

Phase II - Detailed Site Investigation

LOG – East: Abbotts Road Intersection and Mamre Road, Kemps Creek NSW

Prepared for: AT&L Pty Ltd

A101023.0120 | DSI2.v1f | Date: 9 May 2023

Document Information

Report Title: Phase II - Detailed Site Investigation Prepared for: AT&L Pty Ltd Project Address: Abbotts Road Intersection and Mamre Road, Kemps Creek NSW File Reference: A101023.0120.00 Report Reference: A101023.0120.DSI2.v1f Date: 9 May 2023

Document Control

Version	Date	Author	Revision description	Reviewer
v1d	14.04.2023	Monique Hitchens	Draft for client review	Dr.Santo Ragusa
v1f	09.05.2023	Monique Hitchens	Final for issue	Dr. Santo Ragusa

Distribution

Version	Date	Format	No. of Copies	Distributed To
v1d	14.04.2023	PDF	1	AT&L Pty Ltd
v1f	09.05.2023	PDF	1	AT&L Pty Ltd.

For and on behalf of **ADE Consulting Group Pty Ltd.** 6/7 Millennium Ct, Silverwater NSW 2128 ABN: 14 617 358 808

Prepared by:

Reviewed by:

Issued by:

Monique Hitchens Environmental Consultant

Shagena

Dr. Santo Ragusa Principal Environmental Scientist CEnvP SC41129

. . .

Andrew Hunt Project Coordinator

T. 1300 796 922 | E. info@ade.group | Unit 6/7 Millennium Court, Silverwater NSW

This report is copyright. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying without permission in writing from ADE Consulting Group Pty Ltd.

CONTENTS

E>	ecu	utive	e Summary	8
1			Introduction	10
	1.1		Background and General Information	10
	1.2		Objectives	10
	1.3		Scope of Work	10
	1	1.3.1	Phase I – Project Preliminaries and Desktop Study	10
	1	1.3.2	Phase II – Fieldwork Investigation	11
	1	1.3.3	Phase III - Laboratory Analysis and Reporting	11
	1.4		Legislative Requirements	11
2			Site Identification	13
	2.1		Site Location	13
	2.2		Summary of Site Details	14
3			Site History	15
	3.1		Summary of site history	15
	3.2		Previous Environmental Investigations	15
	3	3.2.1	Detailed Site Investigation – 200 Aldington Road, Kemps Creek, dated 11 February 2022 2022a)	-
	3	3.2.2	Detailed Site Investigation – 74 – 90 Aldington Road, Kemps Creek NSW, dated 30 March 2022 2022b)	-
	3	3.2.3	Preliminary Site Investigation – Abbotts Road and Aldington Road upgrade, Kemps Creek NSV 21.1725.07 PSI.v1f, dated 01 November 2022 (ADE, 2022c)	•
	3.3		Site Inspection Details	17
	3.4		Surrounding Land Uses	17
	3.5		Local Geology and Topography	17
	3.6		Hydrogeology and hydrology	18
	3.7		Naturally occurring contaminants	18
	3.8		Current Site Condition / Site Observations	19
4			Preliminary conceptual site model	20
	4.1		Potential contamination sources	20
	4.2		Contaminants of potential concern	20
	4.3		Primary transport mechanisms	20
	4.4		Potential contamination receptors	21
	4.5		Exposure pathways	21
	2	4.5.1	. Human health – direct contact and ingestion	21
	Z	4.5.2	Human health – inhalation /vapour intrusion	21
	2	4.5.3	Human/ecological health - Groundwater discharge and surface water run-off	21
	4.6		Preliminary Conceptual Site Contamination Model	21
5			Sampling Plan, Methodology, and Investigation Pattern	23

F	5.1	Pre-work Procedure and Site Establishment	23
	5.2	Sampling Design Plan Strategy and Rationale	
	5.3	Fieldwork Methodology	
		1 Soil sampling methodology	
5	5.4	Documentation	
5	5.5	Laboratory Submission	
6		Site Assessment Criteria	26
е	5.1	Soil Assessment Criteria	26
	6.1.1	1 Health Investigation Levels (HILs)	26
	6.1.2	2 Health Screening Levels (HSLs)	27
		3 Ecological investigation levels and Ecological Screening Levels (EILs/ESLs)	
	6.1.4	1 Management Limits	29
	6.1.5	5 Asbestos in Soil	29
	6.1.6	5 PFAS in soil	30
	6.1.7	7 Aesthetics	30
е	5.2	Statistical Treatment	31
7		Results and Discussion	32
7	' .1	Field Observations	32
	7.1.1	1 Site Soil and Sub-soil Geology	32
	7.1.2	2 PID Field Screening	32
7	' .2	Summary of Soil Analytical Results.	33
	7.2.1	1 Heavy Metals	33
	7.2.2	2 Organics (BTEXN, TPHs, PAHs, OCP/OPPs and PCBs)	33
	7.2.3	3 Per-and Poly-fluoroalkyl Substances (PFAS)	33
	7.2.4	1 Asbestos	34
7	7.3	Duty to Report Contamination	34
8		Provisional Materials Analysis and Classification	35
8	8.1	Introduction	35
8	3.2	Preliminary Waste Classification Assessment – Fill Materials (0.0 – 1.8 m BGL)	35
	8.2.1	1 Comparison against the NSW EPA Waste Classification Guidelines 2014	35
	8.2.2	2 Approved NSW EPA Resource Recovery Framework	37
8	3.3	Preliminary VENM Compliance Assessment – Natural Materials (0.3-1.9 m BGL)	38
8	8.4	Preliminary Classification and Conclusions	39
9		Data Quality Assessment	40
ç	9.1	Data Review	40
ç	9.2	COC	
ç	9.3	Field Equipment Calibration	
ç	9.4	Record of Holding Times	
	9.5	Laboratory Analytical Methodology and Accreditation	
ç	9.6	Detection Limits / Practical Quantification Limits	41

9.7	Field QA/QC					
9.	9.7.1 Blind and Split Replicate Samples	42				
9.8	Laboratory QA/QC					
9.	9.8.1 Laboratory Duplicates	42				
9.	9.8.2 Laboratory Blanks42					
9.	9.8.3 Laboratory Spikes and Surrogates	43				
9.	9.8.4 Laboratory Control Samples	43				
9.9	QA / QC Data Evaluation					
10	Revised conceptual site model	44				
11	Conclusions and Recommendations	46				
11.1	1 Field Observations					
11.2	2 Soil Assessment					
11.3	3 Provisional Materials Analysis and Classification Assessment					
11.4	4 Limitations, uncertainties, and assumptions					
11.5	5 Prescribed Land-Use Suitability					
11.6	6 Recommendations					
12	Limitations and Disclaimer	48				
13	References					
10						
-	endix I – Figures					
Apper	endix I – Figures endix II – Photographs	50				
Apper Apper		50 53				
Apper Apper Apper	endix II – Photographs	50 53 64				
Apper Apper Apper Data (endix II – Photographs endix III – Data Quality Objectives	50 53 64 65				
Apper Apper Apper Data (Step	endix II – Photographs endix III – Data Quality Objectives Quality Objectives					
Apper Apper Apper Data (Step Step	endix II – Photographs endix III – Data Quality Objectives Quality Objectives p 1 – State the Problem	50 53 64 65 65 65				
Apper Apper Apper Data (Step Step Iden	endix II – Photographs endix III – Data Quality Objectives Quality Objectives p 1 – State the Problem p 2 – Identify the Decision	50 				
Apper Apper Apper Data (Step Iden Step	endix II – Photographs endix III – Data Quality Objectives. Quality Objectives. p 1 – State the Problem. p 2 – Identify the Decision ntify Inputs to the Decision	50 53 64 65 65 65 65 65 65				
Apper Apper Apper Data (Step Iden Step Step	endix II – Photographs endix III – Data Quality Objectives Quality Objectives p 1 – State the Problem p 2 – Identify the Decision ntify Inputs to the Decision p 4 – Define the Boundaries of the Study	50 53 64 65 65 65 65 66 66				
Apper Apper Apper Data (Step Iden Step Step Step	endix II – Photographs endix III – Data Quality Objectives Quality Objectives p 1 – State the Problem p 2 – Identify the Decision ntify Inputs to the Decision p 4 – Define the Boundaries of the Study p 5 – Develop a Decision Rule	50 53 64 65 65 65 65 66 66 66 66				
Apper Apper Apper Data (Step Step Step Step Step	endix II – Photographs endix III – Data Quality Objectives Quality Objectives	50 53 64 65 65 65 65 66 66 66 66 66 66				
Apper Apper Apper Data (Step Step Step Step Step Step	endix II – Photographs endix III – Data Quality Objectives. Quality Objectives. p 1 – State the Problem p 2 – Identify the Decision ntify Inputs to the Decision p 4 – Define the Boundaries of the Study. p 5 – Develop a Decision Rule p 6 – Specify Acceptable Limits on Decision Errors p 7 – Optimise the Design for Obtaining Data.	50 53 64 65 65 65 65 66 66 66 66 67 68 69				
Apper Apper Apper Data (Step Step Step Step Step Step Apper	endix II – Photographs endix III – Data Quality Objectives Quality Objectives p 1 – State the Problem p 2 – Identify the Decision ntify Inputs to the Decision p 4 – Define the Boundaries of the Study p 5 – Develop a Decision Rule p 6 – Specify Acceptable Limits on Decision Errors p 7 – Optimise the Design for Obtaining Data	50 53 64 65 65 65 66 66 66 66 67 68 69 70				
Apper Apper Apper Data (Step Step Step Step Step Step Apper Apper	endix II – Photographs endix III – Data Quality Objectives. Quality Objectives. p 1 – State the Problem p 2 – Identify the Decision ntify Inputs to the Decision p 4 – Define the Boundaries of the Study p 5 – Develop a Decision Rule p 6 – Specify Acceptable Limits on Decision Errors p 7 – Optimise the Design for Obtaining Data endix IV – Results Tables.	50 53 64 65 65 65 66 66 66 66 67 68 69 70 70				
Apper Apper Data (Step Iden Step Step Step Step Apper Apper Apper	endix II – Photographs endix III – Data Quality Objectives. Quality Objectives. p 1 – State the Problem p 2 – Identify the Decision ntify Inputs to the Decision p 4 – Define the Boundaries of the Study p 5 – Develop a Decision Rule p 6 – Specify Acceptable Limits on Decision Errors p 7 – Optimise the Design for Obtaining Data endix IV – Results Tables endix V – QA/QC Output	50 53 64 65 65 65 65 66 66 66 66				

LIST OF TABLES

Table 1. Summary of Site Details and Information	
Table 2. Summary of samples collected and lab analysis	16
Table 3. Key Site Observations.	19
Table 4. Summary of soil sampling investigation and methodology	24
Table 5. Summary of HILs-D in soil, adapted from Table 1A (1), Schedule B1 of NEPM (2013)	26
Table 6. Site assessment criteria – HSLs for soil contamination.	27
Table 7. Soil Properties and calculation of EIL criteria.	28
Table 8. Site-specific EIL criteria	28
Table 9. Summary of ESLs in soil	29
Table 10. Summary of adopted TRH management limits	29
Table 11. Summary of adopted HSLs for asbestos in soil	
Table 12. Summary of the adopted assessment criteria for PFAS in soil.	
Table 13. Encountered sub-surface lithology	
Table 14. Step 1 to Step 7 of Waste Classification Guidelines Part 1	
Table 15. Requirements for 'VENM' as per the POEO Act 1997.	38
Table 16 Preliminary Materials Classification	39
Table 17. Recommended Storage, Preservation and Maximum Holding Times	41
Table 18. Summary of Field QA/QC Samples.	42
Table 19. Summary of DQO Reconciliation.	43
Table 20. Revised CSM	
Table 21. Summary of the Study Boundaries.	
Table 22. Summary of the Decision Rules.	
Table 23. Summary of Acceptable Limits on Decision Errors.	67
Table 24. Summary of Procedures to be Undertaken to Optimize the Design for Obtaining Data	68

LIST OF FIGURES

Figure 1. Approximate boundary of the site	13
Figure 2. Preliminary CSM - potential contaminant sources, pathways, risks, and receptors	22
Figure 3. Locality Plan – Mamre Road	52
Figure 4. Sample Location Plan – Mamre Road	53

Abbreviations

AAM	Airborne Asbectes Monitoring
ACM	Airborne Asbestos Monitoring
ADE	Asbestos Containing Material ADE Consulting Group Pty Ltd
AHD	Australian Height Datum
AND	Acid Sulfate Soils
BGL	Below Ground Level
BGL	Benzene, Toluene, Ethylbenzene, Xylene
BR	Blind Replicate
BYDA	Before You Dig Australia
CoC	Chain of Custody
CoPC	Contaminants of Potential Concern
CARE	Contamination Assessment and Remediation of the Environment
CSM	Conceptual Site Model
DP	Deposited Plan
DQO	Data Quality Objectives
DQO	Detailed Site Investigation
EC	Electrical Conductivity
ElLs	Ecological Investigation Levels
EPA	NSW Environmental Protection Authority
ESLs	Ecological Screening Levels
HILS	Health Investigation Levels
HSLs	Health Screening Levels
LEP	Local Environmental Plan
m BGL	Meters Below Ground Level
NATA	National Association of Testing Authorities
NEPC	National Environment Protection Council
NEPM	National Environmental Protection (Assessment of Site Contamination) Measure
NSW	New South Wales
OCP	Organophosphorus Pesticides
OPP	Organochlorine Pesticides
PAHs	Polycyclic Aromatic Hydrocarbons
РСВ	Polychlorinated Biphenyls
PID	Photo-ionisation Detector
PSI	Preliminary Site Investigation
QA/QC	Quality Assurance/Quality Control
RAP	Remedial Action Plan
RPD	Relative Percent Difference
SAC	Site Assessment Criteria
SEPP	State Environmental Planning Policy
SH&EWMS	Safety Health and Environmental Works Method Statement
SLS	Sydney Laboratory Services
TRH	Total Recoverable Hydrocarbons
UCL	Upper Confidence Limit
VOC	Volatile Organic Compounds

Executive Summary

ADE Consulting Group Pty Ltd (ADE) was engaged by AT&L ('client') who is acting on behalf of a consortium of multiple stakeholders to undertake a Phase II - Detailed Site Investigation (DSI) within the nature strip situated at the intersection of Abbotts and Mamre Road and along Mamre Road, Kemps Creek, New South Wales (NSW) ('site') (refer to Appendix I – Figures). The site encompasses an approximate 1.19 km long stretch of road and is limited to the nature strip extending laterally five metres from the each side of the road.

The purpose of this investigation is to provide a comprehensive contamination assessment which will act as supporting information to facilitate the proposed development occurring as part of the LOG- East: Abbotts, Aldington, and Mamre Road Upgrade. The primary objective of the investigation is to undertake an intrusive investigation to assess the current contamination status of soil and evaluate any potential risks to human health or the environment.

The site is situated within the road corridor and is currently classified as 'SP2 – Classified Road' as per the Penrith Local Environmental Plan 2010 which is owned and operated by both Transport for NSW and Penrith City Council. The site approximately extends from the property located at 258 Clifton Avenue at the south to 967-981 Mamre Road at the north and includes the intersection situated at Abbotts and Mamre Road, Kemps Creek NSW.

As a component of the desktop study, a preliminary conceptual site model (CSM) was developed to identify potential sources of contamination, including suspected use of historical cut and fill practices, potential hazardous materials including asbestos and coal tar, run-off associated with pesticide/herbicide application, 'fly tipping', timber power poles and high automotive traffic volumes which have the potential to result in emissions and spills/leaks.

Using the preliminary CSM as a basis for the investigation, a systematic soil sampling approach was developed and involved environmental test pits at approximate 30 metre linear intervals across the entire length of the road. A total of 39 sampling locations involving a mixture of visual and full sampling test pits were advanced using both an excavator and hand tools to a maximum depth of 1.9 m below ground level (m BGL).

While conducting the site inspection, it was observed that Mamre Road experiences a medium to high volume of traffic and certain areas along the road shoulder showed signs of being artificially elevated above the natural ground level. The local lithological profile typically comprised of both topsoil and engineered fill (0.0 - 1.8 m BGL) and natural residual clays and highly weathered pockets of Bringelly shale (0.3 - 1.9 m BGL). Specific areas along the road shoulder were noted to contain a high presence foreign material likely attributed to 'fly tipping' and dumping of household general waste products.

A total of 25 primary soils samples were collected across the course of the investigation and were analysed at a NATA accredited laboratory for a wide range of contaminants of potential concern (CoPCs) including heavy metals, total recoverable hydrocarbons (TRHs) / total petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethyl-benzene, xylene, naphthalene (BTEXN), organochlorine pesticides (OCPs)/organo-phosphate pesticides (OPPs), poly-chlorinated biphenyls (PCBs), per-and polyfluoroalkyl substances (PFAS) and asbestos.

Based on the findings of the investigation, all samples demonstrated chemical concentrations below the human health screening criteria for a commercial industrial land use context (HIL/HSL D). One exceedance for benzo(a)pyrene was recorded against the adopted site-specific ecological screening criteria and was therefore subject to further statistical evaluation. The 95% upper confidence limit (UCL) subsequently delivered a positive outcome by meeting the statistical requirements and resulting in concentration below the acceptance criteria.

To provide indicative off-site disposal options for the material, a further comparison assessment was made against the NSW EPA Waste Classification Guidelines 2014; 2016 and the ANZECC (2000) and D.A. Berkman Geological Background Ranges (1989). The fill materials encountered across the site typically exhibited chemical concentrations suitable for a chemical classification as 'General Solid Waste', except for recorded exceedances for lead, nickel, and benzo(a)pyrene. After statistical analysis, it was determined that both lead and nickel showed a non-conforming UCL calculation and a dataset that was significantly skewed. As a result, further evaluation was deemed necessary, and the completion of TCLP analysis was recommended.

All five representative natural soil samples returned concentrations below the adopted geological background ranges and therefore was indicatively considered to be complaint as Virgin Excavated Natural Material (VENM). However, it was noted that due to the limited dataset, further sampling would be required to make a complete assessment.

Based on the findings of the investigation, ADE considers the site is suitable for the prescribed land use as commercial/industrial land (HIL/HSL-D) with minor landscaped areas. The site is not considered to warrant the requirement of a remediation action plan (RAP).

Due to the current land-use of the site, ADE recommends that construction sub-management plans i.e., asbestos management plans (AMP) and construction environmental management plan (CEMP) are implemented during the construction phase to manage future unexpected finds.

1 Introduction

1.1 Background and General Information

ADE was engaged by AT&L who is acting on behalf of a consortium of multiple stakeholders to undertake DSI within the nature strip situated at the intersection of Abbotts and Mamre Road and along Mamre Road, Kemps Creek, NSW (refer to *Appendix I – Figures*). The site encompasses an approximate 1.19 km long stretch of road and is limited to the nature strip extending laterally five metres from each side of the road.

The purpose of this investigation is to provide a Phase II Detailed Site Investigation, which will act as supporting information to facilitate the proposed development occurring as part of the LOG- East: Abbotts, Aldington, and Mamre Road Upgrade. The primary objective of the investigation is to undertake an intrusive investigation to assess the current contamination status of soil and evaluate any potential risks to human health or the environment.

The current investigation was undertaken with a systematic soil sampling approach by advancing sampling locations at specified linear intervals across the entire linear length of the road. The area subject to the 'investigation area' or the 'subject area' is defined as the 'nature strip extending laterally five metres from each side of the road down to the depth of natural soils or approximately 1.0 metre below ground level (m BGL)'.

Based on the proposed development and the intended land-use, a comparison has been made against the human health criteria assigned for commercial/industrial land use (HIL-D / HSL-D), as detailed within the National Environmental Protection Measure (NEPM) (1999), to evaluate the current risk to human health and the environment.

This report has been prepared to assess the suitability of the site for the proposed development.

1.2 Objectives

The specific objectives of the investigation were to:

- Identify past and present potentially contaminating activities.
- Visually assess the current site conditions with regards to potential sources of contamination
- Evaluate and discuss both historical and current site conditions.
- Design and implement a systematic sampling regime for the assessment of soil within the site.
- Assess and describe the source, type, extent, and level of contamination present within the adopted investigation limits of the investigation.
- Determine the potential risk posed to human health and ecological receptors (if present)
- Develop a conceptual site model based on the findings of the previous PSI and current DSI.
- Provide a site contamination assessment and recommendations for further investigation or remediation (if required).

1.3 Scope of Work

Due to the complexity of the investigation, the project was executed within several stages starting with the completion of project preliminaries and a desktop review (Phase 1), undertaking an intrusive fieldwork investigation (Phase 2) and laboratory analysis and reporting (Phase 3). The following provides a breakdown of the scope of work assigned for each prescribed project phase.

1.3.1 Phase I – Project Preliminaries and Desktop Study

• Completion of a comprehensive desktop study which includes a critical review of pre-existing literature, architectural and conceptual design plans, detailed survey plans and Before You Dig Australia (BYDA) plans.

- Acquisition of relevant approvals and permits from governing bodies including the Penrith City Council Road Reserve Opening Permit and a Transport for NSW (TfNSW) Road Occupancy Licence (ROL) for Mamre Road.
- Development of an internal Sampling, Assurance, Quality control Plan (SAQP) for the fieldworks.
- Production of a site-specific Safety Health and Environmental Works Method Statement (SH&WMS).

1.3.2 Phase II – Fieldwork Investigation

- Engagement of a licenced underground service locator to identify and clear the sampling location of underground services and relevant infrastructure.
- Provision of authorised traffic controllers and relevant controls to protect workers, motorists, and pedestrians for the duration of the works.
- Adoption of a systematic sampling design involving the advancement of 40 test pits within a herringbone pattern at select linear intervals.
- Logging of soils in accordance with Unified Soil Classification System (USCS) and observation of visual / olfactory indicators of contamination throughout the soil profile.
- Field screening of soil samples using a calibrated photo-ionisation detector (PID) to assess the potential presence of ionisable volatile organic compounds (VOCs).
- Collection of representative soil samples based on visual and olfactory observations such as lithology, odours and staining.
- Incorporation of standard quality assurance/quality control (QA/QC) protocols.

1.3.3 Phase III - Laboratory Analysis and Reporting

- Analysis of soil samples for identified CoPCs at National Association of Testing Authorities (NATA) accredited laboratories under chain of custody conditions.
- Interpretation of analytical results and field observations in accordance with relevant guidelines and codes of conduct (as outlined in **section 1.4**), and
- Preparation of a Phase II Detailed Site Investigation report outlining the investigation, interpretation of results, including conclusions and recommendations with reference to the proposed land use.

1.4 Legislative Requirements

The legislative framework for the report is based on guidelines that have been issued and/or endorsed by the NSW EPA under the following Acts/Regulations:

- Contaminated Land Management Act 1997 (NSW) (CLM Act)
- Environmentally Hazardous Chemicals Act 1985 (NSW)
- National Environment Protection (Assessment of Site Contamination) Measure [NEPM], 1999 (as amended 2013) (NEPC, 2013)
- Protection of the Environment Operations Act 1997 (NSW) (POEO Act)
- State Environmental Planning Policy No.55 Remediation of Land (NSW Government)
- Waste Avoidance and Resource Recovery Act 2001
- Work Health and Safety Act 2011, and
- Work Health and Safety Regulation 2017.

The investigation was carried out in compliance with the following principal acts and regulations, and national and international guidance:

- Friebel & Nadebaum. (2011). Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater, Part 1: Technical Development Document, Technical Report No. 10,
- Friebel & Nadebaum. (2011). Health Screening levels for Petroleum Hydrocarbons in Soil and Groundwater, Part 2: Application Document, Technical Report No. 10,
- Guidelines for the NSW Site Auditor Scheme (3rd Edition), NSW 2017,

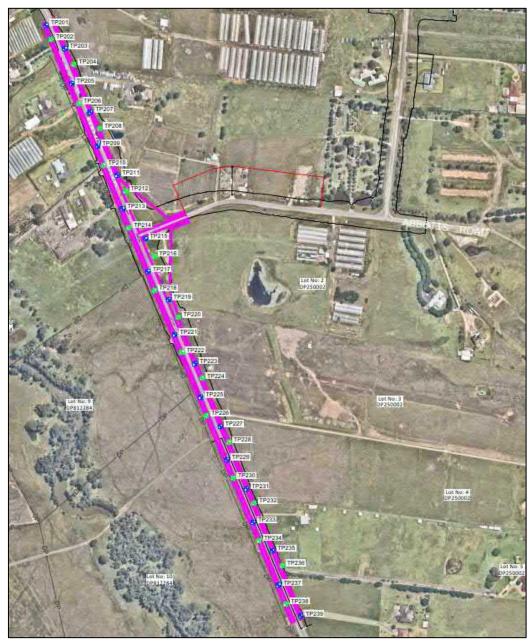
- NSW EPA. (2022). Sampling Design Part 1 Application (Contaminated Land Guidelines),
- NSW EPA. (2014). Waste Classification Guidelines Part 1: Classifying Waste (2014) (NSW EPA, 2014),
- NSW EPA. (2015). Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997 (NSW EPA, 2015),
- NSW EPA. (2020). Guidelines for Consultants Reporting on Contaminated Land (NSW EPA, 2020),
- NSW Safework. (2022). Model Code of Practice: How to Safely Remove Asbestos (NSW Safework, 2022),
- NSW Safework. (2022). Code of Practice: How to Manage and Control Asbestos in the Workplace (NSW Safework, 2022),
- Heads of EPAs Australia and New Zealand [HEPA]. (2020). PFAS National Environmental Management Plan Version 2.0 January 2020
- Protection of the Environment Operations Act 1997 (NSW) (POEO Act)
- Protection of the Environment Operations (Waste) Regulation 2014
- Western Australian Department of Health (WA DOH). (2021). Guidelines for the Assessment, Remediation and Management of Asbestos Contaminated Sites in Western Australia (WA DOH, 2021).

Australian Standards applied to this investigation:

- Standards Australia. (1998). AS/NZS5667.1-1998 Water Quality-Sampling. Part 1: Guidance on the Design of Sampling Programs, Sampling Techniques, and the Preservation of Handling Samples
- Standards Australia (1999). Australian Standard AS 4482.2 Guide to the sampling and investigation of potentially contaminated soil. Part 2: Volatile substances, (1999)
- Standards Australia. (2005). Australian Standard AS 4482.1 Guide to the sampling and investigation of potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds, (2005)

The following local government plan have also been taken into consideration for preparation of this DSI:

- Penrith Local Environmental Plan 2010 (LEP, 2010).
- Penrith Development Control Plan (DCP, 2014)



2 Site Identification

2.1 Site Location

The site is situated within the road corridor located at the intersection of Abbotts and Mamre Road and along Mamre Road extending north to Lot 38 of Deposited Plan (DP) 258414 and south to Lot 10 of DP 812284. The area is situated within the Local Government Area (LGA) of Penrith City Council and is zoned as 'SP2 – Classified Road', under the Penrith City Council Local Environmental Plan 2010 (refer to *Appendix I – Figures* below for the location of the site).

The subject area or investigation area encompasses an approximate 1.19km length of road and includes the nature strip on each side of the road corridor. The investigation area extends laterally 5 metres from the road kerbside or until the borderline of private property is encountered. As a road reserve and nature strip, the site has been primarily used for public roads and is currently owned and maintained by both Transport for NSW and Penrith City Council.

Figure 1. Approximate boundary of the site or investigation area (outlined in pink), accessed from nearmap.com on 10/03/2023.

2.2 Summary of Site Details

Table 1.	Summary	of Site I	Details and	Information.
Table 1.	Juillinary	UI SILE I	Details and	i mormation.

Site Details			
	Mamre Road Intersection:		
	 Opposite 1 Abbotts Road, Kemps Creek – Part of Lot 1 of DP250002 (northern boundary) Opposite 1016-1028 Mamre Road, Kemps Creek – Part of Lot 2 of DP250002 (southern boundary) 		
	Mamre Road:		
Site Address and	 Opposite 967-981, 983 and 1005-1023 Mamre Road, Kemps Creek – Part of Lots 38, 39 and 40 of DP258414 (north-western boundary). 		
Title Identification:	 Opposite 269 Aldington Road, Kemps Creek – Part of Lot 8 of DP253503 (north-eastern boundary). 		
	 Opposite 1 Abbotts Road, Kemps Creek – Part of Lot 1 of DP250002 (north-eastern boundary). 		
	 Opposite 358 and 258 Clifton Avenue, Kemps Creek – Part of Lots 9, 10 of DP812284 (south-eastern boundary) 		
	 Opposite 1016-1028 and 1030-1048 Mamre Road, Kemps Creek - Part of Lots 2, 3 of DP250002 (south-eastern boundary). 		
Local Government Area (LGA)	Penrith City Council		
Current Land Use Zoning	SP2 – Classified Road		
Site Area	Approximately 1190 m ²		
Current Site Owner / Occupier	Transport for NSW and Penrith City Local Council		
Former/Current Land Use	Public Road		
Trigger for Assessment	Contamination assessment under a Phase II – Detailed Site Investigation to facilitate the proposed development occurring as part		
	of the LOG- East: Abbotts, Aldington, and Mamre Road Upgrade.		
Local Environmental Plan	Penrith Local Environmental Plan 2010		

3 Site History

3.1 Summary of site history

The Site history has been compiled from information gathered from various sources, including the client, online databases and NSW Government agencies and governing bodies.

The earliest available aerial photograph (1943) indicates that the site was predominantly agricultural/pastoral land with a creek crossing the Site (south near present Lot 10 and 17 of DP253503). A few residential buildings were observed in the south-east of the site and Mamre Road was evident to the west. By 1986, the Abbotts and Aldington Road were observed, with private properties established alongside the road reserves. The primary land use was observed to be predominantly agricultural, and this trend was seen to continue until the present-day site conditions.

Historical commercial and trade records for the site and surrounding areas within the buffer zone, between 1980-2005, included a builder/contractor, dairy business, concrete contractor, and excavation and earthworks contractor. No data was available from 2010 to date. Heritage items listed in the NSW Government public register identified two items within 200 metres of the site, a Farmhouse (Site I.D. I14) and the Gateposts to Colesbrook (Site I.D. I13).

A review of the 'Contaminated Land – Record of Notices' or the 'List of NSW Contaminated Sites Notified to the EPA', listed by the NSW EPA under the Contaminated Land Management Act 1997, does not identify any current notices within a 1,000 m radius of the site. A review of the NSW Government PFAS Investigation Program, identifies one site within the suburb of Kemps Creek (Kemps Creek NSW Rural Fire Service at 245 Devonshire Road, Kemps Creek) as being subject to an NSW EPA PFAS investigation. Overall, the site is considered to be 'low risk' with regards to the potential for PFAS contamination, as the notified site is outside a 250-metre radius and no historical PFAS-related activities have been identified during desktop studies.

For further details regarding site history, geology, topography, hydrology, and hydrogeology, refer to the PSI report (ADE, 2022c), which contains a comprehensive desktop study.

3.2 Previous Environmental Investigations

3.2.1 Detailed Site Investigation – 200 Aldington Road, Kemps Creek, dated 11 February 2022 (ADE 2022a).

ADE (2022a) undertook a Detailed Site Investigation for a site located at 200 Aldington Road, Kemps Creek NSW, which assessed part of lots 20-23 DP255560 and part of Lots 30 – 32 DP258949. The scope of the investigation involved the completion of a Phase I investigation which incorporated a desktop review, field investigation and analytical test work.

A total of 124 test pits were advanced across the investigation area. Of the completed test pits, only one sampling location ('TP92'), was located within/adjacent to the current investigation area. Two primary fill samples and one natural sample were collected from the sampling location were collected and analysed for a wide range of CoPCs, including heavy metals, PAHs, BTEX, PAHs, TRHs, OCPs/OPPs, VOCs/Phenols and Asbestos (NEPC, 2013; WA DOH, 2021). In-field PID readings were taken for all samples.

The lab results obtained from 'TP92', showed that all analytes were below the human health and ecological screening criteria assigned for a commercial and industrial land use context (HIL/HSL-D) (NEPC, 2013). The investigation recommended that further sampling is undertaken within the area to characterise and understand the contamination status of the site.

3.2.2 Detailed Site Investigation – 74 – 90 Aldington Road, Kemps Creek NSW, dated 30 March 2022 (ADE 2022b)

ADE (2022b) completed a Phase II - Detailed Site Investigation for the properties located at 74 – 90 Aldington Road, Kemps Creek NSW, or Part of lots 41 and 42 of DP708347. The assessment included Phase I desktop review, field investigation and analytical test work. A total of 83 samples were collected from across 55 primary test pit locations advanced across the area. Upon review, only two test pit locations ('TP1' and 'TP43'), were observed within/adjacent to the current investigation area. One fill sample and one natural sample were collected at each test pit. **Table 2** presents a summary of the samples collected and analysed as part of the investigation.

Test Pit Location	Sample ID	Depth (m BGL)	Sample type	Analytes
TP1	TP1(fill)0.0-0.2 TP1(natural)0.2-	0.0-0.2	Fill Natural	Standard suite, PFAS-short suite, VOCs/sVOCs and phenols, salinity, NEPM asbestos quantification analysis, CEC/clay content and PID field screening 8 Heavy metals, TRH, BTEX, PAHs, PID field screening
	0.4	0.2-0.4	Natural	o neavy metals, nan, brex, r Aris, r ib neid screening
TD40	21.1994.TP43-fill 0-1.0	0.0-1.0	Fill	Standard suite, PID field screening
TP43	21.1994.tp43- natural 1-1.7	1.0-1.7	Natural	8 Heavy metals, TRH, BTEX, PAHs, PID field screening

Table 2. Summary of samples collected and lab analysis.

The analytical results obtained from the above samples all retuned concentrations below the human health and ecological screening criteria assigned for a commercial and industrial land use context (HIL/HSL-D) (NEPC, 2013). All field PID readings returned negligible concentration and no visual/olfactory indications of potential contamination was noted. The investigation later recommended that further sampling is undertaken within the area to further characterise and understand the contamination status of the site.

3.2.3 Preliminary Site Investigation – Abbotts Road and Aldington Road upgrade, Kemps Creek NSW, ref: 21.1725.07 PSI.v1f, dated 01 November 2022 (ADE, 2022c)

ADE Consulting Group Pty Ltd (ADE) was engaged by AT&L to undertake a Stage I Preliminary Site Investigation (PSI) within the current investigation area to assess the potential for contamination at the site. The purpose of the investigation was to identify past and present potentially contaminating activities occurring at the site, to identify the presence of any contaminants of potential concern (CoPCs) during the desktop study and site walk-over, to determine the need for further investigations based on a preliminary assessment of the site's contamination.

The scope of work for the investigation broadly involved the following:

- Appraisal of the Site's history;
- Review of previous environmental investigation reports within the Site;
- Desktop study of the Site's condition and its surrounding environment;
- A Site walk-over inspection; and
- Preparation of a PSI report outlining the results of these investigations.

The PSI identified several potential contaminant sources, including:

- Unknown fill used across the proposal footprint before roads being established
- Vehicle use on existing roads.
- Agricultural use of land adjacent to the route
- Contamination leaching from asphalt road

- Automotive fluid leaks during road operation
- Stockpiled construction & demolition waste, household waste/illegal dumping, and waste asphalt at road shoulders; and
- Timber power poles in-use/discarded.

Based on the results of the desktop study and site walk-over investigation, ADE considered there was a low to moderate potential for contamination to have occurred on-site as a result of the past and present land uses. ADE considered that the site can likely be determined or made suitable for future planning activities, pending a Stage II DSI and remediation (if required).

3.3 Site Inspection Details

Experienced environmental consultants representing ADE, undertook a site inspection on Thursday, 27 March 2023 and Friday, 28 March 2023, to complete service locating, a visual assessment of the site and provide information on potential contamination issues, including the following:

- Surrounding land uses and potential contamination sources.
- Presence of any hazardous or dangerous goods storage.
- Presence of any USTs or ASTs and/or associated fuel transfer systems i.e., fuel lines.
- Condition of current structures, vegetation, and soil.
- Visible and/or olfactory evidence of contamination.
- Presence of any industrial/commercial activities.
- Evidence of former spill incidents/accidents.
- Current ground conditions, vegetation type and cover, topography, elevation, direction of surface run-off and evidence of potential drainage lines.
- Evidence of soil loss/deposition/erosion, stockpiled materials, and potentially contaminating infrastructure i.e., electrical substations.
- Proximity to sensitive environmental areas/features/habitats including water bodies/courses.
- Evidence of naturally occurring contaminants.
- Assessment of the current site condition with its history.

3.4 Surrounding Land Uses

Based on a desktop search of the site and visual observations made during the site inspection, the surrounding land uses of the site are as follows:

- North: Immediately north of the Site, Mamre Road continues on and is classed as SP2 Infrastructure Classified Road under the State Environmental Planning Policy. In addition, the surrounding northern extremities of the site are classed as General Industrial lands, however, site observations indicate they are currently being utilised as a mixture of low density residential and agricultural purposes.
- **East:** East of the site, lies low density residential properties which run alongside the entire eastern boundary length of the site. Beyond these low-density residential properties lies unused Public recreational space.
- West: A mixture of low density residential and minimal commercial/industrial properties undertaking agricultural practices, were observed, west of the Site.
- **South:** Low density residential premises were observed immediately south of the site. Further south, Commercial/ Industrial properties were identified.

3.5 Local Geology and Topography

With reference to the 1:100,000 scale Penrith Soil Landscape Series Sheet 9030 map, the site is situated within the Blacktown (bt) soil landscape group comprising gently undulating rises on Wianamatta Group Shales, broad rounded crests, and ridges with gently inclined slopes.

Approx. 50-100m to the east of the site lies Kemps Creek and the south creek (sc) soil landscape group comprising floodplains, valley flats and drainage depressions of channels on the Cumberland Plain. Usually flat with incised channels and mainly cleared.

The specific depths of dominant soil materials are characterised by their location in relation to the local topography but generally consist of the following;

- sc1—Brown apedal single-grained loam. This is a brown sandy loam to sandy clay loam with generally apedal single-grained structure and porous earthy fabric. It commonly occurs as topsoil (A horizon). Colours range from dull reddish brown (5YR 4/3) to dull yellowish brown (10YR 4/3). This material is usually moderately acid (pH 5.5) but varies from strongly acid (pH 4.5) to slightly acid (pH 6.5). Small (2–6 mm) angular or rounded gravels may occur. Roots are abundant in surface layers, charcoal and other inclusions do not occur.
- sc2—Dull brown clay loam. This is a hard setting dull brown clay loam to fine sandy clay loam, usually with apedal massive structure and porous earthy fabric. It occurs as topsoil (A horizon). Occasionally, weak structure occurs with small (2–5mm) rough-faced subangular blocky peds. Colour is usually dull brown (7.5YR 5/4) but has a range from greyish brown (5YR 4/2) to yellowish brown (10YR 5/6). pH varies from moderately acid (pH 5.5) to neutral (pH 7.0). Stones and other inclusions do not occur, and roots are rarely found.
- sc3—Bright brown clay. This is a bright brown light to medium clay with strongly pedal structure and dense smooth-faced ped fabric. This material usually occurs as subsoil (B horizon). Occasionally this material contains sufficient fine sand to reach the texture grade of sandy clay. Peds are smooth-faced angular blocky or polyhedral and 20–50 mm in size. This material is generally whole-coloured ranging from reddish brown (5YR 4/8) to bright yellowish brown (10YR 5/1). Mottles, when they do occur, are yellow or grey and occupy up to 15% of the volume 102 of the material. pH is highly variable, ranging from extremely acid (pH 3.0) to neutral (pH 7.0). Roots are only present where this material occurs as topsoil. There is no charcoal but small (2–20 mm) subrounded or subangular gravels may make up to 50% of the volume.

3.6 Hydrogeology and hydrology

Most of the site is not sealed, with exposed soils and landscaping areas within the residential premises on the eastern and western boundaries of the site. In these areas, surface water is presumed to infiltrate into the sub-soil profile. Groundwater is expected to emulate the site topography and proceed relatively slowly (due to the low hydraulic gradient characteristic of the underlying clays) in an easterly direction towards Parramatta River.

3.7 Naturally occurring contaminants

A review of the acid sulfate soil (ASS) risk mapping located at NSW Department of Planning, Industry and Environment 2021 online portal Espadev2.2 (environmental.nsw.gov.ay/eSpade2WebApp), was undertaken to establish the potential for ASS at the source site. The site was identified as 'No known occurrence' regarding ASS risk. The Site is however, situated within an area which is classified as having a 'moderate hazard or risk' for dryland salinity to occur for years up to and including 2050 as per the National Assessment for Dryland Salinity.

3.8 Current Site Condition / Site Observations

A summary of observations made during the fieldworks undertaken by ADE are provided in **Table 3** and highlighted in *Appendix I – Figures* and *Appendix II – Photographs*.

Table 3. Key Site O	
Item	Key Observations
Site Use	The site is currently being utilised as a public road.
Existing Buildings / Structures	Existing structures such as residential driveways and fence lines were identified within the site. In addition, on the southeastern extremity of the site a swale was present within the proposed site footprint.
Sumps/Drains	No surface water drains, or artificial drainage lines were identified within the site, however, due to the slope of the site on both the western and eastern sides, swales were present, serving to prevent excessive surface water flow on Mamre Road. In addition, a culvert was present at the corner of Abbotts and Mamre Road, serving to re-direct surface water run-off away from Mamre Road.
Presence of stockpiled materials	No stockpiles were observed on-site.
Industrial Liquid Waste Disposal	No industrial liquid waste disposal facilities were observed on-site.
Domestic Waste Disposal	No domestic waste bins were observed at the site, however general plastic, glass, waste tyres and aluminum litter were observed on the ground surface.
Existing Services	The site primarily has underground and above ground services such as low/high voltage electrical, water and gas.
Vegetation Type, Cover and Condition	Low-bearing vegetation was noted to be densely distributed throughout the site. No signs of vegetative stress were noted during the investigation.
Hazardous Building Materials	No hazardous building materials were observed on-site.
Fuel Storage Tanks (USTs/ASTs)	No above-ground or underground fuel storage tanks were observed
Surrounding Areas	Surrounding areas are predominantly used for residential and commercial land purposes.

Table 3. Key Site Observations.

4 Preliminary conceptual site model

Schedule B1 of the NEPM (*NEPC, 2013*) identifies a conceptual site model (CSM) as a representation of information regarding contamination sources, exposure pathways and the potential receptors. The essential elements of a CSM include:

- Known (and potential) contamination sources and contaminants of concern.
- Impacted media (e.g., soil, groundwater, surface water, soil vapour etc.).
- Human/ecological receptors.
- Potential/complete exposure pathways.

4.1 Potential contamination sources

The following potential contamination sources were identified during the desktop study review of the site and within the Phase I – Preliminary Site Investigation (ADE, 2022c)

- Historical un-controlled fill practices associated with road shoulder construction.
- Presence of suspected hazardous materials including asbestos and coal tar.
- Regular automotive vehicular activity such as emissions and fluid/fuel leaks.
- Run-off associated with pesticide/herbicide applications from agricultural land.
- 'Fly-tipping' of household waste.
- Timber power poles.
- Presence of unknown stockpiled soil and waste materials e.g., construction/demolition waste, tyres, oil drums.

4.2 Contaminants of potential concern

Based on the potential contamination sources outlined above, the following CoPCs were identified:

- Heavy metals.
- Total recoverable hydrocarbons (TRHs)/total petroleum hydrocarbons (TPHs).
- Polycyclic aromatic hydrocarbons (PAHs).
- Organochloride pesticides (OCPs).
- Organophosphate pesticides (OPPs).
- Poly-chlorinated bi-phenyls (PCBs).
- Semi- and volatile organic compounds (SVOCs/VOCs).
- Per-fluoroalkyl substances (PFAS).
- Phenolic Compounds.
- Coal Tar.
- Asbestos.

4.3 Primary transport mechanisms

The primary transport mechanisms for the migration of potential contaminants onto the site from adjacent areas, within the site or from the site to adjacent areas include:

- Dispersion airborne particulates due to wind following disturbance.
- Air dispersion of dust and volatile organic compounds.
- Downward migration and leaching of contaminants through soil.
- Lateral migration via surface water run-off.
- Lateral migration via groundwater towards nearby surface water discharge zones.
- Transport of contaminants by human and/or mechanical disturbance.
- Physical contact/ingestion/inhalation with contaminated media.
- Biomagnification along food chains.

4.4 Potential contamination receptors

The primary potential contamination receptors are considered to include:

- Future users of the site (e.g., motorists, nearby residents, and construction/maintenance workers).
- Future maintenance workers involved in sub-surface excavations.
- Future construction workers during redevelopment of the site.
- Vegetation introduced as part of the development.

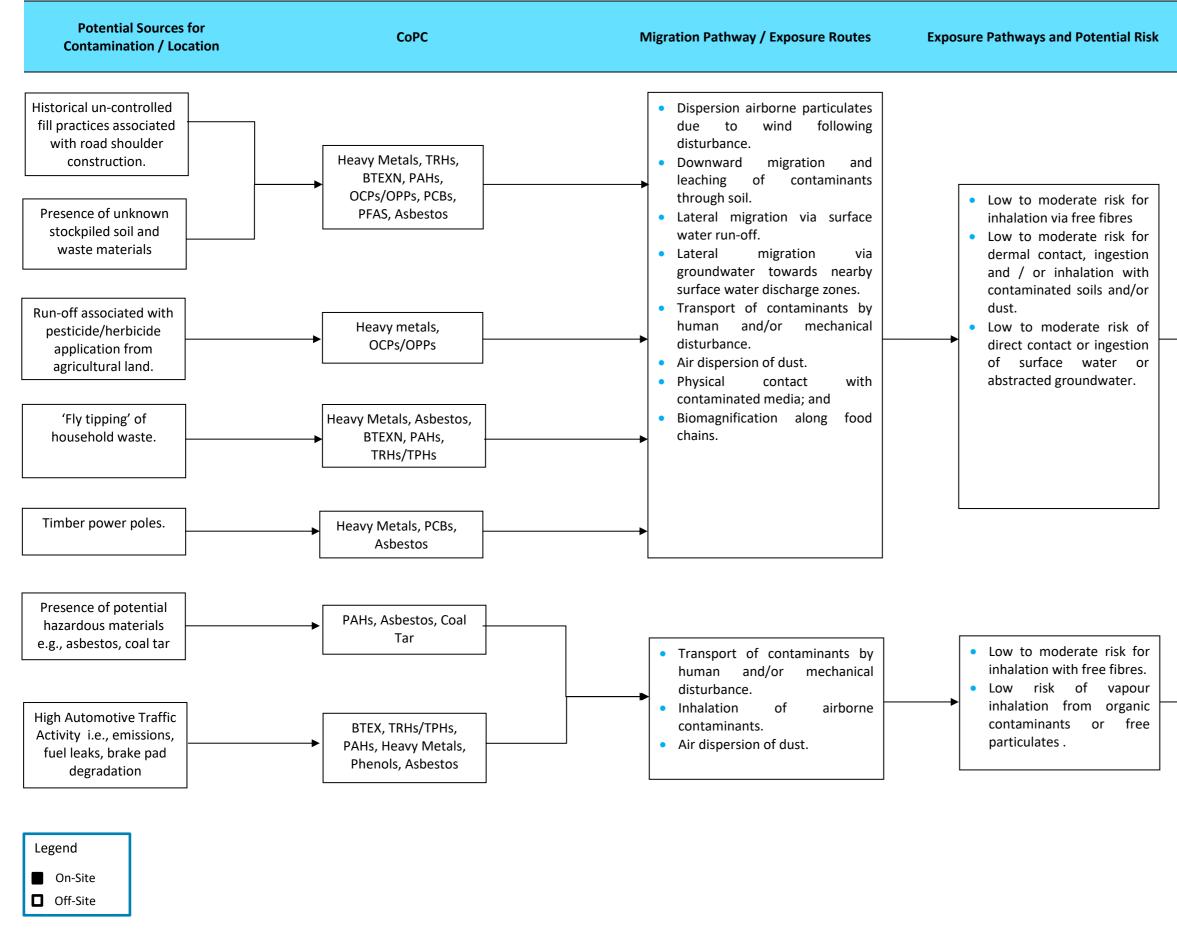
4.5 Exposure pathways

4.5.1 Human health – direct contact and ingestion

Soil materials may be exposed during construction works or as a result of intrusive activities such as bulk earthwork activities across the site. It was therefore considered appropriate to assess whether a source of potential exposure from a contaminant of potential concern via the direct contact and/or ingestion pathway exists for current/future site users, site workers, motorists, and adjacent properties.

4.5.2 Human health – inhalation /vapour intrusion

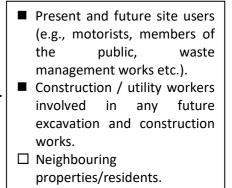
Confirmed and/or suspected hazardous materials such as asbestos within select areas and high automotive traffic levels have been noted within the investigation area. Therefore, it was considered appropriate to assess whether a source of potential exposure from a contaminant of concern via both inhalation and the vapour intrusion pathway exists for current/future site users, motorists, and particularly construction and maintenance contractors.


4.5.3 Human/ecological health - Groundwater discharge and surface water run-off

Due to the current design of the investigation area which includes a mixture of landscaped areas and hardstand surfaces, a moderate to high level of surface water run-off and surface water infiltration is expected which may subsequently discharge into local ecological communities. Therefore, ADE considers it necessary to examine the potential ecological risk associated with the site's local groundwater system and surface water run-off potential.

4.6 Preliminary Conceptual Site Contamination Model

The preliminary CSM depicted in **Figure 2.** shows the potential contamination sources, their exposure pathways, and receptors.


Figure 2. Preliminary CSM - potential contaminant sources, pathways, risks, and receptors

Exposed Population Groups

] Neighbouring				
		properties/residents.				
		Ecological receptors i.e., local				
		ecological discharge zones.				
		Present and future site users				
▶		(e.g., motorists, members of				
		the pubic, waste management				
		workers etc.).				
		Construction / utility workers				
	involved in any future					
	excavation and construction					
		works.				

5 Sampling Plan, Methodology, and Investigation Pattern

5.1 Pre-work Procedure and Site Establishment

Before mobilisation to site, a job-specific SH&EWMS and relevant excavation permit documentation was developed and presented in a pre-start meeting before the commencement of works and signed on to by ADE staff and contractors. In accordance with Transport for NSW and Penrith City requirements, a road occupancy licence (ROL) and Road Opening Excavation Permit was obtained from relevant governing bodies prior to the commencement of intrusive activities.

Following pre-start and pre-work activities, the work area was established by incorporating the necessary traffic control protection measures to protect motorists, members of the public and workers. All traffic control measures were controlled by a licenced traffic controllers and installed as per a site-specific traffic guidance scheme (TGS).

Once the site was established, an experienced environmental consultant undertook a detailed site walkover to identify potential sources of contamination or areas of notable concern. Upon completion, the proposed test pit locations were marked out across the site based on accessibility and observations noted during the walkover. Before the commencement of intrusive activities, each proposed test pit location was 'cleared' for underground services by a qualified service locator via cable avoidance tool and ground-penetrating radar (GPR).

5.2 Sampling Design Plan Strategy and Rationale

The site investigation and soil sampling procedures were developed in consultation with the NSW EPA Sampling Design Part 1- Application (Contaminated Land Guidelines) (NSW EPA, 2022). A systematic regime was designed to collect representative samples within a herringbone pattern at approximate 30 metre linear intervals. A total of 39 sampling locations were advanced across the investigation area. Of the test pits completed, 20 sampling locations underwent a chemical and asbestos assessment and 19 sampling locations consisted of a visual assessment only.

During the investigation, one visual sampling location could not be completed due to recent wet weather conditions. These conditions interfered with the legibility of the underground service markings, which subsequently resulted in the termination of the sampling location for safety reasons.

5.3 Fieldwork Methodology

On 27 and 28 March 2023, a total of 39 test pit locations were completed across the site using an excavator and by hand (i.e., shovel and hand-auger) to a maximum depth of 1.9 m BGL, depending on site accessibility and safety constraints. In situations where an excavator could not fit along the road reserve with sufficient safety clearance for traffic, test pits were advanced via hand tools (refer to **Table 4** for more information).

A total of 20 primary soil samples were collected across the course of the investigation (excluding QA/QC samples). All samples were submitted to NATA accredited laboratories for analyses as per the recommended holding times on a standard (5-day) turnaround time (refer to **Table 17** for the adopted sampling and analytical program).

5.3.1 Soil sampling methodology

Table 4 outlines soil sampling investigation and methodology adopted during the course of the investigation.

Activity	Detail/Comments
	Before the commencement of any intrusive activities, appropriate consultation with a client
Underground service clearance	representative was performed as part of due diligence practices which included a review of DBYD plans and detailed underground survey plans provided to ADE by the client.
	Environmental test pits were completed with the assistance of an excavator or via hand tools (i.e., shovel or hand auger), depending on site accessibility and safety concerns. Samples were typically collected at the soil surface followed by every metre thereafter until the target depth was reached or upon encountering a new lithological stratum.
Environmental test pits	Soil samples collected with an excavator were collected directly from the centre of the excavator bucket using disposable nitrile gloves to minimise the potential for cross-contamination. When using hand tools, fresh samples were collected from the base of the completed test pit using disposable nitrile gloves to minimise the potential for cross-contamination between sampling points.
	Upon the completion of each test pit, excess excavated soil materials were re-instated into the test pit and the ground conditions returned to their original condition and/or appropriately compacted. Test pitting was only undertaken where the site conditions permitted. Hand tools and other non-disposable tools were decontaminated using laboratory provided deionised water between each sampling point.
PFAS Sampling	Samples collected for PFAS analysis were collected using disposable nitrile gloves either directly from the centre of the excavator bucket or from a fresh soil sample. Samples were typically
Methodology	collected by scoping the soil materials directly into a laboratory prepared high-density polyethylene (HDPE) jar and sealed with an HDPE lid. Samples were stored in a cool, dry place and away from exposure to sunlight.
Asbestos quantification methodology	Asbestos quantification sampling was completed as per the NEPM (NEPC, 2013) and as outlined within the Western Australian Department of Health (WA DoH) Guidelines from the Assessment and Management of Asbestos Contaminated Sites in Western Australia (WA DoH, 2021). In summary, 10L of soil materials were collected, weighed, and screened for the presence/absence of bonded asbestos using a 7mm x 7mm sieve or manually sieved over a colour-contrasting plastic sheet. If bonded asbestos fragments were identified/suspected during the screening process, they were collected and analysed to determine the percentage weight-by-weight concentration (% w/w) of asbestos for each sample. Fresh 500 mL soil samples were then collected within medium zip lock bags and sent for analysis of asbestos fines (AF) and fibrous asbestos (FA). Test pitting was only undertaken where the site conditions permitted.
Sample collection and transportation	All samples were placed in laboratory prepared, suitable analyte containers involving sterile glass jars lined with Teflon lids for chemical analysis (excluding PFAS samples) and small zip lock bags for asbestos analysis. Each sample collected for chemical analysis was placed within a pre- chilled esky or cooler box with ice packs or equivalent to maintain samples at approximately 4°C. Asbestos samples were stored in a large resin bag for storage. The original chain of custody (CoC) form was enclosed with the samples and dispatched to NATA accredited analytical laboratories.
Soil headspace screening	Following the collection of each sample, a PID with a 10.6 eV lamp, pre-calibrated with isobutylene gas at 100 ppm was used to screen the headspace gases of the collected samples to assess for the presence of VOCs. The PID headspace screening was conducted using a resealable zip-lock plastic bag, and the soil sample was agitated as the PID reading was taken inside the zip-lock plastic bag (the bag was appropriately sealed when inserting the PID).
Equipment decontamination	Dedicated disposable materials (e.g., nitrile gloves, HDPE tubing) were changed between each sampling point. All disposable sampling equipment/materials were collected and removed before leaving the site. All non-disposable sampling equipment was decontaminated by a three-stage decontamination process which included rinsing the piece of equipment with PFAS free denoised water, followed by a rinse of a PFAS free detergent (Liquinox) and a final rinse using laboratory provided PFAS free deionised water.

 Table 4. Summary of soil sampling investigation and methodology.

5.4 Documentation

A field observation log was kept by sampling personnel during all phases of soil and groundwater sampling. Details recorded in the log included:

- Test pit number
- Soil profile notes
- Sampling method
- Sample identification
- Sample description, and
- Sample point measurements.

A comprehensive master sample register was maintained. As samples were received, they were given a unique sequential number from the sample register into which details from the labels were entered. Before packing and dispatch of samples for analysis, a CoC form was completed (refer to *Appendix VII – Analytical Reports and Chain of Custody Documentation*). This form recorded details of the individual samples being dispatched and the type of analysis required for each sample.

5.5 Laboratory Submission

The following outlines the NATA accredited laboratories used for analytical testing:

- Sydney Laboratory Services (SLS), Silverwater NSW NATA Accreditation No. 14664
- Envirolab, Chatswood NSW NATA Accreditation No. 2901

6 Site Assessment Criteria

6.1 Soil Assessment Criteria

The soil assessment criteria specified in the following publications were employed for this DSI:

- Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites, Environmental Soil Quality Guidelines Background Ranges (ANZECC, 1992)
- Assessment of Site Contamination, National Environment Protection (Assessment of Site Contamination) Measure [NEPM], 2013 (NEPC, 2013)
- D.A Berkman. (1989) Field Geologist's Manual (D.A. Berkman, 1989)
- HEPA. (2020). The PFAS National Environmental Management Plan V2.0 (NEMP, 2020)
- New South Wales Environmental Protection Authority [NSW EPA]. (2014). Waste Classification Guidelines Part 1: Classifying Waste (NSW EPA, 2014).

This report applies the relevant investigation levels to identify contaminants and/or areas of contamination that potentially pose a risk to human or environmental health.

6.1.1 Health Investigation Levels (HILs)

The NEPM (2013) guidelines describe four broad land-use settings to assess potential human health risks for a broad range of metals and organic substances. These four HIL categories are used to assess human health risk via all relevant pathways of exposure for the following broad land use categories:

- HIL-A Residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake, no poultry, also includes children's day-care centres, preschools, and primary schools)
- HIL-B Residential with minimal opportunities for soil access includes dwellings with fully and permanently paved yard space such as high-rise buildings and flats.
- HIL-C Public open space such as parks, playgrounds, playing fields (e.g., ovals), secondary schools and footpaths. It does not include undeveloped public open space (such as urban bushland and reserves), which should be subject to a Site-specific assessment where appropriate, and
- HIL-D Commercial/industrial such as shops, offices, factories, and industrial sites.

Based on the available information, which includes the current land use as a public road which includes minor landscaping areas, the health investigation levels assigned for commercial/industrial land (HIL-D) has been adopted for screening purposes. A summary of the applicable HILs for soil is presented within **Table 5**.

Analyte	HIL D - Commercial/Industrial (mg/kg)
Arsenic (total)	3,000
Cadmium	900
Chromium (Total)	3,600
Copper	240,000
Lead	1,500
Mercury (inorganic)	730
Nickel	6,000
Zinc	400,000
Carcinogenic PAHs (as BaP TEQ ¹)	40
Total PAHs	4,000
Total PCBs	7
DDT+DDE+DDD	3,600
Aldrin and Dieldrin	45

Table 5. Summary of HILs-D in soil, adapted from Table 1A (1), Schedule B1 of NEPM (2013).

Analyte	HIL D - Commercial/Industrial (mg/kg)	
Chlordane	530	
Endosulfan	2,000	
Endrin	100	
Heptachlor	50	
Hexachlorobenzene	80	
Methoxychlor	2,500	
Chlorpyrifos	2,000	
Cyanide (free)	1500	
Phenols	240,000	

Notes to Table 5

 $1- {\sf Toxicity} \ {\sf equivalent} \ {\sf quotient}$

6.1.2 Health Screening Levels (HSLs)

Health screening levels (HSLs) have been developed for selected petroleum compounds and fractions and apply to human health risk assessment via inhalation and direct contact pathways. The HSLs depend on specific soil physicochemical properties, land use scenarios, and the characteristics of building structures. NEPC (2013) presents Tier 1 screening criteria for BTEX, naphthalene, TRH fractions C6-C10 and C10-C16 for vapour intrusion.

As there are potential pathways of exposure concerning direct contact and ingestion for both construction workers and future users of the site, further tier 1 HSL screening criteria as per Friebel and Nadebaum's 'Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater, Part 2: Application Document, Technical report No. 10' (2011) has been adopted to include vapour risk to intrusive maintenance workers (Shallow Trench 0.0 to <1.0 m) and HSL levels for direct human contact outlined in **Table 6.**

	Health Screening Levels (HSLs)		
Analyte	Soil HSLs for Vapour Intrusion - HSL D (mg/kg) (0m to <1m)	Soil HSLs for Direct Contact - HSL D (mg/kg) ¹	
Benzene	3	430	
Toluene	-	99,000	
Ethylbenzene	-	27,000	
Xylene	230	81,000	
Carcinogenic PAHs (as B[a]P TEQ) ²	3	-	
Naphthalene	-	11,000	
TRH: C6 – C10(F1) ³	260	26,000	
TRH: C10 – C16 (F2)	-	20,000	
TRH: C16 – C34(F3)	-	27,000	
TRH: C34 – C40(F4)	-	38,000	

Table 6. Site assessment criteria – HSLs for soil contamination.

Notes to Table 6

Human exposure settings based on intended land use have been established for HILs/HSLs (see Taylor and Langley 1998). HIL D – Commercial/Industrial such as shops, offices, factories and industrial sites, was the land use setting adopted for this investigation.
 Carcinogenic PAHs: HIL is based on the 8 carcinogenic PAHs and their Toxic Equivalency Factor (TEFs) (potency relative to B[a]P).

6.1.3 Ecological investigation levels and Ecological Screening Levels (EILs/ESLs)

The current land use features minor landscaped areas with open access to soil. To assess the impact on ecosystems, including site vegetation from contamination within the upper two metres of the subsurface environment, Schedule B1 of NEPM (*NEPC, 2013*) presents EILs and ESLs for different land uses. ESLs have been developed for TRH, BTEX and benzo(a)pyrene in soils and are applicable for assessing risk to terrestrial ecosystems. ESLs broadly apply to coarse- and fine-grained soils and various land uses. The ecological assessment criteria for a commercial/industrial land use context (mg/kg) are the adopted land use criteria for this investigation.

The methodology outlined in Schedule B1 NEPM (*NEPC, 2013*) was developed to protect soil processes, soil biota (flora and fauna), terrestrial invertebrates and vertebrates. Derivation of site specific EILs for metals (Cr, Cu, Ni & Zn) involves first establishing the appropriate added contaminant limit (ACL) values from Table 1B (1) – 1B (3) of Schedule B1 of the NEPM (*NEPC, 2013*). The tables consider the land use purposes and soil-specific properties such as pH and CEC to determine the CoPCs recommended ACL. Please note that the generic ACL for lead (Pb) is taken directly from Table 1(B)4 of Schedule B1 of the NEPM (*NEPC, 2013*). The ACL values are then added to the contaminant's respective ambient background concentration (ABC), determined via suitable reference data or baseline investigations, to produce the site-specific EIL (EIL = ABC + ACL).

No ABC data was available for the site. Therefore, for this investigation ADE has calculated the relevant ACL values and conservatively adopted them as the EIL. Additionally, the EIL criteria presented for arsenic (As), naphthalene and DDT are generic EIL values irrespective of their physiochemical properties sourced from Table 1(B)5 of Schedule B1 of the NEPM (*NEPC, 2013*).

Based on data obtained from a previous environmental assessment within the investigation area (ADE, 2022d), the site-specific soil properties used to calculate the EILs are shown in **Table 7.** ADE calculated the average of the values as an estimation of the true population mean and adopted these values in the derivation of the site-specific EILs. The calculated EIL is shown in **Table 8.** Please note that no clay content (%) data was obtained for the derivation of Cu and Zn ACL and therefore, the most conservative modelled clay content (%) was adopted.

Investigation No.	Sample ID	рН	Clay Content (%)	CEC (meq/100g)
	BH03(1.0-1.1)	5.9	25	9.5
ADE, 2022d	BH17(0.4-0.5)	5.1	25	8.7
	BH24(0.4-0.5)	8.5	25	9.7
	Average	6.5	25 ¹	9.3

Table 7. Soil Properties and calculation of EIL criteria.

Notes to Table 7

1 - In the absence of site-specific soil clay content data, the most conservative modelled soil clay content for the site has been selected as sourced from the NSW Office of Environmental Heritage (eSpade).

2- Aged ACLs derived assuming a high traffic volume.

3 - For the derivation of copper ACLs a low organic content (1%) is assumed due to the physiochemical nature of the local lithology i.e., natural clays

Table 8. Site-specific EIL criteria.

Analyte	Commercial/Industrial Land Use (mg/kg)
Cr ²	910
Cu ³	290
Ni⁵	250
Zn ⁶	710
As ¹	160
Pb ⁴	1800
Naphthalene ¹	370

Analyte	Commercial/Industrial Land Use (mg/kg)
DDT ¹	640

Notes to Table 8

1- Generic EIL, as per Table 1B (5) of Schedule B1 of NEPM (2013).

2- Cu ACL calculated using CEC data and adopted as EIL, as per Table 1B (2) of Schedule B1 of NEPM (2013).

3- Generic ACL for Pb conservatively adopted as EIL, as per Table 1B (4) of Schedule B1 of NEPM (2013).

4- Ni ACL calculated using CEC data and adopted as EIL, as per Table 1B (3) of Schedule B1 of NEPM (2013).

5- Zn ACL calculated using a conservative modelled pH and CEC data and adopted as EIL, as per Table 1B (1) of Schedule B1 of NEPM (2013).

6- Aged ACLs derived assuming a high traffic volume.

ESLs have been developed for TRH, BTEX and benzo(a)pyrene in soils and are applicable for assessing risk to terrestrial ecosystems. ESLs broadly apply to coarse- and fine-grained soils and various land uses. **Table 9** provides a summary of the adopted ESLs.

Table 9. Summary of ESLs in soil

Chemical	ESL – Commercial /Industrial Land Use (coarse grained soils) (mg/kg)
F1 C ₆ -C ₁₀	215
F2 C ₁₀ -C ₁₆	170
F3 >C ₁₆ -C ₃₄	1700
F4 >C ₃₄ -C ₄₀	3300
Benzene	75
Toluene	135
Ethylbenzene	165
Xylenes	180
Benzo(a)pyrene	0.7

Notes to Table 9

1- Values for fine-grained soil texture adopted for conservative purposes.

2- Generic ESLs for TPH fractions, F1-F4, BTEX and benzo(a)pyrene.

6.1.4 Management Limits

In accordance with Section 2.9 of Schedule B1 of the ASC NEPM, consideration of management limits for petroleum hydrocarbons will be undertaken to assess whether the reported soil conditions have the potential to pose a risk to buried infrastructure, or the formation of non-aqueous phase liquid (NAPL). Values for coarse grained soils are adopted as a conservative approach.

A summary of the adopted TRH management limits for this site is provided in Table 10.

Table 10. Summary of adopted TRH management limits

Chemical	Management Limits for TRH (mg/kg)
F1 C ₆ -C ₁₀	700
F2 C ₁₀ -C ₁₆	1,000
F3 >C ₁₆ -C ₃₄	3,500
F4 >C ₃₄ -C ₄₀	10,000

6.1.5 Asbestos in Soil

The HSL-C and HSL-D criteria outlined within the NEPM (NEPC,2013), based on the guidance provided in the WA DoH Guidelines (WA DoH, 2021), were adopted to assess the presence of asbestos in soil. These are shown in **Table 11**.

The guidelines specify that the surface should be free of visible asbestos (refer to % w/w asbestos in soil = % asbestos content x bonded ACM (g) 10L soil weight (g) Table 11) The semeentertiese for handed ACM encoded as the following exercises

Table 11). The concentrations for bonded ACM concentrations in soil are based on the following equation which is presented in Schedule B1 of NEPM (2013):

% w/w asbestos in soil = % asbestos content x bonded ACM (kg) Soil volume (L) x soil density (kg/L)

Each bucket sample was weighed using electronic scales, and the above equation was adjusted as follows (we note that the units have also been converted to grams):

% w/w asbestos in soil = % asbestos content x bonded ACM (g) 10L soil weight (g)

 Table 11. Summary of adopted HSLs for asbestos in soil.

Asbestos Form	Health Screening Level (w/w)	
	HSL D	
Non-friable Asbestos	0.05 %	
FA and AF	0.001%	
All forms of asbestos	No visible asbestos on the soil surface	

6.1.6 **PFAS** in soil

The HEPA *PFAS National Environmental Management Plan Version 2.0 (2020)* provides guidance on the management of PFAS impacted soils. The classes of soil criteria defined in the PFAS NEMP National Environmental Management Plan 2.0 (2020) for human HILs and EILs are presented in **Table 12.**

Table 12. Summary of the adopted assessment criteria for PFAS in soil.

Soil Criteria (Human Health)	PFOS + PFHxS (mg/kg)	PFOA (mg/kg)
Commercial/Industrial (HIL-D)	20	50
Soil Criteria (Ecological)	PFOS (mg/kg)	PFOA (mg/kg)
Ecological direct exposure	1	10
Ecological indirect exposure in areas of low accessible soil	0.14	NA

6.1.7 Aesthetics

NEPM 2013 requires that the aesthetic quality of accessible soils be considered even if analytical testing demonstrates that concentrations of COPCs are within the Site assessment criteria (SAC). It should be noted that there are no quantifiable guidelines in determining if soils are appropriately aesthetic. However, the NEPM 2013 does indicate that professional judgement concerning the quantity, type and distribution of foreign materials and odours concerning the specific land use should be employed.

The following scenarios (including but not limited to the following) would trigger further aesthetic assessment:

- Hydrocarbon sheen on surface water
- Anthropogenic soil staining.
- Odorous soils, i.e., petroleum hydrocarbon odours or hydrogen sulfide in soil.

6.2 Statistical Treatment

Analytical results from the soil sampling program are statistically analysed to determine their applicability to the assessment and recommendation of remedial actions in the event of site assessment criteria (SAC) exceedances.

A contaminant concentration in soil will be deemed a non-exceedance if:

- The maximum concentration of all samples meets the specified acceptance criteria; or
 - The 95% Upper Control Limit (UCL) is below the acceptance criteria with the following criteria:
 - The standard deviation of the results should be less than 50% of the relevant investigation or screening level; and
 - No individual exceedance should exceed 250% of the relevant investigation or screening level.

If the 95% UCL of the arithmetic mean of a contaminant concentration is above the acceptance criteria, then the soil will be classified as contaminated and will require further assessment, remediation, removal or management. If the 95% UCL of the arithmetic average concentrations is below the acceptance criteria, and no concentrations are at a hotspot level, slight elevations above the acceptance criteria may be considered to pose insignificant human health or environmental risk. The location will hence be considered a non-exceedance requiring no further assessment, remediation, removal or management. The statistical analysis for the assessment of ACM is not considered appropriate.

7 Results and Discussion

7.1 Field Observations

The following field observations were noted across the course of the investigation:

- The site in its current form is being utilised as a public road and typically exhibits a medium to high traffic volume.
- Select areas within the road shoulder across the site have been artificially raised above the existing ground level to accommodate design specifications/requirements for road construction.
- Specific areas within the nature strip contained high levels of vegetation primarily consisting of invasive weed species.
- No visual/olfactory indications of contamination including hydrocarbon odours/sheen or staining were noted during the inspection.
- Foreign materials including general waste debris, tyre waste and domestic rubbish was observed throughout the site during the inspection.

7.1.1 Site Soil and Sub-soil Geology

The typical soil stratigraphy encountered during the field investigation is detailed in **Table 13** (refer to *Appendix* II - Photographs and *Appendix* VI - Borehole Logs). The upper soil profile on-site is consistent with that of topsoil with pockets of suspected reworked natural materials, followed by residual natural fat, lean clays, and weathered shale.

Layer	Depth Range (m BGL)	Material Description	General Observations
FILL - Topsoil	0.0 – 0.5 m	Silty SAND / Gravelly SAND / Sandy GRAVEL / Gravelly SILT	Topsoil was typically encountered across the site and was typically limited to the top 0.5 metre lithological strata. On average, topsoil had an approximate depth in between $0.2 - 0.3$ m BGL.
FILL – Engineered Materials / Reworked Natural Soils	0.5 – 1.8	Silty CLAY / Silty SAND	Engineered fill i.e., reworked clay was occasionally encountered below topsoil profile. Engineered fill was encountered within select locations across the site and typically occurred within the road shoulder or within built-up areas.
NATURAL - Residual Clays	0.3-1.9	Silty Clay / Clay	Natural lean, fat clays of low to medium plasticity were generally observed directly below the topsoil/engineered fill interface. Natural soils were typically encountered at shallow depths from 0.3m BGL to 0.6m BGL

Table 13. Encountered sub-surface lithology.

Notes to Table 13

1- Refer to Appendix VI – Test Pit Logs for detailed lithological descriptions.

7.1.2 PID Field Screening

Each soil sample was screened for the presence of VOCs using a PID. The PID readings reported concentrations ranging from 0.0 ppm to 0.8 ppm. As the maximum recorded concentration was below the actionable criteria (15-20ppm), no further analysis or consideration was considered appropriate (refer to *Appendix VI – Test Pit Logs*).

7.2 Summary of Soil Analytical Results.

Based on the analytical results collected from soil samples analysed across the investigation area, all samples returned concentrations below that of the adopted human health and ecological assessment criteria prescribed land-use criteria (HIL-D/HSL-D) (refer to *Appendix IV – Analytical Results Tables* for individual sample results). The following sub-sections provide a brief discussion for each key analyte group when compared with the health and ecological assessment criteria outlined in the NEPM, 2013.

7.2.1 Heavy Metals

Of the 25 primary soil samples which were analysed, all samples demonstrated concentrations of heavy metals below the tier 1 human health screening levels and site-specific ecological assessment criteria prescribed for a commercial/industrial land use context (HIL/HSL-D).

The levels of heavy metals, except for concentrations of lead and zinc, remained relatively stable across all the samples analysed. Whilst variations in the concentrations of lead and zinc were identified, they were within the exhibited typical traits for the conditions of a disturbed environment and may be attributed to the sample heterogeneity and various low-level sources of contamination caused by the current land-use as a public road.

7.2.2 Organics (BTEXN, TPHs, PAHs, OCP/OPPs and PCBs)

The sample collected from 'TP239_0.2-0.3', exceeded the ecological screening levels (ESLs) for commercial and industrial use, recording a maximum concentration of benzo(a)pyrene at 1.53 mg/kg. Noting the primary sample size and the consistent fill soil profiles encountered, further statistical evaluation was undertaken by deriving the 95% UCL and standard deviation (STDEV) of the dataset via ProUCL 5.1. The resulting value returned below the adopted ecological threshold criteria, returning a 95% UCL value of 0.551 and a STDEV of 0.327, which is 50% less than the relevant investigation level (0.7mg/kg).

Due to the outcomes of the statistical evaluation the exceedance at 'TP239' is not considered a hot spot requiring notification of contamination as the 95% UCL is below the acceptance criteria with the following criteria:

- The standard deviation of the results should be less than 50% of the relevant investigation or screening level; and
- No individual exceedance should exceed 250% of the relevant investigation or screening level.

All remaining samples returned concentrations of organic analytes below the laboratory PQL, except for minor detections of PAHs within four samples of which all remained below the trigger criteria.

7.2.3 Per-and Poly-fluoroalkyl Substances (PFAS)

Five representative samples were selected from the fill profile and analysed for PFAS as a preliminary screening method. All five representative samples returned PFAS concentrations below the laboratory practical quantification limit (PQL) or 5µg/kg (refer to *Appendix IV – Results Tables* for individual sample results).

As the site is located within an area categorised as 'low risk' for PFAS contamination and all representative samples showed PFAS concentrations below the PQL, it can be inferred that the overall risk for PFAS is 'low'. Unless changes in the site condition are identified or the site is exposed to potential PFAS related activities, further assessment is not considered warranted.

7.2.4 Asbestos

Of the 39 test pits subjected to an asbestos visual assessment or 10L gravimetric screening, no potential asbestos containing material (PACM) was observed across the soil surface or observed during the on-site screening process. From the test pits completed, a total of ten representative 500mL soil samples were collected from the fill profile and analysed as per the NEPM, 2013.

No asbestos fines/fibrous asbestos or respirable fibres were detected within any of the ten 500mL soil samples analysed at the NATA accredited laboratory (refer to *Appendix IV – Analytical Results Tables* and *Appendix VII – Analytical Reports* and *Chain of Custody Documentation*).

As noted during the site inspection, specific areas across the investigation area were subject to limited accessibility and contained high levels of vegetation which impeded the accuracy of the visual inspection. Due to the current land use of the site and the probability of encountering asbestos, due care should be undertaken when conducting any future intrusive activities.

7.3 Duty to Report Contamination

For the purposes of section 60(3)(b) of the CLM Act, notification of contamination in, or on, soil on the land is required where:

- The 95 % UCL on the average arithmetic concentration of a contaminant in or on soil is equal to or above the HIL and/or HSL for that contaminant for the current or approved use of the respective on-site land, as specified in Section 6, Schedule B1 of the NEPM (2013); or
- The concentration of a contaminant in an individual soil sample is equal to or more than 250% of the HIL and/or HSL for that contaminant for the current or approved use of the respective on-site land, as specified in Section 6, Schedule B1 of the NEPM (NEPC, 2013); and
- The contaminant has entered, or will foreseeably enter, neighbouring land, the atmosphere, groundwater, or surface water which is above that of the assessment criteria outlined in the Section 6, Schedule B1 NEPM (NEPC, 2013) or other approved guidelines and will foreseeably remain equal to or above the recorded level.

Based on the evidence and data acquired across the course of the investigation, ADE considers that AT & L Pty Ltd, does not have a duty to report contamination to the NSW EPA regarding on-site contamination of soils due to concentrations of the analysed analytes being below that of the adopted SAC.

8 **Provisional Materials Analysis and Classification**

8.1 Introduction

During the construction and earthworks involved in the proposed development, excavated material that cannot be beneficially re-used onsite, may be disposed off-site. To evaluate potential off-site disposal options, a preliminary material classification was conducted by comparing the results of the detailed site investigation to the NSW EPA Waste Classification Guidelines 2014. As final volumes of material to be removed from site have not been confirmed, they are not included within this preliminary classification.

8.2 Preliminary Waste Classification Assessment – Fill Materials (0.0 – 1.8 m BGL)

The chemical and asbestos results obtained across the investigation were assessed against the NSW EPA Waste Classification Guidelines 2014; 2016, to provide off-site disposal options for the material.

It is noted the number of samples collected from the fill soil profile across the site may not be sufficient for a complete characterisation of the materials as under the current waste sampling framework. The classification provided for fill materials should be used for indicative purposes only and may need further characterisation for greater representation.

8.2.1 Comparison against the NSW EPA Waste Classification Guidelines 2014

Table 14. Step 1 to Step 7 of Waste Classification Guidelines Part 1summarises Step 1 to Step 7 of the NSW EPA Waste Classification Guidelines: Part 1 -Classifying Waste (NSW EPA, 2014), which applies to the fill profile encountered across the site.

Step	Assessment
Step 1: Is the waste special waste? (Clinical and related waste, asbestos waste, waste tyres, and anything classified as special waste under an EPA gazettal notice)	 Yes No No asbestos was visually observed across the soil surface or recorded during the 10L gravimetric screening process No AF/FA or respirable fibres were detected within any of ten representative 500mL soil samples analysed. Due to the limitations associated with site accessibility and the presence of extensive vegetation, the visual assessment was impeded within specific areas and therefore, PACM may still be present within select areas across the investigation area.
Step 2: Is the waste liquid waste? Step 3: Is the waste pre-	□ Yes ☑ No □ Yes
classified? Step 4: Does the waste possess hazardous characteristics?	 No □ Yes ⊠ No
Step 5: Chemical characterisation of the soil materials:	Refer to Appendix IV – Results Tables for a summary of the analytical results. Summary of Results A total of 24 exceedances involving specific heavy metals (lead and nickel) and PAHs (benzo(a)pyrene) were recorded above the contaminant threshold (CT) but below the specific contaminant concentration (SCC) assigned for General Solid Waste or CT1/SCC1.All remaining analytes exhibited concentrations below the CT1 criteria. A summary of the exceedances is provided in Table 14.a .

Table 14. Step 1 to Step 7 of Waste Classification Guidelines Part 1.

-			
C	۰.		r,
		-	

Assessment

 Table 14.a Summary of Exceedances against the CT1/SCC1 criteria assigned for General Solid Waste.

Solid Waste.					
Sample I.D.	Depth (m BGL)	Analyte	Criteria assigned for General Solid Waste (CT1/SCC1) (mg/kg)	Maximum Concentration (mg/kg)	
TP201_0.2-	0 2 0 2	Lead	100 / 1,500	109.6	
0.3	0.2-0.3	Nickel	40 / 1,050	77.3	
TP209_0.5-	0.5-0.6	Lead	100 / 1,500	146.8	
0.6	0.5-0.0	Nickel	40 / 1,050	54.5	
TP211_0.1- 0.2	0.1-0.2	Nickel	40 / 1,050	48.0	
TP213_0.2- 0.3	0.2-0.3	Nickel	40 / 1,050	50.3	
TP219_0.2-	0.2-0.3	Lead	100 / 1,500	198.0	
0.3		Nickel	40 / 1,050	74.4	
TP221_0.1-	04.0.0	Lead	100 / 1,500	119.0	
0.2	0.1-0.2	Nickel	40 / 1,050	77.2	
TP225_0.4-	0405	Lead	100 / 1,500	271.2	
0.5	0.4-0.5	Nickel	40 / 1,050	70.1	
TP227_0.3-	0.2.0.4	Lead	100 / 1,500	232.9	
0.4	0.3-0.4	Nickel	40 / 1,050	74.5	
TP229_0.2- 0.3	0.2-0.3	Nickel	40 / 1,050	80.8	
TD224 0 4	0.1-0.2	Lead	100 / 1,500	278.8	
TP231_0.1- 0.2		Nickel	40 / 1,050	128.8	
		Benzo(a)pyrene	0.8 / 10	1.08	
TP233_0.4- 0.5	0.4-0.5	Lead	100 / 1,500	115.3	
TP236_0.3- 0.4	0.3-0.4	Nickel	40 / 1,050	87.9	
	0.2-0.3	Lead	100 / 1,500	215.1	
TP239_0.2- 0.3		Nickel	40 / 1,050	102.6	
		Benzo(a)pyrene	0.8 / 10	1.53	

Outcomes of Statistical Evaluation

All primary fill samples underwent statistical evaluation of the dataset for lead, nickel, and benzo(a)pyrene. When sample concentrations were recorded below the PQL, the PQL was adopted for statistical purposes. The 95% UCL was calculated using ProUCL 5.1. All values derived for the specified analytes are articulated below:

- Lead: 95% UCL (Students t-UCL) 150.8 (STDEV 83.61)
- Nickel: 95% UCL (Students t-UCL) 70.65 (STDEV 33.42)
- Benzo(a)pyrene: 95% UCL (Students t-UCL) 0.551 (STDEV 0.327)

Due to the derived 95% UCL calculation exceeding the CT1 criteria for both lead and nickel and the highly skewed nature of the data inferred by the resulting standard deviation, further consideration will need to be considered for the assessment of both lead and nickel for off-site disposal purposes (i.e., TCLP analysis). The remaining statistical calculation for benzo(a)pyrene returned acceptable outcomes for classification as 'General Solid Waste'.

Further Consideration – Toxicity Characteristic Leaching Procedure (TCLP)

Due to lead and nickel concentrations above the CT1 threshold and below the SCC1 threshold assigned for 'General Solid Waste', further consideration can be considered to undertake TCLP analysis in an attempt to retain the chemical classification as 'General Solid Waste'.

Step		Assessment
Step 6: Is the waste putrescible or non- putrescible?	□ Putrescible ⊠ Non-putrescible	 Non-putrescible materials typically do not: readily decay under standard conditions emit offensive odours attract vermin or other vectors (such as flies, birds, and rodents).
Preliminary Waste classification conclusion:	opinion of ADE that: Asbestos □ was observed within representative 5 Paint chips, indicators of □ were observed in the The concentrations of He samples collected from w □ indicatively the NSW EPA (2) The provided waste class and does not offer a full w	widence collected over the course of the investigation, it is the Was not any of the in-situ soil materials inspected or detected within any 500mL samples collected or observed at any location onsite PASS, hydrocarbon odours / staining ✓ were not ✓ materials inspected, and Pavy Metals, TRHs, BTEX, PAHs, PCBs, OCPs, OPPs, PFAS and in the vithin the subject soil materials meet

8.2.2 Approved NSW EPA Resource Recovery Framework

Due to the location of the material and the inferred nature of future excavation works, further consideration may be considered for employing further assessment to assess for compliance against NSW EPA approved resource recovery framework. Benefits of considering resource recovery framework alternatives include the avoidance of the NSW EPA waste levy, potentially reducing disposal costs and contributing to a circular economy and project sustainability goals.

8.3 Preliminary VENM Compliance Assessment – Natural Materials (0.3-1.9 m BGL)

Following a site inspection, the natural materials encountered onsite were deemed to be consistent with the local geology. No visual or olfactory indicators of contamination observed within the natural materials during the sampling investigation. **Table 15** provides a preliminary assessment of the material and observations against the requirements for validating material as VENM, in accordance with the POEO Act 1997.

The Protection of the Environment Operations Act 1997 (POEO Act) defines virgin excavated natural material (VENM) as:

'natural material (such as clay, gravel, sand, soil, or rock fines):

(a) that has been excavated or quarried from areas that are not contaminated with manufactured chemicals, or with process residues, as a result of industrial, commercial, mining, or agricultural activities and

(b) that does not contain any sulfidic ores or soils or any other waste

and includes excavated natural material that meets such criteria for virgin excavated natural material as may be approved for the time being pursuant to an EPA Gazettal notice.'

Table 15. Requirements for 'VENM' as per the POEO Act 1997.

Criteria	Assessment
Is the material naturally occurring such as clay, gravel, sand, soil, or rock fines?	⊠ Yes □ No
Has the material been excavated or quarried from areas that are not contaminated with manufactured chemicals, or with process residues, as a result of industrial, commercial, mining, or agricultural activities?	⊠ Yes □ No
Does the material contain any sulfidic ores, or any other waste?	□ Yes ⊠ No
Does the material meet the chemical requirements to be considered VENM? Refer to <i>Appendix IV – Results Tables</i> and discussion below.	🖂 Yes
All five representative natural samples collected from the investigation area returned concentrations below the adopted geological background ranges prescribed by ANZECC (2000) and D.A. Berkman (1989).	

Additional Comments:

The number of samples collected for natural material classification across the site may not be sufficient for a complete characterisation of the materials as VENM. The classification provided for the natural materials is limited to the number of natural samples analysed and may need further characterisation for greater representation.

8.4 Preliminary Classification and Conclusions

Table 16 provides a summary of the preliminary materials classification analysis undertaken throughout the investigation.

Table 16 Preliminary Materials Classification

Soil Profile	Depth Range (m BGL)	Matrix Description	Area of site	Preliminary Classification	
FILL - Topsoil	0.0 – 0.5 m	Silty SAND / Gravelly SAND / Sandy GRAVEL / Gravelly SILT	Future site	General Solid Waste (pending the	
FILL – Engineered Materials / Reworked Natural Soils	0.5 – 1.8	Silty CLAY / Silty SAND	Entire site	outcomes of TCLP analysis).	
NATURAL - Residual Clays	0.3-1.9	Silty Clay / Clay	Entire site, noting limited natural material characterisation	Virgin Excavated Natural Material (VENM)	

Please note that the classifications provided are noted to be preliminary and should be used for indicative purposes only. Additional sampling will likely be required to achieve a representative sampling distribution for the characterisation of natural soil materials. If the TCLP analysis yields leachable concentrations above the TCLP criteria assigned for the corresponding classification threshold (TCLP1/TCLP2), the material may subsequently be classified at higher classification.

9 Data Quality Assessment

To carry out the assessment of the data acquired in the course of the investigation, the US EPA Guidelines including, but not limited to, the 'Guidance on Assessing Quality Systems' (2003) and 'Guidance on Systematic Planning Using the Data Quality Objectives Process' (2006) were used.

The guidelines provide a general strategy for assessing data quality criteria and performance specifications for decision making. The following is the output from most of the steps of the data quality assessment (DQA) Process provided in the guidelines. Quality control reports from the laboratories for sample analyses were reviewed. The review included an assessment of blank, duplicate, control, and spiked samples. The review of the QA/QC program was conducted in accordance with NSW EPA recommendations.

In order to carry out the data quality assessment for the lab analytical results acquired in the course of this investigation, the US EPA Guidelines were used. The Guidelines provide a general strategy for assessing data quality criteria and performance specifications as part of decision making. The following assessment methodology addresses most of the steps of the data quality assessment (DQA) process provided in the guidelines.

9.1 Data Review

Quality control reports from the laboratories subcontracted for sample analyses were reviewed. Laboratory blank samples, duplicate samples, control samples, spiked samples and method blanks were evaluated.

This review was conducted as per the items recommended by the NSW EPA for inclusion in the consultants' reports. Some additional recommendations from the US EPA methodology, as referred to by AS 4482.1, were also followed.

Following the QA/QC assessment, the validity of the results is determined based on the assessment criteria adopted with the results expressed as either valid or invalid data (acceptable or unacceptable). An overall summary of the QA/QC assessment can be found in *Appendix* V - QA/QC *Output*.

9.2 COC

Australian Standard AS 4482.1 defines the chain-of-custody documentation as the link in the transfer of samples between the time of collection and arrival at the laboratory.

The COC utilised by ADE included the items recommended by the Standard:

- The person transferred the samples;
- The person who received the samples;
- Date the samples were collected;
- Date the samples were received at the laboratory; and
- Contact name and details for the client.

Copies of the COCs completed during the course of this investigation are provided in in *Appendix VII – Analytical Reports and Chain of Custody Documentation*.

9.3 Field Equipment Calibration

Field equipment requiring calibration included the use of a photo-ionisation detector (PID). The PID was calibrated by an external qualified technician before the sampling events and further calibrated onsite i.e., bump tested (as required) by a suitably qualified environmental consultant (refer to *Appendix VIII – Equipment Calibration Certificates* for the attached calibration certificate).

9.4 Record of Holding Times

The objective is to ascertain the validity of the analytical results based on meeting the holding time for the samples from the time of collection to the time of analysis. The technical holding time criteria for soil and groundwater samples are summarised in **Table 17**.

Analyte	Container	Recommended Preservation	Maximum Recommended Holding Time	Reference
Metals (excluding Hg & Cr VI)	P (MF)	HNO ₃ , C	6 months	APHA Table 1060:I
Metals (Cr VI)	P (MF)	NaOH, C	28 days	USEPA 1669
Metals (Hg)	P (MF)	HN0₃	28 days	APHA Table 1060:I
Leachable Metals	G	H ₂ SO ₄	28 days	AS 4439.3
VOCs	G	Nil, C	14 days	USEPA SW-846- 8260B
Phenols	G	Nil, C	14 days	USEPA SW 846-
PAHs	G	Nil, C	14 days	8015A
PCBs	G	Nil, C	14 days	
TRHs	G	Nil, C	14 days	USEPA 8260D
OCPs/OPPs	G	Nil, C	14 days	USEPA3510/8270

Table 17. Recommended Storage, Preservation and Maximum Holding Times.

Notes to Table 17

*Recommended Preservation: ZH - Zero Headspace; C - Chilled; PET- Polyterepthalate

*Containers: G - Glass; P (MF) - Plastic (Metal Free); P - Plastic (Polyethylene)

All samples collected throughout the investigation were submitted within two days of the initial soil sampling. As such, the holding times of the soil samples submitted to their elected laboratories (SLS, Envirolab and Eurofins) meet the recommended criteria (refer to *Appendix VII – Analytical Reports and Chain of Custody Documentation*).

9.5 Laboratory Analytical Methodology and Accreditation

All chemical analysis was undertaken by NATA accredited laboratories using US EPA approved methodology. Refer to *Appendix VII – Analytical Reports and Chain of Custody Documentation* for the details of the adopted laboratory analytical methods and their respective accreditations. The laboratory methodologies and the respective accreditations of SLS and Eurofins were deemed suitable for the required analyses.

9.6 Detection Limits / Practical Quantification Limits

The smallest amount of a substance that can be detected by the laboratories used – ALS and Eurofins, above the background method noise in a procedure and within a stated confidence level is referred as detection limit.

Current practice identifies several detection limits including the following: (1) the instrument detection limit (IDL), (2) the lower-level detection limit (LLD), the method detection limit (MDL) and the practical quantitation limit (LOR).

The relationship among these levels is approximately IDL: LLD: MDL: LOR = 1: 2: 4: 10. Refer to SLS, ALS and Eurofins for the list of LORs provided by their respective laboratories. When dilution of a sample is involved in the sample preparation, the method detection limit is adjusted by the dilution factor.

9.7 Field QA/QC

A summary of the QA/QC samples collected during field works is provided in Table 18.

Field QA/QC	Frequency	Sample Details	Field QA/QC Frequency Achieved?
Blind replicate samples	1 per 20 samples	 Two blind replicate samples were collected during the investigation: DSI2.BR1 is an intra-laboratory replicate of the primary sample of DSI2_TP213_0.2-0.3. DSI2.BR2 is an intra-laboratory replicate of the primary sample DSI2_TP233_0.4-0.5. 	Yes ¹
Split Replicate samples	1 per 20 samples	 Two blind replicate samples were collected during the investigation: DSI2.SR1 is an intra-laboratory replicate of the primary sample of DSI2_TP213_0.2-0.3. DSI2.SR2 is an intra-laboratory replicate of the primary sample DSI2_TP233_0.4-0.5. 	Tes

Table 18. Summary of Field QA/QC Samples.

9.7.1 Blind and Split Replicate Samples

Australian Standard 4428.1 and the NEPM (2013) specifies the typical Relative Percentage Data (RPD) values for replicate samples to be below 30%. If both samples' values are less than the practical quantification limit (PQL), the RPD is not calculated. Valid values are sample concentrations that fall within the control limits of 0-30% described above. Invalid values are concentrations that are outside of the control limits.

- Two intra-laboratory blind replicate samples were collected to determine the variability of the sampling process. The replicate sample was collected simultaneously from the same source and under identical conditions as the primary samples.
- The blind replicate samples showed 160 valid values and 4 invalid values.
- Two inter-laboratory split replicate samples were collected to measure the variability between the laboratory analysis process.
- The variability assessment showed 155 valid values and 9 invalid values.

9.8 Laboratory QA/QC

9.8.1 Laboratory Duplicates

- Duplicate sample determinations were provided by the laboratories to demonstrate acceptable method precision at the time of analysis.
- Duplicates are generally analysed at a frequency of 1 for every 10 samples. Australian Standard 4482.1 provides an acceptable range of the RPD values up to 50% for quality control samples, depending on the magnitude of results in comparison to the LOR.
- Analysis of laboratory duplicates showed 300 valid values and nil invalid values.

9.8.2 Laboratory Blanks

- The assessment of blank analysis results was conducted to determine the existence and magnitude of contamination resulting from laboratory activities.
- No contaminants were found within any of the blanks analysed by the laboratory resulting in 202 valid values and nil invalid values.

9.8.3 Laboratory Spikes and Surrogates

- Laboratory limits of approximately 70-130% for inorganics/metals and 60-140% for organics were used to validate matrix spikes and laboratory surrogate samples.
- Analysis of spikes and surrogates showed 90 valid values and nil invalid values.

9.8.4 Laboratory Control Samples

- Laboratory limit of approximately 70-130% for inorganics/metals and 60-140% for organics were used to validate laboratory control samples.
- Analysis of the laboratory control samples showed 150 valid values and nil invalid values.

9.9 QA / QC Data Evaluation

The qualitative and quantitative descriptors, DQIs were used in interpreting the degree of acceptability of the data acquired in the course of the investigation. The principle DQIs are precision, accuracy, representativeness, comparability, and completeness referred to by the acronym PARCC.

Precision and accuracy are quantitative measures, representativeness and comparability are qualitative, and completeness is a combination of both quantitative and qualitative measures. **Table 19** summarises the DQO reconciliation.

Table 19. Summary of DQO Reconciliation.

QA/QC Item	DQO Criteria	Valid Data	Invalid Data	Completeness	Conclusion
Laboratory duplicate samples	95%	300	0	100.00%	Acceptable
Laboratory blank samples	100%	202	0	100.00%	Acceptable
Laboratory spike/surrogate	95%	90	0	100.00%	Acceptable
recoveries					
Laboratory Control samples	95%	150	0	100.00%	Acceptable
Blind Replicate Samples	75%	160	4	97.56%	Acceptable
Split Replicate Samples	75%	155	9	94.51%	Acceptable
Overall Completeness:	95%	1,057	13	98.77%	Acceptable

Notes to Table 19

*LOR – Limits of Reporting

Following a review of the data, the recorded 'invalid' results can be attributed to the difficulties in obtaining a homogeneous sample from heterogeneous matrices. All invalid values obtained from the RPD table were of heavy metal concentrations and were obtained from the fill matrices. Due to historic and current use of the site as a main road for commuters and haulage trucks, the variations in heavy metal concentrations can be attributed to the heavy traffic use of the road. The ratio of the valid data to the total number of the analyses conducted in the QA/QC program yielded 98.77%, thereby meeting the DQO criteria of 95% completeness.

10 Revised conceptual site model

Following the completion of the current investigation, a revised CSM was developed in accordance with the findings of the field investigation works and NEPM Schedule B2 – NEPM (2013), to assess the plausible connections between potential contamination sources and the receptors.

The potential contamination sources identified during the provisional CSM included the suspected use of historical cut and fill practices associated with the road shoulder construction, the presence of suspected hazardous materials including asbestos and coal tar, regular automotive vehicular activity (i.e., emissions, fuel leaks etc), run-off associated with pesticide/herbicide applications, 'fly-tipping' of household waste, timber power poles and the presence of unknown stockpiled soil and waste materials.

Based on the collected analytical data, it can be inferred that there is currently a 'moderate to low' risk associated with the chemical contamination status of the soil materials within the site. Tyres were observed sporadically throughout the site however the remediation action required for these potential sources of contamination is isolated to the physical locations where tyres were observed.

Table 20. Revised CSM.

Potential Contamination Source	COPCs	Potential Exposure Pathways and Transport mechanisms	Potential Receptors	SPR Link Comments	Pathway Complete or incomplete?
Historical un- controlled fill practices	Heavy metals, TRHs, BTEXN, PAHs,			No asbestos containing materials observed or detected. No soil exceedances of contaminants of concern.	Incomplete – Moderate risk. Potentially complete during
Presence of unknown waste including stockpiles and tyre waste	OCPs/OPPs, PAHs, Asbestos	 Dispersion airborne particulates due to wind following disturbance. Downward migration and leaching of 		Visual observations noted the presence of tyre waste sporadically throughout the site.	earthworks. , future site construction.
Run-off associated with herbicide/pesticide application from agricultural land	Heavy metals, OCP/OPPs	 and leaching of contaminants through soil. Lateral migration via surface water run-off. Lateral migration via groundwater towards nearby surface water discharge zones. Transport of contaminants by human and/or mechanical disturbance. Air dispersion of dust. Physical contact with contaminated media; and Biomagnification along food chains. 	 Workers involved with construction work. Future site users 	No detections of OCPs/OPPs were identified within any of samples collected across the investigation.	Complete – low risk.
'Fly-tipping' of household waste products.	Heavy metals, BTEXN, PAHs, TRHs/TPHs			Consistent indications of fly- tipping were noted during the site inspection. Activity is inferred to continue with the continued operation as a public road.	Incomplete – low risk. Activity is likely to continue for the duration of the land-use as a public road.
Timber Power Poles	Heavy metals, PCBs, Asbestos			Timber power poles were noted across the site. Upon decommissioning, there is potential for cross- contamination of the surrounding soils to occur.	Incomplete – Low -risk. Potentially complete following the construction of the site.

Presence of Hazardous Material (i.e., asbestos and coal tar)	PAHs, Asbestos, Coal Tar	 Transport of contaminants by human and/or mechanical disturbance. Inhalation of airborne 	 Low to moderate risk for inhalation with free fibres. Low risk of vapour inhalation from 	No asbestos was identified during the site inspection however, isolated finds may still be present. Coal tar may be present within asphalt/bitumen matrices.	Incomplete – Low to moderate risk. Potentially complete following the construction of the site.
High Automotive Traffic Activity (i.e., fuel leaks, emissions etc)		contaminants. Air dispersion of dust. 	organic contaminants or free particulates .	No visual/olfactory indicators of hydrocarbon odours of leaks were noted during the site inspection.	Incomplete – Low risk. Activity is likely to continue for the duration of the land-use as a public road.

11 Conclusions and Recommendations

Based on the findings of the site investigations the following is concluded and recommended:

11.1 Field Observations

The following key observations were noted across the course of the investigation:

- The site in its current form is being utilised as a public road and typically exhibits a medium to high traffic volume.
- Select areas within the road shoulder across the site have been artificially raised above the existing ground level to accommodate design specifications/requirements for road construction.
- The local lithology was typically separated into two distinct soil profiles consisting of:
 - Fill Materials (Topsoil / Engineered Fill) Extended from the soil surface to a maximum depth of 1.8 m BGL
 - Natural Soils (Residual Clays and Bringelly Shale) Extended from 0.3 to a maximum depth of 1.9 m BGL.
- Specific areas within the nature strip contained high levels of vegetation primarily consisting of invasive weed species.
- No visual/olfactory indications of contamination including hydrocarbon odours/sheen or staining were noted during the inspection.
- Foreign materials including general waste debris, tyre waste and domestic rubbish was observed throughout the site during the inspection.

11.2 Soil Assessment

A total of 25 primary soil samples were submitted across the investigation to assess the chemical contamination status of the soils across the site. Based on the findings of the investigation, the following conclusions were made:

- All samples demonstrated chemical concentrations below the human health screening criteria for a commercial industrial land use context (HIL/HSL D).
- One exceedance was recorded against the site-specific EIL/ESL criteria for benzo(a)pyrene, exhibiting a maximum value of 1.53 mg/kg. Following statistical evaluation via deriving the 95% UCL, the resulting calculation returned below the relevant acceptance criteria.
- Most organic analytes including PFAS recorded concentrations below that of the laboratory PQL except for minor detections of PAHs within select samples.
- No asbestos was observed across the soil surface, recorded during the 10L gravimetric process, or recorded within any of 500mL soil samples submitted for asbestos analysis.

Based on the analytical results collected from soil samples analysed across the site, the soils are considered chemically suitable for the ongoing land-use as commercial/industrial land (HIL C/HIL D) or a public road.

11.3 Provisional Materials Analysis and Classification Assessment

The chemical and asbestos results obtained across the investigation were assessed against the NSW EPA Waste Classification Guidelines 2014; 2016, to provide indicative off-site disposal options for the material. The classification provided for fill materials should be used for indicative purposes only and may need further characterisation for greater representation. In summary:

• Of the samples analysed, a total of 24 exceedances were identified against the CT1 criteria for heavy metals and PAHs assigned for 'General Solid Waste'. All concentrations remained below the SCC1 threshold.

- Pending the outcomes of the TCLP analysis, the samples collected from the fill materials (Topsoil/Engineered fill) maybe considered suitable as 'General Solid Waste'.
- The samples collected from the natural soil materials returned concentrations below the adopted geological background ranges (ANZECC, 2000; D.A. Berkman, 1989) and thus maybe considered suitable for classification as Virgin Excavated Natural Material (VENM).

Due to the limited dataset and sampling undertaken, further sampling maybe required to produce a final classification assessment for the material. The provided assessment should be used for indicative purposes only.

11.4 Limitations, uncertainties, and assumptions

Due to site limitations including accessibility, safety issues and the presence of existing infrastructure including the services, the following are considered to be limitations, uncertainties and/or assumptions relevant to the investigation:

- The distribution of the completed sampling locations was primarily defined by spatial and safety restrictions present on-site. Based on the achieved distribution and sampling density, certain areas of the site have limited data to fully assess the nature and extent of potential contamination
- The lateral limit and vertical limit of the investigation is defined within *Appendix III Data Quality Objectives*. Contamination may be present within areas which have not been adequately assessed or at depths greater than the prescribed investigation limit.
- Due to the high traffic volume and the presence of high vegetation, certain areas would not be fully assessed or accessed and therefore, contamination may still be present within specific areas across the site.

11.5 Prescribed Land-Use Suitability

Considering the conclusions outlined above, ADE considers that the site is suitable for the prescribed land use as commercial/industrial land (HIL/HSL-D) with minor landscaped areas. The site is not considered to warrant the requirement of a remediation action plan (RAP). All unexpected finds must be managed in accordance with construction sub-management plans including asbestos management plans.

11.6 Recommendations

- Due to the current land-use of the site, ADE recommends that construction sub-management plans i.e., AMP, CEMPs are produced to manage unexpected finds encountered during the construction phase.
- As required per the NEPM, 2013, professional judgement should be employed when considering the aesthetic quality of soil materials and care should be taken to ensure the surface of soils are free of rubbish and debris.
- Further consideration should be given to employing approved NSW EPA resource recovery framework to achieve a cost-effective solution to future waste management and contribute further to circular economy and sustainability practices.

12 Limitations and Disclaimer

This report has been prepared for the exclusive use of the client and is limited to the scope of the work agreed in the terms and conditions of contract (including assumptions, limitations and qualifications, circumstances, and constraints). ADE has relied upon the accuracy of information and data provided to it by the client and others.

ADE has used a degree of care and skill ordinarily exercised in similar investigations by reputable members of the environmental industry in Australia. No other warranty, expressed or implied, is made or intended. No one section or part of a section, of this report should be taken as giving an overall idea of this report. Each section must be read in conjunction with the whole of this report, including its appendixes and attachments. The report is an integral document and must be read in its entirety.

To the fullest extent permitted by law, ADE does not accept or assume responsibility to any third party (other than the client) for the investigative work, the report or the opinions given.

The scope of work conducted, and report herein may not meet the specific needs (of which ADE is not aware) of third parties. ADE cannot be held liable for third party reliance on this document. Any third party who relies upon this report does so at its own risk.

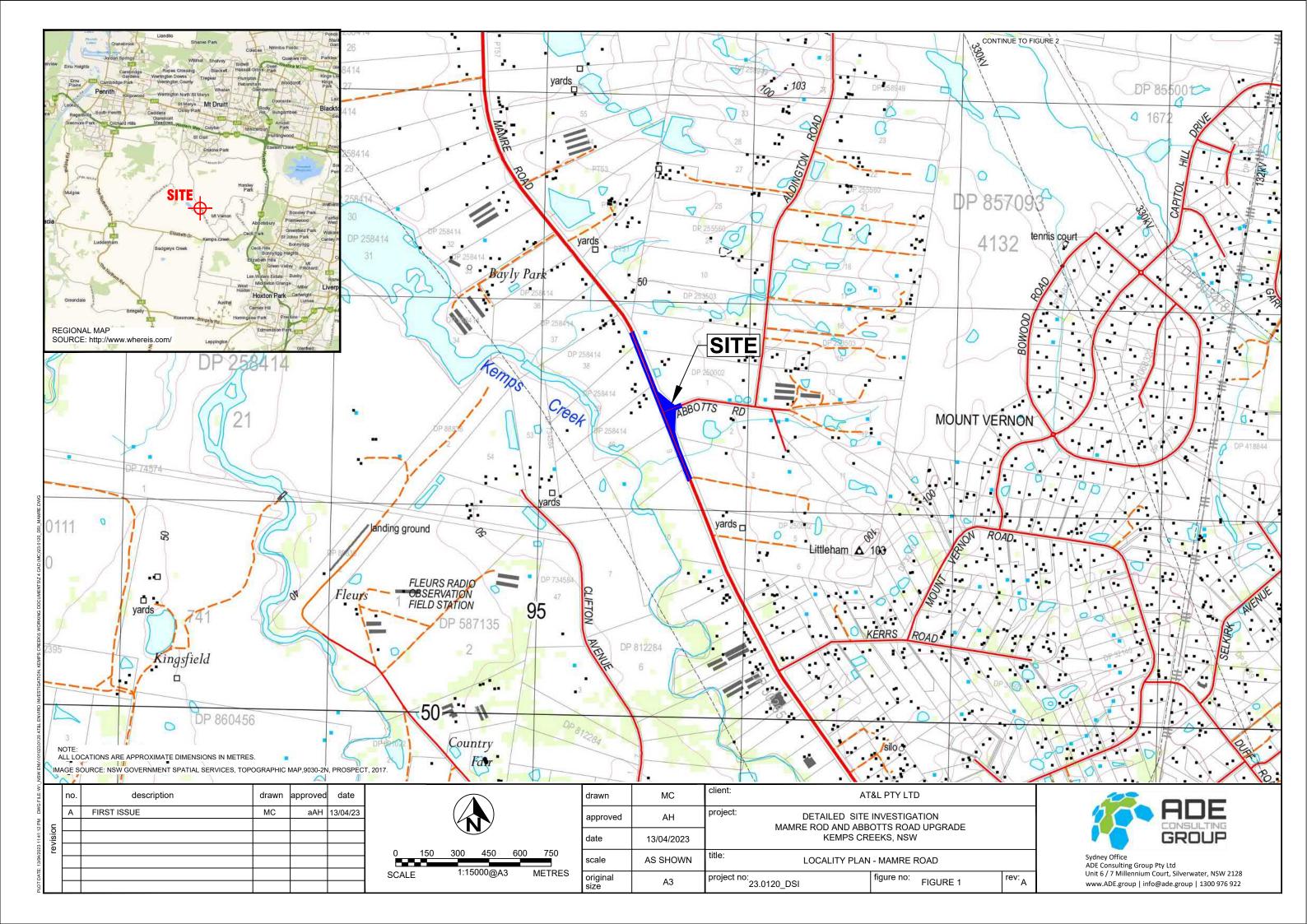
The subsurface environment can present substantial uncertainty due to it complex heterogeneity. The conclusions presented in this report are based on limited investigation of conditions at specific sampling locations chosen to be as representative as possible under the given circumstances. However, it is possible that this investigation may not have encountered all areas of contamination at the site due to the limited sampling and testing program undertaken.

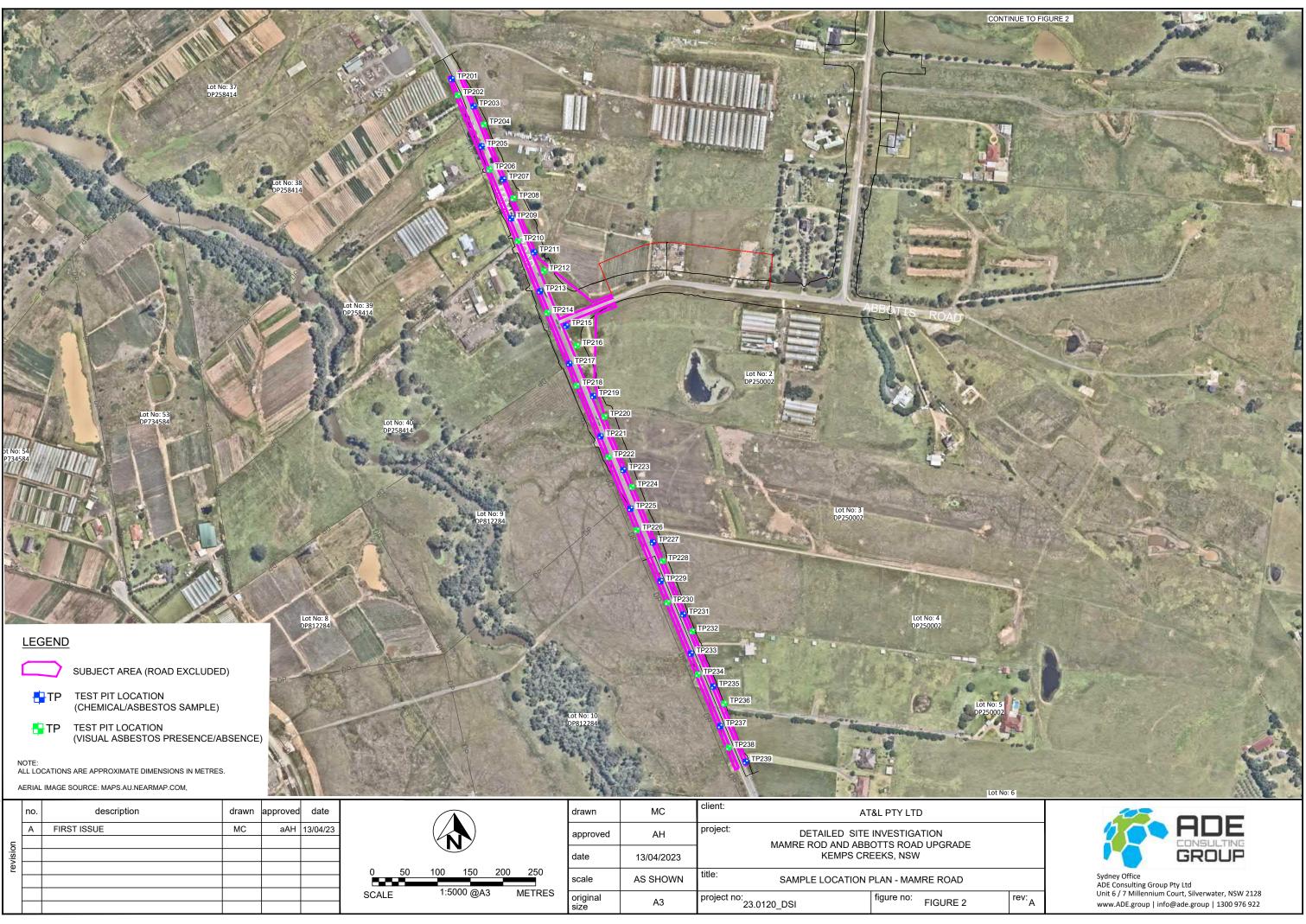
The material subject to classification pertains only to the site and subject area outlined within the report and must be consistent with the waste description reported. If there are any unexpected finds that are not consistent with this classification, ADE must be notified immediately.

ADE does not verify the accuracy or completeness of, or adopt as its own, the information or data supplied by others and excludes all liability with respect to such information and data. To the extent that conditions differ from assumptions set out in the report, and to the extent that information provided to ADE is inaccurate or incomplete or has changed since it was provided to ADE, the opinions expressed in this report may not be valid and should be reviewed.

ADE's professional opinions are based upon its professional judgement, experience, training, and results from analytical data. In some cases, further testing and analysis may be required, thus producing different results and/or opinions. ADE has limited its investigation to the scope agreed upon with its client.

This Limitation and Disclaimer must accompany every copy of this report.




13 References

- ADE Consulting Group Pty Ltd. (2022a). Detailed Site Investigation 200 Aldington Road, Kemps Creek. Dated 11/022022.
- ADE Consulting Group Pty Ltd. (2022b). Detailed Site Investigation 74-90 Aldington Road, Kemps Creek. Dated 30/04/2022.
- ADE Consulting Group Pty Ltd. (2022c). Phase I Preliminary Site Investigation Abbotts and Aldington Road Upgrade, Kemps Creek NSW. Report Reference No. 21.1725.07.PSI.v1f, dated 01/11/2022.
- ADE Consulting Group Pty Ltd. (2022d). Salinity, Aggressivity and Solidity Assessment Aldington Road and Abbotts Road Upgrade, Kemps Creek. Report Reference No. 21.1725.SASA.v1f, dated 26/09/2022.
- Australian Standard AS 4482.1 Guide to the sampling and investigation of potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds.
- Australian Standard AS 4482.2 Guide to the sampling and investigation of potentially contaminated soil. Part 1: Volatile substances.
- Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites, Environmental Soil Quality Guidelines Background Ranges (ANZECC, 1992).
- Contaminated Land Management Act 1997.
- D.A Berkman. (1989) Field Geologist's Manual (D.A. Berkman, 1989).
- Environmental Planning and Assessment Act 1979.
- Environmentally Hazardous Chemicals Act 1985 (NSW).
- National Environment Protection Council (NEPC). (2013). National Environment Protection (Assessment of Site Contamination) Measure (NEPM).
- NSW EPA. (2022). Sampling Design Part 1 Application (Contaminated Land Guidelines).
- NSW EPA. (2014). Waste Classification Guidelines Part 1: Classifying Waste.
- NSW EPA. (2015). Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997.
- NSW EPA. (2017). Guidelines for the NSW Site Auditor Scheme. Third Edition.
- NSW EPA. (2020). Guidelines for Consultants Reporting on Contaminated Land (NSW EPA, 2020)
- NSW Government. (1997). Protection of the Environment Operations Act 1997.
- NSW Safework. (2022). Model Code of Practice: How to Safely Remove Asbestos;
- NSW Safework. (2022). Code of Practice: How to Manage and Control Asbestos in the Workplace;
- State Environmental Planning Policy (SEPP) 55 'Remediation of Land'.
- Standards Australia. (1998). AS/NZS5667.1-1998 Water Quality-Sampling. Part 1: Guidance on the Design of Sampling Programs, Sampling Techniques and the Preservation of Handling Samples.
- Standards Australia. (2005). Australian Standard AS 4482.1 Guide to the sampling and investigation of potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds, (2005).
- Standards Australia (1999). Australian Standard AS 4482.2 Guide to the sampling and investigation of potentially contaminated soil. Part 2: Volatile substances, (1999).
- Waste Avoidance and Resource Recovery Act 2001.
- Western Australian Department of Health (WA DOH). (2021). Guidelines for the Assessment, Remediation and Management of Asbestos Contaminated Sites in Western Australia (WA DOH, 2021).
- Work Health and Safety Act 2011.
- Work Health and Safety Regulation 2017

Appendix I – Figures

Appendix II – Photographs

Photograph 1. South facing view of Mamre Rd, from TP205. Date: 27.03.2023.

Photograph 2. North facing view of Mamre Rd, from TP205. Date: 27.03.2023

Photograph 3. Representative mixed waste debris and overgrown weeds along roadside of site, encountered at TP234. Date: 27.03.2023

Photograph 4. North facing view of southern portion of site taken from TP234. Date: 27.03.2023

Photograph 5. Eastern facing view of southern portion of site taken from TP234. Date: 27.03.2023.

Photograph 6. South-eastern facing view of site from TP234. Date: 27.03.2023.

Photograph 7. Representative image of surrounding properties to the east of the site, taken from TP234. Date: 27.03.2023

Photograph 8. Representative image of rural properties to the west of the site. Date: 28.03.2023

Photograph 9. Typically encountered soil lithologies within northern portion of Mamre Road, taken at TP206. Date: 27.03.2023.

Photograph 10. Typically encountered topsoil across the site, taken at TP207. Date: 27.03.2023

Photograph 11. Representative natural clay material encountered at TP211. Date: 27.03.2023.

Photograph 12. Representative topsoil encountered within TP219. Date: 28.03.2028

Photograph 13. Representative image of overgrown weeds adjacent to roadside which limited excavator access for safety reasons, at TP 223. Date: 28.03.2023.

Photograph 14. Representative image of the soil matrix encountered at TP 224. Date: 28.03.2028

Photograph 15. View of TP 224 facing west with overgrown weeds, domestic waste including bucket and trough alongside old metal wire fencing. Date: 28.03.2023.

Photograph 16. Mixed fill materials encountered within TP 234. Date: 27.03.2023

Photograph 17. Encountered natural clay materials in TP235. Date: 27.03.2023.

Photograph 18. Encountered natural materials within TP236. Date: 27.03.2023.

Photograph 19. Domestic waste materials encountered within TP237. Date: 28.03.2023.

Photograph 20. Representative fill materials encountered at TP239. Date: 28.03.2023.

Appendix III – Data Quality Objectives

Data Quality Objectives

The investigation was designed using the data quality objectives (DQO) as defined by the US EPA and the NSW EPA in the "Guidelines for the NSW DEC Site Auditor Scheme" (3rd Edition), (NSW EPA, 2017) and Australian Standard AS 4482.1 2005 (AS, 2005).

The DQO process consists of a seven-step planning approach to facilitate the development of qualitative and quantitative statements that specify the quality of the data required to support decision making within the scope of the investigation. This process utilises systematic planning and statistical hypothesis testing to differentiate between two or more clearly defined alternatives.

Step 1 – State the Problem

A review of available historical information and previous environmental investigations have inferred that the site has a medium to high potential for contamination resulting from past and present land uses. Potential sources of contamination were identified to include; the presence of hazardous materials including asbestos, historic cut and fill practices, unknown stockpiled materials, and potentially contaminating historical and current land uses.

A targeted environmental investigation was therefore undertaken to assess soil conditions within the site. The following data collected was then used to evaluate and characterise the soil conditions across the site to inform the need for remediation and further management (if required).

Step 2 – Identify the Decision

The purpose of the investigation is to focus on current and future human health and environmental risks associated with potential contamination. The decisions that need to be made on the contamination status of the site include:

- The extent of contamination (if present) in soil at or adjacent to the site that would preclude the current land use of the site;
- The extent of contamination (if present) in soil at the site that has the potential to:
 - Impact upon a possible future land use of the site;
 - Create a human or environmental risk within the site; and
 - Migrate to surrounding receptors.
- If contamination above the adopted criteria is identified, then a further assessment would be undertaken to assess feasible remediation/management options.

The contamination would be considered not to pose a risk if analytical results for the media sampled and analysed are less than the adopted SAC presented in **Section 6** or are determined by a site-specific risk assessment not to represent an unacceptable risk to human health and/or the environment. Where an unacceptable risk is indicated, remediation and/or management options will need to be considered to address the risk and meet the site objectives.

Identify Inputs to the Decision

The CoPCs selected were determined through on-site observations following the completion of a desktop study. To address the decision questions outlined in Step 2 of the DQOs above, the following inputs to the decision have been identified:

- A review of previous environmental investigations undertaken at the site;
- A review of the historical and current use of the site;
- Investigation of the existing soil conditions at the site; and
- Comparison with the site assessment criteria as outlined in Section 6.

Step 4 – Define the Boundaries of the Study

This step provides a detailed description of the spatial and temporal boundaries of the study area. These characteristics define the population of interest and any practical considerations for the study area (refer to **Table 21)**.

Table 21. Summary of the	Study Boundaries.
	The works performed for this report were restricted to the physical site boundaries, as shown in <i>Appendix I – Figures.</i>
Spatial Boundaries	
	The vertical boundaries of the proposed investigations are limited to a maximum depth
	of investigation, being an approximate 1.9 m BGL.
Temporal Boundaries	The investigation works were undertaken during late March 2023.
Investigation Limit	The limit of the investigation has been undertaken to provide information as to the level
Investigation Limit	and type of contamination within the site.
Constraints	Time, cost, redesign, remediation, and inaccessible areas across the site were
Constraints	considered constraints to the investigation.
Receptors of Concern	The potential receptors of concern are outlined in Section 4.4.

Table 21. Summary of the Study Boundaries.

Step 5 – Develop a Decision Rule

The purpose of this step is to define the parameters of interest, specify the action level and combine the outputs of the previous DQO steps into an "if...then..." decision rule that defines the conditions that would cause the decision-maker to choose alternative actions. The types of data quality required during the fieldwork, the laboratory components of the investigation and the acceptable limits for this data as provided in **Section 9.8**. A summary of the decision rules is included in **Table 22**.

Table 22. Summary of the Decision Rules.

	Based on the data quality types and limits the following decision rules applied:
	 If the relative percent difference (RPD) values for blind replicates or split samples are outside the acceptable limits, then there may have been errors in a laboratory analysis process. When assessing duplicate pairs with elevated RPD values, the project Environmental Scientist will check the laboratory results and examine the nature of the sample being evaluated since heterogeneous samples can often provide high RPD values. If it is believed that irreversible errors had occurred during the laboratory process, then an additional investigation may be deemed to be required to resolve the decision question;
Decision Rules	 Should greater than 5% of the laboratory QA / QC data fail to meet the acceptable limits outlined in this report, the laboratory may be requested to re-analyse samples or justify the analytical results;
	 For the analysis of investigation samples, if the absolute value of the measured concentration of a parameter or compound is above the nominated SAC; and were deemed suitable for 95% UCL analysis, then the subject material can be considered suitable to remain onsite; and 95% UCL data will only be considered where the standard deviation of the data set is less than 50% of the SAC, and the maximum concentration is less than 250% of the SAC. Samples exceeding these criteria will be
	excluded from the dataset and treated as a hotspot.

Step 6 – Specify Acceptable Limits on Decision Errors

This step is to establish the specific limits on decision errors, which were used to determine the targets for limiting uncertainty in the data. Data generated during the environmental investigation needs to be appropriate to allow decisions to be made with confidence. The specific limits for this investigation were based on appropriate guidance from the NSW EPA, NEPC (2013), AS 2005 and appropriate indicators of DQIs used to assess QA / QC for field sampling and handling.

To assess the suitability of the analytical data obtained prior to making decisions, the data was assessed against pre-determined Data Quality Indicators (DQIs) to assess precision, accuracy, representativeness, comparability, and completeness (PARCC parameters), as outlined in AS 2005. The acceptable limit on decision error was 95% compliance with the DQIs. The pre-determined DQIs specified for the investigation works are discussed below in relation to the PARCC parameters as summarised in **Table 23**.

Table 23. Summary of Acceptable Limits on Decision Errors.

Precision	 Sampling and analysis of field blind duplicates and split replicates to be undertaken at a minimum rate of 1 per every 20 samples. Laboratory duplicate analysis to be undertaken by the testing laboratory at a minimum rate of 1 per 20 samples. Field and laboratory RPD values to be less than 30% for analytical results greater than (>) 30 times the laboratory LOR, less than (<) 50 % for analytical results between 10 and 30 times the laboratory LOR and a control limit of ± the LOR if either the sample or duplicate value is less than 10 times the laboratory LOR.
Accuracy	 Laboratory surrogate spike recoveries were to be within 70 – 130% for all organic analyses (if applicable). Laboratory control sample (LCS) recoveries to be assessed at a rate of one (1) sample per laboratory batch. LCS recoveries were to be within 70 – 130% (if applicable). Matrix spike (MS) recoveries are to be assessed at a rate of one sample per laboratory batch. LCS recoveries were to be within 70 – 130% (if applicable).
Representativeness	 Appropriate sampling methods undertaken for all samples. All samples were extracted and analysed within holding times.
Comparability	 Sampling was completed in accordance with the recommended methods outlined within Section 5, Systematic planning for the collection of environmental data, in Schedule B2 of NEPM (2013), AS 2005 and ADE Standard Operating Procedures (SOPs). Standard analytical methodologies were used by laboratories that were NATA accredited for the requested analyses. Laboratory LORs were appropriate and consistent for the objectives of the validation assessment.
Completeness	 Field documentation complete and appropriate for all samples to meet the objectives of the validation assessment. Sample description and COC documentation complete and appropriate for all samples to meet the objectives of the validation assessment. The sampling frequency and findings of the QA/QC sample review valid for >95% of samples.

Step 7 – Optimise the Design for Obtaining Data

The organisation of the data collection and analysis design for optimising the generation of data to satisfy the DQOs and the objective of the investigation has been achieved via the following procedures outlined in **Table 24**.

1	
Pre-approved Work Plan	The sampling plan for the investigation at the site has been developed to assess the concentrations of contaminants present in soils at the site through the implementation of the components outlined within NEPM (2013), AS 4482.1 (2005) and AS/NZS 5667.1 (1998).
Compliance with EPA Guidelines	 Use of appropriate techniques for the sampling, storage, and transportation of samples. Implementation of NATA certified laboratory using analytical procedures as outlined in NEPM (2013). Use of a secondary laboratory for split samples which is NATA certified for the required analyses.

Table 24. Summary of Procedures to be Undertaken to Optimize the Design for Obtaining Data.

Appendix IV – Results Tables

		-	Asbestos	•		Physical				Me	tals							BT	TEX				
	Asbestos (Presence/Absence)	Weight of Fibre Cement	doL Soil Weights	Non-Friable Asbestos	Asbestos Fines + Fibrous Asbestos	Moisture Content	Arsenic	cadmium	Chromium (III+VI)	Copper	tead	Mercury	Nickel	Zinc	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Xylene Total	Naphthalene (VOC)	Total BTEX	C6-C9 Fraction
	Y/N	g	kg	% w/w	% w/w	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	-	-	-	-	-	0.1	4	0.3	1	1	1	0.1	1	1	0.2	0.5	1	2	1	1	1	2	25
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil				0.05	0.001		3,000	900		240,000	1,500	730	6,000	400,000									
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand															3 3 3 3					230			
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil															75	135	165			180			
NEPM 2013 Table 1B(5) Site-Specifc EIL - Comm/Ind							160		910	290	1,800		250	710							370		
NEPM 2013 Table 1B(7) Management Limits Comm / Ind, Coarse Soil																							
PFAS NEMP 2020 Ecological direct exposure																							
PFAS NEMP 2020 Ecological indirect exposure																							
PFAS NEMP 2020 Industrial/ commercial (HIL D)																							

ield ID	Depth (m BGL)	Date	Matrix Description	Sample Type																							
rimary Samples																											
SI2.TP201_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	N	-	11310	NAD	NAD	14.2	6.5	< 0.30	78.7	27.9	109.6	< 0.10	77.3	90.0	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
SI2.TP201_0.5-0.6	0.5-0.6	27 Mar 2023	NATURAL: CLAY	Normal	N	-	-	-	-	17.3	7.7	< 0.30	16.1	12.6	16.1	<0.10	5.4	17.5	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
SI2.TP203_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	N	-	10910	NAD	NAD	14.1	8.8	< 0.30	56.3	59.6	94.4	<0.10	39.0	151.2	<0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
SI2.TP206_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	N	-	90800	-	-	11.9	13.4	< 0.30	20.7	20.0	45.7	<0.10	11.4	45.2	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
SI2.TP209_0.5-0.6	0.5-0.6	27 Mar 2023	FILL: Gravelly Silty SAND	Normal	N	-	11320	NAD	NAD	6.8	14.2	< 0.30	63.8	28.9	146.8	<0.10	54.5	94.5	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
OSI2.TP210_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	N	-	11220	-	-	10.4	9.2	< 0.30	14.3	41.4	22.3	<0.10	30.9	100.0	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
DSI2.TP211_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	N	-	11410	NAD	NAD	15.8	6.7	< 0.30	53.2	29.9	55.9	<0.10	48.0	104.4	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
DSI2.TP211_0.5-0.6	0.5-0.6	27 Mar 2023	NATURAL: Silty CLAY	Normal	N	-	-	-	-	20.0	10.5	< 0.30	23.0	25.1	25.1	<0.10	10.9	32.3	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
DSI2.TP213_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty Gravelly CLAY	Normal	N	-	12100	NAD	NAD	8.4	<5.0	< 0.30	22.3	35.3	60.2	<0.10	50.3	84.5	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
DSI2.TP213_0.7-0.8	0.7-0.8	27 Mar 2023	NATURAL: CLAY	Normal	N	-	-	-	-	14.1	11.6	< 0.30	15.7	21.7	18.0	<0.10	8.1	31.5	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
DSI2.TP215_0.2-0.3	0.2-0.3	27 Mar 2023	NATURAL:CLAY	Normal	N	-	11470	NAD	NAD	15.2	7.2	< 0.30	13.3	43.3	26.7	<0.10	32.2	117.7	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
DSI2.TP215_1.2-1.3	1.2-1.3	27 Mar 2023	FILL: Silty CLAY	Normal	N	-	11670	-	-	13.8	7.1	< 0.30	21.5	44.7	31.2	<0.10	43.6	120.6	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
DSI2.TP216_0.4-0.6	0.4-0.6	27 Mar 2023	FILL: Gravelly SILT	Normal	N	-	11120	-	-	13.0	10.9	< 0.30	22.5	11.6	27.0	<0.10	10.3	19.8	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
DSI2.TP219_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	N	-	10210	NAD	NAD	11.6	<5.0	< 0.30	28.8	59.8	198.0	<0.10	74.4	190.4	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
DSI2.TP221_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	N	-	10910	-	-	7.2	7.5	< 0.30	30.0	63.9	119.0	<0.10	77.2	209.2	<0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
DSI2.TP225_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	N	-	11470	-	-	15.4	<5.0	< 0.30	50.2	141.8	271.2	<0.10	70.1	181.6	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
DSI2.TP227_0.3-0.4	0.3-0.4	28 Mar 2023	FILL: Silty SAND	Normal	N	-	11200	-	-	15.6	6.9	< 0.30	88.3	76.3	232.9	<0.10	74.5	184.2	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
DSI2.TP229_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	N	-	12300	NAD	NAD	12.4	8.6	< 0.30	44.2	74.2	79.1	<0.10	80.8	394.7	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
DSI2.TP231_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	N	-	11310	-	-	24.7	6.0	< 0.30	57.4	92.3	278.8	<0.10	128.8	389.8	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
DSI2.TP233_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	N	-	11210	-	-	5.0	<5.0	< 0.30	31.2	25.2	115.3	<0.10	29.5	80.5	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
DSI2.TP234_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Silty SAND	Normal	N	-	10890	-	-	10.5	8.3	< 0.30	3.5	17.0	42.6	<0.10	2.0	16.1	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
DSI2.TP234_0.6-0.7	0.6-0.7	27 Mar 2023	NATURAL: CLAY	Normal	N	-	-	-	-	18.4	12.4	< 0.30	34.1	24.0	128.6	<0.10	25.0	71.4	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
DSI2.TP236_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Clayey SAND	Normal	N	-	12120	NAD	NAD	11.8	<5.0	< 0.30	53.9	50.6	93.0	<0.10	87.9	118.8	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
DSI2.TP236_0.8-0.9	0.8-0.9	27 Mar 2023	NATURAL: CLAY	Normal	N	-	-	-	-	18.6	12.2	< 0.30	17.1	31.2	22.1	<0.10	9.0	33.4	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
DSI2.TP239_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Gravelly SAND	Normal	N	-	12300	NAD	NAD	7.2	7.0	< 0.30	53.1	73.5	215.1	<0.10	102.6	254.1	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
QAQC Samples																											
DSI2.BR1	-	27 Mar 2023	-	Field_D	-		-	-	-	10.0	11.8	< 0.30	41.8	23.7	42.8	< 0.10	58.4	57.1	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
DS12.SR1	-	27 Mar 2023	-	Interlab_D	-	-	-	-	-	11	7	<0.4	20	19	39	<0.1	10	38	<0.2	< 0.5	<1	<2	<1	<1	<1	-	<25
DSI2.BR2	-	27 Mar 2023	-	Field_D	-	-	-	-	-	11.9	7.7	< 0.30	20.8	25.1	62.5	<0.10	14.5	94.4	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25
DS12.SR2	-	28 Mar 2023	-	Interlab D	-	-	-	-	-	11	7	<0.4	20	21	36	< 0.1	9	32	< 0.2	< 0.5	<1	<2	<1	<1	<1	-	<25

Statistics																							
Number of Results	25	0	25	10	10	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	2	27	29
Number of Detects	0	0	25	0	0	29	24	0	29	29	29	0	29	29	0	0	0	0	0	0	0	0	0
Minimum Concentration			10210			5	<5	<0.3	3.5	11.6	16.1	<0.1	2	16.1	<0.2	<0.5	<1	<2	<1	<1	<1	<2	<25
Maximum Concentration			90800			24.7	14.2	<0.4	88.3	141.8	278.8	<0.1	128.8	394.7	<0.5	<0.5	<1	<2	<1	<2	<1	<2	<25
Notes to Table																							

*NAD - No asbestos detected.

Environmental Standards NEPM, NEPM 2013 Table 1B(7) Management Limits Comm / Ind, Coarse Soil HEPA, January 2020, PFAS NEMP 2020 Ecological direct exposure HEPA, January 2020, PFAS NEMP 2020 Ecological indirect exposure HEPA, January 2020, PFAS NEMP 2020 Industrial/ commercial (HIL D) 2013, NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand 2013, NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil 2013, NEPM 2013 Table 1A(1) HILS Comm/Ind D Soil

		ТРН						TRH												РАН			
	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 Fraction (Sum)	C6-C10 Fraction (F1)	C6-C10 (F1 minus BTEX)	>C10-C16 Fraction (F2)	>C10-C16 Fraction (F2 minus Naphthalene)	>C16-C34 Fraction (F3)	>C34-C40 Fraction (F4)	>C10-C40 Fraction (Sum)	Acenaphthene	Acenaphthylene	Anthracene	Benzo(b+j+k)fluoranthene	Benz(a) an thracene	Benzo(a) pyrene	Benzo(g,h,i)perylene	Chrysene	Dibenz (a,h) ant hracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	50	100	100	50	25	25	50	50	100	100	50	0.1	0.1	0.1	0.2	0.1	0.05	0.1	0.1	0.1	0.1	0.1	0.1
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil																							
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand						260 370 630																	
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil						215	170	170	1,700	3,300							0.7						
NEPM 2013 Table 1B(5) Site-Specifc EIL - Comm/Ind																							
NEPM 2013 Table 1B(7) Management Limits Comm / Ind, Coarse Soil					700		1,000		3,500	10,000													
PFAS NEMP 2020 Ecological direct exposure																							
PFAS NEMP 2020 Ecological indirect exposure																							
PFAS NEMP 2020 Industrial/ commercial (HIL D)					J																		

Field ID	Depth (m BGL)	Date	Matrix Description	Sample Type																							
Primary Samples																											
DSI2.TP201_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.3
DSI2.TP201_0.5-0.6	0.5-0.6	27 Mar 2023	NATURAL: CLAY	Normal	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.3
DSI2.TP203_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	<50	<100	119	119	<35	<35	<50	-	<100	125	125	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.3
DSI2.TP206_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.3
DSI2.TP209_0.5-0.6	0.5-0.6	27 Mar 2023	FILL: Gravelly Silty SAND	Normal	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.3
DSI2.TP210_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.3
DSI2.TP211_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	0.30	< 0.30	< 0.3
DSI2.TP211_0.5-0.6	0.5-0.6	27 Mar 2023	NATURAL: Silty CLAY	Normal	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.3
DSI2.TP213_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty Gravelly CLAY	Normal	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.3
DSI2.TP213_0.7-0.8	0.7-0.8	27 Mar 2023	NATURAL: CLAY	Normal	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.3
DSI2.TP215_0.2-0.3	0.2-0.3	27 Mar 2023	NATURAL:CLAY	Normal	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.3
DSI2.TP215_1.2-1.3	1.2-1.3	27 Mar 2023	FILL: Silty CLAY	Normal	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	<0.3
DSI2.TP216_0.4-0.6	0.4-0.6	27 Mar 2023	FILL: Gravelly SILT	Normal	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.3
DSI2.TP219_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.3
DSI2.TP221_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	<50	100	<100	100	<35	<35	<50	-	126	<100	126	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.3
DSI2.TP225_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.3
DSI2.TP227_0.3-0.4	0.3-0.4	28 Mar 2023	FILL: Silty SAND	Normal	<50	111	<100	111	<35	<35	<50	-	132	<100	132	< 0.30	< 0.30	< 0.30	0.58	0.43	0.59	0.67	0.43	< 0.30	0.83	< 0.30	0.64
DSI2.TP229_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	<50	113	<100	113	<35	<35	<50	-	113	<100	113	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.3
DSI2.TP231_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	<50	124	100	224	<35	<35	<50	-	169	138	307	< 0.30	< 0.30	< 0.30	1.02	0.93	1.08	0.97	0.84	< 0.30	1.69	< 0.30	0.96
DSI2.TP233_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.3
DSI2.TP234_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Silty SAND	Normal	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.3
DSI2.TP234_0.6-0.7	0.6-0.7	27 Mar 2023	NATURAL: CLAY	Normal	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.3
DSI2.TP236_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Clayey SAND	Normal	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.3
DSI2.TP236_0.8-0.9	0.8-0.9	27 Mar 2023	NATURAL: CLAY	Normal	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.3
DSI2.TP239_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Gravelly SAND	Normal	<50	<100	159	159	<35	<35	<50	-	143	185	328	< 0.30	< 0.30	< 0.30	1.43	1.56	1.53	1.34	1.37	< 0.30	4.14	< 0.30	1.16
QAQC Samples																											
DSI2.BR1	-	27 Mar 2023	-	Field_D	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.3
DS12.SR1	-	27 Mar 2023	-	Interlab_D	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.05	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.
DSI2.BR2	-	27 Mar 2023	-	Field_D	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.3
DS12.SR2	-	28 Mar 2023	-	Interlab D	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.1	<0.1	<0.1	< 0.2	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1

Statistics																							
Number of Results	29	29	29	29	29	29	29	2	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29
Number of Detects	0	4	3	6	0	0	0	0	5	3	6	0	0	0	3	3	3	3	3	0	4	0	3
Minimum Concentration	<50	100	100	<50	<25	<25	<50	<50	<100	<100	<50	<0.1	<0.1	<0.1	<0.2	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Maximum Concentration	<50	124	159	224	<35	<35	<50	<50	169	185	328	<0.3	<0.3	<0.3	1.43	1.56	1.53	1.34	1.37	<0.3	4.14	<0.3	1.16
Notes to Table			-																				

*NAD - No asbestos detected.

Environmental Standards NEPM, NEPM 2013 Table 1B(7) Management Limits Comm / Ind, Coarse Soil HEPA, January 2020, PFAS NEMP 2020 Ecological direct exposure HEPA, January 2020, PFAS NEMP 2020 Ecological indirect exposure HEPA, January 2020, PFAS NEMP 2020 Industrial/ commercial (HIL D) 2013, NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand 2013, NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil 2013, NEPM 2013 Table 1A(1) HILS Comm/Ind D Soil

															Organo	ochlorine Pes	ticides						
	Naphthalene	Phenanthrene	Pyrene	Benzo(a)pyrene TEQ calc (Half)	PAHs (Sum of positives)	4,4-DDE	a-BHC	Aldrin	b-BHC	Chlordane (cis)	Chlordane (trans)	d-BHC	DDD	рот	DDT+DDE+DDD	Dieldrin	endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	g-BHC (Lindane)
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.1	0.1	0.1	0.3	0.05	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil				40											3,600					100			
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand																							
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil																							
NEPM 2013 Table 1B(5) Site-Specifc EIL - Comm/Ind	370													640									
NEPM 2013 Table 1B(7) Management Limits Comm / Ind, Coarse Soil																							
PFAS NEMP 2020 Ecological direct exposure																							
PFAS NEMP 2020 Ecological indirect exposure																							
PFAS NEMP 2020 Industrial/ commercial (HIL D)																							

eld ID	Depth (m BGL)	Date	Matrix Description	Sample Type																							
imary Samples																											
SI2.TP201_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	< 0.10	-	< 0.10	< 0.20	< 0.20	<0.10	< 0.20	< 0.10	<0.10	<0.
SI2.TP201_0.5-0.6	0.5-0.6	27 Mar 2023	NATURAL: CLAY	Normal	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	<0.10	-	< 0.10	< 0.20	< 0.20	<0.10	< 0.20	< 0.10	< 0.10	<0.
SI2.TP203_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	-	< 0.10	< 0.20	<0.20	<0.10	< 0.20	< 0.10	<0.10	<0.
SI2.TP206_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	<0.10	< 0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	-	<0.10	< 0.20	<0.20	<0.10	< 0.20	<0.10	<0.10	<0.
SI2.TP209_0.5-0.6	0.5-0.6	27 Mar 2023	FILL: Gravelly Silty SAND	Normal	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	<0.10	< 0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	-	<0.10	< 0.20	<0.20	<0.10	<0.20	<0.10	<0.10	<0.
SI2.TP210_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	<0.10	-	< 0.10	< 0.20	< 0.20	<0.10	< 0.20	< 0.10	< 0.10	<0.2
SI2.TP211_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	< 0.30	0.35	0.30	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	-	< 0.10	< 0.20	< 0.20	<0.10	< 0.20	< 0.10	< 0.10	<0.1
SI2.TP211_0.5-0.6	0.5-0.6	27 Mar 2023	NATURAL: Silty CLAY	Normal	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	-	< 0.10	< 0.20	< 0.20	< 0.10	< 0.20	< 0.10	< 0.10	<0.1
SI2.TP213_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty Gravelly CLAY	Normal	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	-	< 0.10	< 0.20	< 0.20	<0.10	< 0.20	< 0.10	< 0.10	< 0.1
SI2.TP213_0.7-0.8	0.7-0.8	27 Mar 2023	NATURAL: CLAY	Normal	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	<0.10	-	< 0.10	< 0.20	< 0.20	<0.10	< 0.20	< 0.10	< 0.10	<0.1
SI2.TP215_0.2-0.3	0.2-0.3	27 Mar 2023	NATURAL:CLAY	Normal	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	<0.10	-	< 0.10	< 0.20	< 0.20	<0.10	< 0.20	< 0.10	< 0.10	<0.1
SI2.TP215_1.2-1.3	1.2-1.3	27 Mar 2023	FILL: Silty CLAY	Normal	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	-	< 0.10	< 0.20	< 0.20	<0.10	< 0.20	< 0.10	< 0.10	<0.1
SI2.TP216_0.4-0.6	0.4-0.6	27 Mar 2023	FILL: Gravelly SILT	Normal	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	-	< 0.10	< 0.20	< 0.20	<0.10	< 0.20	< 0.10	< 0.10	<0.1
SI2.TP219_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	-	< 0.10	< 0.20	< 0.20	<0.10	< 0.20	< 0.10	< 0.10	<0.1
SI2.TP221_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	<0.10	-	< 0.10	< 0.20	< 0.20	<0.10	< 0.20	< 0.10	< 0.10	<0.1
SI2.TP225_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	<0.10	-	< 0.10	< 0.20	< 0.20	<0.10	< 0.20	< 0.10	< 0.10	<0.1
SI2.TP227_0.3-0.4	0.3-0.4	28 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	0.83	0.92	5.00	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	<0.10	-	< 0.10	< 0.20	< 0.20	<0.10	< 0.20	< 0.10	< 0.10	<0.1
SI2.TP229_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	-	< 0.10	< 0.20	<0.20	<0.10	< 0.20	< 0.10	<0.10	<0.1
SI2.TP231_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	1.63	1.54	9.12	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	-	< 0.10	< 0.20	< 0.20	< 0.10	< 0.20	< 0.10	< 0.10	<0.1
SI2.TP233_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	<0.10	-	< 0.10	< 0.20	< 0.20	<0.10	< 0.20	< 0.10	< 0.10	<0.1
SI2.TP234_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	<0.10	-	< 0.10	< 0.20	< 0.20	<0.10	< 0.20	< 0.10	< 0.10	<0.1
SI2.TP234_0.6-0.7	0.6-0.7	27 Mar 2023	NATURAL: CLAY	Normal	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	-	< 0.10	< 0.20	< 0.20	<0.10	< 0.20	< 0.10	< 0.10	<0.1
SI2.TP236_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Clayey SAND	Normal	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	-	< 0.10	< 0.20	< 0.20	<0.10	< 0.20	< 0.10	< 0.10	<0.1
SI2.TP236_0.8-0.9	0.8-0.9	27 Mar 2023	NATURAL: CLAY	Normal	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	-	< 0.10	< 0.20	< 0.20	<0.10	< 0.20	< 0.10	< 0.10	<0.1
SI2.TP239_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Gravelly SAND	Normal	< 0.30	1.24	3.55	2.12	17.32	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	-	< 0.10	< 0.20	< 0.20	<0.10	< 0.20	< 0.10	< 0.10	<0.1
AQC Samples																											
SI2.BR1	-	27 Mar 2023	-	Field D	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	-	< 0.10	< 0.20	<0.20	<0.10	< 0.20	< 0.10	< 0.10	<0.1
S12.SR1	-	27 Mar 2023	-	Interlab D	< 0.1	< 0.1	< 0.1	< 0.5	< 0.05	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	-	<0.
SI2.BR2	-	27 Mar 2023	-	Field_D	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	-	< 0.10	< 0.20	< 0.20	<0.10	< 0.20	< 0.10	< 0.10	<01
0\$12.SR2	-	28 Mar 2023		Interlab D	< 0.1	< 0.1	< 0.1	< 0.5	< 0.05	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-	<0.1
		-				1				<u> </u>					1	1	1				1		<u> </u>	<u> </u>	<u> </u>		

Number of Results	29	29	29	29	29	29	29	29	29	29	29	29	29	29	2	29	29	29	29	29	29	27	29
Number of Detects	0	1	3	27	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<0.1	<0.1	<0.1	0.35	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Maximum Concentration	<0.3	1.24	3.55	2.12	17.32	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1
Notes to Table																						-	

Notes to Table_ *NAD - No asbestos detected.

Environmental Standards NEPM, NEPM 2013 Table 1B(7) Management Limits Comm / Ind, Coarse Soil HEPA, January 2020, PFAS NEMP 2020 Ecological direct exposure HEPA, January 2020, PFAS NEMP 2020 Ecological indirect exposure HEPA, January 2020, PFAS NEMP 2020 Industrial/ commercial (HIL D) 2013, NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand 2013, NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil 2013, NEPM 2013 Table 1A(1) HILS Comm/Ind D Soil

					Organophosphorous Pesticides														P	CBs			
	Heptachlor	Heptachlor epoxide	Methoxychlor	Azinophos methyl	Brom ophos-ethyl	Chlorpyrifos	Chlorpyrifos-methyl	Tribuphos	Diazinon	Dichlorvos	Dimethoate	Ethion	Ethoprop	Fenitrothion	Malathion	Methyl parathion	Parathion	Ronnel	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil	50		2,500			2,000																	
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand																							
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil																							
NEPM 2013 Table 1B(5) Site-Specifc EIL - Comm/Ind																							
NEPM 2013 Table 1B(7) Management Limits Comm / Ind, Coarse Soil																							
PFAS NEMP 2020 Ecological direct exposure																							
PFAS NEMP 2020 Ecological indirect exposure																							
PFAS NEMP 2020 Industrial/ commercial (HIL D)																							

Field ID	Depth (m BGL)	Date	Matrix Description	Sample Type																							
Primary Samples																											
DSI2.TP201_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	< 0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	<0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0
DSI2.TP201_0.5-0.6	0.5-0.6	27 Mar 2023	NATURAL: CLAY	Normal	< 0.10	< 0.10	< 0.10	-	-	< 0.10	< 0.10	< 0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.
OSI2.TP203_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	< 0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	< 0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.
DSI2.TP206_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	< 0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	< 0.10	< 0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.
DSI2.TP209_0.5-0.6	0.5-0.6	27 Mar 2023	FILL: Gravelly Silty SAND	Normal	< 0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	< 0.10	< 0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.
DSI2.TP210_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	< 0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	< 0.10	< 0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.
DSI2.TP211_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	<0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	< 0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.
DSI2.TP211_0.5-0.6	0.5-0.6	27 Mar 2023	NATURAL: Silty CLAY	Normal	< 0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	< 0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.
DSI2.TP213_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty Gravelly CLAY	Normal	< 0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	< 0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.5
DSI2.TP213_0.7-0.8	0.7-0.8	27 Mar 2023	NATURAL: CLAY	Normal	< 0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	< 0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.5
DSI2.TP215_0.2-0.3	0.2-0.3	27 Mar 2023	NATURAL:CLAY	Normal	< 0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	< 0.10	< 0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.5
DSI2.TP215_1.2-1.3	1.2-1.3	27 Mar 2023	FILL: Silty CLAY	Normal	<0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	< 0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.
OSI2.TP216_0.4-0.6	0.4-0.6	27 Mar 2023	FILL: Gravelly SILT	Normal	< 0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	< 0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.5
DSI2.TP219_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	< 0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	< 0.10	< 0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.
DSI2.TP221_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	< 0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	< 0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.5
DSI2.TP225_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	< 0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	< 0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.5
DSI2.TP227_0.3-0.4	0.3-0.4	28 Mar 2023	FILL: Silty SAND	Normal	< 0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	<0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.5
DSI2.TP229_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	< 0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	<0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.5
DSI2.TP231_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	< 0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	<0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.5
DSI2.TP233_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	< 0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	< 0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.5
DSI2.TP234_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Silty SAND	Normal	<0.10	<0.10	<0.10	-	-	< 0.10	<0.10	<0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.5
DSI2.TP234_0.6-0.7	0.6-0.7	27 Mar 2023	NATURAL: CLAY	Normal	< 0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	< 0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.5
DSI2.TP236_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Clayey SAND	Normal	< 0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	<0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.5
DSI2.TP236_0.8-0.9	0.8-0.9	27 Mar 2023	NATURAL: CLAY	Normal	< 0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	<0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.5
DSI2.TP239_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Gravelly SAND	Normal	< 0.10	<0.10	<0.10	-	-	< 0.10	<0.10	<0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	<0.50	< 0.50	< 0.50	<0.5
QAQC Samples																											
SI2.BR1	-	27 Mar 2023	-	Field_D	< 0.10	< 0.10	< 0.10	-	-	< 0.10	< 0.10	< 0.10	<0.10	-	-	-	< 0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.5
OS12.SR1	-	27 Mar 2023	-	Interlab_D	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	-	< 0.1	< 0.1	< 0.1	<0.1	-	< 0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.
DSI2.BR2	-	27 Mar 2023	-	Field_D	< 0.10	<0.10	<0.10	-	-	< 0.10	< 0.10	<0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50	< 0.50	< 0.50	<0.5
DS12.SR2	-	28 Mar 2023	-	Interlab D	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	<0.1	< 0.1	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.

Statistics																							
Number of Results	29	29	29	2	2	29	29	27	29	2	2	2	27	2	2	27	2	29	29	29	29	29	29
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Maximum Concentration	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
Notes to Table																						-	

Notes to Table_ *NAD - No asbestos detected.

Environmental Standards NEPM, NEPM 2013 Table 1B(7) Management Limits Comm / Ind, Coarse Soil HEPA, January 2020, PFAS NEMP 2020 Ecological direct exposure HEPA, January 2020, PFAS NEMP 2020 Ecological indirect exposure HEPA, January 2020, PFAS NEMP 2020 Industrial/ commercial (HIL D) 2013, NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand 2013, NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil 2013, NEPM 2013 Table 1A(1) HILS Comm/Ind D Soil

																				Uningenetical
					Perfluor	oalkane Sulfo	nic Acids						Perfluoro	alkane Carbo	vylic Acids					Halogenated Benzenes
	rochlor 1254	rochlor 1260	CBs (Sum of total)	erfluorobutane sulfonic acid PFBS)	erfluoropentane sulfonic acid	erfluorohexane sulfonic acid	erfluoroheptane sulfonic acid PFHpS)	erfluorooctane sulfonic acid PFOS)	erfluorobutanoic acid (PFBA)	erfluoropentanoic acid (PFPeA)	erfluorohexanoic acid (PFHxA)	erfluoroheptanoic acid (PFHpA)	erfluorooctanoic acid (PFOA)	erfluorononanoic acid (PFNA)	erfluorodecanoic acid (PFDA)	erfluoroundecanoic acid (PFUnDA)	erfluorododecanoic acid (PFDoDA)	erfluorotridecanoic acid (PFTrDA)	erfluorotetradecanoic acid PFTeDA)	lexachlo robenzene
	⊲ mg/kg	≪ mg/kg	ng/kg	<u> </u>	 μg/kg	 μg/kg	 μg/kg	 μg/kg	 μg/kg	 µg/kg	 μg/kg	 μg/kg	 μg/kg	 μg/kg	 μg/kg	 μg/kg	 μg/kg	 μg/kg	<u> </u>	⊥ mg/kg
EQL	0.1	0.1	0.1	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	0.1
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil			7																	80
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand																				
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil																				
NEPM 2013 Table 1B(5) Site-Specifc EIL - Comm/Ind																				
NEPM 2013 Table 1B(7) Management Limits Comm / Ind, Coarse Soil																				
PFAS NEMP 2020 Ecological direct exposure								1,000					10,000							
PFAS NEMP 2020 Ecological indirect exposure								10												
PFAS NEMP 2020 Industrial/ commercial (HIL D)						20,000		20,000					50,000							

Field ID	Depth (m BGL)	Date	Matrix Description	Sample Type																				
Primary Samples																								
DSI2.TP201_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	< 0.10
DSI2.TP201_0.5-0.6	0.5-0.6	27 Mar 2023	NATURAL: CLAY	Normal	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.10
DSI2.TP203_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	< 0.10
DSI2.TP206_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10
DSI2.TP209_0.5-0.6	0.5-0.6	27 Mar 2023	FILL: Gravelly Silty SAND	Normal	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10
DSI2.TP210_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10
DSI2.TP211_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10
DSI2.TP211_0.5-0.6	0.5-0.6	27 Mar 2023	NATURAL: Silty CLAY	Normal	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10
DSI2.TP213_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty Gravelly CLAY	Normal	< 0.50	< 0.50	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<0.10
DSI2.TP213_0.7-0.8	0.7-0.8	27 Mar 2023	NATURAL: CLAY	Normal	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10
DSI2.TP215_0.2-0.3	0.2-0.3	27 Mar 2023	NATURAL:CLAY	Normal	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10
DSI2.TP215_1.2-1.3	1.2-1.3	27 Mar 2023	FILL: Silty CLAY	Normal	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10
DSI2.TP216_0.4-0.6	0.4-0.6	27 Mar 2023	FILL: Gravelly SILT	Normal	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10
DSI2.TP219_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.10
DSI2.TP221_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10
DSI2.TP225_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10
DSI2.TP227_0.3-0.4	0.3-0.4	28 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10
DSI2.TP229_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10
DSI2.TP231_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10
DSI2.TP233_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10
DSI2.TP234_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10
DSI2.TP234_0.6-0.7	0.6-0.7	27 Mar 2023	NATURAL: CLAY	Normal	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10
DSI2.TP236_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Clayey SAND	Normal	< 0.50	< 0.50	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<0.10
DSI2.TP236_0.8-0.9	0.8-0.9	27 Mar 2023	NATURAL: CLAY	Normal	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10
DSI2.TP239_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Gravelly SAND	Normal	< 0.50	< 0.50	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<0.10
QAQC Samples																								
DSI2.BR1	-	27 Mar 2023	-	Field_D	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.10
D\$12.SR1	-	27 Mar 2023	-	Interlab_D	< 0.1	< 0.1	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1
DSI2.BR2	-	27 Mar 2023	-	Field_D	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.10
DS12.SR2	-	28 Mar 2023	-	Interlab_D	< 0.1	< 0.1	< 0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.1

Statistics																				
Number of Results	29	29	2	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	29
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<0.1	<0.1	<0.1	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<0.1
Maximum Concentration	<0.5	<0.5	<0.1	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<0.1
Notes to Table																				

Notes to Table_ *NAD - No asbestos detected.

Environmental Standards NEPM, NEPM 2013 Table 1B(7) Management Limits Comm / Ind, Coarse Soil HEPA, January 2020, PFAS NEMP 2020 Ecological direct exposure HEPA, January 2020, PFAS NEMP 2020 Ecological indirect exposure HEPA, January 2020, PFAS NEMP 2020 Industrial/ commercial (HIL D) 2013, NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand 2013, NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil 2013, NEPM 2013 Table 1A(1) HILS Comm/Ind D Soil

	Asbestos	Physical				Me	tals							BT	EX		
	Asbestos (Presence/Absence)	Moisture Content	Arsenic	, Cadmium	chromium (III+VI)	, Copper	, Lead	Mercury	Nickel	, Zinc	Benzene	, Toluene	, Ethylbenzene	, Xylene (m & p)	, Xylene (o)	, Xylene Total	, Naphthalene (VOC)
	Y/N	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	-	0.1	4	0.3	1	1	1	0.1	1	1	0.2	0.5	1	2	1	1	1
NSW 2014 General Solid Waste CT1 (No Leaching)			100	20			100	4	40		10	288	600			1,000	
NSW 2014 General Solid Waste SCC1 (with leached)			500	100			1,500	50	1,050		18	518	1,080			1,800	
NSW 2014 General Solid Waste TCLP1 (leached)																	
NSW 2014 Restricted Solid Waste CT2 (No Leaching)			400	80			400	16	160		40	1,152	2,400			4,000	
NSW 2014 Restricted Solid Waste SCC2 (with leached)			2,000	400			6,000	200	4,200		72	2,073	4,320			7,200	
NSW 2014 Restricted Solid Waste TCLP2 (leached)																	

Field ID	Depth (m BGL)	Date	Matrix Description	Sample Type																	
Primary Samples																					
DSI2.TP201_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	N	14.2	6.5	< 0.30	78.7	27.9	109.6	<0.10	77.3	90.0	<0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-
DSI2.TP203_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	N	14.1	8.8	< 0.30	56.3	59.6	94.4	<0.10	39.0	151.2	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-
DSI2.TP206_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	N	11.9	13.4	< 0.30	20.7	20.0	45.7	<0.10	11.4	45.2	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-
DSI2.TP209_0.5-0.6	0.5-0.6	27 Mar 2023	FILL: Gravelly Silty SAND	Normal	N	6.8	14.2	< 0.30	63.8	28.9	146.8	<0.10	54.5	94.5	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-
DSI2.TP210_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	N	10.4	9.2	< 0.30	14.3	41.4	22.3	<0.10	30.9	100.0	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-
DSI2.TP211_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	N	15.8	6.7	< 0.30	53.2	29.9	55.9	<0.10	48.0	104.4	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-
DSI2.TP213_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty Gravelly CLAY	Normal	N	8.4	<5.0	< 0.30	22.3	35.3	60.2	<0.10	50.3	84.5	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-
DSI2.TP215_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty CLAY	Normal	N	15.2	7.2	< 0.30	13.3	43.3	26.7	<0.10	32.2	117.7	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-
DSI2.TP216_0.4-0.6	0.4-0.6	27 Mar 2023	FILL: Gravelly SILT	Normal	N	13.0	10.9	< 0.30	22.5	11.6	27.0	<0.10	10.3	19.8	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-
DSI2.TP219_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	N	11.6	<5.0	< 0.30	28.8	59.8	198.0	<0.10	74.4	190.4	<0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-
DSI2.TP221_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	N	7.2	7.5	< 0.30	30.0	63.9	119.0	<0.10	77.2	209.2	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-
DSI2.TP225_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	N	15.4	<5.0	< 0.30	50.2	141.8	271.2	<0.10	70.1	181.6	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-
DSI2.TP227_0.3-0.4	0.3-0.4	28 Mar 2023	FILL: Silty SAND	Normal	N	15.6	6.9	< 0.30	88.3	76.3	232.9	<0.10	74.5	184.2	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-
DSI2.TP229_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	N	12.4	8.6	< 0.30	44.2	74.2	79.1	<0.10	80.8	394.7	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-
DSI2.TP231_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	N	24.7	6.0	< 0.30	57.4	92.3	278.8	<0.10	128.8	389.8	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-
DSI2.TP233_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	N	5.0	<5.0	< 0.30	31.2	25.2	115.3	<0.10	29.5	80.5	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-
DSI2.TP234_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Silty SAND	Normal	N	10.5	8.3	< 0.30	3.5	17.0	42.6	<0.10	2.0	16.1	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-
DSI2.TP236_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Clayey SAND	Normal	N	11.8	<5.0	< 0.30	53.9	50.6	93.0	<0.10	87.9	118.8	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-
DSI2.TP239_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Gravelly SAND	Normal	N	7.2	7.0	< 0.30	53.1	73.5	215.1	<0.10	102.6	254.1	<0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-
QAQC Samples																					
DSI2.BR1	-	27 Mar 2023	-	Field_D	- (10.0	11.8	< 0.30	41.8	23.7	42.8	<0.10	58.4	57.1	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	-
DS12.SR1	-	27 Mar 2023	-	Interlab_D	-	11	7	<0.4	20	19	39	< 0.1	10	38	<0.2	<0.5	<1	<2	<1	<1	<1
DSI2.BR2	-	27 Mar 2023	-	Field_D	-	11.9	7.7	< 0.30	20.8	25.1	62.5	<0.10	14.5	94.4	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-
DS12.SR2	-	28 Mar 2023	-	Interlab_D	-	11	7	<0.4	20	21	36	< 0.1	9	32	<0.2	< 0.5	<1	<2	<1	<1	<1

Statistics																	
Number of Results	19	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	2
Number of Detects	0	23	18	0	23	23	23	0	23	23	0	0	0	0	0	0	0
Minimum Concentration		5	<5	<0.3	3.5	11.6	22.3	<0.1	2	16.1	<0.2	<0.5	<1	<2	<1	<1	<1
Maximum Concentration		24.7	14.2	<0.4	88.3	141.8	278.8	<0.1	128.8	394.7	<0.5	<0.5	<1	<2	<1	<2	<1
Standard Deviation							83.61		33.42								
95% Student's-t UCL							150.8		70.65								

				ТРН						TRH							
	Total BTEX	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 Fraction (Sum)	C6-C10 Fraction (F1)	C6-C10 (F1 minus BTEX)	>C10-C16 Fraction (F2)	>C10-C16 Fraction (F2 minus Naphthalene)	>C16-C34 Fraction (F3)	>C34-C40 Fraction (F4)	>C10-C40 Fraction (Sum)	Acenaphthene	Acenaphthylene	Anthracene	Benzo(b+j+k)fluoranthene
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	2	25	50	100	100	50	25	25	50	50	100	100	50	0.1	0.1	0.1	0.2
NSW 2014 General Solid Waste CT1 (No Leaching)		650				10,000											
NSW 2014 General Solid Waste SCC1 (with leached)		650				10,000											
NSW 2014 General Solid Waste TCLP1 (leached)																	
NSW 2014 Restricted Solid Waste CT2 (No Leaching)		2,600				40,000											
NSW 2014 Restricted Solid Waste SCC2 (with leached)		2,600				40,000											
NSW 2014 Restricted Solid Waste TCLP2 (leached)																	

Field ID	Depth (m B	GL) Date	Matrix Description	Sample Type																	
Primary Samples																					
DSI2.TP201_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	<2.00	<25	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30
DSI2.TP203_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	<2.00	<25	<50	<100	119	119	<35	<35	<50	-	<100	125	125	< 0.30	< 0.30	< 0.30	< 0.30
DSI2.TP206_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	<2.00	<25	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30
DSI2.TP209_0.5-0.6	0.5-0.6	27 Mar 2023	FILL: Gravelly Silty SAND	Normal	<2.00	<25	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30
DSI2.TP210_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	<2.00	<25	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30
DSI2.TP211_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	<2.00	<25	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30
DSI2.TP213_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty Gravelly CLAY	Normal	<2.00	<25	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30
DSI2.TP215_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty CLAY	Normal	<2.00	<25	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30
DSI2.TP216_0.4-0.6	0.4-0.6	27 Mar 2023	FILL: Gravelly SILT	Normal	<2.00	<25	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	<0.30	< 0.30	< 0.30
DSI2.TP219_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	<2.00	<25	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	<0.30	<0.30	< 0.30	< 0.30
DSI2.TP221_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	<2.00	<25	<50	100	<100	100	<35	<35	<50	-	126	<100	126	< 0.30	< 0.30	< 0.30	< 0.30
DSI2.TP225_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	<2.00	<25	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30
DSI2.TP227_0.3-0.4	0.3-0.4	28 Mar 2023	FILL: Silty SAND	Normal	<2.00	<25	<50	111	<100	111	<35	<35	<50	-	132	<100	132	<0.30	< 0.30	< 0.30	0.58
DSI2.TP229_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	<2.00	<25	<50	113	<100	113	<35	<35	<50	-	113	<100	113	< 0.30	< 0.30	< 0.30	< 0.30
DSI2.TP231_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	<2.00	<25	<50	124	100	224	<35	<35	<50	-	169	138	307	< 0.30	<0.30	< 0.30	1.02
DSI2.TP233_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	<2.00	<25	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30
DSI2.TP234_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Silty SAND	Normal	<2.00	<25	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	<0.30	<0.30	< 0.30	< 0.30
DSI2.TP236_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Clayey SAND	Normal	<2.00	<25	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30
DSI2.TP239_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Gravelly SAND	Normal	<2.00	<25	<50	<100	159	159	<35	<35	<50	-	143	185	328	< 0.30	< 0.30	< 0.30	1.43
QAQC Samples																					
DSI2.BR1	-	27 Mar 2023	-	Field_D	<2.00	<25	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30
DS12.SR1	-	27 Mar 2023	-	Interlab_D	-	<25	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.1	<0.1	<0.1	<0.2
DSI2.BR2	-	27 Mar 2023	-	Field_D	<2.00	<25	<50	<100	<100	<100	<35	<35	<50	-	<100	<100	<100	< 0.30	< 0.30	< 0.30	<0.30
DS12.SR2	-	28 Mar 2023	-	Interlab_D	-	<25	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.1	<0.1	<0.1	<0.2

Statistics																	
Number of Results	21	23	23	23	23	23	23	23	23	2	23	23	23	23	23	23	23
Number of Detects	0	0	0	4	3	6	0	0	0	0	5	3	6	0	0	0	3
Minimum Concentration	<2	<25	<50	100	100	<50	<25	<25	<50	<50	<100	<100	<50	<0.1	<0.1	<0.1	<0.2
Maximum Concentration	<2	<25	<50	124	159	224	<35	<35	<50	<50	169	185	328	<0.3	<0.3	<0.3	1.43
Standard Deviation																	
95% Student's-t UCL																	

					РАН												
	Benz(a)anthracene	Benzo(a) pyrene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	Pyrene	Benzo(a)pyrene TEQ calc (Half)	PAHs (Sum of positives)	4,4-DDE	a-BHC	Aldrin	b-BHC
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.1	0.05	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.05	0.1	0.1	0.1	0.1
NSW 2014 General Solid Waste CT1 (No Leaching)		0.8															
NSW 2014 General Solid Waste SCC1 (with leached)		10															
NSW 2014 General Solid Waste TCLP1 (leached)																	
NSW 2014 Restricted Solid Waste CT2 (No Leaching)		3.2															
NSW 2014 Restricted Solid Waste SCC2 (with leached)		23															
NSW 2014 Restricted Solid Waste TCLP2 (leached)																	

Field ID	Depth (m BGI	L) Date	Matrix Description	Sample Type																	
Primary Samples																					
DSI2.TP201_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	0.35	< 0.30	<0.10	<0.10	<0.10	<0.10
DSI2.TP203_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	0.35	< 0.30	<0.10	<0.10	<0.10	<0.10
DSI2.TP206_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	0.35	< 0.30	<0.10	<0.10	<0.10	<0.10
DSI2.TP209_0.5-0.6	0.5-0.6	27 Mar 2023	FILL: Gravelly Silty SAND	Normal	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	0.35	< 0.30	<0.10	<0.10	<0.10	<0.10
DSI2.TP210_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	0.35	< 0.30	<0.10	<0.10	<0.10	<0.10
DSI2.TP211_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	<0.30	<0.30	< 0.30	0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	0.35	0.30	<0.10	<0.10	<0.10	<0.10
DSI2.TP213_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty Gravelly CLAY	Normal	< 0.30	< 0.30	<0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	0.35	< 0.30	<0.10	<0.10	<0.10	<0.10
DSI2.TP215_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty CLAY	Normal	<0.30	< 0.30	<0.30	<0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	<0.30	0.35	<0.30	<0.10	<0.10	<0.10	<0.10
DSI2.TP216_0.4-0.6	0.4-0.6	27 Mar 2023	FILL: Gravelly SILT	Normal	< 0.30	< 0.30	<0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	0.35	<0.30	<0.10	<0.10	<0.10	<0.10
DSI2.TP219_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	<0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	0.35	<0.30	<0.10	<0.10	<0.10	<0.10
DSI2.TP221_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	<0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	<0.30	0.35	<0.30	<0.10	<0.10	<0.10	<0.10
DSI2.TP225_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	<0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	0.35	<0.30	<0.10	<0.10	<0.10	<0.10
DSI2.TP227_0.3-0.4	0.3-0.4	28 Mar 2023	FILL: Silty SAND	Normal	0.43	0.59	0.67	0.43	< 0.30	0.83	< 0.30	0.64	< 0.30	< 0.30	0.83	0.92	5.00	<0.10	<0.10	<0.10	<0.10
DSI2.TP229_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	<0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	<0.30	0.35	<0.30	<0.10	<0.10	<0.10	<0.10
DSI2.TP231_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	0.93	1.08	0.97	0.84	< 0.30	1.69	< 0.30	0.96	< 0.30	< 0.30	1.63	1.54	9.12	<0.10	<0.10	<0.10	<0.10
DSI2.TP233_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	<0.30	<0.30	< 0.30	<0.30	< 0.30	<0.30	<0.30	<0.30	<0.30	0.35	<0.30	<0.10	<0.10	<0.10	<0.10
DSI2.TP234_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Silty SAND	Normal	< 0.30	< 0.30	<0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	<0.30	0.35	<0.30	<0.10	<0.10	<0.10	<0.10
DSI2.TP236_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Clayey SAND	Normal	< 0.30	< 0.30	<0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	<0.30	0.35	<0.30	<0.10	<0.10	<0.10	<0.10
DSI2.TP239_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Gravelly SAND	Normal	1.56	1.53	1.34	1.37	< 0.30	4.14	< 0.30	1.16	< 0.30	1.24	3.55	2.12	17.32	<0.10	<0.10	<0.10	<0.10
QAQC Samples																					
DSI2.BR1	-	27 Mar 2023	-	Field_D	< 0.30	< 0.30	<0.30	<0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	<0.30	0.35	<0.30	<0.10	<0.10	<0.10	<0.10
DS12.SR1	-	27 Mar 2023	-	Interlab_D	<0.1	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	< 0.05	<0.1	<0.1	<0.1	<0.1
DSI2.BR2	-	27 Mar 2023	-	Field_D	< 0.30	<0.30	<0.30	<0.30	< 0.30	< 0.30	<0.30	<0.30	<0.30	<0.30	<0.30	0.35	<0.30	<0.10	<0.10	<0.10	<0.10
DS12.SR2	-	28 Mar 2023	-	Interlab_D	<0.1	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	< 0.05	<0.1	<0.1	<0.1	<0.1

Statistics																	
Number of Results	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23
Number of Detects	3	3	3	3	0	4	0	3	0	1	3	21	4	0	0	0	0
Minimum Concentration	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.35	<0.05	<0.1	<0.1	<0.1	<0.1
Maximum Concentration	1.56	1.53	1.34	1.37	<0.3	4.14	<0.3	1.16	<0.3	1.24	3.55	2.12	17.32	<0.1	<0.1	<0.1	<0.1
Standard Deviation		0.335															
95% Student's-t UCL		0.565															

NSW EPA, November 2014, NSW 2014 General Solid Waste CT1 (No Leaching) NSW EPA, November 2014, NSW 2014 General Solid Waste SCC1 (with leached) NSW EPA, November 2014, NSW 2014 General Solid Waste TCLP1 (leached) NSW EPA, November 2014, NSW 2014 Restricted Solid Waste CT2 (No Leaching) NSW EPA, November 2014, NSW 2014 Restricted Solid Waste SCC2 (with leached) NSW EPA, November 2014, NSW 2014 Restricted Solid Waste TCLP2 (leached)

٦Г

	Organochlorine Pesticides visual state visual stat																
	Chlordane (cis)	Chlordane (trans)	d-BHC	aaa	DDT	DDT+DDE+DD	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	g-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Methoxychlor
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NSW 2014 General Solid Waste CT1 (No Leaching)																	
NSW 2014 General Solid Waste SCC1 (with leached)																	
NSW 2014 General Solid Waste TCLP1 (leached)																	
NSW 2014 Restricted Solid Waste CT2 (No Leaching)																	
NSW 2014 Restricted Solid Waste SCC2 (with leached)																	
NSW 2014 Restricted Solid Waste TCLP2 (leached)																	

Field ID	Depth (m BGI	L) Date	Matrix Description	Sample Type																	
Primary Samples					-																
DSI2.TP201_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	< 0.20	<0.20	<0.10	< 0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DSI2.TP203_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DSI2.TP206_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	< 0.20	< 0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DSI2.TP209_0.5-0.6	0.5-0.6	27 Mar 2023	FILL: Gravelly Silty SAND	Normal	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DSI2.TP210_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DSI2.TP211_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	< 0.20	< 0.20	<0.10	<0.20	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10
DSI2.TP213_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty Gravelly CLAY	Normal	<0.10	<0.10	<0.10	< 0.10	< 0.10	-	< 0.10	< 0.20	<0.20	<0.10	< 0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DSI2.TP215_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty CLAY	Normal	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.20	< 0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DSI2.TP216_0.4-0.6	0.4-0.6	27 Mar 2023	FILL: Gravelly SILT	Normal	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.20	< 0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DSI2.TP219_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DSI2.TP221_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DSI2.TP225_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.20	< 0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DSI2.TP227_0.3-0.4	0.3-0.4	28 Mar 2023	FILL: Silty SAND	Normal	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DSI2.TP229_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DSI2.TP231_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DSI2.TP233_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DSI2.TP234_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Silty SAND	Normal	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DSI2.TP236_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Clayey SAND	Normal	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DSI2.TP239_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Gravelly SAND	Normal	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
QAQC Samples																					
DSI2.BR1	-	27 Mar 2023	-	Field_D	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.20	< 0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DS12.SR1	-	27 Mar 2023	-	Interlab_D	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1
DSI2.BR2	-	27 Mar 2023	-	Field_D	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	< 0.20	< 0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DS12.SR2	-	28 Mar 2023	-	Interlab_D	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1

Statistics																	
Number of Results	23	23	23	23	23	2	23	23	23	23	23	23	21	23	23	23	23
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Maximum Concentration	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Standard Deviation																	
95% Student's-t UCL																	

		Ghlorpyrifos-methyl Chlorp															
	Azinophos methyl	Azinophos methyl Bromophos-ethyl Chlorpyrifos Chlorpyrifos-methyl Tribuphos Ethonon Ethion Malathion Methyl parathion Parathion Ronnel Ronnel														Arochlor 1016	Arochlor 1221
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NSW 2014 General Solid Waste CT1 (No Leaching)			4														
NSW 2014 General Solid Waste SCC1 (with leached)			7.5														
NSW 2014 General Solid Waste TCLP1 (leached)																	
NSW 2014 Restricted Solid Waste CT2 (No Leaching)			16														
NSW 2014 Restricted Solid Waste SCC2 (with leached)			30														
NSW 2014 Restricted Solid Waste TCLP2 (leached)																	

Field ID	Depth (m BGL) Date	Matrix Description	Sample Type																	
Primary Samples																					
DSI2.TP201_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	-	-	<0.10	< 0.10	<0.10	< 0.10	-	-	-	< 0.10	-	-	<0.10	-	<0.10	<0.50	< 0.50
DSI2.TP203_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	-	-	<0.10	<0.10	<0.10	< 0.10	-	-	-	< 0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50
DSI2.TP206_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	-	-	<0.10	< 0.10	<0.10	< 0.10	-	-	-	< 0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50
DSI2.TP209_0.5-0.6	0.5-0.6	27 Mar 2023	FILL: Gravelly Silty SAND	Normal	-	-	<0.10	<0.10	<0.10	< 0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50
DSI2.TP210_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	-	-	<0.10	<0.10	<0.10	< 0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50
DSI2.TP211_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	-	-	<0.10	<0.10	<0.10	< 0.10	-	-	-	< 0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50
DSI2.TP213_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty Gravelly CLAY	Normal	-	-	<0.10	<0.10	<0.10	< 0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50
DSI2.TP215_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty CLAY	Normal	-	-	<0.10	<0.10	<0.10	< 0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50
DSI2.TP216_0.4-0.6	0.4-0.6	27 Mar 2023	FILL: Gravelly SILT	Normal	-	-	<0.10	<0.10	<0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	<0.50
DSI2.TP219_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	-	-	<0.10	<0.10	<0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	<0.50
DSI2.TP221_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	-	-	<0.10	<0.10	<0.10	< 0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50
DSI2.TP225_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	-	-	<0.10	<0.10	<0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	<0.50
DSI2.TP227_0.3-0.4	0.3-0.4	28 Mar 2023	FILL: Silty SAND	Normal	-	-	<0.10	<0.10	<0.10	< 0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50
DSI2.TP229_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	-	-	<0.10	<0.10	<0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	<0.50
DSI2.TP231_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	-	-	<0.10	<0.10	<0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50
DSI2.TP233_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	-	-	<0.10	<0.10	<0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	<0.50	<0.50
DSI2.TP234_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Silty SAND	Normal	-	-	<0.10	<0.10	<0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	< 0.50
DSI2.TP236_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Clayey SAND	Normal	-	-	<0.10	<0.10	<0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	<0.50	<0.50
DSI2.TP239_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Gravelly SAND	Normal	-	-	<0.10	<0.10	<0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	<0.50	< 0.50
QAQC Samples																					
DSI2.BR1	-	27 Mar 2023	-	Field_D	-	-	<0.10	<0.10	<0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	< 0.50	<0.50
DS12.SR1	-	27 Mar 2023	-	Interlab_D	<0.1	<0.1	< 0.1	<0.1	-	<0.1	< 0.1	< 0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1
DSI2.BR2	-	27 Mar 2023	-	Field_D	-	-	<0.10	<0.10	<0.10	<0.10	-	-	-	<0.10	-	-	<0.10	-	<0.10	<0.50	< 0.50
DS12.SR2	-	28 Mar 2023	-	Interlab_D	<0.1	<0.1	<0.1	<0.1	-	< 0.1	<0.1	< 0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1

Statistics																	
Number of Results	2	2	23	23	21	23	2	2	2	21	2	2	21	2	23	23	23
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Maximum Concentration	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5
Standard Deviation																	
95% Student's-t UCL																	

		PC	Bs					Perfluor	oalkane Sulfo	nic Acids			•	•		Perfluoro	alkane Carbo
	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	PCBs (Sum of total)	Perfluorobutane sulfonic acid (PFBS)	Perfluoropentane sulfonic acid (PFPeS)	Perfluorohexane sulfonic acid (PFHxS)	Perfluoroheptane sulfonic acid (PFHpS)	Perfluorooctane sulfonic acid (PFOS)	Perfluorobutanoic acid (PFBA)	Perfluoropentanoic acid (PFPeA)	Perfluorohexanoic acid (PFHxA)	Perfluoroheptanoic acid (PFHpA)	Perfluorooctanoic acid (PFOA)	Perfluorononanoic acid (PFNA)
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	µg/kg	μg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	μg/kg	µg/kg	µg/kg
EQL	0.1	0.1	0.1	0.1	0.1	0.1	5	5	5	5	5	5	5	5	5	5	5
NSW 2014 General Solid Waste CT1 (No Leaching)						50											
NSW 2014 General Solid Waste SCC1 (with leached)						50											
NSW 2014 General Solid Waste TCLP1 (leached)																	
NSW 2014 Restricted Solid Waste CT2 (No Leaching)						50											
NSW 2014 Restricted Solid Waste SCC2 (with leached)						50											
NSW 2014 Restricted Solid Waste TCLP2 (leached)																	

Field ID	Depth (m BGL)	Date	Matrix Description	Sample Type																	
Primary Samples					-																
DSI2.TP201_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
DSI2.TP203_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
DSI2.TP206_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-
DSI2.TP209_0.5-0.6	0.5-0.6	27 Mar 2023	FILL: Gravelly Silty SAND	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-
DSI2.TP210_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-
DSI2.TP211_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-
DSI2.TP213_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty Gravelly CLAY	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
DSI2.TP215_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty CLAY	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-
DSI2.TP216_0.4-0.6	0.4-0.6	27 Mar 2023	FILL: Gravelly SILT	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-
DSI2.TP219_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-
DSI2.TP221_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-
DSI2.TP225_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-
DSI2.TP227_0.3-0.4	0.3-0.4	28 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-
DSI2.TP229_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-
DSI2.TP231_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-
DSI2.TP233_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-
DSI2.TP234_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Silty SAND	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-
DSI2.TP236_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Clayey SAND	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
DSI2.TP239_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Gravelly SAND	Normal	<0.50	< 0.50	<0.50	<0.50	< 0.50	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
QAQC Samples																					
DSI2.BR1	-	27 Mar 2023	-	Field_D	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-
DS12.SR1	-	27 Mar 2023	-	Interlab_D	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	-	-	-	-	-	-	-	-	-	-	-
DSI2.BR2	-	27 Mar 2023	-	Field_D	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	-
DS12.SR2	-	28 Mar 2023	-	Interlab_D	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-	-

Statistics																	
Number of Results	23	23	23	23	23	2	5	5	5	5	5	5	5	5	5	5	5
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Maximum Concentration	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<5	<5	\$	<5	<5	<5	<5	<5	<5	<5	<5
Standard Deviation																	
95% Student's-t UCL																	

	ylic Acids					Halogenated Benzenes
	Perfluorodecanoic acid (PFDA)	Perfiuoroundecanoic acid (PFUnDA)	Perfluorododecanoic acid (PFDoDA)	Perfluorotridecanoic acid (PFTrDA)	Perfiuorotetradecanoic acid (PFTeDA)	Hexachlorobenzene
	μg/kg	µg/kg	µg/kg	µg/kg	µg/kg	mg/kg
EQL	5	5	5	5	5	0.1
NSW 2014 General Solid Waste CT1 (No Leaching)						
NSW 2014 General Solid Waste SCC1 (with leached)						
NSW 2014 General Solid Waste TCLP1 (leached)						
NSW 2014 Restricted Solid Waste CT2 (No Leaching)						
NSW 2014 Restricted Solid Waste SCC2 (with leached)						
NSW 2014 Restricted Solid Waste TCLP2 (leached)						

Field ID	Depth (m BGL)	Date	Matrix Description	Sample Type						
Primary Samples					-					
DSI2.TP201_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	<5	<5	<5	<5	<5	<0.10
DSI2.TP203_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	<5	<5	<5	<5	<5	<0.10
DSI2.TP206_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	-	-	-	-	-	<0.10
DSI2.TP209_0.5-0.6	0.5-0.6	27 Mar 2023	FILL: Gravelly Silty SAND	Normal	-	-	-	-	-	<0.10
DSI2.TP210_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty SAND	Normal	-	-	-	-	-	<0.10
DSI2.TP211_0.1-0.2	0.1-0.2	27 Mar 2023	FILL: Silty SAND	Normal	-	-	-	-	-	<0.10
DSI2.TP213_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty Gravelly CLAY	Normal	<5	<5	<5	<5	<5	<0.10
DSI2.TP215_0.2-0.3	0.2-0.3	27 Mar 2023	FILL: Silty CLAY	Normal	-	-	-	-	-	<0.10
DSI2.TP216_0.4-0.6	0.4-0.6	27 Mar 2023	FILL: Gravelly SILT	Normal	-	-	-	-	-	<0.10
DSI2.TP219_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	-	-	-	-	-	<0.10
DSI2.TP221_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	-	-	-	-	-	<0.10
DSI2.TP225_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	-	-	-	-	-	<0.10
DSI2.TP227_0.3-0.4	0.3-0.4	28 Mar 2023	FILL: Silty SAND	Normal	-	-	-	-	-	<0.10
DSI2.TP229_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Silty SAND	Normal	-	-	-	-	-	<0.10
DSI2.TP231_0.1-0.2	0.1-0.2	28 Mar 2023	FILL: Silty SAND	Normal	-	-	-	-	-	<0.10
DSI2.TP233_0.4-0.5	0.4-0.5	28 Mar 2023	FILL: Silty SAND	Normal	-	-	-	-	-	<0.10
DSI2.TP234_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Silty SAND	Normal	-	-	-	-	-	<0.10
DSI2.TP236_0.3-0.4	0.3-0.4	27 Mar 2023	FILL: Clayey SAND	Normal	<5	<5	<5	<5	<5	<0.10
DSI2.TP239_0.2-0.3	0.2-0.3	28 Mar 2023	FILL: Gravelly SAND	Normal	<5	<5	<5	<5	<5	<0.10
QAQC Samples										
DSI2.BR1	-	27 Mar 2023	-	Field_D	-	-	-	-	-	<0.10
DS12.SR1	-	27 Mar 2023	-	Interlab_D	-	-	-	-	-	<0.1
DSI2.BR2	-	27 Mar 2023	-	Field_D	-	-	-	-	-	<0.10
DS12.SR2	-	28 Mar 2023	-	Interlab_D	-	-	-	-	-	<0.1

Statistics						
Number of Results	5	5	5	5	5	23
Number of Detects	0	0	0	0	0	0
Minimum Concentration	<5	<5	<5	<5	<5	<0.1
Maximum Concentration	<5	<5	<5	<5	<5	<0.1
Standard Deviation						
95% Student's-t UCL						

	Physical				Me	tals							BTEX					
	Moisture Content	Arsenic	Cadmium	Chromium (III+VI)	Copper	Lead	Mercury	Nickel	Zinc	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Xylene Total	Total BTEX	C6-C9 Fraction	C10-C14 Fraction
	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL		5	0.3	1	5	5	0.1	1	5	0.5	0.5	1	2	1	2	2	25	50
ANZECC (1992) Background Ranges (VENM)		30	2		190	200	0.1	400	180	0	0	0			0		0	
Berkman (1989) Background Ranges (VENM)		50	1		100	200	0.03	500	300	0	0	0			0		0	
Field ID Depth (m BGL) Date Matrix Description Sample Type																		
DSI2.TP201_0.5-0.6 0.5-0.6 27 Mar 2023 NATURAL: CLAY Normal	17.3	7.7	< 0.30	16.1	12.6	16.1	<0.10	5.4	17.5	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	<2.00	<25	<50
DSI2.TP211_0.5-0.6 0.5-0.6 27 Mar 2023 NATURAL: Silty CLAY Normal	20.0	10.5	< 0.30	23.0	25.1	25.1	<0.10	10.9	32.3	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	<2.00	<25	<50
DSI2.TP213_0.7-0.8 0.7-0.8 27 Mar 2023 NATURAL: CLAY Normal	14.1	11.6	< 0.30	15.7	21.7	18.0	<0.10	8.1	31.5	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	<2.00	<25	<50
DSI2.TP215_1.2-1.3 1.2-1.3 27 Mar 2023 NATURAL: Silty CLAY Normal	13.8	7.1	< 0.30	21.5	44.7	31.2	<0.10	43.6	120.6	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	<2.00	<25	<50
DSI2.TP234_0.6-0.7 0.6-0.7 27 Mar 2023 NATURAL: CLAY Normal	18.4	12.4	< 0.30	34.1	24.0	128.6	<0.10	25.0	71.4	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	<2.00	<25	<50
DSI2.TP236_0.8-0.9 0.8-0.9 27 Mar 2023 NATURAL: CLAY Normal	18.6	12.2	<0.30	17.1	31.2	22.1	<0.10	9.0	33.4	< 0.50	<0.50	<1.0	<2.0	<1.0	<2.0	<2.00	<25	<50
Statistics																		
Number of Results	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
Number of Detects	6	6	0	6	6	6	0	6	6	0	0	0	0	0	0	0	0	0
Minimum Concentration	13.8	7.1	<0.3	15.7	12.6	16.1	<0.1	5.4	17.5	<0.5	<0.5	<1	<2	<1	<2	<2	<25	<50
Maximum Concentration	20	12.4	<0.3	34.1	44.7	128.6	<0.1	43.6	120.6	<0.5	<0.5	<1	<2	<1	<2	<2	<25	<50

	ТРН					т	RH											РАН
	C15-C28 Fraction	C29-C36 Fraction	C10-C36 Fraction (Sum)	C6-C10 Fraction (F1)	C6-C10 (F1 minus BTEX)	>C10-C16 Fraction (F2)	>C16-C34 Fraction (F3)	>C34-C40 Fraction (F4)	>C10-C40 Fraction (Sum)	Acenaphthene	Acenaphthylene	Anthracene	Benzo(b+j+k)fluoranth ene	Benz(a) anthracene	Benzo(a) pyrene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracen e
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	100	100	100	35	35	50	100	100	100	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
ANZECC (1992) Background Ranges (VENM)						0	0	0							0			
Berkman (1989) Background Ranges (VENM)						0	0	0							0			
Field ID Depth (m BGL) Date Matrix Description Sample Type																		
DSI2.TP201_0.5-0.6 0.5-0.6 27 Mar 2023 NATURAL: CLAY Normal	<100	<100	<100	<35	<35	<50	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30
DSI2.TP211_0.5-0.6 0.5-0.6 27 Mar 2023 NATURAL: Silty CLAY Normal	<100	<100	<100	<35	<35	<50	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30
DSI2.TP213_0.7-0.8 0.7-0.8 27 Mar 2023 NATURAL: CLAY Normal	<100	<100	<100	<35	<35	<50	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30
DSI2.TP215_1.2-1.3 1.2-1.3 27 Mar 2023 NATURAL: Silty CLAY Normal	<100	<100	<100	<35	<35	<50	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30
DSI2.TP234_0.6-0.7 0.6-0.7 27 Mar 2023 NATURAL: CLAY Normal	<100	<100	<100	<35	<35	<50	<100	<100	<100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30
DSI2.TP236_0.8-0.9 0.8-0.9 27 Mar 2023 NATURAL: CLAY Normal	<100	<100	<100	<35	<35	<50	<100	<100	<100	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	<0.30	<0.30
Statistics		-			-	-	-	-	-			-		-				
Number of Results	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<100	<100	<100	<35	<35	<50	<100	<100	<100	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Maximum Concentration	<100	<100	<100	<35	<35	<50	<100	<100	<100	< 0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3

																						Organochlori
					Fluoranthene	Fluorene	Indeno(1,2,3- c,d)pyrene	Naphthalene	Phenanthrene	Pyrene	Benzo(a)pyrene TEQ calc (Half)	PAHs (Sum of positives)	4,4-DDE	a-BHC	Aldrin	р-внс	Chlordane (cis)	Chlordane (trans)	d-BHC	000	DDT	Dieldrin
501					mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	10 0/				0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
ANZECC (1992) Back																						
Berkman (1989) Bao	ckground Ranges (V	(EINIVI)																				
Field ID	Depth (m BGL)	Date	Matrix Description	Sample Type																		
DSI2.TP201_0.5-0.6		27 Mar 2023	NATURAL: CLAY	Normal	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	0.35	< 0.30	< 0.10	<0.10	<0.10	< 0.10	<0.10	< 0.10	<0.10	<0.10	< 0.10	< 0.10
DSI2.TP211_0.5-0.6		27 Mar 2023	NATURAL: Silty CLAY	Normal	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	0.35	< 0.30	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DSI2.TP213_0.7-0.8	0.7-0.8	27 Mar 2023	NATURAL: CLAY	Normal	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	0.35	< 0.30	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DSI2.TP215_1.2-1.3	1.2-1.3	27 Mar 2023	NATURAL: Silty CLAY	Normal	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	0.35	< 0.30	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DSI2.TP234_0.6-0.7	0.6-0.7	27 Mar 2023	NATURAL: CLAY	Normal	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	0.35	< 0.30	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
DSI2.TP236_0.8-0.9	0.8-0.9	27 Mar 2023	NATURAL: CLAY	Normal	<0.30	< 0.30	<0.30	<0.30	<0.30	<0.30	0.35	< 0.30	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Statistics																						
Number of Results					6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
Number of Detects					0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentr	ation				<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	0.35	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Maximum Concent	ration				<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	0.35	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

	ne Pesticides						-	-					Organop	hosphorous P	esticides			
	Bandosulfan I	Endosulfan II mg/kg	B Endosulfan sulphate 형	Endrin wg/kg	ន្លី Endrin aldehyde	mg/kg	g-BHC (Lindane)	mg/kg	Bay Heptachlor epoxide	Bay Methoxychlor	mg/kg		mg/gg kg	uouizeiO mg/kg	Ethoprop	Ba Methyl parathion	Bonnel mg/kg	mg/kg
EQL	0.2	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.5
ANZECC (1992) Background Ranges (VENM)																		
Berkman (1989) Background Ranges (VENM)																		
Field ID Depth (m BGL) Date Matrix Description Sample Type																		
DSI2.TP201_0.5-0.6 0.5-0.6 27 Mar 2023 NATURAL: CLAY Normal	<0.20	<0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50
DSI2.TP211_0.5-0.6 0.5-0.6 27 Mar 2023 NATURAL: Silty CLAY Normal	<0.20	<0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50
DSI2.TP213_0.7-0.8 0.7-0.8 27 Mar 2023 NATURAL: CLAY Normal	<0.20	<0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50
DSI2.TP215_1.2-1.3 1.2-1.3 27 Mar 2023 NATURAL: Silty CLAY Normal	<0.20	<0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50
DSI2.TP234_0.6-0.7 0.6-0.7 27 Mar 2023 NATURAL: CLAY Normal	<0.20	<0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50
DSI2.TP236_0.8-0.9 0.8-0.9 27 Mar 2023 NATURAL: CLAY Normal	<0.20	<0.20	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50
Statistics																		
Number of Results	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5
Maximum Concentration	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5

							Halogenated
			PCBs				Benzenes
	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	Hexachlorobenzene
	mg/kg						
EQL	0.5	0.5	0.5	0.5	0.5	0.5	0.1
ANZECC (1992) Background Ranges (VENM)							
Berkman (1989) Background Ranges (VENM)							

Field ID	Depth (m BGL)	Date	Matrix Description	Sample Type							
DSI2.TP201_0.5-0.6	0.5-0.6	27 Mar 2023	NATURAL: CLAY	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.10
DSI2.TP211_0.5-0.6	0.5-0.6	27 Mar 2023	NATURAL: Silty CLAY	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.10
DSI2.TP213_0.7-0.8	0.7-0.8	27 Mar 2023	NATURAL: CLAY	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.10
DSI2.TP215_1.2-1.3	1.2-1.3	27 Mar 2023	NATURAL: Silty CLAY	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.10
DSI2.TP234_0.6-0.7	0.6-0.7	27 Mar 2023	NATURAL: CLAY	Normal	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.10
DSI2.TP236_0.8-0.9	0.8-0.9	27 Mar 2023	NATURAL: CLAY	Normal	< 0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.10

Statistics							
Number of Results	6	6	6	6	6	6	6
Number of Detects	0	0	0	0	0	0	0
Minimum Concentration	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1
Maximum Concentration	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1

	A B C	D E	F	G H I J K	L
1		UCL Statis	tics for Unc	ensored Full Data Sets	
2					
3	User Selected Options				
4	Date/Time of Computation	ProUCL 5.112/04/2023 1	0:49:50 AM		
5	From File	WorkSheet.xls			
6	Full Precision Confidence Coefficient	OFF 95%			
7	Number of Bootstrap Operations	2000			
8		2000			
9					
10	Pb- 95% UCL				
11					
12 13			General	Statistics	
13	Total	Number of Observations	19	Number of Distinct Observations	19
14				Number of Missing Observations	0
16		Minimum	22.3	Mean	117.6
17		Maximum	278.8	Median	94.4
18		SD	83.61	Std. Error of Mean	19.18
19		Coefficient of Variation	0.711	Skewness	0.762
20				·	
21			Normal (GOF Test	
22		Shapiro Wilk Test Statistic	0.894	Shapiro Wilk GOF Test	
23	5% S	hapiro Wilk Critical Value	0.901	Data Not Normal at 5% Significance Level	
24		Lilliefors Test Statistic	0.177	Lilliefors GOF Test	
25	5	i% Lilliefors Critical Value	0.197	Data appear Normal at 5% Significance Level	
26		Data appear App	roximate No	rmal at 5% Significance Level	
27		^		nel Distribution	
28	0E% N/	ormal UCL		mal Distribution	
29	90% N	95% Student's-t UCL	150.8	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	152.7
30		35% Student S-t OCL	150.8	95% Modified-t UCL (Johnson-1978)	151.4
31					101.4
32			Gamma	GOF Test	
33		A-D Test Statistic	0.291	Anderson-Darling Gamma GOF Test	
34 35		5% A-D Critical Value	0.752	Detected data appear Gamma Distributed at 5% Significanc	e Level
36		K-S Test Statistic	0.112	Kolmogorov-Smirnov Gamma GOF Test	
37		5% K-S Critical Value	0.201	Detected data appear Gamma Distributed at 5% Significanc	e Level
38		Detected data appear	Gamma Di	stributed at 5% Significance Level	
39					
40			Gamma	Statistics	
41		k hat (MLE)	1.983	k star (bias corrected MLE)	1.705
42		Theta hat (MLE)	59.29	Theta star (bias corrected MLE)	68.96
43		nu hat (MLE)	75.35	nu star (bias corrected)	64.78
44	М	LE Mean (bias corrected)	117.6	MLE Sd (bias corrected)	90.04
45				Approximate Chi Square Value (0.05)	47.26
46	Adjus	sted Level of Significance	0.0369	Adjusted Chi Square Value	45.96
47					
48				nma Distribution	405 -
49	95% Approximate Gamma	a UCL (use when n>=50))	161.1	95% Adjusted Gamma UCL (use when n<50)	165.7
50					
51			-	I GOF Test	
52		Shapiro Wilk Test Statistic	0.949	Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level	
53	5% S	hapiro Wilk Critical Value Lilliefors Test Statistic	0.901	Lilliefors Lognormal at 5% Significance Level	
54					

	А	В	С	D	E	F	G	Н	I	J		K	L
55				5% Lilliefors	Critical Value	0.197		Data appea	r Lognormal	l at 5% Sig	Inifican	nce Level	
56					Data appea	r Lognormal	at 5% Signif	icance Leve	l				
57													
58						Lognorma	I Statistics						
59					Logged Data	3.105						ged Data	4.494
60				Maximum of	Logged Data	5.63				SD	of log	ged Data	0.799
61					A								
62						uming Logno	rmai Distrid	ution	000/	<u></u>	<u> </u>		100.0
63					95% H-UCL	191.4				Chebyshe		,	192.3
64				o Chebyshev	. ,	224.7			97.5%	Chebyshe	ev (MVI	UE) UCL	269.8
65			99%	o Chebyshev	(MVUE) UCL	358.3							<u> </u>
66													
67					-	etric Distribut							
68				Data appea	ar to follow a	Discernible I	Distribution a	at 5% Signifi	cance Leve				
69													
70					-	rametric Dist	ribution Free	e UCLs					
71					5% CLT UCL	149.1						nife UCL	150.8
72				6 Standard B	•	149						ap-t UCL	154.4
73				95% Hall's B	•	151			95%	Percentile	Bootst	trap UCL	150.1
74				95% BCA B	•	153.4							
75			90% C	hebyshev(Me	ean, Sd) UCL	175.1			95% Cł	nebyshev(Mean,	Sd) UCL	201.2
76			97.5% C	hebyshev(Me	ean, Sd) UCL	237.4			99% Cł	nebyshev(Mean,	Sd) UCL	308.4
77													
78						Suggested	UCL to Use						
79				95% Stu	ident's-t UCL	150.8							
80													
81				data set follo			,		-				
82		When app	olicable, it is	suggested to	use a UCL b	ased upon a	distribution (e.g., gamma) passing bo	oth GOF te	ests in I	ProUCL	
83													
84	N	lote: Sugge	stions regai	ding the sele	ction of a 95%	6 UCL are pro	ovided to hel	p the user to	select the n	nost appro	priate	95% UCL	
85				Recommend	ations are ba	sed upon dat	a size, data o	distribution, a	and skewnes	SS.			
86		These reco	mmendation	ns are based	upon the resu	Its of the sim	ulation studi	es summariz	ed in Singh,	, Maichle,	and Le	e (2006).	
87	Hov	wever, simu	lations resu	lts will not co	ver all Real V	/orld data set	s; for additio	onal insight th	ne user may	want to co	onsult a	a statistici	an.
88													

	A B C	D E	F	G H I J K	L
1		UCL Statis	tics for Unc	ensored Full Data Sets	
2					
3	User Selected Options				
4	Date/Time of Computation	ProUCL 5.112/04/2023 1	0:55:02 AM		
5	From File	WorkSheet_a.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10					
11	Ni- 95% UCL				
12			General	Statistics	
13	Total	Number of Observations	19	Number of Distinct Observations	19
14			19	Number of Missing Observations	0
15		Minimum	2	Mean	57.36
16		Maximum	128.8	Median	57.30
17		SD	33.42	Std. Error of Mean	7.667
18		Coefficient of Variation	0.583	Std. Error of Mean Skewness	0.154
19			0.000	SREWHESS	0.134
20			Normal (GOF Test	
21	S	hapiro Wilk Test Statistic	0.97	Shapiro Wilk GOF Test	
22		hapiro Wilk Critical Value	0.901	Data appear Normal at 5% Significance Level	
23		Lilliefors Test Statistic	0.122	Lilliefors GOF Test	
24	5	% Lilliefors Critical Value	0.122	Data appear Normal at 5% Significance Level	
25	`			t 5% Significance Level	
26					
27		As	suming Nor	mal Distribution	
28 29		ormal UCL	-	95% UCLs (Adjusted for Skewness)	
30		95% Student's-t UCL	70.65	95% Adjusted-CLT UCL (Chen-1995)	70.26
31				95% Modified-t UCL (Johnson-1978)	70.7
32					
33			Gamma	GOF Test	
34		A-D Test Statistic	0.732	Anderson-Darling Gamma GOF Test	
35		5% A-D Critical Value	0.754	Detected data appear Gamma Distributed at 5% Significance	e Level
36		K-S Test Statistic	0.174	Kolmogorov-Smirnov Gamma GOF Test	
37		5% K-S Critical Value	0.201	Detected data appear Gamma Distributed at 5% Significance	e Level
38		Detected data appear	Gamma Di	stributed at 5% Significance Level	
39					
40			Gamma	Statistics	
41		k hat (MLE)	1.825	k star (bias corrected MLE)	1.572
42		Theta hat (MLE)	31.43	Theta star (bias corrected MLE)	36.49
43		nu hat (MLE)	69.34	nu star (bias corrected)	59.73
44	М	LE Mean (bias corrected)	57.36	MLE Sd (bias corrected)	45.75
45				Approximate Chi Square Value (0.05)	42.95
46	Adjus	sted Level of Significance	0.0369	Adjusted Chi Square Value	41.71
47					
48				nma Distribution	
49	95% Approximate Gamma	a UCL (use when n>=50))	79.75	95% Adjusted Gamma UCL (use when n<50)	82.13
50					
51			-	I GOF Test	
52		hapiro Wilk Test Statistic	0.811	Shapiro Wilk Lognormal GOF Test	
53	5% S	hapiro Wilk Critical Value Lilliefors Test Statistic	0.901	Data Not Lognormal at 5% Significance Level Lilliefors Lognormal GOF Test	
			~ ~	Lillioforo Lognormal COE Toot	

	А	В	С	D	E	F	G	Н	I	J	К	L
55			5	% Lilliefors C	Critical Value	0.197		Data Not	Lognormal at	5% Significa	ance Level	
56					Data Not L	ognormal a	5% Signification	ance Level				
57												
58						Lognorma	I Statistics					
59			I	Minimum of l	ogged Data	0.693				Mean of I	logged Data	3.751
60			Ν	laximum of l	ogged Data	4.858				SD of I	logged Data	1.003
61												•
62					Assı	uming Logno	ormal Distrib	ution				
63					95% H-UCL	130.7			90% (Chebyshev (N	VVUE) UCL	120.1
64			95% (Chebyshev (MVUE) UCL	143.7			97.5% (Chebyshev (N	MVUE) UCL	176.5
65			99% (Chebyshev (MVUE) UCL	241						
66												
67					•		tion Free UC					
68				Data appea	r to follow a	Discernible	Distribution a	at 5% Signifi	cance Level			
69												
70					•		tribution Free	e UCLs				
71					5% CLT UCL	69.97					ckknife UCL	70.65
72				Standard Bo		69.72					tstrap-t UCL	70.82
73					otstrap UCL	70.53			95% F	Percentile Boo	otstrap UCL	69.33
74				95% BCA Bo	•	69.77						
75				ebyshev(Me		80.36				ebyshev(Mea		90.78
76			97.5% Ch	ebyshev(Me	an, Sd) UCL	105.2			99% Ch	ebyshev(Mea	an, Sd) UCL	133.6
77												
78							UCL to Use					
79				95% Stu	dent's-t UCL	70.65						
80												
81	N	ote: Sugge	stions regard	-				•			ate 95% UCL	-
82						•			and skewnes			
83			mmendations		•				•		, ,	
84	Hov	vever, simu	lations result	s will not cov	er all Real W	/orld data se	ts; for additio	nal insight th	ne user may v	want to consu	ult a statistici	an.
85												

	A B C	D E	F	G H I J K	L
1		UCL Statis	tics for Unc	ensored Full Data Sets	
2					
3	User Selected Options				
4	Date/Time of Computation	ProUCL 5.114/04/2023 8	:52:00 AM		
5	From File	WorkSheet.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10					
11	UCL_BAP				
12					
13				Statistics	
14	Total	Number of Observations	19	Number of Distinct Observations	4
15				Number of Missing Observations	0
16		Minimum	0.3	Mean	0.421
17		Maximum	1.53	Median	0.3
18		SD	0.327	Std. Error of Mean	0.0751
19		Coefficient of Variation	0.777	Skewness	2.883
20					
21				GOF Test	
22		hapiro Wilk Test Statistic	0.437	Shapiro Wilk GOF Test	
23	5% S	hapiro Wilk Critical Value	0.901	Data Not Normal at 5% Significance Level	
24		Lilliefors Test Statistic	0.486	Lilliefors GOF Test	
25	5	% Lilliefors Critical Value	0.197	Data Not Normal at 5% Significance Level	
26		Data Not	Normal at 5	5% Significance Level	
27					
28			suming Nor	mal Distribution	
29	95% No	ormal UCL		95% UCLs (Adjusted for Skewness)	
30		95% Student's-t UCL	0.551	95% Adjusted-CLT UCL (Chen-1995)	0.598
31				95% Modified-t UCL (Johnson-1978)	0.559
32					
33				GOF Test	
34		A-D Test Statistic	5.16	Anderson-Darling Gamma GOF Test	
35		5% A-D Critical Value	0.747	Data Not Gamma Distributed at 5% Significance Leve	
36		K-S Test Statistic	0.503	Kolmogorov-Smirnov Gamma GOF Test	
37		5% K-S Critical Value	0.2	Data Not Gamma Distributed at 5% Significance Leve	
38		Data Not Gamm	na Distribute	ed at 5% Significance Level	
39			0-	Otatiatian	
40		1 1 . /s st mest		Statistics	0.074
41		k hat (MLE)	3.486	k star (bias corrected MLE)	2.971
42		Theta hat (MLE)	0.121	Theta star (bias corrected MLE)	0.142
43		nu hat (MLE)	132.5		112.9
44	M	LE Mean (bias corrected)	0.421	MLE Sd (bias corrected)	0.244
45	Λ	tod Loval of Significant	0.0200	Approximate Chi Square Value (0.05)	89.37
46	Adjus	sted Level of Significance	0.0369	Adjusted Chi Square Value	87.54
47		▲		n Distribution	
48	OEO/ Annovimete Oeree			ma Distribution	0 5 4 2
49	95% Approximate Gamma	a UCL (use when n>=50))	0.532	95% Adjusted Gamma UCL (use when n<50)	0.543
50			Location		
51		hopiro Wills Test Otation	-	I GOF Test	
52		Shapiro Wilk Test Statistic	0.461	Shapiro Wilk Lognormal GOF Test	
53	5% S	hapiro Wilk Critical Value	0.901	Data Not Lognormal at 5% Significance Level	
54		Lilliefors Test Statistic	0.496	Lilliefors Lognormal GOF Test	

	А	В	С	D	E	F	G	Н	I	J	К	L
55			5	% Lilliefors C	ritical Value	0.197		Data Not	Lognormal at	5% Significa	ance Level	
56					Data Not L	ognormal a	5% Significa	ance Level				
57												
58						Lognorma	I Statistics					
59					ogged Data	-1.204				Mean of	logged Data	-1.015
60			Ν	laximum of l	ogged Data	0.425				SD of I	logged Data	0.476
61												
62					Assı	uming Logno	ormal Distribu	ution				
63					95% H-UCL	0.507			90% (Chebyshev (N	VVUE) UCL	0.539
64			95%	Chebyshev (MVUE) UCL	0.601			97.5% (Chebyshev (N	VVUE) UCL	0.687
65			99%	Chebyshev (MVUE) UCL	0.855						
66												
67					Nonparame	etric Distribu	tion Free UC	L Statistics				
68				I	Data do not f	ollow a Disc	ernible Distri	ibution (0.05	5)			
69												
70					•		tribution Free	e UCLs				
71					% CLT UCL	0.545				95% Jao	ckknife UCL	0.551
72			95%	Standard Bo	otstrap UCL	N/A					tstrap-t UCL	N/A
73				5% Hall's Bo	•	N/A			95% F	Percentile Bo	otstrap UCL	N/A
74				95% BCA Bo		N/A						
75			90% Ch	ebyshev(Me	an, Sd) UCL	0.646			95% Ch	ebyshev(Mea	an, Sd) UCL	0.748
76			97.5% Ch	ebyshev(Me	an, Sd) UCL	0.89			99% Ch	ebyshev(Mea	an, Sd) UCL	1.168
77												
78						Suggested	UCL to Use					
79				95% Stu	dent's-t UCL	0.551				or 95% Mo	dified-t UCL	0.559
80												
81	N	ote: Sugge	stions regard	•							ate 95% UCL	
82						•	a size, data o					
83			mmendations		•				-		. ,	
84	Hov	vever, simu	lations result	s will not cov	er all Real W	/orld data se	ts; for additio	nal insight th	ne user may v	want to consu	ult a statistici	an.
85												

Appendix V – QA/QC Output

ADECONSULTING GROUP

		Lab Report Number Field ID	A101023.0120.00 (053-069) DSI2.TP213_0.2-0.3	A101023.0120.00 (053-069) DSI2.BR1	1	A101023.0120.00 (053-069) DSI2.TP213_0.2-0.3	319690 DS12.SR1		A101023.0120.00 (070-079) DSI2.TP233_0.4-0.5	A101023.0120.00 (053-069) DSI2.BR2]	A101023.0120.00 (070-079) DSI2.TP233_0.4-0.5	+
		Date	27 Mar 2023	27 Mar 2023		27 Mar 2023	27 Mar 2023		28 Mar 2023	27 Mar 2023	1	28 Mar 2023	
		Matrix Type	Soil	Soil	RPD	Soil	Soil	RPD	Soil	Soil	RPD	Soil	<u> </u>
Newsigal	Unit	EQL							1				
Physical Moisture Content	%	0.1	8.4	10.0	17	8.4	11	27	5.0	11.9	82	5.0	
Metals Arsenic	mg/kg	4	<5.0	11.8	81	<5.0	7	33	<5.0	7.7	43	<5.0	
Cadmium	mg/kg	0.3	<0.30	<0.30	0	<0.30	<0.4	0	<0.30	<0.30	-45	<0.30	
Chromium (III+VI) Copper	mg/kg mg/kg	1	22.3 35.3	41.8 23.7	61 39	22.3 35.3	20 19	11 60	31.2 25.2	20.8 25.1	40 0	31.2 25.2	_
Lead	mg/kg	1	60.2	42.8	34	60.2	39	43	115.3	62.5	59	115.3	+
Mercury Nickel	mg/kg	0.1	<0.10 50.3	<0.10 58.4	0 15	<0.10 50.3	<0.1 10	0	<0.10 29.5	<0.10 14.5	0	<0.10 29.5	
Zinc	mg/kg mg/kg	1 1	84.5	58.4	39	50.3 84.5	38	134 76	80.5	94.4	16	80.5	
BTEX													—
Benzene Toluene	mg/kg mg/kg	0.2	<0.50 <0.50	<0.50 <0.50	0	<0.50 <0.50	<0.2 <0.5	0	<0.50 <0.50	<0.50 <0.50	0	<0.50 <0.50	
Ethylbenzene	mg/kg	1	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	1
Xylene (m & p) Xylene (o)	mg/kg mg/kg	2	<2.0 <1.0	<2.0 <1.0	0	<2.0 <1.0	<2 <1	0	<2.0 <1.0	<2.0 <1.0	0	<2.0 <1.0	+
Xylene Total	mg/kg	1	<2.0	<2.0	0	<2.0	<1	0	<2.0	<2.0	0	<2.0	
Naphthalene (VOC) Total BTEX	mg/kg mg/kg	1 2	<2.00	<2.00	0	<2.00	<1		<2.00	<2.00	0	<2.00	+
тр <u>н</u>													
C6-C9 Fraction C10-C14 Fraction	mg/kg mg/kg	25 50	<25 <50	<25 <50	0	<25 <50	<25 <50	0	<25 <50	<25 <50	0	<25 <50	+
C15-C28 Fraction	mg/kg	100	<100	<100	0	<100	<100	0	<100	<100	0	<100	\perp
C29-C36 Fraction C10-C36 Fraction (Sum)	mg/kg mg/kg	100 50	<100 <100	<100 <100	0	<100 <100	<100 <50	0	<100 <100	<100 <100	0	<100 <100	-
TRH													
C6-C10 Fraction (F1) C6-C10 (F1 minus BTEX)	mg/kg mg/kg	25 25	<35 <35	<35 <35	0	<35 <35	<25 <25	0	<35 <35	<35 <35	0	<35 <35	+
>C10-C16 Fraction (F2)	mg/kg mg/kg	50	<35 <50	<35	0	<35 <50	<25	0	<35	<35	0	<35	\perp
>C10-C16 Fraction (F2 minus		50					-50						
Naphthalene) >C16-C34 Fraction (F3)	mg/kg mg/kg	50 100	<100	<100	0	<100	<50 <100	0	<100	<100	0	<100	
>C34-C40 Fraction (F4)	mg/kg	100	<100	<100	0	<100	<100	0	<100	<100	0	<100	—
>C10-C40 Fraction (Sum) PAH	mg/kg	50	<100	<100	0	<100	<50	0	<100	<100	0	<100	+
Acenaphthene	mg/kg	0.1	<0.30	<0.30	0	<0.30	<0.1	0	<0.30	<0.30	0	<0.30	1
Acenaphthylene Anthracene	mg/kg mg/kg	0.1	<0.30 <0.30	<0.30 <0.30	0	<0.30 <0.30	<0.1 <0.1	0	<0.30 <0.30	<0.30 <0.30	0	<0.30 <0.30	-
Benzo(b+j+k)fluoranthene	mg/kg	0.2	<0.30	<0.30	0	<0.30	<0.2	0	<0.30	<0.30	0	<0.30	
Benz(a)anthracene Benzo(a) pyrene	mg/kg mg/kg	0.1 0.05	<0.30 <0.30	<0.30 <0.30	0	<0.30 <0.30	<0.1 <0.05	0	<0.30 <0.30	<0.30 <0.30	0	<0.30 <0.30	
Benzo(g,h,i)perylene	mg/kg	0.1	<0.30	<0.30	0	<0.30	<0.1	0	<0.30	<0.30	0	<0.30	-
Chrysene Dibenz(a,h)anthracene	mg/kg mg/kg	0.1	<0.30 <0.30	<0.30 <0.30	0	<0.30 <0.30	<0.1 <0.1	0	<0.30 <0.30	<0.30 <0.30	0	<0.30 <0.30	-
Fluoranthene	mg/kg	0.1	<0.30	<0.30	0	<0.30	<0.1	0	<0.30	<0.30	0	<0.30	
Fluorene Indeno(1,2,3-c,d)pyrene	mg/kg mg/kg	0.1	<0.30 <0.30	<0.30 <0.30	0	<0.30 <0.30	<0.1 <0.1	0	<0.30 <0.30	<0.30 <0.30	0	<0.30 <0.30	
Naphthalene	mg/kg	0.1	<0.30	<0.30	0	<0.30	<0.1	0	<0.30	<0.30	0	<0.30	
Phenanthrene Pyrene	mg/kg mg/kg	0.1	<0.30 <0.30	<0.30 <0.30	0	<0.30 <0.30	<0.1 <0.1	0	<0.30 <0.30	<0.30 <0.30	0	<0.30 <0.30	_
PAHs (Sum of positives)	mg/kg	0.05	<0.30	<0.30	0	<0.30	<0.05	0	<0.30	<0.30	0	<0.30	
Organochlorine Pesticides 4,4-DDE		0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10	0	<0.10	
a-BHC	mg/kg mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10	0	<0.10	
Aldrin b-BHC	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10	0	<0.10	_
Chlordane (cis)	mg/kg mg/kg	0.1 0.1	<0.10 <0.10	<0.10 <0.10	0	<0.10 <0.10	<0.1 <0.1	0	<0.10 <0.10	<0.10	0	<0.10 <0.10	+
Chlordane (trans)	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10	0	<0.10	-
d-BHC DDD	mg/kg mg/kg	0.1	<0.10 <0.10	<0.10 <0.10	0	<0.10 <0.10	<0.1 <0.1	0	<0.10 <0.10	<0.10 <0.10	0	<0.10 <0.10	-
DDT	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10	0	<0.10	1
DDT+DDE+DDD Dieldrin	mg/kg mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1 <0.1	0	<0.10	<0.10	0	<0.10	+
Endosulfan I	mg/kg	0.1	<0.20	<0.20	0	<0.20	<0.1	0	<0.20	<0.20	0	<0.20	1
Endosulfan II Endosulfan sulphate	mg/kg mg/kg	0.1	<0.20 <0.10	<0.20 <0.10	0	<0.20 <0.10	<0.1	0	<0.20 <0.10	<0.20 <0.10	0	<0.20 <0.10	+
Endrin	mg/kg	0.1	<0.20	<0.20	0	<0.20	<0.1	0	<0.20	<0.20	0	<0.20	
Endrin aldehyde Endrin ketone	mg/kg mg/kg	0.1	<0.10 <0.10	<0.10 <0.10	0	<0.10 <0.10	<0.1	0	<0.10 <0.10	<0.10 <0.10	0	<0.10 <0.10	
g-BHC (Lindane)	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10	0	<0.10	
Heptachlor Heptachlor epoxide	mg/kg mg/kg	0.1	<0.10 <0.10	<0.10 <0.10	0	<0.10 <0.10	<0.1	0	<0.10 <0.10	<0.10 <0.10	0	<0.10 <0.10	+
Methoxychlor	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10	0	<0.10	上
Organophosphorous Pesticides Azinophos methyl	mg/kg	0.1					<0.1				$+ \neg \neg$		+
Bromophos-ethyl	mg/kg	0.1					<0.1						\perp
Chlorpyrifos Chlorpyrifos-methyl	mg/kg	0.1	<0.10 <0.10	<0.10 <0.10	0	<0.10 <0.10	<0.1 <0.1	0	<0.10 <0.10	<0.10 <0.10	0	<0.10 <0.10	+
Chlorpyrifos-methyl Tribuphos	mg/kg mg/kg	0.1	<0.10 <0.10	<0.10 <0.10	0	<0.10	<0.1	U	<0.10 <0.10	<0.10 <0.10	0	<0.10	\pm
Diazinon	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10	0	<0.10	F
Dichlorvos Dimethoate	mg/kg mg/kg	0.1			<u> </u>		<0.1 <0.1				┼──┤		+
Ethion	mg/kg	0.1					<0.1						1
Ethoprop Fenitrothion	mg/kg mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1		<0.10	<0.10	0	<0.10	+
Malathion	mg/kg	0.1					<0.1						\perp
Methyl parathion Parathion	mg/kg mg/kg	0.1 0.1	<0.10	<0.10	0	<0.10	<0.1		<0.10	<0.10	0	<0.10	+
Ronnel	mg/kg mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10	0	<0.10	
PCBs Arochlor 1016		0.1	<0.50	<0.50		<0.50	<0.1		<0.50	<0.50		<0.50	F
	mg/kg	0.1	<0.50	<0.50 <0.50	0	<0.50	<0.1 <0.1	0	<0.50 <0.50	<0.50	0	<0.50	
Arochlor 1221	mg/kg												
	mg/kg mg/kg	0.1	<0.50 <0.50	<0.50 <0.50	0	<0.50 <0.50	<0.1 <0.1	0	<0.50 <0.50	<0.50 <0.50	0	<0.50 <0.50	+

319690 DS12.SR2	
28 Mar 2023 Soil	PPD
5011	RPD
	1
11	75
7	33
<0.4	0
20	44
36	18 105
<0.1	0
9 32	106 86
<0.2 <0.5	0
<1	0
<2	0
<1 <1	0
<1	
<25	0
<50 <100	0
<100	0
<50	0
<25	0
<25	0
<50	0
<50	
<100	0
<100 <50	0
<0.1 <0.1	0
<0.1	0
<0.2	0
<0.1 <0.05	0
<0.1	0
<0.1 <0.1	0
<0.1	0
<0.1 <0.1	0
<0.1	0
<0.1	0
<0.1 <0.05	0
<0.1 <0.1	0
<0.1	0
<0.1	0
<0.1 <0.1	0
<0.1	0
<0.1 <0.1	0
<0.1	
<0.1 <0.1	0
<0.1	0
<0.1 <0.1	0
<0.1	0
<0.1 <0.1	0
<0.1	0
<0.1	0
<0.1	
<0.1 <0.1	
<0.1	0
<0.1 <0.1	0
<0.1	
<0.1	
<0.1	
<0.1	
<0.1	
<0.1	0
<0.1	0
<0.1	0
<0.1	0
<0.1	0

ADECONSULTING GROUP

		Lab Report Number	A101023.0120.00 (053-069)	A101023.0120.00 (053-069)		A101023.0120.00 (053-069)	319690		A101023.0120.00 (070-079)	A101023.0120.00 (053-069)		A101023.0120.00 (070-079)	319690	
		Field ID	DSI2.TP213_0.2-0.3	DSI2.BR1	1	DSI2.TP213_0.2-0.3	DS12.SR1	1	DSI2.TP233_0.4-0.5	DSI2.BR2	1 1	DSI2.TP233_0.4-0.5	DS12.SR2	
		Date	27 Mar 2023	27 Mar 2023	1	27 Mar 2023	27 Mar 2023	1	28 Mar 2023	27 Mar 2023	1	28 Mar 2023	28 Mar 2023	
Arochlor 1254	mg/kg	0.1	<0.50	<0.50	0	<0.50	<0.1	0	<0.50	<0.50	0	<0.50	<0.1	0
Arochlor 1260	mg/kg	0.1	<0.50	<0.50	0	<0.50	<0.1	0	<0.50	<0.50	0	<0.50	<0.1	0
PCBs (Sum of total)	mg/kg	0.1					<0.1						<0.1	
Perfluoroalkane Sulfonic Acids														
Perfluorobutane sulfonic acid (PFBS)	μg/kg	5	<5			<5								
Perfluoropentane sulfonic acid														
(PFPeS)	μg/kg	5	<5			<5								
Perfluorohexane sulfonic acid														
(PFHxS)	μg/kg	5	<5			<5								
Perfluoroheptane sulfonic acid														
(PFHpS)	µg/kg	5	<5			<5								
Perfluorooctane sulfonic acid (PFOS)	μg/kg	5	<5			<5								
Perfluoroalkane Carboxylic Acids														
Perfluorobutanoic acid (PFBA)	μg/kg	5	<5			<5								
Perfluoropentanoic acid (PFPeA)	μg/kg	5	<5			<5								
Perfluorohexanoic acid (PFHxA)	µg/kg	5	<5			<5								
Perfluoroheptanoic acid (PFHpA)	μg/kg	5	<5			<5								
Perfluorooctanoic acid (PFOA)	µg/kg	5	<5			<5								
Perfluorononanoic acid (PFNA)	μg/kg	5	<5			<5								
Perfluorodecanoic acid (PFDA)	µg/kg	5	<5			<5								
Perfluoroundecanoic acid (PFUnDA)	μg/kg	5	<5			<5								
Perfluorododecanoic acid (PFDoDA)	μg/kg	5	<5			<5								
Perfluorotridecanoic acid (PFTrDA)	μg/kg	5	<5			<5								
Perfluorotetradecanoic acid			-											
(PFTeDA)	µg/kg	5	<5			<5			l					-
Halogenated Benzenes								-						
Hexachlorobenzene	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10	0	<0.10	<0.1	0

*RPDs have only been considered where a concentration is greater than 1 times the EQL. **Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 100 (1 - 10 x EQL); 50 (10 - 20 x EQL); 30 (> 20 x EQL)) ***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Appendix VI – Test Pit Logs

		& L F	Pty Ltd		SILVERWATER NSW 2128 Telephone: 1300976922						essment Road, Kemps Creek NSW
					COMPLETED _27/3/23						
					ANC Foster						
					tor						
T P ES		Έ <u>1</u>	.2 x 0.	5		LOGGED BY	_MF	1		C	HECKED BY <u>AH</u>
Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
		-		CL	Fill : Silty SAND: fine to coarse grained, light to Natural CLAY: medium to high plasticity, deep r and grey mottling Test pit TP201 terminated at 0.8m		M	MD F		TP201 0.2-0.3	

			ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922	PROJECT NA	ME	Envi			IT NUMBER TP20 PAGE 1 O
ROJECT N	JMBER		23.0120		CATI		Mamre	e and Abbott	ts Road, Kemps Creek NSW
	TED 27	/3/23	COMPLETED _27/3/23	R.L. SURFAC	E				DATUM
			ANC Foster						
			ator						
EST PIT SIZ	ZE <u>1.2</u>	x 0.5		LOGGED BY	MH			(CHECKED BY AH
Water RL (m)	Depth (m)	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
	0.5	CL	Fill : Silty SAND: fine to coarse grained, light to Natural CLAY: low to medium plasticity, grey to and yellow mottling Test pit TP202 terminated at 0.7m		<u>м</u>	F			

e e e e e e e e e e e e e e e e e e e	R	-				ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				٦	TEST PI	T NUMBER TP203 PAGE 1 OF
PF	OJE	CT NU	JMBE	R _ A	10102	3.0120	PROJECT LO	CATI	ON _	Mamr	e and Abbotts	Road, Kemps Creek NSW
						COMPLETED _27/3/23						
						ANC Foster						
						tor						
	DTES		<u>с </u>	.2 X U	.5						0	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
			0.5			Fill : Silty SAND: fine to coarse grained, dark br plasticity, with rootlets	own, low		MD		TP203 0.1-0.2	Slight organic odour noted. FM: plastic, glass, general rubbish debris

PRO	JEC		& L F JMBE		10102	3.0120	PROJECT LC	CAT	ION _	Mamro	e and Abbot	sessment tts Road, Kemps Creek NSW
						COMPLETED 27/3/23						
						_ANC Foster						
IOTI			<u> </u>	.2 × 0.	0							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
			0.5		CL	Fill : Silty SAND: fine to coarse grained, dark br plasticity, with rootlets Natural CLAY: low to medium plasticity, grey to and yellow mottling Test pit TP204 terminated at 0.8m		M	F			Slight organic odour noted. FM: plastic, glass, general rubbish deb
			1.0									

8	R		C	A IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				7	FEST F	PIT NUMBER TP205 PAGE 1 OF 1
CL	IEN'	T _ AT	& L F	Pty Ltd			PROJECT NA		Envi	ronme	ental Site As	ssessment
PR	OJE	ECT NU	JMBE	R _ A	10102	3.0120	PROJECT LC	CATI	ON _	Mamr	e and Abbo	otts Road, Kemps Creek NSW
						COMPLETED 27/3/23						
EX	CAV	/ATIOI		NTRA	CTOR	ANC Foster	SLOPE					BEARING
						tor						
			E _1	.2 x 0.	.5		LOGGED BY	MH				CHECKED BY AH
NC	DTES	\$										
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
			0.5			Fill : Gravelly SAND: coarse grained, medium to trace medium sub-rounded to sub-angular grave Test pit TP205 terminated at 0.6m	dark brown, lis	D	MD			

ADE BOREHOLE / TESTPIT 23.0120 MAMRE RD V2F.GPJ GINT STD AUSTRALIA.GDT 14/4/23

2	R		0			ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922	TEST PIT NUMBER TP20 PAGE 1 OF							
CL	IEN	r _AT	& L F	Pty Lto	ł		PROJECT NAME Environmental Site Assessment							
PR	OJE	CT NU	JMBE	R _ A	10102	3.0120	PROJECT LC	CATI	ON _	Mamr	e and Abbotts	Road, Kemps Creek NSW		
DA	TE S	START	ED _	27/3/	23	COMPLETED _ 27/3/23	R.L. SURFAC	E			D	ATUM		
						ANC Foster								
						tor								
TE	ST F	PIT SIZ	E <u>1</u>	.2 x 0	.5		LOGGED BY	MH			c	HECKED BY AH		
NC	TES	;												
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations		
			- 0. <u>5</u> - -		CL	Fill : Silty SAND: coarse grained, light grey to bresub-angular gravels Natural CLAY: low to medium plasticity, grey to and yellow mottling Test pit TP206 terminated at 0.6m		M	F	0.4	TP206 0.2-0.3			

2	E			AI IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922							
				Pty Ltd									
PR	OJE	CT NL	JMBE	R _ A	10102	3.0120	PROJECT LOCATION _ Mamre and Abbotts Road, Kemps Creek NSW						
						COMPLETED <u>27/3/23</u>							
						ANC Foster							
						tor							
			E <u>1</u>	.2 x 0.	.5		LOGGED BY	MH				CHECKED BY AH	
NO	TES												
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations	
						Fill : Silty SAND: fine to coarse grained, dark bro rootlets	wn, with	D	MD			Slight organic odour noted. FM: plastic, glass, general rubbish debris	

ADE_BOREHOLE / TESTPIT 23.0120_MAMRE RD_V2F.GPJ GINT STD AUSTRALIA.GDT 14/4/23

10	R			AI IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922							
				Pty Ltd									
PF	OJE	CT NI	JMBE	R _ A	10102	3.0120	PROJECT LC	CATI	ON _	Mamr	e and Abbott	s Road, Kemps Creek NSW	
						COMPLETED 27/3/23							
						ANC Foster							
						tor							
	DTES		<u> </u>	.2 X U	.5						`		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations	
			0.5		CL	Fill : Silty SAND: fine to coarse grained, dark brocostets Natural CLAY: medium to high plasticity, deep r and grey mottling Test pit TP208 terminated at 0.8m		. М	F			Slight organic odour noted. FM: plastic, glass, general rubbish debris	

ADE_BOREHOLE / TESTPIT 23.0120_MAMRE RD_V2F.GPJ GINT STD AUSTRALIA.GDT 14/4/23

	ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				٦	rest pi	T NUMBER TP209 PAGE 1 OF 1		
CLIENT _ AT & L Pty Lt									
PROJECT NUMBER _	A101023.0120	PROJECT LOCATION Mamre and Abbotts Road, Kemps Creek NSW							
	3/23 COMPLETED 27/3/23 I								
	ANC Foster								
	e excavator (c 0.5								
NOTES	.0.5	LOGGED BY				U			
Method Water RL (m) Depth (m) Graphic Log	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations		
	Fill : Gravelty Silty SAND: coarse grained, dark bro sub-rounded to sub-angular gravels and pebbles, t rooitets CL Natural CLAY: Low to medium plasticity, grey to br and yellow mottling Test pit TP209 terminated at 1.2m	trace organic	M	F	0.3	TP209 0.5-0.6			

ADE_BOREHOLE / TESTPIT 23.0120_MAMRE RD_V2F.GPJ GINT STD AUSTRALIA.GDT 14/4/23

СП	ENT	- <u>AT</u>		CONS GRI Pty Ltd		VIIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922	PAGE 1 OF PROJECT NAME Environmental Site Assessment						
PR	OJE	CT NI	JMBE	R <u>A</u>	10102	3.0120	PROJECT LO	CAT	ON _	Mamr	e and Abbott	s Road, Kemps Creek NSW	
DA [.]	TE S	TAR	TED _	27/3/2	23	COMPLETED _27/3/23	R.L. SURFAC	Е			C	DATUM	
EX	CAV	ATIO	N CO	NTRAG	CTOR	ANC Foster	SLOPE				E	BEARING	
						tor							
E	ST P	IT SIZ	ZE _1	.2 x 0.	5		LOGGED BY	MH			c	HECKED BY AH	
10	TES		1					1				1	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations	
			- - - - -		CL	Fill : Silty SAND: coarse grained, trace sub-rour and cobbles, trace mottled yellow clay inclusions Natural CLAY: low to medium plasticity, grey to and yellow mottling Test pit TP210 terminated at 0.6m	3		MD	0.2	TP210 0.2-0.3		
			-										

		Г <u>АТ</u>		CONS GR Pty Ltc		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922	PROJECT NA	AME .	Envi			T NUMBER TP21 PAGE 1 OF
PR	OJE		UMBE	R _A	10102	3.0120	PROJECT LC	CAT		Mamr	e and Abbotts	s Road, Kemps Creek NSW
DA	TE S	STAR	TED	27/3/	23	COMPLETED _ 27/3/23	R.L. SURFAC	E				DATUM
						ANC Foster						
						tor						
TES	TEST PIT SIZE						LOGGED BY	MH			c	HECKED BY AH
NO	TES											
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
ш	-					Fill : Silty SAND: fine to coarse grained, dark bro rootlets	own, with	M	MD			Slight organic odour noted. FM: plastic, glass, general rubbish debr
			-							0.1		
											TP211 0.1-0.2	
			_									-
			_									
			_									
					CL	Natural Silty CLAY: low to medium plasticity, ligh yellow and grey mottling, some organic rootlets	nt orange with	М	F			
			0.5									
										0.1		
											TP211 0.5-0.6	
											11 211 0.5-0.0	
			-									
1						Test pit TP211 terminated at 0.7m						
			_									
	I		1.0									

	т _ат			DU	P Telephone: 1300976922								
ROJE		JMBE	R <u>A</u>	10102	3.0120	PROJECT LC	CAT	ION _	Mamr	e and Abbot	ts Road, Kemps Creek NSW		
ATE	STAR	red _	27/3/2	23	COMPLETED 27/3/23	R.L. SURFAC	E _				DATUM		
XCAV	/ATIO		NTRAC	TOR	ANC Foster	SLOPE					BEARING		
QUIP	MENT	8 tc	onne e	xcava	tor	COORDINAT	ES _	E 295	574.5	1 m N 6251	5552.05 m		
EST PIT SIZE <u>1.2 x 0.5</u>						LOGGED BY	MH	1			CHECKED BY AH		
IOTES	<u> </u>							1					
Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations		
U					Fill : Silty SAND: fine to coarse grained, dark bro rootlets	prown, with	D	MD			Slight organic odour noted. FM: plastic, glass, general rubbish debri		
		_		CL	Natural CLAY: low to medium plasticity, grey to and yellow mottling Test pit TP212 terminated at 0.6m	brown, with red	м	F					

No.	EX C		C	AI IONS GRI		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922					fest pi	T NUMBER TP213 PAGE 1 OF 1
CL	IEN	T AT	& L F	Pty Ltd			PROJECT NA	ME	Envi	ronme	ental Site Asse	essment
PR	OJE	ECT NU	JMBE	R _ <u>A</u>	10102	3.0120	PROJECT LC	CAT	ON _	Mamr	e and Abbotts	Road, Kemps Creek NSW
DA	TE	START	ED _	27/3/2	23	COMPLETED 27/3/23	R.L. SURFAC	E			D	ATUM
EX				NTRAC	CTOR	ANC Foster	SLOPE				B	EARING
EC	QUIP	MENT	<u>8 tc</u>	onne e	xcava	tor	COORDINAT	ES _	E 295	575.3	4 m N 62515	19.86 m
			E _1	.2 x 0.	5		LOGGED BY	MH			c	HECKED BY AH
Method	Water	Br (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
						Fill Silty Gravelly CLAY: low plasticity, light grey, sub-rounded to sub-angular gravels Natural CLAY: Low to medium plasticity, red with mottling Test pit TP213 terminated at 0.9m		<u>м</u> м	MD F	0.4	TP213 0.2-0.3	

			& L F	ty Ltd		P SILVERWATER NSW 2128 Telephone: 1300976922		-				ssessment
						3.0120						otts Road, Kemps Creek NSW
						COMPLETED 27/3/23						
						ANC Foster						
0	TES											
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
Ш			-			Fill : Gravelly SAND: fine to coarse grained, dar angular gravels and rootlets	k brown, some	M	MD			
			0 <u>.5</u> 			Fill Silty Gravelly CLAY: low plasticity, light grey, sub-angular gravels	some	M	S			
			- - 1 <u>.5</u>		CL	Natural CLAY: low to medium plasticity, grey to and yellow mottling	brown, with red	м	F			
						Test pit TP214 terminated at 1.7m						
			_									

		_	& L F	Pty Ltd		SILVERWATER NSW 2128 Telephone: 1300976922		-				sessment
RC	JE	CT NI	JMBE	R <u>A</u>	10102	3.0120	PROJECT LC	CATI	ON _	Mamr	e and Abbot	ts Road, Kemps Creek NSW
						COMPLETED 27/3/23						
						ANC Foster						
						tor						
	T P		'E _1	.2 x 0.	5		_ LOGGED BY	MH				CHECKED BY <u>AH</u>
_	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
					CL	Fill Silty CLAY: low plasticity clay, light grey, with mottling, some weathered shale fragments		M M	F	0.3	TP215 0.2-0.	
						Test pit TP215 terminated at 1.9m						

			&LF	Pty Ltd		SILVERWATER NSW 2128 Telephone: 1300976922						
)AT	TE S	TAR	ED_	27/3/2	23	COMPLETED 27/3/23	R.L. SURFAC	E			D	DATUM
						ANC Foster						
						tor						
	TES		<u> </u>	.2 x 0.	.5		_ LOGGED BY	_MH			U	
	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
			- - 0. <u>5</u> - - - 1.0		CL	Fill Gravelly SILT: fine to coarse grained, light g sub-rounded to sub-angular gravels		M	VD F	0.6	TP216 0.4-0.6	
			- - 1 <u>.5</u> - - 2.0									

1	R			AI IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				٦	EST P	PIT NUMBER TP217 PAGE 1 OF 1
CL	IEN	T <u>A</u> T	& L F	Pty Ltd			PROJECT NA	ME _	Envi	ronme	ental Site As	sessment
PR	OJE	CT NU	JMBE	R _ A	10102	3.0120	PROJECT LC	CATI	ON _	Mamr	e and Abbot	ts Road, Kemps Creek NSW
DA	TE S	START	ED _	28/3/2	23	COMPLETED	R.L. SURFAC	E				DATUM
						ANC Foster						
						tor						
ΤE	ST F	PIT SIZ	Έ <u>1</u>	.2 x 0	.5		LOGGED BY	MH				CHECKED BY AH
NC	TES	;										
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
			- 0 <u>.5</u> -			Fill : Silty SAND: fine to coarse grained, dark br rootlets	own, with		MD			Slight organic odour noted. FM: plastic, glass, general rubbish debris

10	R			AI IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				٦	EST P	PAGE 1 OF 1
		Г <u>АТ</u>										
PR	OJE	CT NU	JMBE	R <u>A</u>	10102	3.0120	PROJECT LC	CATI	ON _	Mamr	e and Abbott	s Road, Kemps Creek NSW
						COMPLETED _ 28/3/23						
						ANC Foster						
	DTES											
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
						Fill : Silty SAND: fine to coarse grained, dark bro rootlets	wn, with	M	MD			Slight organic odour noted. FM: plastic, glass, general rubbish debris

2	3				ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				٦	TEST PI	T NUMBER TP219 PAGE 1 OF
					3.0120						s Road, Kemps Creek NSW
					ANC Foster						
					tor						
NOTE	S_				1			<u> </u>			1
Method Water		Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
		0.1			Fill : Silty SAND: fine to coarse grained, dark br rootlets	own, with		MD	1.1	TP219 0.2-0.3	Slight organic odour noted. FM: plastic, glass, general rubbish debr

10	R			A I I I I I I I I I I I I I I I I I I I		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				1	TEST P	IT NUMBER TP220 PAGE 1 OF 1
								ME _	Envi	ronme	ental Site Ass	sessment
PR	OJE	CT NU	JMBE	R <u>A</u>	10102	3.0120	PROJECT LC	CATI	ON _	Mamr	e and Abbot	s Road, Kemps Creek NSW
						COMPLETED 28/3/23						
EX	CAV	ATIO		NTRA	CTOR	ANC Foster	SLOPE					BEARING
						tor						
			E <u>1</u>	.2 x 0.	.5		LOGGED BY	MH				CHECKED BY AH
NC	DTES											
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
						Fill : Silty SAND: fine to coarse grained, dark bro rootlets	own, with	M	MD			Slight organic odour noted. FM: plastic, glass, general rubbish debris

3		i i		AI IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				-	FEST PI	T NUMBER TP22 PAGE 1 OF
CLI	ENT	T <u>A</u> T	* & L F	Pty Ltd		117	PROJECT NA	AME	Envi	ronme	ental Site Ass	essment
PR	OJE		UMBE	R <u>A</u>		3.0120		CAT		Mamr	e and Abbott	s Road, Kemps Creek NSW
DA	TE S	STAR	TED	28/3/2	23	COMPLETED _28/3/23	R.L. SURFAC	E				
						ANC Foster						
ΞQ	UIPI	MENT	<u>8 to</u>	onne e	xcava	tor	COORDINAT	ES _	E 295	670.2	9 m N 62512	279.82 m
			ZE _1	.2 x 0.	5		LOGGED BY	MF	ł		c	CHECKED BY AH
10	TES							-				
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
Ш						Fill : Silty SAND: fine to coarse grained, dark br rootlets	own, with	M	MD			Slight organic odour noted. FM: plastic, glass, general rubbish debi
			-							0.4		-
											TP221 0.1-0.2	
			-									-
			-									
			_									
			0.5									
			0.0			Test pit TP221 terminated at 0.5m					-	
			-									
			_									
			-									
			-									
			1.0									

2	ŝ			AI IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				1	EST P	IT NUMBER TP222 PAGE 1 OF 1
CLIE	ENT	AT	& L F	Pty Ltd	1		PROJECT NA		Envi	ronme	ntal Site As	sessment
PRC	JE	CT NU	JMBE	R _A	10102	3.0120	PROJECT LC	CATI	ON _	Mamr	e and Abbot	ts Road, Kemps Creek NSW
DAT	E S	TART	ED _	28/3/2	23	COMPLETED <u>28/3/23</u>	_ R.L. SURFAC	Е				DATUM
EXC	AV.	ATIO		ITRA	CTOR	ANC Foster	SLOPE					BEARING
EQL	JIPN	/IENT	<u>8 tc</u>	onne e	excava	tor	COORDINAT	ES _[E 295	675.9	5 m N 6251	260.34 m
TES	ΤP	IT SIZ	E <u>1</u>	.2 x 0	.5		LOGGED BY	MH				CHECKED BY AH
NOT	res								1			1
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
ш			0.5			Fill : Silty SAND: fine to coarse grained, dark br rootlets	own, with	м	MD			Slight organic odour noted. FM: plastic, glass, general rubbish debris

2	E		C	AI IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				٦	EST P	IT NUMBER TP223 PAGE 1 OF 1
CLI	IENT	AT	& L F	Pty Ltd	l		PROJECT NA	ME _	Envi	ronme	ental Site Ass	sessment
PR	OJE	CT NI	JMBE	R _ A	10102	3.0120	PROJECT LC	CATI	ON _	Mamr	e and Abbot	ts Road, Kemps Creek NSW
DA	TE S	START	ED _	28/3/2	23	COMPLETED <u>28/3/23</u>	R.L. SURFAC	Е				DATUM
EX	CAV			NTRA	CTOR	ANC Foster	SLOPE					BEARING
						tor						
TE	ST P	IT SIZ	E 1	.2 x 0	.5		LOGGED BY	MH				CHECKED BY AH
NO	TES											
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
						Fill : Silty SAND: fine to coarse grained, dark br rootlets	own, with	M	MD			Slight organic odour noted. FM: plastic, glass, general rubbish debris

TEST DIT NUMBED TD222

2				AI IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				٦	EST P	IT NUMBER TP224 PAGE 1 OF 1
CL	IENT	AT	& L F	Pty Ltd			PROJECT NA	ME _	Envi	ronme	ental Site Ass	sessment
PR	OJE	CT NL	JMBE	R _A	10102	3.0120	PROJECT LC	CATI	ON _	Mamr	e and Abbot	ts Road, Kemps Creek NSW
DA	TE S	START	ED _	28/3/2	23	COMPLETED <u>28/3/23</u>	R.L. SURFAC	E				DATUM
EX	CAV	ATIO		NTRA	CTOR	ANC Foster	SLOPE					BEARING
EQ	UIPI	MENT	8 tc	onne e	xcava	tor	COORDINAT	ES _I	<u>= 295</u>	716.1	0 m N 6251	208.32 m
ΤE	ST P	IT SIZ	E _1	.2 x 0	5		LOGGED BY	MH				CHECKED BY AH
NC	TES							1	1			1
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
			- - - - - - -			Fill : Silty SAND: fine to coarse grained, dark bro rootlets	own, with	м	MD			Slight organic odour noted. FM: plastic, glass, general rubbish debris

3	R		0	AI IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				٦	fest pi	T NUMBER TP225 PAGE 1 OF 1
СГ	IEN	T <u>A</u> T	& L F	Pty Ltd	1		PROJECT NA	ME	Envi	ronme	ental Site Ass	essment
PF	OJE	CT NU	JMBE	R _ A	10102	3.0120	PROJECT LC	CATI	ON _	Mamr	e and Abbott	s Road, Kemps Creek NSW
DA	TE S	START	ED _	28/3/2	23	COMPLETED _ 28/3/23	R.L. SURFAC	E			C	DATUM
ЕΧ	CAV	OITA		NTRA	CTOR	ANC Foster	SLOPE				E	BEARING
EC	UIP	MENT	<u>8 to</u>	onne e	excava	tor	COORDINAT	ES _	E 295	716.6	7 m N 62511	74.86 m
TE	ST F	PIT SIZ	E _1	.2 x 0	.5		LOGGED BY	MH			(HECKED BY AH
NC	DTES	;							1		1	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
						Fill : Silty SAND: fine to coarse grained, dark bro rootlets			MD	0.2	TP225 0.4-0.5	

				ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				٦	EST P	IT NUMBER TP226 PAGE 1 OF 1
						ME _	Envi	onme	ntal Site Ass	essment
PROJECT N	UMBEF	RA1	01023	3.0120	PROJECT LC	CATI	ON _	Mamr	e and Abbott	s Road, Kemps Creek NSW
				COMPLETED _28/3/23						
EXCAVATIC	N CON	TRAC	TOR	ANC Foster	SLOPE				E	BEARING
				or						
	ZE <u>1.2</u>	2 x 0.5	5		LOGGED BY	MH			(CHECKED BY AH
NOTES										
Method Water RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
	0.5			Fill : Silty SAND: fine to coarse grained, dark bro rootlets	own, with	M	MD			Slight organic odour noted. FM: plastic, glass, general rubbish debris

2	8	6				ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922					rest pi	PAGE 1 OF 1
CLIE	ENT	AT	& L F	Pty Lto	1		PROJECT NA	ME _	Envi	ronme	ental Site Ass	essment
PRO	JEC	CT NU	JMBE	R _ A	10102	3.0120	PROJECT LC	CATI	ON _	Mamr	e and Abbott	s Road, Kemps Creek NSW
DAT	E SI	TART	ED _	28/3/	23	COMPLETED <u>28/3/23</u>	R.L. SURFAC	E			[DATUM
EXC	AVA			NTRA	CTOR	ANC Foster	SLOPE				E	BEARING
EQU	JIPM	IENT	<u>8 to</u>	onne e	excava	tor	COORDINAT	ES _[E 295	747.6	6 m N 6251′	125.59 m
TES	t pi	T SIZ	E <u>1</u>	.2 x 0	.5		LOGGED BY	MH			(CHECKED BY AH
NOT	ES								1			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
			0 <u>.5</u>			Fill : Silty SAND: fine to coarse grained, dark broconters Natural Silty CLAY: Low to medium plasticity, lig yellow and grey mottling, some rootlets Test pit TP227 terminated at 0.6m			MD	0.4	TP227 0.3-0.4	Slight organic odour noted. FM: plastic, glass, general rubbish debris

		NSLILTIN ROUP	ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				Т	EST P	T NUMBER TP228 PAGE 1 OF
CLIENT AT 8	& L Pty Lt	Ltd		PROJECT NA	ME _	Envir	onme	ntal Site Ass	essment
PROJECT NUI	MBER _/	A101023	3.0120	PROJECT LO	CATI	ON _	Mamre	e and Abbott	s Road, Kemps Creek NSW
DATE STARTE	ED _ 28/3	/3/23	COMPLETED _28/3/23	R.L. SURFAC	E			[DATUM
			ANC Foster						
			or						
TEST PIT SIZE	<u>1.2 x</u>	x 0.5		LOGGED BY	MH			(CHECKED BY AH
NOTES									
Method Water RL (m)	Depth (m) Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
		CL	Fill : Silty SAND: fine to coarse grained, dark bro rootlets Natural Silty CLAY: Low to medium plasticity, ligh yellow and grey mottling, some rootlets Test pit TP228 terminated at 0.6m		M	F			Slight organic odour noted. FM: plastic, glass, general rubbish debris

3				AI IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				٦	TEST PI	T NUMBER TP229 PAGE 1 OF 1
CL	IENT	AT	& L F	Pty Ltd			PROJECT NA	ME .	Envi	ronme	ental Site Ass	essment
PR	OJE	CT NL	JMBE	R _A	10102	3.0120	PROJECT LC	CATI	ON _	Mamr	e and Abbotts	s Road, Kemps Creek NSW
DA	TE S	START	ED _	28/3/2	23	COMPLETED _ 28/3/23	R.L. SURFAC	Е			C	DATUM
EX	CAV	ATIO		ITRA	CTOR	ANC Foster	SLOPE				B	EARING
EQ	UIPI	MENT	<u>8 tc</u>	onne e	xcava	tor	COORDINAT	ES _	E 295	760.1	<u>6 m N 62510</u>	60.76 m
TE	ST P	IT SIZ	E _1	.2 x 0.	5		LOGGED BY	MH			c	HECKED BY AH
NO	TES							-	1			1
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
			- - - - - - -			Fill : Silty SAND: fine to coarse grained, dark bro rootlets	own, with	м	MD	1	TP229 0.2-0.3	Slight organic odour noted. FM: plastic, glass, general rubbish debris

100	R		C			ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				٦	EST P	IT NUMBER TP230 PAGE 1 OF 1
CL	IEN ⁻	T AT	& L F	Pty Lto	1		PROJECT NA	ME _	Envi	ronme	ntal Site As	sessment
PR	OJE	CT NU	JMBE	R _A	10102	3.0120	PROJECT LC	CATI	ON _	Mamr	e and Abbot	ts Road, Kemps Creek NSW
DA	TE S	START	ED	28/3/	23	COMPLETED _28/3/23	R.L. SURFAC	E				DATUM
						ANC Foster						
						tor						
ΤE	ST F	PIT SIZ	E <u>1</u>	.2 x 0	.5		LOGGED BY	MH				CHECKED BY AH
NC	DTES	s										_
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
			0.5			Fill : Silty SAND: fine to coarse grained, dark br rootlets	own, with		MD			Slight organic odour noted. FM: plastic, glass, general rubbish debris

3	R		1			ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				٦	iest pi	T NUMBER TP231 PAGE 1 OF
CL	IENT	T <u>A</u> T	& L F	Pty Lto			PROJECT N/	ME _	Envi	ronme	ental Site Ass	essment
PR	OJE	CT NU	JMBE	R _ A	10102	3.0120	PROJECT LO	CATI	ON _	Mamr	e and Abbott	s Road, Kemps Creek NSW
DA	TE S	START	ED _	28/3/	23	COMPLETED _ 28/3/23	R.L. SURFAC	Е			C	DATUM
EX	CAV	ATIO		NTRA	CTOR	ANC Foster	SLOPE				E	BEARING
EQ	UIPI	MENT	<u>8 to</u>	onne e	excava	tor	COORDINAT	ES _I	E 295	795.1	<u>6 m N 62510</u>)11.21 m
ΤE	ST P	PIT SIZ	E _1	.2 x 0	.5		LOGGED BY	MH			c	CHECKED BY AH
NC	TES			1					1			1
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
			- 0 <u>.5</u> -			Fill : Silty SAND: fine to coarse grained, dark brocolets	own, with		MD	0.4	TP231 0.1-0.2	Slight organic odour noted. FM: plastic, glass, general rubbish debris

1	K			AI IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				٦	EST P	IT NUMBER TP232 PAGE 1 OF 1
CL	IEN	AT	& L F	Pty Ltd	1		PROJECT NA	ME _	Envi	ronme	ntal Site As	sessment
PR	OJE	CT NU	JMBE	R _ A	10102	3.0120	PROJECT LC	CATI	ON _	Mamr	e and Abbot	ts Road, Kemps Creek NSW
DA	TE S	START	ED _	28/3/2	23	COMPLETED <u>28/3/23</u>	R.L. SURFAC	Е				DATUM
EX	CAV			NTRA	CTOR	ANC Foster	SLOPE					BEARING
						tor						
ΤЕ	ST F	PIT SIZ	E _1	.2 x 0	.5		LOGGED BY	MH				CHECKED BY AH
NC	TES	;										
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
			0.5			Fill : Silty SAND: fine to coarse grained, dark brootlets	own, with	м	MD			Slight organic odour noted. FM: plastic, glass, general rubbish debris

	R		C	A I I I I I I I I I I I I I I I I I I I		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922					rest pi	T NUMBER TP233 PAGE 1 OF	
												essment	
PF	OJE	CT NU	JMBE	R _ A	10102	3.0120	PROJECT LC	CATI	ON _	Mamr	e and Abbott	s Road, Kemps Creek NSW	
						COMPLETED <u>28/3/23</u>							
EX	CAV	OITA		NTRA	CTOR	ANC Foster	SLOPE				E	BEARING	
							COORDINATES E 295804.78 m N 6250958.72 m						
			E <u>1</u>	.2 x 0.	5		LOGGED BY	MH			(CHECKED BY AH	
NC	DTES	; 						1				1	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations	
			- 0 <u>.5</u> -			Fill : Silty SAND: fine to coarse grained, dark br rootlets	own, with	м	MD	0.2	TP233 0.4-0.5	Slight organic odour noted. FM: plastic, glass, general rubbish debris	

	ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				7	rest pi	T NUMBER TP234 PAGE 1 OF
			_				essment
PROJECT NUMBER _ A10	1023.0120	PROJECT LO	CATI	ON _	Mamr	e and Abbotts	Road, Kemps Creek NSW
	COMPLETED <u>27/3/23</u>						
	OR ANC Foster cavator						
NOTES			1	1		1	
Method Water RL (m) Depth (m) Graphic Log	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
	Fill : Sity SAND: fine to coarse grained, dark bror rootlets			MD	0.1	TP234 0.3-0.4	*Slight organic odour noted.

8	K	1	0			ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				7	FEST PI	T NUMBER TP235 PAGE 1 OF 1
				Pty Ltd								essment
PR	OJE	CT NU	JMBE	R _ A	10102	3.0120	PROJECT LC	CATI	ON _	Mamr	e and Abbotts	s Road, Kemps Creek NSW
						COMPLETED <u>27/3/23</u>						
						_ANC Foster						
	TES						-					
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
			- - - - -			Fill : Gravelly SAND: coarse grained, light yellow sub-rounded to sub-angular gravels Test pit TP235 terminated at 0.9m	v to orange, with			0.7	TP235 0.3-0.4	FM: general rubbish debris, glass, aluminium

5	R	i i	C	AI IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				7	rest pi	T NUMBER TP236 PAGE 1 OF 1
		r _ AT						AME _	Envi	ronme	ental Site Asse	essment
PR	OJE	CT NI	JMBE	R _A	10102	3.0120	PROJECT LO	OCATI	ON _	Mamr	e and Abbotts	s Road, Kemps Creek NSW
						COMPLETED 27/3/23						
						ANC Foster						
						tor						
	ST F DTES		E <u>1</u>	.2 x 0	.5		LOGGED BY	MH			C	HECKED BY <u>AH</u>
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
			- - - - - - - - - - - - - - - - - - -			Fill : Clayey SAND: coarse grained, light grey, morange, with highly weathered shale fragments Test pit TP236 terminated at 1m	ottled red and	м	MD	0.1	TP236 0.8-0.9	FM: general rubbish debris, glass, aluminium

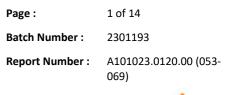
100	R		C			ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922	TEST PIT NUMBER TP23 PAGE 1 OF							
CL	IENT	T <u>A</u> T	& L F	ty Ltd			PROJECT NA	ME _	Envi	ronme	ental Site Ass	essment		
PR	OJE	CT NU	JMBE	R _A	101023	3.0120	PROJECT LC	CATI	ON _	Mamr	e and Abbott	s Road, Kemps Creek NSW		
DA	TE S	START	ED _	28/3/2	23	COMPLETED _ 28/3/23	R.L. SURFAC	Е			[DATUM		
						ANC Foster								
						tor								
ΤE	ST F	PIT SIZ	E 1	.2 x 0.	5		LOGGED BY	MH			(CHECKED BY AH		
NC	TES							1				1		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations		
			0.5			Fill : Silty CLAY: low to medium plasticity, dark g and yellow mottling, some rootlets	rey, with orange					Slight organic odour noted. FM: plastic, glass, general rubbish debris		

TEST DIT NI IMBED TD227

a de la comercia de l				ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				T	EST P	PAGE 1 OF 1
						ME _	Envi	ronme	ntal Site As	sessment
PROJECT N	UMBER	A10	01023	3.0120	PROJECT LO	CATI	ON _	Mamre	e and Abbot	ts Road, Kemps Creek NSW
				COMPLETED 28/3/23						
EXCAVATIO	N CONT	RACI	FOR .	ANC Foster	SLOPE					BEARING
				or						
	ZE <u>1.2</u>		LOGGED BY	MH				CHECKED BY AH		
NOTES										
Method Water RL (m)	Depth (m)	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations		
			CL	Fill : Silty SAND: fine to coarse grained, dark brocoded rootlets Natural CLAY: low to medium plasticity, grey to and yellow mottling Test pit TP238 terminated at 0.7m		M	F			Slight organic odour noted. FM: plastic, glass, general rubbish debris

		C			ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922	TEST PIT NUMBER TP23 PAGE 1 OF								
CLIENT	AT	& L P	ty Ltd			PROJECT NA	ME _	Envi	ronme	ental Site Asse	essment			
PROJEC	CT NU	JMBE	R _ A′	101023	3.0120	PROJECT LC	CATI	ON _	Mamr	e and Abbotts	Road, Kemps Creek NSW			
DATE S	TART	ED	28/3/2	23	COMPLETED _ 28/3/23	R.L. SURFAC	E			D	ATUM			
					ANC Foster									
					tor									
NOTES						-								
Method Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations			
		0.5			Fill : Gravelly SAND: coarse grained, medium b sub-angular gravels	rown, with	M		0.5	TP239 0.2-0.3	Slight organic odour noted. FM: plastic, glass, general rubbish debris			

TEST DIT NI IMBED TD220



Appendix VII – Analytical Reports and Chain of Custody Documentation

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950 Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Accreditation No.14664 Accredited for compliance with ISO/IEC 17025 - Testing.

This certificate of analysis contains General Comments and Analytical Results. Quality Control Report and Laboratory Quality Acceptance Criteria have been issued separately.

This report supersedes any previous report(s) with this reference. This document shall not be reproduced, except in full.

This report has been electronically signed by authorised signatories below.

Authorised By

Kayu L's

Kaiyu Li

 Page :
 2 of 14

 Batch Number :
 2301193

 Report Number :
 A101023.0120.00 (053-069)

General Comments

Samples are analysed on as received basis. Sampling is not covered by NATA accreditation.

Where moisture determination has been performed, results are reported on dry weight basis.

Where the PQL of reported result differs from standard PQL, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Samples were analysed within holding time described by laboratory internal procedures if not stated otherwise. If samples delivered do not meet required analytical criteria, results will be marked with ^.

However surrogate standards are added to samples, results are not corrected for standards recoveries.

Analysis of VOC in water samples are performed on unfiltered waters (as received) spiked with surrogates and injection standards only.

SLS is responsible for all the information in the report, except that provided by the customer.

All sampling information included in the report has been provided by customer.

Information provided by the customer can affect the validity of the results.

 Page :
 3 of 14

 Batch Number :
 2301193

 Report Number :
 A101023.0120.00 (053-069)

Certificate of Analysis

Contact:	Andrew Hunt	Date Reported:	5/04/2023
Customer:	ADE Consulting Group	No. of Samples:	17
Address:	Unit 6	Date Received:	29/03/2023
	7 Millennium Court Silverwater NSW	Date of Analysis:	29/03/2023

Cust Ref: A101023.0120.00 002 L05

Glossary:	*NATA accreditation does not cover the performance of this service
	ND-not detected,
	NT-not tested
	INS-Insufficient material to perform the test
	LCS-Laboratory Control Sample
	RPD-Relative Percent Difference
	N/A-Not Applicable
	< less than
	> greater than
	PQL- Practical Quantitation Limit
	^Analytical result might be compromised due to sample condition or holding time requirements
	Reaction rate 1 = Slight
	Reaction rate 2 = Moderate
	Reaction rate 3 = High
	Reaction rate 4 = Vigorous

. .

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court Silverwater 2128 Ph: (02) 9648-6669

Page: 4 of 14

Batch Number : 2301193

Report Number : A101023.0120.00 (053-069)

Certificate of Analysis

		Sample ID:	2023008053	2023008054	2023008055	2023008056	2023008057	2023008058	2023008059	2023008060	2023008061	2023008062	2023008063
	Sa	mple Name	DSI2.BR1	DSI2.BR2	DSI2.TP201_0.2- 0.3	DSI2.TP201_0.5- 0.6	DSI2.TP203_0.1- 0.2	DSI2.TP206_0.2- 0.3	DSI2.TP209_0.5- 0.6	DSI2.TP210_0.2- 0.3	DSI2.TP213_0.2- 0.3	DSI2.TP213_0.7- 0.8	DSI2.TP215_0.2- 0.3
Parameter	Units	PQL	Sample Date:27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023
ESA-P-ORG7 & ORG8													
Benzene	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Toluene	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Ethylbenzene	mg/kg	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
m.p Xylene	mg/kg	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
o Xylene	mg/kg	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Sum of BTEX	mg/kg	2	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Total Xylenes	mg/kg	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Fluorobenzene (Surr.)	%		92	97	93	91	93	92	97	91	92	95	95
C6-C10	mg/kg	35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35
C6-C10 minus BTEX	mg/kg	35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35
C6-C9	mg/kg	25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
ESA-MP-01,ICP-01													
Arsenic	mg/kg	5	11.8	7.7	6.5	7.7	8.8	13.4	14.2	9.2	<5.0	11.6	7.2
Cadmium	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Chromium	mg/kg	1	41.8	20.8	78.7	16.1	56.3	20.7	63.8	14.3	22.3	15.7	13.3
Copper	mg/kg	5	23.7	25.1	27.9	12.6	59.6	20.0	28.9	41.4	35.3	21.7	43.3
Lead	mg/kg	5	42.8	62.5	109.6	16.1	94.4	45.7	146.8	22.3	60.2	18.0	26.7
Mercury	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Nickel	mg/kg	1	58.4	14.5	77.3	5.4	39.0	11.4	54.5	30.9	50.3	8.1	32.2
Zinc	mg/kg	5	57.1	94.4	90.0	17.5	151.2	45.2	94.5	100.0	84.5	31.5	117.7
ESA-P-12													
% Moisture Content	%		10.0	11.9	14.2	17.3	14.1	11.9	6.8	10.4	8.4	14.1	15.2
ESA-P-ORG(12 - 15)													
Acenaphthene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30

Page: 5 of 14

Batch Number: 2301193

Report Number : A101023.0120.00 (053-

069)

Certificate of Analysis

		Sample ID:	2023008053	2023008054	2023008055	2023008056	2023008057	2023008058	2023008059	2023008060	2023008061	2023008062	2023008063
	Sa	imple Name	DSI2.BR1	DSI2.BR2	DSI2.TP201_0.2- 0.3	DSI2.TP201_0.5- 0.6	DSI2.TP203_0.1- 0.2	DSI2.TP206_0.2- 0.3	DSI2.TP209_0.5- 0.6	DSI2.TP210_0.2- 0.3	DSI2.TP213_0.2- 0.3	DSI2.TP213_0.7- 0.8	DSI2.TP215_0.2- 0.3
Parameter	Units	PQL	Sample Date:27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023
Acenaphthylene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Anthracene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[a]anthracene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[a]pyrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[g,h,i]perylene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[b,k]fluoranthene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Chrysene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Dibenzo[a,h]anthracene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Fluoranthene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Fluorene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Indeno(1,2,3-cd)pyrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Naphthalene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Phenanthrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Pyrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Sum of Positive PAHs	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo(a)pyrene TEQ (Zero)	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo(a)pyrene TEQ (Half PQL)	mg/kg	0.3	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
Benzo(a)pyrene TEQ (PQL)	mg/kg	0.3	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
p-Terphenyl-d14 (Surr.)	%		89	85	91	87	82	82	81	89	83	85	90
aldrin	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
a-BHC	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
b-BHC	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
d-BHC	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
g-BHC (lindane)	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
cis-chlordane	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
trans-chlordane	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd

Unit 4/10-11 Millennium Court

Silverwater 2128

Ph: (02) 9648-6669

Page: 6 of 14

Batch Number: 2301193

Report Number : A101023.0120.00 (053-

069)

Certificate of Analysis

		Sample ID:	2023008053	2023008054	2023008055	2023008056	2023008057	2023008058	2023008059	2023008060	2023008061	2023008062	2023008063
	Sa	mple Name	DSI2.BR1	DSI2.BR2	DSI2.TP201_0.2- 0.3	DSI2.TP201_0.5- 0.6	DSI2.TP203_0.1- 0.2	DSI2.TP206_0.2- 0.3	DSI2.TP209_0.5- 0.6	DSI2.TP210_0.2- 0.3	DSI2.TP213_0.2- 0.3	DSI2.TP213_0.7- 0.8	DSI2.TP215_0.2- 0.3
Parameter	Units	PQL	Sample Date:27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023
4,4'-DDD	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
4,4'-DDE	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
4,4'-DDT	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
dieldrin	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
endosulfan I	mg/kg	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
endosulfan II	mg/kg	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
endosulfan sulfate	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
endrin	mg/kg	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
endrin aldehyde	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
endrin ketone	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
heptachlor	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
heptachlor epoxide	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
hexachlorobenzene	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
methoxychlor	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TCMX (Surr.)	%		104	98	99	96	91	97	92	107	98	103	99
chlorpyrifos	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
chlorpyrifos methyl	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
diazinon	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
fenchlorphos	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
methyl parathion	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
prophos	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
tributylphosphorotrithioite	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Aroclor 1016	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1221	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1232	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1242	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd

Unit 4/10-11 Millennium Court Silverwater 2128

Page: 7 of 14

Batch Number : 2301193

Report Number : A101023.0120.00 (053-069)

Certificate of Analysis

		Sample ID:	2023008053	2023008054	2023008055	2023008056	2023008057	2023008058	2023008059	2023008060	2023008061	2023008062	2023008063
	Sample N. neter Units PQ. mg/kg 0.5 mg/kg 0.5 mg/kg 0.5		DSI2.BR1	DSI2.BR2	DSI2.TP201_0.2- 0.3	DSI2.TP201_0.5- 0.6	DSI2.TP203_0.1- 0.2	DSI2.TP206_0.2- 0.3	DSI2.TP209_0.5- 0.6	DSI2.TP210_0.2- 0.3	DSI2.TP213_0.2- 0.3	DSI2.TP213_0.7- 0.8	DSI2.TP215_0.2- 0.3
Parameter	Units	PQL	Sample Date:27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023
Aroclor 1248	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1254	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1260	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
2-fluorobiphenyl (Surr.)	%		90	88	95	90	83	84	81	91	84	92	91

Page : 8 of 14

2301193 Batch Number :

Report Number : A101023.0120.00 (053-069)

Certificate of Analysis

		Sample ID:	2023008053	2023008054	2023008055	2023008056	2023008057	2023008058	2023008059	2023008060	2023008061	2023008062	2023008063
	Sa	mple Name	DSI2.BR1	DSI2.BR2	DSI2.TP201_0.2- 0.3	DSI2.TP201_0.5- 0.6	DSI2.TP203_0.1- 0.2	DSI2.TP206_0.2- 0.3	DSI2.TP209_0.5- 0.6	DSI2.TP210_0.2- 0.3	DSI2.TP213_0.2- 0.3	DSI2.TP213_0.7- 0.8	DSI2.TP215_0.2- 0.3
Parameter	Units	PQL	Sample Date:27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023
ESA-P-ORG16													
PFBA	ug/kg	5	-	-	<5	-	<5	-	-	-	<5	-	-
PFPeA	ug/kg	5	-	-	<5	-	<5	-	-	-	<5	-	-
PFBS	ug/kg	5	-	-	<5	-	<5	-	-	-	<5	-	-
PFHxA	ug/kg	5	-	-	<5	-	<5	-	-	-	<5	-	-
PFPeS	ug/kg	5	-	-	<5	-	<5	-	-	-	<5	-	-
PFHpA	ug/kg	5	-	-	<5	-	<5	-	-	-	<5	-	-
PFOA	ug/kg	5	-	-	<5	-	<5	-	-	-	<5	-	-
PFHpS	ug/kg	5	-	-	<5	-	<5	-	-	-	<5	-	-
PFOS	ug/kg	5	-	-	<5	-	<5	-	-	-	<5	-	-
PFDA	ug/kg	5	-	-	<5	-	<5	-	-	-	<5	-	-
PFUdA	ug/kg	5	-	-	<5	-	<5	-	-	-	<5	-	-
PFDoA	ug/kg	5	-	-	<5	-	<5	-	-	-	<5	-	-
PFTrDA	ug/kg	5	-	-	<5	-	<5	-	-	-	<5	-	-
PFTeDA	ug/kg	5	-	-	<5	-	<5	-	-	-	<5	-	-
PFNA	ug/kg	5	-	-	<5	-	<5	-	-	-	<5	-	-
PFHxS	ug/kg	5	-	-	<5	-	<5	-	-	-	<5	-	-
MPFBA (Surr.)	%		-	-	79	-	112	-	-	-	99	-	-
M3PFBS (Surr.)	%		-	-	94	-	96	-	-	-	89	-	-
MPFOS (Surr.)	%		-	-	114	-	89	-	-	-	123	-	-
MPFHxA (Surr.)	%		-	-	97	-	80	-	-	-	87	-	-
MPFOA (Surr.)	%		-	-	86	-	89	-	-	-	89	-	-
MPFUdA (Surr.)	%		-	-	81	-	72	-	-	-	102	-	-

Page: 9 of 14

Batch Number: 2301193

Report Number : A101023.0120.00 (053-069)

	Sample ID:	2023008053	2023008054	2023008055	2023008056	2023008057	2023008058	2023008059	2023008060	2023008061	2023008062	2023008063
Sa	mple Name	DSI2.BR1	DSI2.BR2	DSI2.TP201_0.2- 0.3	DSI2.TP201_0.5- 0.6	DSI2.TP203_0.1- 0.2	DSI2.TP206_0.2- 0.3	DSI2.TP209_0.5- 0.6	DSI2.TP210_0.2- 0.3	DSI2.TP213_0.2- 0.3	DSI2.TP213_0.7- 0.8	DSI2.TP215_0.2- 0.3
Units	PQL	Sample Date:27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023
mg/kg	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
mg/kg	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
mg/kg	100	<100	<100	<100	<100	125	<100	<100	<100	<100	<100	<100
mg/kg	100	<100	<100	<100	<100	125	<100	<100	<100	<100	<100	<100
mg/kg	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
mg/kg	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
mg/kg	100	<100	<100	<100	<100	119	<100	<100	<100	<100	<100	<100
mg/kg	100	<100	<100	<100	<100	119	<100	<100	<100	<100	<100	<100
	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Lunits PQL Units PQL mg/kg 50 mg/kg 100 mg/kg 100 mg/kg 100 mg/kg 50 mg/kg 50 mg/kg 100	JunitsPQLSample Date:27/03/2023UnitsPQLSample Date:27/03/2023mg/kg50Sample Date:27/03/2023mg/kg100<100	Sample Name DSI2.BR1 DSI2.BR2 Units PQL Sample Date:27/03/2023 27/03/2023 mg/kg 50 Sample Date:27/03/2023 27/03/2023 mg/kg 50 Sample Date:27/03/2023 27/03/2023 mg/kg 50 Sample Date:27/03/2023 27/03/2023 mg/kg 100 Sample Date:27/03/2023 Sample Date:27/03/2023 mg/kg 50 So Sample Date:27/03/2023 Sample Date:27/03/2023 mg/kg 100 Sample Date:27/03/2023 Sample Date:27/03/2023 Sample Date:27/03/2023 mg/kg 50 Sample Date:27/03/2023 Sample Date:27/03/2023 Sample Date:27/03/2023 mg/kg 100 Sample Date:27/03/2023 Sample Date:27/03/2023 Sample Date:27/03/2023	Sample Name DS12.BR1 DS12.BR2 DS12.BR2	Sample NameDSI2.BR1DSI2.BR2DSI2.TP201_0.2 0.3DSI2.TP201_0.5 0.6UnitsPQL $SampleDate:27/03/2023$ 27/03/202327/03/202327/03/2023mg/kg50 $SampleDate:27/03/2023$ 27/03/202327/03/202327/03/2023mg/kg50 <50 <50 <50 <50 mg/kg100 <100 <100 <100 <100 mg/kg100 <100 <100 <100 <100 mg/kg100 <100 <100 <100 <100 mg/kg50 <50 <50 <50 <50 mg/kg100 <100 <100 <100 <100	$J_{Sample Name}$ DS12.BR1DS12.BR2DS12.TP201_0.2DS12.TP201_0.5DS12.TP201_D.5	J_{NOR} DS12.BR1DS12.BR2DS12.TP201_0.2 0.3DS12.TP201_0.5 0.6DS12.TP203_0.1 0.2DS12.TP206_0.5 0.2 J_{MIRS} PQL $SampleDate:27/03/2023$ $27/03/2023$ $27/03/2023$ $27/03/2023$ $27/03/2023$ $27/03/2023$ $27/03/2023$ mg/kg 50 Som Som Som Som Som Som Som mg/kg 50 Som Som Som Som Som Som Som mg/kg 100 Som Som Som Som Som Som Som mg/kg 100 Som Som Som Som Som Som	J_{NITE} DS12_BR1DS12_BR2DS12_TP201_0.2 0.3DS12_TP201_0.5 0.6DS12_TP203_0.1 0.2DS12_TP203_0.1 DS12_TP203_0.1DS12_TP203_0.1 DS12_TP203_0.1DS12_TP203_0.1 DS12_TP203_0.1DS12_TP203_0.1 DS12_TP203_0.1DS12_TP203_0.1 DS12_TP203_DS1DS12_TP203_0.1 DS12_TP203_DS1	J_{NMM} $JSL2BR1$ $JSL2BR2$ <td>\cdot</td> <td></td>	\cdot	

Page : 10 of 14 Batch Number : 2301193 Report Number : A101023.0120.00 (053-069)

Certificate of Analysis

	Sa	Sample ID: mple Name	2023008064 DSI2.TP215_1.2- 1.3	2023008065 DSI2.TP216_0.4- 0.6	2023008066 DSI2.TP234_0.3- 0.4	2023008067 DSI2.TP234_0.6- 0.7	2023008068 DSI2.TP236_0.3- 0.4	2023008069 DSI2.TP236_0.8- 0.9
Parameter	Units	PQL	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023
ESA-P-ORG7 & ORG8								
Benzene	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Toluene	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Ethylbenzene	mg/kg	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
m.p Xylene	mg/kg	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
o Xylene	mg/kg	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Sum of BTEX	mg/kg	2	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Total Xylenes	mg/kg	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Fluorobenzene (Surr.)	%		98	90	91	93	93	94
C6-C10	mg/kg	35	<35	<35	<35	<35	<35	<35
C6-C10 minus BTEX	mg/kg	35	<35	<35	<35	<35	<35	<35
C6-C9	mg/kg	25	<25	<25	<25	<25	<25	<25
ESA-MP-01,ICP-01								
Arsenic	mg/kg	5	7.1	10.9	8.3	12.4	<5.0	12.2
Cadmium	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Chromium	mg/kg	1	21.5	22.5	3.5	34.1	53.9	17.1
Copper	mg/kg	5	44.7	11.6	17.0	24.0	50.6	31.2
Lead	mg/kg	5	31.2	27.0	42.6	128.6	93.0	22.1
Mercury	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Nickel	mg/kg	1	43.6	10.3	2.0	25.0	87.9	9.0
Zinc	mg/kg	5	120.6	19.8	16.1	71.4	118.8	33.4
ESA-P-12								
% Moisture Content	%		13.8	13.0	10.5	18.4	11.8	18.6
ESA-P-ORG(12 - 15)								
Acenaphthene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Acenaphthylene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30

Sydney Laboratory Services

Page : 11 of 14 Batch Number : 2301193 Report Number : A101023.0120.00 (053-069)

Certificate of Analysis

	Sample ID:		2023008064	2023008065	2023008066	2023008067	2023008068	2023008069
	Sa	mple Name	DSI2.TP215_1.2- 1.3	DSI2.TP216_0.4- 0.6	DSI2.TP234_0.3- 0.4	DSI2.TP234_0.6- 0.7	DSI2.TP236_0.3- 0.4	DSI2.TP236_0.8- 0.9
Parameter	Units	PQL	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023
Anthracene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[a]anthracene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[a]pyrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[g,h,i]perylene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[b,k]fluoranthene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Chrysene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Dibenzo[a,h]anthracene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Fluoranthene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Fluorene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Indeno(1,2,3-cd)pyrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Naphthalene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Phenanthrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Pyrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Sum of Positive PAHs	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo(a)pyrene TEQ (Zero)	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo(a)pyrene TEQ (Half PQL)	mg/kg	0.3	0.35	0.35	0.35	0.35	0.35	0.35
Benzo(a)pyrene TEQ (PQL)	mg/kg	0.3	0.70	0.70	0.70	0.70	0.70	0.70
p-Terphenyl-d14 (Surr.)	%		87	90	86	91	79	82
aldrin	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
a-BHC	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
b-BHC	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
d-BHC	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
g-BHC (lindane)	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
cis-chlordane	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
trans-chlordane	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
4,4'-DDD	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court

Page : 12 of 14 2301193 Batch Number : A101023.0120.00 (053-Report Number : 069)

Certificate of Analysis

	Sa	Sample ID: mple Name	2023008064 DSI2.TP215_1.2- 1.3	2023008065 DSI2.TP216_0.4- 0.6	2023008066 DSI2.TP234_0.3- 0.4	2023008067 DSI2.TP234_0.6- 0.7	2023008068 DSI2.TP236_0.3- 0.4	2023008069 DSI2.TP236_0.8- 0.9
Parameter	Units	PQL	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023
4,4'-DDE	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
4,4'-DDT	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
dieldrin	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
endosulfan I	mg/kg	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
endosulfan II	mg/kg	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
endosulfan sulfate	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
endrin	mg/kg	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
endrin aldehyde	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
endrin ketone	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
heptachlor	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
heptachlor epoxide	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
hexachlorobenzene	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
methoxychlor	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TCMX (Surr.)	%		100	102	98	98	91	91
chlorpyrifos	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
chlorpyrifos methyl	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
diazinon	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
fenchlorphos	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
methyl parathion	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
prophos	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
tributylphosphorotrithioite	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Aroclor 1016	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1221	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1232	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1242	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1248	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50

Sydney Laboratory Services

Page : 13 of 14 Batch Number : 2301193 Report Number : A101023.0120.00 (053-069)

Certificate of Analysis

	Sc	Sample ID: ample Name	2023008064 DSI2.TP215_1.2-	2023008065 DSI2.TP216_0.4-	2023008066 DSI2.TP234_0.3-	2023008067 DSI2.TP234_0.6-	2023008068 DSI2.TP236_0.3-	2023008069 DSI2.TP236_0.8-
	1		1.3	0.6	0.4	0.7	0.4	0.9
Parameter	Units	PQL	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023
Aroclor 1254	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1260	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
2-fluorobiphenyl (Surr.)	%		88	90	87	90	80	84
ESA-P-ORG16		•						
РҒВА	ug/kg	5	-	-	-	-	<5	-
PFPeA	ug/kg	5	-	-	-	-	<5	-
PFBS	ug/kg	5	-	-	-	-	<5	-
PFHxA	ug/kg	5	-	-	-	-	<5	-
PFPeS	ug/kg	5	-	-	-	-	<5	-
PFHpA	ug/kg	5	-	-	-	-	<5	-
PFOA	ug/kg	5	-	-	-	-	<5	-
PFHpS	ug/kg	5	-	-	-	-	<5	-
PFOS	ug/kg	5	-	-	-	-	<5	-
PFDA	ug/kg	5	-	-	-	-	<5	-
PFUdA	ug/kg	5	-	-	-	-	<5	-
PFDoA	ug/kg	5	-	-	-	-	<5	-
PFTrDA	ug/kg	5	-	-	-	-	<5	-
PFTeDA	ug/kg	5	-	-	-	-	<5	-
PFNA	ug/kg	5	-	-	-	-	<5	-
PFHxS	ug/kg	5	-	-	-	-	<5	-
MPFBA (Surr.)	%		-	-	-	-	121	-
M3PFBS (Surr.)	%		-	-	-	-	106	-
MPFOS (Surr.)	%		-	-	-	-	107	-
MPFHxA (Surr.)	%		-	-	-	-	103	-
MPFOA (Surr.)	%		-	-	-	-	114	-
MPFUdA (Surr.)	%		-	-	-	-	96	-

Sydney Laboratory Services

Page : 14 of 14 Batch Number : 2301193 Report Number : A101023.0120.00 (053-069)

	Sample ID:		2023008064	64 2023008065 2023008066		2023008067	2023008068	2023008069	
	So	ample Name	e Name DSI2.TP215_1.2- DSI2.T 1.3		DSI2.TP234_0.3- 0.4	DSI2.TP234_0.6- 0.7	DSI2.TP236_0.3- 0.4	DSI2.TP236_0.8- 0.9	
Parameter	Units	PQL	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	27/03/2023	
ESA-P-ORG(3,8)									
>C10-C16	mg/kg	50	<50	<50	<50	<50	<50	<50	
>C16-C34	mg/kg	100	<100	<100	<100	<100	<100	<100	
>C34-C40	mg/kg	100	<100	<100	<100	<100	<100	<100	
>C10-C40 (Sum of total)	mg/kg	100	<100	<100	<100	<100	<100	<100	
>C10-C14	mg/kg	50	<50	<50	<50	<50	<50	<50	
>C15-C28	mg/kg	100	<100	<100	<100	<100	<100	<100	
>C29-C36	mg/kg	100	<100	<100	<100	<100	<100	<100	
>C10-C36 (Sum of total)	mg/kg	100	<100	<100	<100	<100	<100	<100	

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950 Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669
 Page :
 1 of 9

 Batch Number :
 2301194

 Report Number :
 A101023.0120.00 (070-079)

Accreditation No.14664 Accredited for compliance with ISO/IEC 17025 - Testing.

This certificate of analysis contains General Comments and Analytical Results. Quality Control Report and Laboratory Quality Acceptance Criteria have been issued separately.

This report supersedes any previous report(s) with this reference. This document shall not be reproduced, except in full.

This report has been electronically signed by authorised signatories below.

Authorised By

Kayu L's

Kaiyu Li

 Page :
 2 of 9

 Batch Number :
 2301194

 Report Number :
 A101023.0120.00 (070-079)

General Comments

Samples are analysed on as received basis. Sampling is not covered by NATA accreditation.

Where moisture determination has been performed, results are reported on dry weight basis.

Where the PQL of reported result differs from standard PQL, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Samples were analysed within holding time described by laboratory internal procedures if not stated otherwise. If samples delivered do not meet required analytical criteria, results will be marked with ^.

However surrogate standards are added to samples, results are not corrected for standards recoveries.

Analysis of VOC in water samples are performed on unfiltered waters (as received) spiked with surrogates and injection standards only.

SLS is responsible for all the information in the report, except that provided by the customer.

All sampling information included in the report has been provided by customer.

Information provided by the customer can affect the validity of the results.

 Page :
 3 of 9

 Batch Number :
 2301194

 Report Number :
 A101023.0120.00 (070-079)

Certificate of Analysis

Contact:	Andrew Hunt	Date Reported:	5/04/2023
Customer:	ADE Consulting Group	No. of Samples:	10
Address:	Unit 6	Date Received:	29/03/2023
	7 Millennium Court Silverwater NSW	Date of Analysis:	29/03/2023

Cust Ref: A101023.0120.00 002 L05

Glossary:	*NATA accreditation does not cover the performance of this service
	ND-not detected,
	NT-not tested
	INS-Insufficient material to perform the test
	LCS-Laboratory Control Sample
	RPD-Relative Percent Difference
	N/A-Not Applicable
	< less than
	> greater than
	PQL- Practical Quantitation Limit
	^Analytical result might be compromised due to sample condition or holding time requirements
	Reaction rate 1 = Slight
	Reaction rate 2 = Moderate
	Reaction rate 3 = High
	Reaction rate 4 = Vigorous

. .

Sydney Laboratory Services

Page: 4 of 9

Batch Number: 2301194

Report Number : A101023.0120.00 (070-

079)

	Sa	Sample ID: mple Name	2023008070 DSI2.TP211_0.1- 0.2	2023008071 DSI2.TP211_0.5- 0.6	2023008072 DSI2.TP219_0.2- 0.3	2023008073 DSI2.TP221_0.1- 0.2	2023008074 DSI2.TP225_0.4- 0.5	2023008075 DSI2.TP227_0.3- 0.4	2023008076 DSI2.TP229_0.2- 0.3	2023008077 DSI2.TP231_0.1- 0.2	2023008078 DSI2.TP233_0.4- 0.5	2023008079 DSI2.TP239_0.2- 0.3
Parameter	Units	PQL	Sample Date: 27/03/2023	27/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023
ESA-P-ORG7 & ORG8								•		•	•	
Benzene	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Toluene	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Ethylbenzene	mg/kg	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
m.p Xylene	mg/kg	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
o Xylene	mg/kg	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Sum of BTEX	mg/kg	2	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Total Xylenes	mg/kg	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Fluorobenzene (Surr.)	%		90	91	91	90	93	92	94	91	94	105
C6-C10	mg/kg	35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35
C6-C10 minus BTEX	mg/kg	35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35
C6-C9	mg/kg	25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
ESA-MP-01,ICP-01								•				
Arsenic	mg/kg	5	6.7	10.5	<5.0	7.5	<5.0	6.9	8.6	6.0	<5.0	7.0
Cadmium	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Chromium	mg/kg	1	53.2	23.0	28.8	30.0	50.2	88.3	44.2	57.4	31.2	53.1
Copper	mg/kg	5	29.9	25.1	59.8	63.9	141.8	76.3	74.2	92.3	25.2	73.5
Lead	mg/kg	5	55.9	25.1	198.0	119.0	271.2	232.9	79.1	278.8	115.3	215.1
Mercury	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Nickel	mg/kg	1	48.0	10.9	74.4	77.2	70.1	74.5	80.8	128.8	29.5	102.6
Zinc	mg/kg	5	104.4	32.3	190.4	209.2	181.6	184.2	394.7	389.8	80.5	254.1
ESA-P-12												
% Moisture Content	%		15.8	20.0	11.6	7.2	15.4	15.6	12.4	24.7	5.0	7.2
ESA-P-ORG(12 - 15)												
Acenaphthene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30

Page: 5 of 9

Batch Number : 2301194

Report Number : A101023.0120.00 (070-

079)

Certificate of Analysis

		Sample ID:	2023008070	2023008071	2023008072	2023008073	2023008074	2023008075	2023008076	2023008077	2023008078	2023008079
	Sa	mple Name	DSI2.TP211_0.1- 0.2	DSI2.TP211_0.5- 0.6	DSI2.TP219_0.2- 0.3	DSI2.TP221_0.1- 0.2	DSI2.TP225_0.4- 0.5	DSI2.TP227_0.3- 0.4	DSI2.TP229_0.2- 0.3	DSI2.TP231_0.1- 0.2	DSI2.TP233_0.4- 0.5	DSI2.TP239_0.2- 0.3
Parameter	Units	PQL	Sample Date: 27/03/2023	27/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023
Acenaphthylene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Anthracene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[a]anthracene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	0.43	<0.30	0.93	<0.30	1.56
Benzo[a]pyrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	0.59	<0.30	1.08	<0.30	1.53
Benzo[g,h,i]perylene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	0.67	<0.30	0.97	<0.30	1.34
Benzo[b,k]fluoranthene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	0.58	<0.30	1.02	<0.30	1.43
Chrysene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	0.43	<0.30	0.84	<0.30	1.37
Dibenzo[a,h]anthracene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Fluoranthene	mg/kg	0.3	0.30	<0.30	<0.30	<0.30	<0.30	0.83	<0.30	1.69	<0.30	4.14
Fluorene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Indeno(1,2,3-cd)pyrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	0.64	<0.30	0.96	<0.30	1.16
Naphthalene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Phenanthrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	1.24
Pyrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	0.83	<0.30	1.63	<0.30	3.55
Sum of Positive PAHs	mg/kg	0.3	0.30	<0.30	<0.30	<0.30	<0.30	5.00	<0.30	9.12	<0.30	17.32
Benzo(a)pyrene TEQ (Zero)	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	0.77	<0.30	1.39	<0.30	1.97
Benzo(a)pyrene TEQ (Half PQL)	mg/kg	0.3	0.35	0.35	0.35	0.35	0.35	0.92	0.35	1.54	0.35	2.12
Benzo(a)pyrene TEQ (PQL)	mg/kg	0.3	0.70	0.70	0.70	0.70	0.70	1.07	0.70	1.69	0.70	2.27
p-Terphenyl-d14 (Surr.)	%		120	83	102	105	104	139	102	132	108	104
aldrin	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
a-BHC	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
b-BHC	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
d-BHC	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
g-BHC (lindane)	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
cis-chlordane	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
trans-chlordane	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd

Page: 6 of 9

Batch Number: 2301194

Report Number : A101023.0120.00 (070-

079)

Certificate of Analysis

		Sample ID:	2023008070	2023008071	2023008072	2023008073	2023008074	2023008075	2023008076	2023008077	2023008078	2023008079
	Sa	mple Name	DSI2.TP211_0.1- 0.2	DSI2.TP211_0.5- 0.6	DSI2.TP219_0.2- 0.3	DSI2.TP221_0.1- 0.2	DSI2.TP225_0.4- 0.5	DSI2.TP227_0.3- 0.4	DSI2.TP229_0.2- 0.3	DSI2.TP231_0.1- 0.2	DSI2.TP233_0.4- 0.5	DSI2.TP239_0.2- 0.3
Parameter	Units	PQL	Sample Date: 27/03/2023	27/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023
4,4'-DDD	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
4,4'-DDE	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
4,4'-DDT	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
dieldrin	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
endosulfan I	mg/kg	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
endosulfan II	mg/kg	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
endosulfan sulfate	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
endrin	mg/kg	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
endrin aldehyde	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
endrin ketone	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
heptachlor	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
heptachlor epoxide	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
hexachlorobenzene	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
methoxychlor	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TCMX (Surr.)	%		130	62	68	68	73	138	71	118	75	72
chlorpyrifos	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
chlorpyrifos methyl	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
diazinon	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
fenchlorphos	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
methyl parathion	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
prophos	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
tributylphosphorotrithioite	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Aroclor 1016	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1221	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1232	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1242	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50

Sydney Laboratory Services

Page : 7 of 9

Batch Number : 2301194

Report Number : A101023.0120.00 (070-

079)

		Sample ID:	2023008070	2023008071	2023008072	2023008073	2023008074	2023008075	2023008076	2023008077	2023008078	2023008079
	Sa	mple Name	DSI2.TP211_0.1- 0.2	DSI2.TP211_0.5- 0.6	DSI2.TP219_0.2- 0.3	DSI2.TP221_0.1- 0.2	DSI2.TP225_0.4- 0.5	DSI2.TP227_0.3- 0.4	DSI2.TP229_0.2- 0.3	DSI2.TP231_0.1- 0.2	DSI2.TP233_0.4- 0.5	DSI2.TP239_0.2- 0.3
Parameter	Units	PQL	Sample Date: 27/03/2023	27/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023
Aroclor 1248	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1254	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1260	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
2-fluorobiphenyl (Surr.)	%		139	67	82	83	86	134	83	130	90	85

Page: 8 of 9

Batch Number : 2301194

Report Number : A101023.0120.00 (070-

079)

	Sa	Sample ID: ample Name	DSI2 TP211 0 1-	2023008071 DSI2.TP211_0.5- 0.6	2023008072 DSI2.TP219_0.2- 0.3	2023008073 DSI2.TP221_0.1- 0.2	2023008074 DSI2.TP225_0.4- 0.5	2023008075 DSI2.TP227_0.3- 0.4	2023008076 DSI2.TP229_0.2- 0.3	2023008077 DSI2.TP231_0.1- 0.2	2023008078 DSI2.TP233_0.4- 0.5	2023008079 DSI2.TP239_0.2- 0.3
Parameter	Units	PQL	Sample Date: 27/03/2023	27/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023
ESA-P-ORG16	•					·		·	•			
PFBA	ug/kg	5	-	-	-	-	-	-	-	-	-	<5
PFPeA	ug/kg	5	-	-	-	-	-	-	-	-	-	<5
PFBS	ug/kg	5	-	-	-	-	-	-	-	-	-	<5
PFHxA	ug/kg	5	-	-	-	-	-	-	-	-	-	<5
PFPeS	ug/kg	5	-	-	-	-	-	-	-	-	-	<5
PFHpA	ug/kg	5	-	-	-	-	-	-	-	-	-	<5
PFOA	ug/kg	5	-	-	-	-	-	-	-	-	-	<5
PFHpS	ug/kg	5	-	-	-	-	-	-	-	-	-	<5
PFOS	ug/kg	5	-	-	-	-	-	-	-	-	-	<5
PFDA	ug/kg	5	-	-	-	-	-	-	-	-	-	<5
PFUdA	ug/kg	5	-	-	-	-	-	-	-	-	-	<5
PFDoA	ug/kg	5	-	-	-	-	-	-	-	-	-	<5
PFTrDA	ug/kg	5	-	-	-	-	-	-	-	-	-	<5
PFTeDA	ug/kg	5	-	-	-	-	-	-	-	-	-	<5
PFNA	ug/kg	5	-	-	-	-	-	-	-	-	-	<5
PFHxS	ug/kg	5	-	-	-	-	-	-	-	-	-	<5
MPFBA (Surr.)	%		-	-	-	-	-	-	-	-	-	79
M3PFBS (Surr.)	%		-	-	-	-	-	-	-	-	-	76
MPFOS (Surr.)	%		-	-	-	-	-	-	-	-	-	119
MPFHxA (Surr.)	%		-	-	-	-	-	-	-	-	-	85
MPFOA (Surr.)	%		-	-	-	-	-	-	-	-	-	80
MPFUdA (Surr.)	%		-	-	-	-	-	-	-	-	-	78

Page : 9 of 9

Batch Number : 2301194

Report Number : A101023.0120.00 (070-

079)

	Sample ID:	2023008070	2023008071	2023008072	2023008073	2023008074	2023008075	2023008076	2023008077	2023008078	2023008079
Sa	mple Name	DSI2.TP211_0.1- 0.2	DSI2.TP211_0.5- 0.6	DSI2.TP219_0.2- 0.3	DSI2.TP221_0.1- 0.2	DSI2.TP225_0.4- 0.5	DSI2.TP227_0.3- 0.4	DSI2.TP229_0.2- 0.3	DSI2.TP231_0.1- 0.2	DSI2.TP233_0.4- 0.5	DSI2.TP239_0.2- 0.3
Units	PQL	Sample Date: 27/03/2023	27/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023
mg/kg	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
mg/kg	100	<100	<100	<100	126	<100	132	113	169	<100	143
mg/kg	100	<100	<100	<100	<100	<100	<100	<100	138	<100	185
mg/kg	100	<100	<100	<100	126	<100	132	113	307	<100	328
mg/kg	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
mg/kg	100	<100	<100	<100	100	<100	111	113	124	<100	<100
mg/kg	100	<100	<100	<100	<100	<100	<100	<100	100	<100	159
mg/kg	100	<100	<100	<100	100	<100	111	113	224	<100	159
	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Sample Name Units PQL Mg/kg 50 mg/kg 100 mg/kg 100 mg/kg 100 mg/kg 50 mg/kg 50 mg/kg 100	Sample NameDSI2.TP211_0.1 0.2UnitsPQLSample Date: 27/03/2023mg/kgFQLSample Date: 27/03/2023mg/kg50<50	Sample Name DSI2.TP211_0.1 0.2 DSI2.TP211_0.1 0.6 Units PQL Sample Date: 27/03/2023 27/03/2023 mg/kg PQL Sample Date: 27/03/2023 27/03/2023 mg/kg 50 <50	Sample Name DSI2.TP211_0.1 DSI2.TP211_0.5 DSI2.TP211_0.5 DSI2.TP219_0.2 Units PQL Sample Date: 27/03/2023 27/03/2023 28/03/2023 mg/kg 50 < 50 < 50 < 50 mg/kg 50 < 50 < 50 < 50 mg/kg 100 < 100 < 100 < 100	$sample Name$ DSI2.TP211_0.1 0.2DSI2.TP211_0.5 0.6DSI2.TP219_0.2 0.3DSI2.TP219_0.1 0.2Units PQL $Sample Date:27/03/202328/03/202328/03/202328/03/2023mg/kg50Sample Date:27/03/202328/03/202328/03/2023mg/kg50<50<50<50mg/kg100<100<100<100mg/kg100<100<100<100mg/kg100<100<100<100mg/kg50<50<50<50mg/kg100<100<100<100mg/kg100<100<100<100mg/kg100<100<100<100mg/kg100<100<100<100mg/kg100<100<100<100$	$s_{smple Name}$ bis^{2} $bis^{$	$s_{smple Nam}$ DS2.TP211_0.1 0.2DS2.TP211_0.5 0.6DS2.TP221_0.1 0.3DS2.TP221_0.1 0.2DS2.TP225_0.4 0.5DS2.TP225_0.4 0.4DS2.TP225_0.4 0.4UnitsPQLSample Date: 27/03/202327/03/202328/03/202328/03/202328/03/202328/03/2023mg/kg50 ≤ 50 ≤ 70 ≤ 50 mg/kg100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 mg/kg100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 mg/kg100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 mg/kg100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 mg/kg100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 mg/kg100 < 100 < 100 < 100 < 100 < 100 < 100 < 100	s_{smple} NameDisl2.TP2211_0.1 0.2Disl2.TP221_0.2 0.6Disl2.TP221_0.1 0.3Disl2.TP225_0.4 0.5Disl2.TP225_0.4 0.4Disl2.TP225_0.4 	J_{NOR} $Si2P211.01$ $Si2P211.02$ $Si2P211.02$ $Si2P21.02$ $Si2P22.02$ $Si2P22.$	\cdot $isi2.1p231.0.1$ $isi2.1p231.0.1$ $isi2.1p230.0.1$ $isi30.0.1$ <

Page : 9 of 9

Batch Number : 2301194

Report Number : A101023.0120.00 (070-

079)

	Sample ID:	2023008070	2023008071	2023008072	2023008073	2023008074	2023008075	2023008076	2023008077	2023008078	2023008079
Sa	mple Name	DSI2.TP211_0.1- 0.2	DSI2.TP211_0.5- 0.6	DSI2.TP219_0.2- 0.3	DSI2.TP221_0.1- 0.2	DSI2.TP225_0.4- 0.5	DSI2.TP227_0.3- 0.4	DSI2.TP229_0.2- 0.3	DSI2.TP231_0.1- 0.2	DSI2.TP233_0.4- 0.5	DSI2.TP239_0.2- 0.3
Units	PQL	Sample Date: 27/03/2023	27/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023
mg/kg	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
mg/kg	100	<100	<100	<100	126	<100	132	113	169	<100	143
mg/kg	100	<100	<100	<100	<100	<100	<100	<100	138	<100	185
mg/kg	100	<100	<100	<100	126	<100	132	113	307	<100	328
mg/kg	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
mg/kg	100	<100	<100	<100	100	<100	111	113	124	<100	<100
mg/kg	100	<100	<100	<100	<100	<100	<100	<100	100	<100	159
mg/kg	100	<100	<100	<100	100	<100	111	113	224	<100	159
	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Sample Name Units PQL Mg/kg 50 mg/kg 100 mg/kg 100 mg/kg 100 mg/kg 50 mg/kg 50 mg/kg 100	Sample NameDSI2.TP211_0.1 0.2UnitsPQLSample Date: 27/03/2023mg/kgFQLSample Date: 27/03/2023mg/kg50<50	Sample Name DSI2.TP211_0.1 0.2 DSI2.TP211_0.1 0.6 Units PQL Sample Date: 27/03/2023 27/03/2023 mg/kg PQL Sample Date: 27/03/2023 27/03/2023 mg/kg 50 <50	Sample Name DSI2.TP211_0.1 DSI2.TP211_0.5 DSI2.TP211_0.5 DSI2.TP219_0.2 Units PQL Sample Date: 27/03/2023 27/03/2023 28/03/2023 mg/kg 50 < 50 < 50 < 50 mg/kg 50 < 50 < 50 < 50 mg/kg 100 < 100 < 100 < 100	$sample Name$ DSI2.TP211_0.1 0.2DSI2.TP211_0.5 0.6DSI2.TP219_0.2 0.3DSI2.TP219_0.1 0.2Units PQL $Sample Date:27/03/202328/03/202328/03/202328/03/2023mg/kg50Sample Date:27/03/202328/03/202328/03/2023mg/kg50<50<50<50mg/kg100<100<100<100mg/kg100<100<100<100mg/kg100<100<100<100mg/kg50<50<50<50mg/kg100<100<100<100mg/kg100<100<100<100mg/kg100<100<100<100mg/kg100<100<100<100mg/kg100<100<100<100$	$s_{smple Name}$ bis^{2} $bis^{$	$s_{smple Nam}$ DS2.TP211_0.1 0.2DS2.TP211_0.5 0.6DS2.TP221_0.1 0.3DS2.TP221_0.1 0.2DS2.TP225_0.4 0.5DS2.TP225_0.4 0.4DS2.TP225_0.4 0.4UnitsPQLSample Date: 27/03/202327/03/202328/03/202328/03/202328/03/202328/03/2023mg/kg50 ≤ 50 ≤ 70 ≤ 50 mg/kg100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 mg/kg100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 mg/kg100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 mg/kg100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 mg/kg100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 mg/kg100 < 100 < 100 < 100 < 100 < 100 < 100 < 100	s_{smple} NameDisl2.TP2211_0.1 0.2Disl2.TP221_0.2 0.6Disl2.TP221_0.1 0.3Disl2.TP225_0.4 0.5Disl2.TP225_0.4 0.4Disl2.TP225_0.4 	J_{NOR} $Si2P211.01$ $Si2P211.02$ $Si2P211.02$ $Si2P21.02$ $Si2P22.02$ $Si2P22.$	\cdot $isi2.1p231.0.1$ $isi2.1p231.0.1$ $isi2.1p230.0.1$ $isi30.0.1$ <

Page : 1 of 16 Batch Number : 2301193 Report Number : A101023.0120.00 (053-069)

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950 Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

> Accreditation No.14664 Accredited for compliance with ISO/IEC 17025 - Testing.

This Quality Control Report contains results of QAQC samples analysis and the Laboratory Acceptance Criteria.

This report supersedes any previous report(s) with this reference. This document shall not be reproduced, except in full.

This report has been electronically signed by authorised signatories below.

Authorised By

Kayu L's

Kaiyu Li

Sydney Laboratory Services A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court Silverwater 2128 Ph: (02) 9648-6669

General Comments

Duplicate samples and matrix spike may not be prepared on smaller jobs, however are analysed at frequency. QAQC samples shown within the report as e.g. Batch Blank, Batch Matrix Spike were performed on samples not reported on that Certificate of Analysis.

Blank This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in the same manner as for samples.

Duplicate This is the interlaboratory split of a random sample from the processed batch

Matrix Spike A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. Surr. (Surrogate Spike) Surrogates are known additions to each sample, blank and matrix spike or LCS in a batch. Surrogates are chosen as a compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Blank shall be < PQL

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals/PFAS, 60-140% for organics is acceptable. Matrix heterogeneity may result in matrix spike analyses falling outside these limits RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the PQL : No Limit

Results between 10-20 times the PQL : RPD must lie between 0-50%

- Results >20 times the PQL : RPD must lie between 0-30%
- Surrogate Recoveries : Recoveries must lie between 50-150%

SLS is responsible for all the information in the report, except that provided by the customer.

All sampling information included in the report has been provided by customer.

Information provided by the customer can affect the validity of the results.

Sydney Laboratory Services A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court Silverwater 2128 Ph: (02) 9648-6669

Page :	3 of 16
Batch Number :	2301193
Report Number :	A101023.0120.00 (053- 069)

Quality Control Report

Contact:	Andrew Hunt	Date Reported:	5/04/2023
Customer:	ADE Consulting Group	No. of Samples:	26
Address:	Unit 6	Date Received:	29/03/2023
	7 Millennium Court	Date of Analysis:	29/03/2023
	Silverwater NSW		, ,

Cust Ref: A101023.0120.00 002 L05

Glossary:	*NATA accreditation does not cover the performance of this service ND-not detected, NT-not tested INS-Insufficient material to perform the test
	LCS-Laboratory Control Sample
	RPD-Relative Percent Difference
	N/A-Not Applicable
	< less than
	> greater than
	PQL- Practical Quantitation Limit
	^Analytical result might be compromised due to sample condition or holding time requirements
	Reaction rate 1 = Slight
	Reaction rate 2 = Moderate
	Reaction rate 3 = High
	Reaction rate 4 = Vigorous

Sydney Laboratory Services

Page :	4 of 16
Batch Number :	2301193
Report Number :	A101023.0120.00 (053-
	069)

Quality Control Report

		•		
	د	Sample Name	DSI2.BR2	DSI2.TP215_0.2-0.3
Parameter	Units	PQL		
ESA-P-ORG7 & ORG8		<u></u>		
Benzene			Pass	Pass
Toluene			Pass	Pass
Ethylbenzene			Pass	Pass
m.p Xylene			Pass	Pass
o Xylene			Pass	Pass
Fluorobenzene (Surr.)	%		94	96
C6-C10			Pass	Pass
C6-C9	1		Pass	Pass

Sample ID: D202300805402 D202300806302

Sample ID: D202300805401 D202300806301

Sample Name DSI2.BR2 DSI2.TP215_0.2-0.3

Parameter	Units	PQL		
ESA-P-ORG(12 - 15)	Į	<u>.</u>	• • •	
Acenaphthene			Pass	Pass
Acenaphthylene			Pass	Pass
Anthracene			Pass	Pass
Benzo[a]anthracene			Pass	Pass
Benzo[a]pyrene			Pass	Pass
Benzo[g,h,i]perylene			Pass	Pass
Benzo[b,k]fluoranthene			Pass	Pass
Chrysene			Pass	Pass
Dibenzo[a,h]anthracene			Pass	Pass
Fluoranthene			Pass	Pass
Fluorene			Pass	Pass
Indeno(1,2,3-cd)pyrene			Pass	Pass
Naphthalene			Pass	Pass
Phenanthrene			Pass	Pass
Pyrene			Pass	Pass

Sydney Laboratory Services

5	
Sydney La	boratory Services

Page :	5 of 16
Batch Number :	2301193
Report Number :	A101023.0120.00 (053-
	069)

p-Terphenyl-d14 (Surr.)	%	83	90
aldrin		Pass	Pass
a-BHC		Pass	Pass
b-BHC		Pass	Pass
d-BHC		Pass	Pass
g-BHC (lindane)		Pass	Pass
cis-chlordane		Pass	Pass
trans-chlordane		Pass	Pass
4,4'-DDD		Pass	Pass
4,4'-DDE		Pass	Pass
4,4'-DDT		Pass	Pass
dieldrin		Pass	Pass
endosulfan I		Pass	Pass
endosulfan II		Pass	Pass
endosulfan sulfate		Pass	Pass
endrin		Pass	Pass
endrin aldehyde		Pass	Pass
endrin ketone		Pass	Pass
heptachlor		Pass	Pass
heptachlor epoxide		Pass	Pass
hexachlorobenzene		Pass	Pass
methoxychlor		Pass	Pass
TCMX (Surr.)	%	95	97
chlorpyrifos		Pass	Pass
chlorpyrifos methyl		Pass	Pass
diazinon		Pass	Pass
fenchlorphos		Pass	Pass
methyl parathion		Pass	Pass
prophos		Pass	Pass
tributylphosphorotrithioite		Pass	Pass
Aroclor 1016		Pass	Pass
Aroclor 1221		Pass	Pass

Sydney Laboratory Services

Page :	6 of 16
Batch Number :	2301193
Report Number :	A101023.0120.00 (053-
	069)

Aroclor 1232		Pass	Pass
Aroclor 1242		Pass	Pass
Aroclor 1248		Pass	Pass
Aroclor 1254		Pass	Pass
Aroclor 1260		Pass	Pass
2-fluorobiphenyl (Surr.)	%	86	91

Sample ID: D202300805403 D202300806303

Sample Name DSI2.BR2 DSI2.TP215_0.2-0.3

Parameter	Units	PQL		
ESA-P-ORG(3,8)	·			
>C10-C16			Pass	Pass
>C16-C34			Pass	Pass
>C34-C40			Pass	Pass
>C10-C14			Pass	Pass
>C15-C28			Pass	Pass
>C29-C36			Pass	Pass
	1			

Sample ID: D202300805404 D202300806304

Sample Name DSI2.BR2 DSI2.TP215_0.2-0.3

Parameter	Units	PQL		
ESA-MP-01,ICP-01			•	
Arsenic			Pass	Pass
Cadmium			Pass	Pass
Chromium			Pass	Pass
Copper			Pass	Pass
Lead			Pass	Pass
Mercury			Pass	Pass
Nickel			Pass	Pass
Zinc			Pass	Pass

Sydney Laboratory Services

Page :	7 of 16
Batch Number :	2301193
Report Number :	A101023.0120.00 (053- 069)
	,

Sample ID: D202300805701 D202300810801

	s	ample Name	DSI2.TP203_0.1-0.2	WAC349.TP4
Parameter	Units	PQL		
ESA-P-ORG16				
PFBA			Pass	Pass
PFPeA			Pass	Pass
PFBS			Pass	Pass
PFHxA			Pass	Pass
PFPeS			Pass	Pass
PFHpA			Pass	Pass
PFOA			Pass	Pass
PFHpS			Pass	Pass
PFOS			Pass	Pass
PFDA			Pass	Pass
PFUdA			Pass	Pass
PFDoA			Pass	Pass
PFTrDA			Pass	Pass
PFTeDA			Pass	Pass
PFNA			Pass	Pass
PFHxS			Pass	Pass
MPFBA	%		78	111
M3PFBS	%		83	78
MPFOS	%		127	91
MPFHxA	%		77	112
MPFOA	%		108	81
MPFUdA	%		75	112

Sample ID: Q2023001816

Sample Name

Parameter	Units	PQL	BTEX Blank - Soil
ESA-P-ORG7 & ORG8			
Benzene	mg/kg	0.5	<0.50

Sydney Laboratory Services

8 of 16
2301193
A101023.0120.00 (053- 069)

Toluene	mg/kg	0.5	<0.50
Ethylbenzene	mg/kg	1	<1.0
m.p Xylene	mg/kg	2	<2.0
o Xylene	mg/kg	1	<1.0
C6-C10	mg/kg	35	<35
C6-C9	mg/kg	25	<25

Sample Name

Parameter	Units	PQL	BTEX Blank Sp-Soil
ESA-P-ORG7 & ORG8			•
Benzene	%		127
Toluene	%		111
Ethylbenzene	%		104
m.p Xylene	%		89
o Xylene	%		96
Fluorobenzene (Surr.)	%		88

Sample ID: Q2023001818

Sample Name

Units	PQL	PCB Blank - Soil
-		
mg/kg	0.3	<0.30
	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	mg/kg 0.3 mg/kg 0.3

Sydney Laboratory Services

of 16
301193
101023.0120.00 (053- 59)

Naphthalene	mg/kg	0.3	<0.30
Phenanthrene	mg/kg	0.3	<0.30
Pyrene	mg/kg	0.3	<0.30
aldrin	mg/kg	0.1	<0.10
а-ВНС	mg/kg	0.1	<0.10
b-BHC	mg/kg	0.1	<0.10
d-BHC	mg/kg	0.1	<0.10
g-BHC (lindane)	mg/kg	0.1	<0.10
cis-chlordane	mg/kg	0.1	<0.10
trans-chlordane	mg/kg	0.1	<0.10
4,4'-DDD	mg/kg	0.1	<0.10
4,4'-DDE	mg/kg	0.1	<0.10
4,4'-DDT	mg/kg	0.1	<0.10
dieldrin	mg/kg	0.1	<0.10
endosulfan I	mg/kg	0.2	<0.20
endosulfan II	mg/kg	0.2	<0.20
endosulfan sulfate	mg/kg	0.1	<0.10
endrin	mg/kg	0.2	<0.20
endrin aldehyde	mg/kg	0.1	<0.10
endrin ketone	mg/kg	0.1	<0.10
heptachlor	mg/kg	0.1	<0.10
heptachlor epoxide	mg/kg	0.1	<0.10
hexachlorobenzene	mg/kg	0.1	<0.10
methoxychlor	mg/kg	0.1	<0.10
chlorpyrifos	mg/kg	0.1	<0.10
chlorpyrifos methyl	mg/kg	0.1	<0.10
diazinon	mg/kg	0.1	<0.10
fenchlorphos	mg/kg	0.1	<0.10
methyl parathion	mg/kg	0.1	<0.10
prophos	mg/kg	0.1	<0.10
tributylphosphorotrithioite	mg/kg	0.1	<0.10
Aroclor 1016	mg/kg	0.5	<0.50

Sydney Laboratory Services

Page :	10 of 16
Batch Number :	2301193
Report Number :	A101023.0120.00 (053-
	069)

Aroclor 1221	mg/kg	0.5	<0.50
Aroclor 1232	mg/kg	0.5	<0.50
Aroclor 1242	mg/kg	0.5	<0.50
Aroclor 1248	mg/kg	0.5	<0.50
Aroclor 1254	mg/kg	0.5	<0.50
Aroclor 1260	mg/kg	0.5	<0.50

Sample Name

Parameter	Units	PQL	PCB Blank Sp - Soil
ESA-P-ORG(12 - 15)			
Acenaphthene	%		82
Anthracene	%		99
Fluoranthene	%		85
Naphthalene	%		98
Phenanthrene	%		86
Pyrene	%		94
p-Terphenyl-d14 (Surr.)	%		91
aldrin	%		91
endrin	%		69
hexachlorobenzene	%		98
TCMX (Surr.)	%		103
chlorpyrifos	%		77
diazinon	%		83
2-fluorobiphenyl (Surr.)	%		92
Aroclor 1016	%		95

Sample ID: Q2023001820

Sample Name

Parameter	Units	PQL	TRH Blank-Soil
ESA-P-ORG(3,8)			
>C10-C16	mg/kg	50	<50
>C16-C34	mg/kg	100	<100
>C34-C40	mg/kg	100	<100

Sydney Laboratory Services

Page :	11 of 16
Batch Number :	2301193
Report Number :	A101023.0120.00 (053-
	069)

>C10-C14	mg/kg	50	<50
>C15-C28	mg/kg	100	<100
>C29-C36	mg/kg	100	<100

	S	ample Name	
Parameter	Units	PQL	TRH Blank Spike-Soil
ESA-P-ORG(3,8)		<u>.</u>	
>C10-C16	%		100
>C10-C14	%		95

Sample ID: Q2023001822

Sample Name

Parameter	Units	PQL	PFAS Blank - Soil
ESA-P-ORG16		~	1
PFBA	ug/kg	5	<5
PFPeA	ug/kg	5	<5
PFBS	ug/kg	5	<5
PFHxA	ug/kg	5	<5
PFPeS	ug/kg	5	<5
РҒНрА	ug/kg	5	<5
PFOA	ug/kg	5	<5
PFHpS	ug/kg	5	<5
PFOS	ug/kg	5	<5
PFDA	ug/kg	5	<5
PFUdA	ug/kg	5	<5
PFDoA	ug/kg	5	<5
PFTrDA	ug/kg	5	<5
PFTeDA	ug/kg	5	<5
PFNA	ug/kg	5	<5
PFHxS	ug/kg	5	<5
MPFBA (Surr.)	%		101
M3PFBS (Surr.)	%	İ	81

Sydney Laboratory Services

Page :	12 of 16
Batch Number :	2301193
Report Number :	A101023.0120.00 (053-
	069)

MPFOS (Surr.)	%	89
MPFHxA (Surr.)	%	84
MPFOA (Surr.)	%	79
MPFUdA (Surr.)	%	126

Sample Name

Parameter	Units	PQL	PFAS Blank Sp - Soil
ESA-P-ORG16	<u> </u>	1	
PFBA	%		110
PFPeA	%		122
PFBS	%		97
PFHxA	%		117
PFPeS	%		118
РҒНрА	%		91
PFOA	%		125
PFHpS	%		128
PFOS	%		98
PFDA	%		86
PFUdA	%		122
PFDoA	%		125
PFTrDA	%		120
PFTeDA	%		115
PFNA	%		127
PFHxS	%		108
MPFBA (Surr.)	%		88
M3PFBS (Surr.)	%		79
MPFOS (Surr.)	%		115
MPFHxA (Surr.)	%		75
MPFOA (Surr.)	%		73
MPFUdA (Surr.)	%		86

Sydney Laboratory Services

Page :	13 of 16
Batch Number :	2301193
Report Number :	A101023.0120.00 (053-
	069)

	S	ample Name	
Parameter	Units	PQL	Metals Blank - Soil
ESA-MP-01,ICP-01	-	-	
Arsenic	mg/kg	5	<5.0
Cadmium	mg/kg	0.3	<0.30
Chromium	mg/kg	1	<1.0
Copper	mg/kg	5	<5.0
Lead	mg/kg	5	<5.0
Mercury	mg/kg	0.1	<0.10
Nickel	mg/kg	1	<1.0
Zinc	mg/kg	5	<5.0

Sample ID: Q2023001843

Sample Name

Parameter	Units	PQL	Metals Blank Sp-Soil
ESA-MP-01,ICP-01			
Arsenic	%		95
Cadmium	%		94
Chromium	%		91
Copper	%		88
Lead	%		95
Mercury	%		88
Nickel	%		94
Zinc	%		95

Sample ID: \$202300805301

Sa	DSI2.BR1	
Units	PQL	

ESA-P-ORG-07 & 08		
Benzene	%	132
Toluene	%	114
Ethylbenzene	%	105

Sydney Laboratory Services

Parameter

Page :	14 of 16
Batch Number :	2301193
Report Number :	A101023.0120.00 (053-
	069)

m.p Xylene	%	95	
o Xylene	%	98	
Fluorobenzene (Surr.)	%	91	

Sample Name DSI2.BR1

Parameter	Units	PQL	
ESA-P-ORG(12 - 15)		· · ·	
Acenaphthene	%		80
Anthracene	%		97
Fluoranthene	%		83
Naphthalene	%		95
Phenanthrene	%		82
Pyrene	%		89
p-Terphenyl-d14 (Surr.)	%		86
aldrin	%		91
endrin	%		66
hexachlorobenzene	%		96
TCMX (Surr.)	%		100
chlorpyrifos	%		76
diazinon	%		80
Aroclor 1016	%		80
2-fluorobiphenyl (Surr.)	%		90

Sample ID: \$202300805303

Sample Name DSI2.BR1

Parameter	Units	PQL	
ESA-P-ORG(3,8)			
>C10-C16	%		92
>C10-C14	%		89

Sydney Laboratory Services

Page :	15 of 16
Batch Number :	2301193
Report Number :	A101023.0120.00 (053- 069)
	005)

Sample Name DSI2.BR1

Parameter	Units	PQL	
ESA-MP-01,ICP-01		-	
Arsenic	%		86
Cadmium	%		92
Lead	%		79
Mercury	%		88
Zinc	%		85

Sample ID: \$202300805501

Sample Name DSI2.TP201_0.2-0.3

Parameter	Units	PQL	
ESA-P-ORG16		-	
PFBA	%		113
PFPeA	%		121
PFBS	%		92
PFHxA	%		112
PFPeS	%		116
РҒНрА	%		85
PFOA	%		118
PFHpS	%		121
PFOS	%		94
PFDA	%		79
PFUdA	%		115
PFDoA	%		113
PFTrDA	%		82
PFTeDA	%		125
PFNA	%		108
PFHxS	%		97
MPFBA (Surr.)	%		108
M3PFBS (Surr.)	%		118
MPFOS (Surr.)	%		111

Sydney Laboratory Services

Page :	16 of 16
Batch Number :	2301193
Report Number :	A101023.0120.00 (053- 069)
	009

MPFHxA (Surr.)	%	106
MPFOA (Surr.)	%	76
MPFUdA (Surr.)	%	102


Parameter	Units	PQL	
ESA-MP-01,ICP-01		-	
Chromium	%		125
Copper	%		121
Nickel	%		128

Sydney Laboratory Services A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court Silverwater 2128 Ph: (02) 9648-6669

5	
Sydney La	poratory Services

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950 Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Accreditation No.14664 Accredited for compliance with ISO/IEC 17025 - Testing.

This Quality Control Report contains results of QAQC samples analysis and the Laboratory Acceptance Criteria.

This report supersedes any previous report(s) with this reference. This document shall not be reproduced, except in full.

This report has been electronically signed by authorised signatories below.

Authorised By

kayu L's

Kaiyu Li

Sydney Laboratory Services A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court Silverwater 2128 Ph: (02) 9648-6669

	Page :	2 of 16
	Batch Number :	2301194
	Report Number :	A101023.0120.00 (070-
Sydney Laboratory Services		079)

General Comments

Duplicate samples and matrix spike may not be prepared on smaller jobs, however are analysed at frequency. QAQC samples shown within the report as e.g. Batch Blank, Batch Matrix Spike were performed on samples not reported on that Certificate of Analysis.

Blank This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in the same manner as for samples.

Duplicate This is the interlaboratory split of a random sample from the processed batch

Matrix Spike A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. Surr. (Surrogate Spike) Surrogates are known additions to each sample, blank and matrix spike or LCS in a batch. Surrogates are chosen as a compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Blank shall be < PQL

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals/PFAS, 60-140% for organics is acceptable. Matrix heterogeneity may result in matrix spike analyses falling outside these limits RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the PQL : No Limit Results between 10-20 times the PQL : RPD must lie between 0-50% Results >20 times the PQL : RPD must lie between 0-30% **Surrogate Recoveries :** Recoveries must lie between 50-150%

SLS is responsible for all the information in the report, except that provided by the customer.

All sampling information included in the report has been provided by customer.

Information provided by the customer can affect the validity of the results.

3 of 16
2301194
A101023.0120.00 (070- 079)

Quality Control Report

Contact:	Andrew Hunt	Date Reported:	5/04/2023
Customer:	ADE Consulting Group	No. of Samples:	26
Address:	Unit 6	Date Received:	29/03/2023
	7 Millennium Court	Date of Analysis:	29/03/2023
	Silverwater NSW	· · · · · · · · · · · · · · · · · · ·	

Cust Ref: A101023.0120.00 002 L05

Glossary:	*NATA accreditation does not cover the performance of this service
	ND-not detected,
	NT-not tested
	INS-Insufficient material to perform the test
	LCS-Laboratory Control Sample
	RPD-Relative Percent Difference
	N/A-Not Applicable
	< less than
	> greater than
	PQL- Practical Quantitation Limit
	^Analytical result might be compromised due to sample condition or holding time requirements
	Reaction rate 1 = Slight
	Reaction rate 2 = Moderate
	Reaction rate 3 = High
	Reaction rate 4 = Vigorous

Sydney Laboratory Services A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court Silverwater 2128 Ph: (02) 9648-6669

Page :	4 of 16
Batch Number :	2301194
Report Number :	A101023.0120.00 (070-
	079)

Quality Control Report

		ample Namo	DSI2.TP203_0.1-0.2	WAC349.TP4
Parameter	Units	PQL	D312.1F205_0.1-0.2	WAC345.1F4
ESA-P-ORG16			<u> </u>	
PFBA			Pass	Pass
PFPeA			Pass	Pass
PFBS			Pass	Pass
PFHxA			Pass	Pass
PFPeS			Pass	Pass
PFHpA			Pass	Pass
PFOA			Pass	Pass
PFHpS			Pass	Pass
PFOS			Pass	Pass
PFDA			Pass	Pass
PFUdA			Pass	Pass
PFDoA			Pass	Pass
PFTrDA			Pass	Pass
PFTeDA			Pass	Pass
PFNA			Pass	Pass
PFHxS			Pass	Pass
MPFBA	%		78	111
M3PFBS	%		83	78
MPFOS	%		127	91
MPFHxA	%		77	112
MPFOA	%		108	81
MPFUdA	%		75	112
	1	C	D2022000074.04	D20220000000

Sample ID: D202300805701 D202300810801

Sample ID: D202300807101 D202300809001

Sample Name DSI2.TP211_0.5-0.6 DSI1.TP109_0.2-0.3

Parameter	Units	PQL			
ESA-P-ORG7 & ORG8					
Benzene			Pass	Pass	

Sydney Laboratory Services A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court Silverwater 2128 Ph: (02) 9648-6669

5 of 16
2301194
A101023.0120.00 (070- 079)

Toluene		Pass	Pass
Ethylbenzene		Pass	Pass
m.p Xylene		Pass	Pass
o Xylene		Pass	Pass
Fluorobenzene (Surr.)	%	92	97
C6-C10		Pass	Pass
C6-C9		Pass	Pass

Sample ID: D202300807102 D202300809002

Sample Name DSI2.TP211_0.5-0.6 DSI1.TP109_0.2-0.3

Parameter	Units	PQL	27/03/2023	Sample Date: 27/03/2023
ESA-P-ORG(12 - 15)				
Acenaphthene			Pass	Pass
Acenaphthylene			Pass	Pass
Anthracene			Pass	Pass
Benzo[a]anthracene			Pass	Pass
Benzo[a]pyrene			Pass	Pass
Benzo[g,h,i]perylene			Pass	Pass
Benzo[b,k]fluoranthene			Pass	Pass
Chrysene			Pass	Pass
Dibenzo[a,h]anthracene			Pass	Pass
Fluoranthene			Pass	Pass
Fluorene			Pass	
Indeno(1,2,3-cd)pyrene		Pass		Pass
Naphthalene		Pass		Pass
Phenanthrene			Pass	Pass
Pyrene			Pass	Pass
p-Terphenyl-d14 (Surr.)	%		108	104
aldrin			Pass	Pass
a-BHC			Pass	Pass
b-BHC			Pass	Pass
d-BHC			Pass	Pass
g-BHC (lindane)			Pass	Pass

Page :	6 of 16
Batch Number :	2301194
Report Number :	A101023.0120.00 (070- 079)

cis-chlordane		Pass	Pass
trans-chlordane		Pass	Pass
4,4'-DDD		Pass	Pass
4,4'-DDE		Pass	Pass
4,4'-DDT		Pass	Pass
dieldrin		Pass	Pass
endosulfan I		Pass	Pass
endosulfan II		Pass	Pass
endosulfan sulfate		Pass	Pass
endrin		Pass	Pass
endrin aldehyde		Pass	Pass
endrin ketone		Pass	Pass
heptachlor		Pass	Pass
heptachlor epoxide		Pass	Pass
hexachlorobenzene		Pass	Pass
methoxychlor		Pass	Pass
TCMX (Surr.)	%	74	72
chlorpyrifos		Pass	Pass
chlorpyrifos methyl		Pass	Pass
diazinon		Pass	Pass
fenchlorphos		Pass	Pass
methyl parathion		Pass	Pass
prophos		Pass	Pass
tributylphosphorotrithioite		Pass	Pass
Aroclor 1016		Pass	Pass
Aroclor 1221		Pass	Pass
Aroclor 1232		Pass	Pass
Aroclor 1242		Pass	Pass
Aroclor 1248		Pass	Pass
Aroclor 1254		Pass	Pass
Aroclor 1260		Pass	Pass
2-fluorobiphenyl (Surr.)	%	87	87

Page :	7 of 16
Batch Number :	2301194
Report Number :	A101023.0120.00 (070-
	079)

Sample ID: D202300807103 D202300809003

Sample Name DSI2.TP211_0.5-0.6 DSI1.TP109_0.2-0.3

Parameter	Units	PQL	27/03/2023	Sample Date: 27/03/2023
ESA-P-ORG(3,8)				
>C10-C16			Pass	Pass
>C16-C34			Pass	Pass
>C34-C40			Pass	Pass
>C10-C14			Pass	Pass
>C15-C28			Pass	Pass
>C29-C36			Pass	Pass

Sample ID: D202300807104 D202300809004

Sample Name DSI2.TP211_0.5-0.6 DSI1.TP109_0.2-0.3

Parameter	Units	PQL	27/03/2023	Sample Date: 27/03/2023
ESA-MP-01,ICP-01				
Arsenic			Pass	Pass
Cadmium			Pass	Pass
Chromium			Pass	Pass
Copper			Pass	Pass
Lead			Pass	Pass
Mercury			Pass	Pass
Nickel			Pass	Pass
Zinc			Pass	Pass

Sample ID: Q2023001822

Sample Name

Parameter	Units	PQL	PFAS Blank - Soil
ESA-P-ORG16			
PFBA	ug/kg	5	<5
PFPeA	ug/kg	5	<5
PFBS	ug/kg	5	<5
PFHxA	ug/kg	5	<5
PFPeS	ug/kg	5	<5

Sydney Laboratory Services

Page :	8 of 16
Batch Number :	2301194
Report Number :	A101023.0120.00 (070-
	079)

PFHpA	ug/kg	5	<5
PFOA	ug/kg	5	<5
PFHpS	ug/kg	5	<5
PFOS	ug/kg	5	<5
PFDA	ug/kg	5	<5
PFUdA	ug/kg	5	<5
PFDoA	ug/kg	5	<5
PFTrDA	ug/kg	5	<5
PFTeDA	ug/kg	5	<5
PFNA	ug/kg	5	<5
PFHxS	ug/kg	5	<5
MPFBA (Surr.)	%		101
M3PFBS (Surr.)	%		81
MPFOS (Surr.)	%		89
MPFHxA (Surr.)	%		84
MPFOA (Surr.)	%		79
MPFUdA (Surr.)	%	i	126

	Sample Name		
Parameter	Units	PQL	PFAS Blank Sp - Soil
ESA-P-ORG16			
PFBA	%		110
PFPeA	%		122
PFBS	%		97
PFHxA	%		117
PFPeS	%		118
PFHpA	%		91
PFOA	%		125
PFHpS	%		128
PFOS	%		98
PFDA	%		86

Sydney Laboratory Services A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court Silverwater 2128

Ph: (02) 9648-6669

Page :	9 of 16
Batch Number :	2301194
Report Number :	A101023.0120.00 (070- 079)

%		122
%		125
%		120
%		115
%		127
%		108
%		88
%		79
%		115
%		75
%		73
%		86
	% % % % % % %	%

Sample Name

Parameter	Units	PQL	BTEX Blank - Soil
ESA-P-ORG7 & ORG8			
Benzene	mg/kg	0.5	<0.50
Toluene	mg/kg	0.5	<0.50
Ethylbenzene	mg/kg	1	<1.0
m.p Xylene	mg/kg	2	<2.0
o Xylene	mg/kg	1	<1.0
C6-C10	mg/kg	35	<35
C6-C9	mg/kg	25	<25

Sample ID: Q2023001825

Sample Name

Parameter	Units	PQL	BTEX Blank Sp-Soil
ESA-P-ORG7 & ORG8			1
Benzene	%		119
Toluene	%		108
Ethylbenzene	%		98
m.p Xylene	%		95
o Xylene	%	i – – –	94

Sydney Laboratory Services

Page :	10 of 16
Batch Number :	2301194
Report Number :	A101023.0120.00 (070- 079)

Sample Name PCB Blank - Soil Parameter Units PQL ESA-P-ORG(12 - 15) <0.30 Acenaphthene mg/kg 0.3 Acenaphthylene 0.3 <0.30 mg/kg Anthracene 0.3 <0.30 mg/kg Benzo[a]anthracene mg/kg 0.3 <0.30 Benzo[a]pyrene mg/kg 0.3 <0.30 Benzo[g,h,i]perylene mg/kg 0.3 < 0.30 Benzo[b,k]fluoranthene mg/kg 0.3 <0.30 Chrysene mg/kg 0.3 <0.30 Dibenzo[a,h]anthracene 0.3 <0.30 mg/kg Fluoranthene 0.3 <0.30 mg/kg Fluorene 0.3 <0.30 mg/kg Indeno(1,2,3-cd)pyrene mg/kg 0.3 <0.30 Naphthalene <0.30 mg/kg 0.3 <0.30 Phenanthrene mg/kg 0.3 Pyrene mg/kg 0.3 <0.30 aldrin <0.10 mg/kg 0.1 a-BHC < 0.10 mg/kg 0.1 b-BHC <0.10 mg/kg 0.1 d-BHC mg/kg 0.1 < 0.10 g-BHC (lindane) mg/kg 0.1 < 0.10 cis-chlordane <0.10 mg/kg 0.1 trans-chlordane mg/kg 0.1 < 0.10 4,4'-DDD mg/kg 0.1 < 0.10 4,4'-DDE mg/kg 0.1 < 0.10 4,4'-DDT mg/kg 0.1 <0.10 dieldrin 0.1 <0.10 mg/kg endosulfan I mg/kg 0.2 <0.20

%

Sample ID:

87

Q2023001826

Sydney Laboratory Services

Page :	11 of 16
Batch Number :	2301194
Report Number :	A101023.0120.00 (070- 079)

endosulfan II	mg/kg	0.2	<0.20
endosulfan sulfate	mg/kg	0.1	<0.10
endrin	mg/kg	0.2	<0.20
endrin aldehyde	mg/kg	0.1	<0.10
endrin ketone	mg/kg	0.1	<0.10
heptachlor	mg/kg	0.1	<0.10
heptachlor epoxide	mg/kg	0.1	<0.10
hexachlorobenzene	mg/kg	0.1	<0.10
methoxychlor	mg/kg	0.1	<0.10
chlorpyrifos	mg/kg	0.1	<0.10
chlorpyrifos methyl	mg/kg	0.1	<0.10
diazinon	mg/kg	0.1	<0.10
fenchlorphos	mg/kg	0.1	<0.10
methyl parathion	mg/kg	0.1	<0.10
prophos	mg/kg	0.1	<0.10
tributylphosphorotrithioite	mg/kg	0.1	<0.10
Aroclor 1016	mg/kg	0.5	<0.50
Aroclor 1221	mg/kg	0.5	<0.50
Aroclor 1232	mg/kg	0.5	<0.50
Aroclor 1242	mg/kg	0.5	<0.50
Aroclor 1248	mg/kg	0.5	<0.50
Aroclor 1254	mg/kg	0.5	<0.50
Aroclor 1260	mg/kg	0.5	<0.50

Sample Name

Parameter	Units	PQL	PCB Blank Sp - Soil
ESA-P-ORG(12 - 15)			
Acenaphthene	%		97
Anthracene	%		100
Fluoranthene	%		92
Naphthalene	%		103
Phenanthrene	%		97

Sydney Laboratory Services

12 of 16
2301194
A101023.0120.00 (070- 079)

Pyrene	%	94
p-Terphenyl-d14 (Surr.)	%	105
aldrin	%	106
endrin	%	98
hexachlorobenzene	%	89
TCMX (Surr.)	%	76
chlorpyrifos	%	107
diazinon	%	91
2-fluorobiphenyl (Surr.)	%	91
Aroclor 1016	%	102

Sample Name

Parameter	Units	PQL	TRH Blank-Soil
ESA-P-ORG(3,8)			
>C10-C16	mg/kg	50	<50
>C16-C34	mg/kg	100	<100
>C34-C40	mg/kg	100	<100
>C10-C14	mg/kg	50	<50
>C15-C28	mg/kg	100	<100
>C29-C36	mg/kg	100	<100

Sample ID: Q2023001829

	Sample Name		
Parameter	Units	PQL	TRH Blank Spike- Soil
ESA-P-ORG(3,8)			
>C10-C16	%		98
>C10-C14	%		93

Sample ID: Q2023001844

	S	ample Name	
Parameter	Units	PQL	Metals Blank - Soil
ESA-MP-01,ICP-01			
Arsenic	mg/kg	5	5.0

Page :	13 of 16
Batch Number :	2301194
Report Number :	A101023.0120.00 (070-
	079)

Cadmium	mg/kg	0.3	<0.30
Chromium	mg/kg	1	<1.0
Copper	mg/kg	5	<5.0
Lead	mg/kg	5	<5.0
Mercury	mg/kg	0.1	<0.10
Nickel	mg/kg	1	<1.0
Zinc	mg/kg	5	<5.0

	Sa	Sample Name		
Parameter	Units	PQL	Metals Blank Sp-Soil	
ESA-MP-01,ICP-01		-		
Arsenic	%		95	
Cadmium	%		94	
Chromium	%		91	
Copper	%		88	
Lead	%		95	
Mercury	%		88	
Nickel	%		94	
Zinc	%		95	

Page :	14 of 16
Batch Number :	2301194
Report Number :	A101023.0120.00 (070- 079)

Sample Name DSI2.TP201_0.2-0.3

Sample Name DSI2.1P201_0.2-0.3			
Parameter	Units	PQL	
ESA-P-ORG16			
PFBA	%		113
PFPeA	%		121
PFBS	%		92
PFHxA	%		112
PFPeS	%		116
PFHpA	%		85
PFOA	%		118
PFHpS	%		121
PFOS	%		94
PFDA	%		79
PFUdA	%		115
PFDoA	%		113
PFTrDA	%		82
PFTeDA	%		125
PFNA	%		108
PFHxS	%		97
MPFBA (Surr.)	%		108
M3PFBS (Surr.)	%		118
MPFOS (Surr.)	%		111
MPFHxA (Surr.)	%		106
MPFOA (Surr.)	%		76
MPFUdA (Surr.)	%		102

Page :	15 of 16
Batch Number :	2301194
Report Number :	A101023.0120.00 (070-
	079)

Sample Name DSI2.TP211_0.1-0.2

Parameter	Units	PQL		
ESA-P-ORG-07 & 08				
Benzene	%		124	
Toluene	%		111	
Ethylbenzene	%		101	
m.p Xylene	%		91	
o Xylene	%		94	
Fluorobenzene (Surr.)	%		90	

Sample ID: \$202300807002

Sample Name DSI2.TP211_0.1-0.2

Parameter	Units	PQL	Sample Date: 27/03/2023
ESA-P-ORG(12 - 15)			2770072020
Acenaphthene	%		90
Anthracene	%		94
Fluoranthene	%		94
Naphthalene	%		94
Phenanthrene	%		96
Pyrene	%		96
p-Terphenyl-d14 (Surr.)	%		104
aldrin	%		99
endrin	%		92
hexachlorobenzene	%	1	82
TCMX (Surr.)	%	1	68
chlorpyrifos	%	1	104
diazinon	%	1	86
Aroclor 1016	%	1	103
2-fluorobiphenyl (Surr.)	%		82

Page :	16 of 16
Batch Number :	2301194
Report Number :	A101023.0120.00 (070-
	079)

	Si	ample Name	DSI2.TP211_0.1-0.2
Parameter	Units	PQL	Sample Date: 27/03/2023
ESA-P-ORG(3,8)			
>C10-C16	%		91
>C10-C14	%		88

Sample ID: \$202300807004

Sample Name DSI2.TP211_0.1-0.2

Parameter	Units	PQL	Sample Date: 27/03/2023
ESA-MP-01,ICP-01			
Chromium	%		123
Mercury	%		85
Nickel	%		118
Zinc	%		124

Sample ID: \$202300815502

Sample Name

Parameter	Units	PQL	
ESA-MP-01,ICP-01	-	-	
Arsenic	%		112
Cadmium	%		124
Copper	%		112
Lead	%		121

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

A.B.N. 52 093 452 950

 Analysis report:
 A101023.0120.00

 Laboratory LOT NO:
 2301193

Date Received:	28.03.2023
Date Analysed:	30.03.2023
Report Date:	30.03.2023
Client:	ADE Consulting Group
Job Location:	As Received
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)
*Asbestos identification	as per "National Environment Protection (Assessment of site contamination) Measure, Schedule B1"
and "The Guidelines from	a the Assessment Remediation and Management of Ashestos-Contaminated Sites in Western Australia

and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia -May 2009" is not coverd by NATA scope of accreditation

Analysis performed by:

agrilia

Michelle Ogilvie Approved asbestos identifier

Results Authorised By:

Grace T.9

Grace (Weichen) Jia Approved Signatory

General Comments:

Sydney Laboratory Services is responsible for all the information in the report, except that provided by the customer. All sampling information included in the report has been provided by the client

Sample analysed as received.

Samples are stored for minimum period of 1 month if longer time is not advised by client.

Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.01g/kg (0.001% w/w) for friable asbestos and 0.1g/kg (0.01% w/w) for bonded asbestos.

This form of analysis is outside the scope of NATA accreditation.

Bonded asbestos containing material (bonded ACM): Bonded ACM comprises asbestos-containing-material which is in sound condition, although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve.

Fibrous asbestos (FA): FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or was previously bonded and is now significantly degraded (crumbling).

Asbestos fines (AF): AF includes free fibres, small fibre bundles and also small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve. Note: The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.

	Laboratory Sample No.	Sample Description/Matrix	Sample Dimensions (cm) unless stated otherwise	Weight (Dry Weight)	Trace Analysis Completed Y/N	Result	Comments
DSI2.TP201_0.2-0.3	2023008055	Granulated dark soil with rocks	500 ml	610 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	
					Vas no traca ashastos	light microscopy including dispersion staining.	Nil
					detected by polarized light microscopy including dispersion staining	no Crocidolite asbestos detected by polarized light microscopy including dispersion staining.	Nil
						No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	Nil
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
DSI2.TP203_0.1-0.2	2023008057	Granulated dark soil with rocks	500 ml	512 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	
						No Amosite asbestos detected by polarized light microscopy including dispersion staining. No Crocidolite asbestos detected by	Nil
					light microscopy including dispersion staining	dispersion staining.	Nil
						No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	Nil
DSI2.TP209_0.5-0.6	2022008050	Granulated dark soil	500 ml	783 grams		Organic fibres detected by polarized light microscopy including dispersion staining. No Chrysotile asbestos detected by polarized	
D312.1F209_0.3-0.0	2023006039	with rocks	500 m	765 grams		light microscopy including dispersion staining.	Nil
					Yes, no trace asbestos	light microscopy including dispersion staining.	Nil
					light microscopy	polarized light microscopy including dispersion staining. No Synthetic Mineral Fibres detected by	Nil
						polarized light microscopy including dispersion staining.	Nil
DSI2.TP213_0.2-0.3	2022008061	Granulated dark soil	500 ml	710 grams		microscopy including dispersion staining. No Chrysotile asbestos detected by polarized	
D312.1F213_0.2-0.3	2023008001	with rocks	500 m	710 grants		light microscopy including dispersion staining.	Nil
					Yes, no trace asbestos	light microscopy including dispersion staining.	Nil
					light microscopy including dispersion staining	polarized light microscopy including dispersion staining.	Nil
						polarized light microscopy including dispersion staining.	Nil
DSI2.TP215_0.2-0.3	2023008063	Granulated dark soil	500 ml	610 grams		microscopy including dispersion staining. No Chrysotile asbestos detected by polarized	
		with rocks				light microscopy including dispersion staining.	Nil
						light microscopy including dispersion staining. No Crocidolite asbestos detected by	Nil
					light microscopy including dispersion staining	polarized light microscopy including dispersion staining. No Synthetic Mineral Fibres detected by	Nil
						polarized light microscopy including dispersion staining. Organic fibres detected by polarized light	Nil
DSI2.TP236_0.3-0.4	2023008068	Granulated dark soil	500 ml	737 grams		microscopy including dispersion staining. No Chrysotile asbestos detected by polarized	Nil
		with rocks					Nil
					Yes, no trace asbestos	light microscopy including dispersion staining. No Crocidolite asbestos detected by	Nil
					light microscopy including dispersion staining	No Synthetic Mineral Fibres detected by	Nil
							Nil
						microscopy including dispersion staining.	

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669 A.B.N. 52 093 452 950

 Analysis report:
 A101023.0120.00

 Laboratory LOT NO:
 2301194

Date Received:	28.03.2023
Date Analysed:	30.03.2023
Report Date:	30.03.2023
Client:	ADE Consulting Group
Job Location:	As Received
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)
*Asbestos identification	as per "National Environment Protection (Assessment of site contamination) Measure, Schedule B1"
and "The Guidelines from	n the Assessment, Remediation and Management of Ashestos-Contaminated Sites in Western Australia

and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" is not coverd by NATA scope of accreditation

Analysis performed by:

abril

Michelle Ogilvie Approved asbestos identifier

Results Authorised By:

Grace T.9

Grace (Weichen) Jia Approved Signatory

General Comments:

Sydney Laboratory Services is responsible for all the information in the report, except that provided by the customer. All sampling information included in the report has been provided by the client

Sample analysed as received.

Samples are stored for minimum period of 1 month if longer time is not advised by client.

Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.01g/kg (0.001% w/w) for friable asbestos and 0.1g/kg (0.01% w/w) for bonded asbestos.

This form of analysis is outside the scope of NATA accreditation.

Bonded asbestos containing material (bonded ACM): Bonded ACM comprises asbestos-containing-material which is in sound condition, although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve.

Fibrous asbestos (FA): FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or was previously bonded and is now significantly degraded (crumbling).

Asbestos fines (AF): AF includes free fibres, small fibre bundles and also small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve. Note: The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.

-	Laboratory Sample No.	Sample Description/Matrix	Sample Dimensions (cm) unless stated otherwise	Weight (Dry Weight)	Trace Analysis Completed Y/N	Result	Comments
DSI2.TP211_0.1-0.2		Granulated dark soil with rocks	500 ml	619 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
					Van no traco ophostop	light microscopy including dispersion staining.	Nil
					Yes, no trace asbestos detected by polarized light microscopy including dispersion staining.	No Crocidolite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					Stanning.	polarized light microscopy including dispersion staining.	Nil
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
DSI2.TP219_0.2-0.3	2023008072	Granulated dark soil with rocks	500 ml	672 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
						light microscopy including dispersion staining.	Nil
					Yes, no trace asbestos detected by polarized light microscopy including dispersion	polarized light microscopy including	Nil
					staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	Nil
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
DSI2.TP229_0.2-0.3	2023008076	Granulated dark soil with rocks	500 ml	543 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
						light microscopy including dispersion staining.	Nil
						No Crocidolite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	Nil
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
DSI2.TP239_0.2-0.3	2023008079	Granulated dark soil with rocks	500 ml	612 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
						light microscopy including dispersion staining.	Nil
					including dispersion		Nil
					staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	Nil
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil

A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950 Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

CLIENT DETAILS	
Client	ADE Consulting Group
Contact	Andrew Hunt, Linda Lenhian, Santo Ragusa
Samplers	Monique Hitchens, Chris Navaratnam
SAMPLE RECEIPT DETAILS	
Project Number	A101023.0120.00/002/L05
SLS Reference	2301193
Number of samples	19
Date samples received	28.03.2023
Time samples received	5:15 PM
Samples Received By	Krista Johnston
Temperature upon receipt (°C)	N/A
Turn Around Time requested	5 Working Days
Expected Report Date	05.04.2023
CONDITION OF SAMPLES UPON I	RECEIVAL
No errors in COC provided.	
All samples were received in good cond	lition.
Evidence of chilling for samples.	
Appropriate use of sample containers h	nave been used.
Samples were delivered within holding	time of analysis requested.
Samples to be tested for volatiles received	ved with zero headspace.
Custody Seal intact (if used)	N/A
COMMENTS	
This Report Contains:	
Sample receipt non-conformities. Summary of samples and requested analysis. Requested report deliverables.	
CONTACT US FOR ANY QUERIES	
If you have any questions with respect t	to these samples please contact:
	Contraction Medical Information

Email Phone sls@ade.group (+61) 0451 524 289

Krista Johnston

Contact

Signed

SYDNEY LABORATORY SERVICES

A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950 Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

INFORMATION SUMMARY							
SLS Reference	2301193						
Project Number	A101023.0120.00/002/L05						
Client	ADE Consulting Group						
Contact	Andrew Hunt, Linda Lenhian, Santo Ragusa						
Samplers	Monique Hitchens, Chris Navaratnam						
ANALYSIS UNDERWAY - Details of the following samples							

SUMMARY OF SAMPLES AND ANALYSIS REQUESTED

					30141	1017-1111	01.3
			2L01	OH07 - Asbestos 500ml NEPM	PS02 - PFAS	NEPM HOLD	НОГР
Laboratory Sample ID	Sampling Date	Client Sample ID	SL	ò	ΡS	RE	H
 2023008053	27.03.2023	DSI2.BR1	Х				
 2023008054	27.03.2023	DSI2.BR2	Х				
2023008055	27.03.2023	DSI2.TP201_0.2-0.3	х	Х	Х		
 2023008056	27.03.2023	DSI2.TP201_0.5-0.6	х				
	27.03.2023	DSI2.TP202_0.1-0.2					х
2023008057	27.03.2023	DSI2.TP203_0.1-0.2	х	Х	Х		
2023008058	27.03.2023	DSI2.TP206_0.2-0.3	Х			Х	Х
2023008059	27.03.2023	DSI2.TP209_0.5-0.6	х	Х			
2023008060	27.03.2023	DSI2.TP210_0.2-0.3	х			х	х
2023008061	27.03.2023	DSI2.TP213_0.2-0.3	х	Х	Х		
2023008062	27.03.2023	DSI2.TP213_0.7-0.8	х				
 2023008063	27.03.2023	DSI2.TP215_0.2-0.3	х	х			
 2023008064	27.03.2023	DSI2.TP215_1.2-1.3	х			х	Х
 2023008065	27.03.2023	DSI2.TP216_0.4-0.6	х			х	х
 2023008066	27.03.2023	DSI2.TP234_0.3-0.4	х			х	Х
 2023008067	27.03.2023	DSI2.TP234_0.6-0.7	х			х	Х
	27.03.2023	DSI2.TP235_0.3-0.4					х
2023008068	27.03.2023	DSI2.TP236_0.3-0.4	х	Х	Х		
 2023008069	27.03.2023	DSI2.TP236_0.8-0.9	х				

A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950 Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Client ADE Consulting Group Contact Andrew Hunt, Linda Lenhian, Santo Ragusa Samplers Monique Hitchens, Chris Navaratnam SAMPLE RECEIPT DETAILS Project Number A101023.0120.00/002/L05 SLS Reference 2301194 Number of samples 11	
Samplers Monique Hitchens, Chris Navaratnam SAMPLE RECEIPT DETAILS Project Number A101023.0120.00/002/L05 SLS Reference 2301194	
SAMPLE RECEIPT DETAILS Project Number A101023.0120.00/002/L05 SLS Reference 2301194	
Project Number A101023.0120.00/002/L05 SLS Reference 2301194	
SLS Reference 2301194	
Number of samples 11	
•	
Date samples received 28.03.2023	
Time samples received 5:15 PM	
Samples Received By Krista Johnston	
Temperature upon receipt (*C) N/A	
Turn Around Time requested 5 Working Days	
Expected Report Date 05.04.2023	
CONDITION OF SAMPLES UPON RECEIVAL	
No errors in COC provided.	
All samples were received in good condition.	
Evidence of chilling for samples.	
Appropriate use of sample containers have been used.	
Samples were delivered within holding time of analysis requested.	
Samples to be tested for volatiles received with zero headspace.	
Custody Seal intact (if used) N/A	
COMMENTS	
This Report Contains:	
Sample receipt non-conformities. Summary of samples and requested analysis. Requested report deliverables.	
CONTACT US FOR ANY QUERIES	
If you have any questions with respect to these samples please contact:	

Email Phone sls@ade.group (+61) 0451 524 289

Krista Johnston

Contact

Signed

SYDNEY LABORATORY SERVICES

A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950 Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

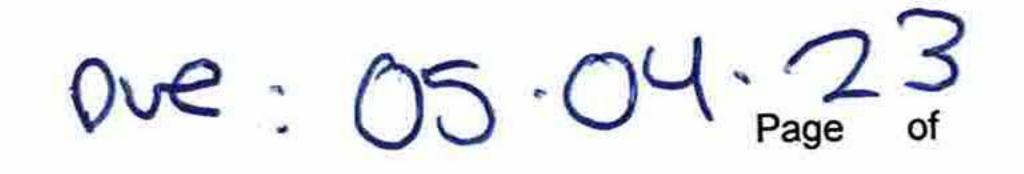
INFORMATION SUMMARY							
SLS Reference	2301194						
Project Number	A101023.0120.00/002/L05						
Client	ADE Consulting Group						
Contact Andrew Hunt, Linda Lenhian, Santo Ragusa							
Samplers	Monique Hitchens, Chris Navaratnam						
ANALYSIS UNDERWAY - Details of the following samples							

SUMMARY OF SAMPLES AND ANALYSIS REQUESTED

			301011		01.		
			01	OH07 - Asbestos 500ml NEPM	32 - PFAS	NEPM HOLD	НОГР
Laboratory Sample ID	Sampling Date	Client Sample ID	SL01	НО	PS02	NE	ОН
	27.03.2023	DSI2.TP207_0.2-0.3					Х
2023008070	27.03.2023	DSI2.TP211_0.1-0.2	х	х			
2023008071	27.03.2023	DSI2.TP211_0.5-0.6	х				
2023008072	28.03.2023	DSI2.TP219_0.2-0.3	х	х			
2023008073	28.03.2023	DSI2.TP221_0.1-0.2	х				
2023008074	28.03.2023	DSI2.TP225_0.4-0.5	х				
2023008075	28.03.2023	DSI2.TP227_0.3-0.4	Х				
2023008076	28.03.2023	DSI2.TP229_0.2-0.3	Х	Х			
2023008077	28.03.2023	DSI2.TP231_0.1-0.2	х				
2023008078	28.03.2023	DSI2.TP233_0.4-0.5	Х			Х	
2023008079	28.03.2023	DSI2.TP239 0.2-0.3	x	х	х		

Document Revision Date: 22/08/2022 ESA-F-02 FULL PROJECT NUMBER		A101023.0120.00																
			002			LABORATORY REFERENCE NO. (Lab use ONLY):									A101023			
PROJECT PHASE				L05											AIOIOZO			
PROJECT TASK			ADE Consulting Group				1.0		1	-		1						
SAMPLES DELIVERED	BY:		6/7 Mil	lennium Ct, Silverwater NSW	2128	RECEIVED BY:											AFTUO	DA
CANADI CDC.			1.57	Navaratnam, Monique Hitch	nens	SAMPLES: CHILLED: PRESERVED: PRESERVED: PRESERVATION METHOD:											<i>ю</i> : Ц	
SAMPLERS:	NECC DAY RD).			4 hr: 2-BD: 3-BD:		MIN	IMAL					WITHI					a linea	
TURNAROUND (BUSI	NESS DAT - BUJ.			28.03.2023		DAT	E:	Z	81	3/2				ME:	5:1	is pr	1	MPERA
SAMPLING DATE:						LIMS	LOT	NO.		/		LIMS/	EXCEL S	SIGNA	TURE:	-	CO	OMMEN
- FTER TEST STORAGE	r.			RIDGE: D FREEZER: D		0	~ -		0	0			(11-	1/		
AFTER TEST STORAGE	E:		>>4 WEEKS: 🗆	OTHER:		1	30	21	9	3								
DEDODT FORMAT			HARD COPY: D E-	MAIL: X								<u> </u>	NALYSE	-S REO	UIRED		_	
REPORT FORMAT:	ATUDE.			monique.hitchens@ade.gro	oup;													
CONSULTANTS SIGN/	ATURE:		chris.navaratnam@ad															
		4190	chi isinavai achanie au									_						
		1	DROIECT MANIACERCI	E-MAIL: andrew.hunt@ade.g	roup	1						plot						
PROJECT MANAGERS	S SIGNATURE:			oup, santo.ragusa@ade.grou			Ē	×	ite		р	n L						
			linda.leninan@ade.gr	Jup, santo.ragusa@uuc.grou	P	-	Ö	Bul	Su	σ	hol	۲ ۲						
	SAMP	LE DATA	*	CONTAINER	R DATA	5	ios 5	stos	hort	loh r	u u	200						
						l s	lest	pes	SS	ō	FAS	os						
				· · · · · · · · · · · · · · · · · · ·			Asb	As	PFA		PF	est						
			a		NO. OF SAMPLE				-	1		Asb		-				
LIMS Sample ID	Sample ID (ADE)	MATRIX	SAMPLE DATE	TYPE & PRESERVATIVE	CONTAINERS						1 1				1 1			
(Lab Use)	· · · · · · · · · · · · · · · · · · ·															- 1		
	5					2	-											
202300	D.A.				1	X		-										
053	DSI2.BR1	Soil	27.03.2023	G		1 X	-			-								
054	DSI2.BR2	Soil	27.03.2023	G		2 X	X ·		x		.							
	DSI2.TP201_0.2-0.3	Soil	27.03.2023	G+P		1 x		1										_
	DSI2.TP201_0.5-0.6	Soil	27.03.2023 27.03.2023	G+P		2				х			3					
	DSI2.TP202_0.1-0.2	Soil	27.03.2023	G+P		2 X	X ·		X									
	DSI2.TP203_0.1-0.2	Soil	27.03.2023	G+P		2 X						Х						\rightarrow
	DSI2.TP206_0.2-0.3	Soil	27.03.2023	G+P		2 X	X					-						
	DSI2.TP209_0.5-0.6	Soil	27.03.2023	G+P		2 x					-	+			_			
	DSI2.TP210_0.2-0.3 DSI2.TP213_0.2-0.3	Soil	27.03.2023	G+P		2 X	X		X		-				_			
	DSI2.TP213_0.2-0.3 DSI2.TP213_0.7-0.8	Soil	27.03.2023	G		1 x		-							_			
	DSI2.TP215_0.7-0.0 DSI2.TP215_0.2-0.3	Soil	27.03.2023	G+P		2 X	X					V		-+	_			
	DSI2.TP215_0.2-0.5	Soil	27.03.2023	G+P		2 X						X		-+				
	DSI2.TP216_0.4-0.6	Soil	27.03.2023	G+P		2 X						X		+	_			_
	DSI2.TP234 0.3-0.4	Soil	27.03.2023	G+P		2 X						X	-					_
	DSI2.TP234_0.6-0.7	Soil	27.03.2023	G+P		2 X	•		-	V	-	^						
	DSI2.TP235 0.3-0.4	Soil	27.03.2023	G+P		2	V	_	X	^	-	-			-			
	DSI2.TP236_0.3-0.4	Soil	27.03.2023	G+P		2 X	~	·	^	-	-							
	DSI2.TP236_0.8-0.9	Soil	27.03.2023	G		-	-	-		-					2			
						-	+	+	1									
Comments:						-	+			1								
Container Type and Presen	vative: P = Unpreserved Plastic; PN = N	litric Preserved Plastic; ORC = Nitric	P				+	+-	-		+	-						
		d; V = Unpreserved Vial; G = Amber (1	1				1	1	1 I			1 1		

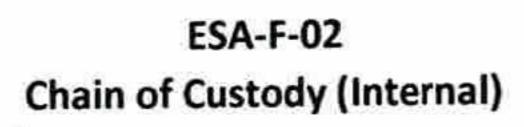
3



874

Date Printed: 28/03/202	ate	Printed:	28/03	/2023
-------------------------	-----	----------	-------	-------

(4	0.00/002/105
			CUSTODY SEAL INTACT:
		JPO	N RECEIPT: °C
ITS			
			NOTES
Γ			POTENTIAL HAZARDOUS CONTAMINANTS:
			ASBESTOS HYDROCARBONS
			OTHER:
			LAB PLEASE *EMAIL COC RECEIPT:
			Sample Comments
	_		Please use PFAS LOR of
1			5µg/kg
+			
1			
+			
1			
+			
1			
+			
_		_	
	N.		



Document netholon De	ate: 22/08/2022		A-F-02 COC - Cł		.		-			-	-			-					1.075	
FULL PROJECT NUM	BER			A101023.0120.00																
PROJECT PHASE				002		LA	BORA	TOR	Y REF	EREN	ICE N	0. (La	b use	ONLY):		AI	M	0	23	2.
PROJECT TASK				L05											1		~	1		
SAMPLES DELIVERED	BV.			ADE Consulting Group									1	X	CICA		F .		1.5	
SAIVIT LES DELIVERED	, D1.			lennium Ct, Silverwater NSV		RECE					-	-	K		17.789. A.	NATUR		ACTU		
SAMPLERS:			Chris	Navaratnam, Monique Hitc		SAM							Charle For Condition and	CON-SCALE OF MUS			TION	VIEIR		77.5
TURNAROUND (BUS	INESS DAY - BD):		SAME DAY: D 24	4 hr: 2-BD: 🛛 3-BD: 🗖	5 BD (STD): XX	MIN			61.0			WITH	N-3487 10-4	GALLING STREET	TIME:	_	2.44	1		
SAMPLING DATE:				28.03.2023		DAT	E: /	28	13	5/2	5		T	ME:	5:	151	m	2.0%	EMPER/	W Reliant
						LIMS				1	the second s	LIMS	/EXCE	SIGN	ATURE		~	CC	OMME	NTS
AFTER TEST STORAG	E:			RIDGE: XX FREEZER:		9	12	n	110	24	1		<		6	1	>	14	a	
			>>4 WEEKS: 🗆	OTHER:		4	-0		11-	1	1			1	2	/		7	Exter	2
REPORT FORMAT:			HARD COPY: D	MAIL: X								4	NALY	SES RE	QUIRE	D			-	
CONSULTANTS SIGN	ATURE:	6	CONSULTANTS EMAIL:	monique.hitchens@ade.g	roup;															
		ad	chris.navaratnam@ad																	
	que	MAN															<i>i</i>			
DROIFCT MANIACCD		AR I	DROJECT MANIACEDS	E-MAIL: andrew.hunt@ade.	group	1						Plo		-						
PROJECT MANAGERS SIGNATURE:		A 2015 THE THE ST THE S	oup, santo.ragusa@ade.gro	2		Ē	~	te		-	Р Ч									
	4	PV'	Initia.ieninan@aue.gru	Jup, santo.ragusa@auc.gro	up		00	Bulk	Sui	-	ploi	Ō								
SAMPLE DATA		CONTAINER DATA		5	s 5(S	Ę	be	노	ь В										
	SAIVIPLE		CONTAINER DATA		ы Б	sto	este	SP.	n T	So	50									
							be	sb	AS	ľ	PFA	tos								
							Ř		L H		-	sec								
LIMS Sample ID	Sample ID (ADE)	MATRIX	SAMPLE DATE	TYPE & PRESERVATIVE	NO. OF SAMPLE							Asb						-		
(Lab Use)	Sample ID (ADE)	WATNA	SAIVITLE DATE	I'll COINCSCRUTTINE	CONTAINERS	n - 1														
	1													-						
20230	58																			
		Soil	27.03.2023	G+P	2		1			Х									-	
		Soil	27.03.2023	G+P	2	X.	X -													
		Soil	27.03.2023	G		х .														
				G+P	2	2 X	X,											(e)		
		Soil	28.03.2023	G		Х						-								
	DSI2.TP225 0.4-0.5	Soil	28.03.2023	G		X														\perp
	Contraction of the second s		28.03.2023	G		X														
	DSI2.TP229 0.2-0.3	and the second design of the s	28.03.2023	G+P	2	X	X,													
		Soil	28.03.2023	G	1	X														
	DSI2.TP233 0.4-0.5	Soil	28.03.2023	G ·		Χ.						×			<u> </u>					\perp
the second se	DSI2.TP239 0.2-0.3	Soil	28.03.2023	G+P	2	2 X	х,		Х			- 58								
V/1							0 A													
											1									
	1																			
													1 10	2						_
		1						- ×.					63							
		1																		
					1		1									1				
											-					_				

Comments:

Container Type and Preservative: P = Unpreserved Plastic; PN = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; PNA = Sodium Hydroxide Preserved Plastic; PC = HCl preserved Plastic; VC = Vial HCl Preserved; SP = Sulfuric Preserved Plastic; VB = Vial Sodium Bisulphate Preserved; VS = Vial Sulfuric Preserved; V = Unpreserved Vial; G = Amber Glass; F = Formaldehyde Preserved Glass; HS = HCl preserved Speciation bottle; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; J = Unpreserved Glass Jar; ASS = Plastic Bag for Acid Sulfate Soils; B = Unpreserved Bag.

\$ (0

Date Printed: 28/03/2023

	ADECONSULTING GROUP
. 0`	120.00/002/tos
	CUSTODY SEAL INTACT:-
	ON RECEIPT: °C
rs: Bao	TP233 04-05 45
4	NOTES
	POTENTIAL HAZARDOUS CONTAMINANTS: ASBESTOS HYDROCARBONS LEAD/ARSENIC NO KNOWN CONTAMINATION
	OTHER: LAB PLEASE *EMAIL COC RECEIPT: D
	Sample Comments
	Please use PFAS LOR of 5µg/kg

Que: 05.04.03

Page 1 of 1

Page of

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 319690

Client Details	
Client	ADE CONSULTING GROUP PTY LTD
Attention	Monique Hitchens, Andrew Hunt, Chris Navaratnam
Address	Unit 6, 7 Millenium Court, Silverwater, NSW, 2128

Sample Details	
Your Reference	A101023.0120.002.L21
Number of Samples	2 Soil
Date samples received	28/03/2023
Date completed instructions received	28/03/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	05/04/2023
Date of Issue	31/03/2023
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.
Accredited for compliance with	ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Kyle Gavrily, Senior Chemist Liam Timmins, Organics Supervisor Loren Bardwell, Development Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 319690 Revision No: R00

Page | 1 of 20

vTRH(C6-C10)/BTEXN in Soil			
Our Reference		319690-1	319690-2
Your Reference	UNITS	DS12.SR1	DS12.SR2
Date Sampled		27/03/2023	28/03/2023
Type of sample		Soil	Soil
Date extracted	-	29/03/2023	29/03/2023
Date analysed	-	30/03/2023	30/03/2023
TRH C ₆ - C ₉	mg/kg	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25
Benzene	mg/kg	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
o-Xylene	mg/kg	<1	<1
Naphthalene	mg/kg	<1	<1
Total +ve Xylenes	mg/kg	<1	<1
Surrogate aaa-Trifluorotoluene	%	96	108

svTRH (C10-C40) in Soil			
Our Reference		319690-1	319690-2
Your Reference	UNITS	DS12.SR1	DS12.SR2
Date Sampled		27/03/2023	28/03/2023
Type of sample		Soil	Soil
Date extracted	-	29/03/2023	29/03/2023
Date analysed	-	29/03/2023	30/03/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50
TRH >C10 -C16	mg/kg	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50
Surrogate o-Terphenyl	%	90	90

PAHs in Soil			
Our Reference		319690-1	319690-2
Your Reference	UNITS	DS12.SR1	DS12.SR2
Date Sampled		27/03/2023	28/03/2023
Type of sample		Soil	Soil
Date extracted	-	29/03/2023	29/03/2023
Date analysed	-	30/03/2023	30/03/2023
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	115	113

Organochlorine Pesticides in soil			
Our Reference		319690-1	319690-2
Your Reference	UNITS	DS12.SR1	DS12.SR2
Date Sampled		27/03/2023	28/03/2023
Type of sample		Soil	Soil
Date extracted	-	29/03/2023	29/03/2023
Date analysed	-	30/03/2023	30/03/2023
alpha-BHC	mg/kg	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	98	98

Organophosphorus Pesticides in Soil			
Our Reference		319690-1	319690-2
Your Reference	UNITS	DS12.SR1	DS12.SR2
Date Sampled		27/03/2023	28/03/2023
Type of sample		Soil	Soil
Date extracted	-	29/03/2023	29/03/2023
Date analysed	-	30/03/2023	30/03/2023
Dichlorvos	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	98	98

PCBs in Soil			
Our Reference		319690-1	319690-2
Your Reference	UNITS	DS12.SR1	DS12.SR2
Date Sampled		27/03/2023	28/03/2023
Type of sample		Soil	Soil
Date extracted	-	29/03/2023	29/03/2023
Date analysed	-	30/03/2023	30/03/2023
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	98	98

Acid Extractable metals in soil			
Our Reference		319690-1	319690-2
Your Reference	UNITS	DS12.SR1	DS12.SR2
Date Sampled		27/03/2023	28/03/2023
Type of sample		Soil	Soil
Date prepared	-	29/03/2023	29/03/2023
Date analysed	-	29/03/2023	29/03/2023
Arsenic	mg/kg	7	7
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	20	20
Copper	mg/kg	19	21
Lead	mg/kg	39	36
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	10	9
Zinc	mg/kg	38	32

Moisture			
Our Reference		319690-1	319690-2
Your Reference	UNITS	DS12.SR1	DS12.SR2
Date Sampled		27/03/2023	28/03/2023
Type of sample		Soil	Soil
Date prepared	-	29/03/2023	29/03/2023
Date analysed	-	30/03/2023	30/03/2023
Moisture	%	11	11

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CON	TROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			29/03/2023	1	29/03/2023	29/03/2023		29/03/2023	
Date analysed	-			30/03/2023	1	30/03/2023	30/03/2023		30/03/2023	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	92	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	92	
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	85	
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	92	
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	90	
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	97	
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	101	
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	101	1	96	104	8	102	

QUALITY CONTROL: svTRH (C10-C40) in Soil						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			29/03/2023	1	29/03/2023	29/03/2023		29/03/2023	
Date analysed	-			29/03/2023	1	29/03/2023	29/03/2023		29/03/2023	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	135	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	122	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	114	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	135	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	122	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	114	
Surrogate o-Terphenyl	%		Org-020	89	1	90	88	2	99	

QUALIT	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			29/03/2023	1	29/03/2023	29/03/2023		29/03/2023	
Date analysed	-			30/03/2023	1	30/03/2023	30/03/2023		30/03/2023	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	<0.05	0	86	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	111	1	115	115	0	107	

QUALITY CO	NTROL: Organo	chlorine F	Pesticides in soil			Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			29/03/2023	1	29/03/2023	29/03/2023		29/03/2023	
Date analysed	-			30/03/2023	1	30/03/2023	30/03/2023		30/03/2023	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	109	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	106	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	105	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	118	
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	135	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	68	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-022/025	100	1	98	98	0	97	

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			29/03/2023	1	29/03/2023	29/03/2023		29/03/2023	
Date analysed	-			30/03/2023	1	30/03/2023	30/03/2023		30/03/2023	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	131	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	140	
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	130	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	134	
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	129	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-022/025	100	1	98	98	0	97	

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			29/03/2023	1	29/03/2023	29/03/2023		29/03/2023	
Date analysed	-			30/03/2023	1	30/03/2023	30/03/2023		30/03/2023	
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	122	
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-021	100	1	98	98	0	97	

QUALITY CONT	QUALITY CONTROL: Acid Extractable metals in soil						Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date prepared	-			29/03/2023	1	29/03/2023	29/03/2023		29/03/2023	
Date analysed	-			29/03/2023	1	29/03/2023	29/03/2023		29/03/2023	
Arsenic	mg/kg	4	Metals-020	<4	1	7	6	15	99	
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	88	
Chromium	mg/kg	1	Metals-020	<1	1	20	18	11	95	
Copper	mg/kg	1	Metals-020	<1	1	19	19	0	103	
Lead	mg/kg	1	Metals-020	<1	1	39	33	17	94	
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	110	
Nickel	mg/kg	1	Metals-020	<1	1	10	9	11	94	
Zinc	mg/kg	1	Metals-020	<1	1	38	45	17	95	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 319757

Client Details	
Client	ADE CONSULTING GROUP PTY LTD
Attention	Monique Hitchens
Address	Unit 6, 7 Millenium Court, Silverwater, NSW, 2128

Sample Details	
Your Reference	A101023.0120.00 002 L04
Number of Samples	1 Soil
Date samples received	29/03/2023
Date completed instructions received	29/03/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	05/04/2023
Date of Issue	31/03/2023
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.
Accredited for compliance with	ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor Loren Bardwell, Development Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 319757 Revision No: R00

Page | 1 of 20

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		319757-1
Your Reference	UNITS	DSI2_SR1
Date Sampled		28/03/2023
Type of sample		Soil
Date extracted	-	30/03/2023
Date analysed	-	31/03/2023
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	97

svTRH (C10-C40) in Soil		
Our Reference		319757-1
Your Reference	UNITS	DSI2_SR1
Date Sampled		28/03/2023
Type of sample		Soil
Date extracted	-	30/03/2023
Date analysed	-	30/03/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
Total +ve TRH (C10-C36)	mg/kg	<50
TRH >C10 -C16	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	88

PAHs in Soil		
Our Reference		319757-1
Your Reference	UNITS	DSI2_SR1
Date Sampled		28/03/2023
Type of sample		Soil
Date extracted	-	30/03/2023
Date analysed	-	31/03/2023
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	89

Organochlorine Pesticides in soil		
Our Reference		319757-1
Your Reference	UNITS	DSI2_SR1
Date Sampled		28/03/2023
Type of sample		Soil
Date extracted	-	30/03/2023
Date analysed	-	31/03/2023
alpha-BHC	mg/kg	<0.1
нсв	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	97

Organophosphorus Pesticides in Soil				
Our Reference		319757-1		
Your Reference	UNITS	DSI2_SR1		
Date Sampled		28/03/2023		
Type of sample		Soil		
Date extracted	-	30/03/2023		
Date analysed	-	31/03/2023		
Dichlorvos	mg/kg	<0.1		
Dimethoate	mg/kg	<0.1		
Diazinon	mg/kg	<0.1		
Chlorpyriphos-methyl	mg/kg	<0.1		
Ronnel	mg/kg	<0.1		
Fenitrothion	mg/kg	<0.1		
Malathion	mg/kg	<0.1		
Chlorpyriphos	mg/kg	<0.1		
Parathion	mg/kg	<0.1		
Bromophos-ethyl	mg/kg	<0.1		
Ethion	mg/kg	<0.1		
Azinphos-methyl (Guthion)	mg/kg	<0.1		
Surrogate TCMX	%	97		

PCPa in Soil		
PCBs in Soil		040757.4
Our Reference		319757-1
Your Reference	UNITS	DSI2_SR1
Date Sampled		28/03/2023
Type of sample		Soil
Date extracted	-	30/03/2023
Date analysed	-	31/03/2023
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCMX	%	97

Acid Extractable metals in soil		
Our Reference		319757-1
Your Reference	UNITS	DSI2_SR1
Date Sampled		28/03/2023
Type of sample		Soil
Date prepared	-	30/03/2023
Date analysed	-	30/03/2023
Arsenic	mg/kg	5
Cadmium	mg/kg	<0.4
Chromium	mg/kg	61
Copper	mg/kg	45
Lead	mg/kg	200
Mercury	mg/kg	<0.1
Nickel	mg/kg	50
Zinc	mg/kg	79

Moisture		
Our Reference		319757-1
Your Reference	UNITS	DSI2_SR1
Date Sampled		28/03/2023
Type of sample		Soil
Date prepared	-	30/03/2023
Date analysed	-	31/03/2023
Moisture	%	11

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Duplicate Spik				ke Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]	
Date extracted	-			30/03/2023	[NT]		[NT]	[NT]	30/03/2023		
Date analysed	-			31/03/2023	[NT]		[NT]	[NT]	31/03/2023		
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	101		
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	101		
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	102		
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	113		
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	91		
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	100		
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	101		
Naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate aaa-Trifluorotoluene	%		Org-023	97	[NT]		[NT]	[NT]	101		

QUALITY CO	QUALITY CONTROL: svTRH (C10-C40) in Soil						plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-			30/03/2023	[NT]		[NT]	[NT]	30/03/2023	
Date analysed	-			30/03/2023	[NT]		[NT]	[NT]	30/03/2023	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	123	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	96	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	100	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	123	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	96	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	100	
Surrogate o-Terphenyl	%		Org-020	96	[NT]		[NT]	[NT]	106	

QUALI	QUALITY CONTROL: PAHs in Soil					Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]	
Date extracted	-			30/03/2023	[NT]		[NT]	[NT]	30/03/2023		
Date analysed	-			31/03/2023	[NT]		[NT]	[NT]	31/03/2023		
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90		
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	93		
Fluorene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	84		
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	92		
Anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	86		
Pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	81		
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Chrysene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	81		
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	84		
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-022/025	102	[NT]		[NT]	[NT]	89		

QUALITY CO	NTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]		
Date extracted	-			30/03/2023	[NT]		[NT]	[NT]	30/03/2023			
Date analysed	-			31/03/2023	[NT]		[NT]	[NT]	31/03/2023			
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	100			
НСВ	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	112			
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	99			
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Aldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	71			
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	78			
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	70			
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	82			
Endrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	74			
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	68			
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	72			
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Surrogate TCMX	%		Org-022/025	95	[NT]		[NT]	[NT]	95			

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-			30/03/2023	[NT]		[NT]	[NT]	30/03/2023	
Date analysed	-			31/03/2023	[NT]		[NT]	[NT]	31/03/2023	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	105	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	85	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	79	
Malathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	91	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	74	
Parathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	74	
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	64	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	95	[NT]		[NT]	[NT]	95	

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-			30/03/2023	[NT]		[NT]	[NT]	30/03/2023	
Date analysed	-			31/03/2023	[NT]		[NT]	[NT]	31/03/2023	
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	65	
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-021	95	[NT]		[NT]	[NT]	95	

QUALITY CONT	ROL: Acid E	Extractabl	e metals in soil			Duj	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date prepared	-			30/03/2023	[NT]	[NT]	[NT]	[NT]	30/03/2023	
Date analysed	-			30/03/2023	[NT]	[NT]	[NT]	[NT]	30/03/2023	
Arsenic	mg/kg	4	Metals-020	<4	[NT]	[NT]	[NT]	[NT]	120	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]	[NT]	[NT]	[NT]	115	
Chromium	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	120	
Copper	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	113	
Lead	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	115	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]	[NT]	[NT]	[NT]	107	
Nickel	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	117	
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	125	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

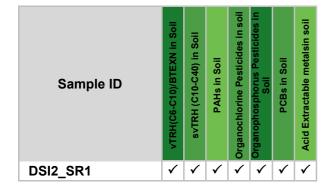
SAMPLE RECEIPT ADVICE

Client Details	
Client	ADE CONSULTING GROUP PTY LTD
Attention	Monique Hitchens

Sample Login Details	
Your reference	A101023.0120.00 002 L04
Envirolab Reference	319757
Date Sample Received	29/03/2023
Date Instructions Received	29/03/2023
Date Results Expected to be Reported	05/04/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	13
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil


Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

									_		_														
I ENVIROLAB	ମ୍ମୋରୁହୁଦ୍ୟୁ ଅନ୍ମାର୍ଜ୍ୟୁ	СН	AIN O	F CUST	ODY	FC	OR	M - Cl	lier	nt					Natio Svdne	nal pho v Lab	one nu: - Envir	mber olab S	1300 4: Service	PUP ENVIROLAB GROUP 24 344 National phone number 1300 424 344 12067					
[Copyright and Confid	dential																			2067 Ivirolab.com.au					
Client: ADE Consu					Client Projec	et Name	Mumh	er/Site etc (le re	nort titl	<u>م)،</u>					<u>Perth</u> 16-18	<u>Lab</u> -N Haydei	IPL La n Crt, j	iborat Myare	ories e, WA ()mpl.co	6154					
Contact Person: A				<u> </u>				A101023.01	•	•					OD 08 9	317 25	i05 ⊠	d lab@	@mpl.co	om.au					
Project Mgr: Andre				u u u	PO No.: A101023.0120.002.L21											Melbourne Lab - Envirolab Services 25 Research Drive, Croydon South, VIC 3136									
Sampler: Chris Nav					Envirolab Quote No. :										Ø 03 9	763 25	001] melt	oourne(@envirolab.com.au					
	Millenium Court Silverwater NSV		Date results required: 05.03.2023											de Off	ice - E	nvirol	ab Ser	vices							
								ie day i 1 day i 2 f urgent turneroù			- surchai	rges ap	ply		7a Th O 08 1	9 Parac 7087 68	le, Nor 100 🖄	rwood 3 adei •	l, SA 50 aide@e	167 envirolab.com.au					
Phone:		Mob: 040	5 685 962		Additional r	eport fo	ermat: e	- sdat / equis /							20a. 1	0-20 De	enot S	t. Ban	lab Ser yo, QL	D 4014					
Email:	chris.navaratnam@ade.g				Lab Comme	nts:									O 07 :	266 95	i 32 🖾	d brist	pane@e	envirolab.com.au					
	andrew.hunt@ade.group				4														Servic	ces Vinnellie, NT 0820					
	monique.hitchens@ade.g	roup													Q 08 8	967 12	01 12	darw	vin@en	wirolab.com.au					
	Sample info	ormation	<u> </u>	· _	<u> </u>					Test	s Requi	red					_			Comments					
		T					1										I								
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	<u>Type of sample</u>	Combination 6															Provide as much information about the sample as you can					
	DSI2.SR1	-	27.03.2023	Soil	×						<u>+</u>														
	DSI2,SR2	-	28.03.2023	Soil	×																				
						1										1	_								
											F								_						
		T						_		1		_					-								
						1			Ť																
· · · ·			+	i																					
									1-																
	Please tick the box if observed	d settled set	diment present i	n water samples is t	to be included	in the e	extracti	on and/or analy	ysis						· · · · ·					·					
Relinquished by (C				Received by (Com		77. C	5-11	n <u>, </u>					911	711	n n			_	Lab Us	se Only					
Print Name: Chris I				Print Name:	Mart	ミドレ	∹ €				Job nu	umber:		10	ťΰ		ooling	1:(Ice	11000	ack / None					
Date & Time: 28/03					2810.31	20	1	1730	σ^{-}			rature			$-\varphi$	<u></u>				l / Broken / Nong					
Signature:	Abot	,		Signature:		2			<u> </u>				-	111	2/3/			/							
									_							E	~	-							

1

·: ·

.

ESA-F-02 Chain of Custody (Internal)

Date Printed: 29/03/2023

R		Γ	A101023.0120.00				_							_						
		*																		
			002							ft ab use			α							
			104		LABORATORY REFERENCE NO. (Lab use ONLY):								319757							
Y:			ADE Consulting Group 6/7 Millennium Ct. Silverwater NSW 2128 RECEIVED BY:							<u> </u>										
		6/7 Mille	ennium Ct, Silverwater NSV	V 2128	RECEIV	ED BY			- /			SIGNATU	RE:	\mathcal{T}		~ /				
		Chris I	Vavaratnam, Monique Hitc	hens	SAMPLE	ES:	CHI	LED; [$\overline{\mathbf{v}}$	PRESERV	VED: 🗤	PRESERV	TION M	THOD:		CUSTODY SEAL INTACT:				
ESS DAY - BD):		SAME DAY: 🗖 24	hr: 2-BD: 3-BD; 1	5 BD (STD): XX	MINIM	AL HE														
			28.03.2023					2					$()^{-}$	TEMPE	RATURE					
								_2												
			OTHER:	-						into cres										
•		HARD COPY: D E-N	MAIL: X		<u> </u>					ANAL	YSES REOL	IRED				NOTES				
URE:							1	ГТ	1		٦ آ				1 1					
				oop;			1			1						POTENTIAL HAZARDOUS CONTAMINA				
		autora a data da								1										
		ADDIECT MANALACEDO C	MAIL and an interest of the		4		1			⊒ I						ASBESTOS HYDROCARBONS				
IGNATURE:					I	.	0			2										
		linda.lenihan@ade.gro	up, santo.ragusa@ade.groi	qt	9 9	¥	nit,		P	5										
					1 원 명	3 5	rt S	골	P -	긑										
SAMPLE DA	AIA		CONTAINER) Š	1 of	볼	5	8										
					[[] []	j j	S	5	.¥ ['	Ω Ω					1 1	LAB PLEASE *EMAIL COC RECEIPT:				
Sample ID (ADE)	MATRIX	SAMPLE DATE	TYPE & PRESERVATIVE	NO. OF SAMPLE CONTAINERS	Υ S		PFJ		<u>م</u>	Asbest						Sample Comments				
510 CD4		80.00.0000				_				- I	-					Please use PFAS LOR of				
SIZ_SR1	SOII	28.03.2023	6	1	× .															
						-		┢──╁						+		Sue/ke				
				· · · ·		+	-			+-+										
						-		+			_									
					╉──┾─		-	╞╌╉						+		<u> </u>				
							+	┤─┤		-+-+				H - F						
											-					<u> </u>				
						+			_											
						-	-	┝─┼												
					{ :}	+	+	╞╴┠		+ +					+					
					╊─┼─	+-	1	┝─┼		┥╸┨				╏╴┠╴						
		<u> </u>				+	+			┼╼╉										
						+				┥╸┨				+						
					┢━┼─	+			-	┤┥										
		- 1			┟╌┾╴	+		┝──┼		+ +				┼─╂╴	+ +					
ł-					╏═╶┼─	+	+ -	┼──┼						┼──┠─	┥┥					
		<u>├── - </u>				+					-		+-		┽┤					
		†				+-		┝──┼	-	+ +	- + - +			+ +-	++					
T S	URE: GNATURE: SAMPLE D	URE: GNATURE: SAMPLE DATA Sample ID (ADE) MATRIX	ROOM TEMP: FR Note: FR URE: CONSULTANTS EMAIL: Christ.navaratnam@ade GNATURE: PROJECT MANAGERS E- Inda.lenihan@ade.groit SAMPLE DATA Sample ID (ADE) MATRIX SAMPLE DATE	28.03.2023 ROOM TEMP: [] FRIDGE: [] FREEZER: [] >>4 WEEKS: [] OTHER: [] HARD COPY: [] E-MAIL: X URE: CONSULTANTS EMAIL: monique.hitchens@ade.gr chris.navaratnam@ade.group GNATURE: PROJECT MANAGERS E-MAIL: andrew.hunt@ade.jinda.lenihan@ade.group, santo.ragusa@ade.group SAMPLE DATA CONTAINEE Sample ID (ADE) MATRIX SAMPLE DATE TYPE & PRESERVATIVE	28.03.2023 ROOM TEMP: □ FRIDGE: □ FREEZER: □ >>4 WEEKS: □ OTHER: □ HARD COPY: □ E-MAIL: X URE: CONSULTANTS EMAIL: monique.hitchens@ade.group; chris.navaratnam@ade.group GNATURE: PROJECT MANAGERS E-MAIL: andrew.hunt@ade.group, linda.lenihan@ade.group, santo.ragusa@ade.group SAMPLE DATA CONTAINER DATA Sample ID (ADE) MATRIX SAMPLE DATE TYPE & PRESERVATIVE NO. OF SAMPLE CONTAINERS	28.03.2023 DATE: ROOM TEMP: □ FRIDGĒ: □ FREEZER: □ UMS LC >>4 WEEKS: □ OTHER: □ UMS LC HARD COPY: □ E-MAIL: X UMS LC URE: CONSULTANTS EMAIL: monique.hitchens@ade.group; chris.navaratnam@ade.group UMS LC GNATURE: PROJECT MANAGERS E-MAIL: andrew.hunt@ade.group, linda.lenihan@ade.group, santo.ragusa@ade.group yo gr und the sample ID (ADE) MATRIX SAMPLE DATE TYPE & PRESERVATIVE NO. OF SAMPLE CONTAINERS	28.03.2023 DATE: ROOM TEMP: □ FRIDGE: □ FREEZER: □ >>4 WEEKS: □ OTHER: □ HARD COPY: □ E-MAIL: X URE: CONSULTANTS EMAIL: monique.hitchens@ade.group; chris.navaratnam@ade.group GNATURE: PROJECT MANAGERS E-MAIL: andrew.hunt@ade.group, linda.lenihan@ade.group, santo.ragusa@ade.group Yet SAMPLE DATA CONTAINER DATA Yet GNATURE: MATRIX SAMPLE DATE TYPE & PRESERVATIVE	28.03.2023 DATE: 'U'' ROOM TEMP: □ FRIDGE: □ FREEZER: □ UMS LOT: NO. >>4 WEEKS: □ OTHER: □ UMS LOT: NO. HARD COPY: □ E-MAIL: X URE: CONSULTANTS EMAIL: monique.hitchens@ade.group; chris.navaratnam@ade.group GNATURE: PROJECT MANAGERS E-MAIL: andrew.hunt@ade.group, linda.lenihan@ade.group, santo.ragusa@ade.group TE Yat of	28.03.2023 DATE: QQ ROOM TEMP: FRIDGË: FREEZER: NON TEMP: FRIDGË: FREEZER: >>4 WEEKS: OTHER: HARD COPY: E-MAIL: X URE: CONSULTANTS EMAIL: monique.hitchens@ade.group; chris.navaratnam@ade.group chris.navaratnam@ade.group GNATURE: PROJECT MANAGERS E-MAIL: andrew.hunt@ade.group, Inda.lenihan@ade.group, inda.lenihan@ade.group, SAMPLE DATA CONTAINER DATA Sample ID (ADE) MATRIX	28.03.2023 DATE: YA ROOM TEMP: FRIDGE: FREEZER: NOOM TEMP: FRIDGE: FREEZER: NARD COPY: E-MAIL: X URE: CONSULTANTS EMAIL: monique.hitchens@ade.group; chris.navaratnam@ade.group GNATURE: PROJECT MANAGERS E-MAIL: andrew.hunt@ade.group, linda.lenihan@ade.group SAMPLE DATA CONTAINER DATA Sample ID (ADE) MATRIX SAMPLE DATE TYPE & PRESERVATIVE NO. OF SAMPLE CONTAINERS	28.03.2023 DATE: UM Summer Server ROOM TEMP: FRIDGE: FREEZER: UMS LOT:NO. LIMS/EXCI >>4 WEEKS: OTHER: UMS LOT:NO. LIMS/EXCI HARD COPY: E-MAIL: X ANAL' URE: CONSULTANTS EMAIL: monique.hitchens@ade.group; chris.navaratnam@ade.group ANAL' GNATURE: PROJECT MANAGERS E-MAIL: andrew.hunt@ade.group, linda.lenihan@ade.group, santo.ragusa@ade.group Yat so to so t	28.03.2023 DATE: UMS TIME: ROOM TEMP: FRIDGE: FREEZER: UMS LOT-NO. UMS/EXCEL SIGNATI >>4 WEEKS: OTHER: UMS LOT-NO. UMS/EXCEL SIGNATI HARD COPY: E-MAIL: X ANALYSES REQU URE: CONSULTANTS EMAIL: monique.hitchens@ade.group; chris.navaratnam@ade.group ANALYSES REQU GNATURE: PROJECT MANAGERS E-MAIL: andrew.hunt@ade.group, linda.lenihan@ade.group, santo.ragusa@ade.group 9001 Frequency of the second secon	28.03.2023 DATE: URE: URE: TIME: UNS LOT-NO. NARD COPY: FREEZER: IMMS/EXCEL SIGNATURE: IMMS/EXCEL SIGNATURE: HARD COPY: E-MAIL: X ANALYSES REQUIRED URE: CONSULTANTS EMAIL: monique.hitchens@ade.group; chris.navaratnam@ade.group ANALYSES REQUIRED GNATURE: PROJECT MANAGERS E-MAIL: andrew.hunt@ade.group, linda.lenihan@ade.group, sample ID (ADE) PROJECT MANAGERS E-MAIL: andrew.hunt@ade.group, sample ID (ADE) Imme: Y	28.03.2023 DATE: VAL TIME: CUID ROOM TEMP: FRIDGE: FREEZER: IIMS/EXCEL SIGNATURE: IIMS/EXCEL SIGNATURE: >>4 WEEKS: OTHER: IIMS/EXCEL SIGNATURE: IIMS/EXCEL SIGNATURE: HARD COPY: E-MAIL: X ANALYSES REQUIRED URE: CONSULTANTS EMAIL: monique.hitchens@ade.group; chris.navaratnam@ade.group ANALYSES REQUIRED GNATURE: PROJECT MANAGERS E-MAIL: andrew.hunt@ade.group, linda.lenihan@ade.group, santo.ragusa@ade.group Y	28.03.2023 DATE: URE: TIME: UNE: ROOM TEMP: FRIDGË: FREEZER: UMS LOT-NO. LIMS/EXCEL SIGNATURE: COMN >>4 WEEKS: OTHER: IMS LOT-NO. LIMS/EXCEL SIGNATURE: COMN HARD COPY: E-MAIL: X ANALYSES REQUIRED ANALYSES REQUIRED URE: CONSULTANTS EMAIL: monique.hitchens@ade.group; chris.navaratnam@ade.group FRIEZER: FRIEZER: FRIEZER: GNATURE: PROJECT MANAGERS E-MAIL: andrew.hunt@ade.group, linda.lenihan@ade.group FRIEZER: FRIEZER: FRIEZER: SAMPLE DATA CONTAINER DATA FRIEZER: FRIEZER: FRIEZER: FRIEZER: Sample ID (ADE) MATRIX SAMPLE DATE TYPE & PRESERVATIVE NO. OF SAMPLE CONTAINERS FRIEZER: FRIEZER:	SAME DAY: 24 hr: 2-B0: 3-BD: 5 BD (STD): XX MINIMAL HEADSRACE : WITHIN HOLDING TIME:				

Container Type and Preserved Vesteries P = Unpreserved Plastic; PC = Nitric Preserved Plastic; OCC = Nitric Preserved ORC; PNA = Sodium Hydroxide Preserved Plastic; PC = HCI preserved Plastic; VC = Vial HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = HCI Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = Sodium Hydroxide Preserved; Plastic; PC = HCI Preserved; Pl

VB = Vial Sodium Bisulphate Preserved; VS = Vial Sulfuric Preserved; V = Unpreserved; VG = Amber Glass Unpreserved; SG = Sulfuric Preserved Amber Glass; F = Formaldehyde Preserved Glass; FS = HCI preserved Speciation bottle; Z = Zinc Acetate Preserved Bottle;

E = EDTA Preserved Bottle; ST = Sterile Bottle; J = Unpreserved Glass Jar; ASS = Plastic Bag for Acid Sulfate Soils; B = Unpreserved Bag.

Page 1 of 1

1

vTRH(C6-C10)/BTEXN in Soil			
Our Reference		319690-1	319690-2
Your Reference	UNITS	DS12.SR1	DS12.SR2
Date Sampled		27/03/2023	28/03/2023
Type of sample		Soil	Soil
Date extracted	-	29/03/2023	29/03/2023
Date analysed	-	30/03/2023	30/03/2023
TRH C ₆ - C ₉	mg/kg	<25	<25
TRH C6 - C10	mg/kg	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25
Benzene	mg/kg	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
o-Xylene	mg/kg	<1	<1
Naphthalene	mg/kg	<1	<1
Total +ve Xylenes	mg/kg	<1	<1
Surrogate aaa-Trifluorotoluene	%	96	108

svTRH (C10-C40) in Soil			
Our Reference		319690-1	319690-2
Your Reference	UNITS	DS12.SR1	DS12.SR2
Date Sampled		27/03/2023	28/03/2023
Type of sample		Soil	Soil
Date extracted	-	29/03/2023	29/03/2023
Date analysed	-	29/03/2023	30/03/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50
TRH >C10 -C16	mg/kg	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50
Surrogate o-Terphenyl	%	90	90

PAHs in Soil			
Our Reference		319690-1	319690-2
Your Reference	UNITS	DS12.SR1	DS12.SR2
Date Sampled		27/03/2023	28/03/2023
Type of sample		Soil	Soil
Date extracted	-	29/03/2023	29/03/2023
Date analysed	-	30/03/2023	30/03/2023
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	115	113

Organochlorine Pesticides in soil			
Our Reference		319690-1	319690-2
Your Reference	UNITS	DS12.SR1	DS12.SR2
Date Sampled		27/03/2023	28/03/2023
Type of sample		Soil	Soil
Date extracted	-	29/03/2023	29/03/2023
Date analysed	-	30/03/2023	30/03/2023
alpha-BHC	mg/kg	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	98	98

Organophosphorus Pesticides in Soil			
Our Reference		319690-1	319690-2
Your Reference	UNITS	DS12.SR1	DS12.SR2
Date Sampled		27/03/2023	28/03/2023
Type of sample		Soil	Soil
Date extracted	-	29/03/2023	29/03/2023
Date analysed	-	30/03/2023	30/03/2023
Dichlorvos	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	98	98

PCBs in Soil			
Our Reference		319690-1	319690-2
Your Reference	UNITS	DS12.SR1	DS12.SR2
Date Sampled		27/03/2023	28/03/2023
Type of sample		Soil	Soil
Date extracted	-	29/03/2023	29/03/2023
Date analysed	-	30/03/2023	30/03/2023
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	98	98

Acid Extractable metals in soil			
Our Reference		319690-1	319690-2
Your Reference	UNITS	DS12.SR1	DS12.SR2
Date Sampled		27/03/2023	28/03/2023
Type of sample		Soil	Soil
Date prepared	-	29/03/2023	29/03/2023
Date analysed	-	29/03/2023	29/03/2023
Arsenic	mg/kg	7	7
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	20	20
Copper	mg/kg	19	21
Lead	mg/kg	39	36
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	10	9
Zinc	mg/kg	38	32

Moisture			
Our Reference		319690-1	319690-2
Your Reference	UNITS	DS12.SR1	DS12.SR2
Date Sampled		27/03/2023	28/03/2023
Type of sample		Soil	Soil
Date prepared	-	29/03/2023	29/03/2023
Date analysed	-	30/03/2023	30/03/2023
Moisture	%	11	11

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]	
Date extracted	-			29/03/2023	1	29/03/2023	29/03/2023		29/03/2023		
Date analysed	-			30/03/2023	1	30/03/2023	30/03/2023		30/03/2023		
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	92		
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	92		
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	85		
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	92		
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	90		
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	97		
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	101		
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]		
Surrogate aaa-Trifluorotoluene	%		Org-023	101	1	96	104	8	102		

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			29/03/2023	1	29/03/2023	29/03/2023		29/03/2023	
Date analysed	-			29/03/2023	1	29/03/2023	29/03/2023		29/03/2023	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	135	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	122	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	114	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	135	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	122	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	114	
Surrogate o-Terphenyl	%		Org-020	89	1	90	88	2	99	

QUALIT	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			29/03/2023	1	29/03/2023	29/03/2023		29/03/2023	
Date analysed	-			30/03/2023	1	30/03/2023	30/03/2023		30/03/2023	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	<0.05	0	86	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	111	1	115	115	0	107	

QUALITY CO	NTROL: Organo	chlorine F	Pesticides in soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			29/03/2023	1	29/03/2023	29/03/2023		29/03/2023	
Date analysed	-			30/03/2023	1	30/03/2023	30/03/2023		30/03/2023	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	109	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	106	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	105	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	118	
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	135	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	68	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-022/025	100	1	98	98	0	97	

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			29/03/2023	1	29/03/2023	29/03/2023		29/03/2023	
Date analysed	-			30/03/2023	1	30/03/2023	30/03/2023		30/03/2023	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	131	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	140	
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	130	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	134	
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	129	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-022/025	100	1	98	98	0	97	

QUALIT	Y CONTRO	L: PCBs	in Soil		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			29/03/2023	1	29/03/2023	29/03/2023		29/03/2023	
Date analysed	-			30/03/2023	1	30/03/2023	30/03/2023		30/03/2023	
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	122	
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-021	100	1	98	98	0	97	

QUALITY CONT	QUALITY CONTROL: Acid Extractable metals in soil					Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date prepared	-			29/03/2023	1	29/03/2023	29/03/2023		29/03/2023	
Date analysed	-			29/03/2023	1	29/03/2023	29/03/2023		29/03/2023	
Arsenic	mg/kg	4	Metals-020	<4	1	7	6	15	99	
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	88	
Chromium	mg/kg	1	Metals-020	<1	1	20	18	11	95	
Copper	mg/kg	1	Metals-020	<1	1	19	19	0	103	
Lead	mg/kg	1	Metals-020	<1	1	39	33	17	94	
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	110	
Nickel	mg/kg	1	Metals-020	<1	1	10	9	11	94	
Zinc	mg/kg	1	Metals-020	<1	1	38	45	17	95	[NT]

Result Definiti	Result Definitions					
NT	Not tested					
NA	Test not required					
INS	Insufficient sample for this test					
PQL	Practical Quantitation Limit					
<	Less than					
>	Greater than					
RPD	Relative Percent Difference					
LCS	Laboratory Control Sample					
NS	Not specified					
NEPM	National Environmental Protection Measure					
NR	Not Reported					

Appendix VIII – Equipment Calibration Certificate

Calibration and Service Report - PID

Company:	ADE Consulting Group (NSW) F	Manufacturer:	RAE	Serial #:	595-002269
Contact:	Michelle Ridley	Instrument:	MINIRAE LITE SN: 595-002269	Asset #:	PID 4
Address:	Unit 6	Model:	MINIRAE LITE	Part #:	059-A126-000
	7 Millennium Court Silverwater NSW 2128	Configuration:	VOC 10.6EV	Sold:	04.05.2017
		Wireless:	-	Last Cal:	21.07.2022
Phone:	1300796922	Network ID:	-	Job #:	146263
Fax:	and the second se	Unit ID:	-	Cal Spec:	
Email:	michelle.ridley@ade.group	Details:		Order #:	TBA - PID1/PID4

Calibration Certificate

	Sensor	iype	Serial No.	Span	Concentration	Traceability	CF	Rea	ding
			Gas		Lot #		Zero	Span	
Oxygen			-						
LEL									
PID	050-0000-004, 10.6EV 1/ 2 INCH LAMP	S023060018U3/1062R11 6509	Isobutylene	100ppm	WO279983-1		0	100.0	
Battery	059-3053-000. MINIRAE LITE RECHARGEABLE	159U3W0383				-			
Toxic 1									
Toxic 2				74 ini					
Toxic 3				· · ·					
Toxic 4									
Toxic 5									
Toxic 6									

Calibrated/Repaired by: JERRY JI

Date: 23.01.2023

Next Due: 23.07.2023

service@aesolutions.com.au

www.aesolutions.com.au

Calibration and Service Report – PID

Company:	ADE Consulting Group (NSW) F	Manufacturer:	RAE	Serial #:	595-002269
Contact:	Michelle Ridley	Instrument:	MINIRAE LITE SN: 595-002269	Asset #:	PID 4
Address:	Unit 6	Model:	MINIRAE LITE	Part #:	059-A126-000
	7 Millennium Court	Configuration:	VOC 10.6EV	Sold:	04.05.2017
	Silverwater NSW 2128	Wireless:	-	Last Cal:	21.07.2022
Phone:	1300796922	Network ID:	-	Job #:	146263
Fax:		Unit ID:	± 1	Cal Spec:	
Email:	michelle.ridley@ade.group	Details:		Order #:	TBA - PID1/PID4

ltem	Test	Pass/Fail	Comments	Serial Number
Battery	NiCd, NiMH, Dry cell, Lilon	Р		
Charger	Power Supply	Р		
	Cradle, Travel Charger	Р		
Pump	Flow	x	Cleaned pump, >450ml/min	
Filter	Filter, fitting, etc	x	Replaced	
Alarms	Audible, visual, vibration	Р		
Display	Operation	Р		
Switches	Operation	Р		
PCB	Operation	Р		
Connectors	Condition	Р		
Firmware	Version	Р	V2,22A	
Datalogger	Operation	Р		
Monitor Housing	Condition	Р		
Case	Condition / Type	-		
Sensors				
PID	Lamp	Р	Cleaned	
PID	Sensor	.P	Cleaned (ultrasonic bath)	
THP	Sensor	Р	Cleaned	

Engineer's Report

Cleaned lamp, lamp housing and sensor detector (ultrasonic bath, Unit was unscrewed from sensor cover, sensor detector exposed and very dirty) Cleaned THP sensor, checked moisture sensitivity Cleaned pump assembly, checked flowrate and stall values Checked unit settings and PC configuration Unit serviced and calibrated.

www.aesolutions.com.au

Appendix IX – Before You Dig Australia

Job No 33723003

Caller Details					
Contact:	Andrew Hunt	Caller Id:	3138116	Phone:	0405 685 962
Company:	14 617 358 808				
Address:	Unit 6 7 Millennium Court Silverwater NSW 2128	Email:	andrew.hunt@a	ade.group	

Dig Site and Enquiry Details

WARNING: The map below only displays the location of the proposed dig site and does not display any asset owners' pipe or cables. The area highlighted has been used only to identify the participating asset owners, who will send information to you directly.

User Reference:	Mamre and Abbott Rozelle	s Road	
Working on Behalf of:	Private		
Enquiry Date:	Start Date:	End Date:	
01/03/2023	06/03/2023	27/03/2023	
Address:			
1016-1028 Mamre Road Kemps Creek NSW 2178			
Job Purpose:	Onsite A	ctivities:	
Excavation	Mechanical Excavation		
Location of Workplace:	Location	in Road:	
Road Reserve	Road, Na	ture Strip	
 Check that the location of the dig s Should the scope of works change enquiry. Do NOT dig without plans. Safe exc 	, or plan validity date	es expire, you must submit a new	

• Do NOT dig without plans. Safe excavation is your responsibility. If you do not understand the plans or how to proceed safely, please contact the relevant asset owners.

Notes/Description of Works:

Not supplied

Your Responsibilities and Duty of Care

- The lodgement of an enquiry does not authorise the project to commence. You must obtain all necessary information from any and all likely impacted asset owners prior to excavation.
- If plans are not received within 2 working days, contact the asset owners directly & quote their Sequence No.
- ALWAYS perform an onsite inspection for the presence of assets. Should you require an onsite location, contact the asset owners directly. Please remember, plans do not detail the exact location of assets.
- Pothole to establish the exact location of all underground assets using a hand shovel, before using heavy machinery.
- Ensure you adhere to any State legislative requirements regarding Duty of Care and safe digging requirements.
- If you damage an underground asset you MUST advise the asset owner immediately.
- By using this service, you agree to Privacy Policy and the terms and disclaimers set out at www.byda.com.au
- · For more information on safe excavation practices, visit www.byda.com.au

Asset Owner Details

The assets owners listed below have been requested to contact you with information about their asset locations within 2 working days.

Additional time should be allowed for information issued by post. It is your responsibility to identify the presence of any underground assets in and around your proposed dig site. Please be aware, that not all asset owners are registered with the Before You Dig service, so it is your responsibility to identify and contact any asset owners not listed here directly.

** Asset owners highlighted by asterisks ** require that you visit their offices to collect plans.

Asset owners highlighted with a hash # require that you call them to discuss your enquiry or to obtain plans.

Seq. No.	Authority Name	Phone	Status
221801111	Endeavour Energy	(02) 9853 4161	NOTIFIED
221801109	NBN Co NswAct	1800 687 626	NOTIFIED
221801108	Penrith City Council	(02) 4732 8010	NOTIFIED
221801110	Sydney Water	13 20 92	NOTIFIED
221801112	Telstra NSW Central	1800 653 935	NOTIFIED

END OF UTILITIES LIST

То:	Andrew Hunt
Phone:	Not Supplied
Fax:	Not Supplied
Email:	andrew.hunt@ade.group

Dial before you dig Job #:	33723003	
Sequence #	221801109	
Issue Date:	01/03/2023	www.1100.com.au
Location:	1016-1028 Mamre Road, Kemps Creek, NSW, 2178	

Indicative Plans

2	10	18
3	11	19
4	12	20
5	13	21
6	14	22
7	15	23
8	16	24

·+·		
134.1	Parcel and the location	
3	Pit with size "5"	
25	Power Pit with size "2E". Valid PIT Size: e.g. 2E, 5E, 6E, 8E, 9E, E, null.	
	Manhole	
\otimes	Pillar	
2 PO-T-25.0m P40-20.0m 9	Cable count of trench is 2. One "Other size" PVC conduit (PO) owned by Telstra (-T-), between pits of sizes, "5" and "9" are 25.0m apart. One 40mm PVC conduit (P40) owned by NBN, between pits of sizes, "5" and "9" are 20.0m apart.	
	2 Direct buried cables between pits of sizes ,"5" and "9" are 10.0m apart.	
-0-0-	Trench containing any INSERVICE/CONSTRUCTED (Copper/RF/Fibre) cables.	
-0-0-	Trench containing only DESIGNED/PLANNED (Copper/RF/Fibre/Power) cables.	
-0	Trench containing any INSERVICE/CONSTRUCTED (Power) cables.	
BROADWAY ST	Road and the street name "Broadway ST"	
Scale	0 20 40 60 Meters 1:2000 1 cm equals 20 m.	

То:	Andrew Hunt
Phone:	Not Supplied
Fax:	Not Supplied
Email:	andrew.hunt@ade.group

Dial before you dig Job #:	33723003	
Sequence #	221801109	
Issue Date:	01/03/2023	www.1100.com.au
Location:	1016-1028 Mamre Road, Kemps Creek, NSW, 2178	

Information

The area of interest requested by you contains one or more assets.

nbn™ Assets	Search Results
Communications	Asset identified
Electricity	No assets

In this notice **nbn™ Facilities** means underground fibre optic, telecommunications and/or power facilities, including but not limited to cables, owned and controlled by **nbn™**

Location of **nbn™** Underground Assets

We thank you for your enquiry. In relation to your enquiry at the above address:

- nbn's records indicate that there <u>ARE</u> nbn[™] Facilities in the vicinity of the location identified above ("Location").
- nbn indicative plan/s are attached with this notice ("Indicative Plans").
- The Indicative Plan/s show general depth and alignment information only and are not an exact, scale or accurate depiction of the location, depth and alignment of **nbn™** Facilities shown on the Plan/s.
- In particular, the fact that the Indicative Plans show that a facility is installed in a straight line, or at uniform depth along its length cannot be relied upon as evidence that the facility is, in fact, installed in a straight line or at uniform depth.
- You should read the Indicative Plans in conjunction with this notice and in particular, the notes below.
- You should note that, at the present time, the Indicative Plans are likely to be more accurate in showing location of fibre optics and telecommunications cables than power cables. There may be a variation between the line depicted on the Indicative Plans and the location of any power cables. As such, consistent with the notes below, particular care must be taken by you to make your own enquiries and investigations to precisely locate any power cables and manage the risk arising from such cables accordingly.
- The information contained in the Indicative Plan/s is valid for 28 days from the date of issue set out above.You are expected to make your own inquiries and perform your own investigations (including engaging appropriately qualified plant locators, e.g DBYD Certified Locators, at your cost to locate nbn[™]

Facilities during any activities you carry out on site).

We thank you for your enquiry and appreciate your continued use of the Dial Before You Dig Service. For any enquiries related to moving assets or Planning and Design activities, please visit the **nbn** <u>Commercial Works</u> website to complete the online application form. If you are planning to excavate and require further information, please email <u>dbyd@nbnco.com.au</u> or call 1800 626 329.

Notes:

- 1. You are now aware that there are **nbn™** Facilities in the vicinity of the above property that could be damaged as a result activities carried out (or proposed to be carried out) by you in the vicinity of the Location.
- 2. You should have regard to section 474.6 and 474.7 of the *Criminal Code Act 1995* (CoA) which deals with the consequences of interfering or tampering with a telecommunications facility. Only persons authorised by **nbn** can interact with **nbn's** network facilities.
- 3. Any information provided is valid only for **28 days** from the date of issue set out above.

Referral Conditions

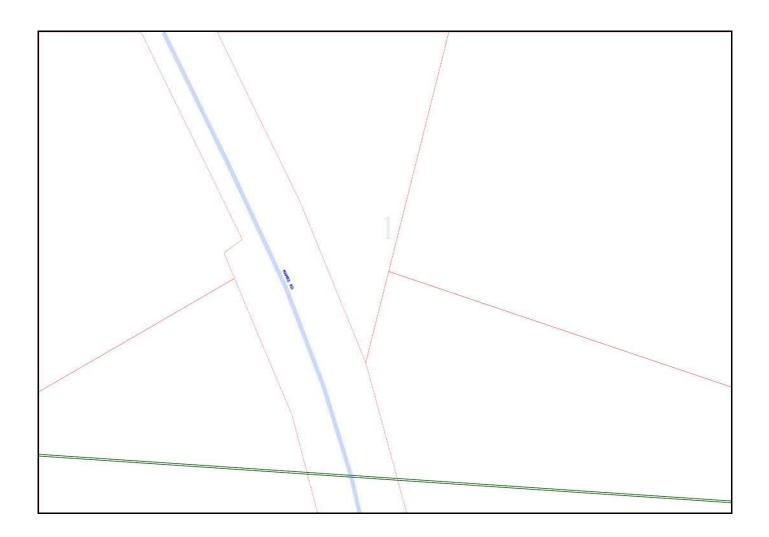
The following are conditions on which **nbn** provides you with the Indicative Plans. By accepting the plans, you are agreeing to these conditions. These conditions are in addition, and not in replacement of, any duties and obligations you have under applicable law.

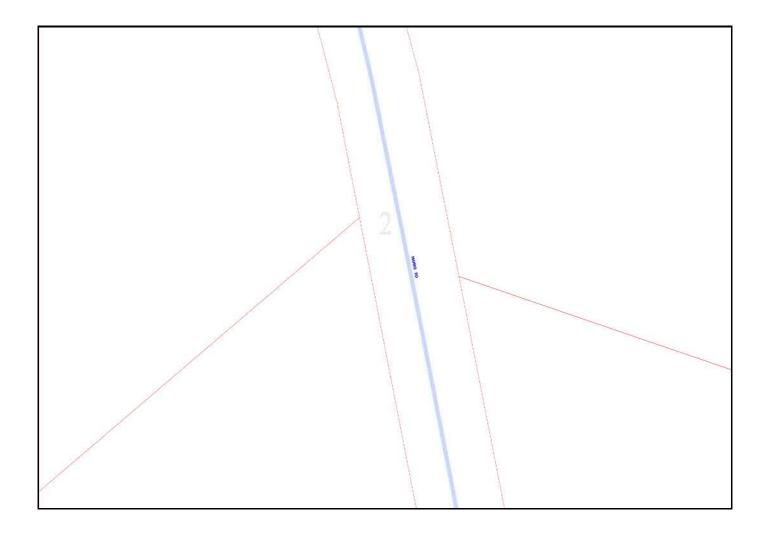
- nbn does not accept any responsibility for any inaccuracies of its plans including the Indicative Plans. You are expected to make your own inquiries and perform your own investigations (including engaging appropriately qualified plant locators, e.g DBYD Certified Locators, at your cost to locate nbn[™] Facilities during any activities you carry out on site).
- 2. You acknowledge that **nbn** has specifically notified you above that the Indicative Plans are likely to be more accurate in showing location of fibre optics and telecommunications cables than power cables. There may be a variation between the line depicted on the Indicative Plans and the location of any power cables.
- 3. You should not assume that **nbn™** Facilities follow straight lines or are installed at uniformed depths along their lengths, even if they are indicated on plans provided to you. Careful onsite investigations are essential to locate the exact position of cables.
- 4. In carrying out any works in the vicinity of **nbn™** Facilities, you must maintain the following minimum clearances:
 - 300mm when laying assets inline, horizontally or vertically.
 - 500mm when operating vibrating equipment, for example: jackhammers or vibrating plates.
 - 1000mm when operating mechanical excavators.
 - Adherence to clearances as directed by other asset owner's instructions and take into account any uncertainty for power cables.
- 5. You are aware that there are inherent risks and dangers associated with carrying out work in the vicinity of underground facilities (such as nbn[™] fibre optic,copper and coaxial cables,and power cable feed to nbn[™] assets).Damage to underground electric cables may result in:
 - Injury from electric shock or severe burns, with the possibility of death.
 - Interruption of the electricity supply to wide areas of the city.
 - Damage to your excavating plant.
 - Responsibility for the cost of repairs.
- 6. You must take all reasonable precautions to avoid damaging **nbn™** Facilities. These precautions may include but not limited to the following:
 - All excavation sites should be examined for underground cables by careful hand excavation. Cable cover slabs if present must not be disturbed. Hand excavation needs to be undertaken with extreme care to minimise the likelihood of damage to the cable, for example: the blades of hand equipment should be aligned parallel to the line of the cable rather than digging across the cable.
 - If any undisclosed underground cables are located, notify **nbn** immediately.

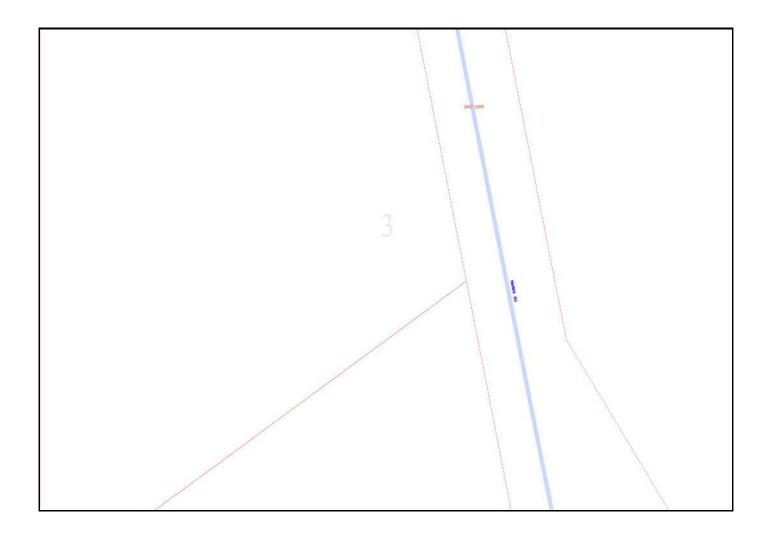
- All personnel must be properly briefed, particularly those associated with the use of earth-moving equipment, trenching, boring and pneumatic equipment.
- The safety of the public and other workers must be ensured.
- All excavations must be undertaken in accordance with all relevant legislation and regulations.
- 7. You will be responsible for all damage to **nbn™** Facilities that are connected whether directly, or indirectly with work you carry out (or work that is carried out for you or on your behalf) at the Location. This will include, without limitation, all losses expenses incurred by **nbn** as a result of any such damage.
- 8. You must immediately report any damage to the **nbn™** network that you are/become aware of. Notification may be by telephone 1800 626 329.
- 9. Except to the extent that liability may not be capable of lawful exclusion, **nbn** and its servants and agents and the related bodies corporate of **nbn** and their servants and agents shall be under no liability whatsoever to any person for any loss or damage (including indirect or consequential loss or damage) however caused (including, without limitation, breach of contract negligence and/or breach of statute) which may be suffered or incurred from or in connection with this information sheet or any plans(including Indicative Plans) attached hereto. Except as expressly provided to the contrary in this information sheet or the attached plans(including Indicative Plans), all terms, conditions, warranties, undertakings or representations (whether expressed or implied) are excluded to the fullest extent permitted by law.

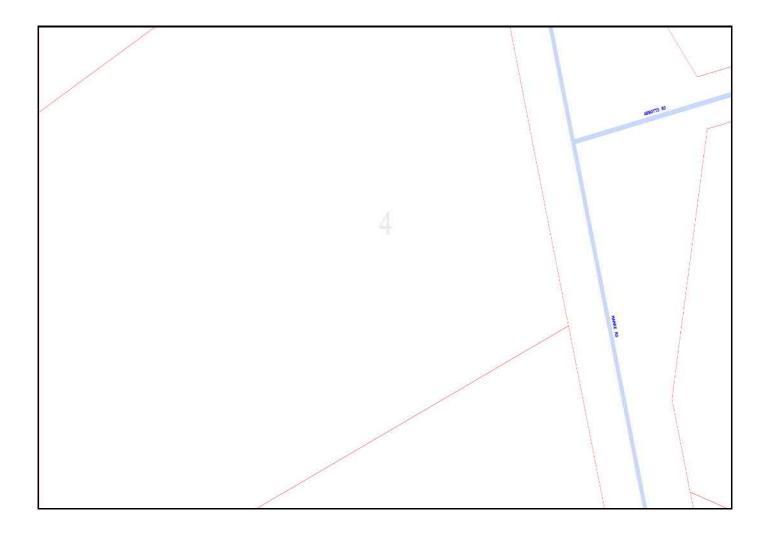
State/Territory	Documents
	Work Health and Safety Act 2011
	Work Health and Safety Regulations 2011
National	Safe Work Australia - Working in the Vicinity of Overhead and Underground Electric
	Lines (Draft)
	Occupational Health and Safety Act 1991
	Electricity Supply Act 1995
NSW	Work Cover NSW - Work Near Underground Assets Guide
	Work Cover NSW - Excavation Work: Code of Practice
VIC	Electricity Safety Act 1998
	Electricity Safety (Network Asset) Regulations 1999
QLD	Electrical Safety Act 2002
	Code of Practice for Working Near Exposed Live Parts
SA	Electricity Act 1996
TAS	Tasmanian Electricity Supply Industry Act 1995
WA	Electricity Act 1945
WA NA	Electricity Regulations 1947
NT	Electricity Reform Act 2005
	Electricity Reform (Safety and Technical) Regulations 2005
ACT	Electricity Act 1971

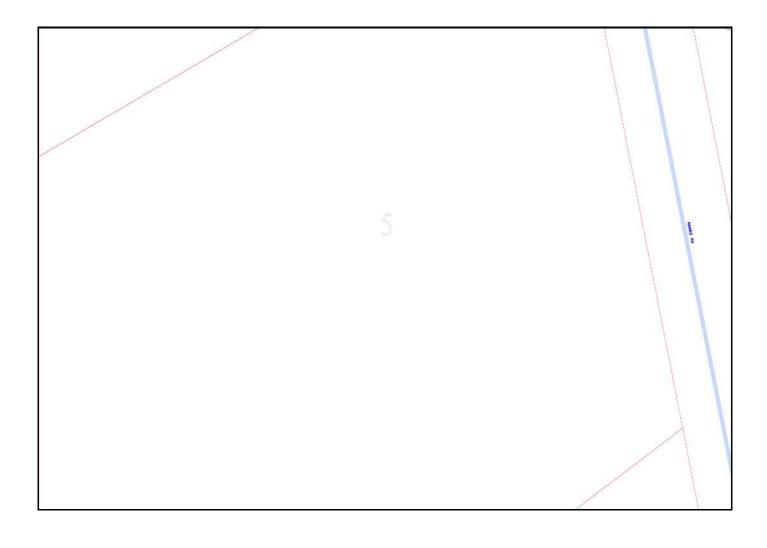
All works undertaken shall be in accordance with all relevant legislations, acts and regulations applicable to the particular state or territory of the Location. The following table lists all relevant documents that shall be considered and adhered to.

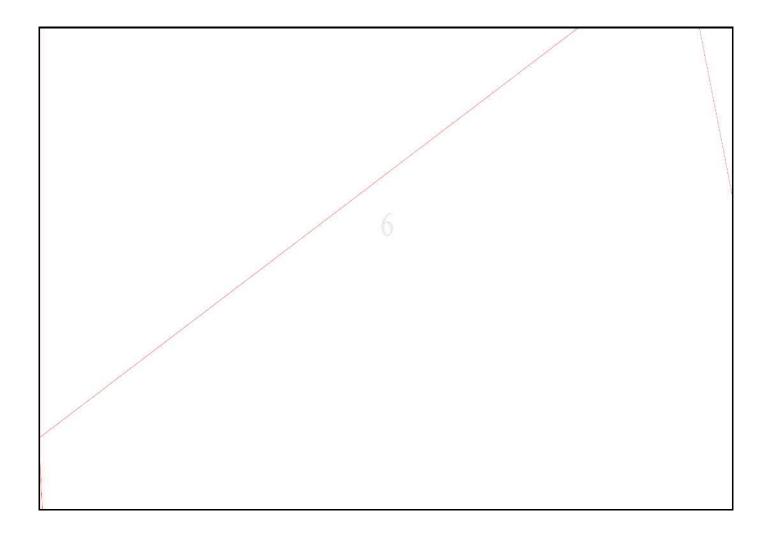

Thank You,

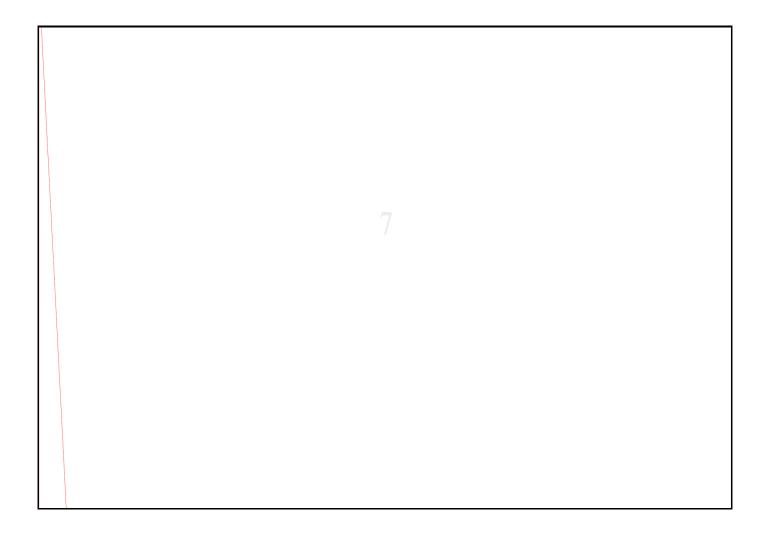

nbn DBYD

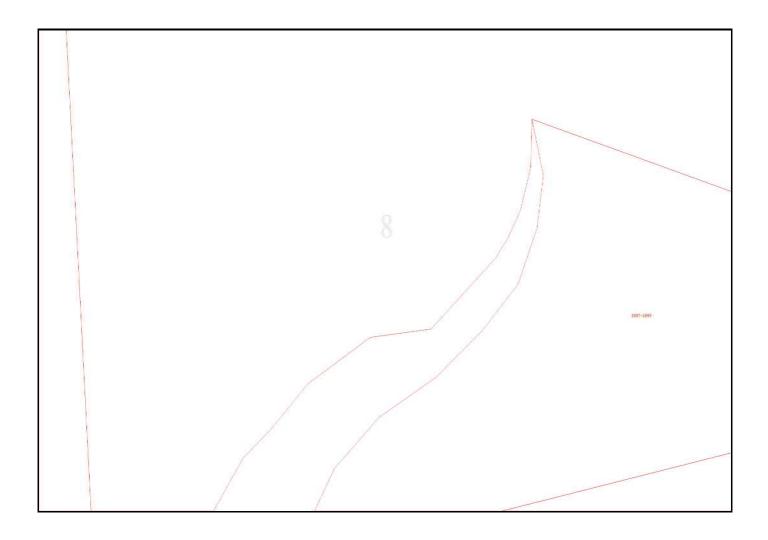

Date: 01/03/2023

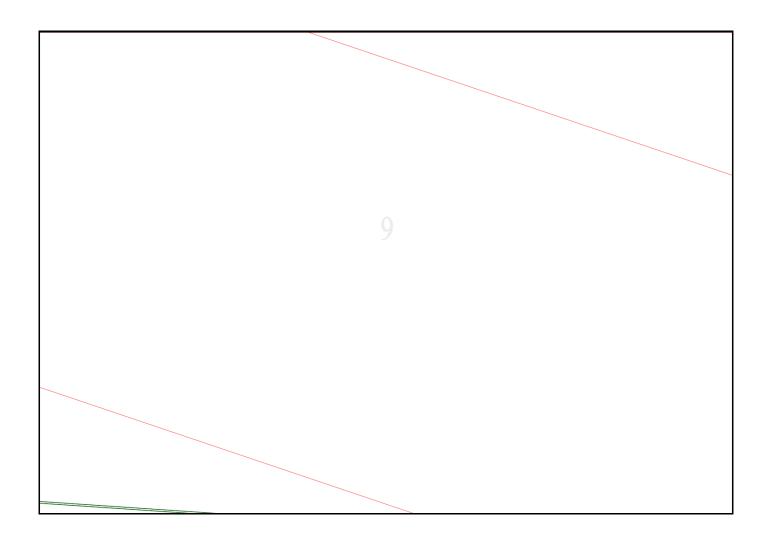

This document is provided for information purposes only. This document is subject to the information classification set out on this page. If no information classification has been included, this document must be treated as UNCLASSIFIED, SENSITIVE and must not be disclosed other than with the consent of nbn co. The recipient (including third parties) must make and rely on their own inquiries as to the currency, accuracy and completeness of the information contained herein and must not use this document other than with the consent of nbn co.

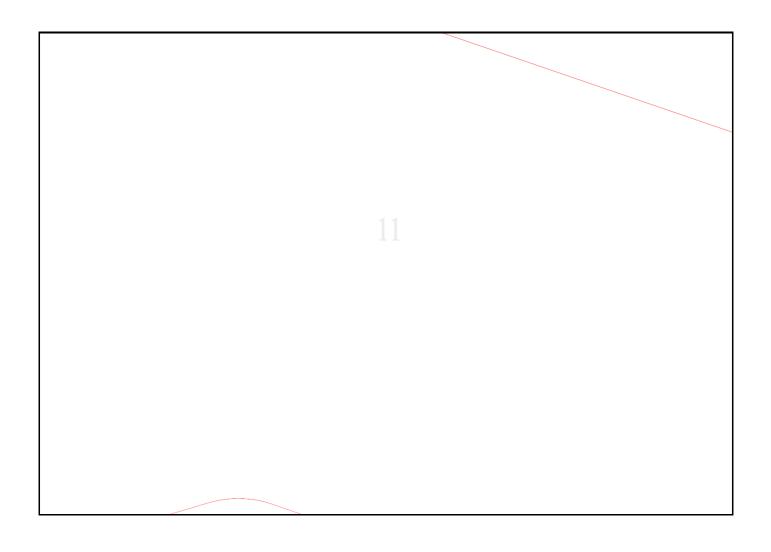

Copyright © 2021 nbn co Limited. All rights reserved.

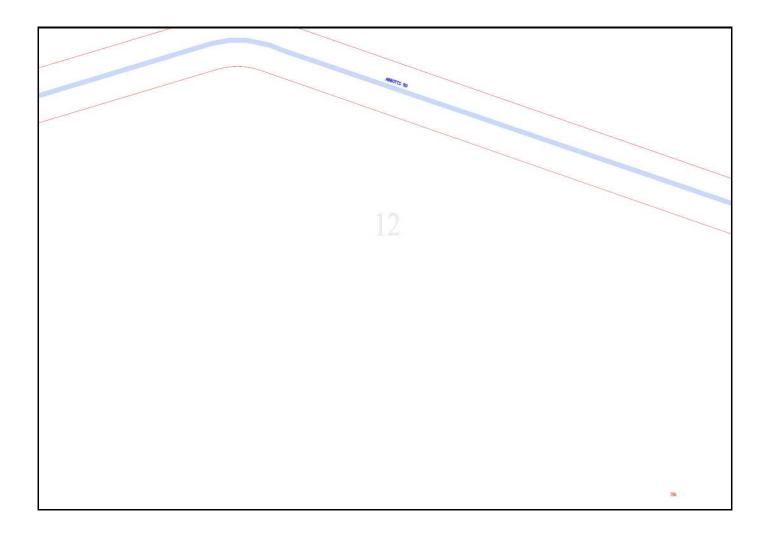


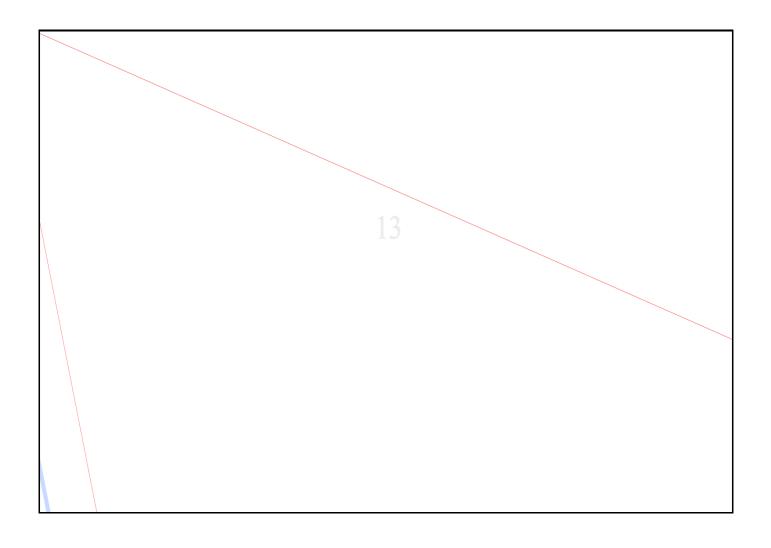


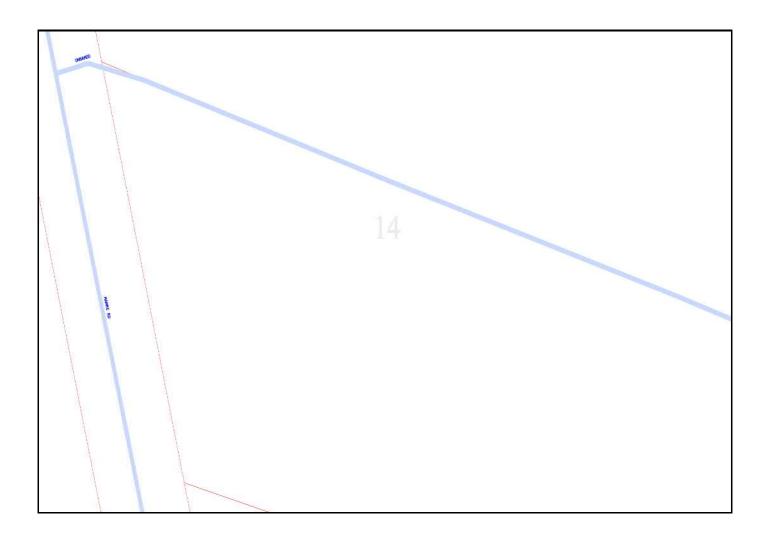


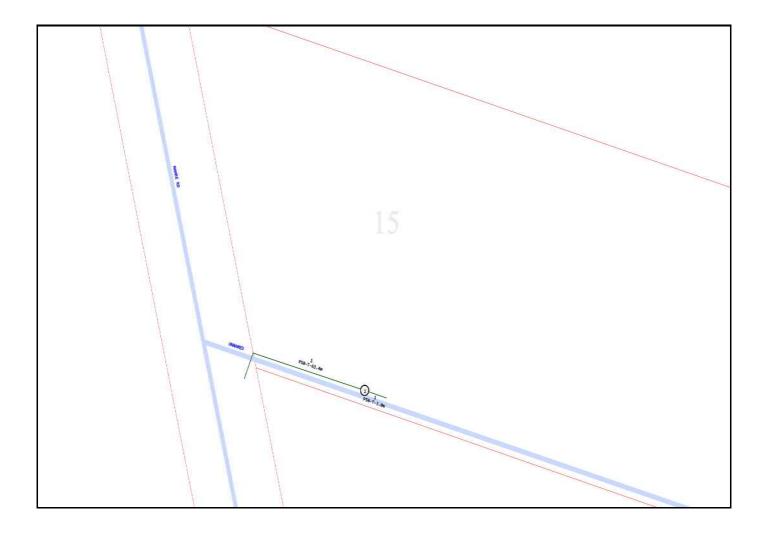


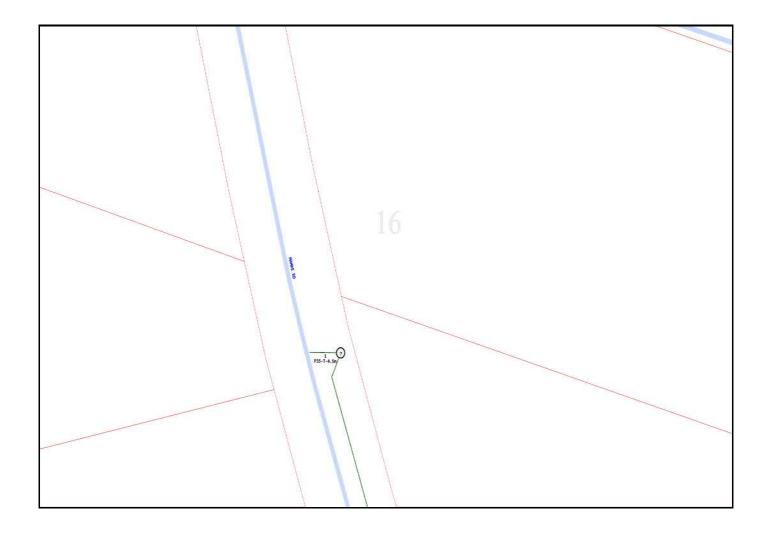


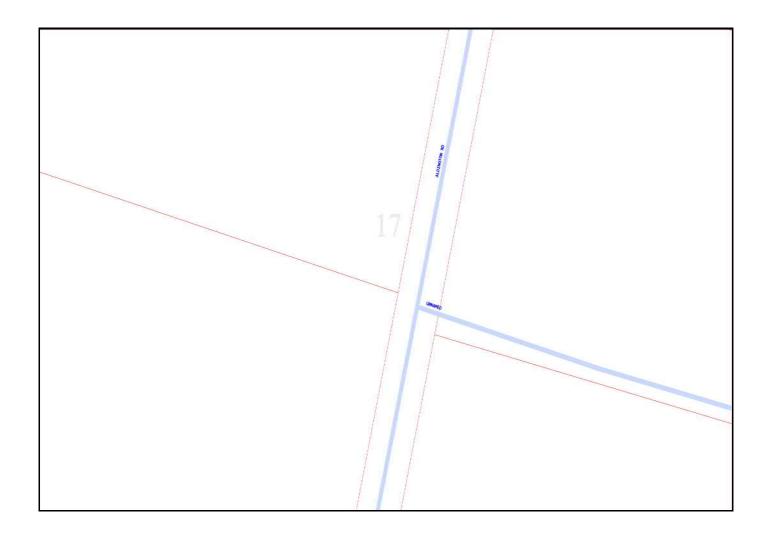


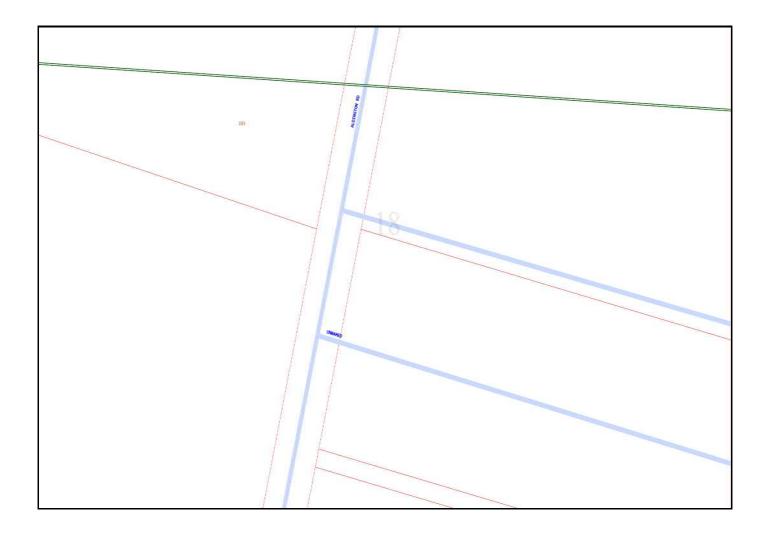


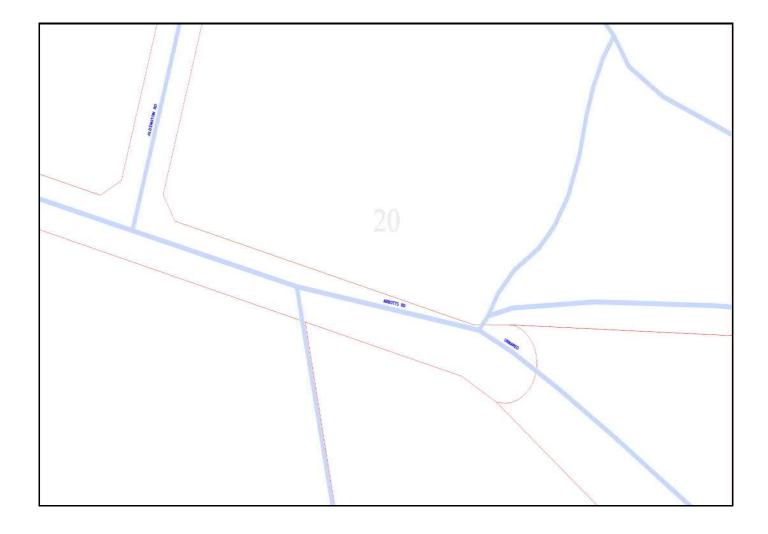


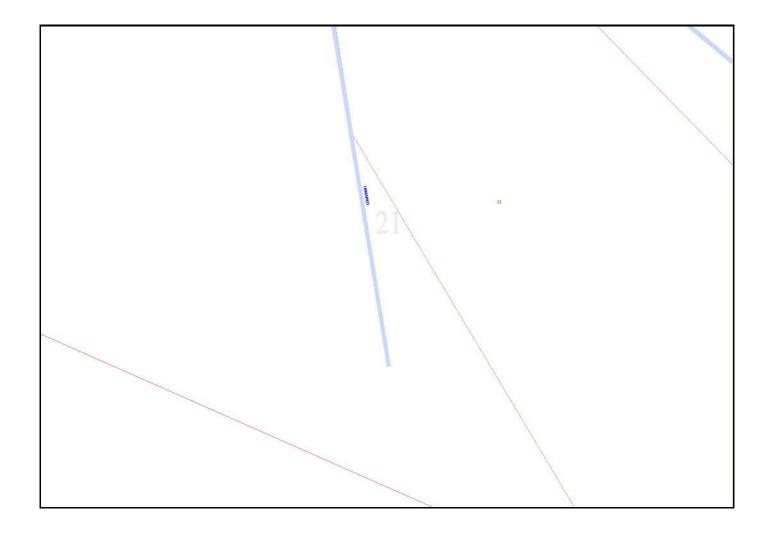


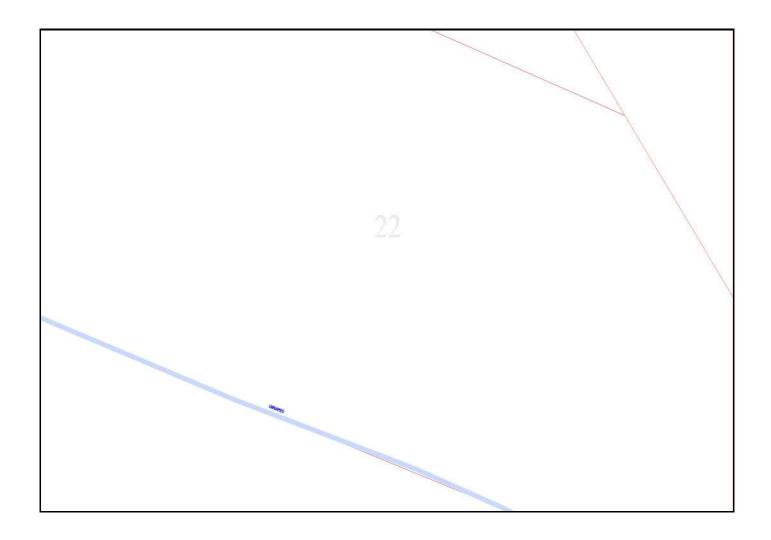


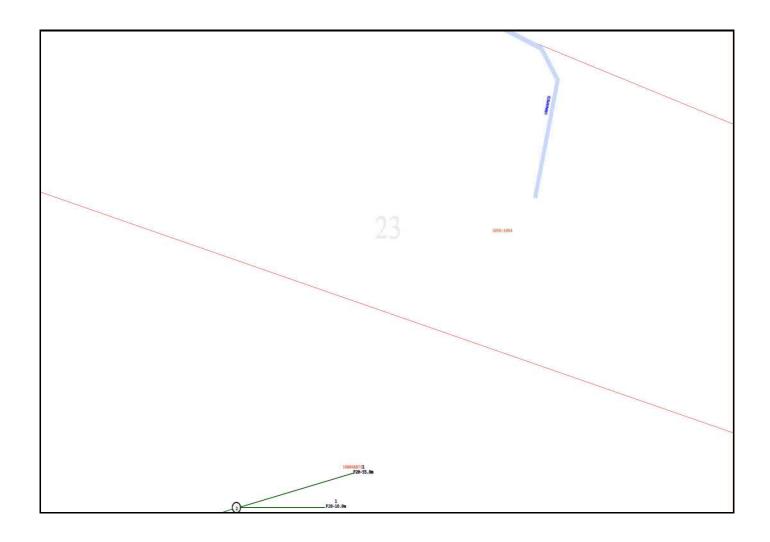


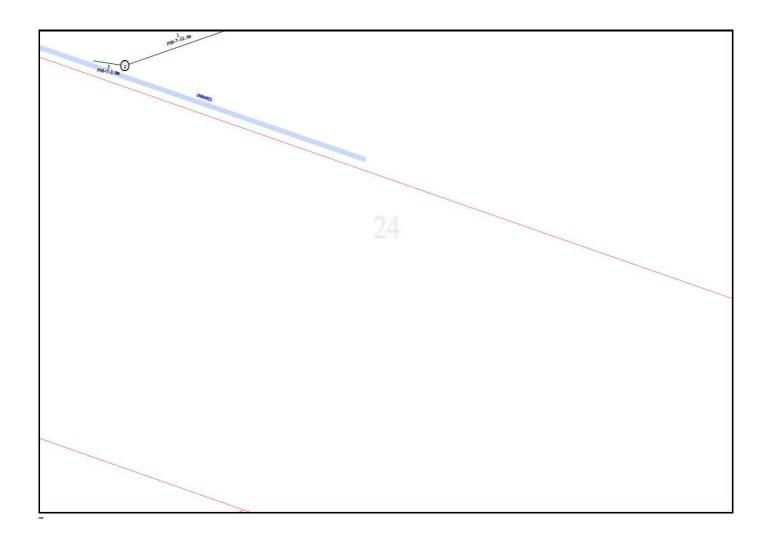












Emergency Contacts

You must immediately report any damage to the **nbn**[™] network that you are/become aware of. Notification may be by telephone - 1800 626 329.

BYDA Underground Search Report

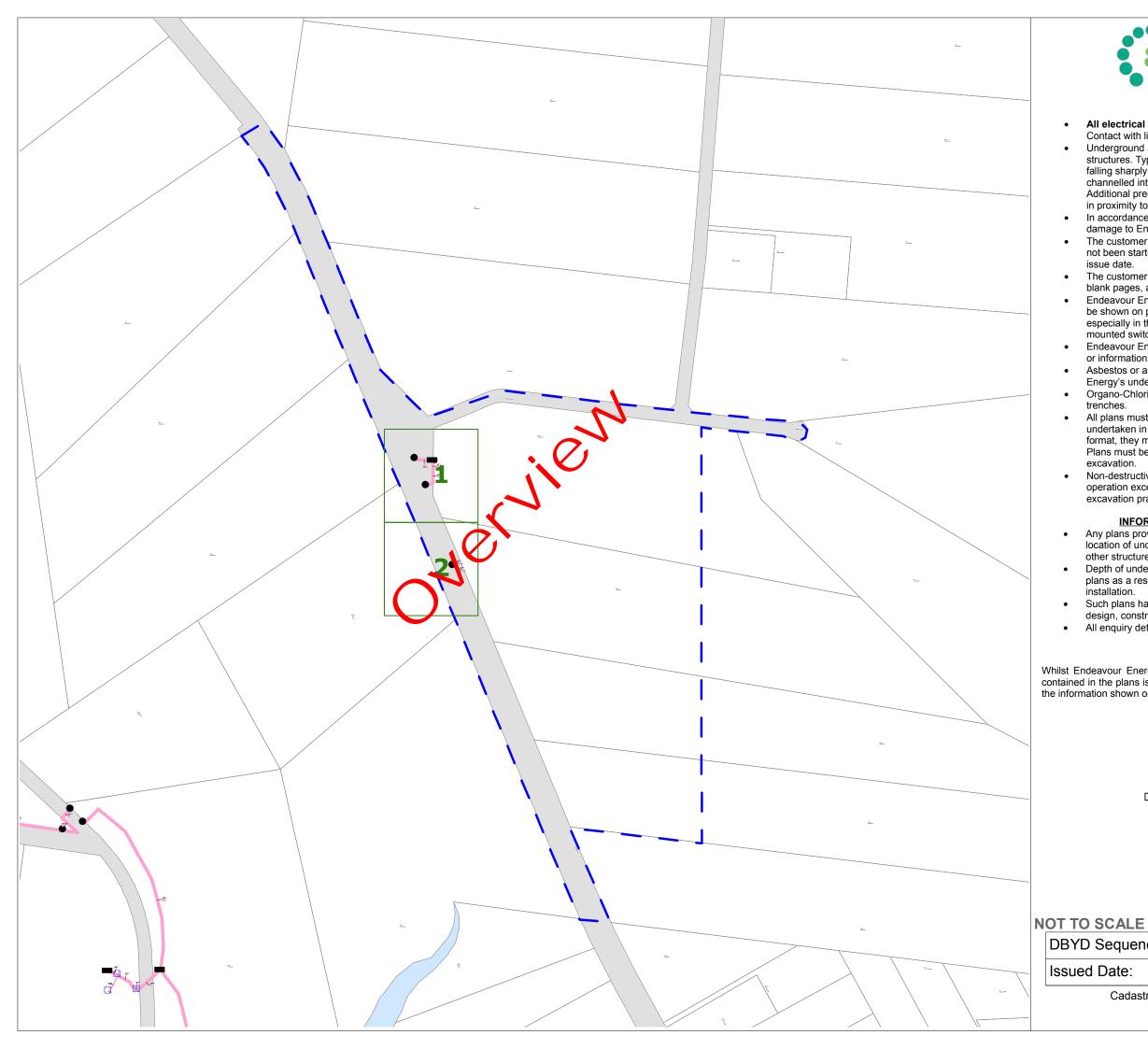
Date: 01/03/2023

BYDA Sequence No: 221801111

BYDA Job No: 33723003

ENDEAVOUR ENERGY ASSETS AFFECTED

To:	Andrew Hunt		Company:	14 617 358 808
Address:	Unit 6,7 Millennium Court, Silverwater, NSW 2128			
Cust. ID:	3138116	Email:	andrew.hunt@ade.group	
Phone:	+61405685962			
Enquiry Location: 1016-1028 Mamre Road, Kemps Creek, NSW 2178				


Our Search has shown that **UNDERGROUND ASSETS ARE PRESENT** on our plans within the nominated enquiry location. This search is based on the graphical position of the excavation site as denoted in the BYDA customer confirmation sheet.

WARNING

- All electrical apparatus shall be regarded as live until proved de-energised. Contact with live electrical apparatus will cause severe injury or death.
- Underground assets may be congested at the approach to bridges and other structures. Typical asset depths and alignment may vary substantially, rising and falling sharply and at much shallower depths than elsewhere as they are channelled into shared allocated spaces on bridges and other structures. Additional precautions and underground asset location methods will be required in proximity to bridges and other structures.
- In accordance with the *Electricity Supply Act 1995*, you are obliged to report any damage to Endeavour Energy Assets immediately by calling **131 003**.
- The customer must obtain a new set of plans from Endeavour Energy if work has not been started or completed within twenty (20) working days of the original plan issue date.
- The customer must contact Endeavour Energy if any of the plans provided have blank pages, as some underground asset information may be incomplete.
- Endeavour Energy underground earth grids may exist and their location **may not** be shown on plans. Persons excavating are expected to exercise all due care, especially in the vicinity of padmount substations, pole mounted substations, pole mounted switches, transmission poles and towers.
- Endeavour Energy plans **do not** show any underground customer service mains or information relating to service mains within private property.
- Asbestos or asbestos-containing material may be present on or near Endeavour Energy's underground assets.
- Organo-Chloride Pesticides (OCP) may be present in some sub-transmission trenches.
- All plans must be made available at the worksite where excavation is to be undertaken in either printed or electronic format. If the plans are in an electronic format, they must be in a format visible on a screen size 10 inches or greater. Plans must be reviewed and understood by the crew on site prior to commencing excavation.
- Non-destructive water excavation must be operated at or below 2000PSI. Any operation exceeding 2000PSI
 must be classed and treated as a destructive excavation practice

Material	Purpose	Location
BYDA Cover Letter	Endeavour Energy BYDA response Cover Letter	Attached
BYDA Important Information & Disclaimer	Endeavour Energy disclaimer, responsibilities and information on understanding plans	Attached
BYDA Response Plans	Endeavour Energy BYDA plans	Attached
Work Cover NSW "Work near underground assets: Guide"	Guideline for anyone involved in construction work near underground assets	Contact Work Cover NSW for a copy
Work Cover NSW "Excavation work: Code of practice"	Practical guidance on managing health and safety risks associated with excavation	URL [Click Here]
Safe Work Australia "Working in the vicinity of overhead and underground electric lines guidance material"	Provides information on how to manage risks when working in the vicinity of overhead and underground electric lines at a workplace	URL [Click Here]
Endeavour Energy Safety Brochures & Guides	To raise awareness of dangers of working on or near Endeavour Energy's assets	URL [Click Here]

SUPPLEMENTARY MATERIAL

WARNING

All electrical apparatus shall be regarded as live until proved de-energised. Contact with live electrical apparatus will cause severe injury or death.

Underground assets may be congested at the approach to bridges and other structures. Typical asset depths and alignment may vary substantially, rising and falling sharply and at much shallower depths than elsewhere as they are

channelled into shared allocated spaces on bridges and other structures.

Additional precautions and underground asset location methods will be required in proximity to bridges and other structures.

In accordance with the *Electricity Supply Act* 1995, you are obliged to report any damage to Endeavour Energy Assets immediately by calling **131 003**.

The customer must obtain a new set of plans from Endeavour Energy if work has not been started or completed within twenty **(20)** working days of the original plan issue date.

The customer must contact Endeavour Energy if any of the plans provided have blank pages, as some underground asset information may be incomplete.

Endeavour Energy underground earth grids may exist and their location **may not** be shown on plans. Persons excavating are expected to exercise all due care, especially in the vicinity of padmount substations, pole mounted substations, pole

mounted switches, transmission poles and towers. Endeavour Energy plans **do not** show any underground customer service mains or information relating to service mains within private property.

Asbestos or asbestos-containing material may be present on or near Endeavour Energy's underground assets.

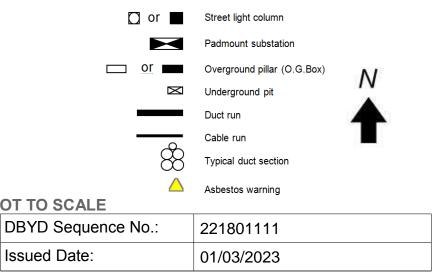
Organo-Chloride Pesticides (OCP) may be present in some sub-transmission trenches.

All plans must be made available at the worksite where excavation is to be undertaken in either printed or electronic format. If the plans are in an electronic format, they must be in a format visible on a screen size 10 inches or greater. Plans must be reviewed and understood by the crew on site prior to commencing excavation.

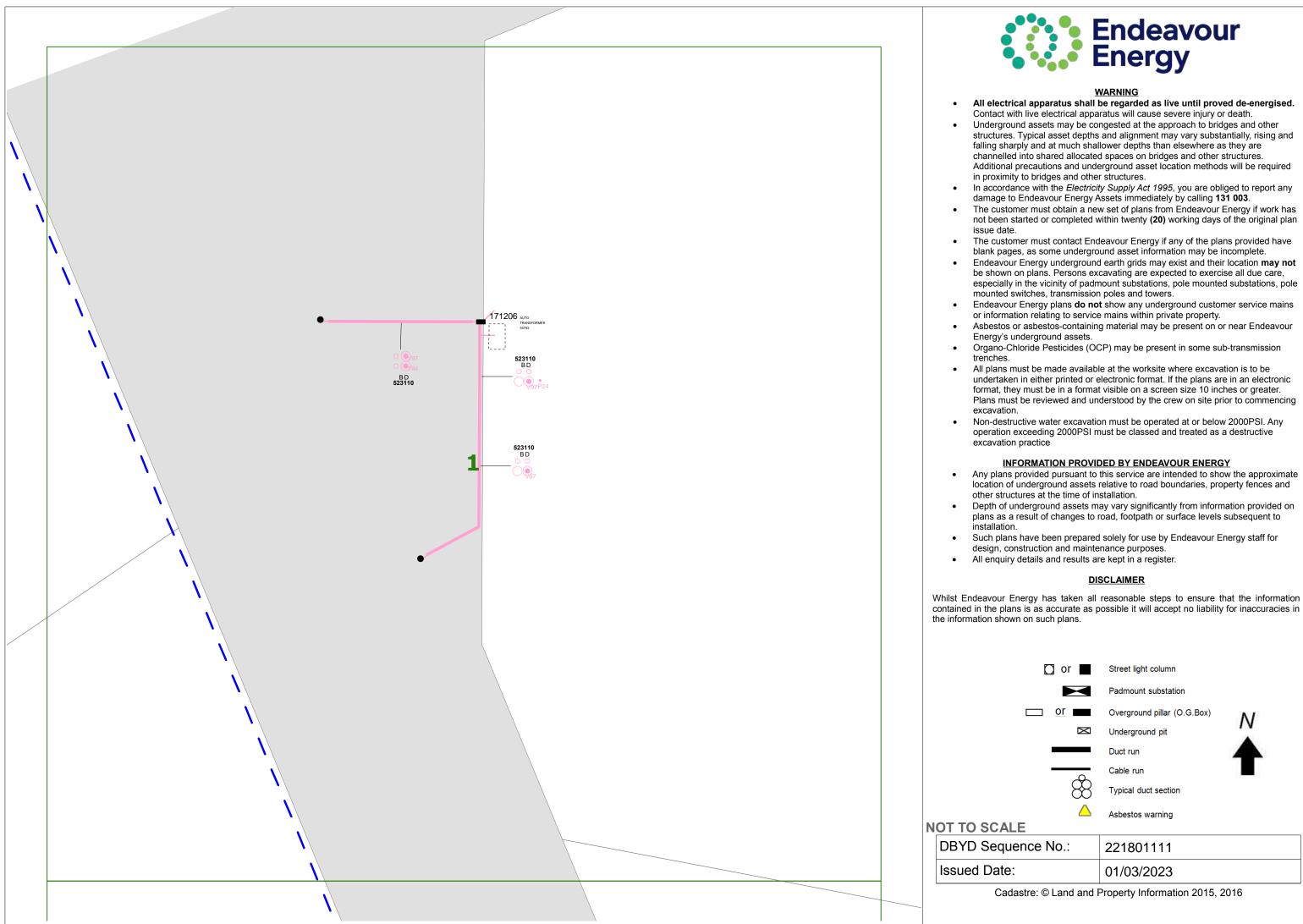
Non-destructive water excavation must be operated at or below 2000PSI. Any operation exceeding 2000PSI must be classed and treated as a destructive excavation practice

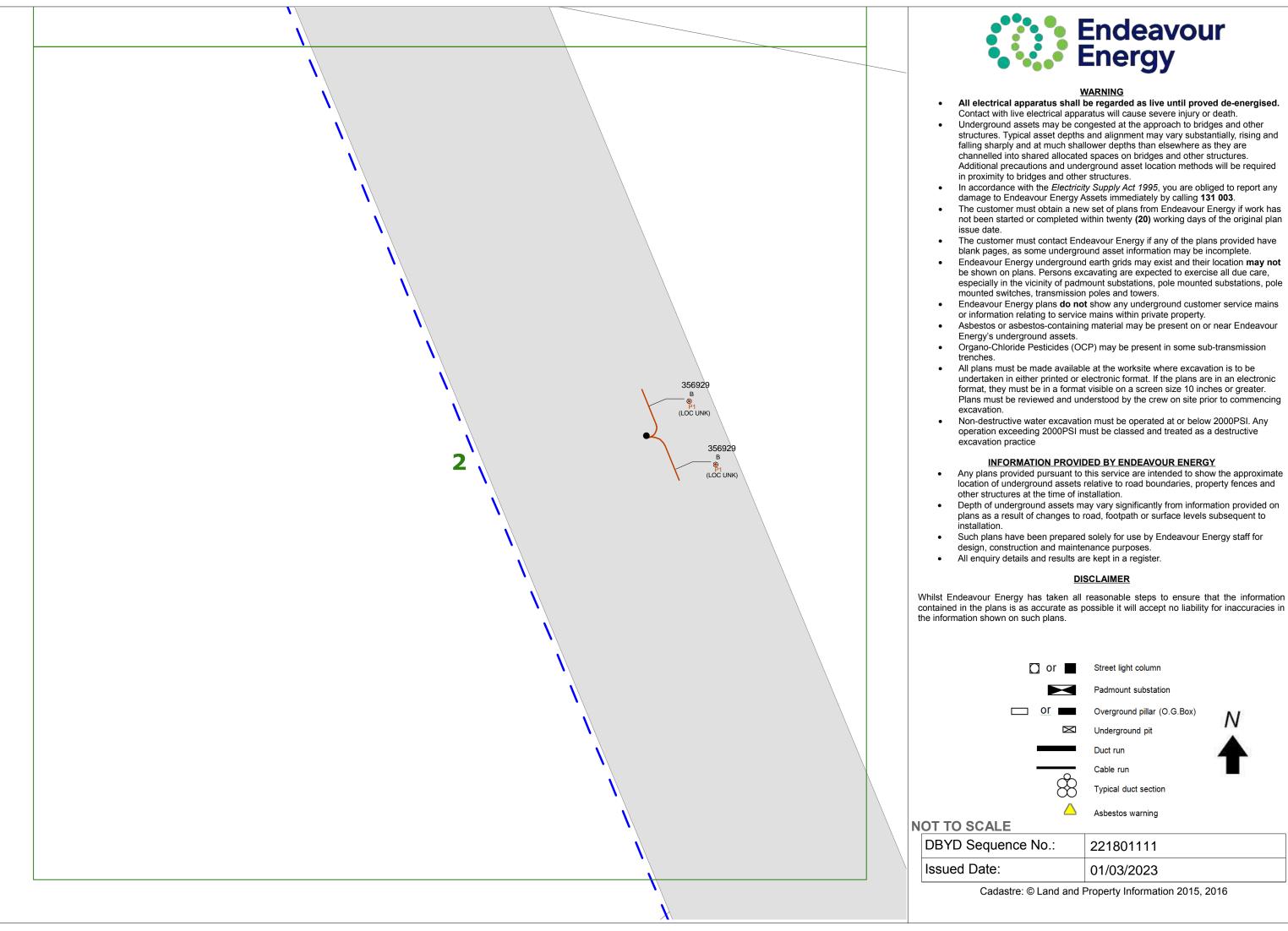
INFORMATION PROVIDED BY ENDEAVOUR ENERGY

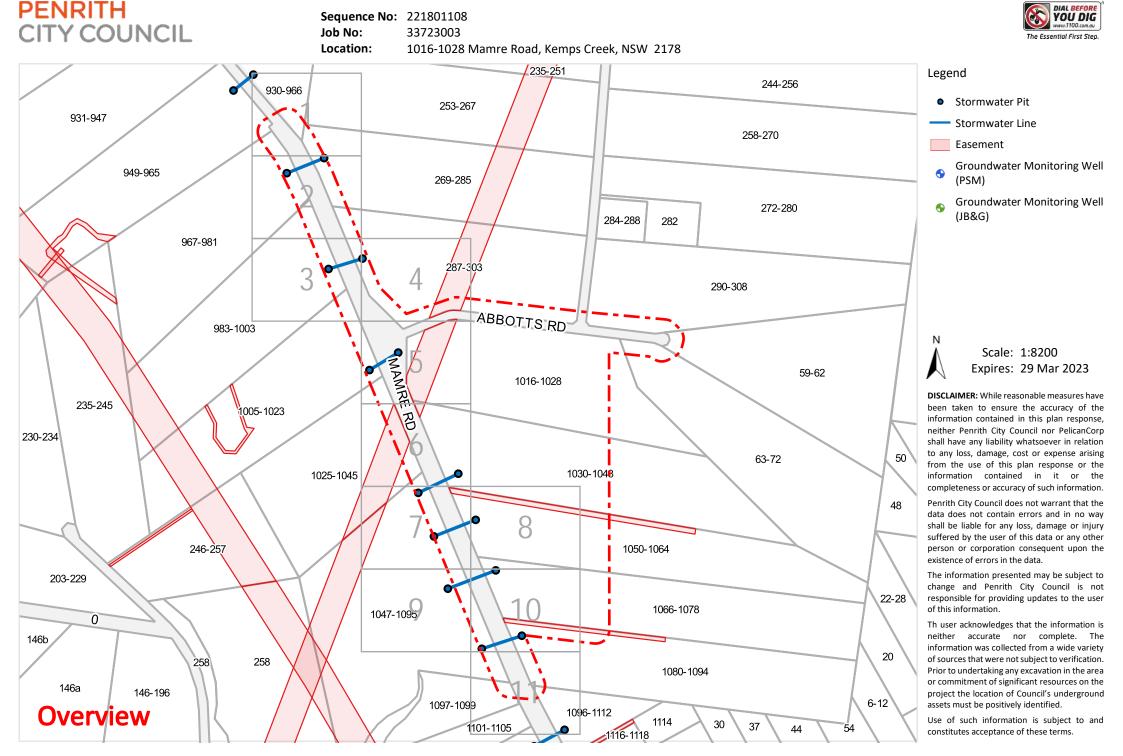
Any plans provided pursuant to this service are intended to show the approximate location of underground assets relative to road boundaries, property fences and other structures at the time of installation.

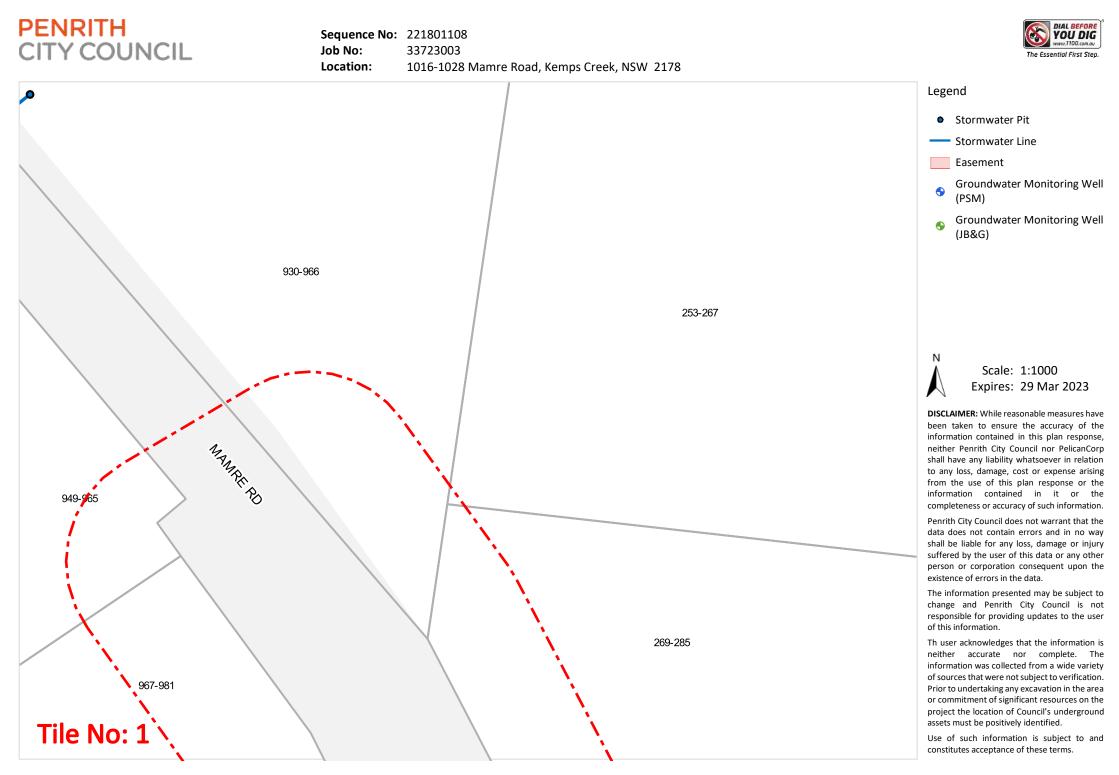

Depth of underground assets may vary significantly from information provided on plans as a result of changes to road, footpath or surface levels subsequent to installation.

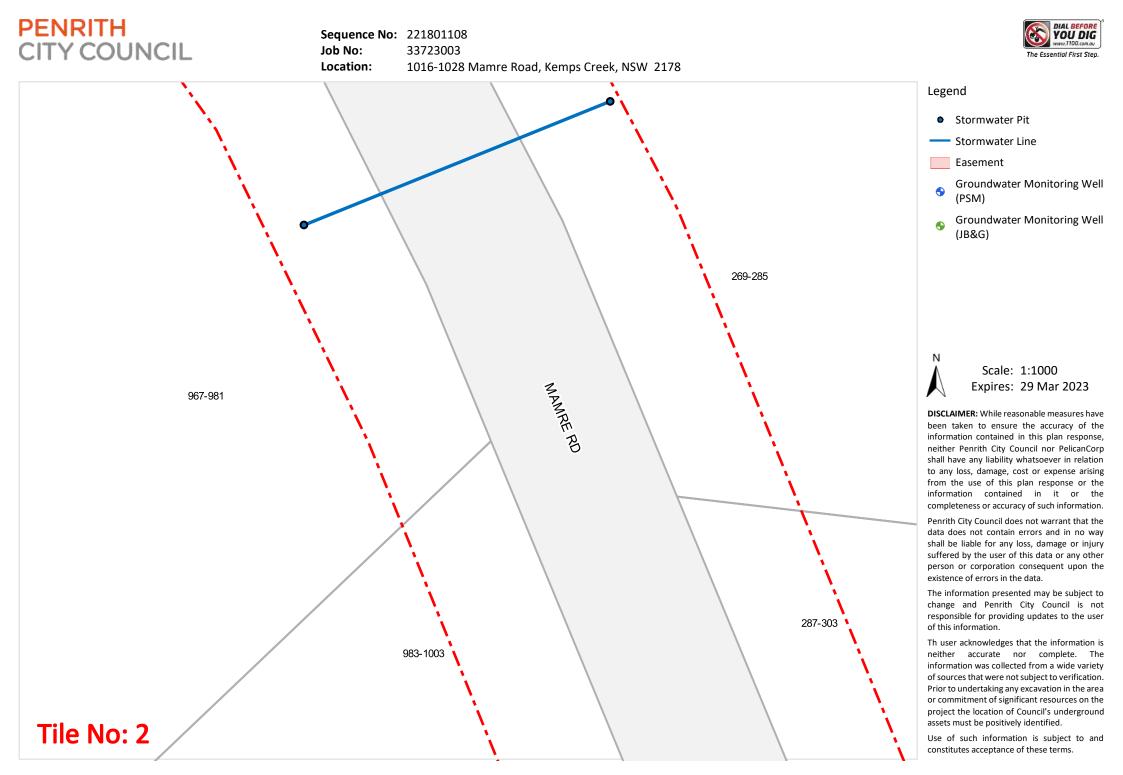
Such plans have been prepared solely for use by Endeavour Energy staff for design, construction and maintenance purposes.

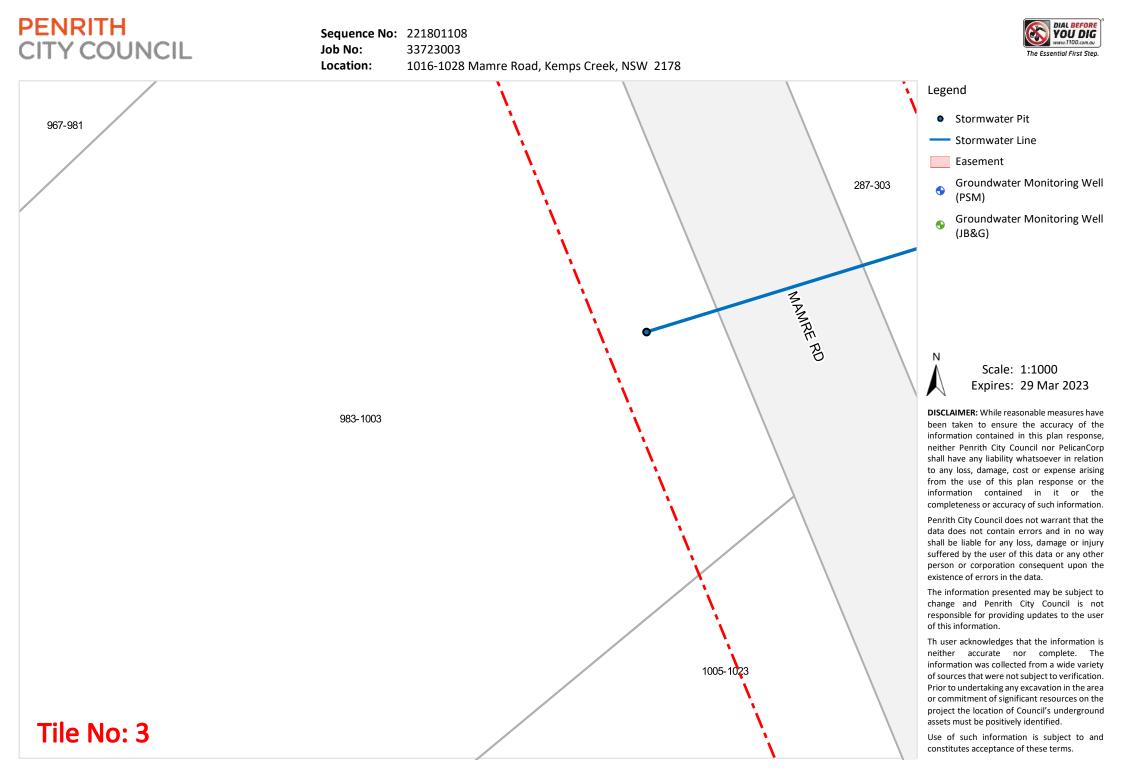

All enquiry details and results are kept in a register.

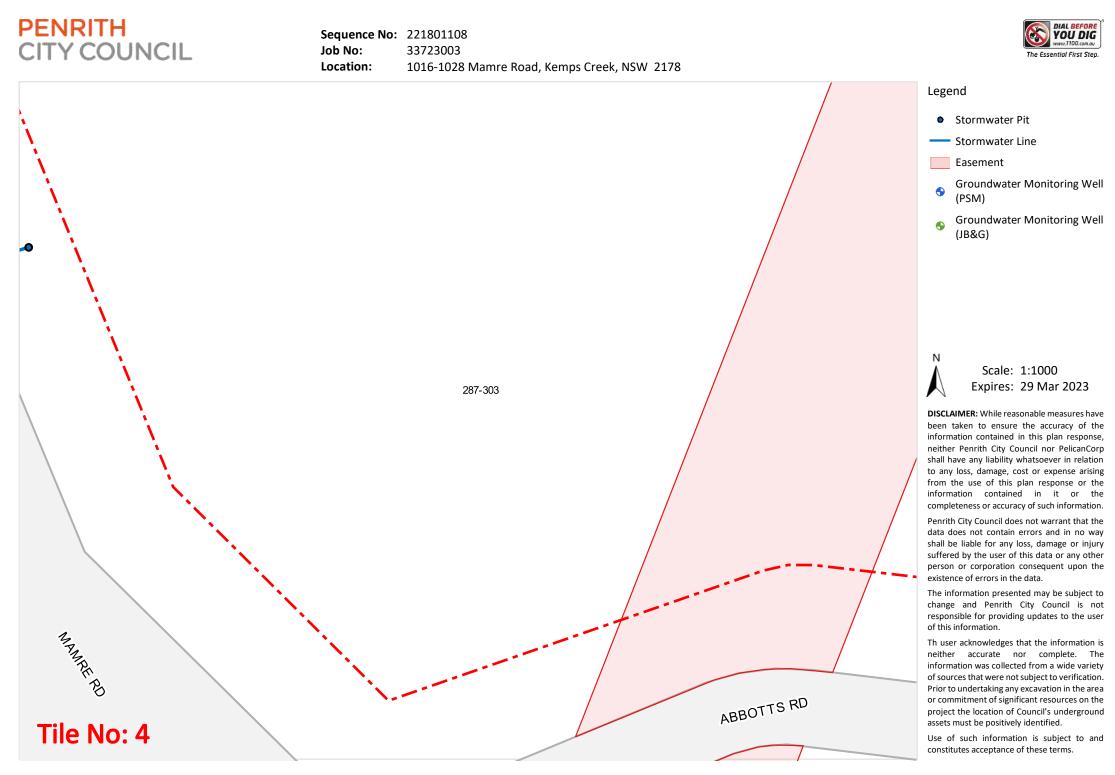

DISCLAIMER

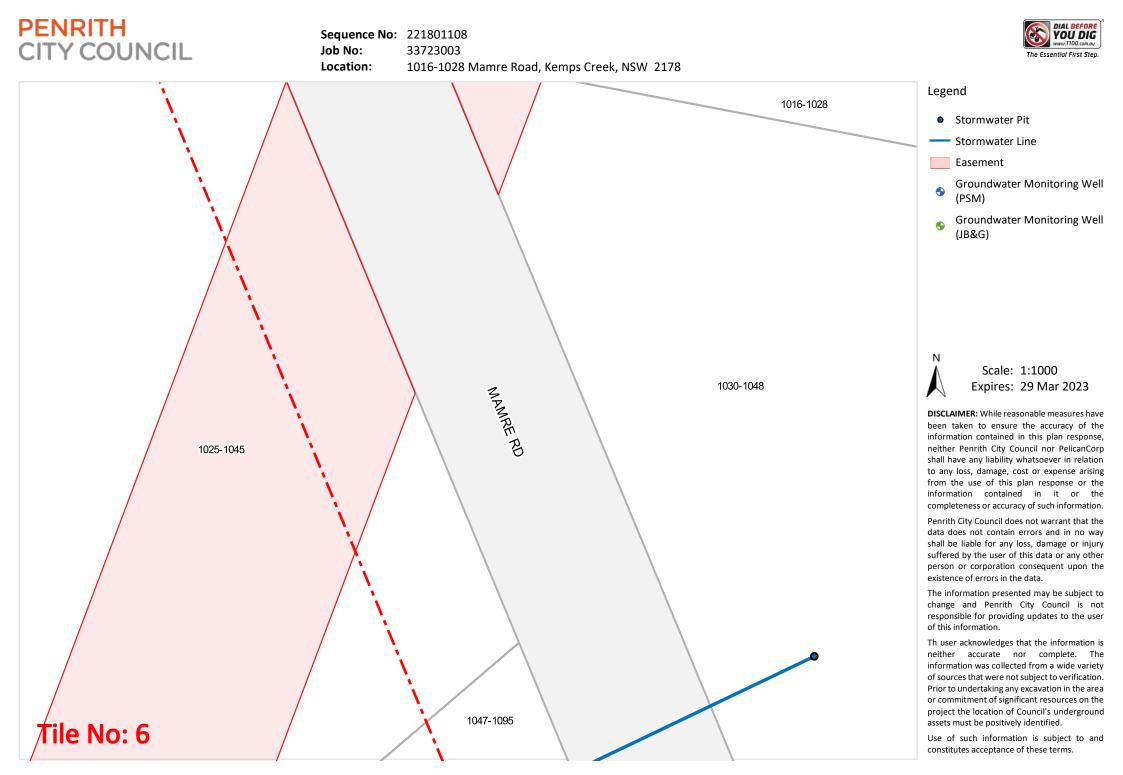

Whilst Endeavour Energy has taken all reasonable steps to ensure that the information contained in the plans is as accurate as possible it will accept no liability for inaccuracies in the information shown on such plans.

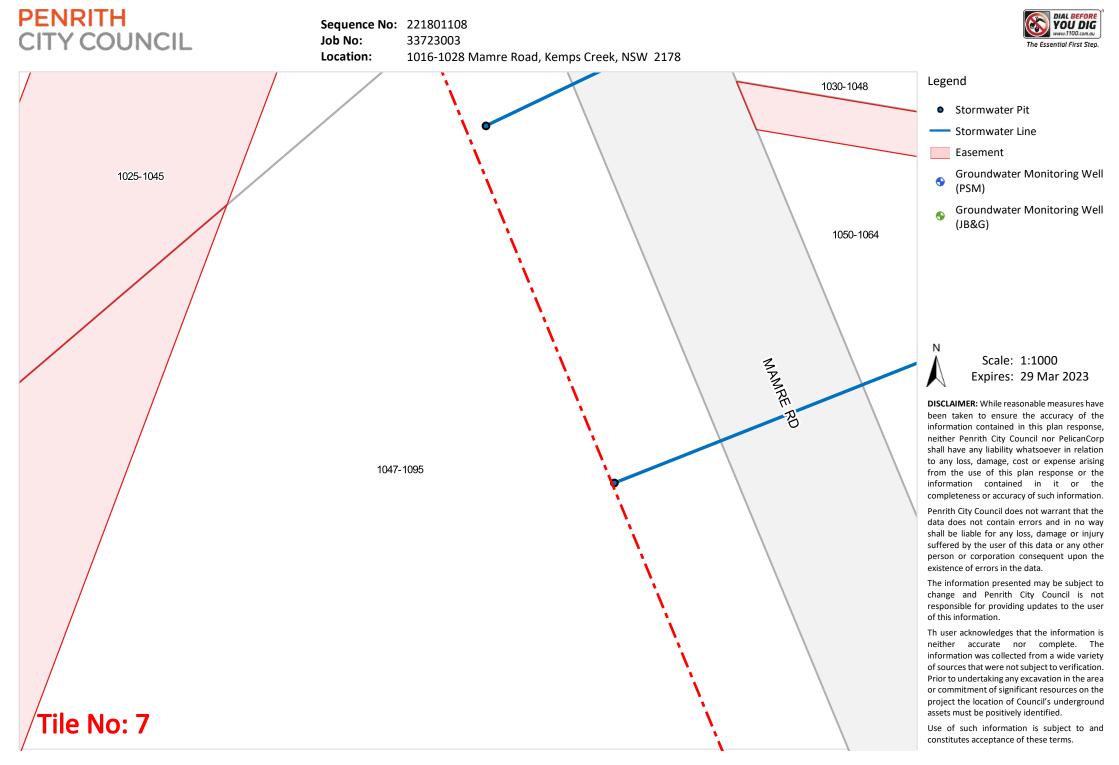


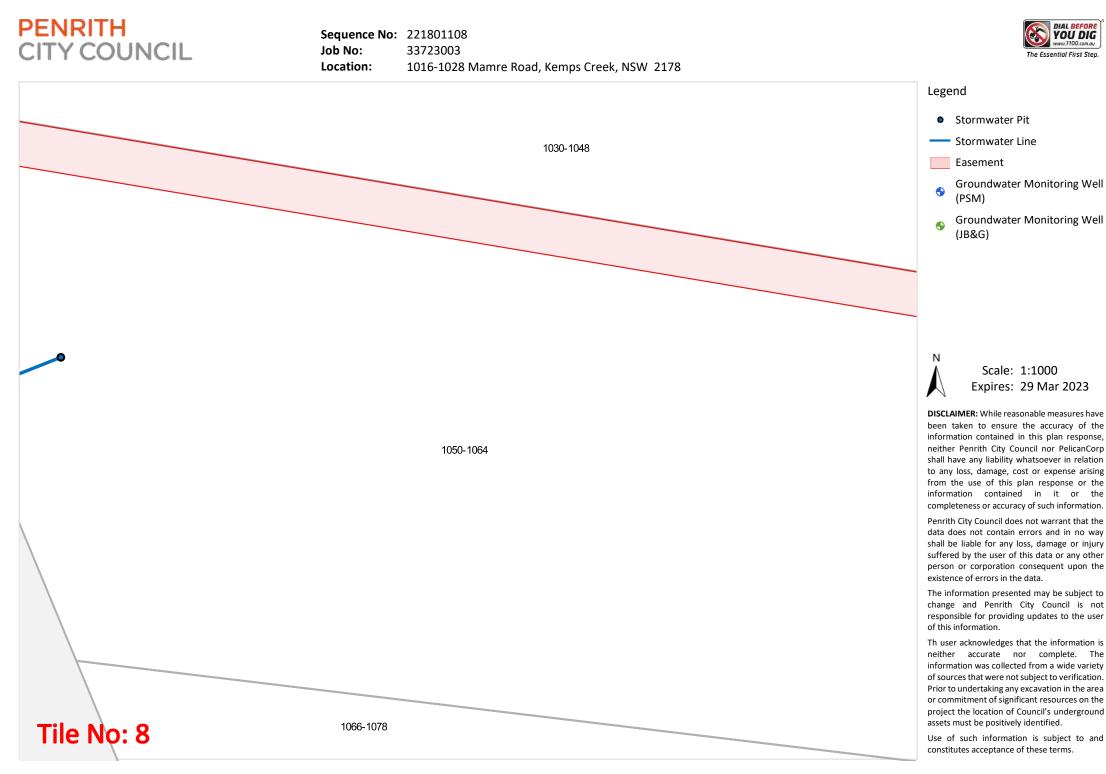

Cadastre: © Land and Property Information 2015, 2016



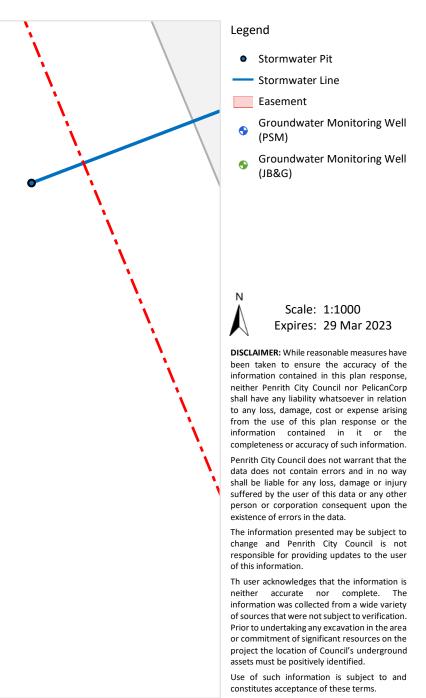






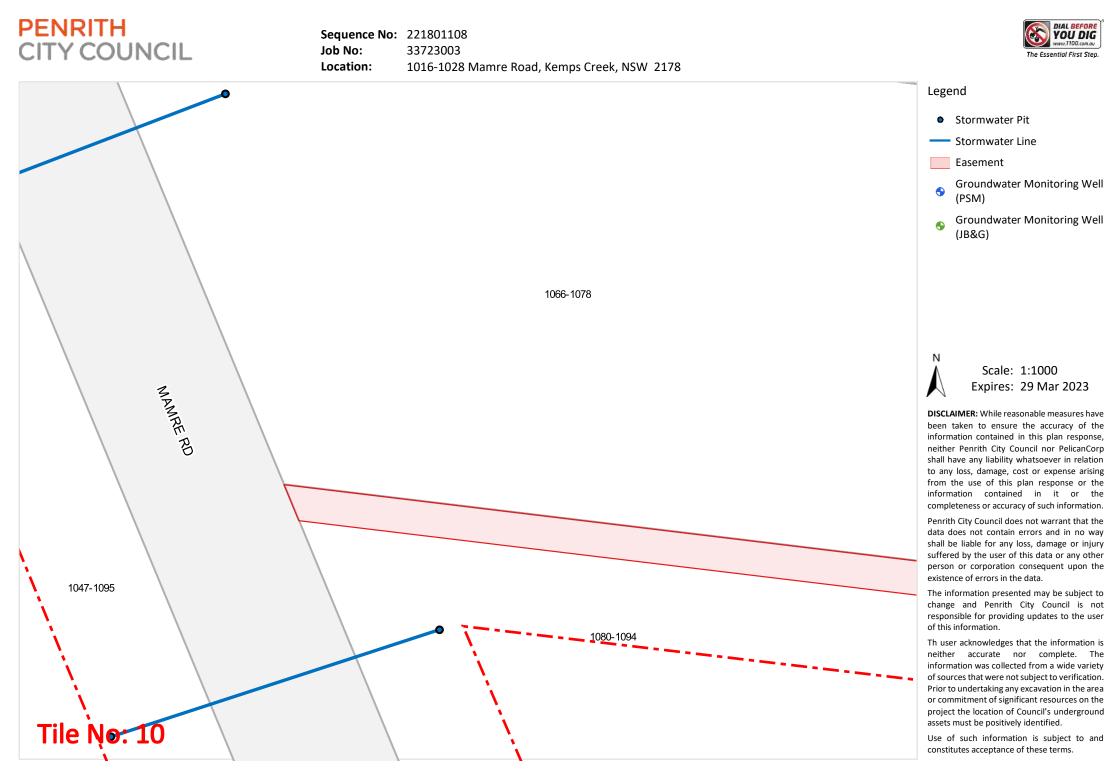


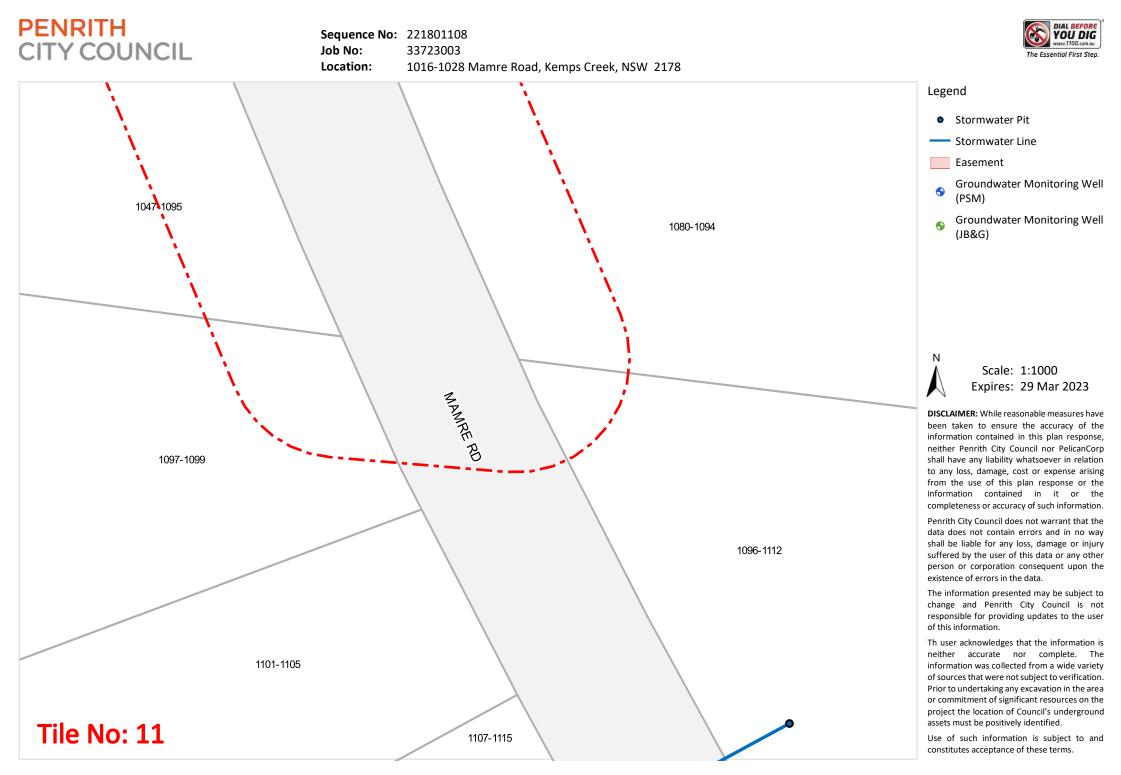
Plans generated 01 Mar 2023 by Pelicancorp TicketAccess Software | www.pelicancorp.com



 Sequence No:
 221801108

 Job No:
 33723003


 Location:
 1016-1028 Mamre Road, Kemps Creek, NSW 2178



1047-1095

Tile No: 9

Guide to reading Sydney Water DBYD Plans

This guide will help you understand our plans and what our services are.

Symbol	Meaning	Symbol	Meaning
225 PVC	Sewer main with flow arrow and size type text.	- FOR	Sewer vertical
and a sum a shad a sine a sum a sum	Disuses sewer main This means the sewer has been disused but remains in the ground.	 SP0882	Sewer pumping station
1.7	Sewer maintenance hole with upstream depth invert.		
	Sewer Sub-surface chamber		Pressure sewer main These are also found in Vacuum sewer areas.
-	Sewer Maintenance hole with overflow chamber		Pressure sewer Pump unit Alarm, electrical cable and pump unit.
	Sewer Ventshaft EDUCT		Pressure sewer property valve boundary assembly
¢	Sewer Ventshaft IDUCT	~ × ~	Pressure sewer stop valve
10.6	Sewer property connection point With chainage to downstream maintenance hole.		Pressure sewer reducer / taper
Concrete Encound	Sewer concrete encased section	®	Pressure sewer flushing point
	Sewer Rehabilitation		Vacuum sewer division valve
	Sewer terminal maintenance shaft		Vacuum sewer vacuum chamber
	Sewer maintenance shaft		Vacuum sewer clean out pot
¢	Sewer rodding point		Stormwater pipe
•	Sewer lamphole		Stormwater channel

Symbol	Meaning	Symbol	Meaning
	Stormwater gully		Potable water stop valves with Tapers
-	Stormwater maintenance hole		Potable water closed stop valve
200 PVC	Watermain – potable drinking water With size type text.		
	Disconnected watermain potable drinking water		Potable water air valve
	This means the watermain has been disused but remains in the ground.		
-	Recycled watermain		Potable water valve
	Special supply conditions – potable drinking water	8	Potable water scour
	Special supply conditions – recycled water		Potable water reducer / taper
	Restrained joints – Potable drinking water	~~~	Potable water vertical bends
	Sewer concrete encased section		Potable water reservoir
	Restrained joints – Potable drinking water	× •	Recycled water is shown as per potable above. Colour as indicated
	Potable water hydrant		Private potable water main
	Potable water maintenance hole		Private recycled water main
	Potable water stop valve		Private sewer main
	Potable water stop valve with By- pass		

PIPE TYPES		PIPE TYPES	
ABS	Acrylonitrile Butadiene Styrene	AC	Asbestos Cement
BRICK	Brick	CI	Cast Iron
CICL	Cast Iron Cement Lined	CONC	Concrete
COPPER	Copper	DI	Ductile Iron
DICL	Ductile Iron Cement (mortar) Lined	DIPL	Ductile Iron Polymeric Lined
EW	Earthenware	FIBG	Fibreglass
FL BAR	Forged Locking Bar	GI	Galvanised Iron
GRP	Glass Reinforced Plastics	HDPE	High Density Polyethylene
MS	Mild Steel	MSCL	Mild Steel Cement Lined
IPE	Polyethylene	PC	Polymer Concrete
PP	Polypropylene	PVC	Polyvinylchloride
PVC - M	Polyvinylchloride, Modified	PVC - 0	Polyvinylchloride, Oriented
PVC - U	Polyvinylchloride, Unplasticised	RC	Reinforced Concrete
RC-PL	Reinforced Concrete Plastics Lined	S	Steel
SCL	Steel Cement (mortar) Lined	SCL IBL	Steel Cement Lined Internal Bitumen
SGW	Salt Glazed Ware	SPL	Steel Polymeric Lined
SS	Stainless Steel	STONE	Stone
VC	Vitrified Clay	WI	Wrought Iron
WS	Woodstave		

Further Information

Please consult the Dial Before You Dig enquiries page on our website.

For general enquiries please call the Customer Contact Centre on 132 092

In an emergency, or to notify Sydney Water of damage or threats to its structures, call 13 20 90 (24 hours, 7 days)

Further details regarding ADE's Services are available via

🖬 info@ade.group 🕮 www.ade.group

ADE Consulting Group Pty Ltd

Sydney Unit 6/7 Millennium Court, Silverwater, NSW 2128 Australia

ADE Consulting Group (QLD) Pty Ltd

Brisbane Unit 3/22 Palmer Place Murarrie, QLD 4172, Australia Newcastle Unit 9/103 Glenwood Drive Thornton, NSW 2322, Australia

ADE Consulting Group (VIC) Pty Ltd

Melbourne Unit 4/95 Salmon Street Port Melbourne, VIC 3207, Australia