
Felix Gessert

AMP, PWAs, HTTP/2 and Service Workers:
A New Era of Web Performance?

Mobile Track

PhD Thesis
Web Performance
Cloud Data Management

Felix Gessert

CEO & Co-Founder
Baqend Platform
Speed Kit Plugin

Who is talking today?

Presentation
is loading

Average: 9.3s
Loading…

-1% Revenue

-20% Traffic

+80% Traffic

Average: 9.3s
Loading…

-1% Revenue

-20% Traffic

+80% Traffic

Page Load Time
=

Money

What causes
slow page loads?

High Latency

Processing Overhead

There are 3 performance problems.

Frontend

High Latency

Processing Overhead

There are 3 performance problems.

Frontend

Is this really a
problem in practice?

How can we build
FASTER websites?

What we are going to cover.

Frontend Network Backend

Google AMP
Instant Articles

Progressive Web Apps

HTTP/2
Service Workers

Cloud & NoSQL
Speed Kit

Load time < 1s

Delay Perception

0 – 100 ms Instant

100 – 300 ms Small perceptible delay

300 – 1000 ms Machine is working

1+ s Mental context switch

10+ s Task abandoned

I. Grigorik, High performance browser networking.
O’Reilly Media, 2013.

What is the goal?

1. Frontend Performance

Frontend: Critical Rendering Path

CSS

Render Tree

Layout

Paint

JavaScript

CSSOM

DOM

<!doctype html>
<link href=all.css rel=stylesheet />
<script src=app.js ></script>
<body>

<h1>Web Performance</h1>
</body>

body { background-color: green; }
H1 { padding: 10px; }

elem.style.width = "50px";
document.write("test");

HTML

Execution

DOM

Dependency Delayed By Other Resource Blocks

Frontend: Critical Rendering Path
Best Practices

1. Minimize Length (Round-Trips)
2. Minimize Size (Critical Resources)
3. Minimize Weight (Critical Bytes)

Inlining cricital CSS
and JS “above the

fold”

Load CSS first, JS
last

Load non-critical CSS and
JS asynchronously

Compress images

Progressive
rendering

Single-page
application

Test your performance

Minify and
concatenate CSS and JS

PageSpeed Insights

processhtml

UglifyJs & cssmin

Google‘s vision
for a better web:
AMP

How AMP works:

• Stripped down HTML + AMP tags (e.g. img)
 rendered asynchronously by runtime

• CSS must be inlined + <50 KB

• No custom JS (except in iframes)

• Only static sizes  no repaints

• No Forms & only for mobile

• Pre-Loaded in Google Results

• Cached in Google CDN, as long as it is
crawled the next time

https://www.ampproject.org
/docs/reference/spec.html

Accelerated Mobile Pages (AMP)

Implementing AMP for a website

<link rel="amphtml" href="full-url-to-amp-version">

1. Link to AMP Version:

2. Use HTML Boilerplate:

<!doctype html>
<html ⚡ lang="en">

<head> …

3. AMP Tags:
<amp-img src="logo.png" width="100" height="40">

AMP: the Good↑

Google Result
Carousel

Fast Mobile
Loads

Works Well for
Static Sites

AMP: the Bad↓

- 59% Leads - 17% Signups

AMP: the Bad↓

Google
CDN URL Injected

Bar

AMP: the Ugly↓

No JS: only
Google‘s

Bad UX:
iOS Scrolling

No Custom
Analytics

Assumes
Dumb Devs

AMP: the Ugly↓

No Chat or
Payment

No Search or
Login

AMP: the Bad↓

No Chat or
Payment

No Search or
Login

AMP started as good idea
but it is too limiting.

Facebook‘s
Alternative:
Instant Articles

Facebook Instant Articles

<head>
<meta property="op:markup_version" content="v1.0">
<!-- The URL of web version-->
<link rel="canonical" href="http://example.com/article.html">
<meta property="fb:article_style" content="myarticlestyle">

</head>
<body>

<article> ... </article>
</body>

• Single HTML Document

• No CSS/JS

• Designed in FB Editor

• Crawled from RSS Feed

Instances Articles: the Good↑

Fast Mobile
Loads

Good UX for
Facebook Users

Instances Articles: the Bad↓

FB makes
the rules

Users stop visit-
ing real site

Why not apply the good ideas to any website?

Progressive Web Apps

What are Progessive
Web Apps?

Try this:

codetalks.baqend.com

Progressive Web Apps (PWAs)

Fast Loads
through Caching

Offline Mode
(Service Workers)

Add-to-Homescreen
and Push

+ +

Implementing PWAs

<link rel="manifest" href="/manifest.json">
{

"short_name": "Codetalks PWA",
"icons": [
{"src": "icon-1x.png", "type": "image/png", "sizes": "48x48"}],

"start_url": "index.html?launcher=true"
}

1. Manifest declares Add-to-Homescreen:

• PWAs are best practices
not a technology

• Progessively enhance
when supported

Implementing PWAs

2. Service Workers for caching & offline mode:

• PWAs are best practices
not a technology

• Gracefully degrade when
not supported

Cache
SW.js

WebsiteWeb
App

Network

Implementing PWAs

3. Add Web Push and Background Sync:

• PWAs are best practices
not a technology

• Progressively enhance the
user experience

Sync
SW.js

WebsiteWeb
App

Network

Push

Typical Architecture: App Shell Model

App Shell: HTML, JS, CSS, images
with app logic & layout

Content: Fetched on
demand & may change
more often

Why PWAs over AMP & Instant Articles?

Independent
Technology

Work across
Devices

No Restrictions
on Development

Why PWAs over AMP & Instant Articles?

Independent
Technology

Work across
Devices

No Restrictions
on Development

What is the future of
Progessive Web Apps?

The Future of PWAs is bright.

Payment Request API

• Goal: replace traditional
checkout forms

• Just ~10 LOC for a payment

• Vendor- & Browser-
Agnostic

The Future of PWAs is bright.

Credentials Management API

1. Click Sign-in → Native
Account Chooser

2. Credentials API stores
information for future use

3. Automatic Sign-in afterwards

The Future of PWAs is bright.

Web Speech API

Native Speech Recognition in the
Browser:

annyang.addCommands({
'Hello Code.talks': () => {

console.log('Hello you.');
}

});

The Future of PWAs is bright.

Web Share API

• Share site through native
share sheet UI

• Service Worker can
register as a Share Target

2. Network Performance

DNS Lookup

• Every domain has its own DNS lookup

Initial connection

• TCP makes a three-way handshake  2
roundtrips (1 with TCP Fast Open)

• SSL connections have a more complex
handshake  +2 roundtrips (only 1 with
TLS False Start or Session Resumption)

Time to First Byte
• Depends heavily on the distance between client and

the backend
• Includes the time the backend needs to render

→ Session lookups, Database Queries, …

Content Download
• New connections are slow (initial congestion window

is small) many roundtrips

Maximum 6 parallel connections

DNS Lookup Initial Connection

TLS Handshake

Time to First Byte Content Download

20 ms0 60 ms 80 ms 100 ms40 ms

TCP Handshake

Network Performance in a Nutshell

I. Grigorik, High performance browser networking.
O’Reilly Media, 2013.

Latency vs Bandwidth

I. Grigorik, High performance browser networking.
O’Reilly Media, 2013.

Latency vs Bandwidth

2× Bandwidth = Same Load Time

½ Latency ≈ ½ Load Time

How can network
performance
be tackled?

Avoid redirects, when
necessary serve from CDN

Heavy browser and
CDN caching

Persistent backend connections
and IP anycasting

HTTP/2 with optimized
SSL and TCP

Gzip compression for
text-based files

Minimize DNS lookups

Common Tuning Knobs:

HTTP HTTPS

HTTP
with CDN

HTTPS
with CDN and HTTP/2

3,22s 4,03s

0,44s 0,35s

Why HTTP/2 Matters

HTTP/1.1 HTTP/2vs

524 ms 268 ms

HTTP/1.1 HTTP/2vs

524 ms 268 ms

What makes
HTTP/2 faster?

Optimizations in HTTP/2

Header
Compression

Multiplexing
(1 Connection)

Resource
Prioritization

Server
Push

Adding a Content Delivery Network (CDN)

Adding a Content Delivery Network (CDN)

• Low latency to client
• Caching on the edge
• DDoS protection

• Failover & Stale-on-error
• Warm backend

connections

Hooking Into the Network: Service Workers

navigator.serviceWorker.register('/sw.js‘);
//In sw.js:
self.addEventListener('fetch', (event) => {}); //…

NetworkService WorkerBrowser Tabs

Hooking Into the Network: Service Workers

NetworkService WorkerBrowser Tabs

• Cache Data (CacheStorage)
• Store Data (IndexedDB)

• Receive Push
• Respond when Offline

Hooking Into the Network: Service Workers

NetworkService WorkerBrowser Tabs

• Rewrite HTTP Requests
• Sync Data in Background

• Hide Flaky Connectivity
from the User

Browser Support for Service Workers

Supported by 75% of browsers.

Browser Support for Service Workers

Safari: In Development
Edge: Implemented, but Toggled

Implementing Service Workers

• Requires SSL
• Hard to debug

• Sw.js must be served
top-level (root scope)

Major Challenge: Cache Coherence

• Cache just stores
(Req, Res)-Pairs

• HTTP browser cache
always exists, too

→ App decides when to
evict cache

Major Challenge: Cache Coherence

→ Does not improve inital page load time

Next Visit

Clear SW Cache

Network

sw.js

Usual pattern:

Cache Misses

3. Backend Performance

 Horizontally scalable
databases (e.g. “NoSQL”)

 Replication

 Sharding

 Failover

 Load Balancing
 Auto-scaling
 Failover

 Stateless Sessions
 Efficient Code & IO

Load Balancer Application Server Database

Backend Performance in a Nutshell

 Horizontally scalable
databases (e.g. “NoSQL”)

 Replication

 Sharding

 Failover

 Load Balancing
 Auto-scaling
 Failover

 Stateless Sessions
 Minimize shared state
 Efficient Code & IO

Load Balancer Application Server Database

Backend Performance in a Nutshell

How can you implement
a fast backend?

Load Balancer Application Server Database

Option 1: Build a Scalable Architecture

Option 2: Use a Backend Platform

Backend-as-a-Service or
Serverless Platform

Progressive Web App,
AMP, …

Read More on Backend Performance
Articles on medium.baqend.com

Now, we have a PWA,
HTTP/2, etc.

How do we measure
web performance?

Measuring Web Performance

TTFB
DOMContent

Loaded
Fully Loaded

Last Visual
Change

First byte received
DOM constructed,
no CSS blocks JS
No visual changes
Even asynchronous
JS has completed

Measuring Web Performance

TTFB
DOMContent

Loaded
Fully Loaded

Last Visual
Change

Even asynchronous
JS has completed

How can we measure user-
perceived performance?

The Speed Index

Time

VC
Visual Completeness

0

1

0 0.1s 0.2s 0.3s 0.4s 0.5s

න
0

∞

1 − 𝑉𝐶 𝑡 𝑑𝑡

What we Learned: Wrap-up

Frontend

• AMP and Instant Articles: Fast
but very limited

• PWAs bring native qualities to
the web: offline, fast loads,
push notifications

What we Learned: Wrap-up

Network

• HTTP/2 is much faster due to
multiplexing and push

• CDNs tackle latency & caching

• Service Workers can modify
the browser‘s requests

What we Learned: Wrap-up

Backend

• Cloud Providers make scaling
out easier

• Servers and Database Systems
need to support scalability and
failover

What we Learned: Wrap-up

Backend

• Cloud Providers make scaling
out easier

• Servers and Database Systems
need to support scalability and
failover

How can we improve the
performance of existing sites?

Speed Kit
Turning Websites into Instantly-Loading

Progressive Web Apps

Faster

More Scalable

What Speed Kit does.

1 0 11 0 0 10

What Speed Kit does.

1 0 11 0 0 10

What Speed Kit does.

F. Gessert, F. Bücklers, und N. Ritter, „ORESTES: a Scalable Database-as-a-Service
Architecture for Low Latency“, in CloudDB 2014, 2014.

F. Gessert und F. Bücklers, „ORESTES: ein System für horizontal skalierbaren Zugriff auf
Cloud-Datenbanken“, in Informatiktage 2013, 2013.

F. Gessert, S. Friedrich, W. Wingerath, M. Schaarschmidt, und N. Ritter,
„Towards a Scalable and Unified REST API for Cloud Data Stores“, in 44.
Jahrestagung der GI, Bd. 232, S. 723–734.

F. Gessert, M. Schaarschmidt, W. Wingerath, S. Friedrich, und N. Ritter, „The
Cache Sketch: Revisiting Expiration-based Caching in the Age of Cloud Data
Management“, in BTW 2015.

F. Gessert und F. Bücklers, Performanz- und Reaktivitätssteigerung von OODBMS
vermittels der Web-Caching-Hierarchie. Bachelorarbeit, 2010.

F. Gessert und F. Bücklers, Kohärentes Web-Caching von Datenbankobjekten im
Cloud Computing. Masterarbeit 2012.

W. Wingerath, S. Friedrich, und F. Gessert, „Who Watches the Watchmen? On
the Lack of Validation in NoSQL Benchmarking“, in BTW 2015.

M. Schaarschmidt, F. Gessert, und N. Ritter, „Towards Automated Polyglot
Persistence“, in BTW 2015.

S. Friedrich, W. Wingerath, F. Gessert, und N. Ritter, „NoSQL OLTP Benchmarking: A
Survey“, in 44. Jahrestagung der Gesellschaft für Informatik, 2014, Bd. 232, S. 693–
704.

F. Gessert, „Skalierbare NoSQL- und Cloud-Datenbanken in Forschung und
Praxis“, BTW 2015

F. Gessert, N. Ritter „Scalable Data Management: NoSQL Data Stores in
Research and Practice“, 32nd IEEE International Conference on Data
Engineering, ICDE, 2016

W. Wingerath, F. Gessert, S. Friedrich, N. Ritter „Real-time stream processing for Big
Data“, Big Data Analytics it - Information Technology, 2016

F. Gessert, W. Wingerath, S. Friedrich, N. Ritter “NoSQL Database Systems: A Survey
and Decision Guidance”, Computer Science - Research and Development, 2016

F. Gessert, N. Ritter „Polyglot Persistence“, Datenbank Spektrum, 2016.

Backed by
30 Man-Years of Research

Adding Speed Kit to a Site

1. Configure Domain

Set which URLs Baqend
should accelerate.

2. Include Code Snippet

Add the Speed Kit Service
Worker to the website.

3. Requests Accelerated

Speed Kit routes the requests
through Baqend‘s CDN.

How it works under the hood

Website with
Snippet

Speed Kit
Service Worker

Requests

Baqend
Service

Existing
Backend

Fast Requests

PushPull

3rd Party
Services

Speed Kit works across tech stacks.

Publishers

E-Commerce Web Apps

Works for Publishers.

kicker.de

Works for Landing Pages.

molsoncoors.com

Works for Portals.

realtor.com

Works for E-Commerce.

alibaba.com

Works for Conference Websites.

codetalks.de

Works for Aggregators.

news.google.com

test.speed-kit.com

Does it work for Your Site?

Platform

Platform for building
(Progressive) Web Apps

15x Performance Edge

Faster Development

What we develop at Baqend

Speed Kit

Turns Existing Sites
into PWAs

50-300% Faster Loads

Offline Mode

Good Resources
https://developers.google.com/web/fundamentals/performance/?hl=en

https://www.udacity.com/course/website-performance-optimization--ud884

https://hpbn.co/

https://developers.google.com/speed/
pagespeed/

https://test.speed-kit.com
http://www.webpagetest.org/

Performance Tools
https://medium.baqend.com/

https://www.baqend.com/

Web Performance Literature

We are hiring.

Contact us.

Felix Gessert · fg@baqend.com · www.baqend.com

Frontend Developers
Mobile Developers

Java Developers
Web Performance Engineers

Felix Gessert · fg@baqend.com · www.baqend.com

Th. 16:00 Real-Time Databases Explained: Why
Meteor, RethinkDB, Parse and Firebase Don't Scale

Fr. 10:00 Real-Time Anwendungen mit React und
React Native entwickeln

Fr. 17:00 Wie man ein Backend-as-a-Service
entwickelt: Lessons Learned

Questions?

Our other talks:

