
Debugging Microservices
and Distributed Systems
From payment processing to notifications

Debugging Microservices and Distributed Systems

Introduction

This resource explores the complexities of debugging modern web
applications, particularly within microservices architectures. It highlights
the shift from monolithic to microservices architectures, driven by
companies like Netflix and Amazon, to improve scalability, flexibility, and
resilience. This resource discusses:

• The benefits of microservices
• The difficulty in debugging microsystems architectures
• The importance of focusing on “debuggability” tools to manage and

maintain microservices effectively
• Practical advice on setting up a microservices architecture for success

Gone are the days when you had just a couple of files open in a simple editor and

could debug with `print(“Here”)`. Nowadays, even if you’re primarily a frontend

developer, you really have to be able to debug errors and performance issues over

the entire stack because front end issues often originate in the backend or other

services. With a push towards server-side rendering (SSR) and the complex nature

of the backend microservices architecture, we’re able to do so much, so quickly, but

at the cost of making debugging significantly more challenging.

Before you continue building with the best and newest app by calling every single

microservice ever created and putting AI everywhere so you can say you’re an “AI-

first” company, consider the debuggability of your architecture and the tools you

use.

Sarah Guthals, PhD
Director of Developer Relations, Sentry

https://www.youtube.com/watch?v=-I872moWyB0
https://www.youtube.com/watch?v=-I872moWyB0
https://blog.sentry.io/monitoring-observability-and-debuggability-explained/

Debugging Microservices and Distributed Systems

Maybe you’ve started reading this and thought, “Oh, this isn’t for me, I don’t even
use microservices”. Boy, would you be wrong (probably).

In the early 2010s, companies like Netflix and Amazon moved from a monolithic architecture

(all the code for all the projects and APIs and services in one place) towards a microservices

architecture to improve scalability, flexibility, and resilience for the on-demand content

being streamed worldwide. But it really wasn’t until the mid-2010s when Fowler and
Lewis wrote “Microservices: a definition of this new architectural term” that we saw

the emergence of tooling and frameworks to take advantage and fortify this new shift to a

microservices architecture to really become mainstream.

What are microservices?

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

Debugging Microservices and Distributed Systems

Now, in the mid-2020s, you probably use microservices for:

• User Authentication: With services like OAuth and OpenID, the safety and privacy of your

users and their data is fairly simple.

• Payment Processing and Order Management: Stripe, PayPal, Square, and Shopify lead
the way in making it easier than ever to spin up an e-commerce site your customers can

trust.

• Notification Services: Sending emails, SMS, push notifications, and in-app messages to
users based on triggers or schedules can be quickly done with services such as Twilio,

Firebase Cloud Messaging, and SendGrid.

• Content Management: Leveraging a headless CMS like Contentful makes publishing

content manageable.

• Customer Support: Keeping customers happy, even when something goes wrong, isn’t

too much of a hassle with services like Zendesk.

• AI: And of course, everyone’s favorite topic, incorporating AI through services such as
Microsoft, Google, and Amazon’s text-to-speech (and vice-versa), recommendation
systems, image recognition, and, of course, natural language processing has become a

popular way to “make an AI-first app” these days.

Debugging Microservices and Distributed Systems

In terms of flexibility, microservices are usually preferred compared to monolithic
applications, where changes require complex unentaglement.

At its core, a microservice is a single-responsibility, well, service that performs a
very specific function. The benefit is, in theory, that it is much easier to develop,
test, deploy, and debug a small, single responsibility service than it is to debug a
full, monolithic application.

Having a microservices architecture makes it easy to remain flexible, which can enable

your team to keep the entire system up to date and even enable a faster integration of new

technologies. Microservices make it easy to swap out one microservice for another or isolate

improvements (bug fixes and performance issues).

The benefits of microservices

Isolated testing and reverting is also made much easier with a microservices architecture.

Tests can range from testing an individual unit to testing across the entire system, which

makes it much easier to find the root cause of an issue because the smaller units are being

tested in isolation. And, when an issue does come up, an individual unit can be reverted

quickly without affecting the entire system.

Debugging Microservices and Distributed Systems

As you can imagine, however, the challenges with microservices is the rapid
increase in complexity for the application as a whole. While everyone’s use case
is unique and therefore has unique challenges, there are a few ways in which
microservices challenges all of us.

That which removes the complexity of building an application, can sometimes
bring it back tenfold when maintaining and debugging the same application.

Increased complexity
Keeping data (and types!) consistent across the entire codebase, as microservices change

or get swapped out, can pose a challenge. With individual pieces of a system being tested,

sometimes the more complex edge cases that are system-wide get missed. Deploying also

becomes increasingly difficult as you need solid orchestration and automation tools to

ensure they’re each up and running and ready in the right order and correctly.

Communication overhead
Perhaps most challenging is the huge communication overhead both within the
system and the engineering teams themselves. This overhead affects performance,
quality, and reliability of the application. There is only so much you can do to optimize

each individual service you’re using, and oftentimes you don’t even have control over the

performance of said service because it’s a third-party service. Sometimes the effects of one

service show up in another part of your application unexpectedly, making debugging issues

your users are experiencing a very stressful scavenger hunt.

Microservices in the wild

The challenges of microservices

We’re now seeing products like Amazon Prime Video moving away from a microservice
architecture, improving performance and reducing operational costs by over 90%. The costs

of debugging have probably also been significantly reduced since tracing and consistency is

likely much easier with a more traditional, monolithic architecture.

And for companies like monday.com who choose to continue using microservices, it

becomes critical to use debuggabilty tools, like Sentry, to seamlessly trace across all

distributed services, despite the complexity of a growing architecture.

https://devops.com/microservices-amazon-monolithic-richixbw/
https://devops.com/microservices-amazon-monolithic-richixbw/
https://docs.sentry.io/concepts/key-terms/tracing/
https://sentry.io/customers/monday-dot-com/#solving-for-increasingly-distributed-architecture

Debugging Microservices and Distributed Systems

If you’ve made it this far, you have a good reason for still wanting to have a
Microservices Architecture. Truthfully, there are many reasons why it is better to
build with agility and flexibility in mind. Not every project can have the funding
and stability of Amazon Prime Video.

Suggested tools are often in the IDE, logging, monitoring, and

observability spaces. But I suggest you think more monolithically (pun

intended) about your actual debugging workflow. Because, I don’t know

about you, but trying to follow logs for a system that uses a different

microservice for authorization, payments, inventory, orders, content,

notifications, customer support, analytics, and AI and decipher where

the slowdown is, or which customers it’s affecting, or which release

caused the issue sounds… impossible.

There are ways to mitigate the challenges microservice architectures have, and support

effective debugging workflows that make the system relatively easy to maintain.

Focus on Debuggability
Building a healthy system with a microservices architecture heavily relies on one thing:

Having the right tools

When choosing the right tools, consider what you need to know about your entire
system, what context you need to have about the issue and who, what, where,
when, and why it’s happening so that you can find the right engineer to quickly
and simply fix the problem.

Setting up a Microservices Architecture
for success

Debugging Microservices and Distributed Systems

Let’s set up your system’s environment. But just like with choosing which
microservices to include in your system, you should take time to choose the
development environment that is tailored to what you need, not just the newest
trend because it’s fun (unless, of course, that is what you want to be exploring,
which is completely fine).

Configure for Debuggability

Here are some basic suggestions for your development environment:

• IDE: There are a few IDEs and editors that have become popular depending on what
you’re building, but according to the 2024 Stack Overflow Developer Survey, Visual
Studio Code remains the most popular choice. This is probably because of the flexibility
and customization you can have with VS Code. Plus, the options for integrating the rest of
the tools that will help you with debuggability make this IDE a common go-to.

• Source Code Control: There are many options for source code control, but one of the
more popular choices is GitHub. With the integration of GitHub to VS Code, the second
most popular AI developer tool with GitHub Copilot, community focus with GitHub
Discussions, and strong integrations with other tools throughout your workflow, you
can merge to main with confidence.

• Deployment Environments: Once you have the basics, you should make sure you
have development and staging environments that mirror the production environment
as closely as possible. This will help you ensure you can confirm any fixes will actually

improve your users’ experience.

• Code Testing: Making sure your code is covered with your test suite is critical to making
sure you are shipping with confidence. Tools like Codecov make that easy, integrating
with your other tools, like GitHub.

• Monitoring vs. Observability vs. Debuggability: Whether you’re looking for monitoring,
observability, or something more actionable and contextualized like debuggability,
being able to stay up to date on performance issues and errors, prioritize those issues
quickly, and trace issues throughout your entire stack, microservices and all, is absolutely
imperative to your success at debugging a microservices architecture. But more on
that later.

https://survey.stackoverflow.co/2024/technology/#1-integrated-development-environment
https://survey.stackoverflow.co/2024/technology/#1-integrated-development-environment
https://github.com/
https://code.visualstudio.com/docs/sourcecontrol/github
https://github.com/features/copilot
https://github.com/getsentry/sentry/discussions
https://github.com/getsentry/sentry/discussions
https://sentry.io/integrations/github/
https://about.codecov.io/
https://about.codecov.io/product/integrations/
https://about.codecov.io/tool/github/
https://blog.sentry.io/monitoring-observability-and-debuggability-explained/
https://blog.sentry.io/monitoring-observability-and-debuggability-explained/

Debugging Microservices and Distributed Systems

Common microservices architecture
debugging techniques

When trying to debug an application built on a microservices architecture, you have to be

ready to employ many debugging techniques. The distributed nature of the system makes

the root cause of the issue harder to find.

Analyzing logs and trace data
The three pillars of observability are metrics, logs, and traces. Metrics can often be the

initial indicator that something is going wrong. If there is a major change in how users are

interacting with your application, or a drop in clicks or visits to specific areas of your website,

you know there is likely an issue that is triggering that change in user behavior. From there,

you might have to dig through logs and try to decipher where an issue is occurring. Once

you think you’ve found the culprit, or at least the general area where it might be, leveraging

tracing can help you fully visualize and understand where data is moving across your

system.

Root Cause Analysis
Debugging with root cause analysis is easier with the support of metrics, logs, and traces.

While you are systematically ruling out potential causes, you can leverage the data from

observability tools to decide whether a part of the system needs further investigation, or can

be confirmed as operational. But what is often missing from traditional observability tools is

the context across all dependencies, configurations, users, and code changes.

A tool centered around debuggability, like Sentry, will help you resolve your issues even

faster. While you’re exploring any span along the trace, Sentry provides context that

is relevant for developers to not only pinpoint where the issue is coming from but also

determine whether this particular issue should be prioritized over others.

https://docs.sentry.io/product/explore/metrics/
https://sentry.io/for/tracing/
https://sentry.io/welcome/
https://docs.sentry.io/platforms/javascript/tracing/instrumentation/custom-instrumentation/

Debugging Microservices and Distributed Systems

Debugging API calls and response issues
If, through your initial scoping of the issue, you

discover that there is likely an issue with a specific

API you are calling, it is probably a good idea to test

whether the API requests are successful, performant,

and whether the requests and responses are

conforming to the expected formats. You can use

tools like Postman or curl to test endpoints.

Identifying performance bottlenecks with a performance profiler
If the issue is more of a performance issue, you should be using a profiler. Profiling tools

help you monitor CPU, memory, and I/O usage, identify services or endpoints with high

latency or resource consumption, and help you analyze the performance of individual

services across your system.

Reproduce the bug and find the code causing the issue
Once you have determined where the issue is within the system, you are likely going to

want to dive deeper into the code itself. Leveraging an IDE that supports debugging with

breakpoints and stepping through code will make this a lot simpler. Running the code in

debug mode within an IDE will enable you to reproduce the issue and actually see what is

happening in the code at that exact moment.

But what happens when the issue isn’t locally reproducible? For example, maybe the issue

is a performance issue, and you aren’t able to reproduce it because you’re on a high-end

device with a solid Internet connection.

Debuggability tools, like Sentry, can be leveraged for this as well with features such as

Session Replay. Replays are a video-like reproduction of what was happening on the clients

device when an error or slowdown happened. Luckily, Session Replay leverages the data that

Sentry has across your entire application and contextualizes the issue for you.

Code testing
Often deprioritized when trying to ship quickly and often, testing is a critical component to

being able to maintain and fix complex, distributed systems that use a lot of microservices.

Ensuring your test framework is up to date and you are always able to check on your code

coverage, maybe using a tool like Codecov, will also give you quick insights into coding

errors and help you identify where there might be gaps in the system-wide assumptions

made on how data flows through and use cases for your application.

See how Dan

Mindru shaved off

22.3 seconds on an

API call by tracing
his system with
Sentry’s Trace View.

https://docs.sentry.io/product/explore/profiling/
https://docs.sentry.io/product/explore/session-replay/
https://codecov.io/
https://blog.sentry.io/how-i-cut-22-3-seconds-off-an-api-call-using-trace-view/
https://blog.sentry.io/how-i-cut-22-3-seconds-off-an-api-call-using-trace-view/
https://blog.sentry.io/how-i-cut-22-3-seconds-off-an-api-call-using-trace-view/
https://blog.sentry.io/how-i-cut-22-3-seconds-off-an-api-call-using-trace-view/

Debugging Microservices and Distributed Systems

Debugging microservices with Sentry

Before you start signing up for a million other tools (in addition to leveraging all of the

microservices you’re using), consider using a full debuggability tool like Sentry. With just

a couple of lines of code and a few minutes, you can make sure your frontend, backend,

mobile app… your entire system, is being monitored and giving you the data, context, and

tools you need to quickly take action to debug and continue building those newer features.

One thing to be aware of is that not all microservices are called the same way,
so it’s important to understand how your microservices are being called so that
you can handle passing the trace header correctly, so ensure an uninterrupted
tracing experience. Check out this resource to learn more about the different
ways in which microservices communicate.

Set up Sentry
The first thing you will need to do is set up Sentry. Make sure to check out our sign up page

for information on which type of account would be good for you. As an individual developer

you can get started with the free Developer plan. And don’t worry, we have plans that make

sense for all size teams and projects; Sentry scales with you.

There are a myriad of Sentry SDKs that support over 100 languages and frameworks.

Create a project in Sentry for each part of your application (e.g. each microservice, the

frontend vs backend), so that you can track errors and performance metrics independently.

Don’t worry, you will still be able to trace errors and performance issues between Sentry

projects.

Integrate Sentry across your entire application, using the appropriate SDK for each part. For

example, if you have a Python-based microservice, you would first install the Sentry SDK

pip install sentry-sdk

https://sentry.io/resources/tracing-through-microservices/
https://sentry.io/resources/tracing-through-microservices/
https://sentry.io/pricing/?
https://sentry.io/platforms/

Debugging Microservices and Distributed Systems

Then you would initialize Sentry in your application:

from fastapi import FastAPI

import sentry_sdk
sentry_sdk.init(
 dsn=”https://<key>@sentry.io/<project>”,

 # Set traces_sample_rate to 1.0 to capture 100%
 # of transactions for Tracing.
 # We recommend adjusting this value in production,
 traces_sample_rate=1.0,

 # If you wish to associate users to errors (assuming you are using
 # django.contrib.auth) you may enable sending PII data.
 send_default_pii=True,
)

app = FastAPI()

It’s really that easy. If you don’t believe me, see why Dan realized he had waited
way too long to install Sentry, considering how fast, easy, and useful it was.

Enable Distributed Tracing
Distributed Tracing is a must when you’re trying to debug a system that leverages a lot of

microservices. To get started with Distributed Tracing, it’s fairly straightforward. In fact, the

init code above already had tracing enabled with:

traces_sample_rate=1.0

Enabling tracing allows you to be able to trace from an issue your users are facing all the

way to a database call and back, and everything in between. The best part is, with Sentry,

Distributed Tracing just works out of the box if you’re using one of our SDKs. You can check,

for example, which Python frameworks we support out of the box on our docs here. And

if you’re using something else, you can also do custom instrumentation for distributed
tracing.

https://blog.sentry.io/my-errors-are-gone-with-a-trace/
https://sentry.io/resources/what-is-distributed-tracing/
https://docs.sentry.io/platforms/python/tracing/trace-propagation/#how-to-use-distributed-tracing
https://docs.sentry.io/platforms/python/tracing/trace-propagation/custom-instrumentation/
https://docs.sentry.io/platforms/python/tracing/trace-propagation/custom-instrumentation/

Debugging Microservices and Distributed Systems

Use Sentry

Sign up for Sentry on any of our plans, starting from a free developer plan to affordable

team, business, and even enterprise plans, which you can explore here. Then, get started

by installing the SDKs you need for your stack. In a matter of minutes, you will be able to

start benefiting from the debuggability support Sentry provides.

For more information on how to get started with tracing specifically, check out these

resources:

Docs

Sentry Tracing

Blog
See how Dan Mindru cut 22.3 seconds off

an API call using Sentry’s Trace View

Customer Story
See how monday.com reduced errors by

60% with Sentry in their microservices

architecture

Workshop
Check out this workshop recording on

using tracing to identify the root cause of

frontend issues

Ok, this might feel trivial, but truly, the next step is to just… use Sentry. Let
your application be used by people and then watch as Sentry captures errors,
performance issues, and related contextual data. Then, regardless of how you’re
being notified of an issue, you can trace down to the line of code causing the issue,
automatically assign to the codeowner, discover the pull request that introduced
the bug or slowdown, and quickly see what subset of users are
being affected.

https://sentry.io/signup/?
https://sentry.io/pricing/?
https://sentry.io/platforms/
https://docs.sentry.io/concepts/key-terms/tracing/
https://blog.sentry.io/how-i-cut-22-3-seconds-off-an-api-call-using-trace-view/
https://blog.sentry.io/how-i-cut-22-3-seconds-off-an-api-call-using-trace-view/
https://sentry.io/customers/monday-dot-com
https://sentry.io/customers/monday-dot-com
https://sentry.io/customers/monday-dot-com
https://www.youtube.com/watch?v=-I872moWyB0
https://www.youtube.com/watch?v=-I872moWyB0
https://www.youtube.com/watch?v=-I872moWyB0
https://docs.sentry.io/concepts/key-terms/tracing/trace-view/

Debugging Microservices and Distributed Systems

 To learn more:

Join our Discord

Check out GitHub

REQUEST A DEMO

From me

We’re always looking to stay connected

to our community, drop into one of our

communities to ask questions and give

feedback, or get a quick demo from

a Sentry expert to get your specific

questions answers.

Still have questions about how Sentry can

help you make sense of your distributed

system? Get a demo from a Sentry expert.

https://discord.gg/sentry
https://github.com/getsentry/sentry/discussions
https://sentry.io/demo/
https://sentry.io/demo/
https://sentry.io/demo/

