Detailed Site Investigation and Dam Water & Sediment Assessment

Project

Detailed Site Investigation 290-308 Aldington Road and 59-63 Abbotts Road Kemps Creek NSW

Office Email:

Web:

Prepared for

ESR Australia

Date

1/12/2021

info@allgeo.com.au

www.allgeo.com.au

Document Control

Revision	Date	Author	Technical Review	Project Manager
0	1/12/2021	S. Jones	C. Cowper	J. Walker

Report 13546-ER-2-1 dated 1 December 2021 reviewed for and on behalf of Alliance Geotechnical Pty Ltd

Craig Cowper CEnvP-SC No. 41117

Important Information About This Report

Copyright in all and every part of this document belongs to Alliance Geotechnical Pty Ltd ('Alliance'). The document must not be used, sold, transferred, copied or reproduced in whole or in part in any form or manner or in or on any media to any person other than by agreement with Alliance.

This document is produced by Alliance solely for the use and benefit by the named client in accordance with the terms of the engagement between Alliance and the name client. Alliance (and the document Certifier if applicable) does not and shall not assume any liability or responsibility whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

This report must be reviewed in its entirety and in conjunction with the objectives, scope and terms applicable to Alliance's engagement. The report must not be used for any purpose other than the purpose specified at the time Alliance was engaged to prepare the report.

The findings presented in this report are based on specific data and information made available during the course of this project. To the best of Alliance's knowledge, these findings represent a reasonable interpretation of the general condition of the site at the time of report completion.

No warranties are made as to the information provided in this report. All conclusions and recommendations made in this report are of the professional opinions of personnel involved with the project and while normal checking of the accuracy of data has been conducted, any circumstances outside the scope of this report or which are not made known to personnel and which may impact on those opinions is not the responsibility of Alliance.

Logs, figures, and drawings are generated for this report based on individual Alliance consultant interpretations of nominated data, as well as observations made at the time fieldwork was undertaken.

Data and/or information presented in this report must not be redrawn for its inclusion in other reports, plans or documents, nor should that data and/or information be separated from this report in any way.

Should additional information that may impact on the findings of this report be encountered or site conditions change, Alliance reserves the right to review and amend this report.

Report No.: 13546-ER-2-1

Executive Summary

Alliance Geotechnical Pty Ltd (Alliance) was engaged by ESR Australia to undertake a Stage 2 Detailed Site Investigation (DSI), Dam Water and Sediment Assessment and Soil Salinity Assessment at 290-308 Aldington Road and 59-63 Abbotts Road, Kemps Creek NSW (refer **Figure 1**, with the 'site' boundaries outlined in **Figure 2**).

At the commencement of the project, Alliance had the following project appreciation:

- The site is currently owned by three separate private owners one per lot.
- Each lot is currently occupied and being used for rural residential purposes.
- The site is proposed for redevelopment, including demolition of current onsite structures and dewatering/removal of onsite dams, and a subdivision consisting of seven industrial warehouses with associated awnings and ground level carparks, as well as a detention basin in the south-western of the site, with an arterial roadway separating the structures. It is understood that the majority of the site will be covered by structures & hardstand materials, with very limited landscaping and open space areas. In the context of NEPC (2013a), this is considered to be a land use scenario¹ comprising:
 - o Commercial / industrial such as shops, offices, factories, and industrial sites.
- A preliminary site investigation (PSI) for 59-63 Abbotts Road was reported by Douglas Partners (2019). The PSI identified a number of potential land contamination risks at the site, and further assessment of those risks was recommended.
- A due diligence PSI with limited sampling for 290-308 Aldington Road was reported in Alliance (2019). The PSI concluded that the site was deemed unlikely to pose a significant contamination risk for future development.
- This DSI is required to address the data gaps and recommendations in previous reports, and facilitate the client addressing development consent decision making processes set out in State Environmental Planning Policy (SEPP) No. 55, as required by Penrith City Council.
- A dam water and sediment assessment is required to assist the client with addressing decommissioning procedures for the dam onsite.

The objectives of this project were to:

- Assess the potential for land contamination to be present in the areas of environmental concern (AEC) identified in the preliminary site investigations prepared for the site;
- Assess whether identified potential land contamination would present an unacceptable human health or ecological exposure risk, based on the proposed land use scenario;
- Assess whether the site is suitable, in the context of land contamination, for the proposed land use scenario;

¹ Adopted from Section 2.2 of NEPC (2013a) and Section 3 of NEPC (2013f)

Report No.: 13546-ER-2-1

- Make a preliminary assessment of concentrations of contaminants (considered to be relevant to the site) to be present within the dam water and sediments (for the purpose of informing dam decommissioning procedures to be prepared by others); and
- Provide recommendations for further investigations, and management or remediation of land contamination (if warranted).

The following scope of works was undertaken address the project objectives:

- · A desktop review of previous reports;
- Preparation of a sampling and analysis quality plan;
- Intrusive investigations on site;
- · Laboratory analysis; and
- · Assessment of data and reporting.

The nominated scope of works was undertaken with reference to relevant sections of NEPC (2013) and WA DOH (2009).

Multiple areas of environmental concern (AEC) and contaminants of potential concern (COPC) associated with potential land contaminating activities undertaken at the site, have been identified as part of this project. The AEC, land contaminating activity and COPC are presented in the table below. The locations of the identified AEC are presented in **Figure 3**.

ID	AEC	Land Contaminating Activity (Source)	COPC
AEC01a	Western poultry farming area, 3 sheds (~1.2 hectares, ~0.5m in depth)	Poultry waste, hazardous buildings materials, shallow uncontrolled filling, termite and poultry parasite pesticides	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, pathogens, metals, & asbestos.
AEC01b	Eastern poultry farming area, 1 shed on fill pad (~4,500m², ~3.0m to ~0.5m in depth)	Poultry waste, hazardous buildings materials, uncontrolled filling, termite and poultry parasite pesticides	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, pathogens, metals, & asbestos.
AEC02	Aboveground fuel storage tank labelled as liquid petroleum gas (Lot 13 between poultry sheds, ~5,000L)	Fuel spills/leaks	Petroleum hydrocarbons, BTEX, PAH, lead
AEC03a	Dam 1 Wall (Lot 13 west, ~50m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos
AEC03b	Dam 1 Sediments (Lot 13 west, ~180m², ~0.1m in thickness)	Poultry shed wastes	Organochlorine pesticides, metals, & asbestos, pathogens
AEC03c	Dam 1 Surface Water (Lot 13 west, ~180m², ~0.5m in depth)	Effluent from poultry sheds.	Pesticides, pathogens, nutrients, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand
AEC04a	Dam 2 Wall (Lot 13 north, ~150m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos
AEC04b	Dam 2 Sediments (Lot 13 north, ~900m², ~0.1m in thickness)	Waste disposal, poultry shed wastes.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos
AEC04c	Dam 2 Surface Water (Lot 13 north, ~900m², ~1.5m in depth)	Waste disposal and effluent from poultry sheds.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand
AEC05a	Dam 3 Wall (Lot 13 east, ~25m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos
AEC05b	Dam 3 Sediments (Lot 13 east, ~90m², ~0.1m in thickness)	waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos

ID	AEC	Land Contaminating Activity (Source)	COPC
AEC05c	Dam 3 Surface Water (Lot 13 east, ~90m², ~0.5m in depth)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand
AEC06	Stockpile (~50 m³, near east dam in Lot 13)	Uncontrolled dumping or stockpiling of poultry manure	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, metals, pathogens, nutrients & asbestos.
AEC07	Fill material (~200m², ~0.5m in thickness, south of eastern poultry shed in Lot 13)	Uncontrolled soil filling	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, , BTEX, polychlorinated biphenyl, metals, & asbestos.
AEC08a	Dam 4 Wall (Lot 12 west, ~250m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos
AEC08b	Dam 4 Sediments (Lot 12 west, ~2,800m², ~0.1m in thickness)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos
AEC08c	Dam 4 Surface Water (Lot 12 west, ~2,800m², ~2.0m in depth)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand
AEC09a	Dam 5 Wall (Lot 12 north, ~70m², ~2m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos
AEC09b	Dam 5 Sediments (Lot 12 north, ~300m², ~0.1m in thickness)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos
AEC09c	Dam 5 Surface Water (Lot 12 north, ~300m², ~1.0m in depth)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand
AEC10a	Dam 6 Wall (Lot 12 south, ~100m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos

ID	AEC	Land Contaminating Activity (Source)	COPC
AEC10b	Dam 6 Sediments (Lot 12 south, ~700m², ~0.1m in thickness)	Waste disposal	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos
AEC10c	Dam 6 Surface Water (Lot 12 south, ~700m², ~1.0m in depth)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand
AEC11a	Dam 7 Wall (Lot 12 south east, ~40m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos
AEC11b	Dam 7 Sediments (Lot 12 south east, ~190m², ~0.1m in thickness)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos
AEC12	Fill material (~50 m², ~0.5m in thickness, west of Lot 12 south structure)	Uncontrolled soil filling/	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, metals, & asbestos.
AEC13	Commercial paint warehouse (~2,000m², central southern portion of Lot 12)	Hazardous buildings materials, chemical and fuel storage/spills/leaks	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, VOC, BTEX, polychlorinated biphenyl, metals, & asbestos
AEC14	Gully between northern dams in Lot 12 (~500m², ~0.5m in thickness)	Uncontrolled soil filling/	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, , BTEX, polychlorinated biphenyl, metals, & asbestos.
AEC15	Residential premises (~3,000 m² Lot 12 east)	hazardous buildings materials, termite treatment	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, , BTEX, polychlorinated biphenyl, metals, & asbestos.
AEC16	Septic tank (~3m², ~1.5m deep, Lot 12 east property)	Domestic effluent disposal	Pathogens, petroleum hydrocarbons and metals
AEC17	Stockpile (~5 m³, north-west corner Lot 11)	Uncontrolled soil dumping	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, , BTEX, polychlorinated biphenyl, metals, & asbestos.

ID	AEC	Land Contaminating Activity (Source)	COPC
AEC18	Construction material storage area, including metal sheeting, piping and lumber (~1,000 m², north- west corner Lot 11)	Deterioration of exposed ageing materials, heavy vehicle use.	Petroleum hydrocarbons, BTEX, metals, asbestos.
AEC19a	Dam 8 Wall (Lot 11 north west smaller dam, ~40m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos
AEC19b	Dam 8 Sediments (Lot 11 north west smaller dam, ~120m², ~0.1m in thickness)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos
AEC19c	Dam 8 Surface Water (Lot 11 north west smaller dam, ~120m², ~0.5m in depth)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand
AEC20a	Dam 9 Wall (Lot 11 north west larger dam, ~100m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos
AEC20b	Dam 9 Sediments (Lot 11 north west larger dam, ~600m², ~0.1m in thickness)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos
AEC20c	Dam 9 Surface Water (Lot 11 north west larger dam, ~600m², ~0.5m in depth)	Waste disposal	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand
AEC21	Stockpile (~50 m³, north-west Lot 11, south of AEC18)	Uncontrolled soil dumping	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, metals, & asbestos.
AEC22	Septic tank (~3m², ~1.5m deep, Lot 11 north of residence)	Domestic effluent disposal	Pathogens, petroleum hydrocarbons and metals
AEC23	Residential premises (~2,500 m² Lot 11 west)	hazardous buildings materials, termite treatment	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, , BTEX, polychlorinated biphenyl, metals, & asbestos.

ID	AEC	Land Contaminating Activity (Source)	COPC
AEC24	Aboveground fuel storage tank unlabelled, likely diesel petroleum ~5,000L (Lot 11 north-west of residence)	Fuel spills/leaks	Petroleum hydrocarbons, BTEX, PAH, lead
AEC25	Storage shed (~40 m², centre-west Lot 11)	hazardous buildings materials, chemical and fuel storage/spills/leaks, termite treatment	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, metals, & asbestos.
AEC26	Market Gardens (~5.2ha, ~0.5m in thickness, Central portion of Lot 11)	Application of pesticides	organochlorine pesticides, metals.
AEC27	Storage shed (~40 m², centre-east Lot 11)	hazardous buildings materials, termite treatment, chemical/fuel leaks and spills	Petroleum hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, metals, & asbestos.
AEC028	Storage shed (~15 m², centre-south Lot 11)	hazardous buildings materials, termite treatment, chemical/fuel leaks and spills	Petroleum hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, metals, & asbestos.
AEC29a	Dam 10 Wall (Lot 11 south east larger dam, ~220m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos
AEC29b	Dam 10 Sediments (Lot 11 south east larger dam, ~2600m², ~0.1m in thickness)	Waste disposal	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos
AEC29c	Dam 10 Surface Water (Lot 11 south east larger dam, ~2600m², ~2.0m in depth)	Waste disposal	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand
AEC30a	Dam 11 Wall (Lot 11 south east smaller dam, ~200m², ~1m in thickness)	Potential uncontrolled filling	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos
AEC30b	Dam 11 Sediments (Lot 11 south east smaller dam, ~1,300m², ~2.0m in depth)	Waste disposal	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos

ID	AEC	Land Contaminating Activity (Source)	COPC
AEC30c	Dam 11 Surface Water (Lot 11 south east larger dam, ~2600m², ~2.0m in depth)	Waste disposal	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand
AEC31	Power poles (12 poles across Lot 11 and 12)	Copper chrome arsenate treatment	Arsenic, chromium, copper
AEC32	Residential premises (<2,000 m² Lot 13 north – not within scope)	Deterioration of hazardous buildings materials, application of pesticides	Organochlorine pesticides, polychlorinated biphenyl, metals, & asbestos.
AEC33	Residential premises (<2,000 m² Lot 13 west – not within scope)	Deterioration of hazardous buildings materials, application of pesticides	Organochlorine pesticides, polychlorinated biphenyl, metals, & asbestos.
AEC34	Concrete driveway along the northern boundary to residential dwelling within Lot 13 (~100m in length)	Potential uncontrolled filling	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, BTEX, heavy metals, & asbestos
AEC35	Asphalt and gravel driveway leading to the commercial paint shed and residential dwelling within Lot 12 (~360m in length)	Potential uncontrolled filling	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, BTEX, heavy metals, & asbestos
AEC36	Gravel driveway leading to the residential dwelling within Lot 11 (~130m in length)	Potential uncontrolled filling	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, BTEX, heavy metals, & asbestos
AEC37	Gravel driveway leading to the eastern residential dwelling and poultry sheds within Lot 13 (~750m in length)	Potential uncontrolled filling	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, BTEX, heavy metals, & asbestos

Based on the assessment undertaken by Alliance of site history information, fieldwork observations and data, and laboratory analytical data, in the context of the proposed land use scenario and objectives of this project, Alliance has made the following conclusions:

- Detected concentrations of friable asbestos in soil present an unacceptable human health risk at TP70, and ASB12;
- Detected concentrations of bonded asbestos in soil present an unacceptable human health risk at TP09, TP51, ASB12, and DW23;

Report No.: 13546-ER-2-1

- Field observations and laboratory analysis warrant further assessment for aesthetics risks at the location of AEC14 (demolition waste, asbestos, and tyres), AEC09 (demolition waste and asbestos), AEC22 (asbestos and potential septic system), and AEC18 (surficial asbestos near TP61).
- Potential contamination risks in AEC13, AEC15, AEC16, AEC22, AEC23, AEC32, AEC33, and AEC34 have not yet been assessed. The presence of existing hardstands is constraining adequate access to assess underlying soils. This is a data gap that needs addressing in order to draw conclusions regarding site suitability in the context of land contamination;
- In the context of preparing a dam dewatering procedure for the site, in addition to information on the
 proposed disposal methods, the dam water data would need to be supplemented with further
 assessment of likely receptors during dewatering, in order to potentially derive less conservative
 assessment criteria, based on a preferred dam water disposal method, some additional dam water
 sampling and analysis to support the preliminary data obtained, that is consistent with site specific
 criteria
- The site is not yet considered to be suitable for the following land use scenario:
 - o Commercial / industrial such as shops, offices, factories, and industrial sites.
- Specific assumptions that apply to the adopted land use scenario, are presented in Section 5 of this
 report.
- Further assessment, management, and remedial planning works for the identified unacceptable exposure risks is required.

Based on those conclusions, Alliance makes the following recommendations:

- An interim management plan should be implemented to mitigate potential human health exposure risks to asbestos in AEC14, TP70, TP09, and DW23. As some of those activities may result in disturbance of soils impacted with asbestos, a class A licensed asbestos contractor should undertake the recommended works where necessary. Prior to entry, site workers and other personnel on site should be made aware of the areas impacted with friable and bonded asbestos, and the controls in place to mitigate risk of exposure to human health;
- A supplementary contamination assessment should be undertaken to address the data gaps
 associated with AEC13, AEC15, AEC16, AEC22, AEC23, AEC32, AEC33, and AEC34, as well as
 assessing the extent of identified unacceptable risks onsite, to inform future remedial works. The
 supplementary contamination assessment should be undertaken following controlled demolition and
 removal of the structures and pavements.
- The recommended data gap assessment should also address the extent of asbestos contamination at AEC14, TP09, TP61, DS13, TP71, and TP141, as well as the aesthetics risk observed within AEC14, TP141 and TP142 (AEC21) and DS13 (AEC09);
- A remedial action plan (RAP) should be prepared to address the identified unacceptable human health exposure risks upon completion and consideration of the aforementioned data gap assessment; and
- Further assessment, management or remedial planning works for the site, be undertaken by a suitably experienced environmental consultant.

This report must be read in conjunction with the *Important Information About This Report* statements at the front of this report.

TABLE OF CONTENTS

1	In	itrod	luction	1
	1.1	Ва	ackground	1
	1.2	Ol	ojectives	2
	1.3	Sc	cope of Work	2
2	Si	ite lo	dentification	3
	2.1	Sit	te Details	3
	2.2	Si	te Layout	3
3	Si	ite E	nvironmental Setting	4
	3.1	Ge	eology	4
	3.2	Sit	te Topography and Elevation	4
	3.3	Ac	sid Sulfate Soils	4
	3.4	Ну	/drogeology and Hydrology	4
4	Pı	revi	ous Contamination Assessments	6
	4.	1.1	Douglas Partners (2019)	6
	4.	1.2	Alliance Geotechnical (2019)	7
	4.	1.3	Alliance Geotechnical (2021)	9
	4.	1.4	Supplementary Site Walkover	11
	4.	1.5	Supplementary Aerial Photography Review	12
5	D	ata (Gap Assessment	13
6	C	onc	eptual Site Model	14
	6.1		- eamble	
	6.2	La	and Use	14
	6.2	2.1	Adopted Land use Scenario	14
	6.2	2.2	Assumptions for Adopted Land Use Scenario	14
	6.3	Sc	ources of Contamination	15
	6.4	Re	eceptors	15
	6.4	4.1	Identified Receptors	15
	6.4	4.2	Assumptions for Identified Receptors	15
	6.5	Ex	posure Pathways	16
	6.	5.1	Human Health	16
	6.	5.2	Management Limits for Petroleum Hydrocarbons	17
	6.	5.3	Hazardous Ground Gases	18
	6.	5.4	Aesthetics	18
	6.	5.5	Terrestrial Ecosystems	20
	6.	5.6	Groundwater	2

	6.6	Source, Pathway and Receptor Links	24
7	Data	a Quality Objectives	38
	7.1	Step 1: State the problem	38
	7.2	Step 2: Identify the decision / goal of the study	38
	7.3	Step 3: Identify the information inputs	38
	7.4	Step 4: Define the boundaries of the study	39
	7.5	Step 5: Develop the analytical approach	40
	7.5.1	Field Duplicates and Triplicates	40
	7.5.2	Trip Spikes and Trip Blanks	40
	7.5.3	Analytical Laboratory Quality Assurance and Quality Control	41
	7.5.4	Data Quality Indicators	41
	7.5.5	If / Then Statements	43
	7.6	Step 6: Performance and Acceptance Criteria	43
	7.6.1	If / Then Decisions	43
	7.7	Step 7: Develop the plan for obtaining data	44
	7.7.1	Sampling Point Densities and Locations	44
	7.7.2	Sampling Methods	48
	7.7.3	Decontamination	49
	7.7.4	Headspace Screening	49
	7.7.5	Sample Identification, Handling, Storage and Transport	50
	7.7.6	Selection of Laboratory	50
	7.7.7	Scheduling of Laboratory Analysis	50
	7.7.8	Analytical Methods, Limits of Reporting and Holding Times	53
8	Field	dwork	55
	8.1	Soils	55
	8.1.1	Sampling	55
	8.1.2	Site Specific Geology	57
	8.1.3	Soil Staining and Odours	57
	8.1.4	Headspace Screening	57
	8.1.5	Asbestos Containing Materials and Fibrous Asbestos	57
	8.2	Surface (Dam) Water	59
9	Lab	oratory Analysis	62
1(0 Data	a Quality Indicator (DQI) Assessment	63
1 [′]		Characterisation Discussion	
-		Exposure Pathways	
		1 Human Health	
		Management Limits for Petroleum Hydrocarbons	

	11.1.3 Aesthetics	66
	11.1.4 Microbiological	66
	11.1.5 Dam Water and Sediments	66
12	Revised Conceptual Site Model	68
13	Duty to Report Contamination	83
14	Conclusions and Recommendations	84
15	References	86

FIGURES

Figure 1	Site Locality Plan
Figure 2	Site Layout Plan
Figure 3	Areas of Environmental Concern
Figure 4	Sampling Point Layout Plan
Figure 5	Soil and Water Exceedances
Figure 6	Post Assessment Areas of Environmental Concern

TABLES

Table 1 Asbestos Soil Quantification Results

Table 2 Laboratory Analytical Results – RPD

Table 3 Laboratory Analytical Results – Dam Water

Table 4 Laboratory Analytical Results - Soils

APPENDICES

APPENDIX A – Logs

APPENDIX B – Laboratory Documentation

APPENDIX C - Data Quality Indicator (DQI) Assessment

APPENDIX D - Calibration Records

APPENDIX E – Alliance (2019) Logs, Summary Tables

1 Introduction

1.1 Background

Alliance Geotechnical Pty Ltd (Alliance) was engaged by ESR Australia to undertake a Stage 2 Detailed Site Investigation (DSI), Dam Water and Sediment Assessment at 290-308 Aldington Road and 59-63 Abbotts Road, Kemps Creek NSW (refer **Figure 1**, with the 'site' boundaries outlined in **Figure 2**).

At the commencement of the project, Alliance had the following project appreciation:

- The site is currently owned by three separate private owners one per lot.
- Each lot is currently occupied and being used for rural residential purposes.
- The site is proposed for redevelopment, including demolition of current onsite structures and dewatering/removal of onsite dams, and a subdivision consisting of seven industrial warehouses with associated awnings and ground level carparks, as well as a detention basin in the south western of the site, with an arterial roadway separating the structures. It is understood that the majority of the site will be covered by structures & hardstand materials, with very limited landscaping and open space areas. In the context of NEPC (2013a), this is considered to be a land use scenario² comprising:
 - o Commercial / industrial such as shops, offices, factories, and industrial sites.
- A preliminary site investigation (PSI) for 59-63 Abbotts Road was reported by Douglas Partners (2019). The PSI identified a number of potential land contamination risks at the site, and further assessment of those risks was recommended.
- A due diligence PSI with limited sampling for 290-308 Aldington Road was reported in Alliance (2019). The PSI concluded that the site was deemed unlikely to pose a significant contamination risk for future development.
- This DSI is required to address the data gaps and recommendations in previous reports, and facilitate the client addressing development consent decision making processes set out in State Environmental Planning Policy (SEPP) No. 55, as required by Penrith City Council.
- A dam water and sediment assessment is required to assist the client with addressing decommissioning procedures for the dam onsite.

² Adopted from Section 2.2 of NEPC (2013a) and Section 3 of NEPC (2013f)

1.2 Objectives

The objectives of this project were to:

 Assess the potential for land contamination to be present in the areas of environmental concern (AEC) identified in the preliminary site investigations prepared for the site;

- Assess whether identified potential land contamination would present an unacceptable human health or ecological exposure risk, based on the proposed land use scenario;
- Assess whether the site is suitable, in the context of land contamination, for the proposed land use scenario;
- Make a preliminary assessment of concentrations of contaminants (considered to be relevant to the site) to be present within the dam water and sediments (for the purpose of informing dam decommissioning procedures to be prepared by others); and
- Provide recommendations for further investigations, and management or remediation of land contamination (if warranted).

1.3 Scope of Work

The following scope of works was undertaken address the project objectives:

- · A desktop review of previous reports;
- Preparation of a sampling and analysis quality plan;
- Intrusive investigations on site;
- Laboratory analysis; and
- Assessment of data and reporting.

The nominated scope of works was undertaken with reference to relevant sections of NSW EPA (2020b), HEPA (2020), NEPC (2013) and WA DOH (2009).

2 Site Identification

2.1 Site Details

Site identification details are presented in Table 2.1.

Table 2.1 Site Identification Details

Cadastral Identification	Lots 11, 12, & 13 in DP253503
Geographic Coordinates (Nearmap)	-33.857311, 150.799091
Site Area	Approximately 32 ha
Local Government Authority	Penrith City Council
Current Zoning	IN1: General Industrial

2.2 Site Layout

The layout of the site is present in **Figure 2**. The layout plan also includes locations on site of:

- Site access points;
- Current residential buildings and site features, e.g. dams; and
- Existing lot boundaries and site boundaries.

Report No.: 13546-ER-2-1

3 Site Environmental Setting

3.1 Geology

The Department of Minerals and Energy Geological Survey of NSW Penrith 1:100,000 Geological Series Sheet 9030 (Edition 1) 1991, indicated that the site is likely to be underlain by Bringelly Shale, comprising shale, carbonaceous claystone, laminate, fine to medium grained lithic sandstone, rare coal, and tuff.

3.2 Site Topography and Elevation

Observations made on site and elevation data provided using Nearmap indicated that:

- the topography of the site is undulating with a significant overall east to west slope; and
- the surface of the site ranges in elevation from approximately 15m Australian Height Datum (AHD) in the west and 60m AHD in the east.

3.3 Acid Sulfate Soils

A review of https://www.environment.nsw.gov.au/eSpade2Webapp indicated that the site Is located in an area mapped as:

N: no known occurrence

Further assessment of acid sulfate soils, in the context of this project is considered not warranted.

3.4 Hydrogeology and Hydrology

A review of Nearmap, indicated that surface water bodies located on or near the site included:

• Kemps Creek, located approximately 800 m to the south-west of the site.

Based on the location of the identified surface water bodies and the site surface topography, the inferred groundwater flow direction at the site is considered likely to be towards the west.

Based on site surface topography and site elevation, the inferred surface water flow direction at the site is considered likely to be towards the west.

A search of https://www.environment.nsw.gov.au/eSpade2WebApp was undertaken by Alliance and information considered relevant and related to the hydrogeological landscape for the locality of the site is presented in **Table 3.4**.

Table 3.4 Site Locality Hydrogeological Landscape

Aquifer Types	Unconfined in unconsolidated alluvial sediments
	Unconfined to semi-confined in fractured rock along structures
	Vertical and lateral flow components
	Local perching above clay-rich layers (seasonal)
Hydraulic Conductivity	Moderate

	Range: 10 ⁻² m – 10m per day
Aquifer Transmissivity	Low to moderate
	Range: <2-20 ⁻² m per day
Specific Yield	Moderate
	Range: 5-15%
Hydraulic Gradient	Gentle to intermediate
	Range: <10–30%
Groundwater Salinity	Marginal
	Range: 0.8–1.6 dS/m
Depth to Water Table	Intermediate
	Range: 2 – 6 m

A search of https://realtimedata.waternsw.com.au/water.stm indicated that there are no registered groundwater features located within a 500m radius of the site.

4 Previous Contamination Assessments

A copy of:

- Douglas Partners 2019, 'Preliminary Environmental Site Investigation with Limited Intrusive Investigation, 59 – 63 Abbotts Road, Kemps Creek, NSW' dated 08 August 2019, ref: 92352.00.
- Alliance Geotechnical 2019, 'Stage 1 Preliminary Site Investigation (with Limited Sampling), 290-308
 Aldington Road, Kemps Creek NSW' dated 18 October 2019, ref: 9687-ER-1-1.
- Alliance 2021, 'Hazardous Building Materials (HAZMAT) Report, 290-308 Aldington Road, 59 63
 Abbotts Road, Kemps Creek, NSW', ref: 13546-ER-1-1 Rev 1.

was provided to Alliance for review.

4.1.1 Douglas Partners (2019)

The objectives of Douglas Partners (2019) were to:

- Review available current and historical site information to identify key past or present potential contaminating activities: and
- To provide a preliminary assessment of the contamination status of the site with respect to the proposed development.

The scope of work undertaken to address the project objective included:

- Review of local topographic, soil, geological, salinity and acid sulfate soils mapping;
- Search of the NSW EPA Land Information records for any statutory notices or licences current on any parts of the site or nearby surrounds under the Contaminated Land Management Act 1997 and the Protection of the Environment Operations Act 1997 of relevance to the site;
- Search for groundwater bores on or adjacent to the site registered with the NSW Office of Water;
- Review of historical aerial photographs and Nearmap aerial imagery to identify past/present land uses and potential areas of environmental concern (PAEC);
- Review of current title deeds;
- Review of available council records;
- Undertake a site walkover and mapping of PAEC;
- Sampling of 21 test pits targeting PAEC and the general site area. Two surface samples adjacent to
 power poles were also collected, using hand tools. Two bore holes were also completed as part of
 the geotechnical investigation and reported under separate cover. Select soil samples were analyses
 for a range of potential contaminants and assessed against relevant NEPC (2013) guideline values;
- Preparation of a preliminary conceptual site model (CSM); and

Report No.: 13546-ER-2-1

• Preparation of a PSI report outlining the methodology and findings of the investigation, and an assessment of potential contamination at the site.

Based on the observations made during the site walkover and information obtained during the interviews, Douglas Partners (2019) made the following conclusions and recommendations:

- Localised filling impacted with metals and asbestos was recorded in the western portion of Lot 11
 and filling impacted with asbestos in a gully on Lot 12 which will require further investigation and/or
 remediation prior to bulk earthworks. Notwithstanding the observed localised impact, based on the
 findings of this PSI, DP concludes that the potential for the presence of significant contamination
 constraints at the site with respect to the proposed industrial subdivision is considered to be
 generally low.
- DP recommends that an intrusive investigation in the form of a Detailed Site Investigation (DSI)
 including delineation of metal and asbestos impact observed in this investigation is undertaken prior
 to bulk earthworks to ascertain whether or not each identified PAEC require further management
 and/or remediation prior to commencement of the development.
- A hazardous building materials survey should be conducted for structures at the site prior to
 demolition. Demolition of structures containing hazardous building materials should be carried out by
 a licenced asbestos removal contractor (if required). After removal of existing structures, an
 inspection of the footprint should be conducted and (if considered to be required based on
 inspection) targeted soil sampling and analysis conducted to confirm the contamination status of the
 footprint.
- Inert materials observed during the walkover associated with fly tipping are assumed to be surficial
 and therefore can be removed by earthworks contractors prior to the commencement of bulk
 earthworks.
- A Remediation Action Plan (RAP) should be prepared by a suitably qualified environmental
 consultant to document how remediation and validation works will be carried out. If remediation is
 required, subsequent remediation and validation of any identified contamination (if any) should be
 carried out with reference to the RAP and the findings documented in a Validation Report. It is
 considered that the site could be rendered suitable for the proposed industrial subdivision, subject to
 further investigation and remediation, as required.

4.1.2 Alliance Geotechnical (2019)

The objectives of Alliance Geotechnical (2019) were to:

- Assess the potential for contamination to be present on the site as a result of past and current land use activities;
- Provide advice on whether the site would be suitable (in the context of land contamination) for the proposed land use setting;
- Provide advice on salinity hazards and risks for the site; and
- Provide recommendations for further investigation, management and/or remediation (if warranted).

Report No.: 13546-ER-2-1

The scope of works undertaken to address the investigation objectives, included:

- A desktop review of relevant information pertaining to the site;
- A site walkover to understand current site conditions;
- The preparation of a sampling and analysis quality plan (SAQP);
- Conduct a targeted intrusive site investigation to establish ground conditions and to facilitate the collection of representative soil samples;
- Laboratory analysis of selected samples collected during the field investigation; and
- An assessment of the contamination status of the site and the recommendation of any further remedial requirements associated with the redevelopment of the site (if necessary).

Based on Alliance's assessment of the desktop review information, fieldwork data and laboratory analytical data, in the context of the proposed redevelopment scenario, Alliance made the following conclusions:

- The detected concentrations of identified contaminants of potential concern in the soils assessed are considered unlikely to present an unacceptable human health or ecological risk;
- The detected concentrations of nutrients in the soils assessed are considered to be similarly low across the site;
- Soils assessed onsite (up to a depth of 1.0m below ground surface) are considered to be:
 - o non-saline to very saline;
 - non-aggressive to concrete piles;
 - non-aggressive to steel piles; and
 - non-sodic to sodic.
- The soil materials were considered suitable for the proposed land use setting; and
- The site was deemed unlikely to pose a significant contamination risk to for future development.

Based on the above conclusions, Alliance made the following recommendations:

The soil materials are considered suitable for the proposed land use (in the context of contamination), no further investigation, management and/or remediation is deemed warranted.

A copy of the sampling point layout plan, logs, and laboratory summary tables from Alliance Geotechnical (2019), is presented in Appendix E.

4.1.3 Alliance Geotechnical (2021)

The objectives of Alliance (2021) were to:

- Identify hazardous building materials within the accessible areas of the structures(s);
- Detail the survey methodology;
- Provide a qualitative risk assessment of the identified hazardous materials an provide information regarding health risks;
- Provide recommendations for control measures and management strategies;
- Prepare a hazardous materials register for the site to ensure legislative compliance;
- Outline the responsible persons and details those persons responsibilities in relation to managing on site asbestos containing materials (ACM)
- Detail the principles of hazardous materials management;
- Detail the management strategies for in-situ asbestos and other hazardous materials;
- Provide information about safe working practices for work involving asbestos and other hazardous materials;
- Detail the requirements for removal of ACM
- Provide a template for emergency response procedures; and
- Outline asbestos training and awareness.

The scope of works undertaken to address the investigation objectives, included:

- Development of a task specific safe work method Statement (SMMS);
- Walkthrough inspection of the site building(s);
- Risk assessment and identification of all visible and accessible hazardous materials including asbestos, lead, ODS, and SMF;
- Sampling and laboratory analysis of suspect materials where necessary/possible;
- Preparation of a hazardous materials register and management plan in accordance with all relevant legislatures.

Summary of Assessment

Location: 59-62 Abbotts Rd (Lot 12)

- 1 x Residential Dwelling, 3 x Sheds, 1 x Swimming Pool (External inspections conducted to occupied structures)
 - Asbestos Containing Materials (ACM)
 - o At the time of inspection, ACM was identified within externally accessible building areas.
 - Lead Based Paint (LBP)
 - o At the time of inspection, No LBP was identified within accessible building areas.
 - Lead Containing Dust (LCD)
 - o At the time of inspection, No LCD was identified within accessible building areas.
 - Polychlorinated Biphenyls (PCBs)
 - At the time of inspection, fluorescent light fittings were observed which may contain PCBs.
 - Synthetic Mineral Fibres (SMF)

Report No.: 13546-ER-2-1

- o At the time of inspection, SMF was identified within externally accessible building areas.
- Ozone Depleting Substances (ODSs)
 - o At the time of inspection, No ODS were identified within accessible building areas.
- **Hazardous Chemicals**
- At the time of the inspection, hazardous chemicals were identified within accessible building areas.

Location: 63 Abbotts Road (Lot 11)

1 x Residential Dwelling, 4 x Sheds (External inspections conducted to occupied structures)

- Asbestos Containing Materials (ACM)
 - o At the time of inspection, ACM was identified within externally accessible building areas.
- Lead Based Paint (LBP)
 - o At the time of inspection, No LBP was identified within accessible building areas.
- Lead Containing Dust (LCD)
 - o At the time of inspection, No LCD was identified within accessible building areas.
- Polychlorinated Biphenyls (PCBs)
 - o At the time of inspection, No PCB was identified within accessible building areas.
- Synthetic Mineral Fibres (SMF)
 - o At the time of inspection, SMF was identified within externally accessible building areas.
- Ozone Depleting Substances (ODSs)
 - At the time of inspection, No ODS was identified within accessible building areas.

Location: 290-308 Aldington Road (Lot 13)

2 x Residential Dwelling, 5 x Sheds, 4 GHG Structures (External inspections conducted to occupied structures)

- Asbestos Containing Materials (ACM)
 - o At the time of inspection, ACM was identified within accessible building areas.
- Lead Based Paint (LBP)
 - o At the time of inspection, LBP was identified within accessible building areas.
- Lead Containing Dust (LCD)
 - o At the time of inspection, No LCD was identified within accessible building areas.
- Polychlorinated Biphenyls (PCBs)
 - At the time of inspection, fluorescent light fittings were observed which may contain PCBs.
- Synthetic Mineral Fibres (SMF)
 - o At the time of inspection, SMF was identified within accessible building areas.
- Ozone Depleting Substances (ODSs)
 - o At the time of inspection, No ODS were identified within accessible building areas.

Report No.: 13546-ER-2-1

Summary of Assessment

Due to the public health rules and guidelines in place at the time this survey was undertaken, which did not allow access into resident occupied buildings and structures, a general assumption of the location of possible incidents of hazardous building materials was made.

These assumptions were made based on but not limited to the following:

- · Age of building/structure
- Incidences of hazardous materials on the external structure implies potential incidences on the internal structure

The general assumption of the location of hazardous materials within the internal structure of the buildings are:

- 4 x residential dwellings
- Asbestos wall linings to wet areas (bathrooms, toilets, kitchens, laundry rooms, sauna rooms), floor tiles, ceilings, storerooms
- Lead based paint paint system to walls (where flaking mostly)
- Lead contained dust roof/ceiling voids, underground voids etc
- PCBs light fittings throughout building
- SMF roof insulation, wall lining insulations, pipe insulations etc

4.1.4 Supplementary Site Walkover

A site walkover by an environmental consultant of all three lots was conducted on 24 September 2021 after review of the aforementioned reports, to make observations regarding potential changes in site conditions or use, and to identify potential areas of environmental concern not previously reported.

A walkover of the site did not note significant changes to those described in the previous assessments but did identify two stockpiles (50m³, herein referred to as AEC06 and 25m³, herein referred to as AEC17), which are considered in the conceptual site model in Section 6. Numerous empty paint and paint thinner containers were observed surrounding the front of the painters' warehouse, which was observed to remain in use at the time of the walkover.

Dam water appeared relatively clean at the time of inspection with no hydrocarbon sheen or odour of any kind observed. Dense algae was observed across AEC03b, and minimal construction waste (bricks) within AEC09a.

Cow and sheep manure were observed across most of the land within Lot 12 and 13, excluding areas fenced off such as residential, warehouse, and driveway areas.

During the walkover, residents of each Lot advised that no significant earthworks or construction of any kind had taken place within any of the Lots since the date of Douglas Partners (2019) and Alliance Geotechnical (2019) previous assessments.

The occupant of Lot 12 also advised that the central-southern warehouse had been used as a long-term commercial painters warehouse up to the commencement of this investigation.

Report No.: 13546-ER-2-1

4.1.5 Supplementary Aerial Photography Review

Alliance understands that poultry farms can contain burial pits (associated with disposal of mass mortality). The review of historical aerial photography and site walkover reported in Alliance (2019) did not provide commentary on the absence or presence of historical burial pits within Lot 13. Alliance undertook a review of historical aerial photography considered for Lot 13 in Alliance (2019). Evidence of burial pits or areas of disturbed ground and phytotoxicity or overgrowth, consistent with animal burial pits, was not observed. These observations are consistent with observations made during the supplementary site walkover reported in Section 4.1.4.

5 Data Gap Assessment

Based on a desktop review of previous reports and the recent site walkover referred to in **Section 4** and the development of the conceptual site model (CSM) presented in these previous reports, Alliance has assessed that that the following data gaps, in the context of site contamination characterisation and management, are present and need to be addressed prior to any management and/or remediation of the site:

- The soils surrounding and within the poultry sheds in Lot 13 may present a potentially unacceptable
 contamination risk to end users of the site, particularly the fill pad beneath the most eastern shed. A
 more robust intrusive investigation should be undertaken to assess the nature and extent of COPCs
 in soil within this area;
- The hazardous building materials within and surrounding the residential dwellings, both in the
 northwest and east of Lot 13, may present a potentially unacceptable contamination risk to end
 users of the site. Intrusive investigation should be undertaken to assess the nature and extent of
 COPCs in soil post demolition of these dwellings;
- The crushed concrete and gravel driveways in Lot 13 may present a potentially unacceptable contamination risk to end users of the site. Intrusive investigation should be undertaken to assess the nature and extent of COPCs in soil within this area;
- The gravel and soil driveways in Lot 12 may present a potentially unacceptable contamination risk to
 end users of the site. Intrusive investigation should be undertaken to assess the nature and extent of
 COPCs in soil within this area;
- The gravel and soil driveways in Lot 11 may present a potentially unacceptable contamination risk to
 end users of the site. Intrusive investigation should be undertaken to assess the nature and extent of
 COPCs in soil within this area;
- A previously unreported soil stockpile (AEC06) within the central portion of Lot 13 may present a
 potentially unacceptable contamination risk to end users of the site. Intrusive investigation should be
 undertaken to assess the nature and extent of COPCs in soil within this stockpile;
- A previously unreported soil stockpile (AEC17) within the north-eastern portion of Lot 11 may
 present a potentially unacceptable contamination risk to end users of the site. Intrusive investigation
 should be undertaken to assess the nature and extent of COPCs in soil within this stockpile;
- The land surrounding and within the painter's warehouse in Lot 12 may present a potentially
 unacceptable contamination risk to end users of the site. Intrusive investigation should be
 undertaken to assess the nature and extent of COPCs in soil within this area;
- The salinity of soils within in Lots 11 & 12 may present a risk to future structures onsite, and will need to be appropriately assessed. Alliance will assess soil salinity in these lots in a separate, tandem report.

Alliance considers that the remainder of the site has been appropriately assessed within the objectives and scope of the previous contamination assessments. Provision for addressing the aforementioned data gaps is presented in **Section 6** of this investigation.

6 Conceptual Site Model

6.1 Preamble

A conceptual site model (CSM) is a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The initial CSM is constructed from the information obtained during the PSIs and it can be used to identify data gaps and inform a decision on whether a detailed site investigation (DSI) is required.

The CSM identifies complete and potential pathways between the known or potential source(s) and the receptors. Where a pathway between a source and a receptor is incomplete, the exposure to chemical substances via that pathway cannot occur, but the potential for that pathway to be completed (for example, by abstraction of groundwater or a change in land use) should be considered in the assessment.

6.2 Land Use

6.2.1 Adopted Land use Scenario

For the purpose of this project, Alliance understands that the proposed land use scenario for the site includes:

Commercial / industrial such as shops, offices, factories, and industrial sites.

6.2.2 Assumptions for Adopted Land Use Scenario

Section 3 of NEPC (2013h) advises that the commercial/industrial land use scenario, which assumes typical commercial or light industrial properties, consisting of single or multistorey buildings where work areas are on the ground floor (constructed on a ground level slab) or above subsurface structures (such as basement car parks or storage areas).

The dominant users of commercial / industrial sites are adult employees who are largely involved in office-based or light industrial activities.

The outdoor areas of the commercial/industrial facilities are largely covered by hardstand, with some limited areas of landscaping or lawns and facilities. Opportunities for direct access to soil by employees using these facilities are likely to be minimal, but there may be potential for employees to inhale, ingest or come into direct dermal contact with dust particulates derived from the soil on the site.

The land use scenario does not include more sensitive uses that may be permitted under relevant commercial or industrial zonings. These more sensitive uses include childcare, educational facilities, caretaker residences and hotels and hostels, etc. Information on uses permitted under local council zoning schemes for commercial/industrial land use can be obtained from local council planning zones/schemes. Should these more sensitive uses be permitted, then 'residential with accessible soil', 'residential with minimal access to soil', or 'public open space' land use scenarios should be considered.

6.3 Sources of Contamination

A number of potential land contaminating activities have been identified for the site, based on the site history review and site walkover observations in Section 4. These include:

- Commercial-scale poultry farming;
- Use of a warehouse for commercial painting of various products and materials;
- Uncontrolled filling;
- Septic tanks;
- Aboveground fuel storage;
- Stockpiling;
- Odorous materials encountered at sampling point TP1, reported in DP (2019);
- Uncontrolled demolition;
- Copper Chrome Arsenate treatment on power poles;
- · Use of hazardous building materials; and
- Former market gardens.

Table J1 in Appendix J of AS 4482.1-2005 and Appendix A in DUAP (1998) provides guidance on chemicals associated with land uses activities. That guidance provides a basis for deciding on contaminants of potential concern (COPC) for each relevant land use activity. Information on COPC adopted for this project is presented in Section 0 of this report.

6.4 Receptors

6.4.1 Identified Receptors

Based on the adopted land use scenario in Section 6.2, receptors at the site may include commercial / industrial workers, and ecological (terrestrial and/or aquatic) ecosystems.

6.4.2 Assumptions for Identified Receptors

The receptors at a commercial/industrial site are predominantly adult employees, who are largely involved in office-based or light indoor industrial activities. The employees who are most susceptible to health risks associated with volatile soil contaminants are the employees who work in offices on the ground floor, as the greatest potential for vapour intrusion occurs with workspaces immediately overlying contaminated soil.

Employees may make use of outdoor areas of a commercial/industrial premises for activities such as meal breaks. Opportunities for direct access to soil by employees using these facilities are likely to be minimal, but there may be potential for employees to inhale, ingest or come into direct dermal contact with dust particulates derived from the soil on the site.

Report No.: 13546-ER-2-1

6.5 Exposure Pathways

6.5.1 Human Health

6.5.1.1 Dermal Contact / Ingestion / Dust Inhalation

Site history information and observations made during the site walkover, indicated a potential for contaminants to be present in soils at the site, which could present a dermal contact, ingestion, or dust inhalation risk to human health.

The proposed land use scenario is likely to include unsealed and open space areas, where a pathway between identified receptors and direct contact, ingestion, and dust inhalation contaminant sources, may be complete.

Further assessment of dermal contact, dust inhalation and ingestion risk is considered warranted.

6.5.1.2 Vapour Intrusion / Inhalation

A vapour intrusion / inhalation exposure risk to human health can be present when a vapour source (either primary or secondary³) is present.

Site history information and observations made during the site walkover, indicated a potential for a source of vapour to be present on the site, including:

- Two aboveground storage tanks located in between the poultry farming sheds, and to the south of the driveway on Lot 11;
- Leaks and spills surrounding above ground storage tanks between poultry sheds in Lot 13, and within the commercial painter's warehouse in Lot 11; and
- Historical commercial painting within a warehouse near the central southern portion of Lot 12.

The proposed land use scenario is likely to include building footprints as well as limited unsealed and open space areas, where a vapour intrusion / inhalation exposure pathway between identified receptors and these identified primary and secondary sources, may be complete.

Further assessment of vapour intrusion / inhalation risks associated with the aboveground storage tanks and painting warehouse is considered warranted.

Site history information and observations made during the site walkover, indicated a potential for a historical uncontrolled filling to be present at the site. However, Alliance notes that the activity of transporting, placement and spreading of uncontrolled fill soils would typically include significant disturbance of those soils, that can result in the volatilisation of those contaminants that could normally present a vapour intrusion / inhalation risk (e.g. light fraction petroleum hydrocarbons, naphthalene, and chlorinated hydrocarbons); and

³ Primary sources typically include underground storage tanks. Secondary sources typically include significantly contaminated soil or groundwater.

On that basis, Alliance considers that the potential for contaminants to be present in the uncontrolled filling, at concentrations which could present a vapour intrusion / inhalation risk, would be low.

Further assessment of vapour intrusion / inhalation risks associated with the uncontrolled filling, is considered not warranted.

6.5.1.3 Asbestos

Bonded asbestos containing material (ACM) is comprised of asbestos bound in a matrix (including cement or resin), which is in sound condition, although possibly broken or fragmented.

Fibrous asbestos (FA) comprises friable asbestos material and includes severely weathered cement sheeting, insulation products and woven asbestos material. This type of friable asbestos is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or was previously bonded and is now significantly degraded (crumbling).

Asbestos fines (AF) include free fibres, small fibre bundles and small fragments of ACM⁴ that would pass through a 7mm x 7mm aperture sieve.

FA and AF are considered to be 'friable' asbestos, which is material that is in a powder form or that can be crumbled, pulverised or reduced to powder by hand pressure when dry.

Asbestos poses a risk to human health when asbestos fibres are made airborne and inhaled. The assessment of sites contaminated with asbestos in soil should aim to describe the nature and quantity of asbestos in soil in sufficient detail to enable a risk management plan to be developed for the proposed land use scenario.

Site history information and observations made during the site walkover, indicated a potential for ACM, FA, and AF to be present in soils at the site.

The proposed land use scenario is likely to include limited unsealed and open space areas, where a pathway between identified receptors and asbestos in soils, may be complete.

Further assessment of asbestos exposure risk is considered warranted.

6.5.2 Management Limits for Petroleum Hydrocarbons

Section 2.9 of NEPC (2013a) states that there are a number of policy considerations which reflect the nature and properties of petroleum hydrocarbons:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosive hazards; and

⁴ For bonded ACM fragments to pass through a 7mm x 7mm sieve implies a substantial degree of damage which increases the potential for fibre release.

Report No.: 13546-ER-2-1

 Effects on buried infrastructure e.g., penetration of, or damage to, in-ground services by hydrocarbons.

Section 2.9 of NEPC (2013a) notes that:

- CCME (2008) includes management limits to avoid or minimise these potential effects. Application of
 management limits requires consideration of site-specific factors such as depth of building
 basements and services, and depth to groundwater, to determine the maximum depth to which the
 limits should apply.
- management limits may have less relevance at operating industrial sites (including mine sites) which have no or limited sensitive receptors in the area of potential impact.
- the presence of site total petroleum hydrocarbon (TPH) contamination at the levels of the management limits does not imply that there is no need for administrative notification or controls in accordance with jurisdiction requirements.

Site history information and walkover observations indicated a potential for these policy considerations to be associated with relevant identified areas of environmental concern (AEC) at the site, in the context of the proposed future land use scenario. On that basis, further assessment of petroleum hydrocarbons in soils in the context of those policy considerations, is considered warranted.

6.5.3 Hazardous Ground Gases

NSW EPA (2020a) provides advice on ground gases that if present in the pore space of soils and rocks, and can adversely impact human health and safety or the integrity of structures. The ground gases that are generally of concern in this context are:

- Bulk ground gases, including methane, carbon dioxide, carbon monoxide, hydrogen, hydrogen sulphide, and petroleum vapours; and
- Trace ground gases including radon, volatile organic compounds, and mercury vapour.

Alliance has reviewed site history information review and site walkover observations in the context of sources and origins of hazardous ground gases in Table 1 and Table 2 of NSW EPA (2020a). Based on that review, Alliance considers that further assessment of hazardous ground gases in the context of this project, is considered not warranted.

6.5.4 Aesthetics

Aesthetic issues generally relate to the presence of low-concern or non-hazardous inert foreign material (refuse) in soil or fill resulting from human activity. Sites that are assessed as being acceptable from a human health and environmental perspective may still contain foreign material⁵. Sites may have some soil discolouration from relatively inert chemical waste (e.g. ferric metals) or residual odour (e.g. natural sulfur odour).

⁵ Geotechnical issues related to the presence of fill should be treated separately to assessment of site contamination.

Report No.: 13546-ER-2-1

Assessment should be undertaken in the context of the sensitivity of the proposed land use scenario (e.g. higher expectations apply to residential properties with gardens compared with industrial settings). General assessment considerations should include:

- That chemically discoloured soils or large quantities of various types of inert refuse, particularly if unsightly, may cause ongoing concern to site users;
- The depth of the materials, including chemical residues, in relation to the final surface of the site;
- The need for, and practicality of, any long-term management of foreign material;
- The presence of small quantities of non-hazardous material and low odour residue (e.g. weak petroleum odours) that will decrease over time should not be a cause of concern in most circumstances
- Sites with large quantities of well-covered known inert material that present no health hazard such as brick fragments and cement wastes, are usually of low concern for non-sensitive and sensitive land uses; and
- Caution should be used when assessing sensitive land uses, such as residential, when large
 quantities of various fill types and demolition rubble are present.

Alliance has adapted guidance in Section 3.6.2 and Section 3.6.3 of NEPC (2013a) to facilitate a preliminary assessment of potential aesthetic risks, identified during review of site history information and site walkover observations. The results of the preliminary assessment are presented in Table 6.5.4, and they are used to assess whether the need for further assessment to be undertaken, has been triggered.

Table 6.5.4 Preliminary Aesthetics Screening

Preliminary Aesthetics Screening Question	Assessment
Is there potential for highly malodorous soils or extracted groundwater (e.g. strong residual petroleum hydrocarbon odours, hydrogen sulphide in soil or extracted groundwater, organosulfur compounds) to be present on site?	Yes
Is there hydrocarbon sheen on surface waters at site?	No
Is there potential for discoloured chemical deposits or soil staining with chemical waste other than of a very minor nature, to be present in site soils;	No
Is there potential for large monolithic deposits of otherwise low risk material, e.g. gypsum as powder or plasterboard or cement kiln dust, to be present in site soils;	No
Is there potential for putrescible refuse including material that may generate hazardous levels of methane such as a deep fill profile of green waste or large quantities of timber waste, to be present in site soils?	
Is there potential for residue from animal burial (e.g. former abattoir sites) to be present in site soils.	No
Is there potential for large quantities of non-hazardous inert material to be present in site soils?	Yes
Is there potential for high odour residue material to be present in site soils?	Yes
Is there potential for large quantities of various fill types and demolition rubble to be present in site soils proposed for residential land use?	

Site history information and observations made during the site walkover, and considered during the aesthetics risk assessment, indicated the following potential aesthetics risks for the site:

Large deposits of building waste within the gulley between dams within Lot 12;

Report No.: 13546-ER-2-1

- Heavy litter and waste dumping of inert materials across all of lot 11, including across the market gardens, including irrigation pipes, timber beams, pallets, plastic sheets, metal scrap, polystyrene containers, plastic crates, abandoned cars, and litter; and
- Odours in soil at sampling point TP1 (reported in Douglas Partners (2019).

Further assessment of aesthetic risks is considered warranted.

6.5.5 Terrestrial Ecosystems

Site history information and observations made during the site walkover, indicated a potential for contaminants, which may present a risk to terrestrial ecosystems, may be present on site.

Section 3.4.2 of NEPC (2013a) states that:

- a pragmatic risk-based approach should be taken when assessing ecological risk in residential and commercial / industrial land use settings;
- in existing residential and urban development sites, there are often practical considerations that enable soil properties to be improved by addition of ameliorants with a persistent modifying effect or by the common practice of backfilling or top dressing with clean soil;
- in other cases, all of the site soils will be removed during site development works or relocated for the formation of new landforms;
- sites may also be backfilled with clean soil/fill and the fate of any excavated contaminated soil should be considered in process; and
- commercial and industrial sites may have large building structures and extensive areas covered with concrete, other pavement or hardstand materials and may have limited environmental values requiring consideration while in operational use.

Alliance has considered the potential for sensitive ecological receptors to be present at the site, in the context of site history information, site walkover observations and the proposed land use scenario.

Alliance notes that:

- Observations of flora onsite were limited to a limited number of scattered trees at the boundaries of the site, with some along the driveway of Lot 13. Observed native herbaceous flora species across the site were minimal;
- The proposed land use scenario will include soil excavation and removal across the site and covering the majority of the site with hardstand pavements and building footprints;
- Mammals are unlikely to access the site following construction of proposed buildings and hardstand areas;
- Invertebrates currently present at the site (including soil fauna, earthworms, and insects) are likely to be removed during excavation works;
- Birds are unlikely to remain onsite following removal of the scattered trees at the site boundary and along the Lot 13 driveway, and construction of the new buildings and hardstand areas;
- Reptiles unlikely to remain onsite following removal of the scattered trees at the site boundary, and along the Lot 13 driveway, excavation works, and construction of the new buildings and hardstand areas;

Report No.: 13546-ER-2-1

On the basis that, further assessment of terrestrial ecosystem risks is considered not warranted.

6.5.6 Groundwater

Section 2.2 of NSW DEC (2007) provides guidance on the need for the potential for groundwater contamination to be assessed, for the purposes of evaluating whether it may pose an unacceptable risk to human health and/or the environment.

Section 3.2 of NEPC (2013h) provides guidance on the environmental values (that are conducive to public benefit, welfare, safety, or health) and that require protection from the effects of pollution, waste discharge and deposits. These values include:

- · Ecosystem protection;
- · Aquaculture and human consumers of food;
- · Agricultural water (irrigation and stock water);
- Recreation and aesthetics;
- Drinking water; and
- Industrial water.

Each of these values is considered in sub-sections 6.5.6.1 to 6.5.6.6.

6.5.6.1 Aquatic Ecosystem Protection

In the context of aquatic ecosystems, ANZG (2018) defines level of protection is the degree of protection afforded to a water body based upon its ecosystem condition (current or desired health status of an ecosystem relative to the human degree of disturbance). Selecting a level of protection should consider:

- Maintaining the existing ecosystem condition, or
- Enhancing a modified ecosystem by targeting the most appropriate level of condition.

ANZG (2018) recognises three categories of current or desired ecosystems:

- High conservation or ecological value systems
- · Slightly to moderately disturbed ecosystems; and
- Highly disturbed ecosystems.

Alliance has undertaken an assessment of the likely nearest aquatic ecosystem to the site (refer Section 3.4) and considers that is it a freshwater system. Following review of site-specific attributes, and in the context of guidance provided in ANZG (2018)⁶, Alliance considers that the nearest aquatic ecosystem is:

• highly disturbed system, on the basis that the aquatic ecosystem is measurably degraded and of lower ecological value (e.g. rural streams receiving runoff from intensive horticulture).

 $^{^{6}\} https://www.waterquality.gov.au/anz-guidelines/resources/key-concepts/level-of-protection$

Report No.: 13546-ER-2-1

Groundwater at the site is considered likely to discharge to the nearest downgradient surface water body identified for the site (refer Section 3.4). That surface water body is considered likely to be polluted and be of a quality that is not consistent with natural background water quality.

Geology at the site is likely to include low permeability clays, which would limit vertical migration of soil contaminants (if present) into groundwater.

The shallowest groundwater at the site is likely to be transient perched groundwater generally present at the soil-bedrock interface, after heavy rain events. Data on natural background water quality for transient groundwater is generally not available. Subsequently, comparison of site specific shallow transient groundwater data against background quality is therefore not practical.

Based on this, Alliance considers that further assessment of aquatic ecosystem protection as a groundwater value, is not warranted.

6.5.6.2 Aquaculture and Human Consumers of Food

Groundwater at the site is considered likely to discharge to the nearest surface water body identified for the site (refer Section 3.4).

The nearest surface water body to the site is not located on or adjacent to the site and is located a significant distance (~700 m) from the site. Alliance considers it unlikely that occupants of the site would frequent that surface water body for the collection and consumption of aquatic based foods, at a rate that the intake would present an unacceptable risk to human health.

The nearest surface water body identified for the site (refer Section 3.4) appears to be a drainage/creek line and is likely to be shallow in nature. Alliance considers it unlikely that the surface water body would contain an aquatic food source suitable for human consumption.

Based on this, Alliance considers that further assessment of aquaculture and human consumers of food as a groundwater value, is not warranted.

6.5.6.3 Agricultural (Irrigation and Stock Water)

The groundwater bore search in Section 3.4 did not identify any registered groundwater bores within a 500m radius of the site, that were authorised for irrigation or stock watering purposes.

The shallowest groundwater at the site is likely to be transient perched groundwater generally present at the soil-bedrock interface, after heavy rain events, and therefore, unlikely to be a reliable groundwater abstraction source for irrigation and stock watering purposes.

Commercial/industrial development on the site is considered likely to prevent agricultural land use activities from being undertaken, which would mitigate the potential for abstraction of groundwater for irrigation and stock watering.

Based on this, Alliance considers that further assessment of agricultural water as a groundwater value, is not warranted.

6.5.6.4 Recreation and Aesthetics

Section 3.4 of this report did not identify licensed recreational water abstraction bores within a 500m radius of the site. Further to this McNally (2009) advises that:

- deeper regional groundwater present in the fractures of the Ashfield / Bringelly shales (in western Sydney) is generally saline, typically in the range of 5,000-50,000mg/L (due to their sea salt content);
- the Ashfield / Bringelly shales (in western Sydney) are also considered to have no value as sources
 of groundwater.

The future land use scenario for the site includes a reticulated drinking water system. Development surrounding the site is also considered likely to include a reticulated drinking water system. Alliance considers use of reticulated water as a recreational water source (e.g. filling up swimming pools or ponds on site) is considered a more plausible scenario.

On that basis, installation of groundwater wells on site for the purpose of groundwater abstraction and use as a recreational water source (e.g. filling up swimming pools or ponds on site) is considered unlikely.

Groundwater at the site is considered likely to discharge to the nearest surface water body identified for the site (refer Section 3.4).

The nearest surface water body identified for the site (refer Section 3.4) appears to be a drainage / creek line, is likely to be shallow in nature, and has limited access to the general public. Alliance considers it is unlikely that the surface water body would be used for:

- sports in which the user comes into frequent direct contact with water, either as part of the activity or accidentally, for example, swimming or surfing (primary contact);
- sports that generally have less-frequent body contact with the water, for example, boating or fishing (secondary contact); or
- visual passive recreational use, for example, pleasant places to be near or to look at (no body contact).

Based on this, Alliance considers that further assessment of recreation and aesthetics as a groundwater value, is not warranted.

6.5.6.5 Drinking Water

The groundwater bore search in Section 3.4 did not identify any registered groundwater bores within a 500m radius of the site, that were authorised for drinking water purposes.

The shallowest groundwater at the site is likely to be transient perched groundwater generally present at the soil-bedrock interface, after heavy rain events, and therefore, unlikely to be a reliable groundwater abstraction source for drinking water purposes.

McNally (2009) advises that:

 deeper regional groundwater present in the fractures of the Ashfield / Bringelly shales (in western Sydney) is generally saline, typically in the range of 5,000-50,000mg/L (due to their sea salt content), and therefore not suitable for drinking purposes; and alliance

Report No.: 13546-ER-2-1

• the Ashfield / Bringelly shales (in western Sydney) are also considered to have no value as sources of groundwater.

The future land use scenario for the site includes a reticulated drinking water system. development surrounding the site is also considered likely to include a reticulated drinking water system. Alliance considers use of reticulated water as a drinking water source onsite is a more plausible scenario.

Installation of rainwater collection tanks on site (for use as a secondary source of drinking water is also considered a more plausible scenario).

On that basis, further assessment of drinking water as a groundwater value, is considered not warranted.

6.5.6.6 Industrial Use

The groundwater bore search in Section 3.4 did not identify any registered groundwater bores within a 500m radius of the site, that were authorised for industrial purposes.

The shallowest groundwater at the site is likely to be transient perched groundwater generally present at the soil-bedrock interface, after heavy rain events, and therefore, unlikely to be a reliable groundwater abstraction source for industrial purposes.

Development on the site and on land down gradient of the site, is considered likely to prevent industrial land use activities from being undertaken, which would mitigate the potential for abstraction of groundwater for industrial purposes.

The future land use scenario for the site includes a reticulated drinking water system. Development surrounding the site is also considered likely to include a reticulated drinking water system. Use of reticulated water for industrial purposes (if industrial activities were undertaken) is considered a more plausible scenario.

Based on this, Alliance considers that further assessment of industrial water as a groundwater value, is not warranted.

6.6 Source, Pathway and Receptor Links

Based on:

- The identified sources of contamination associated with the locations of where potential land contaminating activities have been undertaken at the site (areas of environmental concern or AEC);
- The identified contaminants of potential concern (COPC) associated with those land contaminating activities:
- The receptors identified for the site, based on the proposed land use scenario; and
- The exposure pathways between the identified sources and receptors that have been assessed as being potentially or actually complete,

a conceptual site model (CSM) that identifies plausible south-pathway-receptor linkages for the site, is presented Table 6.6.

The locations of the AEC are presented in **Figure 3**.

Table 6.6 Source, Pathway and Receptor Links

ID	AEC	Land Contaminating Activity (Source)	COPC	Exposure Pathway	Receptor
AEC01a	Western poultry farming area, 3 sheds (~1.2 hectares, ~0.5m in depth)	Poultry waste, hazardous buildings materials, shallow uncontrolled filling, termite, and poultry parasite pesticides	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, pathogens, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC01b	Eastern poultry farming area, 1 shed on fill pad (~4,500m², ~3.0m to ~0.5m in depth)	Poultry waste, hazardous buildings materials, uncontrolled filling, termite and poultry parasite pesticides	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, pathogens, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC02	Aboveground fuel storage tank labelled as liquid petroleum gas (Lot 13 between poultry sheds, ~5,000L)	Fuel spills/leaks	Petroleum hydrocarbons, BTEX, PAH, lead	Dermal contact Soil Ingestion Vapour inhalation / intrusion Management limits Aesthetics	Commercial / industrial workers
AEC03a	Dam 1 Wall (Lot 13 west, ~50m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers

Alliance Report No.: 13546-ER-2-1

AEC03b	Dam 1 Sediments (Lot 13 west, ~180m², ~0.1m in thickness)	Poultry shed wastes	Organochlorine pesticides, metals, & asbestos, pathogens	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC03c	Dam 1 Surface Water (Lot 13 west, ~180m², ~0.5m in depth)	Effluent from poultry sheds.	Pesticides, pathogens, nutrients, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics Surface water contact	Commercial / industrial workers
AEC04a	Dam 2 Wall (Lot 13 north, ~150m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC04b	Dam 2 Sediments (Lot 13 north, ~900m², ~0.1m in thickness)	Waste disposal, poultry shed wastes.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC04c	Dam 2 Surface Water (Lot 13 north, ~900m², ~1.5m in depth)	Waste disposal and effluent from poultry sheds.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity,	Dermal contact Soil Ingestion Dust inhalation	Commercial / industrial workers

alliance

Report No.: 13546-ER-2-1

			dissolved oxygen, biological oxygen demand	Inhalation (asbestos) Management limits Aesthetics Surface water contact	
AEC05a	Dam 3 Wall (Lot 13 east, ~25m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC05b	Dam 3 Sediments (Lot 13 east, ~90m², ~0.1m in thickness)	waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC05c	Dam 3 Surface Water (Lot 13 east, ~90m², ~0.5m in depth)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC06	Stockpile (~50 m³, near east dam in Lot 13)	Uncontrolled dumping or stockpiling of poultry manure	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, metals, pathogens, nutrients & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits	Commercial / industrial workers

				Aesthetics	
AEC07	Fill material (~200m², ~0.5m in thickness, south of eastern poultry shed in Lot 13)	Uncontrolled soil filling	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC08a	Dam 4 Wall (Lot 12 west, ~250m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC08b	Dam 4 Sediments (Lot 12 west, ~2,800m², ~0.1m in thickness)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC08c	Dam 4 Surface Water (Lot 12 west, ~2,800m², ~2.0m in depth)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics Surface water contact	Commercial / industrial workers
AEC09a	Dam 5 Wall (Lot 12 north, ~70m², ~2m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons,	Dermal contact Soil Ingestion	Commercial / industrial workers

Report No.: 13546-ER-2-1

			organochlorine pesticides, BTEX, metals, & asbestos	Dust inhalation Inhalation (asbestos) Management limits Aesthetics	
AEC09b	Dam 5 Sediments (Lot 12 north, ~300m², ~0.1m in thickness)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC09c	Dam 5 Surface Water (Lot 12 north, ~300m², ~1.0m in depth)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics Surface water contact	Commercial / industrial workers
AEC10a	Dam 6 Wall (Lot 12 south, ~100m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC10b	Dam 6 Sediments (Lot 12 south, ~700m², ~0.1m in thickness)	Waste disposal	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits	Commercial / industrial workers

Geotechnical & Environmental Solutions

29

				Aesthetics	
AEC10c	Dam 6 Surface Water (Lot 12 south, ~700m², ~1.0m in depth)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC11a	Dam 7 Wall (Lot 12 south east, ~40m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC11b	Dam 7 Sediments (Lot 12 south east, ~190m², ~0.1m in thickness)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers Intrusive maintenance workers
AEC12	Fill material (~50 m², ~0.5m in thickness, west of Lot 12 south structure)	Uncontrolled soil filling/	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC13	Commercial paint warehouse (~2,000m²,	Hazardous buildings materials, chemical and fuel storage/spills/leaks	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, VOC,	Dermal contact Soil Ingestion	Commercial / industrial workers

	central southern portion of Lot 12)		BTEX, polychlorinated biphenyl, metals, & asbestos	Dust inhalation Inhalation (asbestos) Management limits Aesthetics	
AEC14	Gully between northern dams in Lot 12 (~500m², ~0.5m in thickness)	Uncontrolled soil filling/	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC15	Residential premises (~3,000 m² Lot 12 east)	hazardous buildings materials, termite treatment	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC16	Septic tank (~3m², ~1.5m deep, Lot 12 east property)	Domestic effluent disposal	Pathogens, petroleum hydrocarbons and metals	Dermal contact Soil Ingestion Management limits Aesthetics	Commercial / industrial workers
AEC17	Stockpile (~5 m³, north- west corner Lot 11)	Uncontrolled soil dumping	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC18	Construction material storage area, including metal sheeting, piping	Deterioration of exposed ageing materials, heavy vehicle use.	Petroleum hydrocarbons, BTEX, metals, asbestos.	Dermal contact Soil Ingestion	Commercial / industrial workers

	and lumber (~1,000 m², north-west corner Lot 11)			Dust inhalation Inhalation (asbestos) Management limits Aesthetics	
AEC19a	Dam 8 Wall (Lot 11 north west smaller dam, ~40m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC19b	Dam 8 Sediments (Lot 11 north west smaller dam, ~120m², ~0.1m in thickness)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC19c	Dam 8 Surface Water (Lot 11 north west smaller dam, ~120m², ~0.5m in depth)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics Surface water contact	Commercial / industrial workers
AEC20a	Dam 9 Wall (Lot 11 north west larger dam, ~100m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits	Commercial / industrial workers

				Aesthetics	
AEC20b	Dam 9 Sediments (Lot 11 north west larger dam, ~600m², ~0.1m in thickness)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC20c	Dam 9 Surface Water (Lot 11 north west larger dam, ~600m², ~0.5m in depth)	Waste disposal	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics Surface water contact	Commercial / industrial workers
AEC21	Stockpile (~50 m³, north-west Lot 11, south of AEC18)	Uncontrolled soil dumping	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC22	Septic tank (~3m², ~1.5m deep, Lot 11 north of residence)	Domestic effluent disposal	Pathogens, petroleum hydrocarbons and metals	Dermal contact Soil Ingestion Management limits Aesthetics	Commercial / industrial workers
AEC23	Residential premises (~2,500 m² Lot 11 west)	hazardous buildings materials, termite treatment	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos)	Commercial / industrial workers

				Management limits Aesthetics	
AEC24	Aboveground fuel storage tank unlabelled, likely diesel petroleum ~5,000L (Lot 11 northwest of residence)	Fuel spills/leaks	Petroleum hydrocarbons, BTEX, PAH, lead	Dermal contact Soil Ingestion Dust inhalation Vapour inhalation Management limits Aesthetics	Commercial / industrial workers
AEC25	Storage shed (~40 m², centre-west Lot 11)	hazardous buildings materials, chemical and fuel storage/spills/leaks, termite treatment	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Vapour inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers I
AEC26	Market Gardens (~5.2ha, ~0.5m in thickness, Central portion of Lot 11)	Application of pesticides	organochlorine pesticides, metals.	Dermal contact Soil Ingestion Dust inhalation Management limits	Commercial / industrial workers
AEC27	Storage shed (~40 m², centre-east Lot 11)	hazardous buildings materials, termite treatment, chemical/fuel leaks and spills	Petroleum hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC028	Storage shed (~15 m², centre-south Lot 11)	hazardous buildings materials, termite treatment, chemical/fuel leaks and spills	Petroleum hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation	Commercial / industrial workers

Report No.: 13546-ER-2-1

				Inhalation (asbestos) Management limits Aesthetics	
AEC29a	Dam 10 Wall (Lot 11 south east larger dam, ~220m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC29b	Dam 10 Sediments (Lot 11 south east larger dam, ~2600m², ~0.1m in thickness)	Waste disposal	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC29c	Dam 10 Surface Water (Lot 11 south east larger dam, ~2600m², ~2.0m in depth)	Waste disposal	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics Surface water contact	Commercial / industrial workers
AEC30a	Dam 11 Wall (Lot 11 south east smaller dam, ~200m², ~1m in thickness)	Potential uncontrolled filling	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers Intrusive maintenance workers

AEC30b	Dam 11 Sediments (Lot 11 south east smaller dam, ~1,300m², ~2.0m in depth)	Waste disposal	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC30c	Dam 11 Surface Water (Lot 11 south east larger dam, ~2600m², ~2.0m in depth)	Waste disposal	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics Surface water contact	Commercial / industrial workers
AEC31	Power poles (12 poles across Lot 11 and 12)	Copper chrome arsenate treatment	Arsenic, chromium, copper	Dermal contact Soil Ingestion Dust inhalation	Commercial / industrial workers
AEC32	Residential premises (<2,000 m² Lot 13 north – not within scope)	Deterioration of hazardous buildings materials, application of pesticides	Organochlorine pesticides, polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC33	Residential premises (<2,000 m² Lot 13 west – not within scope)	Deterioration of hazardous buildings materials, application of pesticides	Organochlorine pesticides, polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers

AEC34	Concrete driveway along the northern boundary to residential dwelling within Lot 13 (~100m in length)	Potential uncontrolled filling	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC35	Asphalt and gravel driveway leading to the commercial paint shed and residential dwelling within Lot 12 (~360m in length)	Potential uncontrolled filling	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC36	Gravel driveway leading to the residential dwelling within Lot 11 (~130m in length)	Potential uncontrolled filling	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers
AEC37	Gravel driveway leading to the eastern residential dwelling and poultry sheds within Lot 13 (~750m in length)	Potential uncontrolled filling	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers

7 Data Quality Objectives

7.1 Step 1: State the problem

The reason the project is being undertaken, is set out in **Section 1.1** of this report.

The objective of this project is set out in **Section 1.2** of this report.

The project team and technical support experts identified for the project include the Alliance project director, Alliance project manager, Alliance field staff and Alliance's subcontractors.

The design and undertaking of this project will be constrained by the client's financial and time budgets.

The regulatory authorities associated with this project include NSW EPA, the local planning authority, and SafeWork NSW.

7.2 Step 2: Identify the decision / goal of the study

The decisions that need to be made during this project, to address the project objectives, include:

- Is the data collected for the project, suitable for assessing land contamination exposure risks?
- Do the detected concentrations of contaminants of potential concern identified in the CSM, present an unacceptable exposure risk to the receptors identified in the CSM, based on the proposed land use scenario?
- Is the dam water present on site suitable for dewatering on site based on detected concentrations of contaminants of potential concerns?
- Is the site suitable, in the context of land contamination, for the proposed land use scenario?

7.3 Step 3: Identify the information inputs

The information inputs required to make the decisions for the project set out in Section 7.2, include:

- Data obtained during the site history review and site walkover;
- Identification of sample media that needs to be collected, as set out in Section 7.7;
- Parameters that will be measured in each relevant sample, as set out in Section 7.7;
- Guidelines For Preparing a Dam Dewatering Report guidance provided by the Hills Shite Council;
- The analytical methods required for each identified COPC, so that assessment can be made relative to adopted site criteria. These are set out in **Section 7.7** of this report; and

alliance

Report No.: 13546-ER-2-1

• The site criteria for the media of concern. These criteria are set out in Table 7.3 and will be adopted based on the proposed land use scenario⁷, identified receptors, and site-specific soil and groundwater conditions (where relevant).

Table 7.3 Adopted Tier 1 Site Assessment Screening Criteria

Exposure Pathway	Land Use Scenario ⁸	Criteria Reference
Human health dermal contact /	HIL D - Commercial / industrial	Table 1A(1) in NEPC (2013a)
ingestion / dust inhalation		Table B4 in Friebel, E & Nadebaum P (2011)
		Table 3-5 in NSW EPA (2000)
Human health inhalation/intrusion	HSL D / Commercial / Industrial D	Table 1A(2) in NEPC (2013a)
		Table 1A(3) in NEPC (2013a) ⁹
		Table 1A(5) in NEPC (2013a)
Human health (asbestos)	Commercial / Industrial D	Table 7 in NEPC (2013a) ¹⁰
Human health (aesthetics)	All	Characteristics and processes in
		Section 3.6.2 and 3.6.3 in NEPC (2013a)
Management Limits (petroleum hydrocarbons)	Commercial / industrial	Table 1B(7) in NEPC (2013a)

7.4 Step 4: Define the boundaries of the study

The spatial extent of the project will be limited to:

- The boundaries of the site as set out in Section 2 and Figure 2; and
- Physical constraints or infrastructure on site or on land adjacent to the site, that prevents safe and
 reasonable access for project team members and/or typical and readily available equipment used for
 projects of this nature.

The scale of the decisions required (as set out in **Section 7.2**) will be based on the boundaries of the site set out in **Section 2** and **Figure 2**.

The vertical and lateral extents of investigation will be limited to the distribution of contamination assessed in the CSM (refer **Section 6.6**), based on the CSM, which are likely to be:

- The inferred vertical extent of each identified AEC, likely to be to the base of fill material in those
 AEC, to ~1m below the base of belowground infrastructure and to the base of material in each
 stockpile; and
- The inferred lateral boundaries of each identified AEC.

⁷ The land use scenarios in Section 2.2 of NEPC (2013a) will be considered when adopting human health assessment criteria. The land use scenarios in Section 2.5 of NEPC (2013a) will be considered when adopting ecological assessment criteria.

⁸ Consideration will be given to soil type, soil texture, soil depth, groundwater depth and appropriate species protection levels.

⁹ Secondary school buildings should be assessed using the Residential A / Residential B HILs for vapour intrusion purposes.

¹⁰ A depth of up to 10cm below ground level is adopted to define 'surface soil'.

alliance Report No.: 13546-ER-2-1

The time and budget constraints of this project will be as per those set out in the contract (and any subsequent variations to that contract) between the client and Alliance.

The temporal boundaries of the project will include:

- Availability of project team members (including subcontractors and subconsultants) to collect and assess relevant project data;
- The availability of site access to undertake fieldwork; and
- Meteorological conditions including heat, cold, wind, rain, and snow, which may constrain undertaking of fieldwork, or may affect the quality of the data being collected.

7.5 Step 5: Develop the analytical approach

7.5.1 Field Duplicates and Triplicates

A minimum of one set of field duplicates and triplicates will be collected for each set of 20 samples collected (an equivalent of 5%), excluding asbestos samples.

Field duplicate and triplicate samples will be collected by splitting one bulk sample across three separate sample containers. Soil samples will not be homogenised, particularly where volatile or semi volatile COPC are being considered.

Analysis of the duplicate samples and triplicate samples will be scheduled based on at least one of the analytes that the relevant parent sample is being analysed for.

The relative percent difference (RPD) of the detected concentrations in the parent and duplicate, and the parent and triplicate, will be calculated, and the result compared to the relevant data quality indicator (DQI), as set out in **Section 7.5.4**.

7.5.2 Trip Spikes and Trip Blanks

One trip spike and one trip blank will be used for each day of sampling¹¹.

A minimum of one trip spike and one trip blank will be scheduled for BTEX analysis, during the project, provided the sample preservation, handling, transport and storage procedures used are the same for each day of sampling undertaken.

 $^{^{11}}$ When samples are being collected on that day, that will be analysed for BTEX and/or TRH C_6 - C_{10} .

7.5.3 Analytical Laboratory Quality Assurance and Quality Control

The primary analytical laboratory will:

- · be NATA accredited for the methods used; and
- use a quality assurance and quality control (QA/QC) program that will typically include analysis of method blanks, matrix spikes, surrogate spikes, laboratory control samples and laboratory duplicates.

The primary analytical laboratory will report on whether the analytical results of the QA/QC program are within the criteria set out in the laboratory's adopted data quality objectives.

7.5.4 Data Quality Indicators

A set of data quality indicators (DQI) will be adopted for assessing the completeness, comparability, representativeness, precision, and bias (accuracy) of data collected during fieldwork, the analytical data produced by the laboratory. Each of these DQI, and associated target criteria are set out in **Table 7.5.4**.

Table 7.5.4. Data Quality Indicators and Target Criteria

Completeness					
Field Considerations	Target Criteria	Laboratory Considerations	Target Criteria		
Experienced sampling team used	Yes	Complete sample receipt advice and chain of custody attached	Yes		
Sampling devices and equipment set out in sampling plan were used (refer Section 7.7).	Yes	Critical samples identified in sampling plan, analysed	Yes		
Critical locations in sampling plan, sampled (refer Section 7.7).	Yes	Analysis undertaken addresses COPC in sampling plan (refer Section 7.7)	Yes		
Critical samples in sampling plan, collected (refer Section 7.7).	Yes	Analytical methods reported in laboratory documentation and appropriate limit of reporting used	Yes		
Completed field and calibration logs attached	Yes	Sample holding times met (refer Section 7.7)	Yes		
Completed chain of custody attached	Yes				

Comparability			
Field Considerations	Target	Laboratory Considerations	Target
	Criteria		Criteria

Same sampling team used for all work.	Yes	Same laboratory used for all analysis (refer Section 7.7).	Yes
Weather conditions suitable for sampling.	Yes	Comparable methods if different laboratories used Refer Section 7.7).	Yes
Same sample types collected and preserved in same way (refer Section 7.7).	Yes	Comparable limits of reporting if different laboratories used.	Yes
Relevant samples stored in insulated containers and chilled (refer Section 7.7).	Yes	Comparable units of measure if different laboratories have been used (refer Section 7.7).	Yes
Representativeness			
Field Considerations	Target Criteria	Laboratory Considerations	Target Criteria
	Yes	Samples identified in sampling plan,	Yes
Media identified in sampling plan, sampled (refer Section 7.7).	165	analysed.	

Precision			
Field Considerations	Target Criteria	Laboratory Considerations	Target Criteria
Minimum 5% duplicates and triplicates collected and analysed (refer Section 7.5).	Yes	All laboratory duplicate RPDs within laboratory acceptance criteria (refer Section 7.5).	Yes
RPD unlimited where detected concentrations are <10 times the limit of reporting.	Yes		
RPD within 50% where detected concentrations are 10-20 times the limit of reporting.	Yes		
RPD within 30% where detected concentrations are >20 times the limit of reporting.	Yes		

Bias (Accuracy)					
Field Considerations	Target Criteria	Laboratory Considerations	Target Criteria		
Trip blank analyte results less than limit of reporting (refer Section 7.5).	Yes	Laboratory method blank results within laboratory acceptance limits (refer Section 7.5).	Yes		
Trip spike analyte results less between 60% and 140% (refer Section 7.5).	Yes	Laboratory control sample results within laboratory acceptance limits (refer Section 7.5).	Yes		
		Laboratory spike sample results within laboratory acceptance limits.	Yes		

7.5.5 If / Then Statements

If the field and laboratory analytical dataset meets the DQI target assessment criteria, then the data may be considered adequately complete, comparable, representative, precise, and unbiased, for the purpose of addressing the decisions / goals of this project as set out in **Section 7.2**.

If the field and laboratory analytical dataset does not meet the DQI target assessment criteria, then additional data may need to be collected to address gaps identified in the data.

If the field and laboratory analytical results are within the adopted land contamination assessment criteria (refer **Section 7.3**), then it may be assessed that identified land contamination at the site does not present an unacceptable human health and/or ecological exposure risk.

If the field and laboratory analytical results are outside adopted land contamination assessment criteria (refer **Section 7.3**), then it may be assessed that identified land contamination at the site presents an unacceptable human health and/or ecological exposure risk, or that supplementary site specific qualitative / quantitative risk assessment may be required.

7.6 Step 6: Performance and Acceptance Criteria

7.6.1 If / Then Decisions

There are two types of decision error:

- Sampling errors these occur when the sampling program does not adequately detect variability of
 a contaminant from point to point across a site. That is, the samples collected are not representative
 of site conditions (e.g. an appropriate number of representative samples have not been collected
 from each stratum to account for estimated variability in that contaminant); and
- Measurement errors these occur during sample collection, preparation, analysis, and reduction of data.

During land contamination assessment, these errors can result in either:

- a Type I error, where land contamination human health and/or ecological exposure risks are considered to be acceptable, when they are not acceptable; or
- a Type II error, where land contamination human health and/or ecological exposure risks are considered to be unacceptable, when they are acceptable.

For decision rules to be sound, they should be designed to mitigate risk of decision errors occurring. The risk of decision error on this project will be mitigated by:

- Ensuring fieldwork is undertaken by suitably experienced field staff and sub-contractors, with reference to the DQO adopted for this project;
- Ensuring laboratory analysis is undertaken by NATA accredited laboratories; and
- Ensuring assessment of field and laboratory analytical data is undertaken by suitably experienced environmental consultants and/or outsourcing assessment to technical experts (if warranted).

alliance

Report No.: 13546-ER-2-1

7.7 Step 7: Develop the plan for obtaining data

7.7.1 Sampling Point Densities and Locations

Table A in NSW EPA (1995) provides guidance on minimum sampling point densities required for characterising a site, based on detecting circular hot spots, by using a systematic sampling pattern. Application of sampling densities in Table A can be appropriate when:

- There is little knowledge about the probable locations of the contamination;
- The distribution of the contamination is expected to be random (e.g. landfill sites); or
- The distribution of the contamination is expected to be fairly homogenous (e.g. agricultural lands).

Section 3.1 of NSW EPA (1995) advises that judgemental or stratified sampling methods can be used if there is sufficient information about the probable distribution of the contamination.

Section 6.2.1 in NEPC (2013b) advises that judgemental sampling and the selection of samples (number, location, timing, etc) should be based on knowledge of the site and professional judgement. In these instances, sampling would be expected to be localised to known or potentially contaminated areas identified from knowledge of the site either from the site history or an earlier phase of laned contamination assessment. Judgemental sampling can be used to investigate sub-surface contamination issues in site assessment.

Section 7.5 of NEPC (2013b) and VIC EPA (2009) provides guidance on sampling point densities, sampling methods and sample quantities for stockpiles.

Section 4.1 and Table 1 of WA DOH (2009) provides guidance on asbestos in soil sampling densities (in-situ and stockpiles), relative to the likelihood of asbestos being present on the site, based on assessment of site history.

The scope of this project has included collection of data that provides an understanding of:

- site history;
- · the locations of potentially contaminated areas;
- the identified COPC;
- laydown mechanisms for COPC in each AEC;
- the likely lateral and vertical extent of potential contamination in each AEC; and
- constraints on site which may restrict the use of certain sampling techniques.

On that basis, it is considered reasonable to adopt a mix of systematic grid based and judgemental sampling patterns, using the sampling point densities set out in **Table 7.7.1** and **Figure 4.**

Table 7.7.1 Sampling Point Densities and Locations

ID	AEC	Sampling Point ID	Method	Target Depth (m bgl)
AEC01a	Western poultry farming area, 3 sheds (~1.2 hectares, ~0.5m in depth)	TP1 to TP25	Test Pit	2m, 0.3m into natural, or practical refusal

AEC01b	Eastern poultry farming area, 1 shed on fill pad (~4,500m², ~3.0m to ~0.5m in depth)	TP26 to TP36	Test Pit	2.5m, 0.3m into natural, or practical refusal
AEC02	Aboveground fuel storage tank labelled as liquid petroleum gas (Lot 13 between poultry sheds, ~5,000L)	TP15 to TP17	Test Pit	2m, 0.3m into natural, or practical refusal
AEC03a	Dam 1 Wall (Lot 13 west, ~50m², ~1m in height)	DW01 and DW02	Test Pit	>0.3 m into walls
AEC03b	Dam 1 Sediments (Lot 13 west, ~180m², ~0.1m in thickness)	DS01 & DS02	Grab Sample	<0.3 into sediment
AEC03c	Dam 1 Surface Water (Lot 13 west, ~180m², ~0.5m in depth)	SW01 & SW02	Grab Sample	Surface water grab
AEC04a	Dam 2 Wall (Lot 13 north, ~150m², ~1m in height)	DW05 to DW08	Test Pit	>0.3 m into walls
AEC04b	Dam 2 Sediments (Lot 13 north, ~900m², ~0.1m in thickness)	DS05 & DS06	Grab Sample	<0.3 into sediment
AEC04c	Dam 2 Surface Water (Lot 13 north, ~900m², ~1.5m in depth)	SW05 & SW06	Grab Sample	Surface water grab
AEC05a	Dam 3 Wall (Lot 13 east, ~25m², ~1m in height)	DW03 to DW04	Test Pit	>0.3 m into walls
AEC05b	Dam 3 Sediments (Lot 13 east, ~90m², ~0.1m in thickness)	DS03 & DS04	Grab Sample	<0.3 into sediment
AEC05c	Dam 3 Surface Water (Lot 13 east, ~90m², ~0.5m in depth)	SW03 & SW04	Grab Sample	Surface water grab
AEC06	Stockpile (~50 m³, near east dam in Lot 13)	SP1-1 to SP1-3	Test Pit	To base of stockpile
AEC07	Fill material (~200m², ~0.5m in thickness, south of eastern poultry shed in Lot 13)	TP37 to TP40	Test Pit	2m, 0.3m into natural, or practical refusal
AEC08a	Dam 4 Wall (Lot 12 west, ~250m², ~1m in height)	DW13 to DW16	Test Pit	>0.3 m into walls
AEC08b	Dam 4 Sediments (Lot 12 west, ~2,800m², ~0.1m in thickness)	DS11 & DS12	Grab Sample	<0.3 into sediment
AEC08c	Dam 4 Surface Water (Lot 12 west, ~2,800m², ~2.0m in depth)	SW09 & SW10	Grab Sample	Surface water grab
AEC09a	Dam 5 Wall (Lot 12 north, ~70m², ~2m in height)	DW17 to DW19	Test Pit	>0.3 m into walls

AEC09b	Dam 5 Sediments (Lot 12 north, ~300m², ~0.1m in thickness)	DS13 & DS14	Grab Sample	<0.3 into sediment
AEC09c	Dam 5 Surface Water (Lot 12 north, ~300m², ~1.0m in depth)	SW11 & SW12	Grab Sample	Surface water grab
AEC10a	Dam 6 Wall (Lot 12 south, ~100m², ~1m in height)	DW09 & DW10	Test Pit	>0.3 m into walls
AEC10b	Dam 6 Sediments (Lot 12 south, ~700m², ~0.1m in thickness)	DS07 & DS08	Grab Sample	<0.3 into sediment
AEC10c	Dam 6 Surface Water (Lot 12 south, ~700m², ~1.0m in depth)	SW07 & SW08	Grab Sample	Surface water grab
AEC11a	Dam 7 Wall (Lot 12 south east, ~40m², ~1m in height)	DW11 to DW12	Test Pit	>0.3 m into walls
AEC11b	Dam 7 Sediments (Lot 12 south east, ~190m², ~0.1m in thickness)	DS09 & DS10	Grab Sample	<0.3 into sediment
AEC11c	Dam 7 Surface Water (Lot 12 south east, ~190m², ~0.3m in depth)	-	-	Dam dry
AEC12	Fill material (~50m², ~0.5m in thickness, west of Lot 12 south structure)	TP41 to TP44	Test Pit	2m, 0.3m into natural, or practical refusal
AEC13	Commercial paint warehouse (~2,000m², central southern portion of Lot 12)	TP41 to TP49	Test Pit	2m, 0.3m into natural, or practical refusal
AEC14	Gully between northern dams in Lot 12 (~500m², ~0.5m in thickness)	TP50 to TP54 ASB10 to ASB15	Test Pit Surface Sample	2m, 0.3m into natural, or practical refusal
AEC15	Residential premises (~3,000 m² Lot 12 east)	TP55 to TP60 PP6 to PP8	Test Pit	2m, 0.3m into natural, or practical refusal
AEC16	Septic tank (~3m², ~1.5m deep, Lot 12 east property)	TP60	Test Pit	2m, 0.3m into natural, or practical refusal
AEC17	Stockpile (~5 m³, north- west corner Lot 11)	SP3-1 & SP3-2	Test Pit	To base of stockpile
AEC18	Construction material storage area, including metal sheeting, piping and lumber (~1,000 m², north- west corner Lot 11)	TP61 to TP66	Test Pit	2m, 0.3m into natural, or practical refusal
AEC19a	Dam 8 Wall (Lot 11 north west smaller dam, ~40m², ~1m in height)	DW22 to DW23	Test Pit	>0.3 m into walls

AEC19b	Dam 8 Sediments (Lot 11 north west smaller dam, ~120m², ~0.1m in thickness)	DS17 & DS18	Grab Sample	<0.3 into sediment
AEC19c	Dam 8 Surface Water (Lot 11 north west smaller dam, ~120m², ~0.5m in depth)	SW15 & SW16	Grab Sample	Surface water grab
AEC20a	Dam 9 Wall (Lot 11 north west larger dam, ~100m², ~1m in height)	DW20 & DW21	Test Pit	>0.3 m into walls
AEC20b	Dam 9 Sediments (Lot 11 north west larger dam, ~600m², ~0.1m in thickness)	DS15 & DS16	Grab Sample	<0.3 into sediment
AEC20c	Dam 9 Surface Water (Lot 11 north west larger dam, ~600m², ~0.5m in depth)	SW13 & SW14	Grab Sample	Surface water grab
AEC21	Stockpile (~50 m³, north- west Lot 11, south of AEC18)	SP2-1 to SP2-3	Test Pit	To base of stockpile
AEC22	Septic tank (~3m², ~1.5m deep, Lot 11 north of residence)	TP73	Test Pit	2m, 0.3m into natural, or practical refusal
AEC23	Residential premises (~2,500 m² Lot 11 west)	TP67 to TP77 ASB1 to ASB9	Test Pit	2m, 0.3m into natural, or practical refusal
AEC24	Aboveground fuel storage tank unlabelled, likely diesel or liquid petroleum ~5,000L (Lot 11 north-west of residence)	TP70 & TP71	Test Pit	2m, 0.3m into natural, or practical refusal
AEC25	Storage shed (~40 m², centre-west Lot 11)	TP95	Test Pit	2m, 0.3m into natural, or practical refusal
AEC26	Market Gardens (~5.2ha, ~0.5m in thickness, Central portion of Lot 11)	TP78 to TP139	Test Pit	2m, 0.3m into natural, or practical refusal
AEC27	Storage shed (~40 m², centre-east Lot 11)	TP120	Test Pit	2m, 0.3m into natural, or practical refusal
AEC028	Storage shed (~15 m², centre-south Lot 11)	TP125	Test Pit	2m, 0.3m into natural, or practical refusal
AEC29a	Dam 10 Wall (Lot 11 south east larger dam, ~220m², ~1m in height)	DW27 to DW29	Test Pit	>0.3 m into walls
AEC29b	Dam 10 sediments (Lot 11 south east larger dam, ~2600m², ~0.1m in thickness)	DS21 & DS22	Grab Sample	<0.3 into sediment

AEC29c	Dam 10 surface water (Lot 11 south east larger dam, ~2600m², ~2.0m in depth)	SW19 & SW20	Grab Sample	Surface water grab
AEC30a	Dam 11 Wall (Lot 11 south east smaller dam, ~200m², ~1m in height)	DW24 to DW26	Test Pit	>0.3 m into walls
AEC30b	Dam 11 sediments (Lot 11 south east smaller dam, ~900m², ~0.1m in thickness)	DS19 & DS20	Grab Sample	<0.3 into sediment
AEC30c	Dam 11 surface water (Lot 11 south east smaller dam, ~1,300m², ~2.0m in depth)	SW17 & SW18	Grab Sample	Surface water grab
AEC31	Power poles (12 poles across Lot 11 and 12)	PP1 to PP12	Grab sample	Surface sample
AEC32	Residential premises (<2,000 m² Lot 13 north – not within scope)	-	-	No access due to presence of structure. Post demolition assessment required.
AEC33	Residential premises (<2,000 m² Lot 13 west – not within scope)	-	-	No access due to presence of structure. Post demolition assessment required.
AEC34	Concrete driveway along the northern boundary to residential dwelling within Lot 13 (~100m in length)	DR09 & DR10	Test Pit	2m, 0.3m into natural, or practical refusal
AEC35	Asphalt and gravel driveway leading to the commercial paint shed and residential dwelling within Lot 12 (~360m in length)	DR11 to DR14	Test Pit	2m, 0.3m into natural, or practical refusal
AEC36	Gravel driveway leading to the residential dwelling within Lot 11 (~130m in length)	DR15 to DR17	Test Pit	2m, 0.3m into natural, or practical refusal
AEC37	Gravel driveway leading to the eastern residential dwelling and poultry sheds within Lot 13 (~750m in length)	DR01 to DR08	Test Pit	2m, 0.3m into natural, or practical refusal

7.7.2 Sampling Methods

alliance Report No.: 13546-ER-2-1

7.7.2.1 Soils

Soil samples will be collected from each relevant sampling point, at the surface, and at regular intervals thereafter, or where there is a change in lithology, or where there is visual/olfactory evidence of potential contamination.

Samples requiring asbestos gravimetric screening for asbestos containing material (ACM) and fibrous asbestos (FA) will be 10L in volume and will be collected and screened with reference to Table 5 in WA DOH (2009).

Samples requiring asbestos fines (AF) and fibrous asbestos (FA) analysis, will be collected as separate samples to the 10L bulk samples.

Samples will be submitted to a NATA accredited laboratory for analysis.

7.7.2.2 Surface Water

Surface water sampling points SW01 to SW22 will be established onsite, at the locations nominated in **Figure 4.**

Creek water samples will be collected by submersion of sampling containers into the water, away from the creek embankment (if possible). Headspace in sample containers will be avoided.

Non-disposable sampling equipment (if used) will be decontaminated between sampling points.

Samples will be submitted to a NATA accredited laboratory for analysis.

7.7.3 Decontamination

Non-disposable sampling equipment will be decontaminated between sampling points to mitigate potential for cross contamination of samples. Decontamination will include the following procedure:

- Washing off the non-disposable sampling equipment with a solution of potable water and phosphate free detergent (e.g. Decon 90);
- · Rinsing the washed equipment with distilled or de-ionised water; and
- Air drying of the rinsed equipment.

7.7.4 Headspace Screening

When COPC identified for the site include volatiles (e.g., BTEX, TRH or VOC), collected soil samples will be subjected to headspace screening for ionisable volatile organic compounds, using a calibrated photo-ionisation detector (PID) fitted with a 10.6 eV lamp. A sub sample from each collected sample will be placed in a zip lock bag, sealed, and shaken. Each zip lock bag will then be pierced with the tip of a PID, and the results recorded on the relevant sampling point borehole or test pit log.

7.7.5 Sample Identification, Handling, Storage and Transport

Soil samples will be identified using the relevant Alliance project number, the sampling point identification number and the sampling depth interval (e.g. BH01/0.0-0.2 or TP05/0.5-0.7), and date the sample was collected.

Surface water samples will be identified using the relevant Alliance project number, the sampling point identification number (e.g. SW01) and date the sample was collected.

Samples will be placed in laboratory prepared containers (containing preservatives as appropriate), bulk sample bags and zip lock bags. Soil, and water samples will be stored in insulated containers with ice.

Samples will be transported to the relevant analytical laboratory by Alliance or a third-party courier, using chain of custody (COC) documentation.

7.7.6 Selection of Laboratory

The analytical laboratories used for this project will reputable industry recognised environmental laboratories, that are NATA accredited for the analytical methods used.

7.7.7 Scheduling of Laboratory Analysis

Collected samples will be scheduled for laboratory analysis based on:

- The COPC identified for the AEC the sample was collected from;
- Observations made of the sample when collected (including staining, odour, presence of anthropogenic materials, and presence of potential asbestos containing materials);
- The results of sample headspace screening (if applicable); and
- The need for specific qualitative or quantitative data to inform assessment of risk associated with other laboratory analytical data (e.g. pH, cation exchange capacity, clay content, organic carbon content).

The laboratory analytical schedule (including upper limiting sample quantities) adopted for this project, is set out in **Table 7.7.7**.

ID	AEC	Sampling Point ID	TRH/BTEX	РАН	doo	PCB	Metals (8)	Arsenic, chromium, & copper	Phenois	Asbestos (0.001%)	Pathogens (E. coli & thermotolerant coliforms)	Nutrients (nitrogen compounds and phosphate)
AEC01	Poultry farming area (~2.7 ha)	TP1 to TP36	36	36	16	16	36			36	12	12
AEC02	Aboveground fuel storage tank (Lot 13 between poultry sheds)	TP15 to TP17	3				3					

AEC03	Dam (Lot 13 west)	DW01, DW02, SW01, SW02, DS01, & DS02	6	6	6	6	6			6	4	4
AEC04	Dam (Lot 13 north)	DW05 to DW08, SW05, SW06, DS05, & DS06	7	7	5	5	7			7		
AEC05	Dam (Lot 13 east)	DW03, DW04, SW03, SW04, DS03, & DS04	6	6	4	4	6			6		
AEC06	Stockpile (<50 m³, near east dam in Lot 13)	SP1-1 to SP1-3	3	3	3	3	3			3		3
AEC07	Fill material (<200 m² south of eastern poultry shed in Lot 13)	TP37 to TP40	4	4	1	1	4			4		
AEC08	Dam (Lot 12 west)	DW13 to DW16, SW09, SW10, DS11, & DS12	8	8	6	6	8			8		
AEC09	Dam (Lot 12 north)	DW17 to DW19, SW11, SW12, DS13, & DS14	7	7	5	5	7			7		
AEC10	Dam (Lot 12 south)	DW09, DW10, SW07, SW08, DS07, & DS08	6	6	4	4	6			6		
AEC11	Dam (Lot 12 east)	DW11, DW12, DS09, & DS10	4	4	4	4	4			4		
AEC12	Fill material (<500 m² west of Lot 12 south structure)	TP41 to TP44	4	4	4	4	4			4		
AEC13	Commercial paint warehouse (<2,000 m² centre-south portion of Lot 12)	TP41 to TP49	9	9	9	9	9		9	9		
AEC14	Gully between northern dams in Lot 12 (< 1,000 m²)	TP50 to TP54	5	5	5	5	5			5		
AEC14	Gully between northern dams in Lot 12 (< 1,000 m²)	ASB10 to ASB15								6		
AEC15	Residential premises (<3,000 m² Lot 12 east)	TP55 to TP60 and PP6 to PP8	8	8	8	8	8	2		8		
AEC16	Septic tank (Lot 12 east property)	TP60	1	1	1	1	1			1	1	
AEC17	Stockpile (<5 m³, north-west corner Lot 11)	SP3-1 and SP3- 2	2	2	2	2	2			2		

AEC18	Bulk storage area (<1,000 m² north-west corner Lot 11)	TP61 to TP66	3	1			6		6		
AEC19	Dam (Lot 11 north-west smaller dam)	DW22, DW23, SW15, SW16, DS17, & DS18	6	6	4	4	6		6		
AEC20	Dam (Lot 11 north-west larger dam)	DW20, DW21, SW13, SW14, DS15, & DS16	6	6	4	4	6		6		
AEC21	Stockpile (<50 m³, north-west Lot 11, south of AEC18)	SP2-1 to SP2-3	3	3	3	3	3		3		
AEC22	Septic tank (Lot 11 north of residence)	TP73	1	1	1	1	1		1	1	
AEC23	Residential premises (<2,500 m² Lot 11 west)	TP67 to TP69, and TP72 to TP77	9	9	9	9	9		9		
AEC23	Residential premises (<2,500 m² Lot 11 west)	ASB1 to ASB9							9		
AEC24	Aboveground fuel storage tank (Lot 11 north-west of residence)	TP70 and TP71	2				2		2		
AEC25	Storage shed (~40 m², centre- west Lot 11)	TP95	1	1	1	1	1		1		
AEC26	Agricultural area (Lot 11)	TP78 to TP139	3	3	34	4	33		3		
AEC27	Storage shed (~40 m², centre- east Lot 11)	TP120	1	1	1	1	1		1		
AEC28	Storage shed (~15 m² adjacent to AEC29)	TP125	1	1	1	1	1		1		
AEC29	Dam (Lot 11 south-east larger dam)	DW27 to DW29, SW19, SW20, DS21, & DS22	7	7	5	5	7		7		
AEC30	Dam (Lot 11 south-east smaller dam)	DW24 to DW26, SW17, SW18, DS19, & DS20	7	7	5	5	7		7		
AEC31	Power poles (12 poles across Lot 11 and 12)	PP1 to PP12						12			
AEC32	Residential premises (<2,000 m² Lot 13 north – not within scope)										
AEC33	Residential premises (<2,000 m² Lot										

	13 west – not within scope)								
AEC34	Concrete driveway along the northern boundary to residential dwelling within Lot 13 (~100m in length)	DR09 & DR10	X	X		×		X	
AEC35	Asphalt and gravel driveway leading to the commercial paint shed and residential dwelling within Lot 12 (~360m in length)	DR11 to DR14	4	4		4		4	
AEC36	Gravel driveway leading to the residential dwelling within Lot 11 (~130m in length)	DR15 to DR17	3	3		3		3	
AEC37	Gravel driveway leading to the eastern residential dwelling and poultry sheds within Lot 13 (~750m in length)	DR01 to DR08	8	8		8		8	

7.7.8 Analytical Methods, Limits of Reporting and Holding Times

The analytical methods, limits of reporting and sample holding times adopted for this project, are set out in **Table 7.7.8**

Table 7.7.8 Analytical Methods, Limits of Reporting and Holding Times

Analyte	Method	Limit of Reporting (mg/kg)	Limit of Reporting (μg/L)	Holding Time
BTEX and TRH C ₆ -C ₁₀	USEPA 5030, 8260B and 8020	0.2-0.5	1-2 and 50	14 days
TRH C ₁₀ -C ₄₀	USEPA 8015B & C	20-100	50-500	14 days
VOC	USEPA 8260	0.1-0.5	-	14 days
PAH	USEPA 8270	0.1-0.2	0.5-10	14 days
PCB	USEPA 8270	0.2	-	14 days
OCP	USEPA 8081	0.2	-	14 days
Metals (Hg and Cr ^{vi})	USEPA 8015B & C	0.05-2	0.1-5	6 months (28 days)
Asbestos ID	AS4926	Absence / presence	-	No limit
Asbestos (WA DOH)	Inhouse	0.001% w/w	-	No limit
Faecal Coliforms	AS 4276.5:2007	10 MPN/g	1 cfu/100mL	24 hours
E. Coli	AS 4276.7:2007	10 MPN/g	1 cfu/100mL	24 hours
рН	APHA 4500 pH	-	0.1 pH unit	24 hours (up to 7 days allowed)
Hardness	APHA 2340	-	5mg/L	6 months
Nitrogens (speciated including Ammonia)	APHA 4500-NH3, APHA 4500-NO3 4500-NO2 4500-NOX 4500-TKN 4500-Organic N	-	0.01-0.2mg/L	2-28 days
Phosphorus	APHA 4500-P	-	0.05mg/L	1 month

alliance Report No.: 13546-ER-2-1

8 Fieldwork

8.1 Soils

8.1.1 Sampling

Soil sampling works were undertaken on 06, 07, 08, 11, 12, 13, 15, 18, 19, 20, 21, & 22 October 2021 by suitably experienced Alliance environmental consultants Sam Jones and Jacob Walker.

These works included:

- Undertaking a survey of each lot by a service locating contractor for buried metallic services;
- Excavation of two hundred and ten test pits (TP01 to TP44, TP50 to TP54, ASB10 to ASB15, TP60 to TP66, TP70 and TP71, TP78 to TP139, TP141 and TP142, DR01 to DR08, DR11 to DR17, SP1-1 to SP1-3, SP3-1, and SP3-2, DW01 to DW29, PP1 to PP12, and DS01 to DS22) using a five-tonne tracked hydraulic excavator

Soil samples were collected at each sampling point, at the surface and at regular intervals thereafter, or at depths where visual or olfactory evidence of contamination was encountered.

Samples were collected either directly from excavated soils, or from the centre of soils while still in the excavator bucket (to avoid cross contamination), as grab samples, using a fresh pair of nitrile gloves.

Surface water samples were collected directly using fresh disposable nitrile gloves and laboratory supplied sample containers. Containers were inverted and submerged as far and deep from the bank as practicable, before being turned right way up to avoid surface film and debris.

A grid-based walkover of the surface of each relevant AEC, was undertaken for the purpose of assessing the presence of visible asbestos on surface soils.

A 10L bulk sample was collected at each relevant test pit sampling point, at the surface and for each metre (or part thereof) of inferred fill material encountered. Sub samples of 500ml volume were taken as separate samples to 10L bulk samples.

Samples were placed in suitable laboratory prepared containers and labelled.

Test pits were backfilled with excavated soils and track rolled.

Duplicate and triplicate samples were collected by splitting the primary sample across three sample containers (without homogenising, to avoid loss of volatiles).

A trip spike and trip blank were used for each day of fieldwork.

Samples were placed in insulated containers with ice bricks.

Sampling point locations were confirmed on a site plan. The sampling point location plan is presented in **Figures 4a, 4b, and 4c.**

Image 8.1.1.1 Excavator used for all test pits at the location of DR11, facing west.

Image 8.1.1.2 Soils post asbestos screening, showing tarp and 10L bucket used, and PACM screened from sample ASB12

8.1.2 Site Specific Geology

Observations made of the soils encountered during intrusive investigation works on site, were recorded on relevant field logs. A copy of those logs is presented in **Appendix A**.

8.1.3 Soil Staining and Odours

Visual evidence of heavy black staining was observed in soil samples collected from sub-surface soils within TP141 and TP142 at depths between 0.1 m and 1.5 m. This area is suspected to be part of the septic runoff system for Lot 11. No other staining was observed within any other test pit.

Olfactory evidence of a moderate sewage odour was detected in soil samples collected from the test pits and depths in the abovementioned staining.

8.1.4 Headspace Screening

Sample headspace screening was undertaken, by placing a sub sample from each relevant sample at each relevant sampling point, in a zip lock bag, sealing it, shaking it, then piercing the bag with the tip of the PID and the results recorded on the relevant field log. The results of the headspace screening are presented in the logs in **Appendix A**.

The results of the headspace screening indicated the potential for ionisable volatile organic compounds (VOC) to be present in the samples screened was generally low, with the highest PID reading recorded being 13.0 in sample TP61 0.5-0.6.

A copy of the calibration certificate for the PID is presented in **Appendix D**.

8.1.5 Asbestos Containing Materials and Fibrous Asbestos

Evidence of visual asbestos in surface soils was observed at multiple locations across the site.

The 10L bulk soil samples were weighed and the weights recorded (to inform assessment of site-specific soil densities). The samples were then screened by spreading on a large contrasting plastic surface. Potential asbestos containing materials (ACM) that were found during screening were weighed. The material weights were recorded on the relevant sampling point log, and the potential ACM placed in separate zip lock bags.

Visual evidence of potential asbestos containing materials (ACM) was encountered:

- At sampling points TP09 (0.1m), TP18 (0.1m), TP22 (0.1m), TP26 (0.1m), TP43 (0.1m), TP51 (2m)
 ASB12 (0.1-2.0m), TP141 (0.1m), DW23 (0.5 m), and DS13 (0.1m) in the form of fibrous cement sheeting fragments; and
- On the surface adjacent to sampling point TP61, in the form of thick cement panel fragments.

Samples of these potential ACM were collected.

Image 8.1.5.3 Weighing of potential ACM after soil screening and taring the bucket to zero at ASB12.

8.2 Surface (Dam) Water

Surface water sampling works were undertaken by a suitably experienced Alliance environmental consultant (Sam Jones).

Surface water samples were collected at two sampling points (inferred inflow and outflow locations) at each dam within the site The surface water samples were collected directly into laboratory prepared containers.

A YSI Professional Plus Water Quality Meter with a 1 m Quatro Cable was used for field measurement of temperature, pH, dissolved oxygen, conductivity, total dissolved solids, and oxidation reduction potential dam waters.

A summary of field measured dam water parameters is presented in Table 8.2.

alliance

Report No.: 13546-ER-2-1

Table 8.2. Summary of field measured dam water parameters.

Groundwater Parameter	Observation Summary
Sheen	Visual evidence of sheen on collected samples not observed
LNAPL / DNAPL	Visual evidence of light non aqueous phase liquid (LNAPL) / dense non aqueous phase liquid (DNAPL) was not observed.
Odour	No olfactory evidence of odours was detected.
Dissolved oxygen	Readings ranged from 0.04ppm to 9.15ppm which suggests low to high oxygen content.
Electrical Conductivity	Readings ranged from 193.3µS/cm to 990µS/cm, generally indicating freshwater conditions.
рН	Readings ranged from 6.01 to 7.72, which suggest mildly acidic to mildly alkaline conditions
Reduction oxygen (redox) potential	Readings ranged from -86.2mV to -23.3mV. These values combined with observations of low to high dissolved oxygen content, generally indicates low reducing conditions across the site.

Surface water sampling point locations were confirmed on a site plan. The sampling point location plan is presented in **Figure 4**.

Olfactory evidence of odours was not detected in the surface water samples collected.

Visual evidence of sheen was not observed in the surface water samples collected.

The west dam in Lot 13 (AEC03) was observed to be covered in vegetation and algae. The east dam in Lot 13 (AEC05) was observed to be low and covered by vegetation. The east dam within Lot 12 (AEC11) was dry at the time of assessment. All other dam surfaces were mostly open water with sparse vegetation.

Dam water turbidity was visually observed to be variable across the site with AEC03, AEC05, AEC09, AEC19, and AEC30 being highly turbid, whilst AEC08, AEC10, and AEC29 were mostly clear. Water in the remaining dams wa visually observed to be moderately turbid.

Image 8.2.1 Dam AEC10, showing outflow location (SW07 - bottom left) and opposite inflow (SW08 – top centre).

9 Laboratory Analysis

The collected samples were transported to the analytical laboratory using chain of custody (COC) protocols. A selection of those samples were scheduled for laboratory analysis, taking into consideration the laboratory analytical schedule presented in **Table 7.7.7**, observations made in the field, and the results of field and headspace screening.

A copy of the COC, sample receipts and certificates of analysis, is presented in **Appendix B**.

The relevant laboratory analytical results were tabulated and presented in the attached Table 1, Table 2, and Table 3, to allow comparison with assessment criteria adopted for this project.

10 Data Quality Indicator (DQI) Assessment

In order to assess the quality of the field and laboratory analytical data collected for this project, that data was compared against the data quality indicators (DQI) established for this project (refer **Section 7.5.4**).

The results of that comparison is presented in **Appendix C**.

The DQI comparison results indicate that the field and laboratory data are adequately complete, comparable, representative, precise, and unbiased (accurate), with in the context and objectives of this project.

alliance Report No.: 13546-ER-2-1

11 Site Characterisation Discussion

11.1 Exposure Pathways

11.1.1 Human Health

11.1.1.1 Dermal Contact / Ingestion / Dust Inhalation

The detected concentrations of the relevant COPC in the soil samples analysed, were less than the adopted human health dermal contact, ingestion, and dust inhalation assessment criteria.

Further assessment of dermal contact, ingestion and dust inhalation human health exposure risks is considered not warranted.

11.1.1.2 Vapour Intrusion / Inhalation

The detected concentrations of the relevant TRH and BTEXN compounds in the soil samples analysed, were less than the adopted human health vapour intrusion / inhalation assessment criteria.

Further assessment of vapour intrusion / inhalation human health exposure risks is considered not warranted.

11.1.1.3 Asbestos Containing Materials

Fragments of ACM were encountered during field screening of relevant bulk soil samples.

The fragments encountered were not considered to be friable, on the basis that the material was not severely weathered, or in a degraded condition such that it could not be broken or crumbled by hand pressure.

Asbestos was identified by laboratory analysis, in some of the samples of suspected ACM.

Asbestos was identified by laboratory analysis, in the samples of suspected fibrous asbestos (FA).

Quantification of ACM in soil concentrations was undertaken using guidance presented in Section 4.10 of NEPC (2013a), using 10L bulk samples, with the following assumptions:

- 15% asbestos by weight in cement bonded asbestos; and
- a variable soil density has been used based on field measurements.

The quantification of ACM in soil was assessed using the following formula:

The results of the ACM quantification in soil assessment where ACM was identified are presented in **Table 11.1.1.3**.

Table 11.1.1.3 Quantification of ACM in Soil

Sample ID	ACM Weight (kg)	Asbestos Quantification in Soil (% w/w)
TP09 0.0-0.1	0.056	0.0571
TP51 2.0-2.5	0.22	0.1930
ASB12 0.0-0.1	0.58	0.5839
ASB12 0.1-1.0	1.63	1.7340
ASB12 1.0-2.0	1.25	1.0417
DW23	0.115	0.1173
TP141 0.0-0.1	0.017	0.0188

The quantified concentrations of ACM in fill soil was greater than the adopted health screening level of 0.05% w/w, except for TP141 0.0-0.1 (discussed further in Section 11.1.1.5). The sampling points where the exceedances of the adopted criterion occurred, are presented graphically in **Figure 5**.

Further assessment of ACM in soil human health exposure risks is considered warranted.

11.1.1.4 Fibrous Asbestos / Asbestos Fines

The concentrations of FA and AF detected in the soil samples analysed, were less than the adopted health screening level of 0.001% w/w, except for the concentrations detected in samples ASB12 0.1-1.0 (0.0025 % w/w), ASB12 1.0-2.0 (0.004 % w/w), and TP70 0.0-0.1 (0.003 % w/w). The sampling points where the exceedances of the adopted criterion occurred, are presented graphically in **Figure 5.**

Further assessment of fibrous asbestos / asbestos fines in soil human health exposure risks is considered warranted.

11.1.1.5 Asbestos in Surface Soils

Evidence of visible asbestos in surface soils was observed during fieldwork at TP09, TP141, TP61, DS13, and ASB12. Asbestos observed at TP61 was surficial fragments near the test pit location. No asbestos was observed in samples collected from TP61 itself. The sampling points where the exceedances of the adopted criterion occurred, are presented graphically in **Figure 5.**

A large, fragmented asbestos containing panel was observed within AEC18, north of TP61. No further ACM was observed within this area, however further assessment is considered warranted pending the removal of waste materials from this area.

Further assessment of visible asbestos in surface soil risks is considered warranted.

11.1.2 Management Limits for Petroleum Hydrocarbons

The detected concentrations of the relevant COPC in the soil samples analysed, were less than the adopted management limits for petroleum hydrocarbon assessment criteria.

11.1.3 Aesthetics

Visual and olfactory observations made of soils encountered during fieldwork within AEC14, identified the presence of stockpiled demolition waste consisting of predominantly bricks at the location of TP51. Further bricks, demolition waste, ACM, and a large volume of tyres were also identified at and near the surface within the surrounding test pits (DS12, ASB10, TP50, ASB11, and ASB12). Large quantities of tyres were also observed from 1.5 m bgl beneath fill soils (where evidence of other anthropogenic materials was not observed) at TP52.

Some brick and an ACM fragment were also observed beneath the water surface as DS13 (AEC09), however the presence of dam water prevented further assessment in this area.

Subsurface soils within TP141 and TP142 were observed to contain large quantities of brick underlying geofabric from approximately 0.1 m to 1.5 m bgl. Soils were wet and stained black with a moderate sewage odour. A single ACM fragment was also observed in the surface soils at TP141 and presence of asbestos confirmed by laboratory analysis.

Various forms of waste were observed across the agricultural area within AEC26, including timber boards, pallets, Irrigation piping, polystyrene crates, hard plastic crates, and plastic sheeting. Black plastic irrigation piping was also present across the soil surface in this area, as well as fine shredded black plastic sheeting.

Section 3.6.3 of NEPC (2013a) advises that:

- Small quantities of non-hazardous inert material should not be a cause of concern or limit the use of the site in most circumstances;
- Sites with large quantities of well-covered known inert materials that present no health hazard such
 as brick fragments and concrete wastes (for example, broken cement blocks) are usually of low
 concern for both non-sensitive and sensitive land uses.

The surficial materials across AEC26 are considered to be inert and unlikely to present a health hazard and are anticipated to be removed during site development. Observations made within the dam gully AEC14 and AEC09, and at the location of AEC21 and AEC18 present circumstances which would trigger further assessment of aesthetics. The sampling points where the exceedances of the adopted criterion occurred, are presented graphically in **Figure 5**.

Further assessment of aesthetic risks is considered warranted.

11.1.4 Microbiological

The detected concentrations of the relevant COPC in the soil samples analysed (E.coli and thermotolerant coliforms), were less than the adopted soil assessment criteria.

Further assessment of microbiological risk within soils is considered not warranted.

11.1.5 Dam Water and Sediments

Proposed subdivision plans indicate that the dam does not form part of the site redevelopment, mitigating risk of exposure to future residents on the site.

11.1.5.1 Dam Water

The detected concentrations of the relevant COPC in the surface water samples analysed, were less than the adopted dam water assessment criteria, except for the following exceptions:

- Arsenic within samples SW02, SW10, SW12, & SW17 with concentrations ranging from 2 to 31 ug/L (criteria: 13 ug/L);
- Cadmium within samples SW02, SW06, SW10, SW12, and SW17, with concentrations ranging from <0.2 to 0.8 ug/L (criteria: 0.2 ug/L);
- Chromium within all samples except for SW16, with concentrations ranging from 1 of 130 ug/L (criteria: 1 ug/L);
- Copper within all samples, with concentrations ranging from 6 to 240 ug/L (criteria: 1.4 ug/L);
- Lead within all samples, with concentrations ranging from 4 to 230 ug/L (criteria: 3.4 ug/L);
- Nickel within SW01, SW02, SW03, SW04, SW06, SW07, SW08, SW10, SW11, SW12, SW17, and SW20, with concentrations ranging from 3 to 110 ug/L (criteria: 11 ug/L);
- Zinc within all samples, with concentrations ranging from 10 to 1,500 ug/L (criteria: 8 ug/L); and
- Phosphate in SW01 and SW02, with a maximum detected concentration of 1.5 mg/kg (criteria: 0.1 mg/L)

Alliance notes that the laboratory limit of reporting (LOR) for a number of PAH compounds was greater than the relevant adopted assessment criterion. On that basis, the potential for concentrations of PAH compounds to be present in dam water above those criterion, cannot be precluded. However, based on the nature of identified land use activities and the laboratory analytical results of soil and sediment samples collected from site, it is the opinion of Alliance that the potential for PAH compounds to be present in dam water at concentrations greater than the adopted criterion, to be low.

Alliance is of the opinion that the data collected does not suggest the dam water assessed is likely to contain concentrations of contaminants that would prevent disposal of the water using conventional methods such as irrigation across the site, or dust suppression methods on site during the earthworks/construction phase. The data suggests the dam water may not be suitable for disposal to surface water bodies (e.g. drainage lines, creeks, streams, or rivers) or municipal stormwater infrastructure.

In the context of preparing a dam dewatering procedure for the site, in addition to information on the proposed disposal methods, the dam water data would need to be supplemented with further assessment of likely receptors during dewatering, in order to potentially derive less conservative assessment criteria, based on a preferred dam water disposal method, some additional dam water sampling and analysis to support the preliminary data obtained that is consistent with site specific criteria. The sampling points where the exceedances of the adopted criterion occurred, are presented graphically in **Figure 5**.

11.1.5.2 Dam Sediment

The detected concentrations of the relevant COPC in the dam sediment samples analysed, were less than the adopted assessment criteria.

68

12 Revised Conceptual Site Model

Consistent with guidance provided in Section 4.2 of NEPC (2013b), the conceptual site model (CSM) presented in **Section 6.6** has reviewed to reflect the data collected during this project, and subsequent assessment of that data against the screening criteria adopted for this project.

An updated CSM is presented in Table 12. The locations of the AEC considered in the CSM, are presented in Figure 3.

Table 12 Revised Conceptual Site Model

ID	AEC	Land Contaminating Activity (Source)	COPC	Exposure Pathway	Receptor	Outcome
AEC01a	Western poultry farming area, 3 sheds (~1.2 hectares, ~0.5m in depth)	Poultry waste, hazardous buildings materials, shallow uncontrolled filling, termite and poultry parasite pesticides	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, pathogens, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria, except for bonded asbestos at TP09. Further assessment warranted.
AEC01b	Eastern poultry farming area, 1 shed on fill pad (~4,500m², ~3.0m to ~0.5m in depth)	Poultry waste, hazardous buildings materials, uncontrolled filling, termite and poultry parasite pesticides	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, pathogens, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No further assessment warranted.
AEC02	Aboveground fuel storage tank labelled as liquid petroleum gas (Lot 13 between poultry sheds, ~5,000L)	Fuel spills/leaks	Petroleum hydrocarbons, BTEX, PAH, lead	Dermal contact Soil Ingestion Vapour inhalation / intrusion Management limits	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No

				Aesthetics		further assessment warranted.
AEC03a	Dam 1 Wall (Lot 13 west, ~50m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	Dam wall visually observed to comprise soil material consistent with in-situ site soils, free from foreign material or signs of contamination. Assessment considered unwarranted.
AEC03b	Dam 1 Sediments (Lot 13 west, ~180m², ~0.1m in thickness)	Poultry shed wastes	organochlorine pesticides, metals, & asbestos, pathogens	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No further assessment warranted.
AEC03c	Dam 1 Surface Water (Lot 13 west, ~180m², ~0.5m in depth)	Effluent from poultry sheds.	pesticides, pathogens, nutrients, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics Surface water contact	Commercial / industrial workers	The field and laboratory analytical data for surface water were greater than the adopted Tier 1 screening criteria for heavy metals. Further assessment warranted.
AEC04a	Dam 2 Wall (Lot 13 north, ~150m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	Dam wall visually observed to comprise soil material consistent with in-situ site soils, free from foreign material or signs of contamination. Assessment considered unwarranted.

70

AEC04b	Dam 2 Sediments (Lot 13 north, ~900m², ~0.1m in thickness)	Waste disposal, poultry shed wastes.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No further assessment warranted.
AEC04c	Dam 2 Surface Water (Lot 13 north, ~900m², ~1.5m in depth)	Waste disposal and effluent from poultry sheds.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics Surface water contact	Commercial / industrial workers	The field and laboratory analytical data for surface water were greater than the adopted Tier 1 screening criteria for heavy metals. Further assessment warranted.
AEC05a	Dam 3 Wall (Lot 13 east, ~25m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	Dam wall visually observed to comprise soil material consistent with in-situ site soils, free from foreign material or signs of contamination. Assessment considered unwarranted.
AEC05b	Dam 3 Sediments (Lot 13 east, ~90m², ~0.1m in thickness)	waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No further assessment warranted.
AEC05c	Dam 3 Surface Water (Lot 13 east,	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons,	Dermal contact Soil Ingestion	Commercial / industrial workers	The field and laboratory analytical data for surface water were greater than

	~90m², ~0.5m in depth)		organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand	Dust inhalation Inhalation (asbestos) Management limits Aesthetics		the adopted Tier 1 screening criteria for heavy metals. Further assessment warranted.
AEC06	Stockpile (~50 m³, near east dam in Lot 13)	Uncontrolled dumping or stockpiling of poultry manure	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, metals, pathogens, nutrients & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No further assessment warranted.
AEC07	Fill material (~200m², ~0.5m in thickness, south of eastern poultry shed in Lot 13)	Uncontrolled soil filling	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, , BTEX, polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No further assessment warranted.
AEC08a	Dam 4 Wall (Lot 12 west, ~250m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	Dam wall visually observed to comprise soil material consistent with in-situ site soils, free from foreign material or signs of contamination. Assessment considered unwarranted.
AEC08b	Dam 4 Sediments (Lot 12 west, ~2,800m², ~0.1m in thickness)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos)	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No

			pesticides, BTEX, heavy metals, & asbestos	Management limits Aesthetics		further assessment warranted.
AEC08c	Dam 4 Surface Water (Lot 12 west, ~2,800m², ~2.0m in depth)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics Surface water contact	Commercial / industrial workers	The field and laboratory analytical data for surface water were greater than the adopted Tier 1 screening criteria for heavy metals. Further assessment warranted.
AEC09a	Dam 5 Wall (Lot 12 north, ~70m², ~2m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	Dam wall visually observed to comprise soil material consistent with in-situ site soils, free from foreign material or signs of contamination. Assessment considered un-warranted.
AEC09b	Dam 5 Sediments (Lot 12 north, ~300m², ~0.1m in thickness)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were greater than the adopted Tier 1 aesthetics screening criteria for bonded asbestos. Further assessment warranted.
AEC09c	Dam 5 Surface Water (Lot 12 north, ~300m², ~1.0m in depth)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen,	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics Surface water contact	Commercial / industrial workers	The field and laboratory analytical data for surface water were greater than the adopted Tier 1 screening criteria for heavy metals. Further assessment warranted.

			biological oxygen demand			
AEC10a	Dam 6 Wall (Lot 12 south, ~100m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	Dam wall visually observed to comprise soil material consistent with in-situ site soils, free from foreign material or signs of contamination. Assessment considered unwarranted.
AEC10b	Dam 6 Sediments (Lot 12 south, ~700m², ~0.1m in thickness)	Waste disposal	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No further assessment warranted.
AEC10c	Dam 6 Surface Water (Lot 12 south, ~700m², ~1.0m in depth)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for surface water were greater than the adopted Tier 1 screening criteria for heavy metals. Further assessment warranted.
AEC11a	Dam 7 Wall (Lot 12 east, ~40m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	Dam wall visually observed to comprise soil material consistent with in-situ site soils, free from foreign material or signs of contamination. Assessment considered unwarranted.

AEC11b	Dam 7 Sediments (Lot 12 east, ~190m², ~0.1m in thickness)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers Intrusive maintenanc e workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No further assessment warranted.
AEC12	Fill material (~50 m², ~0.5m in thickness, west of Lot 12 south structure)	Uncontrolled soil filling/	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, VOC, BTEX, polychlorinated biphenyl, metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No further assessment warranted.
AEC13	Commercial paint warehouse (~2,000m², central southern portion of Lot 12)	Hazardous buildings materials, chemical and fuel storage/spills/leaks	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, , BTEX, polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	Assessment precluded due to active demolition works. Further assessment warranted.
AEC14	Gully between northern dams in Lot 12 (~500m², ~0.5m in thickness)	Uncontrolled soil filling/	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, , BTEX, polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were greater than the adopted Tier 1 screening criteria for friable and bonded asbestos and aesthetics. Further assessment warranted.
AEC15	Residential premises (~3,000 m² Lot 12 east)	hazardous buildings materials, termite treatment	Pathogens, petroleum hydrocarbons and metals	Dermal contact Soil Ingestion Dust inhalation	Commercial / industrial workers	Assessment precluded due to active demolition works. Further assessment warranted.

				Inhalation (asbestos) Management limits Aesthetics		
AEC16	Septic tank (~3m², ~1.5m deep, Lot 12 east property)	Domestic effluent disposal	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, , BTEX, polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Management limits Aesthetics	Commercial / industrial workers	Assessment precluded due to active demolition works. Further assessment warranted.
AEC17	Stockpile (~5 m³, north-west corner Lot 11)	Uncontrolled soil dumping	Petroleum hydrocarbons, BTEX, metals, asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No further assessment warranted.
AEC18	Construction material storage area, including metal sheeting, piping and lumber (~1,000 m², north- west corner Lot 11)	Deterioration of exposed ageing materials, heavy vehicle use.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were greater than the adopted Tier 1 aesthetics screening criteria for bonded asbestos. Further assessment warranted.
AEC19a	Dam 8 Wall (Lot 11 north west smaller dam, ~40m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were greater than the adopted Tier 1 screening criteria for bonded asbestos. Further assessment warranted.

Aliance Report No.: 13546-ER-2-1

AEC19b	Dam 8 Sediments (Lot 11 north west smaller dam, ~120m², ~0.1m in thickness)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No further assessment warranted.
AEC19c	Dam 8 Surface Water (Lot 11 north west smaller dam, ~120m², ~0.5m in depth)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics Surface water contact	Commercial / industrial workers	The field and laboratory analytical data for surface water were greater than the adopted Tier 1 screening criteria for heavy metals. Further assessment warranted.
AEC20a	Dam 9 Wall (Lot 11 north west larger dam, ~100m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	Dam wall visually observed to comprise soil material consistent with in-situ site soils, free from foreign material or signs of contamination. Assessment considered unwarranted.
AEC20b	Dam 9 Sediments (Lot 11 north west larger dam, ~600m², ~0.1m in thickness)	Waste disposal.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No further assessment warranted.

alliance

AEC20c	Dam 9 Surface Water (Lot 11 north west larger dam, ~600m², ~0.5m in depth)	Waste disposal	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics Surface water contact	Commercial / industrial workers	The field and laboratory analytical data for surface water were greater than the adopted Tier 1 screening criteria for heavy metals. Further assessment warranted.
AEC21	Stockpile (~50 m³, north-west Lot 11, south of AEC18)	Uncontrolled soil dumping	Pathogens, petroleum hydrocarbons and metals	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	No stockpile present - overgrown and highly localised tall vegetation present. The field and laboratory analytical data for soils were greater than the adopted Tier 1 aesthetics screening criteria. Further assessment warranted.
AEC22	Septic tank (~3m², ~1.5m deep, Lot 11 north of residence)	Domestic effluent disposal	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, , BTEX, polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Management limits Aesthetics	Commercial / industrial workers	Assessment precluded due to active demolition works. Further assessment warranted.
AEC23	Residential premises (~2,500 m² Lot 11 west)	hazardous buildings materials, termite treatment	Petroleum hydrocarbons, BTEX, PAH, lead	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	Assessment precluded due to active demolition works. Further assessment warranted.

Report No.: 13546-ER-2-1

AEC24	Aboveground fuel storage tank unlabelled, likely diesel petroleum ~5,000L (Lot 11 north-west of residence)	Fuel spills/leaks.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Vapour inhalation Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were greater than the adopted Tier 1 screening criteria for friable asbestos. Further assessment warranted.
AEC25	Storage shed (~40 m², centre-west Lot 11)	hazardous buildings materials, chemical and fuel storage/spills/leaks, termite treatment	organochlorine pesticides, metals.	Dermal contact Soil Ingestion Dust inhalation Vapour inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No further assessment warranted.
AEC26	Market Gardens (~5.2ha, ~0.5m in thickness, Central portion of Lot 11)	Application of pesticides	Petroleum hydrocarbons, organochlorine pesticides, BTEX, polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Management limits	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No further assessment warranted.
AEC27	Storage shed (~40 m², centre-east Lot 11)	hazardous buildings materials, termite treatment, chemical/fuel leaks and spills	Petroleum hydrocarbons, organochlorine pesticides, , BTEX, polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No further assessment warranted.
AEC028	Storage shed (~15 m², centre-south Lot 11)	hazardous buildings materials, termite treatment, chemical/fuel leaks and spills	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine	Dermal contact Soil Ingestion Dust inhalation	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1

Aliance
Report No.: 13546-ER-2-1

			pesticides, BTEX, metals, & asbestos	Inhalation (asbestos) Management limits Aesthetics		screening criteria. No further assessment warranted.
AEC29a	Dam 10 Wall (Lot 11 south east larger dam, ~220m², ~1m in height)	Potential uncontrolled filling.	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	Dam wall visually observed to comprise soil material consistent with in-situ site soils, free from foreign material or signs of contamination. Assessment considered unwarranted.
AEC29b	Dam 10 Sediments (Lot 11 south east larger dam, ~2600m², ~0.1m in thickness)	Waste disposal	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No further assessment warranted.
AEC29c	Dam 10 Surface Water (Lot 11 south east larger dam, ~2600m ² , ~2.0m in depth)	Waste disposal	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics Surface water contact	Commercial / industrial workers	The field and laboratory analytical data for surface water were greater than the adopted Tier 1 screening criteria for heavy metals. Further assessment warranted.
AEC30a	Dam 11 Wall (Lot 11 south east smaller dam, ~200m², ~1m in thickness)	Potential uncontrolled filling	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits	Commercial / industrial workers	Dam wall visually observed to comprise soil material consistent with in-situ site soils, free from foreign material or signs of contamination.

				Aesthetics	Intrusive maintenanc e workers	Assessment considered unwarranted.
AEC30b	Dam 11 Sediments (Lot 11 south east smaller dam, ~1,300m², ~2.0m in depth)	Waste disposal	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, organochlorine pesticides, BTEX, metals, temperature, turbidity, dissolved oxygen, biological oxygen demand	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No further assessment warranted.
AEC30c	Dam 11 Surface Water (Lot 11 south east larger dam, ~2600m², ~2.0m in depth)	Waste disposal	Arsenic, chromium, copper	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics Surface water contact	Commercial / industrial workers	The field and laboratory analytical data for surface water were greater than the adopted Tier 1 screening criteria for heavy metals. Further assessment warranted.
AEC31	Power poles (12 poles across Lot 11 and 12)	Copper chrome arsenate treatment	Organochlorine pesticides, , polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No further assessment warranted.
AEC32	Residential premises (<2,000 m² Lot 13 north – not within scope)	Deterioration of hazardous buildings materials, application of pesticides	Organochlorine pesticides, , polychlorinated biphenyl, metals, & asbestos.	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits	Commercial / industrial workers	Assessment precluded due to active demolition works. Further assessment warranted.

				Aesthetics		
AEC33	Residential premises (<2,000 m² Lot 13 west – not within scope)	Deterioration of hazardous buildings materials, application of pesticides	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	Assessment precluded due to active demolition works. Further assessment warranted.
AEC34	Concrete driveway along the northern boundary to residential dwelling within Lot 13 (~100m in length)	Potential uncontrolled filling	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	Assessment precluded due to active demolition works. Further assessment warranted.
AEC35	Asphalt and gravel driveway leading to the commercial paint shed and residential dwelling within Lot 12 (~360m in length)	Potential uncontrolled filling	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No further assessment warranted.
AEC36	Gravel driveway leading to the residential dwelling within Lot 11 (~130m in length)	Potential uncontrolled filling	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation Inhalation (asbestos) Management limits Aesthetics	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1 screening criteria. No further assessment warranted.
AEC37	Gravel driveway leading to the eastern residential dwelling and poultry	Potential uncontrolled filling	Petroleum hydrocarbons, polycyclic aromatic hydrocarbons, BTEX, heavy metals, & asbestos	Dermal contact Soil Ingestion Dust inhalation	Commercial / industrial workers	The field and laboratory analytical data for soils were less than or equal the adopted Tier 1

sheds within Lot 13	Inhalation (asbestos)	screening criteria. No
(~750m in length)	Management limits	further assessment
	Aesthetics	warranted.

13 Duty to Report Contamination

Section 1.3 of NSW EPA (2020b) states that contaminated land consultants should take reasonable steps to draw the client's attention to its potential duty to report contamination under section 60 of the Contaminated Land Management Act 1997.

Section 2 in NSW EPA (2015) includes guidance on how to address reporting obligations under section 60 of the Contaminated Land Management Act 1997, including those parties required to notify EPA as soon as practical after they become aware of contamination. Those parties include:

- Anyone whose activities have contaminated land; or
- An owner of land that has been contaminated.

Alliance understands that the client is:

- not the occupier of the land, and as a consequence, is unlikely to have undertaken activities on the site that have contaminated the land, or
- not the owner of the land that may have been contaminated

On that basis, further assessment of the duty to report in the context of the guidance provided in NSW EPA (2015) is considered not warranted.

However, if the client was to become the owner and/or occupier of the land that the site is located on, and

- · the client undertakes activities on the site that contaminates the land; or
- the client is the owner of the land that may have been contaminated;

then NSW EPA (2015) includes guidance on when the client should seek further advice about site contamination and its obligations regarding the duty to report. Additional information on the client's duty to report can be found at www.epa.nsw.gov.au.

14 Conclusions and Recommendations

Based on the assessment undertaken by Alliance of site history information, fieldwork observations and data, and laboratory analytical data, in the context of the proposed land use scenario and objectives of this project, Alliance has made the following conclusions:

- Detected concentrations of friable asbestos in soil present an unacceptable human health risk at TP70, and ASB12;
- Detected concentrations of bonded asbestos in soil present an unacceptable human health risk at TP09, TP51, ASB12, and DW23;
- Field observations and laboratory analysis warrant further assessment for aesthetics risks at the location of AEC14 (demolition waste, asbestos, and tyres), AEC09 (demolition waste and asbestos), AEC22 (asbestos and potential septic system), and AEC18 (surficial asbestos near TP61).
- Potential contamination risks in AEC13, AEC15, AEC16, AEC22, AEC23, AEC32, AEC33, and AEC34 have not yet been assessed. The presence of existing hardstands is constraining adequate access to assess underlying soils. This is a data gap that needs addressing in order to draw conclusions regarding site suitability in the context of land contamination;
- In the context of preparing a dam dewatering procedure for the site, in addition to information on the
 proposed disposal methods, the dam water data would need to be supplemented with further
 assessment of likely receptors during dewatering, in order to potentially derive less conservative
 assessment criteria, based on a preferred dam water disposal method, some additional dam water
 sampling and analysis to support the preliminary data obtained, that is consistent with site specific
 criteria
- The site is not yet considered to be suitable for the following land use scenario:
 - o Commercial / industrial such as shops, offices, factories, and industrial sites.
- Specific assumptions that apply to the adopted land use scenario, are presented in Section 5 of this report.
- Further assessment, management, and remedial planning works for the identified unacceptable exposure risks is required.

Based on those conclusions, Alliance makes the following recommendations:

- An interim management plan should be implemented to mitigate potential human health exposure
 risks to asbestos in AEC14, TP70, TP09, and DW23. As some of those activities may result in
 disturbance of soils impacted with asbestos, a class A licensed asbestos contractor should
 undertake the recommended works where necessary. Prior to entry, site workers and other
 personnel on site should be made aware of the areas impacted with friable and bonded asbestos,
 and the controls in place to mitigate risk of exposure to human health;
- A supplementary contamination assessment should be undertaken to address the data gaps
 associated with AEC13, AEC15, AEC16, AEC22, AEC23, AEC32, AEC33, and AEC34, as well as
 assessing the extent of identified unacceptable risks onsite, to inform future remedial works. The
 supplementary contamination assessment should be undertaken following controlled demolition and
 removal of the structures and pavements.

- The recommended data gap assessment should also address the extent of asbestos contamination at AEC14, TP09, TP61, DS13, TP71, and TP141, as well as the aesthetics risk observed within AEC14, TP141 and TP142 (AEC21) and DS13 (AEC09);
- A remedial action plan (RAP) should be prepared to address the identified unacceptable human health exposure risks upon completion and consideration of the aforementioned data gap assessment; and
- Further assessment, management or remedial planning works for the site, be undertaken by a suitably experienced environmental consultant.

This report must be read in conjunction with the *Important Information About This Report* statements at the front of this report.

15 References

Alliance 2019, 'Stage 1 Preliminary Site Investigation with Limited Sampling', reference: 9687-ER-1-1

Alliance 2021, 'Hazardous Building Materials (HAZMAT) Report', reference: 13546-ER-1-1

ANZECC 2000, 'Australian and New Zealand Guidelines for Fresh and Marine Water Quality' dated October 2000

ANZECC & ARMCANZ (2000) water quality guidelines, 'Volume 3, Primary Industries – Rationale and Background Information', dated October 2000

ANZG 2018, 'Australian and New Zealand guidelines for fresh and marine water quality' (https://www.waterquality.gov.au/anz-guidelines).

AS 4482.1-2005 'Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds' dated November 2005.

AS 4482.2-1999 'Guide to the sampling and investigation of potentially contaminated soil, Part 2: Volatile substances' dated September 1999.

CCME 2008a, 'Canada-wide standard for petroleum hydrocarbons (PHC) in soil: Scientific Rationale Supporting Technical Document', ref: PN 1399, dated January 2008.

CCME 2008b, 'Canada-wide standard for petroleum hydrocarbons (PHC) in soil, technical supplement' dated January 2008.

CRC CARE 2011, 'Health screening levels for petroleum hydrocarbons in soil and groundwater Part 1: Technical development document', Technical Report no. 10, date June 2019, Version 0.1, date September 2011

Douglas Partners 2019, 'Preliminary Environmental Site Investigation with Limited Intrusive Investigation' project reference: 92352.00, document reference: R.001.Rev2

DUAP 1998, 'Managing Land Contamination Planning Guidelines SEPP55 – Remediation of Land', dated April 1999, ref: 98/65.

Friebel, E & Nadebaum, P 2011, 'Health screening levels for petroleum hydrocarbons in soil and groundwater. Part 2: Application document', CRC CARE Technical Report No. 10.

National Environment Protection Council (NEPC) 2013a, 'Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater', National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013.

National Environment Protection Council (NEPC) 2013b, 'Schedule B(2) Guideline on Site Characterisation', National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013.

National Environment Protection Council (NEPC) 2013c, 'Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soil', National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013.

National Environment Protection Council (NEPC) 2013d, 'Schedule B(4) Guideline on Site-Specific Health Risk Assessment Methodology', National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013.

National Environment Protection Council (NEPC) 2013e, 'Schedule B(5a) Guideline on Ecological Risk Assessment', National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013.

National Environment Protection Council (NEPC) 2013f, 'Schedule B(5b) Guideline on Methodology to Derive Ecological Investigation Levels in Contaminated Soils', National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013.

National Environment Protection Council (NEPC) 2013g, 'Schedule B(5c) Guideline on Ecological Investigation Levels for Arsenic, Chromium (III), Copper, DDT, Lead, Naphthalene, Nickel and Zinc', National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013.

National Environment Protection Council (NEPC) 2013h, 'Schedule B(6) Guideline on The Framework for Risk-Based Assessment of Groundwater Contamination', National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013.

National Environment Protection Council (NEPC) 2013i, 'Schedule B(7) Guideline on Derivation of Health-Based Investigation Levels', National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013.

NSW DEC 2007, 'Contaminated Sites: Guidelines for the Assessment and Management of Groundwater Contamination' dated March 2007, ref: DEC 2007/144.

NSW EPA 1995, 'Contaminated Sites: Sampling Design Guidelines', dated September 1995, ref: EPA 95/59.

NSW EPA 2000, 'Environmental Guidelines: Use and Disposal of Biosolid Products' dated December 2000, ref: EPA 97/62

NSW EPA 2015, 'Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997' dated September 2015, ref: EPA 2015/0164.

NSW EPA 2017, 'Contaminated Land Management, Guidelines for the NSW Site Auditor Scheme (3rd edition)', dated October 2017, ref: EPA 2017P0269.

NSW EPA 2020a, 'Assessment and management of hazardous ground gases' dated May 2020, ref: EPA 2019P2047

NSW EPA 2020b, 'Contaminated Land Guidelines: Consultants reporting on contaminated land' dated May 2020, ref: EPA2020P2233.

VIC EPA 2009 'Industrial Waste Resource Guidelines' dated June 2009, ref: IWRG702.

WA DOH 2009, 'Guidelines for the Assessment, Remediation and Management of Asbestos Contaminated Sites in Western Australia', dated May 2009.

FIGURES

•	•
	liance

Client Name:	ESR Australia	Figure / Drawing Number:	1	
Project Name:	Detailed Site Investigation	Figure / Drawing Date:	27/09/2021	
Project Location:	290-308 Aldington Road and 59-63 Abbotts Road, Kemps Creek NSW	Report Number:	13546-ER-2-1	'

Client Name:	ESR Australia	Figure / Drawing Number:	2	
Project Name:	Detailed Site Investigation	Figure / Drawing Date:	27/09/2021	1
Project Location:	290-308 Aldington Road and 59-63 Abbotts Road, Kemps Creek NSW	Report Number:	13546-ER-2-1	

Client Name:	ESR Australia	Figure / Drawing Number:	3	
Project Name:	Detailed Site Investigation	Figure / Drawing Date:	28/09/2021	,
Project Location:	290-308 Aldington Road and 59-63 Abbotts Road, Kemps Creek NSW	Report Number:	13546-ER-2-1	

Client Name:	ESR Australia	Figure / Drawing Number:	4a	
Project Name:	Detailed Site Investigation	Figure / Drawing Date:	29/09/2021	,
Project Location:	290-308 Aldington Road and 59-63 Abbotts Road, Kemps Creek NSW	Report Number:	13546-ER-2-1	

Client Name:	ESR Australia	Figure / Drawing Number:	4b	
Project Name:	Detailed Site Investigation	Figure / Drawing Date:	30/09/2021	1
Project Location:	290-308 Aldington Road and 59-63 Abbotts Road, Kemps Creek NSW	Report Number:	13546-ER-2-1	
				•

Client Name:	ESR Australia	Figure / Drawing Number:	
Project Name:	Detailed Site Investigation	Figure / Drawing Date:	23/11/2021
Project Location:	290-308 Aldington Road and 59-63 Abbotts Road, Kemps Creek NSW	Report Number:	13546-ER-2-1

Client Name:	ESR Australia	Figure / Drawing Number:	6	
Project Name:	Detailed Site Investigation	Figure / Drawing Date:	23/11/2021	i.
Project Location:	290-308 Aldington Road and 59-63 Abbotts Road, Kemps Creek NSW	Report Number:	13546-ER-2-1	Ì

alliance Report No.: 13546-ER-2-1

TABLES

alliance

			Asbestos Health	Laboratory Results				On-site gra	vimetric results	
Sample ID	Date Sampled	Asbestos Health Screening Level NEPM ASC 2013 (% w/w) HIL A - FA/AF	Screening Level NEPM ASC 2013 (% w/w) HIL A - Bonded ACM	Asbestos Detected/ Non-Detected	Percentage of AF/FA <7mm, %w/w	Percentage of Bonded ACM >7mm (500ml), %w/w	Weight of Sample (10L), kg	Onsite weight of ACM fragment >7mm, kg	Laboratory weight of ACM fragment >7mm, kg	Percentage of Bonded ACM >7mm (10L), %w/w
TP1 0.0-0.1	6/10/2021	0.001%	0.05%	No asbestos detected.	-	-	16.5	-	-	-
TP2 0.0-0.1	6/10/2021	0.001%	0.05%	No asbestos detected.	-	-	16.8	-	-	-
TP3 0.0-0.1	6/10/2021	0.001%	0.05%	No asbestos detected.	-	-	17.7	-	-	-
TP4 0.0-0.1	6/10/2021	0.001%	0.05%	No asbestos detected.	-	-	17.8	-	-	-
TP5 0.0-0.1	6/10/2021	0.001%	0.05%	No asbestos detected.	-	-	15.9	-	-	-
TP6 0.0-0.1	6/10/2021	0.001%	0.05%	No asbestos detected.	-	-	14.1	-	-	-
TP7 0.0-0.1	6/10/2021	0.001%	0.05%	No asbestos detected.	-	-	14.8	-	-	-
TP8 0.0-0.1	6/10/2021	0.001%	0.05%	No asbestos detected.	-	-	15.1	-	-	-
TP9 0.0-0.1	6/10/2021	0.001%	0.05%	Chrysotile asbestos detected.	-	-	14.7	0.056	-	0.0571%
TP10 0.0-0.1	6/10/2021	0.001%	0.05%	No asbestos detected.	-	-	17.9	-	-	-
TP11 0.0-0.1	6/10/2021	0.001%	0.05%	No asbestos detected.	-	-	17.2	-	-	-
TP12 0.0-0.1	6/10/2021	0.001%	0.05%	No asbestos detected.	-	-	14.4	-	-	-
TP14 0.0-0.1	6/10/2021	0.001%	0.05%	No asbestos detected.	-	-	16.1	-	-	-
TP15 0.0-0.1	6/10/2021	0.001%	0.05%	No asbestos detected.	-	-	17.2	-	-	-
TP16 0.0-0.1	6/10/2021	0.001%	0.05%	No asbestos detected.	-	-	14.7	-	-	-
TP17 0.0-0.1	6/10/2021	0.001%	0.05%	No asbestos detected.	-	-	17.4	-	-	-
TP18 0.0-0.1	6/10/2021	0.001%	0.05%	No asbestos detected.	-	-	15.2	-	-	-
TP19 0.0-0.1	7/10/2021	0.001%	0.05%	No asbestos detected.	-	-	17.2	-	-	-
TP20 0.0-0.1	7/10/2021	0.001%	0.05%	No asbestos detected.	-	-	6.8	-	-	-
TP21 0.0-0.1	7/10/2021	0.001%	0.05%	No asbestos detected.	-	-	16.5	-	-	-
TP22 0.0-0.1	6/10/2021	0.001%	0.05%	No asbestos detected.	-	-	13.8	-	-	-
TP23 0.0-0.1	7/10/2021	0.001%	0.05%	No asbestos detected.	-	-	13.6	-	-	-
TP24 0.0-0.1	7/10/2021	0.001%	0.05%	No asbestos detected.	-	-	14.4	-	-	-
TP25 0.0-0.1	7/10/2021	0.001%	0.05%	No asbestos detected.	-	-	14.4	-	-	-
TP26 0.0-0.1	7/10/2021	0.001%	0.05%	No asbestos detected.		-	15.8	-	-	-
DR01 0.0-0.1	6/10/2021	0.001%	0.05%	No asbestos detected.	-	-	17.5	-	-	-
DR02 0.0-0.1	6/10/2021	0.001%	0.05%	No asbestos detected.		-	16.9	-	-	-
DR03 0.0-0.1	6/10/2021	0.001%	0.05%	No asbestos detected.		-	17.5	-	-	-
DR04 0.0-0.1	7/10/2021	0.001%	0.05%	No asbestos detected.	-	-	16.8	-	-	-
DR05 0.0-0.1	7/10/2021	0.001%	0.05%	No asbestos detected.	-	-	16.2	-	-	-
DR06 0.0-0.1	7/10/2021	0.001%	0.05%	No asbestos detected.	-	-	17.2	-	-	-
DR07 0.0-0.1	7/10/2021	0.001%	0.05%	No asbestos detected.	-	-	16.6	-	-	-
DR08 0.0-0.1	7/10/2021	0.001%	0.05%	No asbestos detected.		-	16.5	-	-	-
SP1-1	7/10/2021	0.001%	0.05%	No asbestos detected.		-	7.6	-	-	-

Legend

Highlighted concentration exceeds the adopted site criteria - Asbestos Health Screening Level (w/w) - NEPM ASC 2013 AF/FA Highlighted concentration exceeds the adopted site criteria - Asbestos Health Screening Level (w/w) - NEPM ASC 2013 Bonded ACM

ACM Asbestos Containing Material

FA and AF Fibrous Asbestos and Asbestos Fines

No published criteria or sample not analysed

NL Not Limiting

			Asbestos Health	Laboratory Results				On-site gra	vimetric results	
Sample ID	Date Sampled	Asbestos Health Screening Level NEPM ASC 2013 (% w/w) HIL A - FA/AF	Screening Level NEPM ASC 2013 (% w/w) HIL A - Bonded ACM	Asbestos Detected/ Non-Detected	Percentage of AF/FA <7mm, %w/w	Percentage of Bonded ACM >7mm (500ml), %w/w	Weight of Sample (10L), kg	Onsite weight of ACM fragment >7mm, kg	Laboratory weight of ACM fragment >7mm, kg	
TP13-0.0-0.1	8/10/2021	0.001%	0.05%	No asbestos detected.			15.6			
TP27-0.0-0.1	8/10/2021	0.001%	0.05%	No asbestos detected.	-	-	16.1	-	-	-
TP28-0.0-0.1	8/10/2021	0.001%	0.05%	No asbestos detected.	-	-	15.3	-	-	-
TP29-0.0-0.1	8/10/2021	0.001%	0.05%	No asbestos detected.	-	-	16.2	-	-	-
TP30-0.0-0.1	8/10/2021	0.001%	0.05%	No asbestos detected.	-	-	16.8	-	-	-
TP31-0.0-0.1	8/10/2021	0.001%	0.05%	No asbestos detected.	-	-	12.6	-	-	-
TP32-0.0-0.1	8/10/2021	0.001%	0.05%	No asbestos detected.	-	-	15.3	-	-	-
TP33-0.0-0.1	8/10/2021	0.001%	0.05%	No asbestos detected.	-	-	11.2	-	-	-
TP34-0.0-0.1	8/10/2021	0.001%	0.05%	No asbestos detected.	-	-	17.1	-	-	-
TP35-0.0-0.1	8/10/2021	0.001%	0.05%	No asbestos detected.	-	-	16.2	-	-	-
TP36-0.0-0.1	8/10/2021	0.001%	0.05%	No asbestos detected.	-	-	16.3	-	-	-
TP37-0.0-0.1	8/10/2021	0.001%	0.05%	No asbestos detected.	-	-	15.4	-	-	-
TP38-0.0-0.1	8/10/2021	0.001%	0.05%	No asbestos detected.	-	-	14.3	-	-	-
TP39-0.0-0.1	8/10/2021	0.001%	0.05%	No asbestos detected.	-	-	13.8	-	-	-
TP40-0.0-0.1	8/10/2021	0.001%	0.05%	No asbestos detected.	-	-	12.2	-	-	-
TP41 0.0-0.1	12/10/2021	0.001%	0.05%	No asbestos detected.	-	-	14.3	-	-	-
TP42 0.0-0.1	12/10/2021	0.001%	0.05%	No asbestos detected.	-	-	14.4	-	-	-
TP43 0.0-0.1	12/10/2021	0.001%	0.05%	No asbestos detected.	-	-	16.0	-	-	-
TP44 0.0-0.1	12/10/2021	0.001%	0.05%	No asbestos detected.	-	-	13.9	-	-	-
DR11 0.0-0.1	13/10/2021	0.001%	0.05%	No asbestos detected.	-	-	17.1	-	-	-
DR12 0.0-0.1	13/10/2021	0.001%	0.05%	No asbestos detected.	-	-	17.5	-	-	-
DR13 0.0-0.1	13/10/2021	0.001%	0.05%	No asbestos detected.	-	-	15.6	-	-	-
DR14 0.0-0.1	13/10/2021	0.001%	0.05%	No asbestos detected.	-	-	16.9	-	-	-
ASB10 0.0-0.1	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	17.2	-	-	-
TP50 0.0-0.1	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	17.6	-	-	-
TP50 0.1-0.4	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	16.3	-	-	-
ASB11 0.0-0.1	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	15.6	-	-	-
TP51 0.0-0.1	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	13.6	-	-	-
TP51 0.1-1.0	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	13.9	-	-	-
TP51 1.0-2.0	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	14.2	-	-	-
TP51 2.0-2.5	15/10/2021	0.001%	0.05%	Chrysotile asbestos detected.	-	-	17.1	0.22	-	0.1930%
ASB12 0.0-0.1	15/10/2021	0.001%	0.05%	Chrysotile and Amosite asbestos detected.	-	1.110%	14.9	0.58	0.008	0.5839%
ASB12 0.1-1.0	15/10/2021	0.001%	0.05%	Chrysotile and Amosite asbestos detected.	0.0025	1.800%	14.1	1.63	0.001	1.7340%
ASB12 1.0-2.0	15/10/2021	0.001%	0.05%	Chrysotile asbestos detected.	0.0040	0.770%	18.0	1.25	0.007	1.0417%
ASB13 0.0-0.1	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	14.5	-	-	-
ASB13 0.1-1.0	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	15.0	-	-	-
TP52 0.0-0.1	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	14.4	-	-	-
TP52 0.1-1.0	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	15.2	-	-	-
TP52 1.0-2.0	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	15.6	-	-	-
TP52 2.0-2.5	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	16.7	-	-	-
TP53 0.0-0.1	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	13.7	-	-	-
ASB14 0.0-0.1	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	14.2	-	-	-
TP54 0.0-0.1	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	13.7	-	-	-
TP54 0.1-1.0	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	14.4	-	-	-
TP54 1.0-2.0	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	14.8	-	-	-
TP54 2.0-2.5	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	15.2	-	-	-
ASB15 0.0-0.1	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	15.3	-	-	-
ASB15 0.1-1.0	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	15.6	-	-	-
ASB15 1.0-2.0	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	14.7	-	-	-

alliance

		Asbestos Health	Asbestos Health	Laboratory Results				On-site gra	vimetric results	
Sample ID	Date Sampled	Screening Level NEPM ASC 2013 (% w/w) HIL A - FA/AF	Screening Level NEPM ASC 2013 (% w/w) HIL A - Bonded ACM	Asbestos Detected/ Non-Detected	Percentage of AF/FA <7mm, %w/w	Percentage of Bonded ACM >7mm (500ml), %w/w	Weight of Sample (10L), kg	Onsite weight of ACM fragment >7mm, kg	Laboratory weight of ACM fragment >7mm, kg	Percentage of Bonded ACM >7mi (10L), %w/w
ASB15 2.0-2.5	15/10/2021	0.001%	0.05%	No asbestos detected.	-	-	14.5	-	-	-
TP61 0.0-0.1	18/10/2021	0.001%	0.05%	No asbestos detected.	-	-	14.4	-	-	-
TP61 0.1-1.0	18/10/2021	0.001%	0.05%	No asbestos detected.	-	-	14.0	-	-	-
TP62 0.0-0.1	18/10/2021	0.001%	0.05%	No asbestos detected.	-	-	13.8	-	-	-
TP63 0.0-0.1	18/10/2021	0.001%	0.05%	No asbestos detected.	-	-	15.9	-	-	-
TP64 0.0-0.1	18/10/2021	0.001%	0.05%	No asbestos detected.	-	-	15.2	-	-	-
TP65 0.0-0.1	18/10/2021	0.001%	0.05%	No asbestos detected.	-	-	16.2	-	-	-
TP66 0.0-0.1	18/10/2021	0.001%	0.05%	No asbestos detected.	-	-	13.8	-	-	-
SP3-1	18/10/2021	0.001%	0.05%	No asbestos detected.		-	14.7		-	-
SP3-2	18/10/2021	0.001%	0.05%	No asbestos detected.	-	-	15.1	-	-	-
DR15 0.0-0.1	18/10/2021	0.001%	0.05%	No asbestos detected.	-	-	15.5	-	-	-
TP141 0.0-0.1	18/10/2021	0.001%	0.05%	Chrysotile, amosite, and crocidolite asbestos detected	-	-	13.6	0.017	0.017	0.0188%
TP141 0.1-1.0	18/10/2021	0.001%	0.05%	No asbestos detected.	-	-	17.2	-	-	-
TP141 1.0-1.5	18/10/2021	0.001%	0.05%	No asbestos detected.	-	-	16.6	-	-	-
TP142 0.0-0.1	18/10/2021	0.001%	0.05%	No asbestos detected.	-	-	13.9	-	-	-
TP142 0.1-1.0	18/10/2021	0.001%	0.05%	No asbestos detected.	-	-	17.0	-	-	-
TP142 1.0-1.5	18/10/2021	0.001%	0.05%	No asbestos detected.	_	_	14.7	-	_	_
DR16 0.0-0.1	19/10/2021	0.001%	0.05%	No asbestos detected.	-	_	15.6	-	_	_
DR17 0.0-0.1	19/10/2021	0.001%	0.05%	No asbestos detected.	-	_	15.2	-	_	_
DW22	19/10/2021	0.001%	0.05%	No asbestos detected.		_	14.4	_	_	_
DW23	19/10/2021	0.001%	0.05%	Chrysotile and amosite asbestos detected.	-	_	14.7	0.115	0.057	0.1173%
TP70 0.0-0.1	19/10/2021	0.001%	0.05%	Chrysotile asbestos detected.	0.00300%	_	14.6	-	-	-
TP71 0.0-0.1	19/10/2021	0.001%	0.05%	No asbestos detected.		-	14.8	-	_	_
TP95 0.0-0.1	19/10/2021	0.001%	0.05%	No asbestos detected.		-	10.4	-	_	_
TP120 0.0-0.1	20/10/2021	0.001%	0.05%	No asbestos detected.		_	14.7	-	_	_
TP125 0.0-0.1	20/10/2021	0.001%	0.05%	No asbestos detected.		_	13.6	-	_	_
DS13	22/10/2021	0.001%	0.05%	No asbestos detected.		-	17.9	0.022	_	0.0184%
DS14	22/10/2021	0.001%	0.05%	No asbestos detected.		-	18.6	-	_	-
DS12	15/10/2021	0.001%	0.05%	No asbestos detected.		-	18.8	-	_	
TP51 2.0-2.5 ASB	15/10/2021	-	-	Chrysotile asbestos detected.		-	-	0.22	_	_
ASB12 0.0-0.1 ASB	15/10/2021			Chrysotile asbestos detected.			_	0.58	_	
ASB12 0.0-0.1 ASB ASB12 0.1-1.0 ASB	15/10/2021	-	-	Chrysotile asbestos detected. Chrysotile asbestos detected.	-	-	-	1.63	-	-
ASB12 0.1-1.0 ASB ASB12 1.0-2.0 ASB	15/10/2021		-	Chrysotile asbestos detected. Chrysotile asbestos detected.				1.25	-	
TP61 ASB	18/10/2021			Chrysotile asbestos detected. Chrysotile asbestos detected.	-	-		1.25	0.182	
TP141 0.0-0.1 ASB	18/10/2021		-	Chrysotile, amosite, and crocidolite asbestos detected.	-	-	-	0.017	0.162	-
DW23 ASB	19/10/2021	-	-	Chrysotile and amosite asbestos detected.	-	-		0.017	0.017	-
DS13 ASB	22/10/2021	-	-	Chrysotile and amosite aspestos detected.	-	-	-	0.115	0.057	-
TP43 0.0-0.1 ASB	12/10/2021	-	-	No asbestos detected.	-	-	-	0.022	-	-
TP09 0.0-0.1 ASB	7/10/2021	-		Chrysotile asbestos detected.	-	-	-	0.02	-	-
TP18 0.0-0.1 ASB	7/10/2021	-	-	No asbestos detected.	-	-	-	0.056	-	-
TP18 0.0-0.1 ASB	7/10/2021	-		No asbestos detected. No asbestos detected.				0.02		
TP26 0.0-0.1 ASB	7/10/2021		-	No aspestos detected. No aspestos detected.	-	-	-	0.09	-	-
1F20 U.U-U.1 ASB	7/10/2021	-	-	ino aspesios delected.	-	-	-	0.01	-	ı -

Metals TRH STEXN PCB	Analyte Asseric Asseric Cadmium Chromium Chromiu	Units mg/kg	Sample Matrix LOR 5 5 0.4/1 2 5 5 0.1 2 6 10/20 50 100 100	SOIL 11.0 < 0.4 23 34 40 < 0.1 14 58 <20 <50 <100	10.0 < 0.4 23 28 27 < 0.1 15 69 <20	RPD (%) 10 n/a 0 19 39 n/a 7	10.0 < 0.4 23 28 27 < 0.1	10.0 <1 21 22 36	RPD (%) 0 n/a 9	15.0 < 0.4 25	SOIL -	RPD (%) n/a n/a n/a	SOIL	SOIL	RPD (%) n/a n/a n/a	9.5 < 0.4 29	15.0 < 0.4 36	RPD (*
Metals TRH BTEXN	Arsenic Cadmism Chomism Chomism Chopper Lead Mercury Nickel ZEC-6F1) TRH CB-C6F2) TRH CB-C6F2) TRH CB-C6F2 TRH CB-C6F2 TRH CB-C6F2 TRH CB-C6F4 TRH CB-	maika maika maika maika maika maika maika maika maika maika maika maika maika	5 0.4/1 2 5 5 5 0.1 2 5 10/20 50 100 100	< 0.4 23 34 40 < 0.1 14 58 <20 <50	<0.4 23 28 27 <0.1 15 59 <20	10 n/a 0 19 39 n/a 7	< 0.4 23 28 27 < 0.1	<1 21 22	0 n/a 9	< 0.4	:	n/a n/a	:	:	n/a n/a	< 0.4	< 0.4	45 n/a
TRH BTEXN	Cadmium Chromium Copper Lead Mercury Nickel Zinc TRH CG-CG (F1) TRH C10-C16 (F2) TRH C10-C34 (F3) TRH C10-C44 (F3) TRH C34-C40 (F4) Beatzene Toluene Ethybenzene	mgikg	2 5 6 0.1 2 5 10/20 50 100	23 34 40 < 0.1 14 58 <20 <50	23 28 27 < 0.1 15 59 <20	0 19 39 n/a 7	23 28 27 < 0.1	21 22	9		-:		-:-					
TRH BTEXN	Copper Lead Mercary Nickel Zinc TRH C66-C0 (F1) TRH C10-C16 (F2) TRH C10-C34 (F3) TRH C14-C44 (F3) TRH C34-C40 (F4) Benzene Toluene Ethybenzene	mg/kg	5 5 0.1 2 5 10/20 50 100	34 40 < 0.1 14 58 <20 <50	28 27 < 0.1 15 59 <20	19 39 n/a 7	28 27 < 0.1	22		25		n/a		-	n/a	29	36	
TRH BTEXN	Lead Mercury Nickel Zen TRH C&CS (F1) TRH C10-C16 (F2) TRH C10-C16 (F2) TRH C10-C16 (F3) TRH C34-C40 (F4) Beruzene Toluene Ethylbenzene	mg/kg	5 0.1 2 5 10/20 50 100	40 < 0.1 14 58 <20 <50	27 < 0.1 15 59 < 20	39 n/a 7	27 < 0.1											22
BTEXN	Mercury Nickel Zinc TRH C8-C9 (F1) TRH C10-C16 (F2) TRH C10-C34 (F3) TRH C34-C40 (F4) Benzene Toluene Ethylbenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2 5 10/20 50 100 100	< 0.1 14 58 <20 <50	< 0.1 15 59 <20	n/a 7	< 0.1		24 29	27 25		n/a n/a		-	n/a n/a	29 21	40 30	32 35
BTEXN	Nickel Zinc TRH C8-C9 (F1) TRH C10-C16 (F2) TRH C10-C16 (F2) TRH C10-C34 (F3) TRH C34-C40 (F4) Benzene Toluene Ethytbenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2 5 10/20 50 100 100	14 58 <20 <50	15 59 <20	7		<0.1	n/a	< 0.1		n/a			n/a	< 0.1	< 0.1	n/a
BTEXN	TRH C8-C9 (F1) TRH C10-C16 (F2) TRH C16-C34 (F3) TRH C34-C40 (F4) Benzene Toluene Ethylbenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	10/20 50 100 100	<20 <50	<20	2	15	19	24	23		n/a			n/a	25	30	18
BTEXN	TRH C10-C16 (F2) TRH C16-C34 (F3) TRH C34-C40 (F4) Benzene Toluene Ethylbenzene	mg/kg mg/kg mg/kg mg/kg mg/kg	50 100 100	<50			59	51	15	120		n/a			n/a	120	220	59
BTEXN	TRH C16-C34 (F3) TRH C34-C40 (F4) Benzene Toluene Ethylbenzene	mg/kg mg/kg mg/kg mg/kg	100 100			n/a	<20	<10	n/a	<20		n/a			n/a	<20	<20	n/a
	TRH C34-C40 (F4) Benzene Toluene Ethylbenzene	mg/kg mg/kg mg/kg	100		<50 <100	n/a n/a	<50 <100	<50 <100	n/a n/a	<50 <100	-	n/a n/a		- :	n/a n/a	<50 1000	<50 <100	n/a 181
	Benzene Toluene Ethylbenzene	mg/kg mg/kg		<100	<100	n/a	<100	<100	n/a	<100	-	n/a		-	n/a	180	<100	113
	Toluene Ethylbenzene	mg/kg	0.1/0.2	<0.1	<0.1	n/a	<0.1	<0.2	n/a	<0.1	-	n/a		-	n/a	<0.1	<0.1	n/a
			0.1/0.5	<0.1	<0.1	n/a	<0.1	<0.5	n/a	<0.1		n/a			n/a	<0.1	<0.1	n/a
PCB	Total Xylene	mg/kg	0.1/0.5	<0.1	<0.1	n/a	<0.1	<0.5	n/a	<0.1		n/a			n/a	<0.1	<0.1	n/a
PCB	Manistralana	mg/kg	0.3/0.5	<0.3 <0.5	<0.3 <0.5	n/a	<0.3	<0.5	n/a	<0.3		n/a			n/a	<0.3	<0.3 <0.5	n/a n/a
	Naphthalene Total PCB	mg/kg mg/kg	0.5/1	~U.D	~U.D	n/a n/a	~0.5	<1	n/a n/a	~U.D	<0.1	n/a n/a	<0.1	<0.1	n/a n/a	~U.D	<0.5	n/a n/a
	Naphthalene	mg/kg	0.5	<0.5	< 0.5	n/a	<0.5	< 0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a
L	Acenaphthylene	mg/kg	0.5	<0.5	< 0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a		-	n/a	<0.5	< 0.5	n/a
	Acenaphthene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a
	Fluorene	mg/kg mg/ka	0.5	<0.5 <0.5	<0.5 <0.5	n/a n/a	<0.5 <0.5	<0.5 <0.5	n/a n/a	<0.5 <0.5		n/a n/a		-	n/a n/a	<0.5 <0.5	<0.5 <0.5	n/a n/a
	Phenanthrene Anthracene	mg/kg mg/kg	0.5 0.5	<0.5	<0.5	n/a n/a	<0.5	<0.5	n/a n/a	<0.5	-	n/a n/a			n/a n/a	<0.5	<0.5	n/a n/a
	Fluoranthene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5	-	n/a	-	-	n/a	<0.5	<0.5	n/a
	Pyrene	mg/kg	0.5	<0.5	< 0.5	n/a	<0.5	< 0.5	n/a	<0.5		n/a			n/a	<0.5	< 0.5	n/a
	Benz(a)anthracene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a
PAH	Chrysene	mg/kg mg/ka	0.5	<0.5 <0.5	<0.5 <0.5	n/a n/a	<0.5 <0.5	<0.5 <0.5	n/a n/a	<0.5 <0.5	-:-	n/a n/a		- :	n/a n/a	<0.5 <0.5	<0.5 <0.5	n/a n/a
	Benzo(b+j)fluoranthene	mg/kg mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5	- :	n/a			n/a	<0.5	<0.5	n/a
	Benzo(a)pyrene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a
	Indeno(1,2,3,cd)pyrene	mg/kg	0.5	<0.5	< 0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a
	Dibenz(a.h)anthracene	mg/kg	0.5	<0.5	< 0.5	n/a	<0.5	< 0.5	n/a	<0.5		n/a			n/a	<0.5	< 0.5	n/a
	Benzo(g.h.i)perylene Total PAH	mg/kg mg/kg	0.5	<0.5 <0.5	<0.5 <0.5	n/a n/a	<0.5 <0.5	<0.5 <0.5	n/a n/a	<0.5 <0.5		n/a n/a		-	n/a n/a	<0.5 <0.5	<0.5 <0.5	n/a n/a
	Benzo(a)pyrene TEQ (zero)	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5	- :	n/a		- :	n/a	<0.5	<0.5	n/a
Ber	enzo(a)pyrene TEQ (half LOR)	mg/kg	0.5	0.6	0.6	n/a	0.6	0.6	n/a	0.6		n/a			n/a	0.6	0.6	n/a
E	Benzo(a)pyrene TEQ (LOR)	mg/kg	0.5	1.2	1.2	n/a	1.2	1.2	n/a	1.2		n/a			n/a	1.2	1.2	n/a
	alpha-BHC	mg/kg	0.05/0.5		- :	n/a	- :		n/a		<0.5	n/a	<0.5	<0.05	n/a		-	n/a
	Hexachlorobenzene (HCB)	mg/kg mg/kg	0.05/0.5		- :	n/a n/a			n/a n/a		<0.5 <0.5	n/a n/a	<0.5 <0.5	<0.05	n/a n/a		- :	n/a n/a
	beta-BHC gamma-BHC	mg/kg	0.05/0.5		- :	n/a	- :	- :	n/a	- :	<0.5	n/a	<0.5	<0.05	n/a	- :	- :	n/a
	delta-BHC	mg/kg	0.05/0.5			n/a			n/a		<0.5	n/a	<0.5	<0.05	n/a			n/a
	Heptachlor	mg/kg	0.05/0.5			n/a			n/a		<0.5	n/a	<0.5	<0.05	n/a			n/a
	Aldrin	mg/kg mg/ka	0.05/0.5		-	n/a n/a			n/a n/a		<0.5 <0.5	n/a n/a	<0.5 <0.5	<0.05	n/a n/a			n/a n/a
	Heptachlor epoxide Total Chlordane (sum)	mg/kg mg/kg	0.05/0.5	- :	- :	n/a n/a	- :	- :	n/a n/a	- :	<0.5 <1	n/a n/a	<1	<0.05	n/a n/a	- :		n/a n/a
	trans-Chlordane	mg/kg	0.05/0.5		-	n/a			n/a		<0.5	n/a	<0.5	<0.05	n/a			n/a
	alpha-Endosulfan	mg/kg	0.05/0.5			n/a			n/a		<0.5	n/a	<0.5	<0.05	n/a			n/a
OCP	cis-Chlordane	mg/kg	0.05/0.5			n/a			n/a		<0.5	n/a	<0.5	<0.05	n/a			n/a
OCP	Dieldrin 4.4'-DDE	mg/kg mg/ka	0.05/0.5			n/a n/a		-	n/a n/a		<0.5 <0.5	n/a n/a	<0.5 <0.5	<0.05	n/a n/a			n/a n/a
	4.4'-DDE Endrin	mg/kg mg/ka	0.05/0.5	- : -	- : -	n/a n/a	- : -	- : -	n/a n/a	- :	<0.5	n/a n/a	<0.5	<0.05	n/a n/a	- :	- :	n/a
	Endosulfan (sum)	mg/kg	0.05/0.5		-	n/a			n/a		<0.5	n/a	<0.5	<0.05	n/a			n/a
	beta-Endosulfan	mg/kg	0.05/0.5		-	n/a			n/a		<0.5	n/a	<0.5	<0.05	n/a			n/a
	4.4`-000	mg/kg	0.05/0.5			n/a			n/a		<0.5	n/a	<0.5	<0.05	n/a			n/a
	Endrin aldehyde	mg/kg mg/kg	0.05/0.5		- :	n/a n/a	- :		n/a n/a		<0.5 <0.5	n/a n/a	<0.5 <0.5	<0.05	n/a n/a			n/a n/a
	Endosulfan sulfate	mg/kg mg/kg	0.05/0.5		- :	n/a n/a	- :		n/a n/a		<0.5	n/a n/a	<0.5	<0.2	n/a n/a		-	n/c
	Endrin ketone	mg/kg	0.05/0.5			n/a		-	n/a		<0.5	n/a	<0.5	< 0.05	n/a			n/a
	Methoxychlor	mg/kg	0.2/0.5		-	n/a			n/a		<0.5	n/a	<0.5	<0.2	n/a			n/a
	Sum of DDD + DDE + DDT	mg/kg	0.05/0.5		-	n/a			n/a		<0.5	n/a	<0.5	<0.05	n/a			n/a
	Sum of Aldrin + Dieldrin	mg/kg	0.05/0.5			n/a			n/a		<0.5	n/a	<0.5	<0.05	n/a			n/a

			Sample ID	BD3	BT3		TP63 0.0-0.1	BD4		BD4	BT4		TP120 0.0-0.1	BD6		BD5	BT5	
Table 2. RPD Table			Reference	S21-Oc38492	ES2137883003		S21-No36962	S21-No02584		S21-No02584	ES2139759001		S21-No02632	S21-No02657			ES2139759002	
290-308 Aldington Ro	ad and 59-63 Abbotts Road, Kemps Ci	eek NSW	Date Sampled	7/10/2021	7/10/2021		18/10/2021	18/10/2021		18/10/2021	18/10/2021		21/10/2021	21/10/2021		21/10/2021	21/10/2021	
13018-ER-1-1			Sample Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	
Group	Analyte	Units	LOR			RPD (%)			RPD (%)			RPD (%)			RPD (%)			RPD (%)
	Arsenic	mg/kg	5	15.0	<5	143	8	- 11	35	- 11	9.0	20	5		n/a			n/a
	Cadmium	mg/kg	0.4/1	< 0.4	<1	n/a	< 0.4	< 0.4	n/a	< 0.4	<1	n/a	< 0.4		n/a			n/a
	Chromium	mg/kg	2	36	4	160	21	23	9	23	19	19	12		n/a			n/a
Metals	Copper	mg/kg	5	40	<5	176	33	36	9	36	34	- 6	26		n/a			n/a
Metals	Lead	mg/kg	5	30	<5	169	24	28	15	28	25	11	16		n/a			n/a
	Mercury	mg/kg	0.1	< 0.1	< 0.1	n/a	< 0.1	< 0.1	n/a	< 0.1	<0.1	n/a	< 0.1		n/a			n/a
	Nickel	mg/kg	2	30	<2	187	17	20	16	20	17	16	9		n/a			n/a
	Zinc	mg/kg	5	220	11	181	56	71	24	71	53	29	360		n/a			n/a
	TRH C6-C9 (F1)	mg/kg	10/20	<20	<10	n/a	<20	<10	n/a	<10	<10	n/a	<10		n/a			n/a
TRH	TRH C10-C16 (F2)	mg/kg	50	<50	<50	n/a	<50	<50	n/a	<50	<50	n/a	<50		n/a			n/a
INI	TRH C16-C34 (F3)	mg/kg	100	<100	<100	n/a	<100	<100	n/a	<100	<100	n/a	<100		n/a			n/a
	TRH C34-C40 (F4)	mg/kg	100	<100	<100	n/a	<100	<100	n/a	<100	<100	n/a	<100		n/a			n/a
	Benzene	mg/kg	0.1/0.2	<0.1	< 0.2	n/a	< 0.1	< 0.2	n/a	<0.2	<0.2	n/a	< 0.2		n/a			n/a
	Toluene	mg/kg	0.1/0.5	<0.1	< 0.5	n/a	<0.1	< 0.5	n/a	<0.5	<0.5	n/a	< 0.5		n/a			n/a
BTEXN	Ethylbenzene	mg/kg	0.1/0.5	<0.1	< 0.5	n/a	< 0.1	< 0.5	n/a	<0.5	<0.5	n/a	< 0.5		n/a			n/a
	Total Xylene	mg/kg	0.3/0.5	<0.3	<0.5	n/a	<0.3	<0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a
	Naphthalene	mg/kg	0.5/1	<0.5	<1	n/a	<0.5	<1	n/a	<1	<1	n/a	<1		n/a			n/a
PCB	Total PCB	mg/kg	0.1		<0.1	n/a			n/a			n/a	<0.1	<0.1	n/a	<0.1	<0.1	n/a
	Naphthalene	mg/kg	0.5	<0.5	< 0.5	n/a	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a
	Acenaphthylene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a
	Acenaphthene	mg/kg	0.5	<0.5	< 0.5	n/a	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a
	Fluorene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a
	Phenanthrene	mg/kg	0.5	<0.5	< 0.5	n/a	<0.5	< 0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a
	Anthracene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a
	Fluoranthene	mg/kg	0.5	<0.5	< 0.5	n/a	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a
	Pyrene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a
	Benz(a)anthracene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	< 0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a
PAH	Chrysene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	< 0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a
	Benzo(b+j)fluoranthene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a
	Benzo(k)fluoranthene	mg/kg	0.5	<0.5 <0.5	<0.5 <0.5	n/a	<0.5	<0.5 <0.5	n/a	<0.5 <0.5	<0.5 <0.5	n/a	<0.5 <0.5		n/a	- :	- :	n/a
	Benzo(a)pyrene	mg/kg	0.5			n/a			n/a			n/a			n/a		- :	n/a
	Indeno(1.2.3.cd)pyrene	mg/kg	0.5	<0.5 <0.5	<0.5 <0.5	n/a	<0.5 <0.5	<0.5 <0.5	n/a n/a	<0.5 <0.5	<0.5 <0.5	n/a n/a	<0.5 <0.5		n/a n/a			n/a n/a
	Dibenz(a.h)anthracene	mg/kg	0.5	<0.5	<0.5	n/a n/a	<0.5	<0.5	n/a n/a	<0.5	<0.5	n/a n/a	<0.5		n/a n/a			n/a n/a
	Benzo(g.h.i)perylene	mg/kg	0.5	<0.5	<0.5	n/a n/a	<0.5	<0.5	n/a n/a	<0.5	<0.5	n/a n/a	<0.5	-	n/a n/a	- :	- :	n/a n/a
	Total PAH	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5	-	n/a	- :	- :	n/a
	Benzo(a)pyrene TEQ (zero)	mg/kg mg/ka	0.5	0.6	0.6	n/a	0.6	0.6	n/a	0.6	0.6	n/a	0.6	- :	n/a	-	- :	n/a
	Benzo(a)pyrene TEQ (half LOR)	mg/kg	0.5	1.2	1.2	n/a	1.2	1.2	n/a	1.2	1.2	n/a	1.2	-	n/a	-		n/a
	Benzo(a)pyrene TEQ (LOR)	mg/kg	0.05/0.5		<0.05	n/a	- 12	1.2	n/a	- 1.2		n/a	<0.05	<0.05	n/a	<0.05	<0.05	n/a
		mg/kg	0.05/0.5	-	<0.05	n/a			n/a	-		n/a	<0.05	<0.05	n/a	<0.05	<0.05	n/a
	Hexachlorobenzene (HCB)	mg/kg mg/kg	0.05/0.5	- :	<0.05	n/a			n/a	- :		n/a	<0.05	<0.05	n/a	<0.05	<0.05	n/a
	beta-BHC gamma-BHC	mg/kg	0.05/0.5	-	<0.05	n/a			n/a	- :		n/a	<0.05	<0.05	n/a	<0.05	<0.05	n/a
	gamma-BHC delta-BHC	mg/kg	0.05/0.5		<0.05	n/a			n/a	- 1		n/a	<0.05	<0.05	n/a	<0.05	<0.05	n/a
	derta-sHC Heptachlor	mg/kg	0.05/0.5	-	<0.05	n/a			n/a	- :		n/a	<0.05	<0.05	n/a	<0.05	<0.05	n/a
	Aldrin	ma/ka	0.05/0.5		<0.05	n/a			n/a			n/a	< 0.06	<0.05	n/a	<0.05	<0.05	n/a
	Heptachlor epoxide	mg/kg	0.05/0.5		< 0.05	n/a			n/a			n/a	< 0.05	< 0.05	n/a	<0.05	<0.05	n/a
	Total Chlordane (sum)	mg/kg	0.05/1		< 0.05	n/a			n/a			n/a	< 0.1	<0.1	n/a	<0.1	<0.05	n/a
	trans-Chlordane	mg/kg	0.05/0.5		< 0.05	n/a			n/a			n/a	< 0.05	< 0.05	n/a	< 0.05	<0.05	n/a
	aloha-Endosulfan	mg/kg	0.05/0.5		<0.05	n/a			n/a			n/a	<0.05	<0.05	n/a	<0.05	<0.05	n/a
	cis-Chlordane	mg/kg	0.05/0.5		< 0.05	n/a			n/a			n/a	< 0.05	< 0.05	n/a	<0.05	<0.05	n/a
OCP	Dieldrin	mg/kg	0.05/0.5		<0.05	n/a			n/a			n/a	< 0.06	< 0.05	n/a	<0.05	<0.05	n/a
	4.4'-DDE	mg/kg	0.05/0.5		<0.05	n/a			n/a			n/a	< 0.06	< 0.05	n/a	<0.05	<0.05	n/a
	Endrin	mg/kg	0.05/0.5		< 0.05	n/a			n/a			n/a	< 0.05	< 0.05	n/a	<0.05	<0.05	n/a
	Endosulfan (sum)	mg/kg	0.05/0.5		< 0.05	n/a			n/a			n/a	< 0.05	<0.05	n/a	<0.05	<0.05	n/a
	beta-Endosulfan	mg/kg	0.05/0.5		<0.05	n/a			n/a			n/a	<0.06	<0.05	n/a	<0.05	<0.05	n/a
	4.4°-DDD	mg/kg	0.05/0.5		<0.05	n/a			n/a			n/a	<0.05	<0.05	n/a	<0.05	<0.05	n/a
	Endrin aldehyde	mg/kg	0.05/0.5		< 0.05	n/a			n/a			n/a	< 0.05	<0.05	n/a	<0.05	<0.05	n/a
	Endosulfan sulfate	mg/kg	0.05/0.5		<0.05	n/a			n/a			n/a	<0.06	<0.05	n/a	<0.05	<0.05	n/a
	4.4'-DDT	mg/kg	0.2/0.5	-	<0.2	n/a			n/a	-		n/a	<0.05	<0.05	n/a	<0.05	< 0.2	n/a
	Endrin ketone	mg/kg	0.05/0.5		<0.05	n/a			n/a			n/a	<0.05	<0.05	n/a	<0.05	<0.05	n/a
	Methaxychlor	mg/kg	0.2/0.5		<0.2	n/a			n/a			n/a	<0.05	<0.05	n/a	<0.05	<0.2	n/a
	Sum of DDD + DDE + DDT	mg/kg	0.05/0.5		<0.05	n/a			n/a			n/a	<0.05	<0.05	n/a	<0.05	<0.05	n/a
	Sum of Aldrin + Dieldrin	mg/kg	0.05/0.5		< 0.05	n/a		-	n/a			n/a	< 0.05	< 0.05	n/a	< 0.05	<0.05	n/a

RPD exceeding criteria Not analysed

Table 2. RPD Table 290-308 Aldington Ros 13018-ER-1-1	ad and 59-63 Abbotts Road, Kemps Ci	reek NSW	Sample ID Reference Date Sampled Sample Matrix	TP27-0.0-0.2 S21-Oc38511 8/10/2021 SOIL	BD6 S21-Oc49312 22/11/2021 SOIL		BD6 S21-0c49312 22/11/2021 SOIL	BT6 ES2138446001 22/10/2021 SOIL		SP1-1 S21-Oc38460 7/10/2021 SOIL	BD7 \$21-Oc49313 22/10/2021 SOIL		BD7 S21-Oc49313 22/10/2021 SOIL	BT7 ES2138446002 22/10/2021 SOIL		TP50 0.0-0.1 \$21-No02560 15/10/2021 SOIL	BD8 S21-Oc49314 22/10/2021 SOIL	
Group	Analyte	Units	LOR	OOL	00%	RPD (%)	OOL	OOIL	RPD (%)	OOL	OOIL	RPD (%)	OOL	00%	RPD (%)	OOIL	UOIL	RPD (%)
	Arsenic	ma/ka	5	9.9	6.6	40	6.6	7.0	6	3.3		n/a			n/a	11	6.5	51
	Cadmium	mg/kg	0.4/1	< 0.4	< 0.4	n/a	< 0.4	<1	n/a	< 0.4		n/a			n/a	< 0.4	< 0.4	n/a
	Chromium	mg/kg	2	20	15	29	15	16	6	10		n/a			n/a	25	14	56
Metals	Copper	mg/kg	5	36	42	15	42	52	21	260		n/a			n/a	42	22	63
metars	Lead	mg/kg	5	25	20	22	20	22	10	12		n/a			n/a	34	19	57
	Mercury	mg/kg	0.1	< 0.1	< 0.1	n/a	< 0.1	<0.1	n/a	< 0.1		n/a			n/a	< 0.1	< 0.1	n/a
	Nickel	mg/kg	2	21	16	27	16	17	6	15		n/a			n/a	20	11	58
	Zinc	mg/kg	5	120	120	0	120	122	2	1000		n/a			n/a	170	70	83
	TRH C6-C9 (F1)	mg/kg	10/20	<20 <50	<20 <50	n/a n/a	<20 <50	<10 <50	n/a n/a	<20 <50	- :	n/a	-:-	- :	n/a	<20 <50	<20 <50	n/a
TRH	TRH C10-C16 (F2)	mg/kg	50	<100	200.00	120	200.00	<100	120	430.00	- :	n/a	-:-	- :	n/a	170	<100	n/a
	TRH C16-C34 (F3) TRH C34-C40 (F4)	mg/kg mg/ka	100	<100	200.00 <100	120 n/a	<100	<100	120 n/a	180.00		n/a n/a			n/a n/a	190	<100	n/a n/a
			0.1/0.2	<0.1	<0.1	n/a n/a	<0.1	<0.2	n/a n/a	180.00 <0.1	-	n/a n/a	-:-	- :	n/a n/a	<0.1	<0.1	n/a n/a
	Benzene Toluene	mg/kg mg/kg	0.1/0.2	<0.1	<0.1	n/a n/a	<0.1	<0.2	n/a n/a	<0.1	- :	n/a n/a	- :	- :	n/a n/a	<0.1	<0.1	n/a n/a
BTEXN	Ethylbenzene	mg/kg mg/ka	0.1/0.5	<0.1	<0.1	n/a	<0.1	<0.5	n/a	<0.1		n/a	- :		n/a	<0.1	<0.1	n/a
	Total Xviene	mg/kg mg/ka	0.1/0.5	<0.3	<0.3	n/a	<0.3	<0.5	n/a	<0.3	- :	n/a	- :		n/a	<0.3	<0.3	n/a
	Naphthalene	mg/kg	0.5/1	<0.5	<0.5	n/a	<0.5	<1	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a
PCB	Total PCB	mg/kg	0.1	-	-	n/a			n/a	<1	<1	n/a	<1	<0.1	n/a	<0.1		n/a
	Naphthalene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a		-0.1	n/a	<0.5	<0.5	n/a
	Acenaphthylene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a
	Acenaphthene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a
	Fluorene	mg/kg	0.5	<0.5	< 0.5	n/a	< 0.5	< 0.5	n/a	<0.5		n/a			n/a	< 0.5	< 0.5	n/a
	Phenanthrene	mg/kg	0.5	<0.5	< 0.5	n/a	< 0.5	< 0.5	n/a	<0.5		n/a			n/a	< 0.5	< 0.5	n/a
	Anthracene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a
	Fluoranthene	mg/kg	0.5	<0.5	< 0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a	<0.5	< 0.5	n/a
	Pyrene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a
	Benz(a)anthracene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a
PAH	Chrysene	mg/kg	0.5	<0.5	< 0.5	n/a	<0.5	< 0.5	n/a	<0.5		n/a			n/a	<0.5	< 0.5	n/a
	Benzo(b+j)fluoranthene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a
	Benzo(k)fluoranthene	mg/kg	0.5	<0.5 <0.5	<0.5 <0.5	n/a n/a	<0.5 <0.5	<0.5 <0.5	n/a n/a	<0.5 <0.5	- :	n/a n/a	-:		n/a n/a	<0.5	<0.5 <0.5	n/a n/a
	Benzo(a)pyrene	mg/kg mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5	- :	n/a	- :	- :	n/a	<0.5	<0.5	n/a
	Indeno(1.2.3.cd)pyrene Dibenz(a.h)anthracene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5	- :	n/a	-	- :	n/a	<0.5	<0.5	n/a
	Benzo(g.h.i)pervlene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a
	Total PAH	mg/kg	0.5	<0.5	<0.5	n/a	<0.5	<0.5	n/a	<0.5		n/a			n/a	<0.5	< 0.5	n/a
	Benzo(a)pyrene TEQ (zero)	mg/kg	0.5	<0.5	< 0.5	n/a	< 0.5	< 0.5	n/a	<0.5		n/a			n/a	<0.5	< 0.5	n/a
	Benzo(a)pyrene TEQ (half LOR)	mg/kg	0.5	0.6	0.6	n/a	0.6	0.6	n/a	0.6		n/a			n/a	0.6	0.6	n/a
	Benzo(a)pyrene TEQ (LOR)	mg/kg	0.5	1.2	1.2	n/a	1.2	1.2	n/a	1.2		n/a			n/a	1.2	1.2	n/a
	alpha-BHC	mg/kg	0.05/0.5			n/a			n/a	<0.5	<0.05	n/a	< 0.5	<0.05	n/a	<0.5		n/a
	Hexachlorobenzene (HCB)	mg/kg	0.05/0.5			n/a			n/a	<0.5	<0.05	n/a	<0.5	< 0.05	n/a	<0.5		n/a
ļ	beta-BHC	mg/kg	0.05/0.5			n/a			n/a	<0.5	<0.05	n/a	<0.5	< 0.05	n/a	<0.5		n/a
,	gamma-BHC	mg/kg	0.05/0.5			n/a			n/a	<0.5	<0.05	n/a	<0.5	<0.05	n/a	<0.5		n/a
	delta-BHC	mg/kg	0.05/0.5			n/a			n/a	<0.5 <0.5	<0.05	n/a	<0.5	<0.05 <0.05	n/a	<0.5		n/a
ļ	Heptachlor Aldrin	mg/kg	0.05/0.5	- :	- :	n/a n/a	- :	-	n/a n/a	<0.5 <0.5	<0.05	n/a n/a	<0.5 <0.5	<0.05 <0.05	n/a n/a	<0.5 <0.5	- :	n/a n/a
		mg/kg	0.05/0.5	-:-	- :	n/a n/a		- :	n/a n/a	<0.5 <0.5	<0.05	n/a n/a	<0.5 <0.5	<0.05 <0.05	n/a n/a	<0.5 <0.5	- :	n/a n/a
	Heptachlor epoxide Total Chlordane (sum)	mg/kg mg/kg	0.05/0.5	- :	- :	n/a	- :	-	n/a	<1	<0.05	n/a	<1	<0.05	n/a	<1	- :	n/a
ŀ	Total Chlordane (sum) trans-Chlordane	mg/kg mg/kg	0.05/1	- :	-	n/a		-	n/a	<0.5	<0.05	n/a	<0.5	<0.05	n/a	<0.5	- :	n/a
	trans-Enrordane aloha-Endosulfan	mg/kg	0.05/0.5	-	-	n/a	- :	-	n/a	<0.5	<0.05	n/a	<0.5	<0.05	n/a	<0.5	-	n/a
	cis-Chlordane	ma/ka	0.05/0.5			n/a			n/a	<0.5	<0.05	n/a	<0.5	<0.05	n/a	<0.5		n/a
OCP	Dieldrin	mg/kg	0.05/0.5			n/a	-		n/a	<0.5	<0.05	n/a	<0.5	<0.05	n/a	<0.5		n/a
j	4.4'-DDE	mg/kg	0.05/0.5			n/a			n/a	<0.5	<0.05	n/a	<0.5	<0.05	n/a	<0.5		n/a
	Endrin	mg/kg	0.05/0.5			n/a			n/a	<0.5	<0.05	n/a	<0.5	<0.05	n/a	<0.5		n/a
	Endosulfan (sum)	mg/kg	0.05/0.5			n/a			n/a	<0.5	<0.05	n/a	<0.5	<0.05	n/a	<0.5		n/a
[beta-Endosulfan	mg/kg	0.05/0.5			n/a			n/a	<0.5	<0.05	n/a	<0.5	<0.05	n/a	<0.5		n/a
	4.4`-DDD	mg/kg	0.05/0.5			n/a			n/a	<0.5	<0.05	n/a	<0.5	<0.05	n/a	<0.5		n/a
	Endrin aldehyde	mg/kg	0.05/0.5			n/a			n/a	<0.5	<0.05	n/a	< 0.5	< 0.05	n/a	<0.5		n/a
	Endosulfan sulfate	mg/kg	0.05/0.5			n/a			n/a	<0.5	<0.05	n/a	<0.5	<0.05	n/a	<0.5		n/a
ļ	4.4`-DDT	mg/kg	0.2/0.5		- :	n/a		- :	n/a n/a	<0.5	<0.2	n/a	<0.5	<0.2	n/a	<0.5 <0.5		n/a n/a
ļ	Endrin ketone	mg/kg	0.05/0.5	- :		n/a		-	n/a n/a	<0.5	<0.05 <0.2	n/a	<0.5 <0.5		n/a			
	Methoxychlor	mg/kg mg/kg	0.2/0.5	- :	-	n/a n/a	- :	-	n/a n/a	<0.5 <0.5	<0.2	n/a n/a	<0.5 <0.5	<0.2	n/a n/a	<0.5 <0.5	- :	n/a n/a
	Sum of DDD + DDE + DDT	mg/kg mg/kg		-	-	n/a			n/a	<0.5	<0.05	n/a	<0.5	<0.05	n/a	<0.5		n/a
	Sum of Aldrin + Dieldrin	mg/kg	0.05/0.5			174			1174	-0.0	-0.00	.74	-0.0	-3.00	184	-0.0		104

RPD exceeding criteria
Not analysed

ole 2. RPD Table	ad and 59-63 Abbotts Road, Kemps C	reak NSW	Reference Date Sampled	S21-Oc49314 22/10/2021	ES2138446003 22/10/2021		S21-No02569 15/10/2021	S21-Oc49315 22/10/2021		S21-Oc49315 22/10/2021	ES2138446004 22/10/2021		S21-No02635 20/10/2021	S21-Oc49316 22/10/2021		S21-Oc49316 22/10/2021	ES2138446005 22/10/2021	5
118-ER-1-1	au anu 35-63 Abbotts Koau, Kemps C	ICCK NOW	Sample Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	
Group	Analyte	Units	LOR			RPD (%)			RPD (%)			RPD (%)			RPD (%)			_
	Arsenic	mg/kg	5	6.5	8.0	21	10		n/a		-	n/a	14	10.0	33	10.0	11.0	\neg
	Cadmium	mg/kg	0.4/1	< 0.4	<1	n/a	< 0.4		n/a			n/a	< 0.4	< 0.4	n/a	< 0.4	<1	Т
	Chromium	mg/kg	2	14	17	19	17		n/a			n/a	21	16	27	16	16	
Metals	Copper	mg/kg	5	22	32	37	25		n/a			n/a	31	21	38	21	26	
	Lead	mg/kg	5	19	24	23	22		n/a			n/a	25	17	38	17	20	
	Mercury	mg/kg	0.1	< 0.1	< 0.1	n/a	< 0.1		n/a			n/a	< 0.1	< 0.1	n/a	< 0.1	< 0.1	
	Nickel	mg/kg	2	11	13	17	14		n/a			n/a	23	15	42	15	18	
	Zinc	mg/kg	5	70	82	16	69		n/a			n/a	63	39	47	39	42	_
	TRH C6-C9 (F1)	mg/kg	10/20	<20 <50	<10 <50	n/a n/a	<20 <50	- :	n/a n/a	- :	- :	n/a n/a	<20 <50	<20 <50	n/a n/a	<20 <50	<10 <50	_
TRH	TRH C10-C16 (F2) TRH C16-C34 (F3)	mg/kg mg/kg	50 100	<100	<100	n/a	<100	- :	n/a	- :	- :	n/a	<100	<100	n/a	<100	<100	-
	TRH C34-C40 (F4)	mg/kg mg/kg	100	<100	<100	n/a	<100	-	n/a	- :		n/a	<100	<100	n/a	<100	<100	-
	Benzene	mg/kg	0.1/0.2	<0.1	<0.2	n/a	<0.1	-	n/a	-	-	n/a	<0.1	<0.1	n/a	<0.1	<0.2	-
	Toluene	mg/kg	0.1/0.5	<0.1	<0.5	n/a	<0.1		n/a	-		n/a	<0.1	<0.1	n/a	<0.1	<0.5	-
BTEXN	Ethylpenzene	mg/kg	0.1/0.5	<0.1	< 0.5	n/a	<0.1		n/a			n/a	<0.1	<0.1	n/a	<0.1	<0.5	-
	Total Xviene	mg/kg	0.3/0.5	<0.3	< 0.5	n/a	< 0.3		n/a			n/a	<0.3	<0.3	n/a	< 0.3	<0.5	-
	Naphthalene	mg/kg	0.5/1	<0.5	< 0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a	<0.5	< 0.1	1
PCB	Total PCB	mg/kg	0.1			n/a	< 0.1	< 0.1	n/a	<0.1	<0.1	n/a	<0.1		n/a			-
	Naphthalene	mg/kg	0.5	<0.5	< 0.5	n/a	< 0.5	-	n/a			n/a	< 0.5	<0.5	n/a	<0.5	< 0.5	-
	Acenaphthylene	mg/kg	0.5	<0.5	< 0.5	n/a	<0.5		n/a			n/a	< 0.5	<0.5	n/a	< 0.5	< 0.5	1
	Acenaphthene	mg/kg	0.5	<0.5	< 0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a	< 0.5	< 0.5	Ī
	Fluorene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a	<0.5	<0.5	
	Phenanthrene	mg/kg	0.5	<0.5	< 0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a	<0.5	< 0.5	
	Anthracene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a	<0.5	<0.5	
	Fluoranthene	mg/kg	0.5	<0.5	<0.5 <0.5	n/a	<0.5		n/a			n/a	<0.5 <0.5	<0.5	n/a	<0.5 <0.5	<0.5 <0.5	
	Pyrene	mg/kg	0.5	<0.5		n/a	<0.5		n/a			n/a		<0.5	n/a			-
	Benz(a)anthracene	mg/kg mg/kg	0.5	<0.5 <0.5	<0.5 <0.5	n/a n/a	<0.5 <0.5		n/a n/a	- :		n/a n/a	<0.5 <0.5	<0.5 <0.5	n/a n/a	<0.5	<0.5 <0.5	-
PAH	Chrysene Renzo(b+i)fluoranthene	mg/kg mg/kg	0.5	<0.5	<0.5	n/a n/a	<0.5	-	n/a n/a	- :	- :	n/a n/a	<0.5	<0.5	n/a n/a	<0.5	<0.5	-
	Benzo(k)fluoranthene Benzo(k)fluoranthene	mg/kg mg/kg	0.5	<0.5	<0.5	n/a	<0.5	-	n/a	- :	-	n/a	<0.5	<0.5	n/a	<0.5	<0.5	-
	Benzo(x)pyrene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a	<0.5	<0.5	-
	Indeno(1,2,3,od)pyrene	mg/kg	0.5	<0.5	<0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a	<0.5	< 0.5	-
	Dibenz(a.h)anthracene	mg/kg	0.5	<0.5	< 0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a	<0.5	< 0.5	٠
	Benzo(a.h.i)perylene	mg/kg	0.5	<0.5	< 0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a	<0.5	< 0.5	1
	Total PAH	mg/kg	0.5	<0.5	< 0.5	n/a	<0.5		n/a		-	n/a	<0.5	<0.5	n/a	<0.5	< 0.5	Ī
	Benzo(a)pyrene TEQ (zero)	mg/kg	0.5	<0.5	< 0.5	n/a	<0.5		n/a			n/a	<0.5	<0.5	n/a	<0.5	< 0.5	
	Benzo(a)pyrene TEQ (half LOR)	mg/kg	0.5	0.6	0.6	n/a	0.6		n/a			n/a	0.6	0.6	n/a	0.6	0.6	
	Benzo(a)pyrene TEQ (LOR)	mg/kg	0.5	1.2	1.2	n/a	1.2		n/a			n/a	1.2	1.2	n/a	1.2	1.2	
	alpha-BHC	mg/kg	0.05/0.5		-	n/a	<0.05	< 0.05	n/a	< 0.05	<0.05	n/a	<0.05		n/a			
	Hexachlorobenzene (HCB)	mg/kg	0.05/0.5			n/a	<0.05	<0.05	n/a	< 0.05	<0.05	n/a	<0.05		n/a			_
	beta-BHC	mg/kg	0.05/0.5			n/a	<0.05 <0.05	<0.05 <0.05	n/a	<0.05	<0.05 <0.05	n/a	<0.05		n/a			_
	gamma-BHC	mg/kg	0.05/0.5	- :	-	n/a n/a	<0.05	<0.05	n/a n/a	<0.05	<0.05	n/a n/a	<0.05	- :	n/a n/a	-	-	-
	delta-BHC Hentachlor	mg/kg mg/kg	0.05/0.5	- :	-	n/a n/a	<0.05	<0.05	n/a n/a	<0.05	<0.05	n/a n/a	<0.05	- :	n/a n/a	- :	- :	-
	Heptachior Aldrin	mg/kg	0.05/0.5	-		n/a	<0.05	<0.05	n/a	<0.05	<0.05	n/a	<0.05	-	n/a			-
	Hentarhlor enovide	mg/kg	0.05/0.5			n/a	<0.05	<0.05	n/a	<0.05	<0.05	n/a	<0.05		n/a			-
	Total Chlordana (cum)	mg/kg	0.05/0.5			n/a	<0.05	< 0.05	n/a	< 0.05	<0.05	n/a	<0.05		n/a			-
	trans-Chlordane	mg/kg	0.05/0.5			n/a	<0.05	<0.05	n/a	<0.05	<0.05	n/a	<0.05		n/a			٠
	alpha-Endosulfan	mg/kg	0.05/0.5			n/a	< 0.05	< 0.05	n/a	<0.05	<0.05	n/a	< 0.05		n/a			٠
	cis-Chlordane	mg/kg	0.05/0.5			n/a	< 0.05	< 0.05	n/a	< 0.05	<0.05	n/a	< 0.05		n/a			
OCP	Dieldrin	mg/kg	0.05/0.5			n/a	<0.05	< 0.05	n/a	< 0.05	<0.05	n/a	<0.05		n/a			Ī
	4.4'-DDE	mg/kg	0.05/0.5			n/a	<0.05	< 0.05	n/a	< 0.05	<0.05	n/a	< 0.05		n/a			
	Endrin	mg/kg	0.05/0.5			n/a	<0.05	< 0.05	n/a	< 0.05	<0.05	n/a	<0.05		n/a			
	Endosulfan (sum)	mg/kg	0.05/0.5			n/a	<0.05	< 0.05	n/a	< 0.05	<0.05	n/a	<0.05		n/a			
	beta-Endosulfan	mg/kg	0.05/0.5			n/a	<0.05	<0.05	n/a	<0.05	<0.05	n/a	<0.05		n/a			_
	4.4`-000	mg/kg	0.05/0.5		-	n/a	<0.05	<0.05	n/a	<0.05	<0.05	n/a	<0.05	-	n/a			-
	Endrin aldehyde	mg/kg	0.05/0.5		-	n/a n/a	<0.05	0.08 <0.05	105 n/a	0.08 <0.05	<0.05 <0.05	105 n/a	<0.05 <0.05	-	n/a n/a			-
	Endosulfan sulfate 4.4'-DDT	mg/kg mg/kg	0.05/0.5	- :		n/a n/a	<0.05	<0.05	n/a n/a	<0.05	<0.05	n/a n/a	<0.05		n/a n/a	-		-
		mg/kg mg/kg	0.2/0.5	- :	-	n/a n/a	<0.05	<0.05	n/a n/a	<0.05	<0.05	n/a n/a	<0.05	- :	n/a n/a	- :	- :	-
	Endrin ketone Methoxychlor		0.05/0.5	- :	-	n/a	<0.2	<0.2	n/a	<0.2	<0.2	n/a	<0.2	- :	n/a		-	-
	Sum of DDD + DDE + DDT	mg/kg mg/kg	0.2/0.5	-	-	n/a	<0.05	<0.05	n/a	< 0.05	<0.05	n/a	<0.05	- :	n/a	- :	-	-
	Sum of Aldrin + Dieldrin	mg/kg	0.05/0.5			n/a	<0.05	< 0.05	n/a	< 0.05	<0.05	n/a	<0.05		n/a			-
	Julii or Profill T Digitaliii	gmg	0.00/0.0											·				

Table 3. Dam Wa	ter Analysis							ample ID SW01							SW08		SW10		SW12		SW14					SW19	
Water Results 8	n Road and 59-63 Abbotts Road, Kemps Creek NSW Adopted Site Criteria						Date	leference \$21-Oc384 Sampled 7/10/2021	7/10/2021	7/10/2021	7/10/2021	7/10/2021	7/10/2021	13/10/2021	13/10/2021	15/10/2021	15/10/2021	18/10/2021	18/10/2021	18/10/2021	18/10/2021	19/10/2021	19/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
13546-ER-2-1	T	_		Australian & New Zealand		Australian & New Zealand	Samp	ole Matrix Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
				Guidelines for Fresh & Marine Water Quality (2000)	ANZECC & ARMCANZ (2000)	Guidelines for Fresh & Marine Water Quality																					
Group	Analyte	Units	PQL	95% Level of Species Protection Guideline Value	Recreational Water Quality (Secondary Contact)	(2000) Primary Industries — Rationale and Backgroun Information	Data Set II	Data Set faximum																			
	Arsenic, As Cadmium, Cd	ugL	1 0.2	13 0.2	:	-	2 <0.2	31 4 0.8 0.2	22	- 6 - 40.2	13 <0.2	2	6	9	12 <0.2	3	29	13 <0.2	31	3	3	2	3 <0.2	31	7 <0.2	2	6
	Chromium, Cr Copper, Cu	ugL	1 1	1 1.4		-	1 6	130 14	100	17	53 87	2	34	18	23	6	92	50 110	110	3	3 7	2	1	130	7	2	8 21
Metals	Lead, Pb	ugl	1	3.4		:		230 35	140	30	75	5	90	35	60	6	180 0.1	93 <0.1	170 0.2	7	4	8 <0.1	6	230 0.5	21 <0.1	5	15
	Mercury (inorganic) Nickel, Ni	ug/L	1	0.6 11			3	110 12	64	<0.1 15	0.2 42	<0.1 4	32	<0.1 21	28	<0.1 6	78	68	100	<0.1 7	<0.1 4	<0.1 3	<0.1 3	110	<0.1 10	<0.1 3	<0.1 12
	Zinc, Zn Acenaphthene	ugL	1	8	- :	-		1500 91	520 <1	68	180	19 <1	150 <1	69 <1	120	20 <1	520 <1	220	1500 <1	25 <1	20 <1	24 <1	21 <1	510 <1	38 <1	10 <1	44
	Acenaphthylene	ug/L	1	-			ব	ব ব	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Anthracene Benzo(a)anthracene	ug/L ug/L	1	0.4	- :	-	ব	ব ব ব ব	<1	<1	<1	<1	<1 <1	<1	<1	<1	<1 <1	<1	<1	<1 <1	<1	<1	<1 <1	<1 <1	<1	<1	<1
	Benzo(a)pyrene Benzo(b&)fluoranthene	ug/L ug/L	1	0.2		-	ব ব	ব ব ব ব	<1	<1	<1	<1	<1 <1	<1	<1 <1	<1	<1	<1	<1 <1	<1	<1 <1	<1	<1	<1 <1	<1	<1	<1 <1
	Benzo(ghi)perylene	ug/L	1	- :			ব	ব ব	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
PAH	Benzo(k)fluoranthene Chrysene	ug/L ug/L	1	- :			ব	ব ব	<1	<1	<1	<1	<1	<1	<1 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1	Dibenzo(ah)anthracene	ug/L	1	-	-		ব	ব ব	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1	Fluoranthene Fluorene	uglL	1 1	1.4				ব ব ব ব	<1	<1	<1	<1	<1 <1	<1	<1 <1	<1	<1	<1	<1 <1	<1 <1	<1	<1	<1 <1	<1 <1	<1	<1	<1
1	Indeno(1,2,3-cd)pyrene	ugL	1	-			ব	ব ব	ব	<1	<1	<1	<1	<1	ব	ব	ব	<1	ব	<1	<1	<1	<1	<1	ব	ব	<1 <1
	Phenanthrene	ugit	1	2			ব	4 4	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1	Pyrene Total PAH	ugit	1	-			ব ব	ব ব ব ব	<1	<1	<1	<1	<1 <1	<1	<1	<1	<1	<1 <1	<1 <1	<1 <1	<1	<1	<1	<1 <1	<1	<1	<1 <1
	TRH >C10-C16	mg/L	0.05				< 0.05	0.91 0.91	0.27	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.45	< 0.05	0.18	0.16	< 0.05	< 0.05	0.07
1	TRH >C10-C16 less Naphthalene (F2) TRH >C10-C40 (total)*	mg/L mg/L	0.05				< 0.05		0.27 0.87	0.05 0.65	< 0.05	< 0.05 0.1	< 0.05 0.1	< 0.05 0.2	< 0.05	< 0.05	< 0.05 0.3	< 0.05 < 0.1	< 0.05 < 0.1	< 0.05 0.1	0.45 1.05	< 0.05 0.2	0.18 0.48	0.16 0.76	< 0.05 0.2	< 0.05	0.07 0.27
	TRH >C16-C34	mg/L	0.10	-		-	< 0.1	0.6 0.6	0.5	0.5	0.4	0.1	0.1	0.2	< 0.1	< 0.1	0.2	< 0.1	< 0.1	0.1	0.6	0.2	0.3	0.6	0.2	< 0.1	0.2
TRH	TRH >C34-C40 TRH C10-C14	mg/L mg/L	0.10	- :	- :	-	< 0.1		0.1	0.1 < 0.05	0.2 < 0.05	< 0.1 < 0.05	< 0.1	< 0.1	< 0.1	< 0.1	0.1 < 0.05	< 0.1 < 0.05	< 0.1	< 0.1 < 0.05	< 0.1	< 0.1	< 0.1 0.19	< 0.1 0.21	< 0.1	< 0.1	< 0.1 0.11
1141	TRH C10-C36 (Total) TRH C15-C28	mg/L mg/L	0.05 0.10	-		-	< 0.05	1.42 1.42 1.1 1.1	0.67	0.6	0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.3	< 0.1	< 0.1	0.1 < 0.1	1.21	0.3	0.59	0.81	0.2	< 0.1	0.21
	TRH C29-C36	mg/L	0.10				< 0.1	0.2 0.2	0.1	0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2	< 0.1	< 0.1	0.1	0.2	0.1	0.2	0.2	< 0.1	< 0.1	< 0.1
	TRH C6-C10 TRH C6-C10 less BTEX (F1)	mg/L mg/L	0.02	- :	- :	<u> </u>	< 0.02		0.03	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	TRH C6-C9	mg/L	0.02	-			< 0.02	0.03 < 0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	Benzene Ethylbenzene	ug/L ug/L	1 1	950 80	- :	-	ব	ব ব	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BTEX	mip-xylene	ug/L	2	275 350				4 4 4 4	<2	<2	<2 €1	<2 d	<2	<2 €	<2	<2	<2	<1	<2	<2	<2	<2	<2	<2	<2	<2 <1	<2
	o-xylene Toluene	ug/L ug/L	1	180	- :	<u> </u>	ব	2 2	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Total Xylenes 4.4 - DDD	ugL	3 0.2	-	- :	-	<0.2		<3 <0.2	<0.2	<0.2	<0.2	<3 <0.2	<0.2	<0.2	<3 <0.2	<3 <0.2	<0.2	<0.2	<3 <0.2	<0.2	<0.2	<3	<3 <0.2	<0.2	<0.2	<0.2
	4.4 - DDE	ug/L	0.2	-			<0.2	40.2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	< 0.2	< 0.2	<0.2
	4.4 - DDT a - BHC	ug/L ug/L	0.2		-	- :	<0.2 <0.2	40.2 <0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2	<0.2 <0.2	<0.2 <0.2	<0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2
	Aldrin Aldrin + Dieldrin (total)	ug/L	0.2	1			<0.2 <0.2	<0.2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2
	b - BHC	uglL	0.2	- :	- :	- :	<0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2	<0.2 <0.2
	Chlordanes (total)	ugit	0.2	80		-	<0.2 <0.2	<0.2 <0.2 <0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2	<0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2	<0.2	<0.2 <0.2	<0.2 <0.2	<0.2	<0.2 <0.2	<0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2
	DDT + DDE + DDD (total)	ug/L	2	-			<2	Q Q	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	Dieldrin Endosulfan 1	ugiL	0.2	10	-	-	<0.2	<0.2 <0.2 <0.2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
OCP	Endosulfan 2	ug/L	0.2				<0.2	<0.2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1	Endosulfan sulphate Endrin	ug/L ug/L	0.2 0.2	200 200			<0.2 <0.2	40.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2
	Endrin Aldehyde Endrin Ketone	ug/L ug/L	0.2	- :	- :		<0.2	<0.2 <0.2 <0.2 <0.2	<0.2	<0.2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2 <0.2	<0.2 <0.2	<0.2	<0.2	<0.2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1	g-BHC (Lindane)	ug/L	0.2	200			<0.2	<0.2 <0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2
1	Heptachlor Heptachlor epoxide	ug/L ug/L	0.2	90			<0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2 <0.2
1	Hexachlorobenzene Methoxychlor	ug/L	0.2				<0.2 <0.2		<0.2	<0.2	<0.2	<0.2 <0.2	<0.2	<0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2
	Toxaphene	ug/L	0.2 5	200			<5	⋖\$ ≪	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	Vic EPA WRG 621 OCP 9total) Vic EPA WRG 621 Other OCP (total)	ug/L	2 2				Q Q		<2	<2	- Q	<2 <	<2	<2 <<	- Q	<2	<2	<2 <	<2 <	<2	<2	<2 <2	<2	<2	<2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2
	Aroclor-1016	ug/L	0.005	-			<5	<5 <5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5 <5
1	Aroclor-1221 Aroclor-1232	ug/L	0.005				<5		<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	- 6	<5 <5	<5 <5	<5 <5	6	- 6 - 6	<5 <5	<5 <5	<5 <5	\$	<5 <5	<5 <5	\$	<5
PCB	Aroclor-1242	ug/L	0.005	600	-			ব ব	<5 <5	<5 <5	<5	- 6	<5 <5	<5	<5 55	<5 <5	<5	- 6	<5 <5	<5 <5	<5 <5	<5 <5	<5	<5 <5	<5 <5	<5	<5 <5
	Aroclor-1248 Aroclor-1254	ug/L ug/L	0.005	30			<5	<5 <5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	Aroclor-1260 Total PCB*	ug/L ug/L	0.005	- :	- :		<5 <5	45 45 45 45	<5 <5	<5	<5	- 6	<5 <5	<5 - 5	<5 <5	<5 <5	<5 <5	4	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
	Total coliforms	mpn/100ml	100	-		-	1700	1700 17000	1700				-	-	-	-	-	-	-	-	1	-	-	-		-	
Microbiological	E. Coli Thermotolerant coliforms	mpn/100ml mpn/100ml	100		230 1000		<100 <100	<100 <100	<100 <100	+ :	1	:	-	-:-	-	-	-	-	-	-	-	-	-	-	-	-	- : -
	Ammonia (as N)	mg/L	0.01	0.9	-		0.11	0.13 0.13	0.11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Nitrate & Nitrite (as N) Nitrate (as N)	mg/L mg/L	0.05 0.02			100	0.1	0.11 0.11 0.1 0.1	0.1	+:	1																
Nutrients	Nitrite (as N)	mg/L	0.02	-		0.1		< 0.02 < 0.02	< 0.02	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-
	Phosphate total (as P) Total Kjeldahi Nitrogen (as N)	mg/L mg/L	0.20			- 0.1	4.7	12 12	0.52 4.7	1	<u> </u>			_:	_:	_:	<u> </u>	<u> </u>	_:	<u> </u>	<u> </u>			<u> </u>	_:	_:	
	Total Nitrogen (as N)*	mg/L	0.20		-	125	4.8	12.11 12.11	4.8	-	-		-	-	-	_			L -	-	-	-	-			-	

Highlighted concentration exceeds the adopted site criteria - Australian & New Zusland Guidelines for Fresh & Martine Water Cuality (2019) 59% species protection guideline value Highlighted concentration exceeds the adopted site criteria - AMZECC & ANNICANZ (2009) Recreational Water Cuality (Secondary Contact) Highlighted concentration exceeds the adopted site criteria - Australian and New Zusland Guidelines for Fresh and Martine Water Cuality - Primary Industries - Rationale and Background Information No published criteria or sample not analyzed

NL Nat Liming

able 4. Soil Analysis
90-308 Aldington Road and 59-63 Abbotts Road, Kemps Creek NSW
ioil Results & Adopted Site Criteria
3546-FR-2-1

Table 4. Soil Analy 290-308 Aldingtor Soil Results & Ad 13546-ER-2-1	n Road and 59-63 Abbotts Road, Kemps	a						Sample																									1 TP25 0.0-0					0.0-0.2 TP30-0.0-0.
Soil Results & Ad	n Road and 59-63 Appotts Road, Kemps																																					38513 S21-Oc3851
13546-ER-2-1	lantad Sita Critaria	Creek NSW						Date Samo																														2021 8/10/2021
	lopted Site Criteria						-	Sample Ma		Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soi	Sc	oil Soil
,			Screening Levels for Direct	Inhalation / Vapour Intrusion	Management Limits for TPH	Health Investigation Levels for Soil	Use and Disposal of Riosolids																															
Group	Analyte	Units PQL	Contact (mg/kg) - CRC Care 2011	HSLs (mg/kg) - NEPC 2013 (CLAY)	Fractions F1 - F4 in soil (mg/Kg) - NEPC 2013	Contaminants - NEPM 2013	Products (NSW EPA 2000)		- 1																													
Group	Analyte	Units PQL	USL - D Commercial/Industrial	HSL - D Commercial/Industrial 0	Commercial and Industrial (fine)	Commercial/Industrial D	Stabilisation Grade A	Data Set Data S finimum Maximu	Set																													
,			HSE - D Commercial/Industrial	m to <1 m	Commercial and Industrial (fine)	Commercial/Industrial D	Microbiological Standards	einimum Maximi	um										_									+					_				_	-
	Arsenic, As	mg/kg 2			•	3000	-	2.8 18 <0.4 <0.4		9.8	8.1	9.8	10	9.7	6	8.8	4	3.7	8.2	6.4	11	9.1	17	3	2.8	3.8	13	8.2	15	15	15	18	12	14	9.9		9.	
,	Cadmium, Cd Chromium, Cr	mg/kg 2 mg/kg 0.4 mg/kg 5	-	-	- :	3600		6.5 34	4 < 0.4	< 0.4 21	< 0.4 22	< 0.4 17	< 0.4	< 0.4	< 0.4	< 0.4	10	< 0.4	< 0.4 24	< 0.4	< 0.4 19	< 0.4	< 0.4 15	< 0.4	< 0.4 26	< 0.4	< 0.4 17	< 0.4	< 0.4 25	< 0.4	< 0.4 25	< 0.4 33	< 0.4	< 0.4	< 0.4	< 0.4	1 < 0	4 < 0.4 6 18
Metals	Copper, Cu	mg/kg 5 mg/kg 5				240000	-	11 84		31	18	46	36	32	17	22	18	11	33	40	25	58	44	64	41	54	34	84	45	46	27	29	23	38	36	32	4	46
,	Mercury (inorganic)	mg/kg 5 mg/kg 0.1	-	-	- :	730		<0.1 <0.1	1 < 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0	.1 < 0.1
,	Nickel, Ni Zinc Zn	mg/kg 5 mg/kg 5				6000	-	8.5 32	22	22	10	25	24	22	9.5	15	8.5	8.9	19	16	11	23	31	16	18	32	22	18	18	21	23	15	9.6	22	21	15	2	. 20
	Acenaphthene	mg/kg 5 mg/kg 0.5	-		-	400000		<0.5 0.8	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.8	0.6	0.8	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.1	9. . < (.5 < 0.5
,	Acenaphthylene	mg/kg 0.5							< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0	0.5 < 0.5
,	Anthracene	mg/kg 0.5					-	<0.5 0.7	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.7	0.6	0.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0	.5 < 0.5
,	Benzo(a)anthracene Benzo(a)pyrene	mg/kg 0.5 mg/kg 0.5	-	-	-	- :		<0.5 <0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	c 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.1	· <0	5 < 0.5
,	Benzo(a)pyrene TEQ (lower bound)	mg/kg 0.5				40		<0.5 <0.5	5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0	5 < 0.5
,	Benzo(a)pyrene TEQ (medium bound) Benzo(a)pyrene TEQ (upper bound)	mg/kg 0.6 mg/kg 1.2				40	-	0.6 0.7 1.2 1.3	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.7	0.7	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.	
,	Benzo(băj)fluoranthene	mg/kg 0.5		-	-			<0.5 0.5	< 0.5	1.2 < 0.5	1.2 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1. 5 < 0	2 1.2 0.5 < 0.5
PAH	Benzo(ghi)perylene	mg/kg 0.5	-					<0.5 <0.5	5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.8	5 <0	0.5 < 0.5
1 '	Benzo(k)fluoranthene Chrysene	mg/kg 0.5						<0.5 0.8	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	0.7	0.7	0.8	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5		
1 '	Dibenzo(ah)anthracene	mg/kg 0.5 mg/kg 0.5						<0.5 1 <0.5 <0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.1		
1 '	Fluoranthene	mg/kg 0.5						<0.5 0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 0.7	0.7	0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0	0.5 < 0.5
1 '	Fluorene	mg/kg 0.5	-					<0.5 0.8	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	0.8	0.8	0.8	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.1	< 0	0.5 < 0.5
1 '	Indeno(1,2,3-cd)pyrene Naphthalene	mg/kg 0.5 mg/kg 0.5	11,000					<0.5 0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5 < 0.5	< 0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			0.5 < 0.5
1 '	Phenanthrene	mg/kg 0.5 mg/kg 0.5	-					<0.5 0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	0.6	0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0	0.5 < 0.5
1 '	Pyrene Total PAH	mg/kg 0.5	-			4000		<0.5 0.8	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6 6.2	0.8	0.7 8.3	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0	
	TRH >C10-C16	mg/kg 0.5 mg/kg 50	-	-	-	4000		<50 51	< 50	< 50		< 50	< 50	< 50	< 50	< 50	< 50	51	< 50	< 50	< 50	< 50	< 50	< 100	< 100	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50		
1 '	TRH >C10-C16 less Naphthalene (F2)	mg/kg 50	20000	NL	1000			<50 51	< 50		< 50	< 50	< 50	< 50	< 50	< 50	< 50	51	< 50	< 50	< 50	< 50	< 50	< 100	< 100	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 5	50 < 50
,	TRH >C10-C40 (total)* TRH >C16-C34 (F3)	mg/kg 100 mg/kg 100	27000		5000		-	<100 1350 <100 560	0 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100			100	351 190	< 100 < 100	< 100 < 100	< 100 < 100	120	< 100 < 100	1350	1110 510	510 250	< 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100		110	120 < 100	< 100 < 100	< 10	0 <1	00 < 100 00 < 100
,	TRH >C34-C40 (F4)	mg/kg 100	38.000	-	10000						< 100	< 100	< 100	< 100	< 100	< 100	100		< 100	< 100	< 100	< 100	< 100	790	600	260	< 100	< 100	< 100	< 100	< 100	< 100	< 100	120	< 100			
TRH	TRH C10-C14	ma/ka 20	-					<20 <20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 40	< 40	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20		20 < 20
,	TRH C10-C36 (Total) TRH C15-C28	mg/kg 50 mg/kg 50 mg/kg 50	-	•	-	-	-	<50 730 <50 210		< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 ·	< 50 < 50	258 160	< 50 < 50	< 50 < 50	< 50 < 50	145	< 50 < 50	730	170	330	< 50 < 50	72 < 50	57	< 50	54 < 50	< 50 < 50	110 < 50	87 < 50	< 50 < 50	< 50 < 50		
,	TRH C29-C36	mg/kg 50	-	-	-	-		<50 520	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	98	< 50	< 50	< 50	82	< 50	520	490	220	< 50	72	57	< 50	54	< 50	110	87	< 50	< 50		
,	TRH C6-C10	mg/kg 20	26,000					<20 <20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 100	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20		.0 < 20
,	TRH C6-C10 less BTEX (F1) TRH C6-C9	mg/kg 20 mg/kg 20	-	310	800	-	-	<20 <20 <20 <20	< 20	< 20	< 20 < 20	< 20	< 20	< 20 < 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20 < 20	< 20	< 20	< 20	< 100	< 20	< 20	< 20	< 20	< 20	< 20 < 20	< 20	< 20	< 2	J < 20
_	Benzene	mg/kg 0.1	430	4						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0	.1 <0.1
,	Ethylbenzene	mg/kg 0.1	430 27000	NL				<0.1 <0.1 <0.1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0	.1 <0.1
BTEX	m'p-xylene n-xylene	mg/kg 0.2 mg/kg 0.1	-		-	:		<0.2 <0.2 <0.1 <0.1		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2 ·	40.2 40.1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0	1.2 <0.2
,	Toluene	mg/kg 0.1 mg/kg 0.3	99000	NL				<0.1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0	.1 <0.1
	Total Xylenes	mg/kg 0.3	81000	NL				<0.3 <0.3		<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	< 0.3	<0.3	<0.3	<0.3	<0.3	<0	
	4.4 - DDD 4.4 - DDE	mg/kg 0.05 mg/kg 0.05 mg/kg 0.05	-		-	:	-	<0.05 <0.00	15 < 0.05 15 < 0.05	- :	- : -	< 0.05	< 0.05	< 0.05	-:-		0.05			< 0.05		-:-	< 0.05		- :	- :	< 0.05	< 0.05		< 0.05	-	+ :	< 0.05	- :	-	- :	< 0.	
,	4.4 - DDT	mg/kg 0.05					-	<0.05 <0.05	15 < 0.05	-		< 0.05	< 0.05	< 0.05		- <	0.05	-	< 0.05	< 0.05			< 0.05				< 0.05	< 0.05	< 0.05	< 0.05			< 0.05				< 0.	.05 < 0.05
,	a - BHC		-				-	<0.05 <0.0	s < 0.05	-			< 0.05	< 0.05	-		0.05			< 0.05		-	< 0.05		-		< 0.05	< 0.05	< 0.05	< 0.05	-	-	< 0.05 < 0.05	-	-		< 0.	
,	Aldrin + Dieldrin (total)	mg/kg 0.05 mg/kg 0.05 mg/kg 0.05	-	- :	- :	45		<0.05 <0.00 <0.05 <0.00	6 < 0.05 6 < 0.05	- :	- :			< 0.05	-		0.05	-	< 0.05	< 0.05		- :	< 0.05	-:-	- :	-	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	- :	-	< 0.05	-	-	- :	< 0.	.05 < 0.05
,	b-BHC	mg/kg 0.05						<0.05 <0.09	15 < 0.05			< 0.05	< 0.05	< 0.05		. <	: 0.05 < 0.1		< 0.05	< 0.05			< 0.05				< 0.05	< 0.05		< 0.05			< 0.05 < 0.1				< 0.	.05 < 0.05 0.1 < 0.1
,	Chlordanes (total)		-			530	-	<0.1 <0.1 <0.05 <0.0	1 < 0.1	-		< 0.1 < 0.05	< 0.1	< 0.1	-		0.1	-	< 0.1 < 0.05	< 0.1 < 0.05		-	< 0.1		-		< 0.1 < 0.05	< 0.1	< 0.1	< 0.1	-	-	< 0.1 < 0.05	-	-		< 0	0.1 < 0.1 .05 < 0.05
,	DDT + DDE + DDD (total)	mg/kg 0.05 mg/kg 0.05	-	- :	- :	3600		<0.05 <0.00 <0.05 <0.00	15 < 0.05 15 < 0.05	- :	- :	< 0.05	< 0.05	< 0.05	-		0.05	-	< 0.05	< 0.05		- :	< 0.05	-:-	- :	-	< 0.05	< 0.05	< 0.05	< 0.05	- :	-	< 0.05 < 0.05	-	-	- :	< 0.	.05 < 0.05
,	Dieldrin	mg/kg 0.05 mg/kg 0.05					-	<0.05 <0.09	15 < 0.05	-	-	< 0.05	< 0.05	< 0.05	-					< 0.05			< 0.05			-	< 0.05			< 0.05		-	< 0.05	-			< 0.	.05 < 0.05
OCP	Endosulfan 1 Endosulfan 2	mg/kg 0.05				2000 2000		<0.05 <0.00 <0.05 <0.00				< 0.05 < 0.05	< 0.05	< 0.05	-		0.05		< 0.05 < 0.05	< 0.05		-	< 0.05		-		< 0.05 < 0.05	< 0.05	< 0.05	< 0.05		-	< 0.05 < 0.05	-	-		< 0.	.05 < 0.05 .05 < 0.05
	Endosulfan 2 Endosulfan sulphate	mg/kg 0.05 mg/kg 0.05				2000	-	<0.05 <0.09	s < 0.05	1 :	:	< 0.05	< 0.05	< 0.05	-		0.05			< 0.05		-:-	< 0.05	-:-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	+ :	-		-	- :	-	< 0.	.05 < 0.05
1 '	Endrin					100		<0.05 <0.00 <0.05 <0.00	15 < 0.05 15 < 0.05			< 0.05 < 0.05		< 0.05 < 0.05	-		0.05		< 0.05 < 0.05	< 0.05	-	-	< 0.05 < 0.05	-	-	-	< 0.05	< 0.05	< 0.05 < 0.05 < 0.05	< 0.05			< 0.05 < 0.05 < 0.05				< 0.	.05 < 0.05 .05 < 0.05
1 '	Endrin Aldehyde Endrin Ketone	mg/kg 0.05 mg/kg 0.05						<0.05 <0.09 <0.05 <0.09						< 0.05	-:-		0.05		< 0.05 < 0.05		-:-	-:-	< 0.05	-:-	- :	<u> </u>	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	+ :	+ :	< 0.05		+ :			.05 < 0.05 .05 < 0.05
	g-BHC (Lindane)	mg/kg 0.05						<0.05 <0.01	15 < 0.05			< 0.05	< 0.05	< 0.05		. <	0.05		< 0.05	< 0.05			< 0.05				< 0.05	< 0.05	< 0.05	< 0.05			< 0.05 < 0.05				< 0.	.05 < 0.05
	Heptachlor		-			50		<0.05 <0.00	s < 0.05		·	< 0.05	< 0.05	< 0.05		- <	0.05		< 0.05		- 1		< 0.05				< 0.05	< 0.05	< 0.05	< 0.05		-	< 0.05		-		< 0.	.05 < 0.05
1 '	Heptachlor epoxide Hexachlorobenzene	mg/kg 0.05 mg/kg 0.05				80		<0.05 <0.00 <0.05 <0.00	6 < 0.05 6 < 0.05	1 :	 	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	-	- -	0.05		< 0.05 < 0.05	< 0.05 < 0.05	-:-	-:-	< 0.05		-	<u> </u>	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	+ :	+ :	< 0.05 < 0.05	-	-		< 0.	.05 < 0.05
1 '	Methoxychlor	mg/kg 0.05						<0.05 <0.0	15 < 0.05			< 0.05	< 0.05	< 0.05 < 0.5		. <	0.05			< 0.05			< 0.05				< 0.05	< 0.05	< 0.05	< 0.05			< 0.05 < 0.5				< 0.	.05 < 0.05
1 '			-			160		<0.5 <0.5	5 < 0.5		·	< 0.5	< 0.5	< 0.5		- -	< 0.5	.	< 0.5	< 0.5	- 1		< 0.5				< 0.5	< 0.5	< 0.5	< 0.5		-	< 0.5		-		<(.5 < 0.5
1 '	Vic EPA IWRG 621 OCP 9total) Vic EPA IWRG 621 Other OCP (total)	mg/kg 0.1 mg/kg 0.1						<0.1 <0.1 <0.1 <0.1	1 < 0.1	1 :	:	< 0.1 < 0.1	< 0.1	< 0.1	-		< 0.1 < 0.1	-	< 0.1 < 0.1	< 0.1	-:-	-	< 0.1		-	— :	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1	+ :	+ :	< 0.1	+ :	-		<(0.1 < 0.1
,	Aroclor-1016	mg/kg 0.1 mg/kg 0.1	-					<0.1 <0.1 <0.1 <0.1	1 < 0.1	-	-	< 0.1	< 0.1	< 0.1			< 0.1		< 0.1	< 0.1			< 0.1				< 0.1	< 0.1	< 0.1	< 0.1			< 0.1				< 0	.1 < 0.1
1 '	Aroclor-1221	mg/kg 0.1						<0.1 <0.1		1	 	< 0.1	< 0.1	< 0.1	-		0.1	-	< 0.1	< 0.1	-	-:-	< 0.1		-	-	< 0.1	< 0.1	< 0.1	< 0.1	+ :	+ :	< 0.1	-	-		< 0	0.1 < 0.1
PCB	Aroclor-1232 Aroclor-1242	mg/kg 0.1 mg/kg 0.1						<0.1 <0.1 <0.1 <0.1	1 < 0.1	1 :	:	< 0.1	< 0.1	< 0.1	-		< 0.1 < 0.1		< 0.1	< 0.1 < 0.1		-:-	< 0.1	-:-	-	-	< 0.1	< 0.1	< 0.1	< 0.1	1 :	-	< 0.1	-	- :	-	< 0	.1 < 0.1
PUB	Aroclor-1248	mg/kg 0.1	-					<0.1 <0.1	1 < 0.1	-	-	< 0.1	< 0.1	< 0.1			< 0.1		< 0.1	< 0.1			< 0.1				< 0.1	< 0.1	< 0.1	< 0.1			< 0.1				< 0	0.1 < 0.1
1 '	Arcelor-1254	mo/ka 0.1						<0.1 <0.1	1 < 0.1	1 :		< 0.1	< 0.1	< 0.1	-		< 0.1	-	< 0.1	< 0.1	-	-:-	< 0.1		-	-	< 0.1	< 0.1	< 0.1	< 0.1	+ :	+ :	< 0.1	-	-	-	< 0	0.1 < 0.1
L '	Total PCB*	mg/kg 0.1				7		<0.1 <0.1 <0.1 <0.1	1 < 0.1			< 0.1	< 0.1	< 0.1			< 0.1 < 0.1		< 0.1 < 0.1				< 0.1 < 0.1				< 0.1	< 0.1		< 0.1			< 0.1 < 0.1				< 0	.1 < 0.1
	Total coliforms	mg/kg 0.1 mg/kg 0.1 MPN/g 10 MPN/g 10	-				1000	<10 >2400		-	-	24000		1500		-			<10	>24000	20000				-		<10	<10	7300		-	-					<1	10 <10
Microbiological	E. Coli Thermotolerant coliforms	MPN/g 10 MPN/g 10	-		-		100	<10 <10 <10 10	1 :	1 :		<10	<10	<10	-				<10	<10 <10	<10	-		-	-	-	<10 <10	<10	<10 <10	-	-	+ :	-	-	-	-	<1	10 <10
	Ammonia (as N)	mg/kg 5					-	<5 3300	0 .	1 :		1400		< 5	-	-	-	-	1700	2000	7.3	-		-	-	-		3300				-	-	-	-	-		00 3100
,	Nitrate & Nitrite (as N)	mg/kg 5						5 1100	10 .	-	- 1	3500	69	6.8		-		-	2000	3100	5	-	-		-	-	4500	11000	5.2	-	-		-	-	-	-	12	00 2400
Nutrients	Nitrate (as N)	mg/kg 5						<5 1100 <5 <5		-		3500		6.8	-		-		2000	3100	< 5	-	-		-	-	4500	11000	< 5	+ -	-	-	+ -	-	-	-	12	00 2400
	Nitrite (as N)							460 1100	10 .	1 :	- : - 	< 5 580	< 5 460	< 5 910	-	-	:	-:-	< 5 780	< 5 600	< 5 1300	-	- :	-	-	<u> </u>	< 5 840	< 5 11000	< 5 860	+ :	+ :	+ :	+ :	+ :	-	-	< 18	5 < 5 00 490
i	Phosphate total (as P)																							_														
	Phosphate total (as P) Total Kjeldahl Nitrogen (as N) Total Nitrogen (as N)*	mg/kg 5 mg/kg 10				-	-	32 4600 38.8 1270	0 -		-	1200 4700	370	32		-			2900	3400 6500	2200	-	-	-	-	-	2100	1700	2500 2505.2	-	-	-	-	-	-	-	32	00 4600

able 4. Soli Alialysis	
90-308 Aldington Road and 59-63 Abbotts Road, Kemps Creek NSW	
oil Results & Adopted Site Criteria	
3546-ER-2-1	

T-11-4-0-74	to to							Sample	ID I TOSCOO O	2 TD22 0 0 0	1 TD22 0 0 0 4	T024000	2 7025 0 0 0 2	TD20 A A A	0.1 TP37-0.0-0.1	1 TD20 0 0 0	2 7020.00.01	T T # 0 0 0 0 1	7 70410001	I TRASOGRA	I TRANSPORT I	T0440004	TDE0 0004	TDE1 0001	I TRES ARRA	I TDE2 000		I TREE CO.	0.4 TDE2 0.0.0	4 Thesas	04 TD04 004	A I TREE AA	0.4 TDec 0.0	0.4 TD70.00	0.4 TD74 0.04	0.4 TD70 0.00	4 TD00 000	TD92 0004
Table 4. Soil Ana 290-308 Aldingto	on Road and 59-63 Abbotts Road, Kem	nps Creek NSW						Refere	nce \$21-0e3851	5 S21-Oc3851	6 S21-Oc38517	S21-Oc3851	18 S21-Oc38519	\$21-Oc385	20 S21-Oc38521	1 \$21-Oc3852	22 S21-Oc38523	\$21-Oc38524	S21-No17421	S21-No17422	S21-No17423	S21-No17424	S21-No02560	S21-No02561	S21-No02562	\$21-No0256	8 S21-No02569	S21-No025	574 S21-No0257	75 S21-No369	962 S21-No025	81 S21-No02	582 S21-No02	583 S21-No02	601 S21-No026	S02 S21-No026	19 S21-No0261	S21-No02611
Soil Results & A 13546-ER-2-1	dopted Site Criteria							Date Samp Sample Ma	oled 8/10/2021 strix Soil	8/10/2021 Soil	8/10/2021 Soil	8/10/2021 Soil	8/10/2021 Soil	8/10/2021 Soil	1 8/10/2021 Soil	8/10/2021 Soil	8/10/2021 Soil	8/10/2021 Soil	12/10/2021 Soil	12/10/2021 Soil	12/10/2021 Soil	12/10/2021 Soil	15/10/2021 Soil	15/10/2021 Soil	15/10/2021 Soil	15/10/2021 Soil	15/10/2021 Soil	18/10/202 Soil	21 18/10/2021 Soil	1 18/10/202 Soil	21 18/10/202 Soil	1 18/10/20 Soil	21 18/10/20: Soil	21 19/10/20 Soil	21 19/10/202 Soil	21 19/10/2021 Soil	1 19/10/2021 Soil	19/10/2021 Soil
			Screening Levels for Direct Contact (mg/kg) - CRC Care 2011	Inhalation / Vapour Intrusion HSLs (mg/kg) - NEPC 2013	Management Limits for TPH Fractions F1 - F4 in soil (mg/Kg) -	Health Investigation Levels for Soil Contaminants - NEPM 2013	Use and Disposal of Biosolids																															
Group	Analyte	Units PQL	2011 HSL - D Commercial/Industrial	(CLAY) HSL - D Commercial/Industrial 0	NEPC 2013 Commercial and Industrial (fine)	Commercial/Industrial D	Stabilisation Grade A	Data Set Data : Minimum Maxim		+	+					1			+											+		+	+			+		
	Arronic Ar	malka 2	TIGE - D COMMERCIAL TIGES AND	m to <1 m	- Commercial and and assured (mile)	2000	Microbiological Standards	27 24	24	- 44	- "	0.5					10	- 43			0.0	47	- 44				40		47			7.0	27	7.0	7.0			-
	Cadmium, Cd	mg/kg 2 mg/kg 0.4 mg/kg 5 mg/kg 5 mg/kg 5 mg/kg 0.1		:	- :	900		<0.4 0.5	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	0.5	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4 47	9.1 < 0.4	< 0.4	< 0.4	< 0.4	< 0.4	0.6	7.6	2.7	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Metals	Copper, Cu	mg/kg 5			- :	240000		8 68	46	49	39	37	26	68	20	46	44	23	21	36	35	19	42	27	22	22	25	15	32	33	39	31	8	32	31	19	26	25
	Lead, Pb Mercury (inorganic)	mg/kg 5 mg/kg 0.1	-		· · ·	1500 730	-	8.9 57 <0.1 0.6	26 < 0.1	< 0.1	< 0.1	< 0.1	26 < 0.1	18 < 0.1	9.4 < 0.1	< 0.1	8.9 < 0.1	< 0.1	17 < 0.1	< 0.1	23 < 0.1	15 < 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.6	0.3	< 0.1	-	-	-	< 0.1	< 0.1	< 0.1	< 0.1	18 < 0.1
	Nickel, Ni Zinc, Zn	mg/kg 5	-	:	-	6000 40000	- :	6.3 27 26 28	27	24	21 79	16 79	18	19 280	6.3	20	6.6	11 59	12 61	15 89	22 95	9.4 81	20 170	15 150	21 58	13 54	14	7.1	16 65	17 56	-	- :	-	16	16	8.6 140	12 48	9.2 35
	Acenaphthene	mg/kg 5 mg/kg 0.5						<0.5 <0.	5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			< 0.5					- :			
	Acenaphthylene Anthracene	mg/kg 0.5 mg/kg 0.5	-		- :	:		<0.5 <0. <0.5 <0. <0.5 <0.	5 < 0.5 5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	- :	-	< 0.5	-	-	-	-	- :	-	- :	- :
	Benzo(a)anthracene	mg/kg 0.5	•					<0.5 <0. <0.5 <0.	5 < 0.5 5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5		-	< 0.5 < 0.5	-							
	Benzo(a)pyrene Benzo(a)pyrene TEQ (lower bound)	mg/kg 0.5				40		<0.5 <0.	5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			< 0.5					-			
	Benzo(a)pyrene TEQ (medium bound) Benzo(a)pyrene TEQ (upper bound)	mg/kg 0.6 mg/kg 1.2	-	- :	- :	40 40	-	0.6 0.6 12 12	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6		0.6	0.6	-	-	0.6		-	-	-	-			-
	Benzo(b&j)fluoranthene	mg/kg 0.5						1.2 1.2 <0.5 <0.	5 < 0.5	1.2 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.2 < 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.2 < 0.5	1.2 < 0.5	1.2 < 0.5	1.2 < 0.5	1.2 < 0.5	1.2 < 0.5	1.2 < 0.5			1.2 < 0.5	-				-			
PAH	Benzo(ghi)perylene Benzo(k)fluoranthene	mg/kg 0.5 mg/kg 0.5	-					<0.5 <0. <0.5 <0.	5 < 0.5 5 < 0.5	< 0.5										< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	- :	-	< 0.5 < 0.5		-	-	-	- :	-	- :	- :
	Chrysene Dibenzo(ah)anthracene	mg/kg 0.5 mg/kg 0.5						<0.5 <0. <0.5 <0.	5 < 0.5 5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5			< 0.5 < 0.5		-						
	Dibenzo(ah)anthracene Fluoranthene	mg/kg 0.5	-						5 < 0.5 5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5 < 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5			< 0.5	-		-	:				
	Fluorene	mg/kg U.5						<0.5 <0.1	s < 0.5 s < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5			< 0.5 < 0.5	-	-			-	-	-	
	Indeno(1,2,3-cd)pyrene Naphthalene	mg/kg 0.5 mg/kg 0.5	11,000					<0.5 <0. <0.5 <0.	5 < 0.5 5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		- :	< 0.5	-	-	- :	- :	- :	- :	- :	
	Phenanthrene Pyrene	mg/kg 0.5 mg/kg 0.5	-	- :	<u> </u>	:		<0.5 <0. <0.5 <0.	5 < 0.5 5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	-	< 0.5	-	-	-	-	-	-	-	- :
	Total PAH	mg/kg 0.5				4000		<0.5 <0.	5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			< 0.5								
	TRH >C10-C16 TRH >C10-C16 less Naphthalene (F2)	mg/kg 50 mg/kg 50	20000	- NL	1000			<50 <50 <50 <50			< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50		< 50 < 50	< 50 < 50		-	-	< 50 < 50	< 50 < 50	-	- :	- :
	TRH >C10-C40 (total)* TRH >C16-C34 (F3)	ma/ka 100			5000			<100 530 <100 320	< 100	< 100 < 100	< 100 < 100	< 50 140 140	< 100 < 100	280	< 50 < 100 < 100	100	400 260	< 100 < 100	< 100 < 100	< 100 < 100	< 50 < 100 < 100	530	< 50 360 170	230 110	100 < 100	< 50 110 110	< 100 < 100	< 100 < 100	< 100	< 100 < 100				< 100 < 100				
	TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg 100 mg/kg 100	38,000		10000	:		<100 320			< 100			160 120		100	140	< 100	< 100	< 100	< 100	320 210	170	120	100	< 100	< 100		< 100	< 100		-	-	< 100		-	- :	- :
TRH	TRH C10-C14 TRH C10-C36 (Total)	mg/kg 20						<20 23 <50 313	< 20	< 20	< 20	< 20	< 20	< 20	< 100 < 20 74 < 50	< 20	140 < 20 313	< 20	< 20	< 20 < 50	< 20	< 20	< 20	< 20 < 50	< 20	23 < 50	< 20	< 20 < 50	< 20	< 20 < 50				< 20	< 20			
	TRH C15-C28	mg/kg 50 mg/kg 50 mg/kg 50						<50 100	< 50	< 50	< 50	- 66	< 50			< 50	83	< 50	< 50	< 50	< 50	100	52	< 50	< 50	< 50	< 50	< 50		< 50	-			< 50	< 50			
	TRH C29-C36 TRH C6-C10	mg/kg 50 mg/kg 20	26,000	- :	<u> </u>	:		<50 230 <20 <20		< 50 < 20	< 50 < 20	110 < 20	< 50 < 20	140	74 < 20	91 < 20	230 < 20	61 < 20	54 < 20	< 50 < 20	< 50 < 20	150 < 20	150 < 20	< 50 < 20	89 < 20	< 50 < 20	56 < 20	< 50 < 20	< 50 < 20	< 50 < 20		-	-	65 < 20	< 50 < 20	-	-	- :
	TRH C6-C10 less BTEX (F1)	mg/kg 20	-	310	800			<20 <20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20 < 20	< 20	-			< 20	< 20			
	TRH C6-C9 Benzene	mg/kg 20 mg/kg 0.1	430	4	- :	:		<0.1 <0.1		< 20 <0.1	< 20 <0.1	< 20 <0.1	< 20	< 20	< 20	< 20 <0.1	< 20	< 20	< 20	< 20 <0.1	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	-	-	-	< 20	< 20	-	-	-
	Ethylbenzene mln.ydene	mg/kg 0.1 mg/kg 0.2	27000	NL .	-			<0.1 <0. <0.1 <0. <0.2 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	- :	-	-	-	-	-	-	
BTEX	m'p-xylene o-xylene	mg/kg 0.1						<0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	- :	- :	- :	- :	- :	- :	- :	
	Toluene Total Xvienes	mg/kg 0.1 mg/kg 0.3		NL NL	- :	:	-	<0.1 <0.:	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.3	<0.1	<0.1	<0.1	<0.1 <0.3	<0.1	<0.1 <0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	- :	-	-	-	-	-	- :	- :
	4.4 - DDD 4.4 - DDE	mg/kg 0.05 mg/kg 0.05	•	•				<0.05 <0.0	s < 0.05 s < 0.05		< 0.05 < 0.05			< 0.05	-			< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05									< 0.05		< 0.05
	4.4 - 001	mg/kg 0.05	:	:	- :	:	-	<0.05 <0.0	6 < 0.05	-	< 0.05 < 0.05 < 0.05	-	-	< 0.05 < 0.05		+ :	-	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	-	-	-	- :	-	-	-	-	< 0.05 < 0.05		< 0.05
	a - BHC			<u> </u>	<u> </u>	:		<0.05 <0.0 <0.05 0.1	s < 0.05 3 < 0.05	+ :	< 0.05	-	+ :	< 0.05		+ :	+ :	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05 < 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	+ :	-	-	-	-	-	< 0.05		< 0.05 < 0.05
	Aldrin + Dieldrin (total)	mg/kg 0.05 mg/kg 0.05 mg/kg 0.05	-			45		<0.05 0.1 <0.05 2.1 <0.05 <0.0	3 < 0.05 3 < 0.05		< 0.05 < 0.05			< 0.05		-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	2.13	< 0.05	< 0.05	< 0.05									< 0.05		< 0.05
	b - BHC Chlordanes (total)	ma/ka 0.1		- :	- :	530		<0.1 <0.	1 < 0.1	- :	< 0.05 < 0.1	-	+ :	< 0.05 < 0.1	-	+ :	+ :	< 0.05	< 0.05	< 0.05 < 0.1	< 0.05 < 0.1 < 0.05 < 0.05	< 0.05 < 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	-	-	-	-	-	-	< 0.05	< 0.05 < 0.1	< 0.05 < 0.1
	d - BHC DDT + DDE + DDD (total)	mg/kg 0.05 mg/kg 0.05	•			3600		<0.05 <0.0 <0.05 <0.0	s < 0.05	-	< 0.05 < 0.05			< 0.05				< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		-		-					< 0.05	< 0.05 < 0.05	< 0.05
	Dieldrin	mg/kg 0.05 mg/kg 0.05						<0.05 2 <0.05 <0.0	< 0.05		< 0.05			< 0.05	-			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	2	< 0.05	< 0.05	< 0.05								-	< 0.05	< 0.05	< 0.05
OCP	Endosulfan 1 Endosulfan 2	mg/kg 0.05	<u> </u>	<u> </u>	<u> </u>	2000		<0.05 <0.0	5 < 0.05 5 < 0.05	+ :	< 0.05	-	+ :	< 0.05 < 0.05	+ :	+ :	+ :	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	-	-	+ :	-	-	-	-	-	< 0.05	< 0.05	< 0.05
	Endosulfan sulphate	mg/kg 0.05 mg/kg 0.05				2000 2000		<0.05 <0.0 <0.05 <0.0	5 < 0.05	1 :	< 0.05 < 0.05		1	< 0.05		1	1 :	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			1 :	1	1	1	- :	1 :	< 0.05 < 0.05	< 0.05 < 0.05	
	Endrin Endrin Aldehyde	mg/kg 0.05 mg/kg 0.05		:	-	100		<0.05 <0.0 <0.05 <0.0	s < 0.05 s < 0.05	1 :	< 0.05 < 0.05	1	+ :	< 0.05 < 0.05		1	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	H :	+ :	+ :	-	-	-	- :	- :	< 0.05	< 0.05	< 0.05
	Endrin Ketone g-BHC (Lindane)	mg/kg 0.05	-					<0.05 <0.0 <0.05 <0.0	5 < 0.05	- :	< 0.05 < 0.05	- :	- :	< 0.05 < 0.05		- :	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	- :			-					< 0.05 < 0.05	< 0.05	< 0.05
1	Heptachlor	mg/kg 0.05 mg/kg 0.05 mg/kg 0.05				50		<0.05 <0.0 <0.05 <0.0	6 < 0.05 6 < 0.05	-	< 0.05 < 0.05	<u> </u>	-	< 0.05		-	-	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u> </u>	-	- :	-	-	-	- :	- :	< 0.05	< 0.05 < 0.05	< 0.05
	Heptachlor epoxide Hexachlorobenzene	mg/kg 0.05 mg/kg 0.05				80		<0.05 <0.0 <0.05 <0.0 <0.05 <0.0	s < 0.05 s < 0.05	1 :	< 0.05 < 0.05	1 :	+ :	< 0.05 < 0.05		+ :	+ :	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	+ :	+ :	-	-	-	- :	-	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05
	Methoxychlor	mg/kg 0.05 mg/kg 0.05						<0.05 <0.0	6 < 0.05		< 0.05			< 0.05													< 0.05			1		-		-	- :	< 0.05	< 0.05	< 0.05
	Toxaphene Vic EPA IWRG 621 OCP 9total)	mg/kg 0.5 mg/kg 0.1		:	 	160	-	<0.5 <0.1 <0.1 2.1	5 < 0.5 3 < 0.1	-	< 0.5 < 0.1	-	-	< 0.5 < 0.1	-	+ :	-	< 0.5	< 0.5	< 0.5	< 0.5 < 0.1	< 0.5	< 0.5	2.13	< 0.5	< 0.5	< 0.5 < 0.1	-	-	-	- :	-	-	-	-	< 0.5 < 0.1	< 0.5	< 0.5
	Vic EPA IWRG 621 Other OCP (total)	mg/kg 0.1						<0.1 <0.1	1 < 0.1	-	< 0.1			< 0.1	-			< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		-		-	-	-		-	< 0.1	< 0.1	< 0.1
	Aroclor-1016 Aroclor-1221	mg/kg 0.1 mg/kg 0.1	-					40.1 40. 40.1 40.	1 < 0.1	-	< 0.1 < 0.1	-	-	< 0.1	-	-	-	< 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1 < 0.1	< 0.1		-	- :	-	-	-	- :	- :	- :	-	
PCB	Aroclor-1232 Aroclor-1242	mg/kg 0.1 mg/kg 0.1	-					<0.1 <0.	1 < 0.1	+ :	< 0.1	1 :	+ :	< 0.1	+ :	+ :	+ :	< 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1	H :	+ :	+ :	+ :	+ :	- :	+ :	+ :	+ :	+ :	
PCB	Aroclor-1248	mg/kg 0.1	-					<0.1 <0.1	1 < 0.1		< 0.1 < 0.1			< 0.1			-	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1	< 0.1 < 0.1	< 0.1		< 0.1	< 0.1					-						
	Arocior-1254 Arocior-1260	mg/kg 0.1 mg/kg 0.1								1	< 0.1 < 0.1 < 0.1			< 0.1 < 0.1		1		< 0.1	< 0.1		< 0.1			< 0.1	< 0.1	< 0.1 < 0.1	< 0.1 < 0.1						-					
	Total PCB* Total coliforms	mg/kg 0.1 mg/kg 0.1 MPN/g 10 MPN/g 10			- :	7	1000	<0.1 <0.1 <0.1 <0.1 8700 870	1 < 0.1	-	< 0.1	1	-	< 0.1	-	1	_	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-	-	-		-	-		-			
Microbiological	E. Coli	MPN/g 10					100	<10 <10	0 8700 <10		-			-	-	-	-	-		-		- :	- :	-		-		<u> </u>		-	-	-		-	-		-	
	Thermotolerant coliforms Ammonia (as N)	MPN/g 10 mg/kg 5	-		-		1000	<10 <10 <5 <5	< 5	+ :	+ :-	 :	+ :	+ :	+ :	+ :	+ :-	-	+ :-	- : -		-	-		-	- :	+ :	-	+ :	+ -	-	-	-	-	-	+ :	+ :	-
	Nitrate & Nitrite (as N)	mg/kg 5						<5 <5	< 5			1						-				-	-	- :	-					1 :	- :	- :		-	- :	-		
Nutrients	Nitrate (as N) Nitrite (as N)	mg/kg 5 mg/kg 5		:				<5 <5	< 5	+ :	+ :	1	+ :	1	+ :	+ :	+ :	-	+ :	-		-	-		-	-	+ :	-	+ :	+ :	-	-	-	-	-	-	+ :	
	Phosphate total (as P)	mg/kg 5	•					1000 100	0 1000												-	-	-	-	-	-			-	-	-	-	-	-	-	-		
	Total Kjeldahl Nitrogen (as N) Total Nitrogen (as N)*	mg/kg 10 mg/kg 10						510 510 510 510	510	+ :	+ :	-	+ :	+ :	+ :	+ :	+ :	-	+ :	-	- : -		-	-:-	-	-	+ :	-	+ :	-	-	+ :	-	-	-	- :	+ :	-
								911									-																					

I able 4. Soli Analysis		
290-308 Aldington Road and 59-63 Abbotts Road, Kemps	Creek NSW	
Soil Results & Adopted Site Criteria		
13546-ER-2-1		

							_												_																			
Table 4. Soil Ar	nalysis							Sample I	TP84_0.0-0.1	TP86_0.0-0.1 T	P88_0.0-0.1	TP90_0.0-0.1	TP92_0.0-0.1	TP94_0.0-0.1	TP95_0.0-0.1	TP96_0.0-0.1	TP98_0.0-0.1	TP100_0.0-0.1	TP102_0.0-0.1	TP104_0.0-0.	1 TP106_0.0-0.1	1 TP108_0.0-0.1	TP110_0.0-0.1	1 TP112_0.0-0.	1 TP114_0.0-0	.1 TP116_0.0-0.	.1 TP118_0.0-0.1	TP120_0.0-	0.1 TP120_0.5-0.6	TP122_0.0-0.1	1 TP124_0.0-0.	.1 TP125_0.0-	0.1 TP126_0.0-0.1	1 TP128_0.0-0	.1 TP130_0.0-0.1	TP132_0.0-0.1	1 TP134_0.0-0.1	TP136_0.0-0.1
290-308 Alding	ton Road and 59-63 Abbotts Road, Ken	ips Creek NSW					ŀ	Reference Date Samole	se S21-No02612	S21-No02613 S 19/10/2021	21-No02614	\$21-No02615	\$21-No02616	\$21-No02617	\$21-No02618	\$21-No02619	\$21-No02620	\$21-No02621	\$21-No02623	\$21-No02624	\$21-No02625	\$21-No02626	\$21-No02627	\$21-No0262	8 S21-No0262	9 S21-No0263	0 S21-No02631	\$21-No026	32 S21-No02646	S21-No02633	\$21-No0263	4 S21-No026	.35 S21-No02636	S21-No026	7 S21-No02638	S21-No02639	3 S21-No02640	S21-No02641
13546-ER-2-1	Adopted Site Criteria						•	Sample Matr	IX Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
13340-ER-2-1			Screening Levels for Direct	Inhalation / Vapour Intrusion	Management Limits for TPH					000	0011			0011										0011	0011			0011			0011	0011						
			Contact (mg/kg) - CRC Care	HSLs (mg/kg) - NEPC 2013	Fractions F1 - F4 in soil (mg/Kg) - NEPC 2013	Health Investigation Levels for Soil Contaminants - NEPM 2013	Products (NSW EPA 2000)		1																													
Group	Analyte	Units PQL		HSI - D Commercial/Industrial 0	NEFC 2013			Data Set Data Se																				1				+	+-			+	+	+1
			HSL - D Commercial/Industrial	m to <1 m	Commercial and Industrial (fine)	Commercial/Industrial D	Microbiological Standards	Data Set Data Se Minimum Maximum	n																				_								+	
	Arsenic, As	mg/kg 2				3000		4.7 16	8.8	7.3	7.2	9.8	9.3	7.2	10	16	15	6.8	7.3	4.7	7.4	14	9.8	7.8	6	- 11	9.2	5	-	9.3	10	14	12	12	9.3	14	12	11
	Cadmium, Cd	mg/kg 0.4	•			900		<0.4 <0.4	< 0.4	< 0.4 19	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Metals	Chromium, Cr Copper, Cu	mg/kg 2 mg/kg 0.4 mg/kg 5 mg/kg 5 mg/kg 5 mg/kg 0.1		-		240000		12 2/	31	26	19	41	34	32	24	39	31	41	36	29	26	36	26	47	38	26	26	26	-	22	28	31	27	36	36	25	26	26
Metals	Lead, Pb	mg/kg 5				1500	-	13 42 <0.1 <0.1 9.2 28 37 360	20	24	17	23	27	17	22	42	30	20	20	15	15	36	16	23	19	18	19	16	-	13	24	25	27	14	18	20	22	23
	Mercury (inorganic) Nickel, Ni	mg/kg 0.1 mg/kg 5	-	-		730 6000		9.2 28	< 0.1 11	< 0.1 17	< 0.1	< 0.1 15	< 0.1 15	< 0.1 12	< 0.1 12	< 0.1 18	< 0.1 20	< 0.1 16	< 0.1 17	< 0.1 16	< 0.1	< 0.1 28	< 0.1 17	< 0.1 23	< 0.1 19	< 0.1 15	< 0.1 17	9.2	+ :	< 0.1 12	< 0.1 19	< 0.1 23	< 0.1	< 0.1 21	< 0.1	< 0.1 24	< 0.1 18	< 0.1 20
	Zinc, Zn	mg/kg 5 mg/kg 5	•			400000	-	37 360	46	59	44	64	52	41	66	69	66	56	50	43	43	92	51	86	70	47	52	360		37	58	63	68	150	57	66	49	56
	Acenaphthene	mg/kg 0.5	-		-	-	-	<0.5 <0.5 <0.5 <0.5	· ·			-	-	-	< 0.5			-	-	-	-		-	-	-	-	-	< 0.5	-			< 0.5		-	-	+	-	
	Acenaphthylene Anthracene	mg/kg 0.5 mg/kg 0.5	-	-		- :		<0.5 <0.5	+ :	- :	-	- :	- :		< 0.5 < 0.5	- :	- :	- :	- :		 :	+ :	H :	- :	+ :	+ :	+ :	< 0.5	+ :	H :	- :	< 0.5	+	-	+ :	+-:-	+-	+
	Benzo(a)anthracene	mg/kg 0.5	-			-		<0.5 <0.5					-	-	< 0.5	-	-	-	-	-		-	-	-	-		-	< 0.5	-		-	< 0.5	-	-	-	-	-	
	Benzo(a)pyrene	mg/kg 0.5	•			-	-	<0.5 <0.5							< 0.5													< 0.5				< 0.5					-	
	Benzo(a) pyrene TEQ (lower bound) Benzo(a) pyrene TEQ (medium bound)	mg/kg 0.5		-	-	40	-	<0.5 <0.5	<u> </u>		-	-			< 0.5		-	-	-		-	· ·	-	-	-	-		< 0.5	-			< 0.5		-	-	+	+	+
	Benzo(a)pyrene TEQ (upper bound)	mg/kg 0.6 mg/kg 1.2			-	40		0.6 0.6 1.2 1.2	- :			- :			0.6 1.2		-	-			-	-	-	-	-	-	-	0.6 1.2	-	- :	- :	1.2	+	-	- :	+	+-:-	
	Benzo(b&j)fluoranthene	mg/kg 0.5				-	-	<0.5 <0.5 <0.5 <0.5					-	-	< 0.5			-										< 0.5				< 0.5					-	
PAH	Benzo(ghi)perylene	mg/kg 0.5	-					<0.5 <0.5	+ -	· -	.]				< 0.5 < 0.5	· ·	-		-	-		-	-	-	-		-	< 0.5	-		-	< 0.5		-			+	+
1	Chrysene	mg/kg 0.5 mg/kg 0.5			 			<0.5 <0.5 <0.5 <0.5	+ :	 	-:-	- : -			< 0.5	H :	- : -				 	- : -	 		+ :	+ :	+ :	< 0.5		+ :	+ :	< 0.5	+ :-	+ :	+ :		+	+
1	Dibenzo(ah)anthracene	mg/kg 0.5						<0.5 <0.5							< 0.5	<u> </u>	:	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					:	< 0.5			<u> </u>	< 0.5		_ :		_		
1	Fluoranthene	mg/kg 0.5						<0.5 <0.5		-	-	-			< 0.5				-									< 0.5	-			< 0.5			-			
1	Fluorene Indeno(1,2,3-cd)pyrene	mg/kg 0.5			 			<0.5 <0.5 <0.5 <0.5			-	-		-	< 0.5 < 0.5	-	-	<u> </u>	<u> </u>	<u> </u>	-	-	H :-		+ :	-	-	< 0.5	-	+ :	+ :	< 0.5	+	+ :	-	+	+	+
1	Naphthalene	mg/kg 0.5 mg/kg 0.5	11,000					<0.5 <0.5		:	-	- :			< 0.5	<u> </u>	<u> </u>			-	1 :	— :	-	-	1 :	+ :	+ :	< 0.5		 	T :	< 0.5	+	1	1 :	-	$+ \div$	+
	Phenanthrene	mg/kg 0.5 mg/kg 0.5	•			-	-	<0.5 <0.5			-		-	-	< 0.5													< 0.5				< 0.5				-		
	Pyrene Total PAH	mg/kg 0.5	-					<0.5 <0.5		· T	. 7				< 0.5 < 0.5	-		-		-		<u> </u>		-	-	+ -	T -	< 0.5				< 0.5	_ - -			+	+	$+$ \rightarrow \rightarrow
—	Total PAH TRH >C10-C16	mg/kg 0.5 mg/kg 50	-		 	4000		<0.5 <0.5 <50 94	+ :-	- : - 	-	- : -	H :	H :	< 0.5 94	- : -			- :	- :	- : -	- : -	- : -	- :	+ :	+ :	+ :	< 0.5 < 50	+ :	- : -	- :	< 0.5	+ :	+ :	+ :-	+ :-	+ :	+
	TRH >C10-C16 less Naphthalene (F2)	mg/kg 50	20000	NL	1000		-	<50 94				-	-	-	94	-	-	-	-		-		-	-	-	-	-	< 50	-	-	-	< 50			-		+-:-	
	TRH >C10-C40 (total)*	mg/kg 100	-		5000	•		<100 274					-	-	274 180					-					-			< 100				< 100	_	-			-	
	TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg 100 mg/kg 100		•	5000 10000	-		<100 180 <100 <100			-	-	-	-	180 < 100	-	-	-	-		-	-	-	-	-	-	-	< 100 < 100	-	-	-	< 100			-			
TRH	TRH C10-C14	mg/kg 100 mg/kg 20	38,000	-	10000			<20 22	-	- :	-	- :			× 100	- :	-	- :	- :	- :	-	-	-	-	-	-	-	< 100	-	- :	- :	< 100		-	-	+-:-	+-:-	
IKH	TRH C10-C36 (Total)	mg/kg 50			-	-		<50 302							302										-			< 50				< 50		-				
	TRH C15-C28 TRH C29-C36	mg/kg 50				-	-	<50 170 <50 110		-	-	-	-	-	170	-	-	-	-		-	-	-	-	-	-		< 50	-	-	-	< 50				-		
	TRH C6-C10		26,000	-			-	<20 <20			-				110 < 20						-	- :		-	-	+ :	-	< 50 < 20	-	- :	- :	< 50		-	- :	+	+-:-	+-:
	TRH C6-C10 less BTEX (F1)	mg/kg 20 mg/kg 20	-	310	800			<20 <20					-	-	< 20	-		-	-	-	-		-	-	-	-	-	< 20	-	-	-	< 20	-	-	-	-	+ :-	
	TRH C6-C9	mg/kg 20				-	-	<20 <20		-		-	-	-	< 20	-	-	-	-			-	-		-	-		< 20	-	-		< 20						
	Benzene	mg/kg 0.1 mg/kg 0.1	430 27000	4		-		<0.1 <0.1 <0.1 <0.1		-	-	-	-	-	<0.1		-	-	-	-			-	-	-	-		<0.1	-		-	<0.1		-	-		<u> </u>	
BTEX	Ethylbenzene m/p-xylene	mg/kg 0.1 mg/kg 0.2	27000	ML .	<u> </u>	:	- :	<0.1 <0.1	- :			- :			<0.2		-	-			-	-	-	-	-	-	-	<0.2	-	- :	- :	<0.2	+	-	- :	+	+-:-	
BIEX	o-xylene	mg/kg 0.1			-	-	-	<0.1 <0.1	-			-	-	-	<0.1	-	-	-	-	-	-		-	-	-	-		<0.1	-	-		< 0.1	-	-	-	-	-	
	Toluene	mg/kg 0.1 mg/kg 0.3	99000	NL	-			40.1 40.1 40.3 40.3			-		-	-	<0.1		-			-			-		-	-	-	<0.1				<0.1			-	-		
—	Total Xylenes	mg/kg 0.3	81000	NL .	-	-				< 0.05	× 0.05	× 0.05	 - 0.05	×0.05		×0.05	×0.05	×0.05	×0.05	×0.05	< 0.05	× 0.05	× 0.05	× 0.05	× 0.05	× 0.05	×0.05		< 0.05	× 0.05	× 0.05		< 0.05	× 0.05	× 0.05	< 0.05	< 0.05	< 0.05
	4.4 - DDE	mg/kg 0.05 mg/kg 0.05				-	-	<0.05 <0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	4.4 - DDT	mg/kg 0.05 mg/kg 0.05	•		-	-	-	<0.05 <0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05
	a - BHC	mg/kg 0.05	•		-	•	-	<0.05 <0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
	Aldrin + Dieldrin (total)	mg/kg 0.05 mg/kg 0.05			-	45		<0.05 <0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05								< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	b - BHC	mg/kg 0.05	•		-			<0.05 <0.05	< 0.05	< 0.05 < 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.1 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.1
	Chlordanes (total)	mg/kg 0.1	•		-	530	-	<0.1 <0.1 <0.05 <0.05	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	DDT + DDE + DDD (total)	mg/kg 0.05 mg/kg 0.05	-	-	<u> </u>	3600							< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05
1	Dieldrin	mg/kg 0.05 mg/kg 0.05						<0.05 <0.05	< 0.05	< 0.05 < 0.05 < 0.05	< 0.05	< 0.05	< 0.05 < 0.05 < 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05 < 0.05	< 0.05	< 0.05 < 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05	< 0.05 < 0.05 < 0.05	< 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05
ОСР	Endosulfan 1	mg/kg 0.05	•			2000		<0.05 <0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
UCP	Endosulfan 2 Endosulfan sulphate	mg/kg 0.05 mg/kg 0.05				2000 2000		<0.05 <0.05 <0.05 <0.05	< 0.05	< 0.05 < 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05		< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05
1	Endrin	mg/kg 0.05				100		<0.05 <0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1	Endrin Aldehyde	ma/ka 0.05			•			<0.05 <0.05 <0.05 <0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
1	Endrin Ketone g-BHC (Lindane)	mg/kg 0.05						<0.05 <0.05 <0.05 <0.05	< 0.05	< 0.05 < 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1	Heptachlor	mg/kg 0.05 mg/kg 0.05	-			50		<0.05 <0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05
1	Heptachlor epoxide	mg/kg 0.05						<0.05 <0.05 <0.05 <0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Hexachlorobenzene Methoxychlor	mg/kg 0.05 mg/kg 0.05 mg/kg 0.05	-			80		<0.05 <0.05		< 0.05	< 0.05			< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05		< 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05
1	Toxaphene	mg/kg 0.05				160		<0.5 <0.5		< 0.05 < 0.5	< 0.05	< 0.05 < 0.5	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.05	< 0.5	< 0.05	< 0.05 < 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05 < 0.5	< 0.05	< 0.05		< 0.05	< 0.05 < 0.5	< 0.05 < 0.5	< 0.05	< 0.05
	Vic EPA IWRG 621 OCP 9total)	mg/kg 0.1						40.1 40.1 40.1 40.1	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Vic EPA IWRG 621 Other OCP (total)	mg/kg 0.1 mg/kg 0.1								< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aroclor-1221	mg/kg 0.1 mg/kg 0.1	-					<0.1 <0.1 <0.1 <0.1	+ :-	+ : +	-:-	-:-			< 0.1	H :-	H :-	- : -	-	-	+ :-	+ :-	- : -	+ :-	+ :	+ :	+ :-	< 0.1	< 0.1	+ :-	+ :	< 0.1	+	+ :	+ :-	+	+-	+
	Arocior-1221 Arocior-1232	mg/kg 0.1				<u> </u>		<0.1 <0.1							< 0.1 < 0.1	<u> </u>	:	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					:	< 0.1	< 0.1		<u> </u>	< 0.1		_ :		_		
PCB	Aroclor-1242	mg/kg 0.1 mg/kg 0.1						<0.1 <0.1		-	-	-	-	-			-	-	-	-	-		_	-	-	-	-	< 0.1	< 0.1	-	-	< 0.1	_	_	-		-	-
	Aroclor-1248	mg/kg 0.1	-					40.1 40.1 40.1 40.1	-		-				< 0.1	-	-			-	-	-	-	-	+ -	-	-	< 0.1	< 0.1			< 0.1	+-	-		+	+	+1
1	Aroclor-1254 Aroclor-1260	mg/kg 0.1			 			<0.1 <0.1 <0.1 <0.1	+ :	 	-:-	-				H :	-	-	-	-	1 :	 	 		+ :	+ :	+ :	< 0.1		 	+ :	< 0.1	+		-		+	+ : -
	Total PCB*	mg/kg 0.1 mg/kg 0.1				7		<0.1 <0.1							< 0.1 < 0.1													< 0.1 < 0.1	< 0.1 < 0.1			< 0.1					1 .	
Minne	Total coliforms	mg/kg 0.1 MPN/g 10	•		•		1000			-	-				- 1		_	-	-	-			_					_				-						+ = = = = = = = = = = = = = = = = = = =
Microbiological	E. Coli	MPN/g 10 MPN/g 10					100	-: + -	+ -		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	+	-	+	+-	+-	+
L	Thermotolerant coliforms Ammonia (as N)	mg/kg 5					1000	: :	+ :		-	-							-	-	<u> </u>	-	-	-	-	+ :	— :	-	-	-	-	+ :	+	-	+ :-	-	+	+
	Nitrate & Nitrite (as N)	mg/kg 5								-	-		-	-	-		-					-		-		-					-				-	<u> </u>	1 -	
Nutrients	Nitrate (as N)	mg/kg 5						. -	+ -	· -					- T	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-		-	-		+	+
Nutrients	Nitrite (as N)	mg/kg 5						-:+-	+ -		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+ -	-	-		-	-	+ -	+	-	+	+-	+-	+
	Phosphate total (as P) Total Kjeldahl Nitrogen (as N)	mg/kg 5 mg/kg 10							1 :		-	-:-				-			-	- :	-	-	<u> </u>	- :	<u> </u>	-	-	— :	-	+ :	+ :	+ :	+	-	+ :	+	+	+
	Total Nitrogen (as N)*	mg/kg 10 mg/kg 10																					-			-					-	-			-			

ible 4. Soil Analysis	
0-308 Aldington Road and 59-63 Abbotts Road, Kemps Creek NSW	
oil Results & Adopted Site Criteria	
8546-ER-2-1	

									Sample								PP6 0.0-0.1																				
	oad and 59-63 Abbotts Road, Kemp	ps Creek NS	V						Referen Date Sampl	nce S21-No02643	S21-No02597 S	11-No02598 S2	11-No02589 S21-Oc	38493 S21-Oc	88494 S21-Oc3849	95 S21-Oc3849	6 S21-Oc38497	S21-Oc38498	S21-Oc38499	S21-No02587	S21-No02590 \$	S21-No02591 S	S21-No02592 S	S21-Oc38452 S	S21-Oc38453 S	S21-Oc38454	S21-Oc38455 S	S21-Oc38456	S21-Oc38457 S	S21-Oc38458	S21-Oc38459 S2	21-Oc38500 S2	1-Oc38501 S21-	Jc38502 S21-Oc1	\$8503 S21-No02	2588 S21-No ^c	1002591
s & Adopte !-1	ed Site Criteria								Date Sample Sample Mat		18/10/2021 1 Soil	8/10/2021 1	8/10/2021 13/10/	2021 13/10/2	1021 12/10/2021	13/10/2021	12/10/2021	12/10/2021	12/10/2021	18/10/2021	18/10/2021	18/10/2021	18/10/2021	6/10/2021	6/10/2021	6/10/2021	7/10/2021	7/10/2021	7/10/2021	7/10/2021	7/10/2021 1	13/10/2021 1	3/10/2021 13/1	0/2021 13/10/2	.021 18/10/202	/21 19/10/2	J/2021
(-1			Scr	reening Levels for Direct	Inhalation / Vanour Intrusion	Management Limits for TPH			Sample Mac	uix Soii	Soil	Soli	5011 50	1 30	I SOII	Soil	Soil	Soli	Soli	SOII	Soll	5011	SOII	5011	SOII	5011	SOII	5011	SOII	SOII	SOII	SOII	5011	JOII 501	Soil	501	OII
			Con	ntact (mg/kg) - CRC Care	HSLs (mg/kg) - NEPC 2013 (CLAY)	Fractions F1 - F4 in soil (mg/Kg) - NEPC 2013	Health Investigation Levels for Soil Contaminants - NEPM 2013	Use and Disposal of Biosolids Products (NSW EPA 2000)																													
	Analyte	Units	PQL	2011	HSI - D Commercial/Industrial 0			Carbillantina Conda A	Data Set Data Se	iet				_																				-+-		+-	_
			HSL -	- D Commercial/Industrial	HSL - D Commercial/Industrial 0 m to <1 m	Commercial and Industrial (fine)	Commercial/Industrial D	Stabilisation Grade A Microbiological Standards	Minimum Maximu	um																											
Arso	enic As	ma/ka	2				3000		<2 39	- 11	27	7	3.7 20	10	- 13		19	49	7	8.0	16		7.4	43	32	3	3.4	48	12	3.7	63	-2	17	12 7			2.8
Cadn	mium, Cd	mg/kg	0.4				900		<0.4 <0.4	< 0.4	< 0.4	< 0.4	< 0	4 < 0.	4 < 0.4	< 0.4	< 0.4	< 0.4	< 0.4	0.5		·		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4 < 0.).4 < 0.4	. <0	< 0.4
	omlum, Cr iper. Cu	mg/kg mg/kg	5	-	-	-	3600		<5 59	21	13	13	7.5 21	21	23	16	23	10	13	19	30 47	17	18	24	19	17 52	14	59	33	18	13	< 5	26 52	21 21	17	13	8.7
Lead	d, Pb	mg/kg	5	-		-	1500		<5 62 <5 160 <0.1 0.2	23	160	30		-						- 55	-7:			21	13	15	13	17	25	14	14	< 5	37	24 18	36	16	160
Merc	cury (inorganic)	mg/kg	0.1			-	730		<0.1 0.2	< 0.1	0.2	< 0.1		-					-		-			< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1 <	0.1 < 0	.1 < 0.1	0.1	J.1
Zinc.	xei, Ni a. Zn	mg/kg mg/kg	5			- :	40000	-	<5 37 <5 250	59	180	7.5			-	- :	-	- :	- :	-:-	- :	-:-	-:-	84	48	46	93	37	95	34	21	< 5	110	44 6	4 71	25	250
	naphthene	mg/kg	0.5						<0.5 <0.5		< 0.5	< 0.5		-	-				-	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	0.5 < 0.5	5 < 0.	0.5
Acen	naphthylene	mg/kg mg/kg mg/kg	0.5		•	-	-		<0.5 <0.5 <0.5 <0.5 <0.5 <0.5			< 0.5		-			-		-		-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5	< 0.5 < 0.5 < 0.5 < 0.5	0.5	5 < 0.	
Antn	hracene izo(a)anthracene	mg/kg mg/kg	0.5		-				-0.5			< 0.5			- :	-		- :						< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5			< 0.5 < 0.5 < 0.5 < 0.5	0.5 < 0.5		
Benz	zo(a)pyrene	mg/kg	0.5	-		-			<0.5 0.6		< 0.5	< 0.5		-	-	-	-	-	-			-		< 0.5	< 0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5 < 0.5 < 0.5	0.5 < 0.5		0.5
Benz	zo(a)pyrene TEQ (lower bound)					-	40		<0.5 0.7		< 0.5	< 0.5		-					-		-			< 0.5	< 0.5 < 0.5	0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				5 < 0.	0.5
Benz	zo(a)pyrene TEQ (medium bound) zo(a)pyrene TEQ (upper bound)	mg/kg	0.6			-	40		0.6 1	-	0.6	0.6			-	-	-		-	-	-	-	-	0.6	0.6	1	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6 0.6	6 0.6	0.6	J.6
Renz	zo(b&j)fluoranthene	mg/kg mg/kg	0.5	- :				-	Q.5	+ :	1.2 < 0.5	1.2 < 0.5				-	- :	-:	- :	-:-	-:-	-:-	-:-	1.2 < 0.5	1.2	< 0.5	1.2 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.2 1.2 < 0.5 < 0.5 < 0.5 < 0.5	5 < 0.5	1.2	0.5
	zo(ghi)perylene	mg/kg	0.5			-					< 0.5	< 0.5		-	-	-	-	-	-	-	-	-	-	< 0.5	< 0.5	1.4	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0	0.5 < 0.5		- 0.5
Benz	zo(k)fluoranthene	mg/kg	0.5		-				<0.5 <0.5 <0.5 <0.5			< 0.5		-			-	-	-		. —			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5).5 < 0.5	5 < 0.	
Chrys	ysene enzo(ah)anthracene	mg/kg mg/kg	0.5				- :		<0.5 <0.5 <0.5 <0.5	:-:		< 0.5		-	-	-	-	-				-		< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5				< 0.5 < 0.5	0.5 < 0.5		0.5
	oranthene	mg/kg	0.5						<0.5 0.6		0.6	< 0.5		:		-	-	-		- :	-:-	-:-	- : -					< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5	1.5 < 0.5		0.
Fluor	orene	mg/kg mg/kg	0.5						<0.5 <0.5 <0.5 0.7			< 0.5												< 0.5	< 0.5 < 0.5	< 0.5 0.7	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	0.5 < 0.5	5 < 0.	< 0.
Inder	eno(1,2,3-cd)pyrene	mg/kg	0.5						<0.5 0.7		< 0.5	< 0.5	- -			-	-	-			-	-		< 0.5	< 0.5	0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5 < 0.	0.5		
Phen	hthalene nanthrene	mg/kg mg/kg	0.5	11,000					<0.5 <0.5 <0.5 <0.5	+ :-	< 0.5 < 0.5	< 0.5 < 0.5	-: -	-	- :	+ :	+ :	- :		-:-	-:-	-:-	-:-	< 0.5 < 0.5			< 0.5 < 0.5 < 0.5 < 0.5	0.5 < 0.5		0.0							
Pyrer	ine	mg/kg	0.5						<0.5 0.5 <0.5 2.7		0.5	< 0.5												< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	.5 < 0.5	, <0	. 0
	I PAH	mg/kg	0.5				4000					< 0.5				-	-		-	-	-	-	-	< 0.5	< 0.5	2.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	1.5 < 0.5	< 0	0
	I >C10-C16 I >C10-C16 less Naphthalene (F2)	mg/kg mg/kg	50	20000	NI	1000			<50 <50 <50 <50	+ :	< 50	< 50		-	+ :	+ :	+ :					-		< 50	< 50 < 50	< 250	< 50	< 50	< 100 < 100	< 50	< 50	< 50	< 50	< 50 < 50	J < 50	< 5	5
TRH	I >C10-C10 (ess Naphthalene (F2)	mg/kg	100	20000	· ·	-			<100 1980		110	530			- :	-	-	- :				-		430	100	1980	340 170	< 100	< 200	< 100	< 100	< 100	110 <	< 100 < 10	00 < 100	0 11	11
	I >C16-C34 (F3)	mg/kg	100	27000		5000			<100 880 <100 1100		110 110	530		-	-	-			-	-	-	-	-	200	< 100		170	< 100	< 200	< 100	< 100	< 100	110 <	< 100 < 10		0 110	110
	1 >C34-C40 (F4)			38,000		10000			<100 1100			< 100												230	100	1100	170	< 100	< 200	< 100				< 100 < 10			
	f C10-C14 f C10-C36 (Total)	mg/kg mg/kg	20	-	-				<20 25 <50 1160		< 20	25 485 210 250			- :	-		- :						< 20	< 20	< 100 1160	< 20	< 20	< 40	< 20	< 20	< 20	< 20	< 20 < 20 < 50 < 50	20 < 20	< 20	85
TRH	I C15-C28	mg/kg	50	-		-			<50 300 <50 860		73	210		-	-	-	-	-	-			-		79	< 50		215 65	< 50	< 100	< 50	< 50	< 50		< 50 < 50	50 < 50	, < E	- 50
TRH	C29-C36	mg/kg mg/kg	50			-			<50 860		58	250		-					-		-			180	66	860		53	130	< 50	< 50	< 50	77 .	< 50 < 50	50 < 50		
TRH	H C6-C10 H C6-C10 less BTEX (F1)	mg/kg mg/kg	20	26,000	-	***************************************			<20 <20 <20 <20	-	< 20 < 20	< 20 < 20			-	-			-	-	-	-	-	< 20	< 20 < 20	< 20 < 20	< 20 < 20	< 20	< 20 < 20	< 20 < 20	< 20 < 20	< 20 < 20	< 20 < 20	< 20 < 20 < 20 < 20	20 < 20	<2	
TRH	1 C6-C9	mg/kg	20	- :	310	-			<20 <20	-	< 20	< 20			- :	-	-	- :				-		< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20 < 20	40 < 20	1 47	· 2
	zene	ma/ka	0.1	430	4				<0.1 <0.1		<0.1	<0.1		-	-	-			-	-	-	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	- 0.1 < 0	.1 < 0.1	< 0	0.
Ethyl	ylbenzene	mg/kg mg/kg	0.1	27000	NL	-			<0.1 <0.1 <0.2 <0.2	-	<0.1	<0.1			-	-	-		-	-	-	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1 < 0.2	< 0.1			< 0.1 < 0.		< 0.	0.
o-xyli	-xylene rlene	mg/kg	0.1	- :		-			<0.1 <0.1		<0.2 <0.1	<0.1	: :			-	1	-				-		< 0.2	< 0.1	< 0.2		< 0.2		< 0.1	< 0.1	< 0.2		< 0.2 < 0.2 < 0.1 < 0.	0.1	1 < 0.	0.1
Tolue	sene	mg/kg mg/kg	0.1	99000	NL		-		40.1 40.1 40.1 40.1		<0.1	<0.1		-					-		-			< 0.1 < 0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1 < 0.).1 < 0.1		. 0.
Total	al Xylenes	mg/kg	0.3	81000	NL				40.3 40.3 40.7			<0.3			-	-			-	-	-	-	-	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3 < 0.3	0.3	3 < 0.	0.3
4.4 - 1	- DDE	mg/kg mg/kg mg/kg	0.05	- :	-	- :	· :	· ·	<0.05 <0.05	5 < 0.05	< 0.05 < 0.05	< 0.05			-	-	<u> </u>	- :	- :	- :	- :	-	-:-	- :		- :			- :	- :	-	-	-				÷
4.4 - 1	DDT	mg/kg	0.05						<0.05 <0.05	5 < 0.05	< 0.05	< 0.05							-	-		-												-			Ξ
a - Bi	внс	mg/kg mg/kg	0.05			-			<0.05 <0.05	5 < 0.05	< 0.05	< 0.05		-			-		-		-	-				-			-		-						٠
Aldri	rin + Dieldrin (total)	mg/kg mg/kg	0.05	-	-		45	-	<0.05 <0.05 <0.05 0.13	\$ < 0.05 \$ < 0.05	< 0.05 0.13	< 0.05			- :	-		- :						- :			- :		- : -			-	-			\rightarrow	÷
b - Bi	BHC	mg/kg mg/kg	0.05	-		-			<0.05 <0.05	5 < 0.05	< 0.05	< 0.05			-	-	-	-		-	-	-	-	-		-	-	-	-	-		-				\rightarrow	÷
Chlo	ordanes (total)	mg/kg mg/kg	0.1			-	530		<0.1 <0.1 <0.05 <0.05	< 0.1	< 0.1	< 0.1		-					-		-																
d - BI	SHC F + DDE + DDD (total)	mg/kg mg/kg	0.05				3600		<0.05 <0.05	5 < 0.05 5 < 0.05	< 0.05	< 0.05 < 0.05		-	+ :	+ :	+ :					-		-	-							-	-	-		+	÷
Dield	drin	mg/kg mg/kg mg/kg	0.05	- :		- :	3000		<0.05 <0.05 <0.05 0.13	< 0.05		< 0.05			- :	-	-	- :				-				-					- :	-	-	: - :			÷
	osulfan 1	mg/kg	0.05				2000		<0.05 <0.05	5 < 0.05	< 0.05	< 0.05							-	-		-												-			-
	osulfan 2	mg/kg	0.05				2000		<0.05 <0.05	s < 0.05		< 0.05	. .		-	-			H - T			- 1	· T	- 1	- 1	- 1	- 1		- 1		-		-				÷
Endo	losulfan sulphate Irin	mg/kg mg/kg	0.05				2000 100		<0.05 <0.05 <0.05 <0.05	5 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05				 	+ :	H :		- :	- : -	- :	-:-	-		-:-	- :	-:-			- : -		-			+	÷
Endr	Irin Aldehyde	mg/kg mg/kg	0.05						<0.05 <0.05	5 < 0.05	< 0.05	< 0.05	- -		-		-														-		-		-		-
	Irin Ketone	mg/kg	0.05	-			•		<0.05 <0.05	5 < 0.05	< 0.05	< 0.05			T -				-	-	-	-	-	-	-	-	-		-	-			-		·		Ξ
	HC (Lindane) tachlor	mg/kg mg/kg	0.05				, 50		<0.05 <0.05 <0.05 <0.05	5 < 0.05 5 < 0.05	< 0.05	< 0.05 < 0.05		-		+ :	-	-		-:-	-:-	-:-	-:-	-:-		-:-		-:-		-:-	-:-		-:-	\div		+	÷
	tachlor epoxide	mg/kg	0.05				-		<0.05 <0.05	5 < 0.05	< 0.05	< 0.05				+ :	1 :			- :			-:-			-:-	-:-	- : -		- : -	- : +		-	++:	+		÷
Hexa	achlorobenzene	mg/kg mg/kg mg/kg	0.05	-			80		<0.05 <0.05	5 < 0.05	< 0.05	< 0.05			-							-				-			-		-	-	-				Ē
	hoxychlor	mg/kg	0.05						<0.05 <0.05 <0.5 <0.5		< 0.05 < 0.5	< 0.05 < 0.5	. .		-	-		· ·	<u> </u>		-	-									-	-	-				_
	aphene EPA IWRG 621 OCP 9total)	mg/kg mg/kg	0.1	-						< 0.5	0.13	< 0.1		:		-	-	-		- :	-: +	-:-	- : -	-	-:-	-:-	-:-	- :	- :	- :	- : -		-	: 		+	÷
Vic E	EPA IWRG 621 Other OCP (total)	mg/kg	0.1						<0.1 0.13 <0.1 <0.1		< 0.1	< 0.1																									-
Aroci	clor-1016	mg/kg	0.1						40.1 40.1 40.1 40.1		< 0.1	< 0.1	. .		-	-			H - T			- 1	· T	- 1	- 1	- 1	- 1		- 1		-		-				÷
	clor-1221 clor-1232	mg/kg mg/kg	0.1						40.1 40.1 40.1 cn.4	+ :-	< 0.1	< 0.1	-: -		- :	+ :	+ :	- :		-:-	-:-	-:-	-:-	-:-		-:-	-:-	-:-		-:-	-:-	-:-	-:	: + :		+	÷
	clor-1232 clor-1242	mg/kg mg/kg mg/kg	0.1						<0.1 <0.1 <0.1 <0.1	-	< 0.1 < 0.1	< 0.1	-			-	T -	· ·	- 1	-	- 1	-	-		-		-		-		-	-	-				-
Aroc	clor-1248	mg/kg	0.1	-					<0.1 <0.1	-	< 0.1	< 0.1			-		-		-	-	-	-	-			-		-		-	-		-				Ē
	clor-1254	mg/kg	0.1						<0.1 <0.1	+ :-	< 0.1	< 0.1		-		+ :	-	-		-:-	-:-	-:-	-:-			-:-		-:-		-:-	-:-		-:-	\div		+	÷
	clor-1260 al PCB*	mg/kg mg/kg	0.1				7		40.1 40.1 40.1 40.1	1	< 0.1 < 0.1	< 0.1				+ :	1 :			- :			-:-			-:-	-:-	- : -		- : -	- : +		-	++:	+		÷
Total	al coliforms	MPN/g	10					1000		-		-				-				- 1	- 1	- 1	- 1		- 1		- 1										Ī
E. Co	oli	MPN/g	10		-			100			↓ - T	- T	- -			_																	- 1		\rightarrow		_
Then	rmotolerant coliforms	MPN/g mg/kg	10				-	1000	1 1	+	+ : +			+	+ -	+	+	<u> </u>	\vdash								-	-		-					-	+	÷
Amm	nonia (as N) ate & Nitrite (as N)	mg/kg mg/kg	5						1 1 1	1 :	1 : 1		-: :			+ :	1 :			-:-	-:-		-:-			-:-	-: +	-:-				-		- -	-+-	+	÷
Nitra	ate (as N)	mg/kg	5	-								-			-	-	-	-	-	-	-	-	-		-		-		-		-	-	-	-			Ξ
Minda	ite (as N)	mg/kg	5			-						-	- -			-	-	-		-		-	-	-	-	-	-		-	-	-	-	-				_
			6	-		-						-							-		-	-	-	-	-	-	-				-	-	-	- -		-	
Phos	sphate total (as P)	mg/kg mg/kg																																			

Table 4. Soil Analysis 290-308 Aldington Road and 59-63 Abbotts Road, Kemps Creek NSW Soil Results & Adopted Site Criteria

	ton Road and 59-63 Abbotts Road, Rem Adopted Site Criteria	ips creek NON	•						Date Sa	ampled 19	10/2021 19/10/2021	7/10/2021	7/10/2021	7/10/2021	7/10/2021	7/10/2021	7/10/2021 13/	0/2021 13/10/2021	13/10/2021	13/10/2021	15/10/2021 1	/10/2021 18/10/202	1 18/10/2021	18/10/2021 18/10/2021	19/10/2021	19/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021	7/10/2021	7/10/2021	7/10/2021 18/10/2	2021 18/10/2021
13546-ER-2-1									Sample	Matrix	Soil Soil	Soil	Soil	Soil	Soil	Soil	Soil	ioil Soil	Soil	Soil	Soil	Soil Soil	Soil	18/10/2021 18/10/2021 Soil Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil Soil	d Soil
			8	Screening Levels for Direct	Inhalation / Vapour Intrusion	Management Limits for TPH	Health Investigation Levels for Soil																											
			0	Contact (mg/kg) - CRC Care 2011	HSLs (mg/kg) - NEPC 2013 (CLAY)	Fractions F1 - F4 in soil (mg/Kg) - NEPC 2013	Contaminants - NEPM 2013	Use and Disposal of Biosolids Products (NSW EPA 2000)																										
Group	Analyte	Units	PQL	2011	(CLAY)	NEPC 2013				_		_																				-	-	
		1	us.	ISL - D Commercial/Industrial	HSL - D Commercial/Industrial 0	Commercial and Industrial (fine)	Commercial/Industrial D	Stabilisation Grade A	Data Set Dat Minimum Max	ita Set																								
				DE - D COMMERCIAN FIGURATION	m to <1 m	Commercial and moderate (mile)	O TENER CHEMICO SCILLE S	Microbiological Standards																								-		_
	Arsenic, As	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2				3000		3.3	30	12 9.6	18	4.4	8	7.2	9.5	16	18 16	9.1	13	12	10 18	30	14 15	17	7.1	11	6.9	10	20	3.3	4.8	5.9 8.9	8.2
	Cadmium, Cd	mg/kg	0.4	-		-	900		<0.4 <	<0.4	< 0.4 < 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	0.4 < 0.4	< 0.4	< 0.4	< 0.4	< 0.4 < 0.4	< 0.4	< 0.4 < 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4 < 0.4	4 < 0.4
	Chromium, Cr	mg/kg	5			-	3600		9.8	35	22 17	30	10	21	21	21	27	16 18	16	19	26	22 23	35	22 22	29	14	21	18	18	18	9.8	14	18 16	16
Metals	Copper, Cu	mg/kg	5	-			240000		13 2	260 58	24 20	48	13	32	31	26	26	16 18	27	23	33	39 20	41	24 29	27	19	21	31	21	18	260	120	150 30	22
	Mercury (inorganic)	mg/kg	0.1	-			730	-	<0.1	0.5	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1 < 0.1	< 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1 0.5	< 0.1
	Nickel, Ni	mg/kg	5	-		-	6000		6.3 28 1	30	11 10	24	6.3	15	17	17	16	15 13	16	20	16	19 30	25	16 15	13	11	14	15	11	19	15	15	22 18	8.4 0 28
	Zinc, Zn	mg/kg mg/kg	5				400000				98 60	110	30	51	52	49	71	51 54	59	71	53	93 79	1000	54 57	110	39	73	68	55	53	1000	380	640 160	28
	Acenaphthene	mg/kg	0.5			-			<0.5		< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	s < 0.5
	Acenaphthylene	mg/kg mg/kg	0.5	-	-		•		<0.5 <	<0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5		< 0.5	< 0.5	< 0.5 < 0.5	
	Anthracene	mg/kg	0.5	· ·	•	-	•				< 0.5 < 0.5	< 0.5	< 0.5		< 0.5	< 0.5	< 0.5	0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5 < 0.5	
	Benzo(a)anthracene	mg/kg	0.5	-		-	•			<0.5 <0.5	< 0.5 < 0.5 < 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5 < 0.5 < 0.5	
	Benzo(a)pyrene Benzo(a)pyrene TEQ (lower bound)	mg/kg mg/kg	0.5				- 40	-			< 0.5 < 0.5	< 0.5 < 0.5	- 0.5		< 0.5	< 0.5	< 0.5	0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5		< 0.5 < 0.5	.5 < 0.5
	Benzo(a)pyrene TEQ (medium bound)	mo/ka	0.6			- :	40		0.6	0.6	0.6 0.6	0.0	0.6	0.6	0.6		0.6		0.6		0.6			0.6 0.6	0.6		0.6		0.6		0.6			
	Benzo(a)pyrene TEQ (upper bound)	mg/kg mg/kg	1.2				40		1.2	1.2	0.6 0.6 1.2 1.2	0.6	0.6 1.2	1.2	0.6 1.2	0.6 1.2	0.6 1.2	0.6 0.6 1.2 1.2	1.2	0.6 1.2	1.2	0.6 0.6 1.2 1.2	1.2	12 12	0.6 1.2	0.6 1.2	1.2	0.6 1.2	1.2	1.2	0.6 1.2	1.2	0.6 0.6 1.2 1.2	0.6 2 1.2
	Benzo(b&j)fluoranthene	mg/kg	0.5	-					<0.5 <	<0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5 < 0.5	< 0.5	< 0.5		< 0.5 < 0.5		< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5			.5 < 0.5 .5 < 0.5
PAH	Benzo(ghi)perylene	mg/kg	0.5			-			<0.5	<0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	.5 < 0.5
1 741	Benzo(k)fluoranthene	mg/kg	0.5			-	-		<0.5 <	<0.5	< 0.5 < 0.5	< 0.5	< 0.5		< 0.5	< 0.5	< 0.5	0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5		< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	.5 < 0.5
	Chrysene	mg/kg mg/kg	0.5			-	•		<0.5	<0.5	< 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5		< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5 < 0.5 < 0.5 < 0.5	.5 < 0.5 .5 < 0.5
	Dibenzo(ah)anthracene	mg/kg	0.5			-	-		<0.5 <	<0.5	< 0.5 < 0.5	< 0.5	< 0.5			< 0.5	< 0.5	0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5
	Fluoranthene	mg/kg	0.5	-		-			<0.5 <	<0.5	< 0.5 < 0.5 < 0.5 < 0.5	< 0.5	< 0.5		< 0.5	< 0.5	< 0.5	0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	
	Fluorene	mg/kg	0.5			-	<u> </u>		<0.5	<0.5	< 0.5 < 0.5	< 0.5	< 0.5		< 0.5	< 0.5		0.5 < 0.5 0.5 < 0.5	< 0.5 < 0.5	< 0.5		< 0.5 < 0.5 < 0.5 < 0.5		< 0.5 < 0.5 < 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5		< 0.5 < 0.5	< 0.5		< 0.5 < 0.5 < 0.5 < 0.5	
	Indeno(1,2,3-cd)pyrene Naphthalene	mg/kg mg/kg	0.5	11,000					<0.5	<0.5 <0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5		< 0.5 < 0.5	< 0.5		< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5		< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5	- 0.5		
1	Phenanthrene	mg/kg mg/kg	0.5	,						<0.5	< 0.5 < 0.5 < 0.5	< 0.5	< 0.5		< 0.5	< 0.5	< 0.5 < 0.5	0.5 < 0.5 0.5 < 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5 < 0.5 < 0.5	.5 < 0.5 .5 < 0.5
1	Pyrene	mg/kg	0.5							<0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5 < 0.5	
	Total PAH	mg/kg	0.5			-	4000		<0.5	<0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	
	TRH >C10-C16	mg/kg	50			-		-	<50	<50	< 50 < 50	< 50	< 50	< 50	< 50	< 50	< 50	50 < 50	< 50	< 50	< 50	< 50 < 50	< 50	< 50 < 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 100	< 100 < 50	i0 < 50
1	TRH >C10-C16 less Naphthalene (F2)	mg/kg	50	20000	NL	1000			<50 +	<50	< 50 < 50 < 100 < 100	< 50 < 100	< 50 < 100	< 50 < 100	< 50 < 100	< 50		50 < 50 100 < 100	< 50 < 100	< 50	< 50	< 50 < 50 < 100 < 100	< 50	< 50 < 50	< 50 < 100	< 50 < 100	< 50	< 50 < 100	< 50	< 50 < 100	< 50 610	< 100	< 100 < 50	0 < 50
1	TRH >C10-C40 (total)*	mg/kg mg/kg mg/kg	100				-		<100 6	610	< 100 < 100	< 100	< 100	< 100	< 100	< 100	< 100		< 100	< 100	330		< 100	< 100 < 100		< 100	< 100	< 100	< 100		610	< 200	590 150	0 < 100
	TRH >C16-C34 (F3)	mg/kg	100	27000		5000	•		<100	590	< 100 < 100	< 100	< 100		< 100	< 100		100 < 100	< 100	< 100	160	< 100 < 100	< 100	< 100 < 100	< 100	< 100	< 100	< 100	< 100	< 100	430	< 200	590 150	
	TRH >C34-C40 (F4)	mg/kg mg/kg	100	38,000		10000	•		<100 1 <20 4	180	< 100 < 100 < 20 < 20	< 100	< 100	< 100	< 100 < 20	< 100	< 100	100 < 100	< 100	< 100	170	< 100 < 100	< 100	< 100 < 100	< 100	< 100	< 100	< 100 < 20	< 100	< 100	180	< 200	< 200 < 100 < 40 < 20	00 < 100
TRH	TRH C10-C14 TRH C10-C36 (Total)	mg/kg	20	-		-	•			<20	< 20 < 20	< 20	< 20	< 20		< 20		20 < 20	< 20	< 20	< 20	< 20 < 20	< 20	< 20 < 20	< 20	< 20	< 20		< 20	< 20	< 20	< 40 160	< 40 < 20	< 20
	TRH C10-C36 (Total) TRH C15-C28	mg/kg	50	-		-	•		<50 6 <50 2	660	< 50 < 50 < 50 < 50	< 50 < 50	< 50 < 50	< 50	< 50 < 50	< 50	< 50 < 50 < 50	50 < 50	< 50	< 50	103	<50 <50	< 50	< 50 < 50 < 50 < 50	< 50	< 50	< 50	< 50 < 50	< 50	< 50 < 50	490 210	< 100	660 178 270 68	8 < 50 3 < 50
	TRH C29-C36	mg/kg mg/kg	50			-	-	-	<50 3	270	< 50 < 50 < 50 < 50	< 50	< 50 < 50	50	< 50	< 50	< 50	50 < 50		F4	60	< 50 < 50 < 50 < 50	- 50	<50 <50	- 50 EE	< 50	< 50	< 50	- 50 E4	< 50	280	160	390 110	0 < 50
	TRH C6-C10	mg/kg	20	26,000					<20	<20	< 20 < 20	< 20	< 20	< 20	< 20	< 20	< 20	20 < 20	< 20	< 20	< 20	< 20 < 20	< 20	< 20 < 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20		< 20 < 20	10 < 20
	TRH C6-C10 less BTEX (F1)	mg/kg	20	-	310	800			<20 ·	<20	< 20 < 20 < 20 < 20	< 20	< 20	< 20	< 20	< 20	< 20	20 < 20	< 20	< 20	< 20	< 20 < 20	< 20	< 20 < 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20 < 20	10 < 20
	TRH C6-C9	mg/kg	20			-			<20	<20	< 20 < 20	< 20	< 20		< 20	< 20	< 20	20 < 20	< 20	< 20	< 20	< 20 < 20	< 20	< 20 < 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20 < 20	0 < 20
	Benzene	mg/kg	0.1	430	4				<0.1 <	<0.1	<0.1 <0.1 <0.1 <0.1	< 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1	0.1 < 0.1	< 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1 < 0.1	.1 < 0.1
	Ethylbenzene	ma/ka	0.1	430 27000	NL				<0.1 <	<0.1	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1	0.1 < 0.1 0.1 < 0.1	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1 < 0.1 < 0.1 < 0.1	
BTEX	m/p-xylene	mg/kg	0.2			-	•		<0.2 <	<0.2	< 0.2 < 0.2 < 0.1 < 0.1	< 0.2 < 0.1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2 < 0.2 0.1 < 0.1	< 0.2	< 0.2 < 0.1	< 0.2	< 0.2 < 0.2	< 0.2	< 0.2 < 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2 < 0.2 < 0.1 < 0.1	.1 < 0.1
	o-xylene	mg/kg	0.1	99000		-	-		<0.1 <		< 0.1 < 0.1	< 0.1	< 0.1			< 0.1	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1			
	Toluene	mg/kg mg/kg mg/kg mg/kg	0.1	99000 81000	NL	-			<0.1 <		< 0.1 < 0.1	< 0.1 < 0.3	< 0.1	< 0.1 < 0.3	< 0.1 < 0.3	< 0.1	< 0.1	0.1 < 0.1 0.3 < 0.3	< 0.1	< 0.1 < 0.3	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1 < 0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1 < 0.1 < 0.3 < 0.3	.1 < 0.1
	Total Xylenes 4.4 - DDD	mg/kg	0.3	81000	NL	· ·	•				< 0.05 < 0.05				< 0.3	< 0.3					< 0.3	< 0.3 < 0.3	< 0.3	< 0.3 < 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3		< 0.3			
	4.4 - DDE	mg/kg mg/kg	0.05	 	- :	- :	<u> </u>	- :	<0.05	d) 0.5	< n n S	< 0.05	< 0.05		-	-		0.05 < 0.05	< 0.05	< 0.05			-	-	-	-	-		-	-	< 0.5	< 0.5	< 0.5 < 0.05	05 < 0.05
	4.4 - DDT	mg/kg mg/kg	0.05						<0.05 <	<0.05	< 0.05	< 0.05	< 0.05		-			0.05 < 0.05	< 0.05				-			-					< 0.5			05 < 0.05
	a - BHC	mg/kg	0.05						<0.05 <	<0.05	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05	< 0.05		-	-		0.05 < 0.05	< 0.05	< 0.05 < 0.05					-			-	-	-	< 0.5	< 0.5	< 0.5 < 0.05 < 0.5 < 0.05	
	Aldrin	ma/ka	0.05			-			<0.05 <	<0.05	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05	< 0.05		-			0.05 < 0.05 0.05 < 0.05	< 0.05	< 0.05 < 0.05					-			-		-	< 0.5	< 0.5	< 0.5 < 0.05 < 0.5 < 0.05	05 < 0.05 05 < 0.05
	Aldrin + Dieldrin (total)	mg/kg mg/kg	0.05	-		-	45		<0.05 <	<0.05	< 0.05 < 0.05	< 0.05	< 0.05		-	-			< 0.05						-	-					< 0.5			
	b - BHC	mg/kg	0.05			-			<0.05 <	40.05	< 0.05 < 0.05	< 0.05	< 0.05	-	-				< 0.05	< 0.05	-				-		-	-	-	-	< 0.5	< 0.5	< 0.5 < 0.05	05 < 0.05
	Chlordanes (total)	ma/ka	0.1	-		-	530		<0.1 <	<0.1	< 0.1 < 0.1 < 0.05 < 0.05	< 0.1	< 0.1 < 0.05		-	-		0.1 < 0.1 0.05 < 0.05	< 0.1 < 0.05	< 0.1 < 0.05					-				-		< 1	< 1	<1 <0.1 <0.5 <0.0	.1 < 0.1
	d - BHC	mg/kg	0.05	-	-	-			<0.05 <	<0.05	< 0.05 < 0.05	< 0.05	< 0.05		-				< 0.05	< 0.05			-		-			-	-	-	< 0.5	< 0.5	< 0.5 < 0.0	05 < 0.05
	DDT + DDE + DDD (total)	mg/kg mg/ka	0.05	-		-	3600		40.05	0.05	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05		-	-		0.05 < 0.05 0.05 < 0.05	< 0.05	< 0.05 < 0.05	-		-		-			-	-	-	< 0.5	< 0.5 < 0.5	< 0.5 < 0.05 < 0.5 < 0.05	05 < 0.05 05 < 0.05
	Endosulfan 1	mg/kg mg/kg	0.05				2000		-0.05 d	c0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05	< 0.05	-:-					< 0.05	< 0.05			+ :-			+ :-	-				< 0.5	< 0.5	- 0.0 < 0.00	05 < 0.05
OCP	Endosulfan 2	mo/ka	0.05	-			2000		<0.05	d) 0.5	< 0.05 < 0.05	< 0.05	< 0.05		-	- :		0.05 < 0.05	< 0.05	< 0.05			-		-	-	- :	- :			< 0.5	< 0.5	< 0.5 < 0.0	05 < 0.05
	Endosulfan sulphate	mg/kg	0.05			-	2000		<0.05 <	<0.05	< 0.05 < 0.05	< 0.05	< 0.05		-	-		0.05 < 0.05	< 0.05	< 0.05	- 1		-		-		-			-	< 0.5	< 0.5	<0.5 < 0.00 < 0.5 < 0.00 < 0.5 < 0.00	05 < 0.05
1	Endrin	mg/kg	0.05				100		<0.05 <	<0.05	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05	< 0.05			-		0.05 < 0.05	< 0.05	< 0.05	-									-	< 0.5	< 0.5	< 0.5 < 0.05 < 0.5 < 0.05	05 < 0.05 05 < 0.05
1	Endrin Aldehyde	mg/kg mg/kg mg/kg	0.05				-							-		-		0.05 < 0.05	< 0.05	< 0.05	-		-		-	-	-	-	-	-	< 0.5	< 0.5	< 0.5 < 0.0	.5 < 0.05
	Endrin Ketone	mg/kg	0.05			-			<0.05 <	<0.05	< 0.05 < 0.05	< 0.05	< 0.05		- 7			0.05 < 0.05		< 0.05			-		-		-	-		-	< 0.5	< 0.5	< 0.5 < 0.05 < 0.5 < 0.05	05 < 0.05
	g-BHC (Lindane)	mg/kg	0.05			-			<0.05 <	<0.05	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05	< 0.05	-	-	-		0.05 < 0.05	< 0.05	< 0.05	-				-	-		-	-	-	< 0.5	< 0.5	< 0.5 < 0.05 < 0.5 < 0.05	05 < 0.05 05 < 0.05
	Heptachlor	mg/kg	0.05			-	50		<0.05 <	90.05	< 0.05	< 0.05	< 0.05		-	-			< 0.05	< 0.05					-	+ -	<u> </u>		-	-	< 0.5	< 0.5	< 0.0	05 < 0.05 05 < 0.05
	Heptachlor epoxide Hexachlorobenzene	mg/kg mg/kg	0.05				- 20		<0.05 d	20.05	< 0.05 < 0.05 < 0.05 < 0.05	< 0.00	< 0.05		- +		- + 1	0.05 < 0.05 0.05 < 0.05	< 0.05						<u> </u>	+ -	<u> </u>			-	< 0.5	< 0.5	< 0.5 < 0.05	3 < U.U5
1	Methoxychlor	mg/kg mg/kg	0.05						<0.05 <	0.05	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	- :	-:-	-:-	-: +:	0.05 < 0.05 0.05 < 0.05	< 0.05	< 0.05 < 0.05	-:-	: 1	+ :			+ :	- : -	⊢ : ⊢	-:-	-:-	< 0.5	< 0.5 < 0.5	< 0.5 < 0.05 < 0.5 < 0.05	05 < 0.05 05 < 0.05
	Toxanhene	mo/ka	0.5				160			<0.5	< 0.5 < 0.5	< 0.5	< 0.5			- :			< 0.5	< 0.5	- :	. :	1 :		1	1	-			-	< 10	< 10	<10 < 0.5	.5 < 0.5
	Vic EPA IWRG 621 OCP 9total)	mg/kg	0.1			-			<0.5 <	<0.1	<0.5 <0.5 <0.1 <0.1	< 0.5 < 0.1	< 0.5 < 0.1		-	-		0.5 < 0.5 0.1 < 0.1	< 0.1	< 0.5 < 0.1	- 1		-		-		-			-	< 1	< 1	< 10 < 0.5 < 1 < 0.1	.1 < 0.1
	Vic EPA IWRG 621 Other OCP (total)	mg/kg mg/kg	0.1						<0.1	<0.1	<01 <01	< 0.1	< 0.1			-		0.1 < 0.1	< 0.1	< 0.1	-						-			-	<1	< 1	< 1 < 0.1	.1 < 0.1
	Aroclor-1016	mg/kg mg/kg	0.1			-			<0.1	<0.1	<0.1 <0.1 <0.1 <0.1	< 0.1	< 0.1		-	-		0.1 < 0.1	< 0.1	< 0.1	-		-		-	-	-	-	-	-	< 1	< 1	<1 < 0.1	.1 < 0.1
	Aroclor-1221	mg/kg	0.1			-			<0.1	<0.1	< 0.1 < 0.1	< 0.1	< 0.1	-	-	-		0.1 < 0.1	< 0.1	< 0.1	-		-		_		-	-	-	-	< 1	< 1	< 1 < 0.1	.1 < 0.1
1	Aroclor-1232	mg/kg mg/kg	0.1						<0.1 <	<0.1	< 0.1 < 0.1	< 0.1	< 0.1		· T			0.1 < 0.1	< 0.1	< 0.1											< 1	< 1	<1 <0.1	.1 < 0.1
PCB	Aroclor-1242	mg/kg	0.1			-	-		<0.1	<0.1	< 0.1 < 0.1	< 0.1	< 0.1	-	-	-		0.1 < 0.1	< 0.1	< 0.1	-		-		-	-	-	-	-	-	< 1	< 1	<1 <0.1	
1	Aroclor-1248	mg/kg	0.1						<0.1	~W.T	< 0.1 < 0.1 < 0.1 < 0.1	< 0.1 < 0.1	< 0.1			-		0.1 < 0.1 0.1 < 0.1	< 0.1	< 0.1 < 0.1	-		-		<u> </u>	-	-	-	-	-	<1		<1 <0.1 <1 <0.1	
	Aroclor-1254	mg/kg	0.1						<0.1	<0.1 c0.1		< 0.1	< 0.1	-:-				0.1 < 0.1	< 0.1 < 0.1	< 0.1	-:-		+ :-			+ :-	-	- : -	-:-		<1		<1 <0.1 <1 <0.1	
	Aroclor-1260 Total PCB*	mg/kg mg/kg	0.1				7		40.1	<0.1	<0.1 < 0.1		< 0.1	- : -	-:-	- : -	-: -:	0.1 < 0.1	<0.1	< 0.1	-:-		- : -	-: -:	- : -	+ :	- : -	- : - 	-:-	-:	< 1	- 1 - 1	<1 <0.1	
—	Total coliforms	mg/kg MPN/g	10					1000					430					- 0.1		- 0.1	- : -	.				+ :-		<u> </u>				-		
Microbiologica	F Coli	MPN/g	10					100	180 4 <10 4	<10	1 1	<10				- :	-:-				- :		— :		-	+ :	<u> </u>		- :	-	-	-	-	+
1	Thermotolerant coliforms	MPN/g	10					1000	<10	<10		<10	<10		.			. :		- 1		. :				T :	-			-		-	- :	
-	Ammonia (as N)	mg/kg	5			-		-	<5	13		13	12		- 1	-				-	-		-		-			-	-	-	< 250	< 5	5.4 -	
	Nitrate & Nitrite (as N)	mg/kg	5			-			<5 1	1800		< 5	< 5												-		-			-	1800		760 -	
	Nitrate (as N)	mg/kg	5				-		<5 1	1800		< 5	< 5	-		-	-			-	-		1 -		_	1	-	-	-	-	1800	750	760 -	
	Nitrite (as N)	mg/kg	5			-			<5	<5		< 5			-				1 - 1				-		-	-	-	-	-	-	< 5	< 5	< 5 -	
Nutrients	Nitrite (as N)								650 14	4000																								
Nutrients	Phosphate total (as P)	mg/kg	5	•	•		•		000 11			650	730	-	-		-		-				-					-		-	14000	13000	12000 -	
Nutrients		mg/kg mg/kg mg/kg	5	:					1700 24 1700 25	4000		2200 2200					-		- :	- :		: :	- :		:	- :	- :	-	-	-	24000		23000 -	

Highlighted concentration exceeds the adopted after criters - Screening Levels for Direct Contact (mpkg) - CRC Care 2011
Highlighted concentration exceeds the adopted site criters - Management Limits for TPM Fractions F1 - F4 in soil (mpkg) - NEPC 231
Highlighted concentration exceeds the adopted site criters - Management Limits for TPM Fractions F1 - F4 in soil (mpkg) - NEPC 2
Highlighted concentration exceeds the adopted site criters - Health investigation Levels for Soil Contaminants - NEPC 2013
Highlighted concentration exceeds the adopted site criters - Mealth investigation Levels for Soil Contaminants - NEPC 2013
Highlighted concentration exceeds the adopted site criters - Mealth investigation Levels for Soil Contaminants - NEPC 2013
Highlighted concentration exceeds the adopted site criters - Mealth investigation Levels for Soil Contaminants - NEPC 2013
Highlighted concentration exceeds the adopted site criters - Mealth investigation Levels for Soil Contaminants - NEPC 2013
Highlighted concentration exceeds the adopted site criters - Mealth investigation Levels for Soil Contaminants - NEPC 2013
Highlighted concentration exceeds the adopted site criters - Mealth investigation Levels for Soil Contaminants - NEPC 2013
Highlighted concentration exceeds the adopted site criters - Mealth investigation Levels for Soil Contaminants - NEPC 2013
Highlighted concentration exceeds the adopted site criters - Mealth investigation Levels for Soil Contaminants - NEPC 2013
Highlighted concentration exceeds the adopted site criters - Mealth investigation Levels for Soil Contaminants - NEPC 2013
Highlighted concentration exceeds the adopted site criters - Mealth investigation - NEPC 2013
Highlighted concentration - NEPC 2013
Highlighted contents - NEPC 2013
Highlighted concentration - NEPC 2013
Highlighted concentration - NEPC 2013
Highlighted concentration - NEPC 2013
High

 No published criteria or sample not an NL Not Limiting **alliance** Report No.: 13546-ER-2-1

APPENDIX A – Logs

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP01 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Started: 6/10/2021

Finished: 6/10/2021

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: JW Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Water Remarks Depth (m) Gravelly sandy CLAY, brown, low plasticity, soft moist No potential asbestos containing materials, no odours or staining 0-0.02(PID:2.4ppm) Clayey SHALE with gravels and cobbles, dark grey, well graded, fine to course grained, sub-angular, slightly moist М No potential asbestos containing materials, no odours or staining 0.5 .4-0.6(PID:4.0ppm) 1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP02 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road

Hole Location: Refer to Figure 3.

Started: 6/10/2021

Finished: 6/10/2021

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ Bearing: ---RL Surface: m Contractor: Alliance Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Silty CLAY with minor gravels, brown, medium to high plasticity moist No potential asbestos containing material, no odours or staining .0-0.2(PID:2.2ppm) Test Pit TP02 terminated at 0.4m 0.5 1.0 1.5

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP03 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Finished: 6/10/2021

Location: 290-308 Aldington Road and 59-63 Abbotts Road

Hole Location: Refer to Figure 3.

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Gravelly sand with cobbles, light brown, well graded, fine to course grained, sub No potential asbestos containing material, no odours or staining .0-0.2(PID:2.6ppm) Silty CLAY with fine gravels, dark brown, low plasticity, slightly moist М No potential asbestos containing material, no odours or staining .4-0.6(PID:4.5ppm) Test Pit TP03 terminated at 0.6m 1.0 1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21 1.<u>5</u>

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP04 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Finished: 6/10/2021

Location: 290-308 Aldington Road and 59-63 Abbotts Road

Hole Location: Refer to Figure 3.

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ Bearing: ---RL Surface: m Contractor: Alliance Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Clayey SHALE with gravels and cobbles, dark grey, well graded, fine to course No potential asbestos containing material, no odours or staining grained, sub-angular, slightly moist .0-0.1(PID:0.2ppr Test Pit TP04 terminated at 0.1m 0.5 1.0 1.5

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP05 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road

Hole Location: Refer to Figure 3.

Started: 6/10/2021

Finished: 6/10/2021

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ Bearing: ---RL Surface: m Contractor: Alliance Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Silty CLAY, dark brown/orange, high plasticity, mosit No potential asbestos containing material, no odours or staining .0-0.1(PID:1.8ppr Test Pit TP05 terminated at 0.1m 0.5 1.0 1.5

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP06 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Started: 6/10/2021

Finished: 6/10/2021

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Water Remarks RL Depth (m) Gravelly silty SAND with cobbles, brown, well graded, fine to course No potential asbestos containing material, no odours or staining grained, sub-angular, moist .0-0.2(PID:0.1ppm) Gravelly sandy CLAY, light brown, medium plasticity, moist М No potential asbestos containing material, no odours or staining 0.5 .8-1.0(PID:0.4ppm) Silty CLAY with fine gravels, dark brown, high plasticity, moist М No potential asbestos containing material, no odours or staining .0-1.2(PID:0.2ppm) I. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/2 .2-1.4(PID:0.2ppm)_M CLAY, orange/red, high plasticty, moist No potential asbestos containing material, no odours or staining Test Pit TP06 terminated at 1.5m

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP07 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Started: 6/10/2021

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Gravelly silty SAND with cobbles, brown, well graded, fine to course No potential asbestos containing material, no odours or staining grained, sub-angular, moist .0-0.2(PID:0.2ppm) No potential asbestos containing material, no CLAY, light orange with grey mottling, low to medium plasticity, moist М odours or staining .5-0.7(PID:0.3ppm) Test Pit TP07 terminated at 0.7m 1.0 1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21 1.<u>5</u>

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP08 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Started: 6/10/2021

Finished: 6/10/2021

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks RL Depth (m) Gravelly silty SAND with cobbles, brown, well graded, fine to course No potential asbestos containing materials, no odours or staining grained, sub-angular, moist .0-0.2(PID:0.6ppm) М No potential asbestos containing materials, no odours or staining CLAY, light brown with orange mottling, high plasticity .4-0.6(PID:0.2ppm) Test Pit TP08 terminated at 0.6m 1.0 1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21 1.<u>5</u>

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP09 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Started: 6/10/2021

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Water Remarks RL Depth (m) Gravelly silty SAND with cobbles, brown, well graded, fine to course No potential asbestos containing materials, no odours or staining grained, sub-angular, moist 0.0-0.2, 0.0-0.2ASB (PID:0.4ppm) .4-0.6(PID:0.2ppm)_M No potential asbestos containing materials, no CLAY, light brown with orange mottling, high plasticity odours or staining Test Pit TP09 terminated at 0.6m 1.0 1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21 1.<u>5</u>

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP10 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road

Hole Location: Refer to Figure 3.

Started: 6/10/2021

Finished: 6/10/2021

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Gravelly sand with cobbles, brown, well graded, fine to course grained, sub angular, No potential asbestos containing materials, no odours or staining .0-0.2(PID:0.1ppm) CLAY, light brown, high plasticity, moist М No potential asbestos containing materials, no 3-0.4(PID:0.6ppn odours or staining Test Pit TP10 terminated at 0.4m 0.5 1.0 1.5

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP11 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road

Hole Location: Refer to Figure 3.

Started: 6/10/2021

Finished: 6/10/2021

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ Bearing: ---RL Surface: m Contractor: Alliance Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Shaley CLAY, brown, low plasticity, slightly moist No potential asbestos containing materials, no odours or staining .0-0.1(PID:0.2ppr Test Pit TP11 terminated at 0.1m 0.5 1.0 1.5

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP12 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Finished: 6/10/2021

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ Bearing: ---RL Surface: m Contractor: Alliance Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Shaley CLAY, brown, low plasticity, slightly moist No potential asbestos containing materials, no odours or staining .0-0.1(PID:0.2ppr Test Pit TP12 terminated at 0.1m 0.5 1.0 1.5

T: 1800 288 188
E: office@allgeo.com.au
W: www.allgeo.com.au

TP No: TP13 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Pi	roje	ect:	Det		Site In	vestig	ation Road & 59-63 Abbotts Road, Մետե թ և մնանն արNSW		Starte Finis Test	hed:		m
-							Mounted ExcallaterCoordinates E, N	D	riller:	ril 3	ize.	Logged: SJ
			ace:		auno i	rack it	Contractor: O' Hara Brothers		earing:			Checked:
Method	50	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks		Consistency/ Density Index	
ation	201					-	FILL: Sandy CLAY: brown.		ES	М	St	FILL
Excavation				- - -					ES) (O+	
				0 <u>.5</u> - -		-	CLAY: red brown.		ES	M	VSt	-
				- 1.0			NATURAL Test Pit TP13 terminated at 1m					
				- - 1 <u>.5</u> - -								
1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21				2.0 - - 2.5 - - 3.0 -								
. NON C				3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP14 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Started: 6/10/2021

Finished: 6/10/2021

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Gravelly silty SAND, brown, well graded, fine to course grained, sub-angular, slightly No potential asbestos containing materials, no odours or staining .0-0.2(PID:0.2ppm) No potential asbestos containing materials, no odours or staining М CLAY, light brown with orange mottling, high plasticty, moist .5-0.7(PID:0.3ppm) 1.0 Test Pit TP14 terminated at 1m 1.<u>5</u>

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP15 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Started: 6/10/2021

Finished: 6/10/2021

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Sandy GRAVEL, dark grey to black, well graded, fine to course grained, sub angular, No potential asbestos containing materials, no odours or staining 0.0-0.2(PID:0.7ppm) CLAY, light brown with orange mottling, high plasticity, moist М No potential asbestos containing materials, no odours or staining .2-0.4(PID:0.7ppm) 0.5 1.0 Test Pit TP15 terminated at 1m 1.<u>5</u>

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP16 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Started: 6/10/2021

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ Bearing: ---RL Surface: m Contractor: Alliance Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Gravelly silty SAND, brown, well graded, fine to course grained, sub angular, slightly No potential asbestos containing materials, no odours or staining No potential asbestos containing materials, no odours or staining CLAY, light brown with orange mottling, high plasticity, moist 1.0 Test Pit TP16 terminated at 1m 1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21 1.<u>5</u>

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP17 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Started: 6/10/2021

Finished: 6/10/2021

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Gravelly SAND, brown, well graded, fine to course grained, sub angular, slightly moist No potential asbestos containing material, no odours or staining .0-0.2(PID:0.7ppm) CLAY, light brown/orange with grey mottling, high plasticity, moist М No potential asbestos containing material, no odours or staining .3-0.5(PID:0.6ppm) 1.0 Test Pit TP17 terminated at 1m 1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21 1.5

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP18 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Started: 6/10/2021

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Water Remarks RL Depth (m) Silty SAND with minor gravels, light brown, well graded, fine to course grained, sub No potential asbestos containing material, no odours or staining angular, slightly moist 0.0-0.2, 0.0-0.2ASB (PID0.4ppm) No potential asbestos containing material, no CLAY with fine gravels, brown/orange, high plasticity М odours or staining .5-0.7(PID:0.7ppm) 1.0 Test Pit TP18 terminated at 1m 1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/2' 1.<u>5</u>

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP19 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Started: 7/10/2021

Finished: 7/10/2021

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ Bearing: ---RL Surface: m Contractor: Alliance Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Clayey gravelly SHALE, brown with orange mottling, well graded, fine to course grained, sub angular No potential asbestos containing material, no odours or staining .0-0.1(PID:2.0ppr 0.5 1.0 Test Pit TP19 terminated at 1m 1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21 1.5

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP20 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Started: 7/10/2021

Finished: 7/10/2021

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ Bearing: ---RL Surface: m Contractor: Alliance Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Silty SAND with fine mulch, brown, well graded, fine to course grained, sub angular, dry No potential asbestos containing material, no odours or staining .0-0.1(PID:0.9ppr 0.5 1.0 Test Pit TP20 terminated at 1m 1.5

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP21 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Started: 6/10/2021

Finished: 6/10/2021

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Sandy CLAY, brown, low plasticity, slightly moist No potential asbestos containing material, no odours or staining .0-0.2(PID:1.0ppm) 0.5 .0-1.2(PID:2.0ppm) 1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21 No potential asbestos containing material, no odours or staining М CLAY, light brown with orange mottling, high plasticity, moist .3-1.5(PID:1.3ppr Test Pit TP21 terminated at 1m

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP22 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/2'

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Finished: 7/10/2021

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Silty CLAY with gravels, brown, low to medium plasticity, moist No potential asbestos 0.0-0.1, 0.0-0.1ASB (PID:1.6ppm) containing material, no odours or staining Gravelly CLAY, light brown with orange mottling, high plasticity mosit No potential asbestos containing material, no odours or staining 0.5 1.0 .0-1.2(PID:3.0ppm) No potential asbestos CLAY with minor gravels, dark brown, high plasticity moist М containing material, no odours or staining 1.5 .8-2.0(PID:1.5ppm)

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP23 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/2'

Client:ESR Australia Pty LtdStarted:7/10/2021Project:Detailed Site InvestigationFinished:7/10/2021Location:290-308 Aldington Road and 59-63 Abbotts RoadHole Location:Refer to Figure 3.Test Pit Size:0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Water Remarks RL Depth (m) Gravelly silty CLAY, light brown, low plasticity, slightly moist 0.0-0.1, BD2, BT2 (PID:1.6ppm) No potential asbestos containing material, no odours or staining CLAY with minor gravels, dark brown, high plasticity moist М No potential asbestos containing material, no odours or staining 0.5 1.0 1.0-1.2 (PID:1.4ppm) CLAY, light brown with orange mottling, high plasticity No potential asbestos containing material, no odours or staining М .5-1.7(PID:7.1ppm)

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP24 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Started: 7/10/2021

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Gravelly silty CLAY, light brown, low plasticity, slightly moist No potential asbestos containing material, no odours or staining .0-0.1(PID:4.4ppr No potential asbestos containing material, no odours or staining CLAY, light brown/orange, medium to high plasticity, moist М .5-0.7(PID:9.2ppm) 1.0 Test Pit TP24 terminated at 1m 1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21 1.5

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP25 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Started: 7/10/2021

Test Pit Size: 0.3 m

Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Gravelly silty CLAY, light brown/grey, low plasticity, moist No potential asbestos containing material, no odours or staining .0-0.1(PID:5.2ppr No potential asbestos containing material, no CLAY with fine gravels, brown/orange, low plasticity 5-0.6(PID:7.1ppm) odours or staining Test Pit TP25 terminated at 1m 1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21 1.5

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP26 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd Started: Project: Detailed Site Investigation Finished: Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Silty gravelly CLAY, brown, low plasticity No potential asbestos 0.0-0.1, 0.0-0.1ASB (PID:7.9ppm) containing materials, no odours or staining 0.5 .0-1.2(PID:8.2ppm) 1.5 No potential asbestos containing materials, no odours or staining Silty CLAY with minor gravels, dark brown, medium to high plasticity .8-2.0(PID:3.8ppm)

T: 1800 288 188
E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP27 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Client: ESR Australia	Started:
Project: Detailed Site Investigation	Finished:
Location: 290-308 Aldington Road & 59-63 Abbotts Road, Մեխքար և մնանեն դ NSW	Test Pit Size: m

Rig Type: 5t Hydraulic Track Mounted ExcallelerCoordinates E, N Driller: Logged: SJ											
		ace:						aring:			Checked:
Method	Water		Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture	Consistency/ Density Index	
					-	FILL: Sandy CLAY: brown (potentially reworked natural).	П	ES	М	S	FILL
Excavation			0.5					ES			
			1 <u>.0</u>		-	CLAY: brown/red, trace silt.	Н		М	VSt	NATURAL
			- - -					ES			
			1.5								
			2 <u>.0</u>			Test Pit TP27 terminated at 1.5m					
			2 <u>.5</u> - -								
			3. <u>0</u> - - 3.5								

Client: ESR Australia

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Alliance Geotechnical Pty Ltd

T: 1800 288 188
E: office@allgeo.com.au
W: www.allgeo.com.au

TP No: TP28 Sheet: 1 of 1

Started:

Test Pit Log

W: www.allgeo.com.au

Job No: 13546

Project: Detailed Site Investigation Finished:

Location: 290-308 Aldington Road & 59-63 Abbotts Road, **Ktor**թե**ւ** նշանենու NSW Test Pit Size: m

									m		
			aulic T	rack M	Mounted Exca Male r Coordinates E, N	Driller:					
RL Su	rface:	m			Contractor: O' Hara Brothers	Bearing:			Checked:		
Method	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations		
.io			\bowtie	-	FILL: Silty CLAY: brown.	ES	М	VSt	FILL		
Excavation		-	\bowtie	-	CLAY: red brown.		М	VSt	NATURAL		
) Ex		-				ES					
		0 <u>.5</u>									
					Test Pit TP28 terminated at 0.6m						
		-									
		-									
		1.0									
		_									
		-									
		1 <u>.5</u>									
		-									
		-									
		-									
		2.0									
		-									
		-									
		2 <u>.5</u>									
		_									
		-									
		-									
		3 <u>.0</u>									
		3.0									
		-									
		-									
		3.5									

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au TP No: TP29 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: Project: Detailed Site Investigation Finished: Location: 290-308 Aldington Road & 59-63 Abbotts Road, **சிருட்**ணன்கோNSW Test Pit Size: m Rig Type: 5t Hydraulic Track Mounted ExcaMalerCoordinates E, N **Driller:** Logged: SJ RL Surface: m Contractor: O' Hara Brothers Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Remarks Depth (m) RL FILL: Silty CLAY: brown. ES ES D H NATURAL CLAY: orange/brown. 0<u>.5</u> 1.0 Test Pit TP29 terminated at 1m 1.<u>5</u> 2.0 1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21 2.5 3.0

T: 1800 288 188
E: office@allgeo.com.au
W: www.allgeo.com.au

TP No: TP30 Sheet: 1 of 1 Job No: 13546

Test Pit Log

		: ESR					Started:					
					vestiga			Finisl				
\vdash					_	Road & 59-63 Abbotts Road, Katolop & Coation NSW		Test I	Pit S	ize:		
				aulic T	rack N	Mounted Exca Maile r Coordinates E, N		riller:			Logged: SJ	
RI	L Su	rface:	m			Contractor: O' Hara Brothers	В	earing:	_		Checked:	
Method		RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks		Consistency/ Density Index		
ation					-	FILL: Silty CLAY: brown.		ES	D	Н	FILL	
Excavation			-					ES				
			0 <u>.5</u>		-	CLAY: orange/brown.			D	Н	NATURAL	
			-					ES				
			-									
			-									
			1.0									
				,,,		Test Pit TP30 terminated at 1m						
			_									
			1 <u>.5</u>									
			_									
			-	-								
			-									
			-									
			2.0									
			-									
/11/21			-									
DT 30			-									
ILIA.G			2 <u>.5</u>									
JSTR/			2.0									
STD A			-									
LNE BINT												
.GPJ												
13546			3.0									
HOLE			_									
1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21			_									
SRED .			-									
NO NO			-	-								
 Z			3.5									

T: 1800 288 188
E: office@allgeo.com.au
W: www.allgeo.com.au

TP No: TP31 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia	Started:
Project: Detailed Site Investigation	Finished:
Location: 290-308 Aldington Road & 59-63 Abbotts Road, Ktotաբեմն աnNSW	Test Pit Size: m

						Road & 59-63 Abbotts Road, Krtotep & Coatborn NSW Mounted Excallater Coordinates E, N	Test Pit Size				Logged: SJ		
_		ace:	-			Contractor: O' Hara Brothers		earing:			Checked:		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/	Additional Observation		
Excavation		()	- - -		-	FILL: Silty CLAY: brown, shale gravels (irrigation piping?).		ES	M	St	FILL		
			0 <u>.5</u>			0.9m, becoming moist with depth		ES					
			1. <u>0</u> 1. <u>5</u> 2. <u>0</u>		-	FILL: CLAY: brown/red, trace silt (potentially reworked natural?).		ES	M	vs	t		
			- -				-	ES					
			- 2. <u>5</u> 3. <u>0</u>			Excavator Reached limit Test Pit TP31 terminated at 2.3m							

Alliance Geotechnical Pty Ltd T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP32 Sheet: 1 of 1 Job No: 13546

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

2.5

3.0

3.5

T	es	t P	it L	.og										
Pro	oject	: Det		Site In	ıvestiga ngton F	ation Road & 59-63 Abbotts Road, Кետեր ⊾ գնաեներ NSW		Started: Finished: Test Pit Size: m						
Rig	ј Тур	De: 51	Hydra	aulic 1	Γrack Ν	Mounted ExcalmaterCoordinates E, N		Oriller:	Logged: SJ					
RL	Sur	face:	m			Contractor: O' Hara Brothers	E	Bearing:			Checked:			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations			
Excavation					-	Silty CLAY: brown (irrigation piping?).		ES	М	St				
Exc			0. <u>5</u>							ES				
			- - 1 <u>.5</u>			CLAY: brown/red, trace silt.		ES	M	VSt				
			-			CLAY: blowinged, trace slit.		ES	IMI	VSt				

Test Pit TP32 terminated at 2m

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au TP No: TP33 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

3.5

Client: ESR Australia Started: Project: Detailed Site Investigation Finished: Location: 290-308 Aldington Road & 59-63 Abbotts Road, **சிருட்**ணன்கோNSW Test Pit Size: m Rig Type: 5t Hydraulic Track Mounted ExcaMalerCoordinates E, N **Driller:** Logged: SJ RL Surface: m Contractor: O' Hara Brothers Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Remarks Depth (m) RL FILL: Sandy CLAY: brown (potentially reworked natural). ES VSt NATURAL CLAY: brown/red, trace silt. М ES 0.5 Test Pit TP33 terminated at 0.6m 1.0 1.<u>5</u> 2.0 2.5 3.0

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au TP No: TP34 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: Project: Detailed Site Investigation Finished: Location: 290-308 Aldington Road & 59-63 Abbotts Road, **சிருட்**ணன்கோNSW Test Pit Size: m Rig Type: 5t Hydraulic Track Mounted ExcaMalerCoordinates E, N **Driller:** Logged: SJ RL Surface: m Contractor: O' Hara Brothers Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Remarks Depth (m) RL FILL: Sandy CLAY: brown (potentially reworked natural). ES ES M VSt NATURAL CLAY: brown/red, trace silt. ES 1.0 Test Pit TP34 terminated at 1.2m 1.<u>5</u> 2.0 1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21 2.5 3.0

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au TP No: TP35 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Client: ESR Australia Started: Project: Detailed Site Investigation Finished: Location: 290-308 Aldington Road & 59-63 Abbotts Road, **சிருட்**ணன்கோNSW Test Pit Size: m Rig Type: 5t Hydraulic Track Mounted ExcaMalerCoordinates E, N **Driller:** Logged: SJ RL Surface: m Contractor: O' Hara Brothers Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Remarks Depth (m) FILL: Sandy CLAY: brown (potentially reworked natural). ES ES M VSt NATURAL CLAY: brown/red, trace silt. ES 1.0 Test Pit TP35 terminated at 1.1m 1.<u>5</u> 2.0 2.5 3.0

T: 1800 288 188
E: office@allgeo.com.au
W: www.allgeo.com.au

TP No: TP36 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Pro	oject	: Det		Site In	vestiga	ation Road & 59-63 Abbotts Road, K ttot թ ⊾մնանփ nNSW	Started: Finished: W Test Pit Size: m						
-						founted ExcalvaterCoordinates E, N	D	riller:	11.0	120.	Logged: SJ		
		face:	-			Contractor: O' Hara Brothers		earing:			Checked:		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations		
ation					-	Sandy CLAY.		ES	-	-			
Excavation			0.5		-	CLAY: with shale gravels. Test Pit TP36 terminated at 0.5m		ES	-	-			
			1.0 - - 1.0 - - 1.5 -										
1. NON CORED BOREHOLE 13546 GPJ GINT STD AUSTRALIA GDT 30/11/21			2.0 2.5 3.0 3.0										

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au TP No: TP37 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started:

Project: Detailed Site Investigation Finished:
Location: 290-308 Aldington Road & 59-63 Abbotts Road, KtoinptoOcationNSW Test Pit Size: m

		Type: 5t Hydraulic Track urface: m						Driller: Bearing:			Logged: SJ Checked:		
KL	our	ace:	m			Contractor: O' Hara Brothers	Re	aring:			Спескеа:		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/	Additional Observation		
		,			-	FILL: Sandy CLAY: brown, some gravels, tile fragments (potentially reworked	+	ES	М	S	FILL		
Excavation			- - -		-	natural). CLAY: brown/red, trace silt.			M	VS	t NATURAL		
			0 <u>.5</u>					ES					
_				<i></i>		Test Pit TP37 terminated at 0.8m	+						
			1 <u>.0</u>										
			-	_									
			1 <u>.5</u>										
			-										
			2 <u>.0</u>										
			-	-									
			2 <u>.5</u>										
			- -	-									
			3 <u>.0</u>										
			3.5										

Alliance Geotechnical Pty Ltd T: 1800 288 188

E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP38 Sheet: 1 of 1 Job No: 13546

Test Pit Log

3.5

Client: ESR Australia Started: Project: Detailed Site Investigation Finished: Location: 290-308 Aldington Road & 59-63 Abbotts Road, **சிருட்**ணன்கோNSW Test Pit Size: m Rig Type: 5t Hydraulic Track Mounted ExcaMalerCoordinates E, N **Driller:** Logged: SJ RL Surface: m Contractor: O' Hara Brothers Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Remarks Depth (m) RL FILL: Sandy CLAY: brown, some gravels (potentially reworked natural). ES ES CLAY: brown/red, trace silt. VSt NATURAL 0<u>.5</u> ES Test Pit TP38 terminated at 0.8m 1.0 1.<u>5</u> 2.0 1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21 2.5 3.0

T: 1800 288 188
E: office@allgeo.com.au
W: www.allgeo.com.au

TP No: TP39 Sheet: 1 of 1 Job No: 13546

Test Pit Log

			- 0									
Client	: ESR	Austr	alia			Starte	ed:					
Projec	t: Det	ailed	Site In	vestiga	ation	Finis	hed:					
Locati	on: 29	90-308	8 Aldir	ngton F	load & 59-63 Abbotts Road, Kilotop & @catiolon NSW	Test Pit Size: m						
Rig Ty	/pe: 51	Hydra	aulic T	rack N	lounted Exca Male r Coordinates E, N	Driller:			Logged:	SJ		
RL Su	rface:	m			Contractor: O' Hara Brothers	Bearing:		Checked:				

Rig	Тур	e: 5t	Hydra	aulic T	rack N	Mounted Exca Male rCoordinates E, N	Dr	iller:		Logged: SJ		
RL	Surf	ace:	m			Contractor: O' Hara Brothers	Ве	earing:		Checked:		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/	Additional Observations	
tion					-	FILL: Sandy CLAY: brown (potentially reworked natural).		ES	М	S	FILL	
Excavation			- - 0 <u>.5</u>		-	CLAY: brown/red, trace silt.		ES	M	VS	t NATURAL	
						Test Pit TP39 terminated at 0.6m						
			 1.0 1.5 2.0 2.5			Test Pit TP39 terminated at 0.6m						
			3. <u>0</u>									

T: 1800 288 188
E: office@allgeo.com.au
W: www.allgeo.com.au

TP No: TP40 Sheet: 1 of 1 Job No: 13546

Test Pit Log

		8								
Client: ESR	Australia	Start	ed:							
Project: Deta	iled Site	Finis	hed:							
Location: 290	0-308 A	ldingto	n F	Road & 59-63 Abbotts Road, Helotop & Cation NSW		Test	Pit S	ize:	m	
Rig Type: 5t	Hydraul	lic Trac	k N	Mounted Exca Male rCoordinates E, N		Oriller:			Logged:	SJ
RL Surface: 1	m			Contractor: O' Hara Brothers	E	Bearing:			Checked:	
		y ion		_		Samples	e u	ncy/ idex		

Rig Type: 5t Hydraulic Tra	ck Mounted Exca ldate r Coordinates E, N	Driller:	Logged: SJ
RL Surface: m	Contractor: O' Hara Brothers	Bearing:	Checked:
Method Water (m) (m) the pool of the pool	Material Description	Samples and street stre	Orondition October Steen Condition October Steen Condition Additional Observations
	- FILL: Sandy CLAY: brown (potentially reworked natural).	ES M	S FILL
Excavation	- CLAY: brown/red, trace silt.	ES M	VSt NATURAL
1.0 1.5 - 2.0 - 2.5	Test Pit TP40 terminated at 0.6m		

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP41 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd Started: Project: Detailed Site Investigation Finished: Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Silty SAND, brown, well graded, fine to course grained, sub angular moist No potential asbestos 0.0-0.1 containing materials, no odours or staining (PID:1.5ppm) 0.5 No potential asbestos containing materials, no odours or staining CLAY, light brown/beige with orange and grey mottling, high plasticity М .9-1.0(PID:1.5ppm) Test Pit TP41 terminated at 1m 1.<u>5</u>

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP42 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd Started:

Project: Detailed Site Investigation Finished:

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Silty SAND, brown, well graded, fine to course grained, sub angular moist with brick No potential asbestos containing materials, no odours or staining .0-0.1(PID:3.2ppr .0-1.1(PID:1.0ppm) No potential asbestos containing materials, no odours or staining Silty CLAY, light brown with orange mottling, low plasticity, moist 4-1.5(PID:1.7ppm) 1.5 Test Pit TP42 terminated at 1m

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP43 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd Started: Finished: Project: Detailed Site Investigation Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Gravelly silty CLAY, dark brown, medium plasticity, moist No potential asbestos 0.0-0.1, 0.0-0.1ASB (PID:2.9ppm) containing materials, no odours or staining 0.5 .0-1.1(PID:2.ppn No potential asbestos containing materials, no odours or staining М Silty CLAY, light orang/brown, medium to high plasticity .2-1.3(PID:2.7ppn Test Pit TP43 terminated at 1m

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP44 Sheet: 1 of 2 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd Started: Project: Detailed Site Investigation Finished: Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m Rig Type: Hole Coordinates E, N Driller: Logged: SJ Bearing: ---RL Surface: m Contractor: Alliance Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Sandy CLAY with gravels, low to medium plasticity, moist No potential asbestos containting materials, no odours or staining .0-0.1(PID:2.1ppr 4-0.5(PID:1.0ppm 0.5 .0-1.1(PID2.9ppn Silty CLAY, light orang/brown, medium to high plasticity, moist No potential asbestos containting materials, no М odours or staining 4-1.5(PID:1.5ppm) 1.<u>5</u>

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP44 Sheet: 2 of 2 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd Started: Finished: Project: Detailed Site Investigation Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Silty CLAY, light orang/brown, medium to high plasticity, moist (continued) 0-2.1PID:1.7ppn 4-2.5(PID:5.2ppm) 2.5 Test Pit TP44 terminated at 1m 3.0 3.5

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP50 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd Started: Project: Detailed Site Investigation Finished: Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m Rig Type: Hole Coordinates E, N Driller: Logged: SJ Bearing: ---RL Surface: m Contractor: Alliance Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Silty CLAY, dark grey, high plasticity, wet No potential asbestos containing materials, no odours or staining .0-0.1(PID:0.6ppr W No potential asbestos containing materials, no odours or staining Shaley CLAY, light brown/orange with grey mottling, medium plasticity 0.5 5-0.6(PID:3.4ppm) 1.0 Test Pit TP50 terminated at 1m 1.<u>5</u>

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP51 Sheet: 1 of 2 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Rig Type:

Hole Coordinates E. N

Driller:

Logged: SJ

Rig Type: Hole Coordinates E, N Driller: Logged: SJ Bearing: ---RL Surface: m Contractor: Alliance Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Gravelly sandy CLAY, brown, low to medium plasticity, moist, water at 2.0m brick, tile Potential asbestos containing materials observed, no odours or staining and PACM observed at 2.0m .0-0.1(PID:1.7ppn .0-1.1(PID:1.0ppm) 1.5

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP51 Sheet: 2 of 2 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Rig Type:

Hole Coordinates E. N

Driller:

Logged: SJ

Rig Type: Hole Coordinates E, N Driller: Logged: SJ Bearing: ---RL Surface: m Contractor: Alliance Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Gravelly sandy CLAY, brown, low to medium plasticity, moist, water at 2.0m brick, tile 2.0-2.1, 2.0-2.1ASB (PID:0.9ppm) and PACM observed at 2.0m (continued) 3-2.4(PID:13ppn Test Pit TP51 terminated at 1m 3.0 3.5

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP52 Sheet: 1 of 2 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd Started: Project: Detailed Site Investigation Finished: Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Silty CLAY, dark brown, medium plasticity, moist No potential asbestos containing materials, no odours or staining .0-0.1(PID:0.6ppr 0.5 5-0.6(PID:0.7ppm) Silty CLAY with minor gravels, grey, high plasticity, building materials from 1.5m and No potential asbestos containing materials, no odours or staining .0-1.1(PID:0.9ppr 1.5 5-1.6(PID:1.2ppm)

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP52 Sheet: 2 of 2 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd Started: Project: Detailed Site Investigation Finished: Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m Rig Type: Hole Coordinates E, N Driller: Logged: SJ Bearing: ---RL Surface: m Contractor: Alliance Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Silty CLAY with minor gravels, grey, high plasticity, building materials from 1.5m and water at 2.0m (continued) .0-2.1(PID:3.1ppr 5-2.6(PID:0.9ppm) Test Pit TP52 terminated at 1m 3.0 3.5

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP53 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Test Pit Size: 0.3 m

Test Pit Size: 0.3 m Rig Type: Hole Coordinates E, N Driller: Logged: SJ Bearing: ---RL Surface: m Contractor: Alliance Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Silty CLAY, dark brown, medium plasticity, moist No potential asbestos containing materials, no odours or staining 0-0.1(PID:0.9ppr Silty CLAY, orange/brown with grey mottling, high plasticity, moist No potential asbestos containing materials, no odours or staining 3-0.4(PID:2.1ppm) 1.0 Test Pit TP53 terminated at 1m 1.5

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP54 Sheet: 1 of 2 Job No: 13546

Test Pit Log

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Rig Type:

Hole Coordinates E, N

Driller:

Logged: SJ

RL Surface: m

Contractor: Alliance

Bearing: --
Checked:

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m											
	Rig Type:					Hole Coordinates E, N	Driller:		Logged: SJ		
RL S	Surf	ace:	m			Contractor: Alliance	Bearing:	1		Checked:	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observation:	
W	M	(m)	(m) 0. <u>5</u> 1.0		000	Silty CLAY, dark brown, medium plasticity, moist, water strike at 2.0m).0-0.1(PID:0.7ppn	W		No potential asbestos containing materials, no odours or staining	
		- 1. <u>5</u>				.0-1.1(PID:0.7ppn					

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP54 Sheet: 2 of 2 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd Started: Project: Detailed Site Investigation Finished: Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m Rig Type: Hole Coordinates E, N Driller: Logged: SJ Bearing: ---RL Surface: m Contractor: Alliance Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Silty CLAY, dark brown, medium plasticity, moist, water strike at 2.0m (continued) .0-2.1(PID:0.7ppr Sllty CLAY, light brown with orange/grey mottling, high plasticity wet No potential asbestos containing materials, no odours or staining 4-2.5(PID:0.6ppm) 2<u>.5</u> Test Pit TP54 terminated at 1m 3.0 3.5

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP61 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/2'

Client: ESR Australia Pty Ltd Started: Project: Detailed Site Investigation Finished: Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Water Remarks Depth (m) Silty SAND with minor gravels, dark brown, fine to medium grained, moist No potential asbestos containing materials, no odours or staining 0-0.1(PID:5.8ppr Silty CLAY, brown with orange and grey mottling, high plasticity, moist M No potential asbestos containing materials, no odours or staining 0.5 5-0.6(PID:13.0ppm) No potential asbestos CLAY, brown, high plasticity, moist containing materials, no odours or staining .0-1.1(PID:7.2ppn Test Pit TP61 terminated at 1m 1.5

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP62 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/2'

Client: ESR Australia Pty Ltd Started: Finished: Project: Detailed Site Investigation Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Water Remarks Depth (m) Silty SAND with minor gravels, dark brown, fine to medium grained, moist No potential asbestos containing materials, no odours or staining 0-0.2(PID:7.0ppr Silty CLAY, brown with orange and grey mottling, high plasticity, moist M No potential asbestos containing materials, no odours or staining 0.5 5-0.6(PID:1.1ppm) M-W No potential asbestos CLAY, brown, high plasticity, moist containing materials, no odours or staining .0-1.1(PID:6.1ppn Test Pit TP62 terminated at 1m 1.5 5-1.6(PID:2.1ppm)

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP63 Sheet: 1 of 1

5-0.6(PID:4.9ppm)

0-1.1ppm(2.1ppm)

No potential asbestos

containing materials, no odours or staining

Job No: 13546 **Test Pit Log** Client: ESR Australia Pty Ltd Started: Project: Detailed Site Investigation Finished: Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Silty CLAY, brown with orange and grey mottling, high plasticity, moist No potential asbestos containing materials, no odours or staining .0-0.1(PID:7.6ppr 0.5

CLAY, brown, high plasticity, moist

Test Pit TP63 terminated at 1m

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

1.5

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP64 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/2'

Client: ESR Australia Pty Ltd Started: Project: Detailed Site Investigation Finished: Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Gravelly silty CLAY, brown, high plasticity, moist No potential asbestos containing materials, no odours or staining .0-0.1(PID:4.1ppr 0.5 Silty CLAY, dark brown, high plasticity, moist No potential asbestos containing materials, no odours or staining .0-1.1(PID:3.2ppr No potential asbestos containing materials, no Silty CLAY, brown with orange mottling, fine gravels, high plasticity, moist odours or staining 5-1.6(PID:3.0ppm) Test Pit TP64 terminated at 1m

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP65 Sheet: 1 of 2 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd Started: Project: Detailed Site Investigation Finished: Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m Rig Type: Hole Coordinates E, N Driller: Logged: SJ Bearing: ---RL Surface: m Contractor: Alliance Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Silty gravelly SAND, dark brown, well graded, fine to course grained, sun angular, moist. No potential asbestos containing materials, no odours or staining .0-0.1(PID:4.0ppr No potential asbestos Silty CLAY, brown with orange mottling, high plasticity, moist. containing materials, no odours or staining .0-1.1(PID:1.1ppm) 1.<u>5</u>

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP65 Sheet: 2 of 2 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd

Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3.

Rig Type:

Hole Coordinates E. N.

Driller:

Logged: S.L.

Rig Type: Hole Coordinates E, N Driller: Logged: SJ Bearing: ---RL Surface: m Contractor: Alliance Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Silty CLAY with fine gravels, brown with orange and grey mottling, high plasticity, No potential asbestos containing materials, no odours or staining moist, with water entering at 2.0m .0-2.1(PID:1.6ppr Test Pit TP65 terminated at 1m 2.5 3.0 3.5

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP66 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd Started:
Project: Detailed Site Investigation Finished:

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m Rig Type: Hole Coordinates E, N Driller: Logged: SJ RL Surface: m Contractor: Alliance Bearing: ---Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Silty SAND with minor gravels, dark brown, fine to medium grained, sub angular, moist No potential asbestos containing materials, no odours or staining .0-0.1(PID:4.7ppr 0.5 No potential asbestos containing materials, no odours or staining М CLAY, orange/brown with grey mottling, high plasticity, moist .6-0.7(PID:3.1ppr 1.0 Test Pit TP66 terminated at 1m 1.<u>5</u>

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

Test Pit No: TP67 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Pty Ltd Started: Finished: Project: Detailed Site Investigation

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m

	Тур						Driller:			Logged: SJ
RL	Sur	face:	m			Contractor: Alliance	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
Method	Water	RL (m)	Depth (m) 0.5 1.0		Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency Density Inde	Additional Observations
			2.0							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP68 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Pty Ltd Started:

Project: Detailed Site Investigation Finished:

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m

Second S	Rig Type:	Hole Coordinates E, N	Driller:	Logged: SJ	
	RL Surface: m	Contractor: Alliance	Bearing:	Checked:	
	Method Water (B) H3 (B) (B) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	O Classification Waterial Description	Samples Tests Condition Condition Consistency Consiste	Additional Observations	
	0.5	Material Description Material Description	Samples Tests Remarks Working Consistency	Additional Observations	

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP69 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Pty Ltd Started:

Project: Detailed Site Investigation Finished:

Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m

Second S	Rig Type:	Hole Coordinates E, N	Driller:	Logged: SJ	
	RL Surface: m	Contractor: Alliance	Bearing:	Checked:	
	Method Water (B) H3 (B) (B) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	O Classification Waterial Description	Samples Tests Condition Condition Consistency Consiste	Additional Observations	
	0.5	Material Description Material Description	Samples Tests Remarks Working Consistency	Additional Observations	

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP70 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd Started: Project: Detailed Site Investigation Finished: Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m Rig Type: Hole Coordinates E, N Driller: Logged: SJ Bearing: ---RL Surface: m Contractor: Alliance Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Silty CLAY, dark brown, medium plasticity, moist No potential asbestos containing materials, no odours or staining .0-0.1(PID:5.8ppr Silty CLAY, orange/brown with grey mottling, high plasticity, moist No potential asbestos containing materials, no odours or staining 3-0.4(PID:6.8ppm 1.0 Test Pit TP70 terminated at 1m 1.5

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au Test Pit No: TP71 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE ENVIROLOGS.GPJ GINT STD AUSTRALIA.GDT 11/23/21

Client: ESR Australia Pty Ltd Started: Project: Detailed Site Investigation Finished: Location: 290-308 Aldington Road and 59-63 Abbotts Road Hole Location: Refer to Figure 3. Test Pit Size: 0.3 m Rig Type: Hole Coordinates E, N Driller: Logged: SJ Bearing: ---RL Surface: m Contractor: Alliance Checked: Classification Symbol Samples Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) Silty CLAY, dark brown, medium plasticity, moist No potential asbestos containing materials, no odours or staining .0-0.1(PID:5.8ppr Silty CLAY, orange/brown with grey mottling, high plasticity, moist No potential asbestos containing materials, no odours or staining 3-0.4(PID:6.8ppm 1.0 Test Pit TP71 terminated at 1m 1.5

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP78 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Client: ESR Australia Started: 19/10/2021 Project: Detailed Site Investigation Finished: 19/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig Type: 5t Hydraulic Track Mounted ExcaMalerCoordinates F. N. Driller: Logged: SJ

Rig	ј Тур	e: 5t	Hydra	aulic T	rack M	Nounted Exca Male rCoordinates E, N	Driller:			Logged: SJ
RL	Sur	face:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
	<u> </u>	(***)	()	71 1× 7	-	TOPSOIL: Sandy SILT: brown, fine to medium grained, sub-rounded sand.	ES PID=3.6ppm	SM	-	TOPSOIL
Excavation			_	K K	CL-CI	Silty CLAY: low to medium plasticity, orange-brown.	PID=3.6ppm	М	-	NATURAL
Exc			_		02 0.	San		ļ		
							ES			
			0.5			Test Pit TP78 terminated at 0.4m				
			0.0							
			_							
			_							
			_							
			_							
			1.0							
			_							
			_							
			_							
			_							
			1. <u>5</u>							
			_							
			_							
			_							
			2.0							
			_							
			_							
			2.5							
			2.5							
			_							
			_							
			_							
			3.0							
			_							
			-							
			_							
			_							
			3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP79 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	Тур	e: 5t	Hydra	ulic T	rack M	lounted Exca ldaterCoordinates E, N	Driller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
ioi				<u>11. 11/2</u>		TOPSOIL: Sandy SILT: brown, fine to medium grained, sub-rounded sand.	ES DID-1 Onne	SM	-	TOPSOIL
Excavation			-	1 ' 1 1		Silty CLAY: low to medium plasticity, orange-brown.	PID=1.0ppm	М	-	NATURAL
Ä			+				ES			
			-							
						Test Pit TP79 terminated at 0.4m	1			
			0 <u>.5</u>							
			-							
			4							
			1.0							
			1 <u>.5</u>							
			1.5							
			-							
			-							
			+							
			-							
			2.0							
			4							
			2.5							
			7							
			3.0							
			+							
			+							
			-							
			4							
			3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP80 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	Тур	e: 5t	Hydra	aulic T	rack M	founted Exca llate rCoordinates E, N	Dri	ller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O' Hara Brothers	Bea	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
ioi				7 <u>11</u> N. 7	-	TOPSOIL: Sandy SILT: brown, fine to medium grained, sub-rounded sand.		ES	SM	-	TOPSOIL
Excavation			-		CL-CI	Silty CLAY: low to medium plasticity, orange-brown.		PID=2.2ppm ES	M	-	NATURAL
			0 <u>.5</u> - - -			Test Pit TP80 terminated at 0.4m					
			1. <u>0</u> -								
			1. <u>5</u> - - - 2.0								
			- - - 2 <u>.5</u>								
			- - 3 <u>.0</u> -								
			- 3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP81 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Client: ESR Australia Started: 19/10/2021 Project: Detailed Site Investigation Finished: 19/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig Type: 5t Hydraulic Track Mounted ExcaMalerCoordinates F. N. Driller: Logged: SJ

Rig	ј Тур	e: 5t	Hydra	aulic T	rack M	lounted Exca MalerCoordinates E, N	Driller:			Logged: SJ
RL	Surf	face:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				<u>11/2</u> . <u>1</u>	-	TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES PID=2.1ppm	М	-	TOPSOIL
Excavation			_	1/ 1/			PID=2.1ppm			
EXC			_	1.76.7	CL CLL	Silty CLAY: medium to high plasticity, orange brown.				NATURAL
					СІ-СП	Silly CLAY: medium to high plasticity, orange brown.	ES	-	-	NATURAL
			0.5			Test Pit TP81 terminated at 0.4m				
			0.5							
			_							
			_							
			_							
			_							
			1.0							
			_							
			_							
			_							
			1 <u>.5</u>							
			_							
			_							
			_							
			_							
			2.0							
			_							
			_							
			_							
			2.5							
			2.0							
			_							
			_							
			2.0							
			3.0							
			_							
			_							
			-							
			3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP82 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	ј Тур	e: 5t	Hydra	aulic T	rack M	lounted Exca Male rCoordinates E, N	Driller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	
tion				7 <u>1 1</u> 8 7	-	TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES PID=1.3ppm	М	-	TOPSOIL
Excavation			_	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2			Т 15-1.орри			
ШÛ			_	1	CI-CH	Silty CLAY: medium to high plasticity, brown.	ES	-	-	NATURAL
			_							
			0.5			Test Pit TP82 terminated at 0.4m	_			
			0 <u>.5</u>							
			_							
			_							
			=							
			1.0							
			1.0							
			_							
			_							
			_							
			4.5							
			1 <u>.5</u>							
			_							
			_							
			_							
			2.0							
			2.0							
			_							
			_							
			_							
			2.5							
			-13_							
			_							
			_							
			3.0							
			_							
			_							
			3.5							
			0.0				1	1		

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP83 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	ј Тур	e: 5t	Hydra	aulic T	rack M	lounted Exca llate r Coordinates E, N	Dri	ller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O' Hara Brothers	Be	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	
Excavation			_	7 7 7	-	TOPSOIL: Silty CLAY: medium plasticity, dark brown.		ES PID=1.2ppm	М	-	TOPSOIL
Û			_		CI-CH	Silty CLAY: medium to high plasticity, brown.		ES	-	-	NATURAL
			0 <u>.5</u>			Test Pit TP83 terminated at 0.4m					
			_								
			_								
			1 <u>.0</u> –								
			_								
			1 <u>.5</u>								
			- -								
			_								
			2 <u>.0</u> _								
			-								
			- 2 <u>.5</u>								
			_								
			-								
			3.0								
			_								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP84 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	ј Тур	e: 5t	Hydra	aulic T	rack M	lounted Exca llate r Coordinates E, N	Dri	ller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O' Hara Brothers	Ве	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	
Excavation			-	7 31 1/2 2 1/2 1/2	-	TOPSOIL: Silty CLAY: medium plasticity, dark brown.		ES PID=1.3ppm	М	-	TOPSOIL
Û			-		CI-CH	Silty CLAY: medium to high plasticity, brown.		ES	-	-	NATURAL
			0 <u>.5</u>			Test Pit TP84 terminated at 0.4m					
			- -								
			- -								
			1 <u>.0</u> -								
			- -								
			- 1 <u>.5</u>								
			-								
			-								
			2.0								
			_								
			- 2 <u>.5</u>								
			<u>- :</u>								
			-								
			3 <u>.0</u>								
			- -								
			- -								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP85 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Client: ESR Australia Started: 19/10/2021 Project: Detailed Site Investigation Finished: 19/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig Type: 5t Hydraulic Track Mounted ExcalerCoordinates E, N Driller: Logged: SJ

Rig	ј Тур	e: 5t	Hydra	ulic T	rack M	lounted Exca Male rCoordinates E, N	Driller:			Logged: SJ
RL	Surf	face:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				<u> 11/2</u> . <u>1</u>	-	TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES	М	-	TOPSOIL
Excavation			-	1/ 1/1/2 1/2 1/ 1/1/2 1/ 1/1/2			PID=2.3ppm			
ш				1	CI-CH	Silty CLAY: medium to high plasticity, brown.	ES	-	-	NATURAL
								1		
						Test Pit TP85 terminated at 0.4m	-			
			0 <u>.5</u>							
			-							
			1.0							
			-							
			1 <u>.5</u>							
			<u></u>							
			-							
			20							
			2.0							
			-							
			1							
			2.5							
			-							
			3.0							
			3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP86 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 19/10/2021 Project: Detailed Site Investigation Finished: 19/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, ենթեւնար NSW Test Pit Size: m

Rig Type: 5t Hydraulic Track Mounted ExcaMalerCoordinates E, N **Driller:** Logged: SJ

				aulic I	rack i	Mounted Exca Mate rCoordinates E, N	Driller:			Logged: SJ														
RL	Surf	face:	m			Contractor: O' Hara Brothers	Bearing:			Checked:														
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/	Additional Observations														
				<u>7, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,</u>		TOPSOIL: Silty CLAY: low plasticity, brown.	ES PID=1.8ppm	М	-	TOPSOIL														
Excavation			-	1	CL	Silty CLAY: low plasticity, orange brown.	PID=1.8ppm	М	-	NATURAL														
Ex			0 <u>.5</u>				50	_																
			_				ES	-																
			- - 1 <u>.0</u>																					
							ES																	
			- - 1 <u>.5</u>				50																	
			_				ES																	
			- - 2 <u>.0</u>		CI	Silty CLAY: medium plasticity, grey with orange.	_	M	-	-	 - 	-	-	-	-	J -	1 -	-	-	-	-	-	-	
			_				ES																	
			- - 2 <u>.5</u>																					
							ES																	
			- 3. <u>0</u>			Test Pit TP86 terminated at 2.6m																		
			- -																					
			3.5																					

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP87 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	Тур	e: 5t	Hydra	ulic T	rack M	lounted Exca ldelerCoordinates E, N	Dri	ller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O' Hara Brothers	Ве	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
tion				<u>'. '\' '.</u>	-	TOPSOIL: Silty CLAY: low plasticity, brown.		ES PID=2.9ppm	М	-	TOPSOIL
Excavation			+	1	СН	Silty CLAY: high plasticity, orange brown.	Н	P1D-2.9pp111	М	-	NATURAL
ШĞ							Н	ES			
			+				Н		1		
						Test Pit TP87 terminated at 0.4m					
			0 <u>.5</u>								
			-								
			-								
			-								
			-								
			1.0								
			4								
			4								
			4								
			4								
			1 <u>.5</u>								
			2.0								
			2.5								
			1								
			2								
			3.0								
			+								
			\dashv								
			\exists								
			\dashv								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP88 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	Тур	e: 5t	Hydra	ulic T	rack M	lounted Exca Male rCoordinates E, N	Dri	ller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O' Hara Brothers	Bea	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
ion				<u>71 /2</u>		TOPSOIL: Silty CLAY: low plasticity, brown.		ES DID=2.4mmm	М	-	TOPSOIL
Excavation			+	1	СН	Silty CLAY: high plasticity, orange brown.	Н	PID=2.4ppm	М	-	NATURAL
Ř							\vdash	ES			
			+				Н		-		
						Test Pit TP88 terminated at 0.4m					
			0 <u>.5</u>								
			4								
			4								
			4								
			1.0								
			1 <u>.5</u>								
			1.5								
			-								
			-								
			+								
			+								
			2.0								
			4								
			4								
			4								
			2.5								
			7								
			3.0								
			3.0								
			+								
			\exists								
			+								
			4								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP89 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	ј Тур	e: 5t	Hydra	aulic T	rack M	lounted Exca llate rCoordinates E, N	Dri	ller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O' Hara Brothers	Bea	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				7 <u>1 1</u> x . 7	-	TOPSOIL: Silty CLAY: low plasticity, brown.	П	ES PID=3.7ppm	М	-	TOPSOIL
Excavation			_	1.11	СН	Silty CLAY: high plasticity, orange brown.	Н	PID=3.7ppm	M	-	NATURAL
Exc			_				Н		-		
			_					ES			
			0 <u>.5</u>			Test Pit TP89 terminated at 0.4m					
			_								
			_								
			-								
			-								
			1.0								
			_								
			_								
			_								
			1 <u>.5</u>								
			1 <u>.0</u>								
			-								
			-								
			-								
			_								
			2.0								
			_								
			_								
			_								
			2 <u>.5</u>								
			_								
			_								
			_								
			_								
			3.0								
			_								
			-								
			-								
			-								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP90 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 19/10/2021 Project: Detailed Site Investigation Finished: 19/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, ենթեւնար NSW Test Pit Size: m

Rig Type: 5t Hydraulic Track Mounted ExcaMalerCoordinates E, N **Driller:** Logged: SJ

kıg	ıyp	e. St	пуша	aulic	rack i	Nounted Exca Male rCoordinates E, N	Driller:			Logged : SJ
RL :	Surf	ace:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture	Consistency/ Density Index	Additional Observation:
_		,	` '	<u> </u>		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES PID=3.8ppm	М	-	TOPSOIL
Excavation				1		Test Pit TP90 terminated at 0.1m	PID=3.8ppm			
נֻ			-	-						
			-	-						
			_							
			0.5							
			_							
			_							
			-	1						
			-	1						
			1 <u>.0</u>	-						
			-	-						
			_							
			_							
			_							
			1 <u>.5</u>							
			_							
			-							
			-	1						
			-							
			2.0	1						
			_							
			_	-						
			_							
			_							
			2.5							
			_							
			-	İ						
			-							
			-	1						
			3.0	1						
			-	1						
			-	-						
			_							
			_							
			3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP91 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Client: ESR Australia Started: 19/10/2021 Project: Detailed Site Investigation Finished: 19/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig Type: 5t Hydraulic Track Mounted ExcalerCoordinates E, N Driller: Logged: SJ

Rig	д Тур	be: 5t	Hydra	ulic T	rack M	founted Exca Male rCoordinates E, N	Driller:			Logged: SJ
RL	Sur	face:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				71 18. 7		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES	М	-	TOPSOIL
vatic v							PID=4.4ppm			
Excavation						TOPSOIL: Silty CLAY: medium plasticity, dark brown. Test Pit TP91 terminated at 0.1m	ES PID=4.4ppm	M		TOPSOIL
			- - - 3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au TP No: TP92 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 19/10/2021

Project: Detailed Site Investigation Finished: 19/10/2021

Location: 290-308 Aldington Road & 59-63 Abbotts Road, Heolip & What is the substitution of the substitu

Rig Type: 5t Hydraulic Track Mounted Excalinates E, N Driller: Logged: SJ

				aunc i	TACK IV	Nounted Excamaler Coordinates E, N		iller:			Logged: SJ
RL	Surt	ace:	m			Contractor: O' Hara Brothers	В	earing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observation
				<u> </u>		TOPSOIL: Silty CLAY: medium plasticity, dark brown.		ES DID=0.7nnm	М	-	TOPSOIL
Excavation				1. 1.1.		Test Pit TP92 terminated at 0.1m		PID=0.7ppm			
Ě			-								
			-								
			-								
			0 <u>.5</u>								
			_								
			_								
			_								
			_								
			1.0								
			_								
			1 <u>.5</u>								
			1.0_								
			_								
			-								
			-								
			-								
			2.0								
			-								
			_								
			-								
			-								
			2 <u>.5</u>								
			_								
			_								
			_								
			-								
			3 <u>.0</u>								
			_								
			_								
			_								
			_								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP93 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Client: ESR Australia Started: 19/10/2021 Project: Detailed Site Investigation Finished: 19/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, ենթեւնար NSW Test Pit Size: m

Rig Type: 5t Hydraulic Track Mounted ExcaMalerCoordinates E, N **Driller:** Logged: SJ

1				iulic i	I ack IV		Driller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				<u> </u>		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES PID=2.0ppm	М	-	TOPSOIL
Excavation			_	<i>i.</i> :.i.:		Test Pit TP93 terminated at 0.1m	PID=2.0ppm			
Exc										
			٦							
			0 <u>.5</u>							
			-							
			1.0							
			1.0							
			-							
			-							
			1 <u>.5</u>							
			-							
			-							
			2.0							
			-							
			-							
			2.5							
			3.0							
			ا ۾ ا							
<u> </u>			3.5				1			

Alliance Geotechnical Pty Ltd T: 1800 288 188

E: office@allgeo.com.au
W: www.allgeo.com.au

TP No: TP94
Sheet: 1 of 1
Job No: 13546

Test Pit Log

Client: ESR Australia Started: 19/10/2021

Project: Detailed Site Investigation Finished: 19/10/2021

Location: 290-308 Aldington Road & 59-63 Abbotts Road, Ktorp & Water NSW Test Pit Size: m

Rig Type: 5t Hydraulic Track Mounted ExcaMalerCoordinates E, N Driller: Logged: SJ

		ace:				Contractor: O' Hara Brothers		aring:			Checked:
	- I	<u> </u>				Contractor. O Hara Brothors		anny.		Τ	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture	Consistency/	Additional Observations
tion				<u> </u>		TOPSOIL: Silty CLAY: medium plasticity, dark brown.		ES PID=1.0ppm	М	-	TOPSOIL
Excavation				1,		Test Pit TP94 terminated at 0.1m		т вр-т.оррит			
Ш			-								
			-								
			-								
			0 <u>.5</u>								
			_								
			_								
			1.0								
			1 <u>.5</u>								
			1.0								
			-								
			-								
			-								
			-								
			2.0								
			-								
			-								
			-								
			-								
			2 <u>.5</u>								
			4								
			3.0								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP95 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 19/10/2021 Project: Detailed Site Investigation Finished: 19/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, ենթեւնար NSW Test Pit Size: m

Rig Type: 5t Hydraulic Track Mounted ExcaMalerCoordinates E, N **Driller:** Logged: SJ

				iulic i	rack it	Nounted Excamaler Coordinates E, N	Driller:			Logged: SJ
RL	Surf	ace:	m		1	Contractor: O' Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observation
			,	<u> </u>		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES PID=1.0ppm	М	-	TOPSOIL
Excavation				<i>i:</i> :::::		Test Pit TP95 terminated at 0.1m	PID=1.0ppm			
EX			-							
			_							
			0 <u>.5</u>							
			1.0							
			1 <u>.5</u>							
			1.5							
			-							
			-							
			-							
			_							
			2.0							
			-							
			-							
			-							
			-							
			2.5							
			-							
			-							
			-							
			3.0							
			3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au TP No: TP96 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 20/10/2021

Project: Detailed Site Investigation Finished: 20/10/2021

Location: 290-308 Aldington Road & 59-63 Abbotts Road, Iftoip & Coation NSW Test Pit Size: m

Rig Type: 5t Hydraulic Track Mounted Excalinates E, N Driller: Logged: SJ

				iulio i	rack iv	Mounted Excamaler Coordinates E, N	Driller:			Logged: SJ
RL S	Surf	ace:	m			Contractor: O' Hara Brothers	Bearing:	_		Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	· Additional Observation
		()	, ,	<u> </u>		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES PID=3.4ppm	М	-	TOPSOIL
Excavation				1		Test Pit TP96 terminated at 0.1m	PID=3.4ppm			
ă			-							
			-							
			0 <u>.5</u>							
			1.0							
			1 <u>.5</u>							
			2.0							
			2 <u>.5</u>							
			2.0							
			-							
			3.0							
			3.0							
			-							
			-							
							1			

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP97 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	Тур	e: 5t	Hydra	ulic T	rack M	lounted Exca ldate r Coordinates E, N	Driller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				<u> </u>		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES DID=1.0nmm	М	-	TOPSOIL
Excavation Meth	Wate	RL (E)		Compt. Graph		TOPSOIL: Silty CLAY: medium plasticity, dark brown. Test Pit TP97 terminated at 0.1m	ES PID=1.0ppm			
			- - 3.5							

Alliance Geotechnical Pty Ltd T: 1800 288 188

E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP98 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Client: ESR Australia Started: 20/10/2021 Project: Detailed Site Investigation Finished: 20/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig Type: 5t Hydraulic Track Mounted ExcalerCoordinates E, N Driller: Logged: SJ

IKI	g Typ	c: 5t	Hydra	ulic T	rack M	founted Exca Male rCoordinates E, N	Driller:			Logged: SJ
RL	. Sur	face:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				71 18. 7		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES	М	-	TOPSOIL
vatic							PID=1.6ppm			
Excavation						TOPSOIL: Silty CLAY: medium plasticity, dark brown. Test Pit TP98 terminated at 0.1m	ES PID=1.6ppm	M		TOPSOIL
			3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP99 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 20/10/2021 Project: Detailed Site Investigation Finished: 20/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig Type: 5t Hydraulic Track Mounted ExcaMalerCoordinates E, N Driller: Logged: SJ

Rig Type: 5t Hydraulic T		Modified Excample Coordinates E, 14	Driller:	Logged: SJ		
RL Surface	: m	Contractor: O' Hara Brothers	Bearing:	Checked:		
Method Water	(m) (pdg) (c) (m) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	Material Description	Samples Tests Remarks	Additional Observation		
		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES M -	TOPSOIL		
Excavation Excavation			ES PID=3.1ppm M -	TOPSOIL		

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP100 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Client: ESR Australia Started: 20/10/2021 Project: Detailed Site Investigation Finished: 20/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig Type: 5t Hydraulic Track Mounted ExcaMalerCoordinates F. N. Driller: Logged: SJ

Rig	g Type: 5t Hydraulic Track Mounted Exca Mele rCoordinates E, N Driller:					Logged: SJ				
RL	Surf	face:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				7 <u>1 1</u> 77	-	TOPSOIL: Silty CLAY: medium plasticity, dark brown.	PID=1.2ppm	М	-	TOPSOIL
Excavation			-	1/ 1/1/						
Ä			-	118.1	CI-CH	Silty CLAY: medium to high plasticity, light brown with grey mottle.	ES	-	-	NATURAL
			-							
_						Test Pit TP100 terminated at 0.4m	_			
			0 <u>.5</u>							
			_							
			_							
			_							
			1 <u>.0</u>							
			_							
			_							
			_							
			-							
			1. <u>5</u>							
			-							
			_							
			_							
			_							
			2.0							
			_							
			_							
			-							
			-							
			2.5							
			_							
			_							
			-							
			_							
			3.0							
			_							
			_							
			3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP101 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 20/10/2021 Project: Detailed Site Investigation Finished: 20/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig Type: 5t Hydraulic Track Mounted ExcaMalerCoordinates E, N Driller: Logged: SJ

Rig	Тур	e: 5t	Hydra	aulic T	lic Track Mounted Exca MaterCoordinates E, N Driller:				Logged : SJ				
RL	Surf	face:	m			Contractor: O' Hara Brothers	Bearing:			Checked:			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture	Consistency/	Additional Observations			
		` '	. ,	71 1N 1		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES PID=1.9ppm	М	-	TOPSOIL			
Excavation			-	1	СН	Silty CLAY: high plasticity, light brown with grey mottling.	PID=1.9ppm	М	-	NATURAL			
Exc			0 <u>.5</u>				ES						
			- - 1 <u>.0</u>										
			-		CL	Sandy Gravelly CLAY: low plasticity, light brown/grey.	ES	М	-				
						Rock Refusal Test Pit TP101 terminated at 1.2m	_						
			1 <u>.5</u>										
			_										
			-										
			-	-									
			2 <u>.0</u>										
			2.0										
			-										
			-										
			-										
			-										
			2.5										
			-										
			-										
			-										
			-										
			3.0										
			-										
			-										
			-										
			-										
			3.5										

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP102 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Rig Type	e: 5t Hydraulic Track Mounted Exca Male rCoordinates E, N Driller:				iller:	Logged: SJ				
RL Surfa	ace:	m			Contractor: O' Hara Brothers	Ве	aring:	Checked:		
Method Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
			7/ 1/V		TOPSOIL: Silty CLAY: medium plasticity, dark brown.		ES DID-4 France	М	-	TOPSOIL
Excavation		- -		СН	Silty CLAY: high plasticity, light brown.		PID=1.5ppm ES	М	-	NATURAL
		1.0 			Test Pit TP102 terminated at 1.2m					

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP103 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 20/10/2021 Project: Detailed Site Investigation Finished: 20/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rin Tyne: 5t Hydraulic Track Mounted Excallater Coordinates E. N. Driller: Logged: SJ

Rig Type: 5t Hydraulic Track Mounte			aulic 1	Track N	Mounted Exca Male rCoordinates E, N	Driller:	Logged: SJ		
					Contractor: O' Hara Brothers	Bearing:		Checked:	
Method	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observation
_	((,	71 1 ^N 7		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES	M	-	TOPSOIL
Excavation		-	K	CH	Silty CLAY: high plasticity, orange brown.	PID=1.0ppm	M		NATURAL
EX EX		.				ES			
		_							
		0.5							
		0.0	1						
		-	1						
		-	-						
		-	1						
		.	1						
		1.0							
			1		Test Pit TP103 terminated at 1.2m				
		-	1						
		-	+						
		1. <u>5</u>	-						
		-	-						
		-	1						
		.							
		2.0							
		-							
		-	1						
		-	1						
		-	1						
		-	+						
		2. <u>5</u>	-						
		.	_						
		.	_						
		.							
		3.0							
		3.9	1						
		-	1						
		-	1						
		-	+						
		-	-						
		3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP104 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Rig	Тур	e: 5t	Hydra	aulic T	rack N	Nounted Exca Male rCoordinates E, N	Dri	ller:	Logged: S			
RL S	Surf	ace:	m			Contractor: O' Hara Brothers	Ве	aring:			Checked:	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations	
-				71 1×		TOPSOIL: Silty CLAY: medium plasticity, dark brown.		ES	М	-	TOPSOIL	
Excavation			-		СН	Silty CLAY: high plasticity, light brown with grey mottling.		PID=1.7ppm ES	М	-	NATURAL	
			1.0 1.0 1.5 2.0 3.0 3.5			Test Pit TP104 terminated at 1.2m						

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP105 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 20/10/2021 Project: Detailed Site Investigation Finished: 20/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig Type: St Hydrau	lic Track Mounted Exca Mole rCoordinates E, N	Driller:	Logged: SJ		
RL Surface: m	Contractor: O' Hara Brothers	Bearing:	Checked:		
Method (m) (m) (m)	Graphic Log Olassification Symbol Waterial Description	Samples Lests Vougipuo Remarks	Counsistency (Counsistence) Additional Observations		
	TOPSOIL: Silty CLAY: medium plasticity, dark brown.		- TOPSOIL		
Excavation	CH Silty CLAY: high plasticity, light brown with grey mottling.	PID=1.8ppm M ES	- NATURAL		
1. <u>5</u> - 2. <u>0</u> - 3. <u>0</u> - 3.5	Test Pit TP105 terminated at 1.2m				

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP106 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 20/10/2021 Project: Detailed Site Investigation Finished: 20/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig Type: 5t Hydrai	ilic Track Mounted Exca Male rCoordinates E, N	Driller:	Logged: SJ		
RL Surface: m	Contractor: O' Hara Brothers	Bearing:	Checked:		
Method RL Depth (m) (m)	Graphic Log Olassification Symbol Waterial Description	Samples Tests Remarks	Oousistency/ Outsistency/ Outsistency/ Additional Observations		
	\(\frac{\finte}{\fint}}}}}}}{\frac}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	ES M	- TOPSOIL		
Excavation	CH Silty CLAY: high plasticity, light brown with grey mottling.	PID=4.2ppm M ES	- NATURAL		
1. <u>0</u> - 1. <u>0</u> - 2. <u>0</u> - 3. <u>0</u> - 3. <u>0</u> - 3.5	Test Pit TP106 terminated at 1.2m				

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP107 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 20/10/2021 Project: Detailed Site Investigation Finished: 20/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

idg Type. Striyaraa	ic Track Mounted Exca Male rCoordinates E, N	Driller:	Logged: SJ		
RL Surface: m	Contractor: O' Hara Brothers	Bearing:	Checked:		
Method Mater Mater (m) (m) (m)	Ola ss ification Waterial Description Waterial Description	Samples units Samples Tests Remarks	Oonsistency Oonsistency Additional Observations		
	보고 3 - TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES M	- TOPSOIL		
Excavation	CH Silty CLAY: high plasticity, light brown with grey mottling.	PID=2.7ppm M ES	- NATURAL		
1. <u>0</u>	Test Pit TP107 terminated at 1.2m				

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au TP No: TP108 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	Тур	e : 5t	Hydra	ulic T	rack M	ounted Exca MaterCoordinates E, N	Driller:		Logged: SJ			
RL	Surf	ace:	m			Contractor: O'Hara Brothers	Bearing:			Checked:		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations		
				71 1 ^N 7	-	TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES PID=2.2ppm	М	-	TOPSOIL 13.3kg		
Excavation			1			Silty CLAY: medium to high plasticity, brown.		М	-	NATURAL		
Ä			-				ES					
			-									
						Test Pit TP108 terminated at 0.4m						
			0 <u>.5</u>									
			_									
			1.0									
			-									
			-									
			1 <u>.5</u>									
			_									
			_									
			2.0									
			2 <u>.5</u>									
			2.5									
			-									
			-									
			-									
			_									
			3 <u>.0</u>									
			3.5									
	1		5.0				1					

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP109 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	Тур	e: 5t	Hydra	aulic T	rack M	founted Exca Male rCoordinates E, N	Driller:			Logged: SJ
RL	Surf	face:	m			Contractor: O'Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				7 <u>1 1</u> . 7		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES PID=1.7ppm	М	-	TOPSOIL 13.0kg
Excavation			-	1	CI-CH	Silty CLAY: medium to high plasticity, orangey brown.	PID=1./ppm	М	-	NATURAL
Ä			_							
			_				ES			
			0.5			Test Pit TP109 terminated at 0.4m				
			_							
			-							
			-							
			1 <u>.0</u>							
			-							
			_							
			_							
			_							
			1 <u>.5</u>							
			_							
			-							
			_							
			-							
			2.0							
			_							
			_							
			_							
			_							
			2.5							
			_							
			-							
			-							
			_							
			3. <u>0</u>							
			_							
			_							
			_							
			3.5							
			0.0	l	<u> </u>		<u> </u>		ш	

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP110 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	Тур	e: 5t	Hydra	aulic T	rack M	founted Exca llate rCoordinates E, N	Dril	ler:			Logged: SJ
RL	Surf	ace:	m			Contractor: O'Hara Brothers	Bea	ring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				7/ 1 ^N 7		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	П	ES PID=3.8ppm	М	-	TOPSOIL 12.5kg
Excavation			_	(· ·	CI-CH	Silty CLAY: medium to high plasticity, orangey brown.		PID=3.8ppm	М	-	NATURAL
Ä			_								
			_					ES			
						T. (D) TD444					
			0.5			Test Pit TP110 terminated at 0.4m					
			_								
			1.0								
			1.0								
			-								
			_								
			_								
			_								
			1 <u>.5</u>								
			_								
			_								
			2.0								
			2.0								
			_								
			_								
			_								
			_								
			2 <u>.5</u>								
			_								
			_								
			3.0								
			<u> </u>								
			_								
			-								
			-								
			-								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP111 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	ј Тур	e: 5t	Hydra	aulic T	rack M	lounted Exca llate r Coordinates E, N	Dril	ler:			Logged: SJ
RL	Surf	ace:	m			Contractor: O'Hara Brothers	Bea	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				7/ 1 ^N 7		TOPSOIL: Silty CLAY: medium plasticity, dark brown.		ES PID=2.0ppm	М	-	TOPSOIL 12.3kg
Excavation			-	(· ·	CI-CH	Silty CLAY: medium to high plasticity, orangey brown.		PID=2.0ppm	М	-	NATURAL
Ä			_								
			_					ES			
			0.5			Test Pit TP111 terminated at 0.4m					
			_								
			-								
			-								
			-								
			1 <u>.0</u>								
			_								
			_								
			_								
			1 <u>.5</u>								
			1 <u>.0</u>								
			-								
			-								
			_								
			_								
			2.0								
			_								
			_								
			_								
			2 <u>.5</u>								
			_								
			_								
			_								
			_								
			3.0								
			_								
			-								
			-								
			-								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP112 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	Тур	e: 5t	Hydra	ulic T	rack M	lounted Exca Male rCoordinates E, N	Dril	ler:			Logged: SJ
RL	Surf	ace:	m			Contractor: O'Hara Brothers	Bea	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				<u>71 /v</u> . <u>7</u>		TOPSOIL: Silty CLAY: medium plasticity, dark brown.		ES	М	-	TOPSOIL 12.6kg
Excavation			+	1 1 1		Silty CLAY: medium to high plasticity, orangey brown.		PID=1.1ppm	М	-	NATURAL
ă			+				\vdash				
			4				\vdash	ES			
						Test Pit TP112 terminated at 0.4m	-				
			0 <u>.5</u>								
			_								
			_								
			1.0								
			1 <u>.5</u>								
			1.0								
			1								
			-								
			-								
			-								
			2.0								
			4								
			-								
			4								
			4								
			2 <u>.5</u>								
			3.0								
			7								
			7								
			+								
			2 -								
oxdot			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au TP No: TP113 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Rig	Тур	e : 5t	Hydra	aulic T	rack N	Nounted Exca Male rCoordinates E, N	Dri	ller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O'Hara Brothers	Bea	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
ion				711× 7		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	П	ES PID=1.2ppm	М	-	TOPSOIL 12.1kg
Excavation			-	1	CI-CH	Silty CLAY: medium to high plasticity, light grey/brown.	Н	PID=1.2ppm	М	-	NATURAL
Ĕ			_				Н		-		
			_					ES	-		
						Test Pit TP113 terminated at 0.4m					
			0.5			TOST ICT TO Communicate at 0.4m					
			_								
			_								
			1 <u>.0</u>								
			<u>. </u>								
			_								
			-								
			_								
			_								
			1. <u>5</u>								
			_								
			_	_							
			_	-							
			_								
			2.0								
			_								
			_								
			2.5								
			_								
			_								
			-	-							
			-								
			3 <u>.0</u>								
			-								
			-								
			-								
			_								
			3.5				L				

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP114 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	Тур	e: 5t	Hydra	ulic T	rack M	lounted Exca Male rCoordinates E, N	Dr	iller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O'Hara Brothers	Ве	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				71 1/V		TOPSOIL: Silty CLAY: medium plasticity, dark brown.		ES	М	-	TOPSOIL 12.9kg
Excavation			+	1 ' ' \ 1		Silty CLAY: medium to high plasticity, light grey/brown.	+	PID=1.2ppm	М	-	NATURAL
EX			-				Н		-		
			-				\vdash	ES			
						Test Pit TP114 terminated at 0.4m	_				
			0 <u>.5</u>								
			4								
			1.0								
			1 <u>.5</u>								
			1.5								
			+								
			-								
			+								
			-								
			2.0								
			4								
			4								
			4								
			4								
			2.5								
			_								
			3.0								
			7								
			7								
			\dashv								
			_								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP115 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	Тур	e: 5t	Hydra	ulic T	rack M	lounted Exca Male rCoordinates E, N	Driller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O'Hara Brothers	Bearing:	_		Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture	Consistency/ Density Index	Additional Observations
$\overline{}$				<u>71 /z</u>		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES	М	-	TOPSOIL 13.2kg
Excavation			-	1 1 1 1		Silty CLAY: medium to high plasticity, orangey brown.	PID=2.4ppm	М	-	NATURAL
Exc			+							
			-				ES			
-						Test Pit TP115 terminated at 0.4m				
			0 <u>.5</u>							
			1.0							
			7							
			-							
			+							
			1 <u>.5</u>							
			-							
			4							
			4							
			2.0							
			2 <u>.5</u>							
			2.5							
			+							
			-							
			-							
			-							
			3.0							
			3.5							
			5.0				1		_	

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP116 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	ј Тур	e: 5t	Hydra	aulic T	rack M	lounted Exca Male rCoordinates E, N	Dril	ler:			Logged: SJ
RL	Surf	ace:	m			Contractor: O'Hara Brothers	Bea	ring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				<u>7/ /×</u> . <u>7</u>		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ÌТ	ES	М	-	TOPSOIL 13.5kg
Excavation			-	1.14		Silty CLAY: medium to high plasticity, orangey brown.	$^{++}$	PID=1.3ppm	М	-	NATURAL
Ĭ			-				\vdash	ES			
			_				Н				
						Test Pit TP116 terminated at 0.4m					
			0.5								
			-								
			_								
			_								
			_								
			1.0								
			_								
			_								
			1.5								
			_								
			_								
			_								
			2.0								
			2.0								
			-								
			-								
			-								
			-								
			2.5								
			_								
			_								
			_								
			_								
			3.0								
			_								
			3.5								
	1		5.5						<u> </u>		1

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au TP No: TP117 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	ј Тур	e: 5t	Hydra	aulic T	rack M	lounted Exca llate r Coordinates E, N	Dril	ler:	Logged: SJ		
RL	Surf	ace:	m			Contractor: O'Hara Brothers	Bea	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				7/ 1 ^N 7		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	П	ES PID=3.8ppm	М	-	TOPSOIL 12.4kg
Excavation			-	(· ·	CI-CH	Silty CLAY: medium to high plasticity, orangey brown.	Н	PID=3.8ppm	М	-	NATURAL
Ä			_								
			_				Ш	ES			
			0.5			Test Pit TP117 terminated at 0.4m					
			_								
			_								
			-								
			-								
			1 <u>.0</u>								
			_								
			_								
			_								
			1 <u>.5</u>								
			1 <u>.0</u>								
			-								
			-								
			-								
			_								
			2.0								
			_								
			_								
			_								
			2 <u>.5</u>								
			_								
			_								
			_								
			_								
			3.0								
			_								
			-								
			-								
			-								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP118 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	Тур	e: 5t	Hydra	ulic T	rack M	lounted Exca ldate r Coordinates E, N	Dril	ler:	Logged: SJ		
RL S	Surf	ace:	m			Contractor: O'Hara Brothers	Bea	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
-				<u>71 /2</u>		TOPSOIL: Silty CLAY: medium plasticity, dark brown.		ES	М	-	TOPSOIL 12.1kg
Excavation			+	1 1 1		Silty CLAY: medium to high plasticity, orangey brown.	₩	PID=1.5ppm	М	-	NATURAL
Ĕ			-				\vdash		-		
			-					ES			
						Test Pit TP118 terminated at 0.4m	-				
			0 <u>.5</u>								
			_								
			1.0								
			1								
			1 <u>.5</u>								
			-								
			4								
			4								
			4								
			2.0								
			2.5								
			1								
			-								
			-								
			-								
			3.0								
			4								
			4								
			3.5							L	

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP119 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	Тур	e: 5t	Hydra	ulic T	rack M	lounted Exca Male rCoordinates E, N	Dri	iller:	Logged: SJ		
RL	Surf	ace:	m			Contractor: O'Hara Brothers	Ве	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				<u>71 /2</u>		TOPSOIL: Silty CLAY: medium plasticity, dark brown.		ES DID 4.6	М	-	TOPSOIL 13.4kg
Excavation				1 1 1		Silty CLAY: medium to high plasticity, orangey brown.	Н	PID=1.6ppm	М	-	NATURAL
ă			+				Н				
			=				Н	ES			
						Test Pit TP119 terminated at 0.4m	+				
			0 <u>.5</u>								
			4								
			4								
			1.0								
			1 5								
			1 <u>.5</u>								
			+								
			-								
			+								
			-								
			2.0								
			4								
			2.5								
			1								
			_								
			3.0								
			+								
			4								
			4								
			4								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP120 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 20/10/2021 Project: Detailed Site Investigation Finished: 20/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig	Тур	e : 5t	Hydra	aulic T	rack N	Mounted Exca Male rCoordinates E, N	Driller:			Logged: SJ
RL S	Surf	ace:	m			Contractor: O'Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
			. ,		-	FILL: Silty CLAY: high plasticity, brown, with minor gravels.	ES PID=1.8ppm	М	-	FILL 14.7kg
Excavation			- -		CI-CH	Silty CLAY: medium to high plasticity, grey with orange mottle.	PID=1.8ppm	M	-	NATURAL
			0 <u>.5</u>				ES			
			- -		-	Clayey SHALE: grey.		-	-	
			1 <u>.0</u>				ES			
			- -							
			1 <u>.5</u>				ES			
			2.0							
							ES			
			- - 2.5							
							ES			
			3.0			Test Pit TP120 terminated at 2.6m				

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP121 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Client: ESR Australia Started: 20/10/2021 Project: Detailed Site Investigation Finished: 20/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig	ј Тур	e: 5t	Hydra	aulic T	rack M	lounted Exca Male r Coordinates E, N	Driller:			Logged: SJ
RL	Surf	face:	m			Contractor: O'Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
		,	()	<u> 21 12</u> . <u>7</u>	-	TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES	М	-	TOPSOIL 13.0kg
avatic			_			Silty CLAY: medium to high plasticity, orangey brown.	ES PID=1.4ppm	M	-	NATURAL
Excavation			_		01-011	City OEXT. Heddin to high plasticity, drangely brown.		"		TVTTOTOLE
							ES			
			0 <u>.5</u>			Test Pit TP121 terminated at 0.4m				
			0.5							
			_							
			_							
			_							
			1.0							
			1.0							
			_							
			_							
			_							
			_							
			1 <u>.5</u>							
			_							
			_							
			_							
			_							
			2.0							
			_							
			_							
			_							
			2.5							
			_							
			-							
			3.0							
			_							
			-							
			3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP122 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	ј Тур	e: 5t	Hydra	aulic T	rack M	founted Exca Male rCoordinates E, N	Driller:			Logged: SJ
RL	Surf	face:	m			Contractor: O'Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
ioi				7/ 1/V	-	TOPSOIL: Sandy CLAY: low plasticity, brown, with minor gravels.	ES PID=0.8ppm	SM	-	TOPSOIL 13.6kg
Excavation			_	1	CL	Silty CLAY: low plasticity, brown.	PID=0.8ppm	SM	-	NATURAL
Ä			_					-		
			_				ES	4		
			0 <u>.5</u>			Test Pit TP122 terminated at 0.4m				
			_							
			-							
			1.0							
			_							
			_							
			_							
			_							
			1 <u>.5</u>							
			_							
			_							
			_							
			2.0							
			_							
			_							
			_							
			_							
			2.5							
			_							
			_							
			_							
			-							
			3.0							
			_							
			_							
			_							
			3.5							
							1	-		

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP123 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 20/10/2021 Project: Detailed Site Investigation Finished: 20/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig	Тур	e : 5t	Hydra	aulic T	rack N	Nounted Exca Male rCoordinates E, N	Driller:			Logged: SJ
RL :	Surf	ace:	m			Contractor: O'Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
	-	()	()	7/1/8 .7		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES	М	-	TOPSOIL 13.2kg
Excavation			-	KK		Silty CLAY: medium to high plasticity, orangey brown.	PID=3.0ppm	M	-	NATURAL
Exce			_		01-011	City OE/ (1. median to high plasticity, orangey blown.		"	_	N/ATOTOLE
							ES			
			0.5			Test Pit TP123 terminated at 0.4m				
			0.3	1						
			-							
			-	_						
			_							
			_							
			1 <u>.0</u>							
				1						
			-	-						
			-							
			_	<u> </u> 						
			_							
			1. <u>5</u>							
			-							
			-	1						
			-							
			2. <u>0</u>							
			_	_						
			_							
			2 <u>.5</u>							
			2.3	1						
			_	<u> </u> 						
			-							
			-							
			_							
			3.0							
			_							
			-							
			-							
			-							
			3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP124 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	ј Тур	e: 5t	Hydra	aulic T	rack M	founted Exca Male rCoordinates E, N	Drille	er:	Logged: SJ		
RL	Surf	face:	m			Contractor: O'Hara Brothers	Bear	ing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				7/ 1 ^N 7		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	П.	ES PID=4.1ppm	М	-	TOPSOIL 12.9kg
Excavation			-	(· ·	CI-CH	Silty CLAY: medium to high plasticity, orangey brown.		PID=4.1ppm	М	-	NATURAL
Ĕ			_								
			_					ES			
			_			Test Pit TP124 terminated at 0.4m					
			0 <u>.5</u>			Test Pit TP 124 terminated at 0.4m					
			_								
			_								
			_								
			1 <u>.0</u>								
			_								
			_								
			_								
			_								
			1 <u>.5</u>								
			_								
			_								
			-								
			-								
			2.0								
			_								
			_								
			_								
			_								
			2.5								
			_								
			_								
			-								
			_								
			3.0								
			_								
			_								
			_								
			3.5								
			0.0		<u> </u>						

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP125 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Rig	Тур	e : 5t	Hydra	aulic T	rack N	Nounted Exca Male rCoordinates E, N	Dri	ille	r:			Logged: SJ
RL	Surf	ace:	m			Contractor: O'Hara Brothers	Be	ari	ng:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description			Samples Tests Remarks	Moisture Condition	Consistency/	Additional Observations
_				7/ 1/N	_	TOPSOIL: Silty CLAY: medium plasticity, dark brown.	П	_	ES	М	-	TOPSOIL 13.6kg
Excavation			-	1, ' ' '	CI-CH	Silty CLAY: medium to high plasticity, orangey brown.	Н	P	ID=2.2ppm	М	-	NATURAL
Ĕ			-				Н		ES	1		
			-				Н		LO			
						Test Pit TP125 terminated at 0.4m	1					
			0 <u>.5</u>									
			-									
			-									
			_									
			-									
			1 <u>.0</u>									
			-									
			-									
			-									
			-									
			1. <u>5</u>									
			-									
			_	<u>.</u>								
			_	<u> </u>								
			-									
			2.0									
			_	<u> </u> 								
			_									
			-									
			-									
			2 <u>.5</u>									
			_									
			_									
			-									
			-									
			3.0									
			-									
			-									
			-									
			-									
			3.5									

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au TP No: TP126 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Rig	Тур	e : 5t	Hydra	aulic T	rack N	flounted Exca Male rCoordinates E, N	Dri	ller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O'Hara Brothers	Bea	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
ion				71/2	-	TOPSOIL: Silty CLAY: medium plasticity, dark brown.		ES PID=1.1ppm	М	-	TOPSOIL 12.1kg
Excavation			-	1	CI-CH	Silty CLAY: medium to high plasticity, orangey brown.	Н	PID=1.1ppm	М	-	NATURAL
ŭ			-				Н		-		
			_					ES	-		
						Test Pit TP126 terminated at 0.4m					
			0.5			Test it it is to communicate at 0.4m					
			_								
			_								
			1 <u>.0</u>								
			1.0	-							
			-	-							
			_	_							
			_	_							
			-								
			1. <u>5</u>								
			_								
			_								
			_								
			_								
			2.0								
			_								
			_								
			2 <u>.5</u>								
			2.0								
			_	_							
			_	_							
			-								
			_								
			3 <u>.0</u>								
			_								
			-								
			_								
			_								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP127 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Client: ESR Australia Started: 21/10/2021 Project: Detailed Site Investigation Finished: 21/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig	ј Тур	e: 5t	Hydra	aulic T	rack M	founted Exca Male r Coordinates E, N	Driller:			Logged: SJ
RL	Surf	face:	m			Contractor: O'Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
	<u> </u>	(***)	()	<u>71 1</u> 7		TOPSOIL: Silty CLAY: low plasticity, dark brown.	ES PID=2.6ppm	SM	-	TOPSOIL 13.8kg
Excavation			_	K W	CL	Silty CLAY: low plasticity, brown.	PID=2.6ppm	SM	_	NATURAL
Exc			_		02	City of the places, pl				
			_				ES			
			0 <u>.5</u>			Test Pit TP127 terminated at 0.4m				
			0.0_							
			-							
			_							
			_							
			_							
			1.0							
			_							
			_							
			_							
			_							
			1 <u>.5</u>							
			_							
			_							
			-							
			2.0							
			_							
			_							
			_							
			2 <u>.5</u>							
			2.5							
			_							
			_							
			_							
			_							
			3.0							
			_							
			-							
			_							
			_							
			3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP128 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	Тур	e: 5t	Hydra	aulic T	rack M	lounted Exca llate rCoordinates E, N	Dril	ler:			Logged: SJ
RL	Surf	ace:	m			Contractor: O'Hara Brothers	Bea	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				7/1/N 7		TOPSOIL: Silty CLAY: low plasticity, dark brown.	П	ES PID=2.8ppm	SM	-	TOPSOIL 13.5kg
Excavation			_	1	CL	Silty CLAY: low plasticity, brown.	Н	PID=2.8ppm	SM	-	NATURAL
EX			_								
			_					ES			
			0 <u>.5</u>			Test Pit TP128 terminated at 0.4m					
			_								
			_								
			_								
			-								
			1 <u>.0</u>								
			_								
			_								
			_								
			1 <u>.5</u>								
			1.0								
			-								
			-								
			_								
			_								
			2.0								
			_								
			_								
			-								
			2.5								
			_								
			_								
			3.0								
			_								
			_								
			_								
			_								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP129 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 21/10/2021 Project: Detailed Site Investigation Finished: 21/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Nig	ıyp	e. 50	пуша	aulic i	rack I	Nounted Exca MalerCoordinates E, N	Driller:			Logged: SJ
RL S	Surf	ace:	m			Contractor: O'Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
		()	()	7 <u>1 1</u> x . 7		TOPSOIL: Silty CLAY: low plasticity, dark brown.	ES	SM	-	TOPSOIL 12.9kg
Excavation			_	((CL	Silty CLAY: low plasticity, brown.	PID=3.4ppm	SM		NATURAL
EXC			_							
			_				ES			
			0.5			Test Pit TP129 terminated at 0.4m				
			_							
			_							
			_							
			_							
			1 <u>.0</u>							
			-							
			_							
			_							
			_							
			1 <u>.5</u>							
			_							
			_							
			2.0							
			2.0							
			-							
			_							
			_							
			-							
			2.5							
			_							
			_							
			_							
			_							
			3.0							
			_							
			_							
			_							
			- 3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP130 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 21/10/2021 Project: Detailed Site Investigation Finished: 21/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig i y	pe: 5	t Hydr	aulic T	rack N	Mounted Exca Male rCoordinates E, N	Driller:			Logged: SJ
RL Sur	face	: m			Contractor: O'Hara Brothers	Bearing:			Checked:
Method Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
	, ,		Z1 1× Z	-	TOPSOIL: Silty CLAY: low plasticity, dark brown.	ES PID=1.8ppm	SM	-	FILL 12.2kg
Excavation		-		CL	Silty CLAY: low plasticity, dark brown.	PID=1.8ppm	SM	-	NATURAL
		0.5				ES			
		-							
		1 <u>.0</u>		-	Silty Gravelly SHALE: light brown to grey.		-	-	
		-				ES			
		-		-	Silty SHALE: grey.		-	-	
		1. <u>5</u>				ES			
		-							
		2.0				ES	-		
+					Hard Refusal				
		2. <u>5</u>			Test Pit TP130 terminated at 2.1m				

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP131 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	Тур	e: 5t	Hydra	ulic T	rack M	lounted Exca ldaterCoordinates E, N	Dri	ller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O'Hara Brothers	Bea	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
ion				<u>71 /2</u>		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	П	ES DID 4.5	М	-	FILL 13.0kg
Excavation			+			Silty CLAY: medium to high plasticity, brown.	H	PID=1.5ppm	М	-	NATURAL
Ex			+				\vdash	ГС	1		
			-				Н	ES			
						Test Pit TP131 terminated at 0.4m	-				
			0 <u>.5</u>			Total National Communication and Communication a					
			1.0								
			7								
			4.5								
			1 <u>.5</u>								
			-								
			4								
			-								
			-								
			2.0								
			2.5								
			7								
			-								
			-								
			3 <u>.0</u>								
			4								
			4								
			4								
			4								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP132 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Client: ESR Australia Started: 21/10/2021 Project: Detailed Site Investigation Finished: 21/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig	ј Тур	e: 5t	Hydra	aulic T	rack M	lounted Exca Male r Coordinates E, N	Driller:			Logged: SJ
RL	Surf	face:	m			Contractor: O'Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
		,	,	7/1/N 7/		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES PID=4.0ppm	М	-	FILL 12.4kg
Excavation			_			Silty CLAY: medium to high plasticity, brown.	PID=4.0ppm	M	-	NATURAL
Exce			_		OI-OI I	Only OLAT. Hediam to high plasticity, brown.		_ 'V'		IVATOTAL
							ES			
			_							
						Test Pit TP132 terminated at 0.4m				
			0.5							
			_							
			_							
			_							
			_							
			1 <u>.0</u>							
			_							
			_							
			_							
			_							
			1 <u>.5</u>							
			_							
			_							
			_							
			_							
			2.0							
			_							
			_							
			_							
			_							
			2 <u>.5</u>							
			_							
			_							
			_							
			-							
			3.0							
			_							
			_							
			-							
			3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP133 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	Тур	e: 5t	Hydra	aulic T	rack M	lounted Exca llate r Coordinates E, N	Driller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O'Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				7/ 1 ^N 7		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES PID=1.4ppm	М	-	FILL 12.0kg
Excavation			-	(· ·	CI-CH	Silty CLAY: medium to high plasticity, brown.	PID=1.4ppm	М	-	NATURAL
EX			_					-		
			_				ES			
			0.5			Test Pit TP133 terminated at 0.4m				
			_							
			_							
			_							
			_							
			1 <u>.0</u>							
			_							
			_							
			1 <u>.5</u>							
			1. <u>5</u>							
			-							
			_							
			_							
			_							
			2.0							
			_							
			_							
			_							
			_							
			_							
			2.5							
			_							
			_							
			_							
			3.0							
			-							
			-							
			-							
			_							
			3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP134 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	Тур	e: 5t	Hydra	ulic T	rack M	lounted Exca Male rCoordinates E, N	Dr	iller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O'Hara Brothers	Ве	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
ioi				<u>71 /z</u>		TOPSOIL: Silty CLAY: medium plasticity, dark brown.		ES	М	-	FILL 13.3kg
Excavation			+			Silty CLAY: medium to high plasticity, brown.		PID=2.2ppm	М	-	NATURAL
Ä			+				\vdash		-		
			4				Н	ES			
						Test Pit TP134 terminated at 0.4m	-				
			0 <u>.5</u>								
			1.0								
			7								
			4.5								
			1 <u>.5</u>								
			-								
			4								
			-								
			-								
			2.0								
			2.5								
			7								
			-								
			_								
			3 <u>.0</u>								
			+								
			4								
			4								
			4								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP135 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	Тур	e: 5t	Hydra	aulic T	rack M	lounted Exca llate r Coordinates E, N	Driller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O'Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks		Consistency/ Density Index	Additional Observations
				7 <u>1 1</u> . 7		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES PID=1.8ppm	М	-	FILL 12.8kg
Excavation			-	1	CI-CH	Silty CLAY: medium to high plasticity, brown.	PID=1.8ppm	M	-	NATURAL
Exc			_							
			_				ES			
			0.5			Test Pit TP135 terminated at 0.4m				
			_							
			_							
			_							
			_							
			1 <u>.0</u>							
			_							
			_							
			_							
			1 <u>.5</u>							
			1. <u>5</u>							
			-							
			_							
			_							
			_							
			2.0							
			_							
			_							
			_							
			2 <u>.5</u>							
			_							
			_							
			_							
			_							
			3.0							
			1.50							
			-							
			-							
			-							
			_							
			3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP136 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	ј Тур	e: 5t	Hydra	aulic T	rack M	lounted Exca llate r Coordinates E, N	Driller:			Logged: SJ
RL	Surf	face:	m			Contractor: O'Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				7 <u>1 1</u> . 7		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES PID=1.7ppm	М	-	FILL 13.6kg
Excavation			-	1	CI-CH	Silty CLAY: medium to high plasticity, brown.	PID=1./ppm	M	-	NATURAL
Ä			_					-		
			_				ES	4		
			0.5			Test Pit TP136 terminated at 0.4m				
			_							
			-							
			_							
			1 <u>.0</u>							
			_							
			_							
			_							
			_							
			1 <u>.5</u>							
			_							
			_							
			-							
			_							
			2.0							
			_							
			_							
			_							
			2 <u>.5</u>							
			<u> </u>							
			-							
			-							
			-							
			_							
			3 <u>.0</u>							
			_							
			_							
			_							
			- 3.5							
			ა.5				l			

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au TP No: TP137 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 21/10/2021

Project: Detailed Site Investigation Finished: 21/10/2021

Location: 290-308 Aldington Road & 59-63 Abbotts Road, Ktorp & Water NSW Test Pit Size: m

				aune i	I ack it	Contractor: O'Hara Brothers	Driller:			Checked:
KL	Suri	ace:	m			Contractor: O Hara Brothers	Bearing:	Т		Спескеа:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
ion				<u>11/2</u> . <u>1</u>		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES PID=2.5ppm	М	-	TOPSOIL 13.0kg
Excavation			-	1	СН	Silty CLAY: high plasticity, orangey brown.	PID=2.5ppm	М	-	NATURAL
Exc			- 0 <u>.5</u>							
							ES	Ī		
			-							
			1 <u>.0</u>					1		
			-				ES	-		
			_		СН	Silty CLAY: high plasticity, orangey brown with grey mottle.		М	-	1
			_ _ 1 <u>.5</u>		GI1	Only OLAT. High plasticity, Grangey Brown with grey motite.		IVI		
							ES			
			_							
			2 <u>.0</u>		CI	Silty CLAY: medium plasticity, grey.		M	-	
							ES			
			- - 2.5							
							ES			
						Test Pit TP137 terminated at 2.6m				
			-							
			-							
			-							
			3.0							
			_							
			_							
			_							
			3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au TP No: TP138 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Client: ESR Australia Started: 21/10/2021

Project: Detailed Site Investigation Finished: 21/10/2021

Location: 290-308 Aldington Road & 59-63 Abbotts Road, Iftolip & Whatien NSW Test Pit Size: m

				iulic i	I ack IV	lounted exca mane Coordinates e, N	Driller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O'Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				7/1/2		TOPSOIL: Silty CLAY: medium plasticity, dark brown.	ES PID=5.8ppm	М	-	TOPSOIL 13.1kg
Excavation			+	1	СН	Silty CLAY: high plasticity, orangey brown.	PID=5.8ppm	М	-	NATURAL
Ä			-							
							ES			
			0.5							
			-							
			1 <u>.0</u>							
			-							
			_							
			_							
			1.5							
			_							
			2.0							
			_							
			-							
			2 <u>.5</u>							
						Test Pit TP138 terminated at 2.6m				
			3.0							
			3.5							
			3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP139 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Ri	д Тур	e: 5t	Hydra	ulic T	rack M	lounted Exca llaterCoordinates E, N	Dr	iller:			Logged: SJ
RI	. Surf	face:	m			Contractor: O'Hara Brothers	Ве	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
				711/2		TOPSOIL: Silty CLAY: medium plasticity, dark brown.		ES	М	-	TOPSOIL 14.2kg
Excavation			+	1	СН	Silty CLAY: high plasticity, orangey brown.	H	PID=3.6ppm	М	-	NATURAL
Exo								ES			
			0 <u>.5</u>								
			1.0								
			- 1 <u>.5</u>								
			2.0								
			_ _ 2 <u>.5</u>			Test Pit TP139 terminated at 2.6m					
			3 <u>.0</u>								
			- 3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP141 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 18/10/2021 Project: Detailed Site Investigation Finished: 18/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig	Тур	e: 5t	Hydra	aulic T	rack N	/lounted Exca l⊮ale r Coordinates E, N	Drill	ler:			ı	L ogged: SJ	
RL	Surf	ace:	m			Contractor: O'Hara Brothers	Bea	ring:	Checked:				
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/	Density Index	dditional Observat	
					-	FILL: Sandy Gravelly CLAY: low plasticity, brown.	+	ES PID=3.2ppm	М	-	FIL	L 13.6kg	
Excavation			-		-	FILL: Gravelly CLAY: high plasticity, grey/brown with heavy black staining, geo fabric+brick throughout, mild odour.		PID=3.2ppm	W	-	FIL	L 17.2kg	
			-										
			0 <u>.5</u>				\vdash	ES					
			-					PID=2.5ppm					
			-										
			1.0										
			-										
			-										
			1 <u>.5</u>		CI-CH	CLAY: medium to high plasticity, orangey brown, with fine gravels.	+	ES	М	-	NA	TURAL	
						Test Pit TP141 terminated at 1.6m	+						
			-										
			2.0										
			-										
			_										
			-										
			2 <u>.5</u>										
			-										
			-										
			3 <u>.0</u>										
			-										
			-										
			-										
			3.5										

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: TP142 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 18/10/2021 Project: Detailed Site Investigation Finished: 18/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, ենթեւնար NSW Test Pit Size: m

				aulic i	rack i	Nounted Exca Mate rCoordinates E, N	Driller:			Logged : SJ
RL	Sur	face:	m			Contractor: O'Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observation
					-	FILL: Sandy Gravelly CLAY: low plasticity, brown.	ES PID=3.9ppm	М	-	FILL 13.1kg
Excavation			_		-	FILL: Gravelly CLAY: high plasticity, black, geo fabric+brick throughout, mild	PID=3.9ppm	W	-	FILL 17.0kg
Exca			- 0. <u>5</u> 1. <u>0</u>			odour. CLAY: medium to high plasticity, orangey brown, with fine gravels.	ES PID=2.9ppm	M	-	NATURAL
			_			,				
			1 <u>.5</u>							
							ES			
						Test Pit TP142 terminated at 1.6m				
			-							
			-							
			-							
			2 <u>.0</u>							
			_							
			_							
			_							
			2.5							
			_							
			-							
			-							
			-							
			3 <u>.0</u>							
			_							
			_							
			3.5							

Alliance Geotechnical Pty Ltd T: 1800 288 188

E: office@allgeo.com.au W: www.allgeo.com.au

TP No: ASB10 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 15/10/2021 Project: Detailed Site Investigation Finished: 15/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

	Track Mounted Exca Mole rCoordinates E, N	Driller:	Logged: SJ
RL Surface: m	Contractor: O' Hara Brothers	Bearing:	Checked:
Method Water Water Water (m) (m) (m) Graphic Log	Classification Sympol Material Description	Samples Tests Remarks Remarks	Additional Observations Additional Observations
ioi	CH Silty CLAY: high plasticity, dark grey.	ES W -	Filled with water
Coadation Coad		ES W -	Filled with water

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: ASB11 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	ј Тур	e: 5t	Hydra	aulic T	rack N	Nounted Exca Male rCoordinates E, N				Logged: SJ	
RL	Sur	face:	m			Contractor: O' Hara Brothers	Ве	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	· Additional Observations
lion					-	FILL: Silty Gravelly CLAY: high plasticity, brown.		ES	М	-	FILL
Excavation Me						FILL: Silty Gravelly CLAY: high plasticity, brown. NATURAL Test Pit ASB11 terminated at 0.1m		ES			
			- - - 3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: ASB12 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 15/10/2021 Project: Detailed Site Investigation Finished: 15/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig Ty	ype	e: 5t	Hydra	aulic T	rack N	Mounted Exca Male rCoordinates E, N	Dr	iller:	Logged: SJ Checked:		
RL Sur	ırfa	ace:	m			Contractor: O' Hara Brothers	Ве	earing:	Checked:		
Method Water	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observation
tion					-	FILL: Gravelly Silty CLAY: medium to high plasticity, brown.		ES	М	-	FILL
Excavation			0 <u>.5</u>					ES			heavy PACM, constructi waste, and tyres
			1 <u>.0</u>			1.0m, with orange mottling.	-		w		
			1.5 - - - - - - 2.0			Due to water filling hole Test Pit ASB12 terminated at 2m		ES			
			_			Test Pit ASB12 terminated at 2m					
			-	_							
			-								
			2 <u>.5</u>								
			_								
			_	-							
			-								
			3 <u>.0</u>								
			J. <u>U</u>								
			_								
			-								
			_								
			3.5	-							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au TP No: ASB13 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 15/10/2021

Project: Detailed Site Investigation Finished: 15/10/2021

Location: 290-308 Aldington Road & 59-63 Abbotts Road, Having & Coation NSW Test Pit Size: m

		ace:				Contractor: O' Hara Brothers	earing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
Excavation			- - 0 <u>.5</u>		CI	FILL: Silty CLAY: medium plasticity, dark brown.	ES	M	-	FILL
			1.0 - - - 1.5		CI	Silty CLAY: medium plasticity, dark brown. Test Pit ASB13 terminated at 1.5m				NATURAL
			2 <u>.0</u>							
			2. <u>5</u> 3. <u>0</u> -							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: ASB14 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 15/10/2021 Project: Detailed Site Investigation Finished: 15/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

		TIACKIV	lounted Exca MalerCoordinates E, N	Driller:	Logged: SJ		Logged: SJ
RL Surfac	ce: m		Contractor: O' Hara Brothers	Bearing:		Checked:	
Method Water	RL Depth & BOY OF THE PROPERTY	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observation
			TOPSOIL: Silty CLAY: medium plasticity, dark brown.	FS	М	-	NATURAL
Excavation (Excavation (Excava	1.5 	시 · · · · · · · · · · · · · · · · · · ·	TOPSOL: Silty CLAY: medium plasticity, dark brown. NATURAL Test Pit ASB14 terminated at 0.1m	ES			NATUKAL

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: ASB15 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 15/10/2021 Project: Detailed Site Investigation Finished: 15/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, ենթեւնար NSW Test Pit Size: m

				aulic i	rack i	Mounted Exca Mate rCoordinates E, N		iller:			Logged : SJ
RL Su	ırfac	ce:	m			Contractor: O' Hara Brothers	В	earing:			Checked:
Method Water		RL m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/	Additional Observation
					CI	Silty CLAY: medium plasticity, dark brown.		ES	М	-	NATURAL
Excavation			1		СН	Silty CLAY: high plasticity, dark brown.	t		М	-	1
EX			0 <u>.5</u>					ES			
			1. <u>5</u>					ES			
			2.5			2.0m, with orange mottling.		ES			
			3.0			Test Pit ASB15 terminated at 2.5m					

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: DR01 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 06/10/2021 Project: Detailed Site Investigation Finished: 06/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Тур	e : 5t	Hydra	aulic T	rack N	Mounted Exca Male rCoordinates E, N	Driller:			Logged: SJ
Surf	ace:	m			Contractor: O' Hara Brothers	Bearing:	Checked:		
Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	· Additional Observations
		-		-	Gravelly SAND: fine to coarse grained, sub-angular, well graded, brown, with cobbles.	ES PID=1.6ppm	М	-	Concrete gravels
		- -		-	FILL: CLAY: high plasticity, brown, with fine gravel.		М	-	FILL
		0 <u>.5</u>				ES PID=1.4ppm			
		- -		СН	CLAY: high plasticity, brown/beige with orange mottling.		М	-	NATURAL
		_				ES PID=0.7ppm			
		1.0			Test Pit DR01 terminated at 1m				
		_							
		- -							
		1. <u>5</u>							
		_							
		2.0							
		_ _							
		2 <u>.5</u>							
		_ 							
		_							
		3.0							
		_							
		-							
	Surf	Surface:	Surface: m Page RL Depth (m) (m	Surface: m RL Depth (m) 0.5 1.0 1.5	Mater: m RL Depth (m) CH	Surface: m Contractor: O' Hara Brothers Material Description Material Description Material Description Chapter of the contractor of t	Sumples Tests Remarks Contractor: O' Hara Brothers Samples Tests Tests Remarks	Sumples Tests Name (Contractor: O' Hara Brothers Bearing: Red	Surface: m Contractor: O' Hara Brothers Bearing: Samples Tests Remarks Fig. 1 Samples Tests Remarks Fermarks Fermark

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: DR02 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 06/10/2021 Project: Detailed Site Investigation Finished: 06/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, ենթեւնար NSW Test Pit Size: m

				aulic I	rack N	•	Driller:			Logged : SJ
RL	Surf	ace:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	· Additional Observations
Excavation			_	•••••	-	Gravelly SAND: fine to coarse grained, sub-angular, well graded, light brown, with cobbles.	ES PID=0.3ppm	М	-	Concrete gravels
ш̂			- -		-	FILL: Silty CLAY: low plasticity, dark brown, with fine gravel.	ES	SM	-	FILL
			0 <u>.5</u> –		CL-CI	CLAY: low to medium plasticity, light brown/beige, with orange and grey mottling.	ES PID=0.3ppm	M	-	NATURAL
			1.0			Test Pit DR02 terminated at 1m	_			
			- -							
			- -							
			1. <u>5</u>							
			_							
			2 <u>.0</u>							
			_							
			2 <u>.5</u>							
			-							
			3. <u>0</u>							
			_							
			3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: DR03 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 06/10/2021 Project: Detailed Site Investigation Finished: 06/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

				aulic T	rack N			ller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O' Hara Brothers	Ве	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
Excavation			-		-	Gravelly SAND: fine to coarse grained, sub-angular, well graded, light brown, with cobbles.		ES PID=0.3ppm	М	-	FILL Concrete gravels
Exc			-		-	FILL: Sandy CLAY: low to medium plasticity, brown, with fine gravel.			M	-	_
			0 <u>.5</u>					ES PID=0.4ppm			
			_		CH	CLAY: high plasticity, light orange/red.			М	-	NATURAL
			- -					ES PID=0.3ppm			
			1 <u>.0</u>								
			_		CH	CLAY: high plasticity, light brown with orange and grey mottling.			М	-	
			_								
			1 <u>.5</u>								
			- 					ES			
			-								
			2.0			Test Pit DR03 terminated at 2m					
			_								
			-								
			2 <u>.5</u>								
			_								
			_								
			3.0								
			-								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au TP No: DR04 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Client: ESR Australia Started: 07/10/2021

Project: Detailed Site Investigation Finished: 07/10/2021

Location: 290-308 Aldington Road & 59-63 Abbotts Road, Having & Coation NSW Test Pit Size: m

 Rig Type:
 5t Hydraulic Track Mounted Excalider Coordinates
 E, N
 Driller:
 Logged:
 SJ

 RL Surface:
 m
 Contractor:
 O' Hara Brothers
 Bearing: -- Checked:

рı		face:				Contractor: O' Hara Brothers		arina:			Checked:
IKL.	Suri	ace:	111			CONTRACTOR. O FIGURE S	Бе	aring:			onecked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
ion						FILL: Silty Gravelly SAND: fine to coarse grained, sub-angular, well graded,		ES DID=2.4mmm	D	-	FILL
Excavation			-		-	brown. SHALE: grey.		PID=3.4ppm ES	D	-	BEDROCK
Ě						Refusal Test Pit DR04 terminated at 0.2m					
			_			Test Pit DR04 terminated at 0.2m					
			_								
			0 <u>.5</u>								
			_								
			_								
			_								
			_								
			1. <u>0</u>								
			_								
			_								
			_								
			_								
			1 <u>.5</u>								
			_								
			_								
			_								
			_								
			2.0								
			_								
			_								
			_								
			_								
			2.5								
			_								
			_								
			_								
			_								
			3.0								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: DR05 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 07/10/2021 Project: Detailed Site Investigation Finished: 07/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig	Тур	e : 5t	Hydra	aulic T	rack N	Nounted Excallater Coordinates E, N	Driller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observation
Excavation			-		-	FILL: Silty Gravelly SAND: fine to coarse grained, sub-angular, well graded, brown.	ES PID=3.1ppm	D	-	FILL
			_		CL	CLAY: low plasticity, brown with orange mottling.	ES PID=4.2ppm	SM	-	NATURAL
			0 <u>.5</u>			Test Pit DR05 terminated at 0.4m				
			0.0							
			-							
			-	_						
			-	-						
			-	-						
			1.0							
			_							
			_							
			-	-						
			-	-						
			1. <u>5</u>							
			-							
			-							
			_							
			_							
			2.0							
			-							
			-	-						
			-							
			-							
			2. <u>5</u>							
			_							
			_							
			_							
			3.0							
			-: <u>-</u>							
			-							
			-							
			-							
			-							
			3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au TP No: DR06 Sheet: 1 of 1 Job No: 13546

Test Pit Log

			aulic T	rack N	Mounted Exca Male rCoordinates E, N	Driller:			Logged: SJ
RL Sur	rface:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	· Additional Observations
Excavation		- -		-	FILL: Silty Gravelly SAND: fine to coarse grained, sub-angular, well graded, brown.	ES PID=5.2ppm	М	-	FILL
		0.5		СН	CLAY: high plasticity, brown/beige, with fine gravel.	ES PID=6.5ppm	М	-	NATURAL
		1.0 1.0 1.5 2.0 2.5 3.0			Test Pit DR06 terminated at 0.5m				

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au TP No: DR07 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Rig	Тур	e: 5t	Hydra	aulic T	rack N	Mounted Exca MalerCoordinates E, N	Dri	ller:			Logged: SJ
RL :	Surf	ace:	m			Contractor: O' Hara Brothers	Bea	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
Excavation			-		-	FILL: Gravelly SANDSTONE: coarse grained, sub-angular, light brown/beige.		ES PID=2.3ppm	SM	-	FILL
			-		СН	CLAY: high plasticity, brown/beige, with fine gravel.		ES PID=5.4ppm	М	-	NATURAL
			1.0 1.5 2.0 2.5 3.0 			Test Pit DR07 terminated at 0.5m					

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: DR08 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Client: ESR Australia Started: 07/10/2021 Project: Detailed Site Investigation Finished: 07/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig	ј Тур	e: 5t	Hydra	aulic T	rack M	Nounted Exca MalerCoordinates E, N	Driller:				Logged: SJ
RL	Sur	face:	m			Contractor: O' Hara Brothers	Bearing:				Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Sam Tes Rema	sts	Moisture Condition	Consistency/ Density Index	Additional Observations
					-	FILL: Silty Gravelly SAND: fine to coarse grained, sub-angular, well graded,	E	ES 4.0ppm	SM	-	FILL
Excavation			_	$\langle\!\langle\!\langle\!\langle$	CI	brown. CLAY: medium plasticity, light brown/orange.	F	-s	SM	-	NATURAL
Ä.							PID=	4.0ppm			
XII			1.5 2.0 2.5 3.0			Test Pit DR08 terminated at 0.2m		+.иррт			
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: DR11 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Client: ESR Australia Started: 13/10/2021 Project: Detailed Site Investigation Finished: 13/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, lftofepகண்கம்வுNSW Test Pit Size: m

Rig	ј Тур	e : 5t	Hydra	aulic T	rack M	lounted Exca Male rCoordinates E, N	Dri	iller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O' Hara Brothers	Ве	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
ioi					-	FILL: Gravelly CLAY: high plasticity, grey.		ES PID=5.9ppm	М	-	FILL
Excavation			-	$\langle\!\langle \rangle\!\langle \rangle$	CI-CH	CLAY: medium to high plasticity, orange brown.		ES	M	-	NATURAL
Ě						Test Pit DR11 terminated at 0.2m					
			-								
			-								
			0 <u>.5</u>								
			_								
			_								
			1.0								
			1 <u>.5</u>								
			2.0								
			2.0								
			-								
			-								
			-								
			-								
			2 <u>.5</u>								
			-								
			-								
			-								
			-								
			3.0								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: DR12 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Client: ESR Australia Started: 13/10/2021 Project: Detailed Site Investigation Finished: 13/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Riç	ј Тур	e: 5t	Hydra	aulic T	rack M	founted Exca Male rCoordinates E, N	Driller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
Excavation		, ,	, ,		-	FILL: Gravelly CLAY: high plasticity, grey.	ES PID=2.1ppm	М	-	FILL
cavat			-	$\langle\!\!\!\langle x \rangle\!\!\!\rangle$	CI-CH	CLAY: medium to high plasticity, orange brown.	ES	М	-	NATURAL
Ť						Test Pit DR12 terminated at 0.2m				
			_							
			_							
			0.5							
			_							
			_							
			_							
			1.0							
			_							
			_							
			_							
			4.5							
			1. <u>5</u>							
			-							
			_							
			_							
			_							
			2.0							
			_							
			_							
			_							
			_							
			2.5							
			_							
			_							
			3.0							
			J. <u>U</u>							
			_							
			_							
			_							
			_							
			3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au TP No: DR13 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	ј Тур	e: 5t	Hydra	aulic T	rack M	lounted Exca ldate r Coordinates E, N	Dri	iller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O' Hara Brothers	Ве	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description			Moisture Condition	Consistency/ Density Index	Additional Observations
ion				7, 1 ^N 7	-	FILL: Silty Gravelly CLAY: medium to high plasticity, dark brown.		ES PID=3.2ppm	М	-	FILL
Excavation			-	1.4	CI-CH	CLAY: medium to high plasticity, orange brown.		ES	М	-	NATURAL
- Š			_			Test Pit DR13 terminated at 0.2m					
XII			1. <u>5</u>			Test Pit DR13 terminated at 0.2m					
			- - - 3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au TP No: DR14 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Client: ESR Australia Started: 13/10/2021

Project: Detailed Site Investigation Finished: 13/10/2021

Location: 290-308 Aldington Road & 59-63 Abbotts Road, Heolip & Coation NSW Test Pit Size: m

				aulic i	I ack iv	lounted excamaler Coordinates e, N		iller:			Logged: SJ
RL	Surf	face:	m			Contractor: O' Hara Brothers	Be	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
io					-	FILL: Gravelly CLAY: high plasticity, dark brown.		ES	М	-	FILL
Excavation			-		CH	Silty CLAY: high plasticity, brown, with fine gravel.	Н	PID=6.6ppm ES	М	-	NATURAL
×						Test Pit DR14 terminated at 0.2m	Н				
			0 <u>.5</u>								
			-								
			1.0								
			-								
			1 <u>.5</u>								
			2.0								
			-								
			-								
			2 <u>.5</u>								
			3.0								
			-								
			3.5								
							-				

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: DR15 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	Тур	e : 5t	Hydra	aulic T	rack N	Mounted Exca Male rCoordinates E, N	Driller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Condition	Consistency/ Density Index	
Excavation					-	FILL: Silty Gravelly CLAY: low to medium plasticity, brown.	ES PID=1.4ppm	М	-	FILL
					CI	Silty CLAY: medium plasticity, brown/grey with orange mottling.		М	-	NATURAL
			0.5			Test Dit DD45 terminated at 0.5m	ES			
			- 1 <u>.0</u> - 1 <u>.5</u>			Test Pit DR15 terminated at 0.5m				
			- - 2 <u>.0</u>							
			- 2 <u>.5</u> - -							
			3.0							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: DR16 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Rig	Тур	e: 5t	Hydra	aulic T	rack N	Nounted Exca Male rCoordinates E, N	Driller:			Logged: SJ
RL S	Surf	ace:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks		Consistency/ Density Index	Additional Observations
Excavation			- - 0 <u>.5</u>		-	FILL: Silty Gravelly SAND: fine to coarse grained, sub-angular, light brown, well-graded, full of concrete and bricks.	ES PID=2.8ppm	SM	-	FILL
			1. <u>0</u>		-	FILL: Silty CLAY: medium plasticity, dark grey.		M	-	
			1 <u>.5</u>				ES PID=2.6ppm			
			2.0 2.5 3.0 3.0		CI-CH	Silty CLAY: medium to high plasticity, light brown with grey mottling. Test Pit DR16 terminated at 2m		M	-	NATURAL Water falling from 2.0m

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: DR17 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 19/10/2021 Project: Detailed Site Investigation Finished: 19/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig i y	ype	e: 5t	Hydra	aulic T	rack N	Nounted Exca Male rCoordinates E, N	Dril	ller:			Logged: SJ
RL Su	ırfa	ace:	m			Contractor: O' Hara Brothers	Bea	aring:			Checked:
Method Water	vvatei	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
Excavation			- - 0. <u>5</u> -		-	FILL: Silty Gravelly SAND: fine to coarse grained, sub-angular, light brown, well-graded, full of concrete and bricks.		ES PID=2.3ppm	SM	-	FILL
			1. <u>0</u>		СН	CLAY: high plasticity, light brown with orange, red mottling.		PID=1.6ppm	М	-	NATURAL
			1.5 - - 2.0 - - 2.5 - - 3.0 - - 3.5			Test Pit DR17 terminated at 1.2m					

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: PP1 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 18/10/2021 Project: Detailed Site Investigation Finished: 18/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

		,		aoit iv	lounted Exca Male rCoordinates E, N	Driller:			Logged: SJ
RL Sur	rface:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
	, ,			-	FILL: Silty Gravelly CLAY: low to medium plasticity, brown.		М	-	FILL
Excavation Mi	(m)	` '			FILL: Silty Gravelly CLAY: low to medium plasticity, brown. Test Pit PP1 terminated at 0.1m				

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: PP2

Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 13/10/2021 Project: Detailed Site Investigation Finished: 13/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

	IIIC TIACK I	lounted Exca llaterCoordinates E, N			Logged : SJ	
RL Surface: m		Contractor: O' Hara Brothers	Bearing:			Checked:
Mater May (m) (m)	Graphic Log Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
		Silty CLAY: low to medium plasticity, brown.		М	-	
M S (M)		Sity CLAY: low to medium plasticity, brown. Test Pit PP2 terminated at 0.1m				

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: PP3 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 13/10/2021 Project: Detailed Site Investigation Finished: 13/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

	aulic Hack i	Mounted Exca Male rCoordinates E, N			Logged: SJ	
L Surface: m		Contractor: O' Hara Brothers	Bearing:		Checked:	
RL Depth (m) (m)	Graphic Log Classification Symbol	Material Description	Samples English Remarks	Condition Consistency/ Density Index	Additional Observations	
		Silty CLAY: low to medium plasticity, brown.	M	-		
S (III) (III)	CL-CI	Sitty CLAY: low to medium plasticity, brown. Test Pit PP3 terminated at 0.1m				

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: PP4

Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 12/10/2021 Project: Detailed Site Investigation Finished: 12/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig	тур	e: 5t	Hydra	aulic T	rack N	unted Excalinates E, N D			Logged: SJ		Logged: SJ
RL	Surf	ace:	m			Contractor: O' Hara Brothers	Bearing	ring: Checked:			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Te	nples ests narks	Moisture Condition	Consistency/ Density Index	Additional Observation
		()	,	7/ 1/N . 7/		TOPSOIL: Sandy Gravelly CLAY: low plasticity, brown.	 	ES =1.7ppm	М	-	TOPSOIL
Excavation			- -		CI	CLAY: medium plasticity, light brown.	PID=	=1.7ppm	М	-	NATURAL
			0 <u>.5</u>					ES	-		
					CI	CLAY: medium plasticity, grey.			М	-	
			-		CL	Shaly CLAY: low plasticity, grey.		ES	М	-	
			1 <u>.5</u>								
			- -					ES	_		
			2.0					ES	-		
			-			Refusal Test Pit PP4 terminated at 2.1m					
			2 <u>.5</u>								
			3 <u>.0</u>								
			-								

T: 1800 288 188
E: office@allgeo.com.au W: www.allgeo.com.au

TP No: PP5 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Rig	д Ту	/pe: 5t	Hydra	aulic 1	Γrack Ν	Nounted Excalidater Coordinates E, N	Driller:			Logged: SJ
RL	Su	rface:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
tion					CL-CI	Silty CLAY: low to medium plasticity, brown.		М	-	
Excavation			0.5 - - 1.0 - 1.5 -		CL-CI	Test Pit PP5 terminated at 0.1m		IM .		
			2.0 - - 2.5 - - 3.0 - - 3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: PP6 Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 12/10/2021 Project: Detailed Site Investigation Finished: 12/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

RL	Sur	face:	m			Contractor: O' Hara Brothers	Bearing:		Checked:		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	· Additional Observations	
Excavation			-		-	FILL: Clayey SAND: fine to coarse grained, sub-rounded, well graded, brown, with minor gravel.	ES PID=1.8ppm	М	-	FILL	
EX			- - -		-	Gravelly Sandy CLAY: low plasticity, brown.	-	М	-		
			0 <u>.5</u>				ES PID=1.2ppm				
			- -								
			1.0				ES PID=2.0ppm				
			- -								
			1 <u>.5</u>				ES				
			_ _ _								
			2 <u>.0</u>				ES				
			-		CL-CI	CLAY: low to medium plasticity, light brown with orange and gey mottling.		SM	-	NATURAL	
			_				ES PID=3.3ppm				
			2.5			Test Pit PP6 terminated at 2.5m	PID=3.3ppm				
			- -								
			3 <u>.0</u>								
			- -								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: PP7

Sheet: 1 of 1 Job No: 13546

Test Pit Log

Client: ESR Australia Started: 12/10/2021 Project: Detailed Site Investigation Finished: 12/10/2021 Location: 290-308 Aldington Road & 59-63 Abbotts Road, KHolep & வெக்க்ற NSW Test Pit Size: m

Rig	Тур	e: 5t	Hydra	aulic T	rack N	Nounted Exca Male r Coordinates E, N	Driller:			Logged: SJ	
RL	Surf	face:	m			Contractor: O' Hara Brothers	Bearing:		Checked:		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations	
Excavation			-	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-	TOPSOIL: Silty CLAY: medium to high plasticity, dark brown.	ES PID=2.3ppm	М	-	TOPSOIL	
			-		СН	CLAY: high plasticity, light brown with orange and gey mottling.	FS	М	-	NATURAL	
			0.5			Test Pit PP7 terminated at 0.5m	ES PID=0.8ppm				
			_			rest Pit PP7 terminated at 0.5m					
			_								
			1.0								
			-								
			-								
			-								
			-								
			1. <u>5</u>								
			-								
			-								
			-	-							
			-								
			2.0	-							
			-								
			_	_							
			_								
			_								
			2.5								
			-	1							
			3.0	1							
			3.0								
			-								
			-	1							
			-								
			-								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: PP8 Sheet: 1 of 1

Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	ј Тур	e: 5t	Hydra	aulic T	rack M	lounted Exca ldaterCoordinates E, N	Dr	iller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O' Hara Brothers	Ве	aring:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
tion				<u>111_N 112</u>	-	TOPSOIL: Silty CLAY: medium to high plasticity, dark brown.		ES PID=2.0ppm	М	-	TOPSOIL
Excavation			-	1.14	CI-CH	Shaly CLAY: low to medium plasticity, grey to dark grey.	T	ES	М	-	NATURAL
- ŭ			_			Test Pit PP8 terminated at 0.2m					
			-								
			-								
			0 <u>.5</u>								
			-								
			-								
			-								
			-								
			1 <u>.0</u>								
			-								
			-								
			-								
			-								
			1 <u>.5</u>								
			_								
			_								
			-								
			-								
			2.0								
			-								
			-								
			-								
			-								
			2.5								
			-								
			-								
			-								
			3.0								
			3.5								

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: PP9 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	ј Тур	e: 5t	Hydra	aulic T	rack M	Mounted Exca llerCoordinates E, N	Driller:			Logged: SJ
RL	Surf	face:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
						Gravelly CLAY: low to medium plasticity, brown.		М		Surface Grab
Excavation Me		(m)	(m)			Gravelly CLAY: low to medium plasticity, brown. Test Pit PP9 terminated at 0.1m				
			- 3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: PP10 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	Тур	e: 5t	Hydra	ulic T	rack M		Driller:			Logged: SJ
RL	Surf	ace:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
ioi					CI	Silty CLAY: medium plasticity, brown.		М	-	Surface Grab
Excavation Met	Wat	KL (B)	Depth (m)	Gran		Sitty CLAY: medium plasticity, brown. Test Pit PP10 terminated at 0.1m				
			- - 3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: PP11 Sheet: 1 of 1 Job No: 13546

Test Pit Log

1. NON CORED BOREHOLE 13546.GPJ GINT STD AUSTRALIA.GDT 30/11/21

Rig	Тур	e: 5t	Hydra	aulic T	rack M	ounted Exca Mate rCoordinates E, N	Driller:			Logged: SJ
RL	Surf	face:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	
					CI	Silty CLAY: medium plasticity, brown.		М	-	Surface Grab
Excavation Me	Me Me		(m)			Sity CLAY: medium plasticity, brown. Test Pit PP11 terminated at 0.1m				
			- - 3.5							

T: 1800 288 188 E: office@allgeo.com.au W: www.allgeo.com.au

TP No: PP12 Sheet: 1 of 1 Job No: 13546

Test Pit Log

RIG Ty	ype: 5	Hydra	aulic 1	rack N	Nounted Exca Male rCoordinates E, N	Driller:			Logged: SJ
RL Su	ırface:	m			Contractor: O' Hara Brothers	Bearing:			Checked:
Method Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
			//	CI	Silty CLAY: medium plasticity, brown.		М	-	Surface Grab
Excavation		1.5 			Test Pit PP12 terminated at 0.1m				

alliance

Report No.: 13546-ER-2-1

APPENDIX B – Laboratory Documentation

CERTIFICATE OF ANALYSIS

Work Order : ES2139759

: ALLIANCE GEOTECHNICAL

Contact : Jacob Walker

Address : 8/10 Welder Road,

Seven Hills 2147

Telephone : ----

Client

Project : 13546 - Kemps Creek

Order number : ----

C-O-C number : ----

Sampler : SAM JONES

Site : ---

Quote number : EN/222

No. of samples received : 3

No. of samples analysed : 2

Page : 1 of 7

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 03-Nov-2021 14:30

Date Analysis Commenced : 04-Nov-2021

Issue Date : 10-Nov-2021 12:35

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Edwandy FadjarOrganic CoordinatorSydney Inorganics, Smithfield, NSWEdwandy FadjarOrganic CoordinatorSydney Organics, Smithfield, NSWIvan TaylorAnalystSydney Inorganics, Smithfield, NSW

Page : 2 of 7

Work Order : ES2139759

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

ALS

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported. Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG005T: Poor precision was obtained for Zinc on sample ES2139655 # 001. Confirmed by redigestion and reanalysis.
- EP075(SIM): Poor duplicate precision due to sample heterogeneity. Confirmed by re-extraction and re-analysis.

Page : 3 of 7
Work Order : ES2139759

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Sub-Matrix: SOIL			Sample ID	BT4	BT5	 	
(Matrix: SOIL)		Sampli	ng date / time	18-Oct-2021 00:00	21-Oct-2021 00:00	 	
Commoniad	CACALumban	LOR	Unit	ES2139759-001	ES2139759-002	 	
Compound	CAS Number	LON	O'm	Result	Result	 	
FARE: Maisture Content (Bried @ 4	IOE 440°C\			Result	Result	 	
EA055: Moisture Content (Dried @ 1 Moisture Content		1.0	%	16.4	13.7	 	
		1.0	70	10.4	10.1		
EG005(ED093)T: Total Metals by ICP Arsenic	7-AES 7440-38-2	5	mg/kg	9		 	
Cadmium	7440-43-9	1	mg/kg	<1		 	
Chromium	7440-47-3	2	mg/kg	19		 	
Copper	7440-47-3	5	mg/kg	34		 	
Lead	7439-92-1	5	mg/kg	25		 	
Nickel	7440-02-0	2	mg/kg	17		 	
Zinc	7440-66-6	5	mg/kg	53		 	
			mg/kg				
EG035T: Total Recoverable Mercury Mercury	7439-97-6	0.1	mg/kg	<0.1		 	
•		0.1	ilig/kg	~ 0.1		 	
EP066: Polychlorinated Biphenyls (F		0.4			40.4		
Total Polychlorinated biphenyls		0.1	mg/kg		<0.1	 	
EP068A: Organochlorine Pesticides							
alpha-BHC	319-84-6	0.05	mg/kg		<0.05	 	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg		<0.05	 	
beta-BHC	319-85-7	0.05	mg/kg		<0.05	 	
gamma-BHC	58-89-9	0.05	mg/kg		<0.05	 	
delta-BHC	319-86-8	0.05	mg/kg		<0.05	 	
Heptachlor	76-44-8	0.05	mg/kg		<0.05	 	
Aldrin	309-00-2	0.05	mg/kg		<0.05	 	
Heptachlor epoxide	1024-57-3	0.05	mg/kg		<0.05	 	
^ Total Chlordane (sum)		0.05	mg/kg		<0.05	 	
trans-Chlordane	5103-74-2	0.05	mg/kg		<0.05	 	
alpha-Endosulfan	959-98-8	0.05	mg/kg		<0.05	 	
cis-Chlordane	5103-71-9	0.05	mg/kg		<0.05	 	
Dieldrin	60-57-1	0.05	mg/kg		<0.05	 	
4.4`-DDE	72-55-9	0.05	mg/kg		<0.05	 	
Endrin	72-20-8	0.05	mg/kg		<0.05	 	
beta-Endosulfan	33213-65-9	0.05	mg/kg		<0.05	 	
^ Endosulfan (sum)	115-29-7	0.05	mg/kg		<0.05	 	
4.4`-DDD	72-54-8	0.05	mg/kg		<0.05	 	
Endrin aldehyde	7421-93-4	0.05	mg/kg		<0.05	 	
Endosulfan sulfate	1031-07-8	0.05	mg/kg		<0.05	 	

Page : 4 of 7
Work Order : ES2139759

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Page : 5 of 7

Work Order : ES2139759

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Page : 6 of 7
Work Order : ES2139759

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Page : 7 of 7
Work Order : ES2139759

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	39	149
EP068S: Organochlorine Pesticide S	Surrogate		
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pestici	de Surrogate		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound S	Surrogates		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

CHAIN OF CUSTODY RECORD ☐ydney Laboratory
Lint F3 Bid.F. 16 Mars Rd, Lane Cove West, NSW 2066
02 9800 8400 EnviroSampleNSW@eurofins.com ** Brisbane Leboratory
Unit 1.21 Smallwood Pl., Murame, CLD 4172
07 3902 4600 EnviroSampleCLD@eurofins.com Perth Laboratory
Unit 2. 91 Leach Highway, Kewdale WA 6105
08 9251 9800 EnviroSampleWA@eurolins.com Melbourne Laboratory 2 Kingston Town Close, Oakleigh, VIC 3166

12 13 14 16 17 18 18 19 20 21 urchase Order Method of Shipment Contact Name Quote ID No cial Directions Company Phone No Address Courier (# Client Sample ID **ALLIANCE GEOTECHNICAL** TP52 2.0-2.1 TP52 1.0-1.1 TP52 0.5-0.6 TP51 2.3-2.4 TP51 1.0-1.1 TP53 0.0-0.1 TP\$2 2.5-2.6 TP52 1.5-1.6 TP52 0.0-0.1 TPS1 2.0-2.1 TPS1 0.0-0.1 TPS0 0.5-0.6 TP50 0.0-0.1 10 WELDER ROAD, SEVEN 9TMG OTMS **60MS** DW15 DS12 DS11 **MILLS NSW** 430214402 Sam J 15/10/21 15/10/21 15/10/21 15/10/21 15/10/21 (dd/mm/yy hh:mm) 15/10/21 15/10/21 15/10/21 Sampled Date/Time 15/10/21 15/10/21 15/10/21 15/10/21 15/10/21 15/10/21 15/10/21 15/10/21 15/10/21 15/10/21 15/10/21 15/10/21 **Total Counts** Hand Delivered (S) Water (W); Matrix (Solid * € Analyses Project Name Profer Where metals are requested preaso specify Total code must be used to attroct SUITE pro Project No Posta 00 × × × x x x x x Suite B7: TRH, BTEXN, PAH, Metals × × × × ×× Suite B13: OCP, PCB Kemps Creek EC and pH ø × ××× × 13546 × L2 Aggressivity Suite Suite BH49D: Total N, TKN, NOX, NO2, NO3, NH3, Total P E.Coli and total coliforms - thermotolera હ (ESdat, EQuIS, Custom) Project Manage **TRH & BTEX** EDD Format VOC × × × × ××× HOLD Signature Sydney
Work Order Reference
ES2139759 Jacob W **Environmental Division** ielephone · +61-2-8784 8555 N. A. ≘mail for Invoic mail for Results Handed over by Sampler(s) 250mL Plastic 2 × × × × 125mL Plastic ~ 200mL Amber Glass 10 40mL VOA vial 22/10/2021 500mL PFAS Bottle iacob.walker@allgeo.com.au 8 × $\times \times \times$ ××× × samjones@allgeo.com.au, 03 8564 5000 EnviroSampleVic@eurofins.com enviro@allgeo.com.au, & admin@allgeo.com.au s AS4964 WA Guidelines □i Day: Domer (☐Overnight (9am)* Requirements (Default will be 5 days if not Sample Comments / Dangerous 픻 Goods Hazard Warning ည Turnaround Time (TAT) □2 Day

consistency of the second of t

23 25 26 27 27 28 29 29 31 31 33 33 33 34 44 40 Contact Name Method of Shipment Quote ID Nº ırchase Ordei ecial Directions Company Phone No Address CHAIN OF CUSTODY RECORD Client Sample ID S **ALLIANCE GEOTECHNICAL** TP63 0.5-0.6 TP62 2.5-2.6 TP62 2.0-2.1 TP62 1.5-1.6 TP62 1.0-1.1 TP62 0.5-0.6 TP62 0.0-0.1 TP61 1.0-1.1 TP61 0.5-0.6 TP61 0.0-0.1 TP54 2.4-2.5 TP54 2.0-2.1 TP54 1.0-1.1 TP54 0.0-0.1 10 WELDER ROAD, SEVEN 11WS 6TANG 8TWD SW12 DS14 ETSO Courier (# **HILLS NSW** 430214402 Sam J Sampled Date/Time (dd/mm/yy hh:mm) 18/10/21 18/10/21 15/10/21 15/10/21 15/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 15/10/21 15/10/21 15/10/21 15/10/21 Total Counts Hand Delivered (S) Water (W) Matrix (Solic u Analyses Project Name Project Nº Unit F3 Bld.F. 16 Mars Rd, Lane Cove West, NSW 2066 02 9900 8400 EnviroSampleNSW@surofins.com ω × × × TRH/BTEX, 8 Heavy Metals O Postal ×××× × Suite B7: TRH, BTEXN, PAH, Metals ×× × Suite B13: OCP, PCB Kemps Creek × ×× × × × EC and pH 13546 Name × **L2 Aggressivity Suite** Suite BH19D; Total N, TKN, NOX, NO2, NO3, NH3, Total P ☐ Brisbane Laboratory
Unit 1, 21 Smallwood Pl., Murarrie, QLD 4172 07 3902 4800 EnviroSampleQLD@eurofins.com E.Coli and total coliforms - thermotolerant હ EDD Format (ESdat, EQuIS, Custom) roject Manage **TRH & BTEX** VOC × × ×× ××× × HOLD Signature Jacob W A Perth Laboratory
Unit 2, 91 Leach Highway, Kewdale WA 6105 08 9251 9600 EnviroSampleVVA@eurofins.com 1L Plastic Email for Invoice mail for Results Handed over by Sampler(s) 250mL Plastic Date 2 25mL Plastic 200ml, Amber Glass 40mL VOA vial 22/10/2021 500mL PFAS Bottle Melbourne Laboratory jacob.walker@allgeo.com.au 8 $\times \times \times$ ×× ×× Jar (Glass or HDPE) samjones@allgeo.com.au, 03 8564 5000 EnviroSampleVic@eurofins.com enviro@allgeo.com.au, & 2 Kingston Town Close, Oakleigh, VIC 3166 admin@allgeo.com.au Other □i pay• ☐3 Day Sample Comments / Dangerous Requirements (Ostaul will be 5 days if not licked) Overnight (9am)* 퍨 Goods Hazard Warning ည Turnaround Time (TAT) D₂ Day*

bmission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request

Contact Name Quote ID No ırchase Order ecial Direction: Company Phone No Address **CHAIN OF CUSTODY RECORD** Client Sample ID **ALLIANCE GEOTECHNICAL** TP65 1.0-1.1 TP65 2.0-2.1 Courier (# DR15 0.4-0.5 DR15 0.0-0.1 TP66 0.6-0.7 TP66 0.0-0.1 TP65 0.0-0.1 TP63 1.0-1.1 TP64 1.5-1.6 TP64 1.0-1.1 TP64 0.0-0.1 10 WELDER ROAD, SEVEN SP3-1 SP3-2 PP11 PP10 **BT4** PP9 804 **HILLS NSW** 430214402 Sam J 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 hh:mm) Date/Time Total Counts Hand Delivered Matrix (Soli Analyses Project Name Note: Where here size requested idease specify "Total" or "Filtered" y SUITE code must be used to attract SUITE prioring. Project No Tydney Laboratory
Unit F3 Bld.F. 16 Mars Rd. Lane Cove West, NSW 2086
02 9800 8400 EnviroSampleNSW@eurofins.com 02 XXX × × × × Chromium, Arsenic, Copper ×× ×× Suite B7: TRH, BTEXN, PAH, Metals Posta × ×× Suite B13: OCP, PCB Kemps Creek EC and pH 13546 Name **L2 Aggressivity Suite** Suite BH19D: Total N, TKN, NOX, NO2, NO3, NH3, Total P Unit 1, 21 Smallwood PL, Murame, QLD 4172
07 3902 4600 EnviroSampleQLD@eurofins.com E.Coli and total coliforms - thermotolerant હ EDD Format (ESdat, EQuIS, Custom) Project Manage **TRH & BTEX** VOC × × × ×× HOLD × × Signature Jacob W Unit 2, 91 Leach Highway, Kewdale WA 6105 08 9251 9500 EnviroSampleWA@eurofins.com 1 mail for Invoice Handed over by Sampler(s) 250mL Plastic Date 2 200mL Amber Glass × 22/10/2021 500mL PFAS Bottle ■ Melbourne Laboratory

2 Kingston Town Close, Oakleigh, VIC 3166 acob.walker@allgeo.com.au 8 ××× samjones@allgeo.com.au, ×× $\times \times \times$ $\times \times \times \times \times \times$ Jar (Glass or HDPE) 03 8564 5000 EnviroSampleVic@eurofins.com enviro@allgeo.com.au, & admin@allgeo.com.au sbestos AS4964, V/A Guidetines) Other (D_SO_S ☐1 Day• Please forward to ALS Dovernight (9am)* Requirements (Default will be 5 days I not ticked) Sample Comments / Dangerous Goods Hazard Warning Time ည Turnaround Time (TAT) D₂ Day•

ubmission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request

urchase Ordei Contact Name ecial Directions Quote ID Ne Method of Phone No Company Address DR16 0.0-0.1 DR16 1.0-1.1 Client Sample ID Courier (# DR17 1.0-1.1 DR17 0.0-0.1 DR16 2.0-2.1 TP142 1.5-1.6 TP142 0.5-0.6 TP142 0.0-0.1 TP141 1.5-1.6 TP141 0.5-0.6 **ALLIANCE GEOTECHNICAL** TP70 0.3-0.4 TP70 0.0-0.1 TP141 0.0-0.1 TP71 0.0-0.1 10 WELDER ROAD, SEVEN DS16 DW20 DW21 **HILLS NSW** 430214402 Sam J 19/10/21 19/10/21 18/10/21 19/10/21 18/10/21 19/10/21 19/10/21 19/10/21 19/10/21 18/10/21 18/10/21 18/10/21 18/10/21 18/10/21 Date/Time (dd/mm/yy hh:mm) 19/10/21 18/10/21 18/10/21 **Total Counts** Hand Delivered (S) Water (W) Matrix (Sofi 1 Analyses are requested idlease specify "Total" or "Filtered") SUITS relimits the used to attract SUITS pricing. Project Name Project № N × × TRH/BTEXN, 8 HM Posta 9 XXX × × × × ×× Suite B7: TRH, BTEXN, PAH, Metals × × × × Suite B13: OCP, PCB Kemps Creek EC and pH 13546 Name L2 Aggressivity Suite Suite BH19D: Total N, TKN, NOX, NO2, NO3, NH3, Total P E.Coli and total coliforms - thermotolerant હ EDD Format (ESdat, EQuIS, Custom) Project Manager **TRH & BTEX** ~ × × VOC = × × × × × × ××× ×× HOLD Signature Jacob W 1 1L Plastic Email for Results Email for Invoic Handed over by Sampler(s) 250mL Plastic 13 125mL Plastic × 10mL VOA vist 22/10/2021 500mL PFAS Bottle 8 <u>acob.walker@allgeo.com.au</u> × ×× ××× samjones@allgeo.com.au, Jar (Glass or HOPE) enviro@allgeo.com.au, & admin@allgeo.com.au Dollar (Dag, Sample Comments / Dangerous Requirements (Default will be 5 days if not ticked) Overnight (9am)* ī Goods Hazard Warning Turnaround Time (TAT) હ ☐2 Day*

Ibmission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request

CHAIN OF CUSTODY RECORD

Tydney Laboratory
Unit F3 Bld.F. 16 Mars Rd, Lane Cove West, NSW 2066
02 9900 8400 EnviroSampleNSW@eurofins.com

☐ Brisbane Laboratory
Unit 1, 21 Smallwood Pl., Murame, QLD 4172
07 3902 4600 EnviroSampleQLD@eurofins.com

☐ Perth Laboratory
Unit 2, 91 Leach Highway, Kewdale WA 6105
08 9251 9600 EnviroSampleWA@eurofins.com

Melbourne Laboratory

03 8564 5000 EnviroSampleVic@eurofins.com ? Kingston Town Close, Oakleigh, VIC 3166

Quote ID No urchase Order Contact Name ecial Directions Company Phone No Address **CHAIN OF CUSTODY RECORD** Client Sample ID **S ALLIANCE GEOTECHNICAL** TP96 0.0-0.1 TP93 0.0-0.1 TP92 0.0-0.1 TP91 0.0-0.1 TP90 0.0-0.1 TP89 0.0-0.1 TP88 0.0-0.1 TP87 0.0-0.1 TP86 0.0-0.1 TP85 0.0-0.1 TP84 0.0-0.1 TP83 0.0-0.1 TP82 0.0-0.1 TP81 0.0-0.1 TP80 0.0-0.1 TP79 0.0-0.1 TP78 0.0-0.1 10 WELDER ROAD, SEVEN D518 DW23 Counter # **HILLS NSW** 430214402 Sam J Sampled Date/Time (dd/mm/yy hh:mm) 19/10/21 19/10/21 19/10/21 19/10/21 19/10/21 19/10/21 19/10/21 19/10/21 19/10/21 19/10/21 19/10/21 19/10/21 19/10/21 19/10/21 19/10/21 19/10/21 19/10/21 19/10/21 19/10/21 **Total Counts** Hand Delivered (S) Water (W) Matrix (Solic Analyses Project Name Project № Tydney Laboratory
Unit F3 Bld.F. 16 Mars Rd. Lane Cove West. NSW 2066
02 9900 8400 EnviroSampleNSW@eurofins.com ð × × × × × × × × OCP, 8 Heavy Metlas Posta 4 ××× Suite B7: TRH, BTEXN, PAH, Metals w × × × Suite B13: OCP, PCB Kemps Creek × EC and pH 13546 Name **L2 Aggressivity Suite** Suite BH19D: Total N, TKN, NOX, NO2, NO3, NH3, Total P Brisbane Laboratory 07 3902 4600 EnviroSampleQLD@eurofins.com Unit 1, 21 Smattwood Pl., Murame, QLD 4172 E.Coli and total coliforms - thermotolerant g EDD Format (ESdat, EQuIS, Custom) Project Managei **TRH & BTEX** VOC œ × × × × × × × × HOLD Signature Jacob W 1 Perth Laboratory
Unit 2, 91 Leach Highway, Kewdale WA 6105
08 9251 9600 EnviroSampleWA@eurofins.com mail for Invoic Handed over by naif for Result Sampler(s) 250mL Plastic 125mL Plastic 200mL Amber Glass 22/10/2021 500mL PFAS Bottle Melbourne Laboratory enviro@allgeo.com.au, & jacob.walker@allgeo.com.au ĸ $\times \times$ ×× ×× ×× Jar (Glass of HDPE) samjones@allgeo.com.au, 03 8564 5000 EnviroSampleVic@eurofins.com 2 Kingston Town Close, Oakleigh, VIC 3166 admin@allgeo.com.au Asbestos AS4964, WA Guidennes) Dother (□3 Day• Covernight (9am)* Requirements locault will be 5 days of not ticked! Sample Comments / Dangerous Ę Goods Hazard Warning ည Turnaround Time (TAT) □z Day*

ubmission of samples to the laboratory will be deemed as acceptance of Eurofins | mgl Slandard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgl Slandard Terms and Conditions is available on request

Brisbane Laboratory

ubmission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request

Contact Name Quote ID No urchase Order ecial Directions Method of Company Phone No Address **CHAIN OF CUSTODY RECORD** Client Sample ID **ALLIANCE GEOTECHNICAL** Courier (# TP131 0.0-0.1 TP126 0.0-0.1 TP124 0.0-0.1 TP137 0.0-0.1 TP136 0.0-0.1 TP135 0.0-0.1 TP133 0.0-0.1 TP132 0.0-0.1 TP130 0.0-0.1 TP129 0.0-0.1 TP128 0.0-0.1 TP127 0.0-0.1 TP125 0.0-0.1 TP123 0.0-0.1 TP122 0.0-0.1 TP121 0.0-0.1 TP120 0.0-0.1 TP119 0.0-0.1 10 WELDER ROAD, SEVEN **HILLS NSW** 430214402 Sam J 21/10/21 21/10/21 21/10/21 20/10/21 20/10/21 20/10/21 (dd/mm/yy hh:mm) 21/10/21 21/10/21 21/10/21 21/10/21 21/10/21 21/10/21 21/10/21 21/10/21 21/10/21 20/10/21 20/10/21 20/10/21 20/10/21 **Total Counts** Hand Delivered (S) Water Matrix (Solic Analyses ath are requested please specify "Total" or "Filtered") SUITE code most be used to altract SUITE pricing. Project Name 3 Project No Typydney Laboratory
Unit F3 Bld.F. 16 Mars Rd, Lane Cove West, NSW 2066
02 9900 8460 EnviroSample NSW@eurofins.com 9 × × × × × × × × OCP, 8 Heavy Metlas Posta 1 × Suite B7: TRH, BTEXN, PAH, Metals × × Suite B13: OCP, PCB Kemps Creek ću × × EC and pH 13546 Name **L2 Aggressivity Suite** Suite BH19D: Total N, TKN, NOX, NO2, NO3, NH3, Total P ☐ Brisbane Laboratory

Unit 1, 21 Smathwood Pt., Nurame, OLD 4172

07 3902 4600 EnviroSampleOLD@eurofins.com E.Coli and total coliforms - thermotolerant હ EDD Format (ESdat, EQuIS, Custom) Project Manage **TRH & BTEX** VOC = × × × HOLD × × × × × × × × Signature Jacob W ☐ Perth Laboratory
Unit 2, 91 Leach Highway, Kewdale WA 6105
08 9251 9800 EnviroSempleWA@eurofins.com A 1L Plastic mail for Results Email for Invoice Handed over by Sampler(s) 250ml, Plastic Date 125mL Plastic 200mL Amber Glass 40mt, VOA vial 22/10/2021 500mt PEAS Bottle Melbourne Laboratory iacob.walker@allgeo.com.au ß ×× ××× samjones@allgeo.com.au, 03 8564 5000 EnviroSampleVic@eurofins.com × × ×× ××× $|\mathbf{x}|\mathbf{x}|$ ××× Ja: (Glass or HDPE) 2 Kingston Town Close, Oakleigh, VIC 3166 enviro@allgeo.com.au, & admin@allgeo.com.au Ashestos AS4964, WA Guidelines) Domer Di Day Requirements (Detault will be \$ days if not licked) Sample Comments / Dangerous Goods Hazard Warning Overnight (9am)* 퓙 Turnaround Time (TAT) □2 Day*

bmission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request

155 157 158 158 159 160 160 160 160 160 160 160 170 170 170 177 177 177 CHAIN OF CUSTODY RECORD urchase Order Quote ID No Contact Name Method of Company Phone No Addres Client Sample ID **E** TP86 0.5-0.6 TP97 0.2-0.3 TP96 0.2-0.3 TP95 0.2-0.3 TP94 0.2-0.3 TP93 0.2-0.3 TP92 0.2-0.3 TP91 0.2-0.3 TP84 0.2-0.3 **ALLIANCE GEOTECHNICAL** TP90 0.2-0.3 TP89 0.2-0.3 TP83 0.2-0.3 TP82 0.2-0.3 TP81 0.2-0.3 TP80 0.2-0.3 TP88 0.2-0.3 TP85 0.2-0.3 10 WELDER ROAD, SEVEN Courier (# **HILLS NSW** 430214402 Sam J 19/10/21 19/10/21 19/10/21 19/10/21 19/10/21 Sampled Date/Time (dd/mm/yy hh:mm) 20/10/21 19/10/21 19/10/21 19/10/21 20/10/21 19/10/21 19/10/21 19/10/21 19/10/21 19/10/21 19/10/21 19/10/21 19/10/21 Total Counts Hand Delivered Matrix (Solid (S) Water (W)) Analyses (Note: Where metals are code m use speofy "Total" or "Filtered") SUITE attract SUITE pricing. **Project Name** Project No OCP, 8 Heavy Metlas Suite B7: TRH, BTEXN, PAH, Metals Suite B13: OCP, PCB Kemps Creek × EC and pH Name × L2 Aggressivity Suite Suite BH19D: Total N, TKN, NOX, NO2, NO3, NH3, Total P ☐ Brisbane Laboratory
Unit 1, 21 Smallwood Pl., Muramie, QLD 4172 07 3902 4600 EnviroSampleQLD@eurofins.com E.Coli and total coliforms - thermotolerant હ EDD Format (ESdat, EQuIS ^project Manage **TRH & BTEX** VOC XXXXXXXXXXXXX 7 xxxx ×× HOLD Signature Jacob W A ☐ Perth Laboratory
Unit 2, 91 Leach Highway, Kewdale WA 6105
08 9251 9600 EnviroSampleWA@eurofins.com mail for Results Email for Invoice Handed over by Sampler(s) 250mL Plastic Date 125mL Plastic 200mL Amber Glass 40mL VOA vial 22/10/2021 500mL PFAS Bottle 23 jacob.walker@allgeo.com.au $\times \times \times \times \times$ × $\times \times \times \times \times \times \times \times$ Jar (Glass or HDPE) samjones@allgeo.com.au, ×× 2 Kingston Town Close, Oakleigh, VIC 3166 03 8564 5000 EnviroSampleVic@eurofins.com enviro@allgeo.com.au, & admin@allgeo.com.au Other (Ascestos AS4964, WA Guidelines) Requirements (Default will be 5 days if not bewelf Overnight (9am)* Sample Comments / Dangerous Goods Hazard Warning 퍨 Turnaround Time (TAT) હ □2 Day*

Ibmission of samples to the leboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request

Melbourne Laboratory

ubmission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise, A copy of Eurofins | mgt Standard Terms and Conditions is available on request

Brisbane Laboratory

Melbourne Laboratory

2 Kingston Town Close, Oaldeigh, VIC 3166

Quote ID Nº ecial Direction irchase Ordei Phone No Address Client Sample ID **ALLIANCE GEOTECHNICAL** Courier (# TP139 0.2-0.3 TP138 0.2-0.3 TP137 0.5-0.6 TP136 0.2-0.3 TP135 0.2-0.3 TP134 0.2-0.3 TP133 0.2-0.3 TP132 0.2-0.3 TP131 0.2-0.3 TP130 0.5-0.6 TP129 0.2-0.3 TP127 0.2-0.3 TP126 0.2-0.3 TP124 0.2-0.3 TP123 0.2-0.3 TP128 0.2-0.3 TP125 0.2-0.3 10 WELDER ROAD, SEVEN **HILLS NSW** 430214402 Sam J 21/10/21 20/10/21 (dd/mm/yy hh:mm) Sampled Date/Time 21/10/21 21/10/21 21/10/21 21/10/21 21/10/21 21/10/21 21/10/21 21/10/21 21/10/21 21/10/21 21/10/21 21/10/21 21/10/21 21/10/21 20/10/21 20/10/21 20/10/21 **Total Counts** Hand Delivered (S) Water (W) Matrix (Solic Analyses Project Name ase specify "Total" or "Filtered") SUITE attract SUITE pricing. Project № 02 9900 8400 EnviroSampleNSW@eurofins.com OCP, 8 Heavy Metlas ××× × Suite B7: TRH, BTEXN, PAH, Metals × ××× Suite B13: OCP, PCB Kemps Creek N × × EC and pH 13546 Name **L2 Aggressivity Suite** Suite BH19D: Total N, TKN, NOX, NO2, NO3, NH3, Total P 07 3902 4600 EnviroSampleQLD@eurofins.com E.Coli and total coliforms - thermotolerant ဖွ EDD Format (ESdat, EQuIS, roject Manage **TRH & BTEX** Custom) VOC 햐 ××××× ×××× × × × ×× HOLD Signature Jacob W 08 9251 9600 EnviroSampleWA@eurofins.com mail for Invoice mail for Results landed over by Sampler(s) 250mL Plastic Date N 125ml Plastic Containers 2 X × 200mL Amber Glass 2 X × 40mL VCA vial 2/10/2021 500mL PFAS Bottle lacob.walker@allgeo.com.au samjones@allgeo.com.au. 8 × ×× $\times |\times| \times$ $\times \times \times$ ×× ×× Jar (Glass or HDPE) enviro@allgeo.com.au, & admin@allgeo.com.au Other (Asbestos AS4964, WA Guidelines) Other ☐3 Day Sample Comments / Dangerous Requirements (Detault will be 5 days if not Overnight (9am)* EnviroSampleVic@eurofins.com Goods Hazard Warning 죑 Turnaround Time (TAT) S D₂ D_{ay}*

samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request

CHAIN OF CUSTODY RECORD

Unit F3 Bld.F. 16 Mars Rd. Lane Cove West, NSW 2066

☐Brisbane Laboratory

Unit 1, 21 Smallwood PL, Murame, QLD 4172

☐ Perth Laboratory
Unit 2, 91 Leach Highway, Kewdale WA 6105

Melbourne Laboratory

2 Kingston Town Close, Oakleigh, VIC 3166

03 8564 5000

Address ial Direction: Company hone Ne ote ID Nº hase Orde itact Name (9)Trip spike & blank x 5 Client Sample ID CHAIN OF CUSTODY RECORD TP101 1.0-1.1 TP86 1.5-1.6 TP86 2.0-2.1 TP120 1.0-1.1 TP130 1.0-1.1 TP120 2.5-2.6 TP120 2.0-2.1 TP120 1.5-1.6 TP89 2.5-2.6 TP86 1.0-1.1 DW29 DW28 DW27 **DW26** DW25 DW24 DS20 DS21 DS22 **B75** 805 **ALLIANCE GEOTECHNICAL** 10 WELDER ROAD, SEVEN Courier (# **HILLS NSW** 430214402 Sam J 15,18,19,20, & 21/10/2021 Sampled Date/Time (dd/mm/yy hh:mm) 20/10/21 19/10/21 21/10/21 19/10/21 21/10/21 21/10/21 20/10/21 20/10/21 20/10/21 19/10/21 19/10/21 21/10/21 21/10/21 21/10/21 21/10/21 20/10/21 20/10/21 20/10/21 Hand Delivered Total Counts (S) Water (W)) Matrix (Solid w w Project Name Project No Postal ယ ××× Suite B7: TRH, BTEXN, PAH, Metals × Suite B13: OCP, PCB Kemps Creek ᄚ × × × × × × × × EC and pH 13546 Name × × **L2 Aggressivity Suite** Suite BH19D: Total N, TKN, NOX, NO2, NO3, NH3, Total P Brisbane Laboratory
Unit 1, 21 Smallwood Pi., Murarrie, QLD 4172 07 3902 4600 EnviroSampleQLD@eurofins.com E.Coli and total coliforms - thermotolerant હ EDD Format (ESdat, EQuiS, Project Manage × BTEX VOC ×× × ×× × HOLD Jacob W Perth Laboratory
Unit 2, 91 Leach Highway, Kawdale WA 6105 A 08 9251 9600 EnviroSampleWA@eurofins.com 1L Plastic Email for Invoic mail for Result Handed over by Sampler(s) 250mL Plastic Date 125mL Plastic Containers 200mL Amber Glass 40mL VOA vial 500mL PFAS Bottle Melbourne Laboratory 22 acob.walker@allgeo.com.au ×× ×× ×× × × × $\times \times \times$ Jar (Glass or HDPE) samjones@allgeo.com.au, 03 8564 5000 EnviroSampleVio@eurofins.com 2 Kingston Town Close, Oakleigh, VIC 3166 enviro@allgeo.com.au, & admin@allgeo.com.au Other (Aspestos AS4964, WA Guidelines) □3 Day* Requirements (Default will be 5 days if a ☐1 Day* Sample Comments / Dangerous Overnight (9am)* Please forward to ALS Goods Hazard Warning 텵 Turnaround Time (TAT) ည □2 Day•

flethod of Address Company :hase Order (W) lote ID № CHAIN OF CUSTODY RECORD Client Sample ID TP130 1.5-1.6 4 13 TP137 2.0-2.1 TP137 1.5-1.6 TP130 2.0-2.1 TP137 2.5-2.6 TP137 1.0-1.1 **ALLIANCE GEOTECHNICAL** Courier (# 10 WELDER ROAD, SEVEN **HILLS NSW** 430214402 Sam J Sampled Date/Time (dd/mm/yy hh:mm) 21/10/21 21/10/21 20.10.21 21/10/21 21/10/21 21/10/21 Total Counts Hand Delivered (S) Water (W)) Matrix (Solid Analyses Plans are requested, please specify "Total" or "Filtered" / SUITE code must be used to attract SUITE pricing. Project Name Project Ne Unil F3 Bld.F. 15 Mars Rd. Lane Cove West, NSW 2085 02 9900 8400 EnviroSempleNSW@eurofins.com Postal Suite B7: TRH, BTEXN, PAH, Metals Suite B13: OCP, PCB Kemps Creek 6 XXXX EC and pH × 13546 Name × × **L2 Aggressivity Suite** Suite BH19D; Total N, TKN, NOX, NO2, NO3, NH3, Total P ☐ Brisbane Laboratory

Unit 1, 21 Smaftwood Pt., Murame, OLD 4172

07 3902 4600 EnviroSampleOLD@eurofins.com E.Coli and total coliforms - thermotolerant Ł EDD Format (ESdat, EQuIS, Custom) Project Manager BTEX VOC HOLD Signature Jacob W Perth Laboratory
Unit 2, 91 Leach Highway, Kewdale WA 6105 A 08 9251 9600 EnviroSampleWA@eurofins.com 1L Plastic Email for Invoic Email for Results Handed over by Sampler(s) 250mL Plastic Date 125mL Plastic 200mL Amber Glass 40mL VOA viat 22/10/2021 500mL PFAS Bottle ☐ Melbourne Laboratory jacob.walker@allgeo.com.au 6 $\times \times \times \times \times \times$ samjones@allgeo.com.au. 03 8564 5000 EnviroSampleVic@eurofins.com Jar (Glass or HDPE) 2 Kingston Town Close, Oakleigh, VtC 3166 enviro@allgeo.com.au, & admin@allgeo.com.au Other (Aspestos AS/4964, WA Guidelines) ☐1 Day* Requirements ; Default will be 5 days if no ☐s Day* Covernight (9am)* Sample Comments / Dangerous Goods Hazard Warning Time H Turnaround Time (TAT) ည □2 Day*

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2139759** Page : 1 of 5

Client : ALLIANCE GEOTECHNICAL Laboratory : Environmental Division Sydney

 Contact
 : Jacob Walker
 Telephone
 : +61-2-8784 8555

 Project
 : 13546 - Kemps Creek
 Date Samples Received
 : 03-Nov-2021

 Site
 : --- Issue Date
 : 10-Nov-2021

Site :--- Issue Date : 10-1
Sampler : SAM JONES No. of samples received : 3

Order number : --- No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- Duplicate outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 5 Work Order : ES2139759

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Duplicate (DUP) RPDs							
EG005(ED093)T: Total Metals by ICP-AES	ES2139655001	Anonymous	Zinc	7440-66-6	55.0 %	0% - 20%	RPD exceeds LOR based limits
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	ES2137769001	Anonymous	Phenanthrene	85-01-8	41.3 %	0% - 20%	RPD exceeds LOR based limits
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	ES2137769001	Anonymous	Fluoranthene	206-44-0	38.1 %	0% - 20%	RPD exceeds LOR based limits
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	ES2137769001	Anonymous	Pyrene	129-00-0	37.1 %	0% - 20%	RPD exceeds LOR based limits
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	ES2137769001	Anonymous	Sum of polycyclic		34.2 %	0% - 20%	RPD exceeds LOR based limits
			aromatic				
			hydrocarbons				

Outliers: Analysis Holding Time Compliance

Matrix: SOIL

Michigan Coll						
Method	E.	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days overdue	Date analysed	Due for analysis	Days overdue
EA055: Moisture Content (Dried @ 105-110°C)						
Soil Glass Jar - Unpreserved						
BT4				05-Nov-2021	01-Nov-2021	4
Soil Glass Jar - Unpreserved						
BT5				05-Nov-2021	04-Nov-2021	1
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons						
Soil Glass Jar - Unpreserved						
BT4	05-Nov-2021	01-Nov-2021	4			
EP080/071: Total Petroleum Hydrocarbons						
Soil Glass Jar - Unpreserved						
BT4	05-Nov-2021	01-Nov-2021	4	08-Nov-2021	01-Nov-2021	7
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions						
Soil Glass Jar - Unpreserved						
BT4	05-Nov-2021	01-Nov-2021	4	08-Nov-2021	01-Nov-2021	7
EP080: BTEXN						
Soil Glass Jar - Unpreserved						
BT4	05-Nov-2021	01-Nov-2021	4	08-Nov-2021	01-Nov-2021	7

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Page : 3 of 5
Work Order : ES2139759

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Matrix: SOIL				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055)							
BT4	18-Oct-2021				05-Nov-2021	01-Nov-2021	×
Soil Glass Jar - Unpreserved (EA055) BT5	21-Oct-2021				05-Nov-2021	04-Nov-2021	×
EG005(ED093)T: Total Metals by ICP-AES	21 001 2021				00 1107 2021	011107 2021	-
Soil Glass Jar - Unpreserved (EG005T)	<u> </u>	<u> </u>					
BT4	18-Oct-2021	08-Nov-2021	16-Apr-2022	✓	08-Nov-2021	16-Apr-2022	✓
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T)							
BT4	18-Oct-2021	08-Nov-2021	15-Nov-2021	✓	09-Nov-2021	15-Nov-2021	✓
EP066: Polychlorinated Biphenyls (PCB)							
Soil Glass Jar - Unpreserved (EP066)	04 0 4 0004	0.4 N	04 Nov. 0004		05.11. 0004	44 D - 0004	
BT5	21-Oct-2021	04-Nov-2021	04-Nov-2021	✓	05-Nov-2021	14-Dec-2021	✓
EP068A: Organochlorine Pesticides (OC)							
Soil Glass Jar - Unpreserved (EP068) BT5	21-Oct-2021	04-Nov-2021	04-Nov-2021	1	05-Nov-2021	14-Dec-2021	
	21-001-2021	04-1407-2021	04-1107-2021	√	05-1404-2021	14-060-2021	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	1	T T				I	
Soil Glass Jar - Unpreserved (EP075(SIM)) BT4	18-Oct-2021	05-Nov-2021	01-Nov-2021	5 2	08-Nov-2021	15-Dec-2021	/
EP080/071: Total Petroleum Hydrocarbons	10 001 202	00 1107 2021					_
Soil Glass Jar - Unpreserved (EP071)					<u> </u>		
BT4	18-Oct-2021	05-Nov-2021	01-Nov-2021	*	08-Nov-2021	15-Dec-2021	✓
Soil Glass Jar - Unpreserved (EP080)							
BT4	18-Oct-2021	05-Nov-2021	01-Nov-2021	k	08-Nov-2021	01-Nov-2021	*
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP071)			04.11 0004			45.5	
BT4	18-Oct-2021	05-Nov-2021	01-Nov-2021	.k	08-Nov-2021	15-Dec-2021	√
Soil Glass Jar - Unpreserved (EP080) BT4	18-Oct-2021	05-Nov-2021	01-Nov-2021	5 2	08-Nov-2021	01-Nov-2021	
	10-001-2021	00-1104-2021	011107 2021	X	JJ-140V-2021	31 1407 2021	×
EP080: BTEXN Soil Glass Jar - Unpreserved (EP080)		T T			I		
BT4	18-Oct-2021	05-Nov-2021	01-Nov-2021	<u> *</u>	08-Nov-2021	01-Nov-2021	×
211		· · · · · · · · · · · · · · · · · · ·		_		<u> </u>	

Page : 4 of 5 Work Order : ES2139759

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL Evaluation: **x** = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification. Quality Control Sample Type Count Rate (%) **Quality Control Specification** Evaluation Method Analytical Methods QC Regular Actual Expected Laboratory Duplicates (DUP) Moisture Content 2 17 11.76 10.00 NEPM 2013 B3 & ALS QC Standard EA055 PAH/Phenols (SIM) 1 8 12.50 NEPM 2013 B3 & ALS QC Standard EP075(SIM) 10.00 1 Pesticides by GCMS 1 10 10.00 10.00 NEPM 2013 B3 & ALS QC Standard EP068 1 Polychlorinated Biphenyls (PCB) EP066 1 10 10.00 10.00 1 NEPM 2013 B3 & ALS QC Standard 2 Total Mercury by FIMS EG035T 20 10.00 10.00 NEPM 2013 B3 & ALS QC Standard 1 Total Metals by ICP-AES 2 20 EG005T 10.00 10.00 NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction 1 9 11.11 10.00 NEPM 2013 B3 & ALS QC Standard EP071 2 13 TRH Volatiles/BTEX 15.38 NEPM 2013 B3 & ALS QC Standard EP080 10.00 1 _aboratory Control Samples (LCS) PAH/Phenols (SIM) EP075(SIM) 1 8 12.50 5.00 1 NEPM 2013 B3 & ALS QC Standard Pesticides by GCMS EP068 1 10 10.00 5.00 1 NEPM 2013 B3 & ALS QC Standard Polychlorinated Biphenyls (PCB) EP066 1 10 10.00 5.00 1 NEPM 2013 B3 & ALS QC Standard Total Mercury by FIMS 1 20 5.00 NEPM 2013 B3 & ALS QC Standard EG035T 5.00 Total Metals by ICP-AES 1 20 5.00 5.00 NEPM 2013 B3 & ALS QC Standard EG005T 1 TRH - Semivolatile Fraction 1 9 11.11 5.00 NEPM 2013 B3 & ALS QC Standard EP071 1 TRH Volatiles/BTEX 1 13 NEPM 2013 B3 & ALS QC Standard EP080 7.69 5.00 Method Blanks (MB) PAH/Phenols (SIM) 8 EP075(SIM) 1 12.50 5.00 NEPM 2013 B3 & ALS QC Standard Pesticides by GCMS 1 10 10.00 5.00 1 NEPM 2013 B3 & ALS QC Standard EP068 1 10 10.00 Polychlorinated Biphenyls (PCB) 5.00 NEPM 2013 B3 & ALS QC Standard EP066 1 Total Mercury by FIMS 1 20 5.00 NEPM 2013 B3 & ALS QC Standard 5.00 EG035T Total Metals by ICP-AES 1 20 5.00 NEPM 2013 B3 & ALS QC Standard EG005T 5.00 1 9 TRH - Semivolatile Fraction 1 11.11 5.00 NEPM 2013 B3 & ALS QC Standard EP071 TRH Volatiles/BTEX 13 1 NEPM 2013 B3 & ALS QC Standard EP080 7.69 5.00

Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 5 Work Order : ES2139759

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3).
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

QUALITY CONTROL REPORT

: 1 of 8

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

Work Order : ES2139759 Page

Client : ALLIANCE GEOTECHNICAL Laboratory : Environmental Division Sydney

Contact : Jacob Walker : Customer Services ES

Address : 8/10 Welder Road. Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Seven Hills 2147

Telephone : ---- Telephone : +61-2-8784 8555

Project : 13546 - Kemps Creek Date Samples Received : 03-Nov-2021
Order number : ---- Date Analysis Commenced : 04-Noy-2021

C-O-C number : ---- Issue Date : 10-Nov-2021

Sampler : SAM JONES

No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall

This Quality Control Report contains the following information:

: EN/222

: 3

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

No. of samples received

not be reproduced, except in full.

Site
Quote number

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

Page : 2 of 8 Work Order : ES2139759

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EG005(ED093)T: To	tal Metals by ICP-AES (QC	Lot: 4000542)								
ES2139836-002	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	2	2	0.0	No Limit	
		EG005T: Chromium	7440-47-3	2	mg/kg	545	542	0.6	0% - 20%	
		EG005T: Nickel	7440-02-0	2	mg/kg	30	30	0.0	0% - 50%	
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit	
		EG005T: Copper	7440-50-8	5	mg/kg	12	12	0.0	No Limit	
		EG005T: Lead	7439-92-1	5	mg/kg	297	287	3.5	0% - 20%	
ES2139655-001	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit	
		EG005T: Chromium	7440-47-3	2	mg/kg	8	13	45.4	No Limit	
		EG005T: Nickel	7440-02-0	2	mg/kg	11	16	39.3	No Limit	
		EG005T: Arsenic	7440-38-2	5	mg/kg	9	8	0.0	No Limit	
		EG005T: Copper	7440-50-8	5	mg/kg	34	54	46.1	0% - 50%	
		EG005T: Lead	7439-92-1	5	mg/kg	85	89	4.5	0% - 50%	
		EG005T: Zinc	7440-66-6	5	mg/kg	154	# 271	55.0	0% - 20%	
EA055: Moisture Co	ntent (Dried @ 105-110°C)	(QC Lot: 3998922)								
ES2139603-010	Anonymous	EA055: Moisture Content		0.1	%	10.4	10.9	4.5	0% - 50%	
ES2139953-004	Anonymous	EA055: Moisture Content		0.1	%	17.0	17.1	0.7	0% - 50%	
EG035T: Total Rec	overable Mercury by FIMS	(QC Lot: 4000543)								
ES2139655-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit	
ES2139924-006	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.1	0.1	0.0	No Limit	
EP066: Polychlorina	ated Biphenyls (PCB) (QC	Lot: 3996590)								
ES2139677-001	Anonymous	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.0	No Limit	
EP068A: Organochi	orine Pesticides (OC) (QC	Lot: 3996589)								
ES2139677-001	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
•	1									

Page : 3 of 8
Work Order : ES2139759

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report	•		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EP068A: Organochi	orine Pesticides (OC)	(QC Lot: 3996589) - continued								
ES2139677-001	Anonymous	EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit	
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit	
EP075(SIM)B: Polyr	nuclear Aromatic Hydro	ocarbons (QC Lot: 3996613)								
ES2137769-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	0.6	0.8	32.0	No Limit	
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	0.6	0.8	31.9	No Limit	
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	9.7	# 14.8	41.3	0% - 20%	
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	2.5	3.8	40.9	No Limit	
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	15.0	# 22.1	38.1	0% - 20%	
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	12.3	# 17.8	37.1	0% - 20%	
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	5.3	7.2	30.4	0% - 50%	
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	4.7	6.5	33.3	0% - 50%	
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	6.6	7.9	18.1	0% - 50%	
			205-82-3							
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	2.1	3.1	39.2	No Limit	
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	4.6	5.8	22.9	0% - 50%	
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	2.9	4.1	31.9	No Limit	
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	0.6	0.9	36.6	No Limit	
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	3.6	4.8	29.1	No Limit	
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	71.1	# 100	34.2	0% - 20%	
		hydrocarbons								

Page : 4 of 8
Work Order : ES2139759

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075(SIM)B: Polyn	nuclear Aromatic Hyd	rocarbons (QC Lot: 3996613) - continued							
ES2137769-001	Anonymous	EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	7.0	9.0	25.8	0% - 50%
EP080/071: Total Pe	troleum Hydrocarbor	ns (QC Lot: 3996612)							
ES2137769-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	200	160	18.9	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbor	ns (QC Lot: 3997626)							
ES2139759-001	BT4	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES2139953-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Re	ecoverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 3996612)							
ES2137769-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	280	220	25.2	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Re	ecoverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 3997626)							
ES2139759-001	BT4	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
ES2139953-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080: BTEXN (QC	Lot: 3997626)								
ES2139759-001	BT4	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES2139953-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit

Page : 5 of 8
Work Order : ES2139759

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	AS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 4000542)									
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	97.8	88.0	113	
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	80.6	70.0	130	
EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	116	68.0	132	
EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	110	89.0	111	
EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	98.9	82.0	119	
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	101	80.0	120	
EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	93.4	66.0	133	
EG035T: Total Recoverable Mercury by FIMS (QCLot: 400054:	3)								
	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	90.2	70.0	125	
EP066: Polychlorinated Biphenyls (PCB) (QCLot: 3996590)									
EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	117	62.0	126	
EP068A: Organochlorine Pesticides (OC) (QCLot: 3996589)									
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	98.6	69.0	113	
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	102	65.0	117	
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	99.6	67.0	119	
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	98.7	68.0	116	
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	100	65.0	117	
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	96.0	67.0	115	
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	95.2	69.0	115	
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	101	62.0	118	
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	103	63.0	117	
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	104	66.0	116	
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	103	64.0	116	
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	100	66.0	116	
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	100.0	67.0	115	
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	106	67.0	123	
EP068: beta-Endosulfan 3	3213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	101	69.0	115	
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	99.1	69.0	121	
El coc. Ellam alacityac	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	94.6	56.0	120	
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	82.0	62.0	124	
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	85.4	66.0	120	
EP068: Endrin ketone 5	3494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	83.1	64.0	122	
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	83.6	54.0	130	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 39	96613)								

Page : 6 of 8
Work Order : ES2139759

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Sub-Matrix: SOIL				Method Blank (MB) Report	Laboratory Control Spike (LCS) Report				
					Spike	Spike Recovery (%)	Acceptable Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 3996613) - co	ntinued							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	99.6	77.0	125	
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	89.9	72.0	124	
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	110	73.0	127	
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	98.1	72.0	126	
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	98.8	75.0	127	
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	110	77.0	127	
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	97.1	73.0	127	
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	97.2	74.0	128	
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	96.8	69.0	123	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	108	75.0	127	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	6 mg/kg	85.1	68.0	116	
	205-82-3								
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	94.5	74.0	126	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	93.2	70.0	126	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	95.9	61.0	121	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	100	62.0	118	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	97.8	63.0	121	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3	3996612)								
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	99.8	75.0	129	
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	100	77.0	131	
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	99.4	71.0	129	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3	3997626)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	114	68.4	128	
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions (QCL	ot: 3996612)							
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	102	77.0	125	
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	98.7	74.0	138	
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	96.7	63.0	131	
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions (QCL	ot: 3997626)							
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	114	68.4	128	
EP080: BTEXN (QCLot: 3997626)									
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	110	62.0	116	
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	105	67.0	121	
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	106	65.0	117	
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	104	66.0	118	
	106-42-3				5 5				
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	104	68.0	120	
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	98.4	63.0	119	

Page : 7 of 8
Work Order : ES2139759

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ID-Matrix: SOIL	Aatrix: SOIL				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable Limits (%)			
boratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
G005(ED093)T: T	otal Metals by ICP-AES (QCLot: 4000542)								
ES2139655-001 A	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	92.8	70.0	130		
		EG005T: Cadmium	7440-43-9	50 mg/kg	91.1	70.0	130		
		EG005T: Chromium	7440-47-3	50 mg/kg	97.3	68.0	132		
		EG005T: Copper	7440-50-8	250 mg/kg	111	70.0	130		
		EG005T: Lead	7439-92-1	250 mg/kg	80.1	70.0	130		
		EG005T: Nickel	7440-02-0	50 mg/kg	96.9	70.0	130		
		EG005T: Zinc	7440-66-6	250 mg/kg	91.6	66.0	133		
G035T: Total Re	coverable Mercury by FIMS (QCLot: 400054	3)							
S2139655-001	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	105	70.0	130		
P066: Polychlorii	nated Biphenyls (PCB) (QCLot: 3996590)								
S2139677-001	Anonymous	EP066: Total Polychlorinated biphenyls		10 mg/kg	104	70.0	130		
P068A: Organocl	hlorine Pesticides (OC) (QCLot: 3996589)								
	Anonymous	EP068: gamma-BHC	58-89-9	0.5 mg/kg	120	70.0	130		
		EP068: Heptachlor	76-44-8	0.5 mg/kg	98.0	70.0	130		
		EP068: Aldrin	309-00-2	0.5 mg/kg	100	70.0	130		
		EP068: Dieldrin	60-57-1	0.5 mg/kg	100	70.0	130		
		EP068: Endrin	72-20-8	2 mg/kg	105	70.0	130		
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	83.7	70.0	130		
P075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 39	996613)							
ES2137769-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	109	70.0	130		
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	127	70.0	130		
P080/071: Total F	Petroleum Hydrocarbons (QCLot: 3996612)								
	Anonymous	EP071: C10 - C14 Fraction		480 mg/kg	95.6	73.0	137		
		EP071: C15 - C28 Fraction		3100 mg/kg	100	53.0	131		
		EP071: C29 - C36 Fraction		2060 mg/kg	112	52.0	132		
P080/071: Total F	Petroleum Hydrocarbons (QCLot: 3997626)								
S2139759-001	BT4	EP080: C6 - C9 Fraction		32.5 mg/kg	123	70.0	130		
P080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fra	ctions (QCLot: 3996612)							
	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	95.9	73.0	137		
		EP071: >C16 - C34 Fraction		4320 mg/kg	104	53.0	131		
		EP071: >C34 - C40 Fraction		890 mg/kg	102	52.0	132		

Page : 8 of 8 Work Order : ES2139759

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Sub-Matrix: SOIL			Matrix Spike (MS) Report				
			Spike SpikeRecovery(%)		Acceptable Limits (%)		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions(QCL	ot: 3997626) - continued					
ES2139759-001	BT4	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	120	70.0	130
EP080: BTEXN (Q	CLot: 3997626)						
ES2139759-001 BT4	BT4	EP080: Benzene	71-43-2	2.5 mg/kg	110	70.0	130
		EP080: Toluene	108-88-3	2.5 mg/kg	99.5	70.0	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	100	70.0	130
	EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	99.4	70.0	130	
		106-42-3					
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	101	70.0	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	90.5	70.0	130

CERTIFICATE OF ANALYSIS

Work Order : ES2138446

Client : ALLIANCE GEOTECHNICAL

Contact : SAM JONES

Address : 8/10 Welder Road.

Seven Hills 2147

Telephone

Project : 13546 - Kemps Creek

Order number C-O-C number Sampler

: SJ Site Quote number : EN/222

No. of samples received : 7

No. of samples analysed : 5 Page : 1 of 7

> Laboratory : Environmental Division Sydney

Contact : Customer Services ES

: 277-289 Woodpark Road Smithfield NSW Australia 2164 Address

Telephone : +61-2-8784 8555

Date Samples Received : 25-Oct-2021 14:00

Date Analysis Commenced : 26-Oct-2021

Issue Date : 29-Oct-2021 13:45

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Edwandy Fadjar Organic Coordinator Sydney Inorganics, Smithfield, NSW Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW Franco Lentini LCMS Coordinator Sydney Inorganics, Smithfield, NSW Ivan Taylor Sydney Inorganics, Smithfield, NSW Analyst

Page : 2 of 7

Work Order : ES2138446

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported. Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.

Page : 3 of 7

Work Order : ES2138446

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Page : 4 of 7

Work Order : ES2138446

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Page : 5 of 7

Work Order : ES2138446

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Analytical Results

Page : 6 of 7
Work Order : ES2138446

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Analytical Results

Page : 7 of 7
Work Order : ES2138446

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	39	149
EP068S: Organochlorine Pesticide Surrogate			
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide Surroga	ite		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

Company

Address

Pydney Laboratory
Unit F3 Bld.F. 16 Mars Rd. Lane Cove West, NSW 2066

| Brisbane Laboratory
Unit 1, 21 Smallwood Pl., Murarrie, QLD 4172

Perih Laboratory Unii 2,91 Leach Highway, Kewdale WA 6105

Melbourne Laboratory 2 Kingston Town Close, Oakleigh, VIC 3156

ABN 50 005 085 521		Unit F3 Bld.F, 16 Mars Rd, Lane Cove West, NSW 2066 02 9900 8400 EnviroSampleNSW@eurofins.com	Unit 1, 21 Small 07 3902 4600	wood Pl., Murarrie, QLD 4172 EnviroSampleQLD@eurofins.com	Unit 2, 91 Leach Highway, Kewdale WA 6105 08 9251 9600 EnviroSampleWA@eurofins.com	wA 6105 surofins.com	2 Kingston Town Close, Oakleigh, VIC 3156 03 8564 5000 EnviroSampleVic@eurofins.com
ALLIANCE GEOTECHNICAL	AL Project Nº	13546	Project Manager		Jacob W	Sampler(s)	S
10 WELDER ROAD, SEVEN	Project Name	Kemps Creek	reek (ESdat, EQuis	rmat QuIS, m)		Handed over by	
MACN CITIE	ITE code		tal P			Email for Invoice	admin@allgeo.com.au
Sam J	or "Fillered") SUI 9	als.	NH3, To			Email for Results	samjones@allgeo.com.au. enviro@allgeo.com.au. & iacob.walker@allgeo.com.au
430214402						Containers	Turnaround Time (TAT) Requirements portain will be 5 days if not sex
		OCP, F d pH	rms - th	per in	3 (s. 1) (d. 10) (s. 1)		Overnight (9am)*
15		B13 :	rkn, n	HOL		ass al	
	fivere imetals	Suite	tal N,			Plastic L Plastic L Plastic Imber Gl VOA via PFAS Bo	s or HD
	(Note: V	Suite	7 2		. 410 / . . 2004 . 2004 	250n 125n 200mL <i>i</i> 40mL	Jar (Gla
Client Sample ID Cdfmm/yy	Matrix (Solid (S) Water (W))		3333				Sample Comments / Dangerous Soods Hazard Warning
hh:mm)			Su		A 3000		Day of The Control of
TP06 0.0-0.2 22/10/21	<i>6</i> 6		X	Environme	Environmental Division		
	1		51V	Work Orde	r Reference		
	5			Π O O	ES2138446		
0.2							
DS01 22/10/21	6 0		X X X				
SW01 22/10/21							
	17.0						
TP13-0.0-0.2 22/10/21	S		124				
				felephone + 61-	+ 61-2-8784 8555		
-0.2	n (
BT6 22/10/21							Please send to ALS for analysis
		*					
Tota	Total Counts	*	16 15			4	
Courier (#	1		S	ature	A CONTRACTOR OF THE CONTRACTOR	Date 10/	10/8/2021 Time
i Courier (#	Hand Delivered	Postal Name	٤	Signature	Control of the Contro		

Quote ID No

rchase Order

ontact Name

Phone No

inission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request.

865. 80/1/10 Ha 22/1917 1/00-

Method of Shipment

													1	1				
Company	ALLIANCE GEOTECHNICAL	ECHNICAL	Project Ne				13546			Project Man	anager		Jaco	Jacob W	Sa	Sampler(s)		છ
Address	10 WELDER ROAD, SEVEN	AD, SEVEN	Project Name	· ·		Kemp	Kemps Creek	웃		EDD Format (ESdat, EQuIS, Custom)	is,				Hand	Handed over by		
	HILLS NSW	W	BUITE.				- 252.4	tal P	į				7		Emai	Email for Invoice	admi	admin@allgeo.com.au
Contact Name	Sam J		or "Filtered") Sing.	ls				NH3, Tot	erant						Email	Email for Results	samjor enviro	samjones@allgeo.com.au. enviro@aligeo.com.au. & lacob.walker@allgeo.com.au
Phone No	430214402	02		VH, Meta			ıite	2, NO3,	ermoto)				Containers	•	Turnatound Time (TAT) Requirements personnenses stays if not tieved
			used to aitr	XN. PA			vity Su	OX, NO	ms - th	5,000	(no c	197 × 1			****		es)	☐Overnight (9am)*
pecial Directions			ls are reques ade most be BTE)	H. BTE	B13 : (EC and	gressi	KN, NO	colifor	RH & E	VOC	BEST			* , ;	ass	ttle	1 Day* l2 Day*
Purchase Order			lhere ntetal co	7: TRI	<u> </u>	- 11 Jan 1	L2 Ag	al N, T	l total	Ţ		AS			lastic		s or HDF	3 Day*
Quote ID Nº		, s,	(Note: V	Suite E				D: Tot	oli and							125ml 00mL A	500mL P ar (Glas	□Other (
Ng	Client Sample ID	Sampled Date/Time Ma {dd/min/yy (\$) bh:mm}	Matrix (Solid (S) Water (W))					Suite BH1	E.		경기 (세기 도구 (제기						Other (A	Sample Comments / Dangerous Goods Hazard Warning
	817	22/10/21	S	927	×								*					Please send to ALS for analysis
	BD8	22/10/21	5	×												7 14		Please send to ALS for analysis
	BT8	22/10/21	5	×	+												ar a	I INCHES DATES AND THE STANDY
	BTG	12/10/27	ω		× >		3.8								San a			Please send to ALS for analysis
	BD10	22/10/21	. N	36 li														
2	BT10	22/10/21	s	×	3.										der.		z Č.	Please send to ALS for analysis
77	BD11	22/10/21	Ņ	135									3 (%)					Please send to ALS for analysis
	BT11	22/10/21	, v							100								
20 T 30	BULZ	22/10/21	s u								×							Please send to ALS for analysis
	DS13	22/10/21	S							100			140 A		3.0			
	DS14	\vdash	5	*														
	DS13-ASB	↓ ¯	FRAG									*						
30	TIP Spike and plank	22/20/22	, ,				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
4.0										19 1518.								
					-							+						
20													234 1 24 2 24 2 24 2					
							7.8											
		Total Counts	nts 1	.	3				<u> </u>		Ġ.)					noses Later	PAGE 3 OF 11
					! :					2				10 10 10 10 10 10 10 10 10 10 10 10 10 1		Date	10/8/2021	Time

1627

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2138446** Page : 1 of 5

Client : ALLIANCE GEOTECHNICAL Laboratory : Environmental Division Sydney

 Contact
 : SAM JONES
 Telephone
 : +61-2-8784 8555

 Project
 : 13546 - Kemps Creek
 Date Samples Received
 : 25-Oct-2021

 Site
 : --- Issue Date
 : 29-Oct-2021

Sampler : SJ No. of samples received : 7
Order number : --- No. of samples analysed : 5

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 5 Work Order : ES2138446

Client : ALLIANCE GEOTECHNICAL
Project : 13546 - Kemps Creek

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **SOIL**Evaluation: ★ = Holding time breach; ✓ = Within holding time.

Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)								
Soil Glass Jar - Unpreserved (EA055) BT6, BT10	вт8,	22-Oct-2021				26-Oct-2021	05-Nov-2021	✓
Soil Glass Jar - Unpreserved (EA055) BT7,	вт9	22-Oct-2021				28-Oct-2021	05-Nov-2021	✓
EG005(ED093)T: Total Metals by ICP-AES Soil Glass Jar - Unpreserved (EG005T) BT6, BT10	втв,	22-Oct-2021	26-Oct-2021	20-Apr-2022	✓	27-Oct-2021	20-Apr-2022	✓
EG035T: Total Recoverable Mercury by FIMS								
Soil Glass Jar - Unpreserved (EG035T) BT6, BT10	BT8,	22-Oct-2021	26-Oct-2021	19-Nov-2021	✓	27-Oct-2021	19-Nov-2021	✓
EP066: Polychlorinated Biphenyls (PCB)								
Soil Glass Jar - Unpreserved (EP066) BT7,	вт9	22-Oct-2021	26-Oct-2021	05-Nov-2021	✓	27-Oct-2021	05-Dec-2021	√
EP068A: Organochlorine Pesticides (OC)								
Soil Glass Jar - Unpreserved (EP068) BT7,	BT9	22-Oct-2021	26-Oct-2021	05-Nov-2021	1	27-Oct-2021	05-Dec-2021	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons								
Soil Glass Jar - Unpreserved (EP075(SIM)) BT6, BT10	BT8,	22-Oct-2021	26-Oct-2021	05-Nov-2021	✓	27-Oct-2021	05-Dec-2021	✓
EP080/071: Total Petroleum Hydrocarbons								
Soil Glass Jar - Unpreserved (EP080) BT6, BT10	BT8,	22-Oct-2021	26-Oct-2021	05-Nov-2021	✓	27-Oct-2021	05-Nov-2021	✓
EP080/071: Total Recoverable Hydrocarbons - NEPN	M 2013 Fractions							
Soil Glass Jar - Unpreserved (EP080) BT6, BT10	ВТ8,	22-Oct-2021	26-Oct-2021	05-Nov-2021	✓	27-Oct-2021	05-Nov-2021	✓

Page : 3 of 5
Work Order : ES2138446

Client : ALLIANCE GEOTECHNICAL

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP BT6,	P080) BT8,	22-Oct-2021	26-Oct-2021	05-Nov-2021	1	27-Oct-2021	05-Nov-2021	√
BT10								

Page : 4 of 5 Work Order : ES2138446

Pesticides by GCMS

Total Mercury by FIMS

TRH Volatiles/BTEX

Total Metals by ICP-AES

TRH - Semivolatile Fraction

Polychlorinated Biphenyls (PCB)

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

1

1

1

1

1

1

EP068

EP066

EG035T

EG005T

EP071

EP080

7

7

15

20

15

20

14.29

14.29

6.67

5.00

6.67

5.00

5.00

5.00

5.00

5.00

5.00

5.00

1

1

NEPM 2013 B3 & ALS QC Standard

Matrix: SOIL Evaluation: **x** = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification. Quality Control Sample Type Count Rate (%) **Quality Control Specification** Evaluation Method Analytical Methods QC Regular Actual Expected Laboratory Duplicates (DUP) Moisture Content 4 36 11.11 10.00 NEPM 2013 B3 & ALS QC Standard EA055 PAH/Phenols (SIM) 2 15 13.33 EP075(SIM) 10.00 1 NEPM 2013 B3 & ALS QC Standard Pesticides by GCMS 1 7 14.29 10.00 NEPM 2013 B3 & ALS QC Standard EP068 1 7 Polychlorinated Biphenyls (PCB) EP066 1 14.29 10.00 1 NEPM 2013 B3 & ALS QC Standard Total Mercury by FIMS EG035T 2 15 13.33 10.00 NEPM 2013 B3 & ALS QC Standard 1 2 20 Total Metals by ICP-AES EG005T 10.00 10.00 NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction 2 15 13.33 10.00 EP071 NEPM 2013 B3 & ALS QC Standard 2 TRH Volatiles/BTEX 20 10.00 NEPM 2013 B3 & ALS QC Standard EP080 10.00 1 _aboratory Control Samples (LCS) PAH/Phenols (SIM) EP075(SIM) 1 15 6.67 5.00 1 NEPM 2013 B3 & ALS QC Standard Pesticides by GCMS EP068 1 7 14.29 5.00 1 NEPM 2013 B3 & ALS QC Standard 7 Polychlorinated Biphenyls (PCB) EP066 1 14.29 5.00 1 NEPM 2013 B3 & ALS QC Standard Total Mercury by FIMS 1 15 6.67 NEPM 2013 B3 & ALS QC Standard EG035T 5.00 Total Metals by ICP-AES 1 20 5.00 NEPM 2013 B3 & ALS QC Standard EG005T 5.00 1 TRH - Semivolatile Fraction 1 15 6.67 5.00 NEPM 2013 B3 & ALS QC Standard EP071 1 TRH Volatiles/BTEX 1 20 NEPM 2013 B3 & ALS QC Standard EP080 5.00 5.00 Method Blanks (MB) PAH/Phenols (SIM) 15 EP075(SIM) 1 6.67 5.00 NEPM 2013 B3 & ALS QC Standard Pesticides by GCMS 1 7 14.29 5.00 1 NEPM 2013 B3 & ALS QC Standard EP068 1 7 14.29 Polychlorinated Biphenyls (PCB) 5.00 NEPM 2013 B3 & ALS QC Standard EP066 1 Total Mercury by FIMS 1 15 6.67 NEPM 2013 B3 & ALS QC Standard 5.00 EG035T 1 Total Metals by ICP-AES 1 20 5.00 NEPM 2013 B3 & ALS QC Standard EG005T 5.00 1 TRH - Semivolatile Fraction 1 15 6.67 5.00 NEPM 2013 B3 & ALS QC Standard EP071 TRH Volatiles/BTEX 1 20 NEPM 2013 B3 & ALS QC Standard EP080 5.00 5.00 1 Matrix Spikes (MS) PAH/Phenols (SIM) 15 NEPM 2013 B3 & ALS QC Standard 1 6.67 5.00 EP075(SIM) 1

Page : 5 of 5 Work Order : ES2138446

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3).
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

QUALITY CONTROL REPORT

Work Order : **ES2138446** Page : 1 of 9

Client : ALLIANCE GEOTECHNICAL Laboratory : Environmental Division Sydney

Contact : SAM JONES Contact : Customer Services ES

: 8/10 Welder Road, Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Accreditation No. 825

Accredited for compliance with

Seven Hills 2147

Telephone : +61-2-8784 8555

Project: 13546 - Kemps CreekDate Samples Received: 25-Oct-2021Order number: 26-Oct-2021

C-O-C number : ---- Issue Date : 29-Oct-2021 Sampler : SJ

Site ----

No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall

This Quality Control Report contains the following information:

: EN/222

: 7

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Quote number

No. of samples received

not be reproduced, except in full.

Address

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Franco Lentini	LCMS Coordinator	Sydney Inorganics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

Page : 2 of 9 Work Order : ES2138446

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)T: To	tal Metals by ICP-AES	G (QC Lot: 3978494)							
ES2138459-007	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	19	19	0.0	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	13	12	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	6	6	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	25	27	7.4	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	67	75	11.4	0% - 50%
		EG005T: Zinc	7440-66-6	5	mg/kg	155	145	6.2	0% - 20%
ES2138445-001	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	17	17	0.0	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	10	13	27.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	12	8	48.1	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	69	55	22.4	0% - 50%
		EG005T: Zinc	7440-66-6	5	mg/kg	427	442	3.5	0% - 20%
EA055: Moisture Co	ntent (Dried @ 105-1	10°C) (QC Lot: 3978496)							
ES2138446-001	BT6	EA055: Moisture Content		0.1	%	19.8	20.8	4.7	0% - 20%
ES2138459-011	Anonymous	EA055: Moisture Content		0.1	%	17.6	16.4	6.7	0% - 50%
EA055: Moisture Co	ontent (Dried @ 105-1	10°C) (QC Lot: 3981434)							
EP2112715-006	Anonymous	EA055: Moisture Content		0.1	%	1.1	0.7	47.0	0% - 50%
ES2138446-004	ВТ9	EA055: Moisture Content		0.1	%	22.8	22.0	3.6	0% - 20%
EG035T: Total Rec	overable Mercury by I	FIMS (QC Lot: 3978495)							
ES2138459-007	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
ES2138445-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.8	0.7	0.0	No Limit
EP066: Polychlorina	ated Biphenyls (PCB)	(QC Lot: 3976647)							

Page : 3 of 9
Work Order : ES2138446

Client : ALLIANCE GEOTECHNICAL

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP066: Polychlorina	ted Biphenyls (PCB	3) (QC Lot: 3976647) - continued							
ES2138459-001	Anonymous	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EP068A: Organochlo	orine Pesticides (OC	C) (QC Lot: 3976646)							
ES2138459-001	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hy	drocarbons (QC Lot: 3976644)							
ES2138459-010	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EDOZE(CIM), Dozena (I.) fluorenth and	205-82-3 207-08-9	0.5	ma/ka	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(k)fluoranthene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	53-70-3	0.5	mg/kg mg/kg	<0.5	<0.5 <0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	55-70-5	0.5	ilig/kg	~ 0.5	~0. 5	0.0	INO LIITIIL

Page : 4 of 9
Work Order : ES2138446

Client : ALLIANCE GEOTECHNICAL

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075(SIM)B: Polyr	uclear Aromatic Hydr	ocarbons (QC Lot: 3976644) - continued							
ES2138459-010	Anonymous	EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
ES2138459-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons		0.5	mallea	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	NO LIMIT
	troleum Hydrocarbon								
ES2138391-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES2138459-003	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbon	s (QC Lot: 3976645)							
ES2138459-010	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	180	160	11.1	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	210	180	18.3	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2138459-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	140	120	19.3	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 3976075)							
ES2138391-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
ES2138459-003	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Tota <u>l</u> Re	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 3976645)							
ES2138459-010	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	310	270	14.2	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	160	120	21.1	No Limit

Page : 5 of 9
Work Order : ES2138446

Client : ALLIANCE GEOTECHNICAL

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080/071: Total Re	ecoverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 3976645) - co	ntinued						
ES2138459-010	Anonymous	EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2138459-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	160	150	8.9	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	130	100	29.1	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080: BTEXN (QC	Lot: 3976075)								
ES2138391-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	.5 0.0 .5 0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		·	106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES2138459-003	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit

Page : 6 of 9 Work Order : ES2138446

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
G005(ED093)T: Total Metals by ICP-AES (QC	Lot: 3978494)							
G005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	98.0	88.0	113
G005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	104	70.0	130
G005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	110	68.0	132
G005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	105	89.0	111
G005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	102	82.0	119
G005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	98.1	80.0	120
G005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	88.6	66.0	133
G035T: Total Recoverable Mercury by FIMS	(QCLot: 3978495)							
G035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	111	70.0	125
P066: Polychlorinated Biphenyls (PCB) (QCL	ot: 3976647)							
P066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	101	62.0	126
P068A: Organochlorine Pesticides (OC) (QCI	ot: 3976646)							
P068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	85.6	69.0	113
P068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	86.6	65.0	117
P068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	88.7	67.0	119
P068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	86.6	68.0	116
P068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	88.1	65.0	117
P068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	86.1	67.0	115
P068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	87.6	69.0	115
P068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	87.4	62.0	118
P068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	88.6	63.0	117
P068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	89.2	66.0	116
P068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	88.0	64.0	116
:P068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	87.6	66.0	116
P068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	90.0	67.0	115
P068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	85.2	67.0	123
P068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	85.5	69.0	115
P068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	89.0	69.0	121
P068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	80.3	56.0	120
P068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	85.7	62.0	124
P068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	88.3	66.0	120
P068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	86.3	64.0	122
P068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	85.0	54.0	130

Page : 7 of 9
Work Order : ES2138446

Client : ALLIANCE GEOTECHNICAL

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	oratory Control Spike (LCS) Report	
				Report	Spike	Spike Recovery (%)	Acceptabl	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QC	CLot: 3976644) - co	ntinued						
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	106	77.0	125
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	113	72.0	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	101	73.0	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	112	72.0	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	107	75.0	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	106	77.0	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	116	73.0	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	112	74.0	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	108	69.0	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	105	75.0	127
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	6 mg/kg	109	68.0	116
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	105	74.0	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	116	70.0	126
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	114	61.0	121
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	109	62.0	118
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	114	63.0	121
EP080/071: Total Petroleum Hydrocarbons (QCLot: 397	(6075)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	106	68.4	128
EP080/071: Total Petroleum Hydrocarbons (QCLot: 397	76645)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	98.6	75.0	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	102	77.0	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	102	71.0	129
EP080/071: Total Recoverable Hydrocarbons - NEPM 20	013 Fractions (QCL	ot: 3976075)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	107	68.4	128
EP080/071: Total Recoverable Hydrocarbons - NEPM 20	013 Fractions (QCL	ot: 3976645)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	104	77.0	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	91.4	74.0	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	106	63.0	131
EP080: BTEXN (QCLot: 3976075)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	102	62.0	116
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	105	67.0	121
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	102	65.0	117
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	106	66.0	118
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	102	68.0	120
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	98.5	63.0	119

Page : 8 of 9
Work Order : ES2138446

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				M	Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)	
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EG005(ED093)T: To	otal Metals by ICP-AES (QCLot: 3978494)							
ES2138445-001	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	85.4	70.0	130	
		EG005T: Cadmium	7440-43-9	50 mg/kg	94.3	70.0	130	
		EG005T: Chromium	7440-47-3	50 mg/kg	96.0	68.0	132	
		EG005T: Copper	7440-50-8	250 mg/kg	93.9	70.0	130	
		EG005T: Lead	7439-92-1	250 mg/kg	130	70.0	130	
		EG005T: Nickel	7440-02-0	50 mg/kg	92.8	70.0	130	
		EG005T: Zinc	7440-66-6	250 mg/kg	85.5	66.0	133	
G035T: Total Red	coverable Mercury by FIMS (QCLot: 3978495)							
ES2138445-001	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	130	70.0	130	
P066: Polychlorin	nated Biphenyls (PCB) (QCLot: 3976647)							
ES2138459-001	Anonymous	EP066: Total Polychlorinated biphenyls		1 mg/kg	95.3	70.0	130	
P068A: Organoch	nlorine Pesticides (OC) (QCLot: 3976646)							
S2138459-001	Anonymous	EP068: gamma-BHC	58-89-9	0.5 mg/kg	81.8	70.0	130	
		EP068: Heptachlor	76-44-8	0.5 mg/kg	90.1	70.0	130	
		EP068: Aldrin	309-00-2	0.5 mg/kg	83.2	70.0	130	
		EP068: Dieldrin	60-57-1	0.5 mg/kg	84.6	70.0	130	
		EP068: Endrin	72-20-8	2 mg/kg	78.9	70.0	130	
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	83.5	70.0	130	
P075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 3976	6644)						
ES2138459-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	86.1	70.0	130	
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	105	70.0	130	
P080/071: Total P	etroleum Hydrocarbons (QCLot: 3976075)							
ES2138391-001	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	111	70.0	130	
P080/071: Total P	etroleum Hydrocarbons (QCLot: 3976645)							
S2138459-001	Anonymous	EP071: C10 - C14 Fraction		480 mg/kg	106	73.0	137	
		EP071: C15 - C28 Fraction		3100 mg/kg	105	53.0	131	
		EP071: C29 - C36 Fraction		2060 mg/kg	111	52.0	132	
P080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fraction	ons (QCLot: 3976075)						
ES2138391-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	110	70.0	130	
P080/071: To <u>tal</u> R	ecoverable Hydrocarbons - NEPM 2013 Fraction	ons (QCLot: 3976645)						
ES2138459-001	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	104	73.0	137	
	-	EP071: >C16 - C34 Fraction		4320 mg/kg	106	53.0	131	

Page : 9 of 9
Work Order : ES2138446

Client : ALLIANCE GEOTECHNICAL

Sub-Matrix: SOIL				Ma	trix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ot: 3976645) - continued					
ES2138459-001	Anonymous	EP071: >C34 - C40 Fraction		890 mg/kg	118	52.0	132
EP080: BTEXN (Q	CLot: 3976075)						
ES2138391-001	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	95.9	70.0	130
		EP080: Toluene	108-88-3	2.5 mg/kg	94.1	70.0	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	95.6	70.0	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	96.1	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	95.5	70.0	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	78.7	70.0	130

QUALITY CONTROL REPORT

Work Order : **ES2137883**

Client : ALLIANCE GEOTECHNICAL

Contact : Jacob Walker

Address : 8/10 Welder Road,

Seven Hills 2147

Telephone : ----

Project : 13546 - Kemps Creek

 Order number
 : ---

 C-O-C number
 : ---

 Sampler
 : SJ

 Site
 : ---

 Quote number
 : EN/222

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 11

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 20-Oct-2021

Date Analysis Commenced : 22-Oct-2021

Issue Date : 27-Oct-2021

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 11 Work Order : ES2137883

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Laboratorii Dunlinata (DUD) Donort

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EG005(ED093)T: To	tal Metals by ICP-AES	(QC Lot: 3971709)									
ES2137882-005	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit		
		EG005T: Chromium	7440-47-3	2	mg/kg	22	20	11.8	0% - 50%		
		EG005T: Nickel	7440-02-0	2	mg/kg	23	21	8.8	0% - 50%		
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit		
		EG005T: Copper	7440-50-8	5	mg/kg	27	25	6.4	No Limit		
		EG005T: Lead	7439-92-1	5	mg/kg	10	9	12.3	No Limit		
		EG005T: Zinc	7440-66-6	5	mg/kg	77	70	9.5	0% - 50%		
ES2137909-006	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit		
		EG005T: Chromium	7440-47-3	2	mg/kg	11	16	35.7	No Limit		
		EG005T: Nickel	7440-02-0	2	mg/kg	8	9	0.0	No Limit		
		EG005T: Arsenic	7440-38-2	5	mg/kg	17	17	0.0	No Limit		
		EG005T: Copper	7440-50-8	5	mg/kg	351	424	18.8	0% - 20%		
		EG005T: Lead	7439-92-1	5	mg/kg	178	187	5.1	0% - 20%		
		EG005T: Zinc	7440-66-6	5	mg/kg	259	297	13.5	0% - 20%		
EA055: Moisture Co	ntent (Dried @ 105-110	0°C) (QC Lot: 3971712)									
ES2137862-034	Anonymous	EA055: Moisture Content		0.1	%	15.6	15.8	1.2	0% - 50%		
ES2137884-003	Anonymous	EA055: Moisture Content		0.1	%	13.1	12.4	5.1	0% - 50%		
EA055: Moisture Co	ntent (Dried @ 105-110	0°C) (QC Lot: 3975176)									
EP2112539-016	Anonymous	EA055: Moisture Content		0.1	%	6.9	6.5	5.8	0% - 20%		
ES2138004-003	Anonymous	EA055: Moisture Content		0.1	%	24.8	22.9	7.7	0% - 20%		
EG035T: Total Rec	overable Mercury by Fl	MS (QC Lot: 3971710)									
ES2137882-005	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit		
ES2137909-006	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.1	0.2	0.0	No Limit		

Page : 3 of 11 Work Order : ES2137883

Client : ALLIANCE GEOTECHNICAL

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP066: Polychlorina	ated Biphenyls (PCB)	(QC Lot: 3970298)							
ES2137883-002	BT2	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EP068A: Organochl	orine Pesticides (OC)								
ES2137883-002	BT2	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hydi	rocarbons (QC Lot: 3970303)							
ES2138106-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit

Page : 4 of 11 Work Order : ES2137883

Client : ALLIANCE GEOTECHNICAL

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075(SIM)B: Polyn	nuclear Aromatic Hydro	ocarbons (QC Lot: 3970303) - continued							
ES2138106-001	Anonymous	EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
ES2137909-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	0.6	21.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	0.6	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	1.2	82.4	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hydro	ocarbons (QC Lot: 3971335)							
ES2137799-007	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
	-	EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
				0.5		<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No

Page : 5 of 11 Work Order : ES2137883

Client : ALLIANCE GEOTECHNICAL

ub-Matrix: SOIL				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%		
EP075(SIM)B: Polyn	nuclear Aromatic Hydro	ocarbons (QC Lot: 3971335) - continued									
ES2137799-007	Anonymous	EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		hydrocarbons									
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
P080/071: Total Pe	etroleum Hydrocarbons	s (QC Lot: 3970151)									
ES2137816-036	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit		
ES2137883-001	BT1	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit		
P080/071: Total Pe	etroleum Hydrocarbon										
ES2138106-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
	•	EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit		
ES2137909-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit		
EP080/071: Total Pe	etroleum Hydrocarbon	s (QC Lot: 3970923)									
ES2137799-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit		
ES2137799-007	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit		
P080/071: Total Pe	etroleum Hydrocarbons	s (QC Lot: 3971334)									
ES2137799-015	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	190	230	19.3	No Limit		
	7 110119111000	EP071: C29 - C36 Fraction		100	mg/kg	260	330	25.7	No Limit		
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit		
ES2137799-007	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
	,	EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit		
P080/071: Total Re	ecoverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 3970151)			3 3						
ES2137816-036	Anonymous	EP080: C6 - C10 Fraction	C6 C10	10	mg/kg	<10	<10	0.0	No Limit		
ES2137883-001	BT1	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit		
		ons - NEPM 2013 Fractions (QC Lot: 3970302)	00_010	10	1119/119	110	-10	0.0	TTO EITHE		
ES2138106-001	Anonymous			100	malka	<100	<100	0.0	No Limit		
=52130100-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071: >C34 - C40 Fraction		50	mg/kg mg/kg	<50	<50	0.0	No Limit		
ES2137909-001	Anonymous	EP071: >C10 - C16 Fraction		100		<100	<100	0.0	No Limit		
E32137909-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071: >C34 - C40 Fraction		50	mg/kg mg/kg	<50	<50	0.0	No Limit		
-D000/074 - T-1-1-		EP071: >C10 - C16 Fraction		50	mg/kg	\50	\ 30	0.0	INO LIIIIIL		
		ons - NEPM 2013 Fractions (QC Lot: 3970923)	00.010	40		.40	-40	0.0	NI - 1 224		
ES2137799-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit		
ES2137799-007	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit		

Page : 6 of 11 Work Order : ES2137883

Client : ALLIANCE GEOTECHNICAL

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report	:	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080/071: Total Re	coverable Hydrocarb	oons - NEPM 2013 Fractions (QC Lot: 3971334) - c	ontinued						
ES2137799-015	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	370	470	24.7	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	170	180	7.8	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2137799-007	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080: BTEXN (QC	Lot: 3970151)								
ES2137816-036	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES2137883-001	BT1	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
EP080: BTEXN (QC	Lot: 3970923)								
ES2137799-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES2137799-007	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3	0.5		40 F	40 F	0.0	No. 1 insid
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit

Page : 7 of 11 Work Order : ES2137883

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

b-Matrix: SOIL			Method Blank (MB)		Laboratory Control Spike (LC	S) Report		
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)T: Total Metals by ICP-AES (QCLo	ot: 3971709)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	109	88.0	113
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	100	70.0	130
EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	118	68.0	132
EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	106	89.0	111
EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	103	82.0	119
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	104	80.0	120
EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	92.6	66.0	133
EG035T: Total Recoverable Mercury by FIMS(Q	CLot: 3971710)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	89.2	70.0	125
EP066: Polychlorinated Biphenyls (PCB) (QCLot	: 3970298)					<u> </u>		
EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	100	62.0	126
EP068A: Organochlorine Pesticides (OC) (QCLo	t· 2070207)		3 3					
P068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	88.8	69.0	113
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	88.7	65.0	117
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	93.0	67.0	119
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	91.4	68.0	116
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	86.6	65.0	117
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	88.6	67.0	115
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	90.1	69.0	115
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	92.8	62.0	118
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	91.9	63.0	117
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	91.7	66.0	116
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	90.9	64.0	116
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	99.2	66.0	116
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	90.0	67.0	115
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	89.9	67.0	123
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	95.3	69.0	115
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	94.6	69.0	121
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	90.2	56.0	120
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	92.0	62.0	124
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	88.1	66.0	120
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	92.0	64.0	122
	22.2	0.2	mg/kg	<0.2	0.5 mg/kg	84.6	54.0	130

Page : 8 of 11 Work Order : ES2137883

Client : ALLIANCE GEOTECHNICAL

b-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCL	ot: 3970303) - co	ntinued							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	105	77.0	125	
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	112	72.0	124	
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	97.4	73.0	127	
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	109	72.0	126	
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	104	75.0	127	
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	105	77.0	127	
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	115	73.0	127	
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	111	74.0	128	
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	108	69.0	123	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	105	75.0	127	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	6 mg/kg	107	68.0	116	
	205-82-3								
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	108	74.0	126	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	106	70.0	126	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	103	61.0	121	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	97.3	62.0	118	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	104	63.0	121	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCL	ot: 3971335)								
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	108	77.0	125	
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	103	72.0	124	
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	99.3	73.0	127	
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	105	72.0	126	
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	93.2	75.0	127	
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	91.8	77.0	127	
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	93.1	73.0	127	
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	92.0	74.0	128	
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	97.9	69.0	123	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	102	75.0	127	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	6 mg/kg	97.7	68.0	116	
	205-82-3								
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	102	74.0	126	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	101	70.0	126	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	98.6	61.0	121	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	97.9	62.0	118	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	95.1	63.0	121	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3970	151)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	93.7	68.4	128	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3970)	202)								

Page : 9 of 11 Work Order : ES2137883

Client : ALLIANCE GEOTECHNICAL

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3970302)	- continued							
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	99.7	75.0	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	99.1	77.0	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	92.8	71.0	129
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3970923)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	91.2	68.4	128
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3971334)								
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	94.8	75.0	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	95.9	77.0	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	94.0	71.0	129
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fra	ctions (QC	Lot: 3970151)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	96.2	68.4	128
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fra	ctions (OC)	Lat: 3970302)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	102	77.0	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	95.0	74.0	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	90.8	63.0	131
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fra	otione (OCI		99					121
EP080: C6 - C10 Fraction	C6 C10	10	mg/kg	<10	31 mg/kg	91.4	68.4	128
	_		mg/kg	110	o i nig/kg	01.4	00.4	120
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fra		Lot: 3971334) 50	ma/ka	<50	275 ma/ka	98.7	77.0	125
EP071 : >C10 - C16 Fraction		100	mg/kg	<100	375 mg/kg 525 mg/kg	93.4	74.0	138
EP071: >C16 - C34 Fraction		100	mg/kg mg/kg	<100	225 mg/kg	92.8	63.0	131
EP071: >C34 - C40 Fraction		100	ilig/kg	<100	225 Hig/kg	92.0	03.0	131
EP080: BTEXN (QCLot: 3970151)	74.40.0				4 "	100	00.0	110
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	100	62.0	116
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	99.4	67.0	121
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	97.9	65.0	117
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	98.6	66.0	118
ED000, adha Vilara	106-42-3 95-47-6	0.5	mg/kg	<0.5	1 mg/kg	96.3	68.0	120
EP080: ortho-Xylene	91-20-3	1	mg/kg	<1	1 mg/kg	88.8	63.0	119
EP080: Naphthalene	31-20-3		mg/kg		i ilig/kg	00.0	03.0	119
EP080: BTEXN (QCLot: 3970923)	71-43-2	0.2		40.0	4	400	60.0	110
EP080: Benzene	108-88-3	0.2	mg/kg	<0.2 <0.5	1 mg/kg	100 98.0	62.0 67.0	116 121
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5 <0.5	1 mg/kg	98.0	65.0	121
EP080: Ethylbenzene		0.5	mg/kg	<0.5	1 mg/kg	97.7	66.0	117
EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	0.0	2 mg/kg	91.2	00.0	110
ED080: ortho Vylono	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	98.3	68.0	120
EP080: ortho-Xylene EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	92.2	63.0	119
LF 000. Нарнинанене	01 20-0	<u>'</u>	iiig/ng	*1	i ilig/ng	UZ.Z	00.0	113

Page : 10 of 11 Work Order : ES2137883

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL				Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G005(ED093)T: T	otal Metals by ICP-AES (QCLot: 3971709)						
ES2137882-005	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	93.5	70.0	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	91.6	70.0	130
		EG005T: Chromium	7440-47-3	50 mg/kg	92.3	68.0	132
		EG005T: Copper	7440-50-8	250 mg/kg	89.4	70.0	130
		EG005T: Lead	7439-92-1	250 mg/kg	91.5	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg	91.9	70.0	130
		EG005T: Zinc	7440-66-6	250 mg/kg	84.4	66.0	133
G035T: Total Re	coverable Mercury by FIMS (QCLot: 3971710)						
ES2137882-005	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	114	70.0	130
P066: Polychlorii	nated Biphenyls (PCB) (QCLot: 3970298)						
ES2137883-002	BT2	EP066: Total Polychlorinated biphenyls		1 mg/kg	101	70.0	130
P068A: Organoci	nlorine Pesticides (OC) (QCLot: 3970297)						
S2137883-002 BT2	BT2	EP068: gamma-BHC	58-89-9	0.5 mg/kg	107	70.0	130
2137003-002	EP068: Heptachlor	76-44-8	0.5 mg/kg	96.2	70.0	130	
		EP068: Aldrin	309-00-2	0.5 mg/kg	104	70.0	130
		EP068: Dieldrin	60-57-1	0.5 mg/kg	106	70.0	130
		EP068: Endrin	72-20-8	2 mg/kg	106	70.0	130
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	86.9	70.0	130
P075(SIM)B: Poly	vnuclear Aromatic Hydrocarbons (QCLot: 3970303)						
ES2138106-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	90.3	70.0	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	114	70.0	130
P075(SIM)B: Poly	vnuclear Aromatic Hydrocarbons (QCLot: 3971335)						
S2137799-007	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	89.4	70.0	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	102	70.0	130
P080/071: Total F	Petroleum Hydrocarbons (QCLot: 3970151)						
ES2137816-036	Anonymous	EP080; C6 - C9 Fraction		32.5 mg/kg	103	70.0	130
P080/071: Total F	Petroleum Hydrocarbons (QCLot: 3970302)						
ES2138106-001	Anonymous	EP071: C10 - C14 Fraction		480 mg/kg	112	73.0	137
		EP071: C15 - C28 Fraction		3100 mg/kg	117	53.0	131
		EP071: C29 - C36 Fraction		2060 mg/kg	119	52.0	132
P080/071: Total F	Petroleum Hydrocarbons (QCLot: 3970923)						
S2137799-001	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	80.4	70.0	130

Page : 11 of 11 Work Order : ES2137883

Client : ALLIANCE GEOTECHNICAL

Sub-Matrix: SOIL				Matrix Spike (MS) Report			
				Spike SpikeRecovery(%)		Acceptable	Limits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P080/071: Total P	etroleum Hydrocarbons (QCLot: 3971334)						
ES2137799-007	Anonymous	EP071: C10 - C14 Fraction		480 mg/kg	119	73.0	137
		EP071: C15 - C28 Fraction		3100 mg/kg	116	53.0	131
		EP071: C29 - C36 Fraction		2060 mg/kg	110	52.0	132
P080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions	(QCLot: 3970151)					
ES2137816-036	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	106	70.0	130
P080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions	(QCLot: 3970302)					
ES2138106-001	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	118	73.0	137
		EP071: >C16 - C34 Fraction		4320 mg/kg	120	53.0	131
		EP071: >C34 - C40 Fraction		890 mg/kg	97.5	52.0	132
P080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions	(QCLot: 3970923)					
S2137799-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	75.3	70.0	130
P080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions	(QCLot: 3971334)					
ES2137799-007	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	104	73.0	137
		EP071: >C16 - C34 Fraction		4320 mg/kg	114	53.0	131
		EP071: >C34 - C40 Fraction		890 mg/kg	111	52.0	132
P080: BTEXN (Q	CLot: 3970151)						
ES2137816-036	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	97.1	70.0	130
		EP080: Toluene	108-88-3	2.5 mg/kg	92.0	70.0	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	90.3	70.0	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	90.7	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	87.1	70.0	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	78.4	70.0	130
P080: BTEXN (Q	CLot: 3970923)						
ES2137799-001	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	70.5	70.0	130
		EP080: Toluene	108-88-3	2.5 mg/kg	73.7	70.0	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	76.9	70.0	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	78.3	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	79.2	70.0	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	80.5	70.0	130

CERTIFICATE OF ANALYSIS

Work Order : ES2137883

Client : ALLIANCE GEOTECHNICAL

Contact : Jacob Walker

Address : 8/10 Welder Road.

Seven Hills 2147

Telephone

Project : 13546 - Kemps Creek

Order number

C-O-C number Sampler : SJ Site

: EN/222 Quote number

No. of samples received : 3 : 3 No. of samples analysed

Page : 1 of 7

Date Samples Received

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

: 20-Oct-2021 16:30

Telephone : +61-2-8784 8555

Date Analysis Commenced : 22-Oct-2021

Issue Date : 27-Oct-2021 17:26

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW Page : 2 of 7

Work Order : ES2137883

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported. Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.

Page : 3 of 7
Work Order : ES2137883

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Analytical Results

Sub-Matrix: SOIL Matrix: SOIL)			Sample ID	BT1	BT2	ВТ3	
		Samplii	ng date / time	07-Oct-2021 00:00	07-Oct-2021 00:00	07-Oct-2021 00:00	
Compound	CAS Number	LOR	Unit	ES2137883-001	ES2137883-002	ES2137883-003	
, ,				Result	Result	Result	
EA055: Moisture Content (Dried @	0 105-110°C)						
Moisture Content		1.0	%	13.3	21.4	<1.0	
EG005(ED093)T: Total Metals by I	CP-AFS						
Arsenic	7440-38-2	5	mg/kg	10		<5	
Cadmium	7440-43-9	1	mg/kg	<1		<1	
Chromium	7440-47-3	2	mg/kg	21		4	
Copper	7440-50-8	5	mg/kg	22		<5	
Lead	7439-92-1	5	mg/kg	36		<5	
Nickel	7440-02-0	2	mg/kg	19		<2	
Zinc	7440-66-6	5	mg/kg	51		11	
EG035T: Total Recoverable Merci							
Mercury	7439-97-6	0.1	mg/kg	<0.1		<0.1	
EP066: Polychlorinated Biphenyls			0 0				
Total Polychlorinated biphenyls		0.1	mg/kg		<0.1	<0.1	
		U	gg		U	v	
EP068A: Organochlorine Pesticide alpha-BHC	319-84-6	0.05	mg/kg		<0.05	<0.05	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg		<0.05	<0.05	
beta-BHC	319-85-7	0.05	mg/kg		<0.05	<0.05	
gamma-BHC	58-89-9	0.05	mg/kg		<0.05	<0.05	
delta-BHC	319-86-8	0.05	mg/kg		<0.05	<0.05	
Heptachlor	76-44-8	0.05	mg/kg		<0.05	<0.05	
Aldrin	309-00-2	0.05	mg/kg		<0.05	<0.05	
Heptachlor epoxide	1024-57-3	0.05	mg/kg		<0.05	<0.05	
Total Chlordane (sum)	1024-57-3	0.05	mg/kg		<0.05	<0.05	
trans-Chlordane	5103-74-2	0.05	mg/kg		<0.05	<0.05	
alpha-Endosulfan	959-98-8	0.05	mg/kg		<0.05	<0.05	
cis-Chlordane	5103-71-9	0.05	mg/kg		<0.05	<0.05	
Dieldrin	60-57-1	0.05	mg/kg		<0.05	<0.05	
4.4`-DDE	72-55-9	0.05	mg/kg		<0.05	<0.05	
Endrin	72-55-9	0.05	mg/kg		<0.05	<0.05	
beta-Endosulfan	33213-65-9	0.05	mg/kg		<0.05	<0.05	
`Endosulfan (sum)	115-29-7	0.05	mg/kg		<0.05	<0.05	
4.4`-DDD	72-54-8	0.05	mg/kg		<0.05	<0.05	
Endrin aldehyde	7421-93-4	0.05	mg/kg		<0.05	<0.05	
Endosulfan sulfate	1031-07-8	0.05	mg/kg		<0.05	<0.05	

Page : 4 of 7
Work Order : ES2137883

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Analytical Results

Page : 5 of 7 Work Order ES2137883

Client : ALLIANCE GEOTECHNICAL

· 13546 - Kemps Creek **Project**

Analytical Results

Page : 6 of 7
Work Order : ES2137883

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Analytical Results

Page : 7 of 7
Work Order : ES2137883

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	39	149
EP068S: Organochlorine Pesticide Surro	gate		
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide S	urrogate		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Surro	gates		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

ALLIANCE GEOTECHNICAL Project Name 10 WEI DER ROAD SEVEN Project Name 10 WEI DER ROAD SEVEN Project Name Pro	ame eller	13546 Kemps Cr		Project Manager		Jacob W	Sampler(s)	S
	Vame	Kampe C	:	EDD Format				
		vembs creek	T C C X	(ESdat, EQuIS, Custom)			Handed over by	
SUTE			ital P				Email for Invoice	admin@allgeo.com.au
tal 'ku "Filterod" vising.	als						Email for Results	samjones@allgeo.com.au, & enviro@allgeo.com.au, &
S ES e Stronity To kack SUITE ;			2, NO3	1.4			Containers	Turnaround Time (TAT) Requirements (pelaukwalas s daya tina
Analys are toquested pieces be must be used to all		C and pH	(N, NOX, NO	H & BTEX	HOLD			ndebnes)
ମିଧାନୀନ ଅକ୍ଟୋଗ ସେ	****	E	el N, Ti	Ţ			Plastic Plastic per Glass DA vial	DE HOPE B4 WAG □3 Day
): Tol				250mL (125mL) INL Amt OML VO	(Glass o
	S		- 5		4		1 200i 4	Jar (
			Suite E					Sample Comments / Cangel
	×	×	;					X
					×			*
	××							× ×
) -	ř	× 3
						Environmental Div	ISION	X
+						Sydney Work Order Referer	}	×
					×	1001079	Š Š	×××
					×	LOV 1010	Č	×
	5 5 2 7				×			X
+					×			××
	×							* >
					×			*
+	+				*			* *
31	×							χ,
					×	elephone : + 61-2-8784 6555		×
			-					X
	-		+					*
Total Counts			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		B			3 *
	_		11.				1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Hand Delivered	□Postal	Name		· ·	Signature		Date 8/10	8/10/2021 Time
			Algorith.			等 一次	W Table	New States
	Hand Delivered Analyses [Styles (When there make are non-trained peaks starting Totals or Titleron') SUITE course must be used to all and SUITE product.	Hand Delivered. Analyses (Note: Note: Analyses (Note: Note: Analyses) (Note:	Hand Delivered Analyses Anal	Analyses Analyses Analyses (Note: Vibrary regrots are received an places sturity Total or Talence') SUITE CODE must be used to place SUITE priory. Suite B7: TRH, BTEXN, PAH, Metals XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Hand Delivered Analyses Compared to the following of the content of poster strain of the collision of th	Analyses Name Common Co	Analyses Postal	Analyses Pier Annu Pierse Pier Annu Pier

Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt son of samples to the laboratory will be dearned as acceptance of Eurofins | mgl Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgl Standard Terms and Conditions is available on request

Method of Shipment Purchase Ordei Quote ID No Contact Name Address Courier (# TP21 1.0-1.2 TP21 1.5-1.5 TP23 1.5-1.7 TP23 0.0-0.1 TP22 1.8-2.0 Client Sample ID TP23 1.0-1.2 TP22 1.0-1.2 TP21 0.0-0.2 TP20 0.0-0.1 TP19 0.0-0.1 TP18 0.5-0.7 TP22 0.0-0.1 TP18 0.0-0.2 TP17 0.3-0.5 TP17 0.0-0.2 TP16 0.4-0.6 TP16 0.0-0.2 TP15 0.4-0.4 ALLIANCE GEOTECHNICAL 10 WELDER ROAD, SEVEN **HILLS NSW** 430214402 Sam J 6/10/21 7/10/21 6/10/21 6/10/21 6/10/21 7/10/21 7/10/21 7/10/21 6/10/21 6/10/21 6/10/21 6/10/21 6/10/21 6/10/21 Total Counts Hand Delivered (S) Water (W) Matrix (Solid Analyses Project Name dal" or "Filtered") Statte Project Ne × × × Suite B7: TRH, BTEXN, PAH, Metals × × × Suite B13: OCP, PCB Kemps Creek EC and pH Name 13546 L2 Aggressivity Suite ×× × Suite BH19D: Total N, TKN, NOX, NO2, NO3, NH3, Total P ☐ Brisbane Laboratory
Unit 1, 21 Smallwood Pl., Muraine, QLD 4172
07 3902 4600 EnviroSempleQLD@eurofins.com ××× E.Coli and total coliforms - thermotolerant છ EDD Format (ESdat, EQuis, TRH & BTEX roject Manage VOC ⇉ × × ×× × × × × × HOLD Jacob W A Perth Laboratory Unit 2, 91 Leach Highway, Kewdale WA 6105 08 9251 9600 EnviroSampleWA@eurofins.com Email for Result mail for Invoic Par 200mL Plastic Sampler(s) 125mL Plastic 200mL Amber Glass 40mL VOA vial 8/10/2021 500mL PFAS Bottle ĸ enviro@allgeo.com.au, & acob.walker@allgeo.com.au Jar (Glass or HDPE) samjones@allgeo.com.au. admin@allgeo.com.au Other (☐1 Day* Sample Comments / Dangerous Goods Hazard Warning ☐Overnight (9am)* Requirements to a fault wall be 5 days That, telepoli Time **PAGE 1 OF 11** Turnaround Time (TAT) ည □2 Day*

Russoff Zolloni 1630

1260

2 Kingston Town Close, Oakleigh, VIC 3166 03 8564 5000 EnvirdSampleVro@eurofins.com

CHAIN OF CUSTODY RECORD

E Course on	Shipment																							io	Quote ID No	urchase Order		ecial Directions	Phone No	Contact Name		Address	Company	
200 T	Courier (#		DR07 0.3-0.5	DR07 0.0-0.1	DR06 0.3-0.5	DR06 0.0-0.1	DR05-0.3-0.4	DROS O O.O 1	DR04 0.0-0.1	DR03 1.5-1.7	DR03 0.6-0.8	DR03 0.3-0.5	DR03 0.0-0.2	DR02 0.5-0.7	DR02 0.2-0.4	DR02 0.0-0.2	DR01 0.7-0 9	DROI O'SO'S	DR010002	T026 1 9-2 0	TP26 1 0.1 2	TD 26.0.0.1	TP25 0.5-0.6	Client Sample (D				5	430214402	Sam J		10 WELDER ROAD, HILLS NSW	ALLIANCE GEOTECHNICAL	CHAIN OF CUSTODY RECORD
) Hand Delivered	Total Counts	7/10/21 S			1	7/10/21	ŀ	-	6/10/21 5			1	1	1	6/10/21	+	+	+	+	+	-	-	Sampled Date/Time Matri (dd/mm/yy (S) Wa hh:mm)					02			AD, SEVEN	ECHNICAL	RECORD
Alta Care	elivered										,					S	n	n	, ,	1	1			Matrix (Solid (S) Water (WI)	(N:10	. White d	etals are ri cade mu	guested, p	alyses abase spacify to altract SUIT.	Total" or "Filte 2 pricing.	rec") SUITE	Project Name	Project No	Unit F3 Bid.F. 02 9900 8400
	☐Postal	6		×		×	>	t	×				×)	*		*	•		*	\$			Suite		<u> </u>	**	PAH, M	etals				Fydney Laboratory Unit F3 BILE: 16 Mars Rd, Lane Cove West, NSW 2066 02 9900 8400 EnviroSampleNSW@eurofins.com
	Name				W.																				† .	L2 A	***	nd pH sivity			-	Kemps Creek	13546	ove West, NSW 2066 M@eurofins.com
Spirelish.	,																							Suite BH19 E.C	<u>:</u>	<u> </u>			NO2, NO		Total P	ek-		☐ Brisba Unit †, 07 390
	S)													1										e e				BTE)	K			EDD Format (ESdat. EQuIS, Custom)	Project Manager	☐ Brisbane Laboratory Unit 1, 21 Smallwood Pl., Murame, QLD 4172 07 3902 4500 EnviroSampleQLD@eurofins.com
	Signature	ř.	×		×	>		×		×	×	×	>	(>	<	×	×		×	×		*	2				нс	LD				s,	ger	rrie, QLD 4172 QLD@eurofins.com
																										- 54							Jacob W	Perth Laboratory Unit 2. 91 Leach Hig 08 9251 9800 Envi
	• \																								-							-		Perth Laboratory Unit 2, 91 Leach Highway, Kewdale WA 6105 08 9251 9600 EnviroSampleWA@eurofins.com
	Date																							201	250mL	Plastic . Plastic . Plastic nber Gi			Con	Email for Results	Email for Invoice	Handed over by	Sampler(s)	ale WA 6105 A@eurofins.com
	8/10/2021	В	×	×	× >	< ×	×	×	×	×;	× >	₹ >	< ×	× ×	×	×	×	×	×	×	×	×	100	50	40mL \ 0mL Fl (Glass	/OA vie FAS Bo s or HD	el vicie PE)	(P4)	Containers			<u> </u>		☐Melbor 2 Kings 03 8564
* Lag Carefolis	Time	PAGE 3 OF 11	N. M. C. W. W. C.																						□Other (□3 Day*	□1 bay	Overnight (9am)*	Turnarou Requirements	enviro@allgeo.com.au, & acob.walker@allgeo.com.au	admin@allgeo.com.au		ઈ	Melbourne Laboratory 2 Kingston Town Close, Oakleigh, VIC 3166 03 8564 5000 EnviroSempleVic@eurofins.com
		OF 11																						Sample Comments / Dangerous Goods Hazard Warning	,		□2 Day*	lam)*	Turnaround Time (TAT) Requirements (retails will be 5 days if rot ficked)	m.au, & o.com.au	om.au			h, VIC 3166 "c@eurolins.com

Rec. 20/10/11/630

Submission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request.

Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt

As the No. of the second of the second

Si ili bala.

| Method of
Shipment | | 22 | 21

 | 20
 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 3 2 | 10 | 9 | 8 | . 7 | 6 | 5 | 4 . | బ | 2 | -1 | ₹. | Quote ID No | Purchase Order |
 | Special Direction | Phone No | | Contact Name
 | | Address | Company | |
|-----------------------|---|--
--
--
--|--|--|---
--|-----------------------|--------------------|---------------------|--------------------|----------------------|------------------------|-----------------------|--|---------|---|---------|---|--|--------------------|--|---|---|--
--	--	--	--
--			
Courier (#		EOMS	SW02

 | SWOI
 | DW08 | DW07 | DW06 | DW05 | DW04 | DW03 | DWOZ | Divid | DS05 | D504 | DS03 | DS02 | DSØI | SP1-3 | SP1-2 | SP1-1 | DR08 0.1-0.2 | DR08 0.0-0.1 | Client Sample ID | | |
 | | 430214 | | Sam
 | | 10 WELDER RO | ALLIANCE GEO | CHAIN OF CUSTODY RECORD |
|) 🔲 Handi | Total Coun | 7/10/21 | 7/10/21

 | 7/10/21
 | | | - | 1 | - | | 7/10/21 | 12/01/1 | 7/10/21 | 7/10/21 | 7/10/21 | 7/10/21 | 7/10/21 | 7/10/21 | 7/10/21 | 7/10/21 | 7/10/21 | 7/10/21 | Sampled Date/Time Mate (dd/mm/yy (S) W th:mm) | | |
 | | 402 | | _
 | |)AD, SEVEN
ISW | TECHNICAL | Y RECORD |
| Delivered | ts | W | W

 |
 | S | S | S | 5 | S | 5 | n 4 | | S | S | S | S | S | S | S | S | S | S | rix (Solid
rater (W)) | rNole : | Aftere met | als are req.
code musil i
 | rested, ord | ase specify | "Total"
FE prick | or "Filtorec
 | a") suite | Project Name | Project Ne | المراج لع
المائة 13 Bid.
02 9900 840 |
| □Postal | <u></u> る | |

 |
 | | | | | | | 1 | * | × | × | - | - | | + | | + | 3 | × | | - | · · · · · · |
 | | | etai | ş
 | | <u>~</u> | | Sydney Laboratory Unit F3 BId.F. 16 Mars Rd. Lane Cove West, NSW 2066 02 8900 8400 EnviroSampleNSW@eurofins.com |
| Name | | |

 |
 | | | | | | | | | | | | | | e l | | | | 14 | | | |
 | | Suite | | · · · · · · · · · · · · · · · · · · ·
 | | emps Creel | 13546 | West, NSW 2066
Beurofins.com |
| હ | - 1- | |

 | -
 | | | | - | | | | | | | | | | | | | | | | | - 121 |
 | | | | · · · · ·
 | otal P | | | Onit 1, 21 Sm
07 3902 4800 |
| | | |

 |
 | | | | | | | | | | | | | | | | | | | ~ . | | T |
 | | | | <u> </u>
 | | EDD Format
(ESdat, EQuIS,
Custom) | Project Manager | ☐ Brisbane Laboratory Unit 1, 21 Smallwood Pl., Murarie, QLD 4172 07 3902 4600 EnviroSampleQLD@eurofins.com |
| Signature | • | 3 |

 |
 | × | × | × | (3 | K 3 | <> | (> | | | | | | | | | 3 | • | | | | | HOL
 | ±D | | | |
 | | | | LD 4172
peurofins.com |
| | | |

 | 22
 | | | | | | | | | | | | | | | | | | | | | |
 | | | |
 | | | Jacob W | ☐ Perth Laboratory Unil 2, 91 Leach Highway, Kewdale WA 6105 08 9251 9600 EnviroSampleVA@eurofins.com |
| Date | ω
ω | × | ×

 | ×
 | | | | | | | | | | | | | | | | | | | 200 | 250mL
125mL
DinL Arr | Plastic
Plastic
iber Gla | iss
 | | Contain | | Email for Results
 | Email for Invoice | Handed over by | Sampler(s) | Kewdale WA 6105
pkeWA@eurofins.com |
| <u>8/10/2021</u> Time | 19 PAGE 4 OF 11 | |

 |
 | * | X | × | Y | × > | 4 X | × | × | X | × | * | × | X | × | X | * 3 | | . . . | 50i
Jan
Other (Asbe | 0mL PF
(Glass | AS Bot
or HDP | E)
 | Overnight (| | jacob.walker@allgeo.com.au | <u>samiones@allgeo.com.au,</u>
<u>enviro@allgeo.com.au, &</u>
 | admin@ailgeo.com.au | | S | ☐Melbourne Laboratory 2 Kingston Town Close, Oakleigh, VIC 3156 03 8564 5000 ErwinoSampleVic@eurofins.com |
| | ☐ Counter (#) ☐ Hand Delivered ☐ Postal Name SJ Signature ☐ Date 8/10/2021 | Total Counts 13 8 8 8 9 3 3 3 19 ☑ Counter (#) ☐ Hand Delivered ☐ Postal Name SJ Signature Date 9/10/2021 T | SW03 7/10/21 W X <th< td=""><td> Sw02 7/10/21 W X X X X X X X X X</td><td> Swo1 7/10/21 W X X X X X X X X X</td><td> Driving 7/10/21 S X X X X X X X X X</td><td>DW07 7/10/21 S X</td><td> Driving 7/10/21 S </td><td> DW05 7/10/21 5</td><td> DW094 7/10/21 S </td><td> DW03 7/10/21 S</td><td> Divide 1/30/21 S</td><td> District 1/12/12 S</td><td> Dispose 7/10/21 S</td><td> DS04 7/10/21 S X Name Nam</td><td> DS03</td><td> DS022 7/10/21 S X X X X X X X X X</td><td> Design</td><td> SP1-3 7/10/21 S X X X X X X X X X</td><td> SHITCH SHOPE Sho</td><td> SP1-1 710/21 S</td><td> DRANG 1.1-0.27 7/10/21 S X X X X X X X X X</td><td> Control 7/19/21 S X X X X X X X X X</td><td> Client Sample D. Client</td><td> Client Sample Client Sampl</td><td> Charles Sample Char</td><td> Control () No. Cont</td><td> Control Cont</td><td> County C</td><td> Part /td><td> Samual S</td><td> Part /td><td> The control of the</td><td>ALLIANCE GEOTECHNICAL Present P</td></th<> | Sw02 7/10/21 W X X X X X X X X X | Swo1 7/10/21 W X X X X X X X X X | Driving 7/10/21 S X X X X X X X X X | DW07 7/10/21 S X | Driving 7/10/21 S | DW05 7/10/21 5 | DW094 7/10/21 S | DW03 7/10/21 S | Divide 1/30/21 S | District 1/12/12 S | Dispose 7/10/21 S | DS04 7/10/21 S X Name Nam | DS03 | DS022 7/10/21 S X X X X X X X X X | Design | SP1-3 7/10/21 S X X X X X X X X X | SHITCH SHOPE Sho | SP1-1 710/21 S | DRANG 1.1-0.27 7/10/21 S X X X X X X X X X | Control 7/19/21 S X X X X X X X X X | Client Sample D. Client | Client Sample Client Sampl | Charles Sample Char | Control () No. Cont | Control Cont | County C | Part Part | Samual S | Part Part | The control of the | ALLIANCE GEOTECHNICAL Present P |

Reci, 70/10/2, 1630

1260

Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt Submission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request

Care Right State of the Control of t		•			V.	September 1			ii.						
Time	8/10/2021	Date		Signature		હ		Name	Postal	' 	livered	☐ Hand Delivered	rier(#) 🔲	od of	Method of Shipment
PAGE 5 OF 11	#	3 3			6	1 2	-1		<u></u>	<u></u>	5	Total Counts			
	×				×							S	12/10/21	PP6 1.0-1.1	22
	×				×							s		PP6 0.5-0.6	24
	×										×	S	-	PP6 0.0-0.1	20
	×			.33.							×			PP5 0.0-0.1	19
	×				×									PP4 2.0-2.1	18
	×				×									PP4 1.5-1.6	17
	×				×							S	-	PP4 1.0-1.1	16
	×				×							_		PP4 0.5-0.6	15
	×					17	2				Y	S		P\$4 0.0-0.1	14
	×							-			×			PP3 0.0-0.1	i
	×										<u>.</u>			PP2 0.0-0.1	3
PLEASE FORWARD TO ALS	×	135 135							×					618	11
	×									×			-	BD3	10
	×	Sys.				×								Trip spike x 5	6
	×										+	+		Trip spike x S	œ.
PLEASE FORWARD TO ALS	×					72.0	+	_	×	;				BT2	7
PLEASE FORWARD TO ALS	×					1	+		2	×	1			RT1	s> c
	×				-				×	 	+	+		802	311
	×									×	+	S		801	4
	×	×			_ [×	×	-	+		90ANS	ယ
	×	×							×	×				50/WS	
	×	XX				×	×		×	×		€		SW/04	•
Sample Comments / Dangerous Goods Hazard Warning	50 Ja	20				E.Cc	Suite BH19			S	(Solid r (W))	Matrix (Solid (S) Water (W))	Sampled Date/Time mple ID (dd/mm/yy hh:nnn)	Client Sample ID	Z
□Other (i0mL i r (Gla	250m 125m OmL A	41			oli an	D: To			7				in M	Quote ID No
□3 Day* □	. VOA via PFAS Bo ss or HD. S4964, W	Plastic nl. Plastic nl. Plastic Amber Gl	Olactic			d total			Suite	V				se Order	Purchase Order
LiOvernight (9em)* □1 Day* □2 Day*	ttle	ass		HOLD	VOC	coliforms -	gressivity KN, NOX, I	EC and pH	B13 : OCP	H, BTEXN,	is are requested, propies and second consistency of the constant of the consta	Ana)irections	Special Directions
Requirerité (bésel) (bekel)	1000	Come				- therr		-	, PCB		icasa spet Io altract S	lyses	430214402	Te No	Fnone No
Turnaround Time (TAT)		Containers				noto			}				10001 1100		
samjones@allgeo.com.au, enviro@allgeo.com.au, & jacob.walker@allgeo.com.au	<u>samjc</u> <u>envir</u> jacob.v	Email for Results	rq			plerant	, NH3, To	: .					Sam J	et Name	Contact Name
admin@allgeo.com.au	adn	Email for Invoice					ital P				SUITE				
		Handed over by	-		EDD Format (ESdat, EQuIS, Custom)	- î	reek	Kemps Creek	-	ъ 	Project Name		10 WELDER ROAD, SEVEN		Address
က		Sampler(s)	Jacob W		Project Manager	Pro	o	13546			Project Nº	CAL	ALLIANCE GEOTECHNICAL	1	Company

CHAIN OF CUSTODY RECORD

☐ Brishane Laboratory
Unit 1, 21 Smallwood PL. Murarrie, QLD 4172
07 3902 4600 EnviroSampleQLD@eurofins.com

Perth Laboratory
Unit 2. 91 Leach Highway, Kowdale WA 6105
08 9251 9800 EnviroSampleWA@ourofins.com

☐Melbourne Laboratory
2 Kingston Town Close, Oakleigh, VIC 3166
03 8564 5000 EnviroSampleVic@eurofins.com

Rec - segl - 20/10/21

Submission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request.

Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt

ABN 50 005 085 521		02 9900 8400 EnviroSampleNSW@eurofins.com	COUNTY OF	CLASSIC CONTRACTOR OF THE PROPERTY OF THE PROP	THOUSE HINDER		21 000	COLLABORA EINGLOS	ample CLUIC	EnviroSampleQLD@eurofins.com		08 9251 9	08-9251-9600 EnviroSampleWA@eurofins.com	mula@aWahn	ine ram		W2 V325 LV	07 8564 5/00 Environmental/inflammation
ALLIANCE GEOTECHNICAL	TECHNICAL	Project №			13546	6		Project Manager	lanager		Jac	Jacob W		(Sampler(s)			SJ
10 WELDER ROAD,	DAD, SEVEN	Project Name		K e	Kemps Creek	reek		EDD Format (ESdat, EQuIS, Custom)	ormat EQuIS, om)					Ha	Handed over by	у		
		}suite			-	tal P								Em.	Email for Invoice	iii	admii	admin@allgeo.com.au
ontact Name Sam J	_		als			NH3, To				·				Ema	Email for Results		samion enviro	samiones@allgeo.com.au, enviro@allgeo.com.au, &
Phone Nº 430214402	402	ses w sneedy "Tob litric! Sull'Epi Copper	AH, Met	СВ			ermoto			<u>.</u>					Cor	Containers	acob. wa	Turnaround Time (TAT) Requirements Conductival to 5 cays (find)
bial Directions		r ce uses to n	TEXN, P	OCP, F		sivity So		BTEX)C	LD				_			es)	Overnight (9am)*
		tode west	₹H, BT		EC an	. 1 1 2 1	a 5	TRH &	VO	HOL	* :			-	:58			□1 Day* □2 Day*
chase Order			B7: TF	Suite	124		<u>. 1221</u>	1						lastic	. Plastic . Plastic nber Gla	/OA vial FAS Bot		□3 Day*
tuote iD Ne			Suite		4	D: To	نعدلة		 						125ml	40mL \	stos AS	Dother (
Client Sample ID	Date/Time Matr (dd/mm/yy (S) W hh:mm)	Matrix (Solid (S) Water (W))		. , .=		uite BH1				<u></u>	 .				2		Other (As	Sample Comments / Dangerous Goods Hazard Warning
PP6 1.5-1.6		S		-	_					×			-			() ()	Y	
PP6 2.0-7.1	.97	S								×				1			× >	-
PP6 Z.4-Z.5	12/10/21	A (A	1	-			+			×			+				×	
PP7 0.4-0.5	+	S	_							×			-	+			< ×	
PP8 0.0-0.1		×	-							3			1	_			* >	
TP41 0.0-0.1	12/10/21	× 0		-	-					(×							×	
TP41 0.9-1.0	+	S		-	1		-			×>							« ×	
TP42 0.0-0.1		S					- A			×							* >	
TP42 1.0-1.1										×							×	
TP43 0.0-0.1	12/10/21	s v		+						CX							* *	
TP43 1.0-1.1	-	5	+	1	-	_	+			× ?				-			× ×	***************************************
TP43 1.2-1.3		S								×			-	-			× >	
TP44 0.0-0.1		S								×							×	
1944 0.4-0.5	+	S			-					*							×	
TP44 1.0-1.1	+			-	ŀ					×							×	
TP44 2.0-2.1	12/10/21 S		\downarrow	+	+	+				×							×	
TP44 2.4-2.5	+												-				< ×	
re45 0.0-0.1										**************************************					33 (× >	
	Total Counts	2	3 -						20							N)	N3	PAGE 6 OF 11
ethod of) 🔲 Hand D	Hand Delivered	□Postal	- [Name	-	ا "	§ -	_				-	+		8/10/2021	3	
									_	animingic								

Recrisión aprilata 1630

Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt mission of samples to the laboratory will be deemed as acceptance of Eurotins I and Standard Terms and Conditions unless agreed otherwise. A copy of Eurotins I and Standard Terms and Conditions is available on request.

Method of Shipment Special Direction Purchase Order Quote ID Ne Phone No Company **CHAIN OF CUSTODY RECORD** Courier (# DR140.1-0.2 DR13 0.0-0.1 DR12 0.1-0.2 DR12 0.0-0.1 DR11 0.1-0.2 DR11 0.0-0.1 Client Sample ID TP49 0.1-0.2 TP49 0.0-0,1 TP48 0.0-0.1 TP48 0.2-0.3 TP47 0.2-0.3 TP47 0.0-0.1 TP46 0.3-0.4 TP46 0.0-0.1 ALLIANCE GEOTECHNICAL DS08 D\$07 10 WELDER ROAD, SEVEN **HILLS NSW** 430214402 Sam J 13/10/21 13/10/21 12/10/21 13/10/21 13/10/21 12/10/21 12/10/21 13/10/21 12/10/21 12/10/21 12/10/21 Sampled Date/Time (dd/mm/yy hh:mm) 12/10/21 12/10/21 12/10/21 Total Counts Hand Delivered (S) Water (W) Matrix (Soli Analyses Project Name Project No Typydney Laboratory
Unit F3 Bld.F. 16 Mars Rd. Lane Cove West, NSW 2066
02 9900 8400 EnviroSampleNSW@euroins.com 接上議 温 Posta 00 XXXX × × × Suite B7: TRH, BTEXN, PAH, Metals XXXX Suite B13: OCP, PCB Kemps Creek EC and pH Name L2 Aggressivity Suite Suite BH19D: Total N, TKN, NOX, NO2, NO3, NH3, Total P Brisbane Laboratory Unit 1, 21 Smalfwood Pl., Murarrie, QLD 4172 07 3902 4600 EnviroSampleQLD@eurofins.com E.Coli and total coliforms - thermotolerant õ EDD Format (ESdat, EQuIS TRH & BTEX >roject Manageı VOC 7 × HOLD Jacob W A Perth Laboratory
Unit 2, 91 Leach Highway, Kewdate WA 6105
08 9251 9600 EnviroSampleWA@eurofins.com Email for Invoice mail for Result Handed over by Date 250ml, Plastic Sampler(s) 125mL Plastic Containers 200mL Amber Glass 40mL VOA vial 8/10/2021 500mL PFAS Bottle 13 ××× ××××× Melbourne Laboratory × Jar (Glass or HDPE) enviro@allgeo.com.au, & acob.walker@allgeo.com.au samjones@allgeo.com.au. 03 8564 5000 EnviroSampleVic@eurofins.com 2 Kingston Town Close, Oakleigh. VIC 3166 admin@aligeo.com.au □1 Day* Sample Comments / Dangerous Goods Hazard Warning Requirements (Detail will be 5 days if not ficked) □Overnight (9am)* ane ane **PAGE 7 OF 11** Turnaround Time (TAT) ည Cb Day⁺

Rec: 40/1-20/1017/ 1636

10 WELDER ROAD, SEVEN Feathborn Feat	CHAI CHAI	CHAIN OF CUSTODY RECORD ANN SHORT SERVICAL AN LIANCE GEOTECHNICAL	D ₁	Up yoney Laboratory Unit 73 Bid.F. 16 Mars Rd, Lane Cove West, NSW 2066 02 9900 8400 EnviroSampleNSW@eurofins.com	N@eurofins.com	Unit 1, 21 S 07 3902 450	Dristone Laboratory Unit 1, 21 Smallwood Pt. Murarie, QLD 4172 07 3902 4500 Enviro SampleQLD@eurofins.com	LD 4172 leurofins.com	☐ Perth Laboratory Unit 2, 91 Leach Highway, Kewdala WA 6105 08 9251 9500 EnviroSampleWA@eurofins.com	ale WA 6105 A@eurofins.com	☐Melibourne Laboratory 2 Kingston Town Close, Oakleign, V/C 3156 03 8564 5000 EnviroSampleVic@eurofins.com
Page		10 WELDER ROAD, SE	-		(emps Cree	*	EDD Format (ESdat, EQuIS, Custom)			Handed over by	
Sam) SUITE			tal P				Email for Invoice	admin@allgeo.con
Add Contact Name	Sam J	or "Fillered" : G	3			-			Email for Results	samjones@allgeo.com.	
A00214402 A002			Tetal" o E pricing	etals			:				jacob.walker@allgeo.
Control Cont	Phone Ng	430214402	ase specify "T		uite	·				Containe	
Control Cont	ecial Directions		quested, siea			<u> </u>	7/12 11	LD			
Client Sample Clie			tals åre re- code musj					НО		59	E) Gudalire
Collect Strappid	irchase Order		Vinere met		· · · ·	114	T		- 22 x 1	Plastic Plastic per Gla	AS Bott or HDPI 64 WA
Clern Sample ID Clern Samp	Quote ID No		(Note, V			<u> </u>				250mL F 125mL F mL Amt	lmL PF# (Glass c tos AS49
Columnity Colu						- : -				200	50t Jar er (Asoe)
DWX19				-		Suite		<u>. </u>			
DWY12								×			×.
DW121			ŀ					×			×
SWR07 13/10/21 W X <t< td=""><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td>K ></td><td></td><td></td><td>« ×</td></t<>			+					K >			« ×
SW08 13/10/21 W X <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td></td><td>×</td><td>></td></th<>								3		×	>
P129-04-042 8/10/21 S			-			$\left \cdot \right $	34			×	
TP27-0.0-0.2 8/10/21 S	TP)			×		+		•			×
TP22-1.0-1.2 S/10/21 S	TP.		-	×				>			* >
TP28-0.0-0.1	772							×			×
TP39-0.00.2	10.1		+-	×							×
TP29-03-0.5 8/10/21 S	TP1		-			+					* *
Pad-0.0-0.2	TP2							×			×
TP31-0.0.02 8/10/21 S X X X X X X X X TP31-1.0-1.2 8/10/21 S X X X X TP31-2.0-2.2 8/10/21 S X X X TP32-0.0-2 8/10/21 S X X TP32-1.0-1.2 8/10/21 S X X X TP32-1.5-1.7 8/10/21 S X X X X X X X X X	TPS		-			+					X
TP31-1.0-1.2	TP3		s,	+		+		*			* ×
TP31-2-0-2.2	TP3			\dashv		+		X			X
TP32-1.0-0.2	TP3							×			×
Total Countrie	TPS		S	×							×
Total Counts 9 5 4 4 4 13	TP3		8					××			x x
Courier (#) Hand Delivered Postal Name CI Company		-1	otal Counts	7.1.				<u>د</u> در		<u>.</u>	ă.
	<u>.</u>										

CHAIN OF CUSTODY RECORD

☐ Pydney Laboratory
Unit F3 Bid.F. 16 Mers Rd, Lane Cove West, NSW 2066
02 9900 8400 EnviroSampleNSW@eurorins.com

Rec - Sept 20/10/21 16306

Submission of samples to the laboratory will be deemed as acceptance of Eurofins I mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request.

Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt

Allocation of the state of the	Shipment Courier (#		185,02,03				TP55-0.3-0.5			TP39-0.1-0.3				7937.0 1.0-0.1	TP36-0.1-0.3	TP36-0.0-0.1	TP35-0.6-0.8	TP35-0,0-0,2	TP34-0.6-0.8	TP34-0.0-0.2	TP33-0.1-0.3	TP33.0.0.1	No Client S	Quote ID Nº	Purchase Order	shedial discharge		Phone No	O CALLEY CALLED THE	Contact Name		Address 10	Gompany AL	
	# (#									1-0.3	0-0.1	4-0.6	00.2	1.0-0.1	1-0.3	0-0.1	.6-0.8	.0-0.2	6-0.8	0-0.2	1.0.3	TP33.0.0.01						430214402	Jam J	2	MSN STITH	10 WELDER ROAD, SEVEN	ALLIANCE GEOTECHNICAL	ABN 50 005 085 527
) Hand Delivered	Total Counts	8/10/21 S	8/10/21 S	-	+	8/10/21 S	-			+	+	8/10/21 5		8/10/21 S	8/10/21 S	$\frac{1}{1}$	+		8/10/21	1	(S) W	Sampled Date/Time Matrix								W	\D, SEVEN	ECHNICAL	
		8							×		×	3	£.	×		×		×	3	-	>				-	â's are reciei rode musi be	used to at	e specify "J track SUITE	pricing.	lered*) SI	ита	Project Name	Project Ne	Onit F3 Bld.F. 16 02 9900 8400
ALCO AND	□Postal Na	ω							×						Н	×					>		+		Suite	H, BTE: B13 : C EC and	CP, P		tals			Kem		Unit F3 Bld.F. 16 Mars Rd, Lane Cove West, NSW 2066 02 9900 8400 EnviroSampleNSW@eurofins.com
Special	Name		8.5						÷.													Suite E	H190	5 5, 7	L2 Ag	gressiv KN, NO	rity Su		, NH3,	Tota	I P	Kemps Creek	13546	t, NSW 2066 fins.com
	ડ્ડ																	-					E.Coi	li and		coliform		ermoto	lerant	<u>.</u> ! 		ED (ESd	Proje	Unit 1, 21 Smaltwood Pt. 07 3902 4600 EnviroS
	Signature	*	×	×>	¢*	*	×	×	3	*	×		×		×	>	8	*		×						VOC					Custom)	EDD Format (ESdat, EQuIS,	Project Manager	Unit 1, 21 Smallwood Pt, Murarrie, QLD 4172 97 3902 4600 EnviroSampleQLD@eurofins.com
The Control of the Co																																	Jacob W	Unit 2. 91 Leach Highway, Kewdale WA 6105 08 9251 9500 EnviroSampleVA@eurolins.com
\$ 100 mg	Date								3. 1. (1. (1. (1. (1. (1. (1. (1. (1. (1.								31 - 32 - 32 - 32 - 32 - 32 - 32 - 32 -						25 12 200m	1L Plas 50mL Pl !SmL Pl iL Ambe	astic astic er Glass			Containers	Email for Results	Email for Invoice		Handed over by	Sampler(s)	, Kewdale WA 6105 mpleWA@eurofins.com
Table Applied	8/10/2021 Time	## PAGE 9 OF 11	X	××	x	×	×	× ×	< ×	×	×	×	×	×	× ×	*	×	X	X	×	X	Sample Comments / Dangerous Goods Hazard Warning	500m Jar (C Ascestos	mL VOAL PFAS Blass or S AS4967	S Bottle FIDPE, I WA G	,		Jacob, wa	enviro@aligeo.com.au, &	admin@allgeo.com.au			rs S	intellocurrie Laboratory 2 Kingston Town Close, Oskleigh, VIC 3166 03 8564 5000 EnviroSampleVis@eurofins.com

Rec. Soft - 20/10121 1630

Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt nission of samples to the laboratory will be deemed as acceptance of Eurofins | mgl Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request.

Alexander Jav

No Method of Shipment Purchase Orde pecial Direction Quote ID No Contact Name Phone No Сотралу Address **CHAIN OF CUSTODY RECORD** S TP58-0.0-0.1 TP58-0.1-0.3 TP59-0.0-0.2 SAL02-0.5 SAL02-1.0 SAL02-1.5 SAL02-2.0 SAL01-0.5 SAL01-1.0 SAL01-1.5 TP60-0.5-0.7 SAL03-1.5 SAL03-1,0 TP60-0.0-0.2 TP59-0,7-0.9 ALLIANCE GEOTECHNICAL SAL03-0.5 SAL01-2.0 Courier (# 10 WELDER ROAD, SEVEN **HILLS NSW** 430214402 Sam J 8/10/21 8/10/21 8/10/21 8/10/21 8/10/21 8/10/21 8/10/21 8/10/21 8/10/21 8/10/21 8/10/21 8/10/21 Sampled
Date/Time
(dd/mm/yy
hh:mm) 8/10/21 8/10/21 8/10/21 **Total Counts** Hand Delivered (S) Water (W) Matrix (Solic Analyses Sted. dease specify "Total" or "Effected" y SULLS Project Name Project No [☐ Bydney Laboratory
Unit F3 Bld.F. 16 Mars Rd, Lane Cove West, NSW 2066 02 9900 8400 EnviroSampleNSW@eurofins.com Suite B7: TRH, BTEXN, PAH, Metals Suite B13: OCP, PCB Kemps Creek 6 EC and pH Name 13546 × L2 Aggressivity Suite & B20 Ion Exchange Suite Suite BH19D: Total N, TKN, NOX, NO2, NO3, NH3, Total P ☐ Brisbane Laboratory
Unit 1. 21 Smallwood PL. Murarrie, QLD 4172
07 3902 4600 EnviroSampleQLD@eurofins.com E.Coli and total coliforms - thermotolerant હ EDD Format (ESdat, EQuIS, Custom) **TRH & BTEX** roject Manager VQC Ġ, ××××× HOLD Jacob W ☐ Perth Laboratory
Unit 2, 91 Leach Highway, Kewdale WA 6105
08 9251 9600 EnviroSampleWA@aurofins.com mail for Result imail for Invoice Date 250mL Plastic Sampler(s) 125ml, Plastic 200mL Amber Glass 40mL VQA vial 8/10/2021 500mL PFAS Bottle # Meibourne Laboratory enviro@aligeo.com.au, & acob.walker@aligeo.com.au Jar (Glass or HDPE) samjones@allgeo.com.au, ² Kingston Town Close, Oakleigh, VIC 3166 03 8564 5000 EnviroSampleVic@eurofins.com admin@allgeo.com.au Ascestos AS4964, WA Guidelines) Dother (□3 Day* Sample Comments / Dangerous Goods Hazard Warning □1 Day Covernight (9am)* Requirements to shult will be 5 days if not toked) Time PAGE 10 OF 11 Turnaround Time (TAT) D Day

Recusoff - 20 11014

(630 C

Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt mission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request. Purchase Order pecial Direction Contact Name Quote ID No Company Phone No Address **CHAIN OF CUSTODY RECORD** Courier (# Client Sample ID ALLIANCE GEOTECHNICAL SAL05-0.5 SAL05-1.0 SAL05-1.5 SAL05-2.0 SAL04-2.0 10 WELDER ROAD, SEVEN A TOTAL OF **HILLS NSW** 430214402 Sam J 8/10/21 8/10/21 8/10/21 8/10/21 Sampled Date/Time (dd/mm/yy hh:mm) ☐ Hand Delivered Total Counts Matrix (Solid (S) Water (W)) Analyses Project Name Project No ☐ Bydney Laboratory
Unit F3 Bld.F. 16 Mars Rd. Lane Cove West. NSW 2066 All Achie 02 9900 8400 EnviroSampleNSW@eurofins.com ☐Postal Suite B7: TRH, BTEXN, PAH, Metals Suite B13: OCP, PCB Kemps Creek EC and pH Name 13546 L2 Aggressivity Suite & B20 Ion Exchange Suite Suite BH19D: Total N, TKN, NOX, NO2, NO3, NH3, Total P ☐Brisbane Laboratory
Unit 1, 21 Smallwood PL. Murarrie, QLD 4172 07 3902 4600 EnviroSampleQLD@eurofins.com E.Coli and total coliforms - thermotolerant છ EDD Format (ESdat, EQuIS, Custom) Project Manager TRH & BTEX VOC HOLD Jacob W A ☐ Perth Laboratory
Unit 2, 91 Leach Highway, Kewdale WA 6105
08 9251 9600 EnviroSampleWA@eurofins.com IL Plastic Email for Invoice mail for Result Handed over by Date 250mL Plastic Sampler(s) 125mL Plastic Containers 200mL Amber Glass 40mL VOA vial 8/10/2021 500mL PFAS Bottle Cn Melbourne Laboratory
2 Kingston Town Close, Oakleigh, VIC 3166
03 8564 5008 EnviroSampleVio@eurofins.com ×× jacob.walker@allgeo.com.au ×× Jar (Glass or HDPE) samiones@allgeo.com.au, enviro@allgeo.com.au, & admin@allgeo.com.au Other (Aspestos AS4964, WA Queter □3 Day* □1 Day* Sample Comments / Dangerous Covernight (9am)* Turnaround Time (TAT)
Requirements (palauli will be 5 days if not taked) me PAGE 11 OF 11 Coods Hazard Warning Š

D₂ Day•

Rec - Soy Ha 20/10/21 1630

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2137883** Page : 1 of 6

Client : ALLIANCE GEOTECHNICAL Laboratory : Environmental Division Sydney

 Contact
 : Jacob Walker
 Telephone
 : +61-2-8784 8555

 Project
 : 13546 - Kemps Creek
 Date Samples Received
 : 20-Oct-2021

 Site
 : --- Issue Date
 : 27-Oct-2021

Sampler : SJ No. of samples received : 3
Order number : ---- No. of samples analysed : 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 6
Work Order : ES2137883

Client : ALLIANCE GEOTECHNICAL
Project : 13546 - Kemps Creek

Outliers : Analysis Holding Time Compliance

Matrix: SOIL

Matrix: SOIL						
Method	E.	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days overdue	Date analysed	Due for analysis	Days overdue
EA055: Moisture Content (Dried @ 105-110°C)						
Soil Glass Jar - Unpreserved						
BT1, BT3				22-Oct-2021	21-Oct-2021	1
Soil Glass Jar - Unpreserved						
BT2				25-Oct-2021	21-Oct-2021	4
EP066: Polychlorinated Biphenyls (PCB)						
Soil Glass Jar - Unpreserved						
BT2, BT3	22-Oct-2021	21-Oct-2021	1			
EP068A: Organochlorine Pesticides (OC)						
Soil Glass Jar - Unpreserved						
BT2, BT3	22-Oct-2021	21-Oct-2021	1			
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons						
Soil Glass Jar - Unpreserved						
BT1	22-Oct-2021	21-Oct-2021	1			
Soil Glass Jar - Unpreserved						
BT3	25-Oct-2021	21-Oct-2021	4			
EP080/071: Total Petroleum Hydrocarbons						
Soil Glass Jar - Unpreserved						
BT1	22-Oct-2021	21-Oct-2021	1	22-Oct-2021	21-Oct-2021	1
Soil Glass Jar - Unpreserved	00.0-1.0004	04 0 4 0004		05.0-1.0004	04 0 -1 0004	
BT3	22-Oct-2021	21-Oct-2021	1	25-Oct-2021	21-Oct-2021	4
Soil Glass Jar - Unpreserved BT3	25-Oct-2021	21-Oct-2021	4			
	25-001-2021	21-001-2021	4			
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions Soil Glass Jar - Unpreserved				I		
BT1	22-Oct-2021	21-Oct-2021	1	22-Oct-2021	21-Oct-2021	1
Soil Glass Jar - Unpreserved	22 001 2021	21 000 2021		22 000 2021	21 001 2021	•
BT3	22-Oct-2021	21-Oct-2021	1	25-Oct-2021	21-Oct-2021	4
Soil Glass Jar - Unpreserved			•			<u> </u>
BT3	25-Oct-2021	21-Oct-2021	4			
EP080: BTEXN					1	
Soil Glass Jar - Unpreserved						
BT1	22-Oct-2021	21-Oct-2021	1	22-Oct-2021	21-Oct-2021	1
Soil Glass Jar - Unpreserved						
BT3	22-Oct-2021	21-Oct-2021	1	25-Oct-2021	21-Oct-2021	4

Page : 3 of 6 Work Order : ES2137883

Soil Glass Jar - Unpreserved (EP071)

BT3

Client : ALLIANCE GEOTECHNICAL
Project : 13546 - Kemps Creek

04-Dec-2021

25-Oct-2021

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: **x** = Holding time breach; ✓ = Within holding time. Matrix: SOIL Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation EA055: Moisture Content (Dried @ 105-110°C) Soil Glass Jar - Unpreserved (EA055) 07-Oct-2021 22-Oct-2021 21-Oct-2021 BT3 BT1, ----Soil Glass Jar - Unpreserved (EA055) BT2 07-Oct-2021 25-Oct-2021 21-Oct-2021 EG005(ED093)T: Total Metals by ICP-AES Soil Glass Jar - Unpreserved (EG005T) 07-Oct-2021 22-Oct-2021 05-Apr-2022 25-Oct-2021 05-Apr-2022 BT1. BT3 EG035T: Total Recoverable Mercury by FIMS Soil Glass Jar - Unpreserved (EG035T) 07-Oct-2021 22-Oct-2021 04-Nov-2021 25-Oct-2021 04-Nov-2021 BT1, BT3 EP066: Polychlorinated Biphenyls (PCB) Soil Glass Jar - Unpreserved (EP066) 07-Oct-2021 22-Oct-2021 21-Oct-2021 22-Oct-2021 01-Dec-2021 BT3 BT2, EP068A: Organochlorine Pesticides (OC) Soil Glass Jar - Unpreserved (EP068) BT3 07-Oct-2021 22-Oct-2021 21-Oct-2021 22-Oct-2021 01-Dec-2021 BT2. EP075(SIM)B: Polynuclear Aromatic Hydrocarbons Soil Glass Jar - Unpreserved (EP075(SIM)) 07-Oct-2021 22-Oct-2021 21-Oct-2021 22-Oct-2021 01-Dec-2021 BT1 Soil Glass Jar - Unpreserved (EP075(SIM)) BT3 07-Oct-2021 25-Oct-2021 21-Oct-2021 26-Oct-2021 04-Dec-2021 EP080/071: Total Petroleum Hydrocarbons Soil Glass Jar - Unpreserved (EP071) 07-Oct-2021 21-Oct-2021 22-Oct-2021 01-Dec-2021 22-Oct-2021 BT1 Soil Glass Jar - Unpreserved (EP080) 21-Oct-2021 21-Oct-2021 BT1 07-Oct-2021 22-Oct-2021 22-Oct-2021 Soil Glass Jar - Unpreserved (EP080) BT3 07-Oct-2021 22-Oct-2021 21-Oct-2021 25-Oct-2021 21-Oct-2021

07-Oct-2021

25-Oct-2021

21-Oct-2021

Page : 4 of 6
Work Order : ES2137883

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Matrix: SOIL				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP071) BT1	07-Oct-2021	22-Oct-2021	21-Oct-2021	<u>se</u>	22-Oct-2021	01-Dec-2021	✓
Soil Glass Jar - Unpreserved (EP080) BT1	07-Oct-2021	22-Oct-2021	21-Oct-2021	<u>se</u>	22-Oct-2021	21-Oct-2021	Je.
Soil Glass Jar - Unpreserved (EP080) BT3	07-Oct-2021	22-Oct-2021	21-Oct-2021	<u>اد</u>	25-Oct-2021	21-Oct-2021	×
Soil Glass Jar - Unpreserved (EP071) BT3	07-Oct-2021	25-Oct-2021	21-Oct-2021	<u>se</u>	25-Oct-2021	04-Dec-2021	✓
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080) BT1	07-Oct-2021	22-Oct-2021	21-Oct-2021	Je	22-Oct-2021	21-Oct-2021	*
Soil Glass Jar - Unpreserved (EP080) BT3	07-Oct-2021	22-Oct-2021	21-Oct-2021	Je	25-Oct-2021	21-Oct-2021	*

Page : 5 of 6 Work Order : ES2137883

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: **SOIL**Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	4	38	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	3	18	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	2	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	4	29	13.79	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	4	39	10.26	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	2	18	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	29	6.90	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	39	5.13	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	2	18	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	2	50.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	29	6.90	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	39	5.13	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	2	18	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	29	6.90	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	39	5.13	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 6 of 6 Work Order : ES2137883

Client : ALLIANCE GEOTECHNICAL

Project : 13546 - Kemps Creek

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3).
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

AUSTRALIAN SAFER ENVIRONMENT & TECHNOLOGY PTY LTD

ABN 36 088 095 112

Our ref: ASET96801 / 99981 / 1 - 5 Your ref: 13546 – Kemps Creek NATA Accreditation No: 14484

20 October 2021

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

Attn: Mr Sam Jones

Accredited for compliance with ISO/IEC 17025 - Testing.

Dear Sam

Asbestos Identification

This report presents the results of five samples, forwarded by Alliance Geotechnical on 14 October 2021, for analysis for asbestos.

1.Introduction: Five samples forwarded were examined and analysed for the presence of asbestos on 19 October 2021.

2. Methods: The samples were examined under a Stereo Microscope and selected fibres were analysed by Polarized Light Microscopy in conjunction with Dispersion Staining method (Australian Standard AS 4964 - 2004 and Safer Environment Method 1 as the supplementary work instruction) (Qualitative Analysis only).

The report also provides approximate weights and percentages, categories of asbestos forms appearing in the sample, such as **AF**(Asbestos Fines), **FA**(Friable Asbestos) and **ACM** (Asbestos Containing Material), also satisfying the requirements of the WA/ NEPM Guidelines).

3. Results: Sample No. 1. ASET96801 / 99981 / 1. 13546 - DR11 0.0-0.1.

Approximate total dry weight of soil = 733.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement and plant matter.

No asbestos detected.

Sample No. 2. ASET96801 / 99981 / 2. 13546 - DR12 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 7.4 cm

Approximate total dry weight of soil = 736.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of brick, cement, wood chips and plant matter.

No asbestos detected.

Sample No. 3. ASET96801 / 99981 / 3. 13546 - DR13 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 7.0 cm

Approximate total dry weight of soil = 703.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of brick, cement, wood chips and plant matter.

No asbestos detected.

SUITE 710 / 90 GEORGE STREET, HORNSBY NSW 2077 – P.O. BOX 1644 HORNSBY WESTFIELD NSW 1635 PHONE: (02) 99872183 FAX: (02)99872151 EMAIL: info@ausset.com.au WEBSITE: www.Ausset.com.au

Sample No. 4. ASET96801 / 99981 / 4. 13546 - DR14 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.6 cm

Approximate total dry weight of soil = 662.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of brick, cement and plant matter.

No asbestos detected.

λ Sample No. 5. ASET96801 / 99981 / 5. 13546 - TP43 0.0-0.1 ASB.

Approx dimensions 9.0 cm x 5.0 cm x 0.2 cm

The sample consisted of a hard fibrous material containing synthetic mineral fibres.

No asbestos detected.

Reported by,

Mahar Da Silva RSa M

Mahen De Silva. BSc, MSc, Grad Dip (Occ Hyg) Occupational Hygienist / Approved Identifier.

Approved Signatory

Accredited for compliance with ISO/IEC 17025 - Testing.

This report is consistent with the analytical procedures and reporting recommendations in the Western Australia Guidelines for the Assessment Remediation and Management of Asbestos contaminated sites in Western Australia and it also satisfies the requirements of the current NEPM Guidelines. NATA Accreditation does not cover the performance of this service.

Disclaimers;

The approx; weights given above can be used only as a guide. They do not represent absolute weights of each kind of asbestos, as it is impossible to extract all loose fibres from soil and other asbestos containing building material samples using this method. However above figures may be used as closest approximations to the exact values in each case. Estimation and/or reporting of asbestos fibre weights in asbestos containing materials and soil is out of the Scope of the NATA Accreditation. NATA Accreditation only covers the qualitative part of the results reported. This weight disclaimer also covers weight / weight percentages if given.

ACM - Asbestos Containing Material - Products or materials that contain asbestos in an inert bound matrix such as cement or resin. Here taken to be sound material, even as fragments and not fitting through a $7 \text{mm} \times 7 \text{mm}$ sieve.

- AF -Includes asbestos free fibres, small fibre bundles and also ACM fragments that pass through a 7mm X 7 mm sieve.
- FA -Friable asbestos material such as severely weathered ACM, and asbestos in the form of loose fibrous material such as insulation products.
- ^ denotes loose fibres of relevant asbestos types detected in soil/dust.
- * denotes asbestos detected in ACM in bonded form.
- #denotes friable asbestos as soft fibro plaster and/ or highly weathered ACM that will easily
- λ denotes samples that have been analysed only in accordance to AS 4964 2004.

The results contained in this report relate only to the sample/s submitted for testing. Australian Safer Environment & Technology accepts no responsibility for whether or not the submitted sample/s is/are representative. Results indicating "No asbestos detected" indicates a reporting limit specified in AS4964 -2004 which is 0.1g/ Kg (0.01%). Any amounts detected at assumed lower level than that would be reported, however those assumed lower levels may be treated as "No asbestos detected" as specified and recommended by A4964-2004. Trace / respirable level asbestos will be reported only when detected and trace analysis have been performed on each sample as required by AS4964-2004. When loose asbestos fibres/ fibre bundles are detected and reported that means they are larger handpicked fibres/ fibre bundles, and they do not represent respirable fibres. Dust/soil samples are always subjected to trace analysis except where the amounts involved are extremely minute and trace analysis is not possible to be carried out. When trace analysis is not performed on dust samples it will be indicated in the report that trace analysis has not been carried out due to the volume of the sample being extremely minute.

Estimation of asbestos weights involves the use of following assumptions;

Volume of each kind of Asbestos present in broken edges have been visually estimated and its been assumed that volumes remain similar throughout the binding matrix and those volumes are only approximate and not exact. Material densities have been assumed to be similar to commonly found similar materials and may not be exact.

All samples indicating "No asbestos detected" are assumed to be less than 0.001% for friable AF and FA portions detected and 0.01% for ACM detected unless the approximate weight is given.

AUSTRALIAN SAFER ENVIRONMENT & TECHNOLOGY PTY LTD

ABN 36 088 095 112

Our ref : ASET96726 / 99906 / 1 – 15 Your ref: 13546 – Kemps Creek NATA Accreditation No: 14484

20 October 2021

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

Attn: Mr Sam Jones

Accredited for compliance with ISO/IEC 17025 - Testing.

Dear Sam

Asbestos Identification

This report presents the results of fifteen samples, forwarded by Alliance Geotechnical on 14 October 2021, for analysis for asbestos.

1.Introduction: Fifteen samples forwarded were examined and analysed for the presence of asbestos on 19 October 2021.

2. Methods: The samples were examined under a Stereo Microscope and selected fibres were analysed by Polarized Light Microscopy in conjunction with Dispersion Staining method (Australian Standard AS 4964 - 2004 and Safer Environment Method 1 as the supplementary work instruction) (Qualitative Analysis only).

> The report also provides approximate weights and percentages, categories of asbestos forms appearing in the sample, such as AF (Asbestos Fines), FA (Friable Asbestos) and ACM (Asbestos Containing Material), also satisfying the requirements of the WA/ NEPM Guidelines.

Sample No. 1. ASET96726 / 99906 / 1. 13546 - TP13-0.0-0.1. 3. Results:

Approx dimensions 10.0 cm x 10.0 cm x 5.0 cm Approximate total dry weight of soil = 521.0g.

The sample consisted of a mixture of clayish sandy soil, stones, organic fibres, sandstones and plant matter.

No asbestos detected.

Sample No. 2. ASET96726 / 99906 / 2. 13546 - TP27-0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.0 cm

Approximate total dry weight of soil = 521.0g.

The sample consisted of a mixture of clayish sandy soil, stones, organic fibres, sandstones and plant matter.

No asbestos detected.

Sample No. 3. ASET96726 / 99906 / 3. 13546 - TP28-0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.3 cm

Approximate total dry weight of soil = 665.0g.

The sample consisted of a mixture of clayish sandy soil, organic fibres, sandstones, stones and plant matter.

No asbestos detected.

SUITE 710 / 90 GEORGE STREET, HORNSBY NSW 2077 - P.O. BOX 1644 HORNSBY WESTFIELD NSW 1635 PHONE: (02) 99872183 FAX: (02)99872151 EMAIL: info@ausset.com.au WEBSITE: www.Ausset.com.au

Sample No. 4. ASET96726 / 99906 / 4. 13546 - TP29-0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 8.3 cm

Approximate total dry weight of soil = 999.0g.

The sample consisted of a mixture of clayish sandy soil, organic fibres, sandstones, stones and plant matter.

No asbestos detected.

Sample No. 5. ASET96726 / 99906 / 5. 13546 - TP30-0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 7.0 cm

Approximate total dry weight of soil = 840.0g.

The sample consisted of a mixture of clayish sandy soil, stones, sandstones, organic fibres and plant matter.

No asbestos detected.

Sample No. 6. ASET96726 / 99906 / 6. 13546 - TP31-0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.0 cm

Approximate total dry weight of soil = 546.0g.

The sample consisted of a mixture of clayish sandy soil, sandstones, organic fibres, stones and plant matter.

No asbestos detected.

Sample No. 7. ASET96726 / 99906 / 7. 13546 - TP32-0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.3 cm

Approximate total dry weight of soil = 669.0g.

The sample consisted of a mixture of clayish sandy soil, organic fibres, sandstones, stones and plant matter.

No asbestos detected.

Sample No. 8. ASET96726 / 99906 / 8. 13546 - TP33-0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.0 cm

Approximate total dry weight of soil = 528.0g.

The sample consisted of a mixture of clayish sandy soil, stones, organic fibres, sandstones and plant matter.

No asbestos detected.

Sample No. 9. ASET96726 / 99906 / 9. 13546 - TP34-0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.0 cm

Approximate total dry weight of soil = 578.0g.

The sample consisted of a mixture of clayish sandy soil, sandstones, organic fibres, stones and plant matter.

No asbestos detected.

Sample No. 10. ASET96726 / 99906 / 10. 13546 - TP35-0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.0 cm

Approximate total dry weight of soil = 561.0g.

The sample consisted of a mixture of clayish sandy soil, stones, sandstones, organic fibres and plant matter.

No asbestos detected.

Sample No. 11. ASET96726 / 99906 / 11. 13546 - TP36-0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.1 cm

Approximate total dry weight of soil = 623.0g.

The sample consisted of a mixture of clayish sandy soil, organic fibres, sandstones, stones and plant matter.

Sample No. 12. ASET96726 / 99906 / 12. 13546 - TP37-0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.0 cm

Approximate total dry weight of soil = 723.0g.

The sample consisted of a mixture of clayish sandy soil, sandstones, organic fibres, stones and plant matter.

No asbestos detected.

Sample No. 13. ASET96726 / 99906 / 13. 13546 - TP38-0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.5 cm

Approximate total dry weight of soil = 786.0g.

The sample consisted of a mixture of clayish sandy soil, sandstones, organic fibres, stones and plant matter.

No asbestos detected.

Sample No. 14. ASET96726 / 99906 / 14. 13546 - TP39-0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.0 cm

Approximate total dry weight of soil = 471.0g.

The sample consisted of a mixture of clayish sandy soil, stones, sandstones, organic fibres and plant matter.

No asbestos detected.

Sample No. 15. ASET96726 / 99906 / 15. 13546 - TP40-0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.8 cm

Approximate total dry weight of soil = 692.0g.

The sample consisted of a mixture of clayish sandy soil, sandstones, organic fibres, stones and plant matter.

No asbestos detected.

Reported by,

Mahen De Silva RSc M

Mahen De Silva. BSc, MSc, Grad Dip (Occ Hyg) Occupational Hygienist / Approved Identifier. Approved Signatory NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing.

This report is consistent with the analytical procedures and reporting recommendations in the Western Australia Guidelines for the Assessment Remediation and Management of Asbestos contaminated sites in Western Australia and it also satisfies the requirements of the current NEPM Guidelines. NATA Accreditation does not cover the performance of this service.

Disclaimers;

The approx; weights given above can be used only as a guide. They do not represent absolute weights of each kind of asbestos, as it is impossible to extract all loose fibres from soil and other asbestos containing building material samples using this method. However above figures may be used as closest approximations to the exact values in each case. Estimation and/or reporting of asbestos fibre weights in asbestos containing materials and soil is out of the Scope of the NATA Accreditation. NATA Accreditation only covers the qualitative part of the results reported. This weight disclaimer also covers weight/weight percentages if given.

- ACM Asbestos Containing Material Products or materials that contain asbestos in an inert bound matrix such as cement or resin. Here taken to be sound material, even as fragments and not fitting through a 7mm X 7 mm sieve.
- AF -Includes asbestos free fibres, small fibre bundles and also ACM fragments that pass through a 7mm X 7 mm sieve.
- FA -Friable asbestos material such as severely weathered ACM, and asbestos in the form of loose fibrous material such as insulation products.
- ^ denotes loose fibres of relevant asbestos types detected in soil/dust.
- * denotes asbestos detected in ACM in bonded form.
- #denotes friable asbestos as soft fibro plaster and/ or highly weathered ACM that will easily crumble.
- λ denotes samples that have been analysed only in accordance to AS 4964 2004.
- Ω Sample volume criteria of 500mL have not been satisfied.

The results contained in this report relate only to the sample/s submitted for testing. Australian Safer Environment & Technology accepts no responsibility for whether or not the submitted sample/s is/are representative. Results indicating "No asbestos detected" indicates a reporting limit specified in AS4964 -2004 which is 0.1g/ Kg (0.01%). Any amounts detected at assumed lower level than that would be reported, however those assumed lower levels may be treated as "No asbestos detected" as specified and recommended by A4964-2004. Trace / respirable level asbestos will be reported only when detected and trace analysis have been performed on each sample as required by AS4964-2004. When loose asbestos fibres/ fibre bundles are detected and reported that means they are larger handpicked fibres/ fibre bundles, and they do not represent respirable fibres. Dust/soil samples are always subjected to trace analysis except where the amounts involved are extremely minute and trace analysis is not possible to be carried out. When trace analysis is not performed on dust samples it will be indicated in the report that trace analysis has not been carried out due to the volume of the sample being extremely minute.

Estimation of asbestos weights involves the use of following assumptions;

Volume of each kind of Asbestos present in broken edges have been visually estimated and its been assumed that volumes remain similar throughout the binding matrix and those volumes are only approximate and not exact. Material densities have been assumed to be similar to commonly found similar materials and may not be exact.

All samples indicating "No asbestos detected" are assumed to be less than 0.001% for friable AF and FA portions detected and 0.01 % for ACM detected unless the approximate weight is given.

AUSTRALIAN SAFER ENVIRONMENT & TECHNOLOGY PTY LTD

ABN 36 088 095 112

Our ref : ASET96904 / 100084 / 32 - 60 Your ref : 13546 – Kemps Creek

NATA Accreditation No: 14484

2 November 2021

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

Attn: Mr Sam Jones

ACCREDITATION

Dear Sam

Asbestos Identification

This report presents the results of twenty nine samples out of sixty samples, forwarded by Alliance Geotechnical on 22 October 2021, for analysis for asbestos.

1.Introduction:Twenty nine samples out of sixty samples forwarded were examined and analysed for the presence of asbestos on 1 November 2021.

2. Methods: The samples were examined under a Stereo Microscope and selected fibres were analysed by Polarized Light Microscopy in conjunction with Dispersion Staining method (Australian Standard AS 4964 - 2004 and Safer Environment Method 1 as the supplementary work instruction) (Qualitative Analysis only).

The report also provides approximate weights and percentages, categories of asbestos forms appearing in the sample, such as **AF**(Asbestos Fines), **FA**(Friable Asbestos) and **ACM** (Asbestos Containing Material), also satisfying the requirements of the WA/ NEPM Guidelines).

3. Results: Sample No. 32. ASET96904 / 100084 / 32. 13546 - TP61 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 8.4 cmApproximate total dry weight of soil = 840.0 g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, plastic, wood chips and plant matter.

No asbestos detected.

λ Sample No. 33. ASET96904/ 100084/ 33. 13546 - TP61 ASB.

Approx dimensions 10.6 cm x 6.0 cm x 1.9 cm

The sample consisted of a fragment of a fibre cement material.

Chrysotile asbestos detected.

Approximate total weight of fragment = 182.0g.

Sample No. 34. ASET96904 / 100084 / 34. 13546 - TP61 0.1-1.0.

Approx dimensions 10.0 cm x 10.0 cm x 7.1 cm

Approximate total dry weight of soil = 710.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of wood chips and plant matter.

No asbestos detected.

SUITE 710 / 90 GEORGE STREET, HORNSBY NSW 2077 – P.O. BOX 1644 HORNSBY WESTFIELD NSW 1635 PHONE: (02) 99872183 FAX: (02)99872151 EMAIL: info@ausset.com.au WEBSITE: www.Ausset.com.au

Sample No. 35. ASET96904 / 100084 / 35. 13546 - TP62 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 7.9 cm

Approximate total dry weight of soil = 788.0g.

The sample consisted of a mixture of clayish sandy soil, stones and plant matter.

No asbestos detected.

Sample No. 36. ASET96904 / 100084 / 36. 13546 - TP63 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 9.4 cm

Approximate total dry weight of soil = 943.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of bitumen, cement and plant matter.

No asbestos detected.

Sample No. 37. ASET96904 / 100084 / 37. 13546 - TP64 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 9.8 cm

Approximate total dry weight of soil = 980.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of bitumen, cement, wood chips and plant matter.

No asbestos detected.

Sample No. 38. ASET96904 / 100084 / 38. 13546 - TP65 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 9.7 cm

Approximate total dry weight of soil = 974.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of bitumen, cement and plant matter.

No asbestos detected.

Sample No. 39. ASET96904 / 100084 / 39. 13546 - TP66 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 7.8 cm

Approximate total dry weight of soil = 782.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, wood chips and plant matter.

No asbestos detected.

Sample No. 40. ASET96904 / 100084 / 40. 13546 - SP3-1.

Approx dimensions 10.0 cm x 10.0 cm x 7.8 cm

Approximate total dry weight of soil = 782.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of plastic, wood chips and plant matter.

No asbestos detected.

Sample No. 41. ASET96904 / 100084 / 41. 13546 - SP3-2.

Approx dimensions 10.0 cm x 10.0 cm x 7.8 cm

Approximate total dry weight of soil = 775.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of wood chips and plant matter.

No asbestos detected.

Sample No. 42. ASET96904 / 100084 / 42. 13546 - DR15 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 10.2 cm

Approximate total dry weight of soil = 1015.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of bitumen, brick, cement, shale and plant matter.

Sample No. 43. ASET96904 / 100084 / 43. 13546 - TP141 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.5 cm

Approximate total dry weight of soil = 653.0g.

The sample consisted of a mixture of clayish

sandy soil, stones, fragments of cement, glass and plant matter.

No asbestos detected.

λ Sample No. 44. ASET96904 / 100084 / 44. 13546 - TP141 0.0-0.1 ASB.

Approx dimensions 6.9 cm x 3.6 cm x 0.5 cm

The sample consisted of a fragment of a fibre cement material.

Chrysotile asbestos, Amosite asbestos and Crocidolite asbestos detected.

Approximate total weight of fragment = 17.0g.

Sample No. 45. ASET96904 / 100084 / 45. 13546 - TP141 0.1-1.0.

Approx dimensions 10.0 cm x 10.0 cm x 10.2 cm

Approximate total dry weight of soil = 1018.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, slag, wood chips and plant matter.

No asbestos detected.

Sample No. 46. ASET96904 / 100084 / 46. 13546 - TP141 1.0-1.5.

Approx dimensions 10.0 cm x 10.0 cm x 7.6 cm

Approximate total dry weight of soil = 759.0g.

The sample consisted of a mixture of clayish sandy soil, stones and plant matter.

No asbestos detected.

Sample No. 47. ASET96904 / 100084 / 47. 13546 - TP142 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 7.7 cm

Approximate total dry weight of soil = 768.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, wood chips and plant matter.

No asbestos detected.

Sample No. 48. ASET96904 / 100084 / 48. 13546 - TP142 0.1-1.0.

Approx dimensions 10.0 cm x 10.0 cm x 8.5 cm

Approximate total dry weight of soil = 846.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, wood chips and plant matter.

No asbestos detected.

Sample No. 49. ASET96904 / 100084 / 49. 13546 - TP142 1.0-1.5.

Approx dimensions 10.0 cm x 10.0 cm x 7.9 cm

Approximate total dry weight of soil = 792.0g.

The sample consisted of a mixture of clayish sandy soil, stones and plant matter.

No asbestos detected.

Sample No. 50. ASET96904 / 100084 / 50. 13546 - DR16 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 11.6 cm

Approximate total dry weight of soil = 1155.0g.

The sample consisted of a mixture of clayish sandy soil, stones and plant matter.

Sample No. 51. ASET96904 / 100084 / 51. 13546 - DR17 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 10.3 cm

Approximate total dry weight of soil = 1032.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, corroded metal, glass, wood chips, animal and plant matter.

No asbestos detected.

Sample No. 52. ASET96904 / 100084 / 52. 13546 - DW22.

Approx dimensions 10.0 cm x 10.0 cm x 7.3 cm

Approximate total dry weight of soil = 725.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, wood chips and plant matter.

No asbestos detected.

Sample No. 53. ASET96904 / 100084 / 53. 13546 - DW23.

Approx dimensions 10.0 cm x 10.0 cm x 7.2 cm

Approximate total dry weight of soil = 717.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, glass and plant matter.

No asbestos detected.

λ Sample No. 54. ASET96904 / 100084 / 54. 13546 - DW23 ASB.

Approx dimensions 13.1 cm x 6.5 cm x 0.5 cm

The sample consisted of a fragment of a fibre cement material.

Chrysotile asbestos and Amosite asbestos detected.

Approximate total weight of fibre cement = 57.0g.

Sample No. 55. ASET96904 / 100084 / 55. 13546 - TP70 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.1 cm

The sample consisted of a mixture of clayish sandy soil, stones, fragments of fibre cement* (AF), plastic and plant matter.

Chrysotile* (Approximate estimated weight = 0.019g) asbestos detected.

Approximate total dry weight of soil = 606.0g.

Approximate estimated weight of asbestos in soil in the form of AF = 0.019g.

Approximate w/w percentage of asbestos in soil in the form of AF = 0.003%.

Sample No. 56. ASET96904 / 100084 / 56. 13546 - TP71 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.8 cm

Approximate total dry weight of soil = 578.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of wood chips and plant matter.

No asbestos detected.

Sample No. 57. ASET96904 / 100084 / 57. 13546 - TP95 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 7.7 cm

Approximate total dry weight of soil = 772.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of wood chips and plant matter.

No asbestos detected.

Sample No. 58. ASET96904 / 100084 / 58. 13546 - TP120 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.9 cm

Approximate total dry weight of soil = 687.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of plastic and plant matter.

Sample No. 59. ASET96904 / 100084 / 59. 13546 - TP125 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 8.3 cm

Approximate total dry weight of soil = 833.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of sandstone, wood chips and plant matter.

No asbestos detected.

Sample No. 60. ASET96904 / 100084 / 60. 13546 - DS12.

Approx dimensions 10.0 cm x 10.0 cm x 7.7 cm

Approximate total dry weight of soil = 773.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of plastic, wood chips and plant matter.

No asbestos detected.

Reported by,

Jun S

Mahen De Silva. BSc, MSc, Grad Dip (Occ Hyg) Occupational Hygienist / Approved Identifier. Approved Signatory WORLD RECOGNISED ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing.

This report is consistent with the analytical procedures and reporting recommendations in the Western Australia Guidelines for the Assessment Remediation and Management of Asbestos contaminated sites in Western Australia and it also satisfies the requirements of the current NEPM Guidelines. NATA Accreditation does not cover the performance of this service.

Disclaimers;

The approx; weights given above can be used only as a guide. They do not represent absolute weights of each kind of asbestos, as it is impossible to extract all loose fibres from soil and other asbestos containing building material samples using this method. However above figures may be used as closest approximations to the exact values in each case. Estimation and/or reporting of asbestos fibre weights in asbestos containing materials and soil is out of the Scope of the NATA Accreditation. NATA Accreditation only covers the qualitative part of the results reported. This weight disclaimer also covers weight/weight percentages if given.

ACM - Asbestos Containing Material - Products or materials that contain asbestos in an inert bound matrix such as cement or resin. Here taken to be sound material, even as fragments and not fitting through a $7\,\mathrm{mm}$ X $7\,\mathrm{mm}$ sieve.

- AF -Includes asbestos free fibres, small fibre bundles and also ACM fragments that pass through a 7mm X 7 mm sieve.
- FA -Friable asbestos material such as severely weathered ACM, and asbestos in the form of loose fibrous material such as insulation products.
- ^ denotes loose fibres of relevant asbestos types detected in soil/dust.
- * denotes asbestos detected in ACM in bonded form.

#denotes friable asbestos as soft fibro plaster and/ or highly weathered ACM that will easily crumble.

 λ denotes samples that have been analysed only in accordance to AS 4964 – 2004.

The results contained in this report relate only to the sample/s submitted for testing. Australian Safer Environment & Technology accepts no responsibility for whether or not the submitted sample/s is/are representative. Results indicating "No asbestos detected" indicates a reporting limit specified in AS4964 -2004 which is 0.1g/ Kg (0.01%). Any amounts detected at assumed lower level than that would be reported, however those assumed lower levels may be treated as "No asbestos detected" as specified and recommended by A4964-2004. Trace / respirable level asbestos will be reported only when detected and trace analysis have been performed on each sample as required by AS4964-2004. When loose asbestos fibres/ fibre bundles are detected and reported that means they are larger handpicked fibres/ fibre bundles, and they do not represent respirable fibres. Dust/soil samples are always subjected to trace analysis except where the amounts involved are extremely minute and trace analysis is not possible to be carried out. When trace analysis is not performed on dust samples it will be indicated in the report that trace analysis has not been carried out due to the volume of the sample being extremely minute.

Estimation of asbestos weights involves the use of following assumptions;

Volume of each kind of Asbestos present in broken edges have been visually estimated and its been assumed that volumes remain similar throughout the binding matrix and those volumes are only approximate and not exact. Material densities have been assumed to be similar to commonly found similar materials and may not be exact.

All samples indicating "No asbestos detected" are assumed to be less than 0.001% for friable AF and FA portions detected and 0.01% for ACM detected unless the approximate weight is given.

AUSTRALIAN SAFER ENVIRONMENT & TECHNOLOGY PTY LTD

ABN 36 088 095 112

Our ref : ASET96618 / 99798 / 19 – 38 Your ref : 13546 – Kemps Creek NATA Accreditation No: 14484

12 October 2021

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

Attn: Mr Sam Jones

Accredited for compliance with ISO/IEC 17025 - Testing.

Dear Sam

Asbestos Identification

This report presents the results of twenty samples out of thirty eight samples, forwarded by Alliance Geotechnical on 8 October 2021, for analysis for asbestos.

1.Introduction:Twenty samples out of thirty eight samples forwarded were examined and analysed for the presence of asbestos on 12 October 2021.

2. Methods:

The samples were examined under a Stereo Microscope and selected fibres were analysed by Polarized Light Microscopy in conjunction with Dispersion Staining method (Australian Standard AS 4964 - 2004 and Safer Environment Method 1 as the supplementary work instruction) (Qualitative Analysis only).

The report also provides approximate weights and percentages, categories of asbestos forms appearing in the sample, such as **AF** (Asbestos Fines), **FA** (Friable Asbestos) and **ACM** (Asbestos Containing Material), also satisfying the requirements of the WA/ NEPM Guidelines.

3. Results: Sample No. 19. ASET96618 / 99798 / 19. 13546 - TP20 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.0 cmApproximate total dry weight of soil = 399.0g.

The sample consisted of a mixture of sandy soil, wood chips, stones and plant matter.

No asbestos detected.

Sample No. 20. ASET96618 / 99798 / 20. 13546 - TP21 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.2 cm

Approximate total dry weight of soil = 757.0g.

The sample consisted of a mixture of clayish sandy soil, organic fibres, sandstones, stones and plant matter.

No asbestos detected.

Sample No. 21. ASET96618 / 99798 / 21. 13546 - TP22 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.8 cm

Approximate total dry weight of soil = 695.0g.

The sample consisted of a mixture of clayish sandy soil, stones, wood chips, plaster cement, sandstones, organic fibres and plant matter.

No asbestos detected.

SUITE 710 / 90 GEORGE STREET, HORNSBY NSW 2077 – P.O. BOX 1644 HORNSBY WESTFIELD NSW 1635 PHONE: (02) 99872183 FAX: (02)99872151 EMAIL: info@ausset.com.au WEBSITE: www.Ausset.com.au

Sample No. 22. ASET96618 / 99798 / 22. 13546 - TP23 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.0 cm

Approximate total dry weight of soil = 736.0g.

The sample consisted of a mixture of clayish sandy soil, stones, organic fibres, sandstones and plant matter.

No asbestos detected.

Sample No. 23. ASET96618 / 99798 / 23. 13546 - TP24 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.2 cm

Approximate total dry weight of soil = 746.0g.

The sample consisted of a mixture of clayish sandy soil, organic fibres, sandstones, stones and plant matter.

No asbestos detected.

Sample No. 24. ASET96618 / 99798 / 24. 13546 - TP25 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.7 cm

Approximate total dry weight of soil = 819.0g.

The sample consisted of a mixture of clayish sandy soil, organic fibres, sandstones, stones and plant matter.

No asbestos detected.

Sample No. 25. ASET96618 / 99798 / 25. 13546 - TP26 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.5 cm

Approximate total dry weight of soil = 769.0g.

The sample consisted of a mixture of clayish sandy soil, stones, sandstones, organic fibres and plant matter.

No asbestos detected.

Sample No. 26. ASET96618 / 99798 / 26. 13546 - DR01 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 8.3 cm

Approximate total dry weight of soil = 1050.0g.

The sample consisted of a mixture of sandy soil, stones, brick like material, cement like material, sandstones, organic fibres and plant matter.

No asbestos detected.

Sample No. 27. ASET96618 / 99798 / 27. 13546 - DR02 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 8.5 cm

Approximate total dry weight of soil = 1221.0g.

The sample consisted of a mixture of sandy soil, sand, sandstones, stones and plant matter.

No asbestos detected.

Sample No. 28. ASET96618 / 99798 / 28. 13546 - DR03 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 8.3 cm

Approximate total dry weight of soil = 1032.0g.

The sample consisted of a mixture of sandy soil, organic fibres, sandstones, stones and plant matter.

No asbestos detected.

Sample No. 29. ASET96618 / 99798 / 29. 13546 - DR04 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 9.0 cm

Approximate total dry weight of soil = 1253.0g.

The sample consisted of a mixture of sandy soil, organic fibres, sandstones, stones and plant matter.

Sample No. 30. ASET96618 / 99798 / 30. 13546 - DR05 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 7.5 cm

Approximate total dry weight of soil = 901.0g.

The sample consisted of a mixture of sandy soil, sandstones, organic fibres, stones and plant matter.

No asbestos detected.

Sample No. 31. ASET96618 / 99798 / 31. 13546 - DR06 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 8.3 cm

Approximate total dry weight of soil = 962.0g.

The sample consisted of a mixture of sandy soil, stones, sandstones, organic fibres and plant matter.

No asbestos detected.

Sample No. 32. ASET96618 / 99798 / 32. 13546 - DR07 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 8.3 cm

Approximate total dry weight of soil = 1069.0g.

The sample consisted of a mixture of sandy soil, sandstones, organic fibres, stones and plant matter.

No asbestos detected.

Sample No. 33. ASET96618/ 99798/ 33. 13546 - DR08 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 7.6 cm

Approximate total dry weight of soil = 922.0g.

The sample consisted of a mixture of sandy soil, sandstones, organic fibres, stones and plant matter.

No asbestos detected.

Sample No. 34. ASET96618 / 99798 / 34. 13546 - SP1-1.

Approx dimensions 10.0 cm x 10.0 cm x 5.0 cm

Approximate total dry weight of soil = 355.0g.

The sample consisted of a mixture of sandy soil, organic fibres, sandstones, wood chips, stones and plant matter.

No asbestos detected.

λ Sample No. 35. ASET96618 / 99798 / 35. 13546 - TP09 0.0-0.1 ASB.

Approx dimensions 4.1 cm x 2.0 cm x 0.5 cm

The sample consisted of a fragment of a fibre cement* (ACM) material.

Chrysotile* asbestos detected.

Approximate total weight of fibre cement = 10.0g.

λ Sample No. 36. ASET96618 / 99798 / 36. 13546 - TP18 0.0-0.1 ASB.

Approx dimensions 4.5 cm x 3.8 cm x 0.5 cm

The sample consisted of a fragment of plaster cement material.

No asbestos detected.

λ Sample No. 37. ASET96618 / 99798 / 37. 13546 - TP22 0.0-0.1 ASB.

Approx dimensions 12.5 cm x 4.8 cm x 0.5 cm

The sample consisted of fragments of plaster cement material.

λ Sample No. 38. ASET96618 / 99798 / 38. 13546 - TP26 0.0-0.1 ASB.

Approx dimensions 1.5 cm x 1.2 cm x 0.5 cm The sample consisted of a fragment of a hard cement material.

No asbestos detected.

Reported by,

June

Mahen De Silva. BSc, MSc, Grad Dip (Occ Hyg) Occupational Hygienist / Approved Identifier. Approved Signatory WORLD RECOGNISED ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing.

This report is consistent with the analytical procedures and reporting recommendations in the Western Australia Guidelines for the Assessment Remediation and Management of Asbestos contaminated sites in Western Australia and it also satisfies the requirements of the current NEPM Guidelines. NATA Accreditation does not cover the performance of this service.

Disclaimers;

The approx; weights given above can be used only as a guide. They do not represent absolute weights of each kind of asbestos, as it is impossible to extract all loose fibres from soil and other asbestos containing building material samples using this method. However above figures may be used as closest approximations to the exact values in each case. Estimation and/or reporting of asbestos fibre weights in asbestos containing materials and soil is out of the Scope of the NATA Accreditation. NATA Accreditation only covers the qualitative part of the results reported. This weight disclaimer also covers weight / weight percentages if given.

ACM - Asbestos Containing Material - Products or materials that contain asbestos in an inert bound matrix such as cement or resin. Here taken to be sound material, even as fragments and not fitting through a $7 \, \text{mm} \times 7 \, \text{mm}$ sieve.

- AF -Includes asbestos free fibres, small fibre bundles and also ACM fragments that pass through a 7mm X 7 mm sieve.
- FA -Friable asbestos material such as severely weathered ACM, and asbestos in the form of loose fibrous material such as insulation products.
- ^ denotes loose fibres of relevant asbestos types detected in soil/dust.
- * denotes asbestos detected in ACM in bonded form.
- #denotes friable asbestos as soft fibro plaster and/ or highly weathered ACM that will easily crumble.
- λ denotes samples that have been analysed only in accordance to AS 4964 2004.
- Ω Sample volume criteria of 500mL have not been satisfied.

The results contained in this report relate only to the sample/s submitted for testing. Australian Safer Environment & Technology accepts no responsibility for whether or not the submitted sample/s is/are representative. Results indicating "No asbestos detected" indicates a reporting limit specified in AS4964 -2004 which is 0.1g/ Kg (0.01%). Any amounts detected at assumed lower level than that would be reported, however those assumed lower levels may be treated as

"No asbestos detected" as specified and recommended by A4964-2004. Trace / respirable level asbestos will be reported only when detected and trace analysis have been performed on each sample as required by AS4964-2004. When loose asbestos fibres/fibre bundles are detected and reported that means they are larger handpicked fibres/fibre bundles, and they do not represent respirable fibres. Dust/soil samples are always subjected to trace analysis except where the amounts involved are extremely minute and trace analysis is not possible to be carried out. When trace analysis is not performed on dust samples it will be indicated in the report that trace analysis has not been carried out due to the volume of the sample being extremely minute.

Estimation of asbestos weights involves the use of following assumptions;

Volume of each kind of Asbestos present in broken edges have been visually estimated and its been assumed that volumes remain similar throughout the binding matrix and those volumes are only approximate and not exact. Material densities have been assumed to be similar to commonly found similar materials and may not be exact.

All samples indicating "No asbestos detected" are assumed to be less than 0.001% for friable AF and FA portions detected and 0.01% for ACM detected unless the approximate weight is given.

AUSTRALIAN SAFER ENVIRONMENT & TECHNOLOGY PTY LTD

ABN 36 088 095 112

Our ref: ASET96904 / 100084 / 1 – 31 Your ref: 13546 – Kemps Creek NATA Accreditation No: 14484

2 November 2021

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

Attn: Mr Sam Jones

Accredited for compliance with ISO/IEC 17025 - Testing.

Dear Sam

Asbestos Identification

This report presents the results of thirty one samples out of sixty samples, forwarded by Alliance Geotechnical on 22 October 2021, for analysis for asbestos.

1.Introduction:Thirty one samples out of sixty samples forwarded were examined and analysed for the presence of asbestos on 29 October and 1 November 2021.

2. Methods:

The samples were examined under a Stereo Microscope and selected fibres were analysed by Polarized Light Microscopy in conjunction with Dispersion Staining method (Australian Standard AS 4964 - 2004 and Safer Environment Method 1 as the supplementary work instruction) (Qualitative Analysis only).

The report also provides approximate weights and percentages, categories of asbestos forms appearing in the sample, such as **AF** (Asbestos Fines), **FA** (Friable Asbestos) and **ACM** (Asbestos Containing Material), also satisfying the requirements of the WA/ NEPM Guidelines.

3. Results: Sample No. 1. ASET96904 / 100084 / 1. 13546 - ASB10 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.0 cm

Approximate total dry weight of soil = 721.0g.

The sample consisted of a mixture of clayish sandy soil, sandstones, stones and plant matter.

No asbestos detected.

Sample No. 2. ASET96904 / 100084 / 2. 13546 - TP50 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.1 cm

Approximate total dry weight of soil = 731.0g.

The sample consisted of a mixture of clayish sandy soil, stones, sandstones and plant matter.

No asbestos detected.

Sample No. 3. ASET96904 / 100084 / 3. 13546 - TP50 0.1-0.4.

Approx dimensions 10.0 cm x 10.0 cm x 4.0 cm

Approximate total dry weight of soil = 381.0g.

The sample consisted of a mixture of sandy soil, sandstones, stones and plant matter.

No asbestos detected.

SUITE 710 / 90 GEORGE STREET, HORNSBY NSW 2077 – P.O. BOX 1644 HORNSBY WESTFIELD NSW 1635 PHONE: (02) 99872183 FAX: (02)99872151 EMAIL: info@ausset.com.au WEBSITE: www.Ausset.com.au

Sample No. 4. ASET96904 / 100084 / 4. 13546 - ASB11 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.9 cm

Approximate total dry weight of soil = 813.0g.

The sample consisted of a mixture of clayish sandy soil, stones, sandstones and plant matter.

No asbestos detected.

Sample No. 5. ASET96904 / 100084 / 5. 13546 - TP51 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.3 cm

Approximate total dry weight of soil = 656.0g.

The sample consisted of a mixture of clayish sandy soil, stones, sandstones and plant matter.

No asbestos detected.

Sample No. 6. ASET96904 / 100084 / 6. 13546 - TP51 0.1-1.0.

Approx dimensions 10.0 cm x 10.0 cm x 6.9 cm

Approximate total dry weight of soil = 825.0g.

The sample consisted of a mixture of clayish sandy soil, stones, sandstones, brick like material, plaster, cement like material, organic fibres and plant matter.

No asbestos detected.

Sample No. 7. ASET96904 / 100084 / 7. 13546 - TP51 1.0-2.0.

Approx dimensions 10.0 cm x 10.0 cm x 6.1 cm

Approximate total dry weight of soil = 742.0g.

The sample consisted of a mixture of clayish sandy soil, stones, sandstones, cement like material and plant matter.

No asbestos detected.

Sample No. 8. ASET96904 / 100084 / 8. 13546 - TP51 2.0-2.5.

Approx dimensions 10.0 cm x 10.0 cm x 8.3 cm

Approximate total dry weight of soil = 1042.0g.

The sample consisted of a mixture of clayish sandy soil, stones, brick like material, cement like material, sandstones and plant matter.

No asbestos detected.

λ Sample No. 9. ASET96904 / 100084 / 9. 13546 - TP51 2.0-2.5 ASB.

Approx dimensions 10.5 cm x 9.0 cm x 0.5 cm

The sample consisted of a fragment of a fibre cement* (ACM) material.

Chrysotile* asbestos detected.

Approximate total weight of fibre cement = 151.0g.

Sample No. 10. ASET96904 / 100084 / 10. 13546 - ASB12 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.1 cm

The sample consisted of a mixture of clayish sandy soil, stones, fragments of fibre cement* (ACM), sandstones, organic fibres, cement like material and plant matter.

Chrysotile* (Approximate estimated weight = 7.83g) asbestos and Amosite* (Approximate estimated weight = 0.35g) asbestos detected.

Approximate total dry weight of soil = 739.0g.

Approximate estimated weight of asbestos in soil in the form of ACM = 8.18g.

Approximate w/w percentage of asbestos in soil in the form of ACM = 1.11%.

Sample No. 11. ASET96904 / 100084 / 11. 13546 - ASB12 0.1-1.0.

Approx dimensions 10.0 cm x 10.0 cm x 6.7 cm

The sample consisted of a mixture of clayish soil, fibres^ (AF), fragments of fibre cement* (ACM), sandstones, stones, organic fibres, timber char, cement like material and plant matter.

Chrysotile^{*} (Approximate estimated weight as loose fibres = 0.02g, as ACM = 13.88g) asbestos and Amosite* (Approximate estimated weight = 0.5g) asbestos detected.

Approximate total dry weight of soil = 803.0g.

Approximate estimated weight of asbestos in soil in the form of ACM = 14.38g.

Approximate w/w percentage of asbestos in soil in the form of ACM = 1.8%.

Approximate estimated weight of asbestos in soil in the form of AF=0.02g.

Approximate w/w percentage of asbestos in soil in the form of AF = 0.0025%.

Sample No. 12. ASET96904 / 100084 / 12. 13546 - ASB12 1.0-2.0.

Approx dimensions 10.0 cm x 10.0 cm x 7.8 cm

The sample consisted of a mixture of clayish sandy soil, fibres^ (AF), fragments of fibre cement* (ACM), sandstones, organic fibres, stones and plant matter.

Chrysotile * (Approximate estimated weight as loose fibres = 0.04g, as ACM = 7.39g) asbestos detected.

Approximate total dry weight of soil = 955.0g.

Approximate estimated weight of asbestos in soil in the form of ACM = 7.39g.

Approximate w/w percentage of asbestos in soil in the form of ACM = 0.77%.

Approximate estimated weight of asbestos in soil in the form of AF = 0.04g.

Approximate w/w percentage of asbestos in soil in the form of AF = 0.004%.

λ Sample No. 13. ASET96904 / 100084 / 13. 13546 - ASB12 0.0-0.1 ASB.

Approx dimensions 6.3 cm x 4.6 cm x 0.5 cm

The sample consisted of a fragment of a fibre cement* (ACM) material.

Chrysotile* asbestos detected.

Approximate total weight of fibre cement = 33.0g.

λ Sample No. 14. ASET96904 / 100084 / 14. 13546 - ASB12 0.1-1.0 ASB.

Approx dimensions 10.0 cm x 7.3 cm x 0.5 cm

The sample consisted of a fragment of a fibre cement* (ACM) material.

Chrysotile* asbestos detected.

Approximate total weight of fibre cement = 84.0g.

λ Sample No. 15. ASET96904 / 100084 / 15. 13546 - ASB12 1.0-2.0 ASB.

Approx dimensions 8.5 cm x 7.5 cm x 0.6 cm

The sample consisted of a fragment of a fibre cement* (ACM) material.

Chrysotile* asbestos detected.

Approximate total weight of fibre cement = 55.0g.

Sample No. 16. ASET96904 / 100084 / 16. 13546 - ASB13 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.0 cm

Approximate total dry weight of soil = 569.0g.

The sample consisted of a mixture of clayish sandy soil, sandstones, timber char, stones and plant matter.

Sample No. 17. ASET96904 / 100084 / 17. 13546 - ASB13 0.1-1.0.

Approx dimensions 10.0 cm x 10.0 cm x 6.1 cm

Approximate total dry weight of soil = 733.0g.

The sample consisted of a mixture of clayish sandy soil, organic fibres, sandstones, timber char, stones and plant matter.

No asbestos detected.

Sample No. 18. ASET96904 / 100084 / 18. 13546 - TP52 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.5 cm

Approximate total dry weight of soil = 675.0g.

The sample consisted of a mixture of clayish sandy soil, stones, sandstones, timber char, organic fibres and plant matter.

No asbestos detected.

Sample No. 19. ASET96904 / 100084 / 19. 13546 - TP52 0.1-1.0.

Approx dimensions 10.0 cm x 10.0 cm x 5.6 cm

Approximate total dry weight of soil = 688.0g.

The sample consisted of a mixture of clayish sandy soil, organic fibres, sandstones, stones and plant matter.

No asbestos detected.

Sample No. 20. ASET96904 / 100084 / 20. 13546 - TP52 1.0-2.0.

Approx dimensions 10.0 cm x 10.0 cm x 6.1 cm

Approximate total dry weight of soil = 737.0g.

The sample consisted of a mixture of clayish sandy soil, sandstones, organic fibres, stones and plant matter.

No asbestos detected.

Sample No. 21. ASET96904 / 100084 / 21. 13546 - TP52 2.0-2.5.

Approx dimensions 10.0 cm x 10.0 cm x 7.2 cm

Approximate total dry weight of soil = 870.0g.

The sample consisted of a mixture of clayish sandy soil, sandstones, organic fibres, stones and plant matter.

No asbestos detected.

Sample No. 22. ASET96904 / 100084 / 22. 13546 - TP53 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.1 cm

Approximate total dry weight of soil = 632.0g.

The sample consisted of a mixture of clayish sandy soil, sandstones, organic fibres, stones and plant matter.

No asbestos detected.

Sample No. 23. ASET96904 / 100084 / 23. 13546 - ASB14 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.0 cm

Approximate total dry weight of soil = 594.0g.

The sample consisted of a mixture of clayish sandy soil, stones, sandstones and plant matter.

Sample No. 24. ASET96904 / 100084 / 24. 13546 - TP54 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.1 cm

Approximate total dry weight of soil = 638.0g.

The sample consisted of a mixture of clayish sandy soil, sandstones, organic fibres, stones and plant matter.

No asbestos detected.

Sample No. 25. ASET96904 / 100084 / 25. 13546 - TP54 0.1-1.0.

Approx dimensions 10.0 cm x 10.0 cm x 6.3 cm

Approximate total dry weight of soil = 762.0g.

The sample consisted of a mixture of clayish sandy soil, sandstones, timber char, organic fibres, stones and plant matter.

No asbestos detected.

Sample No. 26. ASET96904 / 100084 / 26. 13546 - TP54 1.0-2.0.

Approx dimensions 10.0 cm x 10.0 cm x 5.8 cm

Approximate total dry weight of soil = 705.0g.

The sample consisted of a mixture of clayish sandy soil, stones, sandstones, organic fibres and plant matter.

No asbestos detected.

Sample No. 27. ASET96904 / 100084 / 27. 13546 - TP54 2.0-2.5.

Approx dimensions 10.0 cm x 10.0 cm x 7.5 cm

Approximate total dry weight of soil = 893.0g.

The sample consisted of a mixture of clayish sandy soil, sandstones, stones and plant matter.

No asbestos detected.

Sample No. 28. ASET96904 / 100084 / 28. 13546 - ASB15 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.5 cm

Approximate total dry weight of soil = 771.0g.

The sample consisted of a mixture of clayish sandy soil, stones, sandstones, organic fibres and plant matter.

No asbestos detected.

Sample No. 29. ASET96904 / 100084 / 29. 13546 - ASB15 0.1-1.0.

Approx dimensions 10.0 cm x 10.0 cm x 6.2 cm

Approximate total dry weight of soil = 752.0g.

The sample consisted of a mixture of clayish sandy soil, stones, sandstones, organic fibres and plant matter.

No asbestos detected.

Sample No. 30. ASET96904 / 100084 / 30. 13546 - ASB15 1.0-2.0.

Approx dimensions 10.0 cm x 10.0 cm x 6.2 cm

Approximate total dry weight of soil = 741.0g.

The sample consisted of a mixture of clayish sandy soil, sandstones, stones and plant matter.

Sample No. 31. ASET96904 / 100084 / 31. 13546 - ASB15 2.0-2.5.

Approx dimensions 10.0 cm x 10.0 cm x 6.2 cm Approximate total dry weight of soil = 745.0g.

The sample consisted of a mixture of clayish sandy soil, stones, sandstones, organic fibres and plant matter.

No asbestos detected.

Reported by,

Jun 2

Mahen De Silva. BSc, MSc, Grad Dip (Occ Hyg) Occupational Hygienist / Approved Identifier. Approved Signatory

Accredited for compliance with ISO/IEC 17025 - Testing.

This report is consistent with the analytical procedures and reporting recommendations in the Western Australia Guidelines for the Assessment Remediation and Management of Asbestos contaminated sites in Western Australia and it also satisfies the requirements of the current NEPM Guidelines. NATA Accreditation does not cover the performance of this service.

Disclaimers;

The approx; weights given above can be used only as a guide. They do not represent absolute weights of each kind of asbestos, as it is impossible to extract all loose fibres from soil and other asbestos containing building material samples using this method. However above figures may be used as closest approximations to the exact values in each case. Estimation and/or reporting of asbestos fibre weights in asbestos containing materials and soil is out of the Scope of the NATA Accreditation. NATA Accreditation only covers the qualitative part of the results reported. This weight disclaimer also covers weight / weight percentages if given.

ACM - Asbestos Containing Material - Products or materials that contain asbestos in an inert bound matrix such as cement or resin. Here taken to be sound material, even as fragments and not fitting through a 7mm X 7 mm sieve.

- AF -Includes asbestos free fibres, small fibre bundles and also ACM fragments that pass through a 7mm X 7 mm sieve.
- FA -Friable asbestos material such as severely weathered ACM, and asbestos in the form of loose fibrous material such as insulation products.
- ^ denotes loose fibres of relevant asbestos types detected in soil/dust.
- * denotes asbestos detected in ACM in bonded form.
- #denotes friable asbestos as soft fibro plaster and/ or highly weathered ACM that will easily crumble.
- λ denotes samples that have been analysed only in accordance to AS 4964 2004.
- Ω Sample volume criteria of 500mL have not been satisfied.

The results contained in this report relate only to the sample/s submitted for testing. Australian Safer Environment & Technology accepts no responsibility for whether or not the submitted sample/s is/are representative. Results indicating "No asbestos detected" indicates a reporting limit specified in AS4964 -2004 which is 0.1g/ Kg (0.01%). Any amounts detected at assumed lower level than that would be reported, however those assumed lower levels may be treated as "No asbestos detected" as specified and recommended by A4964-2004. Trace / respirable level asbestos will be reported only when detected and trace analysis have been performed on each sample as required by AS4964-2004. When loose asbestos fibres/ fibre bundles are detected and reported that means they are larger handpicked fibres/ fibre bundles, and they do not represent respirable fibres. Dust/soil samples are always subjected to trace analysis except where the amounts involved are extremely minute and trace analysis is not possible to be carried out. When trace analysis is not performed on dust samples it will be indicated in the report that trace analysis has not been carried out due to the volume of the sample being extremely minute.

Estimation of asbestos weights involves the use of following assumptions;

Volume of each kind of Asbestos present in broken edges have been visually estimated and its been assumed that volumes remain similar throughout the binding matrix and those volumes are only approximate and not exact. Material densities have been assumed to be similar to commonly found similar materials and may not be exact.

All samples indicating "No asbestos detected" are assumed to be less than 0.001% for friable AF and FA portions detected and 0.01% for ACM detected unless the approximate weight is given.

AUSTRALIAN SAFER ENVIRONMENT & TECHNOLOGY PTY LTD

ABN 36 088 095 112

Our ref: ASET96618 / 99798 / 1 - 18 Your ref: 13546 – Kemps Creek NATA Accreditation No: 14484

12 October 2021

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

Attn: Mr Sam Jones

Accredited for compliance with ISO/IEC 17025 - Testing.

Dear Sam

Asbestos Identification

This report presents the results of eighteen samples out of thirty eight samples, forwarded by Alliance Geotechnical on 8 October 2021, for analysis for asbestos.

1.Introduction: Eighteen samples out of thirty eight samples forwarded were examined and analysed for the presence of asbestos on 12 October 2021.

2. Methods: The samples were examined under a Stereo Microscope and selected fibres were analysed by Polarized Light Microscopy in conjunction with Dispersion Staining method (Australian Standard AS 4964 - 2004 and Safer Environment Method 1 as the supplementary work instruction) (Qualitative Analysis only).

> The report also provides approximate weights and percentages, categories of asbestos forms appearing in the sample, such as AF(Asbestos Fines), FA(Friable Asbestos) and ACM (Asbestos Containing Material), also satisfying the requirements of the WA/ NEPM Guidelines).

3. Results:

Sample No. 1. ASET96618 / 99798 / 1. 13546 - TP1 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 7.6 cm Approximate total dry weight of soil = 759.0g.

The sample consisted of a mixture of clayish sandy soil, stones and plant matter.

No asbestos detected.

Sample No. 2. ASET96618 / 99798 / 2. 13546 - TP2 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 7.7 cm

Approximate total dry weight of soil = 765.0g.

The sample consisted of a mixture of clayish sandy soil, stones and plant matter.

No asbestos detected.

Sample No. 3. ASET96618 / 99798 / 3. 13546 - TP3 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 8.5 cm

Approximate total dry weight of soil = 853.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, sandstone and plant matter.

No asbestos detected.

SUITE 710 / 90 GEORGE STREET, HORNSBY NSW 2077 - P.O. BOX 1644 HORNSBY WESTFIELD NSW 1635 PHONE: (02) 99872183 FAX: (02)99872151 EMAIL: info@ausset.com.au WEBSITE: www.Ausset.com.au

Sample No. 4. ASET96618 / 99798 / 4. 13546 - TP4 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 8.3 cm

Approximate total dry weight of soil = 825.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of wood chips and plant matter.

No asbestos detected.

Sample No. 5. ASET96618 / 99798 / 5. 13546 - TP5 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.8 cm

Approximate total dry weight of soil = 675.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of wood chips and plant matter.

No asbestos detected.

Sample No. 6. ASET96618 / 99798 / 6. 13546 - TP6 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 7.5 cm

Approximate total dry weight of soil = 746.0g.

The sample consisted of a mixture of clayish sandy soil, stones and plant matter.

No asbestos detected.

Sample No. 7. ASET96618 / 99798 / 7. 13546 - TP7 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.0 cm

Approximate total dry weight of soil = 828.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of sandstone and plant matter.

No asbestos detected.

Sample No. 8. ASET96618 / 99798 / 8. 13546 - TP8 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 8.6 cm

Approximate total dry weight of soil = 864.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of sandstone, wood chips and plant matter.

No asbestos detected.

Sample No. 9. ASET96618 / 99798 / 9. 13546 - TP9 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.0 cm

Approximate total dry weight of soil = 870.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of sandstone and plant matter.

No asbestos detected.

Sample No. 10. ASET96618 / 99798 / 10. 13546 - TP10 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 10.6 cm

Approximate total dry weight of soil = 1056.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, sandstone and plant matter.

Sample No. 11. ASET96618 / 99798 / 11. 13546 - TP11 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 7.1 cm

Approximate total dry weight of soil = 714.0g.

The sample consisted of a mixture of clayish soil, stones, synthetic mineral fibres, fragments of wood chips and plant matter.

No asbestos detected.

Sample No. 12. ASET96618 / 99798 / 12. 13546 - TP12 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 8.4 cm

Approximate total dry weight of soil = 835.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of wood chips and plant matter.

No asbestos detected.

Sample No. 13. ASET96618 / 99798 / 13. 13546 - TP14 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.7 cm

Approximate total dry weight of soil = 670.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of wood chips and plant matter.

No asbestos detected.

Sample No. 14. ASET96618 / 99798 / 14. 13546 - TP15 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 8.4 cm

Approximate total dry weight of soil = 836.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of shale and plant matter.

No asbestos detected.

Sample No. 15. ASET96618 / 99798 / 15. 13546 - TP16 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 8.6 cm

Approximate total dry weight of soil = 864.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement and plant matter.

No asbestos detected.

Sample No. 16. ASET96618 / 99798 / 16. 13546 - TP17 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 9.2 cm

Approximate total dry weight of soil = 918.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, slag and plant matter.

No asbestos detected.

Sample No. 17. ASET96618 / 99798 / 17. 13546 - TP18 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.8 cm

Approximate total dry weight of soil = 680.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, wood chips and plant matter.

Sample No. 18. ASET96618 / 99798 / 18. 13546 - TP19 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 8.8 cmApproximate total dry weight of soil = 876.0g.

The sample consisted of a mixture of clayish sandy soil, stones, synthetic mineral fibres, wood chips and plant matter.

No asbestos detected.

Reported by,

Juan S

Mahen De Silva. BSc, MSc, Grad Dip (Occ Hyg) Occupational Hygienist / Approved Identifier. Approved Signatory WORLD RECOGNISED ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing.

This report is consistent with the analytical procedures and reporting recommendations in the Western Australia Guidelines for the Assessment Remediation and Management of Asbestos contaminated sites in Western Australia and it also satisfies the requirements of the current NEPM Guidelines. NATA Accreditation does not cover the performance of this service.

Disclaimers;

The approx; weights given above can be used only as a guide. They do not represent absolute weights of each kind of asbestos, as it is impossible to extract all loose fibres from soil and other asbestos containing building material samples using this method. However above figures may be used as closest approximations to the exact values in each case. Estimation and/or reporting of asbestos fibre weights in asbestos containing materials and soil is out of the Scope of the NATA Accreditation. NATA Accreditation only covers the qualitative part of the results reported. This weight disclaimer also covers weight / weight percentages if given.

ACM - Asbestos Containing Material - Products or materials that contain asbestos in an inert bound matrix such as cement or resin. Here taken to be sound material, even as fragments and not fitting through a 7mm X 7 mm sieve.

- AF -Includes asbestos free fibres, small fibre bundles and also ACM fragments that pass through a 7mm X 7 mm sieve.
- FA -Friable asbestos material such as severely weathered ACM, and asbestos in the form of loose fibrous material such as insulation products.
- ^ denotes loose fibres of relevant asbestos types detected in soil/dust.
- * denotes asbestos detected in ACM in bonded form.
- # denotes friable asbestos as soft fibro plaster and/ or highly weathered ACM that will easily crumble.

The results contained in this report relate only to the sample/s submitted for testing. Australian Safer Environment & Technology accepts no responsibility for whether or not the submitted sample/s is/are representative. Results indicating "No asbestos detected" indicates a reporting limit specified in AS4964 -2004 which is 0.1g/ Kg (0.01%). Any amounts detected at assumed lower level than that would be reported, however those assumed lower levels may be treated as

"No asbestos detected" as specified and recommended by A4964-2004. Trace / respirable level asbestos will be reported only when detected and trace analysis have been performed on each sample as required by AS4964-2004. When loose asbestos fibres/fibre bundles are detected and reported that means they are larger handpicked fibres/fibre bundles, and they do not represent respirable fibres. Dust/soil samples are always subjected to trace analysis except where the amounts involved are extremely minute and trace analysis is not possible to be carried out. When trace analysis is not performed on dust samples it will be indicated in the report that trace analysis has not been carried out due to the volume of the sample being extremely minute.

Estimation of asbestos weights involves the use of following assumptions;

Volume of each kind of Asbestos present in broken edges have been visually estimated and its been assumed that volumes remain similar throughout the binding matrix and those volumes are only approximate and not exact. Material densities have been assumed to be similar to commonly found similar materials and may not be exact.

All samples indicating "No asbestos detected" are assumed to be less than 0.001% for friable AF and FA portions detected and 0.01% for ACM detected unless the approximate weight is given.

AUSTRALIAN SAFER ENVIRONMENT & TECHNOLOGY PTY LTD

ABN 36 088 095 112

Our ref: ASET97388 / 100568 / 1 - 4 Your ref: 13546 – Kemps Creek NATA Accreditation No: 14484

15 November 2021

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

Attn: Mr Sam Jones

Accredited for compliance with ISO/IEC 17025 - Testing.

Dear Sam

Asbestos Identification

This report presents the results of four samples, forwarded by Alliance Geotechnical on 14 October 2021, for analysis for asbestos.

1.Introduction: Four samples forwarded were examined and analysed for the presence of asbestos on 15 November 2021.

2. Methods: The samples were examined under a Stereo Microscope and selected fibres were analysed by Polarized Light Microscopy in conjunction with Dispersion Staining method (Australian Standard AS 4964 - 2004 and Safer Environment Method 1 as the supplementary work instruction) (Qualitative Analysis only).

> The report also provides approximate weights and percentages, categories of asbestos forms appearing in the sample, such as AF(Asbestos Fines), FA(Friable Asbestos) and ACM (Asbestos Containing Material), also satisfying the requirements of the WA/ NEPM Guidelines).

3. Results: Sample No. 1. ASET97388 / 100568 / 1. 13546 - TP41 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.6 cm

Approximate total dry weight of soil = 656.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of brick, cement, wood chips and plant matter.

No asbestos detected.

Sample No. 2. ASET97388 / 100568 / 2. 13546 - TP42 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.9 cm

Approximate total dry weight of soil = 693.0g.

The sample consisted of a mixture of clayish sandy soil, stones, synthetic mineral fibres, fragments of cement, plastic, wood chips and plant matter.

No asbestos detected.

Sample No. 3. ASET97388 / 100568 / 3. 13546 - TP43 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.9 cm

Approximate total dry weight of soil = 687.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of brick, cement, glass, wood chips and plant matter.

No asbestos detected.

SUITE 710 / 90 GEORGE STREET, HORNSBY NSW 2077 - P.O. BOX 1644 HORNSBY WESTFIELD NSW 1635 PHONE: (02) 99872183 FAX: (02)99872151 EMAIL: info@ausset.com.au WEBSITE: www.Ausset.com.au

Sample No. 4. ASET97388 / 100568 / 4. 13546 - TP44 0.0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.0 cm Approximate total dry weight of soil = 598.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of glass, plastic, wood chips and plant matter.

No asbestos detected.

Reported by,

Jun 2

Mahen De Silva. BSc, MSc, Grad Dip (Occ Hyg) Occupational Hygienist / Approved Identifier. Approved Signatory NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing.

This report is consistent with the analytical procedures and reporting recommendations in the Western Australia Guidelines for the Assessment Remediation and Management of Asbestos contaminated sites in Western Australia and it also satisfies the requirements of the current NEPM Guidelines. NATA Accreditation does not cover the performance of this service.

Disclaimers;

The approx; weights given above can be used only as a guide. They do not represent absolute weights of each kind of asbestos, as it is impossible to extract all loose fibres from soil and other asbestos containing building material samples using this method. However above figures may be used as closest approximations to the exact values in each case. Estimation and/or reporting of asbestos fibre weights in asbestos containing materials and soil is out of the Scope of the NATA Accreditation. NATA Accreditation only covers the qualitative part of the results reported. This weight disclaimer also covers weight / weight percentages if given.

ACM - Asbestos Containing Material - Products or materials that contain asbestos in an inert bound matrix such as cement or resin. Here taken to be sound material, even as fragments and not fitting through a 7mm X 7 mm sieve.

- AF -Includes asbestos free fibres, small fibre bundles and also ACM fragments that pass through a 7mm X 7 mm sieve.
- FA -Friable asbestos material such as severely weathered ACM, and asbestos in the form of loose fibrous material such as insulation products.
- ^ denotes loose fibres of relevant asbestos types detected in soil/dust.
- * denotes asbestos detected in ACM in bonded form.
- # denotes friable asbestos as soft fibro plaster and/ or highly weathered ACM that will easily crumble.

The results contained in this report relate only to the sample/s submitted for testing. Australian Safer Environment & Technology accepts no responsibility for whether or not the submitted sample/s is/are representative. Results indicating "No asbestos detected" indicates a reporting limit specified in AS4964 -2004 which is 0.1g/ Kg (0.01%). Any amounts detected at assumed lower level than that would be reported, however those assumed lower levels may be treated as

"No asbestos detected" as specified and recommended by A4964-2004. Trace / respirable level asbestos will be reported only when detected and trace analysis have been performed on each sample as required by AS4964-2004. When loose asbestos fibres/fibre bundles are detected and reported that means they are larger handpicked fibres/fibre bundles, and they do not represent respirable fibres. Dust/soil samples are always subjected to trace analysis except where the amounts involved are extremely minute and trace analysis is not possible to be carried out. When trace analysis is not performed on dust samples it will be indicated in the report that trace analysis has not been carried out due to the volume of the sample being extremely minute.

Estimation of asbestos weights involves the use of following assumptions;

Volume of each kind of Asbestos present in broken edges have been visually estimated and its been assumed that volumes remain similar throughout the binding matrix and those volumes are only approximate and not exact. Material densities have been assumed to be similar to commonly found similar materials and may not be exact.

All samples indicating "No asbestos detected" are assumed to be less than 0.001% for friable AF and FA portions detected and 0.01% for ACM detected unless the approximate weight is given.

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Sam Jones

Report 841413-S

Project name ADDITIONAL: KEMPS CREEK

Project ID 13546
Received Date Nov 16, 2021

Client Sample ID			TP63 0.0-0.1
Sample Matrix			Soil
Eurofins Sample No.			S21-No36962
Date Sampled			Oct 18, 2021
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons	1		
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	< 50
TRH C29-C36	50	mg/kg	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	< 100
TRH >C34-C40	100	mg/kg	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100
ВТЕХ			
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	79
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5
Chrysene	0.5	mg/kg	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5

Client Sample ID			TP63 0.0-0.1 Soil
Sample Matrix			
Eurofins Sample No.			S21-No36962
Date Sampled			Oct 18, 2021
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Fluoranthene	0.5	mg/kg	< 0.5
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	< 0.5
Total PAH*	0.5	mg/kg	< 0.5
2-Fluorobiphenyl (surr.)	1	%	99
p-Terphenyl-d14 (surr.)	1	%	113
Heavy Metals			
Arsenic	2	mg/kg	7.7
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	21
Copper	5	mg/kg	33
Lead	5	mg/kg	24
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	17
Zinc	5	mg/kg	56
% Moisture	1	%	16

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Nov 16, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Nov 16, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Nov 16, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Nov 16, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Nov 16, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Nov 16, 2021	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Nov 16, 2021	14 Days

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

> Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

> > Nov 17, 2021

Nov 16, 2021 12:41 PM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Alliance Geotechnical Address:

10 Welder Road Seven Hills

NSW 2147

Project Name:

ADDITIONAL: KEMPS CREEK

Project ID:

13546

Order No.: Report #:

841413

Phone: 1800 288 188 02 9675 1888 Fax:

Priority: Overnight **Contact Name:** Sam Jones

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Eurofins Analytical Services Manager: Andrew Black

Melbourne Laboratory - NATA # 1261 Site # 1254 Sydney Laboratory - NATA # 1261 Site # 18217 X Brisbane Laboratory - NATA # 1261 Site # 20794 Mayfield Laboratory - NATA # 1261 Site # 25079 Perth Laboratory - NATA # 2377 Site # 2370 External Laboratory No Sample ID Sample Date Sampling Matrix LAB ID	
Brisbane Laboratory - NATA # 1261 Site # 20794 Mayfield Laboratory - NATA # 1261 Site # 25079 Perth Laboratory - NATA # 2377 Site # 2370 External Laboratory No Sample ID Sample Date Sampling Matrix LAB ID	
Mayfield Laboratory - NATA # 1261 Site # 25079 Perth Laboratory - NATA # 2377 Site # 2370 External Laboratory No Sample ID Sample Date Sampling Matrix LAB ID	Х
Perth Laboratory - NATA # 2377 Site # 2370 External Laboratory No Sample ID Sample Date Sampling Matrix LAB ID	
External Laboratory No Sample ID Sample Date Sampling Matrix LAB ID	
No Sample ID Sample Date Sampling Matrix LAB ID	
Time	
1 TP63 0.0-0.1 Oct 18, 2021 Soil S21-No36962 X	
Test Counts 1	Х

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs...

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 841413-S

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	1 3 3			•	
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank	Ilig/kg	V 0.5	0.3	1 033	
Polycyclic Aromatic Hydrocarbons		Ι	T		
Acenaphthene	ma/ka	< 0.5	0.5	Pass	
•	mg/kg				
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank		1	<u> </u>	T	
Heavy Metals	1				
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons					
TRH C6-C9	%	88	70-130	Pass	
TRH C10-C14	%	88	70-130	Pass	
Naphthalene	%	88	70-130	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
TRH C6-C10			%	87	70-130	Pass	
TRH >C10-C16			%	85	70-130	Pass	
LCS - % Recovery							
BTEX							
Benzene			%	111	70-130	Pass	
Toluene			%	92	70-130	Pass	
Ethylbenzene			%	91	70-130	Pass	
m&p-Xylenes			%	89	70-130	Pass	
o-Xylene			%	92	70-130	Pass	
Xylenes - Total*			%	90	70-130	Pass	
LCS - % Recovery			,,,	- 55	10.00		
Polycyclic Aromatic Hydrocarbons	 s				Ι		
Acenaphthene	3		%	91	70-130	Pass	
Acenaphthylene			%	84	70-130	Pass	
Anthracene					70-130		
			%	87	70-130	Pass	
Benza(a)anthracene			%	88		Pass	
Benzo(a)pyrene			%	82	70-130	Pass	
Benzo(b&j)fluoranthene			%	87	70-130	Pass	
Benzo(g.h.i)perylene			%	72	70-130	Pass	
Benzo(k)fluoranthene			%	97	70-130	Pass	
Chrysene			%	86	70-130	Pass	
Dibenz(a.h)anthracene			%	70	70-130	Pass	
Fluoranthene			%	87	70-130	Pass	
Fluorene			%	90	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	75	70-130	Pass	
Naphthalene			%	88	70-130	Pass	
Phenanthrene			%	87	70-130	Pass	
Pyrene			%	87	70-130	Pass	
LCS - % Recovery							
Heavy Metals							
Arsenic			%	92	80-120	Pass	
Cadmium			%	87	80-120	Pass	
Chromium			%	107	80-120	Pass	
Copper			%	106	80-120	Pass	
Lead			%	109	80-120	Pass	
Mercury			%	84	80-120	Pass	
Nickel			%	107	80-120	Pass	
Zinc			%	99	80-120	Pass	
		QA			Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1	Limits	Limits	Code
Spike - % Recovery							
Total Recoverable Hydrocarbons				Result 1			
TRH C6-C9	S21-No23561	NCP	%	71	70-130	Pass	
TRH C10-C14	S21-No34556	NCP	%	103	70-130	Pass	
Naphthalene	S21-No23561	NCP	%	76	70-130	Pass	
TRH C6-C10	S21-No15074	NCP	%	85	70-130	Pass	
TRH >C10-C16	S21-No34556	NCP	%	100	70-130	Pass	
Spike - % Recovery	1 52.11004000		,,,	100			
BTEX				Result 1			
Benzene	S21-No23561	NCP	%	92	70-130	Pass	
				+			
Toluene	S21-No23561	NCP	%	81	70-130	Pass	
Ethylbenzene	S21-No23561	NCP	%	80	70-130	Pass	
m&p-Xylenes	S21-No23561	NCP	%	79	70-130	Pass	
o-Xylene	S21-No23561	NCP	%	81	70-130	Pass	
Xylenes - Total*	S21-No23561	NCP	%	80	70-130	Pass	

Report Number: 841413-S

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Polycyclic Aromatic Hydrocarbons	S			Result 1					
Acenaphthene	S21-No36962	CP	%	98			70-130	Pass	
Acenaphthylene	S21-No36962	СР	%	97			70-130	Pass	
Anthracene	S21-No36962	СР	%	92			70-130	Pass	
Benz(a)anthracene	S21-No36962	СР	%	93			70-130	Pass	
Benzo(a)pyrene	S21-No36962	СР	%	90			70-130	Pass	
Benzo(b&j)fluoranthene	S21-No36962	CP	%	93			70-130	Pass	
Benzo(g.h.i)perylene	S21-No36962	CP	%	80			70-130	Pass	
Benzo(k)fluoranthene	S21-No36962	CP	%	108			70-130	Pass	
Chrysene	S21-No36962	CP	%	87			70-130	Pass	
Dibenz(a.h)anthracene	S21-No36962	CP	%	75			70-130	Pass	
Fluoranthene	S21-No36962	CP	%	92			70-130	Pass	
Fluorene	S21-No36962	CP	//	99			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S21-No36962	CP	<u> </u>	82			70-130	Pass	
Naphthalene	S21-No36962	CP	<u> </u>	94			70-130	Pass	
•	S21-N036962	CP		96					
Phenanthrene			%				70-130	Pass	
Pyrene	S21-No36962	CP	%	94			70-130	Pass	
Spike - % Recovery				Doort 4	1				
Heavy Metals	004 N 00075	NOD	0/	Result 1			75.405	D	
Arsenic	S21-No36075	NCP	%	92			75-125	Pass	
Cadmium	S21-No34060	NCP	%	90			75-125	Pass	
Chromium	S21-No36075	NCP	%	93			75-125	Pass	
Copper	S21-No36075	NCP	%	101			75-125	Pass	
Lead	S21-No34060	NCP	%	99			75-125	Pass	
Mercury	S21-No34060	NCP	%	98			75-125	Pass	
Nickel	S21-No36075	NCP	%	91			75-125	Pass	
Zinc	S21-No36075	NCP	%	101			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S21-No23560	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S21-No36330	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-No36330	NCP	mg/kg	68	74	9.0	30%	Pass	
TRH C29-C36	S21-No36330	NCP	mg/kg	84	95	12	30%	Pass	
Naphthalene	S21-No23560	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-No23560	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S21-No36330	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-No36330	NCP	mg/kg	130	150	11	30%	Pass	
TRH >C34-C40	S21-No36330	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate							22.12	1 3.00	
BTEX				Result 1	Result 2	RPD			
Benzene	S21-No23560	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-No23560	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-No23560	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-No23560	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
' '	S21-No23560	NCP		< 0.2					
o-Xylene		1	mg/kg		< 0.1	<1	30%	Pass	
Xylenes - Total*	S21-No23560	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate Polycyclic Arometic Hydrocerbone				Dogult 4	Booth 2	DDD			
Polycyclic Aromatic Hydrocarbons		NOD	no =: /1	Result 1	Result 2	RPD	200/	D	
Acenaphthene	S21-No36330	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-No36330	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-No36330	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-No36330	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Polycyclic Aromatic Hydrocar	bons			Result 1	Result 2	RPD			
Benzo(a)pyrene	S21-No36330	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-No36330	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-No36330	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-No36330	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-No36330	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-No36330	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-No36330	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S21-No36330	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-No36330	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-No36330	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-No36330	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-No36330	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-No36291	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S21-No36291	NCP	mg/kg	0.4	0.4	5.0	30%	Pass	
Chromium	S21-No36291	NCP	mg/kg	110	120	2.0	30%	Pass	
Copper	S21-No36291	NCP	mg/kg	140	150	2.0	30%	Pass	
Lead	S21-No36291	NCP	mg/kg	97	99	2.0	30%	Pass	
Mercury	S21-No36291	NCP	mg/kg	0.5	0.5	3.0	30%	Pass	
Nickel	S21-No36291	NCP	mg/kg	63	65	2.0	30%	Pass	
Zinc	S21-No36291	NCP	mg/kg	390	400	2.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S21-No36330	NCP	%	11	8.4	24	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised by:

N02

Andrew Black Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) John Nguyen Senior Analyst-Metal (NSW) Roopesh Rangarajan Senior Analyst-Volatile (NSW)

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 841413-S

Office & Lab: 8-10 Welder Road, Seven Hills NSW 2147

Postal Address: PO Box 275, Seven Hills NSW 1730

This email and any attachments are confidential and intended solely for the use of the individual or entity to whom they are addressed. Unless we provide express written consent, no part of our reports should be reproduced, distributed or communicated to any third party. If you received this communication in error, please notify the sender immediately. Unauthorised use of this communication is prohibited.

From: Andrew Black < Andrew Black@eurofins.com >

Sent: Tuesday, 16 November 2021 12:31 PM

To: Sam Jones <<u>SamJones@allgeo.com.au</u>>; #AU04_Enviro_Sample_NSW <<u>EnviroSampleNSW@eurofins.com</u>>

Subject: RE: Eurofins Sample Receipt Advice - Report 841019 : Site ADDITIONAL: KEMPS CREEK (13546)

What report does it belong to Sam? We have a number of Kemps Creek in the system

Andrew Black

Analytical Services Manager

Eurofins | Environment Testing

Unit 7

7 Friesian Close SANDGATE, NSW, 2304

AUSTRALIA

Phone: +61 2 9900 8490 Mobile: +61 410 220 750

For sample receipt enquiries (eg. SRAs, changes to analysis) please contact <u>EnvirosampleNSW@eurofins.com</u> or 02 9900 8421 (7am – 9pm).

For despatch enquiries (eg. courier bookings, bottle orders) please contact <u>AU04 Despatch SYD@eurofins.com</u> or 0488 400 929 (8am – 4pm).

Email: AndrewBlack@eurofins.com

Website: eurofins.com.au/environmental-testing

From: Sam Jones <<u>SamJones@allgeo.com.au</u>> Sent: Tuesday, 16 November 2021 12:28 PM

To: #AU04_Enviro_Sample_NSW <<u>EnviroSampleNSW@eurofins.com</u>>; Andrew Black

<<u>AndrewBlack@eurofins.com</u>>

Subject: RE: Eurofins Sample Receipt Advice - Report 841019 : Site ADDITIONAL: KEMPS CREEK (13546)

EXTERNAL EMAIL*

Hi guys,

I cant see the results for TP63 0.0-0.1.

Haven't checked if any others are missing yet but please advise on this on as soon as possible.

Thank you.

Regards,

Sam Jones

Environmental Consultant

Certificate of Analysis

Environment Testing

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

NATA Accredited
Accreditation Number 1261
Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Sam Jones Report 841019-AID

Project Name ADDITIONAL: KEMPS CREEK

Project ID 13546

Received Date Nov 10, 2021 **Date Reported** Nov 17, 2021

Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE. Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 %" and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Project Name ADDITIONAL: KEMPS CREEK

Project ID 13546

 Date Sampled
 Oct 22, 2021

 Report
 841019-AID

Client Sample ID	Eurofins Sample No. Date Sampled Sample Description		Sample Description	Result
DS13	21-No33593	Oct 22, 2021	Sample consisted of: Brown fine grained clavey soil, glass and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
DS14	21-No33594	Oct 22, 2021	Approximate Sample 653g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyNov 15, 2021Indefinite

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Contact Name:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 IANZ # 1327 NATA # 2377 Site # 2370

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name:

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

Address:

ADDITIONAL: KEMPS CREEK

Project ID:

13546

Order No.: Report #:

Fax:

Asbestos - WA guidelines

Sydney

Unit F3, Building F

841019

Phone: 1800 288 188

02 9675 1888

Received: Nov 10, 2021 3:28 PM

Due: Nov 17, 2021 Priority: 5 Day

Eurofins Analytical Services Manager: Andrew Black

Sam Jones

Sample Detail

Melbourne Laboratory - NATA # 1261 Site # 1254	
Sydney Laboratory - NATA # 1261 Site # 18217	Х
Brisbane Laboratory - NATA # 1261 Site # 20794	
Mayfield Laboratory - NATA # 1261 Site # 25079	

Perth Laboratory - NATA # 2377 Site # 2370

External Laboratory

Date Reported: Nov 17, 2021

No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID	
1	DS13	Oct 22, 2021		Soil	S21-No33593	Х
2	DS14	Oct 22, 2021		Soil	S21-No33594	Χ
Test	Counts					2

Page 4 of 6

Internal Quality Control Review and Glossary General

- QC data may be available on request. All soil results are reported on a dry basis, unless otherwise stated.
- 3 Samples were analysed on an 'as received' basis
- Information identified on this report with the colour blue indicates data provided by customer that may have an impact on the results
- Information identified on this report with the colour orange indicates sections of the report not covered by the laboratory's scope of NATA accreditation.
- 6 This report replaces any interim results previously issued.

Holding Times

Please refer to the most recent version of the 'Sample Preservation and Container Guide' for holding times (QS3001).

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

Percentage weight-for-weight basis, e.g. of asbestos in asbestos-containing finds in soil samples (% w/w) % w/w: F/fld

Airborne fibre filter loading as Fibres (N) per Fields counted (n)
Airborne fibre reported concentration as Fibres per millilitre of air drawn over the sampler membrane (C) F/mL

g, kg Mass, e.g. of whole sample (M) or asbestos-containing find within the sample (m)

Concentration in grams per kilogram g/kg L, mL

Volume, e.g. of air as measured in AFM ($\mathbf{V} = \mathbf{r} \times \mathbf{t}$)

L/min Airborne fibre sampling Flowrate as litres per minute of air drawn over the sampler membrane (r) min

Time (t), e.g. of air sample collection period

Calculations

Airborne Fibre Concentration: $C = \underline{} \times \underline{} \times \underline{} \times \underline{} \times \underline{} = K \times \underline{} \times \underline{} \times \underline{}$

Asbestos Content (as asbestos): $\% w/w = \frac{(m \times PA)}{}$

Weighted Average (of asbestos): $\%_W = \sum_{\nu} \frac{(m \times P_A)_A}{\nu}$

Terms

Estimated percentage of asbestos in a given matrix. May be derived from knowledge or experience of the material, informed by HSG264 Appendix 2, else assumed to be 15% in accordance with WA DOH Appendix 2 (P_A). %ashestos

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded (non-friable) condition. For the purposes of the

NEPM and WA DOH, ACM corresponds to material larger than 7 mm x 7 mm

AF Asbestos Fines. Asbestos contamination within a soil sample, as defined by WA DOH. Includes loose fibre bundles and small pieces of friable and non-friable

material such as asbestos cement fragments mixed with soil. Considered under the NEPM as equivalent to "non-bonded / friable"

AFM Airborne Fibre Monitoring, e.g. by the MFM.

Amosite Asbestos Detected. Amosite may also refer to Fibrous Grunerite or Brown Asbestos. Identified in accordance with AS 4964-2004.

AS Australian Standard.

Asbestos Content (as asbestos) Total % w/w asbestos content in asbestos-containing finds in a soil sample (% w/w).

Chrysotile Chrysotile Asbestos Detected. Chrysotile may also refer to Fibrous Serpentine or White Asbestos. Identified in accordance with AS 4964-2004.

coc Chain of Custody

Compliant Indicates the item has been assessed against the relevant criteria, e.g. NATA SAC_07.

Crocidolite Asbestos Detected. Crocidolite may also refer to Fibrous Riebeckite or Blue Asbestos, Identified in accordance with AS 4964-2004 Crocidolite

Sample is dried by heating prior to analysis.

DS Dispersion Staining. Technique required for Unequivocal Identification of asbestos fibres by PLM.

Fibrous Asbestos. Asbestos containing material that is wholly or in part friable, including materials with higher asbestos content with a propensity to become FA

frible with handling, and any material that was previously non-friable and in a severely degraded condition. For the purposes of the NEPM and WA DOH, FA generally corresponds to material larger than 7 mm x 7 mm, although FA may be more difficult to visibly distinguish and may be assessed as AF.

Fibre Count Total of all fibres (whether asbestos or not) meeting the counting criteria set out in the NOHSC:3003

Fibre ID Fibre Identification. Unequivocal identification of asbestos fibres according to AS 4964-2004. Includes Chrysotile. Amosite (Grunerite) or Crocidolite asbestos.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability **HSG248** UK HSE HSG248, Asbestos: The Analysts Guide, 2nd Edition (2021).

UK HSE HSG264, Asbestos: The Survey Guide (2012) **HSG264**

ISO (also ISO/IEC) International Organization for Standardization / International Electrotechnical Commission.

Microscope constant (K) as derived from the effective filter area of the given AFM membrane used for collecting the sample (A) and the projected eyepiece K Factor

graticule area of the specific microscope used for the analysis (a).

LOR Limit of Reporting.

MFM (also NOHSC:3003) Membrane Filter Method. As described by the Australian Government National Occupational Health and Safety Commission, Guidance Note on the Membrane

Filter Method for Estimating Airborne Asbestos Fibres, 2nd Edition [NOHSC:3003(2005)].

N/A Not Applicable. Indicates a result or assessment is not required or applicable to that item National Association of Testing Authorities, Australia NATA

NEPM (also ASC NEPM) National Environment Protection (Assessment of Site Contamination) Measure, (2013, as amended).

Organic Organic Fibres Detected. Organic may refer to Natural or Man-Made Polymeric Fibres. Identified in accordance with AS 4964-2004

PCM Phase Contrast Microscopy. As used for Fibre Counting according to the MFM.

PLM Polarised Light Microscopy. As used for Fibre Identification and Trace Analysis according to AS 4964-2004.

SAC 0 Specific Accreditation Criteria: ISO/IEC 17025 Application Document, Life Sciences - Annex, Asbestos sampling and testing. SMF Synthetic Mineral Fibre Detected. SMF may also refer to Man Made Vitreous Fibres. Identified in accordance with AS 4964-2004

SRA

Trace Analysis Analytical procedure used to detect the presence of respirable fibres (particularly asbestos) in a given sample matrix

UK HSE HSG United Kingdom, Health and Safety Executive, Health and Safety Guidance, publication.

Unidentified Mineral Fibre Detected. Fibrous minerals that are detected but have not been unequivocally identified by PLM with DS according the AS 4964-2004. May include (but not limited to) Actinolite, Anthophyllite or Tremolite asbestos. LIME

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (updated 2021), including Appendix Four: Laboratory analysis

Weighted Average Combined average % w/w asbestos content of all asbestos-containing finds in the given aliquot or total soil sample (%wA)

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066

Page 5 of 6 Date Reported: Nov 17, 2021 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 841019-AID

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 N/A

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Asbestos Counter/Identifier:

Laxman Dias Senior Analyst-Asbestos (NSW)

Authorised by:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 841019-AID

5 DAY TAT ADDITIONAL ANALYSIS: FW: Eurofins Test Results, Invoice - Report 834488 : Site KEMPS CREEK (13546)

Andrew Black < Andrew Black@eurofins.com>

Wed 11/10/2021 3:29 PM

To: #AU04_Enviro_Sample_NSW <EnviroSampleNSW@eurofins.com>

Additional thanks team on 5 day TAT

Andrew Black

Analytical Services Manager

Eurofins | Environment Testing

Unit 7 7 Friesian Close SANDGATE, NSW, 2304 AUSTRALIA

Phone: +61 2 9900 8490 Mobile: +61 410 220 750

For sample receipt enquiries (eg. SRAs, changes to analysis) please contact <u>EnvirosampleNSW@eurofins.com</u> or 02 9900 8421 (7am – 9pm).

For despatch enquiries (eg. courier bookings, bottle orders) please contact <u>AU04 Despatch SYD@eurofins.com</u> or 0488 400 929 (8am – 4pm).

Email: AndrewBlack@eurofins.com

Website: eurofins.com.au/environmental-testing

From: Sam Jones <SamJones@allgeo.com.au> Sent: Wednesday, 10 November 2021 3:28 PM

To: Andrew Black <AndrewBlack@eurofins.com>; Jacob Walker <jacob.walker@allgeo.com.au>

Cc: enviro <enviro@allgeo.com.au>

Subject: RE: Eurofins Test Results, Invoice - Report 834488 : Site KEMPS CREEK (13546)

EXTERNAL EMAIL*

Hi Andrew,

Please analyse DS13 and DS14 for NEPM 500ml asbestos on standard TAT.

Thank you.

Regards,

Sam Jones

Environmental Consultant

Mobile: 0430 214 402 | Email: SamJones@allgeo.com.au

Office Phone: 1800 288 188

Admin Email: admin@allgeo.com.au

Website: allgeo.com.au

Office & Lab: 8-10 Welder Road, Seven Hills NSW 2147

Postal Address: PO Box 275, Seven Hills NSW 1730

From: Sam Jones <<u>Sam Jones@allgeo.com.au</u>>
Sent: Wednesday, 3 November 2021 4:24 PM
To: Andrew Black <<u>AndrewBlack@eurofins.com</u>>

Cc: Emma Beesley < <u>EmmaBeesley@eurofins.com</u>>; Jacob Walker < <u>jacob.walker@allgeo.com.au</u>>

Subject: RE: 13546 COC

EXTERNAL EMAIL*

Hi Andrew,

In addition to this, please also analyse the following:

TP41 0.0-0.1, TP42 0.0-0.1, TP43 0.0-0.1, & TP44 0.0-0.1 all for Suite B7 and B13. PP4 0.0-0.1, PP4 0.5-0.6, PP4 1.0-1.1, PP4 1.5-1.6, PP4 2.0-2.1, PP6 0.0-0.1, PP6 0.5-0.6, PP6 1.0-1.1, PP6 1.5-1.6, PP6 2.0-2.1, PP6 2.4-2.5, TP44 0.0-0.1, TP44 0.4-0.5, TP44 1.0-1.1, TP44 1.4-1.5, TP44 2.0-2.1, and TP44 2.4-2.5 all for pH and EC.

PP4 1.5-1.6, TP44 2.0-2.1, and PP6 2.4-2.5 for Aggressivity Suite L2.

I am aware that some of these may be past recommended holding times.

Thank you.

Regards,

Sam Jones

Environmental Consultant

Mobile: 0430 214 402 | Email: SamJones@allgeo.com.au

Office Phone: 1800 288 188

Admin Email: admin@allgeo.com.au

Website: allgeo.com.au

Office & Lab: 8-10 Welder Road, Seven Hills NSW 2147

Postal Address: PO Box 275, Seven Hills NSW 1730

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Jacob Walker

Report 838889-S

Project name ADDITIONAL: KEMPS CREEK

Project ID 13546
Received Date Nov 03, 2021

Client Sample ID			TP41 0.0-0.1	TP42 0.0-0.1	TP43 0.0-0.1	TP44 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-No17421	S21-No17422	S21-No17423	S21-No17424
Date Sampled			Oct 12, 2021	Oct 12, 2021	Oct 12, 2021	Oct 12, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	100
TRH C29-C36	50	mg/kg	54	< 50	< 50	150
TRH C10-C36 (Total)	50	mg/kg	54	< 50	< 50	250
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	320
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	210
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	530
ВТЕХ	•					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	65	73	130	114
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Report Number: 838889-S

Client Sample ID Sample Matrix Eurofins Sample No.			TP41 0.0-0.1 Soil S21-No17421	TP42 0.0-0.1 Soil S21-No17422	TP43 0.0-0.1 Soil S21-No17423	TP44 0.0-0.1 Soil S21-No17424
Date Sampled			Oct 12, 2021	Oct 12, 2021	Oct 12, 2021	Oct 12, 2021
Test/Reference	LOR	Unit		,		
Polycyclic Aromatic Hydrocarbons						
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	113	114	105	106
p-Terphenyl-d14 (surr.)	1	%	108	112	104	107
Organochlorine Pesticides	·	•				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	Q09INT	Q09INT	T/II ^{eop}	Q09INT
Tetrachloro-m-xylene (surr.)	1	%	115	116	106	108
Polychlorinated Biphenyls		1				
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	Q09INT	Q09INT	T/II ^{eop}	Q09INT
Tetrachloro-m-xylene (surr.)	1	%	115	116	106	108

Report Number: 838889-S

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			TP41 0.0-0.1 Soil S21-No17421 Oct 12, 2021	TP42 0.0-0.1 Soil S21-No17422 Oct 12, 2021	TP43 0.0-0.1 Soil S21-No17423 Oct 12, 2021	TP44 0.0-0.1 Soil S21-No17424 Oct 12, 2021
Test/Reference	LOR	Unit				
Heavy Metals		_				
Arsenic	2	mg/kg	5.2	7.7	9.6	4.7
Cadmium	0.4	mg/kg	< 0.4	0.5	< 0.4	< 0.4
Chromium	5	mg/kg	15	18	21	13
Copper	5	mg/kg	21	36	35	19
Lead	5	mg/kg	17	21	23	15
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	12	15	22	9.4
Zinc	5	mg/kg	61	89	95	81
% Moisture	1	%	21	17	18	18
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	-	-	-	67
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	-	-	6.1

Client Sample ID			PP4 0.0-0.1	PP4 0.5-0.6	PP4 1.0-1.1	PP4 1.5-1.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-No17425	S21-No17426	S21-No17427	S21-No17428
Date Sampled			Oct 12, 2021	Oct 12, 2021	Oct 12, 2021	Oct 12, 2021
Test/Reference	LOR	Unit				
		·				
% Moisture	1	%	18	12	13	11
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	50	220	390	310
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	6.3	5.6	5.3	5.5
Chloride	10	mg/kg	-	-	-	530
Resistivity*	0.5	ohm.m	-	-	-	32
Sulphate (as SO4)	10	mg/kg	-	-	-	< 10

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	PP4 2.0-2.1 Soil S21-No17429 Oct 12, 2021	PP6 0.0-0.1 Soil S21-No17430 Oct 12, 2021	PP6 0.5-0.6 Soil S21-No17431 Oct 12, 2021	PP6 1.0-1.1 Soil S21-No17432 Oct 12, 2021
% Moisture	1	%	10	13	11	8.0
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	370	66	17	15
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.3	5.9	6.6	6.4

Client Sample ID Sample Matrix			PP6 1.5-1.6 Soil	PP6 2.0-2.1 Soil	PP6 2.4-2.5 Soil	TP44 0.4-0.5 Soil
Eurofins Sample No.			S21-No17433	S21-No17434	S21-No17435	S21-No17436
Date Sampled			Oct 12, 2021	Oct 12, 2021	Oct 12, 2021	Oct 12, 2021
Test/Reference	LOR	Unit				
% Moisture	1	%	10	10	13	12
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	20	22	84	24
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	6.5	6.5	6.1	6.3
Chloride	10	mg/kg	=	-	110	=
Resistivity*	0.5	ohm.m	-	-	120	-
Sulphate (as SO4)	10	mg/kg	-	-	< 10	-

Client Sample ID Sample Matrix			TP44 1.0-1.1 Soil	TP44 1.4-1.5 Soil	TP44 2.0-2.1 Soil	TP44 2.4-2.5 Soil
Eurofins Sample No.			S21-No17437	S21-No17438	S21-No17439	S21-No17440
Date Sampled			Oct 12, 2021	Oct 12, 2021	Oct 12, 2021	Oct 12, 2021
Test/Reference	LOR	Unit				
% Moisture	1	%	17	18	15	15
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	29	66	74	66
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	6.5	6.6	5.9	6.9
Chloride	10	mg/kg	-	-	16	-
Resistivity*	0.5	ohm.m	-	-	130	-
Sulphate (as SO4)	10	mg/kg	-	-	100	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Nov 16, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Nov 16, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Nov 16, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Nov 16, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Nov 16, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Nov 16, 2021	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Organochlorine Pesticides	Sydney	Nov 16, 2021	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Sydney	Nov 16, 2021	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Moisture	Sydney	Nov 09, 2021	14 Days
- Method: LTM-GEN-7080 Moisture			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Sydney	Nov 16, 2021	7 Days
- Method: LTM-INO-4030 Conductivity			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	Nov 16, 2021	7 Days
- Method: LTM-GEN-7090 pH by ISE			
Chloride	Sydney	Nov 16, 2021	28 Days
- Method: In-house method LTM-INO-4270 Anions by Ion Chromatography			
Sulphate (as SO4)	Sydney	Nov 16, 2021	28 Days
- Method: In-house method LTM-INO-4270 Sulphate by Ion Chromatograph			

email: EnviroSales@eurofins.com

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Perth

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51

Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

Alliance Geotechnical 10 Welder Road

Seven Hills

NSW 2147

Project Name:

ADDITIONAL: KEMPS CREEK

Project ID:

13546

Order No.: Report #:

838889

Phone: 1800 288 188 02 9675 1888 Fax:

Received: Nov 3, 2021 4:24 PM Due:

Nov 10, 2021 **Priority:** 5 Day

Contact Name: Jacob Walker

Eurofins Analytical Services Manager: Andrew Black

IANZ # 1327

		Sa	mple Detail			Conductivity (1:5 aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Suite B13: OCP/PCB	Aggressivity Soil Set	Moisture Set	Eurofins Suite B7
Melb	ourne Laborate	ory - NATA # 12	61 Site # 125	4							
Sydı	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA # 126	1 Site # 2079	4							
May	field Laboratory	/ - NATA # 1261	Site # 25079	ı							
Pert	h Laboratory - N										
Exte	rnal Laboratory	/		1							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	TP41 0.0-0.1	Oct 12, 2021		Soil	S21-No17421			Х		Х	Х
2	TP42 0.0-0.1	Oct 12, 2021		Soil	S21-No17422			Х		Х	Х
3	TP43 0.0-0.1	Oct 12, 2021		Soil	S21-No17423			Х		Х	Х
4	TP44 0.0-0.1	Oct 12, 2021		Soil	S21-No17424	Х	Х	Х		Х	Х
5	PP4 0.0-0.1	Oct 12, 2021		Soil	S21-No17425	Х	Х			Х	
6	PP4 0.5-0.6	Oct 12, 2021		Soil	S21-No17426	Х	Х			Х	
7	PP4 1.0-1.1	Oct 12, 2021		Soil	S21-No17427	Х	Х			Х	
8	PP4 1.5-1.6	Oct 12, 2021		Soil	S21-No17428				Х	Х	
9	PP4 2.0-2.1	Oct 12, 2021		S21-No17429	Х	Х			Х		

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Contact Name:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Alliance Geotechnical

Address: 10 Welder Road Seven Hills

NSW 2147

Project Name:

ADDITIONAL: KEMPS CREEK

Project ID:

13546

Order No.:

Report #: 838889 Phone: 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Dav

Nov 3, 2021 4:24 PM

Nov 10, 2021

Jacob Walker

		Sa	mple Detail			Conductivity (1:5 aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Suite B13: OCP/PCB	Aggressivity Soil Set	Moisture Set	Eurofins Suite B7
Mell	oourne Laborat	ory - NATA # 12	61 Site # 125	4							
Syd	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х
_		ry - NATA # 126		4							
May	field Laborator	y - NATA # 1261	Site # 25079								
Pert	h Laboratory -	NATA # 2377 Si	te # 2370								
Exte	rnal Laborator	у									
10	PP6 0.0-0.1	Oct 12, 2021		Soil	S21-No17430	Х	Х			Х	
11	PP6 0.5-0.6	Oct 12, 2021		Soil	S21-No17431	Х	Х			Х	
12	PP6 1.0-1.1	Oct 12, 2021		Soil	S21-No17432	Х	Х			Х	
13	PP6 1.5-1.6	Oct 12, 2021		Soil	S21-No17433	Х	Х			Х	
14	PP6 2.0-2.1	Oct 12, 2021		Soil	S21-No17434	Х	Х			Х	
15	PP6 2.4-2.5	Oct 12, 2021		Soil	S21-No17435				Х	Х	
16	TP44 0.4-0.5	Oct 12, 2021		Soil	S21-No17436	Х	Х			Х	
17	TP44 1.0-1.1	Oct 12, 2021		Soil	S21-No17437	Х	Х			Х	
18	TP44 1.4-1.5	Oct 12, 2021		Soil	S21-No17438	Х	Х			Х	
19	TP44 2.0-2.1	Oct 12, 2021		Soil	S21-No17439				Х	Х	
20	TP44 2.4-2.5	Oct 12, 2021		Soil	S21-No17440	Х	Х			Х	

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Alliance Geotechnical Address: 10 Welder Road

Seven Hills

NSW 2147

Project Name:

ADDITIONAL: KEMPS CREEK

Project ID: 13546 Order No.: Report #:

Fax:

Eurofins Environment Testing Australia Pty Ltd

838889

Phone: 1800 288 188 02 9675 1888

Received: Nov 3, 2021 4:24 PM Due: Nov 10, 2021

Priority: 5 Day Jacob Walker **Contact Name:**

Eurofins Analytical Services Manager: Andrew Black

Sample Detail	Conductivity (1:5 aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Suite B13: OCP/PCB	Aggressivity Soil Set	Moisture Set	Eurofins Suite B7
Melbourne Laboratory - NATA # 1261 Site # 1254						
Sydney Laboratory - NATA # 1261 Site # 18217	Х	Х	Х	Х	Х	Х
Brisbane Laboratory - NATA # 1261 Site # 20794						
Mayfield Laboratory - NATA # 1261 Site # 25079						
Perth Laboratory - NATA # 2377 Site # 2370						
External Laboratory						
Test Counts	14	14	4	3	20	4

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - SurrogateThe addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs...

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
втех					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xvlenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank		1 0.0	0.0	1 . 0.00	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene		< 0.5	0.5	Pass	
` '	mg/kg	< 0.5	0.5	Pass	
Chrysene Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
	mg/kg				
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene Math ad Plants	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides		0.4	0.4	D	
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	-
a-HCH	mg/kg	< 0.05	0.05	Pass	-
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-HCH	mg/kg	< 0.05	0.05	Pass	
d-HCH	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank	1 5 5				
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242		< 0.1	0.1	Pass	
	mg/kg				
Arcelor 1254	mg/kg	< 0.1	0.1	Pass	
Arcelor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank		<u> </u>	1	Ι	
Heavy Metals	1				
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank					
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	< 10	10	Pass	
Chloride	mg/kg	< 10	10	Pass	
Sulphate (as SO4)	mg/kg	< 10	10	Pass	
LCS - % Recovery		1.0			
Total Recoverable Hydrocarbons			T		
TRH C6-C9	%	94	70-130	Pass	
TRH C10-C14	%	81	70-130	Pass	
Naphthalene	%	86	70-130	Pass	
TRH C6-C10	%	91	70-130	Pass	
TRH >C10-C16	%	83	70-130	Pass	
LCS - % Recovery					
BTEX	1			_	
Benzene	%	103	70-130	Pass	
Toluene	%	95	70-130	Pass	
Ethylbenzene	%	98	70-130	Pass	
m&p-Xylenes	%	96	70-130	Pass	
o-Xylene	%	98	70-130	Pass	
Xylenes - Total*	%	97	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	109	70-130	Pass	
Acenaphthylene	%	104	70-130	Pass	
Anthracene	%	98	70-130	Pass	
Benz(a)anthracene	%	79	70-130	Pass	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/0	+	70 100	. 455	-

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Benzo(b&j)fluoranthene	%	105	70-130	Pass	
Benzo(g.h.i)perylene	%	120	70-130	Pass	
Benzo(k)fluoranthene	%	103	70-130	Pass	
Chrysene	%	103	70-130	Pass	
Dibenz(a.h)anthracene	%	124	70-130	Pass	
Fluoranthene	%	112	70-130	Pass	
Fluorene	%	104	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	117	70-130	Pass	
Naphthalene	%	107	70-130	Pass	
Phenanthrene	%	114	70-130	Pass	
Pyrene	%	103	70-130	Pass	
LCS - % Recovery	_				
Organochlorine Pesticides					
Chlordanes - Total	%	102	70-130	Pass	
4.4'-DDD	%	97	70-130	Pass	
4.4'-DDE	%	105	70-130	Pass	
4.4'-DDT	%	120	70-130	Pass	
a-HCH	%	88	70-130	Pass	
Aldrin	%	98	70-130	Pass	
b-HCH	%	95	70-130	Pass	
d-HCH	%	97	70-130	Pass	
Dieldrin	%	103	70-130	Pass	
Endosulfan I	%	100	70-130	Pass	
Endosulfan II	%	106	70-130	Pass	
Endosulfan sulphate	%	104	70-130	Pass	
Endrin	%	123	70-130	Pass	
Endrin aldehyde	%	92	70-130	Pass	
Endrin ketone	%	90	70-130	Pass	
g-HCH (Lindane)	%	99	70-130	Pass	
Heptachlor	%	113	70-130	Pass	
Heptachlor epoxide	%	103	70-130	Pass	
Hexachlorobenzene	%	98	70-130	Pass	
Methoxychlor	%	100	70-130	Pass	
LCS - % Recovery	70	100	10-130	1 033	
Polychlorinated Biphenyls				1	
Aroclor-1016	%	89	70-130	Pass	
Aroclor-1010	%	117	70-130	Pass	
LCS - % Recovery	70	117	10-130	1 033	
Heavy Metals				1	
Arsenic	%	95	80-120	Pass	
Cadmium	% %	99	80-120	Pass	
Chromium	% %	107	80-120	Pass	
Copper	%	110	80-120	Pass	
Lead	%	106	80-120	Pass	
Mercury	%	103	80-120	Pass	
Nickel	%	109	80-120	Pass	
Zinc	%	104	80-120	Pass	
Conductivity (4.5 corrected at 25°C correct	0/	96	70.400	Dari	
Conductivity (1:5 aqueous extract at 25°C as rec.)	%	86	70-130	Pass	
Chloride	%	94	70-130	Pass	
Resistivity*	%	86	70-130	Pass	
Sulphate (as SO4)	%	89	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbons				Result 1			
TRH C10-C14	W21-No16200	NCP	%	90	70-130	Pass	
TRH >C10-C16	W21-No16200	NCP	%	91	70-130	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocarbon	s			Result 1			
Acenaphthene	S21-No10451	NCP	%	104	70-130	Pass	
Acenaphthylene	S21-No10451	NCP	%	96	70-130	Pass	
Anthracene	S21-No10451	NCP	%	93	70-130	Pass	
Benz(a)anthracene	S21-No10451	NCP	%	75	70-130	Pass	
Benzo(a)pyrene	S21-No10451	NCP	%	77	70-130	Pass	
Benzo(b&j)fluoranthene	S21-No10451	NCP	%	89	70-130	Pass	
Benzo(g.h.i)perylene	S21-No10451	NCP	%	87	70-130	Pass	
Benzo(k)fluoranthene	S21-No10451	NCP	%	78	70-130	Pass	
Chrysene	S21-No10451	NCP	%	79	70-130	Pass	
Dibenz(a.h)anthracene	S21-No10451	NCP	%	100	70-130	Pass	
Fluoranthene	S21-No05933	NCP	%	98	70-130	Pass	
Fluorene	S21-No10451	NCP	%	99	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S21-No10451	NCP	%	99	70-130	Pass	
Naphthalene	S21-No10451	NCP	%	108	70-130	Pass	
Phenanthrene	S21-No10451	NCP	%	91	70-130	Pass	
Pyrene	S21-No05933	NCP	%	90	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
Chlordanes - Total	S21-No10451	NCP	%	106	70-130	Pass	
4.4'-DDD	S21-No10451	NCP	%	93	70-130	Pass	
4.4'-DDE	S21-No10451	NCP	%	107	70-130	Pass	
4.4'-DDT	S21-No10451	NCP	%	96	70-130	Pass	
a-HCH	S21-No10451	NCP	%	91	70-130	Pass	
Aldrin	S21-No10451	NCP	%	100	70-130	Pass	
b-HCH	S21-No10451	NCP	%	89	70-130	Pass	
d-HCH	S21-No10451	NCP	%	98	70-130	Pass	
Dieldrin	S21-No10451	NCP	%	100	70-130	Pass	
Endosulfan I	S21-No10451	NCP	%	108	70-130	Pass	
Endosulfan II	S21-No10451	NCP	%	83	70-130	Pass	
Endosulfan sulphate	S21-No10451	NCP	%	97	70-130	Pass	
Endrin aldehyde	S21-No10451	NCP	%	93	70-130	Pass	
Endrin ketone	S21-No10451	NCP	%	99	70-130	Pass	
g-HCH (Lindane)	S21-No10451	NCP	%	98	70-130	Pass	
Heptachlor	S21-No10451	NCP	%	103	70-130	Pass	
Heptachlor epoxide	S21-No10451	NCP	%	108	70-130	Pass	
Hexachlorobenzene	S21-No10451	NCP	%	104	70-130	Pass	
Spike - % Recovery						T	
Polychlorinated Biphenyls				Result 1		<u> </u>	
Aroclor-1016	S21-No10451	NCP	%	96	70-130	Pass	
Aroclor-1260	S21-No10451	NCP	%	116	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1		-	
Arsenic	S21-No34060	NCP	%	87	75-125	Pass	
Cadmium	S21-No34060	NCP	%	90	75-125	Pass	
Chromium	S21-No34060	NCP	%	103	75-125	Pass	
Copper	S21-No34060	NCP	%	108	75-125	Pass	
Lead	S21-No34060	NCP	%	99	75-125	Pass	
Mercury	S21-No34060	NCP	%	98	75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Nickel	S21-No34060	NCP	%	109			75-125	Pass	
Zinc	S21-No34060	NCP	%	109			75-125	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbon	s			Result 1					
TRH C6-C9	S21-No17424	CP	%	85			70-130	Pass	
Naphthalene	S21-No17424	CP	%	72			70-130	Pass	
TRH C6-C10	S21-No17424	CP	%	86			70-130	Pass	
Spike - % Recovery									
втех				Result 1					
Benzene	S21-No17424	СР	%	82			70-130	Pass	
Toluene	S21-No17424	СР	%	77			70-130	Pass	
Ethylbenzene	S21-No17424	СР	%	81			70-130	Pass	
m&p-Xylenes	S21-No17424	СР	%	80			70-130	Pass	
o-Xylene	S21-No17424	CP	%	83			70-130	Pass	
Xylenes - Total*	S21-No17424	CP	%	81			70-130	Pass	
Spike - % Recovery	02111011121	U,	70	<u> </u>			70 100	1 400	
70 1.000 toly				Result 1					
Chloride	S21-No38319	NCP	%	97			70-130	Pass	
Sulphate (as SO4)	S21-No38319	NCP	%	97			70-130	Pass	
		QA					Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate									
Total Recoverable Hydrocarbon	s			Result 1	Result 2	RPD			
TRH C10-C14	S21-No23954	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-No23954	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S21-No23954	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C10-C16	S21-No23954	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-No23954	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S21-No23954	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate			<u> </u>						
Polycyclic Aromatic Hydrocarbo	ons			Result 1	Result 2	RPD			
Acenaphthene	S21-No28963	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-No28963	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-No28963	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-No28963	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-No28963	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-No28963	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-No28963	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-No28963	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-No28963	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-No28963	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-No28963	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S21-No28963	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	S21-No28963			1					
Indeno(1.2.3-cd)pyrene		NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-No28963	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-No28963	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-No28963	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate Opening Posticides				Desire	Deside	DD2			
Organochlorine Pesticides	004 11 0005	NGD	"	Result 1	Result 2	RPD	0557		
Chlordanes - Total	S21-No28963	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S21-No28963	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S21-No28963	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S21-No28963	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH Aldrin	S21-No28963 S21-No28963	NCP NCP	mg/kg mg/kg	< 0.05 < 0.05	< 0.05 < 0.05	<1 <1	30% 30%	Pass Pass	

Dunkasta									
Duplicate Participa				D It 4	D 11 0	DDD			
Organochlorine Pesticides				Result 1	Result 2	RPD	222/	+	
b-HCH	S21-No28963	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S21-No28963	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S21-No28963	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S21-No28963	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S21-No28963	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S21-No28963	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S21-No28963	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S21-No28963	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S21-No28963	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S21-No28963	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S21-No28963	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S21-No28963	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S21-No28963	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S21-No28963	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S21-No28963	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S21-No28963	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S21-No28963	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S21-No28963	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	S21-No28963	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S21-No28963	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S21-No28963	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S21-No28963	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S21-No28963	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-No34059	NCP	mg/kg	< 2	2.0	16	30%	Pass	
Cadmium	S21-No34059	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-No34059	NCP	mg/kg	14	9.6	37	30%	Fail	Q15
Copper	S21-No34059	NCP	mg/kg	41	19	74	30%	Fail	Q15
Lead	S21-No34059	NCP	mg/kg	10	6.5	47	30%	Fail	Q15
Mercury	S21-No34059	NCP	mg/kg	0.2	0.5	82	30%	Fail	Q15
Nickel	S21-No34059	NCP	mg/kg	41	22	60	30%	Fail	Q15
Zinc	S21-No36074	NCP	mg/kg	43	42	1.0	30%	Pass	
Duplicate								,	
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S21-No17423	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Naphthalene	S21-No17423	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-No17423	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S21-No17423	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-No17423	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-No17423	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-No17423	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S21-No17423	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Xylenes - Total*	S21-No17423	CP	mg/kg	< 0.3	< 0.1	<1	30%	Pass	
Duplicate	32111017420	<u> </u>	i iiig/ikg		. 0.0		0070	1 433	
- apriouto			Result 1	Result 2	RPD				
Conductivity (1:5 aqueous extract at 25°C as rec.)	S21-No17426	СР	uS/cm	220	220	<1	30%	Pass	
pH (1:5 Aqueous extract at 25°C as				-					
rec.)	S21-No17426	CP	pH Units	5.6	5.6	<1	30%	Pass	
Resistivity*	S21-No17426	CP	ohm.m	45	46	<1	30%	Pass	

Duplicate												
				Result 1	Result 2	RPD						
% Moisture	S21-No17428	CP	%	11	10.0	6.0	30%	Pass				
Chloride	N21-No11769	769 NCP mg/kg		59	59	2.0	30%	Pass				
Sulphate (as SO4)	phate (as SO4) N21-No11769 NCP mg/kg		14	13	9.0	30%	Pass					
Duplicate												
				Result 1	Result 2	RPD						
Conductivity (1:5 aqueous extract at 25°C as rec.)	S21-No17431	СР	uS/cm	17	17	4.7	30%	Pass				
pH (1:5 Aqueous extract at 25°C as rec.)	S21-No17431	СР	pH Units	6.6	6.6	<1	30%	Pass				
Resistivity*	S21-No17431	CP	ohm.m	580	610	4.7	30%	Pass				
Duplicate												
				Result 1	Result 2	RPD						
Conductivity (1:5 aqueous extract at 25°C as rec.)	S21-No17436	СР	uS/cm	24	25	2.9	30%	Pass				
pH (1:5 Aqueous extract at 25°C as rec.)	S21-No17436	СР	pH Units	6.3	6.4	<1	30%	Pass				
Resistivity*	S21-No17436	СР	ohm.m	420	400	2.9	30%	Pass				
Duplicate												
	•					RPD						
% Moisture	S21-No17438	CP	%	18	18	3.0	30%	Pass				

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q09 The Surrogate recovery is outside of the recommended acceptance criteria due to matrix interference. Acceptance criteria were met for all other QC

The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report. Q15

Authorised by:

N02

N07

Andrew Black Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Charl Du Preez Senior Analyst-Inorganic (NSW) John Nguyen Senior Analyst-Metal (NSW) Senior Analyst-Volatile (NSW) Roopesh Rangarajan

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Jacob Walker

Report 833263-W-V2
Project name KEMPS CREEK

Project ID 13546
Received Date Oct 18, 2021

Client Sample ID			SW01	SW02	SW03	SW04
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-Oc38469	S21-Oc38470	S21-Oc38471	S21-Oc38472
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	<u>'</u>	1				
TRH C6-C9	0.02	mg/L	< 0.02	0.03	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	0.12	0.07	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	1.1	0.5	0.4	0.2
TRH C29-C36	0.1	mg/L	0.2	0.1	0.2	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	1.42	0.67	0.6	0.2
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	0.03	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	0.03	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	0.91	0.27	0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	0.91	0.27	0.05	< 0.05
TRH >C16-C34	0.1	mg/L	0.6	0.5	0.5	0.4
TRH >C34-C40	0.1	mg/L	0.1	0.1	0.1	0.2
TRH >C10-C40 (total)*	0.1	mg/L	1.61	0.87	0.65	0.6
BTEX						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	0.002	0.002	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	117	123	111	111
Polycyclic Aromatic Hydrocarbons	·	•				
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Eurofins Sample No. Date Sampled Test/Reference Polycyclic Aromatic Hydrocarbons Japhthalene Phenanthrene			SW01	SW02	SW03	SW04
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-Oc38469	S21-Oc38470	S21-Oc38471	S21-Oc38472
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
		J 0				
,,	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
'	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	Q09INT	Q09INT	Q09INT	50
p-Terphenyl-d14 (surr.)	1	%	Q09INT	135	142	125
Organochlorine Pesticides		,,,		1.00		1.20
Chlordanes - Total	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
4.4'-DDD	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
4.4'-DDE	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
4.4'-DDT	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
a-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Aldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
b-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
d-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Dieldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan I	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan II	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan sulphate	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endrin aldehyde	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endrin ketone	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
g-HCH (Lindane)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Heptachlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Heptachlor epoxide	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hexachlorobenzene	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Methoxychlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Toxaphene	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Dibutylchlorendate (surr.)	1	%	Q09INT	Q09INT	Q09INT	Q09INT
Tetrachloro-m-xylene (surr.)	1	%	104	92	87	76
Polychlorinated Biphenyls						
Aroclor-1016	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Aroclor-1221	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Aroclor-1232	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Aroclor-1242	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Aroclor-1248	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Aroclor-1254	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Aroclor-1260	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Total PCB*	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Dibutylchlorendate (surr.)	1	%	Q09INT	Q09INT	Q09INT	Q09INT
Tetrachloro-m-xylene (surr.)	1	%	104	92	87	76

Client Sample ID Sample Matrix			SW01 Water	SW02 Water	SW03 Water	SW04 Water
Eurofins Sample No.			S21-Oc38469	S21-Oc38470	S21-Oc38471	S21-Oc38472
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Heavy Metals	·					
Arsenic	0.001	mg/L	0.004	0.022	0.006	0.013
Cadmium	0.0002	mg/L	< 0.0002	0.0005	< 0.0002	< 0.0002
Chromium	0.001	mg/L	0.014	0.10	0.017	0.053
Copper	0.001	mg/L	0.041	0.18	0.036	0.087
Lead	0.001	mg/L	0.035	0.14	0.030	0.075
Mercury	0.0001	mg/L	< 0.0001	0.0004	< 0.0001	0.0002
Nickel	0.001	mg/L	0.012	0.064	0.015	0.042
Zinc	0.005	mg/L	0.091	0.52	0.068	0.18

Client Sample ID			SW05	SW06	SW07	SW08
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-Oc38473	S21-Oc38474	S21-Oc38508	S21-Oc38509
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 13, 2021	Oct 13, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	0.1	0.1	0.2	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	0.1	0.1	0.2	< 0.1
BTEX						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	111	114	116	116
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Page 3 of 35

Report Number: 833263-W-V2

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			SW05	SW06	SW07	SW08			
· -			Water	Water		Water			
•			S21-Oc38473	S21-Oc38474	Vater Water S21-Oc38508 S21-Oc38509 7, 2021 Oct 13, 2021 Oct 13, 2021 6,0001 < 0.001 < 0.001 6,0001 < 0.001 < 0.001 6,0001 < 0.001 < 0.001 6,0001 < 0.001 < 0.001 6,0001 < 0.001 < 0.001 6,0001 < 0.001 < 0.001 6,0001 < 0.001 < 0.001 7,0001 < 0.001 < 0.001 7,0001 < 0.001 < 0.001 7,0001 < 0.001 < 0.001 7,0001 < 0.001 < 0.001 7,0001 < 0.001 < 0.001 7,0001 < 0.001 < 0.001 83 60 135 142 < 0.002 0.0002 < 0.0002 < 0.0002 0.0002 < 0.0002 < 0.0002 0.0002 < 0.0002 < 0.0002 0.0002 < 0.0002 < 0.0002 0.0002 < 0.0002				
·			Oct 07, 2021		İ	1			
•	1.00	1.1-20	OCI 07, 2021	OCI 07, 2021	OCT 13, 2021	OCT 13, 2021			
Test/Reference	LOR	Unit							
Polycyclic Aromatic Hydrocarbons	<u> </u>								
Fluorene	0.001	mg/L	< 0.001	< 0.001					
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001						
Naphthalene	0.001	mg/L	< 0.001						
Phenanthrene	0.001	mg/L	< 0.001						
Pyrene	0.001	mg/L	< 0.001						
Total PAH*	0.001	mg/L	< 0.001	< 0.001					
2-Fluorobiphenyl (surr.)	1	%	56						
p-Terphenyl-d14 (surr.)	1	%	Q09INT	135	142	Q09INT			
Organochlorine Pesticides		<u> </u>							
Chlordanes - Total	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002			
4.4'-DDD	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
4.4'-DDE	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
4.4'-DDT	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
a-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
Aldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
b-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
d-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
Dieldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
Endosulfan I	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
Endosulfan II	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
Endosulfan sulphate	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
Endrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
Endrin aldehyde	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
Endrin ketone	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
g-HCH (Lindane)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
Heptachlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
Heptachlor epoxide	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
Hexachlorobenzene	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
Methoxychlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
Toxaphene	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005			
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002			
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002			
Dibutylchlorendate (surr.)	1	%	Q09INT	149	Q09INT	Q09INT			
Tetrachloro-m-xylene (surr.)	1	%	107	82	103	108			
Polychlorinated Biphenyls	ı	/0	107	02	103	100			
	0.005		.0.005	.0.005	. 0.005	.0.005			
Arcolor 1221	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005			
Arcelor 1221	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005			
Aroclor-1232	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005			
Aroclor-1242	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005			
Aroclor-1248	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005			
Aroclor-1254	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005			
Aroclor-1260	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005			
Total PCB*	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005			
Dibutylchlorendate (surr.)	1	%	Q09INT	149	Q09INT	Q09INT			
Tetrachloro-m-xylene (surr.)	1	%	107	82	103	108			

Client Sample ID Sample Matrix			SW05 Water	SW06 Water	SW07 Water	SW08 Water
Eurofins Sample No.			S21-Oc38473	S21-Oc38474	S21-Oc38508	S21-Oc38509
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 13, 2021	Oct 13, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	0.001	mg/L	0.002	0.006	0.009	0.012
Cadmium	0.0002	mg/L	< 0.0002	0.0003	< 0.0002	< 0.0002
Chromium	0.001	mg/L	0.002	0.034	0.018	0.023
Copper	0.001	mg/L	0.007	0.061	0.036	0.057
Lead	0.001	mg/L	0.005	0.090	0.035	0.060
Mercury	0.0001	mg/L	< 0.0001	0.0001	< 0.0001	< 0.0001
Nickel	0.001	mg/L	0.004	0.032	0.021	0.028
Zinc	0.005	mg/L	0.019	0.15	0.069	0.12

Page 5 of 35

Report Number: 833263-W-V2

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Oct 19, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 19, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 19, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Oct 19, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Oct 19, 2021	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Oct 25, 2021	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Organochlorine Pesticides	Sydney	Oct 19, 2021	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Sydney	Oct 19, 2021	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			

Page 6 of 35

Report Number: 833263-W-V2

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 25, 2021

Jacob Walker

NZBN: 9429046024954

Oct 18, 2021 3:41 PM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

Address:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

	Sample Detail						Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	BTEX	
Melb	Melbourne Laboratory - NATA # 1261 Site # 1254														Х	Х	Х		Х		
Sydney Laboratory - NATA # 1261 Site # 18217					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х		
Bris	bane Laborator	y - NATA # 1261	Site # 20794	ı																	
May	field Laboratory	· - NATA # 1261	Site # 25079																		
Pert	h Laboratory - N	NATA # 2377 Sit	e # 2370																		
Exte	rnal Laboratory	1																			
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																
1	TP01 0.0-0.2	Oct 06, 2021		Soil	S21-Oc38427									Х			Х	Х			
2	TP02 0.0-0.2	Oct 06, 2021		Soil	S21-Oc38428												Х	Х			
3	TP03 0.0-0.2	Oct 06, 2021		Soil	S21-Oc38429												Χ	Х			
4	TP04 0.0-0.1	Oct 06, 2021		Soil	S21-Oc38430									Х			Χ	Х	Х		
5 TP05 0.0-0.1 Oct 06, 2021 Soil S21-Oc38431		S21-Oc38431									Х			Χ	Х	Х					
6 TP06 0.0-0.2 Oct 06, 2021 Soil S21-Oc38432										Х			Х	Х	Х						
7 TP07 0.0-0.2 Oct 06, 2021 Soil S21-Oc38433													Χ	Х							
8				S21-Oc38434												Х	Х				
9	TP09 0.0-0.2	Oct 06, 2021		Soil	S21-Oc38435									Х			Χ	Х			

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

NZBN: 9429046024954

Oct 25, 2021

Jacob Walker

Oct 18, 2021 3:41 PM

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

Address:

KEMPS CREEK

Project ID:

13546

Order No.:

Phone:

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Report #: 833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

		Sai		Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех	
Mell	ourne Laborat	ory - NATA # 120											Х	Х	Х		Х		
Syd	ney Laboratory	- NATA # 1261 S	Site # 18217		Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х		Х	Х	Х	Х
Bris	bane Laborator	y - NATA # 1261																	
May	field Laboratory	y - NATA # 1261															L		
Pert	h Laboratory - I	NATA # 2377 Sit															<u> </u>		
	rnal Laboratory	1																\sqcup	
10	TP10 0.0-0.2	Oct 06, 2021	Soil	S21-Oc38436												Х	Х		
11	TP11 0.0-0.1	Oct 06, 2021	Soil	S21-Oc38437									Х			Х	Х	Х	
12	TP12 0.0-0.1	Oct 06, 2021	Soil	S21-Oc38438									Х			Х	Х	Х	
13	TP14 0.0-0.2	Oct 06, 2021	Soil	S21-Oc38439												Х	Х		\vdash
14	TP15 0.0-0.2	Oct 06, 2021	Soil	S21-Oc38440									Х			Х	Х		\vdash
15	TP16 0.0-0.2	Oct 06, 2021	Soil	S21-Oc38441												Х	Х		
16	TP17 0.0-0.2	Oct 06, 2021	Soil	S21-Oc38442												Х	Х		
17	TP18 0.0-0.2	Oct 06, 2021	Soil	S21-Oc38443												Х	Х		\sqcup
18	TP19 0.0-0.1	Oct 07, 2021	Soil	S21-Oc38444									Х			Х	Х	Х	\sqcup
19	TP20 0.0-0.1	Oct 07, 2021	Soil Soil	S21-Oc38445									Х			Х	Х	Х	\sqcup
20	TP21 0.0-0.2	Oct 07, 2021	S21-Oc38446									Χ			Χ	Х	Х		

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

NZBN: 9429046024954 35 O'Rorke Road

Phone: +64 9 526 45 51

Oct 25, 2021

Jacob Walker

Oct 18, 2021 3:41 PM

Auckland

IANZ # 1327

5 Day

Christchurch 43 Detroit Drive Penrose, Auckland 1061

Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Alliance Geotechnical Address: 10 Welder Road

Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

																	Eu	ronns	Anaiy	y
		Sa	mple Detail		Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех	
Mell	oourne Laborate	ory - NATA # 12	61 Site # 1254											Х	Х	Χ		Х		
Syd	ney Laboratory	- NATA # 1261	Site # 18217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	
Bris	bane Laborator	y - NATA # 126 [,]	1 Site # 20794															ļ		
May	field Laboratory	/ - NATA # 1261	Site # 25079															ļ		
Pert	h Laboratory - I	NATA # 2377 Si	te # 2370																	
Exte	rnal Laboratory	/																<u> </u>		
21	TP22 0.0-0.1	Oct 06, 2021	Soil	S21-Oc38447									Х			Х	Х	<u> </u>		
22	TP23 0.0-0.1	Oct 07, 2021	Soil	S21-Oc38448												Х	Х	<u> </u>		
23	TP24 0.0-0.1	Oct 07, 2021	Soil	S21-Oc38449												Х	Х	<u> </u>	\sqcup	
24	TP25 0.0-0.1	Oct 07, 2021	S21-Oc38450									Х			Х	Х	<u> </u>	\sqcup		
25	TP26 1.0-1.2	Oct 07, 2021	S21-Oc38451												Х	Х	<u> </u>	\sqcup		
26	DR01 0.0-0.2	Oct 06, 2021	S21-Oc38452												Χ	Х	<u> </u>	\sqcup		
27	DR02 0.0-0.2	Oct 06, 2021	S21-Oc38453												Х	Х		\sqcup		
28	DR03 0.0-0.2	Oct 06, 2021	Soil	S21-Oc38454												Х	Х	<u> </u>	\sqcup	
29	DR04 0.0-0.1	Oct 07, 2021	Soil	S21-Oc38455												Х	Х	<u> </u>		
30	DR05 0.0-0.1	Oct 07, 2021	Soil Soil	S21-Oc38456												Х	Х	<u> </u>		
31	DR06 0.0-0.1	Oct 07, 2021	S21-Oc38457												Χ	Х		Ш		

email: EnviroSales@eurofins.com

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Received:

Priority:

Contact Name:

Due:

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

NZBN: 9429046024954

Oct 18, 2021 3:41 PM

Oct 25, 2021

Jacob Walker

																		• • • • • • • • • • • • • • • • • • • •	
			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех		
Mell	ourne Laborate	ory - NATA # 126											Х	Х	Х		Х		
Syd	ney Laboratory	- NATA # 1261 S		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	
Bris	bane Laborator	y - NATA # 1261																	
May	field Laboratory	/ - NATA # 1261																	
Pert	h Laboratory - N	NATA # 2377 Site														<u> </u>	<u> </u>		
Exte	rnal Laboratory	<u>'</u>														<u> </u>	<u> </u>		
32	DR07 0.0-0.1	Oct 07, 2021	Soil	S21-Oc38458												Х	X	<u> </u>	
33	DR08 0.0-0.1	Oct 07, 2021	Soil	S21-Oc38459												Х	X		
34	SP1-1	Oct 07, 2021	Soil Soil	S21-Oc38460									Х			Х	X	X	
35	SP1-2	Oct 07, 2021	S21-Oc38461									Х			Х	X	Х		
36	SP1-3	Oct 07, 2021	S21-Oc38462									Х			Х	X	Х		
37	DS01	Oct 07, 2021	S21-Oc38463									Х			Х	X	Х	\square	
38	DS02	Oct 07, 2021	S21-Oc38464									Х			Х	X	Х	\square	
39	DS03	Oct 07, 2021	S21-Oc38465												Х	X	ļ	\vdash	
40	DS04	Oct 07, 2021	Soil Soil	S21-Oc38466												Х	X	<u> </u>	\vdash
41	DS05	Oct 07, 2021	S21-Oc38467												Х	X	ļ	\square	
42	DS06	OS06 Oct 07, 2021 Soil S21-Oc3846														Х	Х		

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Perth

Received:

Priority:

Contact Name:

Due:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

Oct 18, 2021 3:41 PM

Oct 25, 2021

Jacob Walker

			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех		
Mell	ourne Laborato	ory - NATA # 12											Х	Х	Х		Х		
Syd	ney Laboratory	- NATA # 1261 :		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	
Bris	bane Laboratory	y - NATA # 1261																	
May	field Laboratory	- NATA # 1261																	
Pert	h Laboratory - N	IATA # 2377 Sit																	
Exte	rnal Laboratory																		
43	SW01	Oct 07, 2021	Water	S21-Oc38469									Х				Х		
44	SW02	Oct 07, 2021	Water	S21-Oc38470									Х				Х		
45	SW03	Oct 07, 2021	Water	S21-Oc38471									Х				Х	<u> </u>	
46	SW04	Oct 07, 2021	Water	S21-Oc38472									Х				Х		
47	SW05	Oct 07, 2021	Water	S21-Oc38473									Х				Х	<u> </u>	
48	SW06	Oct 07, 2021	Water	S21-Oc38474									Х				Х	<u> </u>	
49	BD1	Oct 07, 2021	Soil	S21-Oc38475				_								Х	Х		\square
50	BD2	Oct 07, 2021	Soil	S21-Oc38476									Х			Х			
51	+	Oct 07, 2021	Soil	S21-Oc38477								Х							
52	TRIP BLANK 2		Soil	S21-Oc38478				1				Х							
53	TRIP BLANK 3	Oct 07, 2021	Soil	S21-Oc38479								Х							

email: EnviroSales@eurofins.com

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

Received:

Priority:

Contact Name:

Due:

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 18, 2021 3:41 PM

Oct 25, 2021

Jacob Walker

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

Alliance Geotechnical

Address: 10 Welder Road

Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.:

Report #: 833263

Phone: 1800 288 188 02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех		
Mell	ourne Laborato	ory - NATA # 12											Х	Х	Χ	<u> </u>	Х		
Syd	ney Laboratory	- NATA # 1261	Site # 18217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Χ	Х	Х	Х
Bris	bane Laboratory	y - NATA # 1261	1 Site # 20794														<u> </u>		
May	field Laboratory	- NATA # 1261	Site # 25079														<u> </u>		
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370														<u> </u>		
Exte	rnal Laboratory															<u> </u>			
54	TRIP BLANK 4	, , , , , , , , , , , , , , , , , , ,	Soil	S21-Oc38480								Х					<u> </u>		
55	TRIP BLANK 5	, , , , , , , , , , , , , , , , , , ,	Soil	S21-Oc38481								Х					<u> </u>		
56	TRIP SPIKE 1	Oct 07, 2021	Soil	S21-Oc38482													<u> </u>		Х
57	TRIP SPIKE 2	· · · · · · · · · · · · · · · · · · ·	Soil Soil	S21-Oc38483													<u> </u>		Х
58	TRIP SPIKE 3	-	S21-Oc38484													<u> </u>		Х	
59	TRIP SPIKE 4	Oct 07, 2021	S21-Oc38485													<u> </u>		Х	
60	TRIP SPIKE 5	í í	Soil	S21-Oc38486													<u> </u>		Х
61	BD3	Mar 12, 2021	Soil	S21-Oc38492												Х	X	igsqcut	
62	PP2 0.0-0.1	Aug 13, 2021	Soil	S21-Oc38493	Х	Х			Х							Х	<u> </u>		
63	PP3 0.0-0.1	Aug 13, 2021	Soil	S21-Oc38494	Х	Х			Х							Х	<u> </u>		
64	PP4 0.0-0.1	Aug 12, 2021	Soil	S21-Oc38495	Х	Х			Х							Χ	<u> </u>		

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327

Rolleston, Christchurch 7675 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

02 9675 1888 Fax:

Received: Oct 18, 2021 3:41 PM Due: Oct 25, 2021

NZBN: 9429046024954

Priority: 5 Day

Jacob Walker **Contact Name:**

Eurofins Analytical Services Manager: Andrew Black

																		Lui	1011113	Allai	yı
			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех				
Mell	ourne Laborate	ory - NATA # 12											Х	Х	Х		Х				
Syd	ney Laboratory	- NATA # 1261		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х			
Bris	bane Laborator	y - NATA # 126																			
May	field Laboratory	y - NATA # 1261																			
Pert	h Laboratory - I	NATA # 2377 Si															<u> </u>				
Exte	rnal Laboratory	y															<u> </u>				
65	PP5 0.0-0.1	Oct 13, 2021		Soil	S21-Oc38496	Х	Х			Х							Х		<u> </u>		
66	PP6 0.0-0.1	Oct 12, 2021		Soil	S21-Oc38497	Х	Х			Х							Х	<u> </u>	<u> </u>	<u> </u>	
67	PP7 0.0-0.1	Oct 12, 2021		Soil	S21-Oc38498	Х	Х			Х							Х	<u> </u>	L	<u> </u>	
68	PP8 0.0-0.1	Oct 12, 2021		Soil	S21-Oc38499	Х	Х			Х							Х	<u> </u>	L	<u> </u>	
69	DR11 0.0-0.1																Х	X		<u> </u>	
70	DR12 0.0-0.1	Oct 13, 2021	S21-Oc38501												Х	X	<u> </u>				
71	DR13 0.0-0.1	R13 0.0-0.1 Oct 13, 2021 Soil S21-Oc38															Х	X	<u> </u>		1
72	DR14 0.0-0.1	Oct 13, 2021	S21-Oc38503												Х	X	<u> </u>		1		
73	DS07	Oct 13, 2021	S21-Oc38504									Х			Х	X	<u> </u>	<u> </u>	-		
74	DS08	Oct 13, 2021 Oct 13, 2021	S21-Oc38505									Х			Х	X	<u> </u>	<u> </u>	-		
75	DS09	S21-Oc38506									Х			Х	Х	<u></u> '	<u> </u>				

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

Received:

Priority:

Contact Name:

Due:

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

Oct 18, 2021 3:41 PM

Oct 25, 2021

Jacob Walker

																		Lui	Oiiiis	Allaly
		Sa	mple Detail			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	ХЭТВ	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех
Mell	ourne Laborate	ory - NATA # 12											Х	Χ	Х		Х			
Syd	ney Laboratory	- NATA # 1261		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х		
Bris	bane Laborator	y - NATA # 1261																		
May	field Laboratory	/ - NATA # 1261																		
Pert	h Laboratory - I	NATA # 2377 Sit														<u> </u>				
Exte	rnal Laboratory	<u>'</u>														<u> </u>		Ш		
76	DS10	Oct 13, 2021	S	oil	S21-Oc38507									Х			Х	Х		Ш
77	SW07	Oct 13, 2021	W	/ater	S21-Oc38508									Х				Х		\sqcup
78	SW08	Oct 13, 2021	W	/ater	S21-Oc38509									Χ				Х		\sqcup
79	TP13-0.0-0.2	S21-Oc38510												Х	Х	Х	\sqcup			
80	TP27-0.0-0.2	Oct 08, 2021	S21-Oc38511												Х	Х		\sqcup		
81	TP28-0.0-0.1	Oct 08, 2021	S21-Oc38512												Х	Х	igsqcut	\sqcup		
82	TP29-0.0-0.2	Oct 08, 2021	S21-Oc38513									Х			Х	Х	Х	\sqcup		
83	TP30-0.0-0.2	Oct 08, 2021	S21-Oc38514									Х			Х	Х	Х	\sqcup		
84	TP31-0.00.2	Oct 08, 2021	S21-Oc38515									Х			Х	Х	Х	\sqcup		
85	TP32-0.0-0.2	Oct 08, 2021	S21-Oc38516												Х	X		\sqcup		
86	TP33-0.0-0.1	FP33-0.0-0.1 Oct 08, 2021 Soil S21-Oc385												Χ			Χ	Х		ш

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

Auckland

IANZ # 1327

NZBN: 9429046024954

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com **Company Name:**

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

Address:

KEMPS CREEK

Project ID:

13546

Order No.:

Report #: 833263 Phone: 1800 288 188

02 9675 1888 Fax:

Received: Oct 18, 2021 3:41 PM Due:

Oct 25, 2021 **Priority:** 5 Day

Jacob Walker **Contact Name:**

Eurofins Analytical Services Manager: Andrew Black

																		Lu	ronns	Allai	yц
		Sa	mple Detail			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех	
Mell	oourne Laborate	ory - NATA # 12											Х	Х	Х		Х		ĺ		
Syd	ney Laboratory	- NATA # 1261		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х			
Bris	bane Laborator	y - NATA # 126																	l		
May	field Laboratory	y - NATA # 1261	Site # 25079																		
Pert	h Laboratory - I	NATA # 2377 Si																			
Exte	rnal Laboratory	<u>/</u>																			
87	TP34-0.0-0.2	Oct 08, 2021		Soil	S21-Oc38518												Х	X	$oxed{oxed}$		
88	TP35-0.0-0.2	Oct 08, 2021		Soil	S21-Oc38519												Х	X	$oxed{oxed}$		l
89	TP36-0.0-0.1	Oct 08, 2021		Soil Soil	S21-Oc38520									Х			Х	X			ı
90	TP37-0.0-0.1	Oct 08, 2021	S21-Oc38521												Х	X			ı		
91	TP38-0.0-0.2	Oct 08, 2021	S21-Oc38522												Х	X			l		
92	TP39-0.0-0.1	Oct 08, 2021	S21-Oc38523												Х	X			l		
93	TP40-0.0-0.1	Oct 08, 2021	S21-Oc38524									Х			Х	X					
94	SAL01-0.5	Oct 08, 2021	S21-Oc38525				Х			Х					Х						
95	SAL01-1.0	Oct 08, 2021	S21-Oc38526				Х			Х					Х						
96	SAL01-1.5	Oct 08, 2021 Oct 08, 2021	S21-Oc38527				X			Х					Х		\sqcup		l		
97	SAL01-2.0	S21-Oc38528										Х	Х	Х				ĺ			

email: EnviroSales@eurofins.com

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

NZBN: 9429046024954

Oct 25, 2021

Jacob Walker

Oct 18, 2021 3:41 PM

Auckland

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675

35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	ВТЕХ	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех		
Mell	ourne Laborat	ory - NATA # 126											Х	Х	Х		Х		
Syd	ney Laboratory	- NATA # 1261 S		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	
Bris	bane Laborato	ry - NATA # 1261																	
_		y - NATA # 1261 :																	
		NATA # 2377 Site															\sqcup	\vdash	
	rnal Laborator	<u> </u>	<u> </u>														igwdown	\vdash	
98	SAL02-0.5	Oct 08, 2021	Soil	S21-Oc38529				X			Х					Х		igwdown	\vdash
99	SAL02-1.0	Oct 08, 2021	Soil	S21-Oc38530				X			X					Х		\sqcup	\vdash
100	SAL02-1.5	Oct 08, 2021	Soil	S21-Oc38531										X	Х	Х			\vdash
101	SAL02-2.0	Oct 08, 2021	Soil Soil	S21-Oc38532				X			X					Х			
102	SAL03-0.5	Oct 08, 2021	S21-Oc38533				X			X					Х				
103	SAL03-1.0	Oct 08, 2021	S21-Oc38534				X			Х					Х				
104	SAL03-1.5	Oct 08, 2021	S21-Oc38535				X			X					Х		\sqcup		
105	SAL03-2.0	Oct 08, 2021	Soil	S21-Oc38536				X			Х					Х		igsquare	
106	SAL03-2.5	Oct 08, 2021	Soil	S21-Oc38537										Х	Х	Х		\sqcup	
107	SAL04-0.5	Oct 08, 2021	Soil	S21-Oc38538				X			Х					Х			
108	SAL04-1.0	Oct 08, 2021	Soil	S21-Oc38539				Х			Х					Χ			

email: EnviroSales@eurofins.com

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 18, 2021 3:41 PM

Oct 25, 2021

Jacob Walker

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

833263

Phone: 1800 288 188 02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

																		Eui	OIIIIS	Anaiy
		Sa	mple Detail			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	рН (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех
Melb	ourne Laborat											Х	Х	Х		Х				
Sydr	ney Laboratory	- NATA # 1261		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х		
Bris	bane Laborator	y - NATA # 126 ⁻																		
May	field Laboratory	y - NATA # 1261																		
Perti	h Laboratory - I	NATA # 2377 Si																		
Exte	rnal Laboratory	<i>!</i>																		
109	SAL04-1.5	Oct 08, 2021		Soil	S21-Oc38540										Х	Х	Х			
110	SAL04-2.0	Oct 08, 2021		Soil	S21-Oc38541				Х			Х					Х			
111	SAL05-0.5	Oct 08, 2021		Soil	S21-Oc38542				Х			Х					Х			
112	SAL05-1.0	S21-Oc38543				Х			Х					Х						
113	SAL05-1.5	S21-Oc38544				Х			X					Х						
114	SAL05-2.0	SAL05-2.0 Oct 08, 2021 Soil S21-Oc38													Х	Х	Х			
115	<u> </u>	Oct 06, 2021	S21-Oc38546						Х											
116		Oct 06, 2021		Soil	S21-Oc38547						Х									\sqcup
117	TP06 0.8-1.0	Oct 06, 2021		Soil	S21-Oc38548						Х									1
118	TP06 1.0-1.2	Oct 06, 2021		Soil	S21-Oc38549						Х									
119	TP06 1.2-1.4	<u> </u>									Х									

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

Oct 18, 2021 3:41 PM

Oct 25, 2021

Jacob Walker

			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as r	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx NO2, NO3, Total P	втех			
							25°C as			rec.)							Ō,			
Melb	ourne Laborat	ory - NATA # 12											Х	Х	Х		Х			
Sydı	ney Laboratory	- NATA # 1261		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х		
		y - NATA # 126																\sqcup		
May	field Laboratory	y - NATA # 1261																\sqcup		
Pert	h Laboratory - I	NATA # 2377 Sit																\sqcup		
Exte	rnal Laboratory	/																\sqcup		
120	TP07 0.5-0.7	Oct 06, 2021	S21-Oc38551						Х									\sqcup		
121	TP08 0.4-0.6	Oct 06, 2021	Soil		S21-Oc38552						Х									\sqcup
122	<u> </u>	Oct 06, 2021	Soil		S21-Oc38553						Х									
123	<u> </u>	Oct 06, 2021	Soil		S21-Oc38554						Х									
124	TP14 0.5-0.7	Oct 06, 2021	Soil		S21-Oc38555						Х									
125	TP15 0.4-0.4	Oct 06, 2021	Soil		S21-Oc38556						Х									
126	TP16 0.4-0.6	Oct 06, 2021	Soil		S21-Oc38557						Х									Ш
127	TP17 0.3-0.5	Oct 06, 2021	Soil		S21-Oc38558						Х									
128	TP18 0.5-0.7	Oct 06, 2021	Soil		S21-Oc38559						Х								<u> </u>	\sqcup
129	TP21 1.0-1.2	Oct 07, 2021	Soil		S21-Oc38560						Х									\sqcup
130	TP21 1.5-1.5	Oct 07, 2021	Soil		S21-Oc38561						Х									

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

Received:

Priority:

Contact Name:

Due:

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Alliance Geotechnical 10 Welder Road

Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

Auckland

35 O'Rorke Road

Oct 25, 2021

Jacob Walker

Oct 18, 2021 3:41 PM

																		Lu	i Oillis	Allui	у.
			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех				
Melb	ourne Laborat	ory - NATA # 12											Х	Х	Х		Х		1		
Sydı	ney Laboratory	- NATA # 1261		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х			
Bris	bane Laborator	y - NATA # 126]		
May	field Laboratory	y - NATA # 1261]		
Pert	h Laboratory - I	NATA # 2377 Si																			
Exte	rnal Laboratory	<i>'</i>															ļ				
131	TP22 1.0-1.2	Oct 06, 2021		Soil	S21-Oc38562						Х										
132	TP22 1.8-2.0	Oct 06, 2021		Soil	S21-Oc38563						Х								<u> </u>		
133	TP23 1.0-1.2	Oct 07, 2021		Soil	S21-Oc38564						Х								ļ		
134	TP23 1.5-1.7	Oct 07, 2021		Soil	S21-Oc38565						Х								ļ		
135		S21-Oc38566						Х								<u> </u>					
136	TP25 0.5-0.6	S21-Oc38567						Х								<u> </u>					
137	TP26 1.8-2.0	Oct 07, 2021	S21-Oc38568						Х								<u> </u>				
138	TP26 0.0-0.1	Oct 07, 2021	S21-Oc38569						Х								<u> </u>				
139	DR01 0.3-0.5	Oct 06, 2021	S21-Oc38570						Х								<u> </u>	L	-		
140	DR01 0.7-0.9										Х								<u> </u>	<u> </u>	-
141	DR02 0.2-0.4	S21-Oc38572												Х	Х	<u></u>					

email: EnviroSales@eurofins.com

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Received:

Priority:

Contact Name:

Due:

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

Address:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

NZBN: 9429046024954

Oct 18, 2021 3:41 PM

Auckland

35 O'Rorke Road

Oct 25, 2021

Jacob Walker

																		⊏u	ronns	Allai	yu
Sample Detail						Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех	
Melbourne Laboratory - NATA # 1261 Site # 1254															Х	Х	Х		Х		
Sydney Laboratory - NATA # 1261 Site # 18217						Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	X	Х	Х	
Brisbane Laboratory - NATA # 1261 Site # 20794																					
May	Mayfield Laboratory - NATA # 1261 Site # 25079																				
Pert	h Laboratory - I	NATA # 2377 Si	te # 2370																		
Exte	rnal Laboratory	<u> </u>	,																		
142	DR02 0.5-0.7	Oct 06, 2021		Soil	S21-Oc38573						Х										
143	DR03 0.3-0.5	Oct 06, 2021		Soil	S21-Oc38574						Х								$oxed{oxed}$		
144	DR03 0.6-0.8	Oct 06, 2021		Soil	S21-Oc38575						Х										
145	DR03 1.5-1.7	Oct 06, 2021		Soil	S21-Oc38576						Х								$oxed{oxed}$		
146	DR04 0.1-0.2	Oct 07, 2021		Soil	S21-Oc38577						Х										
147	DR05 0.3-0.4	Oct 07, 2021		Soil	S21-Oc38578						Х										
148	DR06 0.3-0.5	Oct 07, 2021		Soil	S21-Oc38579						Х										
149	DR07 0.3-0.5	Oct 07, 2021		Soil	S21-Oc38580						Х										
150	DR08 0.1-0.2	Oct 07, 2021		Soil	S21-Oc38581						Х								\sqcup		-
151	DW01	Oct 07, 2021		Soil	S21-Oc38582						Х								\sqcup		-
152	DW02	Oct 07, 2021		Soil	S21-Oc38583						Х										

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

NZBN: 9429046024954 Auckland

35 O'Rorke Road

IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

Alliance Geotechnical 10 Welder Road

Seven Hills

NSW 2147

Project Name:

web: www.eurofins.com.au

Company Name:

Address:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

02 9675 1888 Fax:

Received: Oct 18, 2021 3:41 PM

Due: Oct 25, 2021 **Priority:** 5 Day

Jacob Walker **Contact Name:**

Eurofins Analytical Services Manager: Andrew Black

																		Eu	rotins	Allai	yι
Sample Detail						Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех	
Melbourne Laboratory - NATA # 1261 Site # 1254															Х	Х	Х		Х		
Sydney Laboratory - NATA # 1261 Site # 18217						Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	
Brisbane Laboratory - NATA # 1261 Site # 20794																			<u> </u>		
Mayfield Laboratory - NATA # 1261 Site # 25079																			<u> </u>		
		NATA # 2377 Sit	te # 2370																<u> </u>		1
External Laboratory																			<u> </u>		1
153	DW03	Oct 07, 2021		Soil	S21-Oc38584						Х								<u> </u>		1
154	DW04	Oct 07, 2021		Soil	S21-Oc38585						Х								<u> </u>		1
—	DW05	Oct 07, 2021		Soil	S21-Oc38586						Х								<u> </u>		1
	DW06	Oct 07, 2021		Soil	S21-Oc38587						Х								<u> </u>		-
	DW07	Oct 07, 2021		Soil	S21-Oc38588						Х								<u> </u>	<u> </u>	-
—	DW08	Oct 07, 2021		Soil	S21-Oc38589						Х								<u> </u>		1
159	PP4 0.5-0.6	Aug 12, 2021		Soil	S21-Oc38590						Х								<u> </u>		1
	PP4 1.0-1.1	Aug 12, 2021		Soil	S21-Oc38591						Х								<u> </u>		-
	PP4 1.5-1.6	Aug 12, 2021		Soil	S21-Oc38592						Х								<u> </u>		-
	PP4 2.0-2.1	Aug 12, 2021		Soil	S21-Oc38593						Х								<u> </u>		-
163	PP6 0.5-0.6	Oct 12, 2021		Soil	S21-Oc38594						Х										

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Received:

Priority:

Due:

Auckland 46-48 Banksia Road 35 O'Rorke Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

Address:

13546

Order No.: Report #:

833263

Phone: 1800 288 188 02 9675 1888 Fax:

Oct 18, 2021 3:41 PM

NZBN: 9429046024954

Oct 25, 2021 5 Day

Jacob Walker **Contact Name:**

Eurofins Analytical Services Manager: Andrew Black

																	Eu	rotins	Anaiy	/ti
		Sal	mple Detail		Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех	
Mell	oourne Laborat	ory - NATA # 12	61 Site # 1254											Х	Х	Х		Х		
		- NATA # 1261 S			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	
Bris	bane Laborator	y - NATA # 1261	Site # 20794															لـــــــا		
_		y - NATA # 1261																igsquare		
		NATA # 2377 Sit	e # 2370																	
	rnal Laboratory	у																	\sqcup	
-	PP6 1.0-1.1	Oct 12, 2021	Soil	S21-Oc38595						Х										
	PP6 1.5-1.6	Oct 12, 2021	Soil	S21-Oc38596						Х										
	PP6 2.0-2.1	Oct 12, 2021	Soil	S21-Oc38597						Х										
	PP6 2.4-2.5	Oct 12, 2021	Soil	S21-Oc38598						Х										
	PP7 0.4-0.5	Oct 12, 2021	Soil	S21-Oc38599						Х										
	PP8 0.1-0.2	Oct 12, 2021	Soil	S21-Oc38600						Х										
	TP41 0.0-0.1	Oct 12, 2021	Soil	S21-Oc38601						Х								+	$\vdash \vdash \vdash$	
171	TP41 0.9-1.0	Oct 12, 2021	Soil	S21-Oc38602						Х								+	\vdash	
172	TP42 0.0-0.1	Oct 12, 2021	Soil	S21-Oc38603						X								+	\vdash	
173	TP42 1.0-1.1	Oct 12, 2021	Soil	S21-Oc38604						X								+	\vdash	
174	TP42 1.4-1.5	Oct 12, 2021	Soil	S21-Oc38605						Х									ш	1

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

Phone:

Fax:

833263

1800 288 188

02 9675 1888

Received: Oct 18, 2021 3:41 PM Due: Oct 25, 2021

Priority: 5 Day

Jacob Walker **Contact Name:**

Eurofins Analytical Services Manager: Andrew Black

																		Lu	i Oillis	Allai	уı
		Sai	mple Detail			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех	
Melbourne La	borator	y - NATA # 120	61 Site # 125	4											Х	Х	Х		Х		
Sydney Labor	atory -	NATA # 1261 \$	Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	
Brisbane Labo	oratory	- NATA # 1261	Site # 2079	4																	
Mayfield Labo	ratory ·	- NATA # 1261	Site # 25079)																	
Perth Laborate	ory - N	ATA # 2377 Sit	e # 2370																		
External Labo	ratory																		<u> </u>		
175 TP43 0.0	-0.1	Oct 12, 2021		Soil	S21-Oc38606						Х								<u> </u>		
176 TP43 1.0	-1.1	Oct 12, 2021		Soil	S21-Oc38607						Х								<u> </u>	<u> </u>	
177 TP43 1.2	-1.3	Oct 12, 2021		Soil	S21-Oc38608						Х								<u> </u>	<u> </u>	
178 TP44 0.0		Oct 12, 2021		Soil	S21-Oc38609						Х								<u> </u>	<u> </u>	
179 TP44 0.4	-0.5	Oct 12, 2021		Soil	S21-Oc38610						Х								<u> </u>	<u> </u>	
180 TP44 1.0	-1.1	Oct 12, 2021		Soil	S21-Oc38611						Х								<u> </u>	<u> </u>	
181 TP44 1.4		Oct 12, 2021		Soil	S21-Oc38612						Х								<u> </u>	<u> </u>	
182 TP44 2.0		Oct 12, 2021		Soil	S21-Oc38613						Х								<u> </u>		
183 TP44 2.4		Oct 12, 2021		Soil	S21-Oc38614						Х								<u> </u>		
184 TP45 0.0		Oct 12, 2021		Soil	S21-Oc38615						Х								<u> </u>		
185 TP45 0.5	-0.6	Oct 12, 2021		Soil	S21-Oc38616						Х								<u></u>	$oxed{L}$	

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Received:

Priority:

Contact Name:

Due:

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road

Seven Hills NSW 2147

Project Name: KEMPS CREEK

Project ID:

13546

Order No.: Report #:

833263

Phone: 1800 288 188 02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

NZBN: 9429046024954

Oct 18, 2021 3:41 PM

Oct 25, 2021

																		Lu	ronns	Allaly	y
		Sa	mple Detail			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех	
Mell	oourne Laborat	ory - NATA # 12	61 Site # 1254												Х	Х	Х		Х		1
Syd	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	1
Bris	bane Laborator	y - NATA # 126	1 Site # 20794																		1
May	field Laboratory	y - NATA # 1261	Site # 25079																		1
Pert	h Laboratory - I	NATA # 2377 Si	te # 2370																		1
Exte	rnal Laboratory	<u>/</u>	, , , , , , , , , , , , , , , , , , , ,																<u> </u>		1
186	TP45 0.7-0.8	Oct 12, 2021	Soil	S21-O	38617						Х								<u> </u>		1
187	TP46 0.0-0.1	Oct 12, 2021	Soil	S21-O	38618						Х								<u> </u>		1
188	TP46 0.3-0.4	Oct 12, 2021	Soil	S21-O	38619						Х								<u> </u>		l
189	TP47 0.0-0.1	Oct 12, 2021	Soil	S21-O	38620												Х	Х	<u> </u>		l
190	TP47 0.2-0.3	Oct 12, 2021	Soil	S21-O	38621						Х								<u> </u>		l
191	TP48 0.0-0.1	Oct 12, 2021	Soil	S21-O	38622						Х								<u> </u>		1
192		Oct 12, 2021	Soil	S21-O							Х								<u> </u>		ł
	TP49 0.0-0.1	Oct 12, 2021	Soil	S21-O							Х								<u> </u>	\sqcup	ł
194	TP49 0.1-0.2	Oct 12, 2021	Soil	S21-O							Х								<u> </u>		ĺ
195		Oct 13, 2021	Soil	S21-O							Х								<u> </u>		
196	DR12 0.1-0.2	Oct 13, 2021	Soil	S21-O	38627						Х								L'		j

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

Received:

Priority:

Contact Name:

Due:

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.:

Phone:

Report #: 833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

Oct 18, 2021 3:41 PM

Oct 25, 2021

					Ars	Ca	CA	Co	င္ပ	HOLD	P	втех	Sui	Ag	m ⊆	Mo	m ⊆	Zm	втех
		Sai	mple Detail		Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	אבס	pH (1:5 Aqueous extract at 25°C as rec.)	EX	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	ËX
Melb	ourne Laborate	ory - NATA # 120	61 Site # 1254											Х	Х	Х		Х	
		- NATA # 1261 \$			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х
		y - NATA # 1261																	
May	field Laboratory	y - NATA # 1261	Site # 25079																
Pert	h Laboratory - I	NATA # 2377 Sit	e # 2370																
Exte	rnal Laboratory	/																	
197	DR13 0.1-0.2	Oct 13, 2021	Soil	S21-Oc38628						Х									
198	DR14 0.1-0.2	Oct 13, 2021	Soil	S21-Oc38629						Х									
199	DW09	Oct 13, 2021	Soil	S21-Oc38630						Х									
200	DW10	Oct 13, 2021	Soil	S21-Oc38631						Х									
201	DW11	Oct 13, 2021	Soil	S21-Oc38632						Х									
202	DW12	Oct 13, 2021	Soil	S21-Oc38633						Х									
203	TP13-0.4-0.6	Oct 08, 2021	Soil	S21-Oc38634						Х									
204	TP27-1.0-1.2	Oct 08, 2021	Soil	S21-Oc38635						Х									
205	TP28-0.1-0.3	Oct 08, 2021	Soil	S21-Oc38636						Х									
206	TP29-0.3-0.5	Oct 08, 2021	Soil	S21-Oc38637						Х									
207	TP30-0.5-0.7	Oct 08, 2021	Soil	S21-Oc38638						Х									

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

Oct 18, 2021 3:41 PM

Oct 25, 2021

																			• • • • • • • • • • • • • • • • • • • •	, . ,
		Sa	mple Detail			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех
Melboui	rne Laborato	ory - NATA # 12	61 Site # 1254												Х	Х	Х		Х	
Sydney	Laboratory	- NATA # 1261 \$	Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х
Brisban	ne Laborator	y - NATA # 1261	Site # 20794																	
Mayfield	d Laboratory	/ - NATA # 1261	Site # 25079																	
Perth La	aboratory - N	NATA # 2377 Sit	e # 2370																	
Externa	al Laboratory	<u>'</u>																		
208 TP	231-1.0-1.2	Oct 08, 2021	So	il	S21-Oc38639						Х								ļ	
209 TP	231-2.0-2.2	Oct 08, 2021	So	il	S21-Oc38640						Х								<u> </u>	
210 TP	P32-1.0-1.2	Oct 08, 2021	So	il	S21-Oc38641						Х							<u> </u>	<u> </u>	
211 TP	P32-1.5-1.7	Oct 08, 2021	So	il	S21-Oc38642						Х							<u> </u>	<u> </u>	
212 TP	233-0.1-0.3	Oct 08, 2021	So	il	S21-Oc38643						Х							<u> </u>	<u> </u>	
213 TP	P34-0.6-0.8	Oct 08, 2021	So	il	S21-Oc38644						Х							<u> </u>	<u> </u>	
214 TP	P35-0.6-0.8	Oct 08, 2021	So	il	S21-Oc38645						Х							<u> </u>	<u> </u>	
	236-0.1-0.3	Oct 08, 2021	So		S21-Oc38646						Х							<u> </u>	<u> </u>	
	237-0.1-0.3	Oct 08, 2021	So		S21-Oc38647						Х							<u> </u>	<u> </u>	
	238-0.4-0.6	Oct 08, 2021	So		S21-Oc38648						Х							<u> </u>	<u> </u>	
218 TP	239-0.1-0.3	Oct 08, 2021	So	il	S21-Oc38649			Х												

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

NZBN: 9429046024954

Oct 18, 2021 3:41 PM

Oct 25, 2021

Auckland Christchurch 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 IANZ # 1290

43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450

Company Name:

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

Address:

13546

Order No.: Report #:

833263

Phone: 1800 288 188 02 9675 1888 Fax:

Jacob Walker **Contact Name:**

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Eurofins Analytical Services Manager: Andrew Black

5 Day

																					_
		Sa	mple Detail			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех	
Melb	ourne Laborate	ory - NATA # 12	61 Site # 1254												Х	Х	Х		Х		
		- NATA # 1261				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	
		y - NATA # 126																			
May	field Laboratory	y - NATA # 1261	Site # 25079																		
Perti	h Laboratory - I	NATA # 2377 Si	e # 2370																		
Exte	rnal Laboratory	<i>I</i>																			
219	TP40-0.1-0.3	Oct 08, 2021	Soil	;	S21-Oc38650						Х										
220	TP55-0.0-0.2	Oct 08, 2021	Soil		S21-Oc38651						Х								<u> </u>		l
221	TP55-0.3-0.5	Oct 08, 2021	Soil	;	S21-Oc38652						Х								↓	\sqcup	
222	TP56-0.0-0.2	Oct 08, 2021	Soil		S21-Oc38653						Х								↓	\sqcup	
223	TP56-0.7-0.9	Oct 08, 2021	Soil	;	S21-Oc38654						Х								↓	\sqcup	
224	TP57-0.1-0.1	Oct 08, 2021	Soil		S21-Oc38655						Х									\sqcup	
225	TP57-0.1-0.3	Oct 08, 2021	Soil		S21-Oc38656						Х									\sqcup	l
226	TP58-0.0-0.1	Oct 08, 2021	Soil		S21-Oc38657						Х								—		
227	TP58-0.1-0.3	Oct 08, 2021	Soil		S21-Oc38658			Х											—		
228	TP59-0.0-0.2	Oct 08, 2021	Soil		S21-Oc38659						Х								—	\sqcup	
229	TP59-0.7-0.9	Oct 08, 2021	Soil		S21-Oc38660						Х								<u> </u>	Ш	,

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Received:

Priority:

Contact Name:

Due:

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Alliance Geotechnical

10 Welder Road

Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

Address:

13546

Order No.: Report #:

833263

Phone: 1800 288 188 02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

NZBN: 9429046024954

Oct 18, 2021 3:41 PM

Oct 25, 2021

Sample De	ail		Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех
Melbourne Laboratory - NATA # 1261 Site #	1254											Х	Х	Х		Х	
Sydney Laboratory - NATA # 1261 Site # 18	217		Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х		Χ	Х	Х	Х
Brisbane Laboratory - NATA # 1261 Site # 2	0794																
Mayfield Laboratory - NATA # 1261 Site # 2	5079																
Perth Laboratory - NATA # 2377 Site # 2370																	
External Laboratory																	
230 TP60-0.0-0.2 Oct 08, 2021	Soil	S21-Oc38661						Х									
231 TP60-0.5-0.7 Oct 08, 2021	Soil	S21-Oc38662						Х									
Test Counts	•	•	7	7	2	16	7	113	16	5	37	5	5	98	77	17	5

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs...

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xvlenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank	g/ =	10.000	0.000		
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene		< 0.001	0.001	Pass	
	mg/L				
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank		T T	<u> </u>	Г	
Organochlorine Pesticides				_	
Chlordanes - Total	mg/L	< 0.002	0.002	Pass	
4.4'-DDD	mg/L	< 0.0002	0.0002	Pass	
4.4'-DDE	mg/L	< 0.0002	0.0002	Pass	
4.4'-DDT	mg/L	< 0.0002	0.0002	Pass	
a-HCH	mg/L	< 0.0002	0.0002	Pass	
Aldrin	mg/L	< 0.0002	0.0002	Pass	
b-HCH	mg/L	< 0.0002	0.0002	Pass	
d-HCH	mg/L	< 0.0002	0.0002	Pass	
Dieldrin	mg/L	< 0.0002	0.0002	Pass	
Endosulfan I	mg/L	< 0.0002	0.0002	Pass	
Endosulfan II	mg/L	< 0.0002	0.0002	Pass	
Endosulfan sulphate	mg/L	< 0.0002	0.0002	Pass	
Endrin	mg/L	< 0.0002	0.0002	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde	mg/L	< 0.0002	0.0002	Pass	
Endrin ketone	mg/L	< 0.0002	0.0002	Pass	
g-HCH (Lindane)	mg/L	< 0.0002	0.0002	Pass	
Heptachlor	mg/L	< 0.0002	0.0002	Pass	
Heptachlor epoxide	mg/L	< 0.0002	0.0002	Pass	
Hexachlorobenzene	mg/L	< 0.0002	0.0002	Pass	
Methoxychlor	mg/L	< 0.0002	0.0002	Pass	
Toxaphene	mg/L	< 0.005	0.005	Pass	
Method Blank					
Polychlorinated Biphenyls				T	
Aroclor-1016	mg/L	< 0.005	0.005	Pass	
Aroclor-1221	mg/L	< 0.005	0.005	Pass	
Aroclor-1232	mg/L	< 0.005	0.005	Pass	
Aroclor-1242	mg/L	< 0.005	0.005	Pass	
Aroclor-1248		1	0.005		
Aroclor-1254	mg/L	< 0.005	0.005	Pass	
	mg/L	< 0.005		Pass	
Aroclor-1260	mg/L	< 0.005	0.005	Pass	
Total PCB*	mg/L	< 0.005	0.005	Pass	
Method Blank		Т		Т	
Heavy Metals				-	
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons					
TRH C6-C9	%	92	70-130	Pass	
TRH C10-C14	%	85	70-130	Pass	
Naphthalene	%	103	70-130	Pass	
TRH C6-C10	%	93	70-130	Pass	
TRH >C10-C16	%	111	70-130	Pass	
LCS - % Recovery			1 10 100		
BTEX					
Benzene	%	96	70-130	Pass	
Toluene	%	102	70-130	Pass	
Ethylbenzene	%	104	70-130	Pass	
m&p-Xylenes	%	105	70-130	Pass	
	%	105			
o-Xylene			70-130	Pass	
Xylenes - Total*	%	105	70-130	Pass	
LCS - % Recovery Polycyclic Aromatic Hydrocarbons		Т	T		
Acenaphthene	%	87	70-130	Pass	
Acenaphthylene	%	85	70-130	Pass	
Anthracene	%	83	70-130	Pass	
Benz(a)anthracene	%	91	70-130	Pass	
Benzo(a)pyrene	%	88	70-130	Pass	
	%	86	70-130	Pass	
Benzo(b&j)fluoranthene					
Benzo(g.h.i)perylene	%	90	70-130	Pass	
Benzo(k)fluoranthene	%	95	70-130	Pass	
Chrysene	%	92	70-130	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Dibenz(a.h)anthracene			%	80	70-130	Pass	
Fluoranthene			%	89	70-130	Pass	
Fluorene			%	84	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	81	70-130	Pass	
Naphthalene			%	81	70-130	Pass	
Phenanthrene			%	91	70-130	Pass	
Pyrene			%	89	70-130	Pass	
LCS - % Recovery							
Organochlorine Pesticides							
Chlordanes - Total			%	93	70-130	Pass	
4.4'-DDD			%	93	70-130	Pass	
4.4'-DDE			%	93	70-130	Pass	
4.4'-DDT			%	119	70-130	Pass	
a-HCH			%	89	70-130	Pass	
Aldrin			%	87	70-130	Pass	
b-HCH			%	98	70-130	Pass	
d-HCH				96	70-130	Pass	
			%				
Dieldrin Endosulfan I			% %	96	70-130 70-130	Pass	
				95		Pass	
Endosulfan II			%	93	70-130	Pass	
Endosulfan sulphate			%	95	70-130	Pass	
Endrin			%	111	70-130	Pass	
Endrin aldehyde			%	105	70-130	Pass	
Endrin ketone			%	92	70-130	Pass	
g-HCH (Lindane)			%	96	70-130	Pass	
Heptachlor			%	96	70-130	Pass	
Heptachlor epoxide			%	91	70-130	Pass	
Hexachlorobenzene			%	85	70-130	Pass	
LCS - % Recovery				1			
Polychlorinated Biphenyls							
Aroclor-1016			%	88	70-130	Pass	
Aroclor-1260			%	124	70-130	Pass	
LCS - % Recovery							
Heavy Metals							
Arsenic			%	101	80-120	Pass	
Cadmium			%	107	80-120	Pass	
Chromium			%	117	80-120	Pass	
Copper			%	94	80-120	Pass	
Lead			%	116	80-120	Pass	
Mercury			%	102	80-120	Pass	
Nickel			%	98	80-120	Pass	
Zinc			%	93	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbons				Result 1			
TRH C6-C9	S21-Oc44053	NCP	%	92	70-130	Pass	
Naphthalene	S21-Oc44053	NCP	%	99	70-130	Pass	
TRH C6-C10	S21-Oc44053	NCP	%	92	70-130	Pass	
Spike - % Recovery							
ВТЕХ				Result 1			
Benzene	S21-Oc44053	NCP	%	94	70-130	Pass	
Toluene	S21-Oc44053	NCP	%	99	70-130	Pass	
	C04 O-44050			1	70-130	Door	
Ethylbenzene	S21-Oc44053	NCP	%	101	10-130	Pass	l

Page 32 of 35

Report Number: 833263-W-V2

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
o-Xylene	S21-Oc44053	NCP	%	103			70-130	Pass	
Xylenes - Total*	S21-Oc44053	NCP	%	103			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S21-Oc36520	NCP	%	113			75-125	Pass	
Cadmium	S21-Oc36520	NCP	%	116			75-125	Pass	
Chromium	S21-Oc52293	NCP	%	87			75-125	Pass	
Copper	S21-Oc36520	NCP	%	97			75-125	Pass	
Lead	S21-Oc36520	NCP	%	117			75-125	Pass	
Mercury	S21-Oc36520	NCP	%	109			75-125	Pass	
Nickel	S21-Oc36520	NCP	%	101			75-125	Pass	
Zinc	S21-Oc36520	NCP	%	96			75-125	Pass	
Spike - % Recovery		1121	7.5					1 3.55	
Total Recoverable Hydrocarbons				Result 1					
TRH C10-C14	S21-Oc38508	СР	%	125			70-130	Pass	
TRH >C10-C16	S21-Oc38508	CP	%	111			70-130	Pass	
		QA					Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Oc38469	СР	mg/L	0.004	0.004	4.0	30%	Pass	
Cadmium	S21-Oc38469	СР	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S21-Oc38469	СР	mg/L	0.014	0.014	3.0	30%	Pass	
Copper	S21-Oc38469	СР	mg/L	0.041	0.041	2.0	30%	Pass	
Lead	S21-Oc38469	СР	mg/L	0.035	0.036	5.0	30%	Pass	
Mercury	S21-Oc38469	СР	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S21-Oc38469	СР	mg/L	0.012	0.012	2.0	30%	Pass	
Zinc	S21-Oc38469	CP	mg/L	0.091	0.091	<1	30%	Pass	
Duplicate	7 02. 0000.00	<u> </u>		0.00.	0.001		0070		
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C10-C14	S21-Oc38473	СР	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S21-Oc38473	CP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S21-Oc38473	CP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C10-C16	S21-Oc38473	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	S21-Oc38473	CP	mg/L	0.1	0.03	7.0	30%	Pass	
TRH >C34-C40	S21-Oc38473	CP	mg/L	< 0.1	< 0.1	<u></u>	30%	Pass	
Duplicate Duplicate	1 021 0000473	01	IIIg/L		V 0.1		3070	1 433	
Polycyclic Aromatic Hydrocarbo	ne			Result 1	Result 2	RPD			
Acenaphthene	S21-Oc38473	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	S21-Oc38473	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S21-Oc38473	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	S21-Oc38473	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
		CP		< 0.001			30%	Pass	
Benzo(a)pyrene Benzo(b&j)fluoranthene	S21-Oc38473	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
• • • • • • • • • • • • • • • • • • • •	S21-Oc38473		mg/L		< 0.001	<1			
Benzo(g.h.i)perylene	S21-Oc38473	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	S21-Oc38473	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene Dibanz(a h)anthrasana	S21-Oc38473	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-Oc38473	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	S21-Oc38473	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	S21-Oc38473	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-Oc38473	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	S21-Oc38473	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	S21-Oc38473	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	S21-Oc38473	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Page 33 of 35

Report Number: 833263-W-V2

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S21-Oc38473	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
4.4'-DDD	S21-Oc38473	CP	mg/L	< 0.0002	< 0.0002		30%	Pass	
4.4'-DDE	S21-Oc38473	CP	mg/L	< 0.0002	< 0.0002		30%	Pass	
4.4'-DDT	S21-Oc38473	CP	mg/L	< 0.0002	< 0.0002		30%	Pass	
a-HCH	S21-Oc38473	CP	mg/L	< 0.0002	< 0.0002		30%	Pass	
Aldrin	S21-Oc38473	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
b-HCH	S21-Oc38473	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
d-HCH	S21-Oc38473	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Dieldrin	S21-Oc38473	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan I	S21-Oc38473	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan II	S21-Oc38473	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan sulphate	S21-Oc38473	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin	S21-Oc38473	CP	mg/L	< 0.0002	< 0.0002		30%	Pass	
Endrin aldehyde	S21-Oc38473	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin ketone	S21-Oc38473	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
g-HCH (Lindane)	S21-Oc38473	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor	S21-Oc38473	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor epoxide	S21-Oc38473	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Hexachlorobenzene	S21-Oc38473	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Methoxychlor	S21-Oc38473	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Duplicate	021 0000110	<u> </u>	1 1119/2	1 0.0002	1 0.0002	- 11	0070	1 400	
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S21-Oc38473	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Aroclor-1221	S21-Oc38473	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Aroclor-1232	S21-Oc38473	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Aroclor-1242	S21-Oc38473	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Aroclor-1248	S21-Oc38473	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Aroclor-1254	S21-Oc38473	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Aroclor-1260	S21-Oc38473	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Total PCB*	S21-Oc38473	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate	1 021 0000110	<u> </u>	19/ =	1 0.000	1 0.000	11	0070	1 400	
Total Recoverable Hydrocarbor	ns			Result 1	Result 2	RPD			
TRH C6-C9	S21-Oc38509	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Naphthalene	S21-Oc38509	CP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S21-Oc38509	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate	, 52. 500000		g/ <u>-</u>					. 300	
BTEX				Result 1	Result 2	RPD			
Benzene	S21-Oc38509	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S21-Oc38509	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S21-Oc38509	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S21-Oc38509	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S21-Oc38509	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	S21-Oc38509	CP	mg/L	< 0.003	< 0.003	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved No Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Q09 The Surrogate recovery is outside of the recommended acceptance criteria due to matrix interference. Acceptance criteria were met for all other QC

Authorised by:

N02

Andrew Black Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) John Nguyen Senior Analyst-Metal (NSW) Roopesh Rangarajan Senior Analyst-Volatile (NSW)

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Page 35 of 35

Report Number: 833263-W-V2

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Jacob Walker

Report 833263-S-V2
Project name KEMPS CREEK

Project ID 13546
Received Date Oct 18, 2021

Client Sample ID			TP01 0.0-0.2	TP02 0.0-0.2	TP03 0.0-0.2	TP04 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38427	S21-Oc38428	S21-Oc38429	S21-Oc38430
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	1					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
ВТЕХ	<u></u>					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	126	125	132	123
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			TP01 0.0-0.2	TP02 0.0-0.2	TP03 0.0-0.2	TP04 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38427	S21-Oc38428	S21-Oc38429	S21-Oc38430
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	1					
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	79	77	80	92
p-Terphenyl-d14 (surr.)	1	%	84	89	86	90
Organochlorine Pesticides	<u>'</u>					
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	< 0.05
a-HCH	0.05	mg/kg	< 0.05	-	-	< 0.05
Aldrin	0.05	mg/kg	< 0.05	-	-	< 0.05
b-HCH	0.05	mg/kg	< 0.05	-	-	< 0.05
d-HCH	0.05	mg/kg	< 0.05	-	-	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	-	-	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	-	-	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	< 0.05
Endrin	0.05	mg/kg	< 0.05	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	-	-	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	-	-	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	-	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	-	-	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	-	-	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	-	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	89	-	-	85
Tetrachloro-m-xylene (surr.)	1	%	78	-	=	84
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	-	-	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	89	-	-	85
Tetrachloro-m-xylene (surr.)	1	%	78	-	-	84

Client Sample ID			TP01 0.0-0.2	TP02 0.0-0.2	TP03 0.0-0.2	TP04 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38427	S21-Oc38428	S21-Oc38429	S21-Oc38430
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	9.5	9.8	8.1	9.8
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	21	21	22	17
Copper	5	mg/kg	32	31	18	46
Lead	5	mg/kg	20	20	26	28
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	22	22	10	25
Zinc	5	mg/kg	89	83	39	92
% Moisture	1	%	13	14	9.0	9.7
Ammonia (as N)	5	mg/kg	-	-	-	R091400
Nitrate & Nitrite (as N)	5	mg/kg	-	-	-	3500
Nitrate (as N)	5	mg/kg	-	-	-	3500
Nitrite (as N)	5	mg/kg	-	-	-	< 5
Total Kjeldahl Nitrogen (as N)	10	mg/kg	-	-	-	^{R09} 1200
Total Nitrogen (as N)*	10	mg/kg	-	-	-	4700
Phosphorus	5	mg/kg	-	-	-	580

Client Sample ID			TP05 0.0-0.1	TP06 0.0-0.2	TP07 0.0-0.2	TP08 0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38431	S21-Oc38432	S21-Oc38433	S21-Oc38434
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	119	123	77	110

Client Sample ID			TP05 0.0-0.1	TP06 0.0-0.2	TP07 0.0-0.2	TP08 0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38431	S21-Oc38432	S21-Oc38433	S21-Oc38434
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	•					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	97	97	106	58
p-Terphenyl-d14 (surr.)	1	%	90	91	91	83
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	-	-
a-HCH	0.05	mg/kg	< 0.05	< 0.05	-	-
Aldrin	0.05	mg/kg	< 0.05	< 0.05	-	-
b-HCH	0.05	mg/kg	< 0.05	< 0.05	-	-
d-HCH	0.05	mg/kg	< 0.05	< 0.05	-	-
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	-	-
g-HCH (Lindane) Heptachlor	0.05 0.05	mg/kg	< 0.05 < 0.05	< 0.05 < 0.05	-	-
l	0.05	mg/kg	< 0.05	< 0.05	-	-
Heptachlor epoxide Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	-	-
Methoxychlor	0.05	mg/kg mg/kg	< 0.05	< 0.05	-	-
Toxaphene	0.05	mg/kg	< 0.05	< 0.05		-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	<u>-</u>
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	-	
Dibutylchlorendate (surr.)	1	%	81	92		
Tetrachloro-m-xylene (surr.)	1	%	88	89	-	-

Client Sample ID			TP05 0.0-0.1	TP06 0.0-0.2	TP07 0.0-0.2	TP08 0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38431	S21-Oc38432	S21-Oc38433	S21-Oc38434
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls	·					
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	-	-
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	81	92	-	-
Tetrachloro-m-xylene (surr.)	1	%	88	89	-	-
Heavy Metals						
Arsenic	2	mg/kg	10	9.7	6.0	8.8
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	28	19	14	18
Copper	5	mg/kg	36	32	17	22
Lead	5	mg/kg	15	23	19	24
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	24	22	9.5	15
Zinc	5	mg/kg	78	99	590	95
% Moisture	1	%	20	12	10	9.6
Ammonia (as N)	5	mg/kg	20	< 5	-	-
Nitrate & Nitrite (as N)	5	mg/kg	69	6.8	-	-
Nitrate (as N)	5	mg/kg	69	6.8	-	-
Nitrite (as N)	5	mg/kg	< 5	< 5	-	-
Total Kjeldahl Nitrogen (as N)	10	mg/kg	370	32	-	-
Total Nitrogen (as N)*	10	mg/kg	439	38.8	-	-
Phosphorus	5	mg/kg	460	910	-	-

Client Sample ID Sample Matrix			TP09 0.0-0.2 Soil	TP10 0.0-0.2 Soil	TP11 0.0-0.1 Soil	TP12 0.0-0.1 Soil
Eurofins Sample No.			S21-Oc38435	S21-Oc38436	S21-Oc38437	S21-Oc38438
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	*					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	160	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	98	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	258	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	51	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	51	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	190	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	110	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	351	< 100	< 100

				1	_	1
Client Sample ID			TP09 0.0-0.2	TP10 0.0-0.2	TP11 0.0-0.1	TP12 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38435	S21-Oc38436	S21-Oc38437	S21-Oc38438
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit				
BTEX	'	'				
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	126	132	130	118
Polycyclic Aromatic Hydrocarbons	·					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	61	61	61	54
p-Terphenyl-d14 (surr.)	1	%	86	81	99	70
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05

Client Sample ID			TP09 0.0-0.2	TP10 0.0-0.2	TP11 0.0-0.1	TP12 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38435	S21-Oc38436	S21-Oc38437	S21-Oc38438
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	_	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	_	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	_	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	_	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	106	-	105	71
Tetrachloro-m-xylene (surr.)	1	%	87	-	94	72
Polychlorinated Biphenyls	'					
Aroclor-1016	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	106	-	105	71
Tetrachloro-m-xylene (surr.)	1	%	87	-	94	72
Heavy Metals						
Arsenic	2	mg/kg	4.0	3.7	8.2	6.4
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	10	16	24	18
Copper	5	mg/kg	18	11	33	40
Lead	5	mg/kg	15	15	20	16
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	8.5	8.9	19	16
Zinc	5	mg/kg	130	30	63	74
		T				
% Moisture	1	%	11	6.1	12	9.3
Ammonia (as N)	5	mg/kg	-	-	1700	2000
Nitrate & Nitrite (as N)	5	mg/kg	-	-	2000	3100
Nitrate (as N)	5	mg/kg	-	-	2000	3100
Nitrite (as N)	5	mg/kg	-	-	< 5	< 5
Total Kjeldahl Nitrogen (as N)	10	mg/kg	-	-	2900	3400
Total Nitrogen (as N)*	10	mg/kg	-	-	4900	6500
Phosphorus	5	mg/kg	-	-	780	600

Client Sample ID			TP14 0.0-0.2	TP15 0.0-0.2	TP16 0.0-0.2	TP17 0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
•						
Eurofins Sample No.			S21-Oc38439	S21-Oc38440	S21-Oc38441	S21-Oc38442
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	ı					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 40	< 40
TRH C15-C28	50	mg/kg	63	< 50	210	170
TRH C29-C36	50	mg/kg	82	< 50	520	490
TRH C10-C36 (Total)	50	mg/kg	145	< 50	730	660
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 100	< 100
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 100	< 100
TRH >C16-C34	100	mg/kg	120	< 100	560	510
TRH >C34-C40	100	mg/kg	< 100	< 100	790	600
TRH >C10-C40 (total)*	100	mg/kg	120	< 100	1350	1110
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	119	127	127	132
Polycyclic Aromatic Hydrocarbons	<u> </u>	T				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.7	0.7
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.3
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	0.8	0.6
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	0.7	0.6
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.6
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	0.7	0.7
Chrysene	0.5	mg/kg	< 0.5	< 0.5	0.8	0.9
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	0.7	0.7
Fluorene	0.5	mg/kg	< 0.5	< 0.5	0.8	0.8
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	0.5	0.6
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	0.6	0.6
Pyrene Total PAH*	0.5	mg/kg	< 0.5	< 0.5	0.6	0.8
Total PAH* 2-Fluorobiphenyl (surr.)	0.5	mg/kg %	< 0.5 85	< 0.5 86	6.2 88	6.9 80
p-Terphenyl-d14 (surr.)	1	%	108	100	109	107
Organochlorine Pesticides		70	100	100	109	107
	0.4	ma/lis		-01		
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	-
	1 0.05	mg/kg	1 -	< 0.05	-	-
4.4'-DDD 4.4'-DDE	0.05	mg/kg		< 0.05		

Client Sample ID			TD440000	TP15 0.0-0.2	TD46 0 0 0 0	TD47.0.0.0.0
·			TP14 0.0-0.2 Soil	Soil	TP16 0.0-0.2 Soil	TP17 0.0-0.2 Soil
Sample Matrix						
Eurofins Sample No.			S21-Oc38439	S21-Oc38440	S21-Oc38441	S21-Oc38442
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
a-HCH	0.05	mg/kg	-	< 0.05	-	-
Aldrin	0.05	mg/kg	-	< 0.05	=	-
b-HCH	0.05	mg/kg	-	< 0.05	-	-
d-HCH	0.05	mg/kg	-	< 0.05	-	-
Dieldrin	0.05	mg/kg	-	< 0.05	-	-
Endosulfan I	0.05	mg/kg	-	< 0.05	-	-
Endosulfan II	0.05	mg/kg	-	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	-
Endrin	0.05	mg/kg	-	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	-
Endrin ketone	0.05	mg/kg	-	< 0.05	-	-
g-HCH (Lindane)	0.05	mg/kg	-	< 0.05	-	-
Heptachlor	0.05	mg/kg	-	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	-
Methoxychlor	0.05	mg/kg	-	< 0.05	-	-
Toxaphene	0.5	mg/kg	-	< 0.5	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	-	114	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	97	-	-
Polychlorinated Biphenyls	•	•				
Aroclor-1016	0.1	mg/kg	_	< 0.1	-	-
Aroclor-1221	0.1	mg/kg	_	< 0.1	-	-
Aroclor-1232	0.1	mg/kg	_	< 0.1	-	-
Aroclor-1242	0.1	mg/kg	_	< 0.1	-	-
Aroclor-1248	0.1	mg/kg	_	< 0.1	-	-
Aroclor-1254	0.1	mg/kg	_	< 0.1	-	-
Aroclor-1260	0.1	mg/kg	_	< 0.1	-	-
Total PCB*	0.1	mg/kg	_	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	-	114	-	-
Tetrachloro-m-xylene (surr.)	1	%	_	97	-	-
Heavy Metals	<u> </u>			1		
Arsenic	2	mg/kg	9.1	17	3.0	2.8
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	23	15	14	26
Copper	5	mg/kg	58	44	64	41
Lead	5	mg/kg	27	29	13	11
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	23	31	16	18
Zinc	5	mg/kg	180	100	84	95
		ı mg/ng	100	100	0-7	
9/ Maicture	4	0/	17	6.9	9.1	7.2
% Moisture	111	%	17	ტ.9	9.1	7.3

Client Sample ID			TP18 0.0-0.2	TP19 0.0-0.1	TP20 0.0-0.1	TP21 0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38443	S21-Oc38444	S21-Oc38445	S21-Oc38446
•						
Date Sampled			Oct 06, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 100	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	110	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	220	< 50	72	57
TRH C10-C36 (Total)	50	mg/kg	330	< 50	72	57
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 2.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 100	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 100	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	250	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	260	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	510	< 100	< 100	< 100
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.5	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.5	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.5	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 1	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.5	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 1.5	< 0.3
4-Bromofluorobenzene (surr.)	1	%	132	102	98	105
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.7	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.3	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	0.8	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	0.6	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	0.6	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	0.6	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	0.8	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	1.0	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	0.7	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	0.8	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	0.7	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	0.7	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	8.3	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	75	74	77	79
p-Terphenyl-d14 (surr.)	1	%	109	66	77	80
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05

Client Sample ID			TP18 0.0-0.2	TP19 0.0-0.1	TP20 0.0-0.1	TP21 0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
•						
Eurofins Sample No.			S21-Oc38443	S21-Oc38444	S21-Oc38445	S21-Oc38446
Date Sampled			Oct 06, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
а-НСН	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	-	82 73	91 79	97
Tetrachloro-m-xylene (surr.) Polychlorinated Biphenyls	1	70	-	/3	79	81
	0.4			0.4	0.4	0.4
Aroclor-1016 Aroclor-1221	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Aroclor-1221 Aroclor-1232	0.1	mg/kg	-	< 0.1	< 0.1 < 0.1	< 0.1
Aroclor-1232 Aroclor-1242	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	-	< 0.1 < 0.1	< 0.1	< 0.1 < 0.1
Aroclor-1254	0.1	mg/kg mg/kg	-	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1		-	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg mg/kg	-	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	_	82	91	97
Tetrachloro-m-xylene (surr.)	1	%	_	73	79	81
Heavy Metals	' '	/0	_	73	13	01
Arsenic	2	ma/ka	3.8	13	8.2	15
Cadmium	0.4	mg/kg mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	34	17	6.5	25
Copper	5	mg/kg	54	34	84	45
Lead	5	mg/kg	14	18	8.5	30
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	32	22	18	18
Zinc	5	mg/kg	170	100	300	120
		ı mg/ng	170	100	300	120
% Moisture	1	%	12	6.7	8.2	11
Ammonia (as N)	5	mg/kg	-	R092200	R093300	< 5
Nitrate & Nitrite (as N)	5	mg/kg	-	4500	11000	5.2
Nitrate (as N)	5	mg/kg	<u> </u>	4500	11000	< 5
Nitrite (as N)	5	mg/kg	-	< 5	< 5	< 5

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	TP18 0.0-0.2 Soil S21-Oc38443 Oct 06, 2021	TP19 0.0-0.1 Soil S21-Oc38444 Oct 07, 2021	TP20 0.0-0.1 Soil S21-Oc38445 Oct 07, 2021	TP21 0.0-0.2 Soil S21-Oc38446 Oct 07, 2021
Total Kjeldahl Nitrogen (as N)	10	mg/kg	-	R092100	R091700	2500
Total Nitrogen (as N)*	10	mg/kg	-	6600	12700	2505.2
Phosphorus	5	mg/kg	-	840	11000	860

Client Sample ID			TP22 0.0-0.1	TP23 0.0-0.1	TP24 0.0-0.1	TP25 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38447	S21-Oc38448	S21-Oc38449	S21-Oc38450
Date Sampled			Oct 06, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	54	< 50	110
TRH C10-C36 (Total)	50	mg/kg	< 50	54	< 50	110
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	110
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	110
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	101	103	98	104
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			TP22 0.0-0.1	TP23 0.0-0.1	TP24 0.0-0.1	TP25 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
·					-	
Eurofins Sample No.			S21-Oc38447	S21-Oc38448	S21-Oc38449	S21-Oc38450
Date Sampled			Oct 06, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	78	115	102	77
p-Terphenyl-d14 (surr.)	1	%	83	87	90	74
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	< 0.05
а-НСН	0.05	mg/kg	< 0.05	-	-	< 0.05
Aldrin	0.05	mg/kg	< 0.05	-	-	< 0.05
b-HCH	0.05	mg/kg	< 0.05	=	=	< 0.05
d-HCH	0.05	mg/kg	< 0.05	=	=	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	-	-	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	-	-	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	< 0.05
Endrin	0.05	mg/kg	< 0.05	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	=	=	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	-	-	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	-	-	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	=	=	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	=	=	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	=	=	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	=	=	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	=	=	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	-	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	103	-	-	74
Tetrachloro-m-xylene (surr.)	1	%	81	-	-	77
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	-	-	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	103	-	-	74
Tetrachloro-m-xylene (surr.)	1	%	81	-	-	77

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			TP22 0.0-0.1 Soil S21-Oc38447 Oct 06, 2021	TP23 0.0-0.1 Soil S21-Oc38448 Oct 07, 2021	TP24 0.0-0.1 Soil S21-Oc38449 Oct 07, 2021	TP25 0.0-0.1 Soil S21-Oc38450 Oct 07, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	15	15	18	12
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	19	25	33	20
Copper	5	mg/kg	46	27	29	23
Lead	5	mg/kg	26	25	44	35
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	21	23	15	9.6
Zinc	5	mg/kg	180	120	63	84
% Moisture	1	%	16	9.7	14	8.9

Client Sample ID			TP26 1.0-1.2	DR01 0.0-0.2	DR02 0.0-0.2	DR03 0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38451	S21-Oc38452	S21-Oc38453	S21-Oc38454
Date Sampled			Oct 07, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	·	•				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 100
TRH C15-C28	50	mg/kg	< 50	79	< 50	300
TRH C29-C36	50	mg/kg	87	180	66	860
TRH C10-C36 (Total)	50	mg/kg	87	259	66	1160
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 250
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 250
TRH >C16-C34	100	mg/kg	< 100	200	< 100	880
TRH >C34-C40	100	mg/kg	120	230	100	1100
TRH >C10-C40 (total)*	100	mg/kg	120	430	100	1980
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	98	88	98	98
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.7
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	1.0
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.3
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.6
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			TP26 1.0-1.2	DR01 0.0-0.2	DR02 0.0-0.2	DR03 0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38451	S21-Oc38452	S21-Oc38453	S21-Oc38454
Date Sampled			Oct 07, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.4
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.7
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	2.7
2-Fluorobiphenyl (surr.)	1	%	64	84	96	89
p-Terphenyl-d14 (surr.)	1	%	90	88	88	84
Heavy Metals						
Arsenic	2	mg/kg	14	4.3	3.2	3.0
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	30	24	19	17
Copper	5	mg/kg	38	34	21	52
Lead	5	mg/kg	35	21	13	15
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	22	22	16	15
Zinc	5	mg/kg	86	84	48	46

Client Sample ID Sample Matrix			DR04 0.0-0.1 Soil	DR05 0.0-0.1 Soil	DR06 0.0-0.1 Soil	DR07 0.0-0.1 Soil
Eurofins Sample No.			S21-Oc38455	S21-Oc38456	S21-Oc38457	S21-Oc38458
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 40	< 20
TRH C15-C28	50	mg/kg	65	< 50	< 100	< 50
TRH C29-C36	50	mg/kg	150	53	130	< 50
TRH C10-C36 (Total)	50	mg/kg	215	53	130	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 100	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 100	< 50
TRH >C16-C34	100	mg/kg	170	< 100	< 200	< 100
TRH >C34-C40	100	mg/kg	170	< 100	< 200	< 100
TRH >C10-C40 (total)*	100	mg/kg	340	< 100	< 200	< 100

Client Sample ID			DR04 0.0-0.1	DR05 0.0-0.1	DR06 0.0-0.1	DR07 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38455	S21-Oc38456	S21-Oc38457	S21-Oc38458
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	101	98	122	129
Polycyclic Aromatic Hydrocarbons		-				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	91	93	91	105
p-Terphenyl-d14 (surr.)	1	%	86	81	79	86
Heavy Metals						
Arsenic	2	mg/kg	3.4	4.8	12	3.7
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	14	59	33	18
Copper	5	mg/kg	41	14	35	9.3
Lead	5	mg/kg	13	17	25	14
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	14	21	28	21
Zinc	5	mg/kg	93	37	95	34
		T				
% Moisture	1	%	3.3	5.7	12	4.7

Client Sample ID			DD00 0 0 0 4	^{G01} SP1-1	CD4 0	CD4 2
· •			DR08 0.0-0.1		SP1-2	SP1-3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38459	S21-Oc38460	S21-Oc38461	S21-Oc38462
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 40	< 40
TRH C15-C28	50	mg/kg	< 50	210	< 100	270
TRH C29-C36	50	mg/kg	< 50	280	160	390
TRH C10-C36 (Total)	50	mg/kg	< 50	490	160	660
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 100	< 100
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 100	< 100
TRH >C16-C34	100	mg/kg	< 100	430	< 200	590
TRH >C34-C40	100	mg/kg	< 100	180	< 200	< 200
TRH >C10-C40 (total)*	100	mg/kg	< 100	610	< 200	590
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	98	78	68	89
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5 0.5	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
Chrysene Dibogg(a h)anthragene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	82	99	91	91
p-Terphenyl-d14 (surr.)	1	%	66	77	73	87
Organochlorine Pesticides	<u>'</u>	, ,,	""	1	1	1
Chlordanes - Total	0.1	mg/kg	_	< 1	< 1	< 1
	0.05	mg/kg	_	< 0.5	< 0.5	< 0.5
4.4'-DDD						
4.4'-DDD 4.4'-DDE	0.05	mg/kg	-	< 0.5	< 0.5	< 0.5

Client Sample ID			DR08 0.0-0.1	^{G01} SP1-1	SP1-2	SP1-3
Sample Matrix			Soil	Soil	Soil	Soil
•						
Eurofins Sample No.			S21-Oc38459	S21-Oc38460	S21-Oc38461	S21-Oc38462
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
a-HCH	0.05	mg/kg	-	< 0.5	< 0.5	< 0.5
Aldrin	0.05	mg/kg	-	< 0.5	< 0.5	< 0.5
b-HCH	0.05	mg/kg	-	< 0.5	< 0.5	< 0.5
d-HCH	0.05	mg/kg	-	< 0.5	< 0.5	< 0.5
Dieldrin	0.05	mg/kg	-	< 0.5	< 0.5	< 0.5
Endosulfan I	0.05	mg/kg	-	< 0.5	< 0.5	< 0.5
Endosulfan II	0.05	mg/kg	-	< 0.5	< 0.5	< 0.5
Endosulfan sulphate	0.05	mg/kg	-	< 0.5	< 0.5	< 0.5
Endrin	0.05	mg/kg	-	< 0.5	< 0.5	< 0.5
Endrin aldehyde	0.05	mg/kg	-	< 0.5	< 0.5	< 0.5
Endrin ketone	0.05	mg/kg	-	< 0.5	< 0.5	< 0.5
g-HCH (Lindane)	0.05	mg/kg	-	< 0.5	< 0.5	< 0.5
Heptachlor	0.05	mg/kg	-	< 0.5	< 0.5	< 0.5
Heptachlor epoxide	0.05	mg/kg	-	< 0.5	< 0.5	< 0.5
Hexachlorobenzene	0.05	mg/kg	-	< 0.5	< 0.5	< 0.5
Methoxychlor	0.05	mg/kg	-	< 0.5	< 0.5	< 0.5
Toxaphene	0.5	mg/kg	-	< 10	< 10	< 10
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.5	< 0.5	< 0.5
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.5	< 0.5	< 0.5
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 1	< 1	< 1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	-	57	80	62
Tetrachloro-m-xylene (surr.)	1	%	-	59	70	58
Polychlorinated Biphenyls		T "				
Aroclor-1016	0.1	mg/kg	-	< 1	< 1	< 1
Aroclor-1221	0.1	mg/kg	-	< 1	< 1	< 1
Aroclor-1232	0.1	mg/kg	-	< 1	< 1	< 1
Aroclor-1242 Aroclor-1248	0.1	mg/kg	-	< 1	< 1	< 1
	0.1	mg/kg	-	< 1	< 1	< 1
Aroclor-1254	0.1	mg/kg	-	< 1	< 1	< 1
Aroclor-1260 Total PCB*	0.1	mg/kg	-	<1	<1	< 1
Dibutylchlorendate (surr.)	0.1	mg/kg %	-	< 1 57	< 1 80	< 1 62
Tetrachloro-m-xylene (surr.)	1	%	-	59	70	58
Heavy Metals	I	70	-	39	70	36
Arsenic	2	ma/ka	6.2	2.2	4.8	5.0
Cadmium	0.4	mg/kg	6.3	3.3	< 0.4	5.9 < 0.4
Chromium	5	mg/kg mg/kg	13	9.8	14	18
	5		8.4	260	120	150
Copper Lead	5	mg/kg	14	12	16	24
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg mg/kg	6.3	15	15	22
Zinc	5	mg/kg	21	1000	380	640
LIIV		i ilig/kg		1000	300	040
% Moisture	1	%	6.1	39	33	26
Ammonia (as N)	5	mg/kg	6.1	< 250	< 5	5.4
Nitrate & Nitrite (as N)	5		-	1800	750	760
Nitrate & Nitrate (as N)	5	mg/kg	-	1800	750	760
INILIALE (AS IN)	5	mg/kg		1000	750	100

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	DR08 0.0-0.1 Soil S21-Oc38459 Oct 07, 2021	Soil S21-Oc38460 Oct 07, 2021	SP1-2 Soil S21-Oc38461 Oct 07, 2021	SP1-3 Soil S21-Oc38462 Oct 07, 2021
Total Kjeldahl Nitrogen (as N)	10	mg/kg	-	24000	12000	23000
Total Nitrogen (as N)* Phosphorus	10 5	mg/kg mg/kg	-	25800 14000	12750 13000	23760 12000

Client Sample ID			DS01	DS02	DS03	DS04
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38463	S21-Oc38464	S21-Oc38465	S21-Oc38466
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	'	"				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	56	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	56	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
BTEX	·					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	73	73	93	71
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			DS01	DS02	DS03	DS04
Sample Matrix			Soil	Soil	Soil	Soil
			S21-Oc38463	S21-Oc38464	S21-Oc38465	S21-Oc38466
Eurofins Sample No.			1	1	1	
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	99	89	122	90
p-Terphenyl-d14 (surr.)	1	%	90	77	106	87
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	-	-
a-HCH	0.05	mg/kg	< 0.05	< 0.05	-	-
Aldrin	0.05	mg/kg	< 0.05	< 0.05	-	-
b-HCH	0.05	mg/kg	< 0.05	< 0.05	-	-
d-HCH	0.05	mg/kg	< 0.05	< 0.05	-	-
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	-	-
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	-	-
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	-	-
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	-	-
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	63	68	-	-
Tetrachloro-m-xylene (surr.)	1	%	83	61	-	-
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	-	-
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	63	68	-	-
Tetrachloro-m-xylene (surr.)	1	%	83	61	-	-

Client Sample ID Sample Matrix Eurofins Sample No.			DS01 Soil S21-Oc38463	DS02 Soil S21-Oc38464	DS03 Soil S21-Oc38465	DS04 Soil S21-Oc38466
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Heavy Metals		•				
Arsenic	2	mg/kg	18	4.4	8.0	7.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	30	10	21	21
Copper	5	mg/kg	48	13	32	31
Lead	5	mg/kg	38	13	22	22
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	24	6.3	15	17
Zinc	5	mg/kg	110	30	51	52
% Moisture	1	%	28	27	35	34
Ammonia (as N)	5	mg/kg	13	12	-	-
Nitrate & Nitrite (as N)	5	mg/kg	< 5	< 5	-	-
Nitrate (as N)	5	mg/kg	< 5	< 5	-	-
Nitrite (as N)	5	mg/kg	< 5	< 5	-	-
Total Kjeldahl Nitrogen (as N)	10	mg/kg	2200	1700	-	-
Total Nitrogen (as N)*	10	mg/kg	2200	1700	-	-
Phosphorus	5	mg/kg	650	730	-	-

Client Sample ID			DS05	DS06	BD1	BD2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38467	S21-Oc38468	S21-Oc38475	S21-Oc38476
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	-
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	-
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	-
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	-
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	-
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	-
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	-
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	-
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	-
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	107	90	95	-

Client Sample ID			DS05	DS06	BD1	BD2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38467	S21-Oc38468	S21-Oc38475	S21-Oc38476
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	'					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	91	113	103	-
p-Terphenyl-d14 (surr.)	1	%	91	88	86	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	-	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDT	0.05	mg/kg	-	-	-	< 0.05
a-HCH	0.05	mg/kg	-	-	-	< 0.05
Aldrin	0.05	mg/kg	-	-	-	< 0.05
b-HCH	0.05	mg/kg	-	-	-	< 0.05
d-HCH	0.05	mg/kg	-	-	-	< 0.05
Dieldrin	0.05	mg/kg	-	-	-	< 0.05
Endosulfan I	0.05	mg/kg	-	-	=	< 0.05
Endosulfan II	0.05	mg/kg	-	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	-	< 0.05
Endrin	0.05	mg/kg	-	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	-	-	< 0.05
Endrin ketone	0.05 0.05	mg/kg	-	-	-	< 0.05 < 0.05
g-HCH (Lindane) Heptachlor	0.05	mg/kg		-	-	< 0.05
Heptachlor Heptachlor epoxide	0.05	mg/kg mg/kg		-	<u> </u>	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	-	< 0.05
Methoxychlor	0.05	mg/kg		-	-	< 0.05
Toxaphene	0.05	mg/kg	-	-	-	< 0.05
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	_	-	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.05	mg/kg		-	-	< 0.05
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	<u> </u>	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	† -	-	-	90
Tetrachloro-m-xylene (surr.)	1	%		-	-	78

Client Sample ID			DS05	DS06	BD1	BD2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38467	S21-Oc38468	S21-Oc38475	S21-Oc38476
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls		·				
Aroclor-1016	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1221	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1232	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1242	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1248	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1254	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1260	0.1	mg/kg	-	-	-	< 0.1
Total PCB*	0.1	mg/kg	-	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	-	-	90
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	78
Heavy Metals		-				
Arsenic	2	mg/kg	9.5	16	10	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	-
Chromium	5	mg/kg	21	27	23	-
Copper	5	mg/kg	26	26	28	-
Lead	5	mg/kg	13	41	27	-
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Nickel	5	mg/kg	17	16	15	-
Zinc	5	mg/kg	49	71	59	-
% Moisture	1	%	27	29	14	20

Client Sample ID Sample Matrix			TRIP BLANK 1 Soil	TRIP BLANK 2 Soil	TRIP BLANK 3 Soil	TRIP BLANK 4 Soil
Eurofins Sample No.			S21-Oc38477	S21-Oc38478	S21-Oc38479	S21-Oc38480
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	78	78	81	81

Client Sample ID Sample Matrix Eurofins Sample No.			TRIP BLANK 5 Soil S21-Oc38481	TRIP SPIKE 1 Soil S21-Oc38482	TRIP SPIKE 2 Soil S21-Oc38483	TRIP SPIKE 3 Soil S21-Oc38484
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit			,	
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	-	-	-
Toluene	0.1	mg/kg	< 0.1	-	-	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	-	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	-	-
o-Xylene	0.1	mg/kg	< 0.1	-	-	-
Xylenes - Total*	0.3	mg/kg	< 0.3	-	-	-
4-Bromofluorobenzene (surr.)	1	%	80	-	-	-
BTEX		-				
Benzene	1	%	-	94	100	100
Ethylbenzene	1	%	-	96	100	100
m&p-Xylenes	1	%	-	96	99	100
o-Xylene	1	%	-	95	100	100
Toluene	1	%	-	97	100	100
Xylenes - Total	1	%	-	95	100	100
4-Bromofluorobenzene (surr.)	1	%	-	74	76	74

Client Sample ID			TRIP SPIKE 4	TRIP SPIKE 5	BD3	PP2 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38485	S21-Oc38486	S21-Oc38492	S21-Oc38493
Date Sampled			Oct 07, 2021	Oct 07, 2021	Mar 12, 2021	Aug 13, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	·					
TRH C6-C9	20	mg/kg	-	-	< 20	-
TRH C10-C14	20	mg/kg	-	-	< 20	-
TRH C15-C28	50	mg/kg	-	-	< 50	-
TRH C29-C36	50	mg/kg	-	-	66	-
TRH C10-C36 (Total)	50	mg/kg	-	-	66	-
Naphthalene ^{N02}	0.5	mg/kg	-	-	< 0.5	-
TRH C6-C10	20	mg/kg	-	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	-	< 20	-
TRH >C10-C16	50	mg/kg	-	-	< 50	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	-	-	< 50	-
TRH >C16-C34	100	mg/kg	-	-	< 100	-
TRH >C34-C40	100	mg/kg	-	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	-	-	< 100	-
BTEX						
Benzene	0.1	mg/kg	-	-	< 0.1	-
Toluene	0.1	mg/kg	-	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	-	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	-	-	< 0.2	-
o-Xylene	0.1	mg/kg	-	-	< 0.1	-
Xylenes - Total*	0.3	mg/kg	-	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	-	-	89	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	1.2	-
Acenaphthene	0.5	mg/kg	-	-	< 0.5	-

Client Sample ID			TRIP SPIKE 4	TRIP SPIKE 5	BD3	PP2 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38485	S21-Oc38486	S21-Oc38492	S21-Oc38493
Date Sampled			Oct 07, 2021	Oct 07, 2021	Mar 12, 2021	Aug 13, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	•					
Acenaphthylene	0.5	mg/kg	-	-	< 0.5	-
Anthracene	0.5	mg/kg	-	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	-	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Chrysene	0.5	mg/kg	-	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	< 0.5	-
Fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Fluorene	0.5	mg/kg	-	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	< 0.5	-
Naphthalene	0.5	mg/kg	-	-	< 0.5	-
Phenanthrene	0.5	mg/kg	-	-	< 0.5	-
Pyrene	0.5	mg/kg	-	-	< 0.5	-
Total PAH*	0.5	mg/kg	-	-	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	-	-	102	-
p-Terphenyl-d14 (surr.)	1	%	-	-	80	-
Heavy Metals						
Arsenic	2	mg/kg	-	-	15	20
Cadmium	0.4	mg/kg	-	-	< 0.4	< 0.4
Chromium	5	mg/kg	-	-	36	25
Copper	5	mg/kg	-	-	40	26
Lead	5	mg/kg	-	-	30	-
Mercury	0.1	mg/kg	-	-	< 0.1	-
Nickel	5	mg/kg	-	-	30	-
Zinc	5	mg/kg	-	-	220	-
% Moisture	1	%	-	-	9.1	13
BTEX						
Benzene	1	%	100	94	-	-
Ethylbenzene	1	%	110	92	-	-
m&p-Xylenes	1	%	100	92	-	-
o-Xylene	1	%	100	92	-	-
Toluene	1	%	100	93	-	-
Xylenes - Total	1	%	100	92	-	-
4-Bromofluorobenzene (surr.)	1	%	79	53	-	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			PP3 0.0-0.1 Soil S21-Oc38494 Aug 13, 2021	PP4 0.0-0.1 Soil S21-Oc38495 Aug 12, 2021	PP5 0.0-0.1 Soil S21-Oc38496 Oct 13, 2021	PP6 0.0-0.1 Soil S21-Oc38497 Oct 12, 2021
Test/Reference	LOR	Unit	3 10, 2021	3 12, 2021		,
Heavy Metals						
Arsenic	2	mg/kg	39	13	9.9	39
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	21	23	16	23
Copper	5	mg/kg	24	30	21	41

Client Sample ID			PP3 0.0-0.1	PP4 0.0-0.1	PP5 0.0-0.1	PP6 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38494	S21-Oc38495	S21-Oc38496	S21-Oc38497
Date Sampled			Aug 13, 2021	Aug 12, 2021	Oct 13, 2021	Oct 12, 2021
Test/Reference	LOR	Unit				
% Moisture	1	%	11	9.5	11	8.5

Client Sample ID			PP7 0.0-0.1	PP8 0.0-0.1	DR11 0.0-0.1	DR12 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38498	S21-Oc38499	S21-Oc38500	S21-Oc38501
Date Sampled			Oct 12, 2021	Oct 12, 2021	Oct 13, 2021	Oct 13, 2021
Test/Reference	LOR	Unit	OCT 12, 2021	OCT 12, 2021	001 13, 2021	001 13, 2021
Total Recoverable Hydrocarbons	LOR	Offic				
TRH C6-C9	20	ma/ka	_	_	< 20	< 20
TRH C10-C14	20	mg/kg mg/kg	-	-	< 20	< 20
TRH C15-C28	50	mg/kg	-	-	< 50	60
TRH C29-C36	50	mg/kg	-	-	< 50	77
TRH C10-C36 (Total)	50	mg/kg	-	-	< 50	137
Naphthalene ^{N02}	0.5	mg/kg	-	-	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	-	-	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	-	< 20	< 20
TRH >C10-C16	50	mg/kg	-	-	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	-	< 50	< 50
TRH >C16-C34	100	mg/kg	-	-	< 100	110
TRH >C34-C40	100	mg/kg	-	_	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	_	< 100	110
BTEX	100	IIIg/kg	-	-	< 100	110
Benzene	0.1	mg/kg			< 0.1	< 0.1
Toluene	0.1	mg/kg	-	-	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	-	-	< 0.1	< 0.1
m&p-Xylenes	0.1	mg/kg	-	-	< 0.2	< 0.1
o-Xylene	0.2	mg/kg	_	_	< 0.1	< 0.2
Xylenes - Total*	0.1	mg/kg	_	_	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	_	_	69	85
Polycyclic Aromatic Hydrocarbons	'	/0			05	- 00
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	0.6	0.6
Benzo(a)pyrene TEQ (inediam bound) *	0.5	mg/kg	-	-	1.2	1.2
Acenaphthene	0.5	mg/kg	-	-	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	< 0.5	< 0.5
Anthracene	0.5	mg/kg	-	-	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg		_	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	< 0.5	< 0.5
Chrysene	0.5	mg/kg	-	-	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	-	-	< 0.5	< 0.5
Fluorene	0.5	mg/kg	-	-	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	-	-	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	-	-	< 0.5	< 0.5
1 Honardillono	0.5	ilig/kg			\ 0.5	\ 0.0

Client Sample ID Sample Matrix			PP7 0.0-0.1 Soil	PP8 0.0-0.1 Soil	DR11 0.0-0.1 Soil	DR12 0.0-0.1 Soil
Eurofins Sample No.			S21-Oc38498	S21-Oc38499	S21-Oc38500	S21-Oc38501
Date Sampled			Oct 12, 2021	Oct 12, 2021	Oct 13, 2021	Oct 13, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	·	•				
Pyrene	0.5	mg/kg	-	-	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	-	-	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	-	108	108
p-Terphenyl-d14 (surr.)	1	%	-	-	82	86
Heavy Metals						
Arsenic	2	mg/kg	4.9	7.0	< 2	17
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	10	13	< 5	26
Copper	5	mg/kg	19	29	< 5	52
Lead	5	mg/kg	-	-	< 5	37
Mercury	0.1	mg/kg	-	-	< 0.1	< 0.1
Nickel	5	mg/kg	-	-	< 5	37
Zinc	5	mg/kg	-	-	< 5	110
% Moisture	1	%	7.0	18	7.8	11

Client Sample ID			DR13 0.0-0.1	DR14 0.0-0.1	DS07	DS08
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38502	S21-Oc38503	S21-Oc38504	S21-Oc38505
Date Sampled			Oct 13, 2021	Oct 13, 2021	Oct 13, 2021	Oct 13, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	89	85	78	75
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			DR13 0.0-0.1	DR14 0.0-0.1	DS07	DS08
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38502	S21-Oc38503	S21-Oc38504	S21-Oc38505
Date Sampled			Oct 13, 2021	Oct 13, 2021	Oct 13, 2021	Oct 13, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		•				
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	95	110	86	84
p-Terphenyl-d14 (surr.)	1	%	76	94	95	92
Organochlorine Pesticides		1	-			-
Chlordanes - Total	0.1	mg/kg	_	-	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	_	_	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	_	-	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	_	-	< 0.05	< 0.05
a-HCH	0.05	mg/kg	-	-	< 0.05	< 0.05
Aldrin	0.05	mg/kg	-	-	< 0.05	< 0.05
b-HCH	0.05	mg/kg	_	-	< 0.05	< 0.05
d-HCH	0.05	mg/kg	_	-	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	_	-	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	-	-	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	-		< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	-		< 0.05	< 0.05
Endrin	0.05	mg/kg	-	-	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	-	=	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	-	-	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	-	-	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	-	-	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	-	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	-	-	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	-	-	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	-	-	94	93
Tetrachloro-m-xylene (surr.)	1	%	_	_	89	85

Client Sample ID			DR13 0.0-0.1	DR14 0.0-0.1	DS07	DS08
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38502	S21-Oc38503	S21-Oc38504	S21-Oc38505
Date Sampled			Oct 13, 2021	Oct 13, 2021	Oct 13, 2021	Oct 13, 2021
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	-	-	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	-	-	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	-	-	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	-	-	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	-	-	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	-	-	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	-	-	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	-	-	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	-	=	94	93
Tetrachloro-m-xylene (surr.)	1	%	-	-	89	85
Heavy Metals						
Arsenic	2	mg/kg	12	7.8	18	16
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	21	21	16	18
Copper	5	mg/kg	19	36	16	18
Lead	5	mg/kg	24	18	20	18
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	14	26	15	13
Zinc	5	mg/kg	44	64	51	54
% Moisture	1	%	14	10	13	15

Client Sample ID			DS09	DS10	TP13-0.0-0.2	TP27-0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38506	S21-Oc38507	S21-Oc38510	S21-Oc38511
Date Sampled			Oct 13, 2021	Oct 13, 2021	Oct 08, 2021	Oct 08, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	61	51	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	61	51	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	50	75	Q09INT	83

Client Sample ID			DS09	DS10	TP13-0.0-0.2	TP27-0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38506	S21-Oc38507	S21-Oc38510	S21-Oc38511
Date Sampled			Oct 13, 2021	Oct 13, 2021	Oct 08, 2021	Oct 08, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5 0.5	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
ndeno(1.2.3-cd)pyrene Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fotal PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	79	79	106	109
p-Terphenyl-d14 (surr.)	1	%	79	75	82	84
Organochlorine Pesticides		,,,		1		
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	=	-
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	-	-
a-HCH	0.05	mg/kg	< 0.05	< 0.05	-	-
Aldrin	0.05	mg/kg	< 0.05	< 0.05	-	-
o-HCH	0.05	mg/kg	< 0.05	< 0.05	-	-
d-HCH	0.05	mg/kg	< 0.05	< 0.05	-	-
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	=	-
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	=	-
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	-	-
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	-	-
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	-	-
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	-	-
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	79	85	-	-

Client Sample ID			DS09	DS10	TP13-0.0-0.2	TP27-0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38506	S21-Oc38507	S21-Oc38510	S21-Oc38511
Date Sampled			Oct 13, 2021	Oct 13, 2021	Oct 08, 2021	Oct 08, 2021
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls	·					
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	=	-
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	=	-
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	=	-
Dibutylchlorendate (surr.)	1	%	79	85	=	-
Tetrachloro-m-xylene (surr.)	1	%	83	80	-	-
Heavy Metals						
Arsenic	2	mg/kg	9.1	13	11	9.9
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	16	19	19	20
Copper	5	mg/kg	27	23	25	36
Lead	5	mg/kg	18	22	22	25
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	16	20	11	21
Zinc	5	mg/kg	59	71	67	120
% Moisture	1	%	10	11	8.7	7.4
Ammonia (as N)	5	mg/kg	-	-	7.3	-
Nitrate & Nitrite (as N)	5	mg/kg	-	-	5.0	-
Nitrate (as N)	5	mg/kg	-	-	< 5	-
Nitrite (as N)	5	mg/kg	-	-	< 5	-
Total Kjeldahl Nitrogen (as N)	10	mg/kg	-	-	2200	-
Total Nitrogen (as N)*	10	mg/kg	-	-	2205	-
Phosphorus	5	mg/kg	-	-	1300	-

Client Sample ID			TP28-0.0-0.1	TP29-0.0-0.2	TP30-0.0-0.2 Soil	TP31-0.00.2
Sample Matrix			Soil	Soil		Soil
Eurofins Sample No.			S21-Oc38512	S21-Oc38513	S21-Oc38514	S21-Oc38515
Date Sampled			Oct 08, 2021	Oct 08, 2021	Oct 08, 2021	Oct 08, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100

	1	1	1	1	1	
Client Sample ID			TP28-0.0-0.1	TP29-0.0-0.2	TP30-0.0-0.2	TP31-0.00.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38512	S21-Oc38513	S21-Oc38514	S21-Oc38515
Date Sampled			Oct 08, 2021	Oct 08, 2021	Oct 08, 2021	Oct 08, 2021
Test/Reference	LOR	Unit				
ВТЕХ	1					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	86	81	92	91
Polycyclic Aromatic Hydrocarbons	ļ.					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	103	79	89	88
p-Terphenyl-d14 (surr.)	1	%	82	75	97	89
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05

Client Sample ID			TP28-0.0-0.1	TP29-0.0-0.2	TP30-0.0-0.2	TP31-0.00.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38512	S21-Oc38513	S21-Oc38514	S21-Oc38515
Date Sampled			Oct 08, 2021	Oct 08, 2021	Oct 08, 2021	Oct 08, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	_	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	_	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	_	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	_	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	-	86	100	103
Tetrachloro-m-xylene (surr.)	1	%	-	80	94	88
Polychlorinated Biphenyls	<u>'</u>					
Aroclor-1016	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	-	86	100	103
Tetrachloro-m-xylene (surr.)	1	%	-	80	94	88
Heavy Metals	·	•				
Arsenic	2	mg/kg	6.5	9.1	9.0	21
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	14	16	18	20
Copper	5	mg/kg	32	47	46	46
Lead	5	mg/kg	20	21	26	26
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	15	22	20	27
Zinc	5	mg/kg	84	93	79	110
		T				
% Moisture	1	%	8.9	5.4	4.4	7.8
Ammonia (as N)	5	mg/kg	-	1600	3100	< 5
Nitrate & Nitrite (as N)	5	mg/kg	-	1200	2400	< 5
Nitrate (as N)	5	mg/kg	-	1200	2400	< 5
Nitrite (as N)	5	mg/kg	-	< 5	< 5	< 5
Total Kjeldahl Nitrogen (as N)	10	mg/kg	-	3200	4600	510
Total Nitrogen (as N)*	10	mg/kg	-	4400	7000	510
Phosphorus	5	mg/kg	-	1800	490	1000

Client Sample ID			TP32-0.0-0.2	TP33-0.0-0.1	TP34-0.0-0.2	TP35-0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
•						
Eurofins Sample No.			S21-Oc38516	S21-Oc38517	S21-Oc38518	S21-Oc38519
Date Sampled			Oct 08, 2021	Oct 08, 2021	Oct 08, 2021	Oct 08, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	66	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	110	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	176	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	140	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	140	< 100
ВТЕХ		1				
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	97	82	108	103
Polycyclic Aromatic Hydrocarbons		T				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene Dihear/a h)anthrasana	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene Naphthalene	0.5	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
Phenanthrene	0.5 0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene Total PAH*	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	mg/kg %	104	81	109	93
p-Terphenyl-d14 (surr.)	1	%	88	65	76	66
Organochlorine Pesticides		/0	00	0.5	70	00
Chlordanes - Total	0.1	ma/ka	 	< 0.1		+
4.4'-DDD	0.1	mg/kg	-		-	-
14.4 TUUU	0.05	mg/kg	_	< 0.05		-
4.4'-DDE	0.05	mg/kg	_	< 0.05	_	_

Client Sample ID			TP32-0.0-0.2	TP33-0.0-0.1	TP34-0.0-0.2	TP35-0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38516	S21-Oc38517	S21-Oc38518	S21-Oc38519
Date Sampled			Oct 08, 2021	Oct 08, 2021	Oct 08, 2021	Oct 08, 2021
Test/Reference	LOR	Unit	,	,	,	,
Organochlorine Pesticides	LOIT	Onic				
a-HCH	0.05	ma/ka	_	< 0.05	_	
Aldrin	0.05	mg/kg	-	< 0.05	-	-
b-HCH		mg/kg	-		-	-
d-HCH	0.05	mg/kg	-	< 0.05	-	-
Dieldrin	0.05	mg/kg	-	< 0.05		
Endosulfan I	0.05	mg/kg	-	< 0.05	-	-
	0.05	mg/kg		< 0.05		
Endosulfan II	0.05	mg/kg	-	< 0.05	-	=
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	=
Endrin	0.05	mg/kg	-	< 0.05	-	=
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	=
Endrin ketone	0.05	mg/kg	-	< 0.05	-	=
g-HCH (Lindane)	0.05	mg/kg	-	< 0.05	=	=
Heptachlor	0.05	mg/kg	-	< 0.05	=	=
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	=	=
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	-
Methoxychlor	0.05	mg/kg	-	< 0.05	-	-
Toxaphene	0.5	mg/kg	-	< 0.5	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	-	103	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	83	-	-
Polychlorinated Biphenyls	<u> </u>					
Aroclor-1016	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1232	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1242	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1248	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1254	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1260	0.1	mg/kg	-	< 0.1	-	-
Total PCB*	0.1	mg/kg	-	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	-	103	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	83	-	-
Heavy Metals						
Arsenic	2	mg/kg	11	11	9.5	9.8
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	23	26	19	23
Copper	5	mg/kg	49	39	37	26
Lead	5	mg/kg	28	30	25	26
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	24	21	16	18
Zinc	5	mg/kg	110	79	79	59
% Moisture	1	%	12	17	14	23

Client Sample ID			TP36-0.0-0.1	TP37-0.0-0.1	TP38-0.0-0.2	TP39-0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
•						
Eurofins Sample No.			S21-Oc38520	S21-Oc38521	S21-Oc38522	S21-Oc38523
Date Sampled			Oct 08, 2021	Oct 08, 2021	Oct 08, 2021	Oct 08, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	55	< 50	< 50	83
TRH C29-C36	50	mg/kg	140	74	91	230
TRH C10-C36 (Total)	50	mg/kg	195	74	91	313
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	160	< 100	< 100	260
TRH >C34-C40	100	mg/kg	120	< 100	100	140
TRH >C10-C40 (total)*	100	mg/kg	280	< 100	100	400
BTEX		T				
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	100	105	99	103
Polycyclic Aromatic Hydrocarbons		T ,,				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthylana	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene Anthracene	0.5 0.5	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	92	112	108	107
p-Terphenyl-d14 (surr.)	1	%	66	80	71	91
Organochlorine Pesticides	·					
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	_	_	_

Client Sample ID			TP36-0.0-0.1	TD27 0 0 0 4	TD20 0 0 0 0	TD20 0 0 0 4
-			Soil	TP37-0.0-0.1 Soil	TP38-0.0-0.2 Soil	TP39-0.0-0.1 Soil
Sample Matrix						
Eurofins Sample No.			S21-Oc38520	S21-Oc38521	S21-Oc38522	S21-Oc38523
Date Sampled			Oct 08, 2021	Oct 08, 2021	Oct 08, 2021	Oct 08, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
а-НСН	0.05	mg/kg	< 0.05	-	-	-
Aldrin	0.05	mg/kg	< 0.05	-	=	-
b-HCH	0.05	mg/kg	< 0.05	-	-	-
d-HCH	0.05	mg/kg	< 0.05	-	-	-
Dieldrin	0.05	mg/kg	< 0.05	-	-	-
Endosulfan I	0.05	mg/kg	< 0.05	-	-	-
Endosulfan II	0.05	mg/kg	< 0.05	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	-
Endrin	0.05	mg/kg	< 0.05	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	-
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-HCH (Lindane)	0.05	mg/kg	< 0.05	-	-	-
Heptachlor	0.05	mg/kg	< 0.05	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	-
Methoxychlor	0.05	mg/kg	< 0.05	-	-	-
Toxaphene	0.5	mg/kg	< 0.5	-	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	=	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	=	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	-	=	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	=	-
Dibutylchlorendate (surr.)	1	%	103	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	86	-	=	-
Polychlorinated Biphenyls	<u> </u>	•				
Aroclor-1016	0.1	mg/kg	< 0.1	-	-	_
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	_
Aroclor-1232	0.1	mg/kg	< 0.1	-	-	_
Aroclor-1242	0.1	mg/kg	< 0.1	-	_	_
Aroclor-1248	0.1	mg/kg	< 0.1	-	-	_
Aroclor-1254	0.1	mg/kg	< 0.1	-	=	-
Aroclor-1260	0.1	mg/kg	< 0.1	-	-	_
Total PCB*	0.1	mg/kg	< 0.1	-	-	_
Dibutylchlorendate (surr.)	1	%	103	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	86	-	-	-
Heavy Metals	l					
Arsenic	2	mg/kg	6.6	4.0	8.3	2.8
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	17	9.7	17	7.9
Copper	5	mg/kg	68	20	46	44
Lead	5	mg/kg	18	9.4	20	8.9
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	19	6.3	20	6.6
Zinc	5	mg/kg	280	26	90	200
		ı mg/kg	200	20	30	200
9/ Moieturo	4	0/	10	10	0.5	10
% Moisture	11	%	18	10	9.5	19

Client Sample ID			TP40-0.0-0.1	SAL01-0.5	SAL01-1.0	SAL01-1.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38524	S21-Oc38525	S21-Oc38526	S21-Oc38527
·			1			į .
Date Sampled			Oct 08, 2021	Oct 08, 2021	Oct 08, 2021	Oct 08, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons		T				
TRH C6-C9	20	mg/kg	< 20	-	-	-
TRH C10-C14	20	mg/kg	< 20	-	-	-
TRH C15-C28	50	mg/kg	< 50	-	-	-
TRH C29-C36	50	mg/kg	61	-	-	-
TRH C10-C36 (Total)	50	mg/kg	61	-	-	-
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	-	-
TRH C6-C10	20	mg/kg	< 20	-	=	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	=	-
TRH >C10-C16	50	mg/kg	< 50	-	=	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	-	-
TRH >C16-C34 TRH >C34-C40	100	mg/kg	< 100 < 100	-	-	-
TRH >C34-C40 TRH >C10-C40 (total)*	100	mg/kg	< 100	-	-	-
BTEX	100	mg/kg	< 100	-	-	-
	0.1	m a/l.a	.01			
Benzene	0.1	mg/kg	< 0.1	-	-	-
Toluene	0.1	mg/kg	< 0.1 < 0.1	-	-	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	-	-
m&p-Xylenes o-Xylene	0.2	mg/kg	< 0.2	-	-	-
Xylenes - Total*	0.1	mg/kg mg/kg	< 0.1	-	-	-
4-Bromofluorobenzene (surr.)	1	%	107	-		-
Polycyclic Aromatic Hydrocarbons		/0	107	-	-	-
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	_	-	_
Benzo(a)pyrene TEQ (nedium bound) *	0.5	mg/kg	0.6		-	<u> </u>
Benzo(a)pyrene TEQ (inediam bound) *	0.5	mg/kg	1.2		-	_
Acenaphthene	0.5	mg/kg	< 0.5		-	_
Acenaphthylene	0.5	mg/kg	< 0.5	_	_	_
Anthracene	0.5	mg/kg	< 0.5	_	_	_
Benz(a)anthracene	0.5	mg/kg	< 0.5	_	_	_
Benzo(a)pyrene	0.5	mg/kg	< 0.5	_	_	_
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	_	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	_	-
Chrysene	0.5	mg/kg	< 0.5	_	_	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	_	_	-
Fluoranthene	0.5	mg/kg	< 0.5	_	_	-
Fluorene	0.5	mg/kg	< 0.5	-	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	-
Naphthalene	0.5	mg/kg	< 0.5	-	-	-
Phenanthrene	0.5	mg/kg	< 0.5	-	-	-
Pyrene	0.5	mg/kg	< 0.5	-	-	-
Total PAH*	0.5	mg/kg	< 0.5	-	-	-
2-Fluorobiphenyl (surr.)	1	%	82	-	-	-
p-Terphenyl-d14 (surr.)	1	%	50	-	-	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	-

Client Sample ID			TP40-0.0-0.1	SAL01-0.5	SAL01-1.0	SAL01-1.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38524	S21-Oc38525	S21-Oc38526	S21-Oc38527
Date Sampled			Oct 08, 2021	Oct 08, 2021	Oct 08, 2021	Oct 08, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
a-HCH	0.05	mg/kg	< 0.05	_	-	_
Aldrin	0.05	mg/kg	< 0.05	_	-	_
b-HCH	0.05	mg/kg	< 0.05	-	_	_
d-HCH	0.05	mg/kg	< 0.05	-	_	_
Dieldrin	0.05	mg/kg	< 0.05	-	_	_
Endosulfan I	0.05	mg/kg	< 0.05	-	_	_
Endosulfan II	0.05	mg/kg	< 0.05	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	_	_
Endrin	0.05	mg/kg	< 0.05	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	_
Endrin ketone	0.05	mg/kg	< 0.05	-	-	_
g-HCH (Lindane)	0.05	mg/kg	< 0.05	-	-	_
Heptachlor	0.05	mg/kg	< 0.05	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	-
Methoxychlor	0.05	mg/kg	< 0.05	-	-	-
Toxaphene	0.5	mg/kg	< 0.5	-	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	-	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	=	-
Dibutylchlorendate (surr.)	1	%	79	=	=	-
Tetrachloro-m-xylene (surr.)	1	%	83	=	=	-
Polychlorinated Biphenyls	•	•				
Aroclor-1016	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1232	0.1	mg/kg	< 0.1	-	=	-
Aroclor-1242	0.1	mg/kg	< 0.1	=	=	-
Aroclor-1248	0.1	mg/kg	< 0.1	=	=	-
Aroclor-1254	0.1	mg/kg	< 0.1	=	=	-
Aroclor-1260	0.1	mg/kg	< 0.1	=	=	-
Total PCB*	0.1	mg/kg	< 0.1	-	-	-
Dibutylchlorendate (surr.)	1	%	79	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	83	-	-	-
Heavy Metals		•				
Arsenic	2	mg/kg	12	-	-	<u>-</u>
Cadmium	0.4	mg/kg	< 0.4	-		
Chromium	5	mg/kg	24	-		-
Copper	5	mg/kg	23	-	-	-
Lead	5	mg/kg	28	-	-	-
Mercury	0.1	mg/kg	< 0.1	-	-	-
Nickel	5	mg/kg	11	-	-	-
Zinc	5	mg/kg	59	-	-	-
% Moisture	1	%	9.1	13	13	16
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	-	280	250	280
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	_	5.0	6.9	7.5

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			SAL01-2.0 Soil S21-Oc38528 Oct 08, 2021	SAL02-0.5 Soil S21-Oc38529 Oct 08, 2021	SAL02-1.0 Soil S21-Oc38530 Oct 08, 2021	SAL02-1.5 Soil S21-Oc38531 Oct 08, 2021
Test/Reference	LOR	Unit				
% Moisture	1	%	13	14	12	14
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	260	290	230	300
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	8.7	5.1	6.7	7.8
Chloride	10	mg/kg	440	-	-	500
Resistivity*	0.5	ohm.m	38	-	-	33
Sulphate (as SO4)	10	mg/kg	42	-	-	31
Exchangeable Sodium Percentage (ESP)	0.1	%	28	-	-	22
Magnesium (exchangeable)	0.1	meq/100g	8.0	-	-	6.4
Potassium (exchangeable)	0.1	meq/100g	0.3	-	-	0.2
Sodium (exchangeable)	0.1	meq/100g	5.4	-	-	4.0
Cation Exchange Capacity						
Calcium (exchangeable)	0.1	meq/100g	5.7	-	-	7.7
Cation Exchange Capacity	0.05	meq/100g	19	-	-	18

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	SAL02-2.0 Soil S21-Oc38532 Oct 08, 2021	SAL03-0.5 Soil S21-Oc38533 Oct 08, 2021	SAL03-1.0 Soil S21-Oc38534 Oct 08, 2021	SAL03-1.5 Soil S21-Oc38535 Oct 08, 2021
% Moisture	1	%	12	14	13	14
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	150	250	250	280
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	9.0	5.0	6.9	7.7

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	SAL03-2.0 Soil S21-Oc38536 Oct 08, 2021	SAL03-2.5 Soil S21-Oc38537 Oct 08, 2021	SAL04-0.5 Soil S21-Oc38538 Oct 08, 2021	SAL04-1.0 Soil S21-Oc38539 Oct 08, 2021
	T .	T				
% Moisture	1	%	14	11	12	13
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	280	200	67	55
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	7.4	8.8	5.8	5.6
Chloride	10	mg/kg	-	280	-	-
Resistivity*	0.5	ohm.m	-	50	=	-
Sulphate (as SO4)	10	mg/kg	-	26	-	-
Exchangeable Sodium Percentage (ESP)	0.1	%	-	14	-	-
Magnesium (exchangeable)	0.1	meq/100g	-	9.1	-	-
Potassium (exchangeable)	0.1	meq/100g	-	0.3	-	-
Sodium (exchangeable)	0.1	meq/100g	-	5.0	-	-
Cation Exchange Capacity						
Calcium (exchangeable)	0.1	meq/100g	-	22	-	-
Cation Exchange Capacity	0.05	meq/100g	-	37	-	-

Client Sample ID Sample Matrix Eurofins Sample No.			SAL04-1.5 Soil S21-Oc38540	SAL04-2.0 Soil S21-Oc38541	SAL05-0.5 Soil S21-Oc38542	SAL05-1.0 Soil S21-Oc38543
Date Sampled			Oct 08, 2021	Oct 08, 2021	Oct 08, 2021	Oct 08, 2021
Test/Reference	LOR	Unit				
% Moisture	1	%	13	14	13	13
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	73	60	64	53
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	7.0	7.3	5.6	5.6
Chloride	10	mg/kg	79	-	-	-
Resistivity*	0.5	ohm.m	140	-	-	-
Sulphate (as SO4)	10	mg/kg	18	-	-	-
Exchangeable Sodium Percentage (ESP)	0.1	%	34	-	-	-
Magnesium (exchangeable)	0.1	meq/100g	8.6	-	-	-
Potassium (exchangeable)	0.1	meq/100g	0.2	-	-	-
Sodium (exchangeable)	0.1	meq/100g	4.9	-	-	-
Cation Exchange Capacity	·					
Calcium (exchangeable)	0.1	meq/100g	0.7	-	-	-
Cation Exchange Capacity	0.05	meq/100g	14	-	-	-

Client Sample ID			SAL05-1.5	SAL05-2.0	DR02 0.2-0.4	TP47 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38544	S21-Oc38545	S21-Oc38572	S21-Oc38620
Date Sampled			Oct 08, 2021	Oct 08, 2021	Oct 06, 2021	Oct 12, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	·	•				
TRH C6-C9	20	mg/kg	-	-	< 20	< 20
TRH C10-C14	20	mg/kg	-	-	< 20	< 20
TRH C15-C28	50	mg/kg	-	-	61	870
TRH C29-C36	50	mg/kg	-	-	< 50	300
TRH C10-C36 (Total)	50	mg/kg	-	-	61	1170
Naphthalene ^{N02}	0.5	mg/kg	-	-	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	-	-	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	-	< 20	< 20
TRH >C10-C16	50	mg/kg	-	-	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	-	-	< 50	< 50
TRH >C16-C34	100	mg/kg	-	-	< 100	1000
TRH >C34-C40	100	mg/kg	-	-	< 100	180
TRH >C10-C40 (total)*	100	mg/kg	-	=	< 100	1180
BTEX						
Benzene	0.1	mg/kg	-	-	< 0.1	< 0.1
Toluene	0.1	mg/kg	-	-	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	-	=	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	-	=	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	-	=	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	-	=	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	=	77	118
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	1.2	1.2
Acenaphthene	0.5	mg/kg	-	-	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	< 0.5	< 0.5
Anthracene	0.5	mg/kg	-	-	< 0.5	< 0.5

Client Sample ID			SAL05-1.5	SAL05-2.0	DR02 0.2-0.4	TP47 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc38544	S21-Oc38545	S21-Oc38572	S21-Oc38620
Date Sampled			Oct 08, 2021	Oct 08, 2021	Oct 06, 2021	Oct 12, 2021
Test/Reference	LOR	Unit		,	,	,
Polycyclic Aromatic Hydrocarbons						
Benz(a)anthracene	0.5	mg/kg	_	-	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	_	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	< 0.5	< 0.5
Chrysene	0.5	mg/kg	-	-	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	-	-	< 0.5	< 0.5
Fluorene	0.5	mg/kg	-	-	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	-	-	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	-	-	< 0.5	< 0.5
Pyrene	0.5	mg/kg	-	-	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	-	-	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	-	101	76
p-Terphenyl-d14 (surr.)	1	%	-	-	81	80
Heavy Metals		•				
Arsenic	2	mg/kg	-	-	11	9.5
Cadmium	0.4	mg/kg	-	-	< 0.4	< 0.4
Chromium	5	mg/kg	-	-	23	29
Copper	5	mg/kg	-	-	34	29
Lead	5	mg/kg	-	-	40	21
Mercury	0.1	mg/kg	-	-	< 0.1	< 0.1
Nickel	5	mg/kg	-	-	14	25
Zinc	5	mg/kg	-	-	58	120
% Moisture	1	%	15	14	14	13
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	52	67	-	-
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	7.0	6.3	-	-
Chloride	10	mg/kg	-	61	-	-
Resistivity*	0.5	ohm.m	-	150	-	-
Sulphate (as SO4)	10	mg/kg	-	12	-	-
Exchangeable Sodium Percentage (ESP)	0.1	%	-	37	-	-
Magnesium (exchangeable)	0.1	meq/100g	-	11	-	-
Potassium (exchangeable)	0.1	meq/100g	-	0.4	-	-
Sodium (exchangeable)	0.1	meq/100g	-	8.4	-	-
Cation Exchange Capacity						
Calcium (exchangeable)	0.1	meq/100g	-	2.5	-	-
Cation Exchange Capacity	0.05	meq/100g	-	22	-	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Oct 27, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40	Cyanoy	00(27, 2021	11 Days
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 27, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40		_	_
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 27, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40		_	_
BTEX	Sydney	Oct 27, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40		_	_
Polycyclic Aromatic Hydrocarbons	Sydney	Oct 27, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water		_	_
Metals M8	Sydney	Oct 27, 2021	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS	•	0	
Organochlorine Pesticides	Sydney	Oct 27, 2021	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water	•	0	
Polychlorinated Biphenyls	Sydney	Oct 27, 2021	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water	Occidence	N 40, 0004	00 D
Heavy Metals	Sydney	Nov 18, 2021	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS	Occidence	0-1-00-0004	44 Davis
% Moisture	Sydney	Oct 22, 2021	14 Days
- Method: LTM-GEN-7080 Moisture			
Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	Melbourne	O+ 20, 2024	20 Dave
Ammonia (as N)	Meibourne	Oct 28, 2021	28 Days
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA Nitrato 8 Nitrito (as N)	Melbourne	Oct 28, 2021	28 Days
Nitrate & Nitrite (as N)	Meibourne	OCI 20, 2021	20 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA Nitrate (as N)	Melbourne	Oct 28, 2021	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA	Melbourne	OCI 20, 2021	20 Days
Nitrite (as N)	Melbourne	Oct 28, 2021	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA	Weibourne	000 20, 202 1	20 Days
Total Kjeldahl Nitrogen (as N)	Melbourne	Oct 28, 2021	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA	Wolboamo	00(20, 202)	20 Dayo
Phosphorus	Melbourne	Oct 28, 2021	180 Days
- Method: LTM-MET-3010 Alkali Metals Sulfur Silicon and Phosphorus by ICP-AES		00120, 2021	.00 20,0
Conductivity (1:5 aqueous extract at 25°C as rec.)	Sydney	Oct 27, 2021	7 Days
- Method: LTM-INO-4030 Conductivity	-,,	, -	- , -
Magnesium (exchangeable)	Melbourne	Oct 29, 2021	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity and ESP			•
Potassium (exchangeable)	Melbourne	Oct 29, 2021	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity and ESP			•
Sodium (exchangeable)	Melbourne	Oct 29, 2021	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity and ESP			
Cation Exchange Capacity	Melbourne	Oct 29, 2021	28 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	Oct 27, 2021	7 Days
- Method: LTM-GEN-7090 pH by ISE			
Chloride	Sydney	Oct 27, 2021	28 Days
- Method: In-house method LTM-INO-4270 Anions by Ion Chromatography			
Sulphate (as SO4)	Sydney	Oct 27, 2021	28 Days
- Method: In-house method LTM-INO-4270 Sulphate by Ion Chromatograph			
Exchangeable Sodium Percentage (ESP)	Melbourne	Oct 29, 2021	28 Days
- Method: LTM-MET-3060 - Cation Exchange Capacity (CEC) & Exchangeable Sodium Percentage (ESP)			

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

ABN: 91 05 0159 898

NZBN: 9429046024954 Auckland

Oct 18, 2021 3:41 PM

35 O'Rorke Road

Oct 25, 2021

Jacob Walker

IANZ # 1327

5 Day

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Alliance Geotechnical

> 10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

Address:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

	Sample Detail Melbourne Laboratory - NATA # 1261 Site # 1254 Sydney Laboratory - NATA # 1261 Site # 18217						Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех
Melk	ourne Laborate											Х	Х	Χ		Х				
Sydi	ney Laboratory		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Χ	Х	Х	Х			
Bris	bane Laborator	y - NATA # 1261	Site # 20794	1																
May	field Laboratory	/ - NATA # 1261	Site # 25079																	
Pert	h Laboratory - N	NATA # 2377 Sit	e # 2370																	
Exte	rnal Laboratory																			
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID															
1	TP01 0.0-0.2	Oct 06, 2021		Soil	S21-Oc38427									Х			Х	Х		
2	TP02 0.0-0.2	Oct 06, 2021		Soil	S21-Oc38428												Χ	Х		
3	TP03 0.0-0.2	Oct 06, 2021		Soil	S21-Oc38429												Χ	Х		
4	TP04 0.0-0.1	Oct 06, 2021		Soil	S21-Oc38430									Х			Χ	Х	Х	
5	TP05 0.0-0.1	Oct 06, 2021		Soil	S21-Oc38431									Х			Χ	Х	Х	
6	TP06 0.0-0.2	Oct 06, 2021		Soil	S21-Oc38432									Х			Χ	Х	Χ	
7	TP07 0.0-0.2	Oct 06, 2021		Soil	S21-Oc38433												Χ	Х		
8	TP08 0.0-0.2	Oct 06, 2021		Soil	S21-Oc38434												Χ	Х		
9	TP09 0.0-0.2	Oct 06, 2021		Soil	S21-Oc38435									Х			Χ	Х		

email: EnviroSales@eurofins.com

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Site # 1254
Phone: +61 2 5

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Limited

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

ABN: 91 05 0159 898 NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 18, 2021 3:41 PM

Oct 25, 2021

Jacob Walker

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

Fax: 02 9675 1888

Eurofins Analytical Services Manager: Andrew Black

																		•	7
	Sample Detail elbourne Laboratory - NATA # 1261 Site # 1254 vdney Laboratory - NATA # 1261 Site # 18217						CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех
Mell	ourne Laborat	ory - NATA # 126											Х	Х	Х		Х		
Syd	ney Laboratory	- NATA # 1261 S	Site # 18217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х
		y - NATA # 1261																	
May	field Laborator	y - NATA # 1261	Site # 25079																
Pert	h Laboratory -	NATA # 2377 Site	e # 2370																
Exte	rnal Laboratory	<i>!</i>																	
10	TP10 0.0-0.2	Oct 06, 2021	Soil	S21-Oc38436												Х	Х		
11	TP11 0.0-0.1	Oct 06, 2021	Soil	S21-Oc38437									Х			Х	Х	Х	
12	TP12 0.0-0.1	Oct 06, 2021	Soil	S21-Oc38438									Х			Х	Х	Х	\sqcup
13	TP14 0.0-0.2	Oct 06, 2021	Soil	S21-Oc38439												Х	Х		\sqcup
14	TP15 0.0-0.2	Oct 06, 2021	Soil	S21-Oc38440									Х			Х	Х		\sqcup
15	TP16 0.0-0.2	Oct 06, 2021	Soil	S21-Oc38441												Х	Х		\sqcup
16	TP17 0.0-0.2	Oct 06, 2021	Soil	S21-Oc38442												Х	Х		\sqcup
17	TP18 0.0-0.2	Oct 06, 2021	Soil	S21-Oc38443												Х	Х		\sqcup
18	TP19 0.0-0.1	Oct 07, 2021	Soil	S21-Oc38444									Х			Х	Х	Х	
19	TP20 0.0-0.1	Oct 07, 2021	Soil	S21-Oc38445									Х			Х	Х	Х	\sqcup
20	TP21 0.0-0.2	Oct 07, 2021	Soil	S21-Oc38446									Х			Х	Х	Х	

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Perth

Received:

Priority:

Contact Name:

Due:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061 Phone: +64 9 526 45 51

Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

Address:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

IANZ # 1327

Oct 18, 2021 3:41 PM

Oct 25, 2021

Jacob Walker

																			7
	Sample Detail elbourne Laboratory - NATA # 1261 Site # 1254 vdney Laboratory - NATA # 1261 Site # 18217						CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	ВТЕХ
Mell	oourne Laborat	ory - NATA # 126											Х	Х	Х		Х		
Syd	ney Laboratory	- NATA # 1261 S	ite # 18217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х
Bris	bane Laborator	y - NATA # 1261	Site # 20794																
May	field Laboratory	y - NATA # 1261	Site # 25079																
Pert	h Laboratory - I	NATA # 2377 Site	e # 2370																
Exte	rnal Laboratory	/																	
21	TP22 0.0-0.1	Oct 06, 2021	Soil	S21-Oc38447									Х			Х	Х	<u> </u>	
22	TP23 0.0-0.1	Oct 07, 2021	Soil	S21-Oc38448												Х	Х		
23	TP24 0.0-0.1	Oct 07, 2021	Soil	S21-Oc38449												Х	Х		
24	TP25 0.0-0.1	Oct 07, 2021	Soil	S21-Oc38450									Х			Х	Х		
25	TP26 1.0-1.2	Oct 07, 2021	Soil	S21-Oc38451												Х	Х		
26	DR01 0.0-0.2	Oct 06, 2021	Soil	S21-Oc38452												Х	Х		
27	DR02 0.0-0.2	Oct 06, 2021	Soil	S21-Oc38453												Х	Х		
28	DR03 0.0-0.2	Oct 06, 2021	Soil	S21-Oc38454												Х	X	ļ	\vdash
29	DR04 0.0-0.1	Oct 07, 2021	Soil	S21-Oc38455												Х	Х		
30	DR05 0.0-0.1	Oct 07, 2021	Soil	S21-Oc38456												Х	Х	<u> </u>	\vdash
31	DR06 0.0-0.1	Oct 07, 2021	Soil	S21-Oc38457			<u> </u>									Х	Х		

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Oct 18, 2021 3:41 PM

Oct 25, 2021

Jacob Walker

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

		Sar	mple Detail		Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TF NO2, NO3, Total P	втех
							tat 25°C as			as rec.)							TKN, NOx,		
Mell	oourne Laborat	ory - NATA # 126	61 Site # 1254											Х	Х	Х		Х	
Syd	ney Laboratory	- NATA # 1261 S	Site # 18217		X	Х	Х	X	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х
		y - NATA # 1261																	\sqcup
_		/ - NATA # 1261																	\vdash
		NATA # 2377 Site	e # 2370																\vdash
	ernal Laboratory	1	0 "	001.0.001															\vdash
32	DR07 0.0-0.1	Oct 07, 2021	Soil	S21-Oc38458												X	X		\vdash
33	DR08 0.0-0.1 SP1-1	Oct 07, 2021	Soil Soil	S21-Oc38459									X			X	X		\vdash
34	SP1-1	Oct 07, 2021 Oct 07, 2021	Soil	S21-Oc38460 S21-Oc38461									X			X	X	X	\vdash
36	SP1-3	Oct 07, 2021	Soil	S21-Oc38462									X			X	X	X	\vdash
37	DS01	Oct 07, 2021	Soil	S21-Oc38463									X			X	X	X	\vdash
38	DS02	Oct 07, 2021	Soil	S21-Oc38464									X			X	X	X	
39	DS03	Oct 07, 2021	Soil	S21-Oc38465												X	X	<u> </u>	
40	DS04	Oct 07, 2021	Soil	S21-Oc38466												Х	Х		
41	DS05	Oct 07, 2021	Soil	S21-Oc38467												Х	Х		
42	DS06	Oct 07, 2021	Soil	S21-Oc38468												Χ	Χ		

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Received:

Priority:

Contact Name:

Due:

Perth

NZBN: 9429046024954 Auckland 46-48 Banksia Road Welshpool WA 6106

35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 18, 2021 3:41 PM

Oct 25, 2021

Jacob Walker

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

Address:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

	Sample Detail Sample Detail					Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	ВТЕХ	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех
Mell	oourne Laborato	ory - NATA # 12	61 Site # 125	4											Х	Х	Х		Х	
Syd	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х
Bris	bane Laboratory	y - NATA # 126 ²	Site # 2079	4																
_	field Laboratory																			
	h Laboratory - N		te # 2370																\sqcup	\vdash
	rnal Laboratory		Г																igwdown	\vdash
43	SW01	Oct 07, 2021		Water	S21-Oc38469									Х				X	igwdown	\vdash
44	SW02	Oct 07, 2021		Water	S21-Oc38470									Х				X	igwdown	\vdash
45	SW03	Oct 07, 2021		Water	S21-Oc38471									Х				Х	igwdown	\vdash
46	SW04	Oct 07, 2021		Water	S21-Oc38472									Х				Х	igwdown	
47	SW05	Oct 07, 2021		Water	S21-Oc38473									Х				Х	igwdown	
48	SW06	Oct 07, 2021		Water	S21-Oc38474									Х				Х		
49	BD1	Oct 07, 2021		Soil	S21-Oc38475												Х	Х	\sqcup	
50	BD2	Oct 07, 2021		Soil	S21-Oc38476									Х			Х		igsquare	
51	TRIP BLANK 1	-		Soil	S21-Oc38477								Х						\sqcup	
52	TRIP BLANK 2	· · · · · · · · · · · · · · · · · · ·		Soil	S21-Oc38478								Х							
53	TRIP BLANK 3	Oct 07, 2021		Soil	S21-Oc38479								Х							

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

ABN: 91 05 0159 898

NZBN: 9429046024954

Auckland

IANZ # 1327

35 O'Rorke Road

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

KEMPS CREEK

Project Name: Project ID:

Address:

13546

Order No.: Report #:

833263

Phone: 1800 288 188 Fax:

02 9675 1888

Received: Oct 18, 2021 3:41 PM Due: Oct 25, 2021

Priority: 5 Day

Jacob Walker **Contact Name:**

Eurofins Analytical Services Manager: Andrew Black

																		Lu	TOIIIIS	Anary
		Sa	mple Detail			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех
Mell	bourne Laborato	ory - NATA # 12	61 Site # 125	4											Х	Х	Х		Х	
Syd	ney Laboratory	- NATA # 1261	Site # 18217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	
Bris	bane Laboratory	y - NATA # 126	1 Site # 2079	4																
May	field Laboratory	- NATA # 1261	Site # 25079	ı																
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370																	
Exte	ernal Laboratory			1																
54	TRIP BLANK 4			Soil	S21-Oc38480								Х							
55	TRIP BLANK 5	Oct 07, 2021		Soil	S21-Oc38481								Х						$oxed{oxed}$	
56		Oct 07, 2021		Soil	S21-Oc38482														$oxed{oxed}$	Х
57	TRIP SPIKE 2	Oct 07, 2021		Soil	S21-Oc38483														$oxed{oxed}$	Х
58	†	Oct 07, 2021		Soil	S21-Oc38484														$oxed{oxed}$	Х
59		Oct 07, 2021		Soil Soil	S21-Oc38485															Х
60	TRIP SPIKE 5	Oct 07, 2021 Mar 12, 2021	S21-Oc38486														\perp	Х		
61	BD3	S21-Oc38492												Х	Х	\perp				
62	PP2 0.0-0.1	Aug 13, 2021		Soil	S21-Oc38493	Х	X			Х							Х			
63	PP3 0.0-0.1	Aug 13, 2021		Soil Soil	S21-Oc38494	Х	Х			Х							Х			
64	PP4 0.0-0.1	Aug 12, 2021	S21-Oc38495	Х	X			Х							Х					

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

46-48 Banksia Road

Welshpool WA 6106

Perth

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Alliance Geotechnical 10 Welder Road

Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

833263 1800 288 188

Phone:

02 9675 1888 Fax:

Received: Oct 18, 2021 3:41 PM

Due: Oct 25, 2021 **Priority:** 5 Day

Jacob Walker **Contact Name:**

Eurofins Analytical Services Manager: Andrew Black

																	Lu	i Oillis	Allai	yı
		Samp	ole Detail		Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех	
Mel	bourne Laborate	ory - NATA # 1261	Site # 1254											Х	Х	Х		Х		
Syd	ney Laboratory	- NATA # 1261 Site	e # 18217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	
Bris	bane Laborator	y - NATA # 1261 S	ite # 20794																	
May	field Laboratory	y - NATA # 1261 Sit	te # 25079																	
Pert	th Laboratory - I	NATA # 2377 Site #	‡ 2370															ļ	<u> </u>	
Exte	ernal Laboratory	/																ļ	<u> </u>	
65	PP5 0.0-0.1	Oct 13, 2021	Soil	S21-Oc38496	Х	Х			Х							Х		<u> </u>		
66	PP6 0.0-0.1	Oct 12, 2021	Soil	S21-Oc38497	Х	Х			Х							Х		<u> </u>	<u> </u>	
67	PP7 0.0-0.1	Oct 12, 2021	Soil	S21-Oc38498	Х	Х			Х							Х		<u> </u>	L	
68	PP8 0.0-0.1	Oct 12, 2021	Soil	S21-Oc38499	Х	X			Х							Х		<u> </u>	<u> </u>	
69	DR11 0.0-0.1	Oct 13, 2021	Soil	S21-Oc38500												Х	Х	<u> </u>	<u> </u>	
70	DR12 0.0-0.1	Oct 13, 2021	Soil Soil	S21-Oc38501												Х	Х	<u> </u>	<u> </u>	1
71	DR13 0.0-0.1	Oct 13, 2021	S21-Oc38502												Х	Х	<u> </u>	<u> </u>	1	
72	DR14 0.0-0.1	Oct 13, 2021	S21-Oc38503												Х	Х	<u> </u>	<u> </u>	-	
73	DS07	Oct 13, 2021 Oct 13, 2021	S21-Oc38504									Х			Х	Х	<u> </u>	<u> </u>	-	
74	DS08	S21-Oc38505									Х			Х	X	<u> </u>	ــــــ	-		
75	DS09	Oct 13, 2021	S21-Oc38506									Х			Χ	Х		<u> </u>		

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 18, 2021 3:41 PM

Oct 25, 2021

Jacob Walker

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

Address:

13546

Order No.: Report #:

833263

Phone: 1800 288 188 Fax:

02 9675 1888

Eurofins Analytical Services Manager: Andrew Black

																		Lui	i Oillis	Anaiy
		Sa	mple Detail			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	ХЭТВ	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех
Mell	ourne Laborate	ory - NATA # 12	61 Site # 1254											Х	Χ	Χ		Х		
Syd	ney Laboratory	- NATA # 1261	Site # 18217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	
Bris	bane Laborator	y - NATA # 1261	Site # 20794																	
May	field Laboratory	/ - NATA # 1261	Site # 25079																	
Pert	h Laboratory - I	NATA # 2377 Sit	e # 2370																	
Exte	rnal Laboratory	<u>'</u>																	ļ	Ш
76	DS10	Oct 13, 2021	S	oil	S21-Oc38507									Х			Х	Х	<u> </u>	Ш
77	SW07	Oct 13, 2021	W	/ater	S21-Oc38508									Х				Х	<u> </u>	\sqcup
78	SW08	Oct 13, 2021	W	/ater	S21-Oc38509									Χ				Х	<u> </u>	\sqcup
79	TP13-0.0-0.2	Oct 08, 2021	S	oil	S21-Oc38510												Χ	Х	Х	\sqcup
80	TP27-0.0-0.2	Oct 08, 2021	S	oil	S21-Oc38511												Χ	Х	<u> </u>	\sqcup
81	TP28-0.0-0.1	Oct 08, 2021	S21-Oc38512												Χ	Х	<u> </u>	\sqcup		
82	TP29-0.0-0.2	Oct 08, 2021	S21-Oc38513									Х			Χ	Х	Х	\sqcup		
83	TP30-0.0-0.2	Oct 08, 2021	S21-Oc38514									Х			Х	Х	Х	\sqcup		
84	TP31-0.00.2	Oct 08, 2021 Oct 08, 2021	S21-Oc38515									Х			Х	Х	Х	\sqcup		
85	TP32-0.0-0.2	S21-Oc38516												Х	Х	<u> </u>	\sqcup			
86	TP33-0.0-0.1	Oct 08, 2021	S21-Oc38517									Χ			Χ	Χ		ш		

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

ABN: 91 05 0159 898

NZBN: 9429046024954 Auckland 35 O'Rorke Road

Oct 25, 2021

Jacob Walker

Oct 18, 2021 3:41 PM

IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Alliance Geotechnical

Address: 10 Welder Road

Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

833263

Phone: 1800 288 188 02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail		Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех
Mell	oourne Laborate	ory - NATA # 12	61 Site # 1254											Х	Х	Х		Х	
Syd	ney Laboratory	- NATA # 1261	Site # 18217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Χ	Х	Х	Х
Bris	bane Laborator	y - NATA # 1261	1 Site # 20794														<u> </u>		
May	field Laboratory	/ - NATA # 1261	Site # 25079															igsquare	
Pert	h Laboratory - I	NATA # 2377 Sit	te # 2370																
Exte	rnal Laboratory	1	Г																
87	TP34-0.0-0.2	Oct 08, 2021	Soil	S21-Oc38518												Х	Х		
88	TP35-0.0-0.2	Oct 08, 2021	Soil	S21-Oc38519												Х	Х	\square	\square
89	TP36-0.0-0.1	Oct 08, 2021	Soil	S21-Oc38520									Х			Х	Х	igwdown	\vdash
90	TP37-0.0-0.1	Oct 08, 2021	Soil	S21-Oc38521												Х	Х	igwdown	\vdash
91	TP38-0.0-0.2	Oct 08, 2021	Soil	S21-Oc38522												Х	Х	igwdown	\vdash
92	TP39-0.0-0.1	Oct 08, 2021	Soil Soil	S21-Oc38523												Х	Х		\vdash
93	TP40-0.0-0.1	Oct 08, 2021	S21-Oc38524									Х			Х	Х	 	\vdash	
94	SAL01-0.5	Oct 08, 2021	S21-Oc38525				Х			Х					Х		\sqcup	\vdash	
95	SAL01-1.0	Oct 08, 2021 Oct 08, 2021	S21-Oc38526				Х			Х					Х		\sqcup	\square	
96	SAL01-1.5	S21-Oc38527				Х			Х					Х		\sqcup	\square		
97	SAL01-2.0	Oct 08, 2021	Soil	S21-Oc38528										Х	Х	Χ			

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061

IANZ # 1327

Oct 18, 2021 3:41 PM

Oct 25, 2021

Jacob Walker

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Alliance Geotechnical

> 10 Welder Road Seven Hills

NSW 2147

Project Name:

Address:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

																		Eui	OIIIIS	Anaiy
		Sa	mple Detail			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех
Melk	ourne Laborat	ory - NATA # 12	61 Site # 125	4											Х	Х	Х		Х	
Syd	ney Laboratory	- NATA # 1261	Site # 18217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	
Bris	bane Laborator	y - NATA # 126	1 Site # 2079	4																
May	field Laborator	y - NATA # 1261	Site # 25079	1																
Pert	h Laboratory - I	NATA # 2377 Si	te # 2370																	
Exte	rnal Laboratory	/																	<u> </u>	
98	SAL02-0.5	Oct 08, 2021		Soil	S21-Oc38529				Х			Х					Х		<u> </u>	
99	SAL02-1.0	Oct 08, 2021		Soil	S21-Oc38530				Х			X					Х			
100	SAL02-1.5	Oct 08, 2021		Soil	S21-Oc38531										Х	Х	Х			
101	SAL02-2.0	Oct 08, 2021		Soil	S21-Oc38532				Х			Х					Х			
102	SAL03-0.5	Oct 08, 2021		Soil	S21-Oc38533				Х			Х					Х			
103	SAL03-1.0	Oct 08, 2021	S21-Oc38534				Х			Х					Х					
104	SAL03-1.5	Oct 08, 2021	S21-Oc38535				Х			Х					Х					
105	SAL03-2.0	Oct 08, 2021	S21-Oc38536				Х			X					Х		<u> </u>	1		
106		Oct 08, 2021	S21-Oc38537										Х	Х	Х		<u> </u>	1		
107	SAL04-0.5	Oct 08, 2021	S21-Oc38538				Х			X					Х		<u> </u>	1		
108	SAL04-1.0	Oct 08, 2021		S21-Oc38539				Х			Х					Х				

email: EnviroSales@eurofins.com

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 25, 2021

Jacob Walker

Oct 18, 2021 3:41 PM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

833263 1800 288 188

Phone: 02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

																				,
		Sar	nple Detail			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех
Mell	ourne Laborat	ory - NATA # 126	31 Site # 1254											Х	Х	Х		Х		
Syd	ney Laboratory	- NATA # 1261 S	Site # 18217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	
Bris	bane Laborator	y - NATA # 1261	Site # 20794																	
May	field Laboratory	y - NATA # 1261	Site # 25079																	
Pert	h Laboratory - I	NATA # 2377 Site	e # 2370																	
Exte	rnal Laboratory	<i>y</i>																		
109	SAL04-1.5	Oct 08, 2021	Soil		S21-Oc38540										Х	Х	Х			
110	SAL04-2.0	Oct 08, 2021	Soil		S21-Oc38541				Х			Х					Х			Ш
111	SAL05-0.5	Oct 08, 2021	Soil		S21-Oc38542				Х			Х					Х		<u> </u>	
112	SAL05-1.0	Oct 08, 2021	Soil		S21-Oc38543				Х			Х					Х		<u> </u>	
113	SAL05-1.5	Oct 08, 2021	Soil		S21-Oc38544				Х			Х					Х		<u> </u>	
114	SAL05-2.0	Oct 08, 2021	S21-Oc38545										Х	Х	Х		<u> </u>			
115	TP01 0.4-0.6	Oct 06, 2021	S21-Oc38546						Х							<u> </u>	<u> </u>	\sqcup		
116		Oct 06, 2021	S21-Oc38547						Х							<u> </u>	<u> </u>	\sqcup		
117	TP06 0.8-1.0	Oct 06, 2021	S21-Oc38548						Х							<u> </u>	<u> </u>	\sqcup		
118		Oct 06, 2021	S21-Oc38549						Х							<u> </u>	<u> </u>	\sqcup		
119	TP06 1.2-1.4	Oct 06, 2021	Soil	S21-Oc38550						Х							$oxed{oxed}$			

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Perth

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Oct 18, 2021 3:41 PM

Oct 25, 2021

Jacob Walker

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

Address:

13546

Order No.: Report #:

833263

Phone: 1800 288 188 02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	ВТЕХ	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех
Melb	ourne Laborat	ory - NATA # 12	61 Site # 125											Х	Х	Х		Х		
Sydı	ney Laboratory	- NATA # 1261		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х		
Bris	bane Laborator	y - NATA # 126																\sqcup		
May	field Laboratory	y - NATA # 1261	Site # 25079																	\sqcup
		NATA # 2377 Si	te # 2370																	\sqcup
Exte	rnal Laboratory																			\sqcup
120	TP07 0.5-0.7	Oct 06, 2021		Soil	S21-Oc38551						Х									\sqcup
121	TP08 0.4-0.6	Oct 06, 2021		Soil	S21-Oc38552						Х									
	TP09 0.4-0.6	Oct 06, 2021		Soil	S21-Oc38553						Х									\sqcup
	TP10 0.3-0.4	Oct 06, 2021		Soil	S21-Oc38554						Х									\sqcup
124	TP14 0.5-0.7	Oct 06, 2021		Soil	S21-Oc38555						Х									
125	TP15 0.4-0.4	FP15 0.4-0.4 Oct 06, 2021 Soil S21-O									Х									\sqcup
	TP16 0.4-0.6	Oct 06, 2021	S21-Oc38557						Х									\sqcup		
127	TP17 0.3-0.5	P17 0.3-0.5 Oct 06, 2021 Soil S21-Oc									Х									\sqcup
128	TP18 0.5-0.7	Oct 06, 2021		Soil	S21-Oc38559						Х									\sqcup
129	TP21 1.0-1.2	Oct 07, 2021		Soil	S21-Oc38560						Х									$\sqcup \sqcup$
130	TP21 1.5-1.5	Oct 07, 2021		Soil	S21-Oc38561						Х									

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

Auckland 46-48 Banksia Road 35 O'Rorke Road Welshpool WA 6106 Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

Phone:

Fax:

833263 1800 288 188

02 9675 1888

Received: Oct 18, 2021 3:41 PM Due: Oct 25, 2021

Priority: 5 Day

Jacob Walker **Contact Name:**

Eurofins Analytical Services Manager: Andrew Black

																		⊏u	ronns	Anai	yu
		Sa	mple Detail			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех	
Mell	oourne Laborat	ory - NATA # 12	61 Site # 125											Х	Х	Х		Х			
Syd	ney Laboratory	- NATA # 1261	Site # 18217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	X	Х	Х		
Bris	bane Laborator	y - NATA # 126	1 Site # 2079	4																	
May	field Laborator	y - NATA # 1261	Site # 25079	1																	
Pert	h Laboratory -	NATA # 2377 Si	te # 2370																		1
Exte	rnal Laboratory	у		,																	
131	TP22 1.0-1.2	Oct 06, 2021		Soil	S21-Oc38562						Х								$oxed{oxed}$		
132	TP22 1.8-2.0	Oct 06, 2021		Soil	S21-Oc38563						Х								$oxed{oxed}$		1
133	+	Oct 07, 2021		Soil	S21-Oc38564						Х										1
134	TP23 1.5-1.7	Oct 07, 2021		Soil	S21-Oc38565						Х										1
135	TP24 0.5-0.7	Oct 07, 2021		Soil	S21-Oc38566						Х										1
136	TP25 0.5-0.6	Oct 07, 2021		Soil	S21-Oc38567						Х										1
137	TP26 1.8-2.0	P26 1.8-2.0 Oct 07, 2021 Soil S21-Oc									Х								$\perp \perp \mid$		
138	TP26 0.0-0.1										Х								\sqcup		
139	DR01 0.3-0.5	Oct 06, 2021	S21-Oc38570						Х								\sqcup				
140	DR01 0.7-0.9										Х								+-		-
141	DR02 0.2-0.4	Oct 06, 2021	S21-Oc38572												Х	X]		

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Received:

Priority:

Contact Name:

Due:

Auckland 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Alliance Geotechnical Address:

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.:

Report #: 833263 Phone: 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

NZBN: 9429046024954

Oct 18, 2021 3:41 PM

Oct 25, 2021

Jacob Walker

		Sa	mple Detail		Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	ВТЕХ	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех
Melk	ourne Laborate	ory - NATA # 12	61 Site # 1254											Х	Х	Х		Х	
Syd	ney Laboratory	- NATA # 1261	Site # 18217		X	X	X	Х	Х	Х	X	Х	Х	Х		Х	X	Х	Х
		y - NATA # 1261																	
May	field Laboratory	/ - NATA # 1261	Site # 25079																
		NATA # 2377 Si	e # 2370																
	rnal Laboratory																		
142	DR02 0.5-0.7	Oct 06, 2021	Soil	S21-Oc38				-		Х									
143	DR03 0.3-0.5	Oct 06, 2021	Soil	S21-Oc38				-		X									
144	DR03 0.6-0.8	Oct 06, 2021	Soil	S21-Oc38				-		Х									
145	DR03 1.5-1.7	Oct 06, 2021	Soil	S21-Oc38						Х									
146	DR04 0.1-0.2	Oct 07, 2021	Soil	S21-Oc38						Х									
147	DR05 0.3-0.4	Oct 07, 2021	Soil Soil	S21-Oc38				-		Х									
148	DR06 0.3-0.5	Oct 07, 2021	S21-Oc38				-		Х										
149	DR07 0.3-0.5	Oct 07, 2021	S21-Oc38			_			Х									$\perp \perp \mid$	
150	DR08 0.1-0.2	Oct 07, 2021	Soil Soil	S21-Oc38			1	1		Х									\sqcup
151	DW01	Oct 07, 2021	S21-Oc38						Х										
152	DW02	Oct 07, 2021	Soil	S21-Oc38	583					Х									

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Perth

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Oct 18, 2021 3:41 PM

Oct 25, 2021

Jacob Walker

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Alliance Geotechnical Address: 10 Welder Road

Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

		Sai	mple Detail			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех
Melb	ourne Laborat	ory - NATA # 120	61 Site # 1254											Х	Х	Х		Х		
Sydı	ney Laboratory	- NATA # 1261 S	Site # 18217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	
		y - NATA # 1261																		
May	field Laboratory	y - NATA # 1261	Site # 25079																	
		NATA # 2377 Sit	e # 2370																	
	rnal Laboratory	1																		
153	DW03	Oct 07, 2021	Soil	S21-Oc							Х									
154	DW04	Oct 07, 2021	Soil	S21-Oc							Х									
155	DW05	Oct 07, 2021	Soil	S21-Oc							Х									
156	DW06	Oct 07, 2021	Soil	S21-Oc							Х									
157	DW07	Oct 07, 2021	Soil	S21-Oc	38588						Х									
158	DW08	Oct 07, 2021	Soil	S21-Oc	38589						Х									
159	PP4 0.5-0.6	Aug 12, 2021	38590						Х											
160	PP4 1.0-1.1	Aug 12, 2021	38591						Х											
161	PP4 1.5-1.6	Aug 12, 2021	38592						Х											
162	PP4 2.0-2.1	Aug 12, 2021	38593						Х											
163	PP6 0.5-0.6	Oct 12, 2021	Soil	S21-Oc	38594						Х									

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Perth

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Oct 18, 2021 3:41 PM

Oct 25, 2021

Jacob Walker

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

Address:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

		Sa	mple Detail		Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех
Melk	ourne Laborat	ory - NATA # 12	61 Site # 1254											Х	Х	Х		Х	
Sydı	ney Laboratory	- NATA # 1261	Site # 18217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х
-		y - NATA # 126																	
May	field Laboratory	y - NATA # 1261	Site # 25079																
Pert	h Laboratory - I	NATA # 2377 Sit	e # 2370																
	rnal Laboratory	1	T																
164		Oct 12, 2021	Soil	S21-Oc38595						Х									
-	PP6 1.5-1.6	Oct 12, 2021	Soil	S21-Oc38596						Х									
	PP6 2.0-2.1	Oct 12, 2021	Soil	S21-Oc38597	_					Х	_								\sqcup
	PP6 2.4-2.5	Oct 12, 2021	Soil	S21-Oc38598						Х									
168	<u> </u>	Oct 12, 2021	Soil	S21-Oc38599						Х									
169	PP8 0.1-0.2	Oct 12, 2021	Soil	S21-Oc38600						Х									
170	TP41 0.0-0.1	Oct 12, 2021	Soil	S21-Oc38601						Х									\sqcup
171	TP41 0.9-1.0	Oct 12, 2021	Soil	S21-Oc38602						Х									\sqcup
172	TP42 0.0-0.1	Oct 12, 2021	Soil	S21-Oc38603						Х									
173	TP42 1.0-1.1	Oct 12, 2021	Soil	S21-Oc38604						Х									
174	TP42 1.4-1.5	Oct 12, 2021	Soil	S21-Oc38605						Х									

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Received:

Priority:

Contact Name:

Due:

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

NZBN: 9429046024954 Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive

Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road

Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

Oct 18, 2021 3:41 PM

Oct 25, 2021

Jacob Walker

							_													,
		Sa	mple Detail		Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех	
Melb	ourne Laborat	ory - NATA # 12	61 Site # 1254											Х	Х	Х		Х		
Sydı	ney Laboratory	- NATA # 1261	Site # 18217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	ĺ
		y - NATA # 126																		ĺ
May	field Laborator	y - NATA # 1261	Site # 25079																	
Pert	h Laboratory -	NATA # 2377 Sit	te # 2370																	
Exte	rnal Laboratory	y																		
175	TP43 0.0-0.1	Oct 12, 2021	Soil	S21-Oc38606						Х										
176	TP43 1.0-1.1	Oct 12, 2021	Soil	S21-Oc38607						Х								<u> </u>		
177	TP43 1.2-1.3	Oct 12, 2021	Soil	S21-Oc38608						Х								↓		
178	 	Oct 12, 2021	Soil	S21-Oc38609						Х										ļ
179		Oct 12, 2021	Soil	S21-Oc38610						Х										ļ
180		Oct 12, 2021	Soil	S21-Oc38611						Х										ĺ
181	TP44 1.4-1.5	Oct 12, 2021	Soil	S21-Oc38612						Х								—		1
182		Oct 12, 2021	Soil	S21-Oc38613						Х								—	\sqcup	
183		Oct 12, 2021	Soil	S21-Oc38614						Х								—	\sqcup	
184	TP45 0.0-0.1	Oct 12, 2021	Soil	S21-Oc38615	_		-			Х								—	\sqcup	
185	TP45 0.5-0.6	Oct 12, 2021	Soil	S21-Oc38616						Х								<u> </u>		ĺ

email: EnviroSales@eurofins.com

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

NATA # 2377 Site # 2370

Auckland 35 O'Rorke Road Phone: +61 8 6253 4444

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

Phone:

833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

Oct 18, 2021 3:41 PM

Oct 25, 2021

Jacob Walker

		Sa	mple Detail		Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех
Melk	ourne Laborate	ory - NATA # 12	61 Site # 1254											Х	Х	Х		Х	
Sydı	ney Laboratory	- NATA # 1261	Site # 18217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х
Bris	bane Laborator	y - NATA # 126	Site # 20794																
May	field Laboratory	y - NATA # 1261	Site # 25079																
Pert	h Laboratory - I	NATA # 2377 Sit	e # 2370																
	rnal Laboratory	1																	
186		Oct 12, 2021	Soil	S21-Oc38617						Х									
187	TP46 0.0-0.1	Oct 12, 2021	Soil	S21-Oc38618						Х									
188	<u> </u>	Oct 12, 2021	Soil	S21-Oc38619						Х									\sqcup
189	<u> </u>	Oct 12, 2021	Soil	S21-Oc38620												Х	Х		\sqcup
190	TP47 0.2-0.3	Oct 12, 2021	Soil	S21-Oc38621						Х									
191	TP48 0.0-0.1	Oct 12, 2021	Soil	S21-Oc38622						Х									
192	TP48 0.2-0.3	Oct 12, 2021	Soil	S21-Oc38623						Х									\sqcup
193	<u> </u>	Oct 12, 2021	Soil	S21-Oc38624						Х									\sqcup
194	TP49 0.1-0.2	Oct 12, 2021	Soil	S21-Oc38625						Х									
195	DR11 0.1-0.2	Oct 13, 2021	Soil	S21-Oc38626						Х									
196	DR12 0.1-0.2	Oct 13, 2021	Soil	S21-Oc38627						Х									

email: EnviroSales@eurofins.com

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Oct 18, 2021 3:41 PM

Oct 25, 2021

Jacob Walker

5 Day

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

Phone:

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

833263 1800 288 188

02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

																		Lui	UIIIIS	Analy
		Sa	mple Detail			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех
Melb	ourne Laborate	ory - NATA # 12	61 Site # 125	4											Х	Х	Х		Х	
Sydı	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х
Bris	bane Laborator	y - NATA # 126	1 Site # 2079	4																
May	field Laboratory	/ - NATA # 1261	Site # 25079)																
Pert	h Laboratory - I	NATA # 2377 Si	te # 2370																$oxed{oxed}$	
Exte	rnal Laboratory	/																		
197	DR13 0.1-0.2	Oct 13, 2021		Soil	S21-Oc38628						Х								<u> </u>	
198	DR14 0.1-0.2	Oct 13, 2021		Soil	S21-Oc38629						Х								<u> </u>	
199	DW09	Oct 13, 2021		Soil	S21-Oc38630						Х								<u> </u>	
200	DW10	Oct 13, 2021		Soil	S21-Oc38631						Х								<u> </u>	
201	DW11	Oct 13, 2021		Soil	S21-Oc38632						Х								↓	
202	DW12	Oct 13, 2021		Soil	S21-Oc38633						Х								↓	
203	TP13-0.4-0.6	Oct 08, 2021		Soil	S21-Oc38634						Х								<u> </u>	
204	TP27-1.0-1.2	Oct 08, 2021		Soil	S21-Oc38635						Х								<u> </u>	
205	TP28-0.1-0.3	Oct 08, 2021		Soil	S21-Oc38636						Х								<u> </u>	1
206	TP29-0.3-0.5	Oct 08, 2021		Soil	S21-Oc38637						Х								<u> </u>	\sqcup
207	TP30-0.5-0.7	Oct 08, 2021		Soil	S21-Oc38638						Х									

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Auckland 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name:

Alliance Geotechnical

Address: 10 Welder Road

Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

833263

Phone: 1800 288 188

02 9675 1888 Fax:

Received: Oct 18, 2021 3:41 PM Due: Oct 25, 2021

NZBN: 9429046024954

Priority: 5 Day

Jacob Walker **Contact Name:**

Eurofins Analytical Services Manager: Andrew Black

																		Eu	ronns	Allai	yι
		Sa	mple Detail			Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	втех	
Mel	bourne Laborat	ory - NATA # 12	61 Site # 1254												Х	Х	Х		Х		ĺ
Syd	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	
Bris	bane Laborator	y - NATA # 1261	Site # 20794																		
May	field Laborator	y - NATA # 1261	Site # 25079																ļ		
Pert	h Laboratory - I	NATA # 2377 Sit	e # 2370																		ĺ
Exte	rnal Laboratory	y																	<u> </u>		
208	TP31-1.0-1.2	Oct 08, 2021	S	Soil	S21-Oc38639						Х								<u> </u>		
209	TP31-2.0-2.2	Oct 08, 2021	S	Soil	S21-Oc38640						Х								<u> </u>		1
210	TP32-1.0-1.2	Oct 08, 2021	S	Soil	S21-Oc38641						Х								<u> </u>	\bigsqcup	
211	TP32-1.5-1.7	Oct 08, 2021		Soil	S21-Oc38642						Х								<u> </u>	\bigsqcup	
212	TP33-0.1-0.3	Oct 08, 2021		Soil	S21-Oc38643						Х								<u> </u>	\bigsqcup	
213	TP34-0.6-0.8	Oct 08, 2021	S	Soil	S21-Oc38644						Х								<u> </u>	igsqcut	
	TP35-0.6-0.8	Oct 08, 2021		Soil	S21-Oc38645						Х								<u> </u>	<u> </u>	
	TP36-0.1-0.3	Oct 08, 2021		Soil	S21-Oc38646						Х								<u> </u>	<u> </u>	
	TP37-0.1-0.3	Oct 08, 2021		Soil	S21-Oc38647						Х								<u> </u>	<u> </u>	1
217		Oct 08, 2021		Soil	S21-Oc38648						Х								<u> </u>	<u> </u>	
218	TP39-0.1-0.3	Oct 08, 2021		Soil	S21-Oc38649			Х													ĺ

email: EnviroSales@eurofins.com

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 18, 2021 3:41 PM

Oct 25, 2021

Jacob Walker

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

13546

Order No.: Report #:

833263

Phone: 1800 288 188 02 9675 1888 Fax:

Due:

Perth

Eurofins Analytical Services Manager: Andrew Black

5 Day

		Sa	mple Detail		Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	ВТЕХ
Melk	ourne Laborat	ory - NATA # 12	61 Site # 1254											Х	Х	Х		Х	
Syd	ney Laboratory	- NATA # 1261	Site # 18217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х
Bris	bane Laborator	y - NATA # 1261	Site # 20794																
May	field Laboratory	y - NATA # 1261	Site # 25079																
Pert	h Laboratory - I	NATA # 2377 Sit	e # 2370																
Exte	rnal Laboratory	<u>/</u>																	
219	TP40-0.1-0.3	Oct 08, 2021	Soil	S21-Oc38650						Х									
220	TP55-0.0-0.2	Oct 08, 2021	Soil	S21-Oc38651						Х									
221	TP55-0.3-0.5	Oct 08, 2021	Soil	S21-Oc38652						Х									
222	TP56-0.0-0.2	Oct 08, 2021	Soil	S21-Oc38653						Х									
223	TP56-0.7-0.9	Oct 08, 2021	Soil	S21-Oc38654						Х									
224	TP57-0.1-0.1	Oct 08, 2021	Soil	S21-Oc38655						Х									
225	TP57-0.1-0.3	Oct 08, 2021	Soil	S21-Oc38656						Х									
226	TP58-0.0-0.1	Oct 08, 2021	Soil	S21-Oc38657				1		Х								<u> </u>	
227	TP58-0.1-0.3	Oct 08, 2021	Soil	S21-Oc38658			Х	1										<u> </u>	
228	TP59-0.0-0.2	Oct 08, 2021	Soil	S21-Oc38659				1		Х								<u> </u>	
229	TP59-0.7-0.9	Oct 08, 2021	Soil	S21-Oc38660						Х									

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Perth

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Oct 18, 2021 3:41 PM

Oct 25, 2021

Jacob Walker

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com **Company Name:**

web: www.eurofins.com.au

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

KEMPS CREEK

Project ID:

Address:

13546

Order No.: Report #:

833263

Phone: 1800 288 188 02 9675 1888 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

Sample Detail		Arsenic	Cadmium	CANCELLED	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	втех	Suite B13: OCP/PCB	Aggressivity Soil Set	Eurofins Suite B20	Moisture Set	Eurofins Suite B7	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	BTEX
Melbourne Laboratory - NATA # 1261 Site # 1254											Х	Χ	Χ		Χ	
Sydney Laboratory - NATA # 1261 Site # 18217		Х	Х	Х	Х	Χ	Х	Х	Χ	Х	Х		Χ	Χ	Χ	Х
Brisbane Laboratory - NATA # 1261 Site # 20794																
Mayfield Laboratory - NATA # 1261 Site # 25079																i
Perth Laboratory - NATA # 2377 Site # 2370																i
External Laboratory																
230 TP60-0.0-0.2 Oct 08, 2021 Soil	S21-Oc38661						Х									1
231 TP60-0.5-0.7 Oct 08, 2021 Soil	S21-Oc38662						Х									1
Test Counts		7	7	2	16	7	113	16	5	37	5	5	98	77	17	5

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs...

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
втех					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xvlenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank		1 0.0	0.0	1 . 0.00	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene		< 0.5	0.5	Pass	
` '	mg/kg	< 0.5	0.5	Pass	
Chrysene Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
	mg/kg				
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene Math ad Plants	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides		0.4	0.4	D	
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	-
a-HCH	mg/kg	< 0.05	0.05	Pass	-
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-HCH	mg/kg	< 0.05	0.05	Pass	
d-HCH	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	
Endrin ketone	mg/kg	< 0.05		0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05		0.05	Pass	
Heptachlor	mg/kg	< 0.05		0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05		0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05		0.05	Pass	
Methoxychlor	mg/kg	< 0.05		0.05	Pass	
Toxaphene	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Polychlorinated Biphenyls						
Aroclor-1016	mg/kg	< 0.1		0.1	Pass	
Aroclor-1221	mg/kg	< 0.1		0.1	Pass	
Aroclor-1232	mg/kg	< 0.1		0.1	Pass	
Aroclor-1242	mg/kg	< 0.1		0.1	Pass	
Aroclor-1248	mg/kg	< 0.1		0.1	Pass	
Aroclor-1254	mg/kg	< 0.1		0.1	Pass	
Aroclor-1260	mg/kg	< 0.1		0.1	Pass	
Total PCB*	mg/kg	< 0.1		0.1	Pass	
Method Blank	, g ,g	, ,,,		U.		
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
		< 0.1		0.1	Pass	
Mercury Nickel	mg/kg	< 5		5	Pass	
	mg/kg			5 		
Zinc Method Blank	mg/kg	< 5		5	Pass	
Ammonia (as N)		. F	T	5	Pass	
Nitrate & Nitrite (as N)	mg/kg	< 5 < 5		5	Pass	
Nitrate (as N)	mg/kg			5		
· /	mg/kg	< 5			Pass	
Nitrite (as N)	mg/kg	< 5		5	Pass	
Phosphorus	mg/kg	< 10		10	Pass	
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	< 10		10	Pass	
Exchangeable Sodium Percentage (ESP)	%	< 0.1		0.1	Pass	
Magnesium (exchangeable)	meq/100g	< 0.1		0.1	Pass	
Potassium (exchangeable)	meq/100g	< 0.1		0.1	Pass	
Sodium (exchangeable)	meq/100g	< 0.1		0.1	Pass	
Method Blank	1					
Cation Exchange Capacity	1				_	
Calcium (exchangeable)	meq/100g	< 0.1		0.1	Pass	
Cation Exchange Capacity	meq/100g	< 0.05		0.05	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons					_	
TRH C6-C9	%	87		70-130	Pass	
TRH C10-C14	%	98		70-130	Pass	
Naphthalene	%	92		70-130	Pass	
TRH C6-C10	%	99		70-130	Pass	
TRH >C10-C16	%	92		70-130	Pass	
LCS - % Recovery						
BTEX						
Benzene	%	106		70-130	Pass	
Toluene	%	96		70-130	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Ethylbenzene	%	99	70-130	Pass	
m&p-Xylenes	%	101	70-130	Pass	
o-Xylene	%	100	70-130	Pass	
Xylenes - Total*	%	101	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	98	70-130	Pass	
Acenaphthylene	%	98	70-130	Pass	
Anthracene	%	98	70-130	Pass	
Benz(a)anthracene	%	92	70-130	Pass	
Benzo(a)pyrene	%	99	70-130	Pass	
Benzo(b&j)fluoranthene	%	90	70-130	Pass	
Benzo(g.h.i)perylene	%	87	70-130	Pass	
Benzo(k)fluoranthene	%	105	70-130	Pass	
Chrysene	%	94	70-130	Pass	
Dibenz(a.h)anthracene	%	87	70-130	Pass	
Fluoranthene	%	96	70-130	Pass	
Fluorene	%	101	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	86	70-130	Pass	
Naphthalene	%	95	70-130	Pass	
Phenanthrene	%	99	70-130	Pass	
Pyrene	%	96	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides					
Chlordanes - Total	%	78	70-130	Pass	
4.4'-DDD	%	77	70-130	Pass	
4.4'-DDE	%	84	70-130	Pass	
4.4'-DDT	%	87	70-130	Pass	
a-HCH	%	79	70-130	Pass	
Aldrin	%	82	70-130	Pass	
b-HCH	%	110	70-130	Pass	
d-HCH	%	78	70-130	Pass	
Dieldrin	%	79	70-130	Pass	
Endosulfan I	%	83	70-130	Pass	
Endosulfan II	%	70	70-130	Pass	
Endosulfan sulphate	%	108	70-130	Pass	
Endrin	%	73	70-130	Pass	
Endrin aldehyde	%	80	70-130	Pass	
Endrin ketone	%	110	70-130	Pass	
g-HCH (Lindane)	%	89	70-130	Pass	
Heptachlor	%	71	70-130	Pass	
Heptachlor epoxide	%	80	70-130	Pass	
Hexachlorobenzene	%	76	70-130	Pass	
Methoxychlor	%	110	70-130	Pass	
LCS - % Recovery		,			
Polychlorinated Biphenyls	1				
Aroclor-1016	%	74	70-130	Pass	
Aroclor-1221	%	86	70-130	Pass	
Aroclor-1260	%	71	70-130	Pass	
LCS - % Recovery		,			
Heavy Metals	1				
Arsenic	%	93	80-120	Pass	
Cadmium	%	96	80-120	Pass	
Chromium	%	92	80-120	Pass	

Tes	ıt .		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Copper			%	90		80-120	Pass	
Lead			%	97		80-120	Pass	
Mercury			%	99		80-120	Pass	
Nickel			%	92		80-120	Pass	
Zinc			%	90		80-120	Pass	
LCS - % Recovery			,,,			00 120	1 400	
Ammonia (as N)			%	105		70-130	Pass	
Nitrate & Nitrite (as N)			%	105		70-130	Pass	
Nitrate (as N)			%	105		70-130	Pass	
Nitrite (as N)			%	105		70-130	Pass	
Phosphorus			%	89		80-120	Pass	
Conductivity (1:5 aqueous extrac	t at 25°C ag rag \		%	93		70-130	Pass	
	t at 25 C as iec.)		%	93		70-130	Pass	
Resistivity*		0.4	70	93				Ouglifuin a
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbon				Result 1				
TRH C10-C14	S21-Oc38427	CP	%	98		70-130	Pass	
TRH >C10-C16	S21-Oc38427	CP	%	97		70-130	Pass	
Spike - % Recovery								
Organochlorine Pesticides				Result 1				
Endosulfan sulphate	S21-Oc44056	NCP	%	92		70-130	Pass	
Spike - % Recovery								
Polychlorinated Biphenyls				Result 1				
Aroclor-1221	S21-Oc44056	NCP	%	98		70-130	Pass	
Spike - % Recovery				<u> </u>				
Heavy Metals				Result 1				
Arsenic	S21-Oc38427	СР	%	89		75-125	Pass	
Cadmium	S21-Oc38427	СР	%	98		75-125	Pass	
Chromium	S21-Oc38427	CP	%	105		75-125	Pass	
Copper	S21-Oc38427	CP	%	110		75-125	Pass	
Lead	S21-Oc38427	CP	%	106		75-125	Pass	
Mercury	S21-Oc38427	CP	%	111		75-125	Pass	
Nickel	S21-Oc38427	CP	%	106		75-125	Pass	
		CP	%	95				
Zinc	S21-Oc38427	CP	70	95		75-125	Pass	
Spike - % Recovery				Descrit 4				
Tatal Kialdahi Nitra asa 7 - 2 Ni	M04 O : 4070 4	NOD	0/	Result 1		70.400	D	
Total Kjeldahl Nitrogen (as N)	M21-Oc46724	NCP	%	110		70-130	Pass	
Spike - % Recovery				Desided				
Discourie and	001.0 :==::	NOT	21	Result 1		75.465		
Phosphorus	S21-Oc45948	NCP	%	86		75-125	Pass	
Spike - % Recovery				T				
Total Recoverable Hydrocarbon		1		Result 1			_	
TRH C6-C9	S21-Oc38448	CP	%	77		70-130	Pass	
TRH C10-C14	S21-Oc38448	CP	%	101		70-130	Pass	
Naphthalene	S21-Oc38448	CP	%	86		70-130	Pass	
TRH C6-C10	S21-Oc38448	CP	%	79		70-130	Pass	
TRH >C10-C16	S21-Oc38448	CP	%	98		70-130	Pass	
Spike - % Recovery								
ВТЕХ				Result 1				
Benzene	S21-Oc38448	CP	%	79		70-130	Pass	
Toluene	S21-Oc38448	СР	%	81		70-130	Pass	
Ethylbenzene	S21-Oc38448	СР	%	84		70-130	Pass	
m&p-Xylenes	S21-Oc38448	СР	%	86		70-130	Pass	
· ·		CP	%	87	<u> </u>	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptan Limits	e Pass Limits	Qualifying Code
Xylenes - Total*	S21-Oc38448	CP	%	86	70-130	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocarbon	s			Result 1			
Acenaphthene	S21-Oc38448	CP	%	72	70-130	Pass	
Acenaphthylene	S21-Oc38448	CP	%	73	70-130	Pass	
Benzo(a)pyrene	S21-Oc38448	CP	%	99	70-130	Pass	
Benzo(b&j)fluoranthene	S21-Oc38448	CP	%	88	70-130	Pass	
Benzo(g.h.i)perylene	S21-Oc38448	CP	%	90	70-130	Pass	
Benzo(k)fluoranthene	S21-Oc38448	CP	%	81	70-130	Pass	
Chrysene	S21-Oc38448	CP	%	72	70-130	Pass	
Dibenz(a.h)anthracene	S21-Oc38448	CP	%	81	70-130	Pass	
Fluoranthene	S21-Oc38448	CP	%	76	70-130	Pass	
Fluorene	S21-Oc38448	CP	%	76	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S21-Oc38448	CP	%	80	70-130	Pass	
Phenanthrene	S21-Oc38448	CP	%	74	70-130	Pass	
Pyrene	S21-Oc38448	CP	%	75	70-130	Pass	
Spike - % Recovery							
Heavy Metals	T			Result 1			
Arsenic	S21-Oc38448	CP	%	110	75-125	Pass	
Cadmium	S21-Oc38448	CP	%	119	75-125	Pass	
Chromium	S21-Oc38448	CP	%	108	75-125	Pass	
Copper	S21-Oc38448	CP	%	96	75-125	Pass	
Nickel	S21-Oc38448	CP	%	89	75-125	Pass	
Spike - % Recovery						<u> </u>	
Total Recoverable Hydrocarbons	1			Result 1			
TRH C6-C9	S21-Oc38458	CP	%	79	70-130	Pass	
TRH C10-C14	S21-Oc38458	CP	%	82	70-130	Pass	
Naphthalene	S21-Oc38458	CP	%	102	70-130	Pass	
TRH C6-C10	S21-Oc38458	CP	%	80	70-130	Pass	
TRH >C10-C16	S21-Oc38458	CP	%	78	70-130	Pass	
Spike - % Recovery				T T			
BTEX	T			Result 1			
Benzene	S21-Oc38458	CP	%	79	70-130	Pass	
Toluene	S21-Oc38458	CP	%	86	70-130	Pass	
Ethylbenzene	S21-Oc38458	CP	%	92	70-130	Pass	
m&p-Xylenes	S21-Oc38458	CP	%	95	70-130	Pass	
o-Xylene	S21-Oc38458	CP	%	94	70-130	Pass	
Xylenes - Total*	S21-Oc38458	СР	%	95	70-130	Pass	
Spike - % Recovery				T = 1,			
Polycyclic Aromatic Hydrocarbon				Result 1			
Acenaphthene	S21-Oc38458	CP	%	92	70-130	Pass	
Acenaphthylene	S21-Oc38458	CP	%	89	70-130	Pass	
Anthracene	S21-Oc38458	CP	%	85	70-130	Pass	
Benz(a)anthracene	S21-Oc38458	CP	%	83	70-130	Pass	
Benzo(a)pyrene	S21-Oc38458	CP	%	81	70-130	Pass	
Benzo(b&j)fluoranthene	S21-Oc38458	CP	%	77	70-130	Pass	
Benzo(g.h.i)perylene	S21-Oc38458	CP	%	76	70-130	Pass	
Benzo(k)fluoranthene	S21-Oc38458	CP	%	83	70-130	Pass	
Chrysene	S21-Oc38458	CP	%	92	70-130	Pass	
Dibenz(a.h)anthracene	S21-Oc38458	CP	%	78	70-130	Pass	
Fluoranthene	S21-Oc38458	CP	%	86	70-130	Pass	
Fluorene	S21-Oc38458	CP	%	89	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S21-Oc38458	CP	%	73	70-130	Pass	
Naphthalene	S21-Oc38458	CP	%	95	70-130	Pass	L

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Phenanthrene	S21-Oc38458	СР	%	89	70-130	Pass	
Pyrene	S21-Oc38458	CP	%	84	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
4.4'-DDT	S21-Oc38458	СР	%	114	70-130	Pass	
a-HCH	S21-Oc38458	СР	%	74	70-130	Pass	
b-HCH	S21-Oc38458	СР	%	74	70-130	Pass	
Dieldrin	S21-Oc38458	СР	%	78	70-130	Pass	
Endrin	S21-Oc38458	СР	%	107	70-130	Pass	
Endrin ketone	S21-Oc38458	CP	%	105	70-130	Pass	
g-HCH (Lindane)	S21-Oc38458	CP	%	77	70-130	Pass	
Heptachlor	S21-Oc38458	CP	%	77	70-130	Pass	
Heptachlor epoxide	S21-Oc38458	CP	%	74	70-130	Pass	
Hexachlorobenzene	S21-Oc38458	CP	%	77	70-130	Pass	
Spike - % Recovery	021-0000-00	Oi I	70	,,,	70-130	1 433	
Polychlorinated Biphenyls				Result 1			
Aroclor-1016	S21-Oc38458	СР	%	76	70-130	Pass	
Aroclor-1016 Aroclor-1260	S21-Oc38458	CP CP	%	84	70-130	Pass	
Spike - % Recovery	321-0036438	LCF	70	04	/0-130	FdSS	
				Dogult 1		I	
Heavy Metals	004 0-20400	CD.	0/	Result 1	75.405	Dana	
Arsenic	S21-Oc38468	CP	%	89	75-125	Pass	
Cadmium	S21-Oc38468	CP	%	97	75-125	Pass	
Chromium	S21-Oc38468	CP	%	89	75-125	Pass	
Copper	S21-Oc38468	CP	%	86	75-125	Pass	
Lead	S21-Oc38468	CP	%	99	75-125	Pass	
Mercury	S21-Oc38468	CP	%	101	75-125	Pass	
Nickel	S21-Oc38468	CP	%	88	75-125	Pass	
Zinc	S21-Oc38468	CP	%	78	75-125	Pass	
Spike - % Recovery				T T		ı	
Total Recoverable Hydrocarbo		1		Result 1			
TRH C10-C14	S21-Oc38507	CP	%	95	70-130	Pass	
Naphthalene	S21-Oc38507	CP	%	72	70-130	Pass	
TRH >C10-C16	S21-Oc38507	CP	%	91	70-130	Pass	
Spike - % Recovery						1	
BTEX				Result 1			
Benzene	S21-Oc38507	CP	%	73	70-130	Pass	
Toluene	S21-Oc38507	CP	%	71	70-130	Pass	
Ethylbenzene	S21-Oc38507	CP	%	72	70-130	Pass	
m&p-Xylenes	S21-Oc38507	CP	%	72	70-130	Pass	
o-Xylene	S21-Oc38507	CP	%	72	70-130	Pass	
Xylenes - Total*	S21-Oc38507	CP	%	72	70-130	Pass	
Spike - % Recovery				<u> </u>			
Polycyclic Aromatic Hydrocarb	oons			Result 1			
Acenaphthene	S21-Oc38507	CP	%	90	70-130	Pass	
Acenaphthylene	S21-Oc38507	CP	%	87	70-130	Pass	
Anthracene	S21-Oc38507	CP	%	84	70-130	Pass	
Benz(a)anthracene	S21-Oc38507	CP	%	81	70-130	Pass	
Benzo(a)pyrene	S21-Oc38507	CP	%	80	70-130	Pass	
Benzo(b&j)fluoranthene	S21-Oc38507	СР	%	78	70-130	Pass	
Benzo(g.h.i)perylene	S21-Oc38507	СР	%	80	70-130	Pass	
Benzo(k)fluoranthene	S21-Oc38507	СР	%	99	70-130	Pass	
Chrysene	S21-Oc38507	СР	%	94	70-130	Pass	
Dibenz(a.h)anthracene	S21-Oc38507	CP	%	72	70-130	Pass	
Fluoranthene	S21-Oc38507	CP	%	82	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Fluorene	S21-Oc38507	CP	%	89	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S21-Oc38507	CP	%	70	70-130	Pass	
Naphthalene	S21-Oc38507	CP	%	87	70-130	Pass	
Phenanthrene	S21-Oc38507	CP	%	84	70-130	Pass	
Pyrene	S21-Oc38507	CP	%	78	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
Chlordanes - Total	S21-Oc38507	CP	%	77	70-130	Pass	
4.4'-DDD	S21-Oc38507	СР	%	76	70-130	Pass	
4.4'-DDE	S21-Oc38507	СР	%	85	70-130	Pass	
4.4'-DDT	S21-Oc38507	СР	%	72	70-130	Pass	
a-HCH	S21-Oc38507	СР	%	80	70-130	Pass	
Aldrin	S21-Oc38507	СР	%	78	70-130	Pass	
b-HCH	S21-Oc38507	СР	%	87	70-130	Pass	
d-HCH	S21-Oc38507	СР	%	81	70-130	Pass	
Dieldrin	S21-Oc38507	СР	%	78	70-130	Pass	
Endosulfan I	S21-Oc38507	CP	%	81	70-130	Pass	
Endosulfan II	S21-Oc38507	CP	%	78	70-130	Pass	
Endrin	S21-Oc38507	CP	%	82	70-130	Pass	
Endrin aldehyde	S21-Oc38507	CP	%	71	70-130	Pass	
g-HCH (Lindane)	S21-Oc38507	CP	%	90	70-130	Pass	
Heptachlor	S21-Oc38507	CP	%	70	70-130	Pass	
Heptachlor epoxide	S21-Oc38507	CP	%	80	70-130	Pass	
Hexachlorobenzene	S21-Oc38507	CP	%	75	70-130	Pass	
Methoxychlor	S21-Oc38507	CP	%	116	70-130	Pass	
Spike - % Recovery	321-0030307	Ci	/0	110	70-130	1 033	
Polychlorinated Biphenyls				Result 1			
Aroclor-1260	S21-Oc38507	СР	%	83	70-130	Pass	
Spike - % Recovery	321-0030307	CF	/0	83	70-130	Fass	
Heavy Metals				Result 1			
Arsenic	S21-Oc38507	СР	%	104	75-125	Pass	
		CP		104			
Chromium	S21-Oc38507 S21-Oc38507	CP CP	%		75-125	Pass	
Chromium			%	100	75-125	Pass	
Copper	S21-Oc38507	CP	%	96	75-125	Pass	
Lead	S21-Oc38507	CP	%	109	75-125	Pass	
Mercury	S21-Oc38507	CP	%	108	75-125	Pass	
Nickel	S21-Oc38507	CP	<u>%</u>	91	75-125	Pass	
Spike - % Recovery	_			Doorle 4			
Total Recoverable Hydrocarbon		0.0	0/	Result 1	70.100	_	
TRH C10-C14	S21-Oc38519	CP	%	124	70-130	Pass	
TRH >C10-C16	S21-Oc38519	СР	<u>%</u>	120	70-130	Pass	
Spike - % Recovery Polycyclic Aromatic Hydrocarbo	ons			Result 1			
Acenaphthene	S21-Oc38519	СР	%	77	70-130	Pass	
Acenaphthylene	S21-Oc38519	CP	%	78	70-130	Pass	
Anthracene	S21-Oc38519	CP	%	78	70-130	Pass	
Benzo(a)pyrene	S21-Oc38519	CP	%	100	70-130	Pass	
Benzo(b&j)fluoranthene	S21-Oc38519	CP	%	98	70-130	Pass	
Benzo(g.h.i)perylene	S21-Oc38519	CP	%	80	70-130	Pass	
Benzo(k)fluoranthene	S21-Oc38519	CP	%	94	70-130	Pass	
	021-000013			1		Pass	
	S21-0c38510		0/2	, /u			
Chrysene	S21-Oc38519	CP CP	<u>%</u>	79	70-130		
	S21-Oc38519 S21-Oc38519 S21-Oc38519	CP CP	% % %	79 78 83	70-130 70-130 70-130	Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Indeno(1.2.3-cd)pyrene	S21-Oc38519	CP	%	73			70-130	Pass	5545
Naphthalene	S21-Oc38519	CP	%	76			70-130	Pass	
Phenanthrene	S21-Oc38519	CP	%	80			70-130	Pass	
Pyrene	S21-Oc38519	CP	%	83			70-130	Pass	
Spike - % Recovery	021 0000010	<u> </u>	70				70 100	1 400	
Opine 70 Nedovery				Result 1					
Chloride	S21-Oc38525	СР	%	101			70-130	Pass	
Sulphate (as SO4)	S21-Oc38525	CP	%	92			70-130	Pass	
Culpitate (as GG4)		QA		-			Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate									
Total Recoverable Hydrocarbo	ns			Result 1	Result 2	RPD			
TRH C6-C9	S21-Oc38430	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S21-Oc38430	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-Oc38430	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S21-Oc38430	СР	mg/kg	< 50	< 50	<1	30%	Pass	
Naphthalene	S21-Oc38430	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-Oc38430	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S21-Oc38430	СР	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-Oc38430	СР	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S21-Oc38430	СР	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate			<u> </u>						
BTEX				Result 1	Result 2	RPD			
Benzene	S21-Oc38430	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-Oc38430	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-Oc38430	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-Oc38430	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
o-Xylene	S21-Oc38430	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Xylenes - Total*	S21-Oc38430	CP		< 0.1	< 0.1	<1	30%	Pass	
	321-0036430	CF	mg/kg	<u> < 0.5</u>	< 0.3	<1	30%	Fa55	
Duplicate				Dogult 1	Dogult 2	DDD			
O/ Mainturn	004 0-20420	CD.	0/	Result 1	Result 2	RPD	200/	Dana	
% Moisture	S21-Oc38430	CP	%	9.7	9.0	7.0	30%	Pass	
Duplicate				Docult 4	D 11 0	DDD			
Total Recoverable Hydrocarbo		0.0		Result 1	Result 2	RPD	000/	D	
TRH C10-C14	S21-Oc38437	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-Oc38437	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S21-Oc38437	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C10-C16	S21-Oc38437	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-Oc38437	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S21-Oc38437	СР	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				l					
Polycyclic Aromatic Hydrocarb				Result 1	Result 2	RPD			
Acenaphthene	S21-Oc38437	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-Oc38437	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-Oc38437	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-Oc38437	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-Oc38437	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-Oc38437	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-Oc38437	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-Oc38437	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-Oc38437	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-Oc38437	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-Oc38437	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S21-Oc38437	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-Oc38437	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbo	ns		1	Result 1	Result 2	RPD			
Naphthalene	S21-Oc38437	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-Oc38437	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-Oc38437	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate							1	1	
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S21-Oc38437	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S21-Oc38437	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S21-Oc38437	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S21-Oc38437	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S21-Oc38437	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S21-Oc38437	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S21-Oc38437	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S21-Oc38437	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S21-Oc38437	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S21-Oc38437	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S21-Oc38437	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S21-Oc38437	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S21-Oc38437	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S21-Oc38437	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S21-Oc38437	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S21-Oc38437	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S21-Oc38437	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S21-Oc38437	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S21-Oc38437	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S21-Oc38437	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S21-Oc38437	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S21-Oc38437	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S21-Oc38437	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S21-Oc38437	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	S21-Oc38437	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S21-Oc38437	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S21-Oc38437	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S21-Oc38437	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S21-Oc38437	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate			, ,	,					
				Result 1	Result 2	RPD			
% Moisture	S21-Oc38437	СР	%	12	12	6.0	30%	Pass	
Ammonia (as N)	S21-Oc38437	СР	mg/kg	1700	1700	<1	30%	Pass	
Nitrate & Nitrite (as N)	S21-Oc38437	СР	mg/kg	2000	2100	6.0	30%	Pass	
Nitrate (as N)	S21-Oc38437	СР	mg/kg	2000	2100	6.0	30%	Pass	
Nitrite (as N)	S21-Oc38437	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S21-Oc38447	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Naphthalene	S21-Oc38447	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-Oc38447	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate			<u>, </u>						
BTEX				Result 1	Result 2	RPD			
Benzene	S21-Oc38447	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-Oc38447	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-Oc38447	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-Oc38447	CP	mg/kg	< 0.1	< 0.2	<1	30%	Pass	
map Aylones	1 321 3000447		i iiig/kg	\ \ 0.2	\ ∪.∠		1 0070	1 433	

Duplicate									
BTEX				Result 1	Result 2	RPD			
o-Xylene	S21-Oc38447	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S21-Oc38447	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate	021 0000447	Oi	i ilig/kg	\ \ 0.5	V 0.5		3070	1 433	
Polycyclic Aromatic Hydrocarbo	ns			Result 1	Result 2	RPD			
Acenaphthene	S21-Oc38447	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-Oc38447	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-Oc38447	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-Oc38447	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-Oc38447	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-Oc38447	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-Oc38447	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-Oc38447	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-Oc38447	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-Oc38447	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-Oc38447	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S21-Oc38447	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-Oc38447	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-Oc38447	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-Oc38447	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-Oc38447	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	02.0000	<u> </u>	ıg,g	1 0.0	1 0.0	7.	3373	1	
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S21-Oc38447	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S21-Oc38447	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S21-Oc38447	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S21-Oc38447	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S21-Oc38447	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S21-Oc38447	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S21-Oc38447	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S21-Oc38447	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S21-Oc38447	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S21-Oc38447	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	-
Endosulfan II	S21-Oc38447	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	-
Endosulfan sulphate	S21-Oc38447	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	-
Endrin	S21-Oc38447	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S21-Oc38447	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S21-Oc38447	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S21-Oc38447	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S21-Oc38447	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S21-Oc38447	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S21-Oc38447	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S21-Oc38447	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S21-Oc38447	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S21-Oc38447	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S21-Oc38447	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S21-Oc38447	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	S21-Oc38447	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S21-Oc38447	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S21-Oc38447	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S21-Oc38447	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S21-Oc38447	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	

Duplicate									
<u> </u>				Dogult 1	Result 2	RPD			
Heavy Metals	C04 O-20447	CD		Result 1			200/	Dana	
Arsenic Cadmium	S21-Oc38447	CP CP	mg/kg	15	15	6.0	30% 30%	Pass	
	S21-Oc38447	CP	mg/kg	< 0.4	< 0.4 17	<1	30%	Pass	
Chromium	S21-Oc38447		mg/kg	1	t t	12		Pass	
Copper	S21-Oc38447	CP	mg/kg	46	38	18	30%	Pass	
Lead	S21-Oc38447	CP	mg/kg	26	30	12	30%	Pass	
Mercury	S21-Oc38447	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S21-Oc38447	CP	mg/kg	21	18	18	30%	Pass	
Zinc	S21-Oc38447	СР	mg/kg	180	150	17	30%	Pass	
Duplicate				D 11.4		DDD			
O/ Matalaura	004 0 00447	0.0	0/	Result 1	Result 2	RPD	000/	D	
% Moisture	S21-Oc38447	CP	%	16	14	10	30%	Pass	
Phosphorus	S21-Oc38447	СР	mg/kg	1500	1300	8.0	30%	Pass	
Duplicate				l	I I				
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD		_	
TRH C10-C14	S21-Oc38456	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-Oc38456	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S21-Oc38456	CP	mg/kg	53	62	15	30%	Pass	
TRH >C10-C16	S21-Oc38456	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-Oc38456	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S21-Oc38456	CP	mg/kg	< 100	110	15	30%	Pass	
Duplicate				1	1				
Polycyclic Aromatic Hydrocarbon	S		T	Result 1	Result 2	RPD			
Acenaphthene	S21-Oc38456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-Oc38456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-Oc38456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-Oc38456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-Oc38456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-Oc38456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-Oc38456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-Oc38456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-Oc38456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-Oc38456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-Oc38456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S21-Oc38456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-Oc38456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-Oc38456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-Oc38456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-Oc38456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S21-Oc38457	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Naphthalene	S21-Oc38457	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-Oc38457	СР	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S21-Oc38457	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-Oc38457	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-Oc38457	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-Oc38457	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
		CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
o-Xylene	S21-Oc38457	(,P	[[[[(1/K(1	< 11	1 < ()	< 1	1 ,3(1%	I Pass I	

Duplicate									
				Dogult 1	Dogult 0	DDD	I		
Polycyclic Aromatic Hydrocark		0.0		Result 1	Result 2	RPD	000/	D	
Acenaphthene	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				T _	T _	_			
Organochlorine Pesticides			1	Result 1	Result 2	RPD		1	
Chlordanes - Total	S21-Oc38457	CP	mg/kg	< 1	< 1	<1	30%	Pass	
4.4'-DDD	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4.4'-DDE	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4.4'-DDT	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
a-HCH	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aldrin	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
b-HCH	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
d-HCH	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dieldrin	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endosulfan I	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endosulfan II	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endosulfan sulphate	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endrin	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endrin aldehyde	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endrin ketone	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
g-HCH (Lindane)	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Heptachlor	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Heptachlor epoxide	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Hexachlorobenzene	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Methoxychlor	S21-Oc38457	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S21-Oc38457	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Aroclor-1221	S21-Oc38457	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Aroclor-1232	S21-Oc38457	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Aroclor-1242	S21-Oc38457	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Aroclor-1248	S21-Oc38457	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Aroclor-1254	S21-Oc38457	СР	mg/kg	< 1	< 1	<1	30%	Pass	
Aroclor-1260	S21-Oc38457	СР	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Oc38457	СР	mg/kg	12	8.0	41	30%	Fail	Q15
Cadmium	S21-Oc38457	СР	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-Oc38457	CP	mg/kg	33	29	14	30%	Pass	
Copper	S21-Oc38457	CP	mg/kg	35	41	16	30%	Pass	
COPPCI	0210000701	01	IIIQ/KU	55		10	30/0	Fass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Mercury	S21-Oc38457	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S21-Oc38457	CP	mg/kg	28	34	17	30%	Pass	
Zinc	S21-Oc38457	CP	mg/kg	95	86	10	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S21-Oc38457	CP	%	12	16	28	30%	Pass	
Phosphorus	S21-Oc38457	СР	mg/kg	820	730	11	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	<u> </u>			Result 1	Result 2	RPD			
TRH C10-C14	S21-Oc38467	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-Oc38467	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S21-Oc38467	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C10-C16	S21-Oc38467	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-Oc38467	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S21-Oc38467	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate			יישייים ו						
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Oc38467	СР	mg/kg	9.5	8.1	16	30%	Pass	
Cadmium	S21-Oc38467	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-Oc38467	CP	mg/kg	21	19	12	30%	Pass	
Copper	S21-Oc38467	CP	mg/kg	26	23	12	30%	Pass	
Lead	S21-Oc38467	CP	mg/kg	13	12	6.0	30%	Pass	
Mercury	S21-Oc38467	CP	mg/kg	< 0.1	< 0.1	<u> </u>	30%	Pass	
Nickel		CP						1 1	
	S21-Oc38467		mg/kg	17	15	13	30%	Pass	
Zinc	S21-Oc38467	CP	mg/kg	49	46	6.0	30%	Pass	
Duplicate				D It 4	D 11 0	DDD			
0/ 14 - 1-1	004.0-00407	OD	0/	Result 1	Result 2	RPD	000/	Date	
% Moisture	S21-Oc38467	CP	%	27	29	7.0	30%	Pass	
Phosphorus	S21-Oc38467	СР	mg/kg	160	130	20	30%	Pass	
Duplicate							I		
	T = =		1	Result 1	Result 2	RPD		_	
% Moisture	S21-Oc38498	CP	%	7.0	9.0	25	30%	Pass	
Duplicate				1			ı		
Heavy Metals			1	Result 1	Result 2	RPD			
Arsenic	S21-Oc38499	CP	mg/kg	7.0	6.1	13	30%	Pass	
Cadmium	S21-Oc38499	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-Oc38499	CP	mg/kg	13	10	20	30%	Pass	
Copper	S21-Oc38499	CP	mg/kg	29	23	24	30%	Pass	
Lead	S21-Oc38499	CP	mg/kg	0.4	17	19	30%	Pass	
	321-0036499	01	ilig/kg	21	17				
Mercury	S21-Oc38499	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Mercury Nickel						<1 20	30% 30%	Pass Pass	
	S21-Oc38499	СР	mg/kg	< 0.1	< 0.1				Q02
Nickel	S21-Oc38499 S21-Oc38499	CP CP	mg/kg mg/kg	< 0.1 13	< 0.1 11	20	30%	Pass	Q02
Nickel Zinc	S21-Oc38499 S21-Oc38499	CP CP	mg/kg mg/kg	< 0.1 13	< 0.1 11	20	30%	Pass	Q02
Nickel Zinc	S21-Oc38499 S21-Oc38499	CP CP	mg/kg mg/kg	< 0.1 13 520	< 0.1 11 380	20 32	30%	Pass	Q02
Nickel Zinc Duplicate	\$21-Oc38499 \$21-Oc38499 \$21-Oc38499	CP CP CP	mg/kg mg/kg mg/kg	< 0.1 13 520 Result 1	< 0.1 11 380 Result 2	20 32 RPD	30% 30%	Pass Fail	Q02
Nickel Zinc Duplicate Phosphorus	\$21-Oc38499 \$21-Oc38499 \$21-Oc38499 \$21-Oc38499	CP CP CP	mg/kg mg/kg mg/kg	< 0.1 13 520 Result 1	< 0.1 11 380 Result 2	20 32 RPD	30% 30%	Pass Fail	Q02
Nickel Zinc Duplicate Phosphorus Duplicate	\$21-Oc38499 \$21-Oc38499 \$21-Oc38499 \$21-Oc38499	CP CP CP	mg/kg mg/kg mg/kg	< 0.1 13 520 Result 1 730	< 0.1 11 380 Result 2 550	20 32 RPD 29	30% 30%	Pass Fail	Q02
Nickel Zinc Duplicate Phosphorus Duplicate Total Recoverable Hydrocarbons	\$21-Oc38499 \$21-Oc38499 \$21-Oc38499 \$21-Oc38499	CP CP CP	mg/kg mg/kg mg/kg	< 0.1 13 520 Result 1 730	< 0.1 11 380 Result 2 550	20 32 RPD 29	30% 30% 30%	Pass Fail	Q02
Nickel Zinc Duplicate Phosphorus Duplicate Total Recoverable Hydrocarbons TRH C6-C9	\$21-Oc38499 \$21-Oc38499 \$21-Oc38499 \$21-Oc38499 \$21-Oc38506	CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.1 13 520 Result 1 730 Result 1 < 20 < 20	< 0.1 11 380 Result 2 550 Result 2 < 20	20 32 RPD 29 RPD <1	30% 30% 30%	Pass Fail Pass Pass	Q02
Nickel Zinc Duplicate Phosphorus Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28	\$21-Oc38499 \$21-Oc38499 \$21-Oc38499 \$21-Oc38499 \$21-Oc38506 \$21-Oc38506 \$21-Oc38506	CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.1 13 520 Result 1 730 Result 1 < 20 < 20 < 50	< 0.1 11 380 Result 2 550 Result 2 < 20 < 20 < 50	20 32 RPD 29 RPD <1 <1 <1	30% 30% 30% 30% 30% 30%	Pass Fail Pass Pass Pass Pass Pass	Q02
Nickel Zinc Duplicate Phosphorus Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36	\$21-Oc38499 \$21-Oc38499 \$21-Oc38499 \$21-Oc38506 \$21-Oc38506 \$21-Oc38506 \$21-Oc38506 \$21-Oc38506	CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.1 13 520 Result 1 730 Result 1 < 20 < 20 < 50 61	< 0.1 11 380 Result 2 550 Result 2 < 20 < 20 < 50 < 50	20 32 RPD 29 RPD <1 <1 <1 <1 25	30% 30% 30% 30% 30% 30% 30%	Pass Fail Pass Pass Pass Pass Pass Pass Pass	Q02
Nickel Zinc Duplicate Phosphorus Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28	\$21-Oc38499 \$21-Oc38499 \$21-Oc38499 \$21-Oc38499 \$21-Oc38506 \$21-Oc38506 \$21-Oc38506	CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.1 13 520 Result 1 730 Result 1 < 20 < 20 < 50	< 0.1 11 380 Result 2 550 Result 2 < 20 < 20 < 50	20 32 RPD 29 RPD <1 <1 <1	30% 30% 30% 30% 30% 30%	Pass Fail Pass Pass Pass Pass Pass	Q02

Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH >C16-C34	S21-Oc38506	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S21-Oc38506	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate			1						
BTEX				Result 1	Result 2	RPD			
Benzene	S21-Oc38506	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-Oc38506	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-Oc38506	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-Oc38506	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S21-Oc38506	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S21-Oc38506	СР	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	<u> </u>			Result 1	Result 2	RPD			
Acenaphthene	S21-Oc38506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-Oc38506	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-Oc38506	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-Oc38506	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-Oc38506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-Oc38506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-Oc38506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-Oc38506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-Oc38506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-Oc38506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-Oc38506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S21-Oc38506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-Oc38506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-Oc38506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-Oc38506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-Oc38506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				1					
Organochlorine Pesticides	1		T	Result 1	Result 2	RPD			
Chlordanes - Total	S21-Oc38506	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S21-Oc38506	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S21-Oc38506	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S21-Oc38506	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S21-Oc38506	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S21-Oc38506	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S21-Oc38506	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S21-Oc38506	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S21-Oc38506	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S21-Oc38506	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S21-Oc38506	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S21-Oc38506	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S21-Oc38506	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S21-Oc38506	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S21-Oc38506	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S21-Oc38506	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S21-Oc38506	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S21-Oc38506	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S21-Oc38506	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S21-Oc38506	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S21-Oc38506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S21-Oc38506	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S21-Oc38506	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S21-Oc38506	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	S21-Oc38506	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S21-Oc38506	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S21-Oc38506	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S21-Oc38506	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S21-Oc38506	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate	321-0638300	CF	i ilig/kg	<u> </u>	<u> </u>		30 /0	Fass	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Oc38506	СР	mg/kg	9.1	11	16	30%	Pass	
Cadmium	S21-Oc38506	CP		< 0.4	< 0.4	<u> </u>	30%	Pass	
			mg/kg					+	
Chromium	S21-Oc38506	CP	mg/kg	16	17	10	30%	Pass	
Copper	S21-Oc38506	CP	mg/kg	27	27	<1	30%	Pass	
Lead	S21-Oc38506	CP	mg/kg	18	19	4.0	30%	Pass	
Mercury	S21-Oc38506	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S21-Oc38506	CP	mg/kg	16	17	3.0	30%	Pass	
Zinc	S21-Oc38506	CP	mg/kg	59	60	2.0	30%	Pass	
Duplicate				Desilia	Decide of	DDC			
	004.0.00500	0.0	T ,	Result 1	Result 2	RPD	000/	+_+	
Phosphorus	S21-Oc38506	СР	mg/kg	400	400	<1	30%	Pass	
Duplicate				T					
				Result 1	Result 2	RPD		+_ +	
% Moisture	S21-Oc38510	CP	%	8.7	7.7	13	30%	Pass	
Duplicate				T	I . I				
Heavy Metals			_	Result 1	Result 2	RPD		+_ +	
Arsenic	S21-Oc38511	CP	mg/kg	9.9	8.4	17	30%	Pass	
Cadmium	S21-Oc38511	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-Oc38511	CP	mg/kg	20	17	13	30%	Pass	
Copper	S21-Oc38511	CP	mg/kg	36	35	3.0	30%	Pass	
Lead	S21-Oc38511	CP	mg/kg	25	24	5.0	30%	Pass	
Mercury	S21-Oc38511	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S21-Oc38511	CP	mg/kg	21	20	8.0	30%	Pass	
Zinc	S21-Oc38511	CP	mg/kg	120	110	4.0	30%	Pass	
Duplicate				1	1 1				
				Result 1	Result 2	RPD			
Phosphorus	S21-Oc38511	CP	mg/kg	1800	1900	3.0	30%	Pass	
Duplicate				T	T T				
Total Recoverable Hydrocarbon				Result 1	Result 2	RPD			
TRH C10-C14	S21-Oc38516	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-Oc38516	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S21-Oc38516	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C10-C16	S21-Oc38516	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-Oc38516	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S21-Oc38516	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				1	, ,				
Polycyclic Aromatic Hydrocarbo	ons			Result 1	Result 2	RPD			
Acenaphthene	S21-Oc38516	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-Oc38516	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-Oc38516	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-Oc38516	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-Oc38516	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-Oc38516	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbons				Result 1	Result 2	RPD			
Benzo(k)fluoranthene	S21-Oc38516	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-Oc38516	CP	mg/kg	< 0.5	< 0.5	<u> </u>	30%	Pass	
Dibenz(a.h)anthracene	S21-Oc38516	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-Oc38516	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S21-Oc38516	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-Oc38516	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-Oc38516	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-Oc38516	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-Oc38516	CP	mg/kg	< 0.5	< 0.5	<u> </u>	30%	Pass	
Duplicate	021 0000010	<u> </u>	, mg/kg	V 0.0	1 0.0		0070	1 400	
Polycyclic Aromatic Hydrocarbons				Result 1	Result 2	RPD			
Acenaphthene	S21-Oc38518	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-Oc38518	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-Oc38518	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-Oc38518	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-Oc38518	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-Oc38518	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-Oc38518	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-Oc38518	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-Oc38518	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-Oc38518	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-Oc38518	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S21-Oc38518	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-Oc38518	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-Oc38518	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-Oc38518	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-Oc38518	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S21-Oc38520	CP	%	18	19	8.0	30%	Pass	
Duplicate					, , , , , , , , , , , , , , , , , , , ,				
		T	T	Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S21-Oc38525	СР	uS/cm	280	220	26	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S21-Oc38525	СР	pH Units	5.0	5.0	<1	30%	Pass	
Resistivity*	S21-Oc38525	CP	ohm.m	36	46	26	30%	Pass	
Duplicate									
		•		Result 1	Result 2	RPD			
Exchangeable Sodium Percentage (ESP)	S21-Oc46965	NCP	%	21	19	11	30%	Pass	
Magnesium (exchangeable)	S21-Oc46965	NCP	meq/100g	2.1	2.0	4.0	30%	Pass	
Potassium (exchangeable)	S21-Oc46965	NCP	meq/100g	0.1	0.1	3.0	30%	Pass	
Sodium (exchangeable)	S21-Oc46965	NCP	meq/100g	0.6	0.5	18	30%	Pass	
Duplicate									
Cation Exchange Capacity		_	_	Result 1	Result 2	RPD			
Calcium (exchangeable)	S21-Oc46965	NCP	meq/100g	< 0.1	< 0.1	<1	30%	Pass	
Cation Exchange Capacity	S21-Oc46965	NCP	meq/100g	2.8	2.6	7.0	30%	Pass	
Duplicate									
		1	Т	Result 1	Result 2	RPD			
Chloride	S21-Oc38529	CP	mg/kg	440	440	<1	30%	Pass	
Sulphate (as SO4)	S21-Oc38529	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Duplicate					, ,				
		1		Result 1	Result 2	RPD			
% Moisture	S21-Oc38530	CP	%	12	9.9	22	30%	Pass	

Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S21-Oc38535	СР	uS/cm	280	240	16	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S21-Oc38535	СР	pH Units	7.7	7.7	<1	30%	Pass	
Resistivity*	S21-Oc38535	СР	ohm.m	36	42	16	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S21-Oc38540	СР	%	13	14	1.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S21-Oc38545	СР	uS/cm	67	60	11	30%	Pass	
Resistivity*	S21-Oc38545	CP	ohm.m	150	170	11	30%	Pass	

Comments

Microbiological analysis cancelled due to incorrect containers. B19D cancelled on SW01, SW02, SW03 and SW04 due to incorrect containers. Samples TP39-0.1-0.3 and TP58-0.1-0.3 not received. Samples BT1, BT2 and BT3 forwarded to ALS.

V2- new version to import Cr on all "PP" samples for metals as per client request.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	No
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
C04	The LODe have been reject

The LORs have been raised due to matrix interference G01

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q02 The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause

Q09 The Surrogate recovery is outside of the recommended acceptance criteria due to matrix interference. Acceptance criteria were met for all other QC

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Theoretically the TKN result should be greater or equal to the ammonia concentration. However the difference reported is within the measurement uncertainty of the individual

R09

N02

N07

Authorised by:

Andrew Black Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Charl Du Preez Senior Analyst-Inorganic (NSW) Senior Analyst-Inorganic (VIC) John Nguyen Senior Analyst-Metal (NSW) Senior Analyst-Volatile (NSW) Roopesh Rangarajan Emily Rosenberg Senior Analyst-Metal (VIC)

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 833263-S-V2

Dz Day* 03 8564 5000 EnviroSampleVic@eurofins.com Day jacob, walker@allgeo.com.au samjones@allgeo.com.au, 33 enviro@allgeo.com.au, & 9 PAGE 1 OF 11 2 Kingston Town Close, Oakleigh, VIC 3186 admin@allgeo.com.au Overnight (9am)* Temperature O1 Day* ☐ Melbourne Laboratory O3 Day Report Ne S Other (Time 34 8/10/2021 22 landed over by 08 9251 9600 EnviroSampleWA@eurofins.com Date Time Time Perth Laboratory
Unit 2, 91 Leach Highway, Kewdale WA 6105 南江 120 Jacob W Date Date Signature 07 3902 4600 EnviroSampleQLD@eurofins.com Unit 1, 21 Smallwood Pf., Murarrie, QLD 4172 HOLD × × ××× × × 6 EDD Format (ESdat, EQuIS, Custom) **NOC** Brisbane Laboratory TRH & BTEX 3 E.Coli and total coliforms - thermotolerant XXX XX LO. Signature Signature Suite BH19D: Total N, TKN, NOX, NO2, NO3, NH3, Total P x x x XX ю Kemps Creek 13546 L2 Aggressivity Suite Unit F3 Bid F, 16 Mars Rd, Lane Cove West, NSW 2066 SYD BNE | MEL | PER | ADL | NTL | DRW SYD | BNE | MEL | PER | ADL | NTL | DRW 02 9900 8400 EnviroSampleNSW@eurofins.com Name EC suq bH gnite B13: OCb, PCB × x x x × × × Postal ☑ Sydney Laboratory Suite B7: TRH, BTEXN, PAH, Metals × × XXX × × × × XXX 5 Project Ne Project Name Hand Delivered S S S Total Counts ALLIANCE GEOTECHNICAL 10 WELDER ROAD, SEVEN CHAIN OF CUSTODY RECORD 6/10/21 HILLS NSW 430214402 Sam J Received By Received By FP01 0.0-0.2 PO1 0.4-0.6 TP02 0.0-0.2 FP03 0.0-0.2 FP03 0.4-0.6 TP06 0.8-1.0 FP04 0.0-0.1 POS 0.0-0.1 TP06 0.0-0.2 TP06 1.2-1.4 TP09 0.4-0.6 PD6 1.0-1.2 TP07 0.0-0.2 PD07 0.5-0.7 TP08 0.0-0.2 TP08 0.4-0.6 TP09 0.0-0.2 TP10 0.0-0.2 FP10 0.3-0.4 TP14 0.0-0.2 P11 0.0-0.1 子 Courier (# Laboratory Use Only Eurofins | mgl Quote ID Ne

Submission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request

Brisbane Laboratory LPydney Laboratory Unil F3 Bid.F, 16 Mars Rd, Lane Cove West, NSW 2066 02 9900 8400 EnviroSempleNSW@eurofins.com **CHAIN OF CUSTODY RECORD**

833269 □z Day* 03 8564 5000 EnviroSampleVic@eurofins.com acob.walker@allgeo.com.au 00 samjones@allgeo.com.au, enviro@allgeo.com.au, & PAGE 1 OF 11 2 Kingston Town Close, Oakleigh, VIC 3166 admin@allgeo.com.au Overnight (9am)* Temperature Melbourne Laboratory S 1 Day Report Ne O3 Day Other (Time 3 41 ×××××××××××× 8/10/2021 23 08 9251 9600 EnviroSampleWA@eurofins.com TIme Date Time Perth Laboratory
Unit 2, 91 Leach Highway, Kewdale WA 6105 名の見 Jacob W Date Date 07 3902 4600 EnviroSampleQLD@eurofins.com Signature Unit 1, 21 Smallwood Pl., Murarrie, QLD 4172 HOLD × × × × XX 2 EDD Format (ESdat, EQuIS, Custom) VOC TRH & BTEX જ E.Coli and total coliforms - thermotolerant XXX m Suite BH19D: Total N, TKN, NOX, NO2, NO3, NH3, Total P XXX Kemps Creek m 13546 L2 Aggressivity Suite SYD | BNE | MEL | PER | ADL | NTL | DRW SYD | BINE | MEL | PER | ADL | NTL | DRW Name EC and pH Suite B13: OCP, PCB × XXX × 9 Postal Suite B7: TRH, BTEXN, PAH, Metals × × = × × × Hand Delivered **ALLIANCE GEOTECHNICAL** 10 WELDER ROAD, SEVEN いり 6/10/21 6/10/21 6/10/21 7/10/21 6/10/21 6/10/21 6/10/21 7/10/21 7/10/21 7/10/21 6/10/21 7/10/21 6/10/21 7/10/21 7/10/21 7/10/21 7/10/21 HILLS NSW 430214402 Sam J Received By Received By TP17 0.3-0.5 TP14 0.5-0.7 TP16 0.4-0.6 TP18 0.0-0.2 TP18 0.5-0.7 TP21 1.0-1.2 TP19 0.0-0.1 TP21 0.0-0.2 TP20 0.0-0.1 TP21 1.5-1.5 TP22 0.0-0.1 TP22 1.0-1.2 TP22 1.8-2.0 TP23 0.0-0.1 Courier (# Laboratory Use Only Eurofins | mgt urchase Order Quote ID Ng

Submission of samples to the laboratory will be deemed as acceptance of Eurofins I mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request. Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt