
Types, Tests,
and why
flat-earthers
are bad at QA

2 0 1 9
H O L Y J S  
M O S C O W

Twitter: @thewizardlucas

GitHub: @lucasfcosta

WWW: lucasfcosta.com

http://lucasfcosta.com

2 0 1 9
H O L Y J S  
M O S C O W

boredpanda.com

2 0 1 9
H O L Y J S  
M O S C O W

boredpanda.com

What do we know
about our programs?

What do we know?

What do we know?
How can we know it?

We must know our program
to make sure it does what it

is supposed to do.

How do we get to
know the world?

How do we get to
know the world?

E M P I R I C I S M

How do we get to
know the world?

E M P I R I C I S M

R A T I O N A L I S M

How do we get to
know our programs?

T E S T S

T Y P E S E M P I R I C I S M

R A T I O N A L I S M

P r o g r a m m i n g E p i s t e m o l o g y

Physics and
Mathematics
The scientific method, mathematical proofs,
tests, and types.

Tests and
Types
The scientific method, mathematical proofs,
tests, and types.

Physics and tests

The Scientific Method
Being proven wrong and the unattainable truth

2 0 1 9
H O L Y J S  
M O S C O W

Francis Bacon

2 0 1 9
H O L Y J S  
M O S C O W

Francis Bacon

Inductivism
A method of reasoning

2 0 1 9
H O L Y J S  
M O S C O W

Francis Bacon

Inductivism
A method of reasoning

Observe similar effects and similar causes and
generalise.

2 0 1 9
H O L Y J S  
M O S C O W

Francis Bacon

Theory

Hypothesis

Look for patterns

Observe

Inductivism
A method of reasoning

2 0 1 9
H O L Y J S  
M O S C O W

Francis Bacon

Inductivism
A method of reasoning

Observe similar effects and similar causes and
generalise.

The premises are viewed as supplying some
evidence for the truth of the conclusion.

2 0 1 9
H O L Y J S  
M O S C O W

Francis Bacon

Inductivism
A method of reasoning

Observe similar effects and similar causes and
generalise.

The premises are viewed as supplying some
evidence for the truth of the conclusion.

No confirmations of an explanation make the
explanation necessarily be true.

2 0 1 9
H O L Y J S  
M O S C O W

Francis Bacon

Inductivism
A method of reasoning

Observe similar effects and similar causes and
generalise.

The premises are viewed as supplying some
evidence for the truth of the conclusion.

No confirmations of an explanation make
the explanation necessarily be true.

2 0 1 9
H O L Y J S  
M O S C O W

Francis Bacon

Inductivism
A method of reasoning

Observe similar effects and similar causes and
generalise.

The premises are viewed as supplying some
evidence for the truth of the conclusion.

No confirmations of an explanation make
the explanation necessarily be true.

2 0 1 9
H O L Y J S  
M O S C O W

No confirmations of
an explanation make

the explanation
necessarily be true.

"A rare bird in the lands and very much like a black swan"

Systems of
thought are
way more
fragile than
we think.

Systems of
thought are
way more
fragile than
we think.

A million successful
experiments cannot
prove a theory correct,
but one failed
experiment can prove a
theory wrong.
– POPPER, Karl

Truth is unattainable

We are constantly replacing theories by others
which have greater explanatory power.

Science is
a successive
rejection of
falsified theories

More evidence gets us
closer to the truth

More tests gets us closer
to correct software

We believe what's most probable, not
what's necessarily true.

More tests gets us closer
to correct software

We believe what's most probable, not
what's necessarily true.

Blindly trusting science is dangerous.
But so is not trusting in it at all.

More tests gets us closer
to correct software

We believe what's most probable, not
what's necessarily true.

Blindly trusting tests is dangerous.
But so is not trusting in it at all.

More tests gets us closer
to correct software

We believe what's most probable, not
what's necessarily true.

Science is not dogmatic.

Blindly trusting tests is dangerous.
But so is not trusting in it at all.

More tests gets us closer
to correct software

We believe what's most probable, not
what's necessarily true.

Tests are not permanent.

Blindly trusting tests is dangerous.
But so is not trusting in it at all.

More tests gets us closer
to correct software

How we do
Science
How do we know what we know?

T H E S C I E N T I F I C M E T H O D

Form a conjecture, state an explanation

How we do
Science
How do we know what we know?

T H E S C I E N T I F I C M E T H O D

Form a conjecture, state an explanation

How we do
Science
How do we know what we know?

T H E S C I E N T I F I C M E T H O D

Deduce predictions from the hypothesis

Form a conjecture, state an explanation

How we do
Science
How do we know what we know?

T H E S C I E N T I F I C M E T H O D

Deduce predictions from the hypothesis

Test, make experiments

Form a conjecture, state an explanation

How do we know what we know?

T H E S C I E N T I F I C M E T H O D

Deduce predictions from the hypothesis

Test, make experiments

Observe whether your theory matches
reality

How we do
Science

Form a conjecture, state an explanation

How we
write tests
How do we know what we know?

T H E S C I E N T I F I C M E T H O D

Deduce predictions from the hypothesis

Test, make experiments

Observe whether your theory matches
reality

Be willing
to be wrong
It's easy to find confirmation
for a theory if you are looking for it.

Be willing
to be wrong
It's easy to find confirmation
for a theory if you are looking for it.

Your assertions can have a true or false
value, which you don't know in advance

Your hypothesis must be falsifiable
Be willing
to be wrong
It's easy to find confirmation
for a theory if you are looking for it.

Your assertions can have a true or false
value, which you don't know in advance

Your hypothesis must be falsifiable
Be willing
to be wrong
It's easy to find confirmation
for a theory if you are looking for it. Your observations should not strive for

confirmation, but for disconfirmation

Your assertions can have a true or false
value, which you don't know in advance

Your hypothesis must be falsifiable
Be willing
to be wrong
It's easy to find confirmation
for a theory if you are looking for it.

Your tests must be risky, they need to
be able to falsify your theory.

Your observations should not strive for
confirmation, but for disconfirmation

Your assertions can have a true or false
value, which you don't know in advance

If it never fails
It's useless

If it can't be refuted
It's useless

S C I E N C E D I S P R O V E S

It's not possible to prove a theory correct as we can't test all

possible scenarios taking into account all possible variables.

P S E U D O S C I E N C E P R O V E S

Irrefutable theories are not scientific.

Tracing appearances, not unveiling reality.

Pseudoscience does not look for arguments
contrary to its affirmations.

In the same way that
physicists cannot prove
they are right with
experiments, tests can't
prove that assumptions
about our code are right

x^2f(x) = sin(x) + 1

A function
with two tests

x^2

Tests do not guarantee correctness. x^2x^4

Both functions match
our predictions and pass
our tests.

More tests, more evidence x^2x^4

With more tests we can
rule out other intersecting
implementations

Tests can't
prove that our code
is correct.

Tests can't
prove that our code
is correct.

Tests can only
prove that it isn't

Tests can't
prove that our code
is correct.

Tests can only
prove that it isn't

Tests provide
evidence

Experiments can't
prove that our code
is correct.

Experiments can
only prove that it isn't

Experiments provide

evidence

Confirmation

B i a s

Experiments depend
on observation
We observe reality and try to find
evidence which contradicts our
findings

Tests depend
on assertions
A test which does not contain
assertions simply verifies whether the
code can be executed.

Observation is always selective. It
needs a chosen object, a definite task,
an interest, a point of view, a problem.
[...] It presupposes similarity and
classification, which in their turn
presuppose interests, points of view,
and problems.

Karl R. Popper
Conjectures and Refutat ions: The Growth of Scient i f ic Knowledge

Code  
Coverage

I define 100% coverage as having examined
all possible combinations of all possible
paths through all methods of a class, having
reproduced every possible configuration of
data bits accessible to those methods, at
every machine language instruction along the
paths of execution.

James O'Copl ien
Why most uni t test ing is waste

I define 100% coverage as having examined
all possible combinations of all possible
paths through all methods of a class, having
reproduced every possible configuration of
data bits accessible to those methods, at
every machine language instruction along the
paths of execution. Anything else is a
heuristic about which absolutely no
formal claim of correctness can be made.

James O'Copl ien
Why most uni t test ing is waste

You can't prove your code works.  
You can only prove it doesn't

Go through every single point...

Types & Mathematics

C O N J E C T U R E

1

Mathematical truth
P R O V I N G C O R R E C T N E S S

A statement which does not have

a proof, but is believed to be true

P R O O F

A series of steps in reasoning for

demonstrating a mathematical
statement is true.

1 2

Mathematical truth

C O N J E C T U R E

A statement which does not have

a proof, but is believed to be true

P R O V I N G C O R R E C T N E S S

P R O O F T H E O R E M

A mathematical statement that is

proved using rigorous
mathematical reasoning

C O N J E C T U R E

1 2 3

Mathematical truth
Put my name on it plz

A series of steps in reasoning for

demonstrating a mathematical
statement is true.

P R O V I N G C O R R E C T N E S S

A statement which does not have

a proof, but is believed to be true

Mathematics is not a science

Mathematics is not a science from our
point of view, in the sense that it is not
a natural science. The test of its
validity is not experiment.

Richard P. Feyman
The Feynman Lectures on Physics Vol . 1

Types and
Mathematics
If it follows the rules, it's correct.

T h e Q u e s t f o r T r u t h

Relations
of Ideas

M A T H E M A T I C S P H Y S I C S

Matter
of Facts

D A V I D H U M E ' S

A P R I O R I A P O S T E R I O R I

Why does physics relies
on mathematics?

Abstraction
The ability of concentrating in the
essential aspects of a certain
context. 
 
Remove all unnecessary detail.

Abstraction
The ability of concentrating in the
essential aspects of a certain
context. 
 
Remove all unnecessary detail.

String Integer

Abstraction A B
The ability of concentrating in the
essential aspects of a certain
context. 
 
Remove all unnecessary detail.

Abstraction A B
The ability of concentrating in the
essential aspects of a certain
context. 
 
Remove all unnecessary detail.

Abstraction A B

Bartosz Milewski

The end of road for abstraction.

The ability of concentrating in the
essential aspects of a certain
context. 
 
Remove all unnecessary detail.

Making claims
and proving
properties

A B C

f g

h = g . f

When we have a specific set of
rules we can use to manipulate
symbols we can reach truth.

This is the beauty of abstraction.

If controversies were to arise, there would
be no more need of disputation between
two philosophers than between two
calculators. For it would suffice for them
to take their pencils in their hands and to
sit down at the abacus, and say to each
other: "calculemus"

Gott f r ied Wi lhelm von Leibniz

Why don't we just use
mathematics then?

Kurt Gödel

Kurt Gödel

If a logical system is consistent, it cannot
be complete. There will be true
statements which can't be proven.

Kurt Gödel

There is no way to show that any useful
formal system is free of false statements

If a logical system is consistent, it cannot
be complete. There will be true
statements which can't be proven.

Getting a bit less
philosophical

How can we constrain
the implementation of a
function in such a way
that that the only
possible implementation
is the correct one?

How can we rule-
out all
incompatible
implementations?

Number of allowed implementations

Total Possible Implementations
minus

Implementations Invalidated by tests

https://julien-truffaut.github.io/types-vs-tests

https://julien-truffaut.github.io/types-vs-tests

Number of allowed implementations = 1

We can be sure that our function is correct when:

https://julien-truffaut.github.io/types-vs-tests

https://julien-truffaut.github.io/types-vs-tests

Number of allowed implementations = 1

We can be sure that our function is correct when:

The one we want

https://julien-truffaut.github.io/types-vs-tests

https://julien-truffaut.github.io/types-vs-tests

https://julien-truffaut.github.io/types-vs-tests

Valid Implementation Count
Julien Truffaut's

Smaller VICs mean more constrained functions.

https://julien-truffaut.github.io/types-vs-tests

https://julien-truffaut.github.io/types-vs-tests

Valid Implementation Count = 1
Only one possible implementation: the correct one

https://julien-truffaut.github.io/types-vs-tests

Cover every
possible input
and output

It's only feasible to
cover every I/O pair
by constraining
them

Through a combination of
experiments and logical

constraints, we can achieve more
certainty.

How many possible values can
we have for each of these?

19

195

7

There are now 7195 valid implementations. 
Just because we added types.

19

195

7

For every input tested, we reduce the number
of possible implementations seven-fold.

19

195

7

For every country tested, the possibilities of its
result collapse into being only one.

7195 / 7= 7194

19

195

7

It's now feasible to test all countries and
collapse the possible implementations into one.

7195 / 7 / 7 / 7 / 7 ... = 70 = 1

Type systems
allow us to
constrain reality in
such a way that
testing all possible
inputs become
possible.

Making impossible states impossible
F O R M A L L Y E N F O R C I N G C O R R E C T N E S S

E L M C O N F

R i c h a r d F e l d m a n
R E A C T F I N L A N D

P a t r i c k S t a p f e r

Leveraging
correctness
with types

Making impossible states impossible
F O R M A L L Y E N F O R C I N G C O R R E C T N E S S

Blackjack

Making impossible states impossible
F O R M A L L Y E N F O R C I N G C O R R E C T N E S S

Blackjack

Making impossible states impossible
F O R M A L L Y E N F O R C I N G C O R R E C T N E S S

Making impossible states impossible
F O R M A L L Y E N F O R C I N G C O R R E C T N E S S

Only has a name!

Can have a countryCode
without a phone and vice-versa

Making impossible states impossible
F O R M A L L Y E N F O R C I N G C O R R E C T N E S S

Still don't need a contact

Making impossible states impossible
F O R M A L L Y E N F O R C I N G C O R R E C T N E S S

Making impossible states impossible
F O R M A L L Y E N F O R C I N G C O R R E C T N E S S

We can have invalid cards! 
Zero, negative numbers, huge numbers...

Making impossible states impossible
F O R M A L L Y E N F O R C I N G C O R R E C T N E S S

Can only have valid cards!

Making impossible states impossible
F O R M A L L Y E N F O R C I N G C O R R E C T N E S S

Making impossible states impossible
F O R M A L L Y E N F O R C I N G C O R R E C T N E S S

We can still have only one card!

Making impossible states impossible
F O R M A L L Y E N F O R C I N G C O R R E C T N E S S

We must have two or more cards

Making impossible states impossible
F O R M A L L Y E N F O R C I N G C O R R E C T N E S S

lol wrongCan have zero players

Can have a 'win' state with a next player

Can have a tie with no tiePlayers

Can have a running state with a winner

Making impossible states impossible
F O R M A L L Y E N F O R C I N G C O R R E C T N E S S

States are
now constrained

Can have a next player
which has busted or
surrendered!

Making impossible states impossible
F O R M A L L Y E N F O R C I N G C O R R E C T N E S S

Making impossible states impossible
F O R M A L L Y E N F O R C I N G C O R R E C T N E S S

Can only have valid
players now :)

V I E W M O R E

For a next time

From the most
complex to the most

simple problems

All languages
are typed
But some will only tell you at runtime.

Uncaught TypeError: undefined
is not a function

Uncaught TypeError: Cannot
read property 'foo' of
undefined

Prohibiting
invalid properties

Collapsing the number of
possible props

Combinatorial Explosion

https://basarat.gitbooks.io/typescript/docs/types/discriminated-unions.html
https://dzone.com/articles/make-impossible-states-impossible

Exhaustive
Checks
No unhandled actions.

Ensures unhandledAction is never called!

All actions are handled so this can't happen!

https://basarat.gitbooks.io/typescript/docs/types/discriminated-unions.html

Exhaustive
Checks
No unhandled actions.

We're not handling unknown!

https://basarat.gitbooks.io/typescript/docs/types/discriminated-unions.html

Exhaustive
Checks
No unhandled actions.

We're not handling unknown!

https://basarat.gitbooks.io/typescript/docs/types/discriminated-unions.html

Modeling
Uncertainty

https://fsharpforfunandprofit.com/rop/ - Scott Wlaschin

https://fsharpforfunandprofit.com/rop/
https://twitter.com/ScottWlaschin

Producing reliable
software depends on
choosing good
abstractions and
executing the correct
experiments.

Leveraging
correctness
with tests

A U T O M A T E D
C R A P I S S T I L L

C R A P

W R I T I N G T E S T S I S N O T E N O U G H

Coupling and cost
management
What is the cost of having tests?  
What value does having tests produce?
How brittle should my tests be?

Capitalism 101

Capitalism 101
What matters: less costs, more revenue

Capitalism 101
What matters: less costs, more revenue

What doesn't matter: code coverage, correctness, tests

Tests add
upfront cost

But reduce long-term costs.
You get back in instalments. 

Tests are subject to diminishing
returns.

T H E P R I C E

You pay for tests
in maintenance

T E S T S A R E
C O D E T O O

Avoid
coupling.

The more tests you have
to change when you do a
change, the bigger your

cost is.

T H E P R I C E

Tests
shouldn't be

too fragile nor
too loose.

Think about when you
would like them to break.

T H E P R I C E

Tests
shouldn't be

too fragile nor
too loose.

T H E P R I C E

Tests that never fail are
useless. They don't

produce any information.

Tests
shouldn't be

too fragile nor
too loose.

T H E P R I C E

Tests that never fail are
not scientific.

Tests
shouldn't be

too fragile nor
too loose.

T H E P R I C E

Tests that never fail are
pseudo-science.

Different kinds
of tests
What kinds of tests produce more value?
Where do tests fit in the software development process?

We need to talk about
Test Driven Development

Test Driven
Development
is not about tests
TDD is about taking small steps. 
TDD is a fear reduction tool. 
TDD exists to help orienting developers
when they change code.

Test Driven
Development
is not about tests
TDD is about taking small steps. 
TDD is a fear reduction tool. 
TDD exists to help orienting developers
when they change code.

Different types
of tests
generate
different types
of value.

https://martinfowler.com/articles/practical-test-pyramid.html

From MartinFowler.com
The Practical Test Pyramid — Written by Ham Vocke

https://martinfowler.com/articles/practical-test-pyramid.html
http://MartinFowler.com

Different types
of tests
generate
different types
of value.

https://martinfowler.com/articles/practical-test-pyramid.html

Cheap, and fast
but produce relatively low value

From MartinFowler.com
The Practical Test Pyramid — Written by Ham Vocke

https://martinfowler.com/articles/practical-test-pyramid.html
http://MartinFowler.com

Different types
of tests
generate
different types
of value.

https://martinfowler.com/articles/practical-test-pyramid.html

Cheap, and fast
but produce relatively low value

Short answer:

From MartinFowler.com
The Practical Test Pyramid — Written by Ham Vocke

https://martinfowler.com/articles/practical-test-pyramid.html
http://MartinFowler.com

Different types
of tests
generate
different types
of value.

https://martinfowler.com/articles/practical-test-pyramid.html

Cheap, and fast
but produce relatively low value

Short answer: no

From MartinFowler.com
The Practical Test Pyramid — Written by Ham Vocke

https://martinfowler.com/articles/practical-test-pyramid.html
http://MartinFowler.com

Different types
of tests
generate
different types
of value.

https://martinfowler.com/articles/practical-test-pyramid.html

Cheap, and fast
but produce relatively low value

Long answer: well...

From MartinFowler.com
The Practical Test Pyramid — Written by Ham Vocke

https://martinfowler.com/articles/practical-test-pyramid.html
http://MartinFowler.com

When
to write
what

E2E

Unit

IntegrationSnapshot

When should I
write unit tests?

E2E

Unit

IntegrationSnapshot In parallel with writing code.

Unit tests guide development and
help refactoring code safely.

Not mainly for correctness. 
As documentation for your future self.

As a contract, specification of the unit under test.

When should I write
snapshot tests?

E2E

Unit

IntegrationSnapshot

When asserting on output is repetitive.

When output is too big and
detailed to manage.

Not as guidance for iterating, but as
an extra safeguard against failure.

When should I write
snapshot tests?

Jest extensively uses snapshots to
test itself.

A few tips for
snapshot tests

E2E

Unit

IntegrationSnapshot

A few tips for
snapshot tests

• Find relevant serialisers for your
problem domain. Readable
snapshots matter.

A few tips for
snapshot tests

• Find relevant serialisers for your
problem domain. Readable
snapshots matter.

A few tips for
snapshot tests

• Find relevant serialisers for your
problem domain. Readable
snapshots matter.

• Use custom asymmetric snapshot
matchers to balance maintainability
and rigorousness

A few tips for
snapshot tests

• Find relevant serialisers for your
problem domain. Readable
snapshots matter.

• Use custom asymmetric snapshot
matchers to balance maintainability
and rigorousness

• Don't be afraid to have tests with
partial snapshots.

When should I write
integration tests?

E2E

Unit

IntegrationSnapshot
To ensure correctness and

prevent regressions.

To ensure you are using third
party dependencies correctly.

When a certain behaviour is
critical to your application.

To test functional requirements.

Practices that I
consider integration
tests:

E2E

Unit

IntegrationSnapshot • Interacting with actual components (Enzyme/
react-testing-library)

• Sending actual HTTP requests
• Hitting a database and fetching data from it
• Asserting on I/O (i.e. interacting with the

filesystem)
• Spinning separate processes

When should I write
end-to-end tests?

E2E

Unit

IntegrationSnapshot

The most valuable kind of testing from a
correctness perspective.

When interaction with a real UI matters.

To avoid visual regressions.

To ensure multiple services work together from
a user's perspective.

Can't emphasise
how good this is:E2E

Unit

IntegrationSnapshot
• Amazing docs
• Easy access to your application's

runtime environment
• Not flaky (but be careful with the

global chain of events!)
• Extremely quick to run
• Extremely easy to setup

Avoiding
false positives
How can I setup tests in such a way as to catch the most bugs?
How can I avoid getting false positives?  
How do assertion libraries work?

Avoid loose
assertions

A V O I D I N G F A L S E P O S I T I V E S

Assertions which allow
multiple different outputs.

Assertions that are loose by design

• .includes
• .isDefined
• .increases
• .decreases } The set of

passing results is
too broad

Avoid loose
assertions

A V O I D I N G F A L S E P O S I T I V E S

Assertions which allow
multiple different outputs.

Assertions that are loose by design

expect(result).to.be.a.number

Avoid loose
assertions

A V O I D I N G F A L S E P O S I T I V E S

Assertions which allow
multiple different outputs.

Assertions that are loose by design

Can go from 5e-324 to
1.7976931348623157e+308

expect(result).to.be.a.number

Avoid loose
assertions

A V O I D I N G F A L S E P O S I T I V E S

Assertions which allow
multiple different outputs.

Assertions that are loose by design

NaN
expect(result).to.be.a.number

Avoid loose
assertions

A V O I D I N G F A L S E P O S I T I V E S

Assertions which allow
multiple different outputs.

Negated assertions.

expect(result).to.not.be(1)

Negated assertions are the
loosest assertions one can make.

+ ∞- ∞
0 1

Avoid loose
assertions

A V O I D I N G F A L S E P O S I T I V E S

Assertions which allow
multiple different outputs.

Loose assertions are essentially
assertions with a semantic "or"

expect(result).to.be(1).or.to.be(2)

Avoid loose
assertions

A V O I D I N G F A L S E P O S I T I V E S

Assertions which allow
multiple different outputs.

This is why .or has never been
included in Chai.

Assert on one
subject at a

time

A V O I D I N G F A L S E N E G A T I V E Sexpect(result).to.not.throw(TypeError, "example msg")

Is it an error if both don't
match?  
What if one matches and the
other doesn't?

Avoid
tautological

tests

A V O I D I N G F A L S E P O S I T I V E S

Don't test your code
against itself.

Build inputs and expected outputs
within your testing code.

Using application code to do tests means the
correctness of the test depends on the

correctness of the application itself.

circular assertion

Meaningful
Feedback
What is the right size of a test?
How to debug in a scientific manner?
How do test runners work?

Choose the
right

assertions

M E A N I N G F U L F E E D B A C K

Assertion libraries
generate information for
test runners to show you

meaningful output.

How test
runners

provide output

M E A N I N G F U L F E E D B A C K

Assertions produce
AsertionError instances.

Diffs are the
runner's

responsibility

M E A N I N G F U L F E E D B A C K

Runners generate diffs
based on the

AssertionErrors thrown

Assertion libraries
can help by
generating

meaningful errors

M E A N I N G F U L F E E D B A C K

They can omit certain parts of
the stack trace and provide

meaningful information about
the operators used.

Assertion libraries
can help by
generating

meaningful errors

M E A N I N G F U L F E E D B A C K

They can omit certain parts of
the stack trace and provide

meaningful information about
the operators used.

We captured
the stack here

Assertion libraries
can help by
generating

meaningful errors

M E A N I N G F U L F E E D B A C K

They can omit certain parts of
the stack trace and provide

meaningful information about
the operators used.

Assertion libraries
can help by
generating

meaningful errors

M E A N I N G F U L F E E D B A C K

They can omit certain parts of
the stack trace and provide

meaningful information about
the operators used.

Assertion libraries
can help by
generating

meaningful errors

M E A N I N G F U L F E E D B A C K

They can omit certain parts of
the stack trace and provide

meaningful information about
the operators used.

For each part of this assertion we keep
resetting what is the start of the stack
frame we are going to provide.

We only display the bottom stack
frames, hiding our internal frames.

Assertions behind
the scenes

M E A N I N G F U L F E E D B A C K

How Chai handles assertions.

new Assertion({ name: "HolyJS"})

Accessed properties trigger getter
functions which always return the

assertion object (this)

Each time a property is accessed, we
reset the starting point of the stack.

Assertions behind
the scenes

M E A N I N G F U L F E E D B A C K

How Chai handles assertions.

Accessing the property deep sets a
flag called "deep" in the assertion

object, which indicates to the equal
assertion that it should perform a

deep comparison

Assertions behind
the scenes

M E A N I N G F U L F E E D B A C K

How Chai handles assertions.

The deep flag cannot be unset.

Do one assertion at a time!

Assertions behind
the scenes

M E A N I N G F U L F E E D B A C K

How Chai handles assertions.

More readable
tests are easier to
understand and

debug

M E A N I N G F U L F E E D B A C K

Use plugins or build your own.

More readable
tests are easier to
understand and

debug

M E A N I N G F U L F E E D B A C K

Use plugins or build your own.

More readable
tests are easier to
understand and

debug

M E A N I N G F U L F E E D B A C K

Use plugins or build your own.

Isolating external
dependencies
What parts of my application should I test and when?
How can I eliminate dependency on external libraries?  

When should I
mock?

T E S T I S O L A T I O N

Easy Answer: Mock what is not yours.

Hard Answer: It depends.

Unit Under Test

External Library 1 External Library 2

JSDOM
(DOM APIs) ./module_b.js

When should I
mock?

T E S T I S O L A T I O N

Easy Answer: Mock what is not yours.
Unit Under Test

External Library 1 External Library 2

JSDOM
(DOM APIs) ./module_b.js

External libraries should
have already been tested
by their creators. 
 
At most, you want to
check whether the correct
method was called.

Test your code, not someone else's.

Especially valid for
DOM APIs!

When should I
mock?

T E S T I S O L A T I O N

Easy Answer: Mock what is not yours.

Hard Answer: It depends.

Unit Under Test

External Library 1 External Library 2

JSDOM
(DOM APIs) ./module_b.js

The more mocks you have,
the more detached from reality
your test becomes.
 
The more mocks you have,
the more decoupled your test
becomes.

Maintenance Cost vs. Isolation

How coupled to the dependency is the mock?

How critical is the code under test?

When should I
mock?

T E S T I S O L A T I O N

Easy Answer: Mock what is not yours.

Hard Answer: It depends.

Unit Under Test

External Library 1 External Library 2

JSDOM
(DOM APIs) ./module_b.js Maintenance Cost vs. Isolation

How coupled to the dependency is the mock?

How critical is the code under test?

React

You'll definitely want to mock
this so that you can do fake
pushes through the web
sockets

socket.io

You don't want to mock this
because you will be
interacting with components

Hard to mock.

Test loses its value.

You can trust the DOM APIs work.

Ah, you also have no choice.

What do you
mean by trusting
browser APIs?

T E S T I S O L A T I O N

Trust that they work,
but check that you are

using them

Unit Under Test

External Library 1 External Library 2

JSDOM
(DOM APIs) ./module_b.js

What do you
mean by trusting
browser APIs?

T E S T I S O L A T I O N

Trust that they work, but check
that you are using them

JSDOM
(DOM APIs)

When should I
mock?

T E S T I S O L A T I O N

Create transitive guarantees.

Unit Under Test ./module_b.js

./module_c.js

module_b is covered

module_c is covered

When should I
mock?

T E S T I S O L A T I O N

Create transitive guarantees.

Unit Under Test ./module_b.js

./module_c.js

module_b is covered

module_c is covered

mocking module_b
helps you avoid
redundant checks

If module_c is covered I don't need to check it in module_b's tests.

If UUT uses module_b and, transitively, module_c, I can mock module_b.

Avoid brittleness.

Avoid redundant checks.

Avoid tests becoming too big.

How can I mock?
T E S T I S O L A T I O N

mocking imports

proxyquire
rewire

rewiremock

Jest's MocksSinon's Mocks,
Stubs, and Spies

If you're not using jest

More custom behaviour

Plugin integration

Sandboxes

If you're already
using jest

Easily mocking
entire modules

Can
automatically
clear mocks

Simple and well
documented API

to assert on

If you're not using jest

Mocking on import level

Depends on being paired
with Sinon or another

mocking code

Mocking code in general.

How can I mock?
T E S T I S O L A T I O N

Mess with the requests yourself.
Mocking HTTP responses.

Use a specific library.

nock

You have full control over
what's happening.

Can get repetitive.

Reasonably annoying to set
matchers for requests.

Default behaviour is not
always what's best or

consistent.

Well defined API. No need
for wrappers.

Can get a bit verbose if you
need to mock uncommon

features.

chaijs/chai-http

visionmedia/supertest

For your assertions:

Eliminating
non-determinism
Why does determinism matters?  
How to make non-deterministic tests deterministic?

Why determinism
matters?

D E T E R M I N I S M

Semantically speaking,
flaky tests are the same as
failing tests.

Flaky tests decrease the
confidence in each build.

Is it a flaky test or is it flaky
application code?

How to solve
non-determinism

D E T E R M I N I S M

Approach 1: Mock-out non-deterministic pieces

How to solve
non-determinism

D E T E R M I N I S M

Approach 2: Take variability into account

This means you solve the
problem on the testing side.

Use loose assertions willingly!
Allow broader sets of results.

Use matchers

How to solve
non-determinism

D E T E R M I N I S M

Approach 3: Make the code deterministic

Not always possible.

Ordering results
within your tests.

Eliminating the usage
of randomness.

Providing a
deterministic state

or seed.

Speeding-up
test runs
Why does quick feedback matters?  
How can I speed up test runs?
How are my tests scheduled?

Why does quick
feedback matters?

Q U I C K F E E D B A C K

Quick feedback
encourages you to take

more gradual steps
(proper TDD).

If tests are slow, they won't
get run frequently enough.

Quick feedback decreases
frustration, creating a

positive feedback loop.

2 0 1 9
H O L Y J S  
M O S C O W

Good tests kill flawed theories;
we remain alive to guess again.

— POPPER, Karl

Write code, read books

2 0 1 9
H O L Y J S  
M O S C O W

Twitter: @thewizardlucas

GitHub: @lucasfcosta

WWW: lucasfcosta.com

http://lucasfcosta.com

Thank you.

2 0 1 9
H O L Y J S  
M O S C O W

Twitter: @thewizardlucas

GitHub: @lucasfcosta

WWW: lucasfcosta.com

http://lucasfcosta.com

