEWWA Jan. 23, 1953. The third edition, C10054 T , was approved by AWWA Oct. 25,1954 , and finally issued as $\mathrm{C} 100-55$, having leeen advanced from tentative to standard without change Jun. 17, 1955. Standard C100-55 covered fittings in the size range $4-60 \mathrm{in}$. The fittings were all bell and spigot (caulked joint) of the so-called longradius design. The outside diameter (OD) for spigots varied with wall thicknesses, which were designated classes A, B, C, and D. Fittings 4-12 in. were made to class $D$ patterns, having only one OD and pressure rating. Fittings $14-24 \mathrm{in}$. were furnished in class $B$ and $D$, and fittings $30-60 \mathrm{in}$. were furnished in classes A , $\mathrm{B}, \mathrm{C}$, and D . All fittings made to AWWA 7C.1-1908 and C100-55 had the class identification cast on the fitting.

ASA A21.10-1952 (AWWA C11052) was approved by ASA Sep. 30, 1952. The standard covered $3-12$-in. fittings of the so-called "short-body" design and were the subject of extensive research and tests by Committee A21. The rated pressurc given by the standard was 250 psi plus water hammer. The standard provided a 2.5 safety factor plus water hammer
based on burst tests. Hydraulic losses were determined and compared with those found with AWWA longradius fittings. The minimum grade of cast iron in the standard was 25000 psi tensile strength.

ASA A21.10-1964 (AWWA C11064) was approved by ASA Jan. 9, 1964. The revision covered $2-48$-in. fittings. The design of the $14-48$-in. fittings in the revision was based on an exhaustive series of burst tests. The minimum grade of cast iron ( 25000 psi tensile strength) was retained and higher grades up to 35000 psi tensile strength were used to secure higher pressure ratings without changing radically the thicknesses. Ductile iron, grade $80-60-03$, was also added in the $14-48$-in. sizes with a rated working pressure of 250 psi having the same wall thicknesses as 150 -psi rated gray-iron fittings. The minimum safety factor loased on burst tests of representative fittings of the weakest type was $3 \times$ the rated working pressure. Tables for flanged fittings and mechanical-joint fittings were added for the first time.
ANSI A21.10-1971 (AWWA C11071) was approved ly ANSI Jul. 14, 1971. Ductile-iron fittings were added in sizes 3-12 in. and were rated for 350 psi working pressure. The grade of ductile iron was changed to $70-50-05$ to provide greater toughness. The safety factor against bursting was $3 \times$ the rated working pressure. If required by the purchaser on special order, fittings were required to withstand a hydrostatic proof test not to exceed $1.5 \times$ the rated working pressure without leaks or permanent distortions.
ANSI A21.10a-1972 (AWWA C110a-72) was approved Dec. 17, 1972 as a supplement to ANSI

A21.10-71. The pressure rating for 14-24-in. ductile-iron fittings was increased to 350 psí.

## II. Latest Revision of $\mathbf{A} 21.10$

At the meeting of Standards Committee A21 in 1974, Subcommittee 3 was assigned the task of reviewing and updating A21.10-1971 and A21.10a1972. Accordingly, Subcommittee 3 undertook a study to determine the necessary and desirable revisions. An extensive review of ANSI A21.101971 and A21.10a-1972 was conducted in an effort to update and comply with other current A21 standards, particularly ANSI A21.15.
Subcommittee 3 completed its study and submitted the proposed revisions to ANSI Standards Committee A21 in April 1976.
The usage of the bell and spigot (caulked joints) has steadily declined, until presently it has become a rarity. Subcommittee 3 concluded that bell-and-spigot fittings should be deleted. Bell-and-spigot fittings are still available from some foundries on special order.

Note: Care should be used when connecting mechanical-joint fittings to aged existing cast-iron pipe. The outside diameter of aged pipe should be measured prior to cutting since some pipe were manufactured to a larger diameter than is presently specified in A21 standards. Mechani-cal-joint sleeves or bell-and-spigot (caulked joint) sleeves are available to provide transition from existing cast-iron pipe; however, they must be specified on the purchase order. The following standards contain reference dimensions useful in classifying existing cast-iron pipe:

AWWA 7C.1-1908 (AWWA C10055) "Cast Iron Pressure Fittings," Table 1.

ASA A21.2-1953 (AWWA C102-53)
"American Standard for Cast Iron Pit Cast Pipe," Tables 2.1 and 2.2.

ANSI A21.6-1975 (AWWA C1061975) "American Standard for Cast Iron Pipe Centrifugally Cast in Metal Molds," Tables 6.4, 6.5, and 6.6.

ANSI A21.8-1975 (AWWA C108-
75) "American National Standard for Cast Iron Pipe Centrifugally Cast in Sand-Lined Molds," Tables 8.4, 8.5, and 8.6.

ANSI A21.51-1976 (AWWA C15176) "American National Standard for Ductile Iron Pipe Centrifugally Cast in Metal Molds or Sand-Lined Molds for Water or Other Liquids," Tables 51.4 and 51.5.

Center to bottom of socket dimensions (dimension $A$ in Table 10.3 and dimension $J$ in Table 10.4) for A21.10 mechanical-joint fittings are the same as the center to bottom of socket dimensions for bell-and-spigot (caulked joint) fittings specified in previous editions of A21.10.

ANSI A21.10a-1972 published as a supplement to ANSI A21.10-1971 is incorporated into this revision.

Cast-iron pipe and fittings in the 2 - and $2 \frac{1}{4}-\mathrm{in}$. sizes are no longer manufactured in the US. These sizes are deleted in this revision of A21.10.

This revision includes $3-48$-in. me-chanical-joint and flanged fittings only. At least one manufacturer offers 54 -in. fittings in flanged and push-on joints; however, 54 -in. fittings are not included as a part of this standard.

Flanged fittings are listed without change; however, bolt-length specifications have been revised to conform
to ANSI A21.15-1975. Refer to Appendix A for information on the use of flanged fittings.

## III. Major Revisions

1. The scope was revised to incorporate ANSI A21.10a-1972.
2. Bell-and-spigot fittings (caulked joints) were discontinued as a part of ANSI A21.10. Bolt lengths for flanged fittings were revised to comply with ANSI A21.15-1975.
3. 2 - and $2 \frac{1}{4}$-in. fittings have been deleted.
4. The revisions in ANSI A21.10a1972 have been incorporated into the tables and all tables concerning bell-and-spigot (caulked joints) fittings were deleted.
5. Three appendices were added for information: Appendix A covers bolts, gaskets, and the installation of flanged fittings; Appendix $B$ is a listing of special fittings that are available but are not a part of the standard. These include reducing bends, Y branches, blind flanges, reducing tees, bull head tees, flared fittings, side outlet tees, and side outlet elbows and wall pipe. Appendix C states the position of the Committee with regard to metrication.

## IV. Options

This standard includes certain options which, if desired, must be specified in the invitation for bids and on the purchase order. Also, a number of items must be specified to describe completely the fittings required. The following summarizes the details and available options and lists the sections of the standard where they are listed:

1. Size, joint type, pressure rating (Sec. 10-1 and tables.)
2. Joint specifications (Sec. 10-3.1.)
3. Type of iron (Sec. 10-3.2.)
4. End combinations (Sec. 10-3.3.)
5. Certification by manufacturer (Sec. 10-4.3.)
6. Inspection by purchaser (Sec. 10-5.)
7. Cement lining* (Sec. 10-8.2.)
8. Special coatings and linings (Sec. 10-8.4.)
9. Acceptance tests (Sec. 10-10.1.)
10. Special tests (Sec. 10-12.)

2
6
used for water and sanitary sewer systems. Fittings for other services may require special consideration by the purchaser.
2. Although this standard does not specify orientation of bolt holes in the flanges of the mechanical joint, it is at times convenient or necessary to have the bolt holes oriented. The normal but not universal practice is to have the bolt holes straddle the vertical centerline of the fittings, valves, and hydrants. (The vertical centerline of a fitting is determined when the fitting is in the position to change the direction of fluid flowing in a horizontal plane. With standard base bends and standard base tees, the vertical centerline is determined when the fitting is in a position to change the fluid flowing in a vertical plane.) If orientation is known to he necessary, it should be stated on the purchase order.

## AMERICAN NATIONAL <br> STANDARD <br> for

# Gray-Iron and Ductile-Iron Fittings, 

 3 in . Through 48 in ., for Water and Other Liquids
## Sec. 10-1-Scope

This standard covers 3-48-in. grayiron and/or ductile-iron fittings to be used with gray-iron or ductile-iron pipe for water and other liquids. Specifications for fittings with mechanical joints and flange joints are listed in the tables. This standard may also be used for fittings with push-on joints or such other joints as may be agreed upon at the time of purchase. For the $3-24-\mathrm{in}$. size range, ductile-iron mechanical-joint fittings are rated for 350 psi working pressure; ductile-iron flange-joint fittings are rated for 250 psi working pressure; and gray-iron fittings having all types of joints covered by this standard are rated for 150 or 250 psi working pressures, as shown in the tables. For the $30-48-\mathrm{in}$. size range, fittings of all types of joints covered by this standard are shown in the tables as grayiron and/or ductile-iron for rated working pressures of 150 or 250 psi, as shown in the tables.

## Sec. 10-2-Definitions

Under this standard the following definitions shall apply:

10-2.1 Purchaser. The party entering into a contract or agreement to purchase fittings according to this standard.

10-2.2 Manufacturer. The party that produces the fittings.

10-2.3 Inspector. The representative of the purchaser, authorized to inspect on behalf of the purchaser to determine whether or not the fittings meet this standard.

10-2.4 Mechanical joinl. A bolted joint of the stuffing box type as detailed in Table 10.1 and as described in ANSI A21.11 (AWWA C111) of latest revision.

10-2.5 Push-on joint. The single rubber gasket joint as described in ANSI A21.11 (AWWA C.111) of latest revision.

10-2.6 Flange joint. The flanged and bolted joint as detailed in Table 10.14.

10-2.7 Gray iron. 'The cast ferrous material in which a major part of the carbon content occurs as free carbon or graphite in the form of flakes interspersed throughout the metal.

10-2.8 Ductile iron. 'The cast ferrous material in which the free graphite present is in a spheroidal form.

## Sec. 10-3-General Requirements

10-3.1 Fittings with mechanical

Nore: All bell fitings, without plain ends, are preferred.

## Sec. 10-4-Inspection and Certification by Manufacturer

10-4.1 The manufacturer shall establish the necessary quality control and inspection practice to ensure compliance with this standard. All fittings shall be clean and sound without defects that coukl impair their service.

10-4.2 Repairing of defects by welding or other methods shall not be allowed if such repairs could adversely affect the serviceability of the fitting or its capability to meet strength requirements of this standard.

10-4.3 The manufacturer shall, if required on the purchase order, furnish a sworn statement that the inspection and all the specified tests have been made and the results thereof comply with the requirements of this standard.

## Sec. 10-5-Inspection by Purchaser

10-5.1 If the purchaser desires to inspect fittings at the manufacturer's plant, he shall so specify on the purchase order, stating the conditions (such as time and the extent of the inspection) under which the inspection shall be made.

10-5.2 The inspector shall have free access to those areas of the manufacturer's plant that are necessary to ensure compliance with this standard. The manufacturer shall make available for the inspector's use such gages as are necessary for inspection. The manufacturer shat! provide the inspector with assistance as necessary for the handling of fittings.

## Sec. 10-6-Delivery and Acceptance

All fittings and accessories shall comply with this standard. Fittings
or accessories that do not comply with this standard shall be replaced by the manufacturer at the agreed point of delivery. The manufacturer shall not be liable for shortages or damaged fittings or accessories after acceptance at the agreed point of delivery except as recorded on the delivery receipt or similar document by the carrier's agent.

Sec. 10-7-Tolerances or Permitted Variations
10-7.1 Dimensions. Fittings shall be gaged with suitable gages at sufficiently frequent intervals to ensure that the dimensions comply with the requirements of this standard. The smallest inside diameter of the sockets and the outside diameter of the plain ends shall be tested with circular gages. Other socket dimensions shall be gaged as is appropriate.

10-7.2 Thickness. Minus tolerances for metal thicknesses, except those shown in Tables 10.1 and 10.2, shall not le more than the following:

|  | Fitting Size <br> in. |
| :---: | :---: |
| $3-6$ | Minus Tolerance <br> in. |
| $8-20$ | 0.10 |
| $24-48$ | 0.12 |

An additional tolerance shall be permitted over areas not exceeding 8 in. in any direction as follows: for $3-12$-in. fittings, 0.02 in .; for $14-48-\mathrm{in}$. fittings, 0.03 in .

10-7.3 Weight. The weight of any fitting shall not be less than the nominal tabulated weight by more than 10 per cent for fittings 12 in . or smaller in diameter or by more than 8 per cent for fittings larger than 12 in. in diameter. The nominal tabu-
lated weight is the weight of the fitting before the application of any lining or coating other than the standard coatings.

## Sec. 10-8-Coatings and Linings

10-8.1 Outside coating. The outside coating for general use under all normal conditions shall be a bituminous coating approximately 1 mil thick. The coating shall be applied to the outside of all fittings, unless otherwise specified. The finished coating shall be continuous, smooth, neither brittle when cold nor sticky when exposed to the sun, and strongly adherent to the fitting.

10-8.2 Cement-mortar linings. Cement linings shall be in accordance with ANSI A21.4 (AWWA (104) of latest revision. If desired, cement linings shall be specified in the invitation for bids and on the purchase order.

10-8.3 Inside coating. Unless otherwise specified, the inside coating for fittings that are not cement-lined shall be a bituminous material as thick as practicable (at least 1 mil ) and conform to all appropriate requirements for sealcoat in ANSI A21.4 (AWWA C104) of latest revision.

10-8.4 Special coatings and linings. For special conditions, other types of coatings and linings may be available. Such special coatings and linings shall be specified in the invitation for bids and on the purchase order.

## Sec. 10-9—Markings on Fittings

Fittings shall have distinctly cast upon them the manufacturer's identification, pressure rating, nominal diameters of openings, and the number of degrees or fraction of the circle
on all bends. Ductile-iron fittings shall have the letters "DI" or "Ductile" cast on them. Cast letters and figures shall be on the outside and shall have dimensions no smaller than the following:

| Size <br> in. | Height of <br> Letters <br> in. | Relief <br> in. |
| :---: | :---: | :---: |
| Less than 8 | As large as <br> practical <br> $8-10$ | $\frac{3}{4}$ <br> $12-48$ |
| $1 \frac{1}{4}$ | As large as <br> practical |  |

## Sec. 10-10-Acceptance Tests

10-10.1 Physical test-gray-iron fittings. The standard acceptance test for the physical characteristics of gray-iron fittings shall be one of the following:

1. Transverse test conclucted in accordance with ASTAI A438-62 (1974).
2. Tensile test conducted in accordance with ASTM A48-74.

10-10.1.1 Choice of test. Unless specified by the purchaser, either the tensile test or the transverse test, at the option of the manufacturer, shall be used as the acceptance test. The acceptance values for iensile and transverse lests shall be as follows:

| $\begin{gathered} \text { Iron } \\ \text { Strength } \\ p s i \\ (1000 ' \mathrm{~s}) \end{gathered}$ | Fitting Size in. | $\begin{gathered} \text { Bar } \\ \text { Diam. } \\ \text { in. } \end{gathered}$ | $\mathrm{S}_{\substack{\text { Syan* } \\ i n .}}$ | Min. Breaking Load $i b$. | Min. Tensile Strength $\dagger$ ( 1000 's) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | 3-14 | 1.20 | 18 | 2000 | 25 |
| 30 | 14-24 | 1.20 | 18 | 2200 | 30 |
| 30 | 20-48 | 2.00 | 24 | 7600 | 30 |
| 35 | 16-24 | 1.20 | 18 | 2400 | 35 |
| 35 | 20-36 | 2.00 | 24 | 8300 | 35 |

* ASTM A4.38-62 (1974).
$\dagger$ ASTM A48-74.

For 20 -in. and 24 -in. fittings with a body thickness greater than 1 in ., a 2 -in. test bar shall be used.

10-10.2 Physical test-ductile-iron fittings. The standard acceptance test for the physical characteristics of ductile-iron fittings shall be a tensile test from coupons cast from the same iron as the fittings. The coupons shall be cast and the tests made in accordance with ASTXI A536-72 except the grade shall be $70-50-05$. Either the keel block or $Y$ block shall be used as the test coupons at the option of the manufacturer. The acceptance shall be as follows: minimum tensile strength, 70000 psi ; minimum yield strength, 50000 psi ; minimum clongation, 5 per cent.

10-10.3 Sampling. At least one sample shall be taken cluring each period of approximately 3 hr while the melting unit is operated continuously.

## Sec. 10-11-Chemical Limitations for Gray-Iron Fittings

Analyses of the iron in gray-iron fittings shall be made at sufficiently frequent intervals to ensure compliance with the following limits: phosphorus, 0.90 per cent maximum; sulfur, 0.15 per cent maximum.

Control of the other chemical constituents shall be maintained to meet the physical property requirements of this standard. Samples for chemical analyses shall be representative and shall be obtained from either acceptance test specimens or specimens cast for this purpose.

Sec. 10-12-Additional Tests Required by the Purchaser
If tests other than those provided in this standard are required by the purchaser, such tests shall be specified in the invitation for bids and on the
purchase order. Although it is not customary to make hydrostatic proof tests of fittings at the foundry, such tests may be made on special order at additional cost. If proof tests at the foundry are required by the purchaser for an order of fittings, the fittings shall withstand, without leaks or permanent distortion, hydrostatic test pressures not to exceed $1.5 \times$ the rated water working pressures.

## Sec. 10-13-Defective Specimens and Retests

When any physical test specimen shows defective machining or lack of continuity of metal, it shall be discarded and replaced by another specimen cast in the same sampling period as the specimen that failed.

## Sec. 10-14—Special Requirements for Flanged Fittings

10-14.1 Flanges. Flanges shall conform to the dimensions shown in Table 10.14, which are adequate for water service of 250 psi working pressure.
Note: The bolt circle and bolt holes of these flanges match those of the class 125 flanges shown in ANSI B16.1 and can be joined with class 125 B16.1 flanges. Flanges in A21.10
cannot be joined with class 250 B 16.1 flanges.

10-14.2 Facing. Flanges shall be plain faced without projection or raised face and shall be furnished smooth or with shallow serrations. Flanges may be back faced or spot faced for compliance with the flange thickness tolerance specified in this standard. Bearing surfaces for bolting shall be parallel to the flange face within 3 deg.

10-14.3 Bolt holes. Bolt holes shall be in accordance with the dimensions shown in Table 10.14. They shall be equally spaced and shall straddle the centerline of the fitting.

10-14.3.1 Misalignment of corresponding bolt holes of two opposing flanges shall not exceed 0.12 in.

10-14.3.2 If bolt-hole alignment other than provided for in this standard is required by the purchaser, it shall be specified in the invitation for bids and on the purchase order.

10-14.4 Laying-length dimensions. Face-to-face dimensions shall conform to a tolerance of $\pm 0.06 \mathrm{in}$. for sizes $3-10 \mathrm{in}$. and $\pm 0.12 \mathrm{in}$. for sizes 12-48 in. Center-to-face tolerances shall be one half those of face-to-face tolerances. The largest opening shall govern the tolerance for all openings.

## Index to Tables

| TABLE | PAGE | TABLE | PAGE |
| :---: | :---: | :---: | :---: |
| Mechanical-Joint Fittings |  |  |  |
| 10.1 - Dimensions | 6 | 10.12-Connecting Pieces | 28 |
| 10.2 -Plain-End Dimensions and Tolerances. | - 7 | 10.13-Connecting Pieces, One-End Flanged..................... | . 29 |
| 10.3 -Bends. | 9 |  |  |
| 10.4 -Tees and Crosses. |  | Flanged Fittings |  |
| 10.5 - Base Bends. | 19 | 10.14-Flange Details | 30 |
| 10.6 -Base Tees. | 20 | 10.15-Base Drilling Details. |  |
| 10.7 -Reducers | 21 | 10.16-Bends. | 32 |
| 10.8 -Tapped Tees. | 24 | 10.17-Tees and Crosses. | 33 |
| 10.9 -Offsets. | 25 | 10.18-Base Bends. | 37 |
| 10.10-Sleeves. | 26 | 10.19-Base Tees. |  |
| 10.11-Caps and Plugs. | 27 | 10.20-Reducers. | 39 |

AVN

TABLE 10.1
Standard Mechanical-Joint Dimensions-in.*

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Bolts |  |  | Weight-lb |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size in. | Plain End | $B$ | C | D | $F$ | $\begin{gathered} \phi \\ d e g \end{gathered}$ | $X$ | $J$ | $K_{1}$ | K2 | $L$ L M | $N$ |  | $P$ S | $\boldsymbol{Y}$ | No. | Size | Lgth. | Bell | Gland Bolts Gasket |
| 3 | $\begin{array}{r} 3.96 \\ \pm .06 \end{array}$ | 2.50 | $\begin{array}{r} 4.84 \\ \pm .04 \end{array}$ | $\begin{aligned} & 4.94 \\ & +.06-.04 \end{aligned}$ | $\begin{aligned} & 4.06 \\ & +.07-.03 \end{aligned}$ | 28 | + | 6.19 $\pm .06$ | 7.69 -.12 |  | -.94 $-.06{ }^{-.62}$ | . 75 | . 31 | . $63 \left\lvert\, \begin{aligned} & .5 \\ & -.1\end{aligned}\right.$ | . 12 | 4 |  | 3 | 11 | 7 |
| 4 | $\begin{array}{r} 4.80 \\ \pm .06 \end{array}$ | 2.50 ! | 5.92 $\pm .04$ | $\begin{aligned} & 6.02 \\ & +.06-.04 \end{aligned}$ | $\begin{aligned} & 4.90 \\ & +.07-.03 \end{aligned}$ | 28 | $\stackrel{1}{+}$ | 7.50 $\pm .06$ | 9.12 -.12 | 9.12 -.12 | $\left\lvert\, \begin{gathered} 1.00 \\ -.06 \\ -.75 \\ \hline \end{gathered}\right.$ | $.75$ | . 3 | . $75^{\text {i }} \begin{array}{r}\text { r } \\ \text { - } \\ -.105\end{array}$ | . 12 | 4 | z | 31 | 16 | 10 |
| 6 | $\begin{array}{r} 6.90 \\ \pm .06 \end{array}$ | 2.50 | 8.02 $\pm .04$ | $\begin{aligned} & 8.12 \\ & +.06-.04 \end{aligned}$ | $\begin{aligned} & 7.00 \\ & +.07-.03 \end{aligned}$ | 28 | + + +06-. 0 | 9.50 $\pm .06$ | $\left\lvert\, \begin{aligned} & 11.12 \\ & -.12\end{aligned}\right.$ | $\begin{array}{r} 11.12 \\ -.12 \end{array}$ | $\begin{gathered} 1.06 \\ -.06 \\ 1 \end{gathered}-.88$ | $75$ | . 31 | $\begin{array}{r} 1 \\ .75 \\ \hline \end{array}$ | .12, | 6 | 3 | $3 \frac{1}{2}$ | 23 | 16 |
| 8 | $\begin{array}{r} 9.05 \\ \pm .06 \end{array}$ | 2.50 | $\begin{gathered} 10.17 \\ \pm .04 \end{gathered}$ | $\stackrel{10.27}{+.06-.04}$ | $\begin{array}{r} 9.15 \\ +.07-.03 \end{array}$ | 28 | $\stackrel{\text { l }}{+}$ | 11.75 $\pm .06$ | $\begin{array}{r} 13.37 \\ -.12 \end{array}$ | 13.37 -.12 | $\begin{array}{\|c\|c} 1.12 & 1.00 \\ -.08 & -.08 \end{array}$ | . 75 : | . 31 | $\begin{array}{c:c} .75 \\ . & -.12 \end{array}$ | . 12 | 6 | 3 | 4 | 31 | 25 |
| 10 | $\begin{gathered} 11.10 \\ \pm .06 \end{gathered}$ | 2.50 | $\stackrel{12.22}{+.06-.04}$ | $\begin{aligned} & 12.34 \\ & +.06-.04 \end{aligned}$ | $\stackrel{11.20}{+.07-.03}$ | 28 | $\stackrel{7}{+.06-.0}$ | $\begin{aligned} & 14.00 \\ & \pm .06 \end{aligned}$ | $\begin{array}{r} 15.69 \\ -.12 \end{array}$ | $\begin{array}{r} 15.62 \\ -.12 \end{array}$ | $\left\|\begin{array}{c:c} 1.19 & 1.00 \\ \hdashline .08 ; & -.08 \end{array}\right\|$ | . 75 | . 31 | . $75: \begin{array}{r}.80 \\ -.12\end{array}$ | . 12 | 8 | ${ }^{3}$ | 4 | 41 | 30 |
| 12 | $\begin{aligned} & 13.20 \\ & \pm .06 \end{aligned}$ | 2.50 | $\begin{aligned} & \begin{array}{l} 14.32 \\ +.06-.04 \end{array} \end{aligned}$ | $\begin{aligned} & 14.44 \\ & +.06-.04 \end{aligned}$ | $\stackrel{13.30}{+.07}-.03$ | 28 | $\stackrel{+}{+} .06-.0$ | $\begin{aligned} & 16.25 \\ & \pm .06 \end{aligned}$ | $\begin{array}{r} 17.94 \\ -\quad .12 \end{array}$ | $\begin{array}{r} 17.88 \\ --.12 \end{array}$ | $\begin{array}{r} 1.25: 1.00 \\ -.08 \\ \hline \end{array}$ | . 75 | . 31 | . 75 ' $\begin{array}{r}\text { - } \\ -.85\end{array}$ | . 12 | 8 | \% | 4 | 51 | 40 |
| 14 | $\begin{aligned} & 15.30 \\ & +.05-.08 \end{aligned}$ | 3.50 | $\begin{aligned} & \begin{array}{l} 16.40 \\ +.07 \end{array}-.05 \end{aligned}$ | $\begin{aligned} & 16.54 \\ & +.07 \end{aligned}$ | $\begin{aligned} & 15.44 \\ & +.06-.07 \end{aligned}$ | 28 | + $+06-.0$ | 18.75 $\pm .06$ | $\mid 20.31$ | 20.25 | $\left\lvert\, \begin{array}{r\|r\|} 1.31 & 1.25 \\ -.12 & -.12 \end{array}\right.$ | . 75. | . 31 | $.75:-.89$ | . 12 | 10 | $z$ | $4 \frac{1}{2}$ | 79 | 4.5 |
| 16 | $\begin{aligned} & 17.40 \\ & +.05-.08 \end{aligned}$ | 3.50 | $\stackrel{18.50}{+.07}-.05$ | $\begin{aligned} & 18.64 \\ & +.07-.05 \end{aligned}$ | $\begin{aligned} & 17.54 \\ & +.06-.07 \end{aligned}$ | 28 | + + + 06 | 21.00 $\pm .06$ | 22.56 | 22.50 -.12 | $\begin{array}{r\|r\|l} 1.38 & 1.31! \\ -.12 & -.12!. \end{array}$ | $\text { . } 75$ | . 31 | $.75-.97$ | . 12 | 12 | \% | 43 | 97 | 55 |
| 18 | $\begin{aligned} & 19.50 \\ & +.05-.08 \end{aligned}$ | 3.50 | $\begin{aligned} & \begin{array}{c} 20.60 \\ +.07 \end{array}-.05 \end{aligned}$ | $\stackrel{20.74}{+.07-.05}$ | $\begin{aligned} & 19.64 \\ & +.06-.07 \end{aligned}$ | 28 | $\stackrel{+}{+}$ | 23.25 $\pm .06$ | $\left\lvert\, \begin{aligned} & 24.83 \\ & -.15 \end{aligned}\right.$ | $\begin{gathered} 24.75 \\ -.15 \end{gathered}$ | $\begin{array}{rr} 1.44 & 1.38 \\ -.12 & -.12 \end{array}$ | . 75 | . 31 ' | $\begin{array}{c:c}  & 1.05 \\ .75 & -.15 \end{array}$ | . 12 | 12 | \% | $4 \frac{3}{2}$ | 117 | 6.5 |
| 20 | $\begin{aligned} & 21.60 \\ & +.05-.08 \end{aligned}$ | 3.50 | $\left\lvert\, \begin{aligned} & 22.70 \\ & +.07-.05 \end{aligned}\right.$ | $\begin{gathered} 22.84 \\ +.07 \end{gathered}-.05$ | $\begin{gathered} 21.74 \\ +.06-.07 \end{gathered}$ | 28 | L + + | $\begin{aligned} & 25.50 \\ & \pm .06 \end{aligned}$ | $\left\lvert\, \begin{aligned} & 27.08 \\ & -.15 \end{aligned}\right.$ | $\left\lvert\, \begin{gathered} 27.00 \\ -.15 \end{gathered}\right.$ | $\begin{array}{r:r} 1.50 & 1.44 \\ -.12 & -.12 \end{array}$ | . 75 | . 31 | . $75 \cdot \begin{aligned} & 1.12 \\ & -.15\end{aligned}$ | . 12 | 14 | 1 | $4 \frac{3}{3}$ | 140 | 8.5 |
| 24 | $\begin{aligned} & \begin{array}{l} 25.80 \\ +.05-.08 \end{array} \end{aligned}$ | 3.50 | $\begin{aligned} & 26.90 \\ & +.07-.05 \end{aligned}$ | $\stackrel{27.04}{+.07}-.05$ | $\begin{aligned} & 25.94 \\ & +.06-.07 \end{aligned}$ | 28 | $\stackrel{\ddagger}{+} .06-.0$ | $\begin{aligned} & 30.00 \\ & \pm .06 \end{aligned}$ | $\begin{array}{r} 31.58 \\ -.15 \end{array}$ | 31.50 -.15 | $\begin{array}{rr} 1.62 & 1.56 \\ -.12 & -.12 \end{array}$ | . 75 | . 31 | . $75^{\text {¢ }}$1.22 <br> -.15 | . 12 | 16 | $\ddagger$ | 5 | 185 | 10.5 |
| 30 | $\begin{aligned} & 32.00 \\ & +.08-.06 \end{aligned}$ | 4.00 | $\stackrel{33.29}{+.08-.06}$ | $\stackrel{33.46}{+.08-.06}$ | $\left\lvert\, \begin{aligned} & 32.17 \\ & +.08-.06 \end{aligned}\right.$ | 20 | $\stackrel{1+}{+.06-.0}$ | $\begin{aligned} & 36.88 \\ & \pm .06 \end{aligned}$ | $\begin{array}{r} 39.12 \\ -.18 \end{array}$ | $\begin{array}{\|c} 39.12 \\ -.18 \end{array}$ | $\begin{array}{\|r\|r} 1.81 & 2.00 \\ -.12 & -.12 \end{array}$ | . 75. | . 3 | $\begin{array}{ll} 1.00 \quad 1.50 \\ -.15 \end{array}$ | . 12 | 20 | 1 | 6 | 315 | 220 |
| 36 | $\begin{array}{r} 38.30 \\ +.08-.06 \end{array}$ | 4.00 | $\begin{array}{r} 39.59 \\ +.08-.06 \end{array}$ | $\stackrel{39.76}{+.08-.06}$ | $\stackrel{38.47}{+.08-.06}$ | 20 | $\stackrel{17}{+.06-.0}$ | $\begin{gathered} 43.75 \\ \pm .06 \end{gathered}$ | $\left.\right\|^{46.00}$ | $\begin{array}{r} 46.00 \\ -.18 \end{array}$ | $\begin{array}{rr} 2.00 & 2.00 \\ -.12 & -.12 \end{array}$ | . 75 ; | . 38 | $\begin{array}{ll} 1.00 & 1.80 \\ -.15 \end{array}$ | . 12 | 24 | 1 | 6 | 44.5 | 28.5 |
| 42 | $\stackrel{44.50}{+.08-.06}$ | 4.00 | $\stackrel{45.79}{+.08-.06}$ | $\stackrel{45.96}{+.08-.06}$ | $\stackrel{44.67}{+.08-.06}$ | 20 | ${ }^{1 \pm}+.06-.0$ | $\begin{array}{r} 50.62 \\ \pm .06 \end{array}$ | $\left\lvert\, \begin{array}{r} 53.12 \\ -.18 \end{array}\right.$ | $\begin{array}{r} 53.12 \\ -.18 \end{array}$ | $\begin{array}{r} 2.00 \\ -.12:-12 \end{array}$ | $.75$ | . 38 | $1.00 \quad \begin{array}{r} 1.95 \\ -.15 \end{array}$ | . 12 | 28 | 11 | 6 | 570 | 400 |
| 48 | $\stackrel{50.80}{+.08-.06}$ | 4.00 | $\begin{array}{r} 52.09 \\ +.08-.06 \end{array}$ | $\stackrel{52.26}{+.08-.06}$ | $\stackrel{50.97}{+.08-.06}$ | 20 | $\stackrel{18}{+.06-.0}$ | $\left\lvert\, \begin{gathered} 57.50 \\ \pm .06 \end{gathered}\right.$ | $\begin{array}{r} 60.00 \\ -\quad .18 \end{array}$ | $\begin{array}{\|c} 60.00 \\ -.18 \end{array}$ | $\begin{array}{r\|c} 2.00 \\ -.12 & 2.00 \\ \hline \end{array}$ | . 75 | . 38 | $1.00:$2.20 <br> -.15 <br>  | ${ }^{1} 12$ | 32 | 14 | 6 | 725 | 47.5 |

[^26]

Fig. 10.1. 3-48 in. Standard Mechanical-Joint Dimensions (See Table 10.1)

1. Diameter of cored holes may be tapered an additional 0.06 in .
2. Dimension A in Table 10.1 is the outside diameter of the plain end of the fitting.
3. In the event of ovalness of the plain end $O D$, the mean diameter measured by a circumferential tape shall not be less than the minimum diameter shown in the table. The minor axis shall not be less than the above minimum diameter plus an additional minus tolerance of 0.04 in . for sizes $8-12 \mathrm{in}$., 0.07 in . for sizes $14-24 \mathrm{in}$., and 0.10 in . for sizes $30-48 \mathrm{in}$.
4. $\mathrm{K}_{1}$ and $\mathrm{K}_{2}$ are the dimensions across the bolt holes. For sizes 3-48 in., the gland may be polygon shaped.

TABLE 10.2


Fig. 10.2. Mechanical-Joint Plain-End Dimensions and Tolerances (See Table 10.2)

1. All sizes of fittings with plain ends have 8 in . of added laying length as compared with the, laying length of standard allbell fittings.
2. In Fig. 10.2, dimension L is minimum length of the plain end which must be gaged to ensure that the outside diameter is within the dimensions and tolerances specified in Table 10.2.


Fig. 10.3. Mechanical-Joint Bends (See Table 10.3)

TABLE 10.3
Mechanical-Joint Bends*

| Size in. | $\begin{aligned} & \text { Pressure } \\ & \text { Rating } \\ & \text { psi } \end{aligned}$ | $\underset{\text { Strength }}{\text { Iron }}$ | Dimensions-in. |  |  |  | Weight-lb $\dagger$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $T$ | A | $s$ | $R$ | MJ \& MJ | MJ \& PE |
| 90-deg Bends |  |  |  |  |  |  |  |  |
| 3 | 250 | 25 | 0.48 | 5.5 | 13.5 | 4.0 | 35 | 35 |
| 3 | 350 | DI $\ddagger$ | 0.48 | 5.5 | 13.5 | 4.0 | 35 | 35 |
| 4 | 250 | 25 | 0.52 | 6.5 | 14.5 | 4.5 | 55 | 50 |
| 4 | 350 | DI | 0.52 | 6.5 | 14.5 | 4.5 | 55 | 50 |
| 6 | 250 | 25 | 0.55 | 8.0 | 16.0 | 6.0 | 85 | 80 |
| 6 | 350 | DI | 0.55 | 8.0 | 16.0 | 6.0 | 85 | 80 |
| 8 | 250 | 25 | 0.60 | 9.0 | 17.0 | 7.0 | 125 | 120 |
| 8 | 350 | DI | 0.60 | 9.0 | 17.0 | 7.0 | 125 | 120 |
| 10 | 250 | 25 | 0.68 | 11.0 | 19.0 | 9.0 | 190 | 190 |
| 10 | 350 | DI | 0.68 | 11.0 | 19.0 | 9.0 | 190 | 190 |
| 12 | 250 | 25 | 0.75 | 12.0 | 20.0 | 10.0 | 255 | 255 |
| 12 | 350 | DI | 0.75 | 12.0 | 20.0 | 10.0 | 255 | 255 |
| 14 | 150 | 25 | 0.66 | 14.0 | 22.0 | 11.5 | 340 | 325 |
| 14 | 250 | 25 | 0.82 | 14.0 | 22.0 | 11.5 | 380 | 365 |
| 14 | 350 | DI | 0.66 | 14.0 | 22.0 | 11.5 | 340 | 325 |
| 16 | 150 | 30 | 0.70 | 15.0 | 23.0 | 12.5 | 430 | 410 |
| 16 | 250 | 30 | 0.89 | 15.0 | 23.0 | 12.5 | 490 | 470 |
| 16 | 350 | DI | 0.70 | 15.0 | 23.0 | 12.5 | 430 | 410 |
| 18 | 150 | 30 | 0.75 | 16.5 | 24.5 | 14.0 | 545 | 520 |
| 18 | 250 | 30 | 0.96 | 16.5 | 24.5 | 14.0 | 625 | 600 |
| 18 | 350 | DI | 0.75 | 16.5 | 24.5 | 14.0 | 545 | 520 |
| 20 | 150 | 30 | 0.80 | 18.0 | 26.0 | 15.5 | 680 | 650 |
| 20 | 250 | 30 | 1.03 | 18.0 | 26.0 | 15.5 | 790 | 755 |
| 20 | 350 | DI | 0.80 | 18.0 | 26.0 | 15.5 | 680 | 650 |
| 24 | 150 | 30 | 0.89 | 22.0 | 30.0 | 18.5 | 1,025 | 985 |
| 24 | 250 | 30 | 1.16 | 22.0 | 30.0 | 18.5 | 1,215 | 1,175 |
| 24 | 350 | DI | 0.89 | 22.0 | 30.0 | 18.5 | 1,025 | 985 |
| 30 | 150 | 30 | 1.03 | 25.0 | 33.0 | 21.5 | 1,690 | 1,585 |
| 30 | 250 | 30 | 1.37 | 25.0 | 33.0 | 21.5 | 2,030 | 1,920 |
| 30 | 250 | DI | 1.03 | 25.0 | 33.0 | 21.5 | 1,690 | 1,585 |
| 36 | 150 | 30 | 1.15 | 28.0 | 36.0 | 24.5 | 2,475 | 2,310 |
| 36 | 250 | 30 | 1.58 | 28.0 | 36.0 | 24.5 | 3,045 | 2,880 |
| 36 | 250 | DI | 1.15 | 28.0 | 36.0 | 24.5 | 2,475 | 2,310 |
| 42 | 150 | 30 | 1.28 | 31.0 | 39.0 | 27.5 | 3,410 | 3,200 |
| 42 | 250 | 30 | 1.78 | 31.0 | 39.0 | 27.5 | 4,255 | 4,050 |
| 42 | 250 | DI | 1.28 | 31.0 | 39.0 | 27.5 | 3,410 | 3,200 |
| 48 | 150 | 30 | 1.42 | 34.0 | 42.0 | 30.5 | 4,595 | 4,330 |
| 48 | 250 | 30 | 1.96 | 34.0 | 42.0 | 30.5 | 5,745 | 5,475 |
| 48 | 250 | DI | 1.42 | 34.0 | 42.0 | 30.5 | 4,595 | 4,330 |

* Dimension details of mechanical-joint bells are shown in Table 10.1 ; dimension details of plain ends are shown in Table 10.2
+ Weight does not include accessory weights. See Table 10.1 for accessory weights
$\ddagger$ Ductile Iron.

TABLE 10.3
Mechanical-Joint Bends* (contd.)

| Size in. | Pressure <br> Rating psi | $\begin{gathered} \text { Iron } \\ \text { Strength } \\ \text { psi }\left(10000^{\prime} s\right) \end{gathered}$ | Dimensions-in. |  |  |  | Weight-lb $\dagger$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $T$ | A | $S$ | $R$ | MJ \& M J | $\mathrm{MJ} \& \mathrm{PE}$ |
| 45-deg Bends |  |  |  |  |  |  |  |  |
| 3 | 250 | 25 | 0.48 | 3.0 | 11.0 | 3.62 | 30 | 30 |
| 3 | 350 | DI $\ddagger$ | 0.48 | 3.0 | 11.0 | 3.62 | 30 | 30 |
| 4 | 250 | 25 | 0.52 | 4.0 | 12.0 | 4.81 | 50 | 45 |
| 4 | 350 | DI | 0.52 | 4.0 | 12.0 | 4.81 | 50 | 45 |
| 6 | 250 | 25 | 0.55 | 5.0 | 13.0 | 7.25 | 75 | 70 |
| 6 | 350 | DI | 0.55 | 5.0 | 13.0 | 7.25 | 75 | 70 |
| 8 | 250 | 25 | 0.60 | 5.5 | 13.5 | 8.44 | 110 | 105 |
| 8 | 350 | DI | 0.60 | 5.5 | 13.5 | 8.44 | 110 | 105 |
| 10 | 250 | 25 | 0.68 | 6.5 | 14.5 | 10.88 | 155 | 155 |
| 10 | 350 | D1 | 0.68 | 6.5 | 14.5 | 10.88 13.25 | 155 | 155 |
| 12 | 250 | 25 | 0.75 | 7.5 | 15.5 15.5 | 13.25 13.25 | 215 215 | 215 |
| 12 | 350 | DI | 0.75 | 7.5 | 15.5 |  | 215 | 215 |
| 14 | 150 | 25 | 0.66 | 7.5 | 15.5 | 12.06 | 270 | 255 |
| 14 | 250 | 25 | 0.82 | 7.5 | 15.5 | 12.06 | 300 | 280 |
| 14 | 350 | DI | 0.66 | 7.5 | 15.5 | 12.06 | 270 | 255 |
| 16 | 150 | 30 | 0.70 | 8.0 | 16.0 | 13.25 | 340 | 320 |
| 16 | 250 | 30 | 0.89 | 8.0 | 16.0 | 13.25 | 380 | 360 |
| 16 | 350 | DI | 0.70 | 8.0 | 16.0 | 13.25 | 340 | 320 |
| 18 | 150 | 30 | 0.75 | 8.5 | 16.5 | 14.50 | 420 | 395 |
| 18 | 250 | 30 | 0.96 | 8.5 | 16.5 | 14.50 | 470 | 445 |
| 18 | 350 | DI | 0.75 | 8.5 | 16.5 | 14.50 | 420 | 395 |
| 20 | 150 | 30 | 0.80 | 9.5 | 17.5 | 16.88 | 530 | 500 |
| 20 | 250 | 30 | 1.03 | 9.5 | 17.5 | 16.88 | 595 | 565 |
| 20 | 350 | DI | 0.80 | 9.5 | 17.5 | 16.88 | 530 | 500 |
| 24 | 150 | 30 | 0.89 | 11.0 | 19.0 | 18.12 | 755 | 715 |
| 24 | 250 | 30 | 1.16 | 11.0 | 19.0 | 18.12 | 865 | 825 |
| 24 | 350 | DI | 0.89 | 11.0 | 19.0 | 18.12 | 755 | 715 |
| 30 | 150 | 30 | 1.03 | 15.0 | 23.0 | 27.75 | 1,380 | 1,275 |
| 30 | 250 | 30 | 1.37 | 15.0 | 23.0 | 27.75 | 1,620 | 1,510 |
| 30 | 250 | DI | 1.03 | 15.0 | 23.0 | 27.75 | 1,380 | 1,275 |
| 36 | 150 | 30 | 1.15 | 18.0 | 26.0 | 35.00 | 2,095 | 1,930 |
| 36 | 250 | 30 | 1.58 | 18.0 | 26.0 | 35.00 | 2,525 | 2,360 |
| 36 | 250 | DI | 1.15 | 18.0 | 26.0 | 35.00 | 2,095 | 1,930 |
| 42 | 150 | 30 | 1.28 | 21.0 | 29.0 | 42.25 | 2,955 | 2,745 |
| 42 | 250 | 30 | 1.78 | 21.0 | 29.0 | 42.25 | 3,635 | 3,425 |
| 42 | 250 | DI | 1.28 | 21.0 | 29.0 | 42.25 | 2,955 | 2,745 |
| 48 | 150 | 30 | 1.42 | 24.0 | 32.0 | 49.50 | 4,080 | 3,815 |
| 48 | 250 | 30 | 1.96 | 24.0 | 32.0 | 49.50 | 5,040 | 4,770 |
| 48 | 250 | DI | 1.42 | 24.0 | 32.0 | 49.50 | 4,080 | 3,815 |

* Dimension details of mechanical-joint bells are shown in Table 10.1; dimension details of plain ends are shown in Table 10.2.
$t$ Weight does not include accessory weights. See Table 10.1 for accessory weights.
$\ddagger$ Ductile Iron.

TABLE 10.3
Mechanical-Joint Bends* (contd.)

| Size in. | Pressure <br> Rating psi | $\begin{gathered} \text { Iron } \\ \text { Strength } \\ \text { psi } \\ \left(1000^{\prime} s\right) \end{gathered}$ | Dimensions-in. |  |  |  | Weight-lb $\dagger$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $T$ | A | $S$ | $R$ | MJ \& MJ | MJ \& PE |
| 22-deg Bends |  |  |  |  |  |  |  |  |
| 3 | 250 | 25 | 0.48 | 3.0 | 11.0 | 7.56 | 30 | 30 |
| 3 | 350 | DI $\ddagger$ | 0.48 | 3.0 | 11.0 | 7.56 | 30 | 30 |
| 4 | 250 | 25 | 0.52 | 4.0 | 12.0 | 10.06 | 50 | 45 |
| 4 | 350 | DI | 0.52 | 4.0 | 12.0 | 10.06 | 50 | 45 |
| 6 | 250 | 25 | 0.55 | 5.0 | 13.0 | 15.06 | 75 | 70 |
| 6 | 350 | DI | 0.55 | 5.0 | 13.0 | 15.06 | 75 | 70 |
| 8 | 250 | 25 | 0.60 | 5.5 | 13.5 | 17.62 | 110 | 105 |
| 8 | 350 | DI | 0.60 | 5.5 | 13.5 | 17.62 | 110 | 105 |
| 10 | 250 | 25 | 0.68 | 6.5 | 14.5 | 22.62 | 160 | 160 |
| 10 | 350 | DI | 0.68 | 6.5 | 14.5 | 22.62 | 160 | 160 |
| 12 | 250 | 25 | 0.75 | 7.5 | 15.5 | 27.62 | 220 | 220 |
| 12 | 350 | DI | 0.75 | 7.5 | 15.5 | 27.62 | 220 | 220 |
| 14 | 150 | 25 | 0.66 | 7.5 | 15.5 | 25.12 | 275 | 260 |
| 14 | 250 | 25 | 0.82 | 7.5 | 15.5 | 25.12 | 300 | 285 |
| 14 | 350 | DI | 0.66 | 7.5 | 15.5 | 25.12 | 275 | 260 |
| 16 | 150 | 30 | 0.70 | 8.0 | 16.0 | 27.62 | 345 | 325 |
| 16 | 250 | 30 | 0.89 | 8.0 | 16.0 | 27.62 | 385 | 365 |
| 16 | 350 | DI | 0.70 | 8.0 | 16.0 | 27.62 | 345 | 325 |
| 18 | 150 | 30 | 0.75 | 8.5 | 16.5 | 30.19 | 430 | 405 |
| 18 | 250 | 30 | 0.96 | 8.5 | 16.5 | 30.19 | 480 | 455 |
| 18 | 350 | DI | 0.75 | 8.5 | 16.5 | 30.19 | 430 | 405 |
| 20 | 150 | 30 | 0.80 | 9.5 | 17.5 | 35.19 | 535 | 505 |
| 20 | 250 | 30 | 1.03 | 9.5 | 17.5 | 35.19 | 605 | 575 |
| 20 | 350 | DI | 0.80 | 9.5 | 17.5 | 35.19 | 535 | 505 |
| 24 | 150 | 30 | 0.89 | 11.0 | 19.0 | 37.69 | 765 | 725 |
| 24 | 250 | 30 | 1.16 | 11.0 | 19.0 | 37.69 | 880 | 840 |
| 24 | 350 | DI | 0.89 | 11.0 | 19.0 | 37.69 | 765 | 725 |
| 30 | 150 | 30 | 1.03 | 15.0 | 23.0 | 57.81 | 1,400 | 1,295 |
| 30 | 250 | 30 | 1.37 | 15.0 | 23.0 | 57.81 | 1,650 | 1,540 |
| 30 | 250 | DI | 1.03 | 15.0 | 23.0 | 57.81 | 1,400 | 1,295 |
| 36 | 150 | 30 | 1.15 | 18.0 | 26.0 | 72.88 | 2,135 | 1,970 |
| 36 | 250 | 30 | 1.58 | 18.0 | 26.0 | 72.88 | 2,580 | 2,410 |
| 36 | 250 | DI | 1.15 | 18.0 | 26.0 | 72.88 | 2,135 | 1,970 |
| 42 | 150 | 30 | 1.28 | 21.0 | 29.0 | 88.00 | 3,020 | 2,810 |
| 42 | 250 | 30 | 1.78 | 21.0 | 29.0 | 88.00 | 3,720 | 3,510 |
| 42 | 250 | DI | 1.28 | 21.0 | 29.0 | 88.00 | 3,020 | 2,810 |
| 48 | 150 | 30 | 1.42 | 24.0 | 32.0 | 103.06 | 4,170 | 3,905 |
| 48 | 250 | 30 | 1.96 | 24.0 | 32.0 | 103.06 | 5,160 | 4,895 |
| 48 | 250 | DI | 1.42 | 24.0 | 32.0 | 103.06 | 4,170 | 3,905 |
| * Dimension details of mechanical-joint bells are shown in Table 10.1 ; dimension details of plain ends are shown in Table 10.2. <br> + Weight does not include accessory weights. See Table 10.1 for accessory weights. <br> $\ddagger$ Ductile Iron. |  |  |  |  |  |  |  |  |

TABLE 10.3
Mechanical-Ioint Bends* (contd.)

| $\begin{gathered} \text { Size } \\ \text { in. } \end{gathered}$ | Pressure Rating psi | $\begin{gathered} \text { Iron } \\ \text { Strength } \\ \text { psi (1000's) } \end{gathered}$ | Dimensions-in. |  |  |  | Weight-lb $\dagger$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $T$ | A | $S$ | $R$ | MJ \& MJ | MJ \& PE |
| 111-deg Bends |  |  |  |  |  |  |  |  |
| 3 | 250 | 25 | 0.48 | 3.0 | 11.0 | 15.25 | 30 | 30 |
| 3 | 350 | DIf | 0.48 | 3.0 | 11.0 | 15.25 | 30 | 30 |
| 4 | 250 | 25 | 0.52 | 4.0 | 12.0 | 20.31 | 50 | 45 |
| 4 | 350 | DI | 0.52 | 4.0 | 12.0 | 20.31 | 50 | 45 |
| 6 | 250 | 25 | 0.55 | 5.0 | 13.0 | 30.50 | 75 | 70 |
| 6 | 350 | DI | 0.55 | 5.0 | 13.0 | 30.50 | 75 | 70 |
| 8 | 250 | 25 | 0.60 | 5.5 | 13.5 | 35.50 | 110 | 105 |
| 8 | 350 | DI | 0.60 | 5.5 | 13.5 | 35.50 | 110 | 105 |
| 10 | 250 | 25 | 0.68 | 6.5 | 14.5 | 45.69 | 160 | 160 |
| 10 | 350 | DI | 0.68 | 6.5 | 14.5 | 45.69 | 160 | 160 |
| 12 | 250 | 25 | 0.75 | 7.5 | 15.5 | 55.81 | 220 | 220 |
| 12 | 350 | DI | 0.75 | 7.5 | 15.5 | 55.81 | 220 | 220 |
| 14 | 150 | 25 | 0.66 | 7.5 | 15.5 | 50.75 | 275 | 260 |
| 14 | 250 | 25 | 0.82 | 7.5 | 15.5 | 50.75 50.75 | 305 | 285 |
| 14 | 350 | DI | 0.66 | 7.5 | 15.5 | 50.75 | 275 | 260 |
| 16 | 150 | 30 | 0.70 | 8.0 | 16.0 | 55.81 | 345 | 325 |
| 16 | 250 | 30 | 0.89 | 8.0 | 16.0 | 55.81 55.81 | 385 | 365 325 |
| 16 | 350 | DI | 0.70 | 8.0 | 16.0 | 55.81 | 345 |  |
| 18 | 150 | 30 | 0.75 | 8.5 | 16.5 | 60.94 | 430 | 405 |
| 18 | 250 | 30 | 0.96 | 8.5 | 16.5 | 60.94 | 480 | 455 |
| 18 | 350 | DI | 0.75 | 8.5 | 16.5 | 60.94 | 430 | 405 |
| 20 | 150 | 30 | 0.80 | 9.5 | 17.5 | 71.06 | 540 | 510 |
| 20 | 250 | 30 | 1.03 | 9.5 | 17.5 | 71.06 | 610 | 575 |
| 20 | 350 | DI | 0.80 | 9.5 | 17.5 | 71.06 | 540 | 510 |
| 24 | 150 | 30 | 0.89 | 11.0 | 19.0 | 76.12 | 770 885 | 730 845 |
| 24 | 250 | 30 | 1.16 | 11.0 | 19.0 | 76.12 | 885 770 | 845 730 |
| 24 | 350 | DI | 0.89 | 11.0 | 19.0 | 76.12 | 770 | 730 |
| 30 | 150 | 30 | 1.03 | 15.0 | 23.0 | 116.75 | 1,410 | 1,305 |
| 30 | 250 | 30 | 1.37 | 15.0 | 23.0 | 116.75 | 1,655 | 1,550 |
| 30 | 250 | DI | 1.03 | 15.0 | 23.0 | 116.75 | 1,410 | 1,305 |
| 36 | 150 | 30 | 1.15 | 18.0 | 26.0 | 147.25 | 2,145 | 1,980 |
| 36 | 250 | 30 | 1.58 | 18.0 | 26.0 | 147.25 | 2,595 | 2,425 |
| 36 | 250 | DI | 1.15 | 18.0 | 26.0 | 147.25 | 2,145 | 1,980 |
| 42 | 150 | 30 | 1.28 | 21.0 | 29.0 | 177.69 | 3,035 | 2,825 |
| 42 | 250 | 30 | 1.78 | 21.0 | 29.0 | 177.69 | 3,740 | 3,535 |
| 42 | 250 | DI | 1.28 | 21.0 | 29.0 | 177.69 | 3,035 | 2,825 |
| 48 | 150 | 30 | 1.42 | 24.0 | 32.6 | 208.12 | 4,190 | 3,925 |
| 48 | 250 | 30 | 1.96 | 24.0 | 32.0 | 208.12 | 5,195 | 4,925 |
| 48 | 250 | DI | 1.42 | 24.0 | 32.0 | 208.12 | 4,190 | 3,925 |

* Dimension details of mechanical-joint bells are shown in Table 10.1; dimension details of plain ends are shown in Table 10.2.
$\dagger$ Weight does not include accessory weights. See Table 10.1 for accessory weights.
$\ddagger$ Ductile Iron.


TABLE 10.4
Mechanical-Joint Tees and Crosses*

| Size in. |  | Pressure Rating psi | $\begin{gathered} \text { Iron } \\ \text { Strength } \\ \text { psis } \\ \text { (1000's) } \end{gathered}$ | Dimensions-in. |  |  |  |  | Weight-lb $\dagger$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Tee |  |  |  |  |  |  | Cross |  |
| Run | Branch |  |  | $T$ | $T_{1}$ | $H$ | $J$ | $S$ | $\begin{aligned} & \text { All } \\ & \text { MJ } \end{aligned}$ | MJ, PE <br> \& MJ | $\begin{aligned} & \text { All } \end{aligned}$ | MJ, PE, <br> MJ \& M J |
| 3 | 3 |  | 250 | 25 | 0.48 | 0.48 | 5.5 | 5.5 | 13.5 | 55 | 55 | 70 | 70 |
| 3 | 3 | 350 | DI $\ddagger$ | 0.48 | 0.48 | 5.5 | 5.5 | 13.5 | 55 | 55 | 70 | 70 |
| 4 | 3 | 250 | 25 | 0.52 | 0.48 | 6.5 | 6.5 | 14.5 | 75 | 70 | 90 | 85 |
| 4 | 3 | 350 | DI | 0.52 | 0.48 | 6.5 | 6.5 | 14.5 | 75 | 70 | 90 | 85 |
| 4 | 4 | 250 | 25 | 0.52 | 0.52 | 6.5 | 6.5 | 14.5 | 80 | 75 | 105 | 100 |
| 4 | 4 | 350 | DI | 0.52 | 0.52 | 6.5 | 6.5 | 14.5 | 80 | 75 | 105 | 100 |

* Dimension details of mechanical-joint bells are shown in Table 10.1; dimension details of plain ends are shown in Table 10.2.
$\dagger$ Weight does not include accessory weights. See Table 10.1 for accessory weight.
$\pm$ Ductile Iron.

TABLE 10.4
Mechanical-Joint Tees and Crosses* (conid.)

| Size in. |  | Pressure Rating psi | IronStrength psi$(1000$ 's) | Dimensions-iu. |  |  |  |  | Weight-lb $\dagger$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Tee |  |  |  |  |  |  | Cross |  |
| Run | Branch |  |  | $T$ | $T$ t | H | $J$ | $s$ | $\begin{aligned} & \text { All } \\ & \text { MJ } \end{aligned}$ | $\underset{\&: M J}{M Y}$ | $\begin{aligned} & \mathrm{All} \\ & \mathrm{MJ} \end{aligned}$ | $\begin{aligned} & \mathrm{MJ}, \mathrm{PE} \\ & \mathrm{MJ} \& \mathrm{MJ} \end{aligned}$ |
| 6 | 3 |  | 250 | 25 | 0.55 | 0.48 | 8.0 | 8.0 | 16.0 | 110 | 105 | 125 | 120 |
| 6 | 3 | 350 | DI $\ddagger$ | 0.55 | 0.48 | 8.0 | 8.0 | 16.0 | 110 | 105 | 125 | 120 |
| 6 | 4 | 250 | 25 | 0.55 | 0.52 | 8.0 | 8.0 | 16.0 | 115 | 110 | 140 | 135 |
| 6 | 4 | 350 | DI | 0.55 | 0.52 | 8.0 | 8.0 | 16.0 | 115 | 110 | 140 | 135 |
| 6 | 6 | 250 | 25 | 0.55 | 0.55 | 8.0 | 8.0 | 16.0 | 125 | 120 | 160 | 155 |
| 6 | 6 | 350 | DI | 0.55 | 0.55 | 8.0 | 8.0 | 16.0 | 125 | 120 | 160 | 155 |
| 8 | 4 | 250 | 25 | 0.60 | 0.52 | 9.0 | 9.0 | 17.0 | 165 | 160 | 185 | 180 |
| 8 | 4 | 350 | DI | 0.60 | 0.52 | 9.0 | 9.0 | 17.0 | 165 | 160 | 185 | 180 |
| 8 | 6 | 250 | 25 | 0.60 | 0.55 | 9.0 | 9.0 | 17.0 | 175 | 170 | 205 | 200 |
| 8 | 6 | 350 | DI | 0.60 | 0.55 | 9.0 | 9.0 | 17.0 | 175 | 170 | 205 | 200 |
| 8 | 8 | 250 | 25 | 0.60 | 0.60 | 9.0 | 9.0 | 17.0 | 185 | 180 | 235 | 230 |
| 8 | 8 | 350 | DI | 0.60 | 0.60 | 9.0 | 9.0 | 17.0 | 185 | 180 | 235 | 230 |
| 10 | 4 | 250 | 25 | 0.68 | 0.52 | 11.0 | 11.0 | 19.0 | 235 | 235 | 260 | 260 |
| 10 | 4 | 350 | DI | 0.68 | 0.52 | 11.0 | 11.0 | 19.0 | 235 | 235 | 260 | 260 |
| 10 | 6 | 250 | 25 | 0.68 | 0.55 | 11.0 | 11.0 | 19.0 | 250 | 250 | 285 | 285 |
| 10 | 6 | 350 | DI | 0.68 | 0.55 | 11.0 | 11.0 | 19.0 | 250 | 250 | 285 | 285 |
| 10 | 8 | 250 | 25 | 0.68 | 0.60 | 11.0 | 11.0 | 19.0 | 260 | 260 | 310 | 310 |
| 10 | 8 | 350 | DI | 0.68 | 0.60 | 11.0 | 11.0 | 19.0 | 260 | 260 | 310 | 310 |
| 10 | 10 | 250 | 25 | 0.80 | 0.80 | 11.0 | 11.0 | 19.0 | 310 | 310 | 380 | 380 |
| 10 | 10 | 350 | DI | 0.80 | 0.80 | 11.0 | 11.0 | 19.0 | 310 | 310 | 380 | 380 |
| 12 | 4 | 250 | 25 | 0.75 | 0.52 | 12.0 | 12.0 | 20.0 | 315 | 315 | 340 | 340 |
| 12 | 4 | 350 | DI | 0.75 | 0.52 | 12.0 | 12.0 | 20.0 | 315 | 315 | 340 | 340 |
| 12 | 6 | 250 | 25 | 0.75 | 0.55 | 12.0 | 12.0 | 20.0 | 325 | 325 | 360 | 360 |
| 12 | 6 | 350 | DI | 0.75 | 0.55 | 12.0 | 12.0 | 20.0 | 325 | 325 | 360 | 360 |
| 12 | 8 | 250 | 25 | 0.75 | 0.60 | 12.0 | 12.0 | 20.0 | 340 | 340 | 385 | 385 |
| 12 | 8 | 350 | DI | 0.75 | 0.60 | 12.0 | 12.0 | 20.0 | 340 | 340 | 385 | 385 |
| 12 | 10 | 250 | 25 | 0.87 | 0.80 | 12.0 | 12.0 | 20.0 | 390 | 390 | 460 | 460 |
| 12 | 10 | 350 | DI | 0.87 | 0.80 | 12.0 | 12.0 | 20.0 | 390 | 390 | 460 | 460 |
| 12 | 12 | 250 | 25 | 0.87 | 0.87 | 12.0 | 12.0 | 20.0 | 410 | 410 | 495 | 495 |
| 12 | 12 | 350 | DI | 0.87 | 0.87 | 12.0 | 12.0 | 20.0 | 410 | 410 | 495 | 495 |
| 14 | 6 | 150 | 25 | 0.66 | 0.55 | 14.0 | 14.0 | 22.0 | 435 | 420 | 475 | 460 |
| 14 | 6 | 250 | 25 | 0.82 | 0.55 | 14.0 | 14.0 | 22.0 | 485 | 470 | 525 | 505 |
| 14 | 6 | 350 | DI | 0.66 | 0.55 | 14.0 | 14.0 | 22.0 | 435 | 420 | 475 | 460 |
| 14 | 8 | 150 | 25 | 0.66 | 0.60 | 14.0 | 14.0 | 22.0 | 450 | 435 | 500 | 485 |
| 14 | 8 | 250 | 25 | 0.82 | 0.60 | 14.0 | 14.0 | 22.0 | 500 | 480 | 550 | 535 |
| 14 | 8 | 350 | Dl | 0.66 | 0.60 | 14.0 | 14.0 | 22.0 | 450 | 435 | 500 | 485 |
| 14 | 10 | 150 | 25 | 0.66 | 0.68 | 14.0 | 14.0 | 22.0 | 465 | 450 | 540 | 525 |
| 14 | 10 | 250 | 25 | 0.82 | 0.68 | 14.0 | 14.0 | 22.0 | 515 | 500 | 585 | 570 |
| 14 | 10 | 350 | DI | 0.66 | 0.68 | 14.0 | 14.0 | 22.0 | 465 | 450 | 540 | 525 |
| 14 | 12 | 150 | 25 | 0.82 | 0.75 | 14.0 | 14.0 | 22.0 | 540 | 525 | 630 | 615 |
| 14 | 12 | 250 | 30 | 0.82 | 0.75 | 14.0 | 14.0 | 22.0 | 540 | 525 | 630 | 615 |
| 14 | 12 | 350 | DI | 0.66 | 0.75 | 14.0 | 14.0 | 22.0 | 495 | 475 | 585 | 570 |

* Dimension details of mechanical-joint bells ate shown in Table 10.1 ; dimension details of blatin ends are shown in Table 10.2

Weight does not include accessory weights. See Table 10.1 for accessory woights
$\ddagger$ Ductile Iron.

TABLE 10.4
Mechanical-Joint Tees and Crosses* (contd.)

| Size in. |  | Pressure Rating psi | IronStrength (1000's) | Dimensions-in. |  |  |  |  | Weight-lb $\dagger$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Tee |  |  |  |  |  |  | Cross |  |
| Run | Branch |  |  | $T$ | $T_{1}$ | $H$ | $J$ | $S$ | $\begin{aligned} & \text { All } \\ & \mathrm{MJ} \end{aligned}$ | $\underset{\& M \mathrm{MJ}}{\mathrm{MJ}, \mathrm{PE}}$ | $\begin{aligned} & \text { All } \\ & \text { MJ } \end{aligned}$ | $\begin{aligned} & \mathrm{MJ}, ~ P E \\ & \mathrm{MJ} \& \mathrm{MJ} \end{aligned}$ |
| 14 | 14 |  | 150 | 25 | 0.82 | 0.82 | 14.0 | 14.0 | 22.0 | 585 | 570 | 710 | 695 |
| 14 | 14 | 250 | 30 | 0.82 | 0.82 | 14.0 | 14.0 | 22.0 | 585 | 570 | 710 | 695 |
| 14 | 14 | 350 | DI $\ddagger$ | 0.66 | 0.66 | 14.0 | 14.0 | 22.0 | 520 | 500 | 635 | 620 |
| 16 | 6 | 150 | 30 | 0.70 | 0.55 | 15.0 | 15.0 | 23.0 | 540 | 520 | 575 | 555 |
| 16 | 6 | 250 | 30 | 0.89 | 0.55 | 15.0 | 15.0 | 23.0 | 615 | 590 | 650 | 630 |
| 16 | 6 | 350 | Dİ | 0.70 | 0.55 | 15.0 | 15.0 | 23.0 | 540 | 520 | 575 | 555 |
| 16 | 8 | 150 | 30 | 0.70 | 0.60 | 15.0 | 15.0 | 23.0 | 550 | 530 | 605 | 585 |
| 16 | 8 | 250 | 30 | 0.89 | 0.60 | 15.0 | 15.0 | 23.0 | 625 | 605 | 675 | 655 |
| 16 | 8 | 350 | DI | 0.70 | 0.60 | 15.0 | 15.0 | 23.0 | 550 | 530 | 605 | 585 |
| 16 | 10 | 150 | 30 | 0.70 | 0.68 | 15.0 | 15.0 | 23.0 | 570 | 550 | 645 | 625 |
| 16 | 10 | 250 | 30 | 0.89 | 0.68 | 15.0 | 15.0 | 23.0 | 645 | 620 | 710 | 690 |
| 16 | 10 | 350 | DI | 0.70 | 0.68 | 15.0 | 15.0 | 23.0 | 570 | 550 | 645 | 625 |
| 16 | 12 | 150 | 30 | 0.70 | 0.75 | 15.0 | 15.0 | 23.0 | 590 | 570 | 685 | 665 |
| 16 | 12 | 250 | 30 | 0.89 | 0.75 | 15.0 | 15.0 | 23.0 | 660 | 640 | 745 | 725 |
| 16 | 12 | 350 | DI | 0.70 | 0.75 | 15.0 | 15.0 | 23.0 | 590 | 570 | 685 | 665 |
| 16 | 14 | 150 | 30 | 0.89 | 0.82 | 15.0 | 15.0 | 23.0 | 710 | 690 | 830 | 810 |
| 16 | 14 | 250 | 35 | 0.89 | 0.82 | 15.0 | 15.0 | 23.0 | 710 | 690 | 830 | 810 |
| 16 | 14 | 350 | DI | 0.70 | 0.66 | 15.0 | 15.0 | 23.0 | 620 | 600 | 735 | 715 |
| 16 | 16 | 150 | 30 | 0.89 | 0.89 | 15.0 | 15.0 | 23.0 | 740 | 720 | 895 | 875 |
| 16 | 16 | 250 | 35 | 0.89 | 0.89 | 15.0 | 15.0 | 23.0 | 740 | 720 | 895 | 875 |
| 16 | 16 | 350 | DI | 0.70 | 0.70 | 15.0 | 15.0 | 23.0 | 650 | 625 | 790 | 770 |
| 18 | 6 | 150 | 30 | 0.75 | 0.55 | 13.0 | 15.5 | 21.0 | 590 | 565 | 625 | 600 |
| 18 | 6 | 250 | 30 | 0.96 | 0.55 | 13.0 | 15.5 | 21.0 | 670 | 645 | 705 | 680 |
| 18 | 6 | 350 | DI | 0.75 | 0.55 | 13.0 | 15.5 | 21.0 | 590 | 565 | 625 | 600 |
| 18 | 8 | 150 | 30 | 0.75 | 0.60 | 13.0 | 15.5 | 21.0 | 605 | 580 | 655 | 630 |
| 18 | 8 | 250 | 30 | 0.96 | 0.60 | 13.0 | 15.5 | 21.0 | 685 | 655 | 730 | 705 |
| 18 | 8 | 350 | DI | 0.75 | 0.60 | 13.0 | 15.5 | 21.0 | 605 | 580 | 655 | 630 |
| 18 | 10 | 150 | 30 | 0.75 | 0.68 | 13.0 | 15.5 | 21.0 | 620 | 595 | 685 | 660 |
| 18 | 10 | 250 | 30 | 0.96 | 0.68 | 13.0 | 15.5 | 21.0 | 700 | 670 | 760 | 735 |
| 18 | 10 | 350 | DI | 0.75 | 0.68 | 13.0 | 15.5 | 21.0 | 620 | 595 | 685 | 660 |
| 18 | 12 | 150 | 30 | 0.75 | 0.75 | 13.0 | 15.5 | 21.0 | 640 | 615 | 725 | 700 |
| 18 | 12 | 250 | 30 | 0.96 | 0.75 | 13.0 | 15.5 | 21.0 | 715 | 690 | 790 | 765 |
| 18 | 12 | 350 | DI | 0.75 | 0.75 | 13.0 | 15.5 | 21.0 | 640 | 615 | 725 | 700 |
| 18 | 14 | 150 | 30 | 0.75 | 0.66 | 16.5 | 16.5 | 24.5 | 755 | 730 | 870 | 845 |
| 18 | 14 | 250 | 30 | 0.96 | 0.82 | 16.5 | 16.5 | 24.5 | 865 | 840 | 990 | 965 |
| 18 | 14 | 350 | DI | 0.75 | 0.66 | 16.5 | 16.5 | 24.5 | 755 | 730 | 870 | 845 |
| 18 | 16 | 150 | 30 | 0.96 | 0.89 | 16.5 | 16.5 | 24.5 | 905 | 880 | 1,060 | 1,035 |
| 18 | 16 | 250 | 35 | 0.96 | 0.89 | 16.5 | 16.5 | 24.5 | 905 | 880 | 1,060 | 1,035 |
| 18 | 16 | 350 | DI | 0.75 | 0.70 | 16.5 | 16.5 | 24.5 | 785 | 760 | 930 | 905 |
| 18 | 18 | 150 | 30 | 0.96 | 0.96 | 16.5 | 16.5 | 24.5 | 945 | 920 | 1,130 | 1,105 |
| 18 | 18 | 250 | 35 | 0.96 | 0.96 | 16.5 | 16.5 | 24.5 | 945 | 920 | 1,130 | 1,105 |
| 18 | 18 | 350 | DI | 0.75 | 0.75 | 16.5 | 16.5 | 24.5 | 820 | 795 | 995 | 965 |
| 20 | 6 | 150 | 30 | 0.80 | 0.55 | 14.0 | 17.0 | 22.0 | 725 | 695 | 760 | 730 |
| 20 | 6 | 250 | 30 | 1.03 | 0.55 | 14.0 | 17.0 | 22.0 | 830 | 800 | 865 | 835 |
| 20 | 6 | 350 | DI | 0.80 | 0.55 | 14.0 | 17.0 | 22.0 | 725 | 695 | 760 | 730 |
| 20 | 8 | 150 | 30 | 0.80 | 0.60 | 14.0 | 17.0 | 22.0 | 735 | 705 | 790 | 760 |
| 20 | 8 | 250 | 30 | 1.03 | 0.60 | 14.0 | 17.0 | 22.0 | 845 | 810 | 890 | 860 |
| 20 | 8 | 350 | DI | 0.80 | 0.60 | 14.0 | 17.0 | 22.0 | 735 | 705 | 790 | 760 |

* Dimension details of mechanical-joint bells are shown in Tahle 10.1 ; dimension details of plain ends are shown in Table 10.2 .
$\dagger$ Weight does not include accessory weights. See Table 10.1 for accessory weights.
$\ddagger$ Ductile Iron.

TABLE 10.4
Mcchanical-Joint Tees and Crosses* (contd.)

| Size in. |  | Pressure Rating psi | IronStrength (1000's) | Dimensions-in. |  |  |  |  | Weight-l $\dagger \dagger$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Tee |  |  |  |  |  |  | Cross |  |
| Run | Branch |  |  | $T$ | $T_{1}$ | H | $J$ | $S$ | $\begin{aligned} & \text { All } \\ & \text { MJ } \end{aligned}$ | $\mathrm{MJ}, \mathrm{PE}$ $\& M J$ | $\begin{aligned} & \mathrm{All} \\ & \mathrm{MJ} \end{aligned}$ | MJ, PE, <br> MJ \& MJ |
| 20 | 10 |  | 150 | 30 | 0.80 | 0.68 | 14.0 | 17.0 | 22.0 | 755 | 725 | 820 | 790 |
| 20 | 10 | 250 | 30 | 1.03 | 0.68 | 14.0 | 17.0 | 22.0 | 860 | 825 | 920 | 890 |
| 20 | 10 | 350 | DI $\ddagger$ | 0.80 | 0.68 | 14.0 | 17.0 | 22.0 | 755 | 725 | 820 | 790 |
| 20 | 12 | 150 | 30 | 0.80 | 0.75 | 14.0 | 17.0 | 22.0 | 775 | 745 | 860 | 830 |
| 20 | 12 | 250 | 30 | 1.03 | 0.75 | 14.0 | 17.0 | 22.0 | 875 | 840 | 955 | 920 |
| 20 | 12 | 350 | DI | 0.80 | 0.75 | 14.0 | 17.0 | 22.0 | 775 | 745 | 860 | 830 |
| 20 | 14 | 150 | 30 | 0.80 | 0.66 | 14.0 | 17.0 | 22.0 | 795 | 765 | 905 | 875 |
| 20 | 14 | 250 | 35 | 1.03 | 0.82 | 14.0 | 17.0 | 22.0 | 910 | 875 | 1,025 | 990 |
| 20 | 14 | 350 | DI | 0.80 | 0.66 | 14.0 | 17.0 | 22.0 | 795 | 765 | 905 | 875 |
| 20 | 16 | 150 | 30 | 0.80 | 0.70 | 18.0 | 18.0 | 26.0 | 945 | 915 | 1,085 | 1,055 |
| 20 | 16 | 250 | 35 | 1.03 | 0.89 | 18.0 | 18.0 | 26.0 | 1,095 | 1,060 | 1,245 | 1,215 |
| 20 | 16 | 350 | DI | 0.80 | 0.70 | 18.0 | 18.0 | 26.0 | 945 | 915 | 1,085 | 1,055 |
| 20 | 18 | 150 | 35 | 1.03 | 0.96 | 18.0 | 18.0 | 26.0 | 1,140 | 1,110 | 1,330 | 1,300 |
| 20 | 18 | 350 | DI | 0.80 | 0.75 | 18.0 | 18.0 | 26.0 | 985 | 950 | 1,155 | 1,120 |
| 20 | 20 | 150 | 35 | 1.03 | 1.03 | 18.0 | 18.0 | 26.0 | 1,185 | 1,155 | 1415 | 1,385 |
| 20 | 20 | 350 | DI | 0.80 | 0.80 | 18.0 | 18.0 | 26.0 | 1,020 | 990 | 1230 | 1,200 |
| 24 | 6 | 150 | 30 | 0.89 | 0.55 | 15.0 | 19.0 | 23.0 | 985 | 945 | 1,025 | 985 |
| 24 | 6 | 250 | 30 | 1.16 | 0.55 | 15.0 | 19.0 | 23.0 | 1,145 | 1,105 | 1,180 | 1,140 |
| 24 | 6 | 350 | DI | 0.89 | 0.55 | 15.0 | 19.0 | 23.0 | 985 | 945 | 1,025 | 985 |
| 24 | 8 | 150 | 30 | 0.89 | 0.60 | 15.0 | 19.0 | 23.0 | 1,000 | 960 | 1,045 | 1,005 |
| 24 | 8 | 250 | 30 | 1.16 | 0.60 | 15.0 | 19.0 | 23.0 | 1,160 | 1,115 | 1,200 | 1,160 |
| 24 | 8 | 350 | DI | 0.89 | 0.60 | 15.0 | 19.0 | 23.0 | 1,000 | 960 | 1,045 | 1,005 |
| 24 | 10 | 150 | 30 | 0.89 | 0.68 | 15.0 | 19.0 | 23.0 | 1,020 | 980 | 1,085 | 1,045 |
| 24 | 10 | 250 | 30 | 1.16 | 0.68 | 15.0 | 19.0 | 23.0 | 1,170 | 1,130 | 1,230 | 1,190 |
| 24 | 10 | 350 | DI | 0.89 | 0.68 | 15.0 | 19.0 | 23.0 | 1,020 | 980 | 1,085 | 1,045 |
| 24 | 12 | 150 | 30 | 0.89 | 0.75 | 15.0 | 19.0 | 23.0 | 1,030 | 990 | 1,110 | 1,070 |
| 24 | 12 | 250 | 30 | 1.16 | 0.75 | 15.0 | 19.0 | 23.0 | 1,185 | 1,145 | 1,260 | 1,220 |
| 24 | 12 | 350 | DI | 0.89 | 0.75 | 15.0 | 19.0 | 23.0 | 1,030 | 990 | 1,110 | 1,070 |
| 24 | 14 | 150 | 30 | 0.89 | 0.66 | 15.0 | 19.0 | 23.0 | 1,055 | 1,015 | 1,155 | 1,115 |
| 24 | 14 | 250 | 30 | 1.16 | 0.82 | 15.0 | 19.0 | 23.0 | 1,220 | 1,180 | 1,325 | 1,285 |
| 24 | 14 | 350 | DI | 0.89 | 0.66 | 15.0 | 19.0 | 23.0 | 1,055 | 1,015 | 1,155 | 1,115 |
| 24 | 16 | 150 | 30 | 0.89 | 0.70 | 15.0 | 19.0 | 23.0 | 1,075 | 1,035 | 1,200 | 1,160 |
| 24 | 16 | 250 | 35 | 1.16 | 0.89 | 15.0 | 19.0 | 23.0 | 1,245 | 1,200 | 1,375 | 1,335 |
| 24 | 16 | 350 | DI | 0.89 | 0.70 | 15.0 | 19.0 | 23.0 | 1,075 | 1,035 | 1,200 | 1,160 |
| 24 | 18 | 150 | 30 | 0.89 | 0.75 | 22.0 | 22.0 | 30.0 | 1,400 | 1,360 | 1,590 | 1,550 |
| 24 | 18 | 250 | 35 | 1.16 | 0.96 | 22.0 | 22.0 | 30.0 | 1,660 | 1,615 | 1,865 | 1,820 |
| 24 | 18 | 350 | DI | 0.89 | 0.75 | 22.0 | 22.0 | 30.0 | 1,400 | 1,360 | 1,590 | 1,550 |
| 24 | 20 | 150 | 35 | 1.16 | 1.03 | 22.0 | 22.0 | 30.0 | 1,720 | 1,680 | 1,965 | 1,925 |
| 24 | 20 | 350 | DI | 0.89 | 0.80 | 22.0 | 22.0 | 30.0 | 1,450 | 1,410 | 1,675 | 1,630 |
| 24 | 24 | 150 | 35 | 1.16 | 1.16 | 22.0 | 22.0 | 30.0 | 1,815 | 1,775 | 2,155 | 2,115 |
| 24 | 24 | 350 | DI | 0.89 | 0.89 | 22.0 | 22.0 | 30.0 | 1,535 | 1,490 | 1,835 | 1,795 |
| 30 | 6 | 150 | 30 | 1.03 | 0.55 | 18.0 | 23.0 | 26.0 | 1,730 | 1,615 | 1,770 | 1,655 |
| 30 | 6 | 250 | 30 | 1.37 | 0.55 | 18.0 | 23.0 | 26.0 | 2,050 | 1,935 | 2,085 | 1,970 |
| 30 | 6 | 250 | DI | 1.03 | 0.55 | 18.0 | 23.0 | 26.0 | 1,730 | 1,615 | 1,770 | 1,655 |
| 30 | 8 | 150 | 30 | 1.03 | 0.60 | 18.0 | 23.0 | 26.0 | 1,745 | 1,630 | 1,795 | 1,680 |
| 30 | 8 | 250 | 30 | 1.37 | 0.60 | 18.0 | 23.0 | 26.0 | 2,060 | 1,945 | 2,110 | 1,990 |
| 30 | 8 | 250 | DI | 1.03 | 0.60 | 18.0 | 23.0 | 26.0 | 1,745 | 1,630 | 1,795 | 1,680 |

* Dimension details of mechanical-joint bells are shown in Table 10.1 ; dimension details of plain ends are shown in Table 10.2.
$\dagger$ Weight does not include accessory weights. See Table 10.1 for acessory weights
$\ddagger$ I)uctile Iron.

TABLE 10.4
Mechanical-Joint Tees and Crosses* (contd.)

| Size in. |  | Pressure Rating psi | IronStrength (1000's) | Dimensions-in. |  |  |  |  | Weight-16 $\dagger$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Tee |  |  |  |  |  |  | Cross |  |
| Run | Branch |  |  | $T$ | $T_{1}$ | H | $J$ | $S$ | $\begin{aligned} & \text { All } \\ & \text { MJ } \end{aligned}$ | $\underset{\&}{\mathrm{MJ}} \underset{\mathrm{MJ}}{\mathrm{MJ}}$ | $\begin{aligned} & \text { All } \\ & \text { MJ } \end{aligned}$ | MJ. PE, MJ\&MJ |
| 30 | 10 |  | 150 | 30 | 1.03 | 0.68 | 18.0 | 23.0 | 26.0 | 1,760 | 1,645 | 1,830 | 1,715 |
| 30 | 10 | 250 | 30 | 1.37 | 0.68 | 18.0 | 23.0 | 26.0 | 2,075 | 1,960 | 2,135 | 2,020 |
| 30 | 10 | 250 | DI $\ddagger$ | 1.03 | 0.68 | 18.0 | 23.0 | 26.0 | 1,760 | 1,645 | 1,830 | 1,715 |
| 30 | 12 | 150 | 30 | 1.03 | 0.75 | 18.0 | 23.0 | 26.0 | 1,780 | 1,665 | 1,865 | 1,750 |
| 30 | 12 | 250 | 30 | 1.37 | 0.75 | 18.0 | 23.0 | 26.0 | 2,090 | 1,970 | 2,165 | 2,045 |
| 30 | 12 | 250 | DI | 1.03 | 0.75 | 18.0 | 23.0 | 26.0 | 1,780 | 1,665 | 1,865 | 1,750 |
| 30 | 14 | 150 | 30 | 1.03 | 0.66 | 18.0 | 23.0 | 26.0 | 1,800 | 1,685 | 1,905 | 1,790 |
| 30 | 14 | 250 | 30 | 1.37 | 0.82 | 18.0 | 23.0 | 26.0 | 2,120 | 2,005 | 2,230 | 2,115 |
| 30 | 14 | 250 | DI | 1.03 | 0.66 | 18.0 | 23.0 | 26.0 | 1,800 | 1,685 | 1,905 | 1,790 |
| 30 | 16 | 150 | 30 | 1.03 | 0.70 | 18.0 | 23.0 | 26.0 | 1,820 | 1,705 | 1,950 | 1,835 |
| 30 | 16 | 250 | 30 | 1.37 | 0.89 | 18.0 | 23.0 | 26.0 | 2,145 | 2,030 | 2,280 | 2,165 |
| 30 | 16 | 250 | DI | 1.03 | 0.70 | 18.0 | 23.0 | 26.0 | 1,820 | 1,705 | 1,950 | 1,835 |
| 30 | 18 | 150 | 30 | 1.03 | 0.75 | 18.0 | 23.0 | 26.0 | 1,845 | 1,730 | 2,000 | 1,885 |
| 30 | 18 | 250 | 35 | 1.37 | 0.96 | 18.0 | 23.0 | 26.0 | 2,170 | 2,055 | 2,330 | 2,215 |
| 30 | 18 | 250 | DI | 1.03 | 0.75 | 18.0 | 23.0 | 26.0 | 1,845 | 1,730 | 2,000 | 1,885 |
| 30 | 20 | 150 | 30 | 1.03 | 0.80 | 18.0 | 23.0 | 26.0 | 1,875 | 1,760 | 2,060 | 1,945 |
| 30 | 20 | 250 | 35 | 1.37 | 1.03 | 18.0 | 23.0 | 26.0 | 2,205 | 2,090 | 2,395 | 2,280 |
| 30 | 20 | 250 | DI | 1.03 | 0.80 | 18.0 | 23.0 | 26.0 | 1,875 | 1,760 | 2,060 | 1,945 |
| 30 | 24 | 150 | 35 | 1.37 | 1.16 | 25.0 | 25.0 | 33.0 | 2,880 | 2,765 | 3,180 | 3,065 |
| 30 | 24 | 250 | DI | 1.03 | 0.89 | 25.0 | 25.0 | 33.0 | 2,400 | 2,280 | 2,675 | 2,560 |
| 30 | 30 | 150 | 35 | 1.37 | 1.37 | 25.0 | 25.0 | 33.0 | 3,105 | 2,990 | 3,640 | 3,520 |
| 30 | 30 | 250 | DI | 1.03 | 1.03 | 25.0 | 25.0 | 33.0 | 2,595 | 2,480 | 3,075 | 2,955 |
| 36 | 8 | 150 | 30 | 1.15 | 0.60 | 20.0 | 26.0 | 28.0 | 2,520 | 2,345 | 2,565 | 2,390 |
| 36 | 8 | 250 | 30 | 1.58 | 0.60 | 20.0 | 26.0 | 28.0 | 3,050 | 2,870 | 3,095 | 2,915 |
| 36 | 8 | 250 | DI | 1.15 | 0.60 | 20.0 | 26.0 | 28.0 | 2,520 | 2,345 | 2,565 | 2,390 |
| 36 | 10 | 150 | 30 | 1.15 | 0.68 | 20.0 | 26.0 | 28.0 | 2,535 | 2,360 | 2,600 | 2,425 |
| 36 | 10 | 250 | 30 | 1.58 | 0.68 | 20.0 | 26.0 | 28.0 | 3,065 | 2,885 | 3,120 | 2,940 |
| 36 | 10 | 250 | DI | 1.15 | 0.68 | 20.0 | 26.0 | 28.0 | 2,535 | 2,360 | 2,600 | 2,425 |
| 36 | 12 | 150 | 30 | 1.15 | 0.75 | 20.0 | 26.0 | 28.0 | 2,550 | 2,375 | 2,630 | 2,455 |
| 36 | 12 | 250 | 30 | 1.58 | 0.75 | 20.0 | 26.0 | 28.0 | 3,075 | 2,895 | 3,140 | 2,960 |
| 36 | 12 | 250 | DI | 1.15 | 0.75 | 20.0 | 26.0 | 28.0 | 2,550 | 2,375 | 2,630 | 2,455 |
| 36 | 14 | 150 | 30 | 1.15 | 0.66 | 20.0 | 26.0 | 28.0 | 2,570 | 2,395 | 2,665 | 2,490 |
| 36 | 14 | 250 | 30 | 1.58 | 0.82 | 20.0 | 26.0 | 28.0 | 3,105 | 2,925 | 3,205 | 3,025 |
| 36 | 14 | 250 | DI | 1.15 | 0.66 | 20.0 | 26.0 | 28.0 | 2,570 | 2,395 | 2,665 | 2,490 |
| 36 | 16 | 150 | 30 | 1.15 | 0.70 | 20.0 | 26.0 | 28.0 | 2,585 | 2,410 | 2,705 | 2,530 |
| 36 | 16 | 250 | 30 | 1.58 | 0.89 | 20.0 | 26.0 | 28.0 | 3,125 | 2,945 | 3,245 | 3,065 |
| 36 | 16 | 250 | DI | 1.15 | 0.70 | 20.0 | 26.0 | 28.0 | 2,585 | 2,410 | 2,705 | 2,530 |
| 36 | 18 | 150 | 30 | 1.15 | 0.75 | 20.0 | 26.0 | 28.0 | 2,610 | 2,435 | 2,750 | 2,575 |
| 36 | 18 | 250 | 30 | 1.58 | 0.96 | 20.0 | 26.0 | 28.0 | 3,150 | 2,970 | 3,290 | 3,110 |
| 36 | 18 | 250 | DI | 1.15 | 0.75 | 20.0 | 26.0 | 28.0 | 2,610 | 2,435 | 2,750 | 2,575 |
| 36 | 20 | 150 | 30 | 1.15 | 0.80 | 20.0 | 26.0 | 28.0 | 2,635 | 2,460 | 2,805 | 2,630 |
| 36 | 20 | 250 | 35 | 1.58 | 1.03 | 20.0 | 26.0 | 28.0 | 3,175 | 2,995 | 3,345 | 3,165 |
| 36 | 20 | 250 | DI | 1.15 | 0.80 | 20.0 | 26.0 | 28.0 | 2,635 | 2,460 | 2,805 | 2,630 |
| 36 | 24 | 150 | 30 | 1.15 | 0.89 | 20.0 | 26.0 | 28.0 | 2,690 | 2,515 | 2,910 | 2,735 |
| 36 | 24 | 250 | 35 | 1.58 | 1.16 | 20.0 | 26.0 | 28.0 | 3,230 | 3,050 | 3,450 | 3,270 |
| 36 | 24 | 250 | DI | 1.15 | 0,89 | 20.0 | 26.0 | 28.0 | 2,690 | 2,515 | 2,910 | 2,735 |
| 36 | 30 | 150 | 35 | 1.58 | 1.37 | 28.0 | 28.0 | 36.0 | 4,345 | 4,170 | 4,790 | 4,615 |
| 36 | 30 | 250 | DI | 1.15 | 1.03 | 28.0 | 28.0 | 36.0 | 3,545 | 3,365 | 3,965 | 3,790 |
| 36 | 36 | 150 | 35 | 1.58 | 1.58 | 28.0 | 28.0 | 36.0 | 4,590 | 4,410 | 5,280 | 5,105 |
| 36 | 36 | 250 | DI | 1.15 | 1.15 | 28.0 | 28.0 | 36.0 | 3,745 | 3,565 | 4,370 | 4,190 |

* Dimension details of mechanical-joint bells are shown in Table 10.1; dimension details of plain ends are shown in Table 10,2.
$\dagger$ Weight does not include accessory weights. See Table 10.1 for accessory weights.
$\ddagger$ Ductile Iron.

TABLE 10.4
Merhanical-Joint Tees and Crosses* (conld.)

| Sise $i n$. |  | Pressure Rating Ds: | $\begin{gathered} \text { Hon } \\ \text { Strength } \\ \text { psi } \\ \left(1000^{\prime} s\right) \end{gathered}$ | Uinensions-sn. |  |  |  |  | Weight-ilt |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Tee |  |  |  |  |  |  | Cross |  |
| Kun | Branch |  |  | $T$ | $T_{1}$ | H | $J$ | $s$ | $\begin{aligned} & \mathrm{All} \\ & \mathrm{MJ} \end{aligned}$ | $\underset{\& M J}{M J}$ | $\hat{M J}$ | $\mathrm{MJ}, \mathrm{PE}$ MJ : MJ |
| 42 | 12 |  | 150 | 30 | 1.28 | 0.75 | 23.0 | 30.0 | 31.0 | 3,555 | 3,3,35 | 3,040 | 3,420 |
| $+2$ | 12 | 250 | 30 | 1.78 | 0.75 | 23.0 | 30.0 | 31.0 | 4,385 | 4,160 | 4,450 | 4,225 |
| 42 | 12 | 250 | DI $\ddagger$ | 1.28 | 0.75 | 23.0 | 30.0 | 31.0 | 3,555 | 3,335 | 3,640 | 3,420 |
| 42 | 14 | 150 | . 30 | 1.28 | 0.66 | 23.0 | 30.0 | 31.0 | 3,575 | 3,355 | 3,675 | 3,4.55 |
| 42 | 14 | 250 | 30 | 1.78 | 0.82 | 23.0 | 30.0 | 31.0 | 4,415 | 4,190 | 4,515 | 4,290 |
| 42 | 14 | 250 | 1)1 | 1.28 | 0.66 | 23.0 | 30.0 | 31.0 | 3,575 | 3,355 | 3,675 | 3,455 |
| 42 | 16 | 150 | 30 | 1.28 | 0.70 | 23.0 | 30.0 | 31.0 | 3,595 | 3,375 | 3,715 | 3,495 |
| 42 | 16 | 250 | 30 | 1.78 | 0.89 | 23.0 | 30.0 | 31.0 | 4,435 | 4,210 | 4,550 | 4,325 |
| 42 | 16 | 250 | DI | 1.28 | 0.70 | 23.0 | 30.0 | 31.0 | 3,595 | 3,375 | 3,715 | 3,495 |
| 42 | 18 | 150 | 30 | 1.28 | 0.75 | 23.0 | 30.0 | 31.0 | 3,615 | 3,395 | 3,755 | 3,5,3,5 |
| 42 | 18 | 250 | 30 | 1.78 | 0.96 | 23.0 | 30.0 | 31.0 | 4,455 | 4,230 | 4,595 | 4,370 |
| 42 | 18 | 250 | DI | 1.28 | 0.75 | 23.0 | 30.0 | 31.0 | 3,615 | 3,395 | 3,75.5 | 3,535 |
| 42 | 20 | 150 | 30 | 1.28 | 0.80 | 23.0 | 30.0 | 31.0 | 3,640 | 3,420 | 3,810 | 3,590 |
| 42 | 20 | 250 | 30 | 1.78 | 1.03 | 23.0 | 30.0 | 31.0 | 4,480 | 4,255 | 4,645 | 4,420 |
| 42 | 20 | 250 | DI | 1.28 | 0.80 | 23.0 | 30.0 | 31.0 | 3,640 | 3,420 | 3,810 | 3,590 |
| 42 | 24 | 150 | 30 | 1.78 | 1.16 | 23.0 | 30.0 | 31.0 | 4,530 | 4,305 | 4,745 | 4,520 |
| 42 | 24 | 250 | DI | 1.28 | 0.89 | 23.0 | 30.0 | 31.0 | 3,690 | 3,470 | 3,910 | 3,690 |
| 42 | 30 | 150 | 30 | 1.78 | 1.37 | 31.0 | 31.0 | 39.0 | 5,800 | 5,575 | 6,210 | 5,985 |
| 42 | 30 | 250 | DI | 1.28 | 1.03 | 31.0 | 31.0 | 39.0 | 4,650 | 4,425 | 5,040 | 4,815 |
| 42 | 36 | 150 | DI | 1.28 | 1.15 | 31.0 | 31.0 | 39.0 | 4,880 | 4,655 | 5,425 | 5,200 |
| 42 | 36 | 250 | DI | 1.78 | 1.58 | 31.0 | 31.0 | 39.0 | 6,075 | 5,850 | 6,655 | 6,430 |
| 42 | 42 | 150 | DI | 1.28 | 1.28 | 31.0 | 31.0 | 39.0 | 5,085 | 4,860 | 5,840 | 5,615 |
| 42 | 42 | 250 | DI | 1.78 | 1.78 | 31.0 | 31.0 | 39.0 | 6,320 | 6,095 | 7,145 | 6,920 |
| 48 | 12 | 150 | 30 | 1.42 | 0.75 | 26.0 | 34.0 | 34.0 | 4,870 | 4,580 | 4,955 | 4,665 |
| 48 | 12 | 250 | 30 | 1.96 | 0.75 | 26.0 | 34.0 | 34.0 | 6,025 | 5,735 | 6,095 | 5,805 |
| 48 | 12 | 250 | DI | 1.42 | 0.75 | 26.0 | 34.0 | 34.0 | 4,870 | 4,580 | 4,955 | 4,665 |
| 48 | 14 | 150 | 30 | 1.42 | 0.66 | 26.0 | 34.0 | 34.0 | 4,885 | 4,595 | 4,985 | 4,695 |
| 48 | 14 | 250 | 30 | 1.96 | 0.82 | 26.0 | 34.0 | 34.0 | 6,055 | 5,770 | 6,155 | 5,865 |
| 48 | 14 | 250 | DI | 1.42 | 0.66 | 26.0 | 34.0 | 34.0 | 4,885 | 4,595 | 4,985 | 4,695 |
| 48 | 16 | 150 | 30 | 1.42 | 0.70 | 26.0 | 34.0 | 34.0 | 4,905 | 4,615 | 5,025 | 4,735 |
| 48 | 16 | 250 | 30 | 1.96 | 0.89 | 26.0 | 34.0 | 34.0 | 6,075 | 5,785 | 6,195 | 5,905 |
| 48 | 16 | 250 | DI | 1.42 | 0.70 | 26.0 | 34.0 | 34.0 | 4,905 | 4,615 | 5,025 | 4,735 |
| 48 | 18 | 150 | 30 | 1.42 | 0.75 | 26.0 | 34.0 | 34.0 | 4,925 | 4,635 | 5,065 | 4,775 |
| 48 | 18 | 250 | 30 | 1.96 | 0.96 | 26.0 | 34.0 | 34.0 | 6,095 | 5,805 | 6,235 | 5,945 |
| 48 | 18 | 250 | DI | 1.42 | 0.75 | 26.0 | 34.0 | 34.0 | 4,925 | 4,635 | 5,065 | 4,775 |
| 48 | 20 | 150 | 30 | 1.42 | 0.80 | 26.0 | 34.0 | 34.0 | 4,950 | 4,660 | 5,115 | 4,825 |
| 48 | 20 | 250 | 30 | 1.96 | 1.03 | 26.0 | 34.0 | 34.0 | 6,120 | 5,830 | 6,285 | 5,995 |
| 48 | 20 | 250 | DI | 1.42 | 0.80 | 26.0 | 34.0 | 34.0 | 4,950 | 4,660 | 5,115 | 4,825 |
| 48 | 24 | 150 | 30 | 1.42 | 0.89 | 26.0 | 34.0 | 34.0 | 4,995 | 4,705 | 5,210 | 4,920 |
| 48 | 24 | 250 | 30 | 1.96 | 1.16 | 26.0 | 34.0 | 34.0 | 6,165 | 5,880 | 6,375 | 6,085 |
| 48 | 24 | 250 | DI | 1.42 | 0.89 | 26.0 | 34.0 | 34.0 | 4,995 | 4,705 | 5,210 | 4,920 |
| 48 | 30 | 150 | 30 | 1.96 | 1.37 | 26.0 | 34.0 | 34.0 | 6,315 | 6,025 | 6,670 | 6,385 |
| 48 | 30 | 250 | DI | 1.42 | 1.03 | 26.0 | 34.0 | 34.0 | 5,140 | 4,855 | 5,495 | 5,210 |
| 48 | 36 | 150 | 30 | 1.96 | 1.58 | 34.0 | 34.0 | 42.0 | 7,835 | 7,545 | 8,360 | 8,075 |
| 48 | 36 | 250 | DI | 1.42 | 1.15 | 34.0 | 34.0 | 42.0 | 6,280 | 5,995 | 6,790 | 6,500 |
| 48 | 42 | 150 | DI | 1.42 | 1.28 | 34.0 | 34.0 | 42.0 | 6,510 | 6,225 | 7,150 | 6,860 |
| 48 | 42 | 250 | DI | 1.96 | 1.78 | 34.0 | 34.0 | 42.0 | 8,130 | 7,845 | 8,815 | 8,530 |
| 48 | 48 | 150 | DI | 1.42 | 1.42 | 34.0 | 34.0 | 42.0 | 6,765 | 6,475 | 7,655 | 7,370 |
| 48 | 48 | 250 | DI | 1.96 | 1.96 | 34.0 | 34.0 | 42.0 | 8,420 | 8,135 | 9,380 | 9,095 |

* Dimension details of mechanical-joint bells are shown in Table $10.1:$ dimension details of phain ende are shown in Table 10.2.
$\dagger$ Weight does not include accesong weights. See Table 10.1 for accesmory weight
$\ddagger$ 1)uctile Iron.


Fig. 10.5. Mechanical-Joint Base Bends (See Table 10.5)
For other dimensions of base bends, see Table 10.3

TABLE 10.5
Mechanical-Joint Base Bends

| Size <br> in. | Pressure Rating psi | $\begin{gathered} \text { Iron } \\ \text { Strength } \\ \text { psi } \\ \left(1000^{\prime} s\right) \end{gathered}$ | Dimensions-in. |  |  |  | Weight-lb $\dagger$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $R^{*}$ | $\stackrel{S}{\text { Diam. }}$ | $T$ | $U$ | MJ \& MJ | MJ \& PE | $\begin{aligned} & \text { Base } \\ & \text { Only } \end{aligned}$ |
| 3 | 250 | 25 | 4.88 | 5.00 | 0.56 | 0.50 | 45 | 45 | 10 |
|  | 350 | Dit | 4.88 | 5.00 | 0.56 | 0.50 | 45 | 45 | 10 |
| 4 | 250 | 25 | 5.50 | 6.00 | 0.62 | 0.50 | 65 | 60 | 10 |
| 4 | 350 | DI | 5.50 | 6.00 | 0.62 | 0.50 | 65 | 60 | 10 |
| 6 | 250 | 25 | 7.00 | 7.00 | 0.69 | 0.62 | 105 | 100 | 20 |
| 6 | 350 | DI | 7.00 | 7.00 | 0.69 | 0.62 | 105 | 100 | 20 |
| 8 | 250 | 25 | 8.38 | 9.00 | 0.94 | 0.88 | 165 | 160 | 40 |
| 8 | 350 | DI | 8.38 | 9.00 | 0.94 | 0.88 | 165 | 160 | 40 |
| 10 | 250 | 25 | 9.75 | 9.00 | 0.94 | 0.88 | 235 | 235 | 45 |
| 10 | 350 | DI | 9.75 | 9.00 | 0.94 | 0.88 | 235 | 235 | 45 |
| 12 | 250 | 25 | 11.25 | 11.00 | 1.00 | 1.00 | 320 | 320 | 65 |
| 12 | 350 | DI | 11.25 | 11.00 | 1.00 | 1.00 | 320 | 320 | 65 |
| 14 | 150 | 25 | 12.50 | 11.00 | 1.00 | 1.00 | 410 | 395 | 70 |
| 14 | 250 | 25 | 12.50 | 11.00 | 1.00 | 1.00 | 450 | 435 | 70 |
| 14 | 350 | DI | 12.50 | 11.00 | 1.00 | 1.00 | 410 | 395 | 70 |
| 16 | 150 | 30 | 13.75 | 11.00 | 1.00 | 1.00 | 505 | 485 | 75 |
| 16 | 250 | 30 | 13.75 | 11.00 | 1.00 | 1.00 | 565 | 545 | 75 |
| 16 | 350 | DI | 13.75 | 11.00 | 1.00 | 1.00 | 505 | 485 | 75 |
| 18 | 150 | 30 | 15.00 | 13.50 | 1.12 | 1.12 | 660 | 635 | 115 |
| 18 | 250 | 30 | 15.00 | 13.50 | 1.12 | 1.12 | 740 | 715 | 115 |
| 18 | 350 | DI | 15.00 | 13.50 | 1.12 | 1.12 | 660 | 635 | 115 |
| 20 | 150 | 30 | 16.00 | 13.50 | 1.12 | 1.12 | 800 | 770 | 120 |
| 20 | 250 350 | 30 | 16.00 | 13.50 | 1.12 | 1.12 | 910 | 875 | 120 |
| 20 | 350 | DI | 16.00 | 13.50 | 1.12 | 1.12 | 800 | 770 | 120 |
| 24 | 150 | 30 | 18.50 | 13.50 | 1.12 | 1.12 | 1,155 | 1,115 | 130 |
| 24 | 250 | 30 | 18.50 | 13.50 | 1.12 | 1.12 | 1,345 | 1,305 | 130 |
| 24 | 350 | DI | 18.50 | 13.50 | 1.12 | 1.12 | 1,155 | 1,115 | 130 |
| 30 | 150 | 30 | 23.00 | 16.00 | 1.19 | 1.15 | 1,880 | 1,775 | 190 |
| 30 | 250 | 30 | 23.00 | 16.00 | 1.19 | 1.15 | 2,220 | 2,110 | 190 |
| 30 | 250 | DI | 23.00 | 16.00 | 1.19 | 1.15 | 1,880 | 1,775 | 190 |
| 36 | 150 | 30 | 26.00 | 19.00 | 1.25 | 1.15 | 2,725 | 2,560 | 250 |
| 36 | 250 | 30 | 26.00 | 19.00 | 1.25 | 1.15 | 3,295 | 3.130 | 250 |
| 36 | 250 | DI | 26.00 | 19.00 | 1.25 | 1.15 | 2,725 | 2,560 | 250 |
| 42 | 150 | 30 | 30.00 | 23.50 | 1.44 | 1.28 | 3,820 | 3,610 | 410 |
| 42 | 250 | 30 | 30.00 | 23.50 | 1.44 | 1.28 | 4.665 | 4,460 | 410 |
| 42 | 250 | DI | 30.00 | 23.50 | 1.44 | 1.28 | 3,820 | 3,610 | 410 |
| 48 | 150 | 30 | 34.00 | 25.00 | 1.56 | 1.42 | 5,110 | 4,84, | 515 |
| 48 | 250 | 30 | 34.00 | 25.00 | 1.56 | 1.42 | 6,260 | 5,990 | 515 |
| 48 | 250 | DI | 34.00 | 25.00 | 1.56 | 1.42 | 5,110 | 4,845 | 515 |

* Dimension $R$ is a finished dimension; unfinished bases will he $\frac{1}{8}$ in. longer; for base drilling sec Table 10.15. $\dagger$ Weight does not include accessory weights. See Table 10.1 for accessory weights.
$\ddagger$ Ductile Iron.


For other dimensions of base tees, see Table 10.4.

TABLE 10.6
Mechanical-Joint Base Tees

| Size in. | Pressure Rating psi | $\begin{gathered} \text { Iron } \\ \text { Strength } \\ \text { psi }(1000 \text { 's }) \end{gathered}$ | Dimensions-in. |  |  |  | Weight-lb $\dagger$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $R^{*}$ | $\stackrel{S}{\text { Diam. }}$ | $T$ | $U$ | All MJ | $\underset{\&}{\mathrm{MJ}, \mathrm{MJ}}$ | Base <br> Only |
| 3 | 2.50 | 25 | 4.88 | 5.00 | 0.56 | 0.50 | 60 | 60 | 5 |
| 3 | 350 | DIf | 4.88 | 5.00 | 0.56 | 0.50 | 60 | 60 | 5 |
| 4 | 250 | 25 | 5.50 | 6.00 | 0.62 | 0.50 | 90 | 85 | 10 |
| 4 | 350 | DI | 5.50 | 6.00 | 0.62 | 0.50 | 90 | 85 | 10 |
| 6 | 250 | 25 | 7.00 | 7.00 | 0.69 | 0.62 | 140 | 135 | 15 |
| 6 | 350 | DI | 7.00 | 7.00 | 0.69 | 0.62 | 140 | 135 | 15 |
| 8 | 250 | 25 | 8.38 | 9.00 | 0.94 | 0.88 | 215 | 210 | 30 |
| 8 | 350 | DI | 8.38 | 9.00 | 0.94 | 0.88 | 215 | 210 | 30 |
| 10 | 250 | 25 | 9.75 | 9.00 | 0.94 | 0.88 | 340 | 340 | 30 |
| 10 | 350 | DI | 9.75 | 9.00 | 0.94 | 0.88 | 340 | 340 | 30 |
| 12 | 250 | 25 | 11.25 | 11.00 | 1.00 | 1.00 | 455 | 455 | 45 |
| 12 | 350 | DI | 11.25 | 11.00 | 1.00 | 1.00 | 455 | 455 | 45 |
| 14 | 150 | 25 | 12.50 | 11.00 | 1.00 | 1.00 | 635 | 620 | 50 |
| 14 | 250 | 30 | 12.50 | 11.00 | 1.00 | 1.00 | 635 | 620 | 50 |
| 14 | 350 | DI | 12.50 | 11.00 | 1.00 | 1.00 | 570 | 550 | 50 |
| 16 | 150 | 30 | 13.75 | 11.00 | 1.00 | 1.00 | 790 | 770 | 50 |
| 16 | 250 | 35 | 13.75 | 11.00 | 1.00 | 1.00 | 790 | 770 | 50 |
| 16 | 350 | DI | 13.75 | 11.00 | 1.00 | 1.00 | 700 | 675 | 50 |
| 18 | 150 | 30 | 15.00 | 13.50 | 1.12 | 1.12 | 1,020 | 995 | 75 |
| 18 | 250 | 35 | 15.00 | 13.50 | 1.12 | 1.12 | 1,020 | 995 | 75 |
| 18 | 350 | DI | 15.00 | 13.50 | 1.12 | 1.12 | 895 | 870 | 75 |
| 20 | 150 | 35 | 16.00 | 13.50 | 1.12 | 1.12 | 1,260 | 1,230 | 75 |
| 20 | 350 | DI | 16.00 | 13.50 | 1.12 | 1.12 | 1,095 | 1,065 | 75 |
| 24 | 150 | 35 | 18.50 | 13.50 | 1.12 | 1.12 | 1,895 | 1.855 | 80 |
| 24 | 350 | DI | 18.50 | 13.50 | 1.12 | 1.12 | 1,615 | 1,570 | 80 |
| 30 | 150 | 35 | 23.00 | 16.00 | 1.19 | 1.15 | 3,225 | 3,110 | 120 |
| 30 | 250 | DI | 23.00 | 16.00 | 1.19 | 1.15 | 2,715 | 2,600 | 120 |
| 36 | 150 | 35 | 26.00 | 19.00 | 1.25 | 1.15 | 4,750 | 4,570 | 160 |
| 36 | 250 | DI | 26.00 | 19.00 | 1.25 | 1.15 | 3,905 | 3,725 | 160 |
| 42 | 150 | DI | 30.00 | 23.50 | 1.44 | 1.28 | 5,355 | 5,130 | 270 |
| 42 | 250 | DI | 30.00 | 23,50 | 1.44 | 1.28 | 6,590 | 6,365 | 270 |
| 48 | 150 | DI | 34.00 | 25.00 | 1.56 | 1.42 | 7.100 | 6,810 | 335 335 |
| 48 | 250 | DI | 34.00 | 25.00 | 1.56 | 1.42 | 8,755 | 8.470 | 335 |

* Dimension $R$ is a finished dimension; unfinished bases will be $\frac{1}{8}$ in. longer; for base drilling see Table 10.15.
$\dagger$ Weight does not include accessory weights. See Table 10.1 for accessory' weights
$\dagger$ Weight does no
+ Ductile Iron.


Fig. 10.7. Mechanical-Joint Reducers (See Table 10.7)

TABLE 10.7
Mechanical-Joint Reducers*

| Size in. |  | Pressure Rating psi | $\underset{\text { Iron }}{\substack{\text { Irength } \\ \text { Stren }}}$ psi$\left(1000{ }^{\prime} \mathrm{s}\right)$ | Thickness in. |  | MJ \& MJ |  | $\underset{M J}{\text { Small-End }}$ |  | $\begin{aligned} & \text { Large-End } \\ & M J \end{aligned}$ |  | PE \& PE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Large End | $\underset{\text { End }}{\text { Small }}$ |  |  | $\underset{\substack{T \\ \text { End }}}{ }$ | $T_{1}$ Small | $\stackrel{L}{\text { in }}$ | $\text { Weight }_{l b}$ | $\underset{i n}{L}$ | $\underset{l b}{\text { Weight } \dagger}$ | $\underset{i n}{L}$ | $\begin{gathered} \text { Weight } \dagger \end{gathered}$ | $\underset{i n}{L}$ | $\underset{l b}{\text { Weight } \dagger}$ |
| 4 | 3 | 250 | 25 | 0.52 | 0.48 | 7 | 40 | 15 | 35 | 15 | 40 | 23 | 35 |
| 4 | 3 | 350 | DIf | 0.52 | 0.48 | 7 | 40 | 15 | 35 | 15 | 40 | 23 | 35 |
| 6 | 3 | 250 | 25 | 0.55 | 0.48 | 9 | 55 | 17 | 50 | 17 | 55 | 25 | 50 |
| 6 | 3 | 350 | DI | 0.55 | 0.48 | 9 | 55 | 17 | 50 | 17 | 55 | 25 | 50 |
| 6 | 4 | 250 | 25 | 0.55 | 0.52 | 9 | 60 | 17 | 60 | 17 | 60 | 25 | 55 |
| 6 | 4 | 350 | DI | 0.55 | 0.52 | 9 | 60 | 17 | 60 | 17 | 60 | 25 | 55 |
| 8 | 4 | 250 | 25 | 0.60 | 0.52 | 11 | 80 | 19 | 80 | 19 | 80 | 27 | 75 |
| 8 | 4 | 350 | DI | 0.60 | 0.52 | 11 | 80 | 19 | 80 | 19 | 80 | 27 | 75 |
| 8 | 6 | 250 | 25 | 0.60 | 0.55 | 11 | 95 | 19 | 90 | 19 | 90 | 27 | 85 |
| 8 | 6 | 350 | DI | 0.60 | 0.55 | 11 | 95 | 19 | 90 | 19 | 90 | 27 | 85 |
| 10 | 4 | 250 | 25 | 0.68 | 0.52 | 12 | 105 | 20 | 100 | 20 | 100 | 28 | 100 |
| 10 | 4 | 350 | DI | 0.68 | 0.52 | 12 | 105 | 20 | 100 | 20 | 100 | 28 | 100 |
| 10 | 6 | 250 | 25 | 0.68 | 0.55 | 12 | 115 | 20 | 115 | 20 | 115 | 28 | 115 |
| 10 | 6 | 350 | DI | 0.68 | 0.55 | 12 | 115 | 20 | 115 | 20 | 115 | 28 | 115 |
| 10 | 8 | 250 | 25 | 0.68 | 0.60 | 12 | 135 | 20 | 130 | 20 | 130 | 28 | 130 |
| 10 | 8 | 350 | DI | 0.68 | 0.60 | 12 | 135 | 20 | 130 | 20 | 130 | 28 | 130 |
| 12 | 4 | 250 | 25 | 0.75 | 0.52 | 14 | 135 | 22 | 130 | 22 | 130 | 30 | 130 |
| 12 | 4 | 350 | DI | 0.75 | 0.52 | 14 | 135 | 22 | 130 | 22 | 130 | 30 | 130 |
| 12 | 6 | 250 | 25 | 0.75 | 0.55 | 14 | 150 | 22 | 150 | 22 | 145 | 30 | 145 |
| 12 | 6 | 350 | DI | 0.75 | 0.55 | 14 | 150 | 22 | 150 | 22 | 145 | 30 | 145 |

* For dimension details of mechanical-joint bells, see Table 10.1 : for dimension details of plain ends. see Table 10.2. Eccentric reducers with the same dimensions and weights given for concentric reducers are available from most manufacturers if specified on the purchase order.
$\dagger$ Weight does not include accessory weights. See Table 10.1 for accessory weights.
Ductile Iron.

TABLE 10.7
Mechanical-Joint Reducers* (contd.)
OVN

| Size in. |  | Pressure Rating psi | IronStrength $p s i$$\left(1000^{\prime} s\right)$ | Thickness $i n$. |  | MJ \& MJ |  | $\begin{aligned} & \text { Small-End } \\ & \mathrm{MJ} \end{aligned}$ |  | $\underset{\mathrm{MJ}}{\underset{\text { Large-End }}{ }}$ |  | PE \& PE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Large End | $\underset{\text { End }}{\text { Smal! }}$ |  |  | $\begin{gathered} T \\ \text { Large } \\ \text { End } \end{gathered}$ | $T_{1}$ <br> Small End | $\stackrel{L}{\text { in }}$ | $\underset{l b}{\text { Weight } \dagger}$ | $\underset{i n}{L}$ | $\|\underset{l b}{\text { Weight }}\|$ | $\stackrel{L}{\text { in }}$ | $\underset{l b}{\text { Weight } \dagger} \mid$ | $\stackrel{L}{\text { in }}$ | $\underset{l b}{\text { Weight } \dagger}$ |
| 12 | 8 | 250 | 25 | 0.75 | 0.60 | 14 | 165 | 22 | 165 | 22 | 165 | 30 | 165 |
| 12 | 8 | 350 | DIf | 0.75 | 0.60 | 14 | 165 | 22 | 165 | 22 | 165 | 30 | 165 |
| 12 | 10 | 250 | 25 | 0.75 | 0.68 | 14 | 190 | 22 | 190 | 22 | 185 | 30 | 185 |
| 12 | 10 | 350 | DI | 0.75 | 0.68 | 14 | 190 | 22 | 190 | 22 | 185 | 30 | 185 |
| 14 | 6 | 150 | 25 | 0.66 | 0.55 | 16 | 190 | 24 | 175 | 24 | 185 | 32 | 170 |
| 14 | 6 | 250 | 25 | 0.82 | 0.55 | 16 | 200 | 24 | 185 | 24 | 200 | 32 | 185 |
| 14 | 6 | 350 | DI | 0.66 | 0.55 | 16 | 190 | 24 | 175 | 24 | 185 | 32 | 170 |
| 14 | 8 | 150 | 25 | 0.66 | 0.60 | 16 | 210 | 24 | 190 | 24 | 205 | 32 | 190 |
| 14 | 8 | 250 | 25 | 0.82 | 0.60 | 16 | 220 | 24 | 205 | 24 | 220 | 32 | 205 |
| 14 | 8 | 350 | DI | 0.66 | 0.60 | 16 | 210 | 24 | 190 | 24 | 205 | 32 | 190 |
| 14 | 10 | 150 | 25 | 0.66 | 0.68 | 16 | 230 | 24 | 215 | 24 | 230 | 32 | 215 |
| 14 | 10 | 250 | 25 | 0.82 | 0.68 | 16 | 245 | 24 | 230 | 24 | 245 | 32 | 230 |
| 14 | 10 | 350 | DI | 0.66 | 0.68 | 16 | 230 | 24 | 215 | 24 | 230 | 32 | 215 |
| 14 | 12 | 150 | 25 | 0.66 | 0.75 | 16 | 255 | 24 | 240 | 24 | 255 | 32 | 240 |
| 14 | 12 | 250 | 25 | 0.82 | 0.75 | 16 | 270 | 24 | 255 | 24 | 275 | 32 | 260 |
| 14 | 12 | 350 | DI | 0.66 | 0.75 | 16 | 255 | 24 | 240 | 24 | 255 | 32 | 240 |
| 16 | 6 | 150 | 30 | 0.70 | 0.55 | 18 | 230 | 26 | 210 | 26 | 230 | 34 | 210 |
| 16 | 6 | 250 | 30 | 0.89 | 0.55 | 18 | 250 | 26 | 230 | 26 | 250 | 34 | 230 |
| 16 | 6 | 350 | DI | 0.70 | 0.55 | 18 | 230 | 26 | 210 | 26 | 230 | 34 | 210 |
| 16 | 8 | 150 | 30 | 0.70 | 0.60 | 18 | 250 | 26 | 230 | 26 | 250 | 34 | 230 |
| 16 | 8 | 250 | 30 | 0.89 | 0.60 | 18 | 270 | 26 | 250 | 26 | 270 | 34 | 250 |
| 16 | 8 | 350 | DI | 0.70 | 0.60 | 18 | 250 | 26 | 230 | 26 | 250 | 34 | 230 |
| 16 | 10 | 150 | 30 | 0.70 | 0.68 | 18 | 280 | 26 | 255 | 26 | 275 | 34 | 255 |
| 16 | 10 | 250 | 30 | 0.89 | 0.68 | 18 | 300 | 26 | 280 | 26 | 300 | 34 | 280 |
| 16 | 10 | 350 | DI | 0.70 | 0.68 | 18 | 280 | 26 | 255 | 26 | 275 | 34 | 255 |
| 16 | 12 | 150 | 30 | 0.70 | 0.75 | 18 | 305 | 26 | 285 | 26 | 305 | 34 | 285 |
| 16 | 12 | 250 | 30 | 0.89 | 0.75 | 18 | 325 | 26 | 305 | 26 | 330 | 34 | 310 |
| 16 | 12 | 350 | DI | 0.70 | 0.75 | 18 | 305 | 26 | 285 | 26 | 305 | 34 | 285 |
| 16 | 14 | 150 | 30 | 0.70 | 0.66 | 18 | 335 | 26 | 310 | 26 | 315 | 34 | 295 |
| 16 | 14 | 250 | 30 | 0.89 | 0.82 | 18 | 370 | 26 | 350 | 26 | 355 | 34 | 335 |
| 16 | 14 | 350 | DI | 0.70 | 0.66 | 18 | 335 | 26 | 310 | 26 | 315 | 34 | 295 |
| 18 | 8 | 150 | 30 | 0.75 | 0.60 | 19 | 295 | 27 | 270 | 27 | 295 | 35 | 270 |
| 18 | 8 | 250 | 30 | 0.96 | 0.60 | 19 | 320 | 27 | 295 | 27 | 320 | 35 | 295 |
| 18 | 8 | 350 | DI | 0.75 | 0.60 | 19 | 295 | 27 | 270 | 27 | 295 | 35 | 270 |
| 18 | 10 | 150 | 30 | 0.75 | 0.68 | 19 | 325 | 27 | 300 | 27 | 320 | 35 | 295 |
| 18 | 10 | 250 | 30 | 0.96 | 0.68 | 19 | 350 | 27 | 325 | 27 | 350 | 35 | 325 |
| 18 | 10 | 350 | DI | 0.75 | 0.68 | 19 | 325 | 27 | 300 | 27 | 320 | 35 | 295 |
| 18 | 12 | 150 | 30 | 0.75 | 0.75 | 19 | 350 | 27 | 325 | 27 | 350 | 35 | 325 |
| 18 | 12 | 250 | 30 | 0.96 | 0.75 | 19 | 380 | 27 | 355 | 27 | 385 | 35 | 360 |
| 18 | 12 | 350 | DI | 0.75 | 0.75 | 19 | 350 | 27 | 325 | 27 | 350 | 35 | 325 |
| 18 | 14 | 150 | 30 | 0.75 | 0.66 | 19 | 380 | 27 | 355 | 27 | 365 | 35 | 340 |
| 18 | 14 | 250 | 30 | 0.96 | 0.82 | 19 | 425 | 27 | 400 | 27 | 410 | 35 | 385 |
| 18 | 14 | 350 | DI | 0.75 | 0.66 | 19 | 380 | 27 | 355 | 27 | 365 | 35 | 340 |
| 18 | 16 | 150 | 30 | 0.75 | 0.70 | 19 | 415 | 27 | 390 | 27 | 395 | 35 | 370 |
| 18 | 16 | 250 | 30 | 0.96 | 0.89 | 19 | 465 | 27 | 440 | 27 | 445 | 35 | 420 |
| 18 | 16 | 350 | DI | 0.75 | 0.70 | 19 | 415 | 27 | 390 | 27 | 395 | 35 | 370 |
| 20 | 10 | 150 | 30 | 0.80 | 0.68 | 20 | 375 | 28 | 345 | 28 | 375 | 36 | 345 |
| 20 | 10 | 250 | 30 | 1.03 | 0.68 | 20 | 410 | 28 | 380 | 28 | 410 | 36 | 380 |
| 20 | 10 | 350 | DI | 0.80 | 0.68 | 20 | 375 | 28 | 345 | 38 | 375 | 36 | 345 |

* For dimension details of mechanical-joint bells, see Table 10.1 ; for dimension details of plain ends, sec Table 10.2. Eccentric reducers with the same dimensions and weights given for concentric reducers are avalable from most manufacturers if ssecified on the parchase orfor
most manucturers it shecified on the phredase order
+ Weight des not inelude accessory weights. See Table 10.1 for accessory weights.
$\ddagger$ Ductile Iron.

TABLE 10.7
Mechanical-Joint Reducers* (contd.)

| $\underset{\substack{\text { Size } \\ i n .}}{\text { in }}$ |  | $\begin{gathered} \text { Pressure } \\ \begin{array}{c} \text { Rating } \\ p s i \end{array} \end{gathered}$ | $\begin{gathered} \text { Iron } \\ \text { Strength } \\ \text { psi } \\ (1000 \text { 's }) \end{gathered}$ | Thickness in. |  | MJ \& MJ |  | $\begin{aligned} & \text { Small-End } \\ & \text { MJ } \end{aligned}$ |  | $\underset{\text { Large-End }}{\text { MJ }}$ |  | PE \& PE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Large } \\ & \text { End } \end{aligned}$ | $\begin{aligned} & \text { Small } \\ & \text { End } \end{aligned}$ |  |  | $\begin{gathered} T \\ \text { Large } \\ \text { End } \end{gathered}$ | $\text { e } \left.\begin{gathered} T_{1} \\ \text { Small } \\ \text { End } \end{gathered} \right\rvert\,$ | $\underset{i n}{L}$ | $\underset{l b}{\text { Weightt }} \underset{ }{\|c\|}$ | $\stackrel{L}{L}$ | $\underset{l b}{\text { Weight }}$ | ${ }_{i n}^{L}$ | $\underset{l b}{\text { Weight }}$ | $\underset{i n}{L}$ | $\underset{\text { Weight } \dagger}{\text { b }}$ |
| 20 | 12 | 150 | 30 | 0.80 | 0.75 | 20 | 405 | 28 | 375 | 28 | 405 | 36 | 375 |
| 20 | 12 | 250 | 30 | 1.03 | 0.75 | 20 | 440 | 28 | 410 | 28 | 445 | 36 | 415 |
| 20 | 12 | 350 | Dİ $\ddagger$ | 0.80 | 0.75 | 20 | 405 | 28 | 375 | 28 | 405 | 36 | 375 |
| 20 | 14 | 150 | 30 | 0.80 | 0.66 | 20 | 430 | 28 | 400 | 28 | 415 | 36 | 385 |
| 20 | 14 | 250 | 30 | 1.03 | 0.82 | 20 | 485 | 28 | 455 | 28 | 470 | 36 | 440 |
| 20 | 14 | 350 | DI | 0.80 | 0.66 | 20 | 430 | 28 | 400 | 28 | 415 | 36 | 385 |
| 20 | 16 | 150 | 30 | 0.80 | 0.70 | 20 | 470 | 28 | 435 | 28 | 445 | 36 | 415 |
| 20 | 16 | 250 | 30 | 1.03 | 0.89 | 20 | 530 | 28 | 500 | 28 | 510 | 36 | 475 |
| 20 | 16 | 350 | DI | 0.80 | 0.70 | 20 | 470 | 28 | 435 | 28 | 445 | 36 | 415 |
| 20 | 18 | 150 | 30 | 0.80 | 0.75 | 20 | 510 | 28 | 475 | 28 | 485 | 36 | 455 |
| 20 | 18 | 250 | 30 | 1.03 | 0.96 | 20 | 575 | 28 | 545 | 28 | 550 | 36 | 520 |
| 20 | 18 | 350 | DI | 0.80 | 0.75 | 20 | 510 | 28 | 475 | 28 | 485 | 36 | 455 |
| 24 | 12 | 150 | 30 | 0.89 | 0.75 | 24 | 550 | 32 | 510 | 32 | 550 | 40 | 510 |
| 24 | 12 | 250 | 30 | 1.16 | 0.75 | 24 | 610 | 32 | 570 | 32 | 615 | 40 | 575 |
| 24 | 12 | 350 | DI | 0.89 | 0.75 | 24 | 550 | 32 | 510 | 32 | 550 | 40 | 510 |
| 24 | 14 | 150 | 30 | 0.89 | 0.66 | 24 | 575 | 32 | 535 | 32 | 560 | 40 | 520 |
| 24 | 14 | 250 | 30 | 1.16 | 0.82 | 24 | 660 | 32 | 620 | 32 | 645 | 40 | 605 |
| 24 | 14 | 350 | DI | 0.89 | 0.66 | 24 | 575 | 32 | 535 | 32 | 560 | 40 | 520 |
| 24 | 16 | 150 | 30 | 0.89 | 0.70 | 24 | 615 | 32 | 575 | 32 | 595 | 40 | 555 |
| 24 | 16 | 250 | 30 | 1.16 | 0.89 | 24 | 705 | 32 | 665 | 32 | 685 | 40 | 645 |
| 24 | 16 | 350 | DI | 0.89 | 0.70 | 24 | 615 | 32 | 575 | 32 | 595 | 40 | 555 |
| 24 | 18 | 150 | 30 | 0.89 | 0.75 | 24 | 660 | 32 | 620 | 32 | 635 | 40 | 595 |
| 24 | 18 | 250 | 30 | 1.16 | 0.96 | 24 | 760 | 32 | 720 | 32 | 735 | 40 | 695 |
| 24 | 18 | 350 | DI | 0.89 | 0.75 | 24 | 660 | 32 | 620 | 32 | 635 | 40 | 595 |
| 24 | 20 | 150 | 30 | 0.89 | 0.80 | 24 | 705 | 32 | 665 | 32 | 675 | 40 | 635 |
| 24 | 20 | 250 | 30 | 1.16 | 1.03 | 24 | 815 | 32 | 775 | 32 | 785 | 40 | 745 |
| 24 | 20 | 350 | DI | 0.89 | 0.80 | 24 | 705 | 32 | 665 | 32 | 675 | 40 | 635 |
| 30 | 18 | 150 | 30 | 1.03 | 0.75 | 30 | 990 | 38 | 885 | 38 | 965 | 46 | 860 |
| 30 | 18 | 250 | 30 | 1.37 | 0.96 | 30 | 1,160 | 38 | 1,050 | 38 | 1,130 | 46 | 1,025 |
| 30 | 18 | 250 | DI | 1.03 | 0.75 | 30 | '990 | 38 | 885 | 38 | 965 | 46 | 860 |
| 30 | 20 | 150 | 30 | 1.03 | 0.80 | 30 | 1,050 | 38 | 945 | 38 | 1,020 | 46 | 915 |
| 30 | 20 | 250 | 30 | 1.37 | 1.03 | 30 | 1,225 | 38 | 1,120 | 38 | 1,195 | 46 | 1,090 |
| 30 | 20 | 250 | DI | 1.03 | 0.80 | 30 | 1,050 | 38 | , 945 | 38 | 1,020 | 46 | 915 |
| 30 | 24 | 150 | 30 | 1.03 | 0.89 | 30 | 1,165 | 38 | 1,060 | 38 | 1,125 | 46 | 1,020 |
| 30 | 24 | 250 | 30 | 1.37 | 1.16 | 30 | 1,360 | 38 | 1,255 | 38 | 1,320 | 46 | 1,215 |
| 30 | 24 | 250 | DI | 1.03 | 0.89 | 30 | 1,165 | 38 | 1,060 | 38 | 1,125 | 46 | 1,020 |
| 36 | 20 | 150 | 30 | 1.15 | 0.80 | 36 | 1,450 | 44 | 1,285 | 44 | 1,420 | 52 | 1,255 |
| 36 | 20 | 250 | 30 | 1.58 | 1.03 | 36 | 1,730 | 44 | 1,560 | 44 | 1,695 | 52 | 1,530 |
| 36 | 20 | 250 | DI | 1.15 | 0.80 | 36 | 1,450 | 44 | 1,285 | 44 | 1,420 | 52 | 1,255 |
| 36 | 24 | 150 | 30 | 1.15 | 0.89 | 36 | 1,580 | 44 | 1,410 | 44 | 1,535 | 52 | 1,370 |
| 36 | 24 | 250 | 30 | 1.58 | 1.16 | 36 | 1,885 | 44 | 1,720 | 44 | 1,845 | 52 | 1.680 |
| 36 | 24 | 250 | DI | 1.15 | 0.89 | 36 | 1,580 | 44 | 1,410 | 44 | 1,535 | 52 | 1,370 |
| 36 | 30 | 150 | 30 | 1.15 | 1.03 | 36 | 1,855 | 44 | 1,690 | 44 | 1,750 | 52 | 1,585 |
| 36 | 30 | 250 | 30 | 1.58 | 1.37 | 36 | 2,225 | 44 | 2,060 | 44 | 2,120 | 52 | 1,950 |
| 36 | 30 | 250 | DI | 1.15 | 1.03 | 36 | 1,855 | 44 | 1,690 | 44 | 1,750 | 52 | 1,585 |
| 42 | 20 | 150 | 30 | 1.28 | 0.80 | 42 | 1,915 | 50 | 1,705 | 50 | 1,880 | 58 | 1,670 |
| 42 | 20 | 250 | 30 | 1.78 | 1.03 | 42 | 2,320 | 50 | 2,110 | 50 | 2,285 | 58 | 2,080 |
| 42 | 20 | 250 | DI | 1.28 | 0.80 | 42 | 1,915 | 50 | 1,705 | 50 | 1,880 | 58 | 1,670 |

[^27]TABLE 10.7
Mechanical-Joint Reducers* (contd.)

| Size in. |  | Pressure Rating psi | $\begin{aligned} & \text { Iron } \\ & \text { Strength } \\ & \text { psi } \\ & \left(1000^{\prime} s\right) \end{aligned}$ | Thickness ${ }_{\substack{\text { in. }}}^{\substack{\text { a }}}$ |  | MJ \& MJ |  | $\begin{gathered} \text { Small-End } \\ \text { SJ } \end{gathered}$ |  | Large-End MJ |  | PE \& PE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Large End | $\begin{aligned} & \text { Small } \\ & \text { End } \end{aligned}$ |  |  | $\underset{\text { Large }}{T}$ | $\begin{gathered} T_{1} \\ S_{\text {Small }} \\ \text { End } \end{gathered}$ | $\underset{i n}{L}$ | $\underset{l b}{\text { Weight }}$ | $\underset{i n .}{L}$ | $\text { Weight } \mid$ | $\underset{i n .}{L}$ | $\underset{l b}{\text { Weight } \dagger}$ | $\underset{i n .}{L}$ | $\text { Weight } \dagger$ |
| 42 | 24 | 150 | 30 | 1.28 | 0.89 | 42 | 2,060 | 50 | 1,855 | 50 | 2,020 | 58 | 1,810 |
| 42 | 24 | 250 | 30 | 1.78 | 1.16 | 42 | 2,495 | 50 | 2,285 | 50 | 2,455 | 58 | 2,245 |
| 42 | 24 | 250 | DIf | 1.28 | 0.89 | 42 | 2,060 | 50 | 1,855 | 50 | 2,020 | 58 | 1,810 |
| 42 | 30 | 150 | 30 | 1.28 | 1.03 | 42 | 2,370 | 50 | 2,165 | 50 | 2,265 | 58 | 2,055 |
| 42 | 30 | 250 | 30 | 1.78 | 1.37 | 42 | 2,885 | 50 | 2,675 | 50 | 2,780 | 58 | 2,570 |
| 42 | 30 | 250 | DI | 1.28 | 1.03 | 42 | 2,370 | 50 | 2,165 | 50 | 2,265 | 58 | 2,055 |
| 42 | 36 | 150 | 30 | 1.28 | 1.15 | 42 | 2,695 | 50 | 2,485 | 50 | 2,530 | 58 | 2,320 |
| 42 | 36 | 250 | 30 | 1.78 | 1.58 | 42 | 3,310 | 50 | 3,100 | 50 | 3,145 | 58 | 2,935 |
| 42 | 36 | 250 | DI | 1.28 | 1.15 | 42 | 2,695 | 50 | 2,485 | 50 | 2,530 | 58 | 2,320 |
| 48 | 30 | 150 | 30 | 1.42 | 1.03 | 48 | 3,005 | 56 | 2,740 | 56 | 2,900 | 64 | 2,635 |
| 48 | 30 | 250 | 30 | 1.96 | 1.37 | 48 | 3,680 | 56 | 3,410 | 56 | 3,570 | 64 | 3,305 |
| 48 | 30 | 250 | DI | 1.42 | 1.03 | 48 | 3,005 | 56 | 2,740 | 56 | 2,900 | 64 | 2,635 |
| 48 | 36 | 150 | 30 | 1.42 | 1.15 | 48 | 3,370 | 56 | 3,100 | 56 | 3,205 | 64 | 2,940 |
| 48 | 36 | 250 | 30 | 1.96 | 1.58 | 48 | 4,160 | 56 | 3,890 | 56 | 3,990 | 64 | 3,725 |
| 48 | 36 | 250 | DI | 1.42 | 1.15 | 48 | 3,370 | 56 | 3,100 | 56 | 3,205 | 64 | 2,940 |
| 48 | 42 | 150 | 30 | 1.42 | 1.28 | 48 | 3,750 | 56 | 3,480 | 56 | 3,540 | 64 | 3,275 |
| 48 | 42 | 250 | 30 | 1.96 | 1.78 | 48 | 4,655 | 56 | 4,390 | 56 | 4,445 | 64 | 4,180 |
| 48 | 42 | 250 | DI | 1.42 | 1.28 | 48 | 3,750 | 56 | 3,480 | 56 | 3,540 | 64 | 3,275 |

* For dimension details of mechancal-joint bells, ser Table 10,1; for dimension details of plain ends, see Table 10.2. Eccentric reducers with the same dimensions and weights given for concentric reducers am availahe from most manuacturers if specified on the purchase order.
+ Weight does not include accessory weights. See Table 10.1 for accessory weights.
$\ddagger$ I) uctile Iron.

TABLE 10.8
Mechanical-Joinl Tapped Tees*

| Size in. | Pressure Rating psi | $\begin{gathered} \text { Iron } \\ \text { Strength } \\ \text { psi } \\ \left(1000^{\prime} s\right) \end{gathered}$ | $\begin{gathered} T \\ i n . \end{gathered}$ | L ${ }_{\text {in }}$ | Max. Tap in Boss in. | $\underset{\text { Weight }}{\text { We }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 250 | 25 | 0.48 | 8 | $2 \frac{1}{2}$ | 35 |
| 3 | 350 | $\mathrm{DI}_{+}^{+}$ | 0.48 | 8 | 21 | 35 |
| 4 | 250 | 25 | 0.52 | 8 | 2. | 45 |
| 4 | 350 | DI | 0.52 | 8 | $2 \frac{1}{2}$ | 45 |
| 6 | 250 | 25 | 0.55 | 8 | $2 \frac{1}{2}$ | 70 |
| 6 | 350 | DI | 0.55 | 8 | $2 \frac{1}{2}$ | 70 |
| 8 | 250 | 25 | 0.60 | 8 | $2 \frac{1}{2}$ | 95 |
| 8 | 350 | DI | 0.60 | 8 | $2 \frac{1}{2}$ | 95 |
| 10 | 250 | 25 | 0.68 | 8 | 21 | 130 |
| 10 | 350 | DI | 0.68 | 8 | 25 | 130 |
| 12 | 250 | 2.5 | 0.75 | 8 | $2 \frac{1}{3}$ | 165 |
| 12 | 350 | DI | 0.75 | 8 | $2 \frac{1}{2}$ | 165 |

* Two bosses can be used to make a tapmed cross. For dimension details of mechanical-joint bells sec Table 10.1.
$\dagger$ Weight does not include arcessory weights. See
Table 10.1 for accessory weights.
$\ddagger$ I)uctile Iron.


Fig. 10.8. Mechanical-Joint Tapped Tees (See Table 10.8)

TABLE 10.9
Mechanical-Joint Offsets*

| $\begin{aligned} & \text { Size } \\ & \text { in. } \end{aligned}$ | $\underset{p s i}{P R}$ |  | $\begin{aligned} & D \\ & i n . \end{aligned}$ | $\underset{i n}{T}$ | MJ \& MJ |  | MJ \& PE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\underset{i n .}{L}$ | $\text { Wgt. } \ddagger$ | $\underset{i n .}{L}$ | $\underset{16}{\text { Wgt. }}$ + |
| 3 | 250 | 25 | 6 | 0.48 | 19 | 50 | 27 | 50 |
| 3 | 350 | DI§ |  | 0.48 | 19 | 50 | 27 | 50 |
| 3 3 | 250 350 | 25 | 12 | 0.48 | 22 | 60 | 30 | 60 |
| 3 | 250 | ${ }_{25}$ | 12 18 | 0.48 | 32 | 60 | 30 38 | 60 |
| 3 | 350 | DI | 18 | 0.48 | 30 | 75 | 38 | 75 |
| 4 | 250 | 25 | 8 | 0.52 | 19 | 75 | 27 | 70 |
| 4 | 350 | DI |  | 0.52 | 19 | 75 | 27 | 70 |
| 4 | 250 | 25 | 12 | 0.52 | 22 | 85 | 30 | 80 |
| 4 | 350 | DI | 12 | 0.52 | 22 | 85 | 30 | 80 |
| 4 | 250 | 25 | 18 | 0.52 | 30 | 105 | 38 | 100 |
| 4 | 350 | DI | 18 | 0.52 | 30 | 105 | 38 | 100 |
| 6 | 250 | 25 | 8 | 0.55 | 20 | 110 | 28 | 105 |
| 6 | 350 | DI | ${ }^{6}$ | 0.55 | 20 | 110 | 28 | 105 |
| 6 | 250 | 25 | 12 | 0.55 | 28 | 135 | 34 | 130 |
| 6 | 350 | DI | 12 | 0.55 | 20 | 135 | 34 | 130 |
| 6 | 250 | 25 | 18 | 0.55 | 33 | 165 | 41 | 160 |
| 6 | 350 | DI | 18 | 0.55 | 33 | 165 | 41 | 160 |
| 8 | 250 | 25 | 6 | 0.60 | 21 | 160 | 29 | 155 |
| 8 | 350 | DI | 8 | 0.60 | 21 | 180 | 29 | 155 |
| 8 | 250 | 25 | 12 | 0.60 | 28 | 200 | 36 | 195 |
| 8 | 350 | DI | 12 | 0.60 | 28 | 200 | 36 | 195 |
| 8 | 250 | 25 | 18 | 0.60 | 35 | 245 | 43 | 240 |
| 8 | 350 | DI | 18 | 0.60 | 35 | 245 | 43 | 240 |
| 10 | 250 | 25 | \% | 0.88 | 22 | 220 | 30 | 220 |
| 10 | 350 | DI | 6 | 0.88 | 22 | 220 | 30 | 220 |
| 10 | 250 | 25 | 12 | 0.68 | 30 | 280 | 38 | 280 |
| 10 | 350 | DI | 12 | 0.88 | 30 | 280 | 38 | 280 |
| 10 | 250 | 25 | 18 | 0.68 | 38 | 340 | 48 | 340 |
| 10 | 350 | DI | 18 | 0.68 | 38 | 340 | 46 | 340 |
| 12 | 250 | 25 | 6 | 0.75 | 26 | 320 | 34 | 320 |
| 12 | 350 | DI | 6 | 0.75 | 28 | 320 | 34 | 320 |
| 12 | 250 | 25 | 12 | 0.75 | 37 | 420 | 45 | 420 |
| 12 | 350 | DI | 12 | 0.75 | 37 | 420 | 45 | 420 |
| $12$ | 250 350 | ${ }^{25}$ | 18 | 0.75 0.75 | 48 | 520 520 | 56 58 | 520 520 |
| 14 | 150 | 25 | 6 | 0.66 | 27 | 380 | 35 | 365 |
| 14 | 250 | 25 | 6 | 0.82 | 27 | 435 | 35 | 420 |
| 14 | 350 | DI | 6 | 0.66 | 27 | 380 | 35 | 365 |
| 14 | 150 | 25 | 12 | 0.68 | 38 | 480 | 46 | 465 |
| 14 | 250 | 25 | 12 | 0.82 | 38 | 560 | 46 | 545 |
| 14 | 350 | DI | 12 | 0.66 | 38 | 480 | 46 | 465 |
| 14 | 150 | 25 | 18 | 0.66 | 49 | 585 | 57 | 570 |
| 14 | 250 | 25 | 18 | 0.82 | 49 | 680 | 57 | 665 |
| 14 | 350 | DI | 18 | 0.68 | 49 | 585 | 57 | 570 |
| 16 | 150 | 30 | 6 | 0.70 | 27 | 460 | 35 | 440 |
| 16 | 250 | 30 | 6 | 0.89 | 27 | 535 | 35 | 515 |
| 16 | 350 | DI | 6 | 0.70 | 27 | 460 | 35 | 440 |
| 16 | 150 | 30 | 12 | 0.70 | 40 | 600 | 48 | 580 |
| 16 | 250 | 30 | 12 | 0.89 | 40 | 715 | 48 | 690 |
| 16 | 350 | DI | 12 | 0.70 | 40 | 600 | 48 | 580 |
| 16 | 150 | 30 | 18 | 0.70 | 50 | 710 | 58 | 690 |
| ${ }_{16}^{16}$ | 250 | 30 | 18 | 0.89 | 50 | 850 | 58 | 830 |
| 16 | 350 | DI | 18 | 0.70 | 50 | 710 | 58 | 690 |

Fig. 10.9. Mechanical-Joint Offsets (See Table 10.9)

* For dimension details of mechanical-joint beils, see Table
10.1 ; for dimension details of plain ends, see Table 10.2 .

Pressure rating.
$\ddagger$ Weight does not include accessory weights. See Table 10.1
for accessory weights.
§ Ductile iron.



Fig. 10.10. Mechanical-Joint Sleeves (See Table 10.10)


Fig. 10.10a. Mechanical Joint Split Sleeves
Splil sleeves are furnished with a pressure valing of 150 psi and can be furnished with boss and lap for servic: conneclions. Consult manufacturers ior driails.

TABLE 10.10
Mechanical-Joint Slecies

| Size in. | Pressure Rating psi | $\begin{gathered} \text { Iron } \\ \text { Strength } \\ \text { psi } \\ (1000 ' s) \end{gathered}$ | $\underset{i n}{T}$ | Solid Sleeves |  |  |  | Transition Sleeves* |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $L_{1}$ |  | $L_{2}$ |  | Fits OD Steel Pipe | $L$ |  |
|  |  |  |  | $\underbrace{}_{\substack{\text { Length } \\ i n .}}$ |  | $\begin{gathered} \text { Length } \\ \text { in. } \end{gathered}$ | $\underset{\text { Wgt. }}{\text { lb }}$. |  | Length in. | $\underset{l b}{\text { wgt. } \dagger}$ |
| 3 | 250 | 25 | 0.48 | 7.5 | 25 | 12 | 30 | 3.50 | 7.5 | 25 |
| 3 | 350 | DI $\ddagger$ | 0.48 | 7.5 | 25 | 12 | 30 | 3.50 | 7.5 | 25 |
| 4 | 250 | 25 | 0.52 | 7.5 | 35 | 12 | 45 | 4.50 | 7.5 | 35 |
| 4 | 350 | DI | 0.52 | 7.5 | 35 | 12 | 45 | 4.50 | 7.5 | 35 |
| 6 | 250 | 25 | 0.55 | 7.5 | 45 | 12 | 65 | 6.62 | 7.5 | 45 |
| 6 | 350 | DI | 0.55 | 7.5 | 45 | 12 | 65 | 6.62 | 7.5 | 45 |
| 8 | 250 | 25 | 0.60 | 7.5 | 65 | 12 | 85 | 8.62 | 7.5 | 65 |
| 8 | 350 | DI | 0.60 | 7.5 | 65 | 12 | 85 | 8.62 | 7.5 | 65 |
| 10 | 250 | 25 | 0.68 | 7.5 | 85 | 12 | 115 | 10.75 | 7.5 | 85 |
| 10 | 350 | DI | 0.68 | 7.5 | 85 | 12 | 115 | 10.75 | 7.5 | 85 |
| 12 | 250 | 25 | 0.75 | 7.5 | 110 | 12 | 145 | 12.75 | 7.5 | 110 |
| 12 | 350 | DI | 0.75 | 7.5 | 110 | 12 | 145 | 12.75 | 7.5 | 110 |
| 14 | 250 | 30 | 0.82 | 9.5 | 165 | 15 | 225 |  |  |  |
| 14 | 350 | DI | 0.82 | 9.5 | 165 | 15 | 225 |  |  |  |
| 16 | 250 | 30 | 0.89 | 9.5 | 200 | 15 | 275 |  |  |  |
| 16 | 350 | DI | 0.89 | 9.5 | 200 | 15 | 275 |  |  |  |
| 18 | 250 | 30 | 0.96 | 9.5 | 240 | 15 | 330 |  |  |  |
| 18 | 350 | DI | 0.96 | 9.5 | 240 | 15 | 330 |  |  |  |
| 20 | 250 | 30 | 1.03 | 9.5 | 275 | 15 | 380 |  |  |  |
| 20 | 350 | DI | 1.03 | 9.5 | 275 | 15 | 380 |  |  |  |
| 24 | 250 | 30 | 1.16 | 9.5 | 360 | 15 | 505 |  |  |  |
| 24 | 350 | DI | 1.16 | 9.5 | 360 | 15 | 505 |  |  |  |
| 30 | 250 | 30 | 1.37 | 15 | 745 | 24 | 1,085 |  |  |  |
| 30 | 250 | DI | 1.37 | 15 | 745 | 24 | 1,085 |  |  |  |
| 36 | 250 | 30 | 1.58 | 15 | 1,030 | 24 | 1,495 |  |  |  |
| 36 | 250 | DI | 1.58 | 15 | 1,030 | 24 | 1,495 |  |  |  |
| 42 | 250 | 30 | 1.78 | 15 | 1,330 | 24 | 1,940 |  |  |  |
| 42 | 250 | DI | 1.78 | 15 | 1,330 | 24 | 1,940 |  |  |  |
| 48 | 250 | 30 | 1.96 | 15 | 1,645 | 24 | 2,405 |  |  |  |
| 48 | 250 | DI | 1.96 | 15 | 1,645 | 24 | 2,405 |  |  |  |

* Transition sleeves are furnished with one end designed to fit standard steel pipe and the other to fit plainend cast-iron jipe.

Ductile Ioes not include accessory weights. Sce Table 10.1 for accessory weights


Fig. 10.11. Mechanical-Joint Caps and Plugs (See Table 10.11)

TABLE 10.11
Mechanical-Joint Caps and Plugs

| Size in. | $\begin{gathered} \text { Pressure } \\ \text { Rating } \\ j s i \end{gathered}$ | IronStrength psi(1000's) | Caps |  |  |  | Plugs |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Dimensions-in. |  | Weight-lb |  | Dimensions-in. |  | Weight-lb |  |
|  |  |  | $T$ | $T_{1}$ | Flat | Dished* | $T$ | $T_{1}$ | Flat | Dished* |
| 3 | 250 | 25 | 0.50 | 0.48 | 12 | 12 | 0.50 | 0.48 | 10 | 10 |
| 3 | 350 | DIt $\dagger$ | 0.50 | 0.48 | 12 | 12 | 0.50 | 0.48 | 10 | 10 |
| 4 | 250 | 25 | 0.60 | 0.52 | 15 | 15 | 0.60 | 0.52 | 15 | 15 |
| 4 | 350 | DI | 0.60 | 0.52 | 15 | 15 | 0.60 | 0.52 | 15 | 15 |
| 6 | 250 | 25 | 0.65 | 0.55 | 25 | 25 | 0.65 | 0.55 | 25 | 25 |
| 6 | 350 | DI | 0.65 | 0.55 | 25 | 25 | 0.65 | 0.55 | 25 | 25 |
| 8 | 250 | 25 | 0.70 | 0.60 | 45 | 45 | 0.70 | 0.60 | 45 | 45 |
| 8 | 350 | DI | 0.70 | 0.60 | 45 | 45 | 0.70 | 0.60 | 45 | 45 |
| 10 | 250 | 25 | 0.75 | 0.68 | 60 | 60 | 0.75 | 0.68 | 65 | 70 |
| 10 | 350 | DI | 0.75 | 0.68 | 60 | 60 | 0.75 | 0.68 | 65 | 70 |
| 12 | 250 | 25 | 0.75 | 0.75 | 80 | 80 | 0.75 | 0.75 | 85 | 90 |
| 12 | 350 | DI | 0.75 | 0.75 | 80 | 80 | 0.75 | 0.75 | 85 | 90 |
| 14 | 250 | 30 | 1.00 | 0.82 | 130 | 115 | 1.00 | 0.82 | 120 | 120 |
| 14 | 250 | DI | 0.82 | 0.66 | 120 | 110 | 0.82 | 0.66 | 115 | 115 |
| 16 | 250 | 30 | 1.11 | 0.89 | 175 | 155 | 1.11 | 0.89 | 155 | 150 |
| 16 | 250 | DI | 0.89 | 0.70 | 155 | 150 | 0.89 | 0.70 | 145 | 145 |
| 18 | 250 | 30 | 1.25 | 0.96 | 225 | 215 | 1.25 | 0.96 | 200 | 190 |
| 18 | 250 | DI | 0.96 | 0.75 | 195 | 185 | 0.96 | 0.75 | 185 | 180 |
| 20 | 250 | 30 | 1.40 | 1.03 | 285 | 250 | 1.40 | 1.03 | 255 | 215 |
| 20 | 250 | DI | 1.03 | 0.80 | 240 | 200 | 1.03 | 0.80 | 225 | 200 |
| 24 | 250 | 30 | 1.50 | 1.16 | 400 | 370 | 1.50 | 1.16 | 390 | 350 |
| 24 | 250 | DI | 1.16 | 0.89 | 345 | 300 | 1.16 | 0.89 | 335 | 290 |
| 30 | 150 | 30 |  | 1.37 1.03 |  | 680 590 |  | 1.37 1.03 |  | 660 575 |
| 36 | 150 | 30 |  | 1.58 |  | 1,005 |  | 1.58 |  | 975 |
| 36 | 250 | DI |  | 1.15 |  | 850 |  | 1.15 |  | 815 |
| 42 | 150 | 30 |  | 1.78 |  | 1.535 |  | 1.78 |  | 1,355 |
| 42 | 250 | DI |  | 1.28 |  | 1.180 |  | 1.28 |  | 1,110 |
|  |  |  |  |  |  |  |  |  |  |  |

[^28]$\dagger$ Ductile Iron.


Fig. 10.12. Mechanical-Joint Connecting Pieces (See Table 10.12)

TABLE 10.12
Mechanical-Joint Connecting Pieces*
2
9
6

|  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

* For dimensional details of medhanionl joints. see Table 10.1 : pain ends, Table 10.2.
$\dagger$ Veight does not include accessory weights. See Table 10.1 for accesory weights.
$\dagger$ Weight does not include accessory weights Se
$\pm$ May be furnished from centrifugatll wast pipe.
$\ddagger$ Mas be furni
S Puctile iron.


Fig. 10.13. Connecting Pieces, One-End Flanged (See Table 10.13)

TABLE 10.13

| Size | Pressure Rating psi | $\begin{gathered} \text { Iron Strength } \\ \text { psi } \\ \left(10000^{\prime} \mathrm{s}\right) \end{gathered}$ | $T$-in. | Weight--lb $\dagger$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MJ \& Flg. $\ddagger$ | Flg. \& PE $\ddagger$ |
| 3 | 250 | 25 | 0.48 | 30 | 30 |
| 3 | 250 | DIs | 0.48 | 30 | 30 |
| 4 | 250 | $\stackrel{1}{\text { DI }}$ | 0 | 40 | 40 |
| 6 | 250 | 25 | 0.55 | 60 | 55 |
| 6 | 250 | DI | 0.55 | 60 | 55 |
| 8 | 250 | 25 | 0.60 | 85 | 85 |
| 8 | 250 | DI | 0.60 | 85 | 85 |
| 10 | 250 250 | 25 | 0.68 0.68 | 115 115 | 115 115 |
| 12 | 250 | 25 | 0.68 0.75 | 115 155 | 155 |
| 12 | 250 | DI | 0.75 | 155 | 155 |
| 14 | 150 | 25 | 0.66 | 195 | 180 |
| 14 | 250 | 25 | 0.82 | 210 | 195 |
| 14 | 250 | DI | 0.66 | 195 | 180 |
| 16 | 150 | 30 | 0.70 | 240 | 220 |
| 16 | 250 | 30 | 0.89 | 260 | 240 |
| 16 | 250 | DI | 0.70 | 240 | 220 |
| 18 | 150 | 30 | 0.75 | 280 | 255 |
| 18 | 250 | 30 | 0.96 | 305 | 280 |
| 18 | 250 | DI | 0.75 | 280 | 255 |
| 20 | 150 | 30 | 0.80 | 348 | 305 |
| 20 | 250 | 30 | 1.03 | 365 | 335 |
| 20 | 250 | DI | 0.80 | 340 | 305 |
| 24 | 150 | 30 | 0.89 | 455 | 415 |
| 24 | 250 | 30 | 1.16 | 495 | 455 |
| 24 | 250 | DI | 0.89 | 455 | 415 |
| 30 | 150 | 30 | 1.03 | 760 | 600 |
| 30 | 250 | 30 | 1.37 | 840 | 665 |
| 30 | 250 | DI | 1.03 | 760 | 600 |
| 36 | 150 | 30 | 1.15 | 1,070 | 830 |
| 36 | 250 | 30 | 1.58 | 1,195 | 930 |
| 36 | 250 | DI | 1.15 | 1,070 | 830 |
| 42 | 150 | 30 | 1.28 | 1,505 | 1,115 |
| 42 | 250 | 30 | 1.78 | 1,685 1,505 | 1,250 1,115 |
| 42 | 250 | DI | 1.28 | 1,505 | 1,115 |
| 48 | 150 | 30 | 1.42 | 1,885 | 1,390 |
| 48 | 250 | 30 | 1.96 | 1,140 1,885 | 1,560 1,390 |
| 48 | 250 | DI | 1.42 | 1,885 | 1,390 |

* For dimensional details of mechanical joints, see Table 10.1 ; plain ends, Table 10.3 ; flanges, Table 10.14.
$\dagger$ Weight does not include accessory weights. See Table 10.1 for accessory weights.
+ May be furnished from centrifugally cast pipe
Ductile Iron.


Fig. 10.14. Flange Details (See Table 10.14)

TABLE 10.14
Flange Details

| $\begin{gathered} \text { Size } \\ \text { in. } \end{gathered}$ | Dimensions - $i n$. |  |  |  |  | No. of Bolts |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }^{(1)}$ | $B C$ | $T$ | Bolt Hole Dians. | Bolt 1)iam. \& Length-in. |  |
| 3 | 7.50 | 6.00 | $0.75 \pm .12$ | $\frac{3}{4}$ | ${ }_{8}^{5} \times 2 \frac{1}{2}$ | 4 |
| 4 | 9.00 | 7.50 | $0.94 \pm .12$ | 4 | ${ }_{8}^{5} \times 3$ | 8 |
| 6 | 11.00 | 9.50 | $1.00 \pm .12$ | $\frac{7}{8}$ | $\frac{3}{4} \times 3 \frac{1}{2}$ | 8 |
| 8 | 13.50 | 11.75 | $1.12 \pm .12$ | $\frac{7}{8}$ | $\frac{3}{4} \times 3 \frac{1}{2}$ | 8 |
| 10 | 16.00 | 14.25 | $1.19 \pm .12$ | 1 | ${ }_{8}^{7} \times 4$ | 12 |
| 12 | 19.00 | 17.00 | $1.25 \pm .12$ | 1 | ${ }_{8}^{7} \times 4$ | 12 |
| 14 | 21.00 | 18.75 | $1.38 \pm .19$ | $1 \frac{1}{8}$ | $1 \times 4 \frac{1}{2}$ | 12 |
| 16 | 23.50 | 21.25 | $1.44 \pm .19$ | $1 \frac{1}{8}$ | $1 \times 4 \frac{1}{2}$ | 16 |
| 18 | 25.00 | 22.75 | $1.56 \pm .19$ | $1 \frac{1}{4}$ | $1 \frac{1}{8} \times 5$ | 16 |
| 20 | 27.50 | 25.00 | $1.69 \pm .19$ | $1{ }_{4}^{1}$ | $1 \frac{1}{8} \times 5$ | 20 |
| 24 | 32.00 | 29.50 | $1.88 \pm .19$ | $1{ }^{3}$ | $1 \frac{1}{4} \times 5 \frac{1}{2}$ | 20 |
| 30 | 38.75 | 36.00 | $2.12 \pm .25$ | $1 \frac{3}{8}$ | $1 \frac{1}{4} \times 6 \frac{1}{2}$ | 28 |
| 36 | 46.00 | 42.75 | $2.38 \pm .25$ | $1{ }_{8}^{5}$ | $1 \frac{1}{2} \times 7$ | 32 |
| 42 | 53.00 | 49.50 | $2.62 \pm .25$ | 15 | $1 \frac{1}{2} \times 7 \frac{1}{2}$ | 36 |
| 48 | 59.50 | 56.00 | $2.75 \pm .25$ | $1 \frac{5}{8}$ | $1 \frac{1}{2} \times 8$ | 44 |

Nore: For other requirements see Sec. 10-14.

GRAY- AND DUCTILE-IRON FITTINGS


Fig. 10.15. Base Drilling Details (See Table 10.15)

TABLE 10.15
Base Drilling Details*

| Nom.Diam. in. | Dimensions-in. |  |  | Approx. Wgt. of Base-lb. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $B C$ | Bolt Hole Diam. | No. of Bolts | Bends | Tees |
| 3 | 3.88 | ${ }_{8}^{5}$ | 4 | 10 | 5 |
| 4 | 4.75 | $\frac{3}{4}$ | 4 | 10 | 10 |
| 6 | 5.50 | $\frac{3}{4}$ | 4 | 20 | 15 |
| 8 | 7.50 | $\frac{3}{4}$ | 4 | 40 | 30 |
| 10 | 7.50 | $\frac{3}{4}$ | 4 | 45 | 30 |
| 12 | 9.50 | $\frac{7}{8}$ | 4 | 65 | 45 |
| 14 | 9.50 | $\frac{7}{8}$ | 4 | 70 | 50 |
| 16 | 9.50 | $\frac{7}{8}$ | 4 | 75 | 50 |
| 18 | 11.75 | $\frac{7}{8}$ | 4 | 115 | 75 |
| 20 | 11.75 | $\frac{7}{8}$ | 4 | 120 | 75 |
| 24 | 11.75 | $\frac{7}{8}$ | 4 | 130 | 80 |
| 30 | 14.25 | 1 | 4 | 190 | 120 |
| 36 | 17.00 | 1 | 4 | 250 | 160 |
| 42 | 21.25 | $1 \frac{1}{8}$ | 4 | 410 | 270 |
| 48 | 22.75 | $1{ }_{4}^{1}$ | 4 | 515 | 335 |

* Bases are not faced or drilled unless so specified in the purchase order.


Fig. 10.16. Flanged Bends (See Table 10.16)

TABLE 10.16

| Flanged Bends* |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size in. | $\underset{p s i}{\text { PR }}$ | Strength (1000's) | $T$ | 90 deg |  | 45 deg |  | 22 deg |  | 114 deg |  | $\begin{gathered} 90 \\ \text { deg } \end{gathered}$ | $\begin{gathered} 45 \\ \text { deg } \end{gathered}$ | $\begin{aligned} & 22 \\ & \text { deg } \end{aligned}$ | $11 \ddagger$deg |
|  |  |  |  | A | $R$ | A | $R$ | A | $R$ | $A$ | $R$ |  |  |  |  |
|  |  |  | Dimensions-in. |  |  |  |  |  |  |  |  | Weight-lb |  |  |  |
| 3 | 250 | 25 | 0.48 | 5.5 | 4.0 | 3.0 | 3.62 | 3.0 | 7.56 | 3.0 | 15.25 | 25 | 20 | 20 | 20 |
| 4 | 250 | 25 | 0.52 | 6.5 | 4.5 | 4.0 | 4.81 | 4.0 | 10.06 | 4.0 | 20.31 | 45 | 40 | 40 | 40 |
| 6 | 250 | 25 | 0.55 | 8.0 | 6.0 | 5.0 | 7.25 | 5.0 | 15.06 | 5.0 | 30.50 | 65 | 55 | 55 | 55 |
| 8 | 250 | 25 | 0.60 | 9.0 | 7.0 | 5.5 | 8.44 | 5.5 | 17.62 | 5.5 | 35.50 | 105 | 90 | 90 | 90 |
| 10 | 250 | 25 | 0.68 | 11.0 | 9.0 | 6.5 | 10.88 | 6.5 | 22.62 | 6.5 | 45.69 | 165 | 130 | 135 | 135 |
| 12 | 250 | 25 | 0.75 | 12.0 | 10.0 | 7.5 | 13.25 | 7.5 | 27.62 | 7.5 | 55.81 | 235 | 195 | 205 | 205 |
| 14 | 150 | 25 | 0.66 | 14.0 | 11.5 | 7.5 | 12.06 | 7.5 | 25.12 | 7.5 | 50.75 | 290 | 220 | 225 | 225 |
| 14 | 250 | 25 | 0.82 | 14.0 | 11.5 | 7.5 | 12.06 | 7.5 | 25.12 | 7.5 | 50.75 | 330 | 245 | 250 | 255 |
| 14 | 250 | Dİ | 0.66 | 14.0 | 11.5 | 7.5 | 12.06 | 7.5 | 25.12 | 7.5 | 50.75 | 290 | 220 | 225 | 225 |
| 16 | 150 | 30 | 0.70 | 15.0 | 12.5 | 8.0 | 13.25 | 8.0 | 27.62 | 8.0 | 55.81 | 370 | 280 | 285 | 285 |
| 16 | 250 | 30 | 0.89 | 15.0 | 12.5 | 8.0 | 13.25 | 8.0 | 27.62 | 8.0 | 55.81 | 430 | 315 | 325 | 325 |
| 16 | 250 | DI | 0.70 | 15.0 | 12.5 | 8.0 | 13.25 | 8.0 | 27.62 | 8.0 | 55.81 | 370 | 280 | 28.5 | 285 |
| 18 | 150 | 30 | 0.75 | 16.5 | 14.0 | 8.5 | 14.50 | 8.5 | 30.19 | 8.5 | 60.94 | 450 | 325 | 335 | 335 |
| 18 | 250 | 30 | 0.96 | 16.5 | 14.0 | 8.5 | 14.50 | 8.5 | 30.19 | 8.5 | 60.94 | 530 | 375 | 385 | 385 |
| 18 | 250 | DI | 0.75 | 16.5 | 14.0 | 8.5 | 14.50 | 8.5 | 30.19 | 8.5 | 60.94 | 450 | 325 | 335 | 335 |
| 20 | 150 | 30 | 0.80 | 18.0 | 15.5 | 9.5 | 16.88 | 9.5 | 35.19 | 9.5 | 71.06 | 580 | 430 | 435 | 435 |
| 20 | 250 | 30 | 1.03 | 18.0 | 15.5 | 9.5 | 16.88 | 9.5 | 35.19 | 9.5 | 71.06 | 685 | 485 | 505 | 505 |
| 20 | 250 | DI | 0.80 | 18.0 | 15.5 | 9.5 | 16.88 | 9.5 | 35.19 | 9.5 | 71.06 | 580 | 430 | 435 | 435 |
| 24 | 150 | 30 | 0.89 | 22.0 | 18.5 | 11.0 | 18.12 | 11.0 | 37.69 | 11.0 | 76.12 | 900 | 630 | 640 | 645 |
| 24 | 250 | 30 | 1.16 | 22.0 | 18.5 | 11.0 | 18.12 | 11.0 | 37.69 | 11.0 | 76.12 | 1.085 | 730 | 755 | 760 |
| 24 | 250 | DI | 0.89 | 22.0 | 18.5 | 11.0 | 18.12 | 11.0 | 37.69 | 11.0 | 76.12 | 900 | 630 | 640 | 645 |
| 30 | 150 | 30 | 1.03 | 25.0 | 21.5 | 15.0 | 27.75 | 15.0 | 57.81 | 15.0 | 116.75 | 1,430 | 1,120 | 1,135 | 1,150 |
| 30 | 250 | 30 | 1.37 | 25.0 | 21.5 | 15.0 | 27.75 | 15.0 | 57.81 | 15.0 | 116.75 | 1,755 | 1,335 | 1,385 | 1,395 |
| 30 | 250 | DI | 1.03 | 25.0 | 21.5 | 15.0 | 27.75 | 15.0 | 57.81 | 15.0 | 116.75 | 1,430 | 1,120 | 1,135 | 1,150 |
| 36 | 150 | 30 | 1.15 | 28.0 | 24.5 | 18.0 | 35.00 | 18.0 | 72.88 | 18.0 | 147.25 | 2.135 | 1,755 | 1,790 | 1,805 |
| 36 | 250 | 30 | 1.58 | 28.0 | 24.5 | 18.0 | 35.00 | 18.0 | 72.88 | 18.0 | 147.25 | 2,690 | 2,155 | 2,235 | 2,250 |
| 36 | 250 | DI | 1.15 | 28.0 | 24.5 | 18.0 | 35.00 | 18.0 | 72.88 | 18.0 | 147.25 | 2,135 | 1,755 | 1,790 | 1,805 |
| 42 | 150 | 30 | 1.28 | 31.0 | 27.5 | 21.0 | 42.25 | 21.0 | 88.00 | 21.0 | 177.69 | 3,055 | 2,600 | 2,665 | 2,680 |
| 42 | 250 | 30 | 1.78 | 31.0 | 27.5 | 21.0 | 42.25 | 21.0 | 88.00 | 21.0 | 177.69 | 3,880 | 3.240 | 3,365 | 3,390 |
| 42 | 250 | DI | 1.28 | 31.0 | 27.5 | 21.0 | 42.25 | 21.0 | 88.00 | 21.0 | 177.69 | 3.055 | 2.600 | 2,665 | 2,680 |
| 48 | 150 | 30 | 1.42 | 34.0 | 30.5 | 24.0 | 49.50 | 24.0 | 103.06 | 24.0 | 208.12 | 4,095 | 3,580 | 3,665 | 3,695 |
| 48 | 250 | 30 | 1.96 | 34.0 | 30.5 | 24.0 | 49.50 | 24.0 | 103.06 | 24.0 | 208.12 | 5,210 | 4,485 | 4,660 | 4,690 |
| 48 | 250 | DI | 1.42 | 34.0 | 30.5 | 24.0 | 49.50 | 24.0 | 103.06 | 24.0 | 208.12 | 4,095 | 3,580 | 3,665 | 3,695 |

* Dimension details of flanges are shown in Table 10.14.
$\dagger$ Pressure rating.
$\ddagger$ Ductile iron.


Fig. 10.17. Flanged Tees and Crosses (See Table 10.17)

TABLE 10.17
Flanged Tees and Crosses*

| Size-in. |  | $\begin{aligned} & \text { Pressure } \\ & \text { Rating } \\ & \text { psi } \end{aligned}$ | Iron Strength <br> psi $(1000$ 's) |  | Dimensions-in. |  |  | Weight-lb |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Run | Branch |  |  | $T$ | $T_{1}$ | H | $J$ | Tee | Cross |
| 3 | 3 | 250 | 25 | 0.48 | 0.48 | 5.5 | 5.5 | 40 | 50 |
| 4 | 3 | 250 | 25 | 0.52 | 0.48 | 6.5 | 6.5 | 60 | 70 |
| 4 | 4 | 250 | 25 | 0.52 | 0.52 | 6.5 | 6.5 | 65 | 80 |
| 6 | 3 | 250 | 25 | 0.55 | 0.48 | 8.0 | 8.0 | 85 | 95 |
| 6 | 4 | 250 | 25 | 0.55 | 0.52 | 8.0 | 8.0 | 90 | 110 |
| 6 | 6 | 250 | 25 | 0.55 | 0.55 | 8.0 | 8.0 | 95 | 120 |
| 8 | 4 | 250 | 25 | 0.60 | 0.52 | 9.0 | 9.0 | 140 | 155 |
| 8 | 6 | 250 | 25 | 0.60 | 0.55 | 9.0 | 9.0 | 145 | 165 |
| 8 | 8 | 250 | 25 | 0.60 | 0.60 | 9.0 | 9.0 | 155 | 195 |
| 10 | 4 | 250 | 25 | 0.68 | 0.52 | 11.0 | 11.0 | 205 | 220 |
| 10 | 6 | 250 | 25 | 0.68 | 0.55 | 11.0 | 11.0 | 215 | 240 |
| 10 | 8 | 250 | 25 | 0.68 | 0.60 | 11.0 | 11.0 | 225 | 265 |
| 10 | 10 | 250 | 25 | 0.80 | 0.80 | 11.0 | 11.0 | 270 | 330 |
| 12 | 4 | 250 | 25 | 0.75 | 0.52 | 12.0 | 12.0 | 290 | 310 |
| 12 | 6 | 250 | 25 | 0.75 | 0.55 | 12.0 | 12.0 | 295 | 320 |
| 12 | 8 | 250 | 25 | 0.75 | 0.60 | 12.0 | 12.0 | 310 | 345 |
| 12 | 10 | 250 | 25 | 0.87 | 0.80 | 12.0 | 12.0 | 360 | 415 |
| 12 | 12 | 250 | 25 | 0.87 | 0.87 | 12.0 | 12.0 | 385 | 460 |
| 14 | 6 | 150 | 25 | 0.66 | 0.55 | 14.0 | 14.0 | 375 | 400 |
| 14 | 6 | 250 | 25 | 0.82 | 0.55 | 14.0 | 14.0 | 420 | 450 |
| 14 | 6 | 250 | DI $\dagger$ | 0.66 | 0.55 | 14.0 | 14.0 | 375 | 400 |
| 14 | 8 | 150 | 25 | 0.66 | 0.60 | 14.0 | 14.0 | 390 | 425 |
| 14 | 8 | 250 | 25 | 0.82 | 0.60 | 14.0 | 14.0 | 435 | 475 |
| 14 | 8 | 250 | DI | 0.66 | 0.60 | 14.0 | 14.0 | 390 | 425 |
| 14 | 10 | 150 | 25 | 0.66 | 0.68 | 14.0 | 14.0 | 400 | 460 |
| 14 | 10 | 250 | 25 | 0.82 | 0.68 | 14.0 | 14.0 | 450 | 505 |
| 14 | 10 | 250 | DI | 0.66 | 0.68 | 14.0 | 14.0 | 400 | 460 |
| 14 | 12 | 150 | 25 | 0.82 | 0.75 | 14.0 | 14.0 | 470 | 555 |
| 14 | 12 | 250 | 30 | 0.82 | 0.75 | 14.0 | 14.0 | 470 | 555 |
| 14 | 12 | 250 | DI | 0.66 | 0.75 | 14.0 | 14.0 | 425 | 505 |
| 14 | 14 | 150 | 25 | 0.82 | 0.82 | 14.0 | 14.0 | 500 | 595 |
| 14 | 14 | 250 | 30 | 0.82 | 0.82 | 14.0 | 14.0 | 500 | 595 |
| 14 | 14 | 250 | DI | 0.66 | 0.66 | 14.0 | 14.0 | 435 | 530 |
| 16 | 6 | 150 | 30 | 0.70 | 0.55 | 15.0 | 15.0 | 465 | 490 |
| 16 | 6 | 250 | 30 | 0.89 | 0.55 | 15.0 | 15.0 | 540 | 565 |
| 16 | 6 | 250 | DI | 0.70 | 0.55 | 15.0 | 15.0 | 465 | 490 |
| 16 | 8 | 150 | 30 | 0.70 | 0.60 | 15.0 | 15.0 | 475 | 520 |
| 16 | 8 | 250 | 30 | 0.89 | 0.60 | 15.0 | 15.0 | 555 | 590 |

* Dimension details of flanges are in Tible 10.14.
+ Ductile Iron.

TABLE 10.17
Flanged Tees and Crosses＊（contd．）

| Size－in． |  | Pressure Rating psi | IronStrength psi（1000＇s） | Dimensions－in． |  |  |  | Weight－lb |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Run | Branch |  |  | $T$ | $T_{1}$ | H | $J$ | Tee | Cross |
| 16 | 8 | 250 | DIt $\dagger$ | 0.70 | 0.60 | 15.0 | 15.0 | 475 | 520 |
| 16 | 10 | 150 | 30 | 0.70 | 0.68 | 15.0 | 15.0 | 495 | 555 |
| 16 | 10 | 250 | 30 | 0.89 | 0.68 | 15.0 | 15.0 | 565 | 620 |
| 16 | 10 | 250 | DI | 0.70 | 0.68 | 15.0 | 15.0 | 495 | 555 |
| 16 | 12 | 150 | 30 | 0.70 | 0.75 | 15.0 | 15.0 | 520 | 605 |
| 16 | 12 | 250 | 30 | 0.89 | 0.75 | 15.0 | 15.0 | 590 | 665 |
| 16 | 12 | 250 | DI | 0.70 | 0.75 | 15.0 | 15.0 | 520 | 605 |
| 16 | 14 | 150 | 30 | 0.89 | 0.82 | 15.0 | 15.0 | 610 | 700 |
| 16 | 14 | 250 | 35 | 0.89 | 0.82 | 15.0 | 15.0 | 610 | 700 |
| 16 | 14 | 250 | DI | 0.70 | 0.66 | 15.0 | 15.0 | 530 | 620 |
| 16 | 16 | 150 | 30 | 0.89 | 0.89 | 15.0 | 15.0 | 635 | 755 |
| 16 | 16 | 250 | 35 | 0.89 | 0.89 | 15.0 | 15.0 | 635 | 755 |
| 16 | 16 | 250 | DI | 0.70 | 0.70 | 15.0 | 15.0 | 550 | 665 |
| 18 | 6 | 150 | 30 | 0.75 | 0.55 | 13.0 | 15.5 | 480 | 505 |
| 18 | 6 | 250 | 30 | 0.96 | 0.55 | 13.0 | 15.5 | 560 | 585 |
| 18 | 6 | 250 | DI | 0.75 | 0.55 | 13.0 | 15.5 | 480 | 505 |
| 18 | 8 | 150 | 30 | 0.75 | 0.60 | 13.0 | 15.5 | 495 | 535 |
| 18 | 8 | 250 | 30 | 0.96 | 0.60 | 13.0 | 15.5 | 570 | 605 |
| 18 | 8 | 250 | DI | 0.75 | 0.60 | 13.0 | 15.5 | 495 | 535 |
| 18 | 10 | 150 | 30 | 0.75 | 0.68 | 13.0 | 15.5 | 510 | 560 |
| 18 | 10 | 250 | 30 | 0.96 | 0.68 | 13.0 | 15.5 | 585 | 630 |
| 18 | 10 | 250 | DI | 0.75 | 0.68 | 13.0 | 15.5 | 510 | 560 |
| 18 | 12 | 150 | 30 | 0.75 | 0.75 | 13.0 | 15.5 | 535 | 610 |
| 18 | 12 | 250 | 30 | 0.96 | 0.75 | 13.0 | 15.5 | 605 | 670 |
| 18 | 12 | 250 | DI | 0.75 | 0.75 | 13.0 | 15.5 | 535 | 610 |
| 18 | 14 | 150 | 30 | 0.75 | 0.66 | 16.5 | 16.5 | 630 | 720 |
| 18 | 14 | 250 | 30 | 0.96 | 0.82 | 16.5 | 16.5 | 740 | 830 |
| 18 | 14 | 250 | DI | 0.75 | 0.66 | 16.5 | 16.5 | 630 | 720 |
| 18 | 16 | 150 | 30 | 0.96 | 0.89 | 16.5 | 16.5 | 760 | 880 |
| 18 | 16 | 250 | 35 | 0.96 | 0.89 | 16.5 | 16.5 | 760 | 880 |
| 18 | 16 | 250 | DI | 0.75 | 0.70 | 16.5 | 16.5 | 650 | 765 |
| 18 | 18 | 150 | 30 | 0.96 | 0.96 | 16.5 | 16.5 | 785 | 915 |
| 18 | 18 | 250 | 35 | 0.96 | 0.96 | 16.5 | 16.5 | 785 | 915 |
| 18 | 18 | 250 | DI | 0.75 | 0.75 | 16.5 | 16.5 | 665 | 795 |
| 20 | 6 | 150 | 30 | 0.80 | 0.55 | 14.0 | 17.0 | 610 | 635 |
| 20 | 6 | 250 | 30 | 1.03 | 0.55 | 14.0 | 17.0 | 710 | 735 |
| 20 | 6 | 250 | DI | 0.80 | 0.55 | 14.0 | 17.0 | 610 | 635 |
| 20 | 8 | 150 | 30 | 0.80 | 0.60 | 14.0 | 17.0 | 620 | 665 |
| 20 | 8 | 250 | 30 | 1.03 | 0.60 | 14.0 | 17.0 | 720 | 755 |
| 20 | 8 | 250 | DI | 0.80 | 0.60 | 14.0 | 17.0 | 620 | 665 |
| 20 | 10 | 150 | 30 | 0.80 | 0.68 | 14.0 | 17.0 | 635 | 685 |
| 20 | 10 | 250 | 30 | 1.03 | 0.68 | 14.0 | 17.0 | 735 | 780 |
| 20 | 10 | 250 | DI | 0.80 | 0.68 | 14.0 | 17.0 | 635 | 685 |
| 20 | 12 | 150 | 30 | 0.80 | 0.75 | 14.0 | 17.0 | 660 | 735 |
| 20 | 12 | 250 | 30 | 1.03 | 0.75 | 14.0 | 17.0 | 755 | 820 |
| 20 | 12 | 250 | DI | 0.80 | 0.75 | 14.0 | 17.0 | 660 | 735 |
| 20 | 14 | 150 | 30 | 0.80 | 0.66 | 14.0 | 17.0 | 665 | 745 |
| 20 | 14 | 250 | 35 | 1.03 | 0.82 | 14.0 | 17.0 | 770 | 850 |
| 20 | 14 | 250 | DI | 0.80 | 0.66 | 14.0 | 17.0 | 665 | 745 |
| 20 | 16 | 150 | 30 | 0.80 | 0.70 | 18.0 | 18.0 | 810 | 915 |
| 20 | 16 | 250 | 35 | 1.03 | 0.89 | 18.0 | 18.0 | 950 | 1，065 |
| 20 | 16 | 250 | DI | 0.80 | 0.70 | 18.0 | 18.0 | 810 | 915 |
| 20 | 18 | 150 | 35 | 1.03 | 0.96 | 18.0 | 18.0 | 965 | 1，100 |
| 20 | 18 | 250 | DI | 0.80 | 0.75 | 18.0 | 18.0 | 820 | 945 |
| 20 | 20 | 150 | 35 | 1.03 | 1.03 | 18.0 | 18.0 | 1，005 | 1，175 |
| 20 | 20 | 250 | DI | 0.80 | 0.80 | 18.0 | 18.0 | 855 | 1，015 |

[^29]TABLE 10.17
Flanged Tees and Crosses* (conid.)

| Size-in. |  | Pressure Rating psi | IronStrength $p s i$$(1000$ 's) | Dimensions-ir. |  |  |  | Weight-lb |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Run | Branch |  |  | $T$ | $T_{1}$ | H | $J$ | Tee | Cross |
| 24 | 6 | 150 | 30 | 0.89 | 0.55 | 15.0 | 19.0 | 845 | 875 |
| 24 | 6 | 250 | 30 | 1.16 | 0.55 | 15.0 | 19.0 | 1,000 | 1,025 |
| 24 | 6 | 250 | DI $\dagger$ | 0.89 | 0.55 | 15.0 | 19.0 | 845 | 875 |
| 24 | 8 | 150 | 30 | 0.89 | 0.60 | 15.0 | 19.0 | 860 | 895 |
| 24 | 8 | 250 | 30 | 1.16 | 0.60 | 15.0 | 19.0 | 1,010 | 1,045 |
| 24 | 8 | 250 | DI | 0.89 | 0.60 | 15.0 | 19.0 | 860 | 895 |
| 24 | 10 | 150 | 30 | 0.89 | 0.68 | 15.0 | 19.0 | 880 | 930 |
| 24 | 10 | 250 | 30 | 1.16 | 0.68 | 15.0 | 19.0 | 1,020 | 1,065 |
| 24 | 10 | 250 | DI | 0.89 | 0.68 | 15.0 | 19.0 | 880 | 930 |
| 24 | 12 | 150 | 30 | 0.89 | 0.75 | 15.0 | 19.0 | 890 | 960 |
| 24 | 12 | 250 | 30 | 1.16 | 0.75 | 15.0 | 19.0 | 1,040 | 1,100 |
| 24 | 12 | 250 | DI | 0.89 | 0.75 | 15.0 | 19.0 | 890 | 960 |
| 24 | 14 | 150 | 30 | 0.89 | 0.66 | 15.0 | 19.0 | 900 | 975 |
| 24 | 14 | 250 | 30 | 1.16 | 0.82 | 15.0 | 19.0 | 1,050 | 1,125 |
| 24 | 14 | 250 | DI | 0.89 | 0.66 | 15.0 | 19.0 | 900 | 975 |
| 24 | 16 | 150 | 30 | 0.89 | 0.70 | 15.0 | 19.0 | 915 | 1,010 |
| 24 | 16 | 250 | 35 | 1.16 | 0.89 | 15.0 | 19.0 | 1,070 | 1,160 |
| 24 | 16 | 250 | DI | 0.89 | 0.70 | 15.0 | 19.0 | 915 | 1,010 |
| 24 | 18 | 150 | 30 | 0.89 | 0.75 | 22.0 | 22.0 | 1,220 | 1,365 |
| 24 | 18 | 250 | 35 | 1.16 | 0.96 | 22.0 | 22.0 | 1,470 | 1,620 |
| 24 | 18 | 250 | DI | 0.89 | 0.75 | 22.0 | 22.0 | 1,220 | 1,365 |
| 24 | 20 | 150 | 35 | 1.16 | 1.03 | 22.0 | 22.0 | 1,510 | 1,695 |
| 24 | 20 | 250 | DI | 0.89 | 0.80 | 22.0 | 22.0 | 1,255 | 1,430 |
| 24 | 24 | 150 | 35 | 1.16 | 1.16 | 22.0 | 22.0 | 1,585 | 1,850 |
| 24 | 24 | 250 | DI | 0.89 | 0.89 | 22.0 | 22.0 | 1,330 | 1,570 |
| 30 | 12 | 150 | 30 | 1.93 | 0.75 | 18.0 | 23.0 | 1,490 | 1,565 |
| 30 | 12 | 250 | 30 | 1.37 | 0.75 | 18.0 | 23.0 | 1,780 | 1,840 |
| 30 | 12 | 250 | DI | 1.03 | 0.75 | 18.0 | 23.0 | 1,490 | 1,565 |
| 30 | 14 | 150 | 30 | 1.03 | 0.66 | 18.0 | 23.0 | 1,490 | 1,570 |
| 30 | 14 | 250 | 30 | 1.37 | 0.82 | 18.0 | 23.0 | 1,790 | 1,865 |
| 30 | 14 | 250 | DI | 1.03 | 0.66 | 18.0 | 23.0 | 1,490 | 1,570 |
| 30 | 16 | 150 | 30 | 1.03 | 0.70 | 18.0 | 23.0 | 1,505 | 1,605 |
| 30 | 16 | 250 | 30 | 1.37 | 0.89 | 18.0 | 23.0 | 1,810 | 1,900 |
| 30 | 16 | 250 | DI | 1.03 | 0.70 | 18.0 | 23.0 | 1,505 | 1,605 |
| 30 | 18 | 150 | 30 | 1.03 | 0.75 | 18.0 | 23.0 | 1,515 | 1,615 |
| 30 | 18 | 250 | 35 | 1.37 | 0.96 | 18.0 | 23.0 | 1,815 | 1,910 |
| 30 | 18 | 250 | DI | 1.03 | 0.75 | 18.0 | 23.0 | 1,515 | 1,615 |
| 30 | 20 | 150 | 30 | 1.03 | 0.80 | 18.0 | 23.0 | 1,540 | 1,670 |
| 30 | 20 | 250 | 35 | 1.37 | 1.03 | 18.0 | 23.0 | 1,840 | 1,960 |
| 30 | 20 | 250 | DI | 1.03 | 0.80 | 18.0 | 23.0 | 1,540 | 1,670 |
| 30 | 24 | 150 | 35 | 1.37 | 1.16 | 25.0 | 25.0 | 2,475 | 2,695 |
| 30 | 24 | 250 | DI | 1.03 | 0.89 | 25.0 | 25.0 | 2,025 | 2,245 |
| 30 | 30 | 150 | 35 | 1.37 | 1.37 | 25.0 | 25.0 | 2,615 | 2,980 |
| 30 | 30 | 250 | DI | 1.03 | 1.03 | 25.0 | 25.0 | 2,150 | 2,500 |
| 36 | 12 | 150 | 30 | 1.15 | 0.75 | 20.0 | 26.0 | 2,170 | 2,240 |
| 36 | 12 | 250 | 30 | 1.58 | 0.75 | 20.0 | 26.0 | 2,670 | 2,725 |
| 36 | 12 | 250 | DI | 1.15 | 0.75 | 20.0 | 26.0 | 2,170 | 2,240 |
| 36 | 14 | 150 | 30 | 1.15 | 0.66 | 20.0 | 26.0 | 2,175 | 2,240 |
| 36 | 14 | 250 | 30 | 1.58 | 0.82 | 20.0 | 26.0 | 2,680 | 2,740 |
| 36 | 14 | 250 | DI | 1.15 | 0.66 | 20.0 | 26.0 | 2,175 | 2,240 |
| 36 | 16 | 150 | 30 | 1.15 | 0.70 | 20.0 | 26.0 | 2,185 | 2,270 |
| 36 | 16 | 250 | 30 | 1.58 | 0.89 | 20.0 | 26.0 | 2,690 | 2,765 |
| 36 | 16 | 250 | DI | 1.15 | 0.70 | 20.0 | 26.0 | 2,185 | 2,270 |
| 36 | 18 | 150 | 30 | 1.15 | 0.75 | 20.0 | 26.0 | 2,190 | 2,280 |
| 36 | 18 | 250 | 30 | 1.58 | 0.96 | 20.0 | 26.0 | 2,695 | 2,770 |
| 36 | 18 | 250 | DI | 1.15 | 0.75 | 20.0 | 26.0 | 2,190 | 2,280 |
| 36 | 20 | 150 | 30 | 1.15 | 0.80 | 20.0 | 26.0 | 2,210 | 2,325 |
| 36 | 20 | 250 | 35 | 1.58 | 1.03 | 20.0 | 26.0 | 2,715 | 2,810 |

* Dimension details of flanges are in Table 10.14.
$\dagger$ Ductile Iron.

TABLE 10.17
Flanged Tees and Crosses* (contd.)

| Size-in. |  | $\begin{gathered} \text { Pressure } \\ \text { Rating } \\ \text { psi } \end{gathered}$ | $\begin{aligned} & \text { Iron } \\ & \text { Strength } \\ & \text { psis } \\ & \left(10000^{\prime} s\right) \end{aligned}$ | Dimensions-in. |  |  |  | Weight-lb |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Run | Branch |  |  | $T$ | $T_{1}$ | H | $J$ | Tee | Cross |
| 36 | 20 | 250 | Dif | 1.15 | 0.80 | 20.0 | 26.0 | 2,210 | 2,325 |
| 36 | 24 | 150 | 30 | 1.15 | 0.89 | 20.0 | 26.0 | 2,255 | 2,405 |
| 36 | 24 | 250 | 35 | 1.58 | 1.16 | 20.0 | 26.0 | 2,750 | 2,880 |
| 36 | 24 | 250 | DI | 1.15 | 0.89 | 20.0 | 26.0 | 2,255 | 2,405 |
| 36 | 30 | 150 | 35 | 1.58 | 1.37 | 28.0 | 28.0 | 3,745 | 4,025 |
| 36 | 30 | 250 | DI | 1.15 | 1.03 | 28.0 | 28.0 | 3,000 | 3,300 |
| 36 | 36 | 150 | 35 | 1.58 | 1.58 | 28.0 | 28.0 | 3,930 | 4,405 |
| 36 | 36 | 250 | DI | 1.15 | 1.15 | 28.0 | 28.0 | 3,160 | 3,620 |
| 42 | 12 | 150 | 30 | 1.28 | 0.75 | 23.0 | 30.0 | 3,165 | 3,240 |
| 42 | 12 | 250 | 30 | 1.78 | 0.75 | 23.0 | 30.0 | 3,950 | 4,005 |
| 42 | 12 | 250 | DI | 1.28 | 0.75 | 23.0 | 30.0 | 3,165 | 3,240 |
| 42 | 14 | 150 | 30 | 1.28 | 0.66 | 23.0 | 30.0 | 3,170 | 3,240 |
| 42 | 14 | 250 | 30 | 1.78 | 0.82 | 23.0 | 30.0 | 3,960 | 4,020 |
| 42 | 14 | 250 | DI | 1.28 | 0.66 | 23.0 | 30.0 | 3,170 | 3,240 |
| 42 | 16 | 150 | 30 | 1.28 | 0.70 | 23.0 | 30.0 | 3,180 | 3,270 |
| 42 | 16 | 250 | 30 | 1.78 | 0.89 | 23.0 | 30.0 | 3,970 | 4,045 |
| 42 | 16 | 250 | DI | 1.28 | 0.70 | 23.0 | 30.0 | 3,180 | 3,270 |
| 42 | 18 | 150 | 30 | 1.28 | 0.75 | 23.0 | 30.0 | 3,185 | 3,275 |
| 42 | 18 | 250 | 30 | 1.78 | 0.96 | 23.0 | 30.0 | 3,970 | 4,045 |
| 42 | 18 | 250 | DI | 1.28 | 0.75 | 23.0 | 30.0 | 3,185 | 3,275 |
| 42 | 20 | 150 | 30 | 1.28 | 0.80 | 23.0 | 30.0 | 3,205 | 3,320 |
| 42 | 20 | 250 | 30 | 1.78 | 1.03 | 23.0 | 30.0 | 3,990 | 4,080 |
| 42 | 20 | 250 | DI | 1.28 | 0.80 | 23.0 | 30.0 | 3,205 | 3,320 |
| 42 | 24 | 150 | 30 | 1.78 | 1.16 | 23.0 | 30.0 | 4,020 | 4,135 |
| 42 | 24 | 250 | DI | 1.28 | 0.89 | 23.0 | 30.0 | 3,245 | 3,395 |
| 42 | 30 | 150 | 30 | 1.78 | 1.37 | 31.0 | 31.0 | 5,225 | 5,445 |
| 42 | 30 | 250 | DI | 1.28 | 1.03 | 31.0 | 31.0 | 4,125 | 4,375 |
| 42 | 36 | 150 | DI | 1.28 | 1.15 | 31.0 | 31.0 | 4,265 | 4,655 |
| 42 | 36 | 250 | DI | 1.78 | 1.58 | 31.0 | 31.0 | 5,360 | 5,720 |
| 42 | 42 | 150 | DI | 1.28 | 1.28 | 31.0 | 31.0 | 4,470 | 5,065 |
| 42 | 42 | 250 | DI | 1.78 | 1.78 | 31.0 | 31.0 | 5,580 | 6,155 |
| 48 | 12 | 150 | 30 | 1.42 | 0.75 | 26.0 | 34.0 | 4,315 | 4,390 |
| 48 | 12 | 250 | 30 | 1.96 | 0.75 | 26.0 | 34.0 | 5,425 | 5,480 |
| 48 | 12 | 250 | DI | 1.42 | 0.75 | 26.0 | 34.0 | 4,315 | 4,390 |
| 48 | 14 | 150 | 30 | 1.42 | 0.66 | 26.0 | 34.0 | 4,315 | 4,385 |
| 48 | 14 | 250 | 30 | 1.96 | 0.82 | 26.0 | 34.0 | 5,435 | 5,495 |
| 48 | 14 | 250 | DI | 1.42 | 0.66 | 26.0 | 34.0 | 4,315 | 4,385 |
| 48 | 16 | 150 | 30 | 1.42 | 0.70 | 26.0 | 34.0 | 4,330 | 4,415 |
| 48 | 16 | 250 | 30 | 1.96 | 0.89 | 26.0 | 34.0 | 5,445 | 5,515 |
| 48 | 16 | 250 | DI | 1.42 | 0.70 | 26.0 | 34.0 | 4,330 | 4,415 |
| 48 | 18 | 150 | 30 | 1.42 | 0.75 | 26.0 | 34.0 | 4,330 | 4,420 |
| 48 | 18 | 250 | 30 | 1.96 | 0.96 | 26.0 | 34.0 | 5,445 | 5,515 |
| 48 | 18 | 250 | DI | 1.42 | 0.75 | 26.0 | 34.0 | 4,330 | 4,420 |
| 48 | 20 | 150 | 30 | 1.42 | 0.80 | 26.0 | 34.0 | 4,350 | 4,460 |
| 48 | 20 | 250 | 30 | 1.96 | 1.03 | 26.0 | 34.0 | 5,460 | 5,545 |
| 48 | 20 | 250 | DI | 1.42 | 0.80 | 26.0 | 34.0 | 4,350 | 4,460 |
| 48 | 24 | 150 | 30 | 1.42 | 0.89 | 26.0 | 34.0 | 4,385 | 4,535 |
| 48 | 24 | 250 | 30 | 1.96 | 1.16 | 26.0 | 34.0 | 5,485 | 5,595 |
| 48 | 24 | 250 | DI | 1.42 | 0.89 | 26.0 | 34.0 | 4,385 | 4,535 |
| 48 | 30 | 150 | 30 | 1.96 | 1.37 | 26.0 | 34.0 | 5,540 | 5,705 |
| 48 | 30 | 250 | DI | 1.42 | 1.03 | 26.0 | 34.0 | 4,455 | 4,670 |
| 48 | 36 | 150 | 30 | 1.96 | 1.58 | 34.0 | 34.0 | 7.035 | 7,310 |
| 48 | 36 | 250 | DI | 1.42 | 1.15 | 34.0 | 34.0 | 5,555 | 5,880 |
| 48 | 42 | 150 | DI | 1.42 | 1.28 | 34.0 | 34.0 | 5,720 | 6,215 |
| 48 | 42 | 250 | DI | 1.96 | 1.78 | 34.0 | 34.0 | 7,195 | 7,630 |
| 48 | 48 | 150 | DI | 1.42 | 1.42 | 34.0 | 34.0 | 5,900 | 6,570 |
| 48 | 48 | 250 | DI | 1.96 | 1.96 | 34.0 | 34.0 | 7,385 | 8,005 |

* Dimension details of flanges are in Table 10.14 .
t Ductile Iron.


Fig, 10.18. Flanged Base Bends (See Table 10.18)
For other dimensions of base bends, see Table 10.16.
TABLE 10.18
Flanged Base Bends

| Size in. | Pressure Rating psi | IronStrength (1000's) | Dimenslons-in. |  |  |  | Weight-lb |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $R^{*}$ | $\stackrel{S}{\text { Dlam. }}$ | $T$ | $U$ | Base Fitting | Base Only |
| 3 | 250 | 25 | 4.88 | 5.00 | 0.56 | 0.50 | 35 | 10 |
| 4 | 250 | 25 | 5.50 | 6.00 | 0.62 | 0.50 | 55 | 10 |
| 6 | 250 | 25 | 7.00 | 7.00 | 0.69 | 0.62 | 85 | 20 |
| 8 | 250 | 25 | 8.38 | 9.00 | 0.94 | 0.88 | 145 | 40 |
| 10 | 250 | 25 | 9.75 | 9.00 | 0.94 | 0.88 | 210 | 45 |
| 12 | 250 | 25 | 11.25 | 11.00 | 1.00 | 1.00 | 300 | 65 |
| 14 | 150 | 25 | 12.50 | 11.00 | 1.00 | 1.00 | 360 | 70 |
| 14 | 250 | 25 | 12.50 | 11.00 | 1.00 | 1.00 | 400 | 70 |
| 14 | 250 | DIt | 12.50 | 11.00 | 1.00 | 1.00 | 360 | 70 |
| 16 | 150 | 30 | 13.75 | 11.00 | 1.00 | 1.00 | 445 | 75 |
| 16 | 250 | 30 | 13.75 | 11.00 | 1.00 | 1.00 | 505 | 75 |
| 16 | 250 | DI | 13.75 | 11.00 | 1.00 | 1.00 | 445 | 75 |
| 18 | 150 | 30 | 15.00 | 13.50 | 1.12 | 1.12 | 565 | 115 |
| 18 | 250 | 30 | 15.00 | 13.50 | 1.12 | 1.12 | 645 | 115 |
| 18 | 250 | DI | 15.00 | 13.50 | 1.12 | 1.12 | 565 | 115 |
| 20 | 150 | 30 | 16.00 | 13.50 | 1.12 | 1.12 | 700 | 120 |
| 20 | 250 | 30 | 16.00 | 13.50 | 1.12 | 1.12 | 805 | 120 |
| 20 | 250 | DI | 16.00 | 13.50 | 1.12 | 1.12 | 700 | 120 |
| 24 | 150 | 30 | 18.50 | 13.50 | 1.12 | 1.12 | 1,030 | 130 |
| 24 | 250 | 30 | 18.50 | 13.50 | 1.12 | 1.12 | 1,215 | 130 |
| 24 | 250 | DI | 18.50 | 13.50 | 1.12 | 1.12 | 1,030 | 130 |
| 30 | 150 | 30 | 23.00 | 16.00 | 1.19 | 1.15 | 1,625 | 190 |
| 30 | 250 | 30 | 23.00 | 16.00 | 1.19 | 1.15 | 1,945 | 190 |
| 30 | 250 | DI | 23.00 | 16.00 | 1.19 | 1.15 | 1,625 | 190 |
| 36 | 150 | 30 | 26.00 | 19.00 | 1.25 | 1.15 | 2,385 | 250 |
| 36 | 250 | 30 | 26.00 | 19.00 | 1.25 | 1.15 | 2,940 | 250 |
| 36 | 250 | DI | 26.00 | 19.00 | 1.25 | 1.15 | 2,385 | 250 |
| 42 | 150 | 30 | 30.00 | 23.50 | 1.44 | 1.28 | 3,465 | 410 |
| 42 | 250 | 30 | 30.00 | 23.50 | 1.44 | 1.28 | 4,290 | 410 |
| 42 | 250 | DI | 30.00 | 23.50 | 1.44 | 1.28 | 3,465 | 410 |
| 48 | 150 | 30 | 34.00 | 25.00 | 1.56 | 1.42 | 4,610 | 515 |
| 48 | 250 | 30 | 34.00 | 25.00 | 1.56 | 1.42 | 5,725 | 515 |
| 48 | 250 | DI | 34.00 | 25.00 | 1.56 | 1.42 | 4,610 | 515 |

* Dimension $R$ is a finished dimension; unfinished bases will be $\frac{1}{8}$ in. longer; details for base drilling are given in Table 10.15 .

Ductile Iron


Fig. 10.19. Flanged Base Tees (See Table 10.19)
For other dimensions of base tees, see Table 10.17.

TABLE 10.19
Flanged Base Tees

| Size in. | Pressure Rating psi | IronStrength psi$(1000$ 's) | Dimensions-in. |  |  |  | Weight-lb |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $R^{*}$ | $\stackrel{S}{\text { Diam. }}$ | $T$ | $U$ | Base Fitting | Base Only |
| 3 | 250 | 25 | 4.88 | 5.00 | 0.56 | 0.50 | 45 | 5 |
| 4 | 250 | 25 | 5.50 | 6.00 | 0.62 | 0.50 | 75 | 10 |
| 6 | 250 | 25 | 7.00 | 7.00 | 0.69 | 0.62 | 110 | 15 |
| 8 | 250 | 25 | 8.38 | 9.00 | 0.94 | 0.88 | 185 | 30 |
| 10 | 250 | 25 | 9.75 | 9.00 | 0.94 | 0.88 | 300 | 30 |
| 12 | 250 | 25 | 11.25 | 11.00 | 1.00 | 1.00 | 430 | 45 |
| 14 | 150 | 25 | 12.50 | 11.00 | 1.00 | 1.00 | 550 | 50 |
| 14 | 250 | 30 | 12.50 | 11.00 | 1.00 | 1.00 | 550 | 50 |
| 14 | 250 | DIt | 12.50 | 11.00 | 1.00 | 1.00 | 485 | 50 |
| 16 | 150 | 30 | 13.75 | 11.00 | 1.00 | 1.00 | 685 | 50 |
| 16 | 250 | 35 | 13.75 | 11.00 | 1.00 | 1.00 | 685 | 50 |
| 16 | 250 | DI | 13.75 | 11.00 | 1.00 | 1.00 | 600 | 50 |
| 18 | 150 | 30 | 15.00 | 13.50 | 1.12 | 1.12 | 860 | 75 |
| 18 | 250 | 35 | 15.00 | 13.50 | 1.12 | 1.12 | 860 | 75 |
| 18 | 250 | DI | 15.00 | 13.50 | 1.12 | 1.12 | 740 | 75 |
| 20 | 150 | 35 | 16.00 | 13.50 | 1.12 | 1.12 | 1,080 | 75 |
| 20 | 250 | DI | 16.00 | 13.50 | 1.12 | 1.12 | 930 | 75 |
| 24 | 150 | 35 | 18.50 | 13.50 | 1.12 | 1.12 | 1,665 | 80 |
| 24 | 250 | DI | 18.50 | 13.50 | 1.12 | 1.12 | 1,410 | 80 |
| 30 | 150 | 35 | 23.00 | 16.00 | 1.19 | 1.15 | 2,735 | 120 |
| 30 | 250 | DI | 23.00 | 16.00 | 1.19 | 1.15 | 2,270 | 120 |
| 36 | 150 | 35 | 26.00 | 19.00 | 1.25 | 1.15 | 4,090 | 160 |
| 36 | 250 | DI | 26.00 | 19.00 | 1.25 | 1.15 | 3,320 | 160 |
| 42 | 150 | DI | 30.00 | 23.50 | 1.44 | 1.28 | 4,740 | 270 |
| 42 | 250 | DI | 30.00 | 23.50 | 1.44 | 1.28 | 5,850 | 270 |
| 48 | 150 | DI | 34.00 | 25.00 | 1.56 | 1.42 | 6,235 | 335 |
| 48 | 250 | DI | 34.00 | 25.00 | 1.56 | 1.42 | 7,720 | 335 |

* Dimension $R$ is a finished dimension; unfinished hases will be $\frac{3}{} \mathrm{in}$. longer; detats for base drilling are giver in Table 10.15.

Ductile Iron.

TABLE 10.20
Flanged Reducers*

| Siza-in. |  | Pressure Rating psi | Iron Strength psi (1000's) | Dimensions-in. |  |  | Wgt.$l b$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Large | Small |  |  | $\begin{gathered} T \\ \text { Large } \\ \text { End } \end{gathered}$ | Ti Small End | $L$ |  |
| 4 | 3 | 250 | 25 | 0.52 | 0.48 | 7 | 30 |
| 6 | 3 | 250 | 25 | 0.55 | 0.48 | 9 | 40 |
| 6 | 4 | 250 | 25 | 0.55 | 0.52 | 9 | 45 |
| 8 | 4 | 250 | 25 | 0.60 | 0.52 | 11 | 65 |
| 8 | 6 | 250 | 25 | 0.60 | 0.55 | 11 | 75 |
| 10 | 4 | 250 | 25 | 0.68 | 0.52 | 12 | 85 |
| 10 | 0 | 250 | 25 | 0.68 | 0.55 | 12 | 90 |
| 10 | 8 | 250 | 25 | 0.68 | 0.60 | 12 | 110 |
| 12 | 4 | 250 | 25 | 0.75 | 0.52 | 14 | 120 |
| 12 | 6 | 250 | 25 | 0.75 | 0.55 | 14 | 130 |
| 12 | 8 | 250 | 25 | 0.75 | 0.00 | 14 | 145 |
| 12 | 10 | 250 | 25 | 0.75 | 0.68 | 14 | 170 |
| 14 | 6 | 150 | 25 | 0.66 | 0.55 | 16 | 155 |
| 14 | 6 | 250 | 25 | 0.82 | 0.55 | 10 | 165 |
| 14 | 8 | 250 | DIt $\dagger$ | 0.66 | 0.55 | 16 | 155 |
| 14 | 8 | 150 | 25 | 0.06 | 0.60 | 16 | 175 |
| 14 | 8 | 250 | 25 | 0.82 | 0.60 | 16 | 185 |
| 14 | 8 | 250 | D1 | 0.66 | 0.60 | 16 | 175 |
| 14 | 10 | 150 | 25 | 0.66 | 0.68 | 16 | 190 |
| 14 | 10 | 250 | 25 | 0.82 | 0.68 | 16 | 205 |
| 14 | 10 | 250 | DI | 0.66 | 0.68 | 16 | 190 |
| 1.1 | 12 | 150 | 25 | 0.66 | 0.75 | 16 | 220 |
| 14 | 12 | 250 | 25 | 0.82 | 0.75 | 16 | 235 |
| 14 | 12 | 250 | DI | 0.66 | 0.75 | 10 | 220 |
| 16 | 6 | 150 | 30 | 0.70 | 0.55 | 18 | 190 |
| 16 | 4 | 250 | 30 | 0.89 | 0.55 | 18 | 210 |
| 16 | 6 | 250 | DI | 0.70 | 0.55 | 18 | 190 |
| 16 | 8 | 150 | 30 | 0.70 | 0.60 | 18 | 210 |
| 16 | 8 | 250 | 30 | 0.89 | 0.60 | 18 | 230 |
| 16 | 8 | 250 | DI | 0.70 | 0.60 | 18 | 210 |
| 16 | 10 | 150 | 30 | 0.70 | 0.68 | 18 | 235 |
| 16 | 10 | 250 | 30 | 0.89 | 0.68 | 18 | 255 |
| 16 | 10 | 250 | 1 I | 0.70 | 0.68 | 18 | 235 |
| 16 | 12 | 150 | 30 | 0.70 | 0.75 | 18 | 265 |
| 16 | 12 | 250 | 30 | 0.89 | 0.75 | 18 | 285 |
| 16 | 12 | 250 | D1 | 0.70 | 0.75 | 18 | 265 |
| 16 | 14 | 150 | 30 | 0.70 | 0.66 | 18 | 280 |
| 16 | 14 | 250 | 30 | 0.89 | 0.82 | 18 | 3815 |
| 10 | 14 | 250 | DI | 0.70 | 0.68 | 18 | 280 |
| 18 | 8 | 150 | 30 | 0.75 | 0.60 | 19 | 240 |
| 18 | 8 | 250 | 30 | 0.96 | 0.60 | 19 | 265 |
| 18 | s | 250 | DI | 0.75 | 0.60 | 19 | 240 |
| 18 | 10 | 150 | 30 | 0.75 | 0.68 | 19 | 265 |
| 18 | 10 | 250 | 30 | 0.96 | 0.68 | 19 | 290 |
| 18 | 10 | 250 | 1)I | 0.75 | 0.68 | 19 | 265 |
| 18 | 12 | 150 | 30 | 0.75 | 0.75 | 19 | 295 |
| 18 | 12 | 250 | 30 | 0.96 | 0.75 | 19 | 320 |
| 18 | 12 | 250 | I) I | 0.75 | 0.75 | 19 | 295 |
| 18 | 14 | 150 | 30 | 0.75 | 0.66 | 19 | 310 |
| 18 | 14 | 250 | 30 | 0.96 | 0.82 | 19 | 350 |
| 18 | 14 | 250 | DI | 0.75 | 0.66 | 19 | 310 |
| 18 | 16 | 150 | 30 | 0.75 | 0.70 | 19 | 340 |
| 18 | 16 | 250 | 30 | 0.96 | 0.89 | 19 | 385 |
| 18 | 16 | 250 | DI | 0.75 | 0.70 | 19 | 340 |
| 20 | 10 | 150 | 30 | 0.80 | 0.68 | 20 | 310 |
| 20 | 10 | 250 | 30 | 1.03 | 0.68 | 20 | 340 |
| 20 | 10 | 250 | DI | 0.80 | 0.68 | 20 | 310 |
| 20 | 12 | 150 | 30 | 0.80 | 0.75 | 20 | 345 |
| 20 | 12 | 250 | 30 | 1.03 | 0.75 | 20 | 375 |
| 20 | 12 | 250 | DI | 0.80 | 0.75 | 20 | 345 |
| 20 | 14 | 150 | 30 | 0.80 | 0.66 | 20 | 355 |
| 20 | 14 | 250 | 30 | 1.03 | 0.82 | 20 | 405 |
| 20 | 14 | 250 | DI | 0.80 | 0.68 | 20 | 355 |
| 20 | 16 | 150 | 30 | 0.80 | 0.70 | 20 | 390 |
| 20 | 16 | 250 | 30 | 1.03 | 0.89 | 20 | 445 |
| 20 | 16 | 250 | DI | 0.80 | 0.70 | 20 | 390 |



Fig. 10.20. Flanged Reducers (See Table 10.20)

| Size |  | Pressure Rating pai | $\begin{gathered} \text { 1ron } \\ \text { Strength } \\ \text { psi } \\ \left(1000^{\prime} 8\right) \end{gathered}$ | Dimensions-in. |  |  | Wgt. $1 b$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Large | Small |  |  | $\begin{gathered} q \\ \text { Large } \\ \text { End } \end{gathered}$ | $\begin{gathered} T_{1} \\ \text { Smail } \end{gathered}$ Ead | $L$ |  |
| 20 | 18 | 150 | 30 | 0.80 | 0.75 | 20 | 410 |
| 20 | 18 | 250 | 30 | 1.03 | 0.06 | 20 | 470 |
| 20 | 18 | 250 | D1 | 0.80 | 0.75 | 20 | 410 |
| 24 | 12 | 150 | 30 | 0.89 | 0.75 | 24 | 480 |
| 24 | 12 | 250 | 30 | 1.16 | 0.75 | 24 | 535 |
| 24 | 12 | 250 | D1 | 0.89 | 0.75 | 24 | 480 |
| 24 | 14 | 150 | 30 | 0.89 | 0.66 | 24 | 490 |
| 24 | 14 | 250 | 30 | 1.16 | 0.82 | 24 | 565 |
| 24 | 14 | 250 | DI | 0.89 | 0.66 | 24 | 480 |
| 24 | 16 | 150 | 30 | 0.89 | 0.70 | 24 | 525 |
| 24 | 16 | 250 | 30 | 1.16 | 0.89 | 24 | 610 |
| 24 | 16 | 250 | DI | 0.89 | 0.70 | 24 | 525 |
| 24 | 18 | 150 | 30 | 0.89 | 0.75 | 24 | 550 |
| 24 | 18 | 250 | 30 | 1.16 | 0.96 | 24 | 645 |
| 24 | 18 | 250 | DI | 0.89 | 0.75 | 24 | 550 |
| 24 | 20 | 150 | 30 | 0.89 | 0.80 | 24 | 590 |
| 24 | 20 | 250 | 30 | 1.16 | 1.03 | 24 | 695 |
| 24 | 20 | 250 | DI | 0.89 | 0.80 | 24 | 590 |
| 30 | 18 | 150 | 30 | 1.03 | 0.75 | 30 | 810 |
| 30 | 18 | 250 | 30 | 1.37 | 0.96 | 30 | 970 |
| 30 | 18 | 250 | D1 | 1.03 | 0.75 | 30 | 810 |
| 30 | 20 | 150 | 30 | 1.03 | 0.80 | 30 | 870 |
| 30 | 20 | 250 | 30 | 1.37 | 1.03 | 30 | 1,035 |
| 30 | 20 | 250 | D1 | 1.03 | 0.80 | 30 | 870 |
| 30 | 24 | 150 | 30 | 1.03 | 0.89 | 30 | 970 |
| 30 | 24 | 250 | 30 | 1.37 | 1.16 | 30 | 1,155 |
| 30 | 24 | 250 | DI | 1.03 | 0.89 | 30 | 970 |
| 36 | 20 | 150 | 30 | 1.15 | 0.80 | 36 | 1,230 |
| 36 | 20 | 250 | 30 | 1.58 | 1.03 | 36 | 1,495 |
| 36 | 20 | 250 | DI | 1.15 | 0.80 | 36 | 1,230 |
| 36 | 24 | 150 | 30 | 1.15 | 0.89 | 36 | 1,345 |
| 36 | 24 | 250 | 30 | 1.58 | 1.16 | 36 | 1,635 |
| 36 | 24 | 250 | DI | 1.15 | 0.89 | 36 | 1,345 |
| 36 | 30 | 150 | 30 | 1.15 | 1.03 | 36 | 1,555 |
| 36 | 30 | 250 | 30 | 1.58 | 1.37 | 36 | 1,905 |
| 36 | 30 | 250 | DI | 1.15 | 1.03 | 36 | 1,555 |
| 42 | 24 | 150 | 30 | 1.28 | 0.89 | 42 | 1,820 |
| 42 | 24 | 250 | 30 | 1.78 | 1.16 | 42 | 2,235 |
| 42 | 24 | 250 | DI | 1.28 | 0.89 | 42 | 1,820 |
| 42 | 30 | 150 | 30 | 1.28 | 1.03 | 42 | 2,060 |
| 42 | 30 | 250 | 30 | 1.78 | 1.37 | 42 | 2,555 |
| 42 | 30 | 250 | DI | 1.28 | 1.03 | 42 | 2,060 |
| 42 | 36 | 150 | 30 | 1.28 | 1.15 | 42 | 2,345 |
| 42 | 36 | 250 | 30 | 1.78 | 1.58 | 42 | 2.935 |
| 42 | 36 | 250 | DI | 1.28 | 1.15 | 42 | 2,345 |
| 48 | 30 | 150 | 30 | 1.42 | 1.03 | 48 | 2,625 |
| 48 | 30 | 250 | 30 | 1.96 | 1.37 | 48 | 3,270 |
| 48 | 30 | 250 | DI | 1.42 | 1.03 | 48 | 2,625 |
| 48 | 36 | 150 | 30 | 1.42 | 1.15 | 48 | 2,950 |
| 48 | 36 | 250 | 30 | 1.96 | 1.58 | 48 | 3,710 |
| 48 | 36 | 250 | DI | 1.42 | 1.15 | 48 | 2,950 |
| 48 | 42 | 150 | 30 | 1.42 | 1.28 | 48 | 3,320 |
| 48 | 42 | 250 | 30 | 1.96 | 1.78 | 48 | 4,190 |
| 48 | 42 | 250 | DI | 1.42 | 1.28 | 48 | 3.320 |

* Dimension details of flanges are given in Tahle 10.14. Eccentric reducers with the same dimensions and

Ductile Iron.


## Appendix A

# Flanged Fittings-Bolts, Gaskets, and Installation 

> This appendix is for information only and is not a part
> of ANSI.AN'I C'IO.

The bolts and gaskets to be used with the flanged fittings are to be selected by the purchaser with due consideration for the particular pressure service and installation requirements.

Bolts and muts. Size, length, and number of bolts are shown in Table 10.14. Bolts conform to ANSI B18.2.1 and muts conform to ANSI B18.2.2. Bolts smaller than $\frac{3}{4}$ in. have either standard square or heavy hex heads and heary hex muts. Bolts $\frac{3}{4}$ in. and larger have either square or hex heads and either hex or heavy hex nuts. Bols and nuts are threaded in accorfance with American National Standard B1.1 for "Screw ThreadsCoarse Thread Series," class 2A external and class $2 B$ internal. Bolts and nuts are low-carlon stee and conform to the chemical and mechanical requirements of ASTM A307, grade 13. The carbon steel bolts shoukl be used where gray-iron Alanges are installed with flat ring gaskets that extenel only to the bolts. Higher strength bolts may properly be used where gray-iron flanges are installed with full-facegraskets. Iligherstrength
bolts may be used where ductile flanges are installed with either ringor full-face gaskets.

Gaskets. (raskets are rubluer, either ring or full face, and are $\frac{1}{8}$ in. Whick, unless otherwise specified by the purchaser, conforming to the dimensions shown in Table A1, "Flange (iasket Details."

Installation. The design, assembly, and installation of the flanged piping system are the responsibility of the purchaser. The following suggestions are for general guldance:
a. The underground use of the flanged joint is generally not desirable because of the rigidity of the joint.
1). Flange faces shoukl bear uniformly on the gasket, and bolts should be tightened uniformly:
c. Users of flanged fittings should be careful to prevent bending or torsional strains from leeing applied to cast tlanges or flanged fittings. Piping systems must be designed so that piping connected to flanges or flanged fittings is properly anchored, supported, or restrained to prevent breakage of fithings and flanges.

APPENDIX
TABLE A1


## Appendix B

## Special Fittings

> This appendix is for information only and is not a part of ANSI/AIWHAClu).

These special fittings are not a part of the standard lout are available. For dimensions and pressure ratings, consult your supplier.


Flanged $90-\mathrm{deg}$ Reducing Bends
Flange Wye Branches

APPENDIX




Note: Wall pipe can be furnished with tapped holes in flanges or mechanicaljoint bells if required. Wall slecves (other than those shown in Fig. 10.10) are also available on special request.

## Appendix C

## Metrication

This appendix is for information only and is not a part of ANSI'A ITII A CIIO.

It is recommended that metric units not be shown opposite US customary units in this standard because of the extensive space that would be required. Of the 54 pages in this standard, 40 include tables and, therefore, it might be expected that metrication would result in a total printed standard of 100 or more pages. This
would increase the price of the standard drastically and it might well serve to delay its publication. It is hoped that in future revisions some of the material can be consolidated.

This recommendation is based on the interests of those who use the standard from the standpoints of economy, efficiency, and practicality.


## SECTION VI

## Joints for Gray \& Ductile Iron Pipe

## Introduction

Mechanical and push-on joints covered by ANSI Standard A21.11 (AWWA C111) comply with Federal Specification WW-P-421c.

The American National Standard for Flanged Pipe with Threaded Flanges, ANSI A21.15, (AWWA C115) was adopted in 1975.

Special types of pipe and fittings shown in this Section are available from individual manufacturers for special application. The manufacturer should be consulted for information on design and capabilities of these special products.



## AMERICAN NATIONAL STANDARD

# for <br> RUBBER-GASKET JOINTS FOR CAST-IRON AND DUCTILE-IRON PRESSURE PIPE AND FITTINGS 

## PUBLISHED BY AMERICAN WATER WORKS ASSOCIATION, INC.

## SPONSORS

American Gas Association
Amierican Society for Testing and Materials
American Water Works Association
New England Water Works Association

Revised Edition Approved by the American National Standards Institute, Inc., Mar. 2, 1972

## NOTICE

This Stamlard has been especially printed by the American Water Works Association for incorporation into this volume. It is current as of December 1, 1975. It should be noted, however, that all AWWA Standards are updated at least once in every five years. Therefore, before applying this Standard it is suggested that you confirm its currency with the American Water Works Association.

AMERICAN WATER WORKS ASSOCIATION
6666 West Quincy Avenue, Denver, Colorado 80235

## American National Standard

An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public; its existence does not in any respect preclude anyone, whether he has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review, and users are cautioned to obtain the latest editions. Producers of goods made in conformity with an American National Standard are encouraged to state on their own responsibility in advertising and promotional material or on tags or labels that the goods are produced in conformity with particular American National Standards.
CAUTION NOTICE. This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than 5 yr from the date of publication. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute, 1430 Broadway, New York, N.Y. 10018, (212) 868-1220.

## Table of Contents



## NOTICE

The corrections noted in the Errata Notice to the first printing of ANSI A21.11-1972 have been incorporated in this printing.

## Foreword

## This foreword is provided for information only and is nol a part of ANSI A21.11-1972 (AWWA C111-72).

American National Standards Committee A21 on Cast-Iron Pipe and Fittings was organized in 1926 under the sponsorship of the American Gas Association, the American Society for
3
2

Pressure Pipe and Fittings." The standard now also includes 54 -in.diameter push-on joints.
Mechanical joint glands. Physical acceptance test standards for ductileiron mechanical joint glands are now included in the standard. However, because of their excellent service record and because neither additional strength nor ductility is required for the service intended, cast-iron glands will be furnished with ductile-iron pipe and fittings unless ductile-iron glands are specified.
Gaskets. Requirements for maximum compression set and resistance to ozone cracking of gasket rubber for mechanical and push-on joints have been added to the standard. ASTM methods of testing for these requirements are also listed in the standard.
Performance requirements of the push-on joint. Because the push-on joints covered by this standard are not standardized, but are furnished in accordance with the manufacturer's standard design dimensions and tolerances, performance requirements are considered appropriate for inclusion in this standard. These performance requirements include the adoption of minimum working-pressure ratings for each joint size. The long and excellent service record of the mechanical joint with standardized dimensions has proved its performance ability; therefore, performance criteria are not necessary.

Mechanical joint dimensions. The manufacturer has been provided with an option to furnish ductile-iron pipe, 30 in . and larger in diameter, with bell
thicknesses compatible with the wall thickness of the pipe. The bolt length for 14 -in. mechanical joints has been changed from $\frac{3}{4}$ in. by 4 in . to $\frac{3}{4} \mathrm{in}$. by $4 \frac{1}{2} \mathrm{in}$. to assure full nut engagement.

Note: Push-on joints for cast-iron pipe are so designed that a negative pressure cannot pull the gasket into the pipe. Testing has been performed to confirm this design parameter for joint-sealing capability under the condition of negative pressure within the pipe.

## Options

This standard includes certain options that, if desired, must be specified
in the invitation for bids and on the purchase order. These options are found in the following sections of the standard:

1. Inspection, subsection 11-4.2
2. Certification and Test Records, subsection 11-5.1
3. Special Requirements for the Mechanical Joint, subsections $11-6.1$ and 11-6.3

Note: Subsection 11-6.3 provides for tapped holes in the bells of mechanical joints for stud bolts. This option is intended for use where headed bolts or slotted holes will not suffice, as, for example, where the bell is to be embedded in a concrete wall.

## Committee Personnel

Subcommittee 2, which developed this standard, had the followin, personnel at that time:

Frank J. Camerota, Chairman Miles R. Suchomel, Vice-Chairman
Consumer or General Interest Members

| Stanley C. Baker | Charles E. Smith |
| :--- | :--- |
| Kreneti J. Carl | Maurice C. Stout | Join W. Carroll

Producer Members

| Bruce I. Dedman | Richard C. Wetzel |
| :--- | :--- |
| Edwari C. Sears | Charles W. Wright |
| Alblrt II. Smith, Jr. |  |

Standards Committee A21 (Cast-Iron Pipe and Fittings), which reviewed and approved this standard, had the following personnel at the time of approval:

Walter Amory, Chairman
Carl A. Henrikson, Vice-Chairman
James B. Ramsey, Secretary
Ciarles R. Velzy, Ireasurer

Organization Represented Name of Representative
American (ias Association
American Society of (ivil Engineers
American Society of Mechanical Engineers
American Society for 'lesting and Materials American Water Works Association
Cast Iron Pipe Research Association

Individual Producers
Manufacturers' Standardization Society of the Valve and Fittings Industry
Naval Facilities Engineering Command
New England W'ater Works Association
Underwriters' Laboratories, Inc.
Canadian Standards Association

Leonard Orlando, Jr.
Kenneth W. Henderson
Charles R. Velzy
(Vacant)
Vance C. Lisciler
Carl A. Henrikson
Edward C. Sears
W. Harry Smith

Frank J. Camerota
William T. Maher
Abraham Fenster
Stanley C. Baker
Walter Amory
Miles R. Suchomel
W. F. Semenchuk*

* Liaison representative without vote.


## American National Standard for <br> RUBBER-GASKET JOINTS FOR CAST-IRON AND DUCTILE-IRON PRESSURE PIPE AND FITTINGS

## 11-1-Scope

This standard covers rubber-gasket joints of the following types for castiron and ductile-iron pressure pipe and fittings.

11-1.1 Mechanical joint. The mechanical joint is designed for pipe and fittings in sizes $2-48$ in. for conveying gas, water, or other liquids.

11-1.2, Push-on joint. The push-on joint is designed for pipe and fittings in sizes $2-54 \mathrm{in}$. for conveying water or other liquids.

## 11-2-Definitions

11-2.1 Joints and accessories. For the purpose of this standard the word "joint" includes accessories.

11-2.2. Mechanical joint. The mechanical joint is a bolted joint of the stuffing-box type, as shown in Fig. 11.1. Each joint shall consist of : (1) a bell, cast integrally with the pipe or fitting and provided with an exterior flange having bolt holes or slots, and a socket with annular recesses for the sealing gasket and the plain end of the pipe or fitting; (2) a pipe or fitting plain end; (3) a sealing gasket; (4) a follower gland with bolt holes; and (5) tee-head bolts and hexagonal nuts.

11-2.3. Push-on joint. The push-on joint is a single rubber-gasket joint. It is assembled by the positioning of a
continuous, molded, rubber ring gasket in an annular recess in the pipe or fitting socket and the forcing of the plain end of the entering pipe or fitting into the socket. The plain end compresses the gasket radially to form a positive seal. The gasket and the annular recess are so designed and shaped that the gasket is locked in place against displacement.

11-2.4. Purchaser. The purchaser is the party entering into a contract or agreement to purchase joints according to this standard.

11-2.5. Manufacturer. The manufacturer is the party entering into a contract or agreement to furnish joints according to this standard.

11-2.6. Inspector. The inspector is the representative of the purchaser, authorized to inspect in behalf of the purchaser to determine whether the requirements of this standard have been met.

## 11-3-General Requirements

11-3.1. Joints made in conformance with the provisions of this standard are intended for use on cast-iron and ductile-iron pipe and fittings manufactured in accordance with the following standards, where applicable:

ANSI A21.6-1970 (AWWA C106-70)-Cast-Iron Pipe Centrifugally

Cast in Metal Molds, for Water or Other Liquids

ANSI A21.7-1970-Cast-Iron Pipe Centrifugally Cast in Metal Molds, for Gas

ANSI A21.8-1970 (AWWA C108-70)-Cast-Iron Pipe Centrifugally Cast in Sand-Lined Molds, for Water or Other Liquids
ANSI A21.9-1970-Cast-Iron Pipe Centrifugally Cast in Sand-lined Molds, for Gas

Federal Specification WW-P-421c -Pipe, Cast Gray and Ductile Iron, Pressure (for Water and Other Liquids)

Federal Specification WW-P-360b
-Pipe, Cast Iron, Pressure (for Gas, Water, or other Liquids)

ANSI A21.10-1971 (AWWA C110-71)-Gray-Iron and Ductile-Iron Fittings, 2-48 in., for Water and Other Liquids

ANSI A21.12-1971 (AWWA C112-71)- 2 -in. and $2 \frac{1}{4}$-in. Cast-Iron Pipe, Centrifugally Cast, for Water or Other Liquids

ANSI A21.14-1968-Gray-Iron and Ductile-Iron Fittings, 3-24 in., for Gas

ANSI A21.51-1971 (AWWA C151-71)-Ductile-Iron Pipe, Centrifugally Cast in Metal Molds or Sand-Lined Molds, for Water or Other Liquids

ANSI A21.52-1971-Ductile-Iron Pipe, Centrifugally Cast, in Metal Molds or Sand-Lined Molds for Gas

11-3.2. The joints shall have the same pressure rating as the pipe or fitting of which they are a part.

11-3.3. A recommended method of joint assembly shall be furnished by the manufacturer on request of the purchaser.

11-3.4. Unless otherwise specified, gaskets, glands, bolts, and nuts shall be furnished with mechanical joints,
and gaskets and lubricant shall be furnished with push-on joints, all in sufficient quantity for assembly of each joint.

## 11-4-Inspection

11-4.1. Inspection shall be made in accordance with the provisions of the standard under which the pipe or fittings are purchased.
$11-4.2$. If the purchaser wishes to inspect the manufacture of glands, bolts, or gaskets that may be made by subcontractors, special arrangements therefor must be made at the time the order is placed.

## 11-5-Certification and Test Records

11-5.1. The manufacturer shall, if required on the purchase order, furnish a sworn statement that the inspection and all of the tests specified have been made and that the results thereof comply with the requirements of this standard.

11-5.2. A record of the specified tests of glands, bolts, and gaskets shall be retained for 1 yr and shall be available to the purchaser at the foundry.

## 11-6-Special Requirements for the Mechanical loint

11-6.1. Glands. Unless otherwise specified, cast-iron glands shall be furnished with ductile-iron pipe and fittings. Glands shall have a bituminous coating unless otherwise specified and shall have cast or stamped upon them the manufacturer's identification, the nominal size, and the letters "DI" or word "ductile" if made of ductile iron.

11-6.1.1. Cast-iron glands. The acceptability of the cast iron used in the glands shall be determined by


3
5

Fig. 11.1. Mechanical-Joint Dimensions for Sizes $2-48 \mathrm{in}$. (See Table 11.1)

## Notes

1. The nominal thickness of the pipe bell " S " shall not be less than the nominal wall thickness of the pipe of which it is a part. The " S " dimensions shown in Table 11.1 for centrifugal pipe are for reference and were used to calculate bell weights.
2. The diameter of cored holes may be tapered an additional 0.06 in .
3. In the event of an ovalness to the outside diameter of the plain end, the mean diameter measured by a circumferential tape shall not be less than the minimum diameter shown in the table. The minor axis shall not be less than the foregoing minimum diameter plus an additional minus tolerance of 0.04 in . for sizes 8-12 in., 0.07 in . for sizes 14-24 in., and 0.10 in . for sizes $30-48 \mathrm{in}$.
4. $K_{1}$ and $K_{2}$ are the dimensions across the bolt holes. For sizes 2 and $2 \frac{1}{4}$ in., both flange and gland may be oval in shape. For sizes $3-48 \mathrm{in}$., the gland may be polygon in shape.
5. Gland thickness "M" for sizes 14-48 in. may be tapered as shown at the option of the manufacturer.
6. The " $L$ " dimension shown in Table 11.1 for 2 -in. and $2 \frac{1}{4}$-in. sizes applies to mechanical-joint pipe. The " $L$ " dimension for $2-\mathrm{in}$. and $2 \frac{1}{4}-\mathrm{in}$. fittings is 0.75 in . ( -0.05 in .).
7. At the manufacturer's option, ductile-iron pipe in sizes 30 -in. and larger may be furnished with the bell-flange thicknesses shown in Table 11.1 (dimension L), or with reduced bell-flange thicknesses that are compatible with the wall thickness of the pipe. When reduced bell-flange thicknesses are furnished, the manufacturer shall provide details of the joint and accessories if requested by the purchaser.

TABLE 11.1
Mechanical-Joint Dimensions-in.

|  | $\begin{aligned} & \text { A } \\ & \text { Plain } \\ & \text { End } \end{aligned}$ | B | c | D | $F$ | $\phi$ | $X$ | $J$ | $K_{1}$ |  | $R_{1}$ | $L^{*}$ | M | $N$ | 0 | $P$ | $S$ |  | $Y$ | Bolts |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { Cen- } \\ & \text { trif- } \\ & \text { ugal } \\ & \text { Pipe } \end{aligned}$ | $\begin{gathered} \text { Pit Cast } \\ \text { Pipe } \\ \text { and } \\ \text { Fittings } \end{gathered}$ |  |  |  |  |  |  | $\begin{aligned} & \text { Cen- } \\ & \text { trif- } \\ & \text { ugal } \\ & \text { Pipe } \end{aligned}$ | $\begin{array}{\|c\|c\|} \hline \text { Pit Cast } \\ \text { Pipe } \\ \text { and } \\ \text { Fittings } \end{array}$ |  | No. | Size | Length |
| 2 | $\pm 0.05$ | 2.50 | $\pm \begin{array}{ll} \pm 0.05 & \\ & 3.39\end{array}$ | $\pm 0.05$  <br>   <br>   <br>   <br> 0.05  | $\pm 0.05 \quad 2.61$ | $28^{\circ}$ | +0.06-0.0 | $\pm \begin{array}{\|c}  \pm .05 \\ 4.75 \end{array}$ | $\begin{array}{r} -0.05 \\ 6.00 \end{array}$ | $\begin{array}{r} -0.10 \\ -6.25 \end{array}$ | $\begin{array}{r} -0.10 \\ 6.25 \end{array}$ | $\left\|\begin{array}{r} -0.05 \\ 0.56 \end{array}\right\|$ | $\left.\begin{array}{r} -0.05 \\ 0.62 \end{array} \right\rvert\,$ | 0.50 | 0.31 | 0.63 | 0.37 | $\begin{array}{r} -0.07 \\ 0.44 \end{array}$ | 0.08 | 2 | 1 | 21 |
| 21 | $\pm 0.05 \quad 2.75$ | 2.50 | $\pm \begin{array}{ll} \pm 0.05 & \\ & 3.64\end{array}$ | $\pm$$\pm 0.05$  <br>  3.75 <br>   <br>   <br> 0.06  <br> 0.05  | $\pm 0.05 \quad 2.86$ | $28^{\circ}$ | $+0.06-0.0$ | $\begin{array}{r}  \pm 0.05 \\ 5.00 \end{array}$ | $\begin{array}{r} -0.05 \\ \hline 6.25 \end{array}$ | $\begin{array}{r} -0.10 \\ -6.50 \end{array}$ | $\begin{array}{r} -0.10 \\ 6.50 \end{array}$ | $\left.\begin{array}{r} -0.05 \\ 0.56 \end{array} \right\rvert\,$ | $\begin{array}{r} -0.05 \\ 0.62 \end{array}$ | 0.50 | 0.31 | 0.63 | 0.37 | $\begin{array}{r} -0.07 \\ 0.44 \end{array}$ | 0.08 | 2 | 1 | $2{ }^{2}$ |
| 3 | $\pm 0.06$ | 2.50 | $\pm 0.04$  <br>  4.84 | $\begin{array}{r} +0.06-0.04 \\ 4.94 \\ \hline \end{array}$ | $\begin{array}{r} +0.07-0.03 \\ 4.06 \end{array}$ | $28^{\circ}$ | $+0.06-0.0$ | $\begin{gathered} \pm 0.06 \\ 6.19 \end{gathered}$ | $\begin{array}{r} -0.06 \\ 7.62 \end{array}$ | $\begin{array}{r} -0.12 \\ 7.69 \end{array}$ | $\begin{array}{r} -0.12 \\ 7.69 \end{array}$ | $\left[\begin{array}{r} -0.06 \\ 0.94 \end{array}\right]$ | $\begin{array}{r} -0.06 \\ 0.62 \end{array}$ | 0.75 | 0.31 | 0.63 | 0.47 | -0.10 0.52 | 0.12 | 4 | \% | 3 |
| 4 | $\pm$$\pm 0.06$ 4.80 <br>   <br> 0.05  | 2.50 | $\pm 0.04 \quad 5$ | $\left\|\begin{array}{r} +0.06-0.04 \\ 6.02 \end{array}\right\|$ | $\left\|\begin{array}{r} +0.07-0.03 \\ 4.90 \end{array}\right\|$ | $28^{\circ}$ | $+0.06-0.0$ | $\begin{array}{r}  \pm 0.06 \\ 7.50 \end{array}$ | $\begin{array}{r} -0.06 \\ 9.06 \end{array}$ | $\begin{array}{r} -0.12 \\ 9.12 \end{array}$ | $\begin{array}{r} -0.12 \\ 9.12 \end{array}$ | $\left\|\begin{array}{r} -0.06 \\ 1.00 \end{array}\right\|$ | $\left.\begin{array}{r} -0.06 \\ 0.75 \end{array} \right\rvert\,$ | 0.7 | 0.31 | 0.75 | 0.55 | -0.10 0.65 | 0.12 | 4 | 3 | $3 \frac{1}{3}$ |
| 6 | $\pm 0.06 \quad 6.90$ | 2.50 | $\pm 0.048$ | +0.06-0.04 8 | +0.07-0.03 7.00 | $28^{\circ}$ | +0.06-0.0 | $\begin{array}{\|c}  \pm 0.06 \\ 9.50 \end{array}$ | $\begin{array}{r} -0.06 \\ 11.06 \end{array}$ | $\begin{gathered} -0.12 \\ 11.12 \end{gathered}$ | $\begin{array}{r} -0.12 \\ 11.12 \end{array}$ | $\left.\begin{array}{r} -0.06 \\ 1.06 \end{array} \right\rvert\,$ | $\begin{array}{r} -0.06 \\ 0.88 \end{array}$ | 0.75 | 0.31 | 0.75 | 0.60 | $\begin{array}{r} -0.10 \\ 0.70 \end{array}$ | 0.12 | 6 | ? | 31 |
| 8 | $\pm 0.06$ | 2.50 | $\pm 0.04 \quad 10.17$ | $\begin{array}{r} +0.06-0.04 \\ 10.27 \end{array}$ | $\begin{array}{\|} +0.07-0.03 \\ 9.15 \end{array}$ | $28^{\circ}$ | +0.06-0.0 | $\begin{aligned} & \pm 0.06 \\ & 11.75 \end{aligned}$ | $\begin{array}{\|c\|} \hline-0.06 \\ 13.31 \end{array}$ | $\begin{array}{r} -0.12 \\ 13.37 \end{array}$ | $\overline{-0.12}$ | $\left.\begin{array}{r} \hline-0.08 \\ 1.12 \end{array} \right\rvert\,$ | $\begin{array}{\|} \hline-0.08 \\ 1.00 \end{array}$ | 0.75 | 0.31 | 0.75 | 0.66 | $\begin{array}{r} -0.12 \\ -.75 \end{array}$ | 0.12 | 6 | 3 | 4 |
| 10 | $\pm 0.06$  <br>   <br>  11.10 <br> 0.06  | 2.50 | $\begin{array}{r} +0.06-0.04 \\ 12.22 \\ \hline \end{array}$ | $\begin{array}{r} +0.06-0.04 \\ 12.34 \\ \hline \end{array}$ | $\begin{array}{r} +0.07-0.03 \\ 11.20 \\ \hline \end{array}$ | $28^{\circ}$ | $\begin{array}{r} +0.06-0.0 \\ \\ \hline \end{array}$ | $\begin{array}{\|r} \hline \pm 0.06 \\ 14.00 \end{array}$ | $\begin{array}{r} -0.06 \\ 15.62 \\ \hline \end{array}$ | $\begin{array}{r} \hline-0.12 \\ 15.69 \end{array}$ | $\begin{array}{r} -0.12 \\ 15.62 \end{array}$ | $\begin{array}{r} -0.08 \\ 1.19 \\ \hline \end{array}$ | $\begin{array}{r} -0.08 \\ 1.00 \end{array}$ | 0.75 | 0.31 | 0.75 | 0.72 | $\begin{array}{r} -0.12 \\ 0.80 \end{array}$ | 0.12 | 8 | ? | 4 |
| 12 | $\pm 0.06 \quad 13.20$ | 2.50 | $\begin{array}{r} +0.06-0.04 \\ 14.32 \\ \hline \end{array}$ | $\begin{array}{r} +0.06-0.04 \\ 14.44 \\ \hline \end{array}$ | $\begin{array}{r} +0.07-0.03 \\ 13.30 \\ \hline \end{array}$ | $28^{\circ}$ | $\begin{array}{r} +0.06-0.0 \\ i \end{array}$ | $\begin{array}{r}  \pm 0.06 \\ 16.25 \end{array}$ | $\begin{array}{\|c\|} \hline-0.06 \\ 17.88 \end{array}$ | $\begin{array}{r} -0.12 \\ 17.94 \end{array}$ | $\begin{gathered} -0.12 \\ 17.88 \end{gathered}$ | $\begin{array}{r} -0.08 \\ 1.25 \\ \hline \end{array}$ | $\begin{array}{r} \hline-0.08 \\ 1.00 \end{array}$ | 0.75 | 0.31 | $\overline{0.75}$ | 0.79 | $\begin{array}{r} -0.12 \\ 0.85 \end{array}$ | 0.12 | 8 | ? | 4 |
| 14 | +0.05-0.08 | 3.50 | $\begin{array}{\|} +0.07-0.05 \\ 16.40 \end{array}$ | $\begin{array}{r} +0.07-0.05 \\ 16.54 \end{array}$ | $\begin{array}{r} +0.06-0.07 \\ 15.44 \end{array}$ | $28^{\circ}$ | $+0.06-0.0$ | $\begin{array}{\|r}  \pm 0.06 \\ 18.75 \end{array}$ | $\begin{array}{r} -0.08 \\ 20.25 \end{array}$ | $\begin{array}{r} -0.12 \\ 20.31 \end{array}$ | $\begin{aligned} & -0.12 \\ & 20.25 \end{aligned}$ | $\left\|\begin{array}{r} -0.12 \\ 1.31 \end{array}\right\|$ | $\begin{array}{r} -0.12 \\ 1.25 \end{array}$ | 0.75 | 0.31 | 0.75 | 0.85 | $\begin{array}{r} -0.12 \\ 0.89 \end{array}$ | 0.12 | 10 | 3 | $4 \frac{1}{2}$ |
| 16 | $\left\lvert\, \begin{array}{r} +0.05-0.08 \\ 17.40 \end{array}\right.$ | 3.50 | $\begin{array}{r} +0.07-0.05 \\ 18.50 \end{array}$ | $\begin{array}{r} +0.07-0.05 \\ 18.64 \end{array}$ | $\left\|\begin{array}{rr} +0.06 & 0.07 \\ & 17.54 \end{array}\right\|$ | $28^{\circ}$ | $+\overline{+0.06-0.0}$ | $\begin{array}{r} \hline \pm 0.06 \\ 21.00 \end{array}$ | $\begin{array}{r} \hline-0.08 \\ 22.50 \end{array}$ | $\begin{array}{r} -0.12 \\ 22.56 \end{array}$ | $\begin{array}{\|} \hline-0.12 \\ 22.50 \end{array}$ | $\left\|\begin{array}{r} -0.12 \\ 1.38 \end{array}\right\|$ | $\begin{array}{r} -0.12 \\ 1.31 \\ 1 \end{array}$ | 0.75 | 0.31 | 0.75 | 0.91 | $\begin{array}{r} -0.12 \\ 0.97 \end{array}$ | 0.12 | 12 | ? | 4 $\frac{1}{1}$ |
| 18 | $\left\lvert\, \begin{array}{r} +0.05-0.08 \\ 19.50 \end{array}\right.$ | 3.50 | $\left\|\begin{array}{r} +0.07-0.05 \\ 20.60 \end{array}\right\|$ | $\left\|\begin{array}{r} +0.07-0.05 \\ 20.74 \end{array}\right\|$ | $\left\|\begin{array}{rr} +0.06-0.07 \\ 19.64 \end{array}\right\|$ | $28^{\circ}$ | $+0.06-0.0$ | $\begin{array}{\|}  \pm 0.06 \\ 23.25 \end{array}$ | $\begin{array}{r} -0.08 \\ 24.75 \end{array}$ | $\begin{array}{r} -0.15 \\ 24.83 \end{array}$ | $\begin{array}{\|c} -0.15 \\ 24.75 \end{array}$ | $\begin{array}{r} -0.12 \\ 1.44 \end{array}$ | $\begin{array}{r} -0.12 \\ 1.38 \end{array}$ | 0.75 | 0.31 | 0.75 | 0.97 | $\begin{array}{r} -0.15 \\ 1.05 \end{array}$ | 0.12 | 12 | ${ }^{3}$ | 43 |
| 20 | $+0.05-0.08$ 21.60 | 3.50 | $\begin{array}{r} +0.07-0.05 \\ 22.70 \end{array}$ | $\begin{array}{r} +0.07-0.05 \\ 22.84 \end{array}$ | $\begin{array}{r} +0.06-0.07 \\ 21.74 \end{array}$ | $28^{\circ}$ | $\overline{+0.06-0.0}$ | $\begin{array}{\|c}  \pm 0.06 \\ \hline 25.50 \end{array}$ | $\begin{array}{r} -0.08 \\ 27.00 \end{array}$ | $\begin{array}{r} -0.15 \\ 27.08 \end{array}$ | $\begin{array}{r} -0.15 \\ 27.00 \end{array}$ | $\left.\begin{array}{r} -0.12 \\ 1.50 \end{array} \right\rvert\,$ | $\begin{array}{r} -0.12 \\ 1.44 \\ \hline \end{array}$ | 0.75 | 0.31 | 0.75 | 1.03 | $\begin{array}{r} -0.15 \\ 1.12 \end{array}$ | 0.12 | 14 | 4 | 4 ${ }^{1}$ |
| 24 | $\left\|\begin{array}{r} +0.05-0.08 \\ 25.80 \end{array}\right\|$ | 3.50 | $\begin{array}{\|r} \hline+0.07-0.05 \\ 26.90 \\ \hline \end{array}$ | $\begin{array}{\|r\|} \hline+0.07-0.05 \\ 27.04 \\ \hline \end{array}$ | $\begin{array}{r} +0.06-0.07 \\ 25.94 \end{array}$ | $28^{\circ}$ | $+\overline{+0.06-0.0}$ | $\begin{array}{\|c}  \pm 0.06 \\ 30.00 \end{array}$ | $\begin{array}{r} -0.08 \\ 31.50 \end{array}$ | $\begin{array}{r} -0.15 \\ 31.58 \end{array}$ | $\begin{array}{\|l\|} \hline-0.15 \\ 31.50 \end{array}$ | $\left.\begin{array}{\|} -0.12 \\ 1.62 \end{array} \right\rvert\,$ | $\left\|\begin{array}{r} -0.12 \\ 1.56 \end{array}\right\|$ | 0.75 | 0.31 | 0.75 | 1.08 | $\begin{array}{r} -0.15 \\ 1.22 \end{array}$ | 0.12 | 16 | 3 | 5 |
| 30 | $\left\lvert\, \begin{array}{r} +0.08-0.06 \\ 32.00 \end{array}\right.$ | 4.00 | $\begin{array}{r} +0.08-0.06 \\ 33.29 \end{array}$ | $\begin{array}{r} +0.08-0.06 \\ 33.46 \end{array}$ | $\begin{array}{r} +0.08-0.06 \\ 32.17 \end{array}$ | $20^{\circ}$ | $+0.06-0.0$ | $\begin{array}{r}  \pm 0.06 \\ 36.88 \end{array}$ | $\begin{aligned} & -0.12 \\ & 39.12 \end{aligned}$ | $\begin{array}{r} -0.18 \\ 39.12 \end{array}$ | $\begin{array}{r} -0.18 \\ 39.12 \end{array}$ | $\left\|\begin{array}{r} -0.12 \\ 1.81 \end{array}\right\|$ | $\left.\begin{array}{r} -0.12 \\ 2.00 \end{array} \right\rvert\,$ | 0.75 | 0.38 | 1.00 | 1.20 | $\begin{array}{r} -0.15 \\ 1.50 \end{array}$ | 0.12 | 20 | 1 | 6 |
| 36 | $\left\|\begin{array}{r} +0.08-0.06 \\ 33.30 \end{array}\right\|$ | 4.00 | $\begin{array}{r} +0.08-0.06 \\ 39.59 \\ \hline \end{array}$ | $\begin{array}{r} +0.08-0.06 \\ 39.76 \\ \hline \end{array}$ | $\begin{array}{r} +0.08-0.06 \\ 38.47 \\ \hline \end{array}$ | $20^{\circ}$ | $\begin{array}{r} +0.06-0.0 \\ 1 \mathrm{i} \end{array}$ | $\begin{array}{\|c}  \pm 0.06 \\ 43.75 \end{array}$ | $\begin{array}{r} -0.12 \\ 46.00 \end{array}$ | $\begin{array}{r} -0.18 \\ 46.00 \end{array}$ | $\begin{array}{r} -0.18 \\ 46.00 \end{array}$ | $\left\|\begin{array}{r} -0.12 \\ 2.00 \end{array}\right\|$ | $\left\|\begin{array}{r} -0.12 \\ 2.00 \end{array}\right\|$ | 0.75 | 0.38 | 1.00 | 1.35 | $\begin{array}{r} -0.15 \\ 1.80 \end{array}$ | 0.12 | 24 | 1 | 6 |
| 42 | $\overline{+0.08-0.06}$ | 4.00 | $\begin{array}{r} +0.08-0.06 \\ 45.79 \end{array}$ | $\begin{array}{r} \hline+0.08-0.06 \\ 45.96 \\ \hline \end{array}$ | $\begin{array}{r} +0.08-0.06 \\ 44.67 \end{array}$ | $20^{\circ}$ | $\begin{array}{r} +0.06-0.0 \\ 18 \end{array}$ | $\begin{array}{\|c}  \pm 0.06 \\ 50.62 \end{array}$ | $\begin{array}{r} -0.12 \\ 53.12 \end{array}$ | $\begin{array}{r} -0.18 \\ 53.12 \end{array}$ | $\begin{array}{r} -0.18 \\ 53.12 \end{array}$ | $\left.\begin{array}{r} -0.12 \\ 2.00 \end{array} \right\rvert\,$ | $\begin{array}{r} -0.12 \\ 2.00 \\ \hline \end{array}$ | 0.75 | 0.38 | 1.00 | 1.48 | $\begin{array}{r} -0.15 \\ 1.95 \end{array}$ | 0.12 | 28 | 14 | 6 |
| 48 | $\begin{array}{r} +0.08-0.06 \\ 50.80 \end{array}$ | 4.00 | $\begin{array}{\|} +0.08-0.06 \\ 52.09 \end{array}$ | $\begin{array}{r} +0.08-0.06 \\ 5226 \end{array}$ | $\begin{array}{\|} \hline+0.08-0.06 \\ 50.97 \end{array}$ | $20^{\circ}$ | $\begin{array}{r} +0.06-0.0 \\ 11 \end{array}$ | $\begin{array}{\|}  \pm 0.06 \\ 57.50 \end{array}$ | $\begin{array}{\|c} -0.12 \\ 60.00 \end{array}$ | $\begin{array}{r} \hline-0.18 \\ 60.00 \end{array}$ | $\begin{array}{\|c\|} \hline-0.18 \\ 60.00 \end{array}$ | $\left.\begin{array}{r} -0.12 \\ 2.00 \end{array} \right\rvert\,$ | $\begin{array}{r} -0.12 \\ 2.00 \end{array}$ | 0.75 | 0.38 | 1.00 | 1.61 | $\begin{array}{r} -0.15 \\ 2.20 \end{array}$ | 0.12 | 32 | 12 | 6 |

tests made on bars cast from the same iron as the glands. The test bars shall be ASTM standard bars, cast and tested in accordance with ASTM A48-64 for tensile strength or A438-68 for transverse breaking load. At the option of the manufacturer, either the tensile test or the transverse test may be used as the acceptance test. The required properties are given in the following table:

| Class <br> Of Iron | Bar <br> Diam. <br> $i n$. | Span <br> $i n$. | Min. <br> Breaking <br> Load-lb <br> $\left(1,000^{\prime} s\right)$ | Min. <br> Tensile <br> psi <br> $(I, 000 ' s)$ |
| :---: | :---: | :---: | :---: | :---: |
| 25 | 1.2 | 18 | 2 | 25 |
| 25 | 2 | 24 | 6.8 | 25 |

11-6.1.2. Ductile-iron glands. The standard acceptance test for the physical characteristics of ductile-iron glands shall be a tensile test from coupons cast from the same iron as the glands. The coupons shall be cast and the tests made in accordance with ASTM A536-67. The dućtile iron from which the glands are cast shall have a minimum elongation of 3 per cent.

11-6.2. Dimensions and tolerances. The dimensions of the bell, socket, plain end, and gland lip and the diameter and location of the bolt holes shall be gauged at sufficiently frequent intervals to assure compliance with the dimensions shown in Fig. 11.1 and Table 11.1.

11-6.3. Boll holes or slots. When necessary for the insertion of bolts, the bell flange shall have slots of the same width as the diameter of the bolt holes. When specified, the bell flange shall be furnished with holes tapped for stud bolts.

11-6.4. Gaskels. Gasket dimensions shall conform to the dimensions and tolerances shown in Fig. 11.2 and

Table 11.2. The size, mold number, gasket manufacturer's mark, the letters "MJ" (or "SM"), and the year of manufacture shall be molded in the rubber as shown in Fig. 11.2.

Rubber gaskets shall be vulcanized natural or vulcanized synthetic rubber, free of porous areas, foreign materials, and visible defects. No reclaimed rubber shall be used.
Quality-control procedures shall be utilized to assure that gaskets meet the requirements of this standard. The manufacturer shall retain monthly reports of representative quality-control tests results for gaskets manufactured that month.
The required properties of the gasket rubber and the required methods of test are given in the following table:

| Property | ASTM Test Method | Required Value |
| :---: | :---: | :---: |
| Hardness |  |  |
| Durometer "A" | D2240-68 | $75 \pm 5$ |
| Min. ultimate tensile-psi | D412-68 | 1,500 |
| Min. ultimate elon-gation-per ceni* | D412-68 | 150 |
| Min. aging-per cent $\dagger$ | D572-67 $\ddagger$ | 60 |
| Max. compression set-per cent | $\begin{aligned} & \text { D395-67 } \\ & \text { method B } \end{aligned}$ | 20 |
| Resistance to ozone cracking | D-1149-64§ | No cracking |

* Of original length.
$\dagger$ Of original values for tensile and ultimate elongation.
$\ddagger$ Oxygen pressure method, after 96 hr at $70 \mathrm{C} \pm 1 \mathrm{deg}$ at $300 \mathrm{psi} \pm 10$.
8 After a minimum of 25 hr exposure in 50 -pphm with approximately 20 per cent with approximately 20 per cent elongation at outer surface.

11-6.5. Bolts and nuts. Dimensions of tee-head bolts and hexagonal nuts shall comply with the dimensions and tolerances shown in Fig. 11.3 and Table 11.3. At the manufacturer's option, they shall be made of either


Fig. 11.2. Mechanical-Joint Gasket, 2-48 in. (See Table 11.2 and Notes)

Notes

1. Tipped or backed gaskets may be made in the same mold as plain rubber gaskets, but the inside diameter of such reinforced portions shall not exceed the "pipe OD."
2. The duck for tips and backs shall be frictioned before molding.

TABLE 11.2
2-48-in. Mechanical-Joint Gasket Dimensions-in.


high-strength cast iron containing a minimum of 0.50 per cent copper, or high-strength, low-alloy steel. The steel shall have the following characteristics:

| Characteristic | Value |
| :--- | ---: |
| Min. yield strength-psi | 45,000 |
| Min. elongation in 2 in.-per cent | 20 |
| Max. content-per cent |  |
| $\quad$ Carbon | 0.20 |
| Manganese | 1.25 |
| $\quad$ Sulfur | 0.05 |
| Min. content-per cent |  |
| $\quad$ Nickel | 0.25 |
| Copper | 0.20 |
| Combined (Ni, Cu, Cr) | 1.25 |

11-6.5.1. Threads. The design of internal and external threads shall conform to ANSI B1.1-1960--Unified Screw Threads, and to B1.2-1966Screw Thread Gages and Gaging. Thread form shall conform to the standards and to the dimensions of the coarse-thread series (UNC) Unified Coarse; external threads shall be made in compliance with Class 2A limits, and internal threads shall be made in compliance with Class 2B limits. Bolts shall be threaded concentric to the longitudinal axis of the shank. Nuts shall be tapped concentric to the vertical axis and at right angles to the load surfaces within a tolerance of 2 deg to insure axial loading.

11-6.5.2. Proof test. Statistical quality-control procedures shall be utilized to assure that bolts and nuts meet the specified test loads without permanent stretch. Samples of assembled bolts and nuts shall be prooftested in tension to the load values designated. For testing, the nuts shall be assembled flush with the end of the bolts. The load shall be applied without impact between the nut and the bolt head in a suitable machine that will insure axial loading. The
specified test loads shall not break the nut or bolt or permanently stretch the bolt. Permanent stretch is defined as $0.002 \mathrm{in} . / \mathrm{in}$. of bolt length. Assembled bolts and nuts shall be tested at the following load values, which have been determined on the basis of a $45,000-\mathrm{psi}$ stress at the root of the thread:

| Bolt <br> Diameter <br> in. | Load |
| :---: | :---: |
| $l b$ |  |
| $\frac{9}{8}$ | 9,000 |
| $\frac{3}{4}$ | 13,500 |
| 1 | 24,500 |
| $1 \frac{40,000}{4}$ | 40 |

11-6.5.3. Workmanship. Bolt shanks shall be straight within $\frac{1}{18} \mathrm{in}$./ 6 in . of length. The two load-bearing surfaces of the bolt heads shall be in a common plane that shall be at right angles to the bolt shank.

Bolts and nuts shall be sound, clean, and coated with a rust-resistant lubricant; their surfaces shall be free of objectionable protrusions that would interfere with their fit in the made-up mechanical joint.

11-6.5.4. Packing. The nuts shall be assembled on the bolts for packing. They shall be packed in suitable containers that shall be plainly marked with the manufacturer's name, and the size, quantity, and weight of the contents.

## 11-7-Special Requirements for the Push-on Joint

11-7.1. Drawings. The manufacturer shall furnish drawings of the joint and gasket, if requested by the purchaser.

11-7.2. Dimensions and tolerances. The dimensions of the bell, socket, and plain end shall be in accordance with the manufacturer's standard design dimensions and tolerances. Such di-


Fig. 11.3. Mechanical-Joint Bolts and Nuts

## Notes

1. Dimension $B$ is unthreaded shank.
2. Dimension $D$ is measured to face of nut run up finger tight.
3. Draft, when required to be 6 deg maximum, may be deducted from bolt head dimensions, and radius $B / 2$ may be changed to suit draft.
4. Gates, if required, may protrude a maximum of $\frac{1}{8} \mathrm{in}$. above the top of the bolt head.

TABLE 11.3
Mechanical-Joint Bolt and Nut Dimensions-in.

| Nom. Size | $\stackrel{A}{A}$ | $\begin{gathered} B \\ \pm 0.03 \end{gathered}$ | $\left\lvert\, \begin{gathered} c+.25 \\ -0.06 \end{gathered}\right.$ | D | $E^{*}$ | $F$ | ${ }_{H}$ | ${ }_{\text {- }}{ }_{-0.03}^{+0.15}$ | $\stackrel{R}{\text { Max. }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $8 \times 2 \frac{1}{2}$ | 1.50 | 0.625 | 2.5 | 1.25 | 11 | $0.625 \pm 0.04$ | $\begin{array}{r} 1.062+0.00 \\ -0.04 \end{array}$ | 0.625 | 0.312 |
| $8 \times 3$ | 1.50 | 0.625 | 3.0 | 1.75 | 11 | $0.625 \pm 0.04$ | $1.062+0.00$ -0.04 | 0.625 | 0.312 |
| $3 \times 3$ | 1.75 | 0.750 | 3.5 | 1.75 | 10 | $0.750 \pm 0.06$ | $1.250+0.00$ -0.06 | 0.750 | 0.375 |
| $\frac{3}{4} \times 4$ | 1.75 | 0.750 | 4.0 | 2.25 | 10 | $0.750 \pm 0.06$ | $1.250+0.00$ -0.06 | 0.750 | 0.375 |
| $\frac{3}{4} \times 4 \frac{1}{2}$ | 1.75 | 0.750 | 4.5 | 2.75 | 10 | $0.750 \pm 0.06$ | $\begin{array}{r} 1.250+0.00 \\ -0.06 \end{array}$ | 0.750 | 0.375 |
| ${ }_{4}^{3} \times 5$ | 1.75 | 0.750 | 5.0 | 3.25 | 10 | $0.750 \pm 0.06$ | $\begin{array}{r} 1.250+0.00 \\ -0.06 \end{array}$ | 0.750 | 0.375 |
| $1 \times 6$ | 2.25 | 1.000 | 6.0 | 3.75 | 8 | $1.000 \pm 0.08$ | $\begin{array}{r} 1.625+0.00 \\ -0.08 \end{array}$ | 1.000 | 0.500 |
| $1 \frac{1}{2} \times 6$ | 2.50 | 1.250 | 6.0 | 3.75 | 7 | $1.250 \pm 0.08$ | $\begin{array}{r} 2.000+0.00 \\ -0.08 \end{array}$ | 1.250 | 0.625 |

* Number of threads per incin [Coarse-Thread Series (ANSIB1.1-Unified Standard for Sceew Threads) Class 2A, External Fit UNC2A and Class 2B, UNC2B (ANSIB1.2-Standard for Gages and Gaging)].
mensions shall be gaged at sufficiently frequent intervals to assure dimensional control.
11-7.3. Gaskets. Gasket dimensions shall be in accordance with the manufacturer's standard design dimensions and tolerances. The gasket shall be of such size and shape as to provide an adequate compressive force against the spigot and socket after assembly to effect a positive seal under all combinations of joint and gasket tolerances. The trade name or trademark, size, mold number, gasket manufacturer's mark, and year of manufacture shall be molded on the gaskets. Markings shall not be located on the sealing surfaces.

Gaskets shall be vulcanized natural or vulcanized synthetic rubber. No reclaimed rubber shall be used. When two hardnesses of rubber are included in a gasket, the soft and hard portions shall be integrally molded and joined in a strong vulcanized bond. Gaskets shall be free of porous areas, foreign material, and visible defects.
The required properties of the gasket rubber and the required method of test are given in the following table:
ard. The manufacturer shall retain monthly reports of representative quality-control test results for gaskets manufactured in that month.

11-7.4. Lubricant. The lubricant shall be suitable for lubricating the parts of the joint for assembly. The lubricant shall be nontoxic, shall not support the growth of bacteria, and shall have no deteriorating effects on the gasket material. It shall not impart taste or odor to water in a pipe that has been flushed in accordance with AWWA C601-68-Standard for Disinfecting Water Mains. The lubricant containers shall be labeled with the trade name or trademark and the pipe manufacturer's name.

11-7.5. Marking. Pipe and fittings having push-on joints shall be marked with the proprietary name or trademark of the joint.

## 11-8-Performance Requirements of the Push-on Joint

The manufacturer shall have qualified the design of his joint by having performed the tests given in this section and shall have records to show the results of these tests.

| Property | ASTM <br> Test Method | Main Body <br> of Gasket | Harder Portion <br> (if Used) |
| :--- | :--- | :---: | :---: |
| Nominal hardness Durometer "A" | D2240-68 | $50-65$ | $80-85$ |
| Tolerance on nominal hardness | D412-68 | $\pm 5$ | $\pm 5$ |
| Min. ultimate tensile-psi | D412-68 | 2,000 | 1,200 |
| Min. ultimate elongation-per cent" | D572-67 $\ddagger$ | 300 | 125 |
| Min. aging-per cent $\dagger$ | D395-67 |  |  |
| Max. compression set—per cent | method B | - |  |
| Resistance to ozone cracking | D-1149-64§ | No cracking | - |

* Of original length.
+ Of original values of tensile and ultimate elongation.

\& After a minimum of 25 hr exposure in 50 -pphm ozone concentration at 104 F on a loop-mounted gasket with approximately 20 per cent elongation at outer surface.

Quality-control procedures shall be utilized to assure that the gaskets will meet the requirements of this stand-

11-8.1. Working-pressure ratings The working-pressure rating of the push-on joint is established by sub-
jecting representative sizes to hydrostatic pressures of twice the rated working pressure of the pipe or fitting with which the joint is to be used but in no event less than twice the minimum working-pressure rating shown in the table at the end of this paragraph. The hydrostatic pressure shall be applied to joint samples having maximum clearances between the plain end and socket as allowed by the
be as follows:

| Joint Size-in. | Minimum Working- <br> Pressure Rating-pst |
| :--- | :---: |
| 16 and smaller | 350 |
| 18 | 300 |
| $20-24$ | 250 |
| $30-54$ | 200 |

11-8.2. Assembly. Assembly of representative sizes shall be possible with the joints having minimum clearances between the plain end and socket as allowed by the specified tolerances. These joints shall be capable of being assembled and deflected to the maximum attainable angle-but not in excess of the maximum recommended by the manufacturer-without damage to the gaskets, pipe, or fittings, and without displacement of the gasket from its intended position.

11-8.3. Gaskets. The gaskets used for qualifying the joint shall be of the same form and material as the gaskets intended for use in service.

## Appendix A

Notes on Installation of Mechanical Joints

## These notes are not part of the standard, but are given for information.

The successful operation of the mechanical joint specified requires that the spigot be centrally located in the bell and that adequate anchorage shall be provided where abrupt changes in direction and dead ends occur.

The rubber gasket seals most effectively (particularly when sealing gas) if the surfaces with which it comes in contact are cleaned thoroughly (for example, with a wire brush) just prior to assembly to remove all loose rust or foreign material. Lubrication and additional cleaning are provided by brushing both the gasket and the spigot (as with soapy water for example) just prior to slipping the

| Pipe <br> Size- <br> in. | Bolt <br> Size- <br> in. | Range of <br> Torque- <br> ft-bb | Length of <br> Wrench- <br> in.* |
| :---: | :---: | :---: | :---: |
| $2-3$ | $\frac{5}{8}$ | $45-60$ | 8 |
| $4-24$ | $\frac{3}{8}$ | $75-90$ | 10 |
| $30-36$ | 1 | $85-100$ | 12 |
| $42-48$ | $1 \frac{13}{4}$ | $105-120$ | 14 |

* The torque loads may be applied with torquemeasuring or torque-indicating wrenches, which may so be used to check the application of approximat pull on a definite length of regular socket wrench.
gasket onto the spigot and assembling the joint.

For water and gas service the normal range of bolt torques to be applied and the lengths of wrenches, that should satisfactorily produce the ranges of torques are given in the table.

When tightening bolts, it is essential that the gland be brought up toward the pipe flange evenly, maintaining approximately the same distance between the gland and the face of the flange at all points around the socket. This may be done by partially tightening the bottom bolt first, then the top bolt, next the bolts at either side, and finally the remaining bolts. This cycle should be repeated until all bolts are within the range of torques shown in the table. If effective sealing is not attained at the maximum torque indicated, the joint should be disassembled, thoroughly cleaned, and reassembled. Overstressing of bolts to compensate for poor installation practice is to be avoided.


# AMERICAN NATIONAL STANDARD 

for

# FLANGED CAST-IRON AND DUCTILE-IRON PIPE WITH THREADED FLANGES 

Administrative Secretariat<br>AMERICAN WATER WORKS ASSOCIATION<br>Co-Secretariats<br>AMERICAN GAS ASSOCIATION<br>NEW ENGLAND WATER WORKS ASSOCIATION

Approved by American National Standards Institute, Inc. May 28, 1975.

## NOTICE

This Standard has been especially printed by the American Water Works Association for incorporation into this volume. It is current as of December 1, 1975. It should be noted, however, that all AWWA Standards are updated at least once in every five years. Therefore, before applying this Standard it is suggested that you confirm its currency with the American Water Works Association.

PUBLISHED BY
AMERICAN WATER WORKS ASSOCIATION 6666 West Quincy Avenue, Denver, Colorado 80235

## American National Standard

An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether he has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review, and users are cautioned to obtain the latest editions. Producers of goods made in conformity with an American National Standard are encouraged to state on their own responsibility in advertising, promotion material, or on tags or labels that the goods are produced in conformity with particular American National Standards.

CAUTION NOTICE. This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than five (5) years from the date of publication. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute, 1430 Broadway, New York, N. Y. 10018, (212) 868-1220.
© Copyright 1975 by the American Water Works Assn
Printed in $I T$

# 3 <br> Table of Contents 3 7 

sEC. Page sec. PAGE
Foreword
I History of Standard v TablesII Options ................. v Table 15.1-Gray-Iron Flanged
StandardPipe With Threaded Flanges .. 2Table 15.2-Ductile-Iron Flanged
15-1 Scope
Pipe With Threaded Flanges. ..... 3
15-2 DefinitionsTable 15.3-Threaded Flange15-3 Inspection and Certification
Detail ..... 4
by Manufacturer ..... Table A1—Flange Gasket Details 6
15-4 Inspection by Purchaser . ..... 1
15-5 Delivery and Acceptance. ..... 2
15-6 Pipe Barrel .....
15-7 FlangesFigures
15-8 Fabrication ..... 3
15.1 Flange Details ..... 4
15-9 Coatings and Linings
15-10 MarkingsAppendix5

## Committee Personnel

Subcommittee 1, Pipe, which developed this standard, had the following personnel at that time :

Edward C. Sears, Chairman<br>Walter Amory, Vice-Chairman

## User Members Producer Members

Robert S. Bryant
W. D. Goode

Frank E. Dolson
Carl A. Henrikson
George F. Keenan
Leonard Orlando Jr.
Thomas D. Holmes
Sidney P. Teague John E. Perry

Standards Committee A21, Cast-Iron Pipe and Fittings, which reviewed and approved this standard, had the following personnel at the time of approval:

Lloyd W. Weller, Chairman
Carl A. Henrikson, Vice-Chairman
James B. Ramsey, Secretary

## Organization Represented

American Gas Association
American Society of Civil Engineers
American Society of Mechanical Engineers
American Society for Testing and Materials American Water Works Association

Cast Iron Pipe Research Association

Individual Producer
Manufacturers' Standardization Society of
the Valve and Fittings Industry
New England Water Works Association
Naval Facilities Engineering Command
Underwriters' Laboratories, Inc.
Canadian Standards Association

Name of Representative
Leonard Orlando Jr.
Kenneth W. Henderson
James S. Vanick
Albert $H$. Smith Jr.
Arnold M. Tinkey
Lloyd W. Weller
Carl A. Henrikson
Edward C. Sears
W. Harry Smith

Alfred F. Case
Abraham Fenster
Walter Amory
Stanley C. Baker
John E. Perry
W. F. Semenchuk*

[^30]
## Foreword

This foreword is provided for information only and is not a part of ANSI A21.15 (AWWA C115).

## I-History of Standard

American National Standard Committee A21 on Cast-Iron Pipe and Fittings was organized in 1926 under the sponsorship of the American Gas Association, the American Society for Testing and Materials, the American Water Works Association, and the New England Water Works Association. The present scope of Committee A21 activity is

Standardization of specifications for castiron and ductile-iron pressure pipe for gas, water, and other liquids, and fittings for use with such pipe. These specifications to include design, dimensions, materials, coatings, linings, joints, accessories, and methods of inspection and test.

The work of Committee A21 is conducted by subcommittees. The directive to Subcommittee 1-Pipe is that

The scope of the subcommittee activity shall include the periodic review of all current A21 standards for pipe, the preparation of revisions and new standards where needed, as well as other matters pertaining to pipe standards.

Flanged fittings are covered in ANSI-A21.10 (AWWA C110). The flanged pipe used with these fittings has been purchased for many years in accordance with users' and manufacturers' standards. A need for an ANSI standard for flanged pipe has
been indicated. Consequently, Subcommittee 1 submitted a proposed standard for flanged pipe to Committee A21 in 1974.

## II-Options

This standard includes certain options that, if desired, must be specified on the purchase order. Also, a number of items must be specified to describe completely the pipe required. The following summarizes these details and available options and lists the sections of the standard where they can be found:

1. Size, whether cast-iron or ductileiron, thickness or class, and finished length
2. Certification by manufacturerSec. 15-3.2
3. Inspection by purchaser-Sec. 15-4.1
4. Flanges for ductile-iron pipeSec. 15-7.3
5. Bolt-hole alignment-Sec. 15-8.4
6. Cement lining-Sec. 15-9.2. Experience has indicated that bituminous inside coating is not complete protection against loss in pipe capacity because of tuberculation. Cement linings are recommended for most waters.
7. Special coatings and liningsSec. 15-9.5.

## First Edition

## American National Standard for

## Flanged Cast-Iron and Ductile-Iron Pipe With Threaded Flanges

## Sec. 15-1—Scope

This standard pertains to $3-48 \mathrm{in}$. gray-iron and 3-54 in. ductile-iron flanged pipe with threaded flanges for water or other liquids. The flanged pipe are rated for a maximum working pressure of either 150 or 250 psi as specified in the tables. All flanges are rated for a maximum working pressure of 250 psi.

## Sec. 15-2-Definitions

Under this standard the following definitions shall apply:

15-2.1. Purchaser. The party entering into a contract or agreement to purchase flanged pipe according to this standard.

15-2.2. Manufacturer. The party that produces the flanged pipe.

15-2.3. Inspector. The representative of the purchaser, authorized to inspect in behalf of the purchaser to determine whether or not the flanged pipe meet this standard.

15-2.4. Gray iron. Gray iron is a cast ferrous material in which a major part of the carbon content occurs as graphite in the form of flakes interspersed throughout the metal.

15-2.5. Ductile iron. Ductile iron is a cast ferrous material in which the graphite present is in a spheroidal form rather than in flake form.

## Sec. 15-3-Inspection and

 Certification by Manufacturer15-3.1. The manufacturer shall establish the necessary quality control and inspection practice to ensure compliance with this standard.

15-3.2. The manufacturer shall, if required on the purchase order, furnish a sworn statement that the flanged pipe comply with the requirements of this standard.

15-3.3. All flanged pipe shall be clean and sound without defects that will impair their service. Repairing of defects by welding or other methods shall not be allowed if such repairs will adversely affect the serviceability of the flanged pipe or its capability to meet strength requirements of this standard.

## Sec. 15-4-Inspection by Purchaser

15-4.1. If the purchaser desires to inspect flanged pipe at the manufacturer's plant, the purchaser shall so specify on the purchase order, stating the conditions (such as time and the extent of inspection) under which the inspection shall be made.

15-4.2. The inspector shall have free access to those parts of the manufacturer's plant that are necessary to ensure compliance with this standard. The manufacturer shall make available
for the inspector's use such gages as are necessary for inspection. The manufacturer shall provide the inspector with assistance as necessary for the handling of flanged pipe.

## Sec. 15-5-Delivery and Acceptance

All flanged pipe shall comply with this standard. Flanged pipe not complying with this standard shall be replaced by the manufacturer at the agreed point of delivery. The manufacturer shall not be liable for shortages or damaged pipe after acceptance at the agreed point of delivery except
as recorded on the delivery receipt or similar document by the carrier's agent.

## Sec. 15-6—Pipe Barrel

15-6.1. Gray-iron pipe barrels shall conform to the requirements of ANSI A21.6 (AWWA C106) or ANSI A21.8 (AWWA C108) of latest revision, and ductile-iron pipe barrels shall conform to the requirements of ANSI A21.51 (AWWA C151) of latest revision.

15-6.2. The nominal thicknesses of gray-iron and ductile-iron flanged pipe shall not be less than those shown in Tables 15.1 and 15.2.

TABLE 15.1
Gray-Iron Flanged Pipe With Threaded Flanges

| Nominal Pipe Size in. | Thickness Class* | Maximum Working Pressure $p s i$ | Nominal Thickness in. | $\begin{aligned} & \text { OD } \\ & i n . \end{aligned}$ | Weight-lb |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | One <br> Flange Only | Pipe Barrel per ft |
| 3 | 24 | 250 | 0.38 | 3.96 | 7 | 13.3 |
| 4 | 23 | 250 | 0.38 | 4.80 | 13 | 16.5 |
| 6 | 22 | 250 | 0.38 | 6.90 | 17 | 24.3 |
| 8 | 22 | 250 | 0.41 | 9.05 | 27 | 34.7 |
| 10 | 22 | 250 | 0.44 | 11.10 | 38 | 46.0 |
| 12 | 22 | 150 | 0.48 | 13.20 | 58 | 59.8 |
| 12 | 23 | 250 | 0.52 | 13.20 | 58 | 64.6 |
| 14 | 22 | 150 | 0.51 | 15.30 | 72 | 73.9 |
| 14 | 24 | 250 | 0.59 | 15.30 | 72 | 85.1 |
| 16 | 22 | 150 | 0.54 | 17.40 | 90 | 89.2 |
| 16 | 24 | 250 | 0.63 | 17.40 | 90 | 103.6 |
| 18 | 22 | 150 | 0.58 | 19.50 | 90 | 107.6 |
| 18 | 24 | 250 | 0.68 | 19.50 | 90 | 125.4 |
| 20 | 22 | 150 | 0.62 | 21.60 | 115 | 127.5 |
| 20 | 24 | 250 | 0.72 | 21.60 | 115 | 147.4 |
| 24 | 23 | 150 | 0.73 | 25.80 | 160 | 179.4 |
| 24 | 24 | 250 | 0.79 | 25.80 | 160 | 193.7 |
| 30 | 23 | 150 | 0.85 | 32.00 | 240 | 259.5 |
| 30 | 25 | 250 | 0.99 | 32.00 | 240 | 300.9 |
| 36 | 23 | 150 | 0.94 | 38.30 | 350 | 344.2 |
| 36 | 25 | 250 | 1.10 | 38.30 | 350 | 401.1 |
| 42 | 23 | 150 | 1.05 | 44.50 | 500 | 447.2 |
| 42 | 25 | 250 | 1.22 | 44.50 | 500 | 517.6 |
| 48 | 23 | 150 | 1.14 | 50.80 | 625 | 554.9 |
| 48 | 25 | 250 | 1.33 | 50.80 | 625 | 644.9 |

* ANSI-A21.6 (AWWA C106) and A21.8 (AWWA C108).

Note: The nominal thicknesses of gray-iron flanged pipe shall not be less than those shown in this table.

15-6.3. The minus thickness tolerances of pipe shall not exceed the following :

| Pipe Size in. | $\begin{aligned} & \text { Gray-Iron Pipe } \\ & \text { (A21.6, A21.8) } \\ & \ln . \end{aligned}$ | $\begin{aligned} & \text { Ductile-Iron } \\ & \text { Pipe (A2r.51) } \\ & \text { in. } . \end{aligned}$ |
| :---: | :---: | :---: |
| 3-8 | 0.05 | 0.05 |
| 10-12 | 0.06 | 0.06 |
| 14-24 | 0.08 | 0.07 |
| 30-42 | 0.10 | 0.07 |
| 48 | 0.10 | 0.08 |
| 54 | - | 0.09 |

15-6.4. Threads on the pipe barrel shall be taper pipe threads (NPT) in accordance with ANSI B2.1 adapted to the gray-iron and ductile-iron pipe outside diameters shown in Tables 15.1 and 15.2 .

## Sec. 15-7-Flanges

15-7.1. Flanges shall conform to the dimensions shown in Table 15.3.

15-7.2. All flanges shall have a taper pipe thread (NPT) in accordance with ANSI B2.1 adapted to the
gray-iron and ductile-iron pipe outside diameters shown in Tables 15.1 and 15.2.

15-7.3. Unless otherwise specifically directed by the purchaser, flanges for ductile-iron pipe shall be ductile iron. Flanges for gray-iron pipe shall be gray iron. Flanges shall conform to the respective chemical and physical properties specified for gray-iron and ductile-iron fittings in ANSI A21.10 (AWWA C110).

Sec. 15-8-Fabrication
15-8.1. Bolt holes. Bolt holes shall be in accordance with the dimensions shown in Table 15.3. The bolt holes shall be equally spaced.

15-8.2. Assembly. Both flange and pipe threads shall be clean prior to application of thread compound. The thread compound shall give adequate lubrication and sealing properties to provide satisfactory pressure-tight

TABLE 15.2
Ductile-Iron Flanged Pipe With Threaded Flanges

| $\begin{gathered} \text { Nominal } \\ \text { Pipe } \\ \text { Size } \\ i n . \end{gathered}$ | Thickness Class** | Maximum Working Pressure psi | Nominal Thickness $i n$. | $\begin{aligned} & \text { OD } \\ & \text { in } \end{aligned}$ | Weight-lb |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{aligned} & \text { One } \\ & \text { Flange } \\ & \text { Only } \end{aligned}$ | Pipe Barrel perft |
| 3 | 3 | 250 | 0.31 | 3.96 | 7 | 10.9 |
| 4 | 3 | 250 | 0.32 | 4.80 | 13 | 13.8 |
| 6 | 3 | 250 | 0.34 | 6.90 | 17 | 21.4 |
| 8 | 3 | 250 | 0.36 | 9.05 | 27 | 30.1 |
| 10 | 3 | 250 | 0.38 | 11.10 | 38 | 39.2 |
| 12 | 3 | 250 | 0.40 | 13.20 | 58 | 49.2 |
| 14 | 3 | 250 | 0.42 | 15.30 | 72 | 60.1 |
| 16 | 3 | 250 | 0.43 | 17.40 | 90 | 70.1 |
| 18 | 3 | 250 | 0.44 | 19.50 | 90 | 80.6 |
| 20 | 3 | 250 | 0.45 | 21.60 | 115 | 91.5 |
| 24 | 3 | 250 | 0.47 | 25.80 | 160 | 114.4 |
| 30 | 3 | 250 | 0.51 | 32.00 | 240 | 154.4 |
| 36 | 3 | 250 | 0.58 | 38.30 | 350 | 210.3 |
| 42 | 3 | 250 | 0.65 | 44.50 | 500 | 274.0 |
| 48 | 3 | 250 | 0.72 | 50.80 | 625 | 346.6 |
| 54 | 3 | 250 | 0.81 | 57.10 | 760 | 438.3 |

* ANSI A21.51 (AWWA C151),

Nots: The nominal thicknesses of ductile-iron flanged pipe shall not be less than those shown in this table.
joints. Threaded flanges shall be individually fitted and machine-tightened on the threaded pipe by the manufacturer.


Fig. 15.1 Flange Details See Table 15.3

Note: Flanges are not interchangeable in the field.

15-8.3. Facing. The flanges and pipe ends shall be faced after fabrication. Flanges shall be plain-faced without projection or raised-face and shall be furnished smooth or with shallow serrations. Flanges may be back-faced or spot-faced for compliance with the flange thickness tolerance specified in this standard. Bearing surfaces for bolting shall be parallel to the flange face within 3 deg.

15-8.4. Flange alignment. When pipe is furnished with two flanges, the bolt holes shall be aligned unless otherwise specified. Misalignment of corresponding bolt holes of the two flanges shall not exceed 0.12 in. The machined flange faces shall be perpendic-

TABLE 15.3
Threaded Flange Detail

| Nomina Pipe Size in. | $\begin{aligned} & \text { OD } \\ & \text { in. } \end{aligned}$ | $\begin{gathered} \mathrm{BC} \\ i n . \end{gathered}$ | T in . | Bolt Hole Diameter in. | Bolt <br> Diameter \& Length in. | Number of Bolts |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 7.50 | 6.00 | $0.75 \pm 0.12$ | $\frac{3}{4}$ | $\frac{5}{8} \times 2 \frac{1}{2}$ | 4 |
| 4 | 9.00 | 7.50 | $0.94 \pm 0.12$ | $\frac{3}{4}$ | ${ }_{8}^{5} \times 3$ | 8 |
| 6 | 11.00 | 9.50 | $1.00 \pm 0.12$ | $\frac{7}{8}$ | $\frac{3}{4} \times 3 \frac{1}{3}$ | 8 |
| 8 | 13.50 | 11.75 | $1.12 \pm 0.12$ | ${ }_{7}^{7}$ | 4 $\times 3$ 2 | 8 |
| 10 | 16.00 | 14.25 | $1.19 \pm 0.12$ | 1 | $\frac{7}{8} \times 4$ | 12 |
| 12 | 19.00 | 17.00 | $1.25 \pm 0.12$ | 1 | $\frac{7}{8} \times 4$ | 12 |
| 14 | 21.00 | 18.75 | $1.38 \pm 0.19$ | $1 \frac{1}{8}$ | $1 \times 4 \frac{1}{2}$ | 12 |
| 16 | 23.50 | 21.25 | $1.44 \pm 0.19$ | $1 \frac{2}{8}$ | $1 \times 4 \frac{1}{3}$ | 16 |
| 18 | 25.00 | 22.75 | $1.56 \pm 0.19$ | $1 \frac{1}{4}$ | $1{ }^{1} \times 5$ | 16 |
| 20 | 27.50 | 25.00 | $1.69 \pm 0.19$ | 14 | $1 \frac{1}{8} \times 5$ | 20 |
| 24 | 32.00 | 29.50 | $1.88 \pm 0.19$ | 13 | $1 \frac{1}{4} \times 5 \frac{1}{2}$ | 20 |
| 30 | 38.75 | 36.00 | $2.12 \pm 0.25$ | $1 \frac{3}{8}$ | $1 \frac{1}{4} \times 6 \frac{1}{2}$ | 28 |
| 36 | 46.00 | 42.75 | $2.38 \pm 0.25$ | $1 \frac{5}{8}$ | $13 \times 7$ | 32 |
| 42 | 53.00 | 49.50 | $2.62 \pm 0.25$ | $1 \frac{5}{8}$ | $1 \frac{18}{2} \times 7 \frac{1}{2}$ | 36 |
| 48 | 59.50 | 56.00 | $2.75 \pm 0.25$ | $1 \frac{5}{8}$ | $1{ }^{18} \times 8$ | 44 |
| 54 | 66.25 | 62.75 | $3.00 \pm 0.25$ | 2 | $1 \frac{3}{4} \times 8 \frac{1}{2}$ | 44 |

Facing: Flanges are plain-faced without projection or raised-face and are furnished smooth or with shallow serrations.

Back facing: Flanges may be back-faced or spot-faced for compliance with the flange thickness tolerances.

Flanges: The flanges are adequate for water service of 250 -psi working pressure. The bolt circle and bolt holes of these flanges match those of Class 125 flanges shown in ANSI B16.1 and can be joined with Class 125 B16.1 flanges or Class 150 ANSI B16.5 flanges. The flanges do not match the Class 250 flanges shown in ANSI B16.1 and cannot be joined with Class 250 B16.1 flanged fittings and valves.
ular to the pipe center line and shall be parallel such that any two face-toface dimensions 180 deg apart at the Hange OD shall not differ by more than 0.06 in .

15-8.5. Finished pipe length. Flanged pipe shall be furnished to the lengths specified on the order. When pipe is furnished with two flanges, the face-toface dimensions shall conform to a tolerance of $\pm 0.12 \mathrm{in}$. The overall length of flange and plain-end pipe shall conform to a tolerance of $\pm 0.25 \mathrm{in}$.

15-8.6. Finished pipe weight. The weight of any single pipe shall not be less than the calculated weight by more than 10 per cent.

## Sec. 15-9-Coatings and Linings

15-9.1. Outside coating. Unless otherwise specified, the outside coating shall be a bituminous coating approximately 1 mil thick. The coating shall be applied to the outside of all pipe, unless otherwise specified. The finished coating shall be continuous, smooth, neither brittle when cold nor sticky when exposed to the sun, and shall be strongly adherent to the pipe.

15-9.2. Cement-mortar linings. If desired, cement linings shall be specified in the invitation for bids and on the purchase order. Cement linings shall be in accordance with ANSI

A21.4 (AWWA C104) of latest revision.

15-9.3. Inside coating. Unless otherwise specified, the inside coating for pipe that is not cement-lined shall be a bituminous material as thick as practicable (at least 1 mil ) and conforming to all appropriate requirements for seal coat in ANSI A21.4 (AWWA C104) of latest revision.

15-9.4. Flange coatings. A rust-preventive coating shall be applied to the machined faces of the flanges. The rust-preventive coating shall be soluble in commercial solvent for ready removal before pipe installation. Unless otherwise specified, the back of the flanges and the bolt holes shall be coated with standard outside coating (see Sec. 15-9.1.).

15-9.5. Special coatings and linings. For special conditions, other types of coatings and linings may be available. Such special coatings and linings shall be specified in the invitation for bids and on the purchase order.

## Sec. 15-10—Marking

The length and the weight shall be shown on each pipe. The manufacturer's mark and the letters $D I$, if ductile iron, shall be cast or stamped on the flanges.

## Appendix

This appendix is provided for information only and is not a part of ANSI A21.15 (AWWA C115).

A1-Bolts, Gaskets, and Installation
The bolts and gaskets to be used with the flanged pipe are to be selected by the purchaser with due consideration for the particular pressure service and installation requirements.

Bolts and nuts. Size, length, and number of bolts are shown in Table 15.3. Bolts conform to ANSI B18.2.1 and nuts conform to ANSI B18.2.2. Bolts smaller than $\frac{3}{4}$ in. have either standard square or heavy hex heads
and heavy hex nuts. Bolts $\frac{3}{4}$ in. and larger have either square or hex heads and either hex or heavy hex nuts. Bolts and nuts are threaded in accordance with American National Standard B1.1 for Screw Threads-Coarse Thread Series, Class 2A, external, and Class 2B, internal. Bolts and nuts of low-carbon steel conforming to the chemical and mechanical requirements of ASTM A307, Grade B are suitable for use with the flanges covered by this standard when used with the rubber gaskets covered in this appendix. Higher strength bolts should not be used when a cast-iron flange is used with a flat ring gasket.

Gaskets. Gaskets are rubber, either ring or full face, and are $\frac{1}{8}$ in. thick, unless otherwise specified by the owner or consulting engineer, conforming to the dimensions shown in Table Al of this appendix.

Installation. The design, assembly, and installation of the flanged piping system are the responsibility of the purchaser. The following suggestions are for general guidance:
(a) The underground use of the flanged joint is generally not desirable because of the rigidity of the joint.
(b) Flanged joints should be fitted so that the contact faces bear uniformly on the gasket and then are made up with relatively uniform bolt stress.

TABLE A1
Flange Gasket Details

| Nominal Pipe Size in. | Dimensions-in. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ring |  | Full Face |  |  |  |  |
|  | $\underset{\text { ID }}{\text { Nominal }}$ | OD | Nominal ID | OD | BC | Bolt <br> Hole Diameter | Number of Holes |
| 3 | 3 | 53 | 3 | $7 \frac{1}{2}$ | 6 | 3 | 4 |
| 4 | 4 | $6 \frac{7}{8}$ | 4 | 9 | $7 \frac{1}{2}$ | $\frac{3}{4}$ | 8 |
| 6 | 6 | $8 \frac{3}{4}$ | 6 | 11 | $9 \frac{1}{2}$ | $\frac{7}{8}$ | 8 |
| 8 | 8 | 11 | 8 | 13 $\frac{1}{2}$ | $11 \frac{3}{4}$ | $\frac{7}{8}$ | 8 |
| 10 | 10 | 133 | 10 | 16 | $14 \frac{1}{4}$ | 1 | 12 |
| 12 | 12 | 16娄 | 12 | 19 | 17 | 1 | 12 |
| 14 | 14 | $17 \frac{3}{4}$ | 14 | 21 | $18 \frac{3}{6}$ | $1 \frac{1}{8}$ | 12 |
| 16 | 16 | $20 \frac{1}{4}$ | 16 | 23年 | $21 \frac{1}{4}$ | $1 \frac{1}{8}$ | 16 |
| 18 | 18 | 215 | 18 | 25 | 223 | $1 \frac{1}{4}$ | 16 |
| 20 | 20 | $23 \frac{7}{8}$ | 20 | 271 | 25 | $1 \frac{1}{4}$ | 20 |
| 24 | 24 | $28 \frac{1}{4}$ | 24 | 32 | $29 \frac{1}{2}$ | $1 \frac{3}{8}$ | 20 |
| 30 | 30 | $34 \frac{3}{4}$ | 30 | $38 \frac{3}{4}$ | 36 | $1 \frac{3}{8}$ | 28 |
| 36 | 36 | $41 \frac{1}{4}$ | 36 | 46 | 423 | $1 \frac{5}{8}$ | 32 |
| 42 | 42 | 48 | 42 | 53 | $49 \frac{1}{2}$ | $1 \frac{5}{8}$ | 36 |
| 48 | 48 | $54 \frac{1}{2}$ | 48 | $59 \frac{1}{2}$ | 56 | $1 \frac{5}{8}$ | 44 |
| 54 | 54 | 61 | 54 | 66 ${ }_{4}^{1}$ | 623 | 2 | 44 |

## END OF STANDARD

## THRUST RESTRAINT for

## Underground Piping Systems

Fundamental design principles of fluid mechanics recognize the presence of unbalanced thrust forces in pressure piping systems. These forces, resulting from static and dynamic fluid action on the pipe, require physical restraint for system stabilization.

Locations where unbalanced thrust forces commonly occur are:

| Bends | Wyes |
| :--- | :--- |
| Reducers | Offsets |
| Tees | Dead-ends |
| Valves | Hydrants |

In addition, installations on steep slopes, in swamps, marshes, muck or peat bogs frequently require special restraining techniques for efficient anchorage.

Adequate restraint is generally achieved for ductile or cast iron piping systems by employing one or more of the following methods:

Restrained Joints
Thrust Blocks
Tie Rods

## Combined Systems and Structural Connections

Soil characteristics are of prime importance in the design of thrust restraining systems. Accepted principles of soil mechanics have been applied in the derivation and formulation of the design procedures discussed herein.

Thrust Blocking
Concrete thrust blocks are the most common method of restraint now in use, providing stable soil conditions prevail and space requirements permit placement. Successful blocking is dependent upon factors such as location, availability and placement of concrete, and possible disturbance through future excavation. Concrete blocks are readily utilized in combination with tie rods, structural anchoring, thrust collars and restrained joints.

Thrust blocks are generally cate-


Figure 1-GRAVITY THRUST BLOCK
\# Restrained joints may be used when $T_{x}>F_{p}$


## Figure 2-THRUST FORCES ACTING ON A BEND

gorized into two groups: gravity and bearing blocks.
Gravity Blocks (Figure 1): Important factors considered in design are:
--Horizontal and vertical thrust components
-Allowable bearing value of soil
-Combined weight of pipe, water and soil prism
-Density of block material
-Block dimensions and volume
-A thrust force analysis is conducted similar to Figure 2.
Physical characteristics of the block are determined from the following formulas:
(1) $V_{G}=\frac{P A \operatorname{Sin} \theta}{W_{m}}$
(neglecting $W_{y}$ )
$V_{G}=\frac{T_{y}-W_{y}}{W_{m}}$
(including $W_{y}$ )
where $W_{y}=1 / 2 W_{c} L_{x}$

Earth cover ( $W_{c}$ ) is neglected, when determining ( $W_{c}$ ), if unstable conditions are anticipated. The horizontal thrust component $\left(\mathrm{T}_{x}\right)$ is counteracted by soil pressure on the vertical face of the block ( $\mathrm{F}_{\mathrm{p}}$ ) or by joint restraint.
Allowable soil bearing pressure determines the minimum size of the block base.

## Bearing Blocks (Figure 3):

Significant design criteria for bearing blocks include the following factors:
-Passive soil pressure
-Placement of bearing surface against undisturbed soil
-Block height (h) should be equal to or less than one half the total depth to the block base $\left(\mathrm{H}_{\mathrm{T}}\right)$ except (h) should not be less than (D). Thus $\mathrm{h} \leqq 1 / 2 \mathrm{H}_{\mathrm{T}}$ or $\mathrm{h} \geqq \mathrm{D}$, whichever is greater.
—Block width (b) usually varies

from one to two times the height (h).
-Concrete should not be poured on joints, limiting flexibility.

The required block bearing area, based on passive soil pressure, is expressed as follows:

$$
\begin{equation*}
A_{b}=h b=\frac{T}{P_{p}} \tag{2}
\end{equation*}
$$

For the case where $h=1 / 2 \mathrm{H}_{\mathrm{T}}$,

$$
\begin{equation*}
\mathrm{b}=\frac{2 \mathrm{PA} \operatorname{Sin} \frac{\theta}{2}}{3 / 8 \mathrm{wH}_{\mathrm{T}}{ }^{2} \mathrm{~N}_{\phi}+\mathrm{C}_{\mathrm{s}} \mathrm{H}_{\mathrm{T}} \sqrt{ } \mathrm{~N}_{\phi}} \tag{3}
\end{equation*}
$$

$\left(\mathrm{H}_{\mathrm{T}}\right)$ is estimated, permitting calculation of (b). Dimensions are selected by trial and error.
Pipelines under shallow cover are frequently deepened at the bends, increasing the depth of cover, to achieve more efficient block design. Colinear positioning of ( T ) and ( $\mathrm{F}_{\mathrm{p}}$ ) is required to eliminate overturning moment on the block.

## Tie Rods

Restraint with tie rods is versatile and relatively easy. Locations where tie rods are readily used include:
-Anchorage to structure, thrust collars, "deadman" anchors, and superstructures

- Joint restraint by utilizing clamps, pipe flange
-holes, or lugs cast on fittings.
-Restraint for field-cut, make-up sections
Tie rods on exposed piping systems must counteract total resultant thrust forces. However, on buried systems employing soil friction and lateral soil resistance, the effective thrust force at a joint $\left(T_{j}\right)$ is proportional to its distance from the bend ( $\mathrm{L}_{\mathrm{j}}$ ) and the restrained length ( L ).

$$
\begin{aligned}
& \text { (4) } \mathrm{T}_{\mathrm{j}}=\mathrm{F}_{s}\left(\mathrm{~L}-\mathrm{L}_{\mathrm{j}}\right) \\
& \mathrm{F}_{\mathrm{s}}=\mathrm{A}_{\mathrm{p}} \mathrm{C}+\mathrm{W} \tan \delta \\
& \text { where } \mathrm{C}=\mathrm{f}_{\mathrm{c}} \mathrm{C}_{\mathrm{s}} \text { and } \\
& \delta \delta=\mathrm{f}_{\phi} \phi
\end{aligned}
$$

(see Table 1)

The required number of rods $(\mathrm{N})$ is
(5) $\mathrm{N}=\frac{\mathrm{S}_{\mathrm{f}} \mathrm{T}_{\mathrm{j}}}{\mathrm{l}^{\dagger}}$ where $\mathrm{F}=\mathrm{SA}_{\mathrm{r}}$

$$
\text { and } S_{i}=1.5
$$

Coating or wrapping is recommended for buried tie rods to prevent corrosion attack from corrosive soils.

## Combined Systems and Structural Connections

Several restraining techniques are frequently required for thrust stabilization. Typical combinations include concrete blocks and tie rods, restrained joints and tie rods, or restrained joints, tie rods and thrust anchors.

Low head, in-plant piping is conveniently restrained and supported by attachments to nearby structures. Typical anchoring devices include the use of wall brackets, U-bolts and clamps, base elbows and tees, wall sleeves, structural steel frames, concrete supports and anchor bolts or straps.

Selection becomes a matter of preference depending upon convenience.

## Summary

The proper restraint of unbalanced thrust forces is an important consideration in pressure piping design. Functional methods employed for cast iron piping systems are restrained joints, thrust blocks, tie rods or any combination thereof.

## DEFINITION OF TERMS

$\mathrm{A}=$ Pipe cross-sectional area $\left(\mathrm{in}^{2}\right)\left(36 \pi \mathrm{D}^{2}\right)$ with " $D$ " in (ft)
$A_{b}=$ Minimum bearing area of block base (ft ${ }^{2}$ )
$\mathrm{A}_{\mathrm{r}}=$ Cross-sectional area of rod $\left(\mathrm{in}^{2}\right)$
$\mathrm{b}=$ Width of thrust block (ft)
$\mathrm{B}=$ Gravity block base dimension ( ft )
$\mathrm{C}_{\mathrm{r}}=$ Soil cohesion (psf)
$\mathrm{D}=$ Conduit outside diameter (ft)
$\mathrm{F}=$ Force developed per rod (lbs)
$\mathrm{f}_{\mathrm{c}}=$ Ratio of pipe cohesion/soil cohesion
$\mathrm{F}_{\mathrm{p}}=$ Resisting force developed by $\mathrm{P}_{\mathrm{p}}$ (lbs)
$\mathrm{F}_{\mathrm{s}}=$ Conduit frictional resistance neglecting bell resistance (plf)
$\mathrm{f}_{\phi}=$ Ratio of pipe friction angle/soil friction angle
$\mathrm{h}=$ Height of thrust block (ft)
$\mathrm{H}_{\mathrm{T}}=$ Depth to botton of block (ft)
$\mathrm{L}=$ Restrained pipe length each side ( ft )
$\mathrm{L}_{\mathrm{p}}=$ Nominal pipe length adj. to fitting ( ft )
$\mathrm{L}_{\mathrm{T}}=$ Length of tee ( ft )
$\mathrm{L}_{\mathrm{j}}=$ Distance from bend to joint ( ft )
$\mathrm{L}_{\mathrm{x}}=\mathrm{L}_{\mathrm{p}}+2 \mathrm{~L}_{\mathrm{p}}(\mathrm{ft})$
$\mathrm{N}=$ Number of rods
$\mathrm{N}_{\phi}=\operatorname{Tan}^{2}\left(45^{\circ}+\phi / 2\right)$
$\mathrm{P}=$ Max. sustained pressure (psi) (test pressure or sustained surge pressure)
$\mathrm{P}_{\mathrm{p}}=$ Passive soil pressure (psf)
$S=$ Tensile stress of rod material (psi)
$\mathrm{S}_{\mathrm{f}}=$ Safety factor (usually 1.25 )
$\mathrm{T}=$ Resultant thrust force (lbs)
$\mathrm{T}_{\mathrm{j}}=$ Thrust force at joint (lbs)
$\mathrm{T}_{\mathrm{x}}=\mathrm{x}$ thrust force component (lbs)
$\mathrm{T}_{\mathrm{y}}=\mathrm{y}$ thrust force component (lbs)
$\mathrm{V}=$ Fluid velocity $(\mathrm{f} p \mathrm{~s})$
$V_{i}=$ Volume of gravity block ( $\mathrm{ft}^{3}$ )
$w^{w}=$ Soil unit weight (pcf)
$\mathrm{W}_{\mathrm{e}}=$ Prism earthload (plf)
$\mathrm{W}_{\mathrm{c}}=\mathrm{W}_{\mathrm{c}}+\mathrm{W}_{\mathrm{p}}+\mathrm{W}_{\mathrm{w}}(\mathrm{plf})$
$\mathrm{W}_{k}=$ Weight of gravity block (lbs)
$\mathrm{W}_{\mathrm{m}}=$ Density of block material (pcf)
$W_{y}=$ Effective weight of soil, pipe and water ( lbs )
$\Theta=$ Bend deflection angle (degrees)
$\phi \quad=$ Soil internal friction angle (degrees)
$\Delta=$ Angle between $T$ and $x$-axis (degrees)

Table 1
Soil liriction and Cohesion Factors

| Soil Description | Friction Angle $\phi$ (Degrees) | Cohesion <br> C. (psf) | $\mathbf{f}_{\boldsymbol{\phi}}$ | $\mathrm{f}_{\mathrm{c}}$ |
| :---: | :---: | :---: | :---: | :---: |
| Well graded sand: |  |  |  |  |
| Dry | 44.5 | 0 | 0.76 | 0 |
| Saturated | 39 | 0 | 0.80 | 0 |
| Silt <br> (passing 200 sieve) |  |  |  |  |
| Dry | 40 | 0 | 0.95 | 0 |
| Saturated | 32 | 0 | 0.75 | 0 |
| Cohesive granular soil |  |  |  |  |
| Wet to moist | 13-22 | 385-920 | 0.65 | 0.35 |
| Clay |  |  |  |  |
| Wet to moist | 11.5-16.5 | 460-1.175 | 0.50 | 0.50 |
| At maximum compaction |  |  | 0.50 | 0.80 |

# basic procedures for the installation OF <br> DUCTILE AND CAST IRON PIPE 

## Basic Procedures for the Installation of Ductile and Cast Iron Pipe

For the purposes of this section, the word "pipe" includes ductile and cast iron pipe: where a procedure refers to one of these materials only, it is so specified. It should be noted that experience with ductile iron pipe since the early 1950 's has demonstrated its superior resistance to impact, beam loads and ring crushing loads. Therefore, handling and installation procedures, in general, are much less critical for this pipe material. This fact can result in considerable savings in the installed cost of a pipeline project.

## Introduction

Proper installation procedures will enhance the long and useful life of both ductile and cast iron pipe. The information presented in this paper may be useful as genera! guidelines for the installation of these materias. More specific data is available in The Guides for the Installation of Ductile Iron Pipe and Gray Cast Iron Water Mains which are available from CIPRA.

## Receiving, Handling and Storage

It is important that all pipe be carefully inspected for damage that may have occurred in transit. Unloading may be accomplished using slings, hooks, pipe tongs or skids. Under no circumstances should pipe be dropped on old automobile tires or other cushions and when handled on skidways, it should not be skidded or rolled against pipe already on the ground. Care should be cxercised to avoid injury to the coating or lining; if damage occurs, repairs must be made.

Manufacturers who employ special methods of packaging pipe for shipment will gladly send instructions for unloading.

Proper storage procedures are important and warrant special consideration:
-Suggested maximum allowable stacking heights are available and should be observed; each pipe size should be stacked separately.
-Lubricant for rubber joints should be kept in a sanitary condition as an aid in disinfection of the main.
--Rubber gaskets should be used on a first-in, first-out basis and should be stored in a cool, dark location to avoid deterioration.

## The Trench

Trench location is of prime importance in urban areas where water mains are installed to a line and grade established by the engineer to avod damage to other subsurface utilites. In these areas no excovation should be attempted before obtaining clearance from other utilities.

If a gas service pipe is broken, the gas utility should be notified immediately and an experienced gas service man should supervise repairs.

House sewers must be returned to good condition after installation of the water main. Any installation in the proximity of underground tetephone or power conduits should proceed only after notification of the appropriate utility.

Trees, shrubs, lawns, fences, etc. must be protected during constrection; where removal is necessary, permission must be obtained and replacement made. Pavement, sidewalks and curbs must be replaced according to local standards.

The required earth cover over pipe varies depending on pipe size and geographical location. Generally a minimum cover of 4 to 5 feet is required for large diameter mains; for small diameter mains, cover varies from $21 / 2$ to 4 feet in the southern states to as much as 7 or 8 feet in the northern states because of the depth of frost penetration.

One of the most important requirements of a good trench is the preparation of the trench bottom; it should be true and even in order to insure soil support for the full length of the pipe barrel. In this phase of the excavation, the following should be observed:
-.A trench for cast iron pipe passing over a sewer or previous excavation requires compaction to provide support equal to native soil.
-If a sling is used to lower the pipe, an indentation not exceeding 18 inches in length should be made at the middle of the trench bed to facilitate the removal of the sling.
--Soft subgrade requires the addition of crushed stone; in extreme cases, piling may be necessary for proper support.
--Large bell holes are not required for push-on or mechanical joint pipe; however, a small depression is necessary to permit the pipe barrel to lie flat and to allow space for joint assembly.

The following suggested trench widths are sufficient to permit proper pipe installation with room for joint assembly and backfill tamping around the pipe:

TABLE 1
SUGGESTED TRENCH WIDTH

| Nominal <br> Pipe Size (Inches) | Trench Width (Inches) | Nominal <br> Pipe Size <br> (Inches) | Trench Width (Inches) |
| :---: | :---: | :---: | :---: |
| 4 | 28 | 20 | 44 |
| 6 | 30 | 24 | 48 |
| 8 | 32 | 30 | 54 |
| 10 | 34 | 36 | 60 |
| 12 | 36 | 42 | 66 |
| 14 | 38 | 48 | 72 |
| 16 | 40 | 54 | 78 |
| 18 | 42 |  |  |

The trench should never be wider than the width used as design criteria.

When rock excavation is necessary, certain precautions must be taken. Any rock encountered must be removed so that it will not be closer than 6 inches to the bottom and sides of pipe in sizes up to 24 inches in diameter and no closer than 9 inches for pipe in sizes 30 inches or larger in diameter. Following rock excavation, a bed of approved material should be placed on the bottom of the trench to the above-mentioned distances, leveled and tamped. A straightedge may be used for checking the trench bottom to detect high points of rock that may protrude through the cushion.

City, state, or Federal regulations usually govern requirements for blasting; barricade placement and other warning devices for public safety; shoring; storage of excavated material; and protection of underground and surface structures.

If it is determined that soils are corrosive or expansive (some dense clays expand when saturated and have been known to exert as much as $17,500 \mathrm{lbs}$. of pressure per square foot), special care should be exercised. Economical protection against corrosive soils is available through the use of 8 -mil thick, loose polvethylene encasement as outlined in American National Standards Institute (ANSI) Standard A21.5. Because of its high strength. ductile iron pipe is recommended for expansive soil areas.

## Installing The Pipe

## Laying Conditions

Ductile and cast iron pipe. like any other pipe, are installed with respect to the trench bottom using specific laying or bedding conditions. The following conditions are recommended for cast iron pipe:

LAYING CONDITIONS


Figure 1
Each laying condition has its merits as well as its relationship to the ability of the pipe to carry loads placed upon it, with Laying Condition B being the most common.

For ductile iron pipe, laving condition types $1,2,3,4$ or 5 are recommended. For details see ANSI Standard A21.50 (Section III).

## Pipe Placement

Proper equipment and procedures are necessary for safe and efficient pipe placement. Some of the more important considrations are:
--Bell and plain ends must be cleaned to prevent leaking joints and to assure proper seating of the gaskets.
--Before placement in the trench, pipe should be inspected for damage and the inside should be swabbed to remove loose dirt and foreign objects.
--Bells usually face the direction in which the work is progressing. When the main is being laid downhill, the pipes are frequently laid with the bells facing uphill for case of installation.
-When laying push-on joint pipe, the correct gasket must be used for the type of joint being installed and the gasket must face the proper direction. Sand or grit must be removed from the gasket groove to assure watertightness.

Following are the steps in push-on joint assembly:
Figure 2

(1) Clean the groove and bell socket and insert the gasket, making sure that it faces the proper direction and is correctly seated.
(2) After cleaning any dirt or foreign material from the plain end, apply lubricant in accordance with the pipe manufacturer's recommendations. The lubricant is supplied in sterile cans and every effort should be made to keep it that way.
(3) Be sure that the plain end is beveled; square or sharp edges may damage the gasket and may cause a leak. Push the plain end into the bell of the pipe. Keep the joint straight while pushing. Make deflection after the joint is made.

(4) Small pipe can be pushed home with a long bar. Large pipe require additional power, such as a jack, lever puller or backhoe. The supplier will provide a jack or lever pullers on a rental basis. A timber header should be used between the pipe and jack or backhoe bucket to avoid damage to the pipe.

## Joints and Fittings

Mechanical or push-on joint fittings can be used with push-on joint pipe. The plain end of the pipe usually is provided with 1 or 2 painted gauge lines which show whether it has been properly positioned in the bell socket after assembly. The pipe manufacturer's instructions as to the location of these lines should be followed.

Pit cast pipe was manufactured in 4 classifications (A, B, C and D), each having a different outside diameter than modern ductile or cast iron pipe. Before making extensions, existing pipe in a system should be measured to determine if transition fittings are required.

When laying mechanical joint pipe, the socket and plain ends should be clean. The assembly of the joint is simple and requires the use of an ordinary ratchet wrench. A torque wrench should be used for the first day or two of construction to accustom the workmen to the proper amount of pressure to apply to the wrench.

TABLE 2

## SUGGESTED TORQUE

| Bolt Size | Ft. Lbs. |
| :---: | :---: |
| 5/8 inch | 45-60 |
| $3 / 4$ inch | 75-90 |
| 1 inch | 85-100 |
| $11 / 4$ inch | 105-120 |

Flanged joints are seldom used in underground water mains except for valves and fittings for large meter settings, valve vaults and similar installations. Joint deflection is available in both push-on and mechanical joint pipe. Pipe should be assembled in a straight line both horizontally and vertically before defection is made. For mechanical joint pipe, the bolts should be partially tightened before the length of pipe is deflected.

Maximum allowable deflections are listed in the following table and should not be exceeded. For design purposes, deflection should be limited to $80 \%$ of the values shown in Table 3.

Push-On Type Joint

| Pipe Dia. | Defloc. Anglo | Maximum Defloction Pipe Lensths of |  |  |  | Approximute Radius of Curve Produced by Succession of Joirts. Pipe Lengthe of |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 12' | 16' | 18 | $20^{\prime}$ | 12' | $16^{\prime}$ | 18 | $20^{\circ}$ |
| $2 "$ | $5^{\circ}$ | 12" | 17" | 19* | 21" | $140^{\prime}$ | 185' | 205 | 230 |
| 21/4" | $5^{\circ}$ | 12" | 17" | 19" | 21" | $140^{\circ}$ | 185' | 205' | 230' |
| $3{ }^{\prime \prime}$ | $5^{\circ}$ | 12" | 17" | 19" | 21" | $140^{\prime}$ | 185' | 205' | $230^{\prime}$ |
| $4 "$ | $5{ }^{\circ}$ | .- | 17" | 19" | 21" | --. | 185' | 205 | 230' |
| $6{ }^{\prime \prime}$ | $5^{\circ}$ | -- | 17" | 19" | 21" | --- | 185' | 205' | $230^{\circ}$ |
| $8{ }^{\prime \prime}$ | $5{ }^{\circ}$ | -- | 17" | 19" | $21 "$ | --- | 185' | 205' | $230^{\circ}$ |
| 10" | $5^{\circ}$ | -. | 17" | 19" | 21 " | --- | $185^{\circ}$ | 205 | 230 |
| 12" | $5^{\circ}$ | -. | 17" | 19" | 21" | --- | 185' | 205' | 230' |
| $14^{\prime \prime}$ | $3^{\circ}$ | - | 10" | 11" | 12" | --. | $300^{\prime}$ | 340' | 380' |
| $16^{\prime \prime}$ | $3{ }^{\circ}$ | -- | 10" | 11" | 12" | --- | $300{ }^{\prime}$ | 340' | $380^{\prime}$ |
| $18{ }^{\prime \prime}$ | 30 | - | 10" | $11 "$ | 12" | --- | 300 | 340' | 380' |
| $20^{\prime \prime}$ | $3^{\circ}$ | .- | $10^{\prime \prime}$ | 11 " | 12" | --- | $300^{\prime}$ | 340' | 380' |
| $24^{\prime \prime}$ | $3^{\circ}$ | -- | 10" | 11" | 12" | --- | 300' | 340' | $380^{\circ}$ |
| $30^{\prime \prime}$ | $3^{\circ}$ | -- | 6 " | 11" | 12" | -.. | 450' | 340' | 380' |
| 36 " | $3^{\circ}$ | -- | 6 " | 11" | 12' | -.. | $450^{\circ}$ | 340' | 380' |
| 42" | $2^{\circ}$ | -- | 6" | $71 / 2{ }^{\prime \prime}$ | 8 "' | --- | $450{ }^{\circ}$ | 510' | 570 |
| $48^{\prime \prime}$ | $2^{\circ}$ | -- | $6 "$ | $71 / 2{ }^{\prime \prime}$ | $8{ }^{\prime \prime}$ | --- | $450{ }^{\circ}$ | 510' | 570' |
| $54^{\prime \prime}$ | $1^{\circ}-30$ | -- | 5" | $51 / 2^{\prime \prime}$ | $6{ }^{\prime \prime}$ | $\ldots$ | $510^{\circ}$ | 680' | $760^{\prime}$ |

TABLE 3

Frozen house scrvices are often thawed by heat from high level electrical current. Current may be conducted across ductile or cast iron pipe joints by the use of special gaskets with metal tips or embedded metal conductors; wedges inserted at the joints; or conductive cables and metal strips.

It is important to use an adequate safety factor with regard to electrical current needs.

## Cutting Pipe

Cast iron pipe may be cut with a hydraulic squeeze cutter (for pipe up to 20 inches in diameter) ; a rotary wheel hand cutter; an abrasive wheel cutter; a milling wheel; or a power driven hacksaw. Cast iron pipe should not be cut with an oxyacctylene torch.

Because of the nature of ductile iron, all cutters cannot be used, particularly the hydraulic squecze cutter. Ductile iron pipe may be cut with an abrasive wheel cutter; a rotary wheel hand cutter (with carbide cutters); a guillotine pipe saw; a milling wheel; or an oxyacetylene torch. (If an oxyacetylene torch is used on ductile iron sewer or gas pipe, the presence of combustible gases could cause an explosion.)

Cut ends of ductile and cast iron pipe should be beveled and filed to prevent gasket damage in joint assembly.

## Railroad and Highway Crossings

Regulations relative to the installation of water mains under highways and railroad crossings are specific and complete and often require a casing pipe. Mechanical or push-on joints should be used under railroads because of their ability to withstand vibration.

State, local and area regulations should be checked and the needed permits obtained well in advance of the actual work.

## Valve and Hydrant Installation

To assure that the pipe will not be required to carry their weight, heavy valves and fittings should be supported by treated timbers, crushed stone, concrete pads or specially tamped trench bottoms.

When valves are placed in masonry vaults, special precautions must be taken to protect the pipeline. Cast iron valve boxes, when used, should rest above the valve body so that no weight is transferred to the valve itself.

New valves may be installed in existing mains by the use of cutting-in valves and sleeves or by use of a solid sleeve.

Blow-offs and drains should discharge above ground and should be installed so that there is no possibility of sewage or other contamination entering the main. Air release and/or vacuum vents should be provided at high points in the line and in areas of negative pressure.

Fire hydrants should be placed to provide maximum accessibility and minimum possibility of damage from vehicles or injury to pedestrians. In areas of the country where an undrained hydrant barrel would freeze, a drainage pit 2 feet in diameter and 3 feet deep should be excavated below the hydrant opening and filled with coarse sand to a depth of 6 inches above the hydrant opening but providing sufficient aggregate void space to more than equal the volume of the barrel. The drainage pit should neither be near, nor connected to, a sewer. Hydrants may be anchored by any one of several methods, such as thrust blocks, tie rods, or special restrained fittings (see Thrust Restraint), and special procedures are necessary for each method.

To prevent water hammer, valve and hydrants should be closed very slowly, especially for the last few turns near full closure.

## Thrust Restraint

Thrust forces are created in a pipeline at changes in direction, tees, deadends or where changes in pipe size occur at reducers. Available restraint methods include concrete thrust blocks, restrained joints and tie rods. Forces to be restrained are given in Table 4.

## RESULTANT THRUST AT FITTINGS AT 100 PSI WATER PRESSURF,



Table 4
To determine the size of a concrete thrust block and for further design information, please refer to the special section entitled Thrust Restraint for Underground Piping Systems on page 347.

The following precautions must be observed when constructing thrust blocks: --Blocks must be poured against undisturbed soil.
-The pipe joint and bolts must be accessible.
-Concrete should be cured for at least 5 days and should have a compression strength of $2,000 \mathrm{lbs}$ at 28 days.
-Blocks must be positioned to counteract the direction of the resultant thrust force.

Restrained push-on and mechanical joints are available for all pipe sizes and present no installation problems. They are used for resisting thrust forces where there is a shortage of space or where the soil behind a fitting will not provide adequate support. This restraining method involves placement of these special joints at appropriate fittings and for a precletermined number of pipe lengths on each side. See Section VI for the design of thrust restraint systems utilizing restrained joints.

Tie rods may be used by themselves or in combination with other restraint devices. When tic rods are used with steel bands around the pipe barrel, only 1 rod should be attached to each band and the band should be cocked to prevent slippase along the pipe barrel. A band placed behind a bell may be used for 2 rode. For mechanical joint pipe, tic rods may be threaded through the bolt holes in the flange and secured by nuts. All rods and bands should be made of corrosionresistant material or coated to prevent rust or deterioration.

Restraint may be necessary for more than 1 length of pipe on each side of any change in direction. or at any deadend or tec.

## Backfilling

The purpose of backfilling is to fill the trench and to protect the pipe by providing support along and under it. It is one of the most important phases of water main construction and proper procedures are imperative.

Backfill material should be of good quality and should be free of cinders, frozen material, ashes, refuse, boulders, rocks or organic material. Soil containing stones up to 8 inches in their greatest dimension may be used from $\{$ foot above the top of the pipe to the cround surface.

Local authorities control requirements for backfilling under paved streets and the soil is usually compacted in 6-inch lifts, using air or gasoline-powered compactors. Many cities reçuire that the entire trench be filled with compacted earth or select material, such as sand. gravel or limestone sereenings. Compaction below and to the top of the pipe is intended to provide support for the water main and all tamping above the pipe is to support the now pavement.

Water jetting or trench flooding are sometimes used to obtain the necessary consolidation of the soil.

After backfilling operations have been completed, the work area must be restored to its original condition.

## Testing

If possible. all new pipelines should be hydrostatically tested before backfilling is completed. Sufficient carth should be placed on the pipe between

## FLUSHING AND DISINFECTING

## table 6

CIPRA RECOMMENDED ALLOWABLE LEAKAGE PER 1000-FT. OF PIPELINE*
(GALLONS PER HOUR)

| Avg. | NOMINAL PIPE DIAMETER - INCHES |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pressure PSI PSI | 2 | 3 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 24 | 30 | 36 | 42 | 48 | 54 |
| 450 | 0.32 | 0.48 | 0.64 | 0.95 | 1.27 | 1.59 | 1.91 | 2.23 | 2.55 | 2.87 | 3.18 | 3.82 | 4.78 | 5.73 | 6.69 | 7.64 | 8.60 |
| 400 | 0.30 | 0.45 | 0.60 | 0.90 | 1.20 | 1.50 | 1.80 | 2.10 | 2.40 | 2.70 | 3.00 | 3.60 | 4.50 | 5.41 | 6.31 | 7.21 | 8.11 |
| 350 | 0.28 | 0.42 | 0.56 | 0.84 | 1.12 | 1.40 | 1.69 | 1.97 | 2.25 | 2.53 | 2.81 | 3.37 | 4.21 | 5.06 | 5.90 | 6.74 | 7.58 |
| 300 | 0.26 | 0.39 | 0.52 | 0.78 | 1.04 | 1.30 | 1.56 | 1.82 | 2.08 | 2.34 | 2.60 | 3.12 | 3.90 | 4.68 | 5.46 | 6.24 | 7.02 |
| 275 | 0.25 | 0.37 | 0.50 | 0.75 | 1.00 | 1.24 | 1.49 | 1.74 | 1.99 | 2.24 | 2.49 | 2.99 | 3.73 | 4.48 | 5.23 | 5.98 | 6.72 |
| 250 | 0.24 | 0.36 | 0.47 | 0.71 | 0.95 | 1.19. | 1.42 | 1.66 | 1.90 | 2.14 | 2.37 | 2.85 | 3.56 | 4.27 | 4.99 | 5.70 | 6.41 |
| 225 | 0.23 | 0.34 | 0.45 | 0.68 | 0.90 | 1.13 | 1.35 | 1.58 | 1.80 | 2.03 | 2.25 | 2.70 | 3.38 | 4.05 | 4.73 | 5.41 | 6.03 |
| 200 | 0.21 | 0.32 | 0.43 | 0.64 | 0.85 | 1.06 | 1.28 | 1.48 | 1.70 | 1.91 | 2.12 | 2.55 | 3.19 | 3.82 | 4.46 | 5.09 | 5.73 |
| 175 | 0.20 | 0.30 | 0.40 | 0.59 | 0.80 | 0.99 | 1.19 | 1.39 | 1.59 | 1.79 | 1.98 | 2.38 | 2.98 | 3.58 | 4.17 | 4.77 | 5.36 |
| 150 | 0.19 | 0.28 | 0.37 | 0.55 | 0.74 | 0.92 | 1.10 | 1.29 | 1.47 | 1.66 | 1.84 | 2.21 | 2.76 | 3.31 | 3.86 | 4.41 | 4.97 |
| 125 | 0.17 | 0.25 | 0.34 | 0.50 | 0.67 | 0.84 | 1.01 | 1.18 | 1.34 | 1.51 | 1.68 | 2.01 | 2.52 | 3.02 | 3.53 | 4.03 | 4.53 |
| 100 | 0.15 | 0.23 | 0.30 | 0.45 | 0.60 | 0.75 | 0.90 | 1.05 | 1.20 | 1.35 | 1.50 | 1.80 | 2.25 | 2.70 | 3.15 | 3.60 | 4.05 |

*For Mechanical or push-on joint pipe with $18-\mathrm{ft}$. nominal lengths. To obtain the recommended allowable leakage for pipe with $20-\mathrm{ft}$. nominal lengths, multiply the leakage calculated from the above table by 0.9 .

If the pipeline under test contains sections of various diameters, the allowable leakage will be the sum of the computed leakage for each size.
joints to prevent movement under test pressure. In city streets, heavy traffic demands may require backfilling after a few lengths of pipe have been laid. The pipeline should be filled slowly and care should be excrcised to vent all high points and expel all air. All fittings and hydrants should be properly anchored and all valves completely closed before applying test pressure.

In performing the test, pressure is applied by means of an adequate pump connected to the pipe, bringing the main up to the test pressure, which is recommended as 1.5 times the working pressure at the point of testing. This test pressure should be held for 2 hours. Make-up water should be measured with a meter or by pumping water from a vessel of known volume.

## FLUSHING AND DISINFECTING

All new water systems or extensions to existing systems should be thoroughly flushed and disinfected before being placed in service. Public health authorities require disinfection and bacteriological examination to assure frecdom from contamination. (Refer to AWWA Standard C601 for Disinfecting Water Mains.)

The flushing velocity should be at least 2.5 fps for small mains. For mains larger than 18 inches in diameter, a lower rate may be used. Table 7 lists required openings to obtain the required velocity of 2.5 fps for flushing and is excerpted from AWWA Standard C601.

## REQUIRED OPENINGS-ETC.

| Pipe Size in. | Flow Required to Produce 2.5-fps Velocity gpm | Orifice Size in. | Hydrant Outlet Nozzles |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Number | Size in. |
| 4 | 100 | 15/16 | 1 | $21 / 2$ |
| 6 | 220 | $13 / 8$ | 1 | $21 / 2$ |
| 8 | 390 | $17 / 8$ | 1 | $21 / 2$ |
| 10 | 610 | $25 / 16$ | 1 | $21 / 2$ |
| 12 | 880 | $213 / 16$ | 1 | $21 / 2$ |
| 14 | 1,200 | $31 / 4$ | 2 | $21 / 2$ |
| 16 | 1,565 | 3 5/8 | 2 | $21 / 2$ |
| 18 | 1,980 | $43 / 16$ | 2 | $21 / 2$ |

"With 40 psi residual pressure. a 2 1/2 in. hydrant outlet nozzle will discharge approximately 1.000 gpm and a $41 / 2$ in. hydrant nozzle will discharge approximately 2.500 gpm .

TABLE 7

Disinfection of mains can be accomplished by the addition of chlorine as a liquid, a hypochlorite solution or hypochlorite tablets. Liquid chlorine is injected into the main under pressure with a portable chlorinator to provide at least 50 ppm available chlorine. To insure that the required concentration is maintained, chlorine residuals should be checked. The chlorinated water solution should remain in the pipe for at least 24 hours, at the end of which period the chlorine concentration should be at least 25 ppm . Final flushing may then be accomplished.

The slug method of chlorination, which is used for large diameter water mains of long length, consists of moving a column of highly concentrated chlorine solution (at least 300 ppm ) along the interior of the pipe with at least 3 hours contact with the pipe wall.

The tablet method is generally used for short extensions (no longer than 2,500 feet) of 12 -inch and smaller diameter mains. The required number of tablets are placed in the crown of each pipe length and held in place by an approved mastic. The main is then filled with water at a velocity of less than 1 fps and the water is left in the main for 24 hours before flushing. Table 8 , excerpted from AWWA Standard C601, indicates the number of tablets required for each size of pipe up to 12 inches in diameter.

# NUMBER OF HYPOCHLORITE TABLETS OF 5-G REQUIRED FOR DOSE OF $50 \mathrm{Mg} / 1^{*}$ 

| Length of <br> Section <br> Ft. | Diameter of Pipe <br> in. |  |  |  |  |  |  | $\mathbf{2}$ | $\mathbf{4}$ | $\mathbf{6}$ | $\mathbf{8}$ | $\mathbf{1 0}$ | $\mathbf{1 2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{1 3}$ or less | 1 | 1 | 2 | 2 | 3 |  |  |  |  |  |  |  |
| 18 | 1 | 1 | 2 | 3 | 5 | 6 |  |  |  |  |  |  |  |
| 20 | 1 | 1 | 2 | 3 | 5 | 7 |  |  |  |  |  |  |  |
| 30 | 1 | 2 | 3 | 5 | 7 | 10 |  |  |  |  |  |  |  |
| 40 | 1 | 2 | 4 | 6 | 9 | 14 |  |  |  |  |  |  |  |

[^31]TABLE 8

## Repairing Main Breaks

Many devices and materials are available to repair pipe breaks, including mechanical joint split sleeves, bolted repair clamps, bell repair clamps, solid sleeves, mechanical joint bell split slecves, and repair clamps.

Following the repair of main breaks, proper disinfection procedures are necessary to provide protection from contamination and caution must be exercised to insure that a strong concentration of chlorine does not enter the customer's service lines.

Revision of C600-64

# AMERICAN NATIONAL ISTANDARD <br> INSTALLATION OF GRAY AND DUCTILE CAST-IRON WATER MAINS AND APPURTENANCES 

## NOTICE

This Standard has been especially printed by the American Water Works Association for incorporation into this volume. It is current as of December 1, 1975. It should be noted, however, that all AWWA Standards are updated at least once in every five years. Therefore, before applying this Standard it is suggested that you confirm its currency with the American Water Works Association.

Approved by AWW A Board of Directors May 8, 1977. Approved by American National Standards Institute Jun. 22, 1977.

## Committee Personnel

The AWWA Standards Committee on Installation of Cast-Iron Water Mains, which developed this standard, had the following personnel at the time of approval :

> A. M. Tinkey, Chairman
> W. Harry Smith, Vice-Chairman
> Robert Zimmerman, Secretary
> Consuner Members
H. Kenneth Anderson, Water Bureau, Portland, OR
(AWWA)
E. M. Bonadeo, Detroit Water and Sewage Department, Detroit, MI
(AWWA)
Charles A. Froman Jr., Gary-Hobart Water Corp., Gary, IN (AWWA) Albert Helt, The Water Bureau, Metropolitan District, Hartford, CT
William H. Priester, Department of Water \& Power, Los Angeles, CA
(AWWA)
John E. Readey, Department of Water \& Sewers, Chicago, IL (AWWA)
Mark Sadolf, Utilities Department, Broward County,
Ft. Lauderdale, FL
William R. Thompson,* Metropolitan District Commission, Boston, MA
A. M. Tinkey, St. Louis County Water Co., University City, MO (AWWA)

General Interest Menbers
Gordon C. Anderson,* Insurance Services Office, New York, NY
(ISO)
William A. Barkley, College of Engineering, Las Cruces, NM
Kenneth J. Carl, Insurance Services Office, New York, NY
(ASCE) (ISO)
Martin P. Daly, Malcolm Pirnie, Inc., Paramus, NJ Joseph M. Dennis, Department of Human Resources, Raleigh, NC
Edwin J. Laszewski, City of Milwaukee, Milwaukee, WI
J. Samuel Slicer Jr., Factory Mutual Research Corp., Norwood, MA
(CSSE)
(APWA)
oseph Vellano, Latham, NY
Henry Wilkens Jr., Water Division, Houston, TX
(FMR)
(NUCA)
Robert Zimmerman, Greeley \& Hansen, Chicago, IL
Producer Members
T. C. Jester, American-Darling Valve, Birmingham, AL

Harold Kennedy Jr., U.S. Pipe \& Foundry Co., Birmingham, AL
Edward C. Sears, American Cast Iron Pipe Co., Birmingham, AL (CIPRA) W. Harry Smith, Cast Iron Pipe Research Assn., Oak Brook, IL (CIPRA)

[^32]
## Table of Contents



## Foreword

This forctord is for information only and is not a part of AWW A C-600.

## I. History of Standard

The first AWW'A standard specifications. "Laying Cast Iron Pipe," (7D.1-1938) were adopted in Apr. 1938. They were intended as a guide in making extensions to existing distribution systems, and in preparing specifications for contracts for the construction of new systems or extensions The standard was to be used as a guide for installing bell-and-spigot cast-iron pipe and did not cover the furnishing and delivery of material. any other type of pipe, or any other type of joint. The standard included a model addenclum, which was to be used with project specifications, and was designed to be used as a part of the contract document. The standard was published in the Feb. 1938 edition of Journal AWWA.

The standard was revised in 1949, including a change of title to, "Standard Specifications for Installation of Cast-Iron Water Mains," (7D.1-T1949 and C600-49T). The standard was expanded, adding numerous tables and installation guidelines. The model addendum was also expanded. The revised standard was published in the Dec. 1949 edition of Journal AWWA.

An addlitional section, Sec. 9bJointing of Mechanical-Joint Pipewas added in May 1954. Section 9cJoining of Push-on Joint Pipe-was addecl in 1964.

In 1975 the Standards Council formed the present C-600 Committee to revise $C-600$ to current practices and to add ductile iron as a pipe material.

In orcler to do this, the committee decided to completely change the char-
acter of the standard, removing the model addendum and making the stanclard more in compliance with the style of other AWWA standards.

## II. Information Regarding the Use of This Standard

The AWWA standard, "Installation of Gray and Ductile Cast-Iron Water Mains and Appurtenances," can be used as a reference when making extensions to existing or constructing new clistribution systems, using either ductile or gray cast-iron mains, with either mechanical- or push-on joints. It is not the intent for this standard to be used as a contract clocument but it may be used as a reference in the contract clocuments. It is based upon a consensus of the committee on the mininulum practice consistent with sound, economical service under normal conditions, and its applicability under any circumstances must be reviewed by a responsible engineer. The standard is not intended to preclude the manufacture, marketing, purchase, or use of any product, process, or procedure.

## III. Major Revisions

The standard has been rewritten completely and restructured to conform with the present style of AWWA standards. Ductile-iron pipe has been addecl to the standard, and normal installation practices have been updated completely. The addendum has been deleted.

Allowable leakage for both mechan-ical- and push-on joints has been reduced to one half of the value prescribed in the 1964 standard.

American Water Works Association
ANSI/AWWA C600-77
Revision of C600-64

# Installation of Gray and Ductile Cast-Iron Water Mains and Appurtenances 

## Section 1-General

## Sec. I.1-Scope

This standard covers installation procedures for gray and ductile castiron pipe and appurtenances for water service.
1.1.1 Conditions not covered. Installations that require special attention, techniques, and materials are not covered. Each such installation requires special considerations based on many influencing factors and cannot be covered adequately in a single standard. This type of installation can best be accomplished by competent engineering design in consultation with representatives of the material manufacturing industry. Some of these typical installations are

1. Piping through rigid walls.
2. Subaqueous piping.
3. Piping on supports above or below ground.
4. Piping requiring insulation.
5. Plant- or pump-station piping.

## Sec. 1.2-References

This standard references the following documents. They form a part of this standard to the extent specified herein. In any case of conflict, the requirements of this standard shall prevail.

AWW A C101, Thickness Design of Cast-Iron Pipe.

AWW A C104, Cement-Mortar Lining for Cast-Iron and Ductile-Iron Pipe and Fittings for Water.

AWW A C105, Polyethylene Encasement for Gray and Ductile Cast-Iron Piping for Water and Other Liquids.

AWW A C106, Cast-Iron Pipe Centrifugally Cast in Metal Molds, for Water or Other Liquids.

AWW A C108, Cast-Iron Pipe Centrifugally Cast in Sand-Lined Molds, for Water or Other Liquids.

AWW A C110, Gray-Iron and Duc-tile-Iron Fittings, 3 in. Through 48 in., for Water and Other Liquids.

AWW A C111, Rubber-Gasket Joints for Cast-Iron and Ductile-Iron Pressure Pipe and Fittings.

AWWA C115. Flanged Cast-Iron and Ductile-Iron Pipe With Threaded Flanges.

AWW A C150, Thickness Design of Ductile-Iron Pipe.

AWWA C151, Ductile-Iron Pipe. Centrifugally Cast in Mctal Molds or Sand-Lined Molds, for Water or Other Liquids.

AWW C500, Gate Valves-3-in. Through 48-in.-for Water and Other Liquids.

AWWA C502, Dry-Barrel Fire Hydrants.

AWWA C503. Wet-Barrel Fire Hydrants.

AWW A C504, Rubber Seated Butterfy Valzes.

AWWA C601, Disinfecting Water Mains.

AWWA No. 20104, Handbook of Occupational Safety and Health Standards for Water Utilities.

AASHTO * T-99. Standard Method of T'est for Moisture-Density Relationship for Soils.

## Sec. 1.3--Definitions

Under this standard, the following definitions shall apply:
1.3.1 Gray cast iron. Cast ferrous material in which a major part of the carbon content occurs as free carbon in the form of flakes interspersed through the metal.
1.3.2 Ductile cast iron. Cast ferrous material in which a major part of the carbon content occurs as free carbon in nodules or spheroidal form.
1.3.3 Oriner. The municipality or other organization that will own and operate the completed piping system. The owner may designate agents, such as an engineer, purchaser, or inspector for specific responsibilities with regard to piping construction projects.
1.3.4 Contractor. The party responsible for water main construction.
1.3.5 Mechanical joint. The gasketed and bolted joint as detailed in AWWA C111.
1.3.6 Push-on joint. The single rubber-gasket joint as described in AWWA ClII.

## Section 2-Inspection, Receiving, Handling, and Storage

## Sec. 2.1-Inspection

At the discretion of the owner, all materials furnished by the contractor are subject to inspection and approval at the manufacturer's plant.
2.1.1 Post delivery. All pipe and appurtenances are subject to inspection at the point of delivery by the owner. Material found to be defective

[^33]due to manufacture or damage in shipment shall be rejected or recorded on the bill of lading and removed from the job site. The owner may perform tests as specified in the applicable AWWA standard to ensure conformance with the standard. In case of failure of the pipe or appurtenance to comply with such specifications, responsibility for replacement of the defective materials becomes that of the manufacturer.
2.1.2 Workmanship. All pipe and appurtenances shall be installed and joined in conformance with this standard and tested under pressure for defects and leaks in accordance with Sec. 4 of this standard.

## Sec. 2.2-Handling and Storage

All pipe, fittings, valves, hydrants, and accessories shall be loaded and unloaded by lifting with hoists or skidding in order to avoid shock or danage. Under no circumstances shall such material be dropped. Pipe handied on skidways shall not be rolled or skidded against pipe on the ground.
2.2.1 Padding. Slings, hooks, or pipe tongs shall be padded and used in such a manner as to prevent damage to the exterior surface or internal lining of the pipe.
2.2.2 Storage. Materials, if stored, shall be kept safe from damage. The interior of all pipe, fittings, and other appurtenances shall be kept free from dirt or foreign matter at all times. Valves and hydrants shall be drained and stored in a manner that will protect them from damage by freezing.
2.2.2.1 Pipe shall not be stacked higher than the limits shown in Tables 1 and 2. The bottom tier shall be kept off the ground on timbers, rails, or concrete. Pipe in tiers shall be alternated: bell, plain end; bell, plain end. At least two rows of $4-\mathrm{in} . \times 4$-in. timbers shall be placed between tiers and chocks affixed to each end in order to prevent movement.
2.2.2.2 Gaskets for mechanical- and push-on joints to be stored shall be placed in a cool location out of direct sunlight. Gaskets shall not come in contact with petroleum products. Gaskets shall be used on a first-in, firstout basis.

TABLE 1

| Pipe Size <br> (in.) | Number of Tiers |  |
| :---: | :---: | :---: |
|  | $\begin{array}{r} 18-\mathrm{ft} \\ \text { length } \end{array}$ | $\begin{array}{r} 20-\mathrm{ft} \\ \text { length } \end{array}$ |
| 3 | 18 | 18 |
| 4 | 16 | 16 |
| 6 | 1.3 | 13 |
| 8 | 11 | 11 |
| 10 | 9 | 8 |
| 12 | 8 | 7 |
| 14 | 7 | 7 |
| 16 | 6 | 6 |
| 18 | 6 | 5 |
| 20 | 5 | 4 |
| 24 | 4 | 3 |

TABLE 2

| MaximumStacking <br> Iron Pipe |
| :---: | :---: |
| Pipe Size |
| $($ in. $)$ |$|$| Number of Tiers |
| :---: |
| 3 |
| 4 |
| 6 |
| 8 |

* For 18 - or $20-\mathrm{ft}$ lengths.
2.2.2.3 Mechanical-joint bolts shall be handled and stored in such a manner that will ensure proper use with respect to types and sizes.


## Section 3-Installation

## Sec. 3.1-Alignment and Grade

The water mains shall be laid and maintained to lines and grades established by the plans and specifications with fittings, valves, and hyclrants at the required locations unless otherwise approved by the owner. Valve-operating stems shall be oriented in a manner to allow proper operation. Hy-
3.2.1 Trench preparation. Trench preparation shall proceed in arlvance of pipe installation for only as far as stated in the specifications.
3.2.1.1 Discharge from any trench dewatering pumps shall be conducted to natural drainage channels, storm sewers, or an approved reservoir.
3.2.1.2 Excavated material shall be placed in a manner that will not obstruct the work nor enclanger the workmen, obstruct sidewalks, clriveways, or other structures and shall be done in compliance with federal. state, or local regulations.
3.2.2 Pavement remozal. Removal of pavenent and road surfaces shall be a part of the trench excavation and the amount removed shall depend upon the width of trench required for installation of the pipe and the dimensions of area required for the installation of valves, hyclrants, specials, manholes, or other structures. The dimensions of pavement removed shall not exceed the climensions of the opening required for installation of pipe, valves, hydrants, specials. manholes, and other structures by more than 6 in . in any direction unless otherwise required or approved by the owner. Methods, such as sawing, drilling, or chipping, shall be used to ensure the breakage of paventent along straight lines.
3.2.3 Width. The width of the trench at the top of the pipe shall be that of the single-pass capabilities of normally available excavating equipment and ample to permit the pipe to be laid and joined properly and allow the backfill to be placed as specified. Trench widths as shown in Table 3 may be used as a guide. Trenches shall be of such extra width, when required, to permit the placement of tim-

TABLE 3
Suggested Trench Widths at the Top of the Pipe*

| Nominal Pipe Size <br> in. | Trench Width <br> in. |
| :---: | :---: |
| 4 | 28 |
| 6 | 30 |
| 8 | 32 |
| 10 | 34 |
| 12 | 36 |
| 14 | 38 |
| 16 | 40 |
| 18 | 42 |
| 20 | 44 |
| 24 | 48 |
| 30 | 54 |
| 36 | 60 |
| 42 | 66 |
| 48 | 72 |
| 54 | 78 |

* The trench should never be wider than the width used as design criteria.
ber supports, sheeting, bracing, and appurtenances.
3.2.4 Bell holes. Holes for the bells shall be provided at each joint but shall be no larger than necessary for joint assembly and assurance that the pipe barrel will lie flat on the trench bottom. Other than noted previously, the trench bottom shall be true and even in order to provide support for the full length of the pipe barrel, except that a slight depression may be provided to allow withdrawal of pipe slings or other lifting tackle.
3.2.5 Rock conditions. When excavation of rock is encountered, all rock shall be removed to provide a clearance of at least 6 in. below and on each side of all pipe, valves, and fittings for pipe sizes 24 in . or smaller, and 9 in . for pipe sizes 30 in . and larger. When excavation is completed, a bed of sand, crushed stone, or earth that is free from stones, large clods, or frozen earth, shall be placed on the
bottom of the trench to the previously mentioned depths, leveled, and tamped.
3.2.5.1 These clearances and bedding procedures shall also be observed for pieces of concrete or masonry and other debris or subterranean structures, such as masonry walls, piers, or foundations that may be encountered during excavation.
3.2.5.2 This installation procedure shall be followed when gravel formations containing loose boulders greater than 8 in . in diameter are encountered.
3.2.5.3 In all cases, the specified clearances shall be maintained between the bottom of all pipe and appurtenances and any part, projection, or point of rock, boulder, or stones of sufficient size and placement which, in the opinion of the owner, could cause a fulcrum point.
3.2.6 Previous excavations. Should the trench pass over a sewer or other previous excavation, the trench bottom shall be sufficiently compacted to provide support equal to that of the native soil or conform to other regulatory requirements in a manner that will prevent damage to the existing installation.
3.2.7 Blasting. Blasting for excavation shall be permitted only after securing the approval of the owner who will establish the hours of blasting. The blasting procedure, including protection of persons and property, shall be in strict accordance with federal, state, and local regulations.
3.2.8 Protection of property. Trees, shrubs, fences, and all other property and surface structures shall be protected during construction unless their removal is shown in the plans and specifications or approved by the owner.
3.2.8.1 Any cutting of tree roots or branches shall be done only as approved by the owner.
3.2.8.2 Temporary support, adequate protection, and maintenance of all underground and surface structures, drains. sewers. and other obstructions encountered in the progress of the work shall be furnished by the contractor.
3.2.8.3 All properties that have been disturbed shall be restored as nearly as practical to their original condition.
3.2.9 Unstable subgrade. When the
derrick, ropes, or other suitable tools or equipment. in such a manner as to prevent damage to water-main materials and protective coatings and linings. Uncler no circumstances shall water-main materials be clropped or dumperl into the trench. The trench should be dewatered prior to installation of the pipe.
3.3.1 Examination of material. All pipe fittings, valves, hydrants, and other appurtenances shall be examined carefully for damage and other defects immediately before installation. Defective materials shall be marked and held for inspection by the owner, who may prescribe corrective repairs or reject the materials.
3.3.2 Pipe ends. All lumps, blisters, and excess coating shall be removed from the socket and plain ends of each pipe, and the outside of the plain end and the inside of the bell shall be wiped clean and dry and be free from dirt, sand, grit, or any foreign material before the pipe is laid.
3.3.3 Pipe cleanliness. Foreign material shall be prevented from entering the pipe while it is being placed in the trench. During laying operations, no debris, tools. clothing, or other materials shall be placed in the pipe.
3.3.4 Pipe placement. As each length of pipe is placed in the trench, the joint shall be assembled and the pipe brought to correct line and grade. The pipe shall be secured in place with approved backfill material.
3.3.5 Pipe plugs. At times when pipe laying is not in progress, the open ends of pipe shall be closed by a watertight plug or other means approved by the owner. When practical, the plug shall remain in place until the trench is pumped completely dry. Care must be taken to prevent pipe flotation should the trench fill with water.


Pipe bedded in sand or gravel, tamped backfill.
Fig. 1. Laying Conditions for Gray Cast-Iron Pipe
3.3.6 Gray-iron laying conditions. The specified laying conditions for gray cast-iron pipe shall be completed in accordance with AWWA C101 and as illustrated in Fig. 1.
3.3.7 Ductile-iron laying conditions. The specified laying conditions for ductile-iron pipe shall be completed in accordance with AWWA C150 and as illustrated in Fig. 2 (page 8).

## Sec. 3.4-Joint Assembly

3.4.1 Push-on joints. Push-on joints shall be assembled as described and illustrated in Fig. 3 (page 9).
3.4.2 Mechanical joints. Mechanical joints shall be assembled as follows:

1. Wipe clean the socket and plain end. The plain end, socket, and gasket should be washed with a soap solution to improve gasket seating.


Pipe bedded in 4 -in. minimum loose soil. $\ddagger$ Backfill lightly consolidated to top of pipe.


Type 4
Pipe bedded in sand, gravel, or crushed stone to depth of $\bar{s}$ pipe diameter, 4 -in. minimuth. Backfill compacted to top of pipe. (Approximately 80 per cent Standard Proctor, AASHTO T-99.)


Type 5
Pipe bedded in compacted gramular material to conterline of pipe. Compacted gramular or select $\ddagger$ matcrial to top of pipe. (Approximately 90 per cent Standard Proctor, AASHTO T-99.)

* For 30 -in. and larger pipe, consideration should be given to the use of laying conditions other than fype 1.
* "For 30 -in. and larger pipe, consideration should
$\ddagger$ "Loose soil" or "select material" is defined as native soil excavated from the trench, free of rocks, foreign materials, and frozen earth.

Fig. 2. Laying Conditions for Ductile Cast-Iron Pipe


1. Thoroughly clean the groove and bell socket and insert the gasket, making sure that it faces the proper direction and that it is correctly seated.

2. Be sure that the plain end is beveled; square or sharp edges may danage or dislodge the gasket and cause a leak. When pipe is cut in the field, bevel the plain end with a heavy file or grinder to remove all sharp edges. Push the plain end into the bell of the pipc. Keep the joint straight while pushing. Make deflection after the joint is assembled.

3. After cleaning dirt or foreign material from the plain end, apply lubricant in accordance with the pipe manufacturer's recommendations. The lubricant is supplied in sterile cans and every effort should be made to keep it sterile.

4. Small pipe can be pushed into the bell socket with a long bar. Large pipe require additional power, such as a jack, lever puller, or backhoe. The supplier may provide a jack or lever pullers on a rental basis. A timber header should be used between the pipe and jack or backhoe bucket to avoid damage to the pipe.

Fig. 3. Push-on Joint Assembly
2. Place the gland on the plain end with the lip extension toward the plain end, followed by the gasket with the narrow edge of the gasket toward the plain end of the pipe.
3. Insert the pipe into the socket
and press the gasket firmly and evenly into the gasket recess. Keep the joint straight during assembly. Make deflection after joint assembly but before tightening the bolts.
4. Push the gland toward the bell
and center it around the pipe with the gland lip against the gasket.
5. Align bolt holes and insert bolts, with bolt heads behind the bell flange, and tighten opposite nuts to keep the gland square with the socket.
6. Tighten the nuts in accordance with Table 4.
3.4.3 Pipe deflection. When it is necessary to deflect pipe from a straight line in either the vertical or horizontal plane, or where long radius curves are permitted, the amount of deflection shall not exceed that shown in Tables 5 or 6 .

TABLE 4

| Mechanical Joint-Boll Torques |  |
| :---: | :---: |
| Bolt Diameter <br> in. | Torque <br> $f l-l b$ |
| $\frac{5}{8}$ | $45-60$ |
| $1^{\frac{3}{4}}$ | $75-90$ |
| $1_{4}^{1}$ | $85-100$ |

3.4.4 Pipe cutting. Cutting pipe for the insertion of valves, fittings, or closure pieces shall be done in a neat, workmanlike manner without creating damage to the pipe or cement-mortar lining.
3.4.4.1 Gray cast-iron pipe may be cut using a hydraulic squeeze cutter, abrasive pipe saw, rotary wheel cutter, guillotine pipe saw, or milling wheel saw.
3.4.4.2 Ductile cast iron may be cut using an abrasive pipe saw, rotary wheel cutter, guillotine pipe saw, milling wheel saw, or oxyacetylene torch.
3.4.4.3 Cut ends and rough edges shall be ground smooth, and for pushon joint connections, the cut end shall be beveled.
3.4.5 Polycthylene encasement. When polyethylene encasement is specified for gray and ductile cast-iron pipe, it shall be installed in accordance with Sec. 5-4 of AWWA C105.

TABLE 5
Maximum Deflection Full Length Pipe-Push-on Type Joint

| Pipe Diameter in. | $\begin{gathered} \text { Deflection } \\ \text { Angle } \\ \text { deg } \end{gathered}$ | Maximum Deflection-in. |  | Approx. Radius of Curve Produced by Succession of Joints-ft |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | (18-ft length) | (20-ft length) | (18-ft length) | (20-ft lengtli) |
| 3 | 5 | 19 | 21 | 205 | 230 |
| 4 | 5 | 19 | 21 | 205 | 230 |
| 6 | 5 | 19 | 21 | 205 | 230 |
| 8 | 5 | 19 | 21 | 205 | 230 |
| 10 | 5 | 19 | 21 | 205 | 230 |
| 12 | 5 | 19 | 21 | 205 | 230 |
| 14 | 3 | 11 | 12 | 340 | 380 |
| 16 | 3 | 11 | 12 | 340 | 380 |
| 18 | 3 | 11 | 12 | 340 | 380 |
| 20 | 3 | 11 | 12 | 340 | 380 |
| 24 | 3 | 11 | 12 | 340 | 380 |
| 30 | 3 | 11 | 12 | 340 | 380 |
| 36 | 3 | 11 | 12 | 340 | 380 |
| 42 | 2 | $7 \frac{1}{2}$ | 8 | 510 | 570 |
| 48 | 2 | $7 \frac{1}{2}$ | 8 | 510 | 570 |
| 54 | 1 $\frac{1}{3}$ | $5 \frac{1}{2}$ | 6 | 680 | 760 |

TABLE 6
Maximum Deflection Full Length Pipe－Mechanical Joint Pipe

| Size of Pipe in． | Deflection Angle deg－min | Maximum Deflection－in． |  | Approx．Radius of Curve Produced by Succession of Joints－ft |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | （18－ft length） | （20－ft length） | （18－ft length） | （20－ft length） |
| 3 | 8－18 | 31 | 35 | 125 | 140 |
| 4 | 8－18 | 31 | 35 | 125 | 140 |
| 6 | 7－7 | 27 | 30 | 145 | 160 |
| 8 | 5－21 | 20 | 22 | 195 | 220 |
| 10 | 5－21 | 20 | 22 | 195 | 220 |
| 12 | 5－21 | 20 | 22 | 195 | 220 |
| 14 | 3－35 | 131 ${ }^{\frac{1}{2}}$ | 15 | 285 | 320 |
| 16 | 3－35 | 13⿺⿻丅⿵冂⿰⿱丶丶⿱丶丶⿸厂⿱二⿺卜丿 | 15 | 285 | 320 |
| 18 | 3－0 | 11 | 12 | 340 | 380 |
| 20 | 3－0 | 11 | 12 | 340 | 380 |
| 24 | 2－23 | 9 | 10 | 450 | 500 |
| 30 | 2－23 | 9 | 10 | 450 | 500 |
| 36 | 2－5 | 8 | 9 | 500 | 550 |
| 42 | 2－0 | 71 | 8 | 510 | 570 |
| 48 | 2－0 | 7 $\frac{1}{2}$ | 8 | 510 | 570 |

Sec．3．5－Backfilling
Backfill shall be accomplished in ac－ cordance with the specified laying con－ dition as described in Sec．3．3．

3．5．1 Backfill material．All backfill material shall be free from cinders， ashes，refuse，vegetable or organic ma－ terial，boulders，rocks or stones，frozen soil，or other material that，in the opinion of the owner，is unsuitable．

3．5．1．1 From 1 ft above the top of the pipe to the subgrade of the pave－ ment，material containing stones up to 8 in ．in their greatest dimension may be used，unless otherwise specified．
3．5．1．2 When the type of backfill material is not indicated on the draw－ ings or is not specified，the excavated material may be used，provided that such material consists of loam，clay， sand，gravel，or other materials that， in the opinion of the owner，are suit－ able for backfilling．
3．5．1．3 If excavated material is in－ dicated on the drawings or specified
for backfill，and there is a deficiency due to a rejection of part thereof，the required amount of sand，gravel，or other approved material shall be pro－ vided．

3．5．1．4 All sand used for backfill shall be clean，graded from fine to coarse，not lumpy or frozen，and free from slag，cinders，ashes，rubbish，or other material that，in the opinion of the owner，is objectionable or delete－ rious．It should not contain a total of more than 10 per cent by weight of loan and clay，and all material must be capable of being passed through a $\frac{3}{4}$－in．sieve．Not more than 5 per cent shall remain on a No． 4 sieve．
3．5．1．5 Gravel used for backfill shall consist of clean gravel having durable particles graded from fine to coarse in a reasonably uniform combination with no boulders or stones larger than 2 in ． in size．It shall be free from slag， cinders，ashes，refuse，or other delete－ rious or objectionable materials．It shall not contain excessive amounts of
loan and clay and shall not be lumpy or frozen. No more than 15 per cent shall pass a No. 200 sieve.
3.5.1.6 Screenings used for backfill shall consist of the products obtained from crushing sound limestone or dolomite ledge rock and shall be free from shale, dust, excessive amounts of clay, and other undesirable materials. All materials shall pass a $\frac{1}{2}$-in. sieve, and no more than 25 per cent shall pass a No. 100 sieve.
3.5.2 Compaction. When special backfill compaction procedures are required. they shall be accomplished in accordance with project specifications or applicable federal, state, and local regulations.
3.5.3 Partial backfilling during testing. When specified by the owner, pressure and leakage testing may be accomplished before completion of backfilling and with pipe joints accessible for examination. In such cases, sufficient backfill material shall be placed over the pipe barrel between the joints to prevent movement.

## Sec. 3.6-Valve-and-Fitting Installation

3.6.1 Examination of material. Prior to installation, valves shall be inspected for direction of opening, freedom of operation, tightness of pressure-containing bolting, cleanliness of valve ports and especially seating surfaces, handling damage, and cracks. Defective valves shall be corrected or held for inspection by the owner.
3.6.2 Placoment. Valves, fittings, plugs, and caps shall be set and joined to the pipe in the manner specified in Sec. 3.3 for cleaning, laying, and joining pipe, except that $12-\mathrm{in}$. and larger valves should be provided with special support, such as treated timbers,
crushed stone, concrete pads, or sufficiently tamped trench bottom so that the pipe will not be required to support the weight of the valve.
3.6.3 Valze location. Valves in water mains shall, where practical, be located on the street property lines extended in umpaved areas unless shown otherwise on the plans.
3.6.3.1 Mains shall be drained through drainage branches or blowoffs. Drainage branches, blowoffs, air vents, and appurtenances shall be provided with valves and shall be located and installed as shown on the plans. Drainage branches or blowoffs shall not be directly connected to any storm or sanitary sewer, submerged in any stream, or be installed in any other manner that will permit back siphonage into the distribution system.
3.6.4 Valz'e protection. A valve box or a vault shall be provided for every valve.
3.6.4.1 A valve box shall be provided for every valve that has no gearing or operating mechanism or in which the gearing or operating mechanism is fully protected with a gear case. The valve box shall not transmit shock or stress to the valve and shall be centered over the operating nut of the valve, with the box cover flush with the surface of the finished area or such other level as may be clirected by the owner.
3.6.4.2 A valve vault designed to prevent settling on the pipe shall be provided for every valve that has exposed gearing or operating mechanisms. The operating nut shall be readily accessible for operation through the opening in the valve vault which shall be set flush with the surface of the finished pavement or such other level as may be specified. Vaults shall be constructed to permit minor valve
repairs and afford protection to the valve and pipe from impact where they pass through the vault walls.
3.6.4.3 In no case shall valves be used to bring misaligned pipe into alignment during installation. Pipe shall be supported in such a manner as to prevent stress on the valve.
3.6.5 Plugs and caps. All dead ends on new mains shall be closed with plugs or caps that are suitably restrained to prevent blowing off under test pressure. If a blowoff valve precedes the plug or cap, it too shall be restrained against blowing off. All dead ends shall be equipped with suitable blowoff facilities.

## Sec. 3.7-Hydrant Installation

3.7.1 Examination of material. Prior to installation, inspect all hydrants for direction of opening, nozzle threading, operating-nut and cap-nut dimensions, tightness of pressure-containing bolting, cleanliness of inlet elbow, handling damage, and cracks. Defective hydrants shall be corrected or held for inspection by the owner.
3.7.2 Placement. All hydrants shall stand plumb and shall have their nozzles parallel with, or at right angles to, the curb, with the pumper nozzle facing the curb, except that hydrants having two-hose nozzles 90 deg apart shall be set with each nozzle facing the curb at an angle of 45 deg.
3.7.2.1 Hydrants shall be set to the established grade, with the centerline of the lowest nozzle at least 12 in. above the ground, or as directed by the owner.
3.7.2.2 Each hydrant shall be connected to the main with a 6 -in. branch controlled by an independent $6-\mathrm{in}$. valve, unless otherwise specified by the owner.
3.7.2.3 When a dry-barrel hydrant is set in soil that is pervious, drainage shall be provided at the base of the hydrant by placing coarse gravel or crushed stone mixed with coarse sand, from the bottom of the trench to at least 6 in . above the waste opening in the liydrant and to a distance of 1 ft around the elbow. Where ground water rises above the drain port or when the hydrant is located within 8 ft of a sewer, the drain port shall be plugged and water pumped from the hydrant when freezing may occur.
3.7.2.4 When a dry-barrel hydrant with an open drain is set in clay or other impervious soil, a drainage pit $2 \mathrm{ft} \times 2 \mathrm{ft} \times 2 \mathrm{ft}$ shall be excavated below each hydrant and filled with coarse gravel or crushed stone mixed with coarse sand, under and around the elbow of the hydrant and to a level of 6 in . above the drain port.
3.7.3 Location. Hydrants shall be located as shown on the plans or as directed by the owner.
3.7.4 Protection. In the case of hydrants that are intended to fail at the ground-line joint upon vehicle impact (traffic hyclrants), specific care must be taken to provide adequate soil resistance to avoid transmitting shock moment to the lower barrel and inlet connection. In loose or poor loadbearing soil, this may be accomplished by pouring a concrete collar approximately 6 in , thick to a diameter of 2 ft at or near the ground line around the hydrant barrel.

## Sec. 3.8-Thrust Restraint

3.8.1 Hydrants. The bowl of each hydrant shall be well braced against a sufficient area of unexcavated earth at the end of the trench with stone slabs or concrete backing, or it shall be tied
to the pipe with suitable metal tie rods, clamps. or restrained joints as shown or directed by the owner.
3.8.1.1 Tie rods, clamps, or other components of dissimilar metal shall be protected against corrosion by hand application of a bituminous coating or by encasement of the entire assembly with 8 -mil thick, loose polyethylene film in accordance with AWWA C105.
3.8.1.2 Thrust-restraint design pressure should be equal to the test pressure.
3.8.2 Fittings. All plugs, caps, tees, and bends, unless otherwise specified, shall be provided with reaction backing, or suitably restrained by attaching metal rods, clamps, or restrained joints as shown or specified by the owner.
3.8.3 Restraint materials. Vertical and horizontal reaction backing shall be made of concrete having a compressive strength of not less than 2000 psi after 28 days.
3.8.3.1 Backing shall be placed between solid ground and the fitting to be anchored; the area of bearing on the pipe and on the ground in each instance shall be that shown or directed by the owner. The backing shall. unless otherwise shown or directed, be so located as to contain the resultant thrust force and so that the pipe and fitting joints will be accessible for repair.
3.8.3.2 Restrained push-on joints, mechanical joints utilizing set-screw retainer glands or metal harness of tie rods, or clamps may be used instead of concrete backing if so indicated in the plans and specifications. Tie rods, clamps, or other components of dissimilar metal shall be protected against corrosion by hand application of a bittunninous coating or by encasement of the entire assembly with 8 -mil thick, loose polyethylene film in accordance with AWWA C105.

## Section 4-Hydrostatic Testing

## Sec. 4.1-Pressure Test

After the pipe has been laid, all newly laid pipe or any valved section thereof shall be subjected to a hydrostatic pressure of at least $1.5 \times$ the working pressure at the point of testing.
4.1.1 Test pressure restrictions. Test pressures shall

1. Not be less than $1.25 \times$ the working pressure at the highest point along the test section.
2. Not exceed pipe or thrust restraint design pressures.
3. Be of at least 2 -hr duration.
4. Not vary by more than $\pm 5 \mathrm{psi}$.
5. Not exceed twice the rated pressure of the valves or hydrants when
the pressure boundary of the test section includes closed gate valves or hydrants.
6. Not exceed the rated pressure of the valves if resilient-seated butterfly valves are used.
4.1.2 Pressurization. Each valved section of pipe shall be filled with water slowly and the specified test pressure, based on the elevation of the lowest point of the line or section under test and corrected to the elevation of the test gage, shall be applied by means of a pump connected to the pipe in a manner satisfactory to the owner.
4.1.3 Air removal. Before applying the specified test pressure, air shall be expelled completely from the pipe, valves, and hydrants. If permanent air vents are not located at all high points, the contractor shall install corporation cocks at such points so that the air can be expelled as the line is filled with water. After all the air has been expelled, the corporation cocks shall be closed and the test pressure applied. At the conclusion of the pressure test, the corporation cocks shall be removed and plugged, or left in place at the discretion of the owner.
4.1.4 Examination. All exposed pipe, fittings, valves, hydrants, and joints shall be examined carefully during the test. Any damage or defective pipe, fittings, valves, or hydrants that are discovered following the pressure test shall be repaired or replaced with sound material and the test shall be repeated until it is satisfactory to the owner.

## Sec. 4.2-Leakage Test

A leakage test shall be conducted concurrently with the pressure test.
4.2.1 Leakage defined. Leakage shall be defined as the quantity of water that must be supplied into the newly laid pipe, or any valved section thereof, to maintain pressure within 5 psi of the specified test pressure after the air in the pipeline has been expelled and the pipe has been filled with water.
4.2.2 Allowable leakage. No pipe installation will be accepted if the leakage is greater than that determined by the following formula:

$$
L=\frac{N D \sqrt{P}}{7400}
$$

in which $I$ is the allowable leakage, in gallons per hour; $N$ is the number of joints in the length of pipeline tested; $D$ is the nominal diameter of the pipe, in inches; and $P$ is the average test pressure during the leakage test, in pounds per square inch gage.
4.2.2.1 Allowable leakage at various pressures is shown in Table 7 (page 16).
4.2.2.2 When testing against closed metal-seated valves, an additional leakage per closed valve of $0.0078 \mathrm{gal} /$ $\mathrm{hr} / \mathrm{in}$. of nominal valve size shall be allowed.
4.2.2.3 When hydrants are in the test section, the test shall be made against the closed hydrant.
4.2.3 Acceptance of installation. Acceptance shall be determined on the basis of allowable leakage. If any test of pipe laid discloses leakage greater than that specified in Sec. 4.2.2, the contractor shall, at his own expense, locate and repair the defective material until the leakage is within the specified allowance.
4.2.3.1 All visible leaks are to be repaired regardless of the amount of leakage.

## Now

TABLE 7
Allowable Leakage per 1000 ft of Pipeline*--gph

| Avg. Test Pressure psi | Nominal Pipe Diameter-in. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 24 | 30 | 36 | 42 | 48 | 54 |
| 450 | 0.32 | 0.48 | 0.64 | 0.95 | 1.27 | 1.59 | 1.91 | 2.23 | 2.55 | 2.87 | 3.18 | 3.82 | 4.78 | 5.73 | 6.69 | 7.64 | 8.60 |
| 400 | 0.30 | 0.45 | 0.60 | 0.90 | 1.20 | 1.50 | 1.80 | 2.10 | 2.40 | 2.70 | 3.00 | 3.60 | 4.50 | 5.41 | 6.31 | 7.21 | 8.11 |
| 350 | 0.28 | 0.42 | 0.56 | 0.84 | 1.12 | 1.40 | 1.69 | 1.97 | 2.25 | 2.53 | 2.81 | 3.37 | 4.21 | 5.06 | 5.90 | 6.74 | 7.58 |
| 300 | 0.26 | 0.39 | 0.52 | 0.78 | 1.04 | 1.30 | 1.56 | 1.82 | 2.08 | 2.34 | 2.60 | 3.12 | 3.90 | 4.68 | 5.46 | 6.24 | 7.02 |
| 275 | 0.25 | 0.37 | 0.50 | 0.75 | 1.00 | 1.24 | 1.49 | 1.74 | 1.99 | 2.24 | 2.49 | 2.99 | 3.73 | 4.48 | 5.23 | 5.98 | 6.72 |
| 250 | 0.24 | 0.36 | 0.47 | 0.71 | 0.95 | 1.19 | 1.42 | 1.66 | 1.90 | 2.14 | 2.37 | 2.85 | 3.56 | 4.27 | 4.99 | 5.70 | 6.41 |
| 225 | 0.23 | 0.34 | 0.45 | 0.68 | 0.90 | 1.13 | 1.35 | 1.58 | 1.80 | 2.03 | 2.25 | 2.70 | 3.38 | 4.05 | 4.73 | 5.41 | 6.03 |
| 200 | 0.21 | 0.32 | 0.43 | 0.64 | 0.85 | 1.06 | 1.28 | 1.48 | 1.70 | 1.91 | 2.12 | 2.55 | 3.19 | 3.82 | 4.46 | 5.09 | 5.73 |
| 175 | 0.20 | 0.30 | 0.40 | 0.59 | 0.80 | 0.99 | 1.19 | 1.39 | 1.59 | 1.79 | 1.98 | 2.38 | 2.98 | 3.58 | 4.17 | 4.77 | 5.36 |
| 150 | 0.19 | 0.28 | 0.37 | 0.55 | 0.74 | 0.92 | 1.10 | 1.29 | 1.47 | 1.66 | 1.84 | 2.21 | 2.76 | 3.31 | 3.86 | 4.41 | 4.97 |
| 125 | 0.17 | 0.25 | 0.34 | 0.50 | 0.67 | 0.84 | 1.01 | 1.18 | 1.34 | 1.51 | 1.68 | 2.01 | 2.52 | 3.02 | 3.53 | 4.03 | 4.53 |
| 100 | 0.15 | 0.23 | 0.30 | 0.45 | 0.60 | 0.75 | 0.90 | 1.05 | 1.20 | 1.35 | 1.50 | 1.80 | 2.25 | 2.70 | 3.15 | 3.60 | 4.05 |

## Section 5-Disinfection

Upon completion of a newly installed main or when repairs to an existing pipe are made, the main shall
be disinfected according to instructions listed in AWWA C601 of latest revision.

## Section 6-Highway and Railroad Crossings

Sec. 6.1-Casing Pipe
When casing pipe is specified for highways or railroad crossings, the project shall be completed in accordance with applicable federal, state, and local regulations. In the case of railroad crossings, the project should comply further with regulations established by the railroad company. General practice permits boring for casing diameters through 36 in. with maximum length of about 175 ft ; jacking for diameters 30 in . through 60 in . with lengths of about 200 ft ; and tunneling for pipes 48 in . and larger for longer lengths.

Sec. 6.2-Carrier Pipe
The casing pipe should be $6-8 \mathrm{in}$. larger than the outside diameter of the gray or ductile cast-iron pipe bells. Carrier pipe may be pushed or pulled through the completed casing pipe. Chocks or skids should be placed on the carrier pipe to ensure approximate centering within the casing pipe and to prevent damage during installation. Care must be exercised in order to avoicl metal-to metal contact. In order to avoid the transfer of earth and live loads to the carrier pipe, the space between the carrier and casing pipes should not be filled completely.

## Section 7-Service Taps

## Sec. 7.1—Tapping

Corporation stops may be installed either before or after pipe installation. Generally, they are located at ten or two o'clock on the circumference of the pipe and may be screwed directly into the tapped and threaded main without any acklitional appurtenances. When more than one tap in a gray cast-iron pipe is necessary to deliver the re-
quired flow, they should be staggered around the circumference at least 12 in. apart (not in a straight line). Duc-tile-iron pipe in all classes may be directly tapped with standard corporation stops; however, torque requirement for the installation may be effectively reduced by the application of two layers of $3-\mathrm{mil}$ TFE tape to the male threads of the corporation stop.

$$
2
$$

## SECTION VIII

## ENVIRONMENTAL FACTORS RELATED TO THE DESIGN AND USE OF GRAY AND DUCTILE IRON PIPE

## Flow of Liquids in Pipelines

Factors Affecting Flow Capacity in Water Mains
In some areas of the United States water mains have lost an appreciable part of their original carrying capacity after years of service, and for this reason consideration of the causes of this trouble and the remedies are of interest. Loss of carrying capacity results in increased costs either because of extra pumping expense or additional capital outlay if larger mains are required. There are many reasons for a reduction in the flow capacity of a pipeline. Increased head loss in a pipeline may be due to one or a combination of the following:

1. Sedimentation; mud, silt or sand.
2. Obstruction of the pipe due to debris: sticks, boards, stones, tools and other objects that may have gotten into the pipe during construction.
3. Partly closed valves.
4. Accumulation of air at summits.
5. Mineral deposits.
6. Slime growths on walls of pipe.
7. Tuberculation.

All of these difficulties can be remedied by proper design, operation and maintenance.

Sedimentation. Transmission mains that carry raw water from rivers or lakes are subject to heavy deposits of silt and sand, especially when the rivers are at flood stage, or the lakes are turbulent. Many of the older distribution systems were supplied with raw water for years before the construction of treatment plants. During low flow conditions, these waters deposit a layer of sediment along the bottom of the pipe. Sand may enter the raw water intake lines at nost any time, and it may enter the distribution lines whenever the filters become defective or when the beds are inadequately maintained. If sedimentation has occurred, the remedy is to initiate and follow through with a main flushing program. If this type program is not effective, a pipe cleaning program may be necessary. It is important that the cause of the problem be
determined and that remedial measures be unclertaken to correct the situation; i.e,, redesign of inlet works if required or initiate a preventive operating and maintenance program.

Obstructions in Pipe. Modern pipe laying specifications require that each length of pipe be cleaned out before installation in the line. They also require that the end of the pipeline be closed with a plug after each day's work. In spite of these provisions, it is a fact that at times undesirable objects are left or get placed in pipelines. Careful visual inspection of the pipe interior during installation and proper flushing technique upon completion of the pipcline should eliminate this difficulty.

Partly Closed Valves. In the ordinary operation of a water works system, it becomes necessary from time to time to close valves to carry on maintenance and extension work and in some systems, valves are throttled for pressure control purposes. Care should be taken to see that closed valves are opened after the construction work is completed and the location of throttle valves properly recorded so that in the event that future operation requires a full opening, these valves may be opened. The opening and closing of valves is an important part of distribution system maintenance. Records should be kept on each valve to ascertain its performance and to be certain that no valves are accidentally left closed or partly closed.
Accumulation of Air at Summits. In supply lines there is occasionally an opportunity for air to accumulate at a summit so that the water can occupy only a portion of the total area of the pipe. The remedy for this difficulty is 10 provide air release valves at summits of the pipeline. Air release valves are also necessary for filling the lines when they are first placed in service or after being shut down to make repairs. When testing aportion of a new installation. it is important to have air release valves in all summits of that section.

Mineral Deposits. In rare cases, waters are highly mineralized. These minerals are picked up from the rock formations through which the water moves in its underground passage. Some waters are super-saturated and the minerals only loosely held in solution. A small amount of air mixed with water in the pumping operation or a quick change in water temperature, may cause the mineral to be deposited. Natural lime waters usually form a hard deposit on the entire wall of the pipe and decrease the flow by reducing the diameter of the pipe. Mincral deposits in mains are difficult to remove, usually recpuiring special cleaning tools. Lime and alum deposits that result from softening and filtration processes are sometimes carried out into the mains. As a rule, these deposits are relatively soft and may be removed by ordinary pipe cleaning operations.

Slime Growths. Some water supplies are troubled with organic growths in the mains. Many of the growths may be due to the use of surface water containing microscopic organisms. While most of these organisms have little effect on the quality of the water, they may cling to the walls of the pipe, thereby reducing the rate of flow in the line. Organic growths may be removed by the use of chlorine, a combination of chlorine and ammonia, or copper sulfate. The nature
of the treatment depends on each individual case and the application of chemicals should usually be started by the use of small dosages with gradual increase until the required effect results. A sudden change in chemical dosage could release many of the organisms into the distribution system, thereby causing taste, odor or turbidity complaints from the consumer.

Aggressive Water. Certain soft waters in the United States are aggressive to unprotected iron. Related problems virtually have been eliminated by factory installation of cement-mortar lining in almost all cast and ductile iron pipe used for water and wastewater. Older unlined pipelines may be cement-mortar lined in situ with good results.

## Cement-Mortar Lined Gray and Ductile Cast Iron Pipe

Historical Development. The first cast iron water mains were not coated or lined, but were installed in the same condition in which they came from the casting molds. After many years' use, it became evident that the interior of the pipe was affected by certain types of water. The use of bituminous coating was proposed, and most of the cast iron pipe sold for water works service after about 1860 were provided with a hot dip bituminous lining and coating, usually of molten tar pitch. In those systems where the water was relatively hard and slightly alkaline, the bituminous linings were generally satisfactory. Where soft or acid waters were encountered, however, problems frequently arose, such as the water becoming red or rusty and a gradual reduction of the flow rate through the pipe. Corrosive water penetrated the pinholes in the tar coating and tuberculation ensued. The need of a better pipe lining to combat tuberculation led to experiments and research with cement mortar as a lining matrial.

In 1922, the first cement-lined cast iron pipe was installed in the water distribution system of Charleston, South Carolina. This pipe was lined by means of a projectile drawn through the pipe. After over 50 years of service, friction flow tests show that this original cement-lined cast iron pipe has retained a Hazen-Williams coefficient (C Factor) of 131.

This process, however, soon gave way to a centrifugal process. Since 1922 many improvements have ben made in the production of cement-lined pipe. Cement-mortar lined pipes are centrifugally lined at the foundry to assure that the best possible quality control is maintained, and that a uniform thickness of mortar is distributed throughout the entire length of the pipe. Cement linings prevent tuberculation by keeping the water from contacting the iron. The linings are smooth and offer very little frictional resistance to the flow of water. Almost all gray and ductile cast iron pipe installed in water systems today are cement lined.

Lining Process. The centrifugal process of applying cement-mortar linings is used in modern practice. By using this method, excellent quality control of the cement-mortar and the centrifugal lining operation can be maintained. Centrifugal lining enables the pipe manufacturer to produce cement-lined pipe of the highest quality-smooth, free of defects and meeting the rigid requirements of ANSI Standard A21.4, "Cement-Mortar Lining for Cast Iron and Ductile Iron Pipe and Fittings for Water."

The lined pipe are stored in a moist atmosphere during the curing period, or given a seal coating to prevent too rapid loss of moisture. The cement lining adheres to the wall of the pipe so that the pipe may be cut and tapped without damage to the lining.

Economics of Cement Lining. The advantages of cement-lined cast iron pipe go beyond the prevention of tuberculation and are clearly applicable to installations in territories where tuberculating waters do not exist. In order to fully understand the financial advantages of using cement linings, it is necessary to have some knowledge of certain hydraulic phenomena.

When water moves through pipe, friction is developed between the water and the inside of the pipe. The result is that, as the water travels through the pipe, some of the energy imparted to it by the pump is consumed by the friction, resulting in a loss of pressure. The amount of friction so developed is the criterion by which the size of pipe, and the amount of power required for pumping, are determined. When a given amount of water is to be transported, the total amount of friction developed depends on the diameter and length of the pipe and the condition of its interior.

The principal advantages of cement linings are higher flow coefficient when the pipe is new and maintained carrying capacity as the pipe grows older. The economy resulting from the prevention of tuberculation is obvious, but experience has shown that less friction results when cement linings are used even where non-tuberculating waters are transported.

For example, a test made on a new 36 -inch bituminous lined cast iron supply line showed a coefficient of approximately 135 . A test on a new 36 -inch cementlined cast iron line showed a coefficient of 145 . Since new pipe was tested in both cases, the difference in values was due to the different conditions of the pipe interiors.

Financial Advantages. As a demonstration of the financial advantages accruing from the use of cement linings, consider a typical instance based on a $24^{\prime \prime}$ pipe, 30,000 feet long carrying 8 mgd .

Tests made on numerous cement-lined pipe installations have established a " C " value of 140 .

Tests made on bituminous lined pipe have established a " $C$ " value of 130 when new, and a " C " value of approximately 100 after 30 years' service. Assuming no increase in demand and a pumping cost of $\$ 0.05$ per million gallons to lift water one foot in elevation, the annual cost of pumping water against friction head only, if bituminous lined pipe were used (actual inside diameter 24.44
inches), would range from $\$ 8,322.00$ per year when the pipe was new $C=130$ to $\$ 13,797.00$ per year when the pipe was 30 years old $\mathrm{C}=100$.

In the case of the 24 -inch cement-lined pipe actual inside diameter $=24.25^{\prime \prime}$, the pumping cost for the first year with a " C " value of 140 , would be $\$ 7,533.60$ and would remain at that figure throughout the 30 -year period. The actual saving for this period, resulting from the use of cement-lined pipe, would be \$105,780.00.

In the case of smaller diameter pipe used in distribution systems, sizes are usually determined by fire protection requirements. The additional volume of water available when cement linings are used may stop a fire in its early stages that would otherwise become a conflagration.

Where tuberculating waters are carried, the loss in capacity of smaller bituminous lined mains occurs at a faster rate than is the case with larger mains. This can mean that in a relatively short time the capacity of bituminous lined pipe is so reduced that cleaning or replacement becomes advisable. Cement lining is a minor part of the total cost of a pipeline project, and assures high carrying capacity for the life of the pipe.

Some old existing non-cement-mortar-lined pipelines have become tuberculated when exposed to very aggressive water. An effective correction of this condition is cleaning and cement-lining in place or cleaning followed by appropriate water treatment. No lasting value will result from cleaning a tuberculated pipeline unless it is followed by appropriate water treatment or installation of a lining. The advisability of pipeline rehabilitation will be dictated by an evaluation of the structural condition of the pipe and the adequacy of the pipe size following rehabilitation.

The nomograph (pg. 390) is based on the Hazen-Williams flow formula and shows relationships between flow coefficient, head loss, internal pipe diameter and discharge rate. If any three of these factors are known, the fourth may be determined by locating a point on the pivot line, which point lies on a common line with two of the known factors. Once the pivot point is established, the unknown factor will lie on a straight line between the pivot point and the third known factor. Arrows ( $\downarrow$ ) on the inside diameter line represent actual inside diameter of cement-mortar-lined ductile iron pipe Class 50.

Almost all gray and ductile iron pipe for water transmission and distribution are cement-mortar-lined in accordance with ANSI Standard A21.4 (AWWA C104) or Federal specifications.

The flow of water through this pipe is usually computed by the widely used Hazen-Williams formula:

$$
\begin{aligned}
& \mathrm{Q}=0.006756 \times \mathrm{CD}^{2.63} \mathrm{H}^{.54} \\
& \text { Where: } \\
& \mathrm{Q}=\text { discharge in gallons per minute } \\
& \mathrm{C}=\text { Hazen-Williams flow coefficient } \\
& \mathrm{D}=\text { actual inside diameter } \\
& \mathrm{H}=\text { head loss in feet per } 1,000 \text { feet }
\end{aligned}
$$

Based on Hazen-Williams Formula: $\mathrm{Q}=0.006756 \mathrm{CD}^{2.63} \mathrm{H}^{.54}$
For Cement Mortar Lined Cast Iron Pipe C $=140$.
$(\leftarrow)$ Shown are actual Inside Diameters of Cement
Mortar Lined Ductile Iron Pipe, Class 50

The flow cocfficient "C" in the Hazen-Williams formula is in effect a masure of the condition of the pipe interior and is sometimes known as a friction coefficient. Tests employing this formula show that cement-mortarlined gray or ductile iron pipe has a C factor of 140 . Unlined pipe exposed to aggressive waters will suffer loss in C factor due to tuberculation.

Both gray and ductile iron pipe have flow advantages resulting from their greater than nominal internal diameters. For example, Class 52, 12-inch ductile iron pipe has an inside diameter of 12.46 inches. Cement-lined pipe of this same class has an inside diameter of 12.34 inches.

## Example 1 - Maximum Delivery

To find the maximum delivery of an 8 -inch, Class 50, cement-mortar-lined kluctile iron pipe, 7,500 feet in length under 150 feet of head, the available head per 1,000 feet is $\frac{150}{7.5}=20$ feet per 1,000 feet. By use of the nomograph the result is 1,200 gallons per minute or 1.73 million gallons per day.

## Example 2 - Determination of Diameter

To find the diameter of pipe necessary to deliver $3,000,000$ gallons per day through a pipeline 25,000 feet long under 150 feet of head, the available head per 1,000 feet $\mathrm{i} \frac{150}{25}=6$ feet per 1,000 feet. By use of the nomograph the result is 12 -inch, Class 50 ductile iron pipe.

## Example 3 - Friction Loss

To find the loss of head through a 10 -inch pipeline 4,000 feet long, delivering $1,400,000$ gallons per day, using a C factor of 140 , the head loss is 4 feet per 1,000 feet, or 16 fect for the pipeline. If water is delivered at a point 100 feet above the pump, total head agrainst the pump, is 100 feet (static) plus 16 feet (friction), or a total of 116 feet.

## Example 4-Delivery Determined from Pressure Reduction

Two accurate pressure gauges should be placed at a known distance apart and measurement of the difference in elevation recorded. If on a 12 -inch pipe the pressure gauges are 500 feet apart and show a difference in pressure of 2 psi ( 4.6 feet of head) while one gauge is 1.8 feet above the other, the actual loss of head will be 4.6 plus or minus $1.8=6.4$ or 2.8 feet per 500 feet or 12.8 or 5.6 fect per 1,000 feet. depending on elevation of the downstream gauge. Assuming that the downstrcam gauge is at the higher elevation, head loss due to friction is 5.6 feet per 1,000 feet. By use of the nomograph, the result is 1,900 gallons per minute, or 2.74 million gallons per day.

## Water Hammer or Surge

Water hammer is a real force and has caused failure of many pipelines. It is the result of a sudden decrease in the pipeline fluid velocity. This rapid de'celeration of the liquid mass sets up pressure waves which are transmitted through the pipeline system. It is estimated that in water transmission and distribution systems, a change in velocity of 1 fps in critical time can increase the pipeline pressure by approximately 50 psi. Water hammer can be caused by quick acting valves, check valves, rapid closure of fire hydrants, earthquakes, the sudden loss of power at pumping plants, and other situations. While there are surge suppression devices available, experience has shown that these devices, due to inactivity, rusting, silting, loss of power, overloading, etc., do not always properly arrest surge forces.

Therefore, water hammer must be considered in pipe thickness calculations. Procedures for the analysis of surge pressure in simple pipelines are presented in many reference works. The analysis of water hammer in a network of piping, such as that of a conventional water distribution system, is extremely complex. For this reason, standard water hammer allowances based on experience and good judgment are used in the Design Standards for Gray Cast Iron Pipe (ANSI A21.1) and for Ductile Iron Pipe (ANSI A21.50) as follows:

## ALLOWANCES FOR SURGE PRESSURE

| Pipe Size <br> (in.) | Surge Pressure <br> (psi) <br> Gray Iron <br> Pipe | Surge Pressure <br> (psi)Ductile Iron <br> Pipe |
| :--- | :---: | :---: |
| $3-10$ | 120 | 100 |
| $12-14$ | 110 | 100 |
| $16-18$ | 100 | 100 |
| 20 | 90 | 100 |
| 24 | 85 | 100 |
| 30 | 80 | 100 |
| 36 | 75 | 100 |
| $42-48$ | 70 | 100 |

Each pipeline project is unique and the designer is cautioned to review possible causes of water hammer and to increase the allowance if circumstances dictate.

## References

Hydraulics for Pipeliners by C. V. Lester. Pipeline News, September, 1955.
Water Hammer Nomograph. F. Caplan. Kaiser Engineers, Oakland, California.
Water Hamıer Allowances in Pipe Design. Committee Report, JAWWA, Vol. 50, No. 3. March, 1958.

Standard Allowances for Water Hammer. Panel Discussion, JAWWA, Vol. 44, No. 11, November, 1952.

Practical Aspects of Water Hammer by S. Logan Kerr. JAWWA, Vol. 40, No. 6, May, 1948

Water-Column Separation in Pump Discharge Lines by R. T. Richards. Transactions (ASME), August, 1954.
A Column Separation Accompanying Liquid Transients in Pipes by R. A. Faltzer. Transac. tions (ASME), December, 1967.


## AMERICAN NATIONAL STANDARD

 forCEMENT-MORTAR LINING FOR

AND FITTINGS FOR WATER

Administrative Secretariat<br>AMERICAN WATER WORKS ASSOCIATION<br>Co-Secretariats<br>AMERICAN GAS ASSOCIATION<br>NEW ENGLAND WATER WORKS ASSOCIATION

Reviscd cdition approved by American National Standards Institutc, Inc., Mar. 7, 1974.

## PUBLISHED BY <br> AMERICAN WATER WORKS ASSOCIATION

6666 West Quincy Avenue, Denver, Colo. 80235

## American National Standard

An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether he has approved the standard or not, from manufacturing, marketing, purchasing, or usin: products, processes, or procedures not conforming to the standard. American Xatinnal Standards are subject to periodic revicw, and users are cautioned to obtain the latest editions. Producers of qoods made in conformity with an American National Standard are encouraged to state on their own responsibility in advertising and promeotion material or on tags or labels that the goods are produced in conformity with particular American National Standards.

CAUTION NOTICE. This American National Standard may be revised or whedrawn at any time. The procedures of the American Xational Stanlards Institu:c require that action be taken to reafirm, revise, or witheran thi, standard no later than five (5) years from the date of publication. l'urchasers of domerican National Stantards may receive current information on all standards by calling or writing the American National Standards Institute. 1430 E3ruaduay, Xew York, X.Y. 101018 (212) 808-1220.

## Table of Contents

| SEC. | page | SEC. | page |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Foreword |  | 4-6 | Preparation of Pipe and Fittings |  |  |
| History of Standard |  |  | for Lining | 2 | 3 |
| II Major Revision .... | vi | 47 | Method of Lining ............... | 2 | 9 |
| III Options ....... | vi | $4-9$ | Socket ........... | 3 3 | 7 |
|  |  | 4-10 | Thickness of Lining | 3 |  |
| Standard |  | 4-11 | Determination of Thickness | 3 |  |
|  |  | 4-12 | Curing ....... | 3 |  |
| 4-1 Scope | 1 | 4-13 | Lining Quality | 3 |  |
| 4-2 Cement | 1 | 4-14 | Seal Coat | 4 |  |
| 4-3 Sand | - 1 |  | Table |  |  |
| 4-4 Water | . 2 | 1 | Requirements for Sand Tested |  |  |
| 4-5 Mortar | 2 |  | With Standard Sieves ...... | 1 |  |

## Committee Personnel

Subcommittee 4-Coatings and Linings--which reviewed and developed this revision, had the following personnel at the time of revision:

W. Harry Smith, Chairman<br>Kenneth W. Henderson, Vice-Chairman

User Members Producer Members

Stanley C. Baker
Kenneth W. Henderson
Raymond C. Holman
David A. Lincoln
R. E. Morris Jr.

Peter E. Pallo
Everett C. Rowley

Producer Members
Frank J. Camerota
W. D. Goode

William U. Maher
James H. Sale
Edward C. Sears
W. Harry Smith

Ernest F. Wagner

Standards Committee A21-Cast-Iron Pipe and Fittings-which reviewed and approved this standard, had the following personnel at the time of approval

Walter Amory, Chairman<br>Carl A. Henrikson, Vice-Chairman<br>James B. Ramsey, Secretary

Organization Represented
American Gas Association
American Society of Civil Engineers
American Society of Mechanical Engineers
American Society for Testing and Materials
American Water Works Association
Cast Iron Pipe Research Association

Individual Producers
Manufacturers' Standardization Society of the Valve and Fittings Industry
New England Water Works Association
Naval Facilities Engineering Command
Underwriters' Laboratories, Inc.
Canadian Standards Association

Name of Representative
Leonard Orlando Jr.
Kenneth W. Henderson
James S. Vanick
Albert H. Smith Jr.
Lloyd W. Weller
Carl A. Henrikson
Edward C. Sears
W. Harry Smith

Alfred F. Case
William T. Maher
Abraflam Fenster
Walter Amory
Stanley C. Baker
Stanley E. Auck
W. F. Semenchuk*

* Liaison representative without vote.


## Foreword

This foreword is for information and is not a part of ANSI A21.4-1974 (AWWA C104-74).

## I-History of Standard

The first recorded installation of cement-mortar linings in cast-iron pipe was in 1922 at Charleston, S.C., under the supervision of J. E. Gibson.

From 1922 to 1929, many installations were made under various manufacturers' specifications. In 1929, ASA (now ANSI) Sectional Committee A21 issued a tentative standard for cementmortar linings. This was published as a tentative standard by AWWA in 1932. After many revisions and refinements, it was finally adopted by ASA in 1939 under the designation A21.4Specifications for Cement-Mortar Lining for Cast-Iron Pipe and Fittings.

During the period 1940-52, much research was done on various types of cement, methods of manufacture, and methods of curing cement mortar to improve the quality of cement-mortar linings. As a result of this research, a revised edition of the 1939 standard was approved and issued in 1953.

The centrifugal process for lining was further developed during the 1940-52 period to provide the controls and techniques necessary for assurance of uniformity of thickness throughout the length of a pipe. Another major revision recognized the ability of cure-assist bituminous materials to provide controlled curing of the mortar. The use of this method was permitted as a substitute for the moist-curing process.

In 1958, Sectional Committee A21 was reorganized and subcommittees
were established to study each group of standards in accordance with ASA's review and revision policy.

Subcommittee 4 (Coatings and Linings for Cast-Iron Pipe) was organized to examine the existing ASA A21.4-1953, "Standard for CementMortar Lining for Cast-Iron Pipe and Fittings." This subcommittee completed its study of A21.4-53 and submitted a proposed revision to Sectional Committee A21 in 1963. The revised third edition was approved and issued in 1964.

The 1964 standard reduced the minimum permissible thickness of the lining. This reduction was based on more than 20 years of Cast Iron Pipe Research Association (CIPRA) studies of experimental test lines having cement-mortar linings varying from $\frac{1}{32}$ in. to $\frac{1}{4}$ in. in thickness, on field tests of linings of these thicknesses that had been in service for more than 30 years, and on the assurance of uniformity of thickness afforded by improvements in the centrifugal lining process.

Two thicknesses of lining were made available, and purchasers who required a lining thickness twice the standard thickness had the option of so specifying.

The cement linings were specified for use in water lines only. This qualification was made to avoid the use of cement-mortar linings in pipe carrying aggressive liquids, which would react with the lining to produce undesirable results.

The purchaser of cement-mortarlined pipe or fittings for use with a water that is corrosive to calcium carbonate, such as a very soft water, is advised, before specifying the omission of the seal coat, to satisfy himself by appropriate test that such a lining will not impart objectionable hardness or alkalinity to the water. The procedure outlined in Sec. 4-14.4, modified by the substitution of the water with which the pipe is to be used for distilled water, is suggested as a convenient form of test.

The 1971 revision incorporated a standard test for toxicity of the seal coat material.

This standard does not include provisions for cement-mortar lining of pipelines in place.

## II-Major Revision

The title of Sec. $4-13$ has been changed from Finished Lining to Lining Quality, and the entire section has been rewritten to provide new requirements of acceptable lining.

## III-Options

This standard includes certain options, which, if desired, must be specified. These are:

1. Thickness of lining. Two thicknesses of lining are available, and purchasers who require a lining thickness twice the standard thickness have the option of so specifying (Sec. 4-10).
2. Seal coat. As other seal coats than bituminous ones are available, this standard makes provision for their use (Sec. 4-14) .

# American National Standard for <br> Cement-Mortar Lining for Cast-Iron and Ductile-Iron Pipe and Fitings for Water 

## Sec. 4-1-Scope

This standard covers cement-mortar linings specified in the A21 series of ANSI Standards for Cast-Iron and Ductile-Iron Pipe and Fittings for Water and is intended for use as a supplement to those standards.

## Sec. 4-2-Cement

The cement shall meet the requirements of "Standard Specifications for Portland Cement," ASTM Designation C150-73-a. The analysis and physical test records of each shipment shall be kept for reference for 1 year.

The type of cement selected shall be left to the option of the pipe and fittings manufacturer.

## Sec. 4-3-Sand

4-3.1. Type of sand. The sand shall be well graded, from fine to coarse, and consist of inert granular material having hard, strong, durable, uncoated grains and meet the test requirements of Sec. 4-3.2.
4-3.2. Testing of sand. The sand shall be tested in accordance with the requirements of these sections:
4-3.2.1. Sampling. The sand to be tested shall be sampled according to Sections 14 and 15 of ASTM D75-71, "Standard Methods of Sampling Aggregates."

4-3.2.2. Sieve tests. The sand shall be tested with standard sieves, as defined in ASTM Designation E11-70, "Standard Specification for Wire-Cloth Sieves for Testing Purposes," and shall meet the requirements listed in Table 1. One sieve analysis shall be performed on each carload of sand delivered. For sand delivered by other means, one sieve analysis shall be made for each 50 tons.

4-3.2.3. Colorimetric test. The test for impurities shall be in accordance with ASTM C40-73, "Standard Method of Test for Organic Impurities in Sands for Concrete."

TABLE 1
Requirements for Sand Tested With Standard Sieves

| Min. Thickness <br> of Lining <br> in. | Sleve Requirement |
| :---: | :---: | :---: |

* Not more than 10 per cent, by weight, of any sand shall pass through sieve No. 100.
$\dagger$ Not applicable.

Under this test, the sand shall not produce a color darker than required in the standard. The sand shall be acceptable, however, if it is shown by adequate test that the impurities causing the color are not harmful to the strength or other specified properties of the finished lining.
The colorimetric tests of sand from an established source of supply shall be made once each 6 months. For sand from a new source, these tests shall be made not less than once a month for a period of 6 months.
4-3.2.4. Decantation test. The sand shall be tested according to ASTM C117-69, "Standard Method of Test for Materials Finer Than No. 200 ( $75-\mu \mathrm{m}$ ) Sieve in Mineral Aggregates by Washing."
At the option of the manufacturer, the clay content and sand grain fineness may be determined by using the American Foundrymen's Society procedure, described in the Foundry Sand Handbook, Seventh Edition, Section 5. By this latter method, the total percentage finer than No. 200 sieve, as defined in ASTM Designation C11971, is equal to the AFS percentage of clay plus the percentage passing through the No. 200 sieve.

No more than 2 per cent shall be lost in the decantation test.

The decantation tests of sand from an established source of supply shall be made once each 6 months. For sand from a new source, these tests shall be made not less than once a month for a period of 6 months.
$4-3.2 .5$. Test records. The requirements of Sec. 4-3.2.2, 4-3.2.3, and $4-3.2 .4$ shall be met, and the records shall be filed for reference for 1 year.

## Sec. 4-4-Water

The water used for tempering the mortar shall meet the requirements of
the United States Public Health Service Drinking Water Standards 1962.

## Sec. 4-5--Mortar

Mortar for the lining shall be composed of cement, sand, and water. The mortar shall be well mixed and of proper consistency to produce a dense, homogeneous lining that will adhere firmly to the pipe or fitting surface. Admixtures may be used, provided the linings meet all the requirements of this standard. The cement mortar shall contain not less than one part of cement to two parts of sand, by volume.

## Sec. 4-6-Preparation of Pipe and Fittings for Lining

The surface to be lined shall be free from foreign material, which would adversely affect the lining adhesion or cause inclusions, blisters, or voids in the lining. The surface shall be free from projections of iron which may protrude through the lining.

## Sec. 4-7--Method of Lining

4-7.1. Lining of pipe and fittings. Pipe shall be lined by the centrifugal process. Fittings shall be lined by a process that will produce linings meeting the requirements of this standard.
4-7.2. Mortar. The waterway surfaces of pipe and fittings shall be completely covered with the specified mortar. The mortar shall be entirely free from holidays or visible bubbles of air and shall be thoroughly compacted throughout. The consistency of the mortar and the time and speed of spinning of the pipe shall be so adjusted as to minimize the segregation of the sand from the cement and to deliver the finished lining substantially free of laitance.

4-7.3. Repair of defective or damaged areas of linings. Defective or
damaged areas of linings may be patched by cutting out the defective or damaged lining to the metal so that the edges of the lining not removed are perpendicular or slightly undercut. A stiff mortar shall be prepared in accordance with Sec. 4-5. The cut-out area and the adjoining lining shall be thoroughly wetted, and the mortar applied and troweled smooth with the adjoining lining. After any surface water has evaporated, but while the patch is still moist, it shall be cured as specified in Sec. 4-12.

## Sec. 4-8-Socket

The socket shall be free of mortar.

## Sec. 4-9—Protection of Work

The lined pipe and fittings shall be protected from extreme heat due to direct rays of the sun, from impact of rainfall, and from freezing temperatures until the linings have cured sufficiently to withstand these conditions.

## Sec. 4-10-Thickness of Lining

4-10.1. Standard thickness. The thickness of linings for pipe and fittings, as determined in Sec. 4-11, shal1 be not less than $\frac{1}{16} \mathrm{in}$. for $3-12 \mathrm{in}$. pipe, $\frac{3}{32}$ in. for $14-24 \mathrm{in}$. pipe, and $\frac{1}{8}$ in. for $30-54 \mathrm{in}$. pipe.

4-10.2. Double thickness. Linings with thicknesses twice those specified in Sec. 4-10.1 shall be furnished if specified by the purchaser.

4-10.3. Taper of linings. Lining thickness may taper to less than the specified minimum thickness at the ends of the pipe or fitting. The length of the taper shall be as short as practicable and shall not exceed 2 in.

4-10.4. Permitted tolerances. A thickness tolerance of $+\frac{1}{8}$ in. shall be permitted on pipe and $+\frac{1}{4} \mathrm{in}$. on fittings.

## Sec. 4-11-Determination of <br> Thickness

Lining thickness shall be determined at intervals frequent enough to assure compliance. Thickness of lining may be determined by means of spear measurement, with a hardened-steel point not larger than $\frac{1}{16} \mathrm{in}$. in diameter. The inspector shall pierce the lining immediately after it is placed in the pipe or fitting and before the mortar has set. The lining shall be pierced at four equidistant points on two cross sections of the barrel at each end of the pipe or fitting. The first set shall be not more than 4 in. from the respective ends of the pipe or fitting. The second set shall be made as far into the interior of the pipe or fitting as can be readily reached without injuring the lining.

## Sec. 4-12-Curing

The lining shall be cured in such a manner as to produce a properly hydrated mortar lining that is hard and durable and will otherwise meet the requirements of Sec. 4-13. The cure may be effected by the application of a seal coat to the still-moist lining.

## Sec. 4-13-Lining Quality

The lining shall be free from voids, ridges, or corrugations that reduce the thickness of lining to less than the specified thickness.

Unbonded areas of cement lining in a pipe or fitting are acceptable if the dimension of any single area does not exceed the nominal diameter in the circumferential direction and in longitudinal direction does not exceed the nominal diameter or 12 in ., whichever is greater.

Longitudinal cracks less than 9 in. in length or less than the nominal diameter, whichever is greater, are accept-
able. Circumferential cracks of any length are acceptable. Surface crazing is acceptable.

Repair of any unacceptable condition is permitted in the field, in accordance with Sec. 4-7.3.

## Sec. 4-14—Seal Coat

4-14.1. General. Unless otherwise specified, the cement lining shall be given a seal coat of bituminous material. Other seal coat materials may

Administration, US Department of Health, Education and Welfare. The seal coat material shall be extracted with distilled or demineralized water at 120F for 24 hr .

4-14.4. Leaching resistance.
4-14.4.1. Requirements. The sealcoated pipe shall impart to the water during any 24 -hr test period no more than 25 ppm of hardness or 25 ppm of total alkalinity, and shall impart no caustic alkalinity.

4-14.4.2. Frequency of test and records. Leaching tests shall be made at sufficiently frequent intervals to assure compliance. The results of one test each month shall be filed for reference for 1 year.

4-14.4.3. Method of testing. The seal-coated pipe shall be tested as follows:

The test specimen shall be at least 6 in. in length, either cut or isolated by suitable closure pieces. When a cut section is used, it shall be bedded on end in a shallow pan of molten paraffin. After the paraffin has cooled, the cut section shall be filled nearly to the top with distilled or demineralized water at laboratory temperature. The top shall be covered with a glass plate and sealed with petroleum jelly. If an isolated section is used, it shall be filled through a tap in the closure device with distilled or demineralized water at laboratory temperature.

In either case, the water in the specimen shall be changed and tested after $24-\mathrm{hr}$ contact on each of 3 successive days. The methods and procedures used in the ditermination of hardness and alkalinity shall be those prescribed in Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, and WPCF. thirteenth edition, 1971.

## END OF STANDARD

## External Corrosion

The resistance of gray iron pipe to exterior corrosion has long since been established. Comparative corrosion tests between ductile and gray iron have now shown that the corrosion resistance of ductile iron pipe is greater than that of gray iron pipe. In a survey of water utility officials throughout the United States, it was found that about 5 percent of the soils in water distribution systems are corrosive to these pipe materials. CIPRA has developed a system for evaluation of soil corrosivity based on many years of experience. The system is described in the Appendix to ANSI/AWWA Standard C105-72 (R1977). Most common causes of corrosion involve naturally corrosive soils or soil contaminants such as peat, muck, cinders, mine wastes, deicing salts and stray direct current.

The Cast Iron Pipe Research Association has completed soil surveys along hundreds of miles of proposed pipeline installation using the standard soil test procedures. These procedures involve environmental characteristics listed in Table A1 of the Appendix to ANSI/AWWA C105. With the additional consideration of potential corrosion due to stray direct current, these procedures have proven to be highly dependable since their establishment in 1968 and proper application of polyethylene encasement where the environment is determined to be corrosive has likewise proven to be dependable.

Polyethylene encasement for protection of gray and ductile iron pipe in corrosive soils and locations of potential stray current influence is a universal practice in the USA as well as most European countries and industrial nations throughout the world. Its success is attributed to the uniform environment it provides for the pipe, its dielectric strength, and the barrier it provides between the pipe and the corrosive environment. No attempt is made to make the encasement absolutely watertight. Water, upon entering the annular space between the pipe and the encasement, may possess the corrosive characteristics of the surrounding soil; however, there is no ongoing ingress and egress of water and the results of the initial corrosion reaction create a stable situation which further enhances the polyethylene encasement protection system. It is estimated that about 4,000 miles of gray and ductile iron pipe are protected with polyethylene encasement in the USA alone. Failures are so few as to be negligible over a period exceeding 20 years.




# AMERICAN NATIONAL STANDARD <br> for <br> POLYETHYLENE ENCASEMENT FOR GRAY AND DUCTILE CAST-IRON PIPING FOR WATER AND OTHER LIQUIDS 

AMERICAN WATER WORKS ASSOCIATION

Co-Secretariats
AMERICAN GAS ASSOCIATION
NEW ENGLAND WATER WORKS ASSOCIATION

## NOTICE

This Standard has been especially printed by the American Water Works Association for incorporation into this volume. It is current as of December 1, 1975. It should be noted, however, that all AWWA Standards are updated at least once in every five years. Therefore, before applying this Standard it is suggested that you confirm its currency with the American Water Works Association.

First edition approved by American National Standards Institute, Inc., Dec. 27, 1972

PUBLISHED BY
AMERICAN WATER WORKS ASSOCIATION
6666 West Quincy Avenue, Denver, Colorado 80235

## American National Siandard

An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whetlier he has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review, and users are cautioned to obtain the latest editions. Producers of goods made in conformity with an American National Standard are encouraged to state on their own responsibility, in advertising, in promotional material, or on tags or labels, that the goods are produced in conformity with particular American National Standards.

CAUTION NOTICE. This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than five (5) years from the date of publication. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute, 1430 Broadway, New York, N.Y. 10018, (212) 868-1220.

## Table of Contents

| SEC. | PAGE | SEC. | PAGE |  |
| :---: | :---: | :---: | :---: | :---: |
| Foreword | v | 5-3 Materials | 1 | 4 |
| History | v | 5-4 Installation | 2 | 0 |
| Research | V | Table 5.1. Tube and Sheet Sizes . | 1 | 9 |
| Useful Life of Polyethylene | vi | Appendix A. Notes on Proce- |  |  |
| Exposure to Sunlight |  | dures for Soil Survey Tests and |  |  |
| Options | vi | Observations and Their Inter- |  |  |
| 5-1 Scope | 1 | pretation to Determine Whether |  |  |
| 5-2 Definition | 1 | Polyethylene Should Be Used. | 4 |  |

## Committee Personnel

Subcommittee No. $t$, which reviewed and recommended reaffirmation of this standard without revision, had the following personnel at that time:

## W. Harry Smirti, Chairman

 Kenneth W. Henderson, J ioc-Chaiman| User Members | l'roducer Mambers |
| :---: | :---: |
| Stanley C. Baker | Frank J. Camerot |
| Raymond C. llolman | IV. D. Goode |
| Davil $\backslash$ |  |
| , Lincolv | James H. Sade |
| Richard E. Morris Jo. | Fimaro C. Spars |

Standards Committee A21—Cast Iron D'ipe and Fittings, which reviewed and reaffirmed this standard without revision had the following personnel at that time.

Lefoyd W’. Welder, Chairman<br>Emward C. Sears, Ficc-Chairman<br>

Oremination Represented

- American Cas Association
- American Society of Civil Engineers

Smerican Society of Mechanical lengineers
American Sisciety for 'Testing and Materials
American Water Works Association

Cast Iron Pipe Research Association

Individual Iroolucer
Manufacturers Standardization Society of the Yalve and Fittings Industry
New England Water Works Association
Naval Facilities Jingineering Command
Lnderwriters' I aboratories. Inc.
Canadian Standards Association

Name of Representatize
Lemarabl ()rtaNon Tr.
K゙ExNeth IV. Hfotbersos

Bed C. Heaton*
Joserf J. Palmier*
I. Porter Hexcixtos

RAリMosi J. Kicom
Kobert 1. I fae

[doyod 11: Meader
Thomas J). Holmes
Harold M. Kencimy Jk.
Ebwate C. Spars
17. Harry Simph
. Thrmed F. Case

Abraham lexster
Walter Amory
STANef C. BakER



* Liaison representative without vote.

This forczord is provided for information and is not a part of ANSI/AWW A C105.

In 1926, ASA (now ANSI) Committee A21-Cast-Iron Pipe and Fittings was organized under the sponsorship of AGA, ASTM, AWWA, and NEWWA. The current sponsors are AGA, AWWA, and NEWWA, and the present scope of Committee A21 activity is

Standardization of specifications for castiron and ductile-iron pressure pipe for gas, water, and other liquids, and fittings for use with such pipe; these specifications to include design, dimensions, materials, coatings, linings, joints, accessories, and methods of inspection and test.

In 1958, Committee A21 was reorganized. Subcommittees were established to study each group of standards in accordance with the review and revision policy of ASA (now ANSI). The present scope of Subcommittee No. 4.-Coatings and Linings is

To review the matter of interior and exterior corrosion of gray and ductile-iron pipe and fittings; and to draft standards for the interior and exterior protection of gray and ductile-iron pipe and fittings.

In accordance with this scope, Subcommittee No. 4 was charged with the responsibility for

1. Development of standards on polyethylene encasement materials and their installation as corrosion protection, when required, for gray and ductile cast-iron pipe and fittings.
2. Development of procedures for the investigation of soil to determine
when polyethylene protection is indicated.

In response to these assignments, Subcommittee No. 4 has

1. Developed Standard ANSI A21.51972 (AWWA C105-72) for Polyethylene Encasement for Gray and Ductile Cast-Iron Piping for Water and Other Liquids.
2. Developed Appendix A outlining soil-investigation procedures.

In 1976 Subcommittee No. 4 reviewed the 1972 edition and submitted a recommendation to Committee A21 that the standard be reaffirmed without change from the 1972 edition, except for the updating of this foreword.

## History

Loose polyethylene encasement was first used experimentally in the US for protection of cast-iron pipe in corrosive environments in 1951. The first field installation of polyethylene wrap on cast-iron pipe in an operating water system was in 1958, and consisted of about 600 ft of $12-\mathrm{in}$. pipe installed in a waste dump fill area. Since that time, hundreds of installations have been made in severely corrosive soils throughout the US in pipe sizes ranging from $4-54 \mathrm{in}$. in diameter. Polycthylene encasement has been used as a soil-corrosion preventative in Canada, England, France, Germany, and several other countries since development of the procedure in the United States.


1

## Research

Research by the Cast Iron Pipe Research Assn. (CIPRA) on several severely corrosive test sites has indicated that polyethylene encasement provides a high degree of protection and results in minimal and generally insignificant exterior surface corrosion of gray and ductile cast-iron pipe thus protected.

Investigations of many field installations in which loose polyethylene encasement has been used as protection for gray and ductile cast-iron pipe against soil corrosion have confirmed CIPRA's findings with the experimental specimens. These field installations have further indicated that the dielectric capability of polyethylene provides shielding for gray and ductile cast-iron pipe against stray direct current at most levels encountered in the field.

## Useful Life of Polyethylene

Tests on polyethylene used in the protection of gray and ductile cast-iron pipe have shown that after 19 years of exposure to severely corrosive soils, strength loss and elongation reduction are insignificant. Studies by the $\mathrm{Bu}-$ reau of Reclamation of the US Dept.
of the Interior* on polyethylene film used underground showed that tensile strength was nearly constant in a $7-\mathrm{yr}$ test period and that elongation was only slightly affected. The Bureau's accelerated soil burial testing (acceleration estimated to be five to ten times that of field conditions) showed polyethylene to be highly resistant to bacteriological deterioration.

## Exposure to Sunlight

Prolonged exposure to sunlight will eventually deteriorate polyethylene film. Therefore, such exposure prior to backfilling the wrapped pipe should be kept to a mininum. If several weeks of exposure prior to backfilling is anticipated, Class C material should be used (see Sec. 5-3.1.1).

## Options

This standard includes certain options, which, if desired, must be specified. These are

1. Class of polyethylene material (Sec. 5-3).
2. Installation method $\mathrm{A}, \mathrm{B}$, or C ; (Sec. 5-4) if there is a preference.
[^34]
# Polyethylene Encasement for Gray and Ductile Cast-Iron Piping for Water and Other Liquids 

## Sec. 5-1—Scope

This standard covers materials and installation procedures for polyethylene encasement to be applied to underground installations of gray and ductile cast-iron pipe. This standard also may be used for polyethylene encasement of fittings, valves, and other appurtenances to gray and ductile cast-iron pipe systems.

## Sec. 5-2-Definition

5-2.1. Polyethylcne encasement. The encasement of piping with polyethylene film in tube or sheet form.

## Sec. 5-3-Materials

5-3.1. Polyethylene. Polyethylene film shall be manufactured of virgin polyethylene material conforming to the following requirements of ASTM Standard Specification D-1248-68-Polyethylene Plastics Molding and Extrusion Materials :

5-3.1.1. Raze material used to manufacture polyethylene film.

Type . . . . . . . . . . . . . I
Class . . . . . . . . . . . . . A (natural color) or C (black)
Grade ...............E-1
Flow rate (formerly
melt index) ...... 0.4 maximum
Dielectric strength ..Volume resistivity, minimum ohnti- $\mathrm{cm}^{3}=10^{15}$

5-3.1.2. Polyethylene filn.
Tensile strength ....1,200 psi minimum
Elongation ......... 300 per cent minimum
Dielectric strength . . $800 \mathrm{~V} /$ minil thickness minimum
5-3.2. Thickness. Polyethylene film shall have a minimum nominal thickness of 0.008 in. ( 8 mils). The minus tolerance on thickness shall not exceed 10 per cent of the nominal thickness.

5-3.3. Tube size or sheet zvidth. Tube or sheet size for each pipe diameter shall be as listed in Table 5.1.

TABLE 5.1
Tube and Sheet Sizes

| Tube and Sheet Sizes |  |  |
| :---: | :---: | :---: |
| Nominal Pipe <br> Diameter <br> inn. | Minimum Polyethylene Width <br> in. |  |
|  | Flat Tube | Sheet |
| 3 | 14 | 28 |
| 4 | 16 | 32 |
| 6 | 20 | 40 |
| 8 | 24 | 48 |
| 10 | 27 | 54 |
| 12 | 30 | 60 |
| 14 | 34 | 68 |
| 16 | 37 | 74 |
| 18 | 41 | 82 |
| 20 | 45 | 90 |
| 24 | 54 | 108 |
| 30 | 67 | 134 |
| 36 | 81 | 162 |
| 42 | 95 | 190 |
| 48 | 108 | 216 |
| 54 | 121 | 242 |

## Sec. 5-4-Installation

5-4.1. General. The polyethylene encasement shall prevent contact between the pipe and the surrounding backfill and bedding material but is not intended to be a completely airand watertight enclosure. Overlaps shall be secured by the use of adhesive tape, plastic string, or any other material capable of holding the polyethylene encasement in place until backfilling operations are completed.

5-4.2. Pipe. This standard includes three different methods for the installation of polyethylene encasement on pipe. Methods $A$ and $B$ are for use with polyethylene tubes and method $C$ is for use with polyethylene sheets.

5-4.2.1. Method A. Cut polyethylene tube to a length approximately 2 ft longer than that of the pipe section. Slip the tube around the pipe, centering it to provide a 1 -ft overlap on each adjacent pipe section, and bunching it accordion-fashion lengthwise until it clears the pipe ends.

Lower the pipe into the trench and make up the pipe joint with the preceding section of pipe. A shallow bell hole must be made at joints to facilitate installation of the polyethylene tube.

After assembling the pipe joint, make the overlap of the polyethylene tube. Pull the bunched polyethylene from the preceding length of pipe, slip it over the end of the new length of pipe, and secure in place. Then slip the end of the polyethylene from the new pipe section over the end of the first wrap until it overlaps the joint at the end of the preceding length of pipe. Secure the overlap in place. Take up the slack width to make a snug, butt. not tight, fit along the barrel of the pipe, securing the fold at quarter points.

Repair any rips, punctures, or other damage to the polyethylene with adhesive tape or with a short length of polyethylene tube cut open, wrapped around the pipe, and secured in place. Proceed with installation of the next section of pipe in the same manner.

5-4.2.2. Method B. Cut polyethylene tube to a length approximately 1 ft shorter than that of the pipe section. Slip the tube around the pipe, centering it to provide 6 in. of bare pipe at each encl. Make polyethylene snug, but not tight; secure ends as described in Sec. 5-4.2.1.

Before making up a joint, slip a 3-ft length of polyethylene tube over the end of the preceding pipe section, bunching it accordion-fashion lengthwise. After completing the joint, pull the 3 -ft length of polycthylene over the joint, overlapping the polyethylene previously installed on each adjacent section of pipe by at least 1 ft ; make snug and secure each end as described in Sec. 5-4.2.1.

Repair any rips, punctures, or other damage to the polyethylene as clescribed in Sec. 5-4.2.1. Proceed with installation of the next section of pipe in the same manner.

5-4.2.3. Method C. Cut polyethylene sheet to a length approximately 2 ft longer than that of the pipe section. Center the cut length to provide a 1 -ft overlap on each adjacent pipe section, bunching it until it clears the pipe ends. Wrap the polyethylene around the pipe so that it circumferentially overlaps the top quadrant of the pipe. Secure the cut edge of polyethylene sheet at intervals of approximately 3 ft .

Lower the wrapped pipe into the trench and make up the pipe joint with the preceding section of pipe. A shallow bell hole must be made at joints to
facilitate installation of the polyethylene. After completing the joint, make the overlap as described in Sec. 5-4.2.1.

Repair any rips, punctures, or other damage to the polyethylene as described in Sec. 5-4.2.1. Proceed with installation of the next section of pipe in the same manner.

5-4.3. Pipe-shaped appurtenances. Cover bends, reducers, offsets, and other pipe-shaped appurtenances with polyethylene in the same manner as the pipe.

5-4.4. Odd-shaped appurtenances. When valves, tees, crosses, and other odd-shaped pieces cannot be wrapped practically in a tube, wrap with a flat sheet or split length of polyethylene tube by passing the sheet under the appurtenance and bringing it up around the body. Make seams by bringing the edges together, folding over twice, and taping down. Handle width and overlaps at joints as described in Sec. 5-4.2.1. Tape polyethylene securely in place at valve stem and other penetrations.

5-4.5. Openings in encasement. Provide openings for branches, service
taps, blow-offs, air valves, and similar appurtenances by making an X-shaped cut in the polyethylene and temporarily folding back the film. After the appurtenance is installed, tape the slack securely to the appurtenance and repair the cut, as well as any other damaged areas in the polyethylene, with tape.

5-4.6. Junctions between wrapped and unzurapped pipe. Where poly-ethylene-wrapped pipe joins an adjacent pipe that is not wrapped, extend the polyethylene wrap to cover the adjacent pipe for a distance of at least 2 ft . Secure the end with circumferential turns of tape.

5-4.7. Backfill for polyethylenewrapped pipe. Use the same backfill material as that specified for pipe without polyethylene wrapping, exercising care to prevent damage to the polyethylene wrapping when placing backfill. Backfill material shall be free from cinders, refuse, boulders, rocks, stones, or other material that could damage polyethylene. In general, backfilling practice should be in accordance with AWWA Standard C600-64, or the latest revision thereof.

# Appendix A 

## Notes on Procedures for Soil Survey Tests and Observations and Their Interpretation to Determine Whether Polyethylene Encasement Should Be Üsed

This appendix is for information and is not a part of ANSI/AWWA C105.

In the appraisal of soil and other conditions that affect the corrosion rate of gray and ductile cast-iron pipe, a minimum nuunber of factors must be considered. They are outlined here. A method of evaluating and interpret- ing each factor and a method of weighting each factor to determine whether polyethylene encasement should be used are subsequently described.

## Soil Survey Tests and Observations

1. Earth resistivity
(a) Four-pin Vibroground
(b) Single-probe Vibroground
(c) Saturated sample Vibroground
2. pH
3. Oxidation-reduction (Redox) potential
4. Sulfides
(a) Azide (qualitative)
5. Moisture content (relative)
(a) Prevalence
6. Soil description
(a) Particle size
(b) Uniformity
(c) Type
(d) Color
7. Potential stray direct current
(a) Nearby cathodic protection utilizing rectifiers
(b) Railroads (electric)
(c) Industrial equipment, including welding
(d) Mine equipment
8. Experience with existing installations in the area
9. Earth resistivity. There are three methods for determining earth resistivity: four-pin, single probe, and soil box. In the field, a four-pin determination should be made with pins spaced at approximate pipe depth. This method yields an average of resistivity from the surface to a depth equal to pin spacing. However, restlts are sometimes difficult to interpret where dry top soil is underlain with wetter soils and where soil types vary with depth. The Wenner configuration is used in connection with a Vibroground which is available with varying ranges of resistance. For all-around use, a unit with a capacity of $u_{i}$ to $10^{4}$ ohms is suggested because of its versatility in permitting both field and laboratory testing in most soils.
Because of the afore-mentioned difficulty in interpretation, the same unit may be used with a single probe that yields resistivity at the point of the probe. A boring is made into the subsoil so that the probe may be pushed into the soil at the desired depth.
Inasmuch as the soil may not be typically wet, a sample should be removed for resistivity determination, which may be accomplished with any one of several laboratory units that permit the introduction of water to saturation, thus simulating saturated fiell conditions. Each of these units is used in conjunction with the Vibroground.

Interpretation of resistivity results is extremely important. To base an opinion on a four-pin reading with dry top soil averaged with wetter subsoil would probably result in an inaccurate premise. Only by reading the resistivity in soil at pipe depth can an accurate interpretation be made. Also, every effort should be made to determine the local situation concerning ground-water table, presence of shallow ground water, and approximate percentage of time the soil is likely to be water saturated.

With gray and ductile cast-iron pipe, resistance to corrosion through products of corrosion is enhanced if there are dry periods during each year. Such periods seem to permit hardening or toughening of the corrosion scale or products, which then become impervious and serve as better insulators.

In making field determinations of resistivity, temperature is important. The result obtained increases as temperature decreases. As the water in the soil approaches freezing, resistivity increases greatly, and, therefore, is not reliable. Field determinations under frozen soil conditions should be avoided. Reliable results under such conditions can be obtained only by collection of suitable subsoil samples for analysis under laboratory conditions at suitable temperature.

Interpretation of resistivity. Because of the wide variance in results obtained uncler the methods described, it is difficult specifically to interpret any single reading without knowing which method was used. It is proposed that interpretation be based on the lowest reading obtained with consideration being given to other conditions, such as normal moisture content of the soil in question. Because of the lack of exact correlation between experiences
and resistivity, it is necessary to assign ranges of resistivity rather than specific numbers. In Table A1 (p. 7) points are assigned to various ranges of resistivity. These points, when considered along with points assigned to other soil characteristics, are meaningful.
2. $p H$. In the pH range of 0.0 to 4.0, the soil serves well as an electrolyte, and total acidity is important. In the pH range of 6.5 to 7.5 , soil conditions are optimum for sulfate reduction. In the pH range of 8.5 to 14.0 , soils are generally quite high in dissolved salts, yielding a low soil resistivity.

A Beckman Electromate portable pH meter is suitable for both field and laboratory pH determinations. In this test. glass and reference electrodes are pushed into the soil sample and a direct reading is made, following suitable temperature setting on the instrument. Normal procedures are followed for standardization.
3. Oxidation-reduction (Redox) potential. The oxidation-reduction (Redox) potential of a soil is significant because the most common sulfate-reducing bacteria can live only under anaerobic conditions. A Redox potential greater than +100 mV shows the soil to be sufficiently aerated so that it will not support sulfate reducers. Potentials of 0 to +100 mV may or may not indicate anaerobic conditions; however, a negative Redox potential definitely indicates anaerobic conditions under which sulfate reducers thrive. This test also is accomplished using a Beckman meter, with platinum and reference electrodes inserted into the soil sample, which permits a reading of potential between the two electrodes. It should be noted that soil samples removed from a boring or excavation can
undergo a change in Reclox potential on exposure to air. Such samples should be tested immediately on removal from the excavation. Experience has shown that heavy clays, muck, and organic soils are often anaerobic, and these soils should be regarded as potentially corrosive.
4. Sulfides. The sulfide determination is recommended because of its field expediency. A positive sulfide reaction reveals a potential problem due to sulfate-reducing bacteria. The sodium azide-iodine qualitative test is used. $\mathrm{I}_{11}$ this determination, a solution of 3 per cent sodium azide in a 0.1 N iodine solution is introduced into a test tube containing a sample of the soil in question. Sulfides catalyze the reaction between sodium azide and iodine, with the resulting evolution of nitrogen. If strong bubbling or foaming results, sulfides are present, and the presence of sulfate-reducing bacteria is indicated. If very slight bubbling is noted, sulfides are probably present in small concentration and the result is noted as a trace.
5. Moisture content. Since prevailing moisture content is extremely important to all soil corrosion, every effort must be made to determine this condition. It is not proposed, however, to determine specific moisture content of a soil sample, because of the probability that content varies throughout the year, but to question local authorities who are able to observe the conditions many times during the year. (Although mentioned under item 1, this variability factor is being reiterated to emphasize the importance of notation.)
6. Soil description. In each investigation, soil types should be completely described. The description should include color and physical claracteristics,
such as particle size, plasticity, friability, and uniformity. Observation and testing will reveal whether the soil is high in organic content; this should be noted. Experience las shown that in a given area, corrosivity may often be reflected in certain types and colors of soil. This information is valuable for future investigations or for determining the most likely soils to suspect. Soil uniformity is important because of the possible development of local corrosion cells due to the difference in potential between unlike soil types, both of which are in contact with the pipe. The same is true for uniformity of aeration. If one segment of soil contains more oxygen than a neighboring segment, a corrosion cell can develop from the difference in potential. This cell is known as a differential aeration cell.

There are several basic types of soils that should be noted: sand, loam, silt, clay, muck. Unusual soils, such as peat or soils high in foreign material, also should be noted and described.
7. Potential stray direct current. Any soil survey should inclucle consideration of possible stray direct current with which the proposed gray or ductile cast-iron pipe installation might interfere. The widespread use of rectifiers and ground beds for cathodic protection of underground structures has resulted in a considerable threat from this source. Proximity of such cathodic protection systems should be noted. Among other potential sources of stray direct current are electric railways, industrial eguipment, including welding, and mine transportation equipment.
8. Experience with existing installations. The best information on corrosivity of soil with respect to gray and ductile cast-iron pipe is the result of experience with these materials in the
area in question. Every effort should be made to acquire such data by questioning local officials and, if possible, by actual observation of existing installations.

## Soil-Test Evaluation

Using the soil-test procedures described herein, the following tests are considered in evaluating corrosivity of the soil : resistivity, pH , Redox potential, sulfides, and moisture. For each of these tests, results are categorized according to their contribution to corrosivity. Points are assigned based on experience with gray and ductile castiron pipe. When results of these five observations are available, the assigned points are totaled. If the sum is equal to ten or more, the soil is corrosive to gray or ductile cast-iron pipe and protection against exterior corrosion should be provided. This system is limited to soil corrosion and does not include consideration of stray direct current. Table A1 lists points assigned to the various test results.

General. These notes deal only with gray and ductile cast-iron pipe, the soil environment in which they will serve, and methods of determining need for polyethylene encasement.

TABLE A1
Soil-Test Evaluation*

| Soil Characteristics | Points |
| :---: | :---: |
| Resistivity-ohm-cm (based on single probe at pipe depth or watersaturated Miller soil box) : |  |
| <700 | 10 |
| 700-1,000 | 8 |
| 1,003-1,200 | 5 |
| 1,200-1,500 | 2 |
| 1,500-2,000 | 1 |
| >2,000 | 0 |
| pH : |  |
| 0-2 | 5 |
| 2-4 | 3 |
| 4-6.5 | 0 |
| 6.5-7.5 | $0 \dagger$ |
| 7.5-8.5 | 0 |
| $>8.5$ | 3 |
| Redox potential: |  |
| $>+100 \mathrm{mV}$. | 0 |
| +50 to +100 mV . | 3.5 |
| 0 to +50 mV . | 4 |
| Negative . | 5 |
| Sulfides: |  |
| Positive | 3.5 |
| Trace | 2 |
| Negative | 0 |
| Moisture: |  |
| Poor drainage, continuously wet. | 2 |
| Fair drainage, generally moist | 1 |
| Good drainage, generally dry | 0 |

[^35]

Expanding Soils \& Their Effect on Underground Pipe

## Expanding Soils \& Their Effect on Underground Pipe

## First, a definition.

An expansive soil might be defined as any soil that swells or shrinks significantly upon wetting or (especially) upon drying, thus showing a volume change. Expansive soils are, in fact, usually clay soils containing large fractions of col-loid-sized particles ranging from less than 1 micron to 2 microns in size. Such clays found in the continental United States are silicate clays: kaolinite, montmorillonite, hydrous micas or illites, chlorite, vermiculite, and attapulgite.

## Field identification of expansive soils.

Positive field determination of an expansive soil and its potentially adverse effect on underground pipe is nearly impossible without proper test equipment. Tentative identification can be made by observing soil characteristics.

A potentially expansive soil may: (1) become very hard on drying and crack or fissure extensively; (2) become very sticky when wetted; (3) be plastic over a wide range of water content; (4) have a soapy or slick feeling when rubbed between the fingers; (5) be fine-grained, with little sand or coarse material; or (6) simply be known as a clay.

Experience with other structures in or on the soil can be helpful. Thus expansive soil may be present where there are apparently unexplainable beam breaks in the piping system, plus heaved or cracked pavement, curbs, etc., which cannot be explained by frost action or poor preparation of the support soil.

## The sure way-laboratory testing.

The soil consolidometer is normally used to determine the swell pressure value of an expansive soil. However, a simpler and faster device with reasonable accuracy is also available-the Soil Potential Volume Change Meter. Readings from this Meter are converted to a swell index value in pounds per square foot (psf). This value can then be converted to Potential Volume Change rating and approximate plasticity index.

Cast Iron Pipe Research Association (CIPRA) has used this Soil Meter for nearly four years, testing hundreds of samples from many areas of the U.S., including Alaska and Hawaii.

## Interpreting the test.

A Potential Volume Change Number is assigned to each swell index value obtained from tests with the meter. Here are the ranges:

| Swell Index <br> (psf) | PVC Number | Category of <br> Expansive Soil |
| :--- | :--- | :--- |
| $0-1700$ | $0-2$ | Noncritical |
| $1700-3200$ | $2-4$ | Marginal |
| $3200-4700$ | $4-6$ | Critical |
| 4700 and above | 6 and above | Very Critical |

Swell index values of 3000 psf and above (at Potential Volume Change Numbers above 2) are presently considered to indicate soils that may require special pipe selection.

## Distribution of expansive soils.

The swell index tests performed by CIPRA and those reported in the Guide to the Use of the FHA Soil Potential Volume Change Meter, FHA 595. Indicate a rather wide distribution of expansive soils across the United States. Values from a series of samples follow:

| Location | Swell Index <br> (psf) | Location | Swell Index <br> (psf) | Location | Swell Index <br> (psf) |
| :--- | ---: | :--- | ---: | :--- | ---: |
| Arkansas | 3,069 | Michigan | 3,968 | Ohio | 2,890 |
| California | 6,070 | Missouri | 8,604 | Pennsylvania | 3,726 |
| California | 4,958 | Missouri | 7,666 | South Dakota | 8,604 |
| California | 4,790 | Mississippi | 17,260 | South Dakota | 5,043 |
| Hawaii (Oahu) | 10,061 | Minnesota | 2,800 | Texas | 10,061 |
| Illinois | 6,245 | North Carolia | 3,248 | Texas | 8,989 |
| Illinois | 4,048 | Oklahoma | 4,460 | Texas | 7,042 |
| Kansas | 2,851 |  |  |  |  |

## Damage by expansive soils.

These soils may severely damage structures on or in them, usually more often by swelling than by shrinking. There is little documentation on such damage to pipelines. Several utilities in areas with highly expansive soils indicate that damage does occur: beam breaks in stronger rigid pipes and both beam breaks and ring crush in weaker rigid pipe. Pipe fabricated from strong ductile material appears to be little affected, and assumes a slightly new position to relieve stress.

Because of short-term experience with new pipe materials, such as plastic, it is not now possible to judge their performance in this environment.

## What to watch for.

Moisture change in expansive soils is responsible for their volume change. So, even though a soil may have a high potential for swell or shrinkage, its actual volume change will depend on the amount of moisture fluctuation. Long, wet periods followed by long, dry periods favor high volume changes. And dry climates (with periodic high ground water tables) or relatively dry soil conditions with a source of moisture (such as a water leak) can also create problems.

The installation trench itself can, for a long period, attract water. Covering the trench with pavement, etc. also invites water invasion. Soil-volume changes are likely.

Shallow cover over pipe in expansive soils with relatively long drying periods can damage the pipe as differential soil pressures develop. Deeper burial of the pipe may place it in a more stable moisture condition and permit more earth weight to offset swell pressures from below.

Bedding and backfill around the pipe with selected granular material may also help, although better pipe support to sustain backfill load may be the only benefit.

## About corrosion problems:

With more expansive soil, corrosion potential may increase, requiring special corrosion protection. Shrinkage of the soil may damage pipe coatings-particularly tar and asphalt coatings. It appears that loose-fitting polyethylene tube or wrap is well suited for protection in shrinking soil conditions, in that some movement around the pipe by both soil and wrap wll not result in damage of this protective system.

## Our ongoing involvement.

CIPRA is now conducting laboratory tests to help answer the following questions on the effect of expansive soils: What is the range of stress applied to the pipe at different swell pressures? How is the stress applied and in what direction? What are the best methods for pipe installation?

## Frost Penetration - Loads on Underground Pipe

## A seasonal story.

It is common, particularly in northern areas, for municipal water systems to experience a number of pipe failures during the winter months. And one cause is frost penetration. It is a known fact that soil moisture, when frozen, expands the soil. And that causes increased vertical forces on buried pipe during the winter. Until now, there were no published data on this problem. The whole subject needed study.

## A cooperative effort.

Recently an investigation was started in the Portland, Maine Water District. Ideally located for such research. The District and the Cast Iron Pipe Research Association (CIPRA) entered into a joint study on the effects of frost penetration. Test data for two winters in the Portland District have been collected and analyzed. Here is a summary of the results.


## The test site.

An 8 -inch cast iron pipe buried at a depth of 3.75 feet was selected as the test subject. The data collection system consisted of:

Four electronic load cells placed beneath the pipe.
A separate cell independent of the pipe, measuring direct soil load.
Five temperature sensors placed at 1 -foot intervals to a depth of 5 feet.
Strip-charts for recording all load and temperature sensors.

## The data.

To save space and also because the results of the second winter's study were more precise, we have reproduced here a plot of the data obtain during the second winter.

As the curve of earth load (the higher solid line) dramatically shows, load began to increase as frost penetration began in December. And as frost penetration increased to almost 3 feet in depth, the load had practically doubled the December 5 value. Also note the effect of increased moisture content on earth load. Points on the curve where significant rainfall is indicated represent marked decreases in earth load. This change in load with precipitation may be due to a change in soil friction angle or in soil cohesion.

## What happens when a live load is added.

Another significant finding in the Portland CIPRA study was the effect of live loads on the test pipe. In a summer month, a loaded gravel truck of known weight caused an increase of about 2100 pounds on one of the load cells. And when an equivalently weighted truck passed over the pipe when winter's frost had reached 3 feet of penetration, the live load was only about $5 \%$ less. The difference was most likely due to wider distribution of the live load by the frost layer.

## A clearer picture of frost penetration effects.

Live loads added to earth loads when frost is present are a logical explanation for the greater incidence of water main breaks during winter. Of course, the presence of much colder water in the main also causes some stresses on the pipe in wintertime.

In "normal" pipeline installations, it is also unlikely that uniform bedding can be achieved beneath the pipe. Increased external loading from frost penetration can cause beam breaks where bedding is not uniform. A piece of stone or rock beneath the pipe could act as a fulcrum. Soft portions of the bedding may permit excessive deflection caused by frost or live loads (or both).

## The solution lies in the pipe.

Cold climates, where frost penetration is a recurring menace, require pipe of sufficient ductility, beam strength, and joint flexibility to withstand winter's stresses. Ductile iron pipe fits all these requirements with strength to spare. Serious consideration should therefore be given to ductile iron water systems for frost-prone areas.

## Our ongoing involvement.

The Portland Water District and CIPRA have agreed to continue studying frost penetration. Even more severe winters, where frost reaches down to 4 feet, will hopefully yield further data.


## 4 2 7 <br> SECTION IX <br> ENGINEERING DATA

## EOUATION OF PIPE

| It is $f$ are eq veloc propo will d | requen qual in ity of fla ortiona eliver $t$ | ntly de carryi flow th al to th the sam |  | to know pacity to me deli ares of ume as | what to one their stour 2 | numb pipe of by two diamet | ers of a larg o pipe | pipe o ger size of ditt hus on With th | of giv At the erent siz 4-inch same | en size e same sizes is ch pipe e head |  | howeve <br> livered calcula two siz one of | er, the varies ted on es is $t$ the lar | veloci s abou this b the nur | ity is less ut as 5 basis. mber of | less in square The fig of the ne 4-in |  |  | pipe, a fifth p te the dipe 7 two-i | and the ower. inters requi | volum This ta ection red to | me deable is of any equal |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diam In. | 1/2 | 3/4 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 24 | 30 | 36 | 42 | 48 | 54 |
| 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 88 | 32.0 | 15.6 | 2.8 | 1.0 | - | - | - | - | - | - | - | - | - | - | - |  | - | - | - | - | - |
| 4 | 181. | 65.7 | 32.0 | 5.7 | 2.1 | 1.0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 5 | 316. | 115. | 55.9 | 9.9 | 3.6 | 1.7 | 1.0 | - | - | - | - | - | - |  | - | - | - | - | - | - | - | - |
| 6 | 499. | 181. | 88.2 | 15.6 | 5.7 | 2.8 | 1.6 | 1.0 | - | - | - | -- | -- | --- | --- | - | - | --- | - | - | - | - |
| 7 | 733. | 266. | 130. | 22.9 | 8.3 | 4.1 | 2.3 | 1.5 | 1.0 | - | - | - | - | - | - | - | - | - | - | - | - | -- |
| 8 | - | 372. | 181. | 32.0 | 11.7 | 5.7 | 3.2 | 2.1 | 1.4 | 1.0 | - | - | - | - | - | - | - | - | - | - | - | -- |
| 10 | -- | 649. | 316. | 55.9 | 20.3 | 9.9 | 5.7 | 3.6 | 2.4 | 1.7 | 1.0 | - | - | - | - | - | - | - | $\cdots$ | - | - | - |
| 11 | --- | --- | 401. | 70.9 | 25.7 | 12.5 | 7.2 | 4.6 | 3.1 | 2.2 | 1.3 | - | - | - | - | - | - | - | - | - | - | - |
| 12 | --- | - | 499. | 88.2 | 32.0 | 15.6 | 8.9 | 5.7 | 3.8 | 2.8 | 1.6 | 1.0 | - | --- | - | - | - | - | - | - | - | - |
| 13 | -- | - | 609. | 108. | 39.1 | 19.0 | 10.9 | 7.1 | 4.7 | 3.4 | 1.9 | 1.2 | - | - | - | - | - | - |  | - | - | - |
| 14 | - | -- | 733. | 130. | 47.1 | 22.9 | 13.1 | 8.3 | 5.7 | 4.1 | 2.3 | 1.5 | 1.0 | - | - | - | - | -- | - | - | - | - |
| 15 | - | - | 787. | 154. | 55.9 | 27.2 | 15.6 | 9.9 | 6.7 | 4.8 | 2.8 | 1.7 | 1.2 | - | - | - | - | - | - | - | - | - |
| 16 | - | -- | -- | 181. | 65.7 | 32.0 | 18.3 | 11.7 | 7.9 | 5.7 | 3.2 | 2.1 | 1.4 | 1.0 | - | - | - | - | - | - | - | - |
| 17 | -- | - | - | 211. | 76.4 | 37.2 | 21.3 | 13.5 | 9.2 | 6.6 | 3.8 | 2.4 | 1.6 | 12 | - | - | - | - | $\cdots$ | - | - | - |
| 18 | - | -- | - | 243. | 88.2 | 43.0 | 24.6 | 15.6 | 10.6 | 7.6 | 4.3 | 2.8 | 1.9 | 1.3 | 1.0 | - | - | - |  |  | $\cdots$ | - |
| 19 | - | - | - | 278. | 101. | 49.1 | 28.1 | 17.8 | 12.1 | 8.7 | 4.8 | 3.2 | 2.1 | 1.5 | 1.1 | - | - | - |  | $\cdots$ | - |  |
| 20 | --- | -- | - | 316. | 115. | 55.9 | 32.0 | 20.3 | 13.8 | 9.9 | 5.7 | 3.6 | 2.4 | 1.7 | 1.3 | 1.0 | - | -- |  |  | - |  |
| 22 | - | -- | -- | 401. | 146. | 70.9 | 40.6 | 25.7 | 17.5 | 12.5 | 7.2 | 4.6 | 3.1 | 2.2 | 1.7 | 1.3 | - | $\cdots$ |  | - | - |  |
| 24 | - | - | - | 499. | 181. | 88.2 | 50.5 | 32.0 | 21.8 | 15.6 | 8.9 | 5.7 | 3.8 | 2.8 | 2.1 | 1.6 | 1.0 | - |  | - | -- |  |
| 30 | --- | - | - | - | ---- | - | -- | - | - | 27.2 | 15.6 | 10.0 | 6.7 | 4.8 | 3.6 | 2.8 | 1.7 | 1.0 | - | - | -- | - |
| 36 |  |  |  |  |  | - | --- | - | --- | -- | 24.6 | 15.6 | 10.6 | 7.6 | 5.7 | 4.3 | 2.8 | 1.6 | 1.0 | - | - | -- |
| 42 | - |  |  |  |  | - | - | -- | --- | - | 36.2 | 22.9 | 15.6 | 11.2 | 8.3 | 6.4 | 4.1 | 2.3 | 1.5 | 1.0 | - | -- |
| 48 | -- |  |  |  | -- | - | -- | - | - | --- | 50.5 | 32.0 | 21.8 | 15.6 | 11.7 | 8.9 | 5.7 | 3.2 | 2.1 | 1.4 | 1.0 | -- |
| 54 | - | - | - | - | - | - | - | - | - | - | 67.8 | 43.0 | 29.2 | 20.7 | 13.2 | 12.8 | 7.6 | 4.3 | 2.8 | 1.9 | 1.3 | 1.0 |

Pressures in Pounds per Square Inch, Corresponding to Heads of Water in Feet

| Head Ft. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | 0.433 | 0.866 | 1.299 | 1.732 | 2.165 | 2.598 | 3.031 | 3.464 | 3.987 |
| 10 | 4.330 | 4.763 | 5.196 | 5.629 | 6.062 | 6.495 | 6.928 | 7.361 | 7.794 | 8.277 |
| 20 | 8.660 | 9.093 | 9.526 | 9.959 | 10.392 | 10.825 | 11.258 | 11.691 | 12.124 | 12.557 |
| 30 | 12.990 | 13.423 | 13.856 | 14.289 | 14.722 | 15.155 | 15.588 | 16.021 | 16.454 | 16.887 |
| 40 | 17.320 | 17.753 | 18.186 | 18.619 | 19.052 | 19.485 | 19.918 | 20.351 | 20.784 | 21.217 |
| 50 | 21.650 | 22.083 | 22.516 | 22.949 | 23.382 | 23.815 | 24.248 | 24.681 | 25.114 | 25.547 |
| 60 | 25.980 | 26.413 | 26.846 | 27.279 | 27.712 | 28.145 | 28.578 | 29.01t | 29.444 | 29.877 |
| 76 | 30.310 | 30.743 | 31.176 | 31.609 | 32.042 | 32.475 | 32.908 | 33.341 | 33.774 | 34.207 |
| 80 | 34.640 | 35.073 | 35.506 | 35.939 | 36.372 | 36.805 | 37.238 | 37.671 | 38.104 | 38.537 |
| 90 | 38.970 | 39.403 | 39.836 | 40.269 | 40.702 | 41.135 | 41.568 | 42.001 | 42.436 | 42.867 |

Heads of Water in Feet, Corresponding to Pressures in Pounds per Square Inch

| Pressure Lbs. per Sq. In. | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | 2.309 | 4.619 | 6.928 | 9.238 |
| 10 | 23.095 | 25.404 | 27.714 | 30.023 | 32.333 |
| 20 | 46.189 | 48.499 | 50.808 | 53.118 | 55.427 |
| 30 | 69.284 | 71.594 | 73.903 | 76.213 | 78.522 |
| 40 | 92.379 | 94.688 | 96.998 | 99.307 | 101.62 |
| 50 | 115.47 | 117.78 | 120.09 | 122.40 | 124.71 |
| 60 | 138.57 | 140.88 | 143.19 | 145.50 | 147.81 |
| 70 | 161.66 | 163.97 | 166.28 | 168.59 | 170.90 |
| 80 | 184.76 | 187.07 | 189.38 | 191.69 | 194.00 |
| 90 | 207.85 | 210.16 | 212.47 | 214.78 | 217.09 |
|  | 5 | 6 | 7 | 8 | 9 |
| 0 | 11.547 | 13.857 | 16.166 | 18.476 | 20.785 |
| 10 | 34.642 | 36.952 | 39.261 | 41.570 | 43.880 |
| 20 | 57.737 | 60.046 | 62.356 | 64.665 | 66.975 |
| 30 | 80.831 | 83.141 | 85.450 | 87.760 | 90.069 |
| 40 | 103.93 | 106.24 | 108.55 | 110.85 | 113.16 |
| 50 | 127.02 | 129.33 | 131.64 | 133.95 | 136.26 |
| 60 | 150.12 | 152.42 | 154.73 | 157.04 | 159.35 |
| 70 | 173.21 | 175.52 | 177.83 | 180.14 | 182.45 |
| 80 | 196.31 | 198.61 | 200.92 | 203.23 | 205.54 |
| 90 | 219.40 | 221.71 | 224.02 | 226.33 | 228.64 |

At $62^{\circ} \mathrm{F} ., 1$ foot head $=0.433 \mathrm{lb}$. per square inch; $0.433 \times 144=62.355 \mathrm{lb}$. per cubic foot. 1 lb . per square inch $=2.30947$ feet head. 1 atmosphere $=14.7 \mathrm{lb}$. per square inch $=33.94$ feet head.

## CONTENTS OF PIPE

Capacities in Cubic Feet and in United States Gallons
(231 Cubic Inches) per Foot of Length

|  |  | For 1 Foot Length |  |  |  | For 1 Foot Length |  |  |  | For 1 Foot Length |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 1/4 | . 2208 | . 0003 | . 0026 | 6.75 | . 56 | . 2485 | 1.859 | 19.0 | 1.583 | 1.969 | 73 |
| 5/16 | . 0260 | . 0005 | . 0040 | 7.00 | . 5833 | . 2673 | 1.999 | 19.5 | 1.625 | 2.074 | 5.52 |
| 3/8 | . 0313 | . 0008 | . 0057 | 7.25 | . 6042 | . 2868 | 2.144 | 20.0 | 1.666 | 2.182 | 16.32 |
| 1/16 | . 0365 | . 0010 | . 0078 | 7.50 | . 6250 | . 3068 | 2.295 | 20.5 | 1.708 | 2.292 | 17.15 |
| 1/2 | . 0417 | . 0014 | . 0102 | 7.75 | . 6458 | . 3275 | 2.450 | 21.0 | 1.750 | 2.405 | 17.99 |
| \%/16 | . 0469 | . 0017 | . 0129 | 8.00 | 6667 | 3490 | 2.611 | 21.5 | 1.792 | 2.521 | 8.86 |
| 5/8 | . 0521 | . 0021 | . 0159 | 8.25 | . 6875 | . 3713 | 2.777 | 22.0 | 1.833 | 2.640 | 19.75 |
| 11/16 | . 0573 | . 0026 | . 0193 | 8.50 | . 7083 | . 3940 | 2.948 | 22.5 | 1.875 | 2.761 | 20.65 |
| 3/4 | . 0625 | . 0031 | . 0230 | 8.75 | . 7292 | 4175 | 3.125 | 23.0 | 1.917 | 2.885 | 21.58 |
| 13/16 | . 0677 | . 0036 | . 0270 | 9.00 | . 7500 | 4418 | 3.305 | 23.5 | 1.958 | 3.012 | 22.53 |
| /8 | . 07 | . 00 | . 0312 | 9.25 | . 7708 | . 4668 | 92 | 24.0 | 2.000 | 3.142 | 50 |
| 15/16 | . 0781 | . 0048 | . 0359 | 9.50 | . 7917 | . 4923 | 3.682 | 25.0 | 2.083 | 3.409 | 25.50 |
| 1.00 | . 0833 | . 0055 | . 0408 | 9.75 | . 8125 | . 5185 | 3.879 | 26.0 | 2.166 | 3.687 | 27.58 |
| 1.25 | . 1042 | . 0085 | . 0638 | 10.00 | . 8333 | . 5455 | 4.081 | 27.0 | 2.250 | 3.976 | 29.74 |
| 1.50 | . 1250 | . 0123 | . 0918 | 10.25 | . 8542 | . 5730 | 4.286 | 28.0 | 2.333 | 4.276 | 31.99 |
| 1.75 | . 1458 | . 0168 | . 1250 | 10.50 | . 8750 | 6013 | 4.498 | 29.0 | 2.416 | 4.587 | 34.31 |
| 2.00 | . 1667 | . 0218 | . 1632 | 10.75 | . 8958 | . 6303 | 4.714 | 30.0 | 2.500 | 4.909 | 36.72 |
| 2.2 | . 1875 | . 0276 | . 2066 | 11.00 | . 9167 | . 6600 | 4.937 | 31.0 | 2.583 | 5.241 | 39.21 |
| 2.50 | . 2083 | . 0341 | . 2550 | 11.25 | . 9375 | . 6903 | 5.163 | 32.0 | 2.666 | 5.585 | 41.78 |
| 2.75 | . 2292 | . 0413 | . 3085 | 11.50 | . 9583 | . 7213 | 5.395 | 33.0 | 2.750 | 5.940 | 44.43 |
| 3.0. | . 2500 | . 0491 | . 3673 | 11.75 | . 9792 | 7530 | 5.633 | 34.0 | 2.833 | 6.305 | 47.17 |
| 3.25 | . 2708 | . 0576 | . 4310 | 12.00 | 1.000 | . 7854 | 5.876 | 35.0 | 2.916 | 6.681 | 49.98 |
| 3.50 | . 2917 | . 0668 | . 4998 | 12.50 | 1.042 | 8523 | 6.375 | 36.0 | 3.000 | 7.069 | 52.88 |
| 3.75 | . 3125 | . 0767 | . 5738 | 13.00 | 1.083 | . 9218 | 6.895 | 37.0 | 3.083 | 7.468 | 55.86 |
| 4.00 | . 3333 | . 0873 | . 6528 | 13.50 | 1.125 | . 9940 | 7.435 | 38.0 | 3.166 | 7.876 | 58.92 |
| 4.25 | . 3542 | . 0985 | 7370 | 14.00 | 1.167 | 1.069 | . 997 | 39.0 | 3.250 | 8.296 | 62.06 |
| 4.50 | . 3750 | . 1105 | . 8263 | 14.50 | 1.208 | 1.147 | 8.578 | 40.0 | 3.333 | 8.728 | 65.29 |
| 4.75 | . 3958 | . 1231 | . 9205 | 15.00 | 1.250 | 1.227 | 9.180 | 41.0 | 3.416 | 9.168 | 68.58 |
| 5.00 | . 4167 | . 1364 | 1.020 | 15.50 | 1.292 | 1.310 | 9.801 | 42.0 | 3.500 | 9.620 | 71.96 |
| 5.25 | . 4375 | . 1503 | 1.124 | 16.00 | 1.333 | 1.396 | 10.44 | 43.0 | 3.583 | 10.084 | 75.43 |
| 5.50 | . 4583 | . 1650 | 1.234 | 16.50 | 1.375 | 1.485 | 11.11 | 44.0 | 3.665 | 10.560 | 79.00 |
| 5.75 | . 4792 | . 1803 | 1.349 | 17.00 | 1.417 | 1.576 | 11.79 | 45.0 | 3.750 | 11.044 | 82.62 |
| 6.00 | . 5000 | . 1963 | 1.469 | 17.50 | 1.458 | 1.670 | 12.50 | 46.0 | 3.833 | 11.540 | 86.32 |
| 6.25 | . 5208 | . 2130 | 1.594 | 18.00 | 1.500 | 1.767 | 13.22 | 47.0 | 3.916 | 12.048 | 90.12 |
| 6.50 | . 5417 | . 2305 | 1.724 | 50 | 1.542 | 1.867 | 13 | 48.0 | 4.000 | 12.566 | 94.02 |

1 Cubic foot of water weighs 62.35 pounds; 1 gallon (U.S.) weighs 8.335 pounds.

## LINEAR EXPANSION OF DUCTILE IRON PIPE

The coefficient of linear expansion of ductile iron may be taken as 0.0000062 per degree Fahrenheit. The expansion or contraction in inches that will take place in a ine of given length with various temperature changes is shown in the following table:

| Temp. <br> Difference <br> F | LENGTH OF LINE IN FEET |  |  |  |
| :---: | :---: | :---: | :---: | ---: |
|  | $\mathbf{1 0 0}$ | 500 | 1000 | 5280 |
|  | 0.037 | 0.19 | 0.37 | 1.96 |
| 10 | 0.074 | 0.37 | 0.74 | 3.93 |
| 20 | 0.149 | 0.74 | 0.15 | 7.86 |
| 30 | 0.223 | 1.12 | 2.23 | 11.78 |
| 40 | 0.298 | 1.49 | 2.98 | 15.71 |
| 50 | 0.372 | 1.86 | 3.72 | 19.64 |
| 60 | 0.446 | 2.23 | 4.46 | 23.57 |
| 70 | 0.520 | 2.60 | 5.20 | 27.50 |
| 80 | 0.595 | 2.98 | 5.95 | 31.43 |
| 90 | 0.670 | 3.35 | 6.70 | 35.35 |
| 100 | 0.744 | 3.72 | 7.44 | 39.28 |
| 120 | 0.893 | 4.46 | 8.93 | 47.14 |
| 150 | 1.116 | 5.58 | 11.16 | 58.92 |

Linear Expansion of Cast Iron Pipe
The coefficient of linear expansion of cast iron may be taken as 0.0000058 per degree Fahrenheit. The expansion or contraction in inches that will take place in a line of given length with various temperature changes is shown in the following table:

| Temp. <br> Difference <br> ${ }^{\circ}$ F | Length of Line in Feet |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 100 | 500 | 1000 | 5280 |
| 5 | 0.035 | 0.17 | 0.35 | 1.83 |
| 10 | 0.070 | 0.35 | 0.70 | 3.67 |
| 20 | 0.139 | 0.70 | 1.39 | 7.34 |
| 30 | 0.209 | 1.04 | 2.09 | 11.01 |
| 40 | 0.278 | 1.39 | 2.78 | 14.70 |
|  |  |  |  |  |
| 50 | 0.348 | 1.74 | 3.48 | 18.35 |
| 60 | 0.418 | 2.09 | 4.18 | 22.04 |
| 70 | 0.487 | 2.44 | 4.87 | 25.72 |
| 80 | 0.557 | 2.79 | 5.57 | 29.39 |
| 90 | 0.626 | 3.13 | 6.26 | 33.05 |
|  |  |  |  |  |
| 100 | 0.696 | 3.48 | 6.96 | 36.71 |
| 120 | 0.835 | 4.17 | 8.35 | 44.10 |
| 150 | 1.043 | 5.22 | 10.43 | 55.10 |

TABLE 1 Rounding Tolerances
Inches to Millimetres

| Original Tolerance, in. |  | Fineness of Rounding. mm |
| :---: | :---: | :---: |
| at least | kess than |  |
| 0.00001 | 0.0001 | 0.00001 |
| 0.0001 | 0.001 | 0.0001 |
| 0.001 | 0.01 | 0.001 |
| 0.01 | 0.1 | 0.01 |
| 0.1 | 1 | 0.1 |

TABLE 2 Inch-Millimetre Equivalents
Note-All values in this table are exact, based on the relation I in. -25.4 mm . By manipulation of the decimal point any decimal value or multiple of an inch may be converted to its exact equivalent in millimetres.

| in. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | mm |  |  |  |  |  |  |  |  |  |
| 0 |  | 25.4 | 50.8 | 76.2 | 101.6 | 127.0 | 152.4 | 177.8 | 203.2 | 228.6 |
| 10 | 254.0 | 279.4 | 304.8 | 330.2 | 355.6 | 381.0 | 406.4 | 431.8 | 457.2 | 482.6 |
| 20 | 508.0 | 533.4 | 558.8 | 584.2 | 609.6 | 635.0 | 660.4 | 685.8 | 711.2 | 736.6 |
| 30 | 762.0 | 787.4 | 812.8 | 838.2 | 863.6 | 889.0 | 914.4 | 939.8 | 965.2 | 990.6 |
| 40 | 1016.0 | 1041.4 | 1066.8 | 1092.2 | 1117.6 | 1143.0 | 1168.4 | 1193.8 | 1219.2 | 1244.6 |
| 50 | 1270.0 | 1295.4 | 1320.8 | 1346.2 | 1371.6 | 1397.0 | 1422.4 | 1447.8 | 1473.2 | 1498.6 |
| 60 | 1524.0 | 1549.4 | 1574.8 | 1600.2 | 1625.6 | 1651.0 | 1676.4 | 1701.8 | 1727.2 | 1752.6 |
| 70 | 1778.0 | 1803.4 | 1828.8 | 1854.2 | 1879.6 | 1905.0 | 1930.4 | 1955.8 | 1981.2 | 2006.6 |
| 80 | 2032.0 | 2057.4 | 2082.8 | 2108.2 | 2133.6 | 2159.0 | 2184.4 | 2209.8 | 2235.2 | 2260.6 |
| $90$ | 2286.0 | 2311.4 | 2336.8 | 2362.2 | 2387.6 | 2413.0 | 2438.4 | 2463.8 | 2489.2 | 2514.6 |
| 100 | 2540.0 |  |  |  | - | ... | ... | - | ... | ... |

TABLE 3 Conversion of Temperature Tolerance Requirements

| Tolerance, deg F | $\pm 1$ | $\pm 2$ | $\pm 5$ | $\pm 10$ | $\pm 15$ | $\pm 20$ | $\pm 25$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tolerance, $K$ or deg $C$ | $\pm 0.5$ | $\pm 1$ | $\pm 3$ | $\pm 5.5$ | $\pm 8.5$ | $\pm 11$ | $\pm 14$ |

TABLE 4 Pressure and Stress Equivalents-Pounds-Force per Square Inch and Thousand Pounds-Force per Square Inch to Kilopascals (Kilonewtons per Square Metre) and Megapascals (Meganewtons per Square Metre)

NOTE I-This table may be used to obtain SI equivalents of values expressed in psi or ksi . SI values are usually expressed in $\mathrm{kPa}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ when original value is in psi and in $\mathrm{MPa}\left(\mathrm{MN} / \mathrm{m}^{2}\right)$ when original value is in ksi .


TABLE 5 Pressure and Stress Equivalents－Metric Engineering to SI Units
Note 1－This table may be used for obtaining SI equivalents of quantities expressed in $\mathrm{kgf} / \mathrm{cm}^{2}$ by multiplying the given values by $10^{-3}$ ．that is，by moving the decimal point iwo places to the left．

NOTE 2－This table may be extended to values below 1 or above $100 \mathrm{~kg} / / \mathrm{cm}^{2}$ by manipulation of the decimal point and addition as illustrated in 4．7．1．
Conversion Relationships：
$1 \mathrm{~mm}=0.001 \mathrm{~m}$（exactly）
$\mathrm{kgf}=9.80665 \mathrm{~N}$（exactly）

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{kg} / \mathrm{mm}^{2}$ | $\mathrm{MPa}\left(\mathrm{MN} / \mathrm{m}^{2}\right)$ |  |  |  |  |  |  |  |  |  |
| 0 |  | 9.8066 | 19.6133 | 29.4200 | 39.2266 | 49.0332 | 58.8399 | 68.6466 | 78.4532 | 88.2598 |
| 10 | 98.0665 | 107.8731 | 117.6798 | 127.4864 | 137.2931 | 147.0998 | 156.9064 | 166.7130 | 176.5197 | 186.3264 |
| 20 | 196.1330 | 205.9396 | 215.7463 | 225.5530 | 235.3596 | 245.1662 | 254.9729 | 264.7796 | 274.5862 | 284.3928 |
| 30 | 294.1995 | 304.0062 | 313.8128 | 323.6194 | 333.4261 | 343.2328 | 353.0394 | 362.8460 | 372.6527 | 382.4594 |
| 40 | 392.2660 | 402.0726 | 411.8793 | 421.6860 | 431.4926 | 441.2992 | 451.1059 | 460.9126 | 470.7192 | 480.5258 |
| 50 | 490.3325 | 500.1392 | 509.9458 | 519.7524 | 529.5591 | 539.3658 | 549.1724 | 558.9790 | 568.7857 | 578.5924 |
| 60 |  |  | 608.0123 | 617.8190 | 627.6256 | 637.4322 | 647.2389 | 657.0456 | 666.8522 | 676.6588 |
| 70 | 686.4655 | 696.2722 | 706.0788 | 715.8854 | 725.6921 | 735.4988 | 745.3054 | 755.1120 | 764.9187 | 774.7254 |
| 80 | 784.5320 | 794.3386 | 804.1453 | 813.9520 | 823.7586 | 833.5652 | 843.3719 | 853.1786 | 862.9852 | 872.7918 |
| 90 100 | 882.5985 | 892.4052 | 902.2118 | 912.0184 | 921.8251 | 931.6318 | 941.4384 | 951.2450 | 961.0517 | 970.8584 |
| 100 | 980.6650 |  |  |  |  |  |  |  |  |  |

## SELECTED CONVERSION FACTORS

To convert from
atmosphere ( 760 Hg )
board foot
Btu (International Table)
Btu (International Table)/hour
Btu (International Table) in./s $\cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}$
( k , thermal conductivity)
calorie (International Table)
centipoise
centistokes
circular mil
degree Fahrenheit
foot
foot ${ }^{3}$
foot ${ }^{2}$
foot-pound-force
foot-pound-force/minute
foot/second ${ }^{2}$
gallon (U.S. liquid)
horsepower (electric)
inch
inch ${ }^{2}$
inch ${ }^{3}$
inch of mercury ( $60^{\circ} \mathrm{F}$ )
inch of water ( $60^{\circ} \mathrm{F}$ )
kilogram-force/centimetre ${ }^{3}$
kip ( 1000 lbf )
$\mathrm{kip} / \mathrm{inch}^{2}$ (ksi)
ounce (U.S. fluid)
ounce-force (avoirdupois)
ounce-mass (avoirdupois)
ounce-mass/ft ${ }^{2}$
ounce-mass/yard ${ }^{2}$
ounce (avoirdupois)/gallon (U.S. liquid)
pint (U.S. liquid)
pound-force (lbf avoirdupois)
pound-mass (lbm avoirdupois)
pound-mass/second
pound-force/inch ${ }^{2}$ (psi)
pound-mass/inch ${ }^{2}$
pound-mass/foot ${ }^{3}$
quart (U.S. liquid)
ton (short, 2000 lbm )
torr ( mm Hg )
watt-hour
yard
yard ${ }^{3}$
yard'

## to

| pascal ( Pa ) | 1.013 | $25 \times 10^{8}$ |
| :---: | :---: | :---: |
| metre ${ }^{8}$ ( $\mathrm{m}^{2}$ ) | 2.359 | $737 \times 10^{-8}$ |
| joule ( J ) | 1.055 | $056 \times 10^{2}$ |
| watt (W) | 2.930 | $711 \times 10^{-1}$ |
| watt/metre-kelvin (W/m-K) | 5.192 | $204 \times 10^{2}$ |
| joule (J) | 4.186 | 800* |
| pascal-second ( Pa -s) | 1.000 | $000^{*} \times 10^{-3}$ |
| metre $2 /$ second ( $\mathrm{m}^{2} / \mathrm{s}$ ) | 1.000 | $000^{*} \times 10^{-6}$ |
| metre ${ }^{2}\left(\mathrm{~m}^{2}\right)$ | 5.067 | $075 \times 10^{-10}$ |
| degree Celsius | $\mathrm{t}_{\text {oe }}=$ | $\left(\mathrm{tor}^{-3} 32\right) / 1.8$ |
| metre (m) | 3.048 | $000^{*} \times 10^{-1}$ |
| metre ${ }^{2}$ ( $\mathrm{m}^{2}$ ) | 9.290 | $304^{*} \times 10^{-8}$ |
| metre ${ }^{3}$ ( $\mathrm{m}^{3}$ ) | 2.831 | $685 \times 10^{-2}$ |
| joule (J) | 1.355 | 818 |
| watt (W) | 2.259 | $697 \times 10^{-2}$ |
| metre/second ${ }^{2}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ | 3.048 | $000^{*} \times 10^{-1}$ |
| metre ( $\mathrm{m}^{2}$ ) | 3.785 | $412 \times 10^{-4}$ |
| watt (W) | 7.460 | $000^{*} \times 10^{2}$ |
| metre (m) | 2.540 | $000^{*} \times 10^{-2}$ |
| metre ${ }^{2}$ ( $\mathrm{m}^{2}$ ) | 6.451 | $600^{*} \times 10^{-4}$ |
| metre ( $\mathrm{m}^{\mathbf{3}}$ ) | 1.638 | $706 \times 10^{-8}$ |
| pascal ( Pa ) | 3.376 | $85 \times 10^{3}$ |
| pascal ( Pa ) | 2.488 | $4 \times 10^{1}$ |
| pascal ( Pa ) | 9.806 | $650^{*} \times 10^{4}$ |
| newton (N) | 4.448 | $222 \times 10^{2}$ |
| pascal ( Pa ) | 6.894 | $757 \times 10^{8}$ |
| metre ${ }^{2}\left(\mathrm{~m}^{2}\right)$ | 2.957 | $353 \times 10^{-8}$ |
| newton (N) | 2.780 | $139 \times 10^{-1}$ |
| kilogram (kg) | 2.834 | $952 \times 10^{-2}$ |
| kilogram/metre ${ }^{\mathbf{2}}\left(\mathrm{kg} / \mathrm{m}^{2}\right.$ ) | 0.305 | 152 |
| kilogram/metre ${ }^{2}$ ( $\mathrm{kg} / \mathrm{m}^{2}$ ) | 3.390 | $575 \times 10^{-2}$ |
| kilogram/metre ${ }^{3}\left(\mathrm{~kg} / \mathrm{m}^{2}\right)$ | 7.489 | 152 |
| metre ${ }^{\text {a }}$ ( $\mathrm{m}^{2}$ ) | 4.731 | $765 \times 10^{-4}$ |
| newton (N) | 4.448 | 222 |
| kilogram (kg) | 4.535 | $924 \times 10^{-1}$ |
| kilogram/second (kg/s) | 4.535 | $924 \times 10^{-3}$ |
| pascal (Pa) | 6.894 | $757 \times 10^{2}$ |
| kilogram/meter ${ }^{\text {² }}$ ( $\mathrm{kg} / \mathrm{m}^{2}$ ) | 2.767 | $990 \times 10^{4}$ |
| kilogram/meter ${ }^{\text {a }}$ ( $\mathrm{kg} / \mathrm{m}^{2}$ ) | 1.601 | $846 \times 10$ |
| metre ${ }^{2}$ ( $\mathrm{m}^{2}$ ) | 9.463 | $529 \times 10^{-4}$ |
| kilogram (kg) | 9.071 | $847 \times 10^{2}$ |
| pascal ( Pa ) | 1.333 | $22 \times 10^{8}$ |
| joule (J) | 3.600 | 000* $\times 10^{2}$ |
| metre (m) | 9.144 | $000^{*} \times 10^{-2}$ |
| metre ${ }^{2}\left(\mathrm{~m}^{2}\right)$ | 8.361 | $274 \times 10^{-1}$ |
| metre ( $\mathrm{m}^{3}$ ) | 7.645 | $549 \times 10^{-1}$ |

- Exact


## Units of Measurement-Conversion Factors*

*All boldface figures are exact; the others generally are given to seven significant figures.
In using conversion factors, it is possible to perform division as well as the multiplication process shown here. Division may be particularly advantageous where more than the significant figures published here are required. Division may be performed in lieu of multiplication by using the reciprocal of any indicated multiplier as divisor. For example, to convert from centimeters to inches by division, refer to the table headed "To Convert from Inches" and use the factor listed at "centimeters" (2.54) as divisor.

## Units of Length

|  | To Convert from <br> Centimeters |
| :--- | :--- |
| To Multiply by |  |$|$


| To Convert from Inches |  |
| :---: | :---: |
| To | Multiply by |
| Feet .......... | 0.08333333 |
| Yards ........... | 0.02777778 |
| Centimeters |  |
| Meters ......... | 0.0254 |


| To Convert from Meters |  |
| :---: | :---: |
| To | Multiply by |
| Inches ................... | 39.37008 |
| Feet ...................... | 3.280840 |
| Yards .................... | 1.093613 |
| Miles .................... | 0.00062137 |
| Millimeters ........... 1 | 1000 |
| Centimeters .......... | 100 |
| Kilometers ........... | 0.001 |


| To Convert from Feet |  |
| :---: | :---: |
| To | Multiply by |
| Inches ....................... |  |
| Yards | 0.3333333 |
| Miles ......................... | 0.00018939 |
| Centimeters ................. | 30.48 |
| Meters ....................... | 0.3048 |
| Kilometers ................. | 0.0003048 |


| To Convert from Yards |  |
| :---: | :---: |
| To | Multiply by |
| Inches |  |
| Feet ... |  |
| Miles | 0.00056818 |
| Centime | 91.44 |
| Meters | 0.9144 |


| To Convert from Miles |  |
| :---: | :---: |
| To | Multiply by |
| Inches ........ | 63360 |
| Feet | 5280 |
| Yards | 1760 |
| Centimeters | 160934.4 |
| Meters ...... | 1609.344 |
| Kilometers | 1.609344 |

## Units of Measurement-Conversion Factors*

*All boldface figures are exact; the others generally are given to seven significant figures.
Units of Mass

| To Convert from Grams |  |
| :---: | :---: |
| To | Multiply by |
| Grains .................. | 15.43236 |
| Avoirdupois Drams | 0.5643834 |
| Avoirdupois Ounches | 0.03527396 |
| Troy Ounces ........ | 0.03215075 |
| Troy Pounds ........ | 0.00267923 |
| Avoirdupois Pounds | 0.00220462 |
| Milligrams ........... |  |
| Kilograms ............. | 0.001 |


| To Convert from Avoirdupois Pounds |  |
| :---: | :---: |
| To | Multiply by |
| Grains ............ |  |
| Avoirdupois Drams $\qquad$ |  |
| Avoirdupois Ounces ........ | 16 |
| Troy Ounces .. | 14.58333 |
| Troy Pounds .. | 1.215278 |
| Grams ............ | 453.59237 |
| Kilograms ...... | 0.45359237 |
| Short Hundred weights $\qquad$ | 0.01 |
| Short Tons .... | 0.0005 |
| Long Tons .... | 0.0004464286 |
| Metric Tons .. | 0.00045359237 |


| To Convert from Metric Tons |  |
| :---: | :---: |
| To | Multiply by |
| Avoirdupois <br> Pounds $\qquad$ | 204.623 |
| Short <br> Hundredweights .... | 22.04623 |
| Short Tons ............. | 1.1023113 |
| Long Tons ............. | 0.9842065 |
| Kilograms ............... | 1000 |


| To Convert from Kilograms |  |
| :---: | :---: |
| To | Multiply by |
| Grains ................. | 5432.36 |
| Avoirdupois Drams | 564.3834 |
| Avoirdupois Ounces .... | 35.27396 |
| Troy Ounces ....... | 32.15075 |
| Troy Pounds ..... | 2.679229 |
| Avoirdupois | 2.204623 |
| Grams ................ | 1000 |
| Short <br> Hundredweights | 0.02204623 |
| Short Tons ......... | 0.00110231 |
| Long Tons ......... | 0.0009842 |
| Metric Tons ....... | 0.001. |

Units of Measurement-Conversion Factors*
*All boldface figures are exact; the others generally are given to seven significant figures.
Units of Mass


| To Convert from Troy Pounds |  |
| :---: | :---: |
| To | Multiply by |
| Grains .................... |  |
| Avoirdupois Drams | 210.6514 |
| Avoirdupois Ounces $\qquad$ | 13.16571 |
| Troy Ounces ......... | 12 |
| Avoirdupois Pounds | 0.8228571 |
| Grams .................... | 373.2417216 |


| To Convert from <br> Short Hundredweights |  |
| :---: | :---: |
| To | Multiply by |
| Avoirdupois <br> Pounds |  |
| Short Tons ............. | 0.05 |
| Long Tons .............. | 0.04464286 |
| Kilograms ............... | 45.359237 |
| Metric Tons ........... | 0.045359237 |


| To Convert from <br> Short Tons |  |  |  |
| :--- | :--- | :--- | :--- |
| To Multiply by |  |  |  |


| To Convert from Troy Ounces |  |
| :---: | :---: |
| To | Multiply by |
| Grains ..................... |  |
| Avoirdupois Drams | 17.55429 |
| Avoirdupois Ounces $\qquad$ | 1.097143 |
| Troy Pounds ............. | 0.0833333 |
| Avoirdupois <br> Pounds | 0.06857143 |
| Grams ...................... | 31.1034768 |


| To Convert from Long Tons |  |
| :---: | :---: |
| To | Multiply by |
| Avoirdupois Ounces | 5840 |
| Avoirdupois Pounds | 2240 |
| Short <br> HundredWeights | 22.4 |
| Short Tons .... | 1.12 |
| Kilograms ...... | 1016.0469088 |
| Metric Tons .. | 1.0160469088 |

## Units of Measurement-Conversion Factors*

*All boldface figures are exact; the others generally are given to seven significant figures.
Units of Capacity, or Volume, Liquid Measure

| To Convert from Milliliters |  |
| :---: | :---: |
| To | Multiply by |
| Minims ...................... | 16.23073 |
| Liquid Ounces ............ | 0.03381402 |
| Gills ........................... | 0.008453 |
| Liquid Pints ............... | 0.0021134 |
| Liquid Quarts ............ | 0.001056 |
| Gallons ............... | 0.00026417 |
| Cubic Inches .............. | 0.06102374 |
| Liters ... | 0.001 |


| To Convert from Cubic Meters |  |
| :---: | :---: |
| To | Multiply by |
| Gallons ................. | 264.17205 |
| Cubic Inches ........ 61 | 1023.74 |
| Cubic Feet ............ | 35.31467 |
| Liters .................... 1 | 1000 |
| Cubic Yards .......... | 1.3079506 |



| To Convert from Liters |  |
| :---: | :---: |
| To | Multiply by |
| Liquid Ounces ...... | 33.81402 |
| Gills ...................... | 8.453506 |
| Liquid Pints .......... | 2.113376 |
| Liquid Quarts ...... | 1.056688 |
| Gallons ................ | 0.26417205 |
| Cubic Inches ..... | 61.02374 |
| Cubic Feet ........... | 0.03531467 |
| Milliliters ............. |  |
| Cubic Meters ........ | 0.001 |
| Cubic Yards .......... | 0.00130795 |


| To Convert from Liquid Ounces |  |
| :---: | :---: |
| To | Multiply by |
| Minims .................... | 480 |
| Gills ....................... | 0.25 |
| Liquid Pints ............. | 0.0625 |
| Liquid Quarts .......... | 0.03125 |
| Gallons .................... | 0.0078125 |
| Cubic Inches ............ | 1.8046875 |
| Cubic Feet ............... | 0.00104438 |
| Milliliters ................. | 29.57353 |
| Liters ....................... | 0.02957353 |

## Units of Measurement-Conversion Factors*

*All boldface figures are exact; the others generally are given to seven significant figures.
Units of Capacity, or Volume, Liquid Measure

| To Convert from Liquid Pints |  |
| :---: | :---: |
| To | Multiply by |
| Minims ............... |  |
| Liquid Ounces .... | 16 |
| Gills ................. | 4 |
| Liquid Quarts .... | 0.5 |
| Gallons ............... | 0.125 |
| Cubic Inches ...... | 28.875 |
| Cubic Feet .......... | 0.01671007 |
| Milliliters ........... | 473.176473 |
| Liters .................. | 0.473176473 |


| To Convert from <br> Liquid <br> Quarts |  |  |  |
| :--- | ---: | :--- | :---: |
| To Multiply by |  |  |  |


| To Convert from Cubic Inches |  |
| :---: | :---: |
| To | Multiply by |
| Minims | 265.9740 |
| Liquid Ounces | 0.5541126 |
| Gills ................ | 0.138528 |
| Liquid Pints .... | 0.03463203 |
| Liquid Quarts | 0.01731602 |
| Gallons ........... | 0.004329 |
| Cubic Feet ...... | 0.000578 |
| Milliliters ........ | 16.387064 |
| Liters ............. | 0.016387064 |
| Cubic Meters .. | 0.000016387064 |
| Cubic Yards .... | 0.00002143 |


| To Convert from Cubic Feet |  |  |
| :---: | :---: | :---: |
| To |  | Multiply by |
| Liquid Ounces .... | 957.506 |  |
| Gills ............. | 239.376 | 6 |
| Liquid Pints | 59.844 |  |
| Liquid Quarts | 29.922 |  |
| Gallons ........ | 7.480 | 519 |
| Cubic Inches | 728 |  |
| Liters ........... | 28.316 | 846592 |
| Cubic <br> Meters | 0.028 | 316846592 |
| Cubic Yards | 0.037 | 03704 |


| To Convert from Cubic Yards |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| To |  | Mul | ltipl | ly by |
|  | Gallons ..... 201.9740 |  |  |  |
| Inches .... 46656 |  |  |  |  |
| Cubic Feet Liters $\qquad$ | 27 |  |  |  |
|  | 764.554 | 857 | 984 |  |
| Cubic Meters | 0.764 | 554 | 857 | 984 |

Units of Measurement-Conversion Factors*
*All boldface figures are exact; the others generally are given to seven significant figures.
Units of Capacity, or Volume, Dry Measure

| To Convert from Liters |  |
| :---: | :---: |
| To | Multiply by |
| Dry Pints | 1.816166 |
| Dry Quarts | 0.90808298 |
| Pecks ........ | 0.1135104 |
| Bushels .... | 0.02837759 |
| Dekaliters .. |  |


| To Convert from <br> Cubic Meters |  |  |  |
| :--- | :--- | :--- | :--- |
| To |  | Multiply by |  |
| Pecks | $\ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~$ | 113.510 | 4 |
| Bushels | $\ldots . . . . . . . . . . . . . . . . . . . . . . . ~$ | 28.377 | 59 |


| To Convert from Dry Quarts |  |
| :---: | :---: |
| To | Multiply by |
| Dry Pints .................. | 2 |
| Pecks ......................... | 0.125 |
| Bushels ..................... | 0.03125 |
| Cubic Inches ............. | 67.200625 |
| Cubic Feet ................. | 0.03888925 |
| Liters .---..................... | 1.101221 |
| Dekaliters .................. | 0.1101221 |


| To Convert from Dekaliters |  |
| :---: | :---: |
| To | Multiply by |
| Dry Pints .................. | 18.16166 |
| Dry Quarts ................. | 9.0808298 |
| Pecks ......................... | 1.135104 |
| Bushels | 0.2837759 |
| Cubic Inches ............. | 610.2374 |
| Cubic Feet ................. | 0.3531467 |
| Liters ......................... |  |


| To Convert from Bushels |  |
| :---: | :---: |
|  |  |
| To | Multiply by |
| Dry Pints ............. | 64 |
| Dry Quarts ............ | 32 |
| Pecks .................... | 4 |
| Cubic Inches ........ 2 | 2150.42 |
| Cubic Feet ............ | 1.244456 |
| Liters .................... | 35.23907 |
| Dekaliters ............. | 3.523907 |
| Cubic Meters ........ | 0.03523907 |
| Cubic Yards .......... | 0.04609096 |


| To Convert from Pecks |  |
| :---: | :---: |
| To | Multiply by |
| Dry Pints ................. | 16 |
| Dry Quarts ............... | 8 |
| Bushels ................... | 0.25 |
| Cubic Inches ............ | 537.605 |
| Cubic Feet ............... | 0.311114 |
| Liters ....................... | 8.8097675 |
| Dekaliters ................. | 0.88097675 |
| Cubic Meters ........... | 0.00880977 |
| Cubic Yards ............. | 0.01152274 |

## Units of Measurement-Conversion Factors*

*All boldface figures are exact; the others generally are given to seven significant figures.
Units of Capacity, or Volume, Dry Measure


Units of Area

| To Convert from Square Centimeters |  |
| :---: | :---: |
| To | Multiply by |
| Square Inches . | 0.1550003 |
| Square Feet ... | 0.00107639 |
| Square Yards | 0.000119599 |
| Square Meters | 0.0001 |



| To Convert from Square Feet |  |
| :---: | :---: |
| To | Multiply by |
| Square Inches .......... 144 |  |
| Squa | 0.1111111 |
| Acre | 0.000022957 |
| Squa | 929.0304 |
| Squa | 0.09290304 |



## Units of Measurement-Conversion Factors*

*All boldface figures are exact; the others generally are given to seven significant figures.
Units of Area


## INDEX

-A-
Page
Acceptance Tests
Cast Iron Pipe ..... 111
Ductile Iron Pipe ..... 137, 189, 215, 236
Cast and Ductile Iron Fittings ..... 261
ANSI/AWWA Standards
See Table of Contents for Invidiual Standards ..... 5-7
NOTE: A detailed table of contents appears with each standardAssociation Membership3
ASTM Standard ..... 228, 233
AWWA Standard, see ANSI/AWWA
$-B-$
Ball and Socket Joint ..... 10
Bell and Spigot Dimensions ..... 126
Bends, see Fittings
Blind Flanges, see Fittings, SpecialBolts, Mechanical Joint Pipe327, 330
Bolts, Flanged Pipe ..... 243-246
Bolt Torque, Mechanical Joint ..... 333, 355, 376

- C-
Caps, see Fittings, Plugs and Caps
Casting Tolerance ..... 72, 154
Cement Mortar Lining ..... 387-389, 395-404
Chemistry
Gray Cast Iron ..... 14
Ductile Iron ..... 135
Connecting Pieces, see Fittings
Construction ..... 351-384
Contents of Pipe, Table ..... 430
Corrosion Control
Internal ..... 387-389, 395-404
External ..... 411-425
Soil Evaluation ..... 422-425
Crosses, see FittingsCulvert Pipe228
Cutting Pipe ..... 356
Page
Deflection, Maximum for Mechanical Joint. ..... 377
Deflection, Maximum for Push-on Joint ..... 356, 376
Design
Cast Iron Pipe ..... 15-78
Ductile Iron Pipe, Gas Service ..... 209-226
Ductile Iron Pipe, Gravity Sewer ..... 233-258
Ductile Iron Pipe, Water Service ..... 138-180
Disinfection of Water Mains ..... 361, 383
Drilling and Tapping ..... 140, 383
-E-
Earth Loads
Cast Iron Pipe ..... 80
Ductile Iron Pipe ..... 152
Expansive Soil ..... 421-25
Frost Penetration ..... 423-35
Elbows, see Fittings, Bends
Equation of Pipe, Table434
Expansion, Thermal, see Thermal Expansion
Expansive Soil, see Earth Loads
-F-
Federal Standards for Cast Iron Pipe ..... 134
Fittings, Gray and Ductile Iron. ..... 259-314
Bends, Base Flanged ..... 305
Bends, Base, Mechanical Joint ..... 287
Bends, Flanged ..... 300
Bends, Mechanical Joint ..... 277-280
Connecting Pieces ..... 296-297
Offsets ..... 293
Plugs and Caps ..... 295
Push-on Joint Fittings ..... 269
Reducers, Flanged ..... 307
Reducers, Mechanical Join ..... 289-292
Sleeves ..... 294
Special Fittings ..... 310-313
Tees and Crosses, Base ..... 287, 306
Tees and Crosses, Flanged ..... 301-304
Tees and Crosses, Mechanical Joint ..... 281-286
Flanged Pipe, see also Fittings ..... 335-346
Flare Fittings, see Fittings, Special
Flexible Joints, see Ball \& Socket Joint
Flow, General385-401
Nomograph ..... 390
Hazen-Williams Formula. ..... 389
Frost Loading, see Earth Loads
-G-
Gas, Pipe, Ductile Iron ..... 209-226
Gaskets
Mechanical Joint ..... 327-328
Push-on Joint ..... 331
Glands, Mechanical Joint ..... 324
$-\mathrm{H}-$
Hazen-Williams Formula. ..... 389
Head/Pressure Conversion Table ..... 435
History of Cast and Ductile Iron Pipe ..... 9
Hydrostatic Testing, see Testing
-I-
Installation, Cast and Ductile Iron Pipe ..... 351-384
-Jー
Joints, General ..... 315-350
Bell \& Spigot ..... 126
Flanged ..... 335-346
Mechanical. ..... 317-339
Push-on ..... 317-333
Restrained ..... 347
Joint Assembly, Push-on ..... 316, 375
-L-
Laying Conditions
Cast Iron Pipe ..... 24, 353, 373
Ductile Iron Pipe ..... 154, 374
Leakage, Allowable ..... 360, 382
Lining, Cement Mortar ..... 387, 403
Loading, Earth, see Earth Loads
Loading, Truck ..... 83,152
$-\mathrm{M}-$
Manufacture
Gray Cast Iron ..... 11, 103
Ductile Iron ..... 135, 181, 209
Mechanical Joint ..... 325-331
Metallurgy, Cast Iron ..... 13
Metallurgy, Ductile Iron ..... 135
Metric Conversion Tables ..... 441-449
-O-
Offsets, see Fittings
-P-
Piers, Design of Pipe on, Cast Iron ..... 98
Pit Cast Pipe, Dimensions ..... 127-131
Plugs, see Fittings
Polyethylene Encasement ..... 411-425
Pressure-Head, Conversion Table ..... 429
Pressure Rating
Cast Iron Pipe ..... 116-121
Ductile Iron Pipe ..... 178-180, 199-200
Fittings ..... 277-307
Flanges ..... 342-343
Push-on Joint ..... 331-332
-R-
Reducers, see Fittings
$-S-$
Service Allowance ..... 140, 148
Sewer Pipe, Ductile Iron ..... 233-258
Side Outlet Tees, see Fittings
Sleeves, see Fittings
Soil Evaluation ..... 422-425
Soil, Expansive ..... 427-429
Standards ..... 5-7
See Table of Contents for Individual Listing
of ANSI/AWWA and ANSI/ASTM Standards
NOTE: A detailed table of contents appearswith each standard
Surge Allowance
Cast Iron Pipe ..... 72, 392
Ductile Iron Pipe ..... 139, 148, 392
Storage of Pipe ..... 351, 369
Page
Tapping ..... 140, 383
Tees, see Fittings
Tees, see Fittings
Testing, Hydrostatic
Testing, Hydrostatic ..... $111,189,359$ ..... $111,189,359$
Thermal Expansion
Thermal Expansion ..... 437 ..... 437
Thickness Class
Thickness Class
Cast Iron Pipe
Cast Iron Pipe ..... 73 ..... 73
Ductile Iron Pipe
Ductile Iron Pipe ..... 156 ..... 156
Thrust Restraint
Thrust Restraint ..... 347-350 ..... 347-350
Tolerance, see Casting Tolerance
Tolerance, see Casting Tolerance
Trench Conditions
Cast Iron Pipe
Cast Iron Pipe ..... $24,353,373$ ..... $24,353,373$
Ductile Iron Pipe
Ductile Iron Pipe ..... 154, 374 ..... 154, 374
Trench Width
Trench Width ..... 352 ..... 352
Trench Load, see Earth Load
Trench Load, see Earth Load
-W-
-W-
Wall Sleeves, see Fittings, Special
Wall Sleeves, see Fittings, Special ..... 310-313 ..... 310-313
Water Hammer, see Surge Allowance
Water Hammer, see Surge Allowance ..... 392 ..... 392
Wye, see Fittings, Special
Wye, see Fittings, Special ..... 310-311 ..... 310-311


[^0]:    * The first figure designates the bursting tensile strength in units of $1,000 \mathrm{psi}$ and the second figure designates the ring modulus of rupture in units of $1,000 \mathrm{psi}$.

[^1]:    * The first figure designates the bursting tensile strength ( $S$ ) in units of 1.000 psi and the second figure designates the ring modulus of rupture $(R)$ in units of 1,000 psi.

[^2]:    When total calculated thickness is not followed by asterisk, surge pressure (Case 1) is the controlling factor. Se Sec. 1-2.1.

[^3]:    * The first figure designates the bursting tensile strength in $1,000 \mathrm{psi}$ and the second figure designates the ring modulus of iupture in $1,000 \mathrm{psi}$.

[^4]:    * See Ref. 3, "Foreword," p. x.

[^5]:    * Spangler, M. G. Soil Engineering. International Textbook Co., Scranton, Pa. (2nd ed., 1960). p. 416.

[^6]:    * For a definition of these terms see: Spangler, M. G. Soil Engineering. International Textbook Co., Scranton, Pa. (2nd ed.. 1960). p. 403.

[^7]:    1-3.2.4-Sample Calculation of Earth Load

    Determine earth load on 12 -in. castiron pipe with 5 ft of cover. Pipe laid

[^8]:    * Based on Class 22 pipe. Although the computed thickness may differ from that given for Class 22, the effect of the difference in pipe weight usually will not have a significant effect on the computed thickness and recalculation usually will not be necessary.
    $\dagger$ Based on nominal pipe size.

[^9]:    * The first figure designates the bursting tensile strength in units of 1000 psi and the second figure designates the ring modulus of rupture in units of 1000 psi .

[^10]:    - Liaison representative without vote

[^11]:    Including bell. Calculated weight of pipe rounded off to nearest 5 lb .
    8 Including bell. Average weight per foot based on calculated weight of pipe before rounding.
    Tolerances of OD of spigot end: $3-12$ in.., $\pm 0.06 \mathrm{in} .14-24 \mathrm{in} .,+0.05 \mathrm{in} . \mathrm{i}-0.08 \mathrm{in}$.

[^12]:    * American Association of State Highway and Transportation Officials.

[^13]:    * See Fig. 1
    + For pipe 30 in . and larger, consideration should be given to the use of laying conditions other than Type 1. $\pm$ Flat-bottom is defined as "undisturbed earth."
    § Loose soil or select material is defined as "native soil excavated from the trench, free of rocks, foreign material, and frozen earth."' ${ }_{\text {** }}$ AASHTO T-99, "Moisture Density Relations of Soils Using a 5.51 b ( 2.5 kg ) Rammer 12-in. ( $305-\mathrm{mm}$ ) Drop."

[^14]:    * $E^{\prime}=700 ; K_{b}=0.128 ; K_{z}=0.085$.
    + The $\frac{D}{i}$ for the tabulated $P_{v}$ nearest to the calculated $P_{v}$ is selected; when the calculated $P_{v}$ is halfway between two tabulated values, the smaller $\frac{D}{i}$ should be used.

[^15]:    * Total calculated thickness includes service allowance and casting tolerance added to net thickness.

[^16]:    * Total calculated thickness includes service allowance and casting tolerance added to net thickness.

[^17]:    *For pipe 30 in . and larger, consideration should be given to the use of laying conditions other than Type 1. " "Flat-bottom" is defined as undisturbed earth.
    $\ddagger$ "Loose soil" or "select material" is defined as native soil excavated from the trench, free of rocks, foreign materials, and frozen earth.
    § American Association of State Higbwav and Transportation Officials, 341 National Press Bldg., Washington, D.C. 20004.

[^18]:    

[^19]:    " Nominal thickness based on " $S$ " trench condition of ANS1 A21.50 with maximum ring deflection of 5 \% and ring stress of $36000 \mathrm{psi}(248 \mathrm{kPa})$. Wall thickness of pipe to serve at greater depths of cover may be calculated in accordance with ANSI A21.50.

[^20]:    ${ }^{1}$ This specification is under the jurisdiction of ASTM
    Committee A-4 on Iron Castings.
    Current edition approved Âpril 29, 1977. Published June 1977.
    ${ }_{3}$ Annual Book of ASTM Standards, Part 2.
    ${ }^{3}$ Annual Book of ASTM Standards, Parts 6, 7, and 10

    - Annual Book of ASTM Standards, Part 10.
    ${ }^{3}$ Available from the American National Standards Institute, 1430 Broadway, New York, N. Y. 10018.
    ${ }^{6}$ Available from the American Society of Civil Engineers, 345 East 47th St., New Ycrk, N. Y. 10017.

[^21]:    This standard has been included in this handbook by arrangement with the American Society for Testing and Materials

[^22]:    ${ }^{4}$ Laying condition Type 1 is limited to 16 -in. and smaller pipe.
    " Flat-bottom is defined as undisturbed earth
    "These laying conditions can be expected to develop the following backfill densities (Standard Proctor): Types 2 and 3. approximately $70 \%$ : Type 4 , approximately $75 \%$; Type 5 , approximately $85 \%$
    " Loose soil or select material is defined as native soil excavated from the trench, free of rocks, foreign materials, and frozen earth

[^23]:    ${ }^{*}$ These pipes are adequate for depths of cover from $2.5 \mathrm{ft}(0.76 \mathrm{~m})$ up to the maximum shown including an allowance

[^24]:    (C) Copyright 1977 by American Water Works Association Printed in US

[^25]:    * Liaison representative without vote

[^26]:    * See Fig. 10.1.

[^27]:    * For dimension details of mechanical-joint bells, see Table 10.1; for dimension details of plain ends, see Table 10.2. Eccentric reducers with the same dimensions and weights given for concentric reducers are available from
    most manufacturers in specified on the purchase order.
    $\ddagger$ Ductile Iron.

[^28]:    * All plugs and caps 30 in. and larger are "dished."

[^29]:    ＊Dimension details of flanges are in Table 10．14．
    ＋Ductile Iron．

[^30]:    * Liaison representative without vote

[^31]:    *Based on $33 / 4 \mathrm{~g}$ available chlorine per tablet.

[^32]:    * Alternate

[^33]:    * American Association of State Highway and Transportation Officials, 341 National Press Bldg., Washington, D.C. 20004.

[^34]:    * US Dept. of the Interior, Bureau of Reclamation, "Laboratory and Field Investigations of Plastic Films," Rept. No. ChE-82, Sep. 1968.

[^35]:    * Ten points = corrosive to gray or ductile cast-iron pipe; protection is indicated.
    $\dagger$ If sulfides are present and low or negative Redox potential results are obtained, three points shall be given for this range.

