
Anna Herlihy
Senior Software Engineer
Stockholm

BSON-Transpilers

@annaisworking

1. Feature Requirements

2. Technical Requirements

3. How to contribute!

Compass = The UI for MongoDB

Export To Language (query)

Export To Language (aggregation)

Also used on MongoDB Atlas

But wait...

Wouldn’t it be great if you could just write
whatever language you want, directly into

Compass?

Language-Modes

BSON is a large enough subset to treat the
problem as if we’re parsing the entire

language syntax

Accept query or aggregation in any language

Export query or aggregation to any language
+
=

Requirements

Any language
to

any language
translation!

Possible Approaches

Naïve Approach

Intermediate representation

Intermediate Representation (IR)

Intermediate representation

Intermediate Representation (IR)

LLVM-IR

Linear Regression in Python

Linear Regression in LLVM-IR

Intermediate representation

Intermediate Representation (IR)

How does Babel work?

Babel Parser only parses JavaScript L

???

Complexity

For every input language we support:

1. We want to only have to do the work once

2. We want to define the input language without
knowing or caring how many output languages exist

We do not want to have to
rewrite the translation for

every possible combination,
that would be O(n2) and we

want O(n)

For every input language we support:

1. We want to only have to do the work once

2. We want to define the input language without
knowing or caring how many output languages exist

For every input language we support:

1. We want to only have to do the work once

2. We want to define the input language without
knowing or caring how many output languages exist

Same principle for target languages

Distributed Development

1. Many communities are small + passionate

2. Open source ethos :)

3. How many people are compiler experts?

Summary of Technical Requirements

1. Accept arbitrary # of input languages

2. Generate arbitrary # of output languages

3. Support distributed development

4. Linear-time development cost

5. Web-friendly JavaScript library

How to add your own
output language

Compiler 101

Illustrations by @Irina!

Tree Building

{ today: Date() }

START

Object
Literal
{}

Symbol
today Function

Call

Args
()

Symbol
Date

key

funcname

value

args

The tree-building stage
includes lexing, parsing,
syntax analysis, and more!

Parser Generator

● Parsers are hard!

● Support for most languages

● We apply ANTLR to our input
and we get a tree. The tree
building stage is completely
handled!

● Bonus: ANTLR generates a
visitor class!

OUR SAVIOR

The Visitor Pattern

Visitors traverse trees by “visiting” each node
For each type of node, the visitor calls the corresponding
function.
➢ When the visitor sees a node that is a “string” type, it

will call the visitString method and expect the
generated code to be returned.

Extremely Simple Visitor Example

‘testing…testing’

START

JavaScript Code

Extremely Simple Visitor Example

‘testing…testing’

START

JavaScript Code

“testing...testing”

END

Java Code

Extremely Simple Visitor Example

‘testing…testing’

START

ANTLR

“testing...testing”

END

string

’‘
testing...testing

value

Extremely Simple Visitor Example

‘testing…testing’

START

ANTLR

“testing...testing”

END

string

’‘
testing...testing

value

Extremely Simple Visitor Example

‘testing…testing’

START

“testing...testing”

ENDVISITOR

string

’‘
testing...testing

value

Extremely Simple Visitor Example

class Visitor() extends ANTLRVisitor {

visitString(node) {

const val = node.value;

return ‘“‘ + val + ‘”‘;

}

}
string

’‘
testing...testing

‘testing…testing’

START

“testing...testing”

END
value

What does ANTLR look like?

Root

21
left-hand side

Bin
Expr

+

right-hand side
operator

Parse Tree vs AST

How does Babel work?

ANTLR trees are read-only L

How does Babel work?

ANTLR trees are read-only L

ANTLR-generated Visitor Classes

…

Abstract away our problems (part I)

Visitor classes can only visit trees generated from a single grammar
à need one Visitor per input language

• To avoid having the same code in every visitor, abstract the
shared code into a super class!

• Each visitor will act as abstraction layer between superclass
visitor and grammar-generated nodes.

codegeneration/python/visitor.js

codegeneration/python/visitor.js codegeneration/javascript/visitor.js

codegeneration/python/visitor.js codegeneration/javascript/visitor.js

codegeneration/code-generation-visitor.js

codegeneration/python/visitor.js codegeneration/javascript/visitor.js

codegeneration/code-generation-visitor.js

codegeneration/python/visitor.js codegeneration/javascript/visitor.js

codegeneration/code-generation-visitor.js

Abstract away our problems (part II)

We now have one visitor per input language

How do we avoid having to specialize each visitor for every
combination of languages?
§ Define ”Generator” classes that generate code in methods called

“emit”
§ Treat Visitors as abstract interfaces.

codegeneration/python/generator.js codegeneration/javascript/generator.js

codegeneration/python/generator.js codegeneration/javascript/generator.js

codegeneration/code-generation-visitor.js

Composable Transpiler

ANTLR Generated
Visitor Class

Composable Transpiler

ANTLR Generated
Visitor Class

CodeGenerationVi
sitor

Inherits from

Composable Transpiler

ANTLR Generated
Visitor Class

CodeGenerationVi
sitor

Input-Language
Visitor

Inherits from Inherits from

Composable Transpiler

ANTLR Generated
Visitor Class

CodeGenerationVi
sitor

Input-Language
Visitor

Output-Language
Generator

Inherits from Inherits from

Inherits from

Composable Transpiler

ANTLR Generated
Visitor Class

CodeGenerationVi
sitor

Input-Language
Visitor

Output-Language
Generator

Inherits from Inherits from

Inherits from
index.js

Composable Transpiler

ANTLR Generated
Visitor Class

CodeGenerationVi
sitor

Input-Language
Visitor

Output-Language
Generator

Inherits from Inherits from

Inherits from
index.js

What about functions or variables?

We need to support native language features as well as
BSON-specific types.
ObjectId, Date, Decimal128, Timestamp, etc…
How can we tell the difference between variables?

ObjectId()

START

Date()

START JavaScript Input JavaScript Input

new java.util.Date() new ObjectId()

ENDEND

JavaScript Input

Java Output

ObjectId()

START

Date()

START

Function
Call

Args
()

Symbol
Date

Function
Call

Args
()

Symbol
ObjectId

new java.util.Date() new ObjectId()

ENDEND

ObjectId()

START

Date()

START

Function
Call

Args
()

Symbol
Date

Function
Call

Args
()

Symbol
ObjectId

The same visit methods are going to be called for both...

To the visitor, these two trees look the same...

We need a
Symbol Table!

Symbol Table

● Need a place to keep track of all the symbols, i.e. variable or
function names.

● When the visitor reaches a Symbol node, it looks it up in the
Symbol Table

● This is also a convenient place to differentiate between output
languages...

Visiting a Symbol

visitSymbol(node) {

const name = node.symbol;

node.type = this.Symbols[name];

if (node.type === undefined) {

throw new ReferenceError(`Symbol ${name} is undefined`);

}

return name;

}

First get the symbol
itself from the node

Visiting a Symbol

visitSymbol(node) {

const name = node.symbol;

node.type = this.Symbols[name];

if (node.type === undefined) {

throw new ReferenceError(`Symbol ${name} is undefined`);

}

return name;

}

Look up the name of
the symbol in the table

and “decorate” the
node with the results

Visiting a Symbol

visitSymbol(node) {

const name = node.symbol;

node.type = this.Symbols[name];

if (node.type === undefined) {

throw new ReferenceError(`Symbol ${name} is undefined`);

}

return name;

}

If it’s not in the table,
throw an exception

Visiting a Symbol

visitSymbol(node) {

const name = node.symbol;

node.type = this.Symbols[name];

if (node.type === undefined) {

throw new ReferenceError(`Symbol ${name} is undefined`);

}

return name;

}

Return the name of
the function to the

parent

What’s in the Symbol Table?
ObjectId:

id: "ObjectId"
callable: *constructor
args:

- [*StringType, *NumericType, null]
type: *ObjectIdType
attr: {}
template: *ObjectIdSymbolTemplate
argsTemplate: *ObjectIdSymbolArgsTemplate

What’s in the Symbol Table?
ObjectId:

id: "ObjectId"

The name of the attribute. Mostly
used for error reporting.

What’s in the Symbol Table?
ObjectId:

id: "ObjectId"
callable: *constructor

There are 3 types of symbol:
*func: a function name
*constructor: also a function name, but may require a “new“
*var: a variable. Indicates that the symbol cannot be called.

What’s in a Symbol?
ObjectId:

id: "ObjectId"
callable: *constructor
args:

- [*StringType, *NumericType, null]

If the symbol is callable, this is where the arguments are defined. Each
element in the array is a positional argument and contains the list of
acceptable types. So ObjectId accepts one string or number argument, or no
arguments at all.

What’s in a Symbol?
ObjectId:

id: "ObjectId"
callable: *constructor
args:

- [*StringType, *NumericType, null]
type: *ObjectIdType

The return type of the function, or
if the symbol is a variable, the type
of the variable.

What’s in a Symbol?
ObjectId:

id: "ObjectId"
callable: *constructor
args:

- [*StringType, *NumericType, null]
type: *ObjectIdType
attr: {...}

Any attributes of the symbol. This is a sub-symbol table, i.e. a
mapping of names to symbols. Ex: ObjectId.fromDate()

What’s in a Symbol?
ObjectId:

id: "ObjectId"
callable: *constructor
args:

- [*StringType, *NumericType, null]
type: *ObjectIdType
attr: {}
template: *ObjectIdSymbolTemplate

These are functions that accept strings and return strings.

Templates

Simple functions that accept strings and return strings

Responsible for doing the string transformations from one
language syntax to another language's syntax

These are specific to the output language and defined in a separate
file that is loaded when the compiler is initialized.

Each output language has a file

(in YAML)

where the templates are defined.

Symbol File
(input language)

Template File
(output language)

Symbol File + Template File
=

Symbol Table

Composable Transpiler

ANTLR Generated
Visitor Class

CodeGenerationVi
sitor

Input-Language
Visitor

Output-Language
Generator

Inherits from Inherits from

Inherits from
index.js

Composable Transpiler
index.js

To Recap

ANTLR creates a tree from the user input

We visit the ANTLR-generated tree using visitors

When the visitor reaches a symbol, it looks up metadata in the
Symbol Table.

§ The metadata includes template functions that specify what code
should be generated

So how do I add my own output language to Compass?

Add your own template file!!

All you need to do to add an output
language is fill out the templates!

symbols/sample_template.yaml

There is a skeleton template file available

To add a new output language:

§ fill out each template with the correct translation to your language.

Templates mostly apply to symbols, but there are also templates for
literals and other syntax.

NumberLong(‘1’)

START

Visitor

NumberLong(‘1’)

START

Visitor

symbols/python/templates.yaml

LongTemplate(arg) {
return `Int64(${arg})`;

}

NumberLong(‘1’)

START

Int64(‘1’)

END

Visitor

symbols/python/templates.yaml

LongTemplate(arg) {
return `Int64(${arg})`;

}

NumberLong(‘1’)

START

Int64(‘1’)

END

Visitor

symbols/python/templates.yaml

LongTemplate(arg) {
return `Int64(${arg})`;

}

symbols/java/templates.yaml

LongTemplate(arg) {
return `Long.parseLong(${arg})`;

}

NumberLong(‘1’)

START

Long.parseLong(
"1"

)

Int64(‘1’)

END

Visitor

symbols/python/templates.yaml

LongTemplate(arg) {
return `Int64(${arg})`;

}

symbols/java/templates.yaml

LongTemplate(arg) {
return `Long.parseLong(${arg})`;

}

NumberLong(‘1’)

START

Long.parseLong(
"1"

)

Int64(‘1’)

END

Visitor

symbols/python/templates.yaml

LongTemplate(arg) {
return `Int64(${arg})`;

}

symbols/java/templates.yaml

LongTemplate(arg) {
return `Long.parseLong(${arg})`;

}

symbols/csharp/templates.yaml

LongTemplate(arg) {
return `Convert.ToInt64(${arg})``;

}

NumberLong(‘1’)

START

Long.parseLong(
"1"

)

Int64(‘1’)

Convert.ToInt64(
"1"

)

END

Visitor

symbols/python/templates.yaml

LongTemplate(arg) {
return `Int64(${arg})`;

}

symbols/java/templates.yaml

LongTemplate(arg) {
return `Long.parseLong(${arg})`;

}

symbols/csharp/templates.yaml

LongTemplate(arg) {
return `Convert.ToInt64(${arg})``;

}

Expand Templates to Literals

Can apply the same method to literals

Example: Object Literals
§ Python: {‘k’: 1}
§ JS: {k: 1}
§ C#: new BsonDocument()
§ Java: new Document()

Go forth and write templates!

Ruby, PHP, Go, R, Rust, C & more!

❖ Want to add an output language?
➢ Just fill out a symbol table file!

❖ Want to write an input language?
➢ Write a visitor

Expanded the syntax to include driver usage

Future Features!

We now have a pluggable
transpiler from any language

BSON to any language
BSON….what can we do with it?

Generate examples for MongoDB University

Put it in front of the
shell!

Expand it to support 100% language
syntax!

Thanks to the Compass Team!

★ Alena Khineika

★ Irina Shestak

★ Durran Jordan

Thank you!
Everything I said, in much more detail:
github.com/mongodb-js/bson-transpilers

> CONTRIBUTING.md

Questions?
compass@mongodb.com or anna@mongodb.com

https://github.com/mongodb-js/bson-transpilers/blob/master/CONTRIBUTING.md
https://github.com/mongodb-js/bson-transpilers/blob/master/CONTRIBUTING.md
mailto:compass@mongodb.com
mailto:anna@mongodb.com

