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Today
¨ Decision Trees

¤ Structure
¤ Information Theory: Entropy
¤ Information Gain, Gain Ratio, Gini
¤ ID3 Algorithm

n Efficiently Handling Continuous Features
¤ Overfitting / Underfitting

n Bias-Variance Tradeoff
¤ Pruning
¤ Regression Trees



Motivation: Guess Who Game
¨ I’m thinking of one of you.
¨ Figure out who I’m thinking of by asking a series of 
binary questions.



Decision Trees
¨ Simple, yet widely used classification technique 

¤ For nominal target variables
n There also are Regression trees, for continuous target 

variables
¤ Predictor Features: binary, nominal, ordinal, discrete, 

continuous
¤ Evaluating the model:

n One metric: error rate in predictions



Decision Trees

Tid Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

binary
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continuous

cla
ss

Home
Owner

Marital
Status

Annual
Income

YESNO

NO

NO

Yes No

Married{Single, 
Divorced}

< 80K > 80K

“Splitting Attributes”

Training Data Decision Tree Model #1

1. Root node
2. Internal nodes
3. Leaf / terminal nodes

Tree is 
consistent with 
training 
dataset.



Decision Trees
Marital
Status

Home
Owner

Annual
Income

YESNO

NO

NO

Yes No

{Single, Divorced}

< 80K > 80K

There could be more than one tree that fits the 
same data!

Married
Tid Home 

Owner 
Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

binary

categorica
l

continuous

cla
ss

Training Data

Decision Tree Model #2

Tree is consistent with training dataset.



Decision Tree Classifier
¨ Decision tree models are relatively more descriptive than 

other types of classifier models
1. Easier interpretation
2. Easier to explain predicted values

¨ Exponentially many decision trees can be built
¤ Which is best?

n Some trees will be more accurate than others
¤ How to construct the tree?

n Computationally infeasible to try every possible tree.



Apply Model to Test Data

Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Barrower 

No Married 80K ? 
10 

 

Test DataStart from the root of tree.

Home
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Status

Annual
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Yes No

Married{Single, 
Divorced}

< 80K > 80K
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Apply Model to Test Data

Home 
Owner 
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Annual 
Income 
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Barrower 

No Married 80K ? 
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Test DataStart from the root of tree.

Home
Owner

Marital
Status

Annual
Income

YESNO

NO

NO

Yes No

Married{Single, 
Divorced}

< 80K > 80K

• Predict that this person 
will not default.



Formally…
¨ A decision tree has three types of nodes:

1. A root node that has no incoming edges and zero or mode 
outgoing edges

2. Internal nodes, each of which has exactly one incoming edge 
and two or more outgoing edges

3. Leaf nodes (or terminal nodes), each of which has exactly one 
incoming edge and no outgoing edges

¨ Each leaf node is assigned a class label
¨ Non-terminal nodes contain attribute test conditions to 

separate records that have different characteristics



How to Build a Decision Tree?

¨ Referred to as decision tree induction.
¨ Exponentially many decision trees can be constructed 

from a given set of attributes
¤ Infeasible to try them all to find the optimal tree

¨ Different “decision tree building” algorithms:
¤ Hunt’s algorithm, CART, ID3, C4.5, …

¨ Usually a greedy strategy is employed



Hunt’s Algorithm
¨ Dt = set of training records that reach 

a node t
¨ Recursive Procedure:

1. If all records in Dt belong to the same 
class: 

n then t is a leaf node with class yt
2. If Dt is an empty set:

n then t is a leaf node, class determined by 
the majority class of records in Dt’s parent

3. If Dt contains records that belong to 
more than one class: 

n use an attribute test to split the data into 
smaller subsets. Recursively apply the 
procedure to each subset.

Tid Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Dt

?



Hunt’s Algorithm

¨ Tree begins with single node whose 
label reflects the majority class value

¨ Tree needs to be refined because 
root node contains records from both 
classes

¨ Divide records recursively into 
smaller subsets

Tid Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 



Hunt’s Algorithm
¨ Hunt’s Algorithm will work if:

¤ Every combination of attribute values is present 
n Question: realistic or unrealistic?
n Unrealistic: at least 2n records necessary for binary attributes

n Examples: no record for {HomeOwner=Yes, Marrital=Single, Income=60K}
¤ Each combination of attribute values has unique class label

n Question: realistic or unrealistic?
n Unrealistic.

n Example: Suppose we have two individuals, each with the properties 
{HomeOwner=Yes, Marrital=Single, Income=125K}, but one person 
defaulted and the other did not.

Tid Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 



Hunt’s Algorithm

¨ Scenarios the algorithm may run into:
1. All records associated with Dt have identical attributes 

except for the class label (not possible to split anymore)
n Solution: declare a leaf node with the same class label as the 

majority class of Dt

2. Some child nodes are empty (no records associated, no 
combination of attribute values leading to this node)

n Solution: declare a leaf node with the same class label as the 
majority class of the empty node’s parent



Design Issues of Decision Tree Induction

1. How should the training records be split?
¤ Greedy strategy: split the records based on some 

attribute test (always choose immediate best option)
¤ Need to evaluate the “goodness” of each attribute test 

and select the best one.
2. How should the splitting procedure stop?

¤ For now, we’ll keep splitting until we can’t split anymore.



Different Split Ideas…



Splitting Based on Nominal Attributes
¨ Multiway Split: Use as many partitions as distinct values

¨ Binary Split: Grouping attribute values
¤ Need to find optimal partitioning

CART decision tree 
algorithm only creates 
binary splits.



Splitting Based on Ordinal Attributes

¨ Ordinal attributes can also produce binary or 
multiway splits.
¤ Grouping should not violate ordering in the ordinal set



Splitting Based on Continuous Attributes

¨ Continuous attributes can also have a binary or 
multiway split.
¤ Binary: decision tree algorithm must consider all 

possible split positions v, and it selects the best one
n Comparison test: (A <= v) or (A > v), where v=80K

¤ Computationally intensive

Tid Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 



Splitting Based on Continuous Attributes

¨ Continuous attributes can also have a binary or multiway split.
¤ Multiway: outcomes of the form

n Consider all possible ranges of continuous variable?
n Use same binning strategies as discussed for preprocessing a continuous attribute into a 

discrete one
¤ Note: adjacent intervals/“bins” can always be aggregated into wider ones

vi ≤ A < vi+1, for i =1,...,k



Tree Induction

¨ What to split on?
¤ Home Owner
¤ Marital Status

n Multiway or binary?

¤ Annual Income
n Multiway or binary?

Tid Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 



Entropy
¨ Defined by mathematician 

Claude Shannon
¨ Measures the impurity 

(heterogeneity) of the 
elements of a set

¨ “what is the uncertainty of 
guessing the result of the 
random selection from a 
set?”

Very pure. Not impure.Little impure.

Completely impure.



Entropy

¨ !"#$%&' " = −∑+,-. &+ log2 &+
¨ Weighted sum of the logs of the probabilities of 

each of the possible outcomes.



Entropy Examples

1. Entropy of the set of 52 playing cards:
¤ Randomly selecting any specific card i is 1/52.

¤ !"#$%&' " = −∑+,-./ 0.019 log/ 0.019 = 5.7
2. Entropy if only the 4 suits matter:

¤ Randomly selecting any suit is ¼

¤ !"#$%&' " = −∑+,-9 0.25 log/ 0.25 = 2

The higher the impurity, the higher the entropy.



That’s the Reason for Using the log 
function

Big Idea Fundamentals Standard Approach: The ID3 Algorithm Summary

Shannon’s Entropy Model
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Figure: (a) A graph illustrating how the value of a binary log (the log
to the base 2) of a probability changes across the range of probability
values. (b) the impact of multiplying these values by �1.

Want a low “score” when something is highly probable or certain.



How to determine the Best Split?
Tid Home 

Owner 
Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Home 
Owner?

Yes
No

Marital 
Status?

Single
MarriedDivorced

Annual Income 
<=  85K

Yes
No

How does entropy help us?
• We can calculate the entropy (impureness) of 

Default Borrower



Information Gain

¨ Try to split on each possible feature in a dataset. 
See which split works “best”.

¨ Measure the reduction in the overall entropy of a 
set of instances

¨ !"#$%&'()$"*')" = ,"(%$-. / − ∑2 343 ,(/2)

Weighting Term



Information Gain Example
!"#$%&'()*+) = −∑/012 &/ log6 &/ = −(8
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Big Idea Fundamentals Standard Approach: The ID3 Algorithm Summary

Information Gain

Calculate the remainder for the UNKNOWN SENDER feature
in the dataset.

rem (d ,D) =
X

l2levels(d)

|Dd=l |
|D|| {z }

weighting

⇥H (t ,Dd=l)| {z }
entropy of

partition Dd=l

SUSPICIOUS UNKNOWN CONTAINS
ID WORDS SENDER IMAGES CLASS

376 true false true spam
489 true true false spam
541 true true false spam
693 false true true ham
782 false false false ham
976 false false false ham

• The 0 means there was no 
“information gain”. 

• Nothing was learned by 
splitting on “Contains Images”.



Calculate the Information Gain on Each 
Feature

¨ !"#$ = 1 − 0 = 1
¨ !")# = 1 − .9183 = .0817
¨ !"/0 = 1 − 1 = 0

Big Idea Fundamentals Standard Approach: The ID3 Algorithm Summary

Information Gain

Calculate the remainder for the UNKNOWN SENDER feature
in the dataset.

rem (d ,D) =
X

l2levels(d)

|Dd=l |
|D|| {z }

weighting

⇥H (t ,Dd=l)| {z }
entropy of

partition Dd=l

SUSPICIOUS UNKNOWN CONTAINS
ID WORDS SENDER IMAGES CLASS

376 true false true spam
489 true true false spam
541 true true false spam
693 false true true ham
782 false false false ham
976 false false false ham

“Suspicious Words” is the best split.



ID3 Algorithm

¨ Attempts to create the shallowest tree that is 
consistent with the training dataset

¨ Builds the tree in a recursive, depth-first manner
¤ beginning at the root node and working down to the 

leaf nodes



ID3 Algorithm
1. Figure out the best feature to split on based on by 

using information gain
2. Add this root note to the tree; label it with the 

selected test feature
3. Partition the dataset using this test
4. For each partition, grow a branch from this node
5. Recursively repeat the process for each of these 

branches using the remaining partition of the dataset



ID3 Algorithm: Stopping Condition
Stop the recursion and construct a leaf node when:
1. All of the instances in the remaining dataset have the same 

classification (target feature value). 
¤ Create a leaf node with that classification as its label

2. The set of features left to test is empty.
¤ Create a leaf node with the majority class of the dataset as its 

classification. 
3. The remaining dataset is empty. 

¤ Create a leaf note one level up (parent node), with the majority 
class.



Determine the Best Split
¨ Before:

¤ 7 records of class No
¤ 3 records of class Yes

Tid Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Home 
Owner?

Yes: 0 
No: 3

Yes: 3
No: 4

Yes
No

Marital 
Status?

Yes: 2 
No: 2

Yes: 0
No: 4

Single
Married

Yes: 1
No: 1

Divorced

Annual Income 
<=  85K

Yes: 2 
No: 4

Yes: 1
No: 3

Yes
No

Which test condition is best?



Other Measures of Node Impurity

1. Gini Index (“genie”)
2. Entropy
3. Misclassification Error

Entropy(n) = − pi log2 pi
i=0

c−1

∑

Gini(n) =1− [pi ]
2

i=0

c−1

∑

MisclassificationError(n) =1−max pi

• c = # of classes
• 0 log 0 = 0 
• pi = fraction of records 

belonging to class i at a given 
node.



Example Calculations
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Proposed 
Split

Class0: 0 
Class1: 6

Class0: ?
Class1: ?

How “impure” is this node that 
would be created if we do the 
split?



Comparing Impurity Measures for Binary 
Classification Problems

• Assuming only two
classes.

• p = fraction of records 
that belong to one of the 
two classes

Class0: 3 
Class1: 3

p = 3
6
= .5



Comparing Impurity Measures

¨ Consistency among different 
impurity measures

¨ But attribute chosen as the test 
condition may vary depending on 
impurity measure choice



Gain
¨ Gain: “goodness of the split”
¨ Comparing: 

¤ degree of impurity of parent node (before splitting) 
¤ degree of impurity of the child nodes (after splitting), weighted

¨ larger gain => better split (better test condition)

å
=

-=D
k

j
j

j vI
N
vN

parentIgain
1

)(
)(

)()(

• I(n) = impurity measure at node n
• I(vj) = impurity measure at child node vj

• k = number of attribute values
• N(vj) = total number of records at child node vj

• N = total number of records at parent node

Footnote: (Information Gain: term used when entropy is used as the impurity measure)



Gain Example

? ?

• What is the Gini (index) of the child nodes?
• Is gain greater for split A or split B?
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Since descendent nodes after splitting with Attribute B have a smaller Gini index than after 
splitting with Attribute A, splitting with Attribute B is preferred. (The gain is greater.)

Gini(N2 ) =1−
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= 0.480
GainA = .500−.486 = .014
GainB = .500−.375= .125

0.371



Computing Multiway Gini index

¨ Computed for every attribute value.

163.0219.0
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iIndexOverallGin

LuxuryGini
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FamilyGini



Binary Splitting of Continuous Attributes

¨ Need to find best value v to split against
¨ Brute-force method:

¤ Consider every attribute value v as a split candidate
n O(n) possible candidates
n For each candidate, need to iterate through all records again to 

determine the count of records with attribute   < v    or    > v
n O(n2) complexity

¨ By sorting records by the continuous attribute, this 
improves to O(n log n)



Splitting of Continuous Attributes
¨ Need to find best value v to split against
¨ Brute-force method:

¤ Consider every attribute value v as a split candidate
Tid Home 

Owner 
Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

• Need to find a split value for AnnualIncome predictor
• Try 125K? 

• Compute Gini for <= 125K and > 125K. 
• Complexity: O(n)

• Try 100K?
• Complexity: O(n)

• Try 70K?, etc.
• Overall complexity: O(n2)



Splitting of Continuous Attributes
¨ By sorting records by the continuous attribute, this 

improves to O(n log n)
¤ Candidate Split position are midpoints between two 

adjacent, different, class values
¤ Only need to consider split positions: 80 and 97

Tid Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 



Bias: Favoring attributes with large 
number of distinct values

¨ Entropy and Gini Impurity measures favor attributes with 
large number of distinct values

Own
Car?

C0: 6
C1: 4

C0: 4
C1: 6

C0: 1
C1: 3

C0: 8
C1: 0

C0: 1
C1: 7

Car
Type?

C0: 1
C1: 0

C0: 1
C1: 0

C0: 0
C1: 1

Student
ID?

...

Yes No Family

Sports

Luxury c1 c10

c20

C0: 0
C1: 1

...

c11

Possible nodes to split on:

• StudentId will result in perfectly pure children.
• Will have the greatest gain.
• Should have been removed as a predictor variable.



Gain Ratio
¨ To avoid bias of favoring attributes with large number of 

distinct values:
1. Restrict test conditions to only binary splits

n CART decision tree algorithm 
2. Gain Ratio: Take into account the number of outcomes produced 

by attribute split condition
n Adjusts information gain by the entropy of the partitioning

GainRatio = Δ info
SplitInfo

SplitInfo = − P(vi )log2 P(vi )i=1

k
∑

k is the total number of splits

C4.5 algorithm uses Gain Ratio to 
determine the goodness of a split.

• Large number of splits make Split Info larger
• will reduce the Gain Ratio



Complete 
Example

Name Body 
Temp.

Gives 
Birth

4
legged

Hibernates Class 
(Mammal?)

Porcupine Warm Yes Yes Yes Yes

Cat Warm Yes Yes No Yes

Bat Warm Yes No Yes No

Whale Warm Yes No No No

Salamander Cold No Yes Yes No

Komodo 
Dragon

Cold No Yes No No

Python Cold No No Yes No

Salmon Cold No No No No

Eagle Warm No No No No

Guppy Cold Yes No No No

Initial: 2 Yes, 8 No

Gini =1− 2
10
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= .32



Complete 
Example

Name Body 
Temp.

Gives 
Birth

4
legged

Hibernates Class 
(Mammal?)

Porcupine Warm Yes Yes Yes Yes

Cat Warm Yes Yes No Yes

Bat Warm Yes No Yes No

Whale Warm Yes No No No

Salamander Cold No Yes Yes No

Komodo 
Dragon

Cold No Yes No No

Python Cold No No Yes No

Salmon Cold No No No No

Eagle Warm No No No No

Guppy Cold Yes No No No

Split on Gives Birth?

GiniGivesBirth=Yes =1− 2
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= .48

GiniGivesBirth=No =1− 0
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= 0

Weighted Average: 5
10

×.48+ 5
10

×0 = .24

GiniGivesBirth = .32−.24 = .08



Complete 
Example

Name Body 
Temp.

Gives 
Birth

4
legged

Hibernates Class 
(Mammal?)

Porcupine Warm Yes Yes Yes Yes

Cat Warm Yes Yes No Yes

Bat Warm Yes No Yes No

Whale Warm Yes No No No

Salamander Cold No Yes Yes No

Komodo 
Dragon

Cold No Yes No No

Python Cold No No Yes No

Salmon Cold No No No No

Eagle Warm No No No No

Guppy Cold Yes No No No

Split on 4-legged?

Gini4Legged=Yes =1− 2
4
"

#
$
%

&
'

2

−
2
4
"

#
$
%

&
'

2

= .5

Gini4Legged=No = 0

Weighted Average: 4
10

×.5+ 6
10

×0 = .2

Gini4Legged = .32−.2 = .12



Complete 
Example

Name Body 
Temp.

Gives 
Birth

4
legged

Hibernates Class 
(Mammal?)

Porcupine Warm Yes Yes Yes Yes

Cat Warm Yes Yes No Yes

Bat Warm Yes No Yes No

Whale Warm Yes No No No

Salamander Cold No Yes Yes No

Komodo 
Dragon

Cold No Yes No No

Python Cold No No Yes No

Salmon Cold No No No No

Eagle Warm No No No No

Guppy Cold Yes No No No

Split on Hibernates?

GiniHibernates=Yes =1− 1
4
"

#
$
%

&
'

2

−
3
4
"

#
$
%

&
'

2

= .375

GiniHibernates=No =1− 1
6
"

#
$
%

&
'

2

−
5
6
"

#
$
%

&
'

2

= .278

Weighted Average: 4
10

×.375+ 6
10

×.278 = .3168

GiniHibernates = .32−.3168 = .0032



Complete 
Example

Name Body 
Temp.

Gives 
Birth

4
legged

Hibernates Class 
(Mammal?)

Porcupine Warm Yes Yes Yes Yes

Cat Warm Yes Yes No Yes

Bat Warm Yes No Yes No

Whale Warm Yes No No No

Salamander Cold No Yes Yes No

Komodo 
Dragon

Cold No Yes No No

Python Cold No No Yes No

Salmon Cold No No No No

Eagle Warm No No No No

Guppy Cold Yes No No No

Split on Body Temperature?

GiniBodyTemperature=Warm = .48
GiniBodyTemperature=Cold = 0
Weighted Average: .24
GiniBodyTemperature = .08



Complete 
Example

Name Body 
Temp.

Gives 
Birth

4
legged

Hibernates Class 
(Mammal?)

Porcupine Warm Yes Yes Yes Yes

Cat Warm Yes Yes No Yes

Bat Warm Yes No Yes No

Whale Warm Yes No No No

Salamander Cold No Yes Yes No

Komodo 
Dragon

Cold No Yes No No

Python Cold No No Yes No

Salmon Cold No No No No

Eagle Warm No No No No

Guppy Cold Yes No No No

Splitting on 4-legged would 
yield the largest Gain.

4-legged?

NoYes

No 
(0 Yes, 6 No)

… 
(2 Yes, 2 No)

Gini =1− 2
4
"

#
$
%

&
'
2

−
2
4
"

#
$
%

&
'
2

= .5



Complete 
Example

Name Body 
Temp.

Gives 
Birth

4
legged

Hibernates Class 
(Mammal?)

Porcupine Warm Yes Yes Yes Yes

Cat Warm Yes Yes No Yes

Bat Warm Yes No Yes No

Whale Warm Yes No No No

Salamander Cold No Yes Yes No

Komodo 
Dragon

Cold No Yes No No

Python Cold No No Yes No

Salmon Cold No No No No

Eagle Warm No No No No

Guppy Cold Yes No No No

Split on Gives Birth?

GiniGivesBirth=Yes =1− 2
2
"

#
$
%

&
'

2

−
0
2
"

#
$
%

&
'

2

= 0

GiniGivesBirth=No = 0
Weighted Average: 0
GiniGivesBirth = .5− 0 = .5



Complete 
Example

Name Body 
Temp.

Gives 
Birth

4
legged

Hibernates Class 
(Mammal?)

Porcupine Warm Yes Yes Yes Yes

Cat Warm Yes Yes No Yes

Bat Warm Yes No Yes No

Whale Warm Yes No No No

Salamander Cold No Yes Yes No

Komodo 
Dragon

Cold No Yes No No

Python Cold No No Yes No

Salmon Cold No No No No

Eagle Warm No No No No

Guppy Cold Yes No No No

Split on Hibernates?

GiniHibernates=Yes =1− 1
2
"

#
$
%

&
'

2

−
1
2
"

#
$
%

&
'

2

= .5

GiniHibernates=No = .5

Weighted Average: 2
4
×.5+ 2

4
×.5= .5

GiniHibernates = .5−.5= 0



Complete 
Example

Name Body 
Temp.

Gives 
Birth

4
legged

Hibernates Class 
(Mammal?)

Porcupine Warm Yes Yes Yes Yes

Cat Warm Yes Yes No Yes

Bat Warm Yes No Yes No

Whale Warm Yes No No No

Salamander Cold No Yes Yes No

Komodo 
Dragon

Cold No Yes No No

Python Cold No No Yes No

Salmon Cold No No No No

Eagle Warm No No No No

Guppy Cold Yes No No No

Split on Body Temperature?

GiniBodyTemperature=Warm = 0
GiniBodyTemperature=Cold = 0
Weighted Average: 0
GiniBodyTemperature = .5− 0 = .5



Complete 
Example

Name Body 
Temp.

Gives 
Birth

4
legged

Hibernates Class 
(Mammal?)

Porcupine Warm Yes Yes Yes Yes

Cat Warm Yes Yes No Yes

Bat Warm Yes No Yes No

Whale Warm Yes No No No

Salamander Cold No Yes Yes No

Komodo 
Dragon

Cold No Yes No No

Python Cold No No Yes No

Salmon Cold No No No No

Eagle Warm No No No No

Guppy Cold Yes No No No

Splitting on either Gives Birth 
or Body Temperature will fit 
training data perfectly.

4-legged?

No
Yes

No 
(0 Yes, 6 No)

Gives 
Birth?

Yes No

Yes 
(2 Yes, 
0 No)

No (0 Yes, 2 No)



Decision Tree Rules
¨ If 4-legged And GivesBirth Then Yes
¨ If 4-legged And Not GivesBirth Then No
¨ If Not 4-legged Then No

4-legged?

No
Yes

No 
(0 Yes, 6 No)Yes No

Yes 
(2 Yes, 
0 No)

No (0 Yes, 2 No)

Gives 
Birth?



Training Set vs. Test Set

¨ Overall dataset is 
divided into:
1. Training set – used 

to build model
2. Test set – evaluates 

model
3. (sometimes a 

Validation set is also 
used; more later)

Apply 
Model

Induction

Deduction

Learn 
Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 

Test Set

Learning
algorithm

Training Set



Review: Model Evaluation on Test Set
(Classification) – Error Rate

1
n

I(yi ≠ ŷi
i=1

n

∑ )

¨ Error Rate: proportion of mistakes that are made by 
applying our   model to the testing observations:f̂

Observations in test set: {(x1,y1), …, (xn,yn)}

ŷi  is the predicted class for the ith record
I(yi ≠ ŷi ) is an indicator variable: equals 1 if yi ≠ ŷi  and 0 if yi = ŷi



Review: Model Evaluation on Test Set
(Classification) – Confusion Matrix

¨ Confusion Matrix: tabulation of counts of test records 
correctly and incorrectly predicted by model

Predicted Class

Class = 1 Class = 0

Actual Class
Class = 1 f11 f10
Class = 0 f01 f00

(Confusion matrix for a 2-class problem.)



Review: Model Evaluation on Test Set
(Classification) – Confusion Matrix

Predicted Class

Class = 1 Class = 0

Actual Class
Class = 1 f11 f10
Class = 0 f01 f00

Accuracy = Number of correct predictions
Total number of predictions

=
f11 + f00

f11 + f10 + f01 + f00

Error rate = Number of wrong predictions
Total number of predictions

=
f10 + f01

f11 + f10 + f01 + f00

Most classification tasks seek models that attain the highest accuracy when applied to the test set.



Review: Model Evaluation on Test Set
(Regression) – Mean Squared Error

MSE = 1
n

(yi − f̂ (xi )
i=1

n

∑ )2

¨ Mean Squared Error: measuring the “quality of fit”
¤ will be small if the predicted responses are very close 

to the true responses

Observations in test set: {(x1,y1), …, (xn,yn)}

f̂ (xi ) is the predicted value for the ith record



Review: Problem
¨ Error rates on training set vs. testing set might be 

drastically different.
¨ No guarantee that the model with the smallest 

training error rate will have the smallest testing
error rate



Review: Overfitting
¨ Overfitting: occurs when model “memorizes” the 

training set data
¤ very low error rate on training data
¤ yet, high error rate on test data

¨ Model does not generalize to the overall problem
¨ This is bad! We wish to avoid overfitting.
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Error Rate on
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Underfitting

Optimal Level of
Model Complexity

Overfitting

Figure 5.2 The optimal level of model complexity is at the minimum error rate on the
validation set.

training set continues to fall in a monotone fashion. However, as the model complexity
increases, the validation set error rate soon begins to flatten out and increase because
the provisional model has memorized the training set rather than leaving room for
generalizing to unseen data. The point where the minimal error rate on the validation
set is encountered is the optimal level of model complexity, as indicated in Figure 5.2.
Complexity greater than this is considered to be overfitting; complexity less than this
is considered to be underfitting.

BIAS–VARIANCE TRADE-OFF

Suppose that we have the scatter plot in Figure 5.3 and are interested in constructing
the optimal curve (or straight line) that will separate the dark gray points from the
light gray points. The straight line in has the benefit of low complexity but suffers
from some classification errors (points ending up on the wrong side of the line).

In Figure 5.4 we have reduced the classification error to zero but at the cost of
a much more complex separation function (the curvy line). One might be tempted to
adopt the greater complexity in order to reduce the error rate. However, one should
be careful not to depend on the idiosyncrasies of the training set. For example, sup-
pose that we now add more data points to the scatter plot, giving us the graph in
Figure 5.5.

Note that the low-complexity separator (the straight line) need not change very
much to accommodate the new data points. This means that this low-complexity
separator has low variance. However, the high-complexity separator, the curvy line,
must alter considerably if it is to maintain its pristine error rate. This high degree of
change indicates that the high-complexity separator has a high variance.



Review: Bias and Variance
¨ Bias: the error introduced by modeling a real-life problem 

(usually extremely complicated) by a much simpler problem
¤ The more flexible (complex) a method is, the less bias it will 

generally have.
¨ Variance: how much the learned model will change if the 

training set was different 
¤ Does changing a few observations in the training set, dramatically 

affect the model?
¤ Generally, the more flexible (complex) a method is, the more 

variance it has.
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Figure 5.3 Low-complexity separator with high error rate.

Figure 5.4 High-complexity separator with low error rate.

Figure 5.5 With more data: low-complexity separator need not change much; high-
complexity separator needs much revision.

Example: we wish to build a model that separates the dark-colored points from the 
light-colored points. 

Black line is simple, linear model

• Low variance
• Bias present

Currently, some 
classification error
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Figure 5.3 Low-complexity separator with high error rate.

Figure 5.4 High-complexity separator with low error rate.

Figure 5.5 With more data: low-complexity separator need not change much; high-
complexity separator needs much revision.

More complex model (curvy line instead of linear)

Zero classification 
error for these data 
points

• No linear model bias
• Higher Variance?



More data has been added. 
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Figure 5.3 Low-complexity separator with high error rate.

Figure 5.4 High-complexity separator with low error rate.

Figure 5.5 With more data: low-complexity separator need not change much; high-
complexity separator needs much revision.

Re-train both models (linear line, and curvy line) in order to minimize error rate

Variance:
• Linear model doesn’t change much
• Curvy line significantly changes

Which model is better?



This could involve learning noise in the data. Or it could involve learning to identify
specific inputs rather than whatever factors are actually predictive for the desired out‐
put.

The other side of this is underfitting, producing a model that doesn’t perform well
even on the training data, although typically when this happens you decide your
model isn’t good enough and keep looking for a better one.

Figure 11-1. Overfitting and underfitting

In Figure 11-1, I’ve fit three polynomials to a sample of data. (Don’t worry about how;
we’ll get to that in later chapters.)

The horizontal line shows the best fit degree 0 (i.e., constant) polynomial. It severely
underfits the training data. The best fit degree 9 (i.e., 10-parameter) polynomial goes
through every training data point exactly, but it very severely overfits—if we were to
pick a few more data points it would quite likely miss them by a lot. And the degree 1
line strikes a nice balance—it’s pretty close to every point, and (if these data are repre‐
sentative) the line will likely be close to new data points as well.

Clearly models that are too complex lead to overfitting and don’t generalize well
beyond the data they were trained on. So how do we make sure our models aren’t too

Overfitting and Underfitting | 143



Model Overfitting
¨ Errors committed by a classification model are generally 

divided into:
1. Training errors: misclassification on training set records
2. Generalization errors (testing errors): errors made on testing 

set / previously unseen instances
¨ Good model has low training error and low generalization 

error.
¨ Overfitting: model has low training error rate, but high

generalization errors



Model Underfitting and Overfitting

¨ When tree is small:
¤ Underfitting
¤ Large training error rate
¤ Large testing error rate
¤ Structure of data isn’t yet learned

¨ When tree gets too large:
¤ Beware of overfitting
¤ Training error rate decreases while testing 

error rate increases
¤ Tree is too complex
¤ Tree “almost perfectly fits” training data, 

but doesn’t generalize to testing examplesModel underfitting Model overfitting



Reasons for Overfitting

1. Presence of noise
2. Lack of representative samples



Name Body 
Temp.

Gives 
Birth

4
legged

Hibernates Class 
(Mammal?)

Porcupine Warm Yes Yes Yes Yes

Cat Warm Yes Yes No Yes

Bat Warm Yes No Yes No

Whale Warm Yes No No No

Salamander Cold No Yes Yes No

Komodo 
Dragon

Cold No Yes No No

Python Cold No No Yes No

Salmon Cold No No No No

Eagle Warm No No No No

Guppy Cold Yes No No No

Two training records are mislabeled.

Training Set

Tree perfectly fits training data.



Name Body 
Temp.

Gives 
Birth

4
legged

Hibernates Class 
(Mammal?)

Human Warm Yes No No Yes

Pigeon Warm No No No No

Elephant Warm Yes Yes No Yes

Leopard 
Shark

Cold Yes No No No

Turtle Cold No Yes No No

Penguin Cold No No No No

Eel Cold No No No No

Dolphin Warm Yes No No Yes

Spiny 
Anteater

Warm No Yes Yes Yes

Gila 
Monster

Cold No Yes Yes No

Testing Set

Test error rate: 30%



Name Body 
Temp.

Gives 
Birth

4
legged

Hibernates Class 
(Mammal?)

Human Warm Yes No No Yes

Pigeon Warm No No No No

Elephant Warm Yes Yes No Yes

Leopard 
Shark

Cold Yes No No No

Turtle Cold No Yes No No

Penguin Cold No No No No

Eel Cold No No No No

Dolphin Warm Yes No No Yes

Spiny 
Anteater

Warm No Yes Yes Yes

Gila 
Monster

Cold No Yes Yes No

Testing Set

Test error rate: 30%
Reasons for misclassifications:
• Mislabeled records in training 

data
• “Exceptional case”

• Unavoidable
• Minimal error rate 

achievable by any classifier



• Training error rate: 0%
• Test error rate: 30%
• overfitting

• Training error rate: 20%
• Test error rate: 10%



Overfitting and Decision Trees

¨ The likelihood of overfitting occurring increases as a 
tree gets deeper
¤ the resulting classifications are based on smaller subsets 

of the full training dataset 

¨ Overfitting involves splitting the data on an 
irrelevant feature.



Pruning: Handling Overfitting in Decision Trees

¨ Tree pruning identifies and removes subtrees within a decision 
tree that are likely to be due to noise and sample variance in 
the training set used to induce it.

¨ Pruning will result in decision trees being created that are not 
consistent with the training set used to build them.

¨ But we are more interested in created prediction models that 
generalize well to new data!

1. Pre-pruning (Early Stopping)
2. Post-pruning



Pre-pruning Techniques

1. Stop creating subtrees when the number of 
instances in a partition falls below a threshold

2. Information gain measured at a node is not 
deemed to be sufficient to make partitioning the 
data worthwhile

3. Depth of the tree goes beyond a predefined limit
4. … other more advanced approaches
Benefits: Computationally efficient; works well for small datasets.
Downsides: Stopping too early will fail to create the most effective trees.



Post-pruning
1. Decision tree initially grown to its maximum size
2. Then examine each branch
3. Branches that are deemed likely to be due to overfitting 

are pruned.
¨ Post-pruning tends to give better results than prepruning
¨ Which is faster?

¤ Post-pruning is more computationally expensive than 
prepruning because entire tree is grown



Post-pruning Techniques

1. Reduced Error Pruning
2. Cost Complexity Pruning



Reduced Error Pruning

¨ Starting at the leaves, each node is replaced with 
its most popular class.

¨ If the accuracy is not affected, then the change is 
kept.
¤ Evaluate accuracy on a validation set
¤ Set aside some of the training set as a validation set

¨ Advantages: simplicity and speed



Cost Complexity Pruning
¨ Nonnegative tuning parameter: α

¤ “Penalizing cost” / “complexity parameter”
¨ Will look at different pruned subtrees and compare 

their performance on a test sample
¨ α determines the trade-off between misclassification 

error and the model complexity
¤ Small α: penalty for larger tree is small
¤ Larger α: smaller trees preferred depending on # of errors



Post-Pruning Example

Example validation set:

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Table: An example validation set for the post-operative patient routing
task.

CORE- STABLE-
ID TEMP TEMP GENDER DECISION
1 high true male gen
2 low true female icu
3 high false female icu
4 high false male icu
5 low false female icu
6 low true male icu

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

  Core-Temp  
   [icu]   

  Gender  
   [icu]   

low

  Stable-Temp  
   [gen]   

high

icu

male

gen

female

gen

true

icu

false

Figure: The decision tree for the post-operative patient routing task.Induced decision tree from training data
• Need to prune?



Post-Pruning Example

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Table: An example validation set for the post-operative patient routing
task.

CORE- STABLE-
ID TEMP TEMP GENDER DECISION
1 high true male gen
2 low true female icu
3 high false female icu
4 high false male icu
5 low false female icu
6 low true male icu

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

  Core-Temp  
   [icu]   

  Gender  
   [icu] (0)   

 low

  Stable-Temp  
   [gen]   

 high

icu (0)

male

gen (2)

female

gen

 true

icu

 false

(a)

  Core-Temp  
   [icu]   

icu

low

  Stable-Temp  
   [gen] (2)   

high

gen (0)

 true

icu (0)

 false

(b)

  Core-Temp  
   [icu] (1)   

icu (0)

low

  Stable-Temp  
   [gen]   

high

gen (0)

true

icu (0)

false

(c)

Figure: The iterations of reduced error pruning for the decision tree in
Figure 7 [34] using the validation set in Table 7 [33]. The subtree that is
being considered for pruning in each iteration is highlighted in black.
The prediction returned by each non-leaf node is listed in square
brackets. The error rate for each node is given in round brackets.



Occam’s Razor

General Principle (Occam’s Razor): given two models 
with same generalization (testing) errors, the simpler
model is preferred over the more complex model

¤ Additional components in a more complex model 
have greater chance at being fitted purely by 
chance

Problem solving principle by philosopher William of Ockham (1287-1347)



Advantages of Pruning

1. Smaller trees are easier to interpret 
2. Increased generalization accuracy. 



Regression Trees

¨ Target Attribute:
¤ Decision (Classification) Trees: qualitative
¤ Regression Trees: continuous

¨ Decision trees: reduce the entropy in each subtree
¨ Regression trees: reduce the variance in each subtree

¤ Idea: adapt ID3 algorithm measure of Information Gain to 
use variance rather than node impurity



Regression Tree Splits

¨ Gain: “goodness of the split”
¨ larger gain => better split (better 

test condition)

¨ Impurity (variance) at a 
node:

Classification Trees Regression Trees

å
=

-=D
k

j
j

j vI
N
vN

parentIgain
1

)(
)(

)()(

• I(n) = impurity measure at node n
• k = number of attribute values
• N(n) = total number of records at child node n
• N = total number of records at parent node

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

The impurity (variance) at a node can be calculated using
the following equation:

var (t ,D) =

Pn
i=1

�
ti � t̄

�2

n � 1
(3)

We select the feature to split on at a node by selecting the
feature that minimizes the weighted variance across the
resulting partitions:

d[best ] = argmin
d2d

X

l2levels(d)

|Dd=l |
|D| ⇥ var(t ,Dd=l) (4)

¨ Select feature to split on that 
minimizes the weighted variance 
across all resulting partitions:

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

The impurity (variance) at a node can be calculated using
the following equation:

var (t ,D) =

Pn
i=1

�
ti � t̄

�2

n � 1
(3)

We select the feature to split on at a node by selecting the
feature that minimizes the weighted variance across the
resulting partitions:

d[best ] = argmin
d2d

X

l2levels(d)

|Dd=l |
|D| ⇥ var(t ,Dd=l) (4)



Need to watch out for Overfitting

¨ Want to avoid overfitting:
¤ Early stopping criterion
¤ Stop partitioning the 

dataset if the number of 
training instances is less than 
some threshold

¤ (5% of the dataset) 

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

-u u u u u u u
Target(a)

-u u u u u u u
Underfitting(b)

-u u u u u u u
Goldilocks(c)

-u u u u u u u
Overfitting

h hh hhhh
(d)

Figure: (a) A set of instances on a continuous number line; (b), (c),
and (d) depict some of the potential groupings that could be applied
to these instances.



Example

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Table: A dataset listing the number of bike rentals per day.

ID SEASON WORK DAY RENTALS
1 winter false 800
2 winter false 826
3 winter true 900
4 spring false 2 100
5 spring true 4 740
6 spring true 4 900

ID SEASON WORK DAY RENTALS
7 summer false 3 000
8 summer true 5 800
9 summer true 6 200

10 autumn false 2 910
11 autumn false 2 880
12 autumn true 2 820

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Season

Work Day

winter

Work Day

spring

Work Day

 summer Work Day

 autumn

ID Rentals Pred.
3 900 900

true

ID Rentals Pred.
1 800 8132 826

 false

ID Rentals Pred.
5 4,740 4,8206 4,900

true

ID Rentals Pred.
4 2,100 2,100

false

ID Rentals Pred.
8 5,800 6,0009 6,200

 true

ID Rentals Pred.
7 3,000 3,000

 false

ID Rentals Pred.
12 2,820 2,820

 true

ID Rentals Pred.
10 2,910 2,89511 2,880

false

Figure: The final decision tree induced from the dataset in Table 5
[25]. To illustrate how the tree generates predictions, this tree lists the
instances that ended up at each leaf node and the prediction (PRED.)
made by each leaf node.

Feature Selection Cont. Desc. Features Cont. Targets Noise and Overfitting Ensembles Summary

Table: The partitioning of the dataset in Table 5 [25] based on SEASON
and WORK DAY features and the computation of the weighted
variance for each partitioning.

Split by |Dd=l |
|D|

Weighted
Feature Level Part. Instances var (t ,D) Variance

SEASON

’winter’ D1 d1,d2,d3 0.25 2 692

1 379 331 1
3

’spring’ D2 d4,d5,d6 0.25 2 472 533 1
3

’summer’ D3 d7,d8,d9 0.25 3 040 000
’autumn’ D4 d10,d11,d12 0.25 2 100

WORK DAY
’true’ D5 d3,d5,d6,d8,d9,d12 0.50 4 026 346 1

3 2 551 813 1
3’false’ D6 d1,d2,d4,d7,d10,d11 0.50 1 077 280



Advantages and Disadvantages of Trees 
(Compared to Linear Models)

Two-classes: {green, blue}                                                           Decision boundary: linear

Linear model can perfectly separate the two regions.
• What about a decision tree? Decision tree cannot separate regions.



Advantages and Disadvantages of Trees 
(Compared to Linear Models)

Two-classes: {green, blue}                                                      Decision boundary: nonlinear

Linear model cannot perfectly separate the two regions.
• What about a decision tree? A Decision tree can!



Decision Tree can Separate Nonlinear Regions



Advantages and Disadvantages of Trees

¨ Trees are very easy to explain
¤ Easier to explain than linear 

regression
¨ Trees can be displayed graphically 

and interpreted by a non-expert
¨ Decision trees may more closely 

mirror human decision-making
¨ Trees can easily handle qualitative 

predictors
¤ No dummy variables

¨ Trees usually do not have same 
level of predictive accuracy as 
other data mining algorithms

DisadvantagesAdvantages

But, predictive performance of decision trees 
can be improved by aggregating trees.
• Techniques: bagging, boosting, random 

forests



Decision Tree Advantages
¤ Inexpensive to construct
¤ Extremely fast at classifying unknown records

n O(d) where d is the depth of the tree
¤ Presence of redundant attributes does not adversely affect the 

accuracy of decision trees
n One of the two redundant attributes will not be used for splitting once 

the other attribute is chosen
¤ Nonparametric approach

n Does not require any prior assumptions regarding probability 
distributions, means, variances, etc.
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