PeHaoepmm 3D no-B3poc/iomy

ApTtem KyHel,

3D — 31O choKHOo!

3D B bpay3epe

* Arpobl

* CTaTU4YHbIN peHaep

* CneunanbHble adpdeKTbl
* 360 naHopambl

* 3D peaaKTopbl

* 2D nutepdenc

* 3D moaenu

3D aBUKOK

[Nonb30oBaTeNbCKUN BBOA,
[eomeTpunA Ceet

YacTtuupbl

MaTepuansl

AHUMaUUKN CueHa

MopduHr
TeKkcTypbl

Lenpep
CKeneTHaa aHMMaUUA
Kamepa
MocT o6paboTKa

BubanoTteka ¢ maTemMaTUKoOMn

3a4yem nmcaTb CBOW

e lonro n3ay4atb, bbiCTpee HanmncaTb
* HeT nogxogAaLimx peweHmnm, Hanpumep CMapT Yacbl nam TB
* CIMWKOM YHUBEpPCaneH, HaknaablBaeT OrpaHU4YeHuA

* A3y4nTb TEXHONOTUIO

C yero HayaTb

2-0-0 e

XYAO0XKHUK CueHa JKCnopT Pa3paboTumk

Cnucok BepUIMH, € KOOpAMHaTaMu (X,y,2z[,W]), W SBIseTcs He OOs3aTelbHbIM U IO id "LOD3spShape-1ib" name "LOD3spShape"
ymomuanuo 1.0.

v 0.123 0.234 0.345 1.0 id "LOD3spShape-lib-positions" name "position"

Vo o... :

r count "2108" offset "0" source "#LOD3spShape-lib-positions-array" stride "3"
I name "X" type "float"
I name "Y" type "float"

TekcTypHble KOOpAMHATHI (u,V[,W]), W sBIsSeTCs He 00s3aTe]bHbIM M MO yMomdaHuio 0.

TekcTypHast KOOpAMHATA IO Yy MOXeT OBbITb yKa3aHa Kak 1 - v, ¥ NP 3TOM IO X = U I name "Z" type "float"

vt 0.500 -1.352 [0.234]

vt ...

7.#'1“IopMam/{ (X,¥,2); HOPMATH MOTYT GLITE HE | id "LOD3spShape-lib-normals" name "normal"
’ r r -

)
r count "2290" offset "@" source "#LOD3spShape-lib-normals-array" stride "3"

I name "X" type "float"

I name "Y" type "float"

vn 0.707 0.000 0.707
vn ...
e I name "Z" type "float"
IlapameTpbl BepmMH B mpocTtpaicTBe (u [,Vv] [,w]); cBoGomHas (popMa reoMeTpuuecKoro

COCTOSIHMSL (CMOTPH HILKE)

vp 0.310000 3.210000 2.100000 id "LOD3spShape-lib-map1" name "mapl"

VP ... ‘
“ee c r count "2277" offset "@" source "#LOD3spShape-lib-mapl-array" stride "2"
OnpejieneHusl MOBEPXHOCTU (CTOPOH) (CMOTPH HIXKeE) I | name "S" type "float"

f123 I name "T" type "float"
£ 3/1 4/2 5/3 y
f 6/4/1 3/5/3 7/6/5

£ 6//1 3//3 7//5 ; id "LOD3spShape-lib-vertices"

£f ... in semantic "POSITION" source "#LOD3spShape-lib-positions"
prnna count "2144" material "blinn3SG"
g Groupl in offset "0" semantic "VERTEX" source "#LOD3spShape-lib-vertices"
offset "1" semantic "NORMAL" source "#LOD3spShape-lib-normals"
#‘(‘) in offset "2" semantic "TEXCOORD" source "#LOD3spShape-lib-mapl" set "@"
OBEKT
o Objectl

Obj Collada

GLTF (GL Transmission Format) 2.0

[MpoToKon nepegaum 3D 0ObeKTOB.

* 3710 cneundpukauma ot Khronos Group

* JSON

* bonblwmne aaHHble B ABOUYHOM dopmaTe

* [loapeprKMBaET BCe, YTO TPpebyeTcAa COBpEMEHHOMY ABUMKKY
* I3Ha4YanbHO OpneHTUpoBaH Ha Beb n WebGL

* PaCIJJl/IpFIEN\bIﬁ yepes AONOoJIHEHUNA

GLTF

CneundunKayma:
https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md

Habop TectoBbix moaeneun:

https://github.com/KhronosGroup/gITF-Sample-Models/tree/master/2.0

CrnnCcoK ABUXKKOB:
https://github.com/cx20/gltf-test

https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md
https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0
https://github.com/cx20/gltf-test

gITF - what the (/?

An overview of the basics of \,/\/\
S ForomZ

the GL Transmission Format 7 2.0, <

T
ITF was designed and specified by the Khronos
Group, for the efficient transfer of 3D content
over networks

The core of gITF is a JSON file that describes the
structure and composition of a scene containing
3D models. The top-level elements of this file are:
scenes, nodes

Basic structure of the scene

cameras
View configurations for the scene

es
Geometry of 3D objects

buffers, bufferViews, accessors
Data references and data layout descriptions

materials
Definitions of how objects should be rendered

textures, images, samplers
Surface appearance of objects

Information for vertex skinning

animations
Changes of properties over time

These elements are contained in arrays. References
between the objects are established by using their
indices to look up === the objects in the arrays.

It is also possible to store the whole asset in a single
binary gITF file. In this case, the JSON data is stored
as a string, followed by the binary data of buffers

or images.

Further resources.

The Khvonos o landing page
https://www.khronos.org

KHR NOS

cameras
Each of the nodes may refer to one of the cameras
that are defined in the gITF asset.

0 There are two types of
cameras: perspective
and orthographic
ones, and they define
the projection matrix.

e “passpective
«

The value for the far
clipping plane distance
of a perspective camera
2far, is optional. When
it is omitted, the camera
uses a special projection
matrix for infinite
projections.

o "orthographic
mmm»r «
o

When one of the nodes refers to a camera, then
an instance of this camera is created. The camera
matrix of this instance is given by the global
transform matrix of the node

textures, images, samplers
The textures contain information about textures
that may be applied to rendered objects: Textures
are referred to by materials to define the basic
color of the objects, as well as physical properties
that affect the object appearance.
txtures: (The texture consists of a
¢ reference to the source of
ol the texture, which is one of
the images of the asset, and
a reference to a sampler.

The images define the image
data used for the texture.

This data can be given via

a URI that is the location of
an image file, or by a
reference to a bufferView
and a MIME type that
defines the type of the image
data that is stored in the
buffer view.

41001 pg

«
buttarviow': 3

The samplers describe the
wrapping and scaling of
textures. (The constant

. values correspond to
OpenGL constants that
can directly be passed to
glTexParameter)

Concepts
The conceptual relationships between the top-level
elements of a gITF asset are shown here:

scene

node

\

camera mesh skin

material accessor <& animation

v |

texture bufferView

sampler image buffer

Binary data references
The images and buffers of a gITF asset may refer to
external files that contain the data that are required
for rendering the 30 content

The buffers refer to binary
files (BIN) that contain

ex01.bin" geometry. or animation
d

Bycatengen: 102000
The images refer to image
files (PNG, JPG...) that
contain texture data for
the models.

imageot pog

The data is referred to via URIs, but can also be
included directly in the JSON using data URIs. The
data URI defines the MIME type, and contains the
data as a base64 encoded string:

Buffer data

scenes, nodes

The gITF JSON may contain scenes (with an optional
default scene). Each scene can contain an array of
indices of nodes.

meshes

The meshes may contain multiple mesh primitive:

These refer tothe geometry data tht s required

for rendering the me
Each mesh primitive has a
rendering mode, which is
a constant indicating whether
it should be rendered as
POINTS, LINES, O TRIANGLES
The primitive also refers to
indices and the attributes
of the vertices, using the
indices of the accessors for
this data. The material that
should be used for rendering
is also given, by the index of
the material

Each of the nodes can
contain an array of indices
of its children. This allows
modeling a simple scene
hierarchy:

S—
acenes®: [

Each attribute is defined by mapping the attribute
name to the index of the accessor that contains the
attribute data. This data will be used as the vertex

butes when rendering the mesh. The attributes
may, for example, define the POSITION and the
NORMAL of the vertices:

A node may contain a local
transform. This can be given as
a column-major matrix array,
or with separate translation,
rotation and scale properties,
where the rotation s given as a

buffers, bufferViews, accessors
The buffers contain the data that is used for the
geometry of 3D models, animations, and skinning.
The bufferViews add structural information to this
data. The accessors define the exact type and
layout of the data

- « Each of the buffers refers
to a binary data file, using
2 URL. It is the source of
one block of raw data with
the given byteLength
Each of the bufferViews
refers to one buffer. It
has a byteOffset and a
byteLength, defining the
part of the buffer that
belongs to the bufferView,
and an optional OpenGL
buffer target.
The accessors define how
the data of a bufferView is
interpreted. They may
define an additional
byeOffset referring to the

Sparse accessors
When only few elements of an accassos differ from
a default value (which is often the case for morph
targets), then the data can be given in a very
compact form using a sparse data description
The accessor defines the
type of the data (here,
scalar float values), and
the total clement count
The sparse data block
contains the count of
sparse data elements.
The values refer to the
bufferView that contains
the sparse data values.
The target indices for
the sparse data values
are defined with a
reference to a
bufferView and the
componentType

rostTION [EE

S 5 O N M KK

£ I A

quaternion. The local transform

matrix is then computed as NORMAL
M

where 7, R and s are the matrices

that are created from the

translation, rotation and scale.

The global transform of a node

is given by the product of all local

transforms on the path from the

root to the respective node.

~

A mesh may define multiple morph targets. Such
1 a morph target describes a deformation of the
Each node may refer to a mesh or “nedes™: [original mesh.

a camera, using indices that point {

into the meshes and cameras arrays.
These elements are then attached

to these nodes. During rendering,
instances of these elements are

To define a mesh with morph
targets, each mesh primitive
can contain an array of
targets. These are dictionaries
that map names of attributes

mast: 4

created and with the

Image data (PNG):

data: inage/png basesd, LVBORK
Version 2.0a

oITF version 2.0

The Khvonos gTF Gthub repository
github.com/Khrony

sGroup/gITF

gITF and the gITF logo
are trademarks of the
Khronos Group Inc.

skins
A gITF asset may contain the information that is
necessary to perform vertex skinning. With vertex
skinning, it is possible to let the vertices of a mesh
be influenced by the bones of a skeleton, based on
its current pose.
rosen Anode that refers to a mesh
i may also refer to a skin.

axina®: [

The skins contain an array
of joints, which are the
indices of nodes that define
the skeleton hierarchy, and
the inverseBindMatri

matrix for each joint.
The skeleton hierarchy is
modeled with nodes, just
like the scene structure:
Each joint node may have a
local transform and an array
of children, and the "bones’
of the skeleton are given
implicitly, as the connections
between the joints.
The mesh primitives of a
skinned mesh contain the
POSITION attribute that
refers to the accessor for the
vertex positions, and two
special attributes that are
required for skinning
JOINTS_0 and a WEIGHTS_0
attribute, each referring to
an accessor.
The JoInTs_0 attribute data
contains the indices of the
joints that should affect the
vertex
The WEIGHTS_0 attribute data
defines the weights indicating
how strongly the joint should
influence the vertex

o)
o

O
o @) (@)
Q

st

From this information, the
skinning matrix can be
computed.

This is explained in detail in
“Computing the skinning
matrix"

to the indices of accessors that
! contain the displacements of
The translation, rotation and scale properties of a the geometry for the target
node may also be the target of an animation: The
animation then describes how one propert;
changes over time. The attached objects will move
accordingly, allowing to model moving objects or
camera flights.

global transform of the node.

The mesh may also contain an
array of weights that define
the contribution of each morph
target to the final, rendered
state of the mesh.

Nodes are also used in vertex skinning: A node
hierarchy can define the skeleton of an animated
character. The node then refers to a mesh and to
a skin. The skin contains further information about
how the mesh is deformed based on the current
skeleton pose.

Combining multiple morph targets with different
weights allows, for example, modeling different
facial expressions of a character: The weights can
be modified with an animation, to interpolate
between different states of the geometry.

Computing the skinning matrix
The skinning matrix describes how the vertices of a mesh are transformed based on the current pose of a
skeleton. The skinning matrix is a weighted combination of joint matrices.

Computing the joint matrices
The skin refers to the inverseBindMatrices. This
is an accessor which contains one inverse bind

For each node whose index appears in the joints of
the skin, a global transform matrix can be computed.
matrix for each joint. Each of these matrices It transforms the mesh from the local space of the
transforms the mesh into the local space of the. joint, based on the current global transform of the
joint joint, and is called globalJointTransform
B From these matrices, a jointMatzix may be
computed for each join

Any global transform of the node that contains
the mesh and the skin is cancelled out by
pre-multiplying the joint matrix with the inverse
of this transform.

For implementations based on OpenGL or WebGL.,
the jointMatrix array will be passed to the
vertex shader as a uniform.

int matrices to create the skinning matrix
The primitives of a skinned mesh contain the POSITION,
JOINT and WEIGHT attributes, referring to accessors.
These accessors contain one element for each vertex

Vertex Shader

ight.x * u_jointatrix

The data of these accessors is passed as attributes to
the vertex shader, together with the jointMatrix array.
In the vertex shader, the skinMatrix is computed. It is
a linear combination of the joint matrices whose indices
are contained in the JOINTS_0 attribute, weighted with
the WEIGHTS_0 values:

= a_weight.x a_weight.y
The skinMatrix Y oteeeeil] B
transforms the
vertices based on
the skeleton pose, teix = 0
before they are
transformed with
the model-view:
perspective matrix.

0.75 + sotntraceix

COpp——}
uateix(il + 0.78

011 + 20

about skinning in C
i the COLLADA 5

The values are written into the final accessor data
at the positions that are given by the indices:

start of the bufferView,
and contain information
) about the type and layout

1 of the bufferView data: =

) DX EX)

ilaTsT7]

(count=4)
73] values
The data may, for example, be defined as 2D vectors
of floating point values when the type is "VEC2
and the componentType is GL_FLOAT (5126). The
range of all values is stored in the min and max
propert
The data of multiple accessors may be interleaved
inside a bufferView. In this case, the bufferView will
have a byteStride property that says how many
bytes are between the start of one element of an
accessor, and the start of the next.

indices

) EFE3 3) £33 3) il)
Final accessor data with 10 float values
The buffer data is read from a file

o 4 s

This data may, for example,
be used by a mesh primitive,
to access 20 texture
coordinates: The data of the
bufferView may be bound
as an OpenGL buffer, using
glBindButfer. Then, the
properties of the accessor
may be used to define this
buffer as vertex attribute
data, by passing them to
glVertexAttribPointer
when the bufferView buffer
is bound.

The bufferView defines a segment of the buffer data:
4 8 12 1620

The accessor defines an additional offset
16 20

The bufferView defines a stride between the elements:
8 12 16 20 2

elements are 2D float vectors

animations

A gITF asset can contain animations. An animation can be applied to the properties of a node that define
the local transform of the node, or to the weights for the morph targets

Each animation consists of two elements: An array of channels and an
array of samplers.

Each channel defines the target of the animation. This target usually
refers to a node, using the index of this node, and to a path, which

is the name of the animated property. The path may be "tzanslation"
“rotation” or "scale", affecting the local transform of the node, or
“weights, in order to animate the weights of the morph targets of
the meshes that are referred to by the node. The channel also refers
to a sampler, which summarizes the actual animation data.

A sampler refers to the input and output data, using the indices of
accessors that provide the data. The input refers to an accessor with
scalar floating-point values, which are the times of the key frames of
the animation. The output refers to an accessor that contains the
values for the animated property at the respective key frames. The
S el
may be "1 "STER", "CATMU LINE", Or "CUBICSPLINE"

Animation samplers

During the animation, a *global® animation time (in seconds) is advanced

Global time:

The sampler looks up the key frames for
the current time, in the input data.

The corresponding values of the output
data are read, and interpolated based on
the interpolation mode of the sampler.

The interpolated value is forwarded
o the animation channel target.

Animation channel targets
The interpolated value that is provided by an
animation sampler may be applied to different
animation channel targets

Animating the weights for the morph targets that
are defined for the primitives of a mesh that is
attached to a node:

origial mesh

Animating the translation of a node:

.\

1

materials

Each mesh primitive may refer to one of the materials that are
contained in a gITF asset. The materials describe how an object
should be rendered, based on physical material properties. This
allows to apply Physically Based Rendering (PBR) techniques,
to make sure that the appearance of the rendered object is
consistent among all renderers

The default material model is the Metallic-Roughness-Model.
Values between 0.0 and 1.0 are used to describe how much the
material characteristics resemble that of a metal, and how rough
the surface of the object is. These properties may either be
given as individual values that apply to the whole object, or be
read from textures.

Roughness

025
Metal

mataziate®: The properties that define a material in the Metallic-Roughness-Model

U enmeatticnoogmmnss { are summarized in the pbrMetallicRoughness object:
basecolortexture-: { The baseColorTexture is the main texture that wil be applied to the
object. The baseColorFactor contains scaling factors for the red, green,

blue and alpha component of the color. If no texture is used, these

values will define the color of the whole object

The metallicRoughnessTexture contains the metalness value in

the "blue” color channel, and the roughness value in the "green* color

channel. The metallicFactor and roughnessFactor are multiplied

with these values. If no texture is given, then these factors define

the reflection characteristics for the whole object.

3,101
astextorert

In addition to the properties that are defined via the Metallic-Roughness-
Model, the material may contain other properties that affect the object
appearance:

« The normalTexture refers to a texture that contains tangent-space
normal information, and a scale factor that will be applied to these
normals.

The occlusionTexture refers to a texture that defines areas of the
surface that are occluded from light, and thus rendered darker. This
information is contained in the “red" channel of the texture. The
occlusion strength is a scaling factor to be applied to these values
The emissiveTexture refers to a texture that may be used to
illuminate parts of the object surface: It defines the color of the

light that is emitted from the surface. The emissiveFactor contains
scaling factors for the red, green and blue components of this texture.

Material properties in textures The texture references in a material always
mashest: [contain the index of the texture. They may
« also contain the texCoord set index. This

is the number that determines the
TEXCOORD_<n> attribute of the rendered
mesh primitive that contains the texture
coordinates for this texture, with 0 being
the default

ushed gold",
oughnass™ (

taxtures®: [

i

Binary gITF files

In the standard gITF format, there are two options
for including external binary resources like buffer
data and textures: They may be referenced via
URIs, or embedded in the JSON part of the gITF
using data URIs. When they are referenced via URIS,
then each external resource implies a new
download request. When they are embedded as
data URIs, the base 64 encoding of the binary data
will increase the file size considerably.

To overcome these drawbacks, there is the option
to combine the gITF JSON and the binary data into
asingle binary gITF file. This is a little-endian file,
with the extension *.g1b. It contains a header,
which gives basic information about the version
and structure of the data, and one or more
chunks that contain the actual data. The first
chunk always contains the JSON data. The
remaining chunks contain the binary data.

12-byte header

chunk 0 (JSON) chunk 1 (Binary Buffer)

The magic entry has the vaiue 0x46546C67,

which is the ASCI string "g17e". Thi is used
o identiy the data as a binary gITF

T T e e T

ol |

fengih of the chunkbata, n bytes

|

mkType Value Gefines what type of Gata 1s Contained I the chunkData
It may be Ox4EAF534A, which is the ASCII string “Json, for JSON data, o
The vezsion defines the fileformat version. | | OX004E4942, which is the ASCII string "SI, for binary data.

The version described here is version 2.
The chankbata contain the actual dat of the chunk

the ASCIl representation of the JSON

il may be
The Langth s the fotal length of the fil, in bytes data, or binary buffe data.
Extensions

The gITF format allows extensions to add new
functionality, or to simplify the definition of
commonly used properties.

taxtures’ Extensions allow adding
arbitrary objects in the
extensions property of
other objects.

The name of such an
object is the same as the
name of the extension,
and it may contain
further, extension-specific
properties.

e ey e
e oTEaooat £ nas oo oo

B iy the top v ¥
‘extensionsUsed property.
S
T e e
A resired 0

R oad i aes

Lights_comen

Existing extensions
The following extensions are developed and maintained on the Khronos GitHub repository:
+ Specular-Glossiness Materials
This extension is an atemative to the default Metallc-Roughness material mogel: alows to define
the material properties based on specular and glossiness values.
Common Materials

WP/ nBlinnPhong
This extension allows the easy definition of non-physically based materials. This s based on the
Blinn-Phong model, which is often used in CAD applications. The material can be defined using
a diffuse, specular, and emissive color, and a shininess value.

Common Lights

This extension llows adding cfferent types of ights to the Scens hierarchy. This refers to point ights
spot lights and directional lights. The lights can be attached to the nodes of the scene hierarchy.

WebGL Rendering Techniques

With this extansion, it is possible to define GLSL shaders that shouid be used for rendering the
QITF asset in OpenGL or WebGL

GLTF cueHa

.gltf (JSON)

Node hierarchy, materials, cameras

.bin .png

Geometry: vertices and indices -jpg
Animation: key-frames
Skins: inverse-bind matrices

Textures

CTPYKTYpPa

scene

node

—Q— |

skin camera mesh

™

accessor material

animation \
v

bufferView texture

v -

buffer image sampler

YTO roe

* bydepol * Co3gaHne n NoAroToBKa AAHHbIX
ana GPU

* YnpasneHue coctoaHnem GPU

* Llenpepol

* TeKCTypbl

e COCTOSHME * BbI3OB OTPUCOBKM

* GLSL * 15

WebGL KoHBewnep

BepwunHbl

9

[lpoCTpaHCTBO
oTceyeHumA

PacTtepusauma

9

JKpaHHoe

MPOCTPAHCTBO

ObpaboTka nuKcenen

9

m oy
I']1] ;

TecT nukcensa

§vs

CbopKa npumnTnBa

dpenmbyddep

OcHoBHble 3D obbeKThl

* CueHa — cTpyKtypa Bcex 3D obbeKkToB

* Hopa — 06beKT cueHbl, UMeeT MOTOMKOB

* Mew — 0ObEKT C reomeTpuen u matepruanom

* Kamepa — 06nacTb CLUEHbI BUAMMAN Ha SKpaHe

* ICTOYHUK cBeTa — OOBbEKT UCNONb3YyeMbIN B MOAENN OCBELLEHUA

CTpyKTYypa

gltf.nodes u gltf.meshes w'\&
ma
0®
0[] —

& -
vl

HoAa

interface Node {
children: Array<Node | Mesh>;
model: Matrix4;
mode WWorld: Matrix4;
visible: boolean;
parent: Node;

MeLw

interface Mesh extends Node {
geometry: Geometry,
material: Material;
program: WebGLProgram,

[eomeTpuA

gltf.meshes.primitives -> gltf.accessors -> gltf.bufferViews -> gltf.buffers

interface Geometry {
indices: byte | short | int;
vertices: Vec3;
normals: Vec3;
uv: Vec?2;

/}\}'f N/ 7

Wt W A v
1 NAN

TpaHchopmaLumm

y

A

A

TpaHchopMaL MM

-

BpaweHune [NepemelleHune MacwTtabupoBaHue MopaenbHaa matpuua

MaTpuua TpaHchOpMaL A

MaTpuubl

const matrix = new Float32Array(I // BpaleHue
1, 0, 0, 0, matrix.rotate(Vector4);
0, 1, 0, 0, // MacuTabupoBaHue
matrix.scale(Vector3);
9, 0, 1, 9, // nepeMeleHune
2, 0, 0, 1 matrix.translate(Vector3);

const x = matrix[12];
const y = matrix[13];
const z = matrix[14];
const translation = new Vector3(x, y, z);

[1pO MaTpuULLb
MaTtpuual * MaTtpuua2 == MaTtpuuya2 * Matpuual

MaTtpual * MaTtpuua?

|

MaTtpuua2 * Matpuual

[TpOCTPaHCTBO OOBEKTOB

+ o0
; N

*

JIoKanbHOEe NPOCTPAHCTBO Mwuposoe nNpoCcTpaHCTBO

Muposaa maTpuua = MmnpoBaa pogutena * nokanbHaa 06beKTa

Moaens, B1UA, NPoOeKUUA

JKpaHHblE KOOPANHATBLI = MMPOBAA MaTpuLa obbeKkTa * maTpuua Bnaa
* maTpuua npoekuun * (LLMPMHaA M BbICOTA 3KPaHaA)

MelLw WebGL JKpaH
+ g ’
R L.
R R
Ot-1p01 1920x1080

Ot -100 po 100

Ramepa

// Cco30aeM KaMepy
const camera = gl.cr
// CMOTpUM Ha obbe
camera. LookAt (obj
// Macutabunpyem
camera.zoom(2);
// aHUMUpyeM Bpa
camera.animate({
type: 'loop
property: 'r
time: '10s'

});

0
.....

Perspective projection (P) i

Ramepa

interface Camera { interface PerspectiveProps {
nearPlane: float;

. . . farPlane: float;
projection: Matrix4; fieldOfView: float;

1 aspectRatio: float;

view: Matrix4;

camera.view = invert(camera.model)

camera.projection = calculatePerspective(perspectiveProps)

HepHbIN 3KpaH

gl_Position = projection *x view * model * vec4(position, 1.0);

|

gl_Position = vec4(position, 1.0); // -1.0 <= position >= 1.0

MICTOYHWUK CBeTa

interface Light {
position: Vec3;
color: Vec3;
power: float;

MaTepunan

gltf.materials

interface Material {
color: Vecd4 | Texture;
metallic: float | Texture;
roughness: float | Texture;
emissive: Vecd4 | Texture;
ao: float | Texture;
normal: Vec3 | Texture;

TeKcTypbl

gltf.textures -> gltf.images v gltf.samplers

w

LLlepoxoBaToCTb U
MEeTa/ININYHOCTb

Anbbepo 3aTeHeHune N3nyyeHue Hopmanwu

OCHOBHOMW UBeT

OKpy*atollee 3aTeHeHune

N3nyyeHune

C penbedom

be3 penveda

KapTa HOpManen

KapTa HoOpMmaien

MeTannmnyeckas NOBEPXHOCTb

MeTtann

HemeTann

LlepoxoBaToOCTb

nagkum Mpybbin

KROMMOHEHTLI OCBelleHNA

CBeT OKpyrKatoLwen cpeabl PacceAHHbIN cBeT OTpaKeHHbIN cBeT

Moaenun ocselleHMA

PacceAHHbIN CBeT:
* lambepT — paccesiHHbIN CBET
* OpeH-Haap — pacceaHHbIN cBeT

OTparKeHHbIN CBET:
* QOHr
* 130TponHbIN N AHK3OTPONHbIN Yopaa

dusnyeckn ToyHoe ocseweHune — o6u.|,ee Ha3BaHUWE TEXHUK, pea/IN3YyHLWNX
ocselweHune I'Ipl/l6fll/|)-KeHHOe K pead/IibHOMY

BXoAHble AaHHble

* \/ — Harnpas/sieHne Kamepbl
* L—HanpasneHune cBeTa
* N —Hopmanb mewa

* H— BeKTOp TOYHO nocepeamHe mexay Harnpas/ieHMEM Kamepbl N HanpaBaeHUEM CBETa

* R — oTpaeHue cBeTa OTHOCUTE/IbHO HOPMau

[MoBepXHOCTb

PN3nNYECKMU-TOUYHbIN PEHAEPUHT Mogenb oTparkeHna PoHra

OU3NYECKM-TOUYHbIN PEHAEPUHT

* Walt Disney Animation Studios
https://disney-animation.s3.amazonaws.com/library/s2012 pbs disney brdf notes v2.pdf

* Unreal Engine 4
https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf

https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf
https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf

LIBeToBOE NPOCTPAHCTBO

WebGL
255 *(0.5=128

MoHuTtop
255 * 0.5 =187

Llenaepsbl

LLlenaep — 3To nporpamma ana GPU

OpenGL

/. ‘ ~

BepLlwnHHbIN PparmeHTHbIN feomeTpuyecknnm Teccenauusa

BeplwWHHbIV Wengep v reomeTpus

// BXOQOHbIE OAHHbIE

layout (location = @) in vec3 position;
layout (location = 1) in vec3 normal;
layout (location = 2) in vec2 uv;

// BbIXOOHbLIE [OAHHbIE
out vec3 outNormal;
out vec2 outUV;
outUV = uv;
outNormal = normal;

gl_Position = projection *x view * model * vec4(position, 1.0);

OparMeHTHbIV Wenaep U matepman

layout (location = @) out vec4 color;
uniform Material A
vec3 baseColor;
vec3 L = normalize(lightPosition - position);

float NL = dot(N, L);

color = vecd4(baseColor * NL, 1.0);

[1po wennep

// GLSL

vec3 pos = vec3(1.0);
vec2 uv = vec2(0.0);
Vec3 sum = pos + uv;

// JS
gl.getShaderInfoLog(shader)

ERROR: 0:52: '+' : wrong operand types - no operation '+' exists that
takes a left-hand operand of type 'in highp 2-component vector of float'
and a right operand of type 'in highp 3-component vector of float' (or
there is no acceptable conversion)

KoHBeWep peHaepuHra

for (const mesh of scene) {
// NpuUBA3Ka lWlenaepos
gl.useProgram(mesh.program);
// NpuBga3Ka reoMeTpuu
gl.bindVertexArray(mesh.geometry.buffer);
// npuBga3ka MaTtpuy MVP
gl.bindBufferBase(gl.UNIFORM_BUFFER, @, mesh.geometry.matrices);
// NpuBA3Ka MaTepuana
gl.bindBufferBase(gl.UNIFORM_BUFFER, 1, mesh.material);
// pucyem
gl.drawElements(mesh.mode, mesh.geometry.length, mesh.geometry.type, 0);

KoHBenep peHaepuHra

AHMMaALMA

gltf.animations

interface AnimationObject {
interpolation: "LINEAR" | "STEP";
keys: Array<AnimationKey>;
meshes: Array<Mesh>;

type: "rotation" | "translation" | "scale";

I3

interface AnimationKey { “I”f "l‘fF'IW-‘ "'—W*":W-Z ‘Q‘rﬁ:m?'
time: number; ! ' ' '
value: Vec3; duration

AHMUMaLNMA

AnimationObject - 2
AnimationKey - 6

BpalleHune

Anroputmol [Mpoun3sosbHOE BpalleHne He3aBncumo ot nytu HeorpaHuyeHHoe BpalleHne
Turntable @ Vg Vv
Tumbler V @ V
Trackball

\\

Y

BpalleHune

3a6/10KMpPOBaHHAA OCb MpounsBonbHOE BpalleHue

MacwTtabunpoBaHMe cLEHDbI

Yron o630opa 15°,

Yron o63opa 60°
cABUr Kamepbl No Z

Bbibop 06beKTa Ha cueHe

Far plane

Mouse pos mapped onto near plane HIT \

Near plane

Camera view range

-
"y

W

Bbibop obbeKTa Ha cueHe

BoiBOAbI

* MUcnonb3ynte cneumdmnkaumnto GLTF, cnocobcTBynTE €e pa3BUTUIO
* MonpobyunTte caenatb YTo-TO B 3D NpaAamo ceroaHs

B KakmMx HanpaBAEHMAX MOXHO Pa3BMBATLCA?

CKeneTtHasa aHumallna

MopPUHr

PU3NYECKN TOYHbINM PEHOEPUHT

[TocT 06paboTKa

Cucrema vyactmy,

Redcube.js

Peno3sntopuu:
https://github.com/Reon90/redcube

Ilemo:
https://reon90.github.io/redcube/

https://github.com/Reon90/redcube
https://reon90.github.io/redcube/

