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Perceptron
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Can incorporate bias as 
component of the weight 
vector by always 
including a feature with 
value set to 1



Loose inspiration: Human 
neurons



Biological Neurons
• Human brain: 100, 000, 000, 000 neurons
• Each neuron receives input from 1,000 

others
• Impulses arrive simultaneously
• Combined*

• an impulse can either increase or decrease the possibility of 
nerve pulse firing

• If sufficiently strong, a nerve pulse is 
generated

• The pulse forms the input to other neurons.





Linear separability



Perceptron training algorithm
• Initialize weights
• Cycle through training examples in multiple 

passes (epochs)
• For each training example:

– Classify with current weights: 
– If classified incorrectly, update weights:

– α is a learning rate that should decay as a 
function of epoch t, e.g., 1000/(1000+t)

w←w+α y− y '( ) x

y ' = sgn(w ⋅ x)



Perceptron update rule

• The raw response of the classifier changes to

• If y = 1 and y’ = -1, the response is initially 
negative and will be increased

• If y = -1 and y’ = 1, the response is initially 
positive and will be decreased

y ' = sgn(w ⋅x)
w←w+α y− y '( ) x

w ⋅x+α y− y '( ) x 2



Implementation details
• Bias (add feature dimension with value fixed to 1) 

vs. no bias
• Initialization of weights
• Learning rate decay: as a function of 1/t
• Number of epochs (passes through the training 

data): monitor training and validation error
• In each epoch, cycle through training examples 

randomly



Convergence of perceptron 
update rule

• Linearly separable data: converges to a 
perfect solution

• Non-separable data: converges to a 
minimum-error solution assuming learning 
rate decays as O(1/t) and examples are 
presented in random sequence



Multi-class perceptrons

• One-vs-others framework: Need to keep a 
weight vector wc for each class c

• Decision rule: c = argmaxc wc× x

Inputs
Perceptrons

w/ weights wc

Max



Multi-class perceptrons

• One-vs-others framework: Need to keep a 
weight vector wc for each class c

• Decision rule: c = argmaxc wc× x
• Update rule: suppose example from class 

c gets misclassified as c’
– Update for c: wc ß wc + αx
– Update for c’: wc’ ß wc’ – αx



How do we make nonlinear 
classifiers out of perceptrons?

• Build a multi-layer neural network!



Network with a single hidden 
layer



Why Add Layers?

• Each layer is a processing step
• Having multiple processing steps allows 

complex functions
• Metaphor: NN and computing circuits

• computer = sequence of Boolean gates
• neural computer = sequence of layers

• Now we can calculate more complex (non-
linear) functions



Simple Neural Net with 1 
Hidden Layer
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Simple Neural Net with 1 
Hidden Layer
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*Example from Philipp Koehn, Johns Hopkins Univ



Computed Output
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Network with a single hidden 
layer

Source: http://cs231n.github.io/neural-networks-1/

• Hidden layer size and network capacity:

http://cs231n.github.io/neural-networks-1/


• Find network weights to minimize the error between true and 
estimated labels of training examples:

• Update weights by gradient descent: w
ww
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• Find network weights to minimize the error between true and 
estimated labels of training examples:

• Update weights by gradient descent:

• This requires perceptrons with a differentiable nonlinearity

w
ww
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Sigmoid: g(t) = 1
1+ e−t

Rectified linear unit (ReLU): g(t) = max(0,t) 

E(w) = yj − fw (x j )( )
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Training of multi-layer networks



• Find network weights to minimize the error between true and 
estimated labels of training examples:

• Update weights by gradient descent:

• Back-propagation: gradients are computed in the direction 
from output to input layers and combined using chain rule

• Stochastic gradient descent: compute the weight update 
w.r.t. one training example (or a small batch of examples) at 
a time, cycle through training examples in random order in 
multiple epochs
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Training of multi-layer networks



Perceptron with sigmoid 
nonlinearity
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Update rule for perceptron w/ sigmoid
• Define total classification error or loss on the 

training set:

• Update weights by gradient descent:

• For a single training point, the update is:
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Update rule for differentiable perceptron
• For a single training point, the update is:

• Compare with update rule with non-differentiable 
perceptron:
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Regularization
• It is common to add a penalty on weight magnitudes to 

the objective function:

– This encourages network to use all of its inputs “a little” rather 

than a few inputs “a lot”

E( f ) = yi − f (xi )( )2
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Source: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/


Multi-Layer Network Demo

http://playground.tensorflow.org/

http://playground.tensorflow.org/


Neural networks: Pros and cons
• Pros

– Flexible and general function approximation 
framework

– Can build extremely powerful models by adding more 
layers

• Cons
– Hard to analyze theoretically (e.g., training is prone to 

local optima)
– Huge amount of training data, computing power 

required to get good performance
– The space of implementation choices is huge 

(network architectures, parameters)



Neural networks vs. SVMs 
(a.k.a. “deep” vs. “shallow” learning)
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