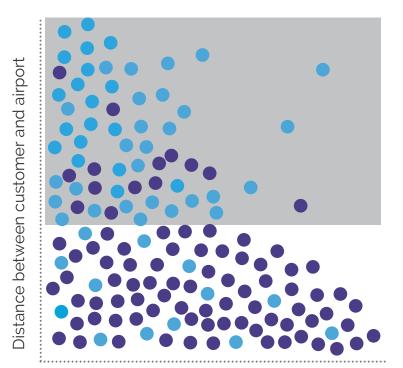


Rodrigo Camacho Transitioning from Rules to Machine Learning

Why are rules insufficient

Machine Learning distinguishes many shades of grey, instead of seeing only black and white

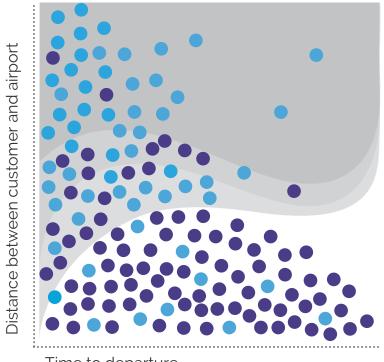
Rule-based system*



Time to departure

* a rule that automatically rejects people who buy from a place that is over 1000 km from the departure airport

Machine Learning



Time to departure

Machine Learning proves to be better for fraud prevention

High accuracy

Ability to pinpoint trends difficult to spot by human

Predictability

Easy to follow progress regarding KIPs

Sustainability and flexibility

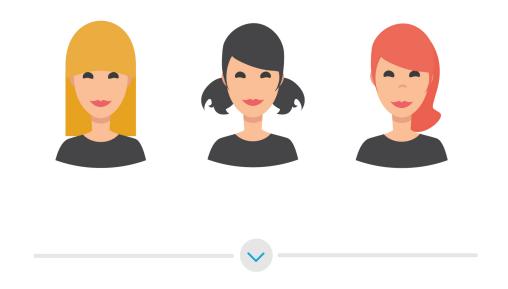
The ML engine adaptable to new frauds without multiplying rules with impossible to understand impact

How does Machine Learning work? Please bare with me on this one - it will make sense

Thousand variables allow you to distinguish people Setting simple rules could lead us to wrong conclusions

Let's use rules to tell people apart

- Color of eyes
- Size of lips
- Colour of their shirt

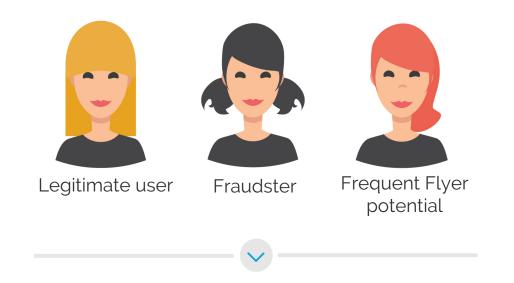


According to the rules we defined these three people are the same

Thousand variables allow you to distinguish people Setting simple rules could lead us to wrong conclusions

Let's use rules to tell people apart

- Color of eyes
- Size of lips
- Colour of their shirt



According to the rules we defined these three *people* are the same

611 ¢ 1 (Ľ Ŷ **†** (11) Ý -----÷ ÷ ----\$ ¢ 1 Ì 1 ¢ 4 • đ 7 1 Ŷ **t** ¢ É 615 ¢ Ŷ ¢ Ý ------¢ \$ ----<u>.</u> ŧ $\mathbf{\mathbf{t}}$ 611 Ŷ T ę Ţ T ----÷ 4 ٢ 600 ÷ ----1 Ð Y 620 T ł Ŷ 9 T -----ę Ì 4 ----**P** ÷ ÷ T ¢ 1 Ţ ¢ \bullet ÷ T ----T 4 -1-**(** • ę Y Ŷ ----1 ę re . ¢ -1-**(** Y A. Y

And what if there were more of them?

Thanks to ML you can not only tell the fraudsters from legitimate users...

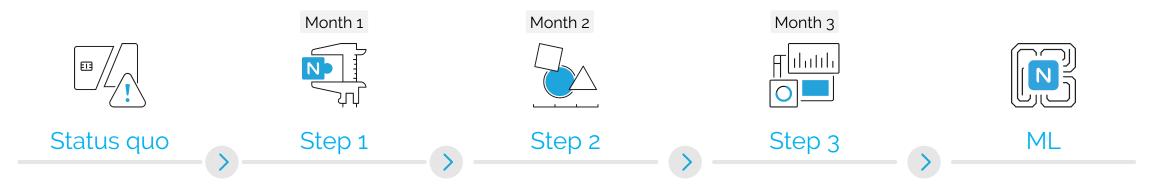
... but also segment clients

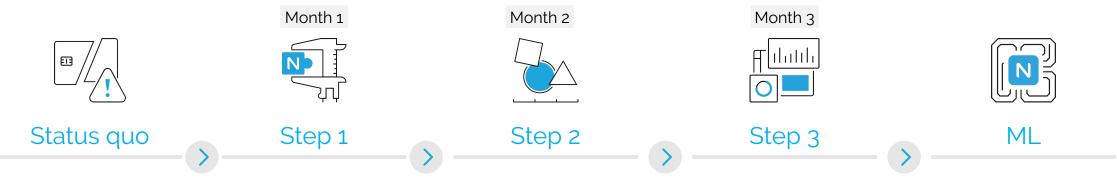
9 9 9



Nethone 10

How to move from rule-based system into ML





Rule-based system

Tracked KPIs:

- Chargeback ratio
- Manual reviews
- Approval rate

Step 1

Status quo

Rule-based system

Tracked KPIs:

- Chargeback ratio
- Manual reviews
- Approval rate

rules

ML model that detects chargebacks missed by the previous model

Step 3

>

Step 1

ML model that

ML model that

by the previous

rules

detects

model

replicates current

chargebacks missed

Status quo

Tracked KPIs:

- Chargeback ratio
- Manual reviews
- Approval rate

Month 2

Quantitative measure of the likelihood that transaction will be rejected by current logic

Allowing more traffic to go through

The possibility of higher chargeback rate is **secured by chargeback model**

Month 3

Step 3

ML

Status quo

Tracked KPIs:

- Chargeback ratio
- Manual reviews
- Approval rate

Month 1

Step 1

ML model that replicates current rules

ML model that detects chargebacks missed by the previous model

Month 2

Step 2

Quantitative measure of the likelihood that transaction will be rejected by current

Allowing more traffic to go through

The possibility of higher chargeback rate is **secured by** chargeback model

Month 3

Real life results of the newly built ML models

Iterations and retraining

Status quo

Tracked KPIs:

- Chargeback ratio
- Manual reviews
- Approval rate

Month 1

Step 1

ML model that replicates current rules

ML model that detects chargebacks missed by the previous model

Month 2

Step 2

Quantitative measure of the likelihood that transaction will be rejected by current

Allowing more traffic to go through

The possibility of higher chargeback rate is **secured by** chargeback model

Month 3

Step 3

Real life results of the newly built ML models

Iterations and retraining

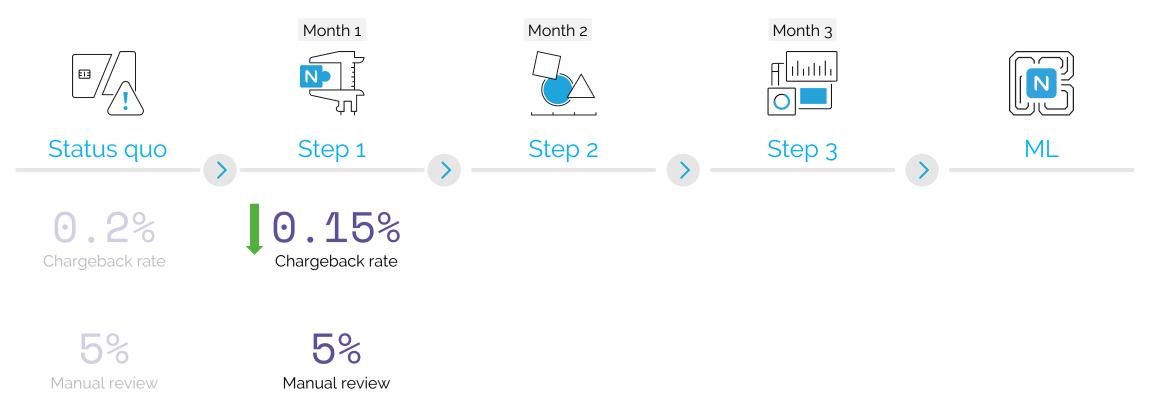
ML

Enhancement of all tracked KPIs

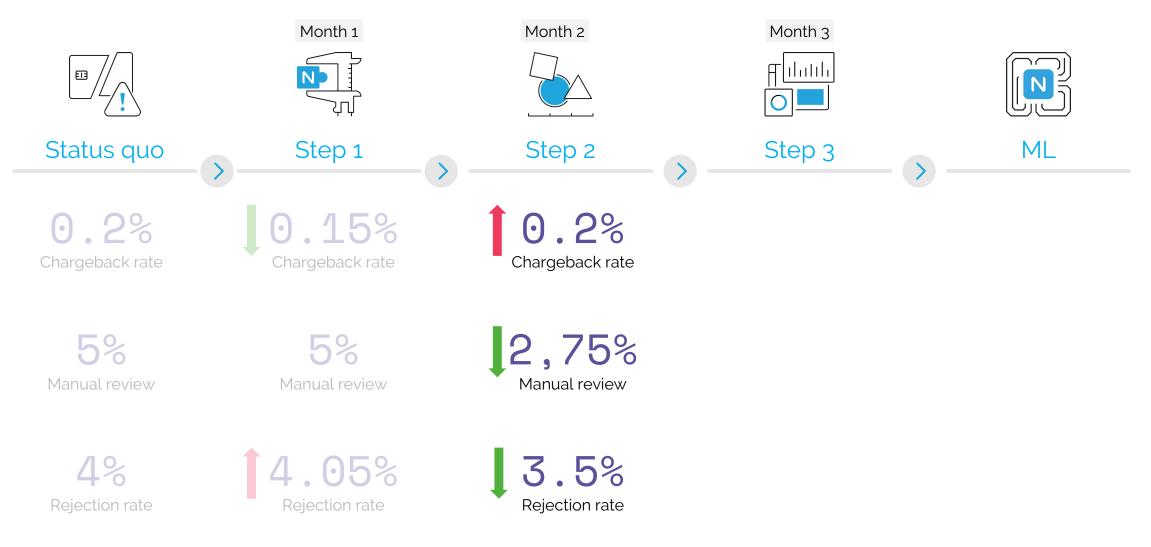
0.2% Chargeback rate

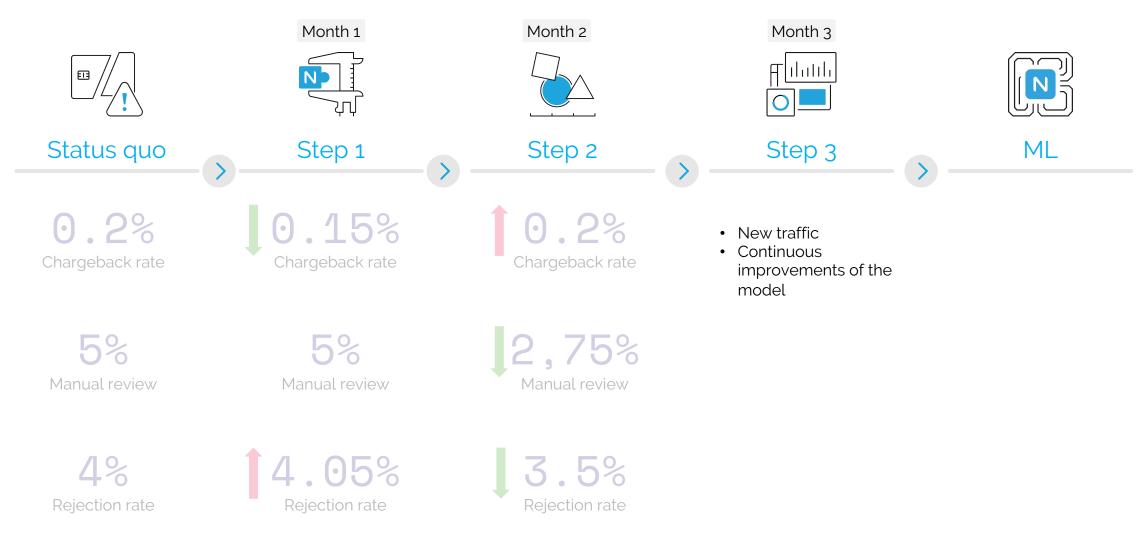
5% Manual review

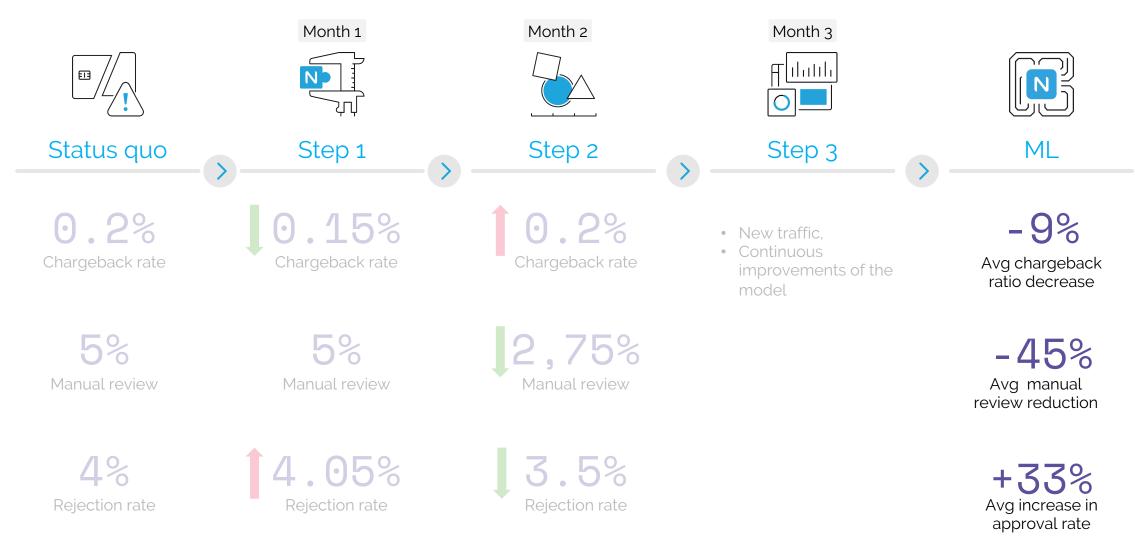
4% Rejection rate



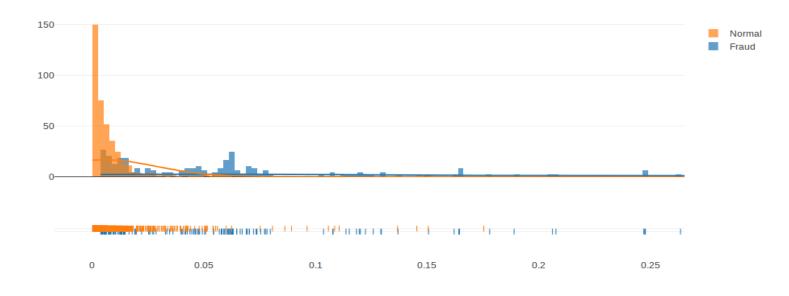
4% Rejection rate







What about velocity rules? They can be replaced by a similarity model



Was this configuration seen among last 10000 users?

- 1,6 GHz Intel Core i5
- Google Chrome not up to date
- Positive flight time
- VPN
- User-agent Spoofing
- ... over 5000 other traits

The key is to have huge volumes of data to fuel the engine

Hardware, software and browser intelligence

- GPU characteristics
- GPU detection
- Virtual machine detection
- Number of processor cores
- Mobile device detection
- Mobile emulation detection
- Battery
- Server OS detection
- DOM rendering engine
 anomalies
- HTML quirks
- Special cookies (based on HTML technologies, self regenerating)
- Popular fraudster's tools
 detection
- Spoofing detection
- Incognito mode detection
- Browser quirks
- Various fingerprints

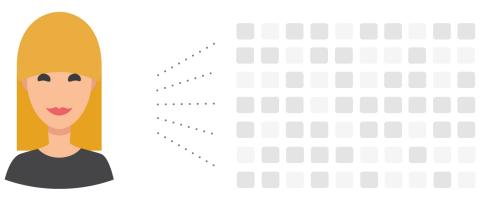
Behavioural data

- Mouse/Touchpad
- movements
- Swipes/Touches or scrolls
- Keystroke dynamics
- Gyro readings
- Accelerometer
- Clipboard usage

Network intelligence

- IP geolocation
 - TCP/IP stack analysis and anomalies detection
 - Connection type detection (Wi-Fi, cellular) based on low level network analysis and/or browser features checks
 - OS Fingerprinting
- VPN/Proxy/Tunneling
 detection
- Tor detection
- Public IP leak /Local IP leak
- Server-based connection
 detection

ML can go through **125 times more variables** and find complex correlations that increase accuracy of predictions



5,000+ attributes

Nethone

Rodrigo Camacho Transitioning Rules to Machine Learning

