Iypes, lesls,

Twitter: @thewizardlucas

and why

GitHub: @lucasfcosta

Hat earthers

are bad at QA

WWW: lucasfcosta.com

-)) converge

http://lucasfcosta.com

PSSy

A/ 0 VAR W
Vome

B

y >4 -
N ~reas.
‘||".|~v|l'\"’»: 5

We must know our program
to make sure it does what it
IS supposed to do.

How do we get to
know the world?

EMPIRICISM

How do we get to
know the world?

EMPIRICISM

How do we get to
know the world?

RATIONALISM

TYPES EMPIRICISM

How do we get to
Know our programs?

RATIONALISM TESTS

Programming Fpistemology

Physics and
Mathematics

The scientific method, mathematical proofs,
tests, and types.

Tests and
Types

The scientific method, mathematical proofs,
tests, and types.

Inductivism

A method of reasoning

Inductivism

A method of reasoning

Observe similar effects and similar causes and
generalise.

Inductivism

A method of reasoning

Theory

!

Hypothesis

f

Look for patterns

!

Observe

Inductivism

A method of reasoning

Observe similar effects and similar causes and
generalise.

The premises are viewed as supplying some
evidence for the truth of the conclusion.

AT

Inductivism

A method of reasoning

Observe similar effects and similar causes and
generalise.

The premises are viewed as supplying some
evidence for the truth of the conclusion.

No confirmations of an explanation make the
explanation necessarily be true.

Inductivism

A method of reasoning

Observe similar effects and similar causes and
generalise.

The premises are viewed as supplying some
evidence for the truth of the conclusion.

No confirmations of an explanation make
the explanation necessarily be true.

Inductivism

A method of reasoning

Observe similar effects and similar causes and
generalise. v

The premises are viewed as supplying some p
evidence for the truth of the conclusion.

No confirmations of an explanation make
the explanation necessarily be true.

HHHHHH
OOOOOO

No confirmations of
an explanation make
the explanation
necessarily be true.

"A rare bird in the lands and very much like a black swan”

Systems of
thought are
way more
fragile than
we think.

Systems of
thought are
way more
fragile than
we think.

A million successful
experiments cannot
prove a theory correct,
but one failed
experiment can prove a
theory wrong.

— POPPER, Karl

i
Egkv
S

cience IS
a successive
rejection of
falsified theories

More evidence gets us
closer to the truth

More tests gets us closer
to correct software

More tests gets us closer
to correct software

We believe what's most probable, not
what's necessarily true.

More tests gets us closer
to correct software

We believe what's most probable, not
what's necessarily true.

Blindly trusting science is dangerous.
But so is not trusting in it at all.

More tests gets us closer
to correct software

We believe what's most probable, not
what's necessarily true.

Blindly trusting tests is dangerous.
But so is not trusting in it at all.

More tests gets us closer
to correct software

We believe what's most probable, not
what's necessarily true.

Blindly trusting tests is dangerous.
But so is not trusting in it at all.

Science is not dogmatic.

More tests gets us closer
to correct software

We believe what's most probable, not
what's necessarily true.

Blindly trusting tests is dangerous.
But so is not trusting in it at all.

Tests are not permanent.

How we do
Science

How do we know what we know?

THE SCIENTIFIC METHOD ©)

@ Form a conjecture, state an explanation

How we do
Science

How do we know what we know?

THE SCIENTIFIC METHOD ©)

@ Form a conjecture, state an explanation

How we do
Science

How do we know what we know?

@ Deduce predictions from the hypothesis

THE SCIENTIFIC METHOD ©)

@ Form a conjecture, state an explanation

How we do
Science

How do we know what we know?

@ Deduce predictions from the hypothesis

@ Test, make experiments

THE SCIENTIFIC METHOD ©)

Form a conjecture, state an explanation

How we do

Science Deduce predictions from the hypothesis

How do we know what we know?

Test, make experiments

THE SCIENTIFIC METHOD ©)

Q QK K

Observe whether your theory matches
reality

Form a conjecture, state an explanation

How we

write tests Deduce predictions from the hypothesis

How do we know what we know?

Test, make experiments

THE SCIENTIFIC METHOD ©)

Q QK K

Observe whether your theory matches
reality

Be willing
to be wrong

It's easy to find confirmation
for a theory if you are looking for it.

Your assertions can have a true or false
value, which you don't know in advance

Be willing
to be wrong

It's easy to find confirmation
for a theory if you are looking for it.

Your assertions can have a true or false
value, which you don't know in advance

Be willing
to be wrong @ Your hypothesis must be falsifiable

It's easy to find confirmation
for a theory if you are looking for it.

Be willing
to be wrong

It's easy to find confirmation
for a theory if you are looking for it.

QQ Q

Your assertions can have a true or false
value, which you don't know in advance

Your hypothesis must be falsifiable

Your observations should not strive for
confirmation, but for disconfirmation

Your assertions can have a true or false
value, which you don't know in advance

Be willing

to be wrong Your hypothesis must be falsifiable

It's easy to find confirmation . i
Y Your observations should not strive for

for a theory if you are looking for it.) . .]]
confirmation, but for disconfirmation

Your tests must be risky, they need to
be able to falsify your theory.

QQ QK

Tl s wseless

LZQ& carn't Jﬂ/gfé&%/
Tl s wseless

X

SCIENCE DISPROVES

It's not possible to prove a theory correct as we can't test all

possible scenarios taking into account all possible variables.

Tracing appearances, not unveiling reality.

X

PSEUDOSCIENCE PROVES

Pseudoscience does not look for arguments

contrary to its affirmations.

Irrefutable theories are not scientific.

In the same way that
physicists cannot prove

they are right with

experiments, tests can't
prove that assumptions
about our code are right

A function /\ /\
with two tests A I N / N /

Both functions match / \ T \
our predictions and pass I I AN / L L LN /

our tests.

Tests do not guarantee correctness. 1,

With more tests we can
rule out other intersecting
implementations

More tests, more evidence

1
1)

-6

- "
1 1 1 1/ 0 1 1 1 1
1 T 1 1 1 v 1 T T 1 1
-5 -4 -3 -2 -1

Tests can't
prove that our code
IS correct.

Tests can't
prove that our code
IS correct.

Tests can only
prove that it isn't

Tests can't
prove that our code
IS correct.

Tests provide
evidence

Tests can only
prove that it isn't

Experiments can't
prove that our code
IS correct.

provide

evidence

Experiments can
only prove that it isn't

Confirmation
Bias

Experiments depend
on observation
We observe reality and try to find

evidence which contradicts our
findings

Tests depend
on assertions

A test which does not contain
assertions simply verifies whether the
code can be executed.

Observation is always selective. It
needs a chosen object, a definite task,
an interest, a point of view, a problem.
[...] It presupposes similarity and
classification, which in their turn
presuppose interests, points of view,
and problems.

X X

Karl R. Popper
Conjectures and Refutations: The Growth of Scientific Knowledge

W

Code

Coverage

y R

James O. Coplien
jcoplien

| define 100% coverage as having examined
all possible combinations of all possible
paths through all methods of a class, having
reproduced every possible configuration of
data bits accessible to those methods, at
every machine language instruction along the
paths of execution.

X X

James O'Coplien
Why most unit testing is waste

James O. Coplien
jcoplien

| define 100% coverage as having examined
all possible combinations of all possible
paths through all methods of a class, having
reproduced every possible configuration of
data bits accessible to those methods, at
every machine language instruction along the
paths of execution. Anything else is a
heuristic about which absolutely no
formal claim of correctness can be made.

X X

James O'Coplien
Why most unit testing is waste

James O. Coplien
jcoplien

C?O{/& CMZ/I/WWMW
QMWWWMW%

Go through every single point...

PROVING CORRECTNESS

Mathematical truth

CONJECTURE

A statement which does not have

a proof, but is believed to be true

PROVING CORRECTNESS

Mathematical truth

CONJECTURE PROOF
A statement which does not have A series of steps in reasoning for
a proof, but is believed to be true demonstrating a mathematical

statement is true.

PROVING CORRECTNESS

Mathematical truth

CONJECTURE PROOF THEOREM
A statement which does not have A series of steps in reasoning for A mathematical statement that is
a proof, but is believed to be true demonstrating a mathematical proved using rigorous

statement is true. mathematical reasoning

Mathematics Is not a science from our
point of view, in the sense that it is not
a natural science. The test of its
validity is not experiment.

X X

Richard P. Feyman
The Feynman Lectures on Physics Vol. 1

\ Types and
Mathematics

If it follows the rules, it's correct.

DAVID HUME'S

MATHEMATICS PHYSICS

A PRIORI A POSTERIORI

010 12l /reInalics P

Abstraction

The ability of concentrating in the
essential aspects of a certain
context.

Remove all unnecessary detail.

Abstraction

The ability of concentrating in the
essential aspects of a certain
context.

Remove all unnecessary detail.

String

Integer

Abstraction

The ability of concentrating in the
essential aspects of a certain
context.

Remove all unnecessary detail.

Abstraction

The ability of concentrating in the
essential aspects of a certain
context.

Remove all unnecessary detail.

Abstraction

The ability of concentrating in the
essential aspects of a certain
context.

Remove all unnecessary detail.

The end of road for abstraction.

Bartosz Milewski

Making claims
and proving
properties

When we have a specific set of
rules we can use to manipulate
symbols we can reach truth.

This is the beauty of abstraction.

Wil

el) (v Y

b

oo N DASINY o S D hreis

If controversies were to arise, there would
be no more need of disputation between
two philosophers than between two
calculators. For it would suffice for them
to take their pencils in their hands and to
sit down at the abacus, and say to each
other: "calculemus”

X X
Gottfried Wilhelm von Leibniz

X X Kurt Godel

If a logical system is consistent, it cannot
be complete. There will be true
statements which can't be proven.

X X Kurt Godel

If a logical system is consistent, it cannot
be complete. There will be true
statements which can't be proven.

There is no way to show that any useful
formal system is free of false statements

Kurt Godel

Getting a bit less
philosophical

<

How can we constrain
the implementation of a
function in such a way
that that the only
possible implementation
is the correct one?

How can we rule-
out all
incompatible
implementations?

Total Possible Implementations
minus

Implementations Invalidated by tests

l

Number of allowed implementations

https://julien-truffaut.github .io/types-vs-tests

|

https://julien-truffaut.github.io/types-vs-tests

We can be sure that our function is correct when:

Number of allowed implementations = 1

i https://julien-truffaut.github.io/types-vs-tests

https://julien-truffaut.github.io/types-vs-tests

We can be sure that our function is correct when:

Number of allowed implementations = 1

T

The one we want

https://julien-truffaut.github.io/types-vs-tests

https://julien-truffaut.github.io/types-vs-tests

X
]

:1 Julien Truffaut's

Valid Implementation Count
‘: Smaller VICs mean more constrained functions.

https://julien-truffaut.github .io/types-vs-tests

https://julien-truffaut.github.io/types-vs-tests

Valid Implementation Count = 1

Only one possible implementation: the correct one

https://julien-truffaut.github .io/types-vs-tests

https://julien-truffaut.github.io/types-vs-tests

cu® O

Cover every
possible input
and output

cu® O

It's only feasible to
B cover every |/O pair
B Dby constraining
them

Through a combination of
experiments and logical

f constraints, we can achieve more
certainty.

const getContinent = country: String => continent: String

const getContinent = country: Country => continent: Continent

const getContinent = country: Country => continent: Continent

const getContinent = country: Country => continent: Continent

const getContinent = country: Country => continent: Continent

5691465
SNt

Type systems
allow us to
constrain reality In
such a way that
testing all possible
iInputs become
possible.

FORMALLY ENFORCING CORRECTNESS

Making impossible states impossible

Can we use this approach in
" .. . APPLICATIONS?

c'm 1) \ ~ -
o la’ A

25:06
"Making Impossible 16 - Patrick Stapfer -
States Impossible” by Making Unreasonable
Richard Feldman States Impossible
Richard Feldman Patrick Stapfer

ELM CONF REACT FINLAND

Leveraging
correctness
with types

)

<

RRRRRRRRRRRRRRRRRRRRRRRRRRRR

Making impossible states impossible

Blackjack

FORMALLY ENFORCING CORRECTNESS

Making impossible states impossible

Blackjack

GO gle pls teach me how to play blackjack | !, Q

-

2, Todas) Imagens () Videos [£3) Noticias { Shopping : Mais Configuragoes Ferramentas

Aproximadamente 569.000 resultados (0,60 segundos)

How To Play Blackjack - YouTube
https://www.youtube.com/watch?v=-9YGKFdP6sY

@ Acerca deste resultado B Comentarios

FORMALLY ENFORCING CORRECTNESS

Making impossible states impossible

type Player = {
name: string
email?: string
countrylode?: string
phone?: string

Can have a countryCode
/ without a phone and vice-versa

Only has a name!

'

const playerOne: Player = { name: "Lucas" }

FORMALLY ENFORCING CORRECTNESS

Making impossible states impossible

type Phone = { countryCode: string, phone: string }
type Player = {
name: string
email?: string
phone?: Phone J
s Still don't need a contact
const playerOne: Player = {

name: "Lucas",

}

FORMALLY ENFORCING CORRECTNESS

Making impossible states impossible

type Phone = { countryCode: string, phone: string }
type Email = { email: string }
type Contact = Phone | Email

type Player = {
name: string
contact: Contact
+;

const playerOne: Player = {
name: "Lucas",
contact: { email: "example@lucasfcosta.com"}

FORMALLY ENFORCING CORRECTNESS

Making impossible states impossible

type Player = {
name: string
contact: Contact
cards: number/[]

&

const playerOne: Player = {
name: "Lucas",
contact: { email: "example@lucasfcosta.com"},

cards: [-2)

} We can have invalid cards!
Zero, negative numbers, huge numbers...

FORMALLY ENFORCING CORRECTNESS

Making impossible states impossible

type Card =1 | 2 | 3 | 4|5)6 |7 |8 9] 10| 11| 12 | 13;

type Player = {
name: string
contact: Contact
cards: Card[]

+;

const playerOne: Player = {
name: "Lucas",
contact: { email: "example@lucasfcosta.com"},
cards: [-2]

Can only have valid cards!

FORMALLY ENFORCING CORRECTNESS

Making impossible states impossible

type Card =1 | 2 | 3| 4| 5|6 |7]|8] 9] 10| 11| 12 | 13;

type Player = {
name: string
contact: Contact
cards: Card[]
}

const playerOne: Player = {
name: "Lucas",
contact: { email: "example@lucasfco

cards: [1]/

u
(]
(s3]
(]
o
3
-

Making impossible states impossible

type Card =1 | 2 | 3| 4| 5|6 |7]|8] 9] 10| 11| 12 | 13;

type Player = {
name: string
contact: Contact
cards: Card[]

&

const playerOne: Player = {
name: "Lucas",
contact: { email: "example@lucasfcosta.com"},

cards: [1]
} "L-._._-

We can still have only one card!

FORMALLY ENFORCING CORRECTNESS

Making impossible states impossible

type Card =1 |2 | 3|4 |5|6|7 8|9 10| 11| 12| 13;
type TwoOrMore<T> = { @: T, 1: T } & Array<T>
type Hand = TwoOrMore<Card>

type Player = { \

name: string We must have two or more cards

contact: COﬂV
cards: Hand

const playerOne: Player = {
name: "Lucas",
contact: { email: "example@lucasfcosta.com"},
cards: [1]

L}

FORMALLY ENFORCING CORRECTNESS

Making impossible states impossible

type Game = { can have zero players

) ’ lol wrong
players: Player/[]
Can have a 'win' state with a next player Can have a running state with a winner
currentState: "win" | "tie" | "running"
winner: Player Can have a tie with no tiePlayers

tiePlayers: Player(],
nextPlayer: Player

FORMALLY ENFORCING CORRECTNESS

Making impossible states impossible

type Win = { name: "win", winner: Player }
type Tie = { name: "tie", tiePlayers: TwoOrMore<Player> }

type Unfinished = { name: "running", nextPlayer: Player }
type GameState = Win | Tie | Unfinished
States are

now constrained
type Game = {
layers: Player
E y. o1 ,y . Can have a next player
curh: Ftaye which has busted or
gameState: GameState surrendered!

};

FORMALLY ENFORCING CORRECTNESS

Making impossible states impossible

type PlayingState = "playing"

type NonPlayingState = “surrendered" | "busted" | "winner" | "loser™ | "tie"
type PlayerState<T> = { state: T }

type PlayingPlayer = Player & PlayerState<PlayingState>

type NonPlayingPlayer = Player & PlayerState<NonPlayingState>

FORMALLY ENFORCING CORRECTNESS

Making impossible states impossible

type Win = { name: "win", winner: Player }

type Tie = { name: "tie", tiePLayers: TwoOrMore<Player> }

type Unfinished = { name: "running'", nextPlayer: PlayingPlayer }
type GameState = Win | Tie | Unfinished \

Can only have valid
players now :)

Contents [hide]
1 History
2 Rules of play at casinos
2.1 Player decisions
2.2 Insurance

3 Rule variations and effects on house edge

=N

Blackjack strategy
4.1 Basic strategy
4.2 Composition-dependent strategy
4.3 Advantage play
4.3.1 Card counting
4.3.2 Shuffle tracking
4.3.3 ldentifying concealed cards
Side bets
Blackjack tournaments
Video blackjack

Variants of the game

@ ~N O O,

8.1 TV show variations
9 Blackjack Hall of Fame
10 Blackjack in the arts
11 See also
12 Blackjack literature
13 References

14 External links

From the most
complex to the most
simple problems

)

<

All languages
are typed

But some will only tell you at runtime.

Uncaught TypeError: undefined
1S not a function

Uncaught TypeError: Cannot
read property 'foo' of
undefined

Prohibiting
iInvalid properties

Collapsing the number of
possible props

Combinatorial Explosion

https://basarat.gitbooks.io/typescript/docs/types/discriminated-unions.html
https://dzone.com/articles/make-impossible-states-impossible

Exhaustive
Checks

No unhandled actions.

type ADD = { type: 'ADD', payload: number };
type SUBTRACT = { type: 'SUBTRACT', payload: number };
type Events = ADD | SUBTRACT;

const unhandledAction = (value: never): never => { throw new Error(Unhandled action’) }
. Ensures unhandledAction is never called!
function process(event: Events) {
switch(event.type) {
case 'ADD':
break;
case 'SUBTRACT':
break;
default:
unhandledAction(event);

All actions are handled so this can't happen!

https://basarat.gitbooks.io/typescript/docs/types/discriminated-unions.html

Exhaustive
Checks

No unhandled actions.

type ADD = { type: 'ADD', payload: number };

type SUBTRACT = { type: 'SUBTRACT', payload: number };
type UNKNOWN = { type: 'UNKNOWN', payload: number };
type Events = ADD | SUBTRACT | UNKNOWN;

const unhandledAction = (value: never): never => { throw new Error(Unhandled action’) }

function process(event: Events) {
switch(event.type) {

case 'ADD':
break;

case 'SUBTRACT': We're not handling unknown!
break;

default:
unhandledAction(event);

https://basarat.gitbooks.io/typescript/docs/types/discriminated-unions.html

Exhaustive
Checks

No unhandled actions.

type ADD = { type: 'ADD', payload: number };

type SUBTRACT = { type: 'SUBTRACT', payload: number };
type UNKNOWN = { type: 'UNKNOWN', payload: number };
type Events = ADD | SUBTRACT | UNKNOWN;

const unhandledAction = (value: never): never => { throw new Error(Unhandled action’) }

function process(event: Events) {
switch(event.type) {

case 'ADD':
break;

case 'SUBTRACT': We're not handling unknown!
break;

default:
unhandledAction(event);

https://basarat.gitbooks.io/typescript/docs/types/discriminated-unions.html

Modeling
Uncertainty

Left: Sad path

Right: Happy path

https://fsharpforfunandprofit.com/rop/ - Scott Wlaschin

https://fsharpforfunandprofit.com/rop/
https://twitter.com/ScottWlaschin

Producing reliable
software depends on
choosing good
abstractions and
executing the correct
experiments,

Leveraging
correctness
with fests

)

<

Coupling and cost
management

What is the cost of having tests?
What value does having tests produce?
How brittle should my tests be?

! Capitalism 101

Capitalism 101

What matters: less costs, more revenue

Capitalism 101

What matters: less costs, more revenue

What doesn't matter: code coverage, correctness, tests

P P9, 9.0.:0

.

L4

7 S AN

.
«
W

X

=
=
.
>
ﬂ“
-
>
>

Tests add
upfront cost

term costs.

But reduce long

You get back in instalments.

Tests are subject to diminishing

returns

L
ae
<
»
[
w
L
[

CODE TOO

You pay for tests

ftenance

in main

THE PRICE

Avoid
coupling.

The more tests you have
to change when you do a
change, the bigger your
cost is.

THE PRICE

Tests
shouldn't be
too fragile nor

too loose.

Think about when you
would like them to break.

THE PRICE

Tests
shouldn't be
too fragile nor

too loose.

Tests that never fail are
useless. They don't
produce any information.

THE PRICE

Tests
shouldn't be
too fragile nor

too loose.

Tests that never fail are
not scientific.

THE PRICE

Tests
shouldn't be
too fragile nor

too loose.

Tests that never fail are
pseudo-science.

Different kinds
of tests

What kinds of tests produce more value?
Where do tests fit in the software development process?

Ve need to tath about

Test Driven
Development
IS not about tests

TDD is about taking small steps.

TDD is a fear reduction tool.
TDD exists to help orienting developers
when they change code.

Test Driven
Development
IS nc"' A~ L - ‘é_

TDisabout Tagt-Driven

TDD is a fear
DD exists 1o LESTS

Development 1s not about

-

nandes da Costa at Paris, France | 1

When they Ch‘ 18th of October, 2018 Lucas Fern

o

A

more slower
integration
Ul
Tests

/ Service Tests\

more Unit Tests .

[solation jaster
\ Y

Figure 2: The Test Pyramid

From MartinFowler.com
The Practical Test Pyramid — Written by Ham Vocke

https://martinfowler.com/articles/practical-test-pyramid.html

Different types
of tests
generate
different types
of value.

https://martinfowler.com/articles/practical-test-pyramid.html
http://MartinFowler.com

maore

integration

maore

Isolation

A

Ul
Tests

/ Service Tests\
/ Unit Tests \ -
faster

\J Y

Figure 2: The Test Pyramid

From MartinFowler.com

The Practical Test Pyramid — Written by Ham Vocke

https://martinfowler.com/articles/practical-test-pyramid.html

siower

Different types
of tests
generate
different types
of value.

Cheap, and fast
but produce relatively low value

https://martinfowler.com/articles/practical-test-pyramid.html
http://MartinFowler.com

A

more slower
. _
integration Nff - - ') e S
Ul

ghort answer

—anrerent types
solation | / —_\ of value.

Figure 2: The Test Pyramid

From MartinFowler.com
The Practical Test Pyramid — Written by Ham Vocke Cheap, and fast

https://martinfowler.com/articles/practical-test-pyramid.html bUt prOduce relatlvely IOW Value

https://martinfowler.com/articles/practical-test-pyramid.html
http://MartinFowler.com

A

more slower .]
R J)es
Ul

wer: nO
ghort ans

Figure 2: The Test Pyramid

From MartinFowler.com
The Practical Test Pyramid — Written by Ham Vocke Cheap, and fast

https://martinfowler.com/articles/practical-test-pyramid .html but prOduce relat|ve|y low value

https://martinfowler.com/articles/practical-test-pyramid.html
http://MartinFowler.com

A

more slower o
integration RY -
Ul

xnneﬁﬁﬁﬁypes
‘ = faster
IS¢ v # — \l' Of Value-

Figure 2: The Test Pyramid

From MartinFowler.com
The Practical Test Pyramid — Written by Ham Vocke Cheap, and fast

https://martinfowler.com/articles/practical-test-pyramid.html bUt prOdUCG re|ath€|y IOW Value

https://martinfowler.com/articles/practical-test-pyramid.html
http://MartinFowler.com

When
to write
what

When should |
write unit tests?

Integration

In parallel with writing code.

Unit tests guide development and
help refactoring code safely.

Not mainly for correctness.
As documentation for your future self.
As a contract, specification of the unit under test.

Integration

When should | write
snapshot tests?

Not as guidance for iterating, but as
an extra safeguard against failure.

When asserting on output is repetitive.

When output is too big and
detailed to manage.

When should | write
facebook / jest snapshot tests?

<> Code Issues 718 P _
Jest extensively uses snapshots to

test itself.

Branch: masterv jest /e2e/

A few tips for
snapshot tests

Integration

"snapshotSerializers": ["enzyme-to-json/serializer"]

jest-snapshot-serializer-raw A few tips for
o 1.0 b SRR coveee o0 snapshot tests

jest snapshot serializer for reducing escapes in the snapshot file + Find relevant serialisers for your

problem domain. Readable

.. . 1 snapshots matter.
react-natlve-jest-serlallzer

1.1.0 « Public + Published 2 months ago

Readme

react-native-jest-serializer

A few tips for
wateh Usage snapshot tests

Press a to run all tests.
Press to run only failed tests.
to filter by a filename regex pattern.

to filter by a test name regex pattern.

Press

D Find relevant serialisers for your

problem domain. Readable

Press
Press

to update failing snapshots interactively. snapshots matter.

f
P
t
Press u to update failing snapshots.
i
q to quit watch mode.

=

Press Enter to trigger a test run.

expect(person).toMatchSnapshot({
name: expect.stringMatching(/(.?) (?)/9),

pets: expect.arrayContaining(["Dog"]),
createdAt: expect.any(Date)

}))

expect.extend(matchers)

You can use expect.extend to add your own matchers to Jest.

jest-image-snapshot
2.11.0 « Public + Published 2 months ago

Readme

jest-image-snapshot

A few tips for
snapshot tests

+ Find relevant serialisers for your
problem domain. Readable
snapshots matter.

+ Use custom asymmetric snapshot
matchers to balance maintainability
and rigorousness

A few tips for
: snapshot tests

it('increments count', () => {
const bigComponentInstance = shallow(<MyBigComponent />);
expect(bigComponentInstance.find(".bigChunkOfMarkup")).toMatchSnapshot();

expect(bigComponentInstance.find(".result").text()).to.be.equal(0); o Flnd re|evant Serialisers for your

bigComponentInstance.find(".incrementButton").simulate("click"); pr0b|em domain. Readable

expect(bigComponentInstance.find(".bigChunkOfMarkup")).toMatchSnapshot();
expect(bigComponentInstance.find(".result").text()).to.be.equal(1l) SnapShOtS matter.

}),

+ Use custom asymmetric snapshot
matchers to balance maintainability
and rigorousness

« Don't be afraid to have tests with
partial snapshots.

Integration

When should | write
iIntegration tests?

To test functional requirements.

To ensure correctness and
prevent regressions.

To ensure you are using third
party dependencies correctly.

When a certain behaviour is
critical to your application.

Practices that |
consider integration

tests:

Integ rathn - Interacting with actual components (Enzyme/
react-testing-library)

- Sending actual HTTP requests

 Hitting a database and fetching data from it

 Asserting on /O (i.e. interacting with the
filesystem)

 Spinning separate processes

Integration

When should | write
end-to-end tests?

When interaction with a real Ul matters.
To avoid visual regressions.

To ensure multiple services work together from

a user's perspective.

The most valuable kind of testing from a

correctness perspective.

Can't emphasise
how good this is:

Integration ®press

- Amazing docs

- Easy access to your application's
runtime environment

« Not flaky (but be careful with the
global chain of events!)

« Extremely quick to run

- Extremely easy to setup

Avoiding
false positives

How can | setup tests in such a way as to catch the most bugs?
How can | avoid getting false positives?
How do assertion libraries work?

Assertions that are loose by design AVOIDING FALSE POSITIVES

Avoid loose

: .!nglugesd The set of assertlons
Isbetine passing results is

. .increases | |

. decreases too broad Assertions which allow

multiple different outputs.

Assertions that are loose by design

expect(result).to.be.a.number

AVOIDING FALSE POSITIVES

Avoid Ipose
assertions

Assertions which allow
multiple different outputs.

Assertions that are loose by design

expect(result).to.be.a.number

Can go from 5e-324 to
1.7976931348623157e+308

AVOIDING FALSE POSITIVES

Avoid Ipose
assertions

Assertions which allow
multiple different outputs.

Assertions that are loose by design

expect(result).to.be.a.number

NaN

AVOIDING FALSE POSITIVES

Avoid Ipose
assertions

Assertions which allow
multiple different outputs.

Negated assertions.

AVOIDING FALSE POSITIVES

expect(result).to.not.be(1) Avoid loose
assertions

Assertions which allow

Negated assertions are the
loosest assertions one can make.

-oo<_|_|_>.|.oo
0 1

multiple different outputs.

Loose assertions are essentially
assertions with a semantic "or"

expect(result).to.be(1).or.to.be(2)

AVOIDING FALSE POSITIVES

Avoid Ipose
assertions

Assertions which allow
multiple different outputs.

Chaus | = projects 0 Wiki Pulse
I

@ |ssues 38

|- .either.sO

ed this issue on 11 Feb

Pull requests a

me.or.someE\se

2016 - 12 comments

Code

Proposa

mented on 11 Feb 2016
Lor as fin

zxqgfox com

imiter and
pe nice 10 have .either as a delim

Would be n

something like:
(‘object').or.a('number)

ual(' five').either.an

.to.be.eq
eed .eithers .-

or . And as many as n

There could be just one

What you say?

Graphs

alizer of assertion chain.

This is why .or has never been
included in Chai.

Cha”s / C‘ 1al Unwatch - 109
e I e ki 0pU se raphs
Cod () Ssues 38 Pull r Quests 4 P Ojects 0
g Oope this issue on 15 Noy 2016 2
Rid eA ned n1 16 - Comme ts
RldQEA Commer ted on 15 Nov 2016
Hello!

My method r
eturns either an op;
ob, .
Howle Ject with some (Dredetermined) property
an make sy .o or an empt)
ch assertion in BDD style (exept using * Pty object.
:_satfsfyu)y

I need Something like thjs:

AVOIDING FALSE POSITIVES

assertions

Assertions which allow
multiple different outputs.

* Unstar

Se

As:

No

Lat

expect(result).to.not.throw(TypeError, "example msg") AVOIDING FALSE NEGATIVES

T T Assert on one
Is it an error if both don't S u bJ .eCt at a
match? tl m e

What if one matches and the
other doesn't?

Build inputs and expected outputs
within your testing code.

const catFactory = (color) => (name) => ({ name, color, species: "cat" })
const blueCatFactory = catFactory("blue");

describe("catFactory", () => {

it("can create blue cats", () => {
const expected = blueCatFactory("Ludo");

const actual = catFactory("blue")("Ludo");
expect(expected).to.be.deep.equal(actual);

\ circular assertion

Using application code to do tests means the
correctness of the test depends on the
correctness of the application itself.

AVOIDING FALSE POSITIVES

Avoid
tautological
tests

Don't test your code
against itself.

Meaningful
Feedback

What is the right size of a test?
How to debug in a scientific manner?
How do test runners work?

MEANINGFUL FEEDBACK

Choose the
right
assertions

Assertion libraries
generate information for
test runners to show you

meaningful output.

MEANINGFUL FEEDBACK
Class: assert.AssertionError

e Extends: <errors.Error> H OW test
Indicates the failure of an assertion. All errors thrown by the assert module will be instances of the AssertionError class.
new assert.AssertionError(options) ru n n e rS

Added in: v0.1.21

provide output

message <string=> If provided, the error message is set to this value.
actual <any> The actual property on the error instance.

expected <any> The expected property on the error instance.

Assertions produce

operator <string> The operator property on the errorinstance.

stackStartFn <Function> If provided, the generated stack trace omits frames before this function. AS e r .t 1 O N E r r.o r I nStanceS

A subclass of Error that indicates the failure of an assertion.

jest-diff

MEANINGFUL FEEDBACK

Display differences clearly so people can review changes confidently.

|
The default export serializes JavaScript values, compares them line-by-line, and returns a string which includes
comparison lines.

Two named exports compare strings character-by-character:

e diffStringsUnified returns a string. ru I l I ler S

e diffStringsRaw returns anarray of Diff objects.

| | |
Three named exports compare arrays of strings line-by-line: r‘ >S p O I l S I b I I I ty

e diffLinesUnified and difflLinesUnified2 return a string.

e diffLinesRaw returns an array of Diff objects.

- Expected
+ Received Runners generate diffs

Array [based on the

- "delete",

“common"”, AssertionErrors thrown
- "changed from",

"changed to",

"insert",

const myObj = {};

function c() {

}

function b() {

// Here we wlil

ry |
Vi A AL

Store tne

™~ » " 4 ~
current s

Error.captureStackTrace(myObj);

c();

function a() {

b();

4

.
cdCkK

4=
o

~o
adCeE

e 1
into myObj

MEANINGFUL FEEDBACK

Assertion libraries
can help by
generating

meaningful errors

They can omit certain parts of
the stack trace and provide
meaningful information about
the operators used.

// Now let's see what 1is the stack trace stored into myObj.stack MEANINGFUL FEEDBACK

Assertion libraries
b (repl:3:7) <-- The B call is the last entry in the stack Can help by

// at a (repl:2:1)

n
// at repl:1:1 <-- Node internals below this line generatlng

// at realRunInThisContextScript (vm.js:22:35)

A ———— meaningful errors

We captured

console.log(myObj.stack);

// This will print the following stack to the console:

// at ContextifyScript.Script.runInThisContext (vm.js:
// at REPLServer.defaultEval (repl.js:313:29) the stack here]]

L | They can omit certain parts of
// at bound (domain.js:280:14) .
// at REPLServer.runBound [as eval] (domain.js:293:12) the StaCk trace and_ prOVIde
// at REPLServer.onLine (repl.js:513:10) meanlnngI Informatlon abOUt

the operators used.

const myObj = {};

function d() {

// Here we will store the current stack trace into myObj
MEANINGFUL FEEDBACK

// This time we will hide all the frames after b and b 1itself

Error.captureStackTrace(myObj, b);

) Assertion libraries
can help by

da();

} generating
function 501 meaningful errors

c();

} They can omit certain parts of

the stack trace and provide
meaningful information about
the operators used.

function a() {

b();

First we will call these functions

// Now let's see what is the stack trace stored into myObj.stack MEANINGFUL FEEDBACK

A tion librari
// This will print the following stack to the console:
// a (repl:2:1) <-- We only get frames before b~ was called Can help by
// at repl:1:1 <-- Node internals below this line

// at realRunInThisContextScript (vm.js:22:35) generatlng
// at sigintHandlersWrap (vm.js:98:12) meaningful errors

console.log(myObj.stack);

// at ContextifyScript.Script.runInThisContext (vm.js:24:12)

// at REPLServer.defaultEval (repl.js:313:29)

S el (et e S They can omit certain parts of
// at REPLServer.runBound [as eval] (domain.js:293:12) the StaCk trace and provide
// at REPLServer.onLine (repl.js:513:10) meaninngI information abOUt

// at emitOne (events.js:101:20) the Operators used

expect({foo: 1}).to.include({foo: 1});

For each part of this assertion we keep
resetting what is the start of the stack
frame we are going to provide.

We only display the bottom stack
frames, hiding our internal frames.

MEANINGFUL FEEDBACK

Assertion libraries
can help by
generating

meaningful errors

They can omit certain parts of
the stack trace and provide
meaningful information about
the operators used.

' MEANINGFUL FEEDBACK

Assertions behind
the scenes

How Chai handles assertions.

expect({ name: "HolyJlS" })

new Assertion({ name: "HolyJS"})

® MEANINGFUL FEEDBACK

oecs ST bt e oSS Assertions behind
the scenes

i How Chai handles assertions.

Accessed properties trigger getter
functions which always return the
assertion object (this)

Each time a property is accessed, we
reset the starting point of the stack.

MEANINGFUL FEEDBACK

expect({ name: "HolyJS" }).be.deep.equal({ name: "HolyJS" }) Assertions behind
the scenes

How Chai handles assertions.

Accessing the property deep sets a
flag called "deep" in the assertion
object, which indicates to the equal
assertion that it should perform a
deep comparison

MEANINGFUL FEEDBACK

expect({ name: "HolyJS" }).be.deep.equal({ name: "HolyJS" }) Assertions behind
the scenes

How Chai handles assertions.

The deep flag cannot be unset.

Do one assertion at a time!

MEANINGFUL FEEDBACK

More readable
o tests are easier to
understand and

Assertion.addMethod('propName', () => {}) debu
Assertion.addChainableMethod('propName', () => {}) SJ

Assertion.addProperty('propName', () => {})

Use plugins or build your own.

jestExpect.extend({
toRepeatString(actual, str, times) {
const matches = actual.match(new RegExp(str, 'g') || [];

const pass = matches.length > 0
const message = pass
? () => “expected ${actual} to include ${str} ${times} times’
: () => "expected ${actual} to not include ${str} ${times} times ;

return {message, pass};

});

MEANINGFUL FEEDBACK

More readable
tests are easier to
understand and
debug

Use plugins or build your own.

Additional Jest matchers

MEANINGFUL FEEDBACK

More readable
tests are easier to
understand and
debug

Use plugins or build your own.

Isolating external
dependencies

What parts of my application should | test and when?
How can | eliminate dependency on external libraries?

- o

When should |
mock?

Easy Answer: Mock what is not yours.

Hard Answer: It depends.

Test your code, not someone else's.

TEST ISOLATION

When should |
External libraries should mOCk?

have already been tested
Unit Under Test by their creators.

Easy Answer: Mock what is not yours.

At most, you want to
check whether the correct
method was called.

./module_b.js Especially valid for

\/ e

External Library 1

T

Umt Under Test

|

The more mocks you have,
the more detached from reality
your test becomes.

The more mocks you have,

the more decoupled your test
becomes.

[./module_b.js]

TEST ISOLATION

When should |
mock?

Easy Answer: Mock what is not yours.

Hard Answer: It depends.

!

Maintenance Cost vs. Isolation
How coupled to the dependency is the mock?

How critical is the code under test?

You don't want to mock this
because you will be
interacting with components

React Testloses its value. socket.io

[External Library 1)

Hard to mock. You'll definitely want to mock

this so that you can do fake
pushes through the web
sockets

Unit Under Test

./module_b.js

You can trust the DOM APIs work.

Ah, you also have no choice.

TEST ISOLATION

When should |
mock?

Easy Answer: Mock what is not yours.

Hard Answer: It depends.

!

Maintenance Cost vs. Isolation
How coupled to the dependency is the mock?

How critical is the code under test?

TEST ISOLATION

What do you
mean by trusting

[Unit Under Test bl’OWSGF APIS?
Trust that they work,
JSDOM
[(DOM APIs) } but chegk that you are
using them

\/

JSDOM
(DOM APIs)

Ve N

jsdom

jsdom is a pure-JavaScript implementation of many web standards, notably the WHATWG DOM and HTML Standards, for
use with Node.js. In general, the goal of the project is to emulate enough of a subset of a web browser to be useful for
testing and scraping real-world web applications.

The latest versions of jsdom require Node.js v8 or newer. (Versions of jsdom below v12 still work with Node.js v6, but are
unsupported.)

TEST ISOLATION

What do you
mean by trusting
browser APIs?

Trust that they work, but check
that you are using them

TEST ISOLATION

When should |
mock?

module_b is covered

Create transitive guarantees.

module_c is covered

TEST ISOLATION
module_b is covered

[| J 1[| } When should |
Unit Under Test /module_b.js
mock?

Create transitive guarantees.

[/module_c.js } Avoid brittleness.

, Avoid redundant checks.
module_c is covered

Avoid tests becoming too big.

If module_c is covered | don't need to check it in module b's tests.

If UUT uses module_b and, transitively, module_c, | can mock module_b.

Sinon's Mocks,
Stubs, and Spies

V/ 4

Jest's Mocks

mocking imports

proxyquire

rewire
rewiremock

If you're not using jest

If you're already
using jest

If you're not using jest

More custom behaviour

Easily mocking
entire modules

Mocking on import level

Plugin integration

Simple and well
documented API
to assert on

Depends on being paired
with Sinon or another
mocking code

Sandboxes

Can
automatically
clear mocks

TEST ISOLATION

How can | mock?

Mocking code in general.

V/ 4

94
¥

Mess with the requests yourself.

nock

Use a specific library.

You have full control over
what's happening.

Can get repetitive.

Reasonably annoying to set
matchers for requests.

Default behaviour is not
always what's best or
consistent.

Well defined API. No need
for wrappers.

Can get a bit verbose if you
need to mock uncommon
features.

TEST ISOLATION

How can | mock?

Mocking HTTP responses.

For your assertions:

chaijs/chai-http

visionmedia/supertest

Eliminating
non-determinism

Why does determinism matters?
How to make non-deterministic tests deterministic?

DETERMINISM

Why determinism
matters?

Semantically speaking,
flaky tests are the same as

failing tests.

Flaky tests decrease the
confidence in each build.

~

~

~

~

~

S

S
Q

=S

e

Is it a flaky test or is it flaky
application code?

Approach 1: Mock-out non-deterministic pieces

—~d =

- DETERMINISM

W " How to solve

non-determinism
O Q|Q
_ sinonjs / lolex

e

Approach 2: Take variability into account

® ,® —» Use matchers
”’ DETERMINISM

How to solve
non-determinism

Use loose assertions willingly!
Allow broader sets of results.

This means you solve the
problem on the testing side.

Approach 3: Make the code deterministic

Not always possible.

Ordering results
within your tests.

Eliminating the usage
of randomness.

Providing a
deterministic state
or seed.

DETERMINISM

How to solve
non-determinism

Speeding-up
test runs

Why does quick feedback matters?
How can | speed up test runs?
How are my tests scheduled?

QUICK FEEDBACK

Why does quick
feedback matters?

If tests are slow, they won't
get run frequently enough.

Quick feedback
encourages you to take

more gradual steps
(proper TDD).

Quick feedback decreases
frustration, creating a
positive feedback loop.

HHHHHH
OOOOOO

— POPPER, Karl

code. rea

Twitter: @thewizardlucas
GitHub: @lucasfcosta

WWW: lucasfcosta.com

books

http://lucasfcosta.com

ank you.

Twitter: @thewizardlucas
GitHub: @lucasfcosta

WWW: lucasfcosta.com

http://lucasfcosta.com

