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Outline

• The Database Explosion
• NoSQL: Motivation and

Origins
• The 4 Classes of NoSQL

Databases:
• Key-Value Stores
• Wide-Column Stores
• Document Stores
• Graph Databases

• CAP Theorem

NoSQL Foundations and
Motivation

The NoSQL Toolbox: 
Common Techniques

NoSQL Systems &
Decision Guidance

Scalable Real-Time 
Databases and Processing



Introduction: What are NoSQL
data stores?
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NoSQL

The era of one-size-fits-all database systems is over

 Specialized data systems



The Database Explosion
Sweetspots

RDBMS

General-purpose
ACID transactions

Wide-Column Store

Long scans over
structured data

Parallel DWH

Aggregations/OLAP for
massive data amounts

Document Store

Deeply nested
data models

NewSQL

High throughput
relational OLTP

Key-Value Store

Large-scale
session storage

Graph Database

Graph algorithms
& queries

In-Memory KV-Store

Counting & statistics

Wide-Column Store

Massive user-
generated content



The Database Explosion
Cloud-Database Sweetspots

Amazon Elastic

MapReduce

Hadoop-as-a-Service

Big Data Analytics

Managed RDBMS

General-purpose
ACID transactions

Managed Cache

Caching and
transient storage

Azure Tables

Wide-Column Store

Very large tables

Wide-Column Store

Massive user-
generated content

Backend-as-a-Service

Small Websites 
and Apps

Managed NoSQL

Full-Text Search

Google Cloud

Storage

Object Store

Massive File
Storage

Realtime BaaS

Communication and
collaboration



How to choose a database system?
Many Potential Candidates

Application Layer

Billing Data Nested 
Application Data

Session data

Search Index

Files

Amazon Elastic

MapReduce

Google Cloud

Storage
Friend 

network Cached data 
& metrics

Recommen-
dation Engine

Question in this tutorial:

How to approach the decision problem?

requirements database



 „NoSQL“ term coined in 2009

 Interpretation: „Not Only SQL“

 Typical properties:
◦ Non-relational

◦ Open-Source

◦ Schema-less (schema-free)

◦ Optimized for distribution (clusters)

◦ Tunable consistency

NoSQL Databases

NoSQL-Databases.org:
Current list has over 150 

NoSQL systems



NoSQL Databases

Scalability Impedance Mismatch

?

ID

Customer

Line Item 1: …
Line Item2: …

Orders
Line Items

Customers
Payment

 Two main motivations:

User-generated data,
Request load

Payment: Credit Card, …



Scale-up vs Scale-out

Scale-Up (vertical
scaling):

More RAM

More CPU

More HDD

Scale-Out (horizontal
scaling):

Commodity
Hardware

Shared-Nothing
Architecture



Schemafree Data Modeling

RDBMS: NoSQL DB:

SELECT Name, Age
FROM   Customers

Customers

Explicit
schema

Item[Price] -
Item[Discount]

Implicit
schema



Big Data
The Analytic side of NoSQL

 Idea: make existing massive, unstructured data
amounts usable

• Structured data (DBs)
• Log files
• Documents, Texts, Tables
• Images, Videos
• Sensor data
• Social Media, Data Services

Sources

Analyst, Data Scientist, 
Software Developer

• Statistics, Cubes, Reports
• Recommender
• Classificators, Clustering
• Knowledge



Highly Available Storage (SAN, 
RAID, etc.)

Highly available network
(Infiniband, Fabric Path, etc.)

Specialized DB hardware
(Oracle Exadata, etc.)

Commercial DBMS

NoSQL Paradigm Shift
Open Source & Commodity Hardware

Commodity drives (standard
HDDs, JBOD)

Commodity network
(Ethernet, etc.)

Commodity hardware

Open-Source DBMS



NoSQL Paradigm Shift
Shared Nothing Architectures

Shared Memory
e.g. "Oracle 11g"

Shared Disk
e.g. "Oracle RAC"

Shared Nothing
e.g. "NoSQL"

Shift towards higher distribution & less coordination:



 Two common criteria:

NoSQL System Classification

Data
Model

Consistency/Availability
Trade-Off

AP: Available & Partition 
Tolerant

CP: Consistent &  
Partition Tolerant

Graph

CA: Not Partition 
Tolerant 

Document

Wide-Column

Key-Value



 Data model: (key) -> value

 Interface: CRUD (Create, Read, Update, Delete)

 Examples: Amazon Dynamo (AP), Riak (AP), Redis (CP)

Key-Value Stores

{23, 76, 233, 11}users:2:friends

[234, 3466, 86,55]users:2:inbox

Theme → "dark", cookies → "false"users:2:settings

Value: 
An opaque blob

Key



 Data model: (rowkey, column, timestamp) -> value

 Interface: CRUD, Scan

 Examples: Cassandra (AP), Google BigTable (CP), 
HBase (CP)

Wide-Column Stores

com.cnn.www crawled: …
content : "<html>…"

content : "<html>…"content : "<html>…" title : "CNN"

Row Key Column
Versions (timestamped)



 Data model: (collection, key) -> document

 Interface: CRUD, Querys, Map-Reduce

 Examples: CouchDB (AP), RethinkDB (CP), MongoDB 
(CP)

Document Stores

order-12338 {
order-id: 23,
customer: { name : "Felix Gessert", age : 25 }
line-items : [ {product-name : "x", …} , …]

}

ID/Key JSON Document



 Data model: G = (V, E): Graph-Property Modell

 Interface: Traversal algorithms, querys, transactions

 Examples: Neo4j (CA), InfiniteGraph (CA), OrientDB
(CA)

Graph Databases

company: 
Apple
value:

300Mrd

name: 
John Doe

WORKS_FOR
since: 1999
salary: 140K

Nodes

Edges

Properties



 Data model: G = (V, E): Graph-Property Modell

 Interface: Traversal algorithms, querys, transactions

 Examples: Neo4j (CA), InfiniteGraph (CA), OrientDB
(CA)

Graph Databases

company: 
Apple
value:

300Mrd

name: 
John Doe

WORKS_FOR
since: 1999
salary: 140K

Nodes

Edges

Properties



 Data model: vectorspace model, docs + metadata
 Examples: Solr, ElasticSearch

Search Platforms

Inverted Index

Doc. 3

Key Value

Key Value

Key Value

Doc. 1

Key Value

Key Value

Key Value

Doc. 4

Key Value

Key Value

Key Value

Term Document

database 3,4,1

ritter 1

Search Server

POST /lectures/dis
{ „topic": „databases",
„lecturer": „ritter",
… }

REST API



 Data model: Classes, objects, relations (references)

 Interface: CRUD, querys, transactions

 Examples: Versant (CA), db4o (CA), Objectivity (CA)

Object-oriented Databases

Classes
Properties



 Data model: Classes, objects, relations (references)

 Interface: CRUD, querys, transactions

 Examples: Versant (CA), db4o (CA), Objectivity (CA)

Object-oriented Databases

Classes
Properties



 Data model: XML, RDF

 Interface: CRUD, querys (XPath, XQuerys, SPARQL), 
transactions (some)

 Examples: MarkLogic (CA), AllegroGraph (CA)

XML databases, RDF Stores



 Data model: XML, RDF

 Interface: CRUD, querys (XPath, XQuerys, SPARQL), 
transactions (some)

 Examples: MarkLogic (CA), AllegroGraph (CA)

XML databases, RDF Stores



 Data model: files + folders

Distributed File System

Server
Stub

RPC

I/O Nodes

SAN

RPC RPC

Client

Network FS Cluster FS

NFS, AFS GPFS, Lustre HDFS

Distributed FS



 Data model: arbitrary (frequently unstructured)

 Examples: Hadoop, Spark, Flink, DryadLink, Pregel

Big Data Batch Processing

Data Batch Analytics

Statistics,
Models

Log files

Unstructured
Files

Databases

Algorithms

-Aggregation
-Machine
Learning
-Correlation
-Clustering



 Data model: arbitrary

 Examples: Storm, Samza, Flink, Spark Streaming

Big Data Stream Processing
Covered in Depth in the Last Part

Real-Time Data Stream Processing

- Notifications
- Statistics &

Aggregates
- Recommen-

dations
- Models
- Warnings

Sensor Data 
& IOT

Log 
Streams

DB Change
Streams



 Data model: several data models possible

 Interface: CRUD, Querys + Continuous Queries

 Examples: Firebase (CP), Parse (CP), Meteor (CP), 
Lambda/Kappa Architecture

Real-Time Databases
Covered in Depth in the Last Part

Subscribing
Client

Real-Time Change 
Notifications

Insert
…  tag=‘b‘ …

Subscribe
tag=‘b‘ Real-Time 

DB



Search Platforms (Full Text Search):
◦ No persistence and consistency guarantees for OLTP

◦ Examples: ElasticSearch (AP), Solr (AP)

Object-Oriented Databases:
◦ Strong coupling of programming language and DB

◦ Examples: Versant (CA), db4o (CA), Objectivity (CA)

XML-Databases, RDF-Stores:
◦ Not scalable, data models not widely used in industry

◦ Examples: MarkLogic (CA), AllegroGraph (CA)

Soft NoSQL Systems
Not Covered Here



Only 2 out of 3 properties are
achievable at a time:
◦ Consistency: all clients have the same 

view on the data

◦ Availability: every request to a non-
failed node most result in correct
response

◦ Partition tolerance: the system has to
continue working, even under
arbitrary network partitions

CAP-Theorem

Eric Brewer, ACM-PODC Keynote, Juli 2000

Gilbert, Lynch: Brewer's Conjecture and the Feasibility of 
Consistent, Available, Partition-Tolerant Web Services, SigAct News 2002

Consistency

Availability
Partition 
Tolerance

Impossible



 Problem: when a network partition occurs, either
consistency or availability have to be given up

CAP-Theorem: simplified proof

Replication Value = V0

N2

Value = V1

N1

Response before
successful replication
 Availability

Block response until
ACK arrives
 Consistency

Network partition



NoSQL Triangle

A

C P

Every client can always
read and write

All nodes continue
working under network
partitions

All clients share the
same view on the data

Nathan Hurst: Visual Guide to NoSQL Systems
http://blog.nahurst.com/visual-guide-to-nosql-systems

CA
Oracle, MySQL, …

Data models

Relational
Key-Value
Wide-Column
Document-Oriented

AP
Dynamo, Redis, Riak, Voldemort
Cassandra
SimpleDB

CP
Postgres, MySQL Cluster, Oracle RAC
BigTable, HBase, Accumulo, Azure Tables
MongoDB, RethinkDB, DocumentsDB



 Idea: Classify systems according to their behavior
during network partitions

PACELC – an alternative CAP formulation

Partiti

on

yes no

Abadi, Daniel. "Consistency tradeoffs in modern distributed 
database system design: CAP is only part of the story."

Avail-

ability

Con-

sistency

Laten-

cy

Con-

sistency

AL - Dynamo-Style 
Cassandra, Riak, etc.

AC - MongoDB CC – Always Consistent
HBase, BigTable and ACID systems

No consequence of the
CAP theorem



 Some weaker isolation levels allow high availability:
◦ RAMP Transactions (P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, und I. Stoica, „Scalable

Atomic Visibility with RAMP Transactions“, SIGMOD 2014)

Serializability
Not Highly Available Either

Global serializability and availability are incompatible:

Write A=1
Read B

Write B=1
Read A

𝑤1 𝑎 = 1 𝑟1(𝑏 = ⊥) 𝑤2 𝑏 = 1 𝑟2(𝑎 = ⊥)

S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in 
partitioned networks. ACM CSUR, 17(3):341–370, 1985.



 Consensus:
◦ Agreement: No two processes can commit different decisions

◦ Validity (Non-triviality): If all initial values are same, nodes must 
commit that value

◦ Termination: Nodes commit eventually

 No algorithm guarantees termination (FLP)

 Algorithms:
◦ Paxos (e.g. Google Chubby, Spanner, Megastore, Aerospike, 

Cassandra Lightweight Transactions)

◦ Raft (e.g. RethinkDB, etcd service)

◦ Zookeeper Atomic Broadcast (ZAB)

Impossibility Results
Consensus Algorithms

Safety
Properties

Liveness
Property

Lynch, Nancy A. Distributed algorithms. 
Morgan Kaufmann, 1996.



Where CAP fits in
Negative Results in Distributed Computing

Asynchronous Network, 

Unreliable Channel

Impossible: 
2 Generals Problem

Consensus

Atomic Storage

Impossible:
CAP Theorem

Asynchronous Network, 

Reliable Channel

Impossible: 
Fisher Lynch Patterson (FLP) 
Theorem

Consensus

Atomic Storage

Possible:
Attiya, Bar-Noy, Dolev (ABD)
Algorithm

Lynch, Nancy A. Distributed algorithms. 
Morgan Kaufmann, 1996.



ACID vs BASE 

ACID

Atomicity

Consistency

Isolation

Durability

BASE

Basically 
Available

Soft State

Eventually 
Consistent

„Gold standard“
for RDBMSs

Model of many
NoSQL systems

http://queue.acm.org/detail.cfm?id=1394128



Weaker guarantees in a database?!
Default Isolation Levels in RDBMSs

Bailis, Peter, et al. "Highly available transactions: Virtues and 
limitations." Proceedings of the VLDB Endowment 7.3 (2013): 181-192.

Database Default Isolation Maximum Isolation

Actian Ingres 10.0/10S S S

Aerospike RC RC

Clustrix CLX 4100 RR ?

Greenplum 4.1 RC S

IBM DB2 10 for z/OS CS S

IBM Informix 11.50 Depends RR

MySQL 5.6 RR S

MemSQL 1b RC RC

MS SQL Server 2012 RC S

NuoDB CR CR

Oracle 11g RC SI

Oracle Berkeley DB S S

Postgres 9.2.2 RC S

SAP HANA RC SI

ScaleDB 1.02 RC RC

VoltDB S S

RC: read committed, RR: repeatable read, S: serializability,
SI: snapshot isolation, CS: cursor stability, CR: consistent read



Weaker guarantees in a database?!
Default Isolation Levels in RDBMSs

Bailis, Peter, et al. "Highly available transactions: Virtues and 
limitations." Proceedings of the VLDB Endowment 7.3 (2013): 181-192.

Database Default Isolation Maximum Isolation

Actian Ingres 10.0/10S S S

Aerospike RC RC

Clustrix CLX 4100 RR ?

Greenplum 4.1 RC S

IBM DB2 10 for z/OS CS S

IBM Informix 11.50 Depends RR

MySQL 5.6 RR S

MemSQL 1b RC RC

MS SQL Server 2012 RC S

NuoDB CR CR

Oracle 11g RC SI

Oracle Berkeley DB S S

Postgres 9.2.2 RC S

SAP HANA RC SI

ScaleDB 1.02 RC RC

VoltDB S S

RC: read committed, RR: repeatable read, S: serializability,
SI: snapshot isolation, CS: cursor stability, CR: consistent read

Theorem:
Trade-offs are central to database systems.



Data Models and CAP provide high-level 
classification.

But what about fine-grained
requirements, e.g. query capabilites?



Outline

• Techniques for Functional
and Non-functional
Requirements
• Sharding
• Replication
• Storage Management
• Query Processing

NoSQL Foundations and
Motivation

The NoSQL Toolbox: 
Common Techniques

NoSQL Systems &
Decision Guidance

Scalable Real-Time 
Databases and Processing



Functional Techniques Non-Functional

Scan Queries

ACID Transactions

Conditional or Atomic Writes

Joins

Sorting

Filter Queries

Full-text Search

Aggregation and Analytics

Sharding

Replication

Logging
Update-in-Place
Caching
In-Memory Storage
Append-Only Storage

Storage Management

Query Processing

Elasticity

Consistency

Read Latency

Write Throughput

Read Availability

Write Availability

Durability

Write Latency

Write Scalability

Read Scalability

Data Scalability

Global Secondary Indexing
Local Secondary Indexing
Query Planning
Analytics Framework
Materialized Views

Commit/Consensus Protocol
Synchronous
Asynchronous
Primary Copy
Update Anywhere

Range-Sharding
Hash-Sharding
Entity-Group Sharding
Consistent Hashing
Shared-Disk



Functional Techniques Non-Functional

Scan Queries

ACID Transactions

Conditional or Atomic Writes

Joins

Sorting

Filter Queries

Full-text Search

Aggregation and Analytics

Sharding

Replication

Logging
Update-in-Place
Caching
In-Memory Storage
Append-Only Storage

Storage Management

Query Processing

Elasticity

Consistency

Read Latency

Write Throughput

Read Availability

Write Availability

Durability

Write Latency

Write Scalability

Read Scalability

Data Scalability

Global Secondary Indexing
Local Secondary Indexing
Query Planning
Analytics Framework
Materialized Views

Commit/Consensus Protocol
Synchronous
Asynchronous
Primary Copy
Update Anywhere

Range-Sharding
Hash-Sharding
Entity-Group Sharding
Consistent Hashing
Shared-Disk

Functional
Require-

ments from
the

application

Central
techniques

NoSQL
databases

employ

Operational 
Require-
ments

enable enable



http://www.baqend.com
/files/nosql-survey.pdf



Functional Techniques Non-Functional

Scan Queries

ACID Transactions

Conditional or Atomic Writes

Joins

Sorting

Sharding

Elasticity

Write Scalability

Read Scalability

Data Scalability

Range-Sharding
Hash-Sharding
Entity-Group Sharding
Consistent Hashing
Shared-Disk



Hash-based Sharding
◦ Hash of data values (e.g. key) determines partition (shard)
◦ Pro: Even distribution
◦ Contra: No data locality

Range-based Sharding
◦ Assigns ranges defined over fields (shard keys) to partitions
◦ Pro: Enables Range Scans and Sorting
◦ Contra: Repartitioning/balancing required

Entity-Group Sharding
◦ Explicit data co-location for single-node-transactions
◦ Pro: Enables ACID Transactions
◦ Contra: Partitioning not easily changable

Sharding
Approaches

David J DeWitt and Jim N Gray: “Parallel database systems: The future of high performance 
database systems,” Communications of the ACM, volume 35, number 6, pages 85–98, June 1992.



Hash-based Sharding
◦ Hash of data values (e.g. key) determines partition (shard)
◦ Pro: Even distribution
◦ Contra: No data locality

Range-based Sharding
◦ Assigns ranges defined over fields (shard keys) to partitions
◦ Pro: Enables Range Scans and Sorting
◦ Contra: Repartitioning/balancing required

Entity-Group Sharding
◦ Explicit data co-location for single-node-transactions
◦ Pro: Enables ACID Transactions
◦ Contra: Partitioning not easily changable

Sharding
Approaches

MongoDB, Riak, Redis, 
Cassandra, Azure Table, 
Dynamo

Implemented in

BigTable, HBase, DocumentDB
Hypertable, MongoDB, 
RethinkDB, Espresso

Implemented in

G-Store, MegaStore,
Relation Cloud, Cloud SQL 
Server 

Implemented in

David J DeWitt and Jim N Gray: “Parallel database systems: The future of high performance 
database systems,” Communications of the ACM, volume 35, number 6, pages 85–98, June 1992.



Example: Tumblr

 Caching

 Sharding from
application

Moved towards:

 Redis

 HBase

Problems of Application-Level Sharding

Web

Servers

MySQL

Web

Cache

Web

Cache

Web

Cache

LB

W W W

Web

Servers

My

SQL

Web

Cache

Web

Cache

Web

Cache

LB

W W W

My

SQL

My

SQL

Memcached Memcached

Manual

Sharding

Web

Server

MySQL

Web

Servers

MySQL

W W W

Memcached1 2

3 4



Functional Techniques Non-Functional

ACID Transactions

Conditional or Atomic Writes
Replication

Consistency

Read Latency

Read Availability

Write Availability

Write Latency

Read Scalability

Commit/Consensus Protocol
Synchronous
Asynchronous
Primary Copy
Update Anywhere



 Stores N copies of each data item

 Consistency model: synchronous vs asynchronous

 Coordination: Multi-Master, Master-Slave

Replication
Read Scalability + Failure Tolerance

DB Node

DB Node

DB Node

Özsu, M.T., Valduriez, P.: Principles of distributed database systems. 
Springer Science & Business Media (2011)



Asynchronous (lazy)
◦ Writes are acknowledged immdediately

◦ Performed through log shipping or update propagation

◦ Pro: Fast writes, no coordination needed

◦ Contra: Replica data potentially stale (inconsistent)

Synchronous (eager)
◦ The node accepting writes synchronously propagates

updates/transactions before acknowledging

◦ Pro: Consistent

◦ Contra: needs a commit protocol (more roundtrips), 
unavaialable under certain network partitions

Replication: When

Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and 
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)



Asynchronous (lazy)
◦ Writes are acknowledged immdediately

◦ Performed through log shipping or update propagation

◦ Pro: Fast writes, no coordination needed

◦ Contra: Replica data potentially stale (inconsistent)

Synchronous (eager)
◦ The node accepting writes synchronously propagates

updates/transactions before acknowledging

◦ Pro: Consistent

◦ Contra: needs a commit protocol (more roundtrips), 
unavaialable under certain network partitions

Replication: When

Dynamo , Riak, CouchDB, 
Redis, Cassandra, Voldemort, 
MongoDB, RethinkDB

Implemented in

BigTable, HBase, Accumulo, 
CouchBase, MongoDB, 
RethinkDB

Implemented in

Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and 
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)



Master-Slave (Primary Copy)
◦ Only a dedicated master is allowed to accept writes, slaves are

read-replicas

◦ Pro: reads from the master are consistent

◦ Contra: master is a bottleneck and SPOF

Multi-Master (Update anywhere)
◦ The server node accepting the writes synchronously

propagates the update or transaction before acknowledging

◦ Pro: fast and highly-available

◦ Contra: either needs coordination protocols (e.g. Paxos) or is
inconsistent

Replication: Where

Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and 
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)



Synchronous Replication
Example: Two-Phase Commit is not partition-tolerant

co
m

m
it

prepare



Synchronous Replication
Example: Two-Phase Commit is not partition-tolerant

prepared

prepared

prepared

prepared

prepared

prepared

prepare



Synchronous Replication
Example: Two-Phase Commit is not partition-tolerant

prepared

prepared

prepared

prepared

prepared

prepared

commit



Synchronous Replication
Example: Two-Phase Commit is not partition-tolerant

prepared

prepared

preparedcommited

commited

commit

commited



Synchronous Replication
Example: Two-Phase Commit is not partition-tolerant

prepared

prepared

preparedcommited

commited

commit

commited



Synchronous Replication
Example: Two-Phase Commit is not partition-tolerant

commited

commited

commitedcommited

commited

commit

commited



Synchronous Replication
Example: Two-Phase Commit is not partition-tolerant

commited

commited

commitedcommited

commited
co

m
m

it
ed

commit

commited



Consistency Levels

Writes 
Follow Reads

Read Your 
Writes

Monotonic
Reads

Monotonic
Writes

Bounded 
Staleness

Lineari-
zability

PRAM

Causal
Consistency

Bailis, Peter, et al. "Highly available transactions: Virtues and 
limitations." Proceedings of the VLDB Endowment 7.3 (2013): 181-192.

Viotti, Paolo, and Marko Vukolić. "Consistency in Non-
Transactional Distributed Storage Systems." arXiv (2015).



Consistency Levels

Writes 
Follow Reads

Read Your 
Writes

Monotonic
Reads

Monotonic
Writes

Bounded 
Staleness

Lineari-
zability

PRAM

Causal
Consistency

Bailis, Peter, et al. "Highly available transactions: Virtues and 
limitations." Proceedings of the VLDB Endowment 7.3 (2013): 181-192.

Either version-based or 
time-based. Both not 
highly available.

Viotti, Paolo, and Marko Vukolić. "Consistency in Non-
Transactional Distributed Storage Systems." arXiv (2015).



Consistency Levels

Writes 
Follow Reads

Read Your 
Writes

Monotonic
Reads

Monotonic
Writes

Bounded 
Staleness

Lineari-
zability

PRAM

Causal
Consistency

Bailis, Peter, et al. "Highly available transactions: Virtues and 
limitations." Proceedings of the VLDB Endowment 7.3 (2013): 181-192.

Viotti, Paolo, and Marko Vukolić. "Consistency in Non-
Transactional Distributed Storage Systems." arXiv (2015).

Writes in one session are 
strictly ordered on all 
replicas.



Consistency Levels

Writes 
Follow Reads

Read Your 
Writes

Monotonic
Reads

Monotonic
Writes

Bounded 
Staleness

Lineari-
zability

PRAM

Causal
Consistency

Bailis, Peter, et al. "Highly available transactions: Virtues and 
limitations." Proceedings of the VLDB Endowment 7.3 (2013): 181-192.

Viotti, Paolo, and Marko Vukolić. "Consistency in Non-
Transactional Distributed Storage Systems." arXiv (2015).

Versions a client reads in 
a session increase
monotonically.



Consistency Levels

Writes 
Follow Reads

Read Your 
Writes

Monotonic
Reads

Monotonic
Writes

Bounded 
Staleness

Lineari-
zability

PRAM

Causal
Consistency

Bailis, Peter, et al. "Highly available transactions: Virtues and 
limitations." Proceedings of the VLDB Endowment 7.3 (2013): 181-192.

Viotti, Paolo, and Marko Vukolić. "Consistency in Non-
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Clients directly 
see their own 
writes.
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Viotti, Paolo, and Marko Vukolić. "Consistency in Non-
Transactional Distributed Storage Systems." arXiv (2015).

Strategies:
• Single-mastered reads and 

writes
• Multi-master replication with 

consensus on writes



Problem: Terminology

Bailis, Peter, et al. "Highly available transactions: Virtues and 
limitations." Proceedings of the VLDB Endowment 7.3 (2013): 181-192.

V., Paolo, and M. Vukolić. "Consistency in Non-Transactional 
Distributed Storage Systems." ACM CSUR (2016).



Definition: Once the user has written a value, subsequent reads will 
return this value (or newer versions if other writes occurred in 
between); the user will never see versions older than his last write.

Read Your Writes (RYW)

Wiese, Lena. Advanced Data Management: For SQL, NoSQL, Cloud 
and Distributed Databases. De Gruyter, 2015.

https://blog.acolyer.org/2016/02/26/distributed-consistency-
and-session-anomalies/



Definition: Once a user has read a version of a data item on one replica 
server, it will never see an older version on any other replica server

Monotonic Reads (MR)

Wiese, Lena. Advanced Data Management: For SQL, NoSQL, Cloud 
and Distributed Databases. De Gruyter, 2015.

https://blog.acolyer.org/2016/02/26/distributed-consistency-
and-session-anomalies/



Definition: Once a user has written a new value for a data item in a 
session, any previous write has to be processed before the current 
one. I.e., the order of writes inside the session is strictly maintained.

Montonic Writes (MW)

Wiese, Lena. Advanced Data Management: For SQL, NoSQL, Cloud 
and Distributed Databases. De Gruyter, 2015.

https://blog.acolyer.org/2016/02/26/distributed-consistency-
and-session-anomalies/



Definition: When a user reads a value written in a session after that 
session already read some other items, the user must be able to see 
those causally relevant values too.

Writes Follow Reads (WFR)

Wiese, Lena. Advanced Data Management: For SQL, NoSQL, Cloud 
and Distributed Databases. De Gruyter, 2015.

https://blog.acolyer.org/2016/02/26/distributed-consistency-
and-session-anomalies/



PRAM and Causal Consistency

 Combinations of previous session consistency guarantess

◦ PRAM = MR + MW + RYW

◦ Causal Consistency = PRAM + WFR

 All consistency level up to causal consistency can be
guaranteed with high availability

 Example: Bolt-on causal consistency

Bailis, Peter, et al. "Bolt-on causal consistency." 
Proceedings of the 2013 ACM SIGMOD, 2013.



Bounded Staleness

 Either time-based:

 Or version-based:

 Both are not achievable with high availability

Wiese, Lena. Advanced Data Management: For SQL, NoSQL, Cloud 
and Distributed Databases. De Gruyter, 2015.

t-Visibility (Δ-atomicity): the inconsistency window comprises 
at most t time units; that is, any value that is returned upon 
a read request was up to date t time units ago.

k-Staleness: the inconsistency window comprises at most k 
versions; that is, lags at most k versions behind the most 
recent version.



Functional Techniques Non-Functional

Logging
Update-in-Place
Caching
In-Memory Storage
Append-Only Storage

Storage Management

Read Latency

Write Throughput

Durability
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Promotes durability of 
write operations.

Increases write 
throughput.

Is good for 
read latency.

Improves 
latency.



Functional Techniques Non-Functional

Joins

Sorting

Filter Queries

Full-text Search

Aggregation and Analytics

Query Processing

Read Latency

Global Secondary Indexing
Local Secondary Indexing
Query Planning
Analytics Framework
Materialized Views



Local Secondary Indexing
Partitioning By Document

Kleppmann, Martin. "Designing data-intensive 
applications." (2016).
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local to a partition.



Local Secondary Indexing
Partitioning By Document

Kleppmann, Martin. "Designing data-intensive 
applications." (2016).
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Scatter-gather query 
pattern.

Indexing is always 
local to a partition.• MongoDB

• Riak
• Cassandra
• Elasticsearch
• SolrCloud
• VoltDB

Implemented in



Global Secondary Indexing
Partitioning By Term
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Global Secondary Indexing
Partitioning By Term

Kleppmann, Martin. "Designing data-intensive 
applications." (2016).
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Global Secondary Indexing
Partitioning By Term

Kleppmann, Martin. "Designing data-intensive 
applications." (2016).
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Targeted Query

Consistent Index-
maintenance requires 
distributed transaction.• DynamoDB

• Oracle Datawarehouse
• Riak (Search)
• Cassandra (Search)

Implemented in



 Local Secondary Indexing: Fast writes, scatter-gather
queries

 Global Secondary Indexing: Slow or inconsistent writes,
fast queries

 (Distributed) Query Planning: scarce in NoSQL systems
but increasing (e.g. left-outer equi-joins in MongoDB
and θ-joins in RethinkDB)

 Analytics Frameworks: fallback for missing query
capabilities

 Materialized Views: similar to global indexing

Query Processing Techniques
Summary



How are the techniques from the NoSQL
toolbox used in actual data stores?



Outline

• Overview & Popularity
• Core Systems:

• Dynamo
• BigTable

• Riak
• HBase
• Cassandra
• Redis
• MongoDB

NoSQL Foundations and
Motivation

The NoSQL Toolbox: 
Common Techniques

NoSQL Systems &
Decision Guidance

Scalable Real-Time 
Databases and Processing



NoSQL Landscape

Document

Wide Column

Graph

Key-Value

Project Voldemort

Google
Datastore



Popularity
http://db-engines.com/de/ranking

Scoring: Google/Bing results, Google Trends, Stackoverflow, job
offers, LinkedIn

# System Model Score

1. Oracle Relational DBMS 1462.02

2. MySQL Relational DBMS 1371.83

3. MS SQL Server Relational DBMS 1142.82

4. MongoDB Document store 320.22

5. PostgreSQL Relational DBMS 307.61

6. DB2 Relational DBMS 185.96

7. Cassandra Wide column store 134.50

8. Microsoft Access Relational DBMS 131.58

9. Redis Key-value store 108.24

10. SQLite Relational DBMS 107.26

11. Elasticsearch Search engine 86.31

12. Teradata Relational DBMS 73.74

13. SAP Adaptive Server Relational DBMS 71.48

14. Solr Search engine 65.62

15. HBase Wide column store 51.84

16. Hive Relational DBMS 47.51

17. FileMaker Relational DBMS 46.71

18. Splunk Search engine 44.31

19. SAP HANA Relational DBMS 41.37

20. MariaDB Relational DBMS 33.97

21. Neo4j Graph DBMS 32.61

22. Informix Relational DBMS 30.58

23. Memcached Key-value store 27.90

24. Couchbase Document store 24.29

25. Amazon DynamoDB Multi-model 23.60
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 BigTable (2006, Google)
◦ Consistent, Partition Tolerant

◦ Wide-Column data model

◦ Master-based, fault-tolerant, large clusters (1.000+ Nodes), 
HBase, Cassandra, HyperTable, Accumolo

 Dynamo (2007, Amazon)
◦ Available, Partition tolerant

◦ Key-Value interface

◦ Eventually Consistent, always writable, fault-tolerant

◦ Riak, Cassandra, Voldemort, DynamoDB

NoSQL foundations

Chang, Fay, et al. "Bigtable: A distributed storage system 
for structured data."

DeCandia, Giuseppe, et al. "Dynamo: Amazon's highly
available key-value store."



 Developed at Amazon (2007)

 Sharding of data over a ring of nodes

 Each node holds multiple partitions

 Each partition replicated N times

Dynamo (AP)

DeCandia, Giuseppe, et al. "Dynamo: Amazon's
highly available key-value store."



 Developed at Amazon (2007)

 Sharding of data over a ring of nodes

 Each node holds multiple partitions

 Each partition replicated N times

Dynamo (AP)

DeCandia, Giuseppe, et al. "Dynamo: Amazon's
highly available key-value store."



 Naive approach: Hash-partitioning (e.g. in Memcache, 
Redis Cluster)

Consistent Hashing

partition = hash(key) % server_count



 Solution: Consistent Hashing – mapping of data to
nodes is stable under topology changes

Consistent Hashing

hash(key)

position = hash(ip)

02160



 Extension: Virtual Nodes for Load Balancing

Consistent Hashing

02160

B1

B2

B3

A1

A2

A3

C1

C2

C3

B takes over
two thirds of
A

C takes over
one third of
A

Range transferred



Reading
Parameters R, W, N

 An arbitrary node acts as a coordinator
 N:  number of replicas

 R:  number of nodes that need to confirm a read

 W: number of nodes that need to confirm a write

N=3
R=2
W=1



 N (Replicas), W (Write Acks), R (Read Acks)
◦ 𝑅 + 𝑊 ≤ 𝑁 ⇒ No guarantee

◦ 𝑅 + 𝑊 > 𝑁 ⇒ newest version included

Quorums

A B C D

E F G H

I J K L

N = 12, R = 3, W = 10

A B C D

E F G H

I J K L

N = 12, R = 7, W = 6
Write-Quorum

Read-Quorum



Writing

 W Servers have to acknowledge

N=3
R=2
W=1



Hinted Handoff

 Next node in the ring may take over, until original node
is available again:

N=3
R=2
W=1



Vector clocks

 Dynamo uses Vector Clocks for versioning

C. J. Fidge, Timestamps in message-passing systems 
that preserve the partial ordering (1988)



Versioning and Consistency

 𝑅 + 𝑊 ≤ 𝑁 ⇒ no consistency guarantee

 𝑅 + 𝑊 > 𝑁 ⇒ newest acked value included in reads

 Vector Clocks used for versioning
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Versioning and Consistency

 𝑅 + 𝑊 ≤ 𝑁 ⇒ no consistency guarantee

 𝑅 + 𝑊 > 𝑁 ⇒ newest acked value included in reads

 Vector Clocks used for versioning

Read Repair



Conflict Resolution

 The application merges data when writing (Semantic
Reconciliation)
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Reconciliation)



Conflict Resolution

 The application merges data when writing (Semantic
Reconciliation)



Merkle Trees: Anti-Entropy

 Every Second: Contact random server and compare
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 Typical Configurations:

Quorum

Performance 
(Cassandra Default) N=3, R=1, W=1

Quorum, fast 
Writing: N=3, R=3, W=1

Quorum, fast 
Reading N=3, R=1, W=3

Trade-off (Riak
Default) N=3, R=2, W=2

LinkedIn (SSDs):
𝑃 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ≥ 99.9%
nach 1.85 𝑚𝑠

P. Bailis, PBS Talk: http://www.bailis.org/talks/twitter-pbs.pdf



𝑅 + 𝑊> 𝑁 does not imply linearizability

 Consider the following execution:

Writer

Replica 1

Replica 2

Replica 3

Reader A

Reader B

set x=1

ok

ok

0

1

get x  1

0

0

get x  0

ok

Kleppmann, Martin. "Designing data-
intensive applications." (2016).



 Goal: avoid manual conflict-resolution

 Approach:
◦ State-based – commutative, idempotent merge function

◦ Operation-based – broadcasts of commutative upates

 Example: State-based Grow-only-Set (G-Set)

CRDTs
Convergent/Commutative Replicated Data Types

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek 
Zawirski "Conflict-free Replicated Data Types"

Node 1 Node 2

𝑆1 = {} 𝑆2 = {}

add(x)
𝑆1 = {𝑥}

add(y)
𝑆2 = {𝑦}

𝑆2 = 𝑚𝑒𝑟𝑔𝑒 𝑦 , 𝑥
= {𝑥, 𝑦}

𝑆1 = 𝑚𝑒𝑟𝑔𝑒 𝑥 , 𝑦
= {𝑥, 𝑦}

𝑆1

𝑆2



 Open-Source Dynamo-Implementation

 Extends Dynamo:
◦ Keys are grouped to Buckets

◦ KV-pairs may have metadata and links

◦ Map-Reduce support

◦ Secondary Indices, Update Hooks, Solr Integration

◦ Option for strongly consistent buckets (experimental)

◦ Riak CS: S3-like file storage, Riak TS: time-series database

Riak (AP) Riak

Model:

Key-Value

License:

Apache 2

Written in:

Erlang und C

Consistency Level: N, R, W, DW

Storage Backend: Bit-Cask, Memory, LevelDB

BucketData: KV-Pairs



 Implemented as state-based CRDTs:

Riak Data Types

Data Type Convergence rule

Flags enable wins over disable

Registers The most chronologically recent value wins, based 
on timestamps

Counters Implemented as a PN-Counter, so all increments 
and decrements are eventually applied. 

Sets If an element is concurrently added and removed, 
the add will win

Maps If a field is concurrently added or updated and 
removed, the add/update will win

http://docs.basho.com/riak/kv/2.1.4/learn/concepts/crdts/



 Hooks:

 Riak Search:

Hooks & Search

Update/Delete/Create

Response

JS/Erlang Pre-Commit Hook

JS/Erlang Post-Commit Hook

Riak_search_kv_hook

Term Dokument

database 3,4,1

rabbit 2

Search Index

/solr/mybucket/select?q=user:emil

Update/Delete/Create
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var json = v.values[0].data;
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http://docs.basho.com/riak/latest/tutorials/querying/MapReduce/



Riak Map-Reduce
K

n
o

te
n

 3

nosql_dbs

K
n

o
te

n
 2

K
n

o
te

n
 1 Map

Map

Map

Reduce

45

4

445

Map

Map

Map

Reduce

6

12

678

Map

Map

Map

Reduce

9

3

49

494

696

61

function(mapped) {
var sum = 0;
for(var i in mapped) {
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}
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http://docs.basho.com/riak/latest/tutorials/querying/MapReduce/
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 JavaScript/Erlang, stored/ad-hoc

 Pattern: Chainable Reducers

 Key-Filter: Narrow down input

 Link Phase: Resolves links

Riak Map-Reduce

Map Reduce

"key-filter" : [  
["string_to_int"],
["less_than", 100]
]

"link" : {  
"bucket":"nosql_dbs"
}

Same
Data Format



Riak Cloud Storage

Amazon S3
API

Stanchion:
Request 
Serializer

1MB Chunks

Files



 Available and Partition-Tolerant

 Consistent Hashing: hash-based distribution with stability
under topology changes (e.g. machine failures)

 Parameters: N (Replicas), R (Read Acks), W (Write Acks)
◦ N=3, R=W=1  fast, potentially inconsistent

◦ N=3, R=3, W=1  slower reads, most recent object version contained

 Vector Clocks: concurrent modification can be detected, 
inconsistencies are healed by the application

 API: Create, Read, Update, Delete (CRUD) on key-value pairs

 Riak: Open-Source Implementation of the Dynamo paper

Summary: Dynamo and Riak



Dynamo and Riak
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 Remote Dictionary Server

 In-Memory Key-Value Store

 Asynchronous Master-Slave Replication

 Data model: rich data structures stored under key

 Tunable persistence: logging and snapshots

 Single-threaded event-loop design (similar to Node.js)

 Optimistic batch transactions (Multi blocks)

 Very high performance: >100k ops/sec per node

 Redis Cluster adds sharding

Redis (CA) Redis

Model:

Key-Value

License:

BSD

Written in:

C



 Redis Codebase ≅ 20K LOC

Redis Architecture

Redis Server

Event LoopClient

TCP Port 
6379

Local 

Filesystem

hello

RAM

SET mykey hello

+OK

Plain Text Protocol

- Periodic
- After X Writes 
- SAVE 

One Process/
Thread

AOF

RDB

Log

Dump



 Default: „Eventually Persistent“

 AOF: Append Only File (~Commitlog)

 RDB: Redis Database Snapshot

Persistence

config set save 60 1000

config set appendonly everysec

fsync() every second

Snapshot every 60s,
if > 1000 keys changed



Persistence

Buffer Cache
(Writes)

Database
Process

Disk

H
ar

d
w

ar
e

U
se

r 
Sp

ac
e

Controller Disk Cache

In Memory Data 
Structures

Write Through

vs Write Back

App

C
lie

n
t

Memory

SET mykey hello

fwrite()

K
er

n
el

 
Sp

ac
e

Page Cache
(Reads)

POSIX Filesystem API

fsync()

1

23

4

1. Resistence to client
crashes

2. Resistence to DB process
crashes

3. Resistence to hardware
crashes with Write-Through

4. Resistence to hardware
crashes with Write-Back



 PostgreSQL:
> synchronous_commit on

> synchronous_commit off

> fsync false

> pg_dump

Persistence: Redis vs an RDBMS

 Redis:
> appendfsync always

> appendfsync everysec

> appendfysnc no

> save oder bgsave

Latency > Disk Latency, Group Commits, Slow

periodic fsync(), data loss limited

Data corruption and losspossible
Data loss possible, corruption

prevented



Master-Slave Replication

Master

Slave1 Slave2

Slave2.1

Slave2.2

Writes
Asynchronous 

Replication

> SLAVEOF 192.168.1.1 6379
< +OK

Memory Backlog

Slave Offsets

Stream



 String, List, Set, Hash, Sorted Set

Data structures

"<html><head>…"String

{23, 76, 233, 11}Set

web:index

users:2:friends

[234, 3466, 86,55]List users:2:inbox

Theme → "dark", cookies → "false"Hash users:2:settings

466 → "2", 344  → "16"Sorted Set top-posters

"{event: 'comment posted', time : …"Pub/Sub users:2:notifs



Data Structures

 (Linked) Lists:

234 3466 86

LPUSH RPUSH

RPOP

LREM inbox 0 3466

BLPOP

LPOP

Blocks until element
arrives

55

LINDEX inbox 2

LRANGE inbox 1 2

LLEN

inbox

4

LPUSHX

Only if list
exists



Data Structures

 Sets:

23
76

233
11

SADD

SREM

SCARD

user:2:friends

4

SMEMBERS

SISMEMBER

false

23   10   2   28   325   64   70 user:5:friends

SINTER SINTERSTORE common_friends

user:2 friends user:5:friends

23 common_friends

SRANDMEMBER



Data Structures

 Pub/Sub: "{event: 'comment posted', time : …"users:2:notifs

PUBLISH user:2:notifs

"{

event: 'comment posted',

time : …

}"

SUBSCRIBE user:2:notifs

{
event: 'comment posted',
time : …

}



 Bit array of length m and k independent hash functions

 insert(obj): add to set

 contains(obj): might give a false positive

Example: Bloom filters
Compact Probabilistic Sets

https://github.com/Baqend/
Orestes-Bloomfilter

1 m
1 1 0 0 1 0 1 0 1 1

Insert y

h1h2 h3

y

Query x

1 m
1 1 0 0 1 0 1 0 1 1

h1h2 h3

=1?
n y

contained



 Bitvectors in Redis: String + SETBIT, GETBIT, BITOP

Bloomfilters in Redis

public void add(byte[] value) {

for (int position : hash(value)) {

jedis.setbit(name, position, true);

}

}

public void contains(byte[] value) {

for (int position : hash(value))

if (!jedis.getbit(name, position))

return false;

return true;

}

Jedis: Redis Client for Java

SETBIT creates and resizes
automatically



 If the Bloom filter uses 7 hashes: 7 roundtrips

 Solution: Redis Pipelining

Pipelining

Client Redis

SETBIT key 22 1

SETBIT key 87 1

...



 Common Pattern: distributed system with shared state
in Redis

 Example - Improve performance for legacy systems:

Redis for distributed systems

0 1 0 0 1 0 1 0 1 1Bits

m

k

Hash

80000

7

MD5

Slow Legacy
System

App Server

GETBIT, GETBIT...

Bloomfilter lookup:On Hit

Get Data
From Legacy System



Redis Bloom filters
Open Source

https://github.com/Baqend/
Orestes-Bloomfilter



Why is Redis so fast? 

Pessimistic
transactions

are expensive

Data in RAM

Single-threading

Operations are
lock-free

AOF

No Query
Parsing

Harizopoulos, Stavros, Madden, Stonebraker "OLTP through 
the looking glass, and what we found there."



 MULTI: Atomic Batch Execution

 WATCH:  Condition for MULTI Block

Optimistic Transactions

WATCH users:2:followers, users:3:followers

MULTI

SMEMBERS users:2:followers

SMEMBERS users:3:followers

INCR transactions

EXEC

Only executed if
bother keys are

unchanged
Queued

Queued

Bulk reply with 3 results

Queued



Lua Scripting

Redis Server

Data

SCRIPT LOAD

--lockscript, parameters: lock_key, lock_timeout

local lock = redis.call('get', KEYS[1])

if not lock then

return redis.call('setex', KEYS[1], ARGV[1], "locked")

end

return false

Script Hash

EVALSHA $hash 1 
"mylock" "10"

Script Cache

1

Ierusalimschy, Roberto. Programming in lua. 2006.



Redis Cluster
Work-in-Progress

http://redis.io/topics/cluster-spec

 Idea: Client-driven hash-based sharing (CRC32, „hash slots“)

 Asynchronous replication with failover (variant of Raft‘s
leader election)

◦ Consistency: not guaranteed, last failover wins

◦ Availability: only on the majority partition
neither AP nor CP

Client

Redis Master

Redis Master

Redis Slave

Redis Slave

8192-16384

0-8192

Full-Mesh
Cluster Bus

- No multi-key operations
- Pinning via key: {user1}.followers



 Comparable to Memcache

Performance

0
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30000
40000
50000
60000
70000
80000
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d

e

Operation

> redis-benchmark -n 100000 -c 50



Example Redis Use-Case: Twitter

http://www.infoq.com/presentations/Real-Time-Delivery-Twitter

>150 million users
~300k timeline querys/s

 Per User: one
materialized timeline in 
Redis

 Timeline = List

 Key: User ID

RPUSHX user_id tweet



Classification: Redis
Techniques

Range-
Sharding

Hash-
Sharding

Entity-Group 
Sharding

Consistent
Hashing

Shared
DiskSharding

Replication

Storage
Management

Query
Processing

Trans-
action

Protocol

Sync.
Replica-

tion

Logging
Update-
in-Place

Global 
Index

Local
Index

Async.
Replica-

tion

Primary 
Copy

Update 
Anywhere

Caching
In-

Memory
Append-Only

Storage

Query 
Planning

Analytics
Materialized

Views



 Published by Google in 2006

 Original purpose: storing the Google search index

 Data model also used in: HBase, Cassandra, HyperTable, 
Accumulo

Google BigTable (CP)

A Bigtable is a sparse, 
distributed, persistent 

multidimensional sorted map. 

Chang, Fay, et al. "Bigtable: A distributed storage system 
for structured data."



 Storage of crawled web-sites („Webtable“):

Wide-Column Data Modelling

Column-Family:  
contents

com.cnn.www cnnsi.com : "CNN" my.look.ca : "CNN.com"

Column-Family:  
anchor

content : "<html>…"
content : "<html>…"

content : "<html>…"

t5

t3

t6



 Storage of crawled web-sites („Webtable“):

Wide-Column Data Modelling

Column-Family:  
contents

com.cnn.www cnnsi.com : "CNN" my.look.ca : "CNN.com"

Column-Family:  
anchor

content : "<html>…"
content : "<html>…"

content : "<html>…"

t5

t3

t6

1. Dimension: 
Row Key

2. Dimension: 
CF:Column

3. Dimension: 
Timestamp

Sparse
Sorted



Rows

A-C

C-F

F-I

I-M

M-T

T-Z

Range-based Sharding
BigTable Tablets

Tablet Server 1

A-C

I-M

Tablet Server 2

C-F

M-T

Tablet Server 3

F-I

T-Z

Master

Controls Ranges, Splits, Rebalancing

Tablet: Range partition of ordered records



Architecture

Tablet Server Tablet Server Tablet Server

Master Chubby

GFS

SSTables

Commit
Log



Architecture

Tablet Server Tablet Server Tablet Server

Master Chubby

GFS

SSTables

Commit
Log

ACLs, Garbage
Collection, 
Rebalancing

Master Lock, Root 
Metadata Tablet

Stores Ranges,
Answers client
requests

Stores data and
commit log



 Goal: Append-Only IO when writing (no disk seeks)

 Achieved through: Log-Structured Merge Trees

 Writes go to an in-memory memtable that is periodically
persisted as an SSTable as well as a commit log

 Reads query memtable and all SSTables

Storage: Sorted-String Tables

Variable Length

Key Value Key Value Key Value

Sorted String Table

Key Block

Key Block

Key Block

Block Index

...

...

Block (e.g. 64KB)

Row-Key



 Writes: In-Memory in Memtable

 SSTable disk access optimized by Bloom filters

Storage: Optimization

SSTables

Disk

Main Memory

Bloom 

filters

Memtable

Client

Read(x)

Hit

Write(x)

Periodic 

Compaction

Periodic 

Flush



 Open-Source Implementation of BigTable

 Hadoop-Integration
◦ Data source for Map-Reduce

◦ Uses Zookeeper and HDFS

 Data modelling challenges: key design, tall vs wide
◦ Row Key: only access key (no indices)  key design important

◦ Tall: good for scans

◦ Wide: good for gets, consistent (single-row atomicity)

 No typing: application handles serialization

 Interface: REST, Avro, Thrift

Apache HBase (CP) HBase

Model:

Wide-Column

License:

Apache 2

Written in:

Java



HBase Storage

Key cf1:c1 cf1:c2 cf2:c1 cf2:c2

r1

r2

r3

r4

r5

 Logical to physical mapping:

George, Lars. HBase: the definitive guide. 2011.



HBase Storage

Key cf1:c1 cf1:c2 cf2:c1 cf2:c2

r1

r2

r3

r4

r5

r1:cf2:c1:t1:<value>

r2:cf2:c2:t1:<value>

r3:cf2:c2:t2:<value>

r3:cf2:c2:t1:<value>

r5:cf2:c1:t1:<value>

r1:cf1:c1:t1:<value>

r2:cf1:c2:t1:<value>

r3:cf1:c2:t1:<value>

r3:cf1:c1:t2:<value>

r5:cf1:c1:t1:<value>

HFile cf2

HFile cf1

 Logical to physical mapping:

George, Lars. HBase: the definitive guide. 2011.



HBase Storage

Key cf1:c1 cf1:c2 cf2:c1 cf2:c2

r1

r2

r3

r4

r5

r1:cf2:c1:t1:<value>

r2:cf2:c2:t1:<value>

r3:cf2:c2:t2:<value>

r3:cf2:c2:t1:<value>

r5:cf2:c1:t1:<value>

r1:cf1:c1:t1:<value>

r2:cf1:c2:t1:<value>

r3:cf1:c2:t1:<value>

r3:cf1:c1:t2:<value>

r5:cf1:c1:t1:<value>

HFile cf2

HFile cf1

 Logical to physical mapping:
Key Design – where to store data:
r2:cf2:c2:t1:<value>
r2-<value>:cf2:c2:t1:_
r2:cf2:c2<value>:t1:_

George, Lars. HBase: the definitive guide. 2011.

In Value

In Key

In Column



Example: Facebook Insights

Extraction
every 30 min

Log

6PM
Total

6PM
Male

… 01.01
Total

01.01
Male

… Total Male …

10 7 100 65 1000 567

MD5(Reversed Domain) + Reversed Domain + URL-ID Row Key

CF:Daily CF:Monthly CF:All

Lars George: “Advanced 
HBase Schema Design”

Atomic HBase
Counter

TTL – automatic deletion of
old rows



 Tall vs Wide Rows:
◦ Tall: good for Scans

◦ Wide: good for Gets

 Hotspots: Sequential Keys (z.B. Timestamp) dangerous

Schema Design

Performance

Key
Sequential Random

George, Lars. HBase: the definitive guide. 2011.



Schema: Messages

ID:User+Message CF Column Timestamp Message

12345-5fc38314-e290-ae5da5fc375d data : 1307097848 "Hi Lars, ..."

12345-725aae5f-d72e-f90f3f070419 data : 1307099848 "Welcome, and ..."

12345-cc6775b3-f249-c6dd2b1a7467 data : 1307101848 "To Whom It ..."

12345-dcbee495-6d5e-6ed48124632c data : 1307103848 "Hi, how are ..."

vs

User ID CF Column Timestamp Message

12345 data 5fc38314-e290-ae5da5fc375d 1307097848 "Hi Lars, ..."

12345 data 725aae5f-d72e-f90f3f070419 1307099848 "Welcome, and ..."

12345 data cc6775b3-f249-c6dd2b1a7467 1307101848 "To Whom It ..."

12345 data dcbee495-6d5e-6ed48124632c 1307103848 "Hi, how are ..."

Wide:
Atomicity
Scan over Inbox: Get

Tall:
Fast Message Access

Scan over Inbox: Partial Key Scan

http://2013.nosql-matters.org/cgn/wp-content/uploads/2013/05/
HBase-Schema-Design-NoSQL-Matters-April-2013.pdf



API: CRUD + Scan

HTable table = ...
Get get = new Get("my-row");
get.addColumn(Bytes.toBytes("my-cf"), Bytes.toBytes("my-col"));
Result result = table.get(get);

table.delete(new Delete("my-row"));

Scan scan = new Scan();
scan.setStartRow( Bytes.toBytes("my-row-0"));
scan.setStopRow( Bytes.toBytes("my-row-101"));
ResultScanner scanner = table.getScanner(scan)
for(Result result : scanner) { }

> elastic-mapreduce --create --
hbase --num-instances 2 --instance-
type m1.large

Setup Cloud Cluster:

> whirr launch-cluster --config
hbase.properties

Login, cluster size, etc.



API: Features

TableMapReduceUtil.initTableMapperJob(
tableName, //Table
scan, //Data input as a Scan
MyMapper.class, ... //usually a TableMapper<Text,Text> );

 Row Locks (MVCC): table.lockRow(), unlockRow()
◦ Problem: Timeouts, Deadlocks, Ressources

 Conditional Updates: checkAndPut(), checkAndDelete()

 CoProcessors - registriered Java-Classes for:
◦ Observers (prePut, postGet, etc.) 

◦ Endpoints (Stored Procedures)

 HBase can be a Hadoop Source:



 Data model: 𝑟𝑜𝑤𝑘𝑒𝑦, 𝑐𝑓: 𝑐𝑜𝑙𝑢𝑚𝑛, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 →
𝑣𝑎𝑙𝑢𝑒

 API: CRUD + Scan(start-key, end-key) 

 Uses distributed file system (GFS/HDFS)

 Storage structure: Memtable (in-memory data structure) 
+ SSTable (persistent; append-only-IO)

 Schema design: only primary key access implicit
schema (key design) needs to be carefully planned

 HBase: very literal open-source BigTable implementation

Summary: BigTable, HBase
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 Published 2007 by Facebook

 Idea:
◦ BigTable‘s wide-column data model

◦ Dynamo ring for replication and sharding

 Cassandra Query Language (CQL): SQL-like query- and
DDL-language

 Compound indices: partition key (shard key) + clustering
key (ordered per partition key)  Limited range queries

Apache Cassandra (AP) Cassandra

Model:

Wide-Column

License:

Apache 2

Written in:

Java



Architecture

Cassandra Node
Thrift

Session
Thrift

Session
Thrift RPC

or CQL

set_keyspace()
get_slice()

TCP Cluster 
Messages

Column 

Family Store
Row Cache

MemTable
Local 

Filesystem Key Cache

Storage 

Proxy

Random Partitioner

MD5(key)

Order Preservering
Partitioner

key

Snitch: Rack, Datacenter, 
EC2 Region Information

Hashing:



Architecture

Cassandra Node
Thrift

Session
Thrift

Session
Thrift RPC

or CQL

set_keyspace()
get_slice()

TCP Cluster 
Messages

Column 

Family Store
Row Cache

MemTable
Local 

Filesystem Key Cache

Storage 

Proxy

Stores SSTables
and Commit Log

Replication, 
Gossip, etc.

Stateful
Communication

Stores Rows

Stores Primary Key Index 
(Seek Position)

Random Partitioner

MD5(key)

Order Preservering
Partitioner

key

Snitch: Rack, Datacenter, 
EC2 Region Information

Hashing:



 No Vector Clocks but Last-Write-Wins

 Clock synchronisation required

 No Versionierung that keeps old cells

Consistency

Write Read

Any -

One One

Two Two

Quorum Quorum

Local_Quorum / Each_Quorum Local_Quorum / Each_Quorum

All All



 Coordinator chooses newest version and triggers Read 
Repair

 Downside: upon conflicts, changes are lost

Consistency

Version A Version A Version A

C1: writes B C3 : reads C

Write(One) Read(All)

Version B Version B Version A

C2: writes C

Version CVersion C Version CVersion C

Write(One)



 Uses BigTables Column Family Format

Storage Layer

KeySpace: music

Column Family: songs

f82831… title: Andante
album: New 

World Symphony
artist: Antonin 

Dvorak

144052…
title: Jailhouse

Rock
artist: Elvis 

Presley

Row Key: Mapping to
Server

Sparse

Type validated by
Validation Class UTFType

Comparator determines
order

http://www.datastax.com/dev/blog/cql3-for-cassandra-experts



 Enables Scans despite Random Partitioner

CQL Example: Compound keys

CREATE TABLE playlists (
id uuid,
song_order int,
song_id uuid, ...
PRIMARY KEY (id, song_order)

);

id song_order song_id artist

23423 1 64563 Elvis

23423 2 f9291 Elvis

Partition Key
Clustering Columns: 
sorted per node

SELECT * FROM playlists
WHERE id = 23423
ORDER BY song_order DESC
LIMIT 50;



 Distributed Counters – prevent update anomalies

 Full-text Search (Solr) in Commercial Version

 Column TTL – automatic garbage collection

 Secondary indices: hidden table with mapping
 queries with simple equality condition

 Lightweight Transactions: linearizable updates through a 
Paxos-like protocol

Other Features

INSERT INTO USERS (login, email, name, login_count)
values ('jbellis', 'jbellis@datastax.com', 'Jonathan Ellis', 1)
IF NOT EXISTS
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 From humongous ≅ gigantic

 Schema-free document database with
tunable consistency

 Allows complex queries and indexing

 Sharding (either range- or hash-based)

 Replication (either synchronous or asynchronous)

 Storage Management:
◦ Write-ahead logging for redos (journaling)

◦ Storage Engines: memory-mapped files, in-memory, Log-
structured merge trees (WiredTiger), …

MongoDB (CP) MongoDB

Model:

Document

License:

GNU AGPL 3.0

Written in:

C++



Basics
> mongod &

> mongo imdb
MongoDB shell version: 2.4.3
connecting to: imdb
> show collections
movies
tweets
> db.movies.findOne({title : "Iron Man 3"})
{

title : "Iron Man 3",
year : 2013 ,
genre : [

"Action",
"Adventure",
"Sci -Fi"],

actors : [
"Downey Jr., Robert",
"Paltrow , Gwyneth",]

}

Properties

Arrays, Nesting allowed



Data Modelling

Tweet

text

coordinates

retweets

Movie

title

year

rating

director

Actor

Genre

User

name

location

1

n

n

n 11



Data Modelling

Tweet

text

coordinates

retweets

Movie

title

year

rating

director

Actor

Genre

User

name

location

1

n

n

n 11

{
"_id" : ObjectId("51a5d316d70beffe74ecc940")
title : "Iron Man 3",
year : 2013,
rating : 7.6,
director: "Shane Block",
genre : [ "Action",

"Adventure",
"Sci -Fi"],

actors : ["Downey Jr., Robert",
"Paltrow , Gwyneth"],

tweets : [ {
"user" : "Franz Kafka",
"text" : "#nowwatching Iron Man 3",
"retweet" : false,
"date" : ISODate("2013-05-29T13:15:51Z")

}]
}

Movie Document



Data Modelling

Tweet

text

coordinates

retweets

Movie

title

year

rating

director

Actor

Genre

User

name

location

1

n

n

n 11

{
"_id" : ObjectId("51a5d316d70beffe74ecc940")
title : "Iron Man 3",
year : 2013,
rating : 7.6,
director: "Shane Block",
genre : [ "Action",

"Adventure",
"Sci -Fi"],

actors : ["Downey Jr., Robert",
"Paltrow , Gwyneth"],

tweets : [ {
"user" : "Franz Kafka",
"text" : "#nowwatching Iron Man 3",
"retweet" : false,
"date" : ISODate("2013-05-29T13:15:51Z")

}]
}

Movie Document

Denormalisation instead
of joins

Nesting replaces 1:n  
and 1:1 relations

Schemafreeness: 
Attributes per document

Unit of atomicity: 
document

Principles



Sharding:
-Sharding attribute
-Hash vs. range sharding

Sharding und Replication

Client

Client

configconfigconfig

mongos

Replica Set

Replica Set

Master

Slave

Slave

Master

Slave

Slave

-Receives all writes
-Replicates asynchronously

-Load-Balancing
-can trigger rebalancing of
chunks (64MB) and splitting

mongos

Controls Write Concern:
Unacknowledged, Acknowledged, 
Journaled, Replica Acknowledged



MongoDB Example App

REST API (Jetty)

GET

MongoDB

Tweets

Streaming

GridFS

Tweet Map

Searching

JSON

Queries

3
4

Search

1

MovieService

Movies
2

Twitter

Firehose

@Johnny: Watching 
Game of Thrones

@Jim: Star Trek 
rocks.

Server Client

Movies

Tweets

Browser

HTTP

saveTweet()

getTaggedTweets()

getByGenre()

searchByPrefix()



MongoDB by Example



DBObject query = new BasicDBObject("tweets.coordinates",

new BasicDBObject("$exists", true));
db.getCollection("movies").find(query);
Or in JavaScript:
db.movies.find({tweets.coordinates : { "$exists" : 1}})

MongoDB by Example



DBObject query = new BasicDBObject("tweets.coordinates",

new BasicDBObject("$exists", true));
db.getCollection("movies").find(query);
Or in JavaScript:
db.movies.find({tweets.coordinates : { "$exists" : 1}})

Overhead caused by large results → projection

MongoDB by Example



db.tweets.find({coordinates : {"$exists" : 1}},

{text:1, movie:1, "user.name":1, coordinates:1})

.sort({id:-1})

Projected attributes, ordered by insertion date



db.movies.ensureIndex({title : 1})

db.movies.find({title : /^Incep/}).limit(10)

Index usage:
db.movies.find({title : /^Incep/}).explain().millis = 0
db.movies.find({title : /^Incep/i}).explain().millis = 340



db.movies.update({_id: id), {"$set" : {"comment" : c}})

or:

db.movies.save(changed_movie);



fs = new GridFs(db);

fs.createFile(inputStream).save();

File
GridFS

API
256 KB
Blocks

Mongo
DB



db.tweets.ensureIndex({coordinates : "2dsphere"})

db.tweets.find({"$near" : {"$geometry" : … }})

Geospatial Queries:
• Distance
• Intersection
• Inclusion



db.tweets.runCommand( "text", { search: "StAr trek" } )

Full-text Search:
• Tokenization, Stop Words
• Stemming
• Scoring



 Aggregation Pipeline Framework:

 Alternative: JavaScript MapReduce

Analytic Capabilities

Sort Group

Match: Selection
by query

Grouping, e.g. 
{ _id : "$author",
docsPerAuthor : { $sum : 1 }, 
viewsPerAuthor : { $sum : "$views" } }} );

Projection Unwind: 
elimination of
nesting

Skip and
Limit



 Range-based:

 Hash-based:

Sharding In the optimal case only one
shard asked per query, else: 
Scatter-and-gather

Even distribution,
no locality

docs.mongodb.org/manual/core/sharding-introduction/



 Splitting:

 Migration:

Sharding
Split chunks that are
too large

Mongos Load Balancer
triggers rebalancing

docs.mongodb.org/manual/core/sharding-introduction/



Classification: MongoDB
Techniques

Range-
Sharding

Hash-
Sharding

Entity-Group 
Sharding

Consistent
Hashing

Shared
DiskSharding

Replication

Storage
Management

Query
Processing

Trans-
action

Protocol

Sync.
Replica-

tion

Logging
Update-
in-Place

Global 
Index

Local
Index

Async.
Replica-

tion

Primary 
Copy

Update 
Anywhere

Caching
In-

Memory
Append-Only

Storage

Query 
Planning

Analytics
Materialized

Views



 Neo4j (ACID, replicated, Query-language)

 HypergraphDB (directed Hypergraph, BerkleyDB-based)

 Titan (distributed, Cassandra-based)

 ArangoDB, OrientDB („multi-model“)

 SparkleDB (RDF-Store, SPARQL)

 InfinityDB (embeddable)

 InfiniteGraph (distributed, low-level API, Objectivity-based)

Other Systems
Graph databases



 Aerospike (SSD-optimized)

 Voldemort (Dynamo-style)

 Memcache (in-memory cache)

 LevelDB (embeddable, LSM-based)

 RocksDB (LevelDB-Fork with Transactions and Column Families)

 HyperDex (Searchable, Hyperspace-Hashing, Transactions)

 Oracle NoSQL database (distributed frontend for BerkleyDB)

 HazelCast (in-memory data-grid based on Java Collections)

 FoundationDB (ACID through Paxos)

Other Systems
Key-Value Stores



 CouchDB (Multi-Master, lazy synchronization)

 CouchBase (distributed Memcache, N1QL~SQL, MR-Views)

 RavenDB (single node, SI transactions)

 RethinkDB (distributed CP, MVCC, joins, aggregates, real-time)

 MarkLogic (XML, distributed 2PC-ACID)

 ElasticSearch (full-text search, scalable, unclear consistency)

 Solr (full-text search)

 Azure DocumentDB (cloud-only, ACID, WAS-based)

Other Systems
Document Stores



 Accumolo (BigTable-style, cell-level security)

 HyperTable (BigTable-style, written in C++)

Other Systems
Wide-Column Stores



 CockroachDB (Spanner-like, SQL, no joins, transactions)

 Crate (ElasticSearch-based, SQL, no transaction guarantees)

 VoltDB (HStore, ACID, in-memory, uses stored procedures)

 Calvin (log- & Paxos-based ACID transactions)

 FaunaDB (based on Calvin design, by Twitter engineers)

 Google F1 (based on Spanner, SQL)

 Microsoft Cloud SQL Server (distributed CP, MSSQL-comp.)

 MySQL Cluster, Galera Cluster, Percona XtraDB Cluster 
(distributed storage engine for MySQL)

Other Systems
NewSQL Systems



 Service-Level Agreements
◦ How can SLAs be guaranteed in a virtualized, multi-tenant

cloud environment?

 Consistency
◦ Which consistency guarantees can be provided in a geo-

replicated system without sacrificing availability?

 Performance & Latency
◦ How can a database deliver low latency in face of distributed

storage and application tiers?

 Transactions
◦ Can ACID transactions be aligned with NoSQL and scalability?

Open Research Questions
For Scalable Data Management



Definition: A transaction is a sequence of operations transforming 
the database from one consistent state to another.

Distributed Transactions
ACID and Serializability

Atomicity

Consistency

Durability

Commit Handling

Constraint Checking

Concurrency Control

Logging & Recovery

Isolation Levels:
1. Serializability
2. Snapshot Isolation
3. Read-Committed
4. Read-Atomic
5. …Isolation



Distributed Transactions
General Processing

Commit Protocol

Shard Shard Shard

Replicas Replicas Replicas

Concurrency Control Concurrency Control Concurrency Control

Replication Replication Replication



Distributed Transactions
General Processing

Commit Protocol

Shard Shard Shard

Replicas Replicas Replicas

Concurrency Control Concurrency Control Concurrency Control

Replication Replication Replication

Commit Protocol is not available

Needs to ensure globally 
correct isolation

Strong Consistency –
needed by Concurrency 
Control



Distributed Transactions
In NoSQL Systems – An Overview

System Concurrency
Control

Isolation Granularity Commit Protocol

Megastore OCC SR Entity Group Local

G-Store OCC SR Entity Group Local

ElasTras PCC SR Entity Group Local

Cloud SQL Server PCC SR Entity Group Local

Spanner / F1 PCC / OCC SR / SI Multi-Shard 2PC

Percolator OCC SI Multi-Shard 2PC

MDCC OCC RC Multi-Shard Custom – 2PC like

CloudTPS TO SR Multi-Shard 2PC

Cherry Garcia OCC SI Multi-Shard Client Coordinated

Omid MVCC SI Multi-Shard Local

FaRMville OCC SR Multi-Shard Local

H-Store/VoltDB Deterministic CC SR Multi-Shard 2PC

Calvin Deterministic CC SR Multi-Shard Custom

RAMP Custom Read-Atomic Multi-Shard Custom



 Synchronous Paxos-based replication

 Fine-grained partitions (entity groups)

 Based on BigTable

 Local commit protocol, optmisistic concurrency control

Distributed Transactions
Megastore

User

ID
Name

Photo

ID
User
URL

Root Table Child Table

1

n

EG: User + n Photos
• Unit of ACID transactions/ 

consistency
• Local commit protocol, 

optimistic concurrency
control



 Synchronous Paxos-based replication

 Fine-grained partitions (entity groups)

 Based on BigTable

 Local commit protocol, optmisistic concurrency control

Distributed Transactions
Megastore

User

ID
Name

Photo

ID
User
URL

Root Table Child Table

1

n

EG: User + n Photos
• Unit of ACID transactions/ 

consistency
• Local commit protocol, 

optimistic concurrency
control

Spanner

J. Corbett et al. "Spanner: Google’s globally distributed 
database." TOCS 2013

Idea:
• Auto-sharded Entity Groups

• Paxos-replication per shard
Transactions:
• Multi-shard transactions
• SI using TrueTime API (GPA and

atomic clocks)
• SR based on 2PL and 2PC
• Core of F1 powering ad business

Percolator

Peng, Daniel, and Frank Dabek. "Large-scale Incremental 
Processing Using Distributed Transactions and 
Notifications." OSDI 2010.

Idea:
• Indexing and transactions based on 

BigTable

Implementation:
• Metadata columns to coordinate

transactions
• Client-coordinated 2PC
• Used for search index (not OLTP)



Distributed Transactions
MDCC – Multi Datacenter Concurrency Control

App-Server
(Coordinator)

Record-Master
(v)

Record-Master
(u)

Replicas

Replicas

T1= {v  v‘, 
u u‘}

v  v‘

u u‘ u u‘

v  v‘

Paxos InstanceProperties:

Read Committed Isolation

Geo Replication

Optimistic Commit



Distributed Transactions
RAMP – Read Atomic Multi Partition Transactions

read objects1

validate2

load other version
3

Properties:

Read Atomic Isolation

Synchronization Independence

Partition Independence

Guaranteed Commit

r(x) r(y) w(x) w(y)

r(x) r(y)

Fractured Read

time



Distributed Transactions in the Cloud
The Latency Problem

Interactive Transactions:

Optimistic Concurrency Control



Optimistic Concurrency Control
The Abort Rate Problem

• 10.000 objects

• 20 writes per second

• 95% reads



Optimistic Concurrency Control
The Abort Rate Problem

• 10.000 objects

• 20 writes per second

• 95% reads



 Solution: Conflict-Avoidant Optimistic Transactions
◦ Cached reads → Shorter transaction duration → less aborts

◦ Bloom Filter to identify outdated cache entries

Distributed Cache-Aware Transaction 
Scalable ACID Transactions

Cache

Cache

Cache

REST-Server

REST-Server

REST-Server

DB

Coordinator

Client

Begin Transaction

Bloom Filter
1

validation 4

5Writes (Public)

Read all

prevent conflicting 

validations

Committed OR aborted + stale objects

Commit: readset versions & writeset
3

Reads

2



Distributed Cache-Aware Transaction 
Speed Evaluation

• 10.000 objects

• 20 writes per second

• 95% reads

 16 times speedup



Distributed Cache-Aware Transaction 
Abort Rate Evaluation

• 10.000 objects

• 20 writes per second

• 95% reads

16 times speedup

 Significantly less aborts

Highly reduced runtime of 

retried transactions



Distributed Cache-Aware Transaction 
Combined with RAMP Transactions

read objects1

validate2

load other version3

3



 Example: CryptDB

 Idea: Only decrypt as much as neccessary

Selected Research Challanges
Encrypted Databases

RDBMS

SQL-Proxy

Encrypts and decrypts, rewrites queries



 Example: CryptDB

 Idea: Only decrypt as much as neccessary

Selected Research Challanges
Encrypted Databases

RDBMS

SQL-Proxy

Encrypts and decrypts, rewrites queries

Relational Cloud

C. Curino, et al. "Relational cloud: A database-as-a-service 
for the cloud.“, CIDR 2011

DBaaS Architecture:
• Encrypted with CryptDB
• Multi-Tenancy through live 

migration
• Workload-aware partitioning

(graph-based)



 Example: CryptDB

 Idea: Only decrypt as much as neccessary

Selected Research Challanges
Encrypted Databases

RDBMS

SQL-Proxy

Encrypts and decrypts, rewrites queries

Relational Cloud

C. Curino, et al. "Relational cloud: A database-as-a-service 
for the cloud.“, CIDR 2011

DBaaS Architecture:
• Encrypted with CryptDB
• Multi-Tenancy through live 

migration
• Workload-aware partitioning

(graph-based)

• Early approach
• Not adopted in practice, yet

Dream solution:
Full Homomorphic Encryption



Research Challanges
Transactions and Scalable Consistency

Dynamo Eventual None 1 RT -

Yahoo PNuts Timeline per key Single Key 1 RT possible

COPS Causality Multi-Record 1 RT possible

MySQL (async) Serializable Static Partition 1 RT possible

Megastore Serializable Static Partition 2 RT -

Spanner/F1 Snapshot Isolation Partition 2 RT -

MDCC Read-Commited Multi-Record 1 RT -

Consistency Transactional Unit
Commit 
Latency

Data 
Loss?



Research Challanges
Transactions and Scalable Consistency

Dynamo Eventual None 1 RT -

Yahoo PNuts Timeline per key Single Key 1 RT possible

COPS Causality Multi-Record 1 RT possible

MySQL (async) Serializable Static Partition 1 RT possible

Megastore Serializable Static Partition 2 RT -

Spanner/F1 Snapshot Isolation Partition 2 RT -

MDCC Read-Commited Multi-Record 1 RT -

Consistency Transactional Unit
Commit 
Latency

Data 
Loss?

Google‘s F1

Shute, Jeff, et al. "F1: A distributed SQL database that scales." Proceedings of the 
VLDB 2013.

Idea:
• Consistent multi-data center replication with

SQL and ACID transaction

Implementation:
• Hierarchical schema (Protobuf)
• Spanner + Indexing + Lazy Schema Updates
• Optimistic and Pessimistic Transactions



Research Challanges
Transactions and Scalable Consistency

Dynamo Eventual None 1 RT -

Yahoo PNuts Timeline per key Single Key 1 RT possible

COPS Causality Multi-Record 1 RT possible

MySQL (async) Serializable Static Partition 1 RT possible

Megastore Serializable Static Partition 2 RT -

Spanner/F1 Snapshot Isolation Partition 2 RT -

MDCC Read-Commited Multi-Record 1 RT -

Consistency Transactional Unit
Commit 
Latency

Data 
Loss?

Google‘s F1

Shute, Jeff, et al. "F1: A distributed SQL database that scales." Proceedings of the 
VLDB 2013.

Idea:
• Consistent multi-data center replication with

SQL and ACID transaction

Implementation:
• Hierarchical schema (Protobuf)
• Spanner + Indexing + Lazy Schema Updates
• Optimistic and Pessimistic Transactions

Currently very few NoSQL DBs implement
consistent Multi-DC replication



 YCSB (Yahoo Cloud Serving Benchmark)

Research Challanges
NoSQL Benchmarking

Client
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B
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Workload:

1. Operation Mix

2. Record Size

3. Popularity Distribution

Runtime Parameters:

DB host name, 

threads, etc.

Read()
Insert()
Update()
Delete()
Scan()

Data Store

Threads

Stats

DB protocol



 YCSB (Yahoo Cloud Serving Benchmark)

Research Challanges
NoSQL Benchmarking

Client

W
o

rklo
ad

G
en

erato
r

P
lu

ggab
le

D
B

 in
terface

Workload:

1. Operation Mix

2. Record Size

3. Popularity Distribution

Runtime Parameters:

DB host name, 

threads, etc.

Read()
Insert()
Update()
Delete()
Scan()

Data Store

Threads

Stats

DB protocol

Workload Operation Mix Distribution Example

A – Update Heavy Read: 50%
Update: 50%

Zipfian Session Store

B – Read Heavy Read: 95%
Update: 5%

Zipfian Photo Tagging

C – Read Only Read: 100% Zipfian User Profile Cache

D – Read Latest Read: 95%
Insert: 5%

Latest User Status Updates

E – Short Ranges Scan: 95%
Insert: 5%

Zipfian/
Uniform

Threaded Conversations



 Example Result

(Read Heavy):

Research Challanges
NoSQL Benchmarking
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(Read Heavy):

Research Challanges
NoSQL Benchmarking

Weaknesses:
• Single client can be a 

bottleneck
• No consistency & 

availability measurement



 Example Result

(Read Heavy):

Research Challanges
NoSQL Benchmarking

YCSB++

S. Patil, M. Polte, et al.„Ycsb++: benchmarking and 
performance debugging advanced features in scalable 
table stores“, SOCC 2011

• Clients coordinate through
Zookeeper

• Simple Read-After-Write Checks
• Evaluation: Hbase & Accumulo

Weaknesses:
• Single client can be a 

bottleneck
• No consistency & 

availability measurement



 Example Result

(Read Heavy):

Research Challanges
NoSQL Benchmarking

YCSB++

S. Patil, M. Polte, et al.„Ycsb++: benchmarking and 
performance debugging advanced features in scalable 
table stores“, SOCC 2011

• Clients coordinate through
Zookeeper

• Simple Read-After-Write Checks
• Evaluation: Hbase & Accumulo

Weaknesses:
• Single client can be a 

bottleneck
• No consistency & 

availability measurement

• No Transaction Support

YCSB+T

A. Dey et al. “YCSB+T: Benchmarking Web-Scale 
Transactional Databases”, CloudDB 2014

• New workload: Transactional
Bank Account

• Simple anomaly detection for
Lost Updates

• No comparison of systems

No specific application
CloudStone, CARE, TPC  

extensions?



How can the choices for an appro-
priate system be narrowed down?



Access

Fast Lookups

RAM

Redis
Memcache

Unbounded

AP CP

Complex Queries

HDD-Size Unbounded

AnalyticsACID Availability Ad-hoc

Cache

VolumeVolume

CAP Query PatternConsistency

Example Applications 

Cassandra
Riak

Voldemort
Aerospike

Shopping-
basket

HBase
MongoDB
CouchBase
DynamoDB

Order
History

RDBMS
Neo4j

RavenDB
MarkLogic

OLTP

CouchDB
MongoDB
SimpleDB

Website

MongoDB
RethinkDB

HBase,Accumulo
ElasticSeach, Solr

Social
Network

Hadoop, Spark
Parallel DWH

Cassandra, HBase
Riak, MongoDB

Big Data

NoSQL Decision Tree



Access

Fast Lookups

RAM

Redis
Memcache

Unbounded

AP CP

Complex Queries

HDD-Size Unbounded

AnalyticsACID Availability Ad-hoc

Cache

VolumeVolume

CAP Query PatternConsistency

Example Applications 

Cassandra
Riak

Voldemort
Aerospike

Shopping-
basket

HBase
MongoDB
CouchBase
DynamoDB

Order
History

RDBMS
Neo4j

RavenDB
MarkLogic

OLTP

CouchDB
MongoDB
SimpleDB

Website

MongoDB
RethinkDB

HBase,Accumulo
ElasticSeach, Solr

Social
Network

Hadoop, Spark
Parallel DWH

Cassandra, HBase
Riak, MongoDB

Big Data

NoSQL Decision Tree

Purpose:
Application Architects: narrowing down the potential 
system candidates based on requirements

Database Vendors/Researchers: clear communication and
design of system trade-offs



System Properties
According to the NoSQL Toolbox

Functional Requirements
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Mongo x x x x x x

Redis x x x

HBase x x x x

Riak x x

Cassandra x x x x x

MySQL x x x x x x x x

 For fine-grained system selection:



System Properties
According to the NoSQL Toolbox

Non-functional Requirements
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Cassandra x x x x x x x x x

MySQL x x x

 For fine-grained system selection:



System Properties
According to the NoSQL Toolbox

Techniques
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Riak x x x x x x x x x x

Cassandra x x x x x x x x x x

MySQL x x x x x x x x

 For fine-grained system selection:



 Select Requirements in Web GUI:

 System makes suggestions based on data from
practitioners, vendors and automated benchmarks:

Future Work
Online Collaborative Decision Support

Read Scalability Conditional Writes Consistent

4/5
4/5
3/5

4/5
5/5
5/5



 High-Level NoSQL Categories:
 Key-Value, Wide-Column, Docuement, Graph

 Two out of {Consistent, Available, Partition Tolerant}

 The NoSQL Toolbox: systems use similar techniques
that promote certain capabilities

 Decision Tree

Summary

Techniques
Sharding, Replication,

Storage Management, 
Query Processing 

Functional
Requirements

Non-functional
Requirements

promote



 Current NoSQL systems very good at scaling:

 Data storage

 Simple retrieval

 But how to handle real-time queries?

Summary

NoSQL
System

Classic
Applications

Streaming
System

Real-Time
Applications



Real-Time Data Management
in Research and Industry

Wolfram Wingerath
wingerath@informatik.uni-hamburg.de

March 7th, 2017, Stuttgart



About me
Wolfram Wingerath

- PhD student at the University of Hamburg, Information Systems group

- Researching distributed data management:

NoSQL database systems

Scalable stream processing

NoSQL benchmarking

Scalable real-time queries
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Outline

• Data Processing 
Pipelines

• Why Data Processing 
Frameworks?

• Overview: 
Processing Landscape

• Batch Processing
• Stream Processing
• Lambda Architecture
• Kappa Architecture
• Wrap-Up

Real-Time Databases:
Push-Based Data Access

Scalable Data Processing:
Big Data in Motion

Stream Processors:
Side-by-Side Comparison

Current Research:
Opt-In Push-Based Access 

3



Scalable Data Processing



ApplicationProcessing
Persistence/
Streaming Serving

Today‘s topic!

A Data Processing Pipeline

5



Data processing frameworks hide some complexities of scaling, e.g.:
• Deployment: code distribution, starting/stopping work
• Monitoring: health checks, application stats
• Scheduling: assigning work to machines, rebalancing
• Fault-tolerance: restarting failed workers, rescheduling failed work

Data Processing Frameworks
Scale-Out Made Feasible

Scaling out

Running in cluster

Running on single-node

6
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high throughput

Big Data Processing Frameworks
What are your options?
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Application
Batch

(e.g. MapReduce)
Persistence
(e.g. HDFS)

Serving
(e.g. HBase)

• Cost-effective
• Efficient
• Easy to reason about: operating on complete data
But:
• High latency: jobs periodically (e.g. during night times)

Batch Processing
„Volume“

8



Stream Processing
„Velocity“

• Low end-to-end latency
• Challenges: 

• Long-running jobs: no downtime allowed
• Asynchronism: data may arrive delayed or out-of-order
• Incomplete input: algorithms operate on partial data
• More: fault-tolerance, state management, guarantees, …

Streaming
(e.g. Kafka, Redis)

ApplicationServing
Real-Time 

(e.g. Storm)

9



Lambda Architecture
Batch(Dold) + Stream(DΔnow) ≈ Batch(Dall)

ApplicationBatchPersistence Serving

Real-Time 

• Fast output (real-time)
• Data retention + reprocessing (batch)

→ „eventually accurate“ merged views of real-time and batch layer 
Typical setups: Hadoop + Storm (→ Summingbird), Spark, Flink

• High complexity: synchronizing 2 code bases, managing 2 
deployments

Nathan Marz, How to beat the CAP theorem (2011)
http://nathanmarz.com/blog/how-to-beat-the-cap-
theorem.html

Streaming 
(e.g. Kafka, Redis)

1
0

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html


Kappa Architecture
Stream(Dall) = Batch(Dall)

Streaming + retention
(e.g. Kafka, Kinesis)

Simpler than Lambda Architecture 
• Data retention for relevant portion of history
• Reasons to forgo Kappa:

• Legacy batch system that is not easily migrated
• Special tools only available for a particular batch processor
• Purely incremental algorithms

Jay Kreps, Questioning the Lambda Architecture (2014)
https://www.oreilly.com/ideas/questioning-the-lambda-architecture

ApplicationServingReal-Time

replay

1
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Wrap-up: Data Processing

• Processing frameworks abstract from scaling issues
• Two paradigms:

• Batch processing:
• easy to reason about
• extremely efficient
• Huge input-output latency

• Stream processing:
• Quick results
• purely incremental
• potentially complex to handle

• Lambda Architecture: batch + stream processing
• Kappa Architecture: stream-only processing

1
2



Outline

• Processing Models: 
Stream ↔ Batch

• Stream Processing 
Frameworks:
• Storm
• Trident
• Samza
• Flink
• Other Systems

• Side-By-Side Comparison
• Discussion

Real-Time Databases:
Push-Based Data Access

Scalable Data Processing:
Big Data in Motion

Stream Processors:
Side-by-Side Comparison

Current Research:
Opt-In Push-Based Access 

1
3



Stream Processors



Processing Models
Batch vs. Micro-Batch vs. Stream

low latency high throughput

stream batchmicro-batch

1
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Overview:
◦ „Hadoop of real-time“: abstract programming model (cf. MapReduce)

◦ First production-ready, well-adopted stream processing framework

◦ Compatible: native Java API, Thrift-compatible, distributed RPC

◦ Low-level interface: no primitives for joins or aggregations

◦ Native stream processor: end-to-end latency < 50 ms feasible

◦ Many big users: Twitter, Yahoo!, Spotify, Baidu, Alibaba, …

History:
◦ 2010: start of development at BackType (acquired by twitter)

◦ 2011: open-sourced

◦ 2014: Apache top-level project

Storm

1
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Dataflow

Directed Acyclic Graphs (DAG):
• Spouts: pull data into the topology
• Bolts: do the processing, emit data
• Asynchronous
• Lineage can be tracked for each tuple

→ At-least-once delivery roughly
doubles messaging overhead

1
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Parallelism

Illustration taken from:
http://storm.apache.org/releases/1.0.1/Understanding-the-parallelism-of-a-Storm-topology.html (2017-02-19)

1
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State Management
Recover State on Failure

• In-memory or Redis-backed reliable state
• Synchronous state communication on the critical path
→ infeasible for large state

1
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Back Pressure
Flow Control Through Watermarks

Illustration taken from:
https://issues.apache.org/jira/browse/STORM-886 (2017-02-21)

2
0
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Back Pressure
Throttling Ingestion on Overload

Approach: monitoring bolts‘ inbound buffer
1. Exceeding high watermark → throttle!
2. Falling below low watermark → full power!

1. too many
tuples

3. tuples get
replayed

2. tuples time 
out and fail

!

2
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Overview:
◦ Abstraction layer on top of Storm

◦ Released in 2012 (Storm 0.8.0)

◦ Micro-batching

◦ New features:

 Stateful exactly-once processing

 High-level API: aggregations & joins

 Strong ordering

Trident
Stateful Stream Joining on Storm

2
2



Trident
Exactly-Once Delivery Configs

Illustration taken from:
http://storm.apache.org/releases/1.0.2/Trident-state.html (2017-02-26)

Does not scale:
• Requires before- and after-images
• Batches are written in order

Can block the topology
when failed batch cannot be replayed

2
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Overview:
◦ Co-developed with Kafka

→ Kappa Architecture

◦ Simple: only single-step jobs

◦ Local state

◦ Native stream processor: low latency

◦ Users: LinkedIn, Uber, Netflix, TripAdvisor, Optimizely, …

History:
◦ Developed at LinkedIn

◦ 2013: open-source (Apache Incubator) 

◦ 2015: Apache top-level project

Samza

Illustration taken from: Jay Kreps, Questioning the Lambda Architecture (2014)
https://www.oreilly.com/ideas/questioning-the-lambda-architecture (2017-03-
02)

2
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Dataflow
Simple By Design

• Job: a single processing step (≈ Storm bolt)
→ Robust
→ But: complex applications require several jobs

• Task: a job instance (determines job parallelism)
• Message: a single data item

• Output is always persisted in Kafka
→ Jobs can easily share data
→ Buffering (no back pressure!)
→ But: Increased latency

• Ordering within partitions
• Task = Kafka partitions: not-elastic on purpose

Martin Kleppmann, Turning the database inside-out with Apache Samza (2015)
https://www.confluent.io/blog/turning-the-database-inside-out-with-apache-samza/ (2017-02-23)

2
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Samza
Local State

Illustrations taken from: Jay Kreps, Why local state is a fundamental primitive in stream processing (2014)
https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing (2017-02-
26)

Advantages of local state:
• Buffering

→ No back pressure
→ At-least-once delivery
→ Straightforward recovery
(see next slide)

• Fast lookups

2
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Dataflow
Example: Enriching a Clickstream

Example: the enriched
clickstream is available to
every team within the 
organization

Illustration taken from: Jay Kreps, Why local state is a fundamental primitive in stream processing (2014)
https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing (2017-02-
26)

2
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State Management
Straightforward Recovery

Illustration taken from: Navina Ramesh, Apache Samza, LinkedIn’s Framework for Stream Processing
(2015)
https://thenewstack.io/apache-samza-linkedins-framework-for-stream-processing (2017-02-26)

2
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Spark
◦ „MapReduce successor“: batch, no unnecessary writes, faster scheduling
◦ High-level API: immutable collections (RDDs) as core abstraction
◦ Many libraries

 Spark Core: batch processing
 Spark SQL: distributed SQL
 Spark MLlib: machine learning
 Spark GraphX: graph processing
 Spark Streaming: stream processing

◦ Huge community: 1000+ contributors in 2015
◦ Many big users: Amazon, eBay, Yahoo!, IBM, Baidu, …

History:
◦ 2009: Spark is developed at UC Berkeley
◦ 2010: Spark is open-sourced
◦ 2014: Spark becomes Apache top-level project

Spark

2
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Spark
High◦ -level API: DStreams as core abstraction (  J̴ava 8 Streams)

Micro◦ -Batching: latency on the order of seconds

Rich ◦ feature set: statefulness, exactly-once processing, elasticity

History: 
2011◦ : start of development

2013◦ : Spark Streaming becomes part of Spark Core

Spark Streaming

3
0



Resilient Distributed Data set (RDD):

Immutable◦ collection

Deterministic◦ operations

Lineage◦ tracking: 
→ state can be reproduced
→ periodic checkpoints to reduce recovery time 

DStream: Discretized RDD

RDDs ◦ are processed in order: no ordering for data within an RDD

RDD ◦ Scheduling  ̴50 ms → latency <100ms infeasible

Spark Streaming
Core Abstraction: DStream

Illustration taken from: 
http://spark.apache.org/docs/latest/streaming-programming-guide.html#overview (2017-02-26)

3
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Spark Streaming
Fault-Tolerance: Receivers & WAL

Illustrations taken from: 
https://databricks.com/blog/2015/03/30/improvements-to-kafka-integration-of-spark-streaming.html (2017-02-26)

3
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Overview:
◦ Native stream processor: Latency <100ms feasible

◦ Abstract API for stream and batch processing, stateful, exactly-once delivery

◦ Many libraries:

 Table and SQL: distributed and streaming SQL

 CEP: complex event processing

 Machine Learning 

 Gelly: graph processing

 Storm Compatibility: adapter to run Storm topologies

◦ Users: Alibaba, Ericsson, Otto Group, ResearchGate, Zalando…

History:
◦ 2010: start of project Stratosphere at TU Berlin, HU Berlin, and HPI Potsdam

◦ 2014: Apache Incubator, project renamed to Flink

◦ 2015: Apache top-level project

Flink

3
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Highlight: State Management
Distributed Snapshots

Illustration taken from: 
https://ci.apache.org/projects/flink/flink-docs-release-
1.2/internals/stream_checkpointing.html (2017-02-26)

• Ordering within stream partitions
• Periodic checkpointing
• Recovery procedure:
1. reset state to last checkpoint
2. replay data from last checkpoint 3

4
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State Management
Checkpointing (1/4)

Illustration taken from: Robert Metzger, Architecture of Flink's Streaming Runtime (ApacheCon EU 2015)
https://www.slideshare.net/robertmetzger1/architecture-of-flinks-streaming-runtime-apachecon-eu-2015 (2017-02-
27)

3
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State Management
Checkpointing (2/4)

Illustration taken from: Robert Metzger, Architecture of Flink's Streaming Runtime (ApacheCon EU 2015)
https://www.slideshare.net/robertmetzger1/architecture-of-flinks-streaming-runtime-apachecon-eu-2015 (2017-02-
27)

3
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State Management
Checkpointing (3/4)

Illustration taken from: Robert Metzger, Architecture of Flink's Streaming Runtime (ApacheCon EU 2015)
https://www.slideshare.net/robertmetzger1/architecture-of-flinks-streaming-runtime-apachecon-eu-2015 (2017-02-
27)

3
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State Management
Checkpointing (4/4)

Illustration taken from: Robert Metzger, Architecture of Flink's Streaming Runtime (ApacheCon EU 2015)
https://www.slideshare.net/robertmetzger1/architecture-of-flinks-streaming-runtime-apachecon-eu-2015 (2017-02-27)
27)

3
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◦ Heron: open-source, Storm successor

◦ Apex: stream and batch process so with many libraries
Dataflow: Fully managed cloud service for batch and
stream processing, proprietary

◦ Beam: open-source runtime-agnostic API for Dataflow
programming model; runs on Flink, Spark and others

◦ KafkaStreams: integrated with Kafka, open-source

◦ IBM Infosphere Streams: proprietary, managed, 
bundled with IDE

◦ And even more: Kinesis, Gearpump, MillWheel, 
Muppet, S4, Photon, …

Other Systems

3
9



Storm Trident Samza Spark Streaming Flink (streaming)

Strictest Guarantee at-least-once exactly-once at-least-once exactly-once exactly-once

Achievable Latency ≪100 ms <100 ms <100 ms <1 second <100 ms

State Management 
(small state)


(small state)

  

Processing Model one-at-a-time micro-batch one-at-a-time micro-batch one-at-a-time

Backpressure  
not required
(buffering)  

Ordering  between batches within partitions between batches within partitions

Elasticity     

Direct Comparison

4
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 Push-based data access

◦ Natural for many applications

◦ Hard to implement on top of traditional (pull-based) databases

 Real-time databases

◦ Natively push-based

◦ Challenges: scalability, fault-tolerance, semantics, rewrite vs. upgrade, …

 Scalable Stream Processing 

◦ Stream vs. Micro-Batch (vs. Batch)

◦ Lambda & Kappa Architecture

◦ Vast feature space, many frameworks

 InvaliDB

◦ A linearly scalable design for add-on push-based queries

◦ Database-independent

◦ Real-time updates for powerful queries: filter, sorting, joins, aggregations

Wrap-up

4
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Outline

• Pull-Based vs Push-
Based Data Access

• DBMS vs. RT DB vs. DSMS 
vs. Stream Processing

• Popular Push-Based DBs:
• Firebase
• Meteor
• RethinkDB
• Parse
• Others

• Discussion

Real-Time Databases:
Push-Based Data Access

Scalable Data Processing:
Big Data in Motion

Stream Processors:
Side-by-Side Comparison

Current Research:
Opt-In Push-Based Access 

4
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Real-Time Databases



Traditional Databases
No Request? No Data!

circular shapes

Query maintenance: periodic polling
→ Inefficient
→ Slow

4
5

What‘s the 
current state?



db.User.find()
.equal('room','B')
.ascending('name')
.limit(3)
.streamResult()

A B
C

x

y

Find people in Room B:

0 10 20

5

10

1. 

2.

3.

5 15 25

15

Wolle (22/8)

Erik (5/10)

Ideal: Push-Based Data Access
Self-Maintaining Results

4
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Popular Real-Time Databases



Overview:
Real◦ -time state synchronization across devices
Simplistic◦ data model: nested hierarchy of lists and objects
Simplistic◦ queries: mostly navigation/filtering
Fully◦ managed, proprietary
App SDK◦ for App development, mobile-first
Google ◦ services integration: analytics, hosting, authorization, …

History:
2011◦ : chat service startup Envolve is founded
→ was often used for cross-device state synchronization
→ state synchronization is separated (Firebase)
2012◦ : Firebase is founded
2013◦ : Firebase is acquired by Google

Firebase

4
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Firebase
Real-Time State Synchronization

Illustration taken from: Frank van Puffelen, Have you met the Realtime Database? (2016)
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html (2017-02-
27)

Tree• data model: application state  ̴JSON object
Subtree• synching: push notifications for specific keys only
→ Flat structure for fine granularity

→ Limited expressiveness!

4
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Firebase
Query Processing in the Client

Illustration taken from: Frank van Puffelen, Have you met the Realtime Database? (2016)
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html (2017-02-
27)

• Push notifications for specific keys only
• Order by a single attribute
• Apply a single filter on that attribute

• Non-trivial query processing in client
→ does not scale!

Jacob Wenger, on the Firebase Google Group (2015)
https://groups.google.com/forum/#!topic/firebase-talk/d-XjaBVL2Ko (2017-02-27)

5
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Overview:
JavaScript Framework ◦ for interactive apps and websites

MongoDB under the hood

Real -time result updates, full MongoDB expressiveness

Open◦ -source: MIT license

Managed◦ service: Galaxy (Platform-as-a-Service)

History:
2011◦ : Skybreak is announced

2012◦ : Skybreak is renamed to Meteor

2015◦ : Managed hosting service Galaxy is announced

Meteor

5
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Live Queries
Poll-and-Diff

• Change monitoring: app servers detect relevant changes
→ incomplete in multi-server deployment

• Poll-and-diff: queries are re-executed periodically
→ staleness window
→ does not scale with queries

app server

monitor
incoming

writes

CRUD app server

poll DB every 10 seconds

forward
CRUD

5
2
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Oplog Tailing
Basics: MongoDB Replication

• Oplog: rolling record of data
modifications

• Master-slave replication:
Secondaries subscribe to oplog

Secondary C2

apply

propagate change

write operation

Secondary C3Secondary C1

MongoDB cluster
(3 shards)

Primary BPrimary A Primary C

5
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Oplog Tailing
Tapping into the Oplog

• Every Meteor server receives
all DB writes through oplogs
→ does not scale Primary BPrimary A Primary C

MongoDB cluster (3 shards)

App server App server

Oplog broadcast

CRUD

query
(when in doubt)

monitor
oplog

push relevant events

Bottleneck!
5
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Oplog Tailing
Oplog Info is Incomplete

1. { name: „Joy“, game: „baccarat“, score: 100 }

2. { name: „Tim“, game: „baccarat“, score: 90 }

3. { name: „Lee“, game: „baccarat“, score: 80 }

Baccarat players sorted by high-
score 

Partial update from oplog:
{ name: „Bobby“, score: 500 } // game: ???

What game does Bobby play?
→ if baccarat, he takes first place!
→ if something else, nothing changes!

5
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Overview:
◦ „MongoDB done right“: comparable queries and data model, but also:

Push -based queries (filters only)

Joins (non-streaming)

Strong  consistency: linearizability

JavaScript SDK◦ (Horizon): open-source, as managed service

Open◦ -source: Apache 2.0 license

History:
2009◦ : RethinkDB is founded

2012◦ : RethinkDB is open-sourced under AGPL

2016◦ , May: first official release of Horizon (JavaScript SDK)

2016◦ , October: RethinkDB announces shutdown

2017◦ : RethinkDB is relicensed under Apache 2.0

RethinkDB

5
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RethinkDB
Changefeed Architecture

William Stein, RethinkDB versus PostgreSQL: my personal experience (2017)
http://blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html (2017-02-27)

RethinkDB proxy RethinkDB proxy

RethinkDB storage cluster

Range• -sharded data
RethinkDB• proxy: support
node without data

Client • communication
Request • routing
Real• -time query matching

Every• proxy receives 
all database writes
→ does not scale

App server App server

Daniel Mewes, Comment on GitHub issue #962: Consider adding more docs on RethinkDB Proxy (2016)
https://github.com/rethinkdb/docs/issues/962 (2017-02-27)

Bottleneck!

5
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Overview:
◦ Backend-as-a-Service for mobile apps

 MongoDB: largest deployment world-wide

 Easy development: great docs, push notifications, authentication, …

 Real-time updates for most MongoDB queries

◦ Open-source: BSD license
◦ Managed service: discontinued

History:
◦ 2011: Parse is founded
◦ 2013: Parse is acquired by Facebook
◦ 2015: more than 500,000 mobile apps reported on Parse
◦ 2016, January: Parse shutdown is announced
◦ 2016, March: Live Queries are announced
◦ 2017: Parse shutdown is finalized

Parse

5
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Illustration taken from:
http://parseplatform.github.io/docs/parse-server/guide/#live-queries (2017-02-22)

• LiveQuery Server: no data, real-time query matching
• Every LiveQuery Server receives

all database writes
→ does not scale

Parse
LiveQuery Architecture

Bottleneck!

5
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Comparison by Real-Time Query
Why Complexity Matters

matching conditions ordering Firebase Meteor RethinkDB Parse

Todos created by „Bob“ ordered by deadline    

Todos
created by „Bob“

AND 
with status equal to „active“

   

Todos with „work“ in the name
   

ordered by deadline    

Todos
with „work“ in the name

AND 
status of „active“

ordered by deadline
AND

then by the creator‘s
name

   

6
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Quick Comparison
DBMS vs. RT DB vs. DSMS vs. Stream Processing

6
1

Database 
Management

Real-Time 
Databases

Data Stream 
Management

Stream 
Processing

Data persistent collections persistent/ephemeral streams

Processing one-time
one-time + 
continuous

continuous

Access random
random + 
sequential

sequential

Streams structured
structured, 

unstructured



Every database with real-time features suffers from several of these problems:
• Expressiveness:

• Queries
• Data model
• Legacy support

• Performance:
• Latency & throughput
• Scalability

• Robustness:
• Fault-tolerance, handling malicious behavior etc.
• Separation of concerns:

→ Availability: 
will a crashing real-time subsystem take down primary data storage?

→ Consistency: 
can real-time be scaled out independently from primary storage?

Discussion
Common Issues

6
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Outline

• InvaliDB: 
Opt-In Real-Time Queries

• Distributed Query 
Matching

• Staged Query Processing
• Performance Evaluation
• Wrap-UpReal-Time Databases:

Push-Based Data Access

Scalable Data Processing:
Big Data in Motion

Stream Processors:
Side-by-Side Comparison

Current Research:
Opt-In Push-Based Access 
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Current Research



Pub-Sub Pub-Sub

InvaliDB
External Query Maintenance

6
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InvaliDB
Change Notifications

add changeIndex change remove

{ title: "SQL",

year: 2016 }

SELECT * 

FROM posts 

WHERE title LIKE "%NoSQL%" 

ORDER BY year DESC

6
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InvaliDB
Filter Queries: Distributed Query Matching

Two-dimensional partitioning:
• by Query
• by Object
→ scales with queries and writes

Implementation:
• Apache Storm
• Topology in Java
• MongoDB query language
• Pluggable query engine

Write op!

6
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InvaliDB
Staged Real-Time Query Processing

Change notifications go through up to 4 
query processing stages:
1. Filter queries: track matching status

→ before- and after-images
2. Sorted queries: maintain result order
3. Joins: combine maintained results
4. Aggregations: maintain aggregations

Ordering

Joins

Aggregation

Filtering

Event!

Event!

Event!

Event!

a

b

c

∑
6
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InvaliDB
Low Latency + Linear Scalability

6
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Our NoSQL research at the
University of Hamburg



Loading…

-20% Traffic

-7% Conversions

The Latency Problem

Average: 9,3s

-9% Visitors

-1% Revenue



If perceived speed is such an 
important factor

...what causes slow page load times?



State of the Art
Two bottlenecks: latency und processing

High Latency

Processing Time



Network Latency: Impact

I. Grigorik, High performance browser networking. 
O’Reilly Media, 2013.



Network Latency: Impact

I. Grigorik, High performance browser networking. 
O’Reilly Media, 2013.

2× Bandwidth = Same Load Time

½ Latency ≈ ½ Load Time



Our Low-Latency Vision
Data is served by ubiquitous web-caches

Low Latency

Less Processing



Innovation
Solution: Proactively Revalidate Data

Bloom filter

1 0 11 0 0 10 1 1

5 Years
Research & Development

New Algorithms
Solve Consistency Problem



Innovation
Solution: Proactively Revalidate Data

F. Gessert, F. Bücklers, und N. Ritter, „ORESTES: a Scalable
Database-as-a-Service Architecture for Low Latency“, in 
CloudDB 2014, 2014.

F. Gessert und F. Bücklers, „ORESTES: ein System für horizontal 
skalierbaren Zugriff auf Cloud-Datenbanken“, in Informatiktage 
2013, 2013.

F. Gessert, S. Friedrich, W. Wingerath, M. Schaarschmidt, und 
N. Ritter, „Towards a Scalable and Unified REST API for Cloud 
Data Stores“, in 44. Jahrestagung der GI, Bd. 232, S. 723–734.

F. Gessert, M. Schaarschmidt, W. Wingerath, S. Friedrich, und 
N. Ritter, „The Cache Sketch: Revisiting Expiration-based
Caching in the Age of Cloud Data Management“, in BTW 2015.

F. Gessert und F. Bücklers, Performanz- und 
Reaktivitätssteigerung von OODBMS vermittels der Web-
Caching-Hierarchie. Bachelorarbeit, 2010.

F. Gessert und F. Bücklers, Kohärentes Web-Caching von 
Datenbankobjekten im Cloud Computing. Masterarbeit 2012.

W. Wingerath, S. Friedrich, und F. Gessert, „Who Watches the
Watchmen? On the Lack of Validation in NoSQL
Benchmarking“, in BTW 2015.

M. Schaarschmidt, F. Gessert, und N. Ritter, „Towards
Automated Polyglot Persistence“, in BTW 2015.

S. Friedrich, W. Wingerath, F. Gessert, und N. Ritter, „NoSQL
OLTP Benchmarking: A Survey“, in 44. Jahrestagung der 
Gesellschaft für Informatik, 2014, Bd. 232, S. 693–704.

F. Gessert, „Skalierbare NoSQL- und Cloud-Datenbanken in 
Forschung und Praxis“, BTW 2015
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Business Model
Backend-as-a-Service

Baqend
Cloud

Baqend
Enterprise

Customer

Backend Caching infrastructure End user

Cached data with 
minimal latency

Pay-per-use
or on-Premise

Simplified 
development
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Components

Content-Delivery-
Network



Orestes
Components

Content-Delivery-
Network

Polyglot Persistence
Mediator



Orestes
Components

Content-Delivery-
Network

Backend-as-a-Service Middleware:
Caching, Transactions, Schemas, 
Invalidation Detection, …



Orestes
Components

Content-Delivery-
Network

Standard HTTP Caching



Orestes
Components

Content-Delivery-
Network

Unified REST API



1 4 020

Browser
Cache

CDN

Bloom filters for Caching
End-to-End Example



1 4 020

Browser
Cache

CDN

Bloom filters for Caching
End-to-End Example

Gets Time-to-Live 
Estimation by the server
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purge(obj)

hashB(oid)hashA(oid)

3

Browser
Cache

CDN

1

Bloom filters for Caching
End-to-End Example
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Bloom filters for Caching
End-to-End Example
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End-to-End Example
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hashB(oid)hashA(oid)

1 1 110

Browser
Cache

CDN

Bloom filters for Caching
End-to-End Example

𝑓 ≈ 1 − 𝑒−
𝑘𝑛
𝑚

𝑘

𝑘 = ln 2 ⋅ (
𝑛

𝑚
)

False-Positive

Rate:

Hash-

Functions:

With 20.000 distinct updates and 5% error rate: 11 Kbyte

Consistency Guarantees: Δ-Atomicity, Read-Your-Writes, Monotonic 

Reads, Monotonic Writes, Causal Consistency







Ziel mit InnoRampUp

Want to try Baqend?

Download Community

Edition

Free Baqend Cloud

Instance at baqend.com



Literature Recommendations



Read them at blog.baqend.com!

Recommended Literature

blog.baqend.com


Recommended Literature

1.

2.



Recommended Literature



Recommended Literature: Cloud-DBs



Recommended Literature: Blogs

https://martin.kleppmann.com/http://www.dzone.com/mz/nosql
http://www.infoq.com/nosql/

http://medium.baqend.com/

http://highscalability.com/

http://www.nosqlweekly.com/

http://muratbuffalo.blogspot.de/ http://db-engines.com/en/ranking

https://aphyr.com/



Seminal NoSQL Papers

• Lamport, Leslie. Paxos made simple., SIGACT News, 2001
• S. Gilbert, et al., Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web 

services, SIGACT News, 2002
• F. Chang, et al., Bigtable: A Distributed Storage System For Structured Data, OSDI, 2006
• G. DeCandia, et al., Dynamo: Amazon's Highly Available Key-Value Store, SOSP, 2007
• M. Stonebraker, el al., The end of an architectural era: (it's time for a complete rewrite), VLDB, 2007
• B. Cooper, et al., PNUTS: Yahoo!'s Hosted Data Serving Platform, VLDB, 2008
• Werner Vogels, Eventually Consistent, ACM Queue, 2009
• B. Cooper, et al., Benchmarking cloud serving systems with YCSB., SOCC, 2010
• A. Lakshman, Cassandra - A Decentralized Structured Storage System, SIGOPS, 2010
• J. Baker, et al., MegaStore: Providing Scalable, Highly Available Storage For Interactive Services, CIDR, 

2011
• M. Shapiro, et al.: Conflict-free replicated data types, Springer, 2011
• J.C. Corbett, et al., Spanner: Google's Globally-Distributed Database, OSDI, 2012
• Eric Brewer, CAP Twelve Years Later: How the "Rules" Have Changed, IEEE Computer, 2012
• J. Shute, et al., F1: A Distributed SQL Database That Scales, VLDB, 2013
• L. Qiao, et al., On Brewing Fresh Espresso: Linkedin's Distributed Data Serving Platform, SIGMOD, 2013
• N. Bronson, et al., Tao: Facebook's Distributed Data Store For The Social Graph, USENIX ATC, 2013
• P. Bailis, et al., Scalable Atomic Visibility with RAMP Transactions, SIGMOD 2014



Thank you – questions?

Norbert Ritter, Felix Gessert, Wolfram Wingerath
{ritter,gessert,wingerath}@informatik.uni-hamburg.de



Polyglot Persistence
Current best practice

Application Layer

Billing Data Nested 
Application Data

Session data

Search Index

Files

Amazon Elastic

MapReduce

Google Cloud

Storage
Friend 

network Cached data 
& metrics

Recommen-
dation Engine



Polyglot Persistence
Current best practice

Application Layer

Billing Data Nested 
Application Data

Session data

Search Index

Files

Amazon Elastic

MapReduce

Google Cloud

Storage
Friend 

network Cached data 
& metrics

Recommen-
dation Engine

Research Question:

Can we automate the mapping problem?

data database



Vision
Schemas can be annotated with requirements

- Write Throughput > 10,000 RPS
- Read Availability > 99.9999%
- Scans = true
- Full-Text-Search = true
- Monotonic Read = true

Schema

DBs
Tables
Fields



Vision
The Polyglot Persistence Mediator chooses the database

Application

Database
Metrics

Data and 
Operations

db1 db2 db3

Polyglot Persistence
Mediator

Latency < 30ms

Annotated
Schema



Step I - Requirements
Expressing the application‘s needs

Requirements1

Database

Table

Field Field Field

1. Define 
schema

Tenant

Inherits continuous 
annotations

annotated

Table

Field

 Tenant annotates schema
with his requirements

Annotations
 Continuous non-functional 

e.g. write latency < 15ms
 Binary functional 

e.g. Atomic updates
 Binary non-functional 

e.g. Read-your-writes

2. Annotate 



Step I - Requirements
Expressing the application‘s needs

Requirements1

Database

Table

Field Field Field

1. Define 
schema

Tenant

Inherits continuous 
annotations

annotated

Table

Field

 Tenant annotates schema
with his requirements

Annotations
 Continuous non-functional 

e.g. write latency < 15ms
 Binary functional 

e.g. Atomic updates
 Binary non-functional 

e.g. Read-your-writes

2. Annotate 



Step II - Resolution
Finding the best database

 The Provider resolves the
requirements

 RANK: scores available
database systems

 Routing Model: defines the
optimal mapping from schema
elements to databases

Resolution2

Provider

Capabilities for 
available DBs

1. Find optimal

RANK(schema_root, DBs)
through recursive descent

using annotated schema and metrics

2a. If unsatisfiable

Either:
Refuse or
Provision new DB

2b. Generates
routing model

Routing Model
Route schema_element   db
 transform db-independent to db-

specific operations



Step III - Mediation
Routing data and operations

 The PPM routes data

 Operation Rewriting: 
translates from abstract to
database-specific operations

 Runtime Metrics: Latency, 
availability, etc. are reported
to the resolver

 Primary Database Option: All 
data periodically gets
materialized to designated
database

Mediation3

Application

Polyglot Persistence Mediator
 Uses Routing Model
 Triggers periodic 

materialization
Report
metrics

1. CRUD, queries, 
transactions, etc.

db1 db2 db3

2. route



Evaluation: News Article
Prototype of Polyglot Persistence Mediator in ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Article

Counter



Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Mediator

Counter updates kill performance



Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Mediator

No powerful queries



Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Article

ID
Title
…

Imp.

Imp.
ID

Document Sorted Set

Found Resolution



New  field tackling the design, implementation, 
evaluation and application implications of database
systems in cloud environments:

Cloud Data Management

Application
architecture, 
Data Models

Load distribution, Auto-Scaling, SLAs 
Workload Management, Metering

Multi-Tenancy, 
Consistency, Availability, 
Query Processing, Security

Replication, 
Partitioning,
Transactions, 
Indexing

Protocols, APIs, 
Caching



Cloud-Database Models

Deployment
Model

Data
Model

structured

unstructured

RDBMS 
machine

image
relational

schema-
free

unstructured

NoSQL
machine

image

Analytics 
machine

image

Managed
RDBMS/

DWH

Managed
NoSQL

Analytics-
as-a-

Service

RDBMS/
DWH

Service

NoSQL
Service

Analytics/
ML
APIs

Database-as-a-Service



Cloud-Deployed Database
Database-image provisioned in IaaS/PaaS-cloud

IaaS-Cloud

IaaS/PaaS deployment of
database system

Does not solve:
Provisioning, Backups, Security, 
Scaling, Elasticity, Performance 
Tuning, Failover, Replication, ...



Managed RDBMS/DWH/NoSQL DB
Cloud-hosted database

IaaS-Cloud

RDBMS DWH NoSQL DB

DBaaS-Provider

Amazon Redshift

SQL Azure

Google 

Cloud SQL

R
D

B
M

S
N

o
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L
D

B
D

W
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Managed RDBMS/DWH/NoSQL DB
Cloud-hosted database

IaaS-Cloud

RDBMS DWH NoSQL DB

DBaaS-Provider

Amazon Redshift

SQL Azure

Google 

Cloud SQL

R
D

B
M

S
N

o
SQ

L
D

B
D

W
H

Provisioning, Backups, Security, 
Scaling, Elasticity, Performance 
Tuning, Failover, Replication, ...



Proprietary Cloud Database
Designed for and deployed in vendor-specific cloud environment

Cloud

Black-box system

Managed by
Cloud Provider

Pro
vid

er‘s
A

P
I

Amazon

SimpleDB

Google Cloud

Storage

Azure Blob

Storage

Google Cloud

Datastore
Azure Tables

Openstack

Swift

Database.com

BigTable, Megastore, Spanner, F1, Dynamo, 

PNuts, Relational Cloud, …

D
atab

ase
O

b
ject

Sto
re



Analytics-as-a-Service
Analytic frameworks and machine learning with service APIs

Cloud

Analytics Cluster

Provisioning, 
Data Ingest

Azure

HDInsight

Google

BigQuery

Google 

Prediction API

Amazon Elastic

MapReduce

A
n

alytics
M

L



Backend-as-a-Service
DBaaS with embedded custom and predefined application logic

IaaS-Cloud

Backend API

Service-Layer

Data API

(m
o

b
ile) B

aaS

AppCelerator

Cloud

Authentication, 
Users, Validation,etc.

Maps to (different) 
databases



Pricing Models
Pay-per-use and plan-based

Usage

Account

Pay-per-use
Parameters: Network, Bandwidth, 
Storage,  CPU, Requests, etc.
Payment: Pre-Paid, Post-Paid
Variants: On-Demand, Auction, Reserved

End of
month

e.g. DynamoDB

e.g. Compose



Pricing Models
Pay-per-use and plan-based

Usage

Account

End of
month

Plan-based
Parameters: Allocated Plan 
(e.g. 2 instances + X GB 
storage)

e.g. DynamoDB

e.g. Compose



Database-as-a-Service
Approaches to Multi-Tenancy

T. Kiefer, W. Lehner “Private table database virtualization for dbaas” 
UCC, 2011

Private OS

VM

Hardware Resources

Database Process

Database

Schema

Private Process/DB Private Schema

VM

Hardware Resources

Database Process

Database

Schema

VM

Hardware Resources

Database Process

Database

Schema

Shared Schema

VM

Hardware Resources

Database Process

Database

Schema

Virtual Schema

e.g. Amazon RDS e.g. Compose e.g. Google DataStore Most SaaS Apps



Multi-Tenancy: Trade-Offs

W. Lehner, U. Sattler “Web-scale Data Management for the Cloud” 
Springer, 2013

Private OS

Private 
Process/DB

Private Schema

Shared Schema

App.
indep.

Isolation
Ressource

Util.
Maintenance,
Provisioning



Authentication & Authorization
Checking Permissions and Indentity

Internal Schemes External Identity
Provider

Federated Identity 
(Single Sign On)

e.g. Amazon IAM e.g. OpenID e.g. SAML

User-based Access 
Control

Role-based Access 
Control

Policies

e.g. Amazon S3 ACLs e.g. Amazon IAM e.g. XACML

Database-a-

a-Service

Authentication

Authorization

API

Authenticate/Login

Token

Authenticated Request

Response



Service Level Agreements (SLAs)
Specification of Application/Tenant Requirements

SLA

Legal Part
1. Fees
2. Penalties

Technical Part
1. SLO
2. SLO
3. SLO

Service Level Objectives:
Availability•

Durability•

Consistency• /Staleness
Query Response Time•



Functional Service Level Objectives
◦ Guarantee a „feature“

◦ Determined by database system

◦ Examples: transactions, join

Non-Functional Service Level Objectives
◦ Guarantee a certain quality of service (QoS)

◦ Determined by database system and service provider

◦ Examples:

 Continuous: response time (latency), throughput

 Binary: Elasticity, Read-your-writes

Service Level Agreements
Expressing application requirements



Utility expresses „value“ of a continuous non-functional
requirement:

𝑓𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑚𝑒𝑡𝑟𝑖𝑐 → [0,1]

Service Level Objectives
Making SLOs measurable through utilities



Typical approach:

Workload Management
Guaranteeing SLAs

W. Lehner, U. Sattler “Web-scale Data Management for the Cloud” 
Springer, 2013
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Workload Management
Guaranteeing SLAs

W. Lehner, U. Sattler “Web-scale Data Management for the Cloud” 
Springer, 2013

Maximize:



Typical approach:

Workload Management
Guaranteeing SLAs

W. Lehner, U. Sattler “Web-scale Data Management for the Cloud” 
Springer, 2013



Goal: minimize penalty and
resource costs

Resource & Capacity Planning
From a DBaaS provider‘s perspective

T. Lorido-Botran, J. Miguel-Alonso et al.: “Auto-scaling Techniques for
Elastic Applications in Cloud Environments”. Technical Report, 2013

Resources

Time

Expected 
Load



Goal: minimize penalty and
resource costs

Resource & Capacity Planning
From a DBaaS provider‘s perspective

T. Lorido-Botran, J. Miguel-Alonso et al.: “Auto-scaling Techniques for
Elastic Applications in Cloud Environments”. Technical Report, 2013

Resources

Time

Expected 
Load

Provisioned Resources:
• #No of Shard- or Replica 

servers
• Computing, Storage, 

Network Capacities



Goal: minimize penalty and
resource costs

Resource & Capacity Planning
From a DBaaS provider‘s perspective

T. Lorido-Botran, J. Miguel-Alonso et al.: “Auto-scaling Techniques for
Elastic Applications in Cloud Environments”. Technical Report, 2013
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Goal: minimize penalty and
resource costs

Resource & Capacity Planning
From a DBaaS provider‘s perspective

T. Lorido-Botran, J. Miguel-Alonso et al.: “Auto-scaling Techniques for
Elastic Applications in Cloud Environments”. Technical Report, 2013

Resources

Time

Actual 
Load

Overprovisioning:
• SLAs met
• Excess Capacities

Underprovisioning:
• SLAs violated
• Usage maximized



SimpleDB
Table-Store
(NoSQL Service)

CP

Dynamo-DB
Table-Store
(NoSQL Service)

CP

Azure Tables
Table-Store
(NoSQL Service)

CP 99.9% 
uptime

AE/Cloud DataStore
Entity-Group 
Store
(NoSQL Service)

CP

S3, Az. Blob, GCS
Object-Store
(NoSQL Service)

AP 99.9% 
uptime
(S3)

SLAs in the wild

Model CAP SLAs

Most DBaaS systems offer no SLAs, or
only a a simple uptime guarantee



 Service-Level Agreements
◦ How can SLAs be guaranteed in a virtualized, multi-tenant

cloud environment?

 Consistency
◦ Which consistency guarantees can be provided in a geo-

replicated system without sacrificing availability?

 Performance & Latency
◦ How can a DBaaS deliver low latency in face of distributed

storage and application tiers?

 Transactions
◦ Can ACID transactions be aligned with NoSQL and scalability?

Open Research Questions
in Cloud Data Management



 Relational Database Service

DBaaS Example
Amazon RDS

RDS

Model:

Managed RDBMS

Pricing:

Instance + Volume 

+ License

Underlying DB:

MySQL, Postgres,

MSSQL, Oracle

API:

DB-specific
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API:

DB-specific

• Synchronous Replication
• Automatic Failover

99,95% uptime SLA



 Relational Database Service

DBaaS Example
Amazon RDS

RDS

Model:

Managed RDBMS

Pricing:

Instance + Volume 

+ License

Underlying DB:

MySQL, Postgres,

MSSQL, Oracle

API:

DB-specific

• Synchronous Replication
• Automatic Failover

99,95% uptime SLA

Provisioned IOPS: access to 
EBS volumes network-
optimized (up to 4000 IOPS)
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DBaaS Example
Amazon RDS

RDS

Model:

Managed RDBMS

Pricing:

Instance + Volume 

+ License

Underlying DB:

MySQL, Postgres,

MSSQL, Oracle

API:

DB-specific

EC2 instances: Up to 32 
Cores, 244 GB RAM, 10 GbE



 Relational Database Service

DBaaS Example
Amazon RDS

RDS

Model:

Managed RDBMS

Pricing:

Instance + Volume 

+ License

Underlying DB:

MySQL, Postgres,

MSSQL, Oracle

API:

DB-specific

EC2 instances: Up to 32 
Cores, 244 GB RAM, 10 GbE

Minor Version Upgrades are 
performed without downtime
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API:

DB-specific

Backups are automated and 
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 Relational Database Service

DBaaS Example
Amazon RDS

RDS

Model:

Managed RDBMS

Pricing:

Instance + Volume 

+ License

Underlying DB:

MySQL, Postgres,

MSSQL, Oracle

API:

DB-specific

Backups are automated and 
scheduled

• Support for (asynchronous) Read Replicas
• Administration: Web-based or SDKs
• Only RDBMSs
• “Analytic Brother“ of RDS: RedShift (PDWH)



 Similar to Amazon SimpleDB and DynamoDB

DBaaS Example
Azure Tables

Partition 
Key

Row Key 
(sortiert)

Timestamp
(autom.)

Property1 Propertyn

intro.pdf v1.1 14/6/2013 … … 

intro.pdf v1.2 15/6/2013 … 

präs.pptx v0.0 11/6/2013 … 

Partition

Partition

R
ES

T 
A

P
I

SparseHash-distributed to
parition servers

No Index: Lookup only (!) by full table scan
Atomic "Entity-
Group Batch 
Transaction" possible

• Indexes all attributes
• Rich(er) queries
• Many Limits (size, RPS, etc.)

• Provisioned Throughput
• On SSDs („single digit latency“)
• Optional Indexes



 Many Hosted NoSQL
DbaaS Providers 
represented

 And Search

DBaaS and PaaS Example
Heroku Addons



Redis2Go

Model:

Managed NoSQL

Pricing:

Plan-based

Underlying DB:

Redis

API:

Redis

Create Heroku App:

Add Redis2Go Addon:

Use Connection URL (environment variable):

Deploy:

DBaaS and PaaS Example
Heroku Addons



Redis2Go

Model:

Managed NoSQL

Pricing:

Plan-based

Underlying DB:

Redis

API:

Redis

Create Heroku App:

Add Redis2Go Addon:

Use Connection URL (environment variable):

Deploy:
• Very simple
• Only suited for small to medium 

applications (no SLAs, limited control)

DBaaS and PaaS Example
Heroku Addons



 Idea: Run (mostly) unmodified DB on IaaS

Cloud-Deployed DB
An alternative to DBaaS-Systems

 Method I: DIY

 Method II: Deployment Tools

 Method III: Marketplaces

> whirr launch-cluster --config
hbase.properties

Login, cluster-size etc. Amazon EC2

1. Provision VM(s) 2. Install DBMS (manual, script, 
Chef, Puppet)



 Idea: Web-scale analysis of nested data

Google BigQuery BigQuery

Model:

Analytics-aaS

Pricing:

Storage + GBs 

Processed

API:

REST

Google

BigQuery
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 Idea: Web-scale analysis of nested data

Google BigQuery BigQuery

Model:

Analytics-aaS

Pricing:

Storage + GBs 

Processed

API:

REST

Google

BigQuery

Dremel

Melnik et al. “Dremel: Interactive analysis 
of web-scale datasets”, VLDB 2010

Idea:
Multi-Level execution tree on 
nested columnar data format
(≥100 nodes)



 Idea: Web-scale analysis of nested data

Google BigQuery BigQuery

Model:

Analytics-aaS

Pricing:

Storage + GBs 

Processed

API:

REST

Google

BigQuery

Dremel

Melnik et al. “Dremel: Interactive analysis 
of web-scale datasets”, VLDB 2010

Idea:
Multi-Level execution tree on 
nested columnar data format
(≥100 nodes)

• SLA: 99.9% uptime / month
• Fundamentally different from relational DWHs 

and MapReduce
• Design copied by Apache Drill, Impala, Shark



HBase Wide-
Column

CP Over 
Row Key

~700 1/4 Apache

(EMR)

MongoDB Doc-
ument

CP yes >100
<500

4/4 GPL

Riak Key-
Value

AP ~60 3/4 Apache

(Softlayer)

Cassandra Wide-
Column

AP With
Comp. 
Index

>300
<1000

2/4 Apache

Redis Key-
Value

CA Through 
Lists, 
etc.

manual N/A 4/4 BSD

Managed NoSQL services
Summary

Model CAP Scans
Sec. 

Indices
Largest
Cluster

Lic.
Lear-
ning DBaaS



HBase Wide-
Column

CP Over 
Row Key

~700 1/4 Apache

(EMR)

MongoDB Doc-
ument

CP yes >100
<500

4/4 GPL

Riak Key-
Value

AP ~60 3/4 Apache

(Softlayer)

Cassandra Wide-
Column

AP With
Comp. 
Index

>300
<1000

2/4 Apache

Redis Key-
Value

CA Through 
Lists, 
etc.

manual N/A 4/4 BSD

Managed NoSQL services
Summary

Model CAP Scans
Sec. 

Indices
Largest
Cluster

Lic.
Lear-
ning DBaaS

And there are many more:
• CouchDB (e.g. Cloudant)
• CouchBase (e.g. KuroBase Beta)
• ElasticSearch(e.g. Bonsai)
• Solr (e.g. WebSolr)
• …



SimpleDB Table-
Store

CP Yes (as
queries)

Auto-
matic

SQL-like
(no joins, 
groups, …)

REST + 
SDKs

Dynamo-
DB

Table-
Store

CP By range
key / 
index

Local Sec.
Global 
Sec.

Key+Cond. 
On Range 
Key(s)

REST + 
SDKs

Automatic
over Prim. 
Key

Azure
Tables

Table-
Store

CP By range
key

Key+Cond. 
On Range 
Key

REST + 
SDKs

Automatic
over Part. 
Key

99.9% 
uptime

AE/Cloud
DataStore

Entity-
Group

CP Yes (as
queries)

Auto-
matic

Conjunct.
of Eq. 
Predicates

REST/
SDK, 
JDO,JPA

Automatic
over Entity
Groups

S3, Az. 
Blob, GCS

Blob-
Store

AP REST + 
SDKs

Automatic
over key

99.9% 
uptime
(S3)

Proprietary Database services
Summary

Model CAP Scans
Sec. 

Indices
Queries API SLA

Scale-
out



Big Data Frameworks



 Modelled after: Googles GFS (2003)

 Master-Slave Replication
◦ Namenode: Metadata (files + block locations)

◦ Datanodes: Save file blocks (usually 64 MB)

 Design goal: Maximum Throughput and data locality for
Map-Reduce

Hadoop Distributed FS (CP)
H

D
D

 S
iz

e

Year
1990 2013

Size: 1,4 GB
Reading: 4,8 MB/s
→ 5 min/HDD

Size: 1 TB
Reading: 100 MB/s
→ 2,5 h/HDD

HDFS

Model:

File System

License:

Apache 2

Written in:

Java



Holds filesystem data and
block locations in RAMSends data operations to

DataNodes and metadata
operations to the NameNode

DataNodes communicate to
perform 3-way replication Files are split into blocks and

scattered over DataNodes

Holmes, Alex. Hadoop in Practice. Manning, 2012.



 For many synonymous to Big Data Analytics

 Large Ecosystem

 Creator: Doug Cutting (Lucene)

 Distributors: Cloudera, MapR, HortonWorks

 Gartner Prognosis: By 2015 65% of all complex analytic
applications will be based on Hadoop

 Users: Facebook, Ebay, Amazon, IBM, Apple, Microsoft, 
NSA

Hadoop Hadoop

Model:

Batch-Analytics 

Framework

License:

Apache 2

Written in:

Java

http://de.slideshare.net/cultureofperformanc
e/gartner-predictions-for-hadoop-predictions



MapReduce: Example
Constructing a reverse-index

cat sat mat

cat sat dog

doc2.txt

doc1.txt

Input
(HDFS)

Mappers Intermediate
Output

cat, doc1.txt
sat, doc1.txt
mat, doc1.txt

cat, doc2.txt
sat, doc2.txt
dog, doc2.txt

Reducers Output

cat: doc1.txt, doc2.txt

part-r-0000

sat: doc1.txt, doc2.txt

dog: doc2.txt

part-r-0001

mat: doc1.txt

part-r-0002

Holmes, Alex. Hadoop in Practice



The client sends job
and configuration to
the Jobtracker

The JobTracker
coordinates the cluster
and assigns tasks

TaskTrackers execute Mappers 
and Reducers as child-processes

Arun Murthy “Apache Haddop YARN”

Cluster Architecture



The ResourceManager
is a pure scheduler

Only the ApplicationMaster is
Framework specific (e.g. MR)

Arun Murthy “Apache Haddop YARN”

Cluster Architecture
YARN – Abstracting from MR



 Hadoop: Ecosystem for Big Data Analytics

 Hadoop Distributed File System: scalable, shared-nothing file
system for throughput-oriented workloads

 Map-Reduce: Paradigm for performing scalable distributed
batch analysis

 Other Hadoop projects:
◦ Hive: SQL(-dialect) compiled to YARN jobs (Facebook)

◦ Pig: workflow-oriented scripting language (Yahoo)

◦ Mahout: Machine-Learning algorithm library in Map-Reduce

◦ Flume: Log-Collection and processing framework

◦ Whirr: Hadoop provisioning for cloud environments

◦ Giraph: Graph processing à la Google Pregel

◦ Drill, Presto, Impala: SQL Engines

Summary: Hadoop Ecosystem



 „In-Memory“ Hadoop that does not suck
for iterative processing (e.g. k-means)

 Resilient Distributed Datasets (RDDs): 
partitioned, in-memory set of records

Spark Spark

Model:

Batch Processing 

Framework

License:

Apache 2

Written in:

Scala

M. Zaharia, M. Chowdhury, T. Das, et al. „Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing“



errors = sc.textFile("log.txt").filter(lambda x: "error" in x)

warnings = inputRDD.filter(lambda x: "warning" in x)

badLines = errorsRDD.union(warningsRDD).count() 

Spark
Example RDD Evaluation

 Transformations: RDD  RDD

 Actions: Reports an operation

Runtime
Execution

RDD Lineage

H. Karau et al. „Learning Spark“



 Distributed Stream Processing Framework

 Topology is a DAG of:
◦ Spouts: Data Sources

◦ Bolts: Data Processing Tasks

 Cluster: 
◦ Nimbus (Master) ↔ Zookeeper ↔ Worker

Storm Storm

Model:

Stream Processing 

Framework

License:

Apache 2

Written in:

Java

Nathan Marz „Big Data“



 Scalable, Persistent Pub-Sub
 Log-Structured Storage
 Guarantee: At-least-once
 Partitioning:
◦ By Topic/Partition
◦ Producer-driven

 Round-robin

 Semantic

 Replication:
◦ Master-Slave
◦ Synchronous to majority

Kafka Kafka

Model:

Distributed Pub-

Sub-System

License:

Apache 2

Written in:

Scala

J. Kreps, N. Narkhede, J. Rao, und others, „Kafka: 
A distributed messaging system for log processing“


