Kafka Connect 101

What’s Covered

1. Introduction to Kafka Connect

. Hands On: Getting Started with Kafka
Connect
Running Kafka Connect
Connectors, Configuration, Converters,
and Transforms
Hands On: Using SMTs with a Managed
Connector

. Hands On: Confluent Cloud Managed
Connector API
Hands On: Confluent Cloud Managed

Connector CLI

CONFLUENT

Developer

8. Deploying Kafka Connect

10.

1.
12.
13
14.

15.

. Running Kafka Connect in Docker

Hands On: Run a Self-Managed Connector in
Docker

Kafka Connect’'s REST API

Monitoring Kafka Connect

Errors and Dead Letter Queues
Troubleshooting Confluent Managed
Connectors

Troubleshooting Self-Managed Kafka Connect

@yourtwitterhandle | developer.confluent.io

CONFLUENT
Developer

Introduction to Kafka Connect

Hi, I'm Danica Fine with Confluent, and today I'm going to tell you
about Kafka Connect.

NNNNNNNNN

Ingest Data from Upstream Systems Developer

ORACLE @

——————— SOURCES —————— - SINKS ——————
1
gle BigQuery O A .
influxc

i N | Apps
' syslog ol)
: PostgreSQl. ' I g
1 P ! 1
Y -1 K- . q e
= = g Kafka Cluster 1 o
J%\éac R i C’} C’} : ¢ elastic S
v ’ ® B
1 - S3

1
1

]

: < : splunk> L9/l g amazon

1 a m 1sON] | Kafka Kafka 1 P! 1
! Connect Connect ! ;

FEon, Microsoft: I s . i,'
| ORACLE ¥8lserver ! ' @neoy] o
! 1
: 1

Kafka Connect is a component of Apache Kafka that’s used to
perform streaming integration between Kafka and other systems
such as databases, cloud services, search indexes, file systems,
and key-value stores.

(And, before we dive more deeply into this subject, If you're new to
Apache Kafka, | recommend that you take a look at the Apache
Kafka 101 course to get started.)

Kafka Connect makes it easy to stream data from numerous
sources into Kafka, and stream data out of Kafka to numerous
targets. The diagram you see here shows a small sample of these
sources and targets. There are literally hundreds of different
connectors available for Kafka Connect. Some of the most popular
ones include:

e RDBMS (Oracle, SQL Server, DB2, Postgres, MySQL)
e Cloud Object stores (Amazon S3, Azure Blob Storage,
Google Cloud Storage)

Message queues (ActiveMQ, IBM MQ, RabbitMQ)
NoSQL and document stores (Elasticsearch, MongoDB,

Cassandra)
Cloud data warehouses (Snowflake, Google BigQuery,

Amazon Redshift)

Confluent Cloud Managed Connectors

> 88 Cluster overview Connectors

& Topics

v & Dataintegration

APl keys

[& Mongops Filter by: | Deployment v lType v] Sort by: | Popular

% Stream lineage

®, ksqiDB

B9 Schema Registry
0 MongoDB Atlas Source 0 MongoDB Atlas Sink Debezium MongoDB CDC Source Connector

Connectors

CONFLUENT

Developer

@TheDanicaFine | developer.confluent.io

We'll be focusing on running Kafka Connect more in the course
modules that follow, but, for now, you should know that one of the

cool features of Kafka Connect is that it's flexible.

You can choose to run Kafka Connect yourself or take advantage
of the numerous fully-managed connectors provided in Confluent

Cloud for a fully cloud-based integration solution. In addition to

managed connectors, Confluent provides fully-managed Apache

Kafka, Schema Registry, and stream processing with KSQL.

NNNNNNNNN

How Kafka Connect Works Developer

Kafka Connect Kafka Cluster

D &

Source

"connector.class'":

"jo.confluent.connect.jdbc.JdbcSourceConnector",
"connection.url":

"jdbc:mysql://asgard:3306/demo",
"table.whitelist":

"sales,orders,customers"

} @TheDanicaFine | developer.confluent.io

Kafka Connect runs in its own process, separate from the Kafka
brokers. It is distributed, scalable, and fault tolerant, giving you the
same features we know and love about Kafka itself.

But the best part of Kafka Connect is that using it requires no
programming. It's completely configuration-based, making it
available to a wide range of users — not just developers. In addition
to ingest and egress of data, Kafka Connect can also perform
lightweight transformations on the data as it passes through.

Anytime you are looking to stream data into Kafka from another
system, or stream data from Kafka to elsewhere, Kafka Connect
should be the first thing that comes to mind. Let’s take a look at a
few common use cases where Kafka Connect is used.

Streaming Pipelines Developer

amazon
S3

Kafka Cluster

Kafka Kafka
G Connect § Connect
Database Cl}

g

@TheDanicaFine | developer.confluent.io

Kafka Connect can be used to ingest real-time streams of events
from a data source and stream it to a target system for analytics. In
this particular example, our data source is a transactional
database.

We have a Kafka connector polling the database for updates and
translating the information into real-time events that it produces to
Kafka.

That in and of itself is great, but there are several other useful
things that we get by adding Kafka to the mix:

- First of all, having Kafka sit between the source and target
systems means that we're building a loosely coupled system. In
other words, it’s relatively easy for us to change the source or
target without impacting the other.

- Additionally Kafka acts as a buffer for the data, applying
back-pressure as needed

- And also, since we’re using Kafka, we know that the system as a
whole is scalable and fault tolerant.

Because Kafka stores data up to a configurable time interval per
data entity (topic), it's possible to stream the same original data to
multiple downstream targets. This means that you only need to
move data into Kafka once while allowing it to be consumed by a
number of different downstream technologies for a variety of
business requirements or even to make the same data available to
different areas in a business.

Writing to Datastores from Kafka Developer

Application

Kafka Cluster

Kafka
Connect

&

Data Store

@TheDanicaFine | developer.confluent.io

As another use case, you may want to write data created by an
application to a target system. This of course could be a number of
different application use cases, but suppose that we have an
application producing a series of logging events, and we’d like
those events to also be written to a document store or persisted to
a relational database.

Imagine that you added this logic to your application directly. You'd
have to write a decent amount of boilerplate code to make this
happen, and whatever code you do add to your application to
achieve this will have nothing to do with the application’s business
logic. Plus, you’d have to maintain this extra code, determine how
to scale it along with your application, how to handle failures,
restarts, etc...

Instead, you could add a few simple lines of code to produce the
data straight to Kafka and allow Kafka Connect to handle the rest.
As we saw in the last example, by moving the data to Kafka, we’re
free to set up Kafka connectors to move the data to whatever

downstream datastore that we need, and it’s fully decoupled from
the application itself.

CONFLUENT

Evolve Processing from OIld Systems to New Devaloper

Existing New
Application Application

Kafka Cluster

Kafka
@ Connect §
Database <:I/:>

@TheDanicaFine | developer.confluent.io

Before the advent of more recent technologies (such as NoSQL
stores, event streaming platforms, and microservices) relational
databases (RDBMS) were the de facto place to which all
application data was written. These data stores still have a hugely
important role to play in the systems that we build — but... not
always. Sometimes we will want to use Kafka to serve as the
message broker between independent services as well as the
permanent system of record. These two approaches are very
different, but unlike technology changes in the past, there is a
seamless route between the two.

By utilizing change data capture (CDC), it’s possible to extract
every INSERT, UPDATE, and even DELETE from a database into a
stream of events in Kafka. And we can do this in near real-time.
Using underlying database transaction logs and lightweight queries,
CDC has a very low impact on the source database, meaning that
the existing application can continue running without any changes,
all the while new applications can be built, driven by the stream of
events captured from the underlying database. When the original

application records something in the database — for example, an
order is accepted — any application subscribed to the stream of
events in Kafka will be able to take an action based on the events —
for example, a new order fulfilment service.

https://developer.confluent.io/learn-kafka/data-pipelines/kafka-data-
ingestion-with-cdc/

Make Systems Real Time Developer

n SR, Kafka
My Cluster
Kafka Kafka
Connect Connect
ORACLE C’:}
PostgreSQL \ J
——

@TheDanicaFine | developer.confluent.io

And this is an incredibly valuable thing because many
organizations have data at rest in databases and they’ll continue to
do so!

But the real value of data lies in our ability to access it as close to
when it is generated as possible. By using Kafka Connect to
capture data soon after it's written to a database and translating it
into a stream of events, you can create so much more value. Doing
so unlocks the data so you can move it elsewhere, for example
adding a search index or analytics cluster. Alternatively the event
stream can be used to trigger applications as the data in the
database changes, say to recalculate an account balance or make
a recommendation.

Why Not Write Your Own Integrations? Developer

Certainly possible using the Apache Kafka producer and consumer APIs
e Not so simple though when you consider:
o Handling failures and restarts
o Logging
o Scaling up and down to meet varying data loads
o Running across multiple nodes
o Serialization and data formats
e Once written, this now complex application needs to be maintained and
updated to changes in Kafka as well as the external data sources and targets
Kafka Connect solves all of these problems

e |In most cases, it should be used when data needs to be integrated with Kafka

@TheDanicaFine | developer.confluent.io

All of this sounds great, but I'm sure you’re asking, Why Kafka
Connect? Why Not Write Our Own Integrations?

Apache Kafka has its own very capable producer and consumer
APIls and client libraries available in many languages, including
C/C++, Java, Python, and Go. So it makes sense for you to wonder
why you wouldn'’t just write your own code to move data from a
system and write it to Kafka — doesn’t it make sense to write a
quick bit of consumer code to read from a topic and push it to a
target system?

The problem is that if you are going to do this properly, then you
need to be able to account for and handle failures, restarts, logging,
scaling out and back down again elastically, and also running
across multiple nodes. And that’s all before we’ve thought about
serialization and data formats. Of course, once you’ve done all of
these things, you’ve written something that is probably rather like
Kafka Connect, but without the many years of development,
testing, production validation, and community that exists around

Kafka Connect. Even if you have built a better mousetrap, is all the
time that you’ve spent writing that code to solve this problem worth
it? Would your effort result in something that significantly
differentiates your business from anyone else doing similar
integration?

The bottom line is that integrating external systems with Kafka is a
solved problem. There may be a few edge cases where a bespoke
solution is appropriate, but by and large, you'll find that Kafka
Connect will become the first thing you think of when you need to
integrate a data system with Kafka.

GET STARTED TODAY

Confluent Cloud

cnfl.io/confluent-cloud

Check the description for a
promo code

Throughout this course, we'll be introduce you to Kafka Connect
through hands-on exercises that will have you produce data to and
consume data from Confluent Cloud. If you haven’t already signed
up for Confluent Cloud, sign up now so when your first exercise
asks you to log in, you are ready to do so. Be sure to use the
promo code when signing up to get the $101 of free usage that it
provides.

12

CONFLUENT

Developer

Running Kafka Connect

Hi, Danica Fine here; let’'s learn how to run Kafka Connect!

Connectors

Kafka
Connect

: C’} Kafka Kafka
My R oo Cluster Connect
Connector
p— §g @D

) - R
D
Connector
PostgreSQL COS:rL:erzfor
—) —
| —

@TheDanicaFine | developer.confluent.io

When running Kafka Connect, instances of connector plugins
provide the integration between external systems and the Kafka
Connect framework. These connector plugins are reusable
components that define how Source Connectors ought to capture
data from data sources to a Kafka topic and also how Sink
Connectors should copy data from Kafka topics to be recognized
by a target system. By taking care of all of this boilerplate logic for
you, the plugins allow you to hit the ground running with Kafka
Connect and focus on your data.

There are hundreds of connector plugins available for a variety of
data sources and sinks. There are dozens of fully-managed
connectors available for you to run entirely through Confluent
Cloud. Plus, connectors can also be downloaded from Confluent
Hub for use with self-managed Kafka Connect.

Let’s dive a little bit more into the fully-managed and self-managed
connectors and what those mean to you.

CONFLUENT

Confluent Cloud Managed Connectors Developer

r

Confluent Cloud provides fully managed @ Confluent
connectors Cloud
e You just select the connector and identify
details regarding the source/target system | C c“;:::cgi‘:s L
o GUI/CLI/API to create and manage connector @ / S~ |_|
instances ty —_—
e Confluent takes care of the rest on your behalf Source §E: Kafka Cluster Target

o Provisioning, execution, failures, and so on DYStemS L J Systems

e Managed connector limitations
o Some connectors are not yet available
o Some connector transformations are not yet
available
o Some config settings may not be available
o Network connectivity requirements

@TheDanicaFine | developer.confluent.io

Confluent Cloud offers pre-built, fully managed, Apache Kafka®
Connectors that make it easy to instantly connect to popular data
sources and sinks. With a simple Ul-based configuration and
elastic scaling with no infrastructure to manage, Confluent Cloud
Connectors make moving data in and out of Kafka an effortless
task, giving you more time to focus on application development.

To start, you simply select the connector and fill in a few
configuration details about your source or target system. This can
be done using the Confluent Cloud console, the confluent CLI, or
the Confluent Connect API.

From there, Confluent takes care of the rest on your behalf
e Using the configuration settings you specified, your connector
instance is provisioned and run.
e The execution of the connector instance is monitored
e Should the connector fail, you’ll have access to
troubleshooting to help identify the root cause, correct the
issue, and restart the connector and its tasks

All'in all, you can relax knowing that all of these tasks are being
handled for you.

That said, there are a few limitations regarding managed
connectors

Some self-managed connectors that are available on
Confluent Hub for installation in self-managed Kafka Connect
clusters are not yet available in Confluent Cloud

Some fully-managed Confluent Cloud connectors are not
available for all cloud providers

Some configuration settings available for self-managed
connectors may not be available for Confluent managed
connectors

Some single message transformations (SMT) that are
available for use in self-managed Kafka Connect clusters are
not available in Confluent Cloud

Because Confluent Cloud fully-managed connectors are
going to be accessing your data sources and data sinks, they
need to be accessible over the Internet

Be sure to keep those things in mind as you choose which
connector options are best for you.

Self-Managed Kafka Connect Developer

e Self-managed Kafka Connect consists of
one or more Connect clusters depending
upon the requirement

e Each Connect cluster consists of one or
more Connect worker(s)

o Connector instances run on Connect
workers

Confluent
Cloud
§:§ Kafka Cluster

A

A 4

Self-Managed
<:::> Connect Cluster

Worker Worker
st 1 —
Connector Connector
Source Target
Systems Systems

i

‘ §§ Kafka Cluster

I 2

——

@TheDanicaFine | developer.confluent.io

So long as you have access to a Kafka Cluster, Kafka Connect can
also be run as a self-managed Kafka Connect Cluster, but as you
can see from the diagram, there is a lot more involved with doing

SO.

e Self-managed Kafka Connect consists of one or more
Connect clusters depending upon the requirement

e Each cluster consists of one or more connect worker
machines on which the individual connector instances run

Regardless of how you choose to run Kafka Connect, it’s helpful to
understand the individual Kafka Connect components and how they

work together.

CONFLUENT

Kafka Connect Workers Bl

Confluent

Kafka Connect workers are JVM processes @
Cloud

e Can be deployed on bare metal or
containers, e.g.
o Bare-metal on-premises install of §<: Kafka Cluster
Confluent Platform [
o laaS Compute (AWS EC2, Google y
Compute Engine, etc) install of <:,/:> Self-Managed
Confluent Platform Connect Cluster

o 5
Terraform Worker Worker
= AWS — . |=
[~P>] Connector Connector 1|

i 2

—

m Google
Source Target
o Docker - Systems Systems
m On-premises lT
m Cloud-based

‘ @ Kafka Cluster

@TheDanicaFine | developer.confluent.io

Ultimately, Kafka Connect workers are just JVM processes. You
can deploy on bare metal or containers.

A few options present themselves:
e Bare-metal on-premises install of Confluent Platform
e laaS Compute (AWS EC2, Google Compute Engine, etc)
install of Confluent Platform
e Terraform:

o AWS
o Google
e Docker

o On-premises
o Cloud-based

CONFLUENT

Managing a Kafka Connect Cluster Developer

Management responsibilities include: @ Confluent

e Worker configuration Cloud
e Scaling the Connect cluster up/down to

suit demand changes §C§ Kafka Cluster
e Monitoring for problems [

o Troubleshooting y

o Corrective actions Self-Managed
Connect Cluster

Worker Worker
st 1 —
Connector Connector
Source
Systems Systems

i

‘ {!: Kafka Cluster

——

I 2

@TheDanicaFine | developer.confluent.io

Once your Kafka Connect cluster is up and running, there’s a bit of
management that needs to be done.
e Connect workers have a number of default configuration
settings that you may need to alter
e Depending on the needs of your systems, you might need to
scale the Connect cluster up or down to suit demand
changes
e And of course, you'll be monitoring for problems
o Troubleshooting
o Corrective actions

CONFLUENT
Developer

Connectors, Configuration,

Converters, and Transforms

Hi, Danica Fine here; let’s take a deeper look into some of the
components of Kafka Connect and the critical roles they play in
moving your data.

Inside Kafka Connect

Kafka Cluster

%

Connector

T ——— Transform(s)

Converter

Kafka Connect <I>

Converter || Transform(s)

Connector
Instance

Kafka Connect C’}

CONFLUENT

Kafka Cluster

Kafka Connect is built around a pluggable architecture of several
components, which together provide very flexible integration
pipelines. To get the most out of Kafka Connect it's important to
understand these components and their roles:

e Connectors are responsible for the interaction between Kafka
Connect and the external technology being integrated with
e Converters handle the serialization and deserialization of

data

e Transformations can optionally apply one or more
transformations to the data passing through the pipeline

NNNNNNNNN

Connectors Developer

Kafka Cluster

Source : Transform(s)|| Converter

Kafka Connect C’}

Kafka Cluster i
1

% 1| Converter | Transform(s)
1
1
1
1
1
1

Kafka Connect C’}

The key component of any Kafka Connect pipeline is a connector
instance which is a logical job that defines where data should be
copied to and from. All of the classes that implement or are used by
a connector instance are defined in its connector plugin. Written by
the community, a vendor, or occasionally written bespoke by the
user, the plugin integrates Kafka Connect with a particular
technology. These plugins are reusable components that you can
download, install, and use without writing code.

For example:

e The Debezium MySQL source connector uses the MySQL bin
log to read events from the database and stream these to
Kafka Connect

e The Elasticsearch sink connector takes data from Kafka
Connect, and using the Elasticsearch APIs, writes the data to
Elasticsearch

e The S3 connector from Confluent can act as both a source
and sink connector, writing data to S3 or reading it back in

A SOURCE connector plugin knows how to talk to a specific
SOURCE system and generate records that Kafka Connect then
writes into Kafka. On the downstream side, the connector instance
configuration specifies the topics to be consumed and Kafka
Connect reads those topics and sends them to the SINK connector
that knows how to send those records to a specific SINK system.

So the connectors know how to work with the records and talk to
the external system, but Kafka Connect workers are acting as the

conductor and taking care of the rest. We will define what a worker
is shortly.

Add a Connector Instance with the REST API Developer

curl -X PUT -H "Content-Type:application/json"
http://localhost:8083/connectors/sink-elastic-01/config \

-d ! {
|"connector.c1ass"4
"1o.conf1uent.connect.elasticsearchLElasticsearchSinkConnector"J

"topics" ¢ "orders",

"connection.url" : "http://elasticsearch:9200",
"type.name" ¢ "_doc",

"key.ignore" : "false",

"schema.ignore" : "true"

}I

@TheDanicaFine | developer.confluent.io

To specify a connector you include its name in your configuration -
each connector's documentation will give you the particular
classname string to use.

As you may expect, connectors have different configuration
properties specific to the technology with which they’re integrating.
A Cloud connector will need to know the region, the credentials,
and the endpoint to use. A database connector will need to know
the names of the tables, the database hostname, and so on.

Here’s an example of creating an Elasticsearch sink connector
instance with a call to Kafka Connect's REST API.

Add a Connector Instance with ksqlDB

Developer

CREATE SINK CONNECTOR sink-elastic-01 WITH (
'connector.class'|=
'o.confluent.connect.elasticsearcﬂ.ElasticsearchSinkConnector'J
"topics' = 'orders',
"connection.url' "http://elasticsearch:9200',

"type.name' = '_doc',
'key.ignore' = 'false',
'schema.ignore' = 'true'

)3

@TheDanicaFine | developer.confluent.io

You can also use ksglDB to manage connectors. Here is the syntax
for adding the previous Elasticsearch sink connector instance.

Add a Connector Instance with the Console Ul (%) eveioper

Add Elasticsearch Service Sink Connector

1. Topic selection

Select or create new topics

Choose which topics you want to connect

No topics selected + Add new topic |

Topics Partitions Throughput
| Topic name Total partitions Bytes/sec produced Bytes/sec consumed
] abe-clicks!
| orders
Go back

@TheDanicaFine | developer.confluent.io

In addition to using the Kafka Connect REST API directly, you can
add connector instances using the Confluent Cloud Console.

What is the Role of the Connector? Beveionel

Kafka Cluster

Transform(s)|| Converter
Native : Connect - bytes]]
Data : Record :

Kafka
Connect

Source

It's important to understand that the connector plugins themselves
don't read from or write to (consume/produce) Kafka itself. The
plugins just provide the interface between Kafka and the external
technology. This is a deliberate design.

e Source connectors interface with the source APl and extract
the payload + schema of the data, and pass this internally as
a generic representation of the data.

e Sink connectors work in reverse - they take a generic
representation of the data, and the sink connector plugin
writes that to the target system using its API.

Kafka Connect and its underlying components take care of writing
data received from source connectors to Kafka topics as well as
reading data from Kafka topics and passing it to sink connectors.

Now, this is all hidden from the user — when you add a new
connector instance, that’s all you need to configure and Kafka
Connect does the rest to get the data flowing. But understanding

the next piece in the puzzle is important to help you avoid some of
the common pitfalls with Kafka Connect, and that is converters.
Technically, transforms sit between connectors and converters, but
we’ll visit those later.

Converters Serialize/Deserialize the Data Developer

Source

Kafka Cluster
Ciizpae:;:r Transform(s)
Native Connect - bytes]]
Data : Record :
Kafka
Connect

Converters are responsible for the serialization and deserialization
of data flowing between Kafka Connect and Kafka itself. You'll
sometimes see similar components referred to as SerDes
(“SerialiserDeserialiser”) in Kafka Streams, or just plain old
serializers and deserializers in the Kafka Client libraries.

There are a ton of different converters available, but some common

ones include:
e Avro - io.confluent.connect.avro.AvroConverter
e Protobuf - io.confluent.connect.protobuf.ProtobufConverter
e String - org.apache.kafka.connect.storage.StringConverter
e JSON - org.apache.kafka.connect.json.JsonConverter
e JSON Schema -

io.confluent.connect.json.JsonSchemaConverter

e ByteArray -

org.apache.kafka.connect.converters.ByteArrayConverter

While Kafka doesn’t care about how you serialize your data (as far
as it’'s concerned, it’s just a series of bytes), you should care about

how you serialize your data! In the same way that you would take a
carefully considered approach to how you design your services and
model your data, you should also be deliberate in your serialization
approach.

Serialization and Schemas Developar

Schema Registry
(m]m]
(m]m]m)
Schema ooo
Kafka Cluster
Cif\z:ae:ggr Transform(s)
Native : Connect - bytes]]
Data : Record :
Source : C’:}

Kafka
Connect

As well as managing the straightforward matter of serializing data
flowing into Kafka and deserializing it on its way out, converters
have a crucial role to play in the persistence of schemas. Almost all
data that we deal with has a schema; it's up to us whether we
choose to acknowledge that in our designs or not. You can consider
schemas as the API between applications and components of a
pipeline. Schemas are the contract between one component in the
pipeline and another, describing the shape and form of the data.

When you ingest data from a source such as a database, as well
as the rows of data, you have the metadata that describes the
fields—the data types, their names, etc. Having this schema
metadata is valuable, and you will want to retain it in an efficient
manner. A great way to do this is by using a serialization method
such as Avro, Protobuf, or JSON Schema. All three of these will
serialize the data on to a Kafka topic and then store the schema
separately in the Confluent Schema Registry. By storing the
schema for data, you can easily utilize it in your consuming
applications and pipelines. You can also use it to enforce data

hygiene in the pipeline by ensuring that only data that is compatible
with the schema is stored on a given topic.

You can opt to use serialization formats that don’t store schemas
like JSON, String, and byte array, and in some cases, these are
valid. If you use these, just make sure that you are doing so for
deliberate reasons and have considered how else you will handle
schema information.

CONFLUENT

Converters Specified for Key and Value Dewaloper

key Jconverter=org.apache.kafka.connect.storage.StringConverter

value.converter=org.apache.kafka.connect.storage.StringConverter
value.converter.schema.registry.url=http://localhost:8081

Set as a global default per worker; optionally can be overridden per connector instance

@TheDanicaFine | developer.confluent.io

Converters are specified separately for the value of a message,
and its key.

Note that these converters are set as a global default per connect
worker, but they can be overridden per connector instance.

Single Message Transforms Developer

Kafka Cluster

: Connector
Source : | Instance Converter

Kafka Connect C’}

Kafka Cluster i
1

1
: :
I Connector | : .
: Converter Instance |! Sink
| : :
1 1 .
I 1
1

Kafka Connect C’}

The third and final key component in Kafka Connect is the
transform piece. Unlike connectors and converters, these are
entirely optional. You can use them to modify data from a source
connector before it is written to Kafka, and modify data read from
Kafka before it's written to the sink. Transforms operate over
individual messages as they move, so they’re known as Single
Message Transforms or SMTs.

Common uses for SMTs include:

e Dropping fields from data at ingest, such as personally
identifiable information (PIl) if specified by the system
requirements

e Adding metadata information such as lineage to data
ingested through Kafka Connect

e Changing field data types

e Modifying the topic name to include a timestamp

e Renaming fields

For more complex transformations, including aggregations and

joins to other topics or lookups to other systems, a full stream
processing layer in ksqlDB or Kafka Streams is recommended.

CONFLUENT

Configuring Single Message Transforms Developer

Do these tansforms

"config": { A
[eee]
"transforms|': "addDataToTopic,renameAddrFld",
"transformsladdDataToTopic|type": "org.apache.kafka.connect.transforms.TimestampRouter",

"transformsljaddDataToTopic|topic.format": "${topic}-${timestamp}",

"transformsladdDataToTopic|timestamp.format": "YYYMM",

"transformslrenameAddrFld|type": "org.apache.kafka.connect.transforms.ReplaceField$Value",
"transformslrenameAddrFld|renames'": "delivery_address:shipping_address"

}
Transforms config Config per transform

@TheDanicaFine | developer.confluent.io

Configuring Single Message Transforms is relatively straight
forward for managed connectors when using the Confluent Cloud
Ul as we will see in the exercise that follows. It is a bit tricky though
when doing so manually, e.g. for self-managed connectors.

e ‘transforms’ is the prefix for Single Message Transform
configuration

e Each transformation has a label which can be set to
something that is descriptive, e.g. "addDateToTopic’
‘renameAddrFId’

e Each transformation has a type

e You will often see transformation types with a $Value or $Key
suffix - this denotes whether it's the Value or Key part of the
message to which the tranform will be applied

e After that there will be zero or more additional configuration
options, depending on the transformation being used

e The 'addDateToTopic’ example adds a Year/Month suffix to
the target topic

e The ‘renameAddrFIld’ example renames the delivery address

e field to shipping_address

Obtaining Plugins and Writing Your Own Developer

Confluent Hub

Discover Kafka. connectors

and more

Filters Results (4)
Plugin type @

Sink Debezium MySQL CDC Source Connector

LLLLLLLL

@TheDanicaFine | developer.confluent.io

Connectors, transforms, and converters are all specified as part of
the Kafka Connect API, and you can consult the Javadocs to write
your own.

Apache Kafka and Confluent have several converters and
transforms built in already, but you can install more if you need
them. You will find these along with hundreds of connectors in the
Confluent Hub.

Now that we know the theory, let's take the previous hands-on
exercise a step further and transform the input records before
writing them to a Kafka topic. In the exercise that follows we'll do
exactly that and see how easy it is to do so using Confluent cloud.

CONFLUENT
Developer

Hands On: Use SMTs with a Managed

Connector

In this hands-on exercise, we’ll walk through the process of creating a fully-managed
Datagen connector, and also configure it to use the cast value single message
transform to cast a few fields from the data before it's written to Kafka.

Hands On: Use SMTs with a Managed Delalarer
Connector

Hands On: Use SMTs with a
Managed Connector

Configuration & cost Tapics

Connectar configuration

Settings marked wit

KAFKA CONNECT

@TheDanicaFine | developer.confluent.io

In the Confluent Cloud console, navigate into the kc-101 cluster. Expand Data
integration and select Connectors.

0:31 First things first, we're using the Datagen connector in this exercise so let’s find
and select it using the filter.

0:38 We will once again generate sample data using the Orders record schema, but
since we want to transform individual messages using a Single Message Transform,
we will need to use the advanced configuration options.

Let’'s add our first SMT.

0:55 We could accept the default label for this transform, but it makes the
configuration easier to read if we give it a name that corresponds to the SMT that will
be used so let’s do this. We’re going to create an SMT to cast fields from each
message, so we'll call it “castValues”.

1:15 We also need to identify which SMT we want to use. In the Transform type list,
select org.apache.kafka.connect.transforms.Cast$Value

1:20 For this SMT, we need to enter a list of fields we want to transform and the type
we want to cast them to. We do this by specifying the field name and the desired type
separated by the colon. We can use any number of these using a comma-delimited
list. Set the value of spec equal to orderid:string, orderunits:int32

1:35 The configuration of our first SMT is complete.

required configuration parameters.

- Click Add a single message transform.

- Set the value of Transform name equal to convertTimestamp.

- In the Transform type list, select
org.apache.kafka.connect.transforms.TimestampConverter$Value.

- Set the value of target.type equal to string.

This tells the SMT the resulting value should be type string.

- Set the value of field equal to ordertime.
- Set the value of format equal to yyyy-MM-dd.

This is the format the ordertime field will be changed to by the SMT. That completes
the SMT configuration.

Let’s continue to the next step.

1:59 For this Datagen connector instance, we will once again write the output records
to the orders topic.

2:03 Select the orders topic and click Continue

2:08 In order for our connector to communicate with our cluster, we need to provide
an API key for it. You can use an existing API key and secret, or create one here, as
we’re doing.

- With Global access selected, click Generate API key & download. Click
Continue.

- We will also use the default sizing for this instance of the connector.Click
Continue.

2:25 Before we launch the connector, let's examine its JSON configuration and
identify the SMT related settings.

- Scroll the Confluent Cloud console down so the connector JSON configuration
is visible.

2:33 Notice the configuration for the two transforms is included in the connector
configuration.

2:37 You could also create the connector using either the Confluent Cloud Connect
API or confluent CLI and this same JSON configuration. Other than having to provide
the actual value for the API key and secret, the JSON is ready to use.

2:52 Let’s now launch the connector and observe the result of the SMTs.

target records to keep them in view

- Enter values in the Jump to offset value until the ordertime format transition
from original to transformed is in view and then quickly click pause

3:28 As you can see in the current view, offsets 69 and 70 have the original ordertime
format and the messages written after offset 70 have the updated ordertime format.
Notice also the change in data type for the orderid and orderunits fields.

3:44 Before we end the exercise, let’s delete the connector so we don’t unnecessarily
deplete any Confluent Cloud promotional credits.

- Navigate to Data integration and select Connectors

- Select DatagenSourceConnector_0

- Click Delete

- Enter DatagenSourceConnector_0 in the confirmation field and click Confirm
- Click Cluster overview

3:52 Let’s also delete the orders topic.

- Navigate to Topics.

- Select orders

- Select the Configuration tab

- Click Delete topic

- Enter orders in the provided field to confirm the delete action and click
Continue

3:54 We will not delete the kc-101 cluster at this time since we will be using it in other
exercises that are part of this course.

This concludes this exercise.

CONFLUENT

Developer

Hands On: Confluent Cloud Managed

Connector API

In this exercise we’'ll be using the Confluent Cloud Connector API.

Hands On: Confluent Cloud Managed Developer
Connector API

Hands On: Confluent Cloud
Managed Connector API

Run command:
curl =request POST Y
f w2 . ws-westd, gop.confluent, cloud: 443
sic SSCLUSTER_AUTHE4™®

@TheDanicaFine | developer.confluent.io

Exercise Environment Preparation Steps

In order to do this exercise using the Confluent Cloud Connector API, you first need to
do a bit of preparation to make sure you have all of the tools you need. Complete the
following steps to set up your environment. Prior to doing so, you will need to sign up
for Confluent Cloud at https://confluent.cloud.

Confluent Cloud APls are a core building block of Confluent Cloud. You can use them
to manage your own account or to integrate Confluent into your product. The goal of
this exercise is to demonstrate various Confluent Connect APl REST calls that can be
used to create, configure, and monitor Confluent managed connectors running in
Confluent Cloud. We will also use the org API to identify the cluster ID for the kc-101
cluster as well as the cluster API to create a Kafka topic that we will be streaming data
in and out of.

0:52 Start off by using the Confluent Cloud Org API. This requires a Confluent Cloud
API key, which we’ll generate using the Confluent CLI.

1:01 First, log into Confluent Cloud. Note that we’re using the save flag, so that our
credentials will be used for subsequent commands in this exercise. They’ll remain
active until you run the logout command.

1:14 As usual, we need an API Key to connect to our cloud cluster. Like we saw in the
setup instructions, we can generate a new API Key here using:

- Run command:

- confluent api-key create --resource cloud

1:20 Next, we will convert the API key and secret to a base64 encoded string. This
string is used in the authorization header that will be included in the REST calls to the
Confluent Cloud API. At the same time, we will assign this string to an environment
variable which will make it easier to submit the REST calls during the rest of this
exercise.

- Run command:
CLOUD AUTH64=$ (echo -n <API Key>:<API Secret> |

base64d -w0)

1:40 We need to also convert the kc-101 cluster API key and secret to a base64
encoded string to use in the authorization header for REST calls to the Cluster API. It
will be slightly easier for it since we can reference the environment variables created
earlier from the java.config file.

- Run command:
CLUSTER_AUTH64=$(eCho -n $CLOUD_KEY:$CLOUD_SECRET |

base64d -w0)

1:58 Now we are ready to issue REST calls to both Confluent Cloud control plane
APIs as well as cluster APIS.

2:05 Let’s first list our environments by issuing a REST call to the org API.

- Run command:
curl --request GET \
--url 'https://api.confluent.cloud/org/v2/environments'

--header 'Authorization: Basic 'SCLOUD AUTHG64''

2:11 Locate the default environment in the response and note its id. Using this id, we
can now obtain the id for the kc-101 cluster.

2:20 Note: We will be using this environment id in later cur1 commands so keep it
handy.

- Run command:
curl --request GET \ --url
'https://api.confluent.cloud/cmk/v2/clusters?environment
=<env ID>' \ --header 'Authorization: Basic

as well.

- Run command:
curl --request POST \
--url
'https://pkc-60jv2.us-westd.gcp.confluent.cloud:443/kafk
a/v3/clusters/<cluster ID>/topics' \
--header 'Authorization: Basic 'SCLUSTER AUTH64'' \
--header 'content-type: application/json' \

-—-data '{
"topic name": "transactions",
"partitions count": 6, "replication factor": 3

2:43 Before proceeding, we should take a moment to verify that the Transactions
topic was created successfully.

- Run command:
curl --request GET \

--url
'https://pkc-60jv2.us-westd.gcp.confluent.cloud:443/kafk
a/v3/clusters/<cluster ID>/topics' \

--header 'Authorization: Basic 'SCLUSTER AUTH64'' | jq

Stream sample data to a Kafka topic using the DatagenSource connector

2:52 Before we create the DatagenSource connector instance, it's always a good idea
to list the fully-managed connector plugins that are available to us for streaming using
our Confluent Cloud environment. Note that this list may be a little different depending
upon what cloud provider Confluent Cloud is running in (and that’s why it's good to
check!).

- Run command:
curl --request GET \
--url
'https://api.confluent.cloud/connect/vl/environments/<en
v ID>/clusters/<cluster ID>/connector-plugins' \
--header 'Authorization: Basic 'SCLOUD AUTH64''

3:12 It is a bit difficult to spot the different plugins in the command output. For our
sanity, let’s run the command again and pipe the output to the jg command to get it in
a friendlier format.

- Run command:
curl --request GET \
--url
'https://api.confluent.cloud/connect/vl/environments/<en

3:24 Alright, now we can actually tell which individual plugins are available. As you
can see, the list is quite long and includes the DatagenSource connector.

3:34 Let’s create a DatagenSource connector instance using the API. To do so, we
use a PUT or POST REST call. PUT is somewhat easier because it will create the
connector if it doesn’t exist, or update it if it already exists. If it already exists and
there’s no update to make, it won’t error—so PUT is the idempotent way of updating a
connector.

} v

Run command:
curl --request PUT \

--url
'https://api.confluent.cloud/connect/vl/environments/<en
v ID>/clusters/<cluster
ID>/connectors/DatagenSourceConnector 2/config' \

-—-header 'Authorization: Basic '$CLOUD AUTH64'' \

--header 'content-type: application/json' \

--data '{
"connector.class": "DatagenSource",
"name": "DatagenSourceConnector 2",
"kafka.api.key": "'SCLOUD KEY'",
"kafka.api.secret": "'SCLOUD SECRET'",
"kafka.topic": "transactions",
"output.data.format": "AVRO",
"quickstart": "TRANSACTIONS",
"tasks.max": "1"

2:57 To verify the connector instance’s status, let’s first list all connector instances in
the cluster.

Run command:
curl --request GET \

--url
'https://api.confluent.cloud/connect/vl/environments/<en
v ID>/clusters/<cluster ID>/connectors' \

--header 'Authorization: Basic 'SCLOUD AUTH64''

4:05 Next, let’s check the status of the__ DatagenSourceConnector_2___ connector
instance we just created.

Run command:
curl --request GET \

--url
'https://api.confluent.cloud/connect/vl/environments/<en

<7 TS /Aliietare/cAnliictrar

4:11 The current status is provisioning. This is expected as it takes a moment for the
connector instance to be fully provisioned and up and running. Before we continue,
it's a good idea to repeat this command periodically until we see the status has
changed to Running.

4:26 Once the status shows the connector instance is Running, we can consume
records from the destination topic to verify that sample data is being produced as
expected.

- Run command:
kafka-avro-console-consumer \
--bootstrap-server ${BOOTSTRAP SERVERS} \
--property schema.registry.url=${SCHEMA REGISTRY URL} \
——property
basic.auth.credentials.source=${BASIC AUTH CREDENTIALS S
OURCE} \
—-—property
basic.auth.user.info=${SCHEMA REGISTRY BASIC AUTH USER I
NFO} \
--consumer.config ~/.confluent/java.config \
--topic transactions \
-—-max-messages 10 \
—-—-from-beginning

4:36 We should now have a decent amount of sample data in the transactions topic.
So that we don’t unnecessarily exhaust any Confluent Cloud promotional credits, we
can go ahead and delete the DatagenSource connector instance.
- Run command:
curl --request DELETE \

--url
'https://api.confluent.cloud/connect/vl/environments/ <en
v
ID>/clusters/<cluster
ID>/connectors/DatagenSourceConnector 2' \ --header

'Authorization: Basic '$CLOUD AUTHG64''

4:52 By this point, we’ve set up the start of our data pipeline — we made a connector
to generate data to a Kafka topic. Next, we can establish the downstream side of the
pipeline by setting up a MySql Sink Connector. This connector will consume records
from the transactions topic and write them out to a corresponding table in our MySq|l
database that is running in the local docker container that we started during the
exercise environment setup steps.

5:19 Let’s take a look at the request we’ll be using to set up this connector. Notice that
ssl.mode is set to prefer. This confiauration parameter tells Confluent Cloud to

connect using TLS if the destination host is set up to do so. Otherwise, a PLAINTEXT
connection will be established. For this demonstration, the local host is an AWS EC2
instance that does not have TLS set up so the connection will be nonsecure and the
sample data will be unencrypted across the wire. In a production environment, we
would want to be sure to set up the destination host to support TLS.

In our terminal window, enter command but do not run the command quite yet:
curl --request PUT \

--url
'https://api.confluent.cloud/connect/vl/environments/env
-6vkg3/clusters/<cluster
ID>/connectors/MySglSinkConnector 2/config' \

--header 'Authorization: Basic 'SCLOUD AUTH64'' \

--header 'content-type: application/json' \

--data '{
"connector.class": "MySqglSink",
"name": "MySglSinkConnector 2",
"topics": "transactions",
"input.data.format": "AVRO",
"input.key.format": "STRING",
"kafka.api.key": "'SCLOUD KEY'",
"kafka.api.secret": "'SCLOUD SECRET'",

"connection.host":

"ec2-54-175-153-98.compute-1.amazonaws.comn",

"connection.port": "3306",

"connection.user": "kclOluser",

"connection.password": "kclOlpw",

"db.name": "demo",

"ssl.mode": "prefer",

"pk.mode": "none",

"auto.create": "true",

"auto.evolve": "true",

"tasks.max": "1"

} T

5:55 Notice also the connection host. This should be set to the address of the host on
which the mysql database Docker container was established during the exercise
setup steps. In the case of the demonstration since an EC2 instance was being used,
the sample command specifies the public endpoint address assigned to the AWS EC2
instance. This value can be obtained in the AWS console display of the EC2 instance
details.

6:10 Now we can continue by running the curl command.

- Run the curl command

- Run command:
curl --request GET \
--url

'https://api.confluent.cloud/connect/vl/environments/<en
v ID>/clusters/<cluster

ID>/connectors/MySglSinkConnector 2/status' \ --header
'Authorization: Basic 'SCLOUD AUTH64'' | jg '.'

6:18 We see the status of provisioning and need to wait for the status to be Running
before continuing. We’'ll run it a few more times to check...

6:29 Once the status shows the connector instance is Running, we can run a query

on the MySql database to verify the connector has written records to the transactions
table.

- Run command:
docker exec -t mysgl bash -c 'echo "SELECT * FROM
transactions LIMIT10 \G" | mysgl -u root
-p$MYSQL_ROOT PASSWORD demo'

Success!

6:41 Let’s continue with our tour of the Confluent Cloud API.

6:45 Another useful command allows us to inspect the config for a given connector as
follows.

- Run command:
curl --request GET \
--url
'https://api.confluent.cloud/connect/vl/environments/<en
v ID>/clusters/<cluster
ID>/connectors/MySqglSinkConnector 2/config' \ --header
'Authorization: Basic 'SCLOUD AUTH64'' | jg '.'

6:50 There are also use cases where you might need to pause a connector instance

temporarily either for debugging or maintenance purposes. Here is the command to
do this.

- Run command:
curl --request PUT \
--url

'https://api.confluent.cloud/connect/vl/environments/<en
v ID>/clusters/<cluster

- Run command:
curl --request GET \
--url

'https://api.confluent.cloud/connect/vl/environments/<en
v ID>/clusters/<cluster

ID>/connectors/MySglSinkConnector 2/status' \ --header
'Authorization: Basic 'SCLOUD AUTH64'' | jg '.'

Confirmed! Let’'s now resume the connector and its task.

- Run command:

curl --request PUT \
--url

'https://api.confluent.cloud/connect/vl/environments/<en
v ID>/clusters/<cluster

ID>/connectors/MySglSinkConnector 2/resume’ \
--header 'Authorization: Basic 'SCLOUD AUTHG64''

7:13 And finally, let’s verify both the connector and task are once again running.

- Run command:
SN
curl --request GET \
--url

'https://api.confluent.cloud/connect/vl/environments/<en
v ID>/clusters/<cluster

ID>/connectors/MySglSinkConnector 2/status' \ --header
'Authorization: Basic 'SCLOUD AUTH64'' | jg '.'

7:20 Everything is up and in the Running state. So that wraps up our tour of the
Confluent Connect API.

Note that if you run this demonstration yourself, you’ll need to tear down the

environment after doing so to avoid unnecessarily accruing cost to the point that your
promotional credits are exhausted.

Let’'s walk through that tear down process now for this environment.
7:40 First things first, we should delete the sink connector.

- Run command:
curl --request DELETE \
--url

'https://api.confluent.cloud/connect/vl/environments/<en
v ID>/clusters/<cluster

7:44 Since there’s no running source connector, we're safe to go ahead and delete
the transactions topic.

- Run command:

curl --request DELETE \

--url
'https://pkc-60jv2.us-westd.gcp.confluent.cloud:443/kafk
a/v3/clusters/<cluster ID>/topics/transactions' \

--header 'Authorization: Basic 'SCLUSTER AUTH64''

7:50 And finally, we will shut down the MySQL Docker container and free its
resources.

- Run command:

docker-compose down -v

And with that, you should have a decent idea of the REST API and the various
commands available to you through it.

CONFLUENT

Developer

Hands On: Confluent Cloud Managed

Connector CLI

In this exercise, we’'ll be exploring the Confluent command line interface.

Hands On: Confluent Cloud Managed Developer
Connector CLI

Hands On: Confluent Cloud
Managed Connector CLI

Run command:
con

@TheDanicaFine | developer.confluent.io

Exercise Environment Preparation Steps

0:16 In order to do this exercise using the Confluent Cloud Connector CLI, you first
need to do a bit of preparation to make sure you have all of the tools you need.
Complete the following steps to set up your environment. Prior to doing so, you will
need to sign up for Confluent Cloud.

The confluent command line interface (CLI) is a convenient tool that enables
developers to manage both Confluent Cloud and Confluent Platform. Built-in
autocompletion is a convenient feature to help you quickly write commands. And with
authentication and machine readable output, the CLI supports automated workflows
as well.

The primary goal of this exercise is to demonstrate various confluent CLI commands
that can be used to create, configure, and monitor Confluent managed connectors
running in Confluent Cloud.

Confluent Cloud Managed Connector CLI exercise steps

0:55 We will start by logging into Confluent Cloud—and note that we’re using the
--save flag so that our credentials will be used for subsequent commands in this
exercise. They’'ll remain active until you run the logout command.

- Run command:
confluent login --save

Enter email and password

1:08 Let’s start by setting the active environment and cluster that CLI commands
apply to.

1:16 First, let’'s obtain the environment ID.
- Run command:
confluent environment list

1:20 In the Confluent org being used for this demo, there is a single environment and
its name is default.

1:25 Let’s set it as the active environment for the confluent CLI command.
- Run command:
confluent environment use <default env ID>
1:29 Next, we'll set the default cluster to use; let’s obtain the cluster ID.
- Run command:
confluent kafka cluster list

1:34 In the Confluent org being used for this demo, there is a single cluster and its
name is kc-101.

1:38 Let’s set it as the active cluster for the confluent CLI command.
- Run command:

confluent kafka cluster use <kc-101 cluster ID>

1:42 Let’s now create a new Kafka topic named transactions. We will set this as the
target for the Datagen source connector.

- Run command:
confluent kafka topic create transactions

1:52 Notice the topic was created with default values of 6 partitions and a replication
factor of 3.

1:58 Before proceeding, let’s verify the transactions topic was created successfully.

- Run command:

confluent kafka topic list

Stream sample data to a Kafka topic using the DatagenSource connector

2:04 Before we create the DatagenSource connector instance, let’s list the fully
managed connector plugins that are available for streaming with our Confluent Cloud
environment.

2:14 Note: This list may be a little different depending upon what cloud provider
Confluent Cloud is running in.

- Run command:

confluent connect plugin list

2:21 As you can see, the list is quite long and includes the DatagenSource connector.
Next, let’s create a DatagenSource connector instance.

First, we need to update the file containing the connector instance configuration. In
this demo we will use VSCode.

2:29 Note: This file was created on your behalf and included in the GitHub repo that
was cloned earlier during the environment setup steps.

- Run command:

code ~/learn-kafka-courses/kafka-connect-101

- In VSCode, navigate to the delta-configs directory and open file env.delta.

- Note: This file was created as part of the environment set up steps.

- Online 8, copy the value assigned to CLOUD_KEY.

- InVSCode, locate and open file datagen-source-config.json.

- Online 7, replace <key> with the copied value assigned to
CLOUD_KEY.

- Return to file env.delta and on line 9, copy the value assigned to
CLOUD_SECRET.

- Return to file datagen-source-config.json and on line 8, replace
<secret> with the copied value assigned to CLOUD_SECRET.

- Save file datagen-source-config.json and close VSCode.

2:40 We can now create the DatagenSource managed connector instance.

- Run command:

confluent connect create --config datagen-source-config.json

2:42 To verify the connector instance’s status, let’s first list all connector instances in
the cluster.
- Run command:

confluent connect list

2:48 The DatagenSource connector instance appears in the list with a status of
Provisioning. This is expected as it takes a moment for the connector instance to be
fully provisioned and running. We need to repeat this command periodically until we
see the status has changed to Running before we continue.

3:05 Using the connector instance ID that was included in the list command output,
let’s use the describe option to obtain additional details about the connector instance.

- Run command:

confluent connect describe <connector ID>

3:15 Next, let's consume records from the transactions topic to verify sample data is
being produced.

- Run command:
confluent kafka topic consume -b transactions \

--value-format avro \

--api-key $CLOUD KEY \

--api-secret $CLOUD_SECRET \
--sr-endpoint $SCHEMA REGISTRY URL \

--sr-api-key <SR key> \
--sr-api-secret <SR secret>

Note: You will need to replace <SR key> and <SR secret> with their respective values
which you can find on line 18 in ~/.confluent/java.config in the form of
basic.auth.user.info=<SR key>:<SR secret>

- Once records begin to appear, press Ctrl+C to end the consumption.

3:21 We should now have sufficient sample data in the transactions topic. So that we
don’t unnecessarily exhaust any Confluent Cloud promotional credits, let’s delete the

DatagenSource connector instance.

- Run command:

confluent connect delete <connector ID>

3:34 Let’s now establish the downstream side of our data pipeline. We will use the
MySQLSink connector for this. It will consume records from the transactions topic and
write them out to a corresponding table in our MySQL database that is running in the
local Docker container that we started during the exercise environment setup steps.

First we need to update the file containing the connector instance configuration.

Note: This file was created on your behalf and included in the GitHub repo that was
cloned earlier during the environment setup steps.

- Run command:

code ~/learn-kafka-courses/kafka-connect-101

- In VSCode, navigate to the delta-configs directory and open file env.delta.

Note: This file was created as part of the environment set up steps.

- Online 8, copy the value assigned to CLOUD_KEY.

- InVSCode, locate and open file__ mysql-sink-config.json__.

- Online 8, replace <key> with the copied value assigned to CLOUD_KEY.

- Return to file env.delta and on line 9, copy the value assigned to
CLOUD_SECRET.

- Return to file datagen-source-config.json and on line 9, replace <secret> with
the copied value assigned to CLOUD_SECRET.

- Online 10, replace <mysql-host-endpoint> with the public endpoint of the host
where the MySql database is running.

4:02 Notice that ssl.mode is set to prefer. This tells Confluent Cloud to connect using
TLS if the destination hose is set up to do so. Otherwise a PLAINTEXT connection will
be established. For this demonstration, the local host is an AWS EC2 instance that
does not have TLS set up so the connection will be nonsecure and the sample data
will be unencrypted across the wire. In a production environment, we would want to
be sure to set up the destination host to support TLS.

4:31 Notice also the connection host. This should be set to the address of the host on
which the mysql database Docker container was established during the exercise

setup steps.. In the case of the demonstration since an EC2 instance was being used,
the sample command specifies the public endpoint address assigned to the AWS EC2

instance. This value can be obtained in the AWS console display of the EC2 instance
details.

We can now save and close the configuration file.
- Save file datagen-source-config.json and close VSCode.

4:43 Let’s now create the MySQL Sink connector instance.

- Run command:

confluent connect create —config mysql-sink-config.json

4:47 To verify the connector instance’s status, let’s first list all connector instances in
the cluster.

- Run command:
confluent connect list
4:53 The MySQL Sink connector instance appears in the list with a status of
Provisioning. This is expected as it takes a moment for the connector instance to be

fully provisioned and running. We need to repeat this command periodically until we
see the status has changed to Running before we continue.

5:09 Using the connector instance ID that was included in the list command output,
let’'s use the describe option to obtain additional details about the connector instance.

- Run command:
confluent connect describe <connector ID>

5:20 Next, let’s run a query on the MySQL database to verify the connector has
written records to the transactions table.

- Run command:
docker exec -t mysql bash -c 'echo "SELECT * FROM
transactions LIMIT 10 \G" | mysql -u root
-p$MYSQL_ ROOT PASSWORD demo'

Success!

5:29 Let’s continue now with our tour of using the Confluent CLI with Confluent Cloud
managed connectors.

5:36 Perhaps we want to pause a connector instance temporarily. Here is the

command to do this.

- Run command:

confluent connect pause <connector ID>

5:40 Let’s verify both the connector and task are paused using the status command.
- Run command:
confluent connect describe <connector ID>
5:49 Confirmed.. Let’'s now resume the connector and its task.
- Run command:
confluent connect resume <connector ID>
5:52 And let’s verify both the connector and task are once again running.
- Run command:
confluent connect describe <connector ID>
5:57 The connector and its task are once again in a Running state.
6:03 If you run this demonstration yourself, you need to tear down the environment
after doing so to avoid unnecessarily accruing cost to the point your promotional
credits are exhausted.
6:10 Let’s walk through that tear down process now for this environment.

6:16 First we delete MySqlSinkConnector_2.

- Run command:

confluent connect delete <connector ID>

6:20 Next we will delete the transactions topic.
- Run command:
confluent kafka topic delete transactions
6:23 And finally, we will shut down the mysql Docker container and free its resources.

- Run command:

docker-compose down -v

This concludes this demonstration.

CONFLUENT
Developer

Deploying Kafka Connect

Hi, Danica Fine here; up until now, we've learned a ton about Kafka
Connect, its components, and how to interact with it. But now let’s
see how to deploy it.

Deploying Kafka Connect @ = () pevel

S3 Task #1 JDBC Task #1

@TheDanicaFine | developer.confluent.io

In this module, you will learn about the distributed and standalone
deployment methods for Kafka Connect. But the requirement to
deploy Kafka Connect infrastructure only applies if you are
implementing self-managed Kafka Connect. If you use Confluent
managed connectors, all infrastructure deployment is taken care of
by Confluent.

So now that we have learned a bit about the components within
Kafka Connect, let’'s now turn to how we can actually run a
connector. When we add a connector instance, we specify its
logical configuration. It's physically executed by a thread known as
a task. In this diagram we see two logical connectors, each with
one task.

Tasks Are the Unit of Parallelism and Scale Developer

@TheDanicaFine | developer.confluent.io

The execution of a connector’s ingest or egress of data can also be
parallelized (if the connector supports it). In that case, additional
tasks are spawned. This could mean that when ingesting from a
database, multiple tables are read at once, or when writing to a
target data store, data is read concurrently from multiple partitions
of the underlying Kafka Topic to increase throughput.

NNNNNNNNN

Connect Worker Developer

Worker

@TheDanicaFine | developer.confluent.io

But where do the tasks actually run? Kafka Connect runs under the
Java virtual machine (JVM) as a process known as a worker. Each
worker can execute multiple connectors. When you look to see if
Kafka Connect is running, or want to look at its log file, it's the
Worker process that you're looking at. Tasks are executed by Kafka
Connect Workers.

Kafka Connect Distributed Mode = (%) pever

: S3 Task #1
3l IDBC Task #1 JDBC Task #2

‘Kafka Connect
:Cluster

Kafka Cluster

Offsets
Configs
Status

@TheDanicaFine | developer.confluent.io

A Kafka Connect worker can be run in one of two deployment
methods: standalone or distributed. Each has its pros and cons,
which we will now discuss. The way in which you configure and
operate Kafka Connect in these two modes is different.

Despite its name, the distributed deployment mode is equally valid
for a single worker deployed in a sandbox or development
environment. In this mode, Kafka Connect uses Kafka topics to
store state pertaining to connector configuration, connector status,
and more. The topics are configured to retain this information
indefinitely, known as compacted topics. Connector instances are
created and managed via the REST API that Kafka Connect offers.

The distributed mode is the recommended best practice for most
use cases.

Kafka Connect Scalability Developer

: Worker _
: S3 Task #1

‘Kafka Connect
:Cluster

Kafka Cluster

Offsets
Configs
Status

@TheDanicaFine | developer.confluent.io

Since all offsets, configs, and status information for the distributed
mode cluster is maintained in Kafka topics, this means that you can
add additional workers easily, as they can read everything that they
need from Kafka. When you add workers from a Kafka Connect
cluster, the tasks are rebalanced across the available workers to
distribute the workload. If you decide to scale down your cluster (or
even if something outside your control happens and a worker
crashes), Kafka Connect will rebalance again to ensure that all the
connector tasks are still executed.

Multiple Workers vs Multiple Clusters

Developer

: S3 Task #1 ¥ :
Sl IDBC Task #1 IDBCTask #2 [

EKafka Connect : Kafka Connect:
Cluster #1 ¥ Cluster #2:

Kafka Cluster

Offsets_1 Offsets_2
Configs_1 Configs_2
Status_1 Status_2

@TheDanicaFine | developer.confluent.io

The minimum number of workers recommended is two so that you
have fault tolerance. But of course, you can add additional workers
to the cluster as your throughput needs increase. You can opt to
have fewer, bigger clusters of workers, or you may choose to
deploy a greater number of smaller clusters in order to physically
isolate workloads. Both are valid approaches and are usually
dictated by organizational structure and responsibility for the
respective pipelines implemented in Kafka Connect.

NNNNNNNNN

Kafka Connect Standalone Mode Developer

Worker

S3 Task #1 JDBC Task #1 JIDBC Task #2 l |

Offsets

@TheDanicaFine | developer.confluent.io

On the other hand, in standalone mode, the Kafka Connect worker
uses files to store its state. Connectors are created from local
configuration files, not the REST API. Consequently, you cannot
cluster workers together, meaning that you cannot scale for
throughput or have fault-tolerant behavior.

Because there is no clustering, you can know for certain on which
machine a connector’s task will be executing (i.e., the machine on
which you’ve deployed the standalone worker). This means that
standalone mode is appropriate if you have a connector that needs
to execute with server locality, for example, reading from files on a
particular machine or ingesting data sent to a network port at a
fixed address.

You can satisfy this same requirement using Kafka Connect in the
distributed mode with a single worker Connect cluster. This
provides the benefit of having offsets, configs, and status
information stored in a Kafka topic.

CONFLUENT
Developer

Running Kafka Connect in Docker

Hi, Danica Fine here; Kafka Connect runs as a JVM process, so
there are a ton of options for how and where we can run it. But let’s
see how to run Kafka Connect in Docker.

NNNNNNNNN

Kafka Connect Images on Docker Hub Developer

"-'-"?docker hub Q confluentinc/cp-kafka-connect

Explore confluentinc/cp-kafka-connect

£, confluentinc/cp-kafka-connect s«
' i By confluentinc » Updated 3 days ago
Official Confluent Docker Base Image for Kafka Connect
h Container

@TheDanicaFine | developer.confluent.io

You can run a Kafka Connect worker directly as a JVM process on
a virtual machine or bare metal, but you might prefer the
convenience of running it in a container, using a technology like
Kubernetes or Docker. Note that containerized Connect via Docker
will be used for many of the examples in this series.

Confluent maintains its own image for Kafka Connect,
cp-kafka-connect, which provides a basic Connect worker to which
you can add your desired JAR files for sink and source connectors,
single message transforms, and converters.

Adding Connectors to a Container

Developer

@ CONFLUENT Product Cloud Developers Blog

Confluent Hub

Discover Kafka. connectors

and more @ dockerhub IS

Debezium

Explore confluentinc/cp-kafka-connect

confluentinc/cp-kafka-connect

By confluentinc » Updated 3 days ago

Official Confluent Docker Base Image for Kafka Connect

@TheDanicaFine | developer.confluent.io

You can use Confluent Hub to add your desired JARs, either by
installing them at runtime or by creating a new Docker image. Of
course, there are pros and cons to either of these options, and you
should choose based on your individual needs.

CONFLUENT

Add to Container Image at Runtime Developer

kafka-connect:
image: confluentinc/cp-kafka-connect:7.1.0-1-ub1i8
environment:
CONNECT_PLUGIN_PATH: /usr/share/java,/usr/share/confluent—hub-components

command :
- bash
- -c
- |
confluent-hub install --no-prompt neo4j/kafka-connect-neo4j:2.0.2
/etc/confluent/docker/run

@TheDanicaFine | developer.confluent.io

Adding your dependencies at runtime means that you don’t have to
create a new image, but it does increase installation time each time
your container is run, and it also requires an internet connection.
It's a good option for prototyping work but probably not for a
production deployment.

Your JARs should be in a location that causes them to be class
loadable by the Connect process, and you'll need to add an
environmental variable that identifies their location (note that in
production you will likely have many more environmental variables
than just this one). Also make sure to specify the correct version of
the Connect base image. Finally, you should add a command that
overrides the base image’s default command so that you can call
the Confluent Hub utility, which will install the connectors specified
(in this case, the Neo4j connector).

Build a New Container Image

Developer

FROM confluentinc/cp-kafka-connect:7.1.0-1-ubi8

ENV CONNECT_PLUGIN_PATH: "/usr/share/java,/usr/share/confluent—hub-components"

RUN confluent-hub install --no-prompt neo4j/kafka-connect-neo4j:2.0.2

@TheDanicaFine | developer.confluent.io

The second way to add dependencies, and the option probably

most often used in production deployments, is to build a new
image.

Make sure to use the correct Confluent base image version and
also check the specific documentation for each of your connectors.

e You can add a connector instance using a launch script that does the following:
o Launch Connect
o Wait for the Connect listener to respond
o Add the connector instance using the Connect REST API

@TheDanicaFine | developer.confluent.io

Typically, you will add connector instances once the worker process
is running by manually submitting the configuration or via an
external automation. However, you may find—perhaps for demo
purposes—that you want a self-sufficient container that also adds
the connector instance when it starts. To do this, you can use a
launch script that looks like this:

“To do this, you can use a script that launches connect, waits for
the connect listener to respond, and adds the connector instance
using the connect rest api.”

Launch Kafka Connect
letc/confluent/docker/run &
#
Wait for the Connect listener to respond
echo "Waiting for Kafka Connect to start listening on localhost __
while : ; do
curl_status=$$(curl -s -o /dev/null -w %{http_code}
http://localhost:8083/connectors)

echo -e $$(date) " Kafka Connect listener HTTP state: "
$Scurl_status " (waiting for 200)"
if [$$curl_status -eq 200] ; then
break
fi
sleep 5
done

Add the connector instance using the Connect REST API
echo -e "\n--\n+> Creating Data Generator source connector
instance”
curl -s -X PUT -H "Content-Type:application/json"
http://localhost:8083/connectors/source-datagen-01/config \
-d {
"connector.class":
"io.confluent.kafka.connect.datagen.DatagenConnector”,
"key.converter":
"org.apache.kafka.connect.storage.StringConverter",
"kafka.topic": "ratings",
"max.interval": 750,
"quickstart": "ratings",
"tasks.max": 1
y

sleep infinity

CONFLUENT

Developer

Hands On: Run a Self-Managed

Connector in Docker

In this exercise, we'll learn how to run and maintain a self-managed connector with
Confluent Cloud.

CONFLUENT

Hands On: Run a Self-Managed Connector
in Docker

Hands On: Running a Self-Managed

Connector with Confluent Cloud

tun czemmand:

KAFKA CONNECT

@TheDanicaFine | developer.confluent.io

Exercise Environment Preparation Steps

Complete the following steps to set up the environment used for the course exercises.
Prior to doing so, you will need to sign up for Confluent Cloud at
https://confluent.cloud.

Note: Steps 1-15 are the same as those included in 6. Hands On; Confluent Cloud
Managed Connector APl and 7. Hands On: Confluent Cloud Managed Connector CLI.
If you already completed them for either exercise, you can skip to step 16 of this
exercise setup.

We will use various CLI during the course exercises including confluent so these
need to be available on the machine you plan to run the exercise on. Downloading
Confluent Platform will accomplish this.

Running a Self-Managed Connector with Confluent Cloud exercise steps

0:30 As mentioned previously in this course, the rate at which managed connectors
are being added to Confluent Cloud is impressive, but you may find that the connector
you want to use with Confluent Cloud isn’t yet available. This is one scenario where
you will need to run your own Kafka Connect worker which then connects to
Confluent Cloud. In this exercise, we will do exactly that.

- 0:50 Establish a self-managed Kafka Connect cluster
o This cluster will run in Docker containers and be

PN VRS Ada niiiba bma mm A emamad fuemnn I AfloA bamiAan fa A

Developer

o kc-101 Confluent Cloud cluster
- 1:00 Create Kafka Connect data pipelines

o Pipeline one will use a self-managed Debezium MySQL
source connector to stream data from our local MySQL
database to a Kafka topic in Confluent Cloud

o Pipeline two will use a self-managed Elasticsearch sink
connector to stream data from a Kafka topic in our kc-101
Confluent Cloud cluster to a local instance of Elasticsearch

o Pipeline three will use a self-managed Neo4j sink
connector to stream data from a Kafka topic in our kc-101
Confluent Cloud cluster to a local instance of Neo4j

1:34 Our self-managed Kafka Connect cluster will require the Confluent Cloud Java
configuration settings we previously obtained. We will make them available via
environment variables. We will do this using the delta_configs/env.delta that was
created in the exercise setup steps.

1:48 Before we do this though, let’s review the contents of java.config.
- Run command:

cat ~/.confluent/java.config

1:54 Observe the settings, including the Confluent Cloud cluster endpoint that is used
for the bootstrap servers property. It also includes values for the cluster APl key and
secret which clients need to authenticate with Confluent Cloud. The settings also
include the Schema Registry endpoint and API key and secret. These are also
needed by clients.

2:14 Now, let’s review the contents of delta_configs/env.delta.

- Run commands:
cd ~/learn-kafka-courses/kafka-connect-101
cat delta configs/env.delta

2:18 As you can see, this file contains numerous export commands that create
environment variables set to the value of a corresponding Java client configuration
setting.

2:27 We will establish these variables for our current command shell.

- Run command:
source delta configs/env.delta

2:30 And now we will verify the previous step was successful.

- Run command:

- Run command:

code docker-compose.yml

2:48 The first Docker container named connect-1 is one of the two Kafka Connect
worker nodes we will be working with. Let's now examine several configuration
settings that are specified in the container’s environment: settings.

- 3:01Inline 15, CONNECT_BOOTSTRAP_SERVERS is set equal to the
$BOOTSTRAP_SERVERS which is one of the environment variables we
made available in step 3. This is the endpoint address of the kc-101 Confluent
Cloud cluster.

- 3:12Inline 16, we see that the group.id property is set to kc-101. This is what
tells the connect-1 worker node which Connect cluster it should join upon
startup. All other worker nodes with the same group.id value belong to the
same Connect cluster.

- 3:27 Inlines 17-19, we see three internal topics the worker nodes use to keep
in sync with one another. The names for these topics need to be unique for
each Connect cluster.

- 3:37 In lines 29-31, three more environment variables are used to set values
used by the Connect workers to connect to Schema Registry which in our
case is located in Confluent Cloud.

- 3:48Inlines 46, 51, and 56 we see another environment variable used to set
the value that the worker as well as the underlying producer and consumer will
use to authenticate with the Confluent Cloud cluster.

- 3:57 In lines 64-67 we see that the connector plugins that we will be using
during our exercises are being downloaded from Confluent Hub and installed
on the connect-1 worker node. The connect-2 worker node container
configuration also includes these same plugin installation steps. Connector
plugins must be installed on every node in the connect cluster.

4:17 Scrolling down, we will find that the environment variables are also used to
define the connect-2 worker node as well as the local control-center node.

4:22 Scrolling down further, you will see additional Docker containers defined
including:

e MySQL
° Elasticsearch
o Neodj

4:31 Let’s now start the Kafka Connect cluster as well as the other Docker containers.

- Run command:

docker-compose up -d

4:43 And finally verify the Kafka Connect workers are ready.

- Run command:
bash -c ' \
echo -e "\n\n=============\nWaiting for Kafka Connect to
start listening on localhost L \n=============\n"
while [$(curl -s -o /dev/null -w %{http code}

http://localhost:8083/connectors) -ne 200] ; do
echo —-e "\t" $(date) " Kafka Connect listener HTTP
state: " S$(curl -s -o /dev/null -w ${http code}
http://localhost:8083/connectors) " (waiting for 200)"
sleep 15
Done
echo -e $(date) "\n\n--------—-——-————- \n\o/ Kafka Connect
is ready! Listener HTTP state: " $(curl -s -o /dev/null
-w ${http code} http://localhost:8083/connectors)
I\|feososooooomo=s \n"'

4:47 Make sure that the Elasticsearch, Debezium, and Neo4j connector plugins are
available.
- Run command:
curl -s localhost:8083/connector-plugins | jgq

.[].class'|egrep

'Neo4jSinkConnector |MySglConnector |ElasticsearchSinkConn

ector’

- Expected command output:

"jo.confluent.connect.elasticsearch.ElasticsearchSinkCon
nector"

"io.debezium.connector.mysqgl.MySglConnector"

"streams.kafka.connect.sink.Neo4jSinkConnector"
Note: If jg isn’t present on your machine, the output from this command and others in

this exercise that use jg will not appear as expected.

4:53 Let’s now verify that our self-managed Kafka Connect cluster is using our
Confluent Cloud cluster.

- In the Confluent Cloud console, navigate to the kc-101 cluster, expand Data
Integration, select Clients, and then select Consumers.

Stream data from MySql to a Kafka Topic

5:04 Next, we will stream data from our local MySQL database to a Confluent Cloud
Kafka topic using the Debezium MySQL Source connector. We will start by viewing a
sample of records in the database.

- In anew terminal window or tab, run command:

docker exec -t mysqgl bash -c 'echo "SELECT * FROM ORDERS
ORDER BY CREATE TS DESC LIMIT 10 \G" | mysgl -u root

-pSMYSQL ROOT PASSWORD demo'

5:18 These are the records that we will stream to a Kafka topic in Confluent Cloud.
Before we continue, let’s start a process to generate additional rows to the MySQL
database.

- In the same terminal window or tab, run command:

docker exec mysqgl /data/02 populate more orders.sh

5:28 Let’s now create the MySQL source connector instance.

- Return to the original terminal window and run command:
curl -i -X PUT -H "Content-Type:application/json" \

http://localhost:8083/connectors/source-debezium-orders—
01/config \
-d "{
"connector.class":
"io.debezium.connector.mysqgl.MySqglConnector",
"value.converter":
"io.confluent.connect.json.JsonSchemaConverter",
"value.converter.schemas.enable": "true",
"value.converter.schema.registry.url":
"'SSCHEMA REGISTRY URL'",

"value.converter.basic.auth.credentials.source":

"'$BASIC_AUTH_CREDENTIALS_SOURCE’",
"value.converter.basic.auth.user.info":

"'$SCHEMA REGISTRY BASIC AUTH USER INFO'",
"database.hostname": "mysqgl",
"database.port": "3306",
"database.user": "kclOluser",
"database.password": "kclOlpw",
"database.server.id": "42",

"database.history.kafka.bootstrap.servers":
"'$BOOTSTRAP78ERVERS'",

"database.history.consumer.security.protocol":
y.-p
"SASL SSL",
"database.history.consumer.sasl.mechanism":

"PLAIN",

"database.history.consumer.sasl.jaas.config":
"org.apache.kafka.common.security.plain.PlainLoginModule
required username=\"'SCLOUD KEY'\"

password=\""'SCLOUD SECRET'\";",

"database.history.producer.security.protocol":
"SASL SSL",
"database.history.producer.sasl.mechanism":

"PLAIN",

"database.history.producer.sasl.jaas.config":

"org.apache.kafka.common.security.plain.PlainLoginModule

required username=\"'SCLOUD KEY'\"

password=\""'SCLOUD SECRET'\";",
"database.history.kafka.topic":

"dbhistory.demo",

"3"
14

"topic.creation.default.replication.factor":

"topic.creation.default.partitions": "3",
"decimal.handling.mode": "double",
"include.schema.changes": "true",
"transforms": "unwrap,addTopicPrefix",
"transforms.unwrap.type":
"io.debezium.transforms.ExtractNewRecordState",

"transforms.addTopicPrefix.type":"org.apache.kafka.conne
ct.transforms.RegexRouter",
"transforms.addTopicPrefix.regex":" (.*)",

"transforms.addTopicPrefix.replacement" :"mysqgl-debezium-
$1"

} |

5:34 Let’s check the status of the connector instance.

- Run command:
curl -s

"http://localhost:8083/connectors?expand=info&expand=sta

tus"™ | \
jg '. | to_entries[] | [.value.info.type, .key,
.value.status.connector.state, .value.status.tasks([].stat
e, .value.info.config."connector.class"] |join(":|:")"' | \
column -s : —-t| sed 's/\"//g'| sort

- Expected output:
source | source—-debezium-orders-01 | RUNNING |

RUNNING | io.debezium.connector.mysqgl.MySglConnector

5:41 Let’s view the records in the Confluent Cloud Kafka topic.

- Inthe Confluent Cloud console, navigate to the kc-101 cluster, select Topics,
select the mysql-debezium-asgard.demo.ORDERS topic, and select the
Messages tab.

Observe the records being written to the topic by the MySQL source connector.
5:49 Before continuing, let’s stop the MySQL data generator we have running.

- In the second terminal window/tab where the data generator is running, press
Ctrl+C to stop it.
- Close this terminal window/tab.

Stream Data from Kafka to Elasticsearch

5:55 Our next step in this exercise is to stream the data that was sourced from the
MySQL database to an Elasticsearch sink.

6:02 To start, we will create an Elasticsearch sink connector instance. Notice that for
this connector, we set tasks.max equal to 2. This is primarily for instructional purposes
since the load doesn’t really need to be spread out across our two connect worker
nodes. We will examine how these multiple tasks are distributed in later exercises.

- In our terminal window, run command:
curl -i -X PUT -H "Content-Type:application/json™ \

http://localhost:8083/connectors/sink-elastic-orders-01/

"io.confluent.connect.json.JsonSchemaConverter",
"value.converter.schemas.enable": "true",
"value.converter.schema.registry.url":

"'$SCHEMA REGISTRY URL'",

"value.converter.basic.auth.credentials.source":
"'$BASICiAUTH7CREDENTIAL87$OURCE'",
"value.converter.basic.auth.user.info":
"'$SCHEMA REGISTRY BASIC AUTH USER INFO'",
"topics":
"mysqgl-debezium-asgard.demo.ORDERS",
"connection.url":
"http://elasticsearch:9200 ",

"key.ignore": "true",
"schema.ignore": "true",
"tasks.max": "2"

} |

6:24 Let’s check the status of the connector instance.

- Run command:
curl -s
"http://localhost:8083/connectors?expand=info&expand=sta

tus"™ | \
jg '. | to _entries[] | [.value.info.type, .key,
.value.status.connector.state, .value.status.tasks([].stat
e, .value.info.config."connector.class"] |join(":|:")"' | \
column -s : -t| sed 's/\"//g'| sort | grep

ElasticsearchSinkConnector

- Expected output:
source | source-debezium-orders-01 | RUNNING |
RUNNING | RUNNING |
io.confluent.connect.elasticsearch.ElasticsearchSinkConn

ector

6:27 Now let’s inspect the data that is written to Elasticsearch.

- Run command:
curl -s
http://localhost:9200/mysgl-debezium-asgard.demo.orders/

-H 'content-type: application/json' \
-d '{ "size": 5, "sort": [{ "CREATE TS": { "order":
"desc" } } 1 }' I\

jg '.hits.hits[]. source | .id, .CREATE TS'

Stream Data from Kafka to Neo4j

6:33 Our next step in this exercise is to stream the data that was sourced from the
MySQL database to a Neo4j sink. Notice that for this connector, we set tasks.max
equal to 2.

- In our terminal window, run command:
curl -i -X PUT -H "Content-Type:application/json™ \

http://localhost:8083/connectors/sink-neod4dj-orders-01/config
\
-d "{
"connector.class":
"streams.kafka.connect.sink.Neo4jSinkConnector",
"value.converter":
"io.confluent.connect.json.JsonSchemaConverter",
"value.converter.schemas.enable": "true",
"value.converter.schema.registry.url":
"'$SCHEMA_REGISTRY_URL'",

"value.converter.basic.auth.credentials.source":
"'$BASICiAUTH7CREDENTIALSisOURCE'",
"value.converter.basic.auth.user.info":
"'$SCHEMA REGISTRY BASIC AUTH USER _INFO'",
"topics":
"mysqgl-debezium-asgard.demo.ORDERS",
"tasks.max": "2",
"neodj.server.uri": "bolt://neodj:7687",
"neo4j.authentication.basic.username":
"neo4j",
"neo4j.authentication.basic.password":
"connect",

"neo4j.topic.cypher.mysgl-debezium-asgard.demo.ORDERS":
"MERGE (city:city{city: event.delivery city}) MERGE
(customer:customer{id: event.customer id,

delivery address: event.delivery address, delivery city:

event.delivery city, delivery company:

event.delivery company}) MERGE (vehicle:vehicle{make:
event.make, model:event.model}) MERGE

(city)<-[:LIVES IN]-(customer)-[:BOUGHT{order total usd:
event.order total usd,order id:event.id}]->(vehicle)"

} \}
6:44 Let’s check the status of the connector instance.

- Run command:
curl -s
"http://localhost:8083/connectors?expand=info&expand=sta

tus" | \
jg '. | to_entries[] | [.value.info.type, .key,
.value.status.connector.state, .value.status.tasks[].stat
e, .value.info.config."connector.class"] |join(":|:")"' | \
column -s : -t| sed 's/\"//g'| sort | grep

Neo4jSinkConnector

- Expected output:
source | source-debezium-orders-01 | RUNNING |
RUNNING | RUNNING |

io.confluent.connect.elasticsearch.Neo4jSinkConnector

6:50 In this exercise we:

- Implemented a self-managed Kafka Connect cluster and associated it with a
Confluent Cloud cluster

- Created a source connector instance that consumed records from a local
MySQLdatabase and wrote corresponding records to a Kafka topic in the
Confluent Cloud cluster

- Created two sink connector instances that consumed records from a Kafka
topic in the Confluent Cloud cluster and wrote corresponding records out to a
local Elasticsearch instance and a local Neo4j instance

7:22 If you run this demonstration yourself, you need to tear down the environment
after doing so to avoid unnecessarily accruing cost to the point your promotional
credits are exhausted.

Let’'s walk through that tear down process now for this environment.

First, we will shut down the Docker containers and free the resources they are using.

let’s set the cluster context for the confluent CLI.

- Run commands:

confluent kafka cluster list

confluent kafka cluster use <kc-101 cluster ID>

We can now use the list command to identify the topic names we need to delete.

- Run command:

confluent kafka topic list

And now we can delete each of these topics.

- Run command:

confluent kafka topic delete <topic>

Repeat command for each topic listed in the previous step.

This concludes this exercise.

CONFLUENT

Developer

Kafka Connect’s REST API

_——

In this hands-on demonstration, we’ll walk through features of the Confluent Connect
REST API using basic command line examples.

Kafka Connect’s REST API Sl

Kafka Connect's Rest API

@TheDanicaFine | developer.confluent.io

Getting Basic Connect Cluster Information

0:16 Get basic Connect cluster information including the worker version, the commit
that it's on, and its Kafka cluster ID with the following command:

curl http://localhost:8083/

0:26 Note that the cluster ID sets this cluster apart from other Connect clusters that
may be running a separate set of connectors.

Listing Installed Plugins

0:33 The command below lists the plugins that are installed on the worker. Note that
plugins need to be installed first in order to be called at runtime later.

curl -s localhost:8083/connector-plugins

0:42 Kafka does ship with a few plugins, but generally you will need to install plugins
yourself. The best place to get them is Confluent Hub, where you will find a large
number of plugins and a command line tool to install them. Recall that the Docker
containers for our two Connect workers included commands to download and install
four connector plugins from Confluent Hub.

Formatting the Result of the Installed Plugin List

curl -s localhost:8083/connector-plugins | jg '.'

1:13 Now it is much easier to see the details for each of the available plugins. These
plugins need to be installed on all workers in the Connect cluster so that if a
connector instance or task is moved to a worker due to a rebalance, the plugin is
available to run it.

Create a Connector Instance

1:26 To create a connector instance, you PUT or POST a JSON file with the
connector’s configuration to a REST endpoint on your Connect worker. PUT is
somewhat easier because it will create the connector if it doesn’t exist, or update it if it
already exists. If it already exists and there’s no update to make, it won’t error—so
PUT is the idempotent way of updating a connector.

curl -i -X PUT -H "Content-Type:application/json™ \

http://localhost:8083/connectors/source-debezium-orders—
00/config \
-d '{
"connector.class":
"io.debezium.connector.mysqgl.MySglConnector",
"value.converter":
"io.confluent.connect.json.JsonSchemaConverter",
"value.converter.schemas.enable": "true",
"value.converter.schema.registry.url":
"'$SCHEMA REGISTRY URL'",

"value.converter.basic.auth.credentials.source":
"'$BASIC_AUTH_CREDENTIALS_SOURCE'",
"value.converter.basic.auth.user.info":
"'$SCHEMA REGISTRY BASIC AUTH USER INFO'",
"database.hostname": "mysqgl",
"database.port": "3306",
"database.user": "debezium",
"database.password": "dbz",
"database.server.id": "42",
"database.server.name": "asgard",
"table.whitelist": "demo.orders",
"database.history.kafka.bootstrap.servers":
"'$BOOTSTRAP_SERVERS'",

"database.history.consumer.security.protocol":

"SASL SSL",
"database.history.consumer.sasl.mechanism":
"PLAIN",

"database.history.consumer.sasl.jaas.config":
"org.apache.kafka.common.security.plain.PlainLoginModule
required username=\"'SCLOUD KEY'\"

password=\""'SCLOUD SECRET'\";",

"database.history.producer.security.protocol":
"SASL SSL",
"database.history.producer.sasl.mechanism":
"PLAIN",

"database.history.producer.sasl.jaas.config":
"org.apache.kafka.common.security.plain.PlainLoginModule
required username=\"'S$CLOUD KEY'\"
password=\""'$CLOUD SECRET'\";",
"database.history.kafka.topic":
"dbhistory.demo",
"topic.creation.default.replication.factor":
ngn,
"topic.creation.default.partitions": "3",
"decimal.handling.mode": "double",
"include.schema.changes": "true",
"transforms": "unwrap,addTopicPrefix",
"transforms.unwrap.type":
"io.debezium.transforms.ExtractNewRecordState",

"transforms.addTopicPrefix.type":"org.apache.kafka.conne
ct.transforms.RegexRouter",
"transforms.addTopicPrefix.regex":" (.*)",

"transforms.addTopicPrefix.replacement":"mysgl-debezium-
$1"

} |l

List Connector Instances

1:50 Use the following command to list of all extant connectors:

curl -s —-XGET "http://localhost:8083/connectors/"

Inspect Config and Status for a Connector

1:54 Inspect the config for a given connector as follows:

curl -i -X GET -H "Content-Type:application/json™ \

http://localhost:8083/connectors/sink-elastic-orders-00/confi

g

2:02 You can also look at a connector’s status. While the config command shows a
connector’s static configuration, the status shows the connector as a runtime entity:

curl -s
"http://localhost:8083/connectors?expand=info&expand=sta
tus"™ | \

jg '. | to _entries[] | [.value.info.type, .key,
.value.status.connector.state, .value.status.tasks([].stat
e, .value.info.config."connector.class"] |Jjoin(":]|:")" |

\

column -s : -t| sed 's/\"//g'| sort

Delete a Connector

2:12 If something is wrong in your setup and you don'’t think a config change would
help, or if you simply don’t need a connector to run anymore, you can delete it by
name:

curl -s —-XDELETE

"http://localhost:8083/connectors/sink-elastic-orders-00

"

2:24 Or you can make a nifty interactive delete list with the tool peco by piping the
connector list stdout through it, finally xarg-ing to a cURL call to the delete API:

curl -s "http://localhost:8083/connectors™ | \
jg "L 01" 1N
peco | \

xargs -I{connector name} curl -s -XDELETE

"http://localhost:8083/connectors/"\{connector name\}

It returns an interactive list of connector instances. To delete one, arrow down to

configuration (see Create a Connector Instance above). Because PUT is used to both
create and update connectors, it's the standard command that you should use most of
the time (which also means that you don’t have to completely rewrite your configs).

Inspect Task Details

The following command returns the connector status:

curl -s -XGET
"http://localhost:8083/connectors/source-debezium-orders

-00/status" | jg '.'

2:36 If your connector fails, the details of the failure belong to the task. So to inspect
the problem, you’ll need to find the stack trace for the task. The task is the entity that
is actually running the connector and converter code, so the state for the stack trace
lives in it.

curl -s -XGET

"http://localhost:8083/connectors/source-debezium-orders

-00/tasks/0/status" | jg '.'

Restart the Connector and Tasks

3:08 If after inspecting a task, you have determined that it has failed and you have
fixed the reason for the failure (perhaps restarted a database), you can restart the
connector with the following:

curl -s -XPOST

"http://localhost:8083/connectors/source-debezium-orders

-00/restart"

3:18 Keep in mind though that restarting the connector doesn’t restart all of its tasks.

You will also need to restart the failed task and then get its status again as follows:
curl -s —-XPOST
"http://localhost:8083/connectors/source-debezium-orders

-00/tasks/0/restart"

curl -s -XGET
"http://localhost:8083/connectors/source-debezium-orders

-00/tasks/0/status" | g '.'

all of its tasks at exactly the same time. The tasks are running in a thread pool, so
there’s no fancy mechanism to make this happen simultaneously.

3:43 A connector and its tasks can be paused as follows:

curl -s —-XPUT
"http://localhost:8083/connectors/source-debezium-orders

-00/pause"

3:54 Just as easily, a connector and its tasks can be resumed:

curl -s —-XPUT
"http://localhost:8083/connectors/source-debezium-orders

-00/resume"

Display All of a Connector’s Tasks

4:01 A convenient way to display all of a connector’s tasks at once is as follows:

curl -s —-XGET
"http://localhost:8083/connectors/sink-neodj-orders-00/t

asks" | g '.'

4:06 This information is similar to what you can get from other APIs, but it is broken
down by task, and configs for each are shown.

Get a List of Topics Used by a Connector

4:20 As of Apache Kafka 2.5, it is possible to get a list of topics used by a connector:

curl -s —-XGET
"http://localhost:8083/connectors/source-debezium-orders

-00/topics" | jg '.'

4:23 This shows the topics that a connector is consuming from or producing to. This
may not be particularly useful for connectors that are consuming from or producing to
a single topic. However, some developers, for example, use regular expressions for
topic names in Connect, so this is a major benefit in situations where topic names are
derived computationally.

This could also be useful with a source connector that is using SMTs to dynamically

CONFLUENT
Developer

Monitoring Kafka Connect

Hi, I'm Danica Fine, here to introduce you to methods for monitoring your

Kafka Connect instances.

Now that you know a bit more about how to configure and run Kafka
Connect, the next step is to understand how to monitor Connect clusters
and connectors and act on any irregularities you may encounter. Let's dive

in!

Metrics and Monitoring for Kafka Connect Developer

There are two broad ways to monitor Kafka Connect:
e Within Confluent
o Confluent Cloud Console
o Confluent Control Center
o Confluent Metrics API
e Monitoring data exposed directly by Kafka Connect
o IJMX
o REST

@TheDanicaFine | developer.confluent.io

There are two broad ways to monitor Kafka Connect:

e Within the Confluent Kafka ecosystem, the Confluent Cloud
Console and Confluent Platform Control Center are the
easiest options to get started with monitoring a connector
instance. The Confluent Metrics APl is another option that
can be used to collect metrics that may then be integrated
with third-party monitoring tools such as Datadog, Dynatrace,
Grafana, and Prometheus.

e Another option compatible for Confluent Kafka and Apache
Kafka is to monitor data exposed directly by Kafka Connect,
such as JMX and REST.

Managed Connector Overview

Running Messages processed
This connecter is running.

1.57K
Totalin last 7 day
Messages behind Messages in DLQ

Max lag in the last minute Total in last 7 days

B8 Schema Registry

Last hour

Throughput

CONFLUENT

Developer

@TheDanicaFine | developer.confluent.io

From the Confluent Cloud Ul, there are several views for

monitoring an individual connector’s status. A good place to start is
the Connector Overview window. Here you can find a connector’s
current status, how many messages it has processed, whether

there is any lag occurring, and also whether any potentially

problematic messages have been written to the dead letter queue.

The Overview window also includes an option to open the Stream
lineage window which shows where the connector fits within related

event streams.

Confluent Stream Lineage Developer

@TheDanicaFine | developer.confluent.io

Stream lineage provides a graphical Ul of event streams and data
relationships with both a bird’s eye view and drill-down
magnification for answering questions like:

e Where did data come from?
e Where is it going?
e \Where, when, and how was it transformed?

Viewing a connector in Stream lineage lets you easily identify its
relationship within event streams.

e For source connectors, you can see what topic the connector
is producing records to.

e For sink connectors, you can see what topic or topics the
connector is consuming records from.

Mousing over the connector displays a popup with its details. If the
connector or other elements of the event stream are clicked, a
corresponding connector overview tab opens.

Stream Lineage - Connector Overview Developer

Seeallstreams iide internaltopics MySqlSinkConnector_1

Status

tion

292978

@TheDanicaFine | developer.confluent.io

The Stream lineage connector overview tab displays much of the
same details that the primary Connector Overview window
displays.

A Consumers and a Tasks tab is also available.

Stream Lineage - Connector Consumers

Developer

MySqlSinkConnector_1

Status

Overview Consumers Tasks

152.6K8

@TheDanicaFine | developer.confluent.io

The Consumers tab displays the list of consumer clients being used
by the connector instance to read from the Kafka topic partitions. If
a connector instance has multiple tasks, this list will contain
multiple consumer clients.

Stream Lineage - Connector Tasks Developer

Seeallstreams iide internaltopics MySaqlsinkConnector_1

Running

@TheDanicaFine | developer.confluent.io

The Tasks tab shows the connector’s tasks and their status.

Confluent ConsumerLagTab = (&) bevel

nnnnnnnnnn

suport

@TheDanicaFine | developer.confluent.io

You can view consumption lag information related to the connector
by navigating to the Clients window under Data Integration.

To see the consumer lag for a particular connector, navigate to the
Consumer lag tab and select the consumer group whose ID
includes the connector ID.

Confluent Consumer Lag Details

Developer

connect-lcc-7yzd91

76 | [erer

suport

@TheDanicaFine | developer.confluent.io

The window that appears shows the current lag for each partition of
the topic being consumed by the connector.

Most of the connector information that is provided by the Confluent
Cloud Ul is available in the Confluent Control Center for
self-managed connectors being run in conjunction with a Confluent
Platform Kafka cluster.

CONFLUENT

Third-Party Monitoring Integration Developer

e Datadog, Dynatrace, and Grafana Cloud
o Input a Cloud API key
o Select resources to monitor
o See metrics in prebuilt dashboard
e Prometheus
o Can scrape the Confluent Cloud Metrics API directly using the export endpoint
m Endpoint returns the single most recent data point for each metric
o Prometheus exposition or Open Metrics format

@TheDanicaFine | developer.confluent.io

Datadog and Grafana Cloud provide integrations and Dynatrace
provides an extension that allows users to input a Cloud API key,
select resources to monitor, and see metrics in minutes in prebuilt
dashboards.

Prometheus servers can scrape the Confluent Cloud Metrics API
directly by making use of the export endpoint. This endpoint returns
the single most recent data point for each metric, for each distinct
combination of labels in the Prometheus exposition or Open
Metrics format.

Confluent Metrics API Delalarer

e Provides actionable operational metrics
e Object model is similar to the OpenTelemetry standard
e Metrics APl endpoints are available to:
o List metric descriptors
List resource descriptors
Query metric values
Export metric values

(o]
(o]
@]
o Query label values

The Confluent Cloud Metrics API provides actionable operational
metrics about your Confluent Cloud deployment. This is a
queryable HTTP API in which the user will POST a query written in
JSON and get back a time series of metrics specified by the query.

The object model for the Metrics API is designed similarly to the
OpenTelemetry standard.

Metrics APl endpoints are available to:
e List metric descriptors

List resource descriptors

Query metric values

Export metric values

[J
[J
[J
e Query label values

Monitoring Self-Managed Kafka Connect

Total

Kafka Connect Sink - Read message totals

19:36:00 19:36:30 19:37:00 19:37:30 19:38:00 19:38:30

read

send

Kafka Connect - Send/Error totals

|

19:36:00 19:36:30 19:37:00 19:37:30 19:38:00 19:38:30

== total record errors

total records sent

19:39:00

19:39:00

19:39:30

19:39:30

current

40

CONFLUENT

Developer

Source records read

21:08:00 21:08:30 21:09:00
sink-task-metrics.mean 33

Dead Letter Queue (Avro Sink) produce requests

21:08:00 21:08:30

«= DLQ produce requests 13

@TheDanicaFine | developer.confluent.io

Kafka Connect exposes various data for monitoring over JMX and
REST, and this collection is ever expanding (see, for example,
KIP-475). This is an option when Confluent tools are not available,
e.g. with self-managed Kafka Connect. To use JMX, you just need
to be familiar with the MBeans that are exposed, and you need a
tool for gathering data from them and visualizing it.

In the JMX-based setup in this image, we see data for total
messages read by a sink connector, as well as information about
Connect error totals, source records read, and dead letter queue
requests. With a little bit of tooling, you can build alerting on this
data and expand your own observability framework. All of this setup
can be a lot of work, though, so if you can do it in a fully managed

way, it is far easier.

Kafka Connect also exposes information about the status of tasks
and connectors on its REST interface, which we covered in the

previous module.

CONFLUENT
Developer

Errors and Dead Letter Queues

Hi, Danica Fine here; error-handling is bound to come up with any
technology. Let’s learn about our options for handling errors in
Kafka Connect.

Error Handling in Kafka Connect = () pevel

rKafka Source topic messages |
Cluster “ | P g]
|\ J
rKafka
Connect

&

Ok]

Sink data

@TheDanicaFine | developer.confluent.io

The bottom line is that Kafka Connect supports several
error-handling patterns, including fail fast, silently ignore, and dead
letter queues.

Obviously these different patterns are going to be useful in certain
scenarios. Let’'s examine some cases where these error handling
patterns are utilized.

Serialization Challenges - Wrong Converter Developer

~

.
G Source topic messages
Cluster P 9

» EIEEIENED])

(.

-
Kafka {;;v;{u-e":-é;-;‘-\;é—;{eru: E org.apache.kafka.common.errors.SerializationException:
Connect : T ;

C’} E"Avr'oConverter" E Unknown magic byte!
Sink data

@TheDanicaFine | developer.confluent.io

As you set up and try various options with Connect, you might find
that you have accidentally configured Connect to use an incorrect
Converter. For example, if topic messages were serialized as
JSON data and Connect attempts to deserialize them using the
Avro converter, an “Unknown magic byte!” exception would be
triggered.

In this situation, the Avro deserializer is trying to process a
message from a Kafka topic, and the message is either not Avro, or
it is Avro, but it wasn’t created with the Confluent Schema Registry
serializer. Either way, the message doesn’t match the expected
wire format, thus the reference to “magic bytes.” The error is quite
specific, but basically it means that the data is in a format other
than that which the Avro deserializer expects.

The simple fix in this case would be to update the Connector
instance configuration to use the correct JSON Converter.

Serialization Challenges - Multiple Formats Developer

/I org.apache.kafka.common.errors.SerializationException

réijls(fer Source topic messages |

ol)
b J
[Kafk

atka Ty N
omect murocomertert

L L]
Sink data

@TheDanicaFine | developer.confluent.io

Another scenario you might come across is where a topic contains
messages with multiple serialization formats. This might happen if
the serialization method was changed for messages being written
to a topic, for example at first the messages were serialized as
JSON and then at some point this was changed to Avro. And if the
producer clients were not all updated at the same time so that
multiple producers were writing the topic using different
serialization formats, the topic messages might alternate from one
format to another. Since the connector instance can only be
configured to use a single converter, exceptions will occur when the
converter attempts to deserialize a message with the other format.

You can address both of these scenarios with configuration for
error tolerances and dead letter queues. Let’s take a look at these

now.

NNNNNNNNN

Error Tolerances - Fail Fast (Default) Beveionel

(Kafka Source topic messages
Cluster []
|\
(kafka
Connect
O
errors.tolerance=none

Sink data

@TheDanicaFine | developer.confluent.io

By default, if Connect receives a serialization error like the ones
that were just covered, the corresponding connector task is going
to stop and you will have to deal with the issue and then restart it.
This is safe behavior because if there’s an invalid message,
Connect won’t process it.

Error Tolerances - Dead Letter Queue = (3 pevel

-
Kafka .
Source topic messages Dead letter queue
Cluster P 9 9
% |Avro Avro || Avro - Avro]
|\
Failed messages
-
Kafka ey written to DLQ
Connect i"Value.converter'":
D i"AvroConverter"
errors.tolerance=all
Lerrors.deadletterqueue.top'ic.name:my_dlq
Sink data

A dead letter queue in Kafka is just another Kafka topic to which
messages can be routed by Kafka Connect if they fail processing in
some way. The term is employed for its familiarity; a dead letter
queue as traditionally conceived is part of an enterprise messaging
system and is a place where messages are sent based on some
routing logic that classifies them as having nowhere to go, and as
potentially needing to be processed at a later time.

In Kafka Connect, the dead letter queue isn’t configured
automatically as not every connector needs one. Kafka Connect’s
dead letter queue is where failed messages are sent, instead of
silently dropping them. Once the messages are there, you can
inspect their headers, which will contain reasons for their rejection,
and you can also look at their keys and values.

Reprocessing the Dead Letter Queue Developer

-
Kafka .
Source topic messages Dead letter queue
Cluster P 9 a
% |Avro| Avro || Avro - Avro] -
|\
(kafk
Kafka N
Connect i"Value.converter":
i"AvroConverter"” [e,
&) e i"Value.converter":
errors.tolerance=all §"JsonConverter"
Lerrors.dead'L(-:tterqueue.top'ic.name:my_dlq femmmmmmmmmsmmmmsssosssssoooon oo

Sink data

The dilemma whereby an Avro and a JSON producer are sending
to the same topic has a solution in the dead letter queue. Basically
you set the dead letter queue to receive the erroring messages,
then reprocess them from the dead letter queue with the
appropriate converter, and send them on to the sink. So, for
example, if Avro messages are correctly proceeding to the sink, but
JSON messages are erroring into the dead letter queue, you could
add another connector with a JSON converter to process them out
of the dead letter queue and send them on to the sink. This would
allow you to complete the processing of the source topic, which is
not possible with a single connector.

Manual DLQ Processing Developer

e Automatic reprocessing may not be practical or possible
o In this case, a manual process must be established and followed
e This is why the dead letter queue is not the Kafka Connect default
o No reason to produce to a DLQ if a process has not been established to deal with
messages written to it

@TheDanicaFine | developer.confluent.io

The dead letter queue reprocessing solution is easy to work out
computationally, and it’s simple to configure and get running.
However, if the option doesn’t exist for some reason or messages
are failing for reasons that are hard to identify, you will have to try
something else. You may be able to develop a consumer to convert
the messages if you know how to deal with a particular failure
mode, but often in these situations, you will end up having to
manually handle the erroring messages—so you should have a
process for a person to review them.

This is ultimately why dead letter queues aren’t a default in Kafka
Connect, because you need a way of dealing with the dead letter
queue messages, otherwise you are just producing them
somewhere for no reason. In effect, you should make sure you
have thought through how you will process the results of a dead
letter queue before you set one up.

CONFLUENT

Developer

Troubleshooting Confluent Managed

Connectors

Module title slide style

Troubleshooting Managed Connectors Developer

The following tools can be used to troubleshoot p N
managed connectors:
Confluent
e Confluent Cloud Ul Cloud
e Confluent CLI
e Confluent Connect API
Managed
e Connect log events
9 <::> Connectors
Source Sink N |_|
@ Connector | | Connector h—
Source \ 4 Target
Systems * I Systems

‘ §€ Kafka Cluster

@TheDanicaFine | developer.confluent.io

There are several tools that you can use to troubleshoot managed
connectors. Depending upon the type of problem, one of these
tools may work better than others. Let’'s now walk through a
scenario taking a look at how each of these tools can be use to
troubleshoot the problem.

CONFLUENT

Troubleshoot the Dead Letter Queue Bl

MySqISinkConnector 0

Overview Settings Events

Running

Messages behind

0

Max lag in the last minute

=3 See in Stream lineage

Il Pause

Messages processed

241

Messages in DLQ

247

o

@TheDanicaFine | developer.confluent.io

One problem that you may experience is a sink connector is unable to process the
messages from the Kafka topic it is configured to consume from. It could be that it is
just a subset of these messages that it is unable to process or it could be all
messages from the topic as shown in this example. Depending upon how the
connector is configured, To troubleshoot this, you can click the dead letter queue tile
in the connector overview window. This will navigate the Ul to the associated Kafka
topic where the dead letter queue messages are being written.

Dead Letter Queue Message Header
g Developer
dlq-lcc-ansz = See in Stream lineage
Overview Messages Schema Configuration
Producers O - [] [Jump toofse [~ o/ partion 0 =0
Bytes in/sec 0
+ Produce a new message to this topic
Consumers
Bytes out/sec 868K A Value Header Key
v EEEEBEW@ENItemd
Message fields Partition: @ Of HEEBENQLATtem_948HQQ<EQHELCH A~ Value Header Key
pi
1 [
v oeezcixemPItemM Vv DOPEEIXENEItem 413 m[134m@ECity S 5 (
—— Partition: @ Offset: 168 Tim 3 They*s Siask. genmration®,
4 "stringValue": "e"
5 1
H 4 {
v Bk WIPETt el v BEPEEEBWEEEItem_983BECL [BE2ECi tyl i 5 @ =
s h 43 key": "__connect.errors.exception.class.name
eaders X Partition:@ Offset: 167 Tim
Partition: @ of 44 "stringValue": "io.confluent.connect.jdbc.sink.TableAlterOrCreateException”
45 ¥s
b 46 {
47 “key": "__connect.errors.exception.message"
48 "stringValue": "Table \"orders\" is missing and auto-creation is disabled”
49 }

@TheDanicaFine | developer.confluent.io

In the dead letter queue topic view, select the messages tab, drill into one of the
messages and select the header tab. Then scroll down in the header information to
identify the possible cause for the message ending up in the dead letter queue. In this
example, we see that the connector wasn’t configured to auto-create the destination
table if it didn’t already exist. To correct this, you would simply updated the connector

configuration setting auto create table to true. You could do so using either the

Confluent Cloud Ul, the Connect API, or the Confluent CLI.

CONFLUENT

Troubleshoot a Failed Connector Developer

MySqISinkConnector 0 2 See in Stream lineage

Overview Settings Events
Eailed - Messages processed
Messages behind Messages in DLQ

2 254

Total in last 7 days

@TheDanicaFine | developer.confluent.io

Let’s continue with the use case from the previous slide. The connector has been
configured to auto-create the destination table in the MySql database and the
Confluent Cloud Ul now indicates the connector failed. You can investigate this using
several tools. Let’'s now look at each of these.

Confluent CLI

$confluent connect describe lcc-03n609
Connector Details

Fmm—————— e +
| ID | lcc-03n609

| Name | MySqlSinkConnector_6

| Status | FAILED

| Type | sink

| Trace | Found nested structure in

| | input data. Ensure that your

| | input events are a flat struct

| | of primitive fields.

Fm——————— o

Task Level Details

© | USER_ACTIONABLE_ERROR

CONFLUENT

Developer

@TheDanicaFine | developer.confluent.io

The Confluent CLI is one of the tools that can be used to investigate connector
failures. The describe command provides similar detail as the Confluent Cloud UI.

Confluent Connect API

Developer

GET /connect/vl/environments/{environment_id}/clusters/{kafka_cluster_id}/connectors/{connector_name}/status

{
"name": "MySqlSinkConnector_o",
"connector": {
""state": "FAILED",
"worker_id": "MySqlSinkConnector_o",

"trace": "Found nested structure in input data. Ensure that your -input events are a flat struct of
primitive fields.\n"

1,
"tasks": [
{
"idv: o,
"state'": "USER_ACTIONABLE_ERROR",
"worker_id": "MySqlSinkConnector_0",
Ilmsgll H nn
}
1,
"type" s "S'i nk"

}

@TheDanicaFine | developer.confluent.io

The Confluent Connect API status request provides similar detail as the Confluent
Cloud Ul and Confluent UI.

CONFLUENT

Confluent Cloud Connect Log Events Developer

Connector Log Events

Overview Settings Events

CRE =0

v 5:40:18 PM

{

"datacontenttype": "application/json",

exception. "

10 "
ve a mapping to the SQL database column type"

1
12

14
15

17
18

20
21 i

@TheDanicaFine | developer.confluent.io

Confluent Cloud Connect log events are available on the connector events tab. They
may provide additional detail regarding connector problems. In this example, the log
event adds to the previous trace information about ensuring your input events are a
flat struct of primitive fields.

Consuming Connect Log Events

$confluent kafka topic consume -b confluent-connect-log-events
Starting Kafka Consumer. Use Ctrl-C to exit.

{"datacontenttype":"application/json","data":{"level":"ERROR",
"context":{"connectorId":"lcc-03n609"},"summary":{"connectorEr
rorSummary":{"message" :"Exiting WorkerSinkTask due to
unrecoverable exception.","rootCause":"ksql.address (STRUCT)
type doesn\u0027t have a mapping to the SQL database column
type"}}},"subject":"1lcc-03n609-1cc-03n609-0","specversion":"1.
o","id":"fc54f435-5c3e-4ee7-afd4-5141el171c81a","source":"crn:/
/confluent.cloud/connector=1cc-03n609","time":"2022-08-30T21:4
0:18.182Z","type":"i0.confluent.logevents.connect.TaskFailed"}

% Headers: [content-type="application/cloudevents+json;
charset=UTF-8"]

CONFLUENT

Developer

DEVELOPER RELATIO... &

Confluent

Sign out

ADMINISTRATION

Environments
Accounts & access
Billing & payment
Cloud API keys

Metrics

Audit log /
Conl event:

Single sign-on

@TheDanicaFine | developer.confluent.io

Connect log events can also be accessed using the Confluent CLI consume
command. Detailed information regarding how to accomplish this can be found by
clicking the triple bar icon in the upper right corner of the Confluent Cloud Ul and

choosing the Connect log events menu.

Troubleshooting Self-Managed Kafka

Connect

Module title slide style

. Worker

: ? EEE—
: Task ; Kafka
(running) Cluster

Connector Instance §g

(running)

Source

Kafka Connect

Given that Kafka Connect is a data integration framework,
troubleshooting is just a necessary part of using it. This has nothing
to do with Connect being finicky (on the contrary, it's very stable).
Rather, there are keys and secrets, hostnames, and table names to
get right. Then there are the external systems that you are
integrating with, each of which needs to be visible and accessible
by Connect, and each of which has its own security model.
Basically, if you’ve done any integration work in the past, the
situation is familiar.

Troubleshooting Scenario = () pevel

Developer
Kafka
: X Cluster
Connector Instance %
: (running) :
Source : : -

Kafka Connect

@TheDanicaFine | developer.confluent.io

Your Connect worker is running, your source connector is
running—but no data is being ingested.

Because connectors consist of tasks, one of the first things you
should consider is that one or more of its tasks has failed,
independently of the connector. To verify this, you’ll need to gather
more information from the Connect API.

Getting Connector and Task Status (%) pevel

$ curl -s "http://localhost:8083/connectors/jdbc-sink/status" | \
jq '.connector.state'
"RUNNING"

$ curl -s "http://localhost:8083/connectors/jdbc-sink/status" | \
jq '.tasks[0].state'
"FAILED"

@TheDanicaFine | developer.confluent.io

You might start by using curl to get the status of the connector
instance and its tasks.

Here we see what was represented in the previous diagram. The

connector instance status is RUNNING while the task status is
FAILED.

But we need more details about this in order to identify what
caused the failure.

Getting Task Status Developer

$curl -s "http://localhost:8083/connectors/jdbc-sink/status" | jq '.tasks[0].trace' | sed 's/\\n/\n/g; s/\\t/\t/g'

"org.apache.kafka.connect.errors.ConnectException: Exiting WorkerSinkTask due to unrecoverable exception.

at org.
at org.
at org.
at org.
at org.
at org.

at java.
at java.
at java.
at java.
at java.

apache.
apache.
apache.
apache.
apache.
apache.
base/java.
base/java.
base/java.
base/java.
base/java.

kafka.
kafka.
kafka.
kafka.
kafka.
kafka.

connect
connect
connect
connect

.runtime.
.runtime.
.runtime.
.runtime.
connect.
connect.
util.
util.
util.
util.
lang.

runtime.
runtime.

WorkerSinkTask.deliverMessages(WorkerSinkTask.java:618)
WorkerSinkTask.poll(WorkerSinkTask.java:334)
WorkerSinkTask.1iteration(WorkerSinkTask.java:235)
WorkerSinkTask.execute(WorkerSinkTask.java:204)
WorkerTask.doRun(WorkerTask.java:200)
WorkerTask.run(WorkerTask.java:255)

concurrent.Executors$RunnableAdapter.call(Executors.java:515)
concurrent.FutureTask.run(FutureTask.java:264)
concurrent.ThreadPoolExecutor.runWorker (ThreadPoolExecutor.java:1128)
concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
Thread.run(Thread.java:829)

Caused by: org.apache.kafka.connect.errors.ConnectException: java.sql.SQLException: No suitable driver found for
jdbc:mysql://localhost/demo
at jo.confluent.connect.jdbc.util.CachedConnectionProvider.getConnection(CachedConnectionProvider.java:59)
at jo.confluent.connect.jdbc.sink.JdbcDbWriter.write(JdbcDbWriter.java:64)
at io.confluent.connect.jdbc.sink.JdbcSinkTask.put(JdbcSinkTask.java:84)
at org.apache.kafka.connect.runtime.WorkerSinkTask.deliverMessages(WorkerSinkTask.java:584)
. 10 more
Caused by: java.sql.SQLException: No suitable driver found for jdbc:mysql://localhost/demo
at java.sql/java.sql.DriverManager.getConnection(DriverManager.java:702)
at java.sql/java.sql.DriverManager.getConnection(DriverManager.java:189)
at jo.confluent.connect.jdbc.dialect.GenericDatabaseDialect.getConnection(GenericDatabaseDialect.java:247)
at jo.confluent.connect.jdbc.util.CachedConnectionProvider.newConnection(CachedConnectionProvider.java:80)
at io.confluent.connect.jdbc.util.CachedConnectionProvider.getConnection(CachedConnectionProvider.java:52)
. 13 more

@TheDanicaFine | developer.confluent.io

You can also use curl to request the stack trace for the task and
pipe the results through jq (a remarkably capable JSON formatter).
The illustrated command requests the stack trace for the first
element in the tasks array.

Next, read through the trace and look for clues. In this instance,
upon reviewing, you notice that there is a Connect exception and
also that a driver is missing.

NNNNNNNNN

Kafka Connect Log4j Logging Developer

e The log is the source of truth

$ confluent local services connect log
$ docker-compose logs kafka-connect

$ cat /var/log/kafka/connect.log
e The Log4j properties files controls what is logged, the log

message layout, and where log files are stored

/etc/kafka/connect-1log4j.properties (default location)

@TheDanicaFine | developer.confluent.io

In addition to the stack trace, you should read the log. There are
different ways to access the log, depending on how you are running
Connect:

e If you are just running the Confluent CLI locally, the command
is confluent local services connect log

e If you are using Docker, it's docker logs, plus the name of the
container

e If you are running completely vanilla Connect using Apache
Kafka, you can just read the log files with cat, or more likely
tail (the location varies by installation)

Connector contexts were added to logging in Apache Kafka 2.3
with KIP-449, and they make the diagnostic process a lot easier.

CONFLUENT

Identify the Problem Cause Developer

[2022-07-19 23:57:28,600] ERROR [jdbc-sink|task-0] WorkerSinkTask{id=jdbc-sink-0} Task threw an uncaught and
unrecoverable exception. Task is being killed and will not recover until manually restarted

Org.apache.Katka.connect.runtime.Worker lask:207)
org.apache.kafka.connect.errors.ConnectException: Exiting WorkerSinkTask due to unrecover3 eption.
at org.apache.kafka.connect.runtime.WorkerSinkTask.deliverMessages(WorkerSinkTas
at org.apache.kafka.connect.runtime.WorkerSinkTask.poll(WorkerSinkTask.java:334) Symptom, not the cause
at org.apache.kafka.connect.runtime.WorkerSinkTask.iteration(WorkerSinkTask.javas#

at org.apache.kafka.connect.runtime.WorkerSinkTask.execute(WorkerSinkTask.java:204)
at org.apache.kafka.connect.runtime.WorkerTask.doRun(WorkerTask.java:200)
at org.apache.kafka.connect.runtime.WorkerTask.run(WorkerTask.java:255)
at java.base/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:515)
at java.base/java.util.concurrent.FutureTask.run(FutureTask.java:264)
at Java base/java.util.concurrent.ThreadPoolExecutor.runWorker (ThreadPoolExecutor. Java 1128)
at Java base/]ava util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
b d ead.java:829)
Caused by org. apache kafka connect errors.ConnectException: java.sql.SQLException: No suitable driver found for
jdbc:mysql: //10ca1host/demo

-Ja -8
at {o. confluent connect.]dbc s1nk JdbcDbWr1ter wr1te(JdbcDbWr1ter java:64)
at jo.confluent.connect.jdbc.sink.JdbcSinkTask.put(JdbcSinkTask.java:84)
at org.apache.kafka.connect.runtime.WorkerSinkTask.deliverMessages (WorkerSinkTas|
10 _more

[Caused by: java.sql.SQLException: No suitable driver found for jdbc:mysql://localhost/demo]

Possible causes

T Ty . s ¢ TerTY %
at java.sql/java.sql.DriverManager.getConnection(DriverManager.java:189)
at jo.confluent.connect.jdbc.dialect.GenericDatabaseDialect.getConnection(GenericDatabaseDialect.java:247)
at jo.confluent.connect.jdbc.util.CachedConnectionProvider.newConnection(CachedConnectionProvider.java:80)
at io.confluent.connect.jdbc.util.CachedConnectionProvider.getConnection(CachedConnectionProvider.java:52)
«« 13 more @TheDanicaFine | developer.confluent.io

“Task is being killed and will not recover until manually restarted”

This is a general error, a symptom of the problem rather than the
cause, and it doesn’t reveal any information about the underlying
problem. When you see this, this is a sign that you need to search
further in the stack trace or the connect worker log for your
problem. For example, you can see this error in the connect worker
log, and it’s a sign that you should look further in the log to the
exceptions in order to identify your problem.

At this point, you are only at the beginning of troubleshooting the
problem but at least you know where to look. With a bit of research,
you would find the documentation for the JDBC connector indicates
the MySQL JDBC driver needs to be installed on the connect
worker machine when a MySQL database is part of the pipeline.

If your research doesn’t bear fruit, you might consider posting your
problem to the Confluent Community Forum, but just keep in mind
that a useful post will elaborate upon the “Task is being killed” error

alone.

CONFLUENT

Dynamic Log Configuration Developer

List current logger $curl -s http://localhost:8083/admin/loggers/ | jq
configuration {
"org.apache.kafka.connect.runtime.rest": {
"level": "WARN"
}s
"org.reflections": {
"level": "ERROR"
}s
"root": {
"level": "INFO"
}
}

Modify logger curl -s -X PUT -H "Content-Type:application/json" \
configuration http://localhost:8083/admin/loggers/io.confluent.connect.jdbc \
-d '{"level": "TRACE"}'

@TheDanicaFine | developer.confluent.io

Dynamic log configuration arrived in Apache Kafka 2.4. It means
you can change the level of logging detail without having to restart
the worker.

For example, perhaps there is a particular connector such as
io.debezium above that you’d like to log at TRACE level to try and
troubleshoot. If you set everything to TRACE, it would be
overwhelming. Using dynamic log configuration, you can
conveniently do so at runtime via REST without restarting Connect,
and targetting the specific logger of interest.

CONFLUENT

Developer

Your Apache Kafka

journey begins here

developer.confluent.io

93

