
20
24

The Node.js Performance Report
Research developed by Rafael Gonzaga,
Principal OSS Engineer at NodeSource & Node.js TSC

The year is 2024, and Node.js has reached version 23, with two
semver-majors released per year it might be difficult to keep
track of all areas of Node.js. This article revisits the State of
Node.js performance, with a focus on comparing versions 20
through 22. The goal is to provide a detailed analysis of how the
platform has evolved over the past year.

This is a second version of "The State of Node.js Performance"
series.View the 2023 version.

The report continues a commitment to rigorous benchmarking,
complete with hardware details and reproducible examples. To
streamline the experience, reproducible steps are collapsed at
the start of each section, making it easy for readers to follow
along without distraction.

This article exclusively compares Node.js versions without
drawing parallels to other JavaScript runtimes. The intent is to
highlight the platform's internal progress—its performance
gains, regressions, and the factors driving these changes.

Node Reaches Version 23

02

https://blog.rafaelgss.dev/state-of-nodejs-performance-2023

Benchmark Setup

This blog post will share benchmark results across different Node release lines.js using two
repositories as references:

Node.js internal benchmark suite
nodejs-bench-operations

Using bench-node as the benchmark tool
Benchmarks were run on a dedicated AWS machine (C6i.xlarge) with:

4 vCPUs, 8GB RAM
Ubuntu 22.04 LTS

Using the following Node.js versions:
v20.17.0
v22.9.0

Several key modules significantly impact Node.js performance. Any enhancements or regressions
within these core components resonate across the platform. For this benchmark, we selected the
following core modules:

assert - Node.js assert operations
buffers - Node.js Buffer operations
diagnostics_channel - Node.js diagnostics channel module
fs - Node.js file system
path - Node.js path module on UNIX systems
streams - Node.js streams creation, destroy, readable and more
misc - Node.js startup time using child_processes and worker_threads + trace_events
test_runner - Node.js test runner
url - Node.js URL parser
util - Node.js text encoder/decoder
webstreams - Node.js WebStreams (per WHATWG spec)
zlib - Node.js zlib API

Benchmark script and results are available at RafaelGSS/state-of-nodejs-performance-2024

How Node.js Benchmarks Are Evaluated
As mentioned in “State of the Node.js Performance 2023”, the Node.js benchmark suite by default
runs each configuration 30 times to ensure accuracy, and the results undergo a statistical analysis
using the Student’s t-test, which measures the confidence level of each benchmark.
Three asterisks (***) indicate high confidence in the data as we can see in the following image:

03

https://github.com/nodejs/node/tree/main/benchmark
https://github.com/RafaelGSS/nodejs-bench-operations
https://github.com/RafaelGSS/bench-node
https://github.com/RafaelGSS/state-of-nodejs-performance-2024
https://github.com/RafaelGSS/state-of-nodejs-performance-2023

Performance Updates and Semantic Versioning
Many performance improvements arrive as semver-minor or semver-patch updates. While Node.js
v22.9.0 might currently outperform Node.js v20.17.0, this can shift over time, as minor and patch-
level improvements in v20 continue to be backported.
To illustrate, here’s a comparison of commits across Node.js v16, v18, and v20. The latest commits,
highlighted in yellow, are unlikely to land in v16, as it’s in maintenance mode.

Is Newer Always Faster?
It might seem logical to expect each new Node.js version to improve performance. However, that’s
not always the case. For example, in ASCII encoding, Node.js v20.17.0 exhibited a ~58% regression in
performance compared to v18.17.0, indicating that performance declined noticeably.

These latest commits in Node.js v20
have a high chance of being
integrated into v18 since it’s in Long
Term Support (LTS), meaning these
v20 updates can either improve or
potentially degrade v18’s
performance.

> Note: Results across release lines
should be viewed with caution,
except for release lines that are in
End-of-Life (EOL) or Maintenance
modes

04

On the other hand, Node.js v20 demonstrated significant gains over v18 for event handling,
specifically with event.target, as shown in the following benchmark. Here, v20 handles 200% more
operations than v18, showing a major performance increase.

Comparing this with Node.js v22, the improvement over v18 is around 55%,
not because v22 is slower, but because v18 received enhancements that
closed the performance gap.

The commits in v20.17.0 effectively reduce this performance gap from 200%
to ~55% in Node.js v18.17.0.

05

“At NASA, mission-critical code is the rule, not the exception. As we transition from a legacy
environment to a modern Node-based architecture, N|Solid, along with the support of NodeSource, is

proving invaluable by allowing us to scale rapidly while staying focused on our core mission.”

If you're new to benchmarking, this blog post is a great place to begin.

Prepare the Environment: A golden rule for accurate benchmarking is to control your
environment, as almost anything can affect results. For example, running a benchmark during a
Zoom call or streaming music can introduce noise into your measurements. In one famous
instance from 2004, Brendan Gregg demonstrated that even shouting near the hardware could
disrupt slow disk I/O operations!

1.

To avoid such interference, always use a dedicated machine for benchmarking. The Instant Bench
Agent can help you set up an AWS dedicated machine for this purpose.

Isolate the Bottleneck: in order to isolate the bottlenecks, you should reduce the variability as
much as you can.

1.

Benchmark workflow:
Use a dedicated machine to run your benchmarks.1.
Run a benchmark before making a change.2.
Run the same benchmark after the change.3.
Compare the results.4.

Note: Prior to Node.js v22.9.0, Maglev, a V8 compiler, was enabled by default in the v22.x release line.
This change could lead to a false-positive to regressions if you compare operations per second
across different release lines. Node.js v22.9.0 has been released disabling Maglev for different
reasons. Therefore, if you conduct a benchmark before Node.js v22.9.0, it may contain inaccuracies
due to Maglev’s influence.

How to Start a Benchmarking ProcessHow to Start a Benchmarking Process

06

https://blog.rafaelgss.dev/preparing-and-evaluating-benchmarks
https://blog.rafaelgss.dev/preparing-and-evaluating-benchmarks

07

Handle JS Micro Benchmarks with Care
Although many micro-benchmarks are created and spread over the network, micro-benchmarks in
JavaScript most of the time (if not all) won’t represent reality and are wrong in rare scenarios. This
article won’t expand on why JS Micro-Benchmarks are complex to write and evaluate, but the
important take is to read all these values carefully (including the ones shared in this article).

Suggestions for reading are:
The truth about traditional JavaScript benchmarks
Benchmarking JavaScript GOTO 2015

Optimize, Diagnose, and Support Your Node.js Like Never Before

Solve Performance and
Security issues fast

with the best Node.js
tooling. Better Data =

Faster Resolution

Support Services

Get Node.js Support
from Node Experts.

Standard, Advanced &
Enterprise programs

available

Node.js Training,
Architecture,

Performance and
Security Consulting

from our Node Experts

learn more at nodesource.com

https://benediktmeurer.de/2016/12/16/the-truth-about-traditional-javascript-benchmarks
https://www.youtube.com/watch?v=g0ek4vV7nEA

`DeepEqual` + `Buffers` – Improved by about 20%.

`strictEqual` – Shows a 7% slowdown based on a reliable sample size (n=200K).

08

The node:assert module is
widely used with test_runner
and other test frameworks so
making it fast will make any
test suite faster.
`assert.notDeepStrictEqual`
is now 25% faster in Node.js
v22 (on small-size objects)

Assert

This section shares results obtained from running the Node.js internal benchmark suite. Although
Node.js contains many modules and thousands of APIs, this article will only share APIs that had a
considerable performance impact during the benchmark. Therefore, if your favorite API doesn’t
appear on this report, assume that there’s no performance change from v22.9.0 to v20.17.0.

The Node.js Internal Benchmark, contains code and data used to measure performance of different
Node.js implementations and different ways of writing JS run by the built-in JS engine.

Node.js Internal BenchmarkNode.js Internal Benchmark

https://github.com/nodejs/node/tree/main/benchmark

Buffers
Node.js Buffers have become significantly faster in all its APIs —except when handling base64 data.

`Buffer.byteLength` – Shows a 67% of performance improvement when compared to v20.17.0.

For `buffer.compare(buff)` specifically, performance has increased by over 200%, marking a
substantial improvement.

09

Company’s that trust NodeSource

The following Buffer operations are all faster:
`Buffer.concat()` - 9% up to 33%! Combines multiple Buffers into a single Buffer efficiently.
`Buffer.copy()` - When copying buffers using Buffer.copy(buff, 0, buffLen) 95% of
improvement was identified.
`Buffer.equals()`- Checks if two Buffers have identical byte content. Some results reach 150%
improvement (see the image).

`Buffer.read*(0, byteLength)`- From Buffer.readIntBE() to Buffer.readUIntLE() performance
has been significantly boosted, and results cross the 100% barrier.
`Buffer.slice()` - On .slice() a performance improvement of 90% has been identified on Node.js
v22.9.0.
`Buffer.write(X, byteLength)`- On .write() also received a significant boost, from 5% when
dealing with BigInt64BE to 138% when dealing with FloatBE.

In general, the `node:buffers` module performs remarkably well, though Buffer.isUTF8 and
Buffer.isASCII() saw slight regressions.

10

Your APM is Costing You $$$
Save big on Infrastructure/cloud with N|Solid.
APMs inflate your costs significantly, calculate
your potential savings with N|Solid using our
cost calculator tool:
(https://nodesource.com/infrastructure-cost)

view APM benchmarks at: benchmark.nodesource.com

Diagnostics Channel
Diagnostics channels are now significantly faster when there are no subscribers—up to
120% faster, as shown in the graph below. This improvement is especially relevant for users
who rely on diagnostic channels indirectly. At NodeSource, we leverage diagnostic
channels in our APM, and this performance boost ensures that systems without subscribers
remain unaffected.

Node.js File System
Node.js has improved its handling of error scenarios within the node:fs module. For instance,
attempts to open non-existent files fail ~58% faster. While this doesn’t change app functionality, it
speeds up error detection for processes that routinely check file availability or integrity.

11

12

A potential regression was noted for fs.opendir when using callbacks, so this function may perform
differently in certain callback-driven cases.

Faster node:path
Node.js’ node:path module has also seen performance gains. This benchmark only includes POSIX
environments (Linux and macOS). Improvements are:
path.basename() – Up to 10% faster.

path.isAbsolute() – About 38% faster.

path.resolve() – A minor ~9% boost in some cases.

13

The Node.js benchmark test runner shows an approximate 10% performance boost in test creation

 and concurrent tests benefit from an additional 12% increase in speed

Regressions in node:streams

A notable regression has been detected in node:streams, specifically when destroying streams,
with a performance dip between -20% to -36%.

14

Node.js URL parser
Node.js’ URL parser has become even faster. URL.resolve has been optimized, bringing significant
performance improvements.

TextDecode Regression
A major regression was noted in TextDecoder.decode(), specifically for Latin-1 encoding, with a
nearly 100% slowdown. ISO8859-3 is similarly affected.

15

However, UTF-8 decoding shows a 50% speed increase, providing a marked improvement in certain
use cases:

WebStreams performance has seen substantial gains, with improvements of over 100% across
various stream types, including Readable, Writable, Transform, and Duplex. This is particularly
impactful for `fetch`, a widely used HTTP request tool, as it relies on WebStreams by specification.

16

Fetch and WebStreams
The Fetch API is a web standard for making HTTP requests, and it requires the use of WebStreams as
part of its specification. Consequently, when WebStreams are optimized, Fetch benefits directly,
which is why improvements to WebStreams are so impactful.

In 2022, there was an identified issue with the Undici library’s fetch implementation (used by
Node.js), where fetch was notably slow compared to alternatives. Rafael Gonzaga provided an
analysis explaining that WebStreams’ inherent slowness was the main reason for fetch’s limited
performance, as fetch relies on WebStreams by design.

https://github.com/nodejs/undici/issues/1203
https://github.com/nodejs/undici/issues/1203#issuecomment-1100969210
https://github.com/nodejs/undici/issues/1203#issuecomment-1100969210
https://github.com/nodejs/undici/issues/1203#issuecomment-1100969210

17

With the release of Node.js v22, improvements to WebStreams have helped Fetch jump from 2,246
requests per second to 2,689 requests per second, marking a good enhancement for an API known
to be performance-sensitive.

Zlib Regression
The zlib module in Node.js provides compression and decompression utilities using the Gzip and
Deflate/Inflate algorithms. A regression has been identified on zlib.deflate() with a higher impact on
the asynchronous API (zlib.deflate()) over the synchronous call (zlib.deflateSync())

18

Avoiding Dead-Code elimination on Micro-Benchmarks using bench-node
As said in “Handle JS Micro-Benchmarks carefully” it’s very common to see benchmarks being written
in a way that after a full V8 optimization, the code will be removed as the V8 JIT compiler will flag the
measured piece of code as prone to “Dead-code elimination”, so you will end-up measuring a noop().

That’s why bench-node has been created. This benchmark library by default tells V8 to never optimize
your code

This article won’t dive into the internals of `bench-node`. Instead, the next section will showcase
benchmark results generated using this library. While `bench-node` excels at providing a reliable
and consistent way to compare simple operations, it's important to note that these results might
not reflect real-world scenarios. In production, V8 optimizations can significantly influence code
performance, making it challenging to perfectly replicate runtime behavior.

https://docs.google.com/document/d/1kXbznrU3IcOGXA87DKNqpSQ-hSlzc8pUu3MLZyUqyjI/edit?tab=t.0#heading=h.hciiv07veu5n
https://github.com/RafaelGSS/bench-node

19

nodejs-bench-operations
If you have read the “State of Node.js Performance 2023” you might know the nodejs-bench-
operations repository. TL;DR It’s a repository to compare simple Node.js/JS operations across
multiple versions of Node.js.

This repository also contains a regression checker, a GitHub action that compares results between
different release lines and alerts in case of regressions/improvements greater than the 10%
threshold.

Significant improvements were identified in `Blob.slice()` handling > 2.5x more than the previous
benchmark result. The `Writable` benchmark seems to have improved both Streams and
WebStreams (it could be related to the Buffer improvements we have seen in the nodejs internal
benchmark suite).

`String.prototype.startsWith()` noticed another important performance improvement (due to the
V8 update). The same applies to `String.prototype.endsWith()`

https://blog.rafaelgss.dev/state-of-nodejs-performance-2023
https://github.com/RafaelGSS/nodejs-bench-operations
https://github.com/RafaelGSS/nodejs-bench-operations
http://node.js/JS
https://github.com/RafaelGSS/nodejs-bench-operations/actions/workflows/check_regressions.yml

20

The nodejs-bench-operations also contains some curious benchmarks, for example, historically
parsing big integers integers using `+` was faster than using `parseInt(x, 10)`.

https://github.com/RafaelGSS/nodejs-bench-operations/blob/main/RESULTS-v18.md#parsing-
integer
However, this is not true anymore since Node.js 20.

Approaches that were utilized but not included in the article
Many other benchmark approaches were utilized while conducting this research:

tinybench has been used instead of bench-node to certificate the accuracy of the nodejs-
bench-operations results
HTTP Benchmarks using wrk2 and different HTTP Frameworks (express, fastify) were also
conducted, but no expressive differentiation was identified that was worth it to mention in this
blog post.
NodeSource/nodejs-package-benchmark a Node.js benchmark for common web developer
workloads was also utilized. No expressive results were found.

https://github.com/nodesource/nodejs-package-benchmark

21

Why do regressions exist? Doesn’t the Node.js Team Measure Each PR for
Regressions?
Achieving the benchmark results above required a dedicated machine to run the entire Node.js test
suite, which took four days to complete. Imagine making a small code change to Node.js core—you
might not immediately know if it introduces a regression until benchmarks are run. Running a full
benchmark for every pull request, each taking days, would be highly resource-intensive and could
significantly slow down development.

Given the scale of the Node.js project—with thousands of contributors and a vast codebase—
tracking every possible regression is challenging. The team strives to balance thorough testing with
practical resource constraints, ensuring critical areas are well-covered while prioritizing rapid
development.

That said, we actively monitor performance and are always open to sponsorship programs that
could expand our benchmarking capabilities, helping to identify regressions earlier and further
improve the quality of releases.

Conclusion:
A single benchmark run isn’t enough to reliably measure performance changes.
Performance improvements are typically released as semver-minor or semver-patch updates.
Be cautious with micro-benchmarks in JavaScript.
Highlights include:

Faster Buffers module
FastAPI additions for error handling in node:fs
Faster node:path (for UNIX systems)
Improved Node.js test runner
Optimized WebStreams and Fetch
Notable regressions in TextDecode and streams.destroy.

For more in-depth performance insights, see the full report on the State of Node.js Performance
2023 and follow NodeSource for updates.

> Looking for advanced or enterprise support for Node.js? NodeSource is the premier provider,
trusted by organizations like Delta, Visa, and Kaiser, to ensure robust support for their Node.js
platforms. Partner with us to keep your applications secure, performant, and reliable.

https://blog.rafaelgss.dev/state-of-nodejs-performance-2023
https://blog.rafaelgss.dev/state-of-nodejs-performance-2023
https://nodesource.com/
https://nodesource.com/

