
Neural networks

http://playground.tensorflow.org/

http://playground.tensorflow.org/

Perceptron

x1

x2

xD

w1

w2

w3

x3

wD

Input

Weights

.

.

.

Output: sgn(w×x + b)

Can incorporate bias as
component of the weight
vector by always
including a feature with
value set to 1

Loose inspiration: Human
neurons

Biological Neurons
• Human brain: 100, 000, 000, 000 neurons
• Each neuron receives input from 1,000

others
• Impulses arrive simultaneously
• Combined*

• an impulse can either increase or decrease the possibility of
nerve pulse firing

• If sufficiently strong, a nerve pulse is
generated

• The pulse forms the input to other neurons.

Linear separability

Perceptron training algorithm
• Initialize weights
• Cycle through training examples in multiple

passes (epochs)
• For each training example:

– Classify with current weights:
– If classified incorrectly, update weights:

– α is a learning rate that should decay as a
function of epoch t, e.g., 1000/(1000+t)

w←w+α y− y '() x

y ' = sgn(w ⋅ x)

Perceptron update rule

• The raw response of the classifier changes to

• If y = 1 and y’ = -1, the response is initially
negative and will be increased

• If y = -1 and y’ = 1, the response is initially
positive and will be decreased

y ' = sgn(w ⋅x)
w←w+α y− y '() x

w ⋅x+α y− y '() x 2

Implementation details
• Bias (add feature dimension with value fixed to 1)

vs. no bias
• Initialization of weights
• Learning rate decay: as a function of 1/t
• Number of epochs (passes through the training

data): monitor training and validation error
• In each epoch, cycle through training examples

randomly

Convergence of perceptron
update rule

• Linearly separable data: converges to a
perfect solution

• Non-separable data: converges to a
minimum-error solution assuming learning
rate decays as O(1/t) and examples are
presented in random sequence

Multi-class perceptrons

• One-vs-others framework: Need to keep a
weight vector wc for each class c

• Decision rule: c = argmaxc wc× x

Inputs
Perceptrons

w/ weights wc

Max

Multi-class perceptrons

• One-vs-others framework: Need to keep a
weight vector wc for each class c

• Decision rule: c = argmaxc wc× x
• Update rule: suppose example from class

c gets misclassified as c’
– Update for c: wc ß wc + αx
– Update for c’: wc’ ß wc’ – αx

How do we make nonlinear
classifiers out of perceptrons?

• Build a multi-layer neural network!

Network with a single hidden
layer

Why Add Layers?

• Each layer is a processing step
• Having multiple processing steps allows

complex functions
• Metaphor: NN and computing circuits

• computer = sequence of Boolean gates
• neural computer = sequence of layers

• Now we can calculate more complex (non-
linear) functions

Simple Neural Net with 1
Hidden Layer

1

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

sigmoid(1.0 × 3.7 + 0.0 × 3.7 + 1 × − 1 .5) = sigmoid(2.2) = 1 + e− 2 .2 =
0.90

1

sigmoid(1.0 × 2.9 + 0.0 × 2.9 + 1 × − 4 .5) = sigmoid(− 1 .6) = 1 + e1 .6 =
0.17

1

Simple Neural Net with 1
Hidden Layer

1

1.0

0.0

1

4.5

-5.2

-2.0
-4.6
-1.5

3.7
2.9

3.7

2.9

sigmoid(1.0 × 3.7 + 0.0 × 3.7 + 1 × − 1 .5) = sigmoid(2.2) = 1 + e− 2 .2 =
0.90

1

sigmoid(1.0 × 2.9 + 0.0 × 2.9 + 1 × − 4 .5) = sigmoid(− 1 .6) = 1 + e1 .6 =
0.17

1

.9

.17

*Example from Philipp Koehn, Johns Hopkins Univ

Computed Output

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Output unit
computation

sigmoid(.90 × 4.5 + .17 × − 5 .2 + 1 × − 2 .0) = sigmoid(1.17) = 1 + e− 1 .17 =
0.76

1

Network with a single hidden
layer

Source: http://cs231n.github.io/neural-networks-1/

• Hidden layer size and network capacity:

http://cs231n.github.io/neural-networks-1/

• Find network weights to minimize the error between true and
estimated labels of training examples:

• Update weights by gradient descent: w
ww

¶
¶

-¬
Ea

E(w) = yj − fw (x j)()
2

j=1

N

∑

Training of multi-layer networks

w1

w2

• Find network weights to minimize the error between true and
estimated labels of training examples:

• Update weights by gradient descent:

• This requires perceptrons with a differentiable nonlinearity

w
ww

¶
¶

-¬
Ea

Sigmoid: g(t) = 1
1+ e−t

Rectified linear unit (ReLU): g(t) = max(0,t)

E(w) = yj − fw (x j)()
2

j=1

N

∑

Training of multi-layer networks

• Find network weights to minimize the error between true and
estimated labels of training examples:

• Update weights by gradient descent:

• Back-propagation: gradients are computed in the direction
from output to input layers and combined using chain rule

• Stochastic gradient descent: compute the weight update
w.r.t. one training example (or a small batch of examples) at
a time, cycle through training examples in random order in
multiple epochs

w
ww

¶
¶

-¬
Ea

E(w) = yj − fw (x j)()
2

j=1

N

∑

Training of multi-layer networks

Perceptron with sigmoid
nonlinearity

x1

x2

xd

w1

w2

w3

x3

wd

Sigmoid function:

Input

Weights

.

.

.
te

t -+
=
1
1)(s

Output: s(w×x + b)

Update rule for perceptron w/ sigmoid
• Define total classification error or loss on the

training set:

• Update weights by gradient descent:

• For a single training point, the update is:

())()(,)()(
1

2
jj

N

j
jj ffyE xwxxw ww ×=-=å

=

s

()

()[]å

å

=

=

×-×--=

úû
ù

êë
é ×

¶
¶

×--=
¶
¶

N

j
jjjjj

N

j
jjjj

fy

fyE

1

1

))(1)(()(2

)()(')(2

xxwxwx

xw
w

xwx
w

ss

s

w
ww

¶
¶

-¬
Ea

() xxwxwxww))(1)(()(×-×-+¬ ssa fy

Update rule for differentiable perceptron
• For a single training point, the update is:

• Compare with update rule with non-differentiable
perceptron:

() xxwxwxww))(1)(()(×-×-+¬ ssa fy

()xxww)(fy -+¬ a

Regularization
• It is common to add a penalty on weight magnitudes to

the objective function:

– This encourages network to use all of its inputs “a little” rather

than a few inputs “a lot”

E(f) = yi − f (xi)()2
i=1

N

∑ +
λ
2

wj
2

j∑

Source: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

Multi-Layer Network Demo

http://playground.tensorflow.org/

http://playground.tensorflow.org/

Neural networks: Pros and cons
• Pros

– Flexible and general function approximation
framework

– Can build extremely powerful models by adding more
layers

• Cons
– Hard to analyze theoretically (e.g., training is prone to

local optima)
– Huge amount of training data, computing power

required to get good performance
– The space of implementation choices is huge

(network architectures, parameters)

Neural networks vs. SVMs
(a.k.a. “deep” vs. “shallow” learning)

Attribution
Slides originally developed by Svetlana

Lazebnik based on content from Stuart
Russell and Peter Norvig, Artificial
Intelligence: A Modern Approach, 3rd edition.
Slight modifications by Stephanie Schwartz.

Example (as noted) from Philipp Koehn at JHU

http://aima.cs.berkeley.edu/

