slides originally by Dr. Richard Burns, modified by Dr. Stephanie Schwartz

DECISION TREES

CSCI 452: Data Mining

Today

- Decision Trees
 - Structure
 - Information Theory: Entropy
 - Information Gain, Gain Ratio, Gini
 - ID3 Algorithm
 - Efficiently Handling Continuous Features
 - Overfitting / Underfitting
 - Bias-Variance Tradeoff
 - Pruning
 - Regression Trees

Motivation: Guess Who Game

- □ I'm thinking of one of you.
- □ Figure out who I'm thinking of by asking a series of

binary questions.

Decision Trees

□ Simple, yet widely used *classification* technique

- For <u>nominal</u> target variables
 - There also are <u>Regression trees</u>, for continuous target variables
- Predictor Features: binary, nominal, ordinal, discrete, continuous
- **•** Evaluating the model:
 - One metric: error rate in predictions

Decision Tree Model #1

Tree is consistent with training dataset.

Decision Tree Model #2

There could be more than one tree that fits the same data!

			\mathbf{A}	.6
		\ \	ic'a.	10US
	binan	v catego	contin	class
Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	Νο
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Decision Trees

Training Data

Decision Tree Classifier

- Decision tree models are relatively more descriptive than other types of classifier models
 - 1. Easier interpretation
 - 2. Easier to explain predicted values
- Exponentially many decision trees can be built
 - Which is best?
 - Some trees will be more accurate than others
 - How to construct the tree?
 - Computationally infeasible to try every possible tree.

Apply Model to <u>Test Data</u>

Test Data

Home	Marital	Annual	Defaulted
Owner	Status	Income	Barrower
No	Married	80K	?

Formally...

□ A decision tree has three types of nodes:

- 1. A <u>root node</u> that has no incoming edges and zero or mode outgoing edges
- 2. <u>Internal nodes</u>, each of which has exactly one incoming edge and two or more outgoing edges
- 3. <u>Leaf nodes</u> (or terminal nodes), each of which has exactly one incoming edge and no outgoing edges
- □ Each leaf node is assigned a <u>class label</u>
- Non-terminal nodes contain attribute <u>test conditions</u> to separate records that have different characteristics

How to Build a Decision Tree?

- □ Referred to as <u>decision tree induction</u>.
- Exponentially many decision trees can be constructed from a given set of attributes
 - Infeasible to try them all to find the optimal tree
- Different "decision tree building" algorithms:
 Hunt's algorithm, CART, ID3, C4.5, ...
- Usually a greedy strategy is employed

Hunt's Algorithm

- $\Box D_t = \text{set of training records that reach}$ a node t
- Recursive Procedure:
 - 1. If all records in D_t belong to the same class:
 - then t is a leaf node with class y_t
 - 2. If D_t is an empty set:
 - then t is a leaf node, class determined by the majority class of records in D_t's parent
 - 3. If D_t contains records that belong to <u>more</u> than one class:
 - use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Hunt's Alg	orithm
Defaulted = No (a)	Home Owner Yes No Defaulted = No
	(b)
Home Owner Yes No	Home Owner
Defaulted = No Marital Status	Yes No
Single, Married Divorced Defaulted = No	Defaulted = No Single, Divorced
	Annual Defaulted = No
	< 80K >= 80K

(d)

ïd	Home Owner	Marital Status	Annual Income	Defaulted Borrower
	Yes	Single	125K	No
2	No	Married	100K	No
5	No	Single	70K	No
	Yes	Married	120K	No
;	No	Divorced	95K	Yes
;	No	Married	60K	No
	Yes	Divorced	220K	No
;	No	Single	85K	Yes
)	No	Married	75K	No
0	No	Single	90K	Yes

- Tree begins with single node whose label reflects the majority class value
- Tree needs to be refined because root node contains records from both classes
- Divide records recursively into smaller subsets

C

Hunt's Algorithm

- Hunt's Algorithm will work if:
 - Every combination of attribute values is present
 - Question: realistic or unrealistic?
 - Unrealistic: at least 2ⁿ records necessary for binary attributes
 - Examples: no record for {HomeOwner=Yes, Marrital=Single, Income=60K}
 - Each combination of attribute values has unique class label
 - Question: realistic or unrealistic?
 - Unrealistic.
 - Example: Suppose we have two individuals, each with the properties {HomeOwner=Yes, Marrital=Single, Income=125K}, but one person defaulted and the other did not.

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrowe
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Hunt's Algorithm

Scenarios the algorithm may run into:

- 1. All records associated with D_t have identical attributes except for the class label (not possible to split anymore)
 - Solution: declare a leaf node with the same class label as the majority class of D_t
- 2. Some child nodes are empty (no records associated, no combination of attribute values leading to this node)
 - Solution: declare a leaf node with the same class label as the majority class of the empty node's parent

Design Issues of Decision Tree Induction

- 1. How should the training records be split?
 - Greedy strategy: split the records based on some attribute test (always choose immediate best option)
 - Need to evaluate the "goodness" of each attribute test and select the best one.
- 2. How should the splitting procedure stop? **a** For now, we'll keep splitting until we can't split anymore.

Different Split Ideas...

Splitting Based on Nominal Attributes

<u>Multiway Split</u>: Use as many partitions as distinct values

Splitting Based on Ordinal Attributes

- Ordinal attributes can also produce <u>binary</u> or <u>multiway splits</u>.
 - Grouping should not violate ordering in the ordinal set

Splitting Based on Continuous Attributes

 Continuous attributes can also have a <u>binary</u> or <u>multiway split</u>.

 Binary: decision tree algorithm must consider all possible split positions v, and it selects the best one

Comparison test: $(A \le v)$ or (A > v), where v=80K

Computationally intensive

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	Νο
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Splitting Based on Continuous Attributes

- Continuous attributes can also have a binary or multiway split.
 - Multiway: outcomes of the form
 - Consider all possible ranges of continuous variable? for i = 1, ..., k
 - Use same binning strategies as discussed for preprocessing a continuous attribute into a discrete one
 - Note: adjacent intervals/"bins" can always be aggregated into wider ones

Tree Induction

- What to split on?
 - Home Owner
 - Marital Status
 - Multiway or binary?
 - Annual Income
 - Multiway or binary?

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Defaulted = No (a)

Entropy

- Defined by mathematician Claude Shannon
- Measures the <u>impurity</u> (heterogeneity) <u>of the</u> <u>elements of a set</u>
- "what is the uncertainty of guessing the result of the random selection from a set?"

Very pure. Not impure.

Completely impure.

Entropy

- $\square Entropy(n) = -\sum_{i=1}^{c} p_i \log_2 p_i$
- Weighted sum of the logs of the probabilities of each of the possible outcomes.

Entropy Examples

- Entropy of the set of 52 playing cards:
 Randomly selecting any specific card *i* is 1/52.
 Entropy(n) = -∑⁵²_{i=1} 0.019 log₂ 0.019 = 5.7
- 2. Entropy if only the 4 suits matter:
 - Randomly selecting any suit is ¹/₄
 Entropy(n) = ∑_{i=1}⁴ 0.25 log₂ 0.25 = 2

That's the Reason for Using the log function

Want a low "score" when something is highly probable or certain.

How to determine the Best Split?

How does entropy help us?

• We can calculate the entropy (impureness) of Default Borrower

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Information Gain

- Try to split on each possible feature in a dataset. See which split works "best".
- Measure the reduction in the overall entropy of a set of instances

 $\Box \ InformationGain = Entropy(S) - \sum_{i} \frac{|S_i|}{|S|} E(S_i)$ fWeighting Term

Information Gain Example

$$Entropy_{START} = -\sum_{i=1}^{c} p_i \log_2 p_i = -\left(\frac{3}{6}\log_2 \frac{3}{6} + \frac{3}{6}\log_2 \frac{3}{6}\right) = 1$$

$$InformationGain = Entropy(S) - \sum_i \frac{|S_i|}{|S|} E(S_i)$$

$$IG_{CI} = 1 - \left(\frac{2}{6} \times \left(-\left(\frac{1}{2}\log_2 \frac{1}{2} + \frac{1}{2}\log_2 \frac{1}{2}\right)\right) + \frac{4}{6} \times \left(-\left(\frac{2}{4}\log_2 \frac{2}{4} + \frac{2}{4}\log_2 \frac{2}{4}\right)\right)\right) = 0$$

	SUSPICIOUS	Unknown	CONTAINS	
ID	Words	Sender	IMAGES	CLASS
376	true	false	true	spam
489	true	true	false	spam
541	true	true	false	spam
693	false	true	true	ham
782	false	false	false	ham
976	false	false	false	ham

- The 0 means there was no "information gain".
- Nothing was learned by splitting on "Contains Images".

Calculate the Information Gain on Each

Feature

	SUSPICIOUS	Unknown	CONTAINS	
ID	WORDS	Sender	IMAGES	CLASS
376	true	false	true	spam
489	true	true	false	spam
541	true	true	false	spam
693	false	true	true	ham
782	false	false	false	ham
976	false	false	false	ham

$$\Box IG_{SW} = 1 - 0 = 1$$

$$\Box IG_{US} = 1 - .9183 = .0817$$

$$\Box IG_{CI} = 1 - 1 = 0$$

"Suspicious Words" is the best split.

ID3 Algorithm

- Attempts to create the shallowest tree that is consistent with the training dataset
- Builds the tree in a recursive, depth-first manner
 beginning at the root node and working down to the leaf nodes

ID3 Algorithm

- 1. Figure out the best feature to split on based on by using information gain
- 2. Add this root note to the tree; label it with the selected test feature
- 3. Partition the dataset using this test
- 4. For each partition, grow a branch from this node
- 5. Recursively repeat the process for each of these branches using the remaining partition of the dataset
ID3 Algorithm: Stopping Condition

Stop the recursion and construct a leaf node when:

- 1. All of the instances in the remaining dataset have the same classification (target feature value).
 - Create a leaf node with that classification as its label
- 2. The set of features left to test is empty.
 - Create a leaf node with the majority class of the dataset as its classification.
- 3. The remaining dataset is empty.
 - Create a leaf note one level up (parent node), with the majority class.

Determine the Best Split

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married 120K		No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single 85K		Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Which test condition is best?

Other Measures of Node Impurity

- 1. Gini Index ("genie")
- 2. Entropy
- 3. Misclassification Error

$$Entropy(n) = -\sum_{i=0}^{c-1} p_i \log_2 p_i$$
$$Gini(n) = 1 - \sum_{i=0}^{c-1} [p_i]^2$$

MisclassificationError(n) = 1 – max p_i

- c = # of classes
- $0 \log 0 = 0$
- *p_i* = fraction of records belonging to class *i* at a given node.

Example Calculations

Node N ₁	Count
Class = 0	0
Class = 1	6

Node N ₂	Count
Class = 0	1
Class = 1	5

Node N ₃	Count
Class = 0	3
Class = 1	3

 $Gini = 1 - \left(\frac{0}{6}\right)^2 - \left(\frac{6}{6}\right)^2 = 0$ $Entropy = -\left(\frac{0}{6}\right)\log_2\left(\frac{0}{6}\right) - \left(\frac{6}{6}\right)\log_2\left(\frac{6}{6}\right) = 0$ $Misclassification = 1 - \max\left[\frac{0}{6}, \frac{6}{6}\right] = 0$

$$Gini = 1 - \left(\frac{1}{6}\right)^2 - \left(\frac{5}{6}\right)^2 = 0.278$$

$$Entropy = -\left(\frac{1}{6}\right)\log_2\left(\frac{1}{6}\right) - \left(\frac{5}{6}\right)\log_2\left(\frac{5}{6}\right) = 0.650$$

$$Misclassification = 1 - \max\left[\frac{1}{6}, \frac{5}{6}\right] = 0.167$$

 $Gini = 1 - \left(\frac{3}{6}\right)^2 - \left(\frac{3}{6}\right)^2 = 0.5$ $Entropy = -\left(\frac{3}{6}\right)\log_2\left(\frac{3}{6}\right) - \left(\frac{3}{6}\right)\log_2\left(\frac{3}{6}\right) = 1$ $Misclassification = 1 - \max\left[\frac{3}{6}, \frac{3}{6}\right] = 0.5$

Comparing Impurity Measures for Binary Classification Problems

- Assuming only <u>two</u> classes.
- p = fraction of records
 that belong to one of the
 two classes

Class0: 3
Class1: 3
$$p = \frac{3}{6} = .5$$

Comparing Impurity Measures

- Consistency among different impurity measures
- But attribute chosen as the test condition may vary depending on impurity measure choice

Gain

- Gain: "goodness of the split"
- □ Comparing:
 - degree of impurity of parent node (before splitting)
 - degree of impurity of the child nodes (after splitting), weighted
- □ larger gain => better split (better test condition)

$$\Delta(gain) = I(parent) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j)$$

- I(n) = impurity measure at node n
- I(v_i) = impurity measure at child node v_i
- *k* = number of attribute values
- $N(\mathbf{v}_i)$ = total number of records at child node \mathbf{v}_i
- N = total number of records at parent node

Footnote: (Information Gain: term used when entropy is used as the impurity measure)

Gain Example

- What is the Gini (index) of the child nodes?
- Is gain greater for split A or split B?

Since descendent nodes after splitting with Attribute B have a smaller Gini index than after splitting with Attribute A, splitting with Attribute B is preferred. (The gain is greater.)

Computing Multiway Gini index

	Car		
	{Sports, Luxury}	{Family}	
C0	9	1	CC
C1	7	3	C1
Gini	0.4	Gir	

	Car Type									
	{Sports}	{Family, Luxury}								
:0	8	2								
7	0	10								
ini	0.167									

(a) Binary split

(b) Multiway split

Computed for every attribute value.

 $Gini({Family}) = 0.375$ $Gini({Sports}) = 0$ $Gini({Luxury}) = 0.219$ $OverallGiniIndex = \frac{4}{20} \times 0.375 + \frac{8}{20} \times 0 + \frac{8}{20} \times 0.219 = 0.163$

Binary Splitting of <u>Continuous</u> Attributes

- Need to find best value v to split against
- □ Brute-force method:
 - Consider every attribute value v as a split candidate
 - O(n) possible candidates
 - For each candidate, need to iterate through all records again to determine the count of records with attribute < v or > v
 - O(n²) complexity
- By sorting records by the continuous attribute, this improves to O(n log n)

Splitting of Continuous Attributes

Need to find best value v to split against

Brute-force method:

Consider every attribute value v as a split candidate

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	Νο
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

- Need to find a split value for AnnualIncome predictor
- Try 125K?
 - Compute Gini for $\leq 125K$ and > 125K.
 - Complexity: O(n)
- Try 100K?
 - Complexity: O(n)
- Try 70K?, etc.
- Overall complexity: O(n²)

Splitting of Continuous Attributes

- By sorting records by the continuous attribute, this improves to O(n log n)
 - Candidate Split position are midpoints between two adjacent, different, class values
 - Only need to consider split positions: 80 and 97

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced 95K		Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

	Class		No		No)	N	D	Ye	s	Ye	S	Ye	s	Ν	0	N	lo	N	o		No	
										Α	nnı	ual I	Inco	ome	,								
orted Va	alues →		60		70)	7	5	85	;	90)	9	5	10	00	12	20	12	25		220	
plit Posi	tions →	5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	0	12	22	17	2	23	80
		<=	>	<=	>	<=	>	<=	<	<=	>	<=	>	<=	>	<=	>	<=	>	<=	<	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	20	0.4	00	0.3	75	0.3	43	0.4	17	0.4	00	0.3	00	0.3	43	0.3	75	0.4	00	0.4	20

Bias: Favoring attributes with large number of distinct values

Entropy and Gini Impurity measures favor attributes with large number of distinct values

Possible nodes to split on:

Gain Ratio

C4.5 algorithm uses Gain Ratio to determine the goodness of a split.

To avoid bias of favoring attributes with large number of distinct values:

- 1. Restrict test conditions to only binary splits
 - CART decision tree algorithm
- 2. <u>Gain Ratio</u>: Take into account the number of outcomes produced by attribute split condition
 - Adjusts information gain by the entropy of the partitioning

$$GainRatio = \frac{\Delta_{info}}{Split_{Info}}$$

 $Split_{Info} = -\sum_{i=1}^{k} P(v_i) \log_2 P(v_i)$

• Large number of splits make Split _{Info} larger

• will reduce the Gain Ratio

k is the total number of splits

Initial: 2 Yes, 8 No

$$Gini = 1 - \left(\frac{2}{10}\right)^2 - \left(\frac{8}{10}\right)^2 = .32$$

Name	Body Temp.	Gives Birth	4 legged	Hibernates	Class (Mammal?)
Porcupine	Warm	Yes	Yes	Yes	Yes
Cat	Warm	Yes	Yes	No	Yes
Bat	Warm	Yes	No	Yes	No
Whale	Warm	Yes	No	No	No
Salamander	Cold	No	Yes	Yes	No
Komodo Dragon	Cold	No	Yes	No	No
Python	Cold	No	No	Yes	No
Salmon	Cold	No	No	No	No
Eagle	Warm	No	No	No	No
Guppy	Cold	Yes	No	No	No

Split on Gives Birth?

 $Gini_{GivesBirth=Yes} = 1 - \left(\frac{2}{5}\right)^2 - \left(\frac{3}{5}\right)^2 = .48$ $Gini_{GivesBirth=No} = 1 - \left(\frac{0}{5}\right)^2 - \left(\frac{5}{5}\right)^2 = 0$ Weighted Average: $\frac{5}{10} \times .48 + \frac{5}{10} \times 0 = .24$ $Gini_{GivesBirth} = .32 - .24 = .08$

Name	Body Temp.	Gives Birth	4 legged	Hibernates	Class (Mammal?)
Porcupine	Warm	Yes	Yes	Yes	Yes
Cat	Warm	Yes	Yes	No	Yes
Bat	Warm	Yes	No	Yes	No
Whale	Warm	Yes	No	No	No
Salamander	Cold	No	Yes	Yes	No
Komodo Dragon	Cold	No	Yes	No	No
Python	Cold	No	No	Yes	No
Salmon	Cold	No	No	No	No
Eagle	Warm	No	No	No	No
Guppy	Cold	Yes	No	No	No

Split on 4-legged?

$$Gini_{4Legged=Yes} = 1 - \left(\frac{2}{4}\right)^2 - \left(\frac{2}{4}\right)^2 = .5$$

 $Gini_{4Legged=No}=0$

Weighted Average: $\frac{4}{10} \times .5 + \frac{6}{10} \times 0 = .2$

 $Gini_{4Legged} = .32 - .2 = .12$

Name	Body Temp.	Gives Birth	4 legged	Hibernates	Class (Mammal?)	
Porcupine	Warm	Yes	Yes	Yes	Yes	
Cat	Warm	Yes	Yes	No	Yes	
Bat	Warm	Yes	No	Yes	No	
Whale	Warm	Yes	No	No	No	
Salamander	Cold	No	Yes	Yes	No	
Komodo Dragon	Cold	No	Yes	No	No	
Python	Cold	No	No	Yes	No	
Salmon	Cold	No	No	No	No	
Eagle	Warm	No	No	No	No	
Guppy	Cold	Yes	No	No	No	

Split on Hibernates?

$Gini_{Hibernates=Yes} = 1 - \left(\frac{1}{4}\right)^2 - \left(\frac{3}{4}\right)^2 = .375$
$Gini_{Hibernates=No} = 1 - \left(\frac{1}{6}\right)^2 - \left(\frac{5}{6}\right)^2 = .278$
Weighted Average: $\frac{4}{10} \times .375 + \frac{6}{10} \times .278 = .3$
$Gini_{Hibernates} = .323168 = .0032$

Name	Body Temp.	Gives Birth	4 legged	Hibernates	Class (Mammal?)
Porcupine	Warm	Yes	Yes	Yes	Yes
Cat	Warm	Yes	Yes	No	Yes
Bat	Warm	Yes	No	Yes	No
Whale	Warm	Yes	No	No	No
Salamander	Cold	No	Yes	Yes	No
Komodo Dragon	Cold	No	Yes	No	No
Python	Cold	No	No	Yes	No
168 Salmon	Cold	No	No	No	No
Eagle	Warm	No	No	No	No
Guppy	Cold	Yes	No	No	No

Split on Body Temperature?

 $Gini_{BodyTemperature=Warm} = .48$ $Gini_{BodyTemperature=Cold} = 0$ Weighted Average: .24 $Gini_{BodyTemperature} = .08$

Name	Body Temp.	Gives Birth	4 legged	Hibernates	Class (Mammal?)
Porcupine	Warm	Yes	Yes	Yes	Yes
Cat	Warm	Yes	Yes	No	Yes
Bat	Warm	Yes	No	Yes	No
Whale	Warm	Yes	No	No	No
Salamander	Cold	No	Yes	Yes	No
Komodo Dragon	Cold	No	Yes	No	No
Python	Cold	No	No	Yes	No
Salmon	Cold	No	No	No	No
Eagle	Warm	No	No	No	No
Guppy	Cold	Yes	No	No	No

Splitting on 4-legged would yield the largest Gain.

Name	Body Temp.	Gives Birth	4 legged	Hibernates	Class (Mammal?)
Porcupine	Warm	Yes	Yes	Yes	Yes
Cat	Warm	Yes	Yes	No	Yes
Bat	Warm	Yes	No	Yes	No
Whale	Warm	Yes	No	No	No
Salamander	Cold	No	Yes	Yes	No
Komodo Dragon	Cold	No	Yes	No	No
Python	Cold	No	No	Yes	No
Salmon	Cold	No	No	No	No
Eagle	Warm	No	No	No	No
Guppy	Cold	Yes	No	No	No

Split on Gives Birth?

$$Gini_{GivesBirth=Yes} = 1 - \left(\frac{2}{2}\right)^2 - \left(\frac{0}{2}\right)^2 = 0$$

 $Gini_{GivesBirth=No} = 0$ Weighted Average: 0

 $Gini_{GivesBirth} = .5 - 0 = .5$

Name	Body Temp.	Gives Birth	4 legged	Hibernates	Class (Mammal?)
Porcupine	Warm	Yes	Yes	Yes	Yes
Cat	Warm	Yes	Yes	No	Yes
Bat	Warm	Yes	No	Yes	No
Whale	Warm	Yes	No	No	No
Salamander	Cold	No	Yes	Yes	No
Komodo Dragon	Cold	No	Yes	No	No
Python	Cold	No	No	Yes	No
Salmon	Cold	No	No	No	No
Eagle	Warm	No	No	No	No
Guppy	Cold	Yes	No	No	No

Split on Hibernates?

$$Gini_{Hibernates=Yes} = 1 - \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = .5$$

$$Gini_{Hibernates=No} = .5$$

Weighted Average: $\frac{2}{4} \times .5 + \frac{2}{4} \times .5 = .5$

$$Gini_{Hibernates} = .5 - .5 = 0$$

Name	Body Temp.	Gives Birth	4 legged	Hibernates	Class (Mammal?)
Porcupine	Warm	Yes	Yes	Yes	Yes
Cat	Warm	Yes	Yes	No	Yes
Bat	Warm	Yes	No	Yes	No
Whale	Warm	Yes	No	No	No
Salamander	Cold	No	Yes	Yes	No
Komodo Dragon	Cold	No	Yes	No	No
Python	Cold	No	No	Yes	No
Salmon	Cold	No	No	No	No
Eagle	Warm	No	No	No	No
Guppy	Cold	Yes	No	No	No

Split on Body Temperature?

 $Gini_{BodyTemperature=Warm} = 0$ $Gini_{BodyTemperature=Cold} = 0$ Weighted Average: 0 $Gini_{BodyTemperature} = .5 - 0 = .5$

Name	Body Temp.	Gives Birth	4 legged	Hibernates	Class (Mammal?)
Porcupine	Warm	Yes	Yes	Yes	Yes
Cat	Warm	Yes	Yes	No	Yes
Bat	Warm	Yes	No	Yes	No
Whale	Warm	Yes	No	No	No
Salamander	Cold	No	Yes	Yes	No
Komodo Dragon	Cold	No	Yes	No	No
Python	Cold	No	No	Yes	No
Salmon	Cold	No	No	No	No
Eagle	Warm	No	No	No	No
Guppy	Cold	Yes	No	No	No

Splitting on either Gives Birth or Body Temperature will fit training data perfectly.

Name	Body Temp.	Gives Birth	4 legged	Hibernates	Class (Mammal?)
Porcupine	Warm	Yes	Yes	Yes	Yes
Cat	Warm	Yes	Yes	No	Yes
Bat	Warm	Yes	No	Yes	No
Whale	Warm	Yes	No	No	No
Salamander	Cold	No	Yes	Yes	No
Komodo Dragon	Cold	No	Yes	No	No
Python	Cold	No	No	Yes	No
Salmon	Cold	No	No	No	No
Eagle	Warm	No	No	No	No
Guppy	Cold	Yes	No	No	No

Decision Tree Rules

- □ If 4-legged And GivesBirth Then Yes
- □ If 4-legged And Not GivesBirth Then No
- □ If Not *4-legged* Then No

Training Set vs. Test Set

- Overall dataset is divided into:
 - <u>Training set</u> used to build model
 - 2. <u>Test set</u> evaluates model
 - (sometimes a <u>Validation set</u> is also used; more later)

Test Set

Review: Model Evaluation on Test Set (Classification) – Error Rate

□ Error Rate: proportion of mistakes that are made by applying our \hat{f} model to the testing observations:

$$\frac{1}{n}\sum_{i=1}^{n}I(y_{i}\neq\hat{y}_{i})$$

Observations in test set: $\{(x_1,y_1), \ldots, (x_n,y_n)\}$

 \hat{y}_i is the predicted class for the *i*th record $I(y_i \neq \hat{y}_i)$ is an indicator variable: equals 1 if $y_i \neq \hat{y}_i$ and 0 if $y_i = \hat{y}_i$

Review: Model Evaluation on Test Set (Classification) – Confusion Matrix

Confusion Matrix: tabulation of counts of test records correctly and incorrectly predicted by model

		Predicted Class		
		Class = 1	Class = 0	
Actual Class	Class = 1	f ₁₁	f ₁₀	
	Class = 0	<i>f</i> ₀₁	f _{oo}	

(Confusion matrix for a 2-class problem.)

Review: Model Evaluation on Test Set (Classification) – Confusion Matrix

		Predicted Class		
		Class = 1	Class = 0	
Actual Class	Class = 1	f ₁₁	f ₁₀	
	Class = 0	<i>f</i> ₀₁	f ₀₀	

Accuracy =
$$\frac{\text{Number of correct predictions}}{\text{Total number of predictions}} = \frac{f_{11} + f_{00}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

Error rate = $\frac{\text{Number of wrong predictions}}{\text{Total number of predictions}} = \frac{f_{10} + f_{01}}{f_{11} + f_{10} + f_{01} + f_{00}}$

Most classification tasks seek models that attain the highest accuracy when applied to the test set.

Review: Model Evaluation on Test Set (Regression) – Mean Squared Error

Mean Squared Error: measuring the "quality of fit"
 will be small if the predicted responses are very close to the true responses

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

Observations in test set: $\{(x_1,y_1), \ldots, (x_n,y_n)\}$

 $\hat{f}(x_i)$ is the predicted value for the *i*th record

Review: Problem

- Error rates on training set vs. testing set might be drastically different.
- No guarantee that the model with the smallest training error rate will have the smallest testing error rate

Review: Overfitting

- Overfitting: occurs when model "memorizes" the training set data
 - very low error rate on training data
 - yet, high error rate on test data
- □ Model <u>does not generalize</u> to the overall problem
- □ This is bad! We wish to avoid overfitting.

Review: Bias and Variance

- <u>Bias</u>: the error introduced by modeling a real-life problem (usually extremely complicated) by a much simpler problem
 - The more flexible (complex) a method is, the less bias it will generally have.
- Variance: how much the learned model will change if the training set was different
 - Does changing a few observations in the training set, dramatically affect the model?
 - Generally, the more flexible (complex) a method is, the more variance it has.

Example: we wish to build a model that separates the dark-colored points from the light-colored points.

More complex model (curvy line instead of linear)

Zero classification error for these data points

• No linear model bias

• Higher Variance?

More data has been added.

Re-train both models (linear line, and curvy line) in order to minimize error rate

Variance:

- Linear model doesn't change much
- Curvy line significantly changes

Which model is better?

Figure 11-1. Overfitting and underfitting

Model Overfitting

- Errors committed by a classification model are generally divided into:
 - 1. <u>Training errors</u>: misclassification on training set records
 - <u>Generalization errors</u> (testing errors): errors made on testing set / previously unseen instances
- Good model has <u>low</u> training error and <u>low</u> generalization error.
- Overfitting: model has low training error rate, but high generalization errors

Model Underfitting and Overfitting

Model underfitting Model overfitting

When tree is small:

- Underfitting
- Large training error rate
- Large testing error rate
- Structure of data isn't yet learned
- When tree gets too large:
 - Beware of <u>overfitting</u>
 - Training error rate decreases while testing error rate increases
 - Tree is too complex
 - Tree "almost perfectly fits" training data, but doesn't <u>generalize</u> to testing examples

Reasons for Overfitting

- 1. Presence of noise
- 2. Lack of representative samples

<u>Training Set</u>

Name	Body Temp.	Gives Birth	4 legged	Hibernates	Class (Mammal?)	Body Temperature
Porcupine	Warm	Yes	Yes	Yes	Yes	Warm-blooded Cold-blood
Cat	Warm	Yes	Yes	No	Yes	Wallin-blocded
Bat	Warm	Yes	No	Yes	No	Cives Pirth Non-
Whale	Warm	Yes	No	No	No	Gives birth mammals
Salamander	Cold	No	Yes	Yes	No	Yes No
Komodo Dragon	Cold	No	Yes	No	No	Four- Non-
Python	Cold	No	No	Yes	No	legged
Salmon	Cold	No	No	No	No	Yes No
Eagle	Warm	No	No	No	No	Non-
Guppy	Cold	Yes	No	No	No	Mammals

Two training records are mislabeled.

Tree perfectly fits training data.

Testing Set

Name	Body Temp.	Gives Birth	4 legged	Hibernates	Class (Mammal?)
Human	Warm	Yes	No	No	Yes
Pigeon	Warm	No	No	No	No
Elephant	Warm	Yes	Yes	No	Yes
Leopard Shark	Cold	Yes	No	No	No
Turtle	Cold	No	Yes	No	No
Penguin	Cold	No	No	No	No
Eel	Cold	No	No	No	No
Dolphin	Warm	Yes	No	No	Yes
Spiny Anteater	Warm	No	Yes	Yes	Yes
Gila Monster	Cold	No	Yes	Yes	No

Test error rate: 30%

<u>Testing Set</u>

Name	Body Temp.	Gives Birth	4 legged	Hibernates	Class (Mammal?)	
Human	Warm	Yes	No	No	Yes	
Pigeon	Warm	No	No	No	No	
Elephant	Warm	Yes	Yes	No	Yes	
Leopard Shark	Cold	Yes	No	No	No	
Turtle	Cold	No	Yes	No	No	
Penguin	Cold	No	No	No	No	
Eel	Cold	No	No	No	No	
Dolphin	Warm	Yes	No	No	Yes	
Spiny Anteater	Warm	No	Yes	Yes	Yes	
Gila Monster	Cold	No	Yes	Yes	No	

Test error rate: 30%

Reasons for misclassifications:

- Mislabeled records in training data
- "Exceptional case"
 - Unavoidable
 - Minimal error rate achievable by any classifier

- Training error rate: 0%
- Test error rate: 30%
- <u>overfitting</u>

- Training error rate: 20%
- Test error rate: 10%

Overfitting and Decision Trees

- The likelihood of overfitting occurring increases as a tree gets deeper
 - the resulting classifications are based on smaller subsets of the full training dataset
- Overfitting involves splitting the data on an irrelevant feature.

Pruning: Handling Overfitting in Decision Trees

- Tree pruning identifies and removes subtrees within a decision tree that are likely to be due to noise and sample variance in the training set used to induce it.
- Pruning will result in decision trees being created that are not consistent with the training set used to build them.
- But we are more interested in created prediction models that generalize well to new data!
- 1. Pre-pruning (Early Stopping)
- 2. Post-pruning

Pre-pruning Techniques

- Stop creating subtrees when the number of instances in a partition falls below a threshold
- 2. Information gain measured at a node is not deemed to be sufficient to make partitioning the data worthwhile
- 3. Depth of the tree goes beyond a predefined limit
- 4. ... other more advanced approaches

Benefits: Computationally efficient; works well for small datasets. Downsides: Stopping too early will fail to create the most effective trees.

Post-pruning

- 1. Decision tree initially grown to its maximum size
- 2. Then examine each branch
- 3. Branches that are deemed likely to be due to overfitting are pruned.
- <u>Post-pruning</u> tends to give better results than prepruning
- Which is faster?
 - Post-pruning is more computationally expensive than prepruning because entire tree is grown

Post-pruning Techniques

- 1. Reduced Error Pruning
- 2. Cost Complexity Pruning

Reduced Error Pruning

- Starting at the leaves, each node is replaced with its most popular class.
- If the accuracy is not affected, then the change is kept.
 - Evaluate accuracy on a validation set
 - Set aside some of the training set as a validation set
- Advantages: simplicity and speed

Cost Complexity Pruning

- \square Nonnegative tuning parameter: α
 - "Penalizing cost" / "complexity parameter"
- Will look at different pruned subtrees and compare their performance on a test sample
- α determines the trade-off between misclassification error and the model complexity
 - **Small α: penalty for larger tree is small**
 - Larger α: smaller trees preferred depending on # of errors

Post-Pruning Example

Example validation set:

	CORE-	STABLE-		
ID	Темр	Темр	Gender	DECISION
1	high	true	male	gen
2	low	true	female	icu
3	high	false	female	icu
4	high	false	male	icu
5	low	false	female	icu
6	low	true	male	icu

Induced decision tree from training data

• Need to prune?

Post-Pruning Example

	CORE-	STABLE-		
ID	Темр	Темр	Gender	DECISION
1	high	true	male	gen
2	low	true	female	icu
3	high	false	female	icu
4	high	false	male	icu
5	low	false	female	icu
6	low	true	male	icu

Occam's Razor

General Principle (Occam's Razor): given two models with same generalization (testing) errors, the simpler model is preferred over the more complex model

Additional components in a more complex model have greater chance at being fitted purely by chance

Problem solving principle by philosopher William of Ockham (1287-1347)

Advantages of Pruning

- 1. Smaller trees are easier to interpret
- 2. Increased generalization accuracy.

Regression Trees

- Target Attribute:
 - Decision (Classification) Trees: qualitative
 - Regression Trees: continuous
- Decision trees: reduce the entropy in each subtree
- Regression trees: reduce the variance in each subtree
 Idea: adapt ID3 algorithm measure of *Information Gain* to use variance rather than node impurity

Regression Tree Splits

Classification Trees

- Gain: "goodness of the split"
- larger gain => better split (better test condition)

$$\Delta(gain) = I(parent) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j)$$

- I(n) =impurity measure at node n
- k = number of attribute values
- N(n) = total number of records at child node n
- N = total number of records at parent node

Regression Trees

Impurity (variance) at a node:

$$var(t, \mathcal{D}) = \frac{\sum_{i=1}^{n} (t_i - \overline{t})^2}{n-1}$$

 Select feature to split on that minimizes the weighted variance across all resulting partitions:

$$\textbf{d}[\textit{best}] = \operatorname*{argmin}_{\textit{d} \in \textbf{d}} \sum_{\textit{l} \in \textit{levels}(\textit{d})} \frac{|\mathcal{D}_{\textit{d}=\textit{l}}|}{|\mathcal{D}|} \times \textit{var}(t, \mathcal{D}_{\textit{d}=\textit{l}})$$

Need to watch out for Overfitting

□ Want to avoid overfitting:

Early stopping criterion

Stop partitioning the dataset if the number of training instances is less than some threshold

(5% of the dataset)

				ID SE	ASON WO	DRK DAY	Rentals		ID	SEASON	Work Day	Rentals
				1 w	inter	false	800		7	summer	false	3 000
				2 w	inter	false	826		8	summer	true	5800
Example				3 w	inter	true	900		9	summer	true	6200
				4 sp	oring	false	2100		10	autumn	false	2910
				5 sp	oring	true	4 740		11	autumn	false	2880
				6 sp	oring	true	4 900		12	autumn	true	2820
Split by				$ \mathcal{D}_{d=l} $		Weighted	ł					
Feature	Level	Part.	Instances	$ \mathcal{D} $	var(t, D)	Variance	<u>)</u>					
	'winter'	\mathcal{D}_1	$\bm{d}_1, \bm{d}_2, \bm{d}_3$	0.25	2 692							
SEASON	'spring'	\mathcal{D}_2	$\mathbf{d}_4, \mathbf{d}_5, \mathbf{d}_6$	0.25	$2472533\frac{1}{3}$	1 379 331 ¹						
OENGON	'summer'	\mathcal{D}_3	$\mathbf{d}_7, \mathbf{d}_8, \mathbf{d}_9$	0.25	3 040 000	10700013	8					
	'autumn'	\mathcal{D}_4	$\mathbf{d}_{10}, \mathbf{d}_{11}, \mathbf{d}_{12}$	0.25	2 100							
	'true'	\mathcal{D}_5	$\boldsymbol{d}_3, \boldsymbol{d}_5, \boldsymbol{d}_6, \boldsymbol{d}_8, \boldsymbol{d}_9, \boldsymbol{d}_{12}$	0.50	$4026346\frac{1}{3}$	2 551 813 <u>1</u>			(Sea	ASON		
	'false'	\mathcal{D}_{6}	$d_1, d_2, d_4, d_7, d_{10}, d_{11}$	0.50	1 077 280	20010103	l 		\checkmark	\prec		
											4	
							winter	ſ			autunni	
						\sim			/			
						Work Day		/	spring	summer	(WORK DAY)	
						>					\sim	
					tru	e false					true	false
			-		🗡 🔟	RENTAL C PRED		▶	,	V	♥	ID RENTALS PRED
				ID Rentals	Pred. 1	RENTALS I KED.	WORK		Won	v Dav	ID Rentals Pred.	10 CENTALS I RED.
				3 900	900 1	800 813	WORKI		WOR	K DAI	12 2,820 2,820	10 2,910 2,895
			L		2	826				\Box		11 2,880
						/	∕true fal	lse		true	false	
						×	Ţ			▼		
					ID Ren	TALS PRED.	ID Provenue	Darra	ID Ren'	tals Pred.		7
					5 4.	740 4 0 20	ID RENTALS	1 KED.	8 5,8	00	TD RENTALS PRED	·
					6 4,	900 4,820	4 2,100	2,100	9 6,2	00 6,000	7 3,000 3,000	<u>'</u>

Advantages and Disadvantages of Trees (Compared to Linear Models)

Two-classes: {green, blue}

Decision boundary: linear

Linear model can perfectly separate the two regions.

What about a decision tree?

Decision tree cannot separate regions.

Advantages and Disadvantages of Trees (Compared to Linear Models)

Two-classes: {green, blue}

Decision boundary: nonlinear

Linear model cannot perfectly separate the two regions.

What about a decision tree?

A Decision tree can!

Decision Tree can Separate Nonlinear Regions

Advantages and Disadvantages of Trees

Advantages

- Trees are very easy to explain
 - Easier to explain than linear regression
- Trees can be displayed graphically and interpreted by a non-expert
- Decision trees may more closely mirror human decision-making
- Trees can easily handle qualitative predictors
 - No dummy variables

 Trees usually do not have same level of predictive accuracy as other data mining algorithms

Disadvantages

But, predictive performance of decision trees can be improved by aggregating trees.

 Techniques: bagging, boosting, random forests

Decision Tree Advantages

- Inexpensive to construct
- Extremely fast at classifying unknown records
 - \square O(d) where d is the depth of the tree
- Presence of redundant attributes does not adversely affect the accuracy of decision trees
 - One of the two redundant attributes will not be used for splitting once the other attribute is chosen
- Nonparametric approach
 - Does not require any prior assumptions regarding probability distributions, means, variances, etc.

References

- Fundamentals of Machine Learning for Predictive Data Analytics, 1st Edition, Kelleher et al.
- Data Science from Scratch, 1st Edition, Grus
- Data Mining and Business Analytics in R, 1st edition, Ledolter
- An Introduction to Statistical Learning, 1st edition, James et al.
- Discovering Knowledge in Data, 2nd edition, Larose et al.
- □ Introduction to Data Mining, 1st edition, Tam et al.