"l..'

SSI Software
ol Developer’s Kit

I

Programmer’s Guide

Simple Serial Interface (SSI) Software Developer’s Kit
Programmer’s Guide

72-59860-01
Revision A
December 2002

”.ll-

© 2002 by Symbol Technologies, Inc. All rights reserved.

No part of this publication may be reproduced or used in any form, or by any electrical or
mechanical means, without permission in writing from Symbol. This includes electronic or
mechanical means, such as photocopying, recording, or information storage and retrieval
systems. The material in this manual is subject to change without notice.

The software is provided strictly on an “as is” basis. All software, including firmware,
furnished to the user is on a licensed basis. Symbol grants to the user a non-transferable
and non-exclusive license to use each software or firmware program delivered hereunder
(licensed program). Except as noted below, such license may not be assigned,
sublicensed, or otherwise transferred by the user without prior written consent of Symbol.
No right to copy a licensed program in whole or in part is granted, except as permitted under
copyright law. The user shall not modify, merge, or incorporate any form or portion of a
licensed program with other program material, create a derivative work from a licensed
program, or use a licensed program in a network without written permission from Symbol.
The user agrees to maintain Symbol’s copyright notice on the licensed programs delivered
hereunder, and to include the same on any authorized copies it makes, in whole or in part.
The user agrees not to decompile, disassemble, decode, or reverse engineer any licensed
program delivered to the user or any portion thereof.

Symbol reserves the right to make changes to any software or product to improve reliability,
function, or design.

Symbol does not assume any product liability arising out of, or in connection with, the
application or use of any product, circuit, or application described herein.

No license is granted, either expressly or by implication, estoppel, or otherwise under any
Symbol Technologies, Inc., intellectual property rights. An implied license only exists for
equipment, circuits, and subsystems contained in Symbol products.

Symbol, Spectrum One, and Spectrum24 are registered trademarks of Symbol
Technologies, Inc. Other product names mentioned in this manual may be trademarks or
registered trademarks of their respective companies and are hereby acknowledged.

The JPEG image decompression used in the sample application for this product is based
in part on the work of the Independent JPEG Group.

Symbol Technologies, Inc.

One Symbol Plaza

Holtsville, New York 11742-1300
http://www.symbol.com

http://www.symbol.com

2 5

Contents

About This Guide

INtrodUCHiON %
Chapter Descriplions e Y
Notational Conventions \%
Related DocumeNts e vi
Service Information Vi

Symbol Support Center vii

Chapter 1. Simple Serial Interface (SSI) API

API DESCHPtONS . . .o 1-2
SSICONNECt . .. 1-2
SSIDISCONNECt 1-3
AbortimageXfer 1-4
AbortMacroPdf 1-5
AIMON/AIMOST. . . e 1-6
EnterLowPwrMode 1-7
FlushMacroP DF 1-8
LedOn/LedOff. 1-9
PUI T gger o ot 1-10
ReleaseTrigger. . . .o 1-11
RequestAllParameters 1-12
RequestParameters e 1-13
RequestScannerCapabilities 1-15
ReturnDLLVErsion 1-16
ScanEnable/ScanDisable. 1-17
SetCapabilitiesBuffer 1-18
SetDecodeBuUffer 1-19
SetlmageBuffer. 1-20
SetParameterBuffer 1-22
SetParameters 1-23

& \ Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

SetParamPersistance 1-25
SetVersionBuffer 1-26
SetVideoBuUffer. 1-27
SNAPSNOt. . . . 1-28
SoUNdBEEPEr. . . . 1-29
TransmitVersion. 1-30
TransmitVideoo 1-31
Library Error Reportingo 1-32
APIReturn Values 1-32
SSIWM_ERROR MESSAQESttt i ittt et e e e e e e e e 1-34
SSIWM_TIMEOUT MESSAQES« ottt et e et e e e e 1-35
Beep Command Parameters. 1-36
Data Returned by the DLL 1-37
Windows Messages Sentto Calling Process i 1-38

Chapter 2. ActiveX Control

Getting Started 2-1
Registering the SSIConnect Component. e 2-1
Adding the SSIConnect Component to Your Project. 2-1
Setting Properties 2-2

Communicating with the Scanner Using Your Control 2-5
Command Methods 2-5
SendCommand(Command As Long) ASLONg.ot 2-7
RequestParameter(Parameter As Long) AsLong.t 2-9
ChangeParameter(Parameter As Long, Value As Long) AslLong. 2-10

Parameter NUMbers 2-11

EVeNtS . . 2-14
Event Handling in Visual Basic 2-14
AllParametersAvailable 2-15
DecodeDataAvailable 2-16
EventDataAvailable e 2-17
ImageDataAvailable. 2-18
ImageTransferStatusAvailable. 2-19
ParameterAvailable 2-20
ScannerCapabilities. 2-21
ScannerStatusAvailable. 2-23
VersionDataAvailable. 2-24

Index

Feedback

2 5

About This Guide

Introduction

The Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide describes
the Application Programming Interface (API) to the SSIDLL, which provides a
communications link between Symbol Technologies decoders and a Windows 95/98/2000/
XP host using the serial port. This guide also provides instructions for adding and using the
ActiveX control, which facilitates using the SSI DLL within Visual Basic.

Chapter Descriptions

Topics covered in this guide are as follows:

* Chapter 1, Simple Serial Interface (SSI) API describes the SSIDLL, developed
using Microsoft Visual C++ V6.0. The DLL implements serial communications,
reader and writer threads, SSI message building and the SSI protocol.

* Chapter 2, ActiveX Control provides instructions for adding the SSIConnect.ocx
component to a Visual Basic project. Refer to the on-line help for specific
information on using the ocx and its properties, methods and events.

Notational Conventions

This document uses these conventions:

» “User” refers to anyone using an SSI product.

* “You’ refers to the End User, System Administrator or Programmer using this
manual as a reference for SSI.

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

« ltalics are used to highlight specific items in the general text, and to identify
chapters and sections in this and related documents. It also identifies names of
dialog boxes and tabs within dialog boxes.

* Bullets (¢) indicate:
+ lists of alternatives or action items.
» lists of required steps that are not necessarily sequential.

* Numbered lists indicate a set of sequential steps, i.e., those that describe step-by-
step procedures.

Related Documents

» Universal Scan Engine Developer’s Kit Installation Guide, p/n 72-59636-xx
» Simple Serial Interface (SSI) Programmer’s Guide, p/n 72-40451-xx
» Simple Serial Interface (SSI) Developer’s Guide, p/n 72-50705-xx

Refer to the Product Reference Guide for your scanner for product-specific information on
SSl.

Service Information

If you have a problem with your equipment, contact the Symbol Support Center for your
region. See page vii for contact information. Before calling, have the model number, serial
number, and several of your bar code symbols at hand.

Call the Support Center from a phone near the scanning equipment so that the service
person can try to talk you through your problem. If the equipment is found to be working
properly and the problem is symbol readability, the Support Center will request samples of
your bar codes for analysis at our plant.

If your problem cannot be solved over the phone, you may need to return your equipment
for servicing. If that is necessary, you will be given specific directions.

Note: Symbol Technologies is not responsible for any damages incurred
during shipment if the approved shipping container is not used.
Shipping the units improperly can possibly void the warranty. If the
original shipping container was not kept, contact Symbol to have
another sent to you.

vi

Symbol Support Center

About This Guide

For service information, warranty information or technical assistance contact or call the

Symbol Support Center in:

United States

Symbol Technologies, Inc.

One Symbol Plaza

Holtsville, New York 11742-1300
1-800-653-5350

United Kingdom
Symbol Technologies
Symbol Place

Winnersh Triangle, Berkshire RG41 5TP

United Kingdom
0800 328 2424 (Inside UK)
+44 118 945 7529 (Outside UK)

Australia

Symbol Technologies Pty. Ltd.

432 St. Kilda Road

Melbourne, Victoria 3004
1-800-672-906 (Inside Australia)
+61-3-9866-6044 (Outside Australia)

Denmark/Danmark

Symbol Technologies AS

Dr. Neergaardsvej 3

2970 Hgrsholm

7020-1718 (Inside Denmark)
+45-7020-1718 (Outside Denmark)

Canada

Symbol Technologies Canada, Inc.
2540 Matheson Boulevard East
Mississauga, Ontario, Canada L4W 472
905-629-7226

Asia/Pacific

Symbol Technologies Asia, Inc (Singapore
Branch)

230 Victoria Street #05-07/09
Bugis Junction Office Tower
Singapore 188024

Tel : +65-6796-9600

Fax : +65-6337-6488

Austria/Osterreich

Symbol Technologies Austria GmbH
Prinz-Eugen Strasse 70/ 2.Haus
1040 Vienna, Austria

01-5055794-0 (Inside Austria)
+43-1-5055794-0 (Outside Austria)

Europe/Mid-East Distributor Operations
Contact your local distributor or call
+44 118 945 7360

Vi

=

Finland/Suomi

Oy Symbol Technologies

Kaupintie 8 A6

FIN-00440 Helsinki, Finland

9 5407 580 (Inside Finland)

+358 9 5407 580 (Outside Finland)

Germany/Deutchland

Symbol Technologies GmbH
Waldstrasse 66

D-63128 Dietzenbach, Germany
6074-49020 (Inside Germany)
+49-6074-49020 (Outside Germany)

Latin America Sales Support

7900 Glades Road

Suite 340

Boca Raton, Florida 33434 USA
1-800-347-0178 (Inside United States)
+1-561-483-1275 (Outside United States)

Netherlands/Nederland

Symbol Technologies

Kerkplein 2, 7051 CX

Postbus 24 7050 AA

Varsseveld, Netherlands

315-271700 (Inside Netherlands)
+31-315-271700 (Outside Netherlands)

viii

& \ \ Simple Serial Interface (SSl) Software Developer’s Kit Programmer’s Guide

France

Symbol Technologies France
Centre d'Affaire d'Antony

3 Rue de la Renaissance

92184 Antony Cedex, France
01-40-96-52-21 (Inside France)
+33-1-40-96-52-50 (Outside France)

Italy/Italia

Symbol Technologies Italia S.R.L.
Via Cristoforo Columbo, 49
20090 Trezzano S/N Navigilo
Milano, Italy

2-484441 (Inside ltaly)
+39-02-484441 (Outside ltaly)

Mexico/México

Symbol Technologies Mexico Ltd.

Torre Picasso

Boulevard Manuel Avila Camacho No 88
Lomas de Chapultepec CP 11000
Mexico City, DF, Mexico

5-520-1835 (Inside Mexico)
+52-5-520-1835 (Outside Mexico)

Norway/Norge

Symbol’s registered and mailing address:
Symbol Technologies Norway
Hoybratenveien 35 C

N-1055 OSLO, Norway

Symbol’s repair depot and shipping address:

Symbol Technologies Norway
Enebakkveien 123
N-0680 OSLO, Norway

+47 2232 4375

South Africa

Symbol Technologies Africa Inc.

Block B2

Rutherford Estate

1 Scott Street

Waverly 2090 Johannesburg

Republic of South Africa

11-809 5311 (Inside South Africa)
+27-11-809 5311 (Outside South Africa)

Sweden/Sverige
“Letter” address:

Symbol Technologies AB
Box 1354

S-171 26 SOLNA
Sweden

Visit/shipping address:
Symbol Technologies AB
Solna Strandvag 78
S-171 54 SOLNA
Sweden

Switchboard: 08 445 29 00 (domestic)

Call Center: +46 8 445 29 29 (international)

Support E-Mail:
Sweden.Support@se.symbol.com

About This Guide

Spain/Espaiia

Symbol Technologies S.L.

C/ Peonias, 2

Edificio Piovera Azul

28042 Madrid, Spain

91 324 40 00 (Inside Spain)

+34 91 324 40 00 (Outside Spain)

'Customer support is available 24 hours a day, 7 days a week.

If you purchased your Symbol product from a Symbol Business Partner, contact that

Business Partner for service.

For the latest version of this guide go to:http://www.symbol.com/manuals.

http://www.symbol.com/manuals

& \ \ Simple Serial Interface (SSl) Software Developer’s Kit Programmer’s Guide

=

2 5

Chapter 1
Simple Serial Interface (SSI) API

Introduction

This implementation of SSI (Simple Serial Interface) uses handshaking (RTS/CTS) to
communicate with an SSI device. These signals are required and must be connected. The
SSI DLL implements serial communications, reader and writer threads, SSI message
building, and the SSI protocol handling needed to provide a communications link between
Symbol Technologies decoders and a Windows host. To set the host communication option
to SSI, scan the bar code parameter for SSI Host.

SSl is a transaction-based protocol. After a command function is called, control returns to
the host application while the scanner processes the command. After the command is
processed by the scanner, the host application receives a Windows message indicating the
command was processed. The host application should provide a message handler for the
acknowledgement from the connected SSI device before initiating another command.

The Windows host program also receives Windows messages when the decoder has data
to send to the host or when a timeout or error occurs. The Windows host program provides
data storage for the DLL to use for returning scanner data to the application.

All function prototypes and #defines can be found in SSidll.h.

1-1

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

API Descriptions

SSIConnect

Description

This must be the first call to the library. It opens the COM port using the indicated baud rate,
COM port number, and handle of the window whose procedure will receive windows
messages from the library. No command is sent to the scanner during this API call. Unless
a call to disable the scanner is issued, the scanner may send decode data at any time after
it is connected. Therefore, the host application should call the API function
SetDecodeBuffer after a successful call to SSIConnect if it wants to handle unsolicited
decode data from the scanner. Also, all data, including Decode Data, must be sent using
ACK/NAK handshaking. If this is not the default setting for your scanner, use bar code
parameters or call the API function SetParameters() to set the Decode Data Packet
parameter to use ACK/NAK protocol.

Syntax
SSIDLL_API int __stdcall SSIConnect(HWND hwnd, long Baud, int Port);
where:
* hwndis the handle of the window whose procedure will receive windows messages
from the library.
* Baud is the baud rate to use
* Portis the COM port number to open

Return Values
+ SSICOMM_NOERROR if the COM port was opened successfully.
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;

// using baud rate of 9600, com port number 1
status = SSIConnect (m hWnd, 9600, 1);

1-2

Simple Serial Interface (SSI) API

SSIDisconnect

Description

Terminates the communications link and releases all memory used by the library. No
command is sent to the scanner during this API call. Always call this function when the
application is finished communicating with the decoder.

Syntax
SSIDLL_APIint __stdcall SSIDisconnect(HWND hwnd, int nComPort);

where:

* hwnd is the handle of the window used during the call to SSIConnect for this COM
port
* Portis the COM port number to close

Return Values
+ SSICOMM_NOERROR if the Com Port was disconnected successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;
status = SSIDisonnect (m _hWnd, 1); // using com port number 1

1-3

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

AbortimageXfer

Description
Tells the scanner to stop transmitting the image being sent.

Syntax
SSIDLL_API int __stdcall AbortimageXfer(int nComPort);

where:
* nComPort is the COM port number used in the call to SSIConnect
Return Values

+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;
status = AbortImageXfer (1); // using com port number 1

1-4

Simple Serial Interface (SSI) API

AbortMacroPdf

Description

Sends a command to the scanner to abort the current MacroPDF scanning session and
discard any stored MacroPDF data.

Syntax

Description SSIDLL_API int __stdcall AbortMacroPdf(int nComPort);
where:

* nComPort is the COM port number used in the call to SSIConnect
Return Value

+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;
status = AbortMacroPdf (1); // using com port number 1

1-5

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

AimOn/AimOff

Description

Sends the Aim On or Aim Off command to the scanner. AimOn turns on the aiming pattern
of an imager, AimOff turns it off.

Syntax
SSIDLL_API int __stdcall AimOn(int nComPort);
SSIDLL_API int __stdcall AimOff(int nComPort);
where:

* nComPort is the COM port number used in the call to SSIConnect
Return Value

+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;
status = AimOn(1); // using com port number 1

1-6

Simple Serial Interface (SSI) API

EnterLowPwrMode

Description
Sends a command to the scanner to enter low power mode.

Syntax
SSIDLL_API int __stdcall EnterLowPwrMode(int nComPort);
where:

* nComPort is the COM port number used in the call to SSIConnect
Return Value

+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;
status = EnterLowPwrMode(1); // using com port number 1

1-7

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

FlushMacroPDF

Description

Sends a command to the scanner to abort the current MacroPDF scanning session and
transmit stored MacroPDF data. This call must be preceded by a call to SetDecodeBuffer
to provide a buffer for the data that will be returned from the scanner.

Syntax
SSIDLL_API int __stdcall FlushMacroPdf(int nComPort);
where:

* nComPort is the COM port number used in the call to SSIConnect
Return Value

+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;
status = FlushMacroPdf (1); // using com port number 1

1-8

Simple Serial Interface (SSI) API

LedOn/LedOff

Description

Sends a command to the scanner to turn on or turn off the LED. LedOn turns on the LED
of the scanner, and LedOff turns it off. Which LED to turn on or off is specified as a bit in
the nLEDselection parameter.

Syntax
SSIDLL_APIint __stdcall LedOn(int nComPort, unsigned char nLEDselection);
SSIDLL_API int __stdcall LedOff(int nComPort, unsigned char nLEDselection);
where:

* nComPort is the COM port number used in the call to SSIConnect

* nLEDselector is the bitwise indicator for the LED to be turned on or off (scanner-
dependent)

Return Value
+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;
unsigned char decode led = 0x02; // assumes led is represented using bit 1

status = LedOn(1, decode led); // using com port number 1, turn on led

1-9

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

PullTrigger

Description

Sends a command to the scanner to perform a software trigger, causing the scanner to
behave as if the trigger were pulled. Some scanners require setting the trigger mode to host
mode. To do this, call SetParameters before the PullTrigger API function. See the
documentation for your scanning device.

» Ifthe scanneris in Decode Mode, the laser (or camera) turns off after a successful
decode or a call to ReleaseTrigger.

» If the scanner is in Image Capture Mode and a call to Snapshot was made prior to
the PullTrigger call, the camera captures an image and turns off (ReleaseTrigger
call is not necessary).

» Ifthe scanner is in Video Mode, the camera turns off after a call to ReleaseTrigger.

Syntax
SSIDLL_APIint __stdcall PullTrigger(int nComPort);
where:

* nComPort is the COM port number used in the call to SSIConnect

Return Value
+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;
status = PullTrigger(1); // using com port number 1

Simple Serial Interface (SSI) API

ReleaseTrigger

Description

Sends a command to the scanner to release the software trigger. On the VS 4004 in video
mode (or decode mode if no bar code was decoded), the application must call
ReleaseTrigger, after a call to PullTrigger. Laser-based decoders timeout automatically.

Call ReleaseTrigger to abort a decode attempt or video transmission.

Syntax
SSIDLL_APIint __ stdcall ReleaseTrigger(int n"ComPort);
where:

* nComPort is the COM port number used in the call to SSIConnect

Return Value
+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;
status = ReleaseTrigger(1); // using com port number 1

& \ \ Simple Serial Interface (SSl) Software Developer’s Kit Programmer’s Guide

=

RequestAllParameters

Description

Sends a request to the scanner to return all its parameters and their values. This call must
be preceded by a call to SetParameterBuffer to provide a buffer for the data that will be
returned from the scanner. After the scanner responds to the request and the dll stores the
parameter data, a Windows message is sent to the host application indicating that the data
is available.

Syntax
SSIDLL_APIint __stdcall RequestAllParameters(int nComPort);
where:

* nComPort is the COM port number used in the call to SSIConnect

Return Value
+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example

#define PARAM RETURN DATA LEN 2000
//globally defined data storage
unsigned char ParamReturnData[PARAM RETURN DATA LEN];

int status;

// Give the dll a buffer to use when the scanner returns the parameter data
SetParameterBuffer (1, ParamReturnData, PARAM RETURN DATA LEN);

// using com 1

status = RequestAllParameters(1); // using com port number 1

// If status is good, the request was sent. Later, when the DLL receives the
// data back from the scanner, the data will be stored in the ParamReturnData
// buffer and the application will receive a windows message.

Simple Serial Interface (SSI) API

RequestParameters

Description

Requests the scanner to send parameter values specified in the given parameter string.
This call must be preceded by a call to SetParameterBuffer to provide a buffer for the data
that will be returned from the scanner. After the dll receives the parameter data from the
scanner, it sends the host application a Windows message indicating that the parameter
data is available.

Syntax

SSIDLL_API int __stdcall RequestParameters(unsigned char *Params, int
ParamBytes, int nComPort);

where:

» Params is a buffer of byte values which specifies the parameter numbers whose
values are being requested from the scanner. The format of the parameter number
is either:

* <param_num> if the parameter number is in the range 0..EFh; or

* <extended parameter code><parm_num_offset> for parameters whose
param_num is 256 or higher.

Refer to the documentation for the scanning device for parameter numbers.

* nParamBytes is the number of bytes in the Params buffer.
* nComPort is the COM port number used in the call to SSIConnect

Return Value
+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

F \ Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

Example

#define SWTRIG PARAMNUM 0x8a // software trigger parameter number
#define EXTENDED PARAMNUM 0xf0 // specify an extended parameter number
#define IMAGE FILETYPE PARAMNUM 0x30

#define PARAM RETURN DATA LEN 2000

//globally defined data storage

unsigned char ParamReturnData[PARAM RETURN DATA LEN];

int status;

unsigned char Params[3];

Params [0] SWTRIG PARAMNUM; // get the software trigger setting

Params[1] EXTENDED PARAMNUM; // use extended param number for

Params[2] = IMAGE FILETYPE PARAMNUM // ..image filetype setting

// Give the dll a buffer to use when the scanner returns the parameter data
// using com 1

SetParameterBuffer (1, ParamReturnData, PARAM RETURN DATA LEN);

// Send the request which is stored in Params and is 3 bytes long

status = RequestParameters(Params, 3, 1); // using com port number 1

// If status is good, the request was sent. Later, when the DLL receives the
// data back from the scanner, the data will be stored in the ParamReturnData
// buffer and the application will receive a windows message.

Simple Serial Interface (SSI) API

RequestScannerCapabilities

Description

Sends a request to the scanner to send its capabilities data, i.e., the commands it can
perform. This call must be preceded by a call to SetCapabilitiesBuffer. When the scanner
responds to this command with its capabilities data, the dll sends a Windows message to
the host application indicating that capabilities data is stored.

Syntax
SSIDLL_APIint __stdcall RequestScannerCapabilities(int nComPort);
where:

* nComPort is the COM port number used in the call to SSIConnect

Return Value
+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example

#define CAPABILITIES RETURN DATA LEN 255
//globally defined data storage
unsigned char CapabilitesReturnData[CAPABILITIES RETURN DATA LEN];

int status;

// Give the dll a buffer to use when the scanner returns the data

// using com 1

SetCapabilitiesBuffer (1, CapabilitesReturnData,
CAPABILITIES_RETURN_DATA_LEN);

status = RequestScannerCapabilities(1); // using com port number 1

// If status is good, the request was sent. Later, when the DLL receives the
// data back from the scanner, the data will be stored in the

// CapabilitiesReturnData buffer and the application will receive a windows
// message.

& \ \ Simple Serial Interface (SSl) Software Developer’s Kit Programmer’s Guide

=

ReturnDLLVersion

Description

Returns the major and minor version levels of the dil. No command is sent to the scanner
during this API call.

Syntax
SSIDLL_API unsigned int __stdcall ReturnDLLVersion(void);

Return Value

The minor version level is returned in the lower byte, the major version level is returned in
the next higher order byte.

Example

unsigned int version, major, minor;
CString msg;

version = ReturnDLLVersion ();

major = (version & 0x0000££00) >> 8;
minor = version & 0x000000ff;

msg.Format ("Library Version %d.%d", major, minor);

Simple Serial Interface (SSI) API

ScanEnable/ScanDisable

Description

Sends a command to the scanner to enable or disable the scanner. ScanEnable enables
scanning, while ScanDisable disables scanning. When scanning is disabled, the scanner
does not respond to a physical or software trigger pull.

Syntax
SSIDLL_APIint __stdcall ScanEnable(int nComPort);
SSIDLL_API int __stdcall ScanDisable(int nComPort);

where:

* nComPort is the COM port number used in the call to SSIConnect

Return Value
+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;
status = ScanEnable(1); // using com port number 1

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

SetCapabilitiesBuffer

Description

Allows the application to specify the address and the length of a buffer for the DLL to use
to store the capabilities data from the scanner. Set the capabilities data buffer immediately
before a call to RequestScannerCapabilities. No command is sent to the scanner during
this API call. The amount of data returned is variable; a buffer of length 256 should be
sufficient.

Syntax

SSIDLL_APIint __ stdcall SetCapabilitiesBuffer(int nComPort, unsigned char *pData,
long max_length);

where:

* nComPort is the COM port number used in the call to SSIConnect

» pData is a pointer to the destination buffer for capabilities data returned from the
scanner

* max_length is the size in bytes of the destination buffer

Return Value
+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example

#define CAPABILITIES DATA LEN 255
//globally defined data storage
unsigned char CapabilitiesReturnData[CAPABILITIES DATA LEN];

int status;

status = SetCapabilitiesBuffer(1, CapabilitiesReturnData, MAX DATA LEN);
// using com port number 1

Simple Serial Interface (SSI) API

SetDecodeBuffer

Description

Sets the decode data buffer and its length for the DLL to use to store decode data from the
scanner. No command is sent to the scanner during this API call.

The length of decode data depends on the type of bar code scanned; if MacroPDF is
buffered, large amounts of data are possible. When the dll has decode data from the
scanner, this buffer is filled and a Windows message is sent to the application to indicate
that decode data is stored. The host application must then call SetDecodeBuffer again in
order to receive additional decode data from the scanner.

Syntax
SSIDLL_APIint __ stdcall SetDecodeBuffer(int n"ComPort, unsigned char *pData, long
max_length);

where:

* nComPort is the COM port number used in the call to SSIConnect

» pData is a pointer to the destination buffer for decode data returned from the
scanner

* max_length is the size in bytes of the destination buffer

Return Value
+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example

#define DECODE_DATA LEN 255
//globally defined data storage
unsigned char DecodeData [DECODE DATA LEN];

int status;

status = SetDecodeBuffer(1, DecodeData, DECODE DATA LEN) ;
// using com port number 1

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

SetimageBuffer

Description

Sets the image data buffer and its length for the DLL to use to store image data from the
scanner. No command is sent to the scanner during this API call. By handling the image
transfer status Windows messages sent by the dll which specify total size of the image in
bytes, the host application can create a buffer of the necessary size once an image transfer
is initiated. When the dll has the entire image data from the scanner, the destination buffer
is filled and a Windows message is sent to the application indicating that the image data is
available.

Call the SetimageBuffer function when the firstimage transfer status message is sent to the
application, which holds the length information for the entire image.

Syntax

SSIDLL_APIlint __ stdcall SetimageBuffer(int nComPort, unsigned char *pData, long
max_length);

where:

* nComPort is the COM port number used in the call to SSIConnect
» pDatais a pointer to the destination buffer for image data returned from the scanner
* max_length is the size in bytes of the destination buffer

Return Value
+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

1-20

Simple Serial Interface (SSI) API

Example

afx msg LRESULT CSSIappView::0OnSSIxferStatus (WPARAM w, LPARAM 1)

{

long running total = (long)w;
long expected total = (long)l;

// the buffer will not be needed until the image transfer has completed
// images come in packets of 255 bytes (last packet may be less)
if (running total <= 255) // the start of an image transfer
{
if (g pImageData != NULL)
SetImageBuffer (Comport, g pImageData, expected total);
// now DLL has a place to put the image when done

g pImageData = new BYTE [expected total + 1];

1-21

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

SetParameterBuffer

Description

Sets the user's destination buffer and its length for the DLL to use to store parameter data
from the scanner. No command is sent to the scanner during this API call. Set the
parameter data buffer immediately before calling RequestParameters or
RequestAllParameters. A size of 2000 bytes should be sufficient to hold all the parameter
number/value pairs. A call for a single parameter only requires a small buffer: 10 bytes is
sufficient.

Syntax
SSIDLL_API int __stdcall SetParameterBuffer(int nComPort, unsigned char *pData,
long max_length);

where:

* nComPort is the COM port number used in the call to SSIConnect

» pData is a pointer to the destination buffer for parameter data returned from the
scanner

* max_length is the size in bytes of the destination buffer

Return Value
+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example
#define PARAM RETURN DATA LEN 2000
//globally defined data storage
unsigned char ParamReturnData[PARAM RETURN DATA LEN];

int status;

// using com port number 1
status = SetParamterBuffer (1, ParamReturnData, PARAM RETURN DATA LEN) ;

1-22

Simple Serial Interface (SSI) API

SetParameters

Description

Commands the scanner to change one or more of the scanner’s parameter values. The
format of the parameters and their values is either:

* <param_num><value> if param num is in the range 0..EFh; or

» <extended parameter code><parm_num_offset><value> for parameters whose
param_num is 256 or higher

if <value> is a two byte value rather than a one byte value, the param num/value pair is
preceeded by the hex value 0Xf4

Syntax

SSIDLL_APIlint __ stdcall SetParameters(unsigned char *Params, int ParamBytes, int
nComPort);

where:
* Params is a pointer to the param_num/value data

* ParamBytes is the size in bytes of the data stored in Params
* nComPort is the COM port number used in the call to SSIConnect

Return Value
+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

1-23

F \ Simple Serial Interface (SSl) Software Developer’s Kit Programmer’s Guide

=

Example

#define IMAGE FILETYPE PARAMNUM 0x30
// this specifies an extended parameter number

#define EXTENDED PARAMNUM 0x£f0
#define BITMAP TYPE 0x03
#define TRIGGER MODE 0x8a
#define HOST TRIGGER TYPE 0x08

int status;
unsigned char Params[5];

Params[0] = EXTENDED PARAMNUM; // use extended param number for

Params[1] = IMAGE FILETYPE PARAMNUM; //..image file type

Params[2] = BITMAP TYPE; // this is the value for the image filetype param
Params[3] = TRIGGER MODE; // now set a second parameter for trigger mode
Params[4] = HOST TRIGGER TYPE; // and it's value to host

// 5 bytes were stored and we are using com port number 1
status = SetParamters(Params, 5, 1);

Note: To enable ACK/NAK handshaking for decode data on the SE 1223
use OxEE (decimal 238) for the parameter number, and use 1 for the
value.

1-24

Simple Serial Interface (SSI) API

SetParamPersistance

Description

Sets the persistance quality for any parameter changes requested. Parameters may be
changed permanently or temporarily. No command is sent to the scanner during this API
call; during any subsequent call to SetParameters, the persistance quality given here is
used. By default, parameter changes are temporary.

Note: Permanent parameter changes involve writes to non-voloatile
memory (NVM). There is a large but finite number of write cycles
available to the NVM. Be careful not to use the permanent
parameter change method on parameters that change often.

Syntax
SSIDLL_API int __stdcall SetParamPersistance(int nComPort, int bPersist);
where:

* nComPort is the COM port number used in the call to SSIConnect
* DbPersistis set to TRUE if persistance is desired, FALSE if not

Return Value
*+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example

#int status;
status = SetParamPersistance(1, FALSE); // using com port number 1

1-25

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

SetVersionBuffer

Description

Sets the user's destination buffer and its length for the DLL to use to store version data from
the scanner. No command is sent to the scanner during this API call. Set the version data
bufferimmediately before calling TransmitVersion. The amount of data returned is variable;
a buffer of length 256 should be sufficient.

Syntax

SSIDLL_API int __stdcall SetVersionBuffer(int nComPort, unsigned char *pData, long
max_length);

where:

* nComPort is the COM port number used in the call to SSIConnect

» pData is a pointer to the destination buffer for version data returned from the
scanner

* max_length is the size in bytes of the destination buffer

Return Value
+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example
#define VERSION DATA LEN 255
//globally defined data storage
unsigned char VersionData[VERSION DATA LEN];

int status;

// using com port number 1
status = SetVersionBuffer(1, VersionData, VERSION DATA LEN) ;

1-26

Simple Serial Interface (SSI) API

SetVideoBuffer

Description

Sets the user's destination buffer and its length for the DLL to use to store video data from
the scanner. No command is sent to the scanner during this API call. Video data is sent
continuously when the scanner is in video mode, so when the application receives the
Windows message notifying it that Video data has been stored, the host program should
process the stored video frame then call SetVideoBuffer again to set the destination for the
next frame. 5000 bytes is a sufficient video buffer size.

Syntax

SSIDLL_API int __stdcall SetVideoBuffer(int nComPort, unsigned char *pData, long
max_length);

where:

* nComPort is the COM port number used in the call to SSIConnect
» pDatais a pointer to the destination buffer for video data returned from the scanner
* max_length is the size in bytes of the destination buffer

Return Value
+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example
#define VIDEO DATA LEN 5000
//globally defined data storage
unsigned char VideoData[VIDEO DATA LEN];

int status;

// using com port number 1
status = SetVideoBuffer(1, VideoData, VIDEO DATA LEN);

1-27

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

SnapShot

Description

If the scanner supports imaging, this sends a command to the scanner to enter Image
Capture Mode. The scanner remains in Image Capture Mode until the trigger is pulled
(physically or with a call to PullTrigger) and an image is captured, or until the timeout for a
trigger pull expires. The scanner then returns to Decode Mode.

If the trigger is pulled, the image data is sent in packets to the dll. As each packet is
received, a WM_XFERSTATUS is sent to the host application with information about the
size of the image. When the first transfer status message is received, the host application
should provide a destination buffer for the image by calling SetimageBuffer. After the entire
image is transferred from the scanner to the dll, the application receives a Windows
message indicating that the data was stored.

Syntax
SSIDLL_APIlint __stdcall SnapShot(int nComPort);
where:

* nComPort is the COM port number used in the call to SSIConnect
Return Value

+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;
status = SnapShot(1); // using com port number 1

1-28

Simple Serial Interface (SSI) API

SoundBeeper

Description
Sends a command to the scanner to turn the beeper on. See Table 1-5 on page 1-36 for
beep codes.

Syntax
SSIDLL_API_stdcall SoundBeeper(in nComPort, unsigned char nBeepCode);

where:

* nComPort is the COM port number used in the call to SSIConnect
* nBeepCode specifies the tone and duration for the beep

Return Value
*+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;
status = SoundBeeper (1, ONESHORTHI); // using com port number 1

1-29

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

TransmitVersion

Description

Sends a request to the scanner to send its software release name. Call SetVersionBuffer
before this call to provide a destination buffer for the version data when it is sent by the
scanner. After the scanner responds with the version data, the dll sends the host application
a Windows message indicating that the version data is available.

Syntax
SSIDLL_API int __stdcall TransmitVersion(int nComPort);
where:

* nComPort is the COM port number used in the call to SSIConnect

Return Value
+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

Example

#define VERSION DATA LEN 255
// globally defined data storage
unsigned char VersionData[VERSION DATA LEN];

int status;
status = SetVersionBuffer(1, VersionData, VERSION DATA LEN); // using com
port number 1

// check status then..
status = TransmitVersion(l);); // using com port number 1

1-30

Simple Serial Interface (SSI) API

TransmitVideo

Description

Sends a command to the imager to enter Video Mode. After the trigger is pulled (physically
or with a call to PullTrigger), the decoder produces a continuous video stream until the
trigger is released (physically or with a call to ReleaseTrigger). The destination buffer for

each video frame must be set with a call to SetVideoBuffer.

Note: The VS 4004 does not currently support this.

Syntax
SSIDLL_API int __stdcall TransmitVideo(int n"ComPort);

where:

* nComPort is the COM port number used in the call to SSIConnect

Return Value
+ SSICOMM_NOERROR if the command was sent successfully
* An error code if an error occurred (see Table 1-1 on page 1-32)

1-31

=

Library Error Reporting

& \ \ Simple Serial Interface (SSl) Software Developer’s Kit Programmer’s Guide

All library function calls return 0 if successful, or an error code. If the error code is a fatal
error, call SSIDisconnect. Table 1-1 describes the errors that can be reported.

In addition to the failure status returned by library function and error codes, the library can
also send or post a WM_ERROR message to the application. The application handles the
message and responds appropriately.

API Return Values

Table 1-1. Error Codes (Return Values for API Calls)

Define Name Value |Description
SSICOMM_NOERROR 0 No error code is set; an API call was successful.
ERR_SSI_NOOBJECT -1 Another API function is called before a successful
call to SSIConnect; no connection established.
ERR_SSI_HWND -2 The hwnd parameter to the SSIConnect function
was NULL; no connection established.
SSICOMM_BAD_SETSTATE -3 The library was unable to set the state of the COM
port; no connection established.
SSICOMM_BADSETTIMEOUTS -4 The library was unable to set the COM timeouts;
no connection established.
SSICOMM_BAD_GETTIMEOUTS -5 The library was unable to get the current COM
timeouts; no connection established.
SSICOMM_BAD_GETCOMSTATE -6 The library was unable to get the current COM
state; no connection established.
SSICOMM_ALREADY_CLOSED -7 Call to close COM port was made when the COM
port is not open; there is no connection.
SSICOMM_UNABLE_PURGE -8 Call to purge the COM port before closing it was
not successful.
SSICOMM_THREADS_BADEXIT -9 Fatal error - the threads didn't exit properly.
SSICOMM_ERROR_CLRDTR -10 Unable to lower DTR when closing COM port.
SSICOMM_BAD_CREATEFILE -1 Unable to open COM port.
SSICOM_BAD_READTHREAD -12 Unable to create the read/status thread; no

connection.

1-32

Simple Serial Interface (SSI) API

Table 1-1. Error Codes (Return Values for API Calls) (continued)

Define Name Value |Description

SSICOM_BAD_WRITETHREAD -13 Unable to create the writer thread; no connection.

SSICOMM_BAD_CREATEEVENT -14 Call to CreateEvent failed; fatal error.

SSICOMM_BUSY -15 Not fatal; try request again later.

SSICMD_UNIMPLEMENTED -16 Not fatal; this command is not implemented in the
library.

SSICOMM_ALREADYCONNECTED |-17 If already connected, can't connect without a call
to disconnect.

ERR_SSI_MISMATCHHWND -18 The hwnd parameter for the function does not
match the stored hwnd for the connection.

SSICOMM_TOOMUCHDATA -19 The maximum allowable input data length was
exceeded.

SSICOMM_ERRVERSION -20 Can't run on this version of Windows.

SSI_INPUTQ_FULL -21 Unable to add new user request to input queue for
transmitting to scanner; re-try request.

SSICOMM_BADDATA -22 Parameter data is in incorrect format.

1-33

=

SSI WM_ERROR Messages

& \ \ Simple Serial Interface (SSl) Software Developer’s Kit Programmer’s Guide

The following generate WM_ERROR messages to the calling application. Most are fatal
errors occurring during program execution, and are returned in the WPARAM associated

with the WM_ERROR message.

Table 1-2. WM_ERROR Messages

Define Name Value |Description
SSICOMM_WAITMOWRITER -23 Wait for Multiple Objects resulted in WAIT_FAILED in
writer procedure; if not fatal, protocol retry may
recover.
SSITHREAD _CREATEWEVENT -24 Failure to create write event; fatal error.
SSITHREAD_OLRESW -25 Get overlapped result failed; fatal error.
SSITHREAD WRITEERR -26 Number of bytes written is not the number requested
to be written; if not fatal, retry may recover.
SSITHREAD_WMOW -27 Wait multiple objects failure in overlapped write; fatal.
SSITHREAD_WRITEFILEFAIL -28 Call to Write failed, but isn't just delayed; fatal error.
SSITHREAD_BADSETEV -29 Write thread returned error on set event.
SSIRTHREAD_ORESULT -30 Read thread bad overlapped result; fatal error.
SSIRTHREAD_SETMASK -31 Read thread bad set mask return; fatal error.
SSIRTHREAD_BADREAD -32 Read thread bad read; fatal error.
SSIRTHREAD_CREATEREVENT |-33 Read thread bad create read event; error code set,
API call will return false.
SSIRTHREAD_CREATESEVENT |-34 Read thread bad create status event; error code set,
API call will return false.
SSIRTHREAD_WAITCEVENT -35 Read thread wait COM event bad return; fatal error.

1-34

Simple Serial Interface (SSI) API

The following error codes are placed in the wParam of WM_ERROR messages during SSI
protocol handling of scanner messages.

Table 1-3. WM_ERROR Messages in wParam

COMMAND_NOTHANDLED - -36 Command not processed successfully by
decoder.

ERR_UNSUPPORTED_COMMAND |-37 Command not processed successfully by
decoder.

SSI_DATAFORMAT_ERR -38 Scanner data packet not of correct format
from decoder.

ERR_UNEXPECTEDDATA -39 State machine received data unexpected for
the current state.

SSI WM_TIMEOUT Messages
One of these OPCODES is placed in the LPARAM of the SSI WM_TIMEOUT message.
Table 1-4. OPCODES in IParam

DECODE_DATA_TIMEOUT | O0xF3
IMAGE_DATA_TIMEOUT 0xB1
VIDEO_DATA_TIMEOUT 0xB4

1-35

& \ \ Simple Serial Interface (SSl) Software Developer’s Kit Programmer’s Guide

=

Beep Command Parameters

Table 1-5 lists the beep codes for the Sound Beeper function.
Table 1-5. Beep Codes

Define Name Value (hexadecimal)
ONESHORTHI 0x00
TWOSHORTHI 0x01
THREESHORTHI 0x02
FOURSHORTHI 0x03
FIVESHORTHI 0x04
ONESHORTLO 0x05
TWOSHORTLO 0x06
THREESHORTLO 0x07
FOURSHORTLO 0x08
FIVESHORTLO 0x09
ONELONGHI 0x0A
TWOLONGHI 0x0B
THREELONGHI 0x0C
FOURLONGHI 0x0D
FIVELONGHI 0x0E
ONELONGLO 0x0F
TWOLONGLO 0x10
THREELONGLO 0x11
FOURLONGLO 0x12
FIVELONGLO 0x13

1-36

Simple Serial Interface (SSI) API

Table 1-5. Beep Codes (continued)

Define Name Value (hexadecimal)
FASTHILOHILO 0x14
SLOWHILOHILO 0x15
HILO 0x16
LOHI 0x17
HILOHI 0x18
LOHILO 0x19

Data Returned by the DLL

The host application provides the destination data buffer for use by the DLL. When the
scanner sends data to the DLL, the destination buffer is filled with the scanner's data. Data
is formatted according to the SSI specification; refer to the Simple Serial Interface
Programmer’s Guide. Once the destination buffer is filled by the DLL (if a buffer was set),
the application is sent a WM_XXX message with the number of bytes of data that were
stored indicated in the LPARAM. If the buffer wasn't large enough to hold all the data,
WPARAM's last 2 bits are set to zero. If no buffer was given to the DLL for the data to be
stored in, the last 2 bits of WPARAM are 01. If the data was stored correctly, the last 2 bits
of WPARAM are 11. The following #defines are provided for this purpose.

Table 1-6. #defines

Define Name Value

BUFFERSIZE_MASK 0x0003
BUFFERSIZE_GOOD 0x0003
BUFFERSIZE_ERROR 0x0000
NOBUFFER_ERROR 0x0001

After the message is sent, the DLL marks the buffer as NULL indicating no user buffer is
available for storage. The host application should reset the buffer aftera WM_xxx message
occurs. A second call to set the data buffer causes the new buffer to be used for incoming
data. For example, after a WM_DECODE message is sent to the application, the
application should handle the message and process the data in the destination buffer, then
call SetDecodeBuffer again.

1-37

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

Windows Messages Sent to Calling Process

Message: WM_DECODE
Value: WM_APP+1
Description: Decode data is available from the scanner and is stored in the buffer

provided by a previous call to SetDecodeBuffer.

Parameters: wParam: buffer status of the data stored
IParam: length of the data in bytes (cast to int)

Data Format: The bar code type is stored in the first byte and the decoded message
is contained in the Decode Data field. For bar code types, see the
Simple Serial Interface (SSI) Programmer’s Guide.

Bar Code Type | Decode Data Field

If the decoded data contains more structure than can be presented in the standard format,
the Bar Code Type field is set to 0x99 and the decode data is formatted into packets. In this
case, the first byte of the Decode Data field contains the actual Bar Code Type, the 2nd
byte contains the number of packets, and the remaining data is the packeted form of
decode data.

For example, a packeted Decode Data message for Micro PDF417 would look like the
format below, where the Decode Data field is broken out as follows:

Decode Data Field
Ba1r: Code Actual Bar # of Spare | Byte Length Spare | Byte Length
ype code Type | Packets Byte |of Packet#1| Data Byte |of Packet#2| Data
0x99 1A 2 0 0003 ABC 0 00 04 DEFG

Note that the Packet Length subfields consist of two bytes, where the first byte represents
the high value of length x 256.

1-38

Simple Serial Interface (SSI) API

Message: WM_IMAGE
Value: WM_APP+2
Description: Image data is available from the scanner and is stored in the buffer

provided by a previous call to Set/ImageBuffer.

Parameters: wParam: buffer status of the data stored
IParam: length of the data in bytes (cast to long)

Data Format: An image preamble followed by the image data.

Preamble | Image Frame

Images sent from the decoder to the host are described by the image preamble contained
in the first 10 bytes, followed by the image. The details of the image preamble follow.

The image preamble consists of the following fields:

Table 1-7. Image Preamble Fields

Field Field Size Description

File size 4 byte field Number of bytes in the overall image.
Image Width 2 byte field Image width in pixels

Image Height 2 byte field Image height in pixels

Image Type 1 byte field 0x31 = JPEG Image File

0x33 = BMP Windows Bit Map File
0x34 = TIFF File
Note: These values are ASCII.

Bits per Pixel 1 byte field Number of bits per pixel in image

0 = 1 bit/pixel Black White Image

1 = 4 bit/pixel 16 Grayscale Image
2 = 8 bit/pixel 256 Grayscale Image

1-39

& \ \ Simple Serial Interface (SSl) Software Developer’s Kit Programmer’s Guide

=

Message: WNM_VIDEOIMAGE
Value: WM_APP+3
Description: A video frame is available from the scanner and is stored in the buffer

provided by a previous call to SetVideoBuffer.

Parameters: wParam: buffer status of the data stored
IParam: length of the data in bytes (cast to int)

Data Format: The first 10 bytes of a video frame contains the video preamble,
described below. The remaining data is the JPEG data comprising the
video frame.

Preamble Video Frame

The video preamble consists of the following fields:
Table 1-8. Video Preamble Fields

Field Field Size Description

File size 4 byte field Number of bytes in the overall
image.

Image Width 2 byte field Image width in pixels

Image Height 2 byte field Image height in pixels

Image Type 1 byte field 0x31 = JPEG Image File

0x33 = BMP Windows Bit Map File
0x34 = TIFF File
Note: These values are ASCII.

Bits per Pixel 1 byte field Number of bits per pixel in image
0 = 1 bit/pixel Black White Image
1 = 4 bit/pixel 16 Grayscale Image
2 = 8 bit/pixel 256 Grayscale Image

1-40

Message:

Value:

Description:

Parameters:

Message:

Value:

Description:

Parameters:

Message:
Value:

Description:

Parameters:

Message:
Value:

Description:

Parameters:

Simple Serial Interface (SSI) API

WM_ERROR
WM_APP+4

An error occurred. This message may be sent in response to an API
Command or Request for data.

wParam: error code (cast to int) (see WM_ERROR codes list)

WM_TIMEOUT
WM_APP+5

Scanner did not respond to a request from the library within the timeout
period during processing of unsolicited data (decode data, image data or
video data) from the scanner.

wParam: set to zero (reserved for future use)
IParam: code (int) indicating what message was being processed when
the timeout occurred (see WM_TIMEOUT codes list)

WM_CMDCOMPLETEMSG
WM_APP+6

Verifies that the scanner has handled the command that was issued.
API functions that request data from the scanner will not receive this
message.

None

WM_XFERSTATUS
WM_APP+7
Image data is transferring from the scanner.

wParam: total number of bytes received so far (cast to uint)
IParam: total number of bytes expected (cast to uint)

1-41

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

Message: WM_SWVERSION
Value: WM_APP+8
Description: Software version information is available from the scanner and is

stored in the buffer provided by a previous call to SetVersionBuffer.
This message is received in response to an API request for version
data.

Parameters: wParam: buffer status code
IParam: length of the data in bytes (cast to int)

Data Format: Revision string:

S/W_REVISION <space> BOARD_TYPE <space> ENGINE_CODE <space> PGM_CHKSUM
where:

* S/W_REVISION is the release name of the software
« BOARD_TYPE is N for non-flash decoder board, F for flash

 ENGINE_CODE indicates the type of scan engine paired with the decoder (see the
scan engine’s Integration Guide for the engine code value)

* PGM_CHKSUM is the two or four byte checksum of the program code (scanner
dependent)

1-42

Message:
Value:

Description:

Parameters:

Data Format:

Simple Serial Interface (SSI) API

WM_PARAMS
WM_APP+9

Parameter information is available from the scanner and is stored in
the buffer provided by a previous call to SetParameterBuffer. This
message is received in response to an API request for parameter data.

wParam: buffer status
IParam: length of the param data (cast to int)

Parameter numbers may be a single byte or two bytes. Parameter
numbers consisting of two bytes begin with an extended parameter
code of FOh (+256), F1h (+512), F2h (+768). These access
parameters whose numbers are 256 and higher. For example, to
access the first parameter in the 256-511 range, use FOh and 00h.
Parameter values may also be a single byte or two bytes. If the value
is two bytes instead of one, the parameter number is preceeded by a
byte containing F4h.

Table 1-9. Param Data Format

Parameter Number Data Format

0 through EFh

<param_num> <value>

>EFh

<extended parameter code> <param_num offset> <value>

1-43

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

Message: WM_CAPABILITIES
Value: WM_APP+10
Description: Capabilities data is available from the scanner and is stored in the

buffer provided by a previous call to SetCapabilitiesBuffer.
This message is received in response to an API request for
capabilities data.

Parameters: wParam: buffer status
IParam: length of the data in bytes (cast to int)

Data Format: Scanner capabilities data is packed into four data fields: Baud Rates
Supported, Misc. Serial Parameters, Multipacket Options, and
Command List.

1-44

Simple Serial Interface (SSI) API

Table 1-10. Data Fields

Field

Size

Description

Supported

Baud Rates Supported

2 Bytes
Bit mapped

Bit

Definition

300 Baud

600 Baud

1200 Baud

2400 Baud

4800 Baud

9600 Baud

19200 Baud

28800 Baud

38400 Baud

Ol N O | WO|DN

57600 Baud

-
o

115200 Baud

N
=N

Reserved

N
N

Reserved

-
w

Reserved

-
N

Reserved

-
(&)

Reserved

1 = Supported
0 = Not Supported

Misc Serial Parameters

1 Byte
Bit Mapped

Bit

Definition

0dd Parity

Even Parity

Parity None

Check Parity

Do Not Check Parity

One Stop Bit

Ol | [W|DN

Two Stop Bits

1 = Supported
0 = Not Supported

1-45

=

& \ \ Simple Serial Interface (SSl) Software Developer’s Kit Programmer’s Guide

Table 1-10. Data Fields (continued)

Field

Size Description Supported

Multipacket Options

1 Byte Bit Definition 1 = Supported
Bit Mapped 0 0 = Not Supported

Option 1

1 Option 2
2 Option 3

Command List

1 Byte per In this sequential list, the decoder details the opcodes
Command of the SSI commands it supports. For example,
imagers support video commands, while laser-based
decoders do not. Commands associated with video
mode will not appear in the list for laser-based
decoders, but will for imagers (see Simple Serial
Interface (SSI) Programmer’s Guide).

Message:
Value:

Description:

Parameters:

1-46

WM_EVENT
WM_APP+11

Event data is available from the scanner. No destination buffer is
required for this unsolicited data from the scanner; the data is sent in
the WPARAM along with the message.

wParam: event data
IParam: length of the data in bytes (always 1 byte)

2 5

Chapter 2
ActiveX Control

Getting Started

SSIConnect.ocx is a component that may be added to a Visual Basic project. It allows you
to send commands to a Symbol scanner and request data from the scanner using the serial
port. The control also handles bar code and image data sent from the scanner. This chapter
provides examples for using the ocx; refer to the on-line help for specific information on
using the ocx and its properties, methods and events.

Registering the SSIConnect Component

You must register the control before using it:

Copy SSTd11.d11 and SSIConnect.ocx to a directory on your host PC.
Click on Start, Programs, then MS-Dos Prompt to open a DOS window.
Enter cd c:\windows\system to navigate to the Window's System directory.

Enter regsvr32 followed by the path and name of the ocx. For example, if you
copied the SSTd11.d11 and SSIConnect.ocx to a directory named temp on
drive E, you would enter:

regsvr32 EAATEMP\SSIConnect.ocx

A

Adding the SSIConnect Component to Your Project

Once the control is registered, it may be added to your project. In Visual Basic 6.0, click on
the project menu, then choose Components. A list of all the registered controls on your
system appears, including the SSIConnect Active X control. Check this item and click OX.
An icon for the control appears, which you may drag and drop onto your form.

2-1

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

Setting Properties

After you have dropped the control onto your form, you can set the properties for the
control. Visual Basic assigns the control the default name SS/Connect1. This name allows
you access to the properties and functionality of the control during run-time. You may
change the name when you design the form. Do not change any other properties except
for the following, which you must set according to your system:

* ComPortNumber - Set this to the COM port on your PC the scanner is attached to.
Set the value to 1 for COM1, 2 for COM2 etc.

* BaudRate - Set to the baud rate the scanner uses. Most scanners default to 9600.
See your scanner’s documentation for baud rates supported. Values are input as
9600 for 9.6kb, 115200 for 115.2kb, etc.

» ParameterPersistance - Set to TRUE if you want scanner parameters changed by
your program to change permanently. Set to FALSE to cause parameter changes
to be temporary.

* ImageFilename - Enter the name of the file to save image data to. Do not enter a
filename extension; this is added by the control according to the image type the
scanner sends. Note that only imaging scanners support image data.

* SendMacroPDFDataOnAbort - Set to TRUE for the scanner to send buffered
MacroPDF data when it receives an abort command from your program. Set to
FALSE to discard buffered data. Note that not all scanners support MacroPDF
decoding.

* LEDCode - Set the LED(s) that will be turned off or on when you send the LED
command. Values are scanner-specific.

* BeepCode - Set the beep sequence the scanner emits when it receives a beep

command. Valid values are 0 through 25. See your scanner documentation for
beep codes. For the VS 4000, beep codes are as follows:

Table 2-1. VS 4000 Beep Codes

Beep Code Value
ONESHORTHI 0
TWOSHORTHI 1
THREESHORTHI 2
FOURSHORTHI 3
FIVESHORTHI 4

2-2

ActiveX Control

Table 2-1. VS 4000 Beep Codes (continued)

Beep Code Value
ONESHORTLO 5
TWOSHORTLO 6
THREESHORTLO 7
FOURSHORTLO 8
FIVESHORTLO 9
ONELONGHI 10
TWOLONGHI 11
THREELONGHI 12
FOURLONGHI 13
FIVELONGHI 14
ONELONGLO 15
TWOLONGLO 16
THREELONGLO 17
FOURLONGLO 18
FIVELONGLO 19
FASTHILOHILO 20
SLOWHILOHILO 21
HILO 22
LOHI 23
HILOHI 24
LOHILO 25

You may also also retrieve and change these properties while your program is running
using the name of your control. For example, if you have not changed the default and your
control is named SSIConnect1, add the following code to your VB program to retrieve the
value for the COM port number:

Dim b As Long

2-3

& \ \ Simple Serial Interface (SSl) Software Developer’s Kit Programmer’s Guide

=

b = SSIConnect1.ComPortNumber
Note that the COM port number is a Long value. To set the port number to use COM port
5, add:

SSIConnect1.ComPortNumber = 5
Baud rate is also a Long value, so it can be changed in the same manner.

To change the other properties, Dim a variable of the type expected for the property:

* Image filename requires a String variable

* LED code and Beep code require an Integer variable

* The remaining properties require a Boolean variable.
For example, to get and set the filename to a different value:

Dim name As String

' this gets the current name

name = SSIConnect1.ImageFilename
' this sets the name to hello
SSIConnect1.ImageFilename = "hello”

2-4

ActiveX Control

Communicating with the Scanner Using Your
Control

After setting your control's properties, you may call methods to command the scanner to
perform different functions. The control reports the results of your commands, and also
reports when it receives decode and image data from the scanner.

You must add code to your VB program to send the commands to the scanner and to
handle notification events. In your handler you must call other methods to retrieve data sent
by the scanner.

Your communication with the scanner is like a transaction. The host sends a single
command to the scanner; when the scanner performs the command, it is ready to accept a
new command.

Remember to scan the SSI Host bar code parameter before testing your program. You must
also set two important parameters, either via bar code parameter or using the
ChangeParameter method: set Trigger Mode to Host, and Decode Data Packet Format to
Send Packeted Decode Data. See ChangeParameter on page 2-10 for details.

Command Methods

The first method you must call is ConnectComPort, and the last is DisconnectComPort.
ConnectComPort opens your COM port for communication with the scanner.
DisconnectComPort closes the COM port and releases the host PC's memory used during
the scanning session.

To see how this works, in your VB project where you have dropped the SSIConnect control:

1. Drag and drop a button control onto your form.

2. Change the Caption property of the button to Connect, then double-click the
button.

3. Visual Basic will have added an empty sub-routine. Add the following lines of code
to this sub-routine:

Dim Status As Long
Status = SSIConnect1.ConnectComPort()

The status returned is zero if the function was successful. We recommend checking the
return value and displaying a message indicating if the connection was successful.

2-5

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

If the return status is not zero, either your COM port number is incorrect or it is already in
use. Make sure you are using the correct COM port number, and that no other program
(e.g., ActiveSync) is using this port.

Add a button for disconnecting in the same manner, and add the following lines to the sub-
routine:

Dim Status As Long

Status = SSIConnect1.DisconnectComPort()
The following sections describe the methods your program may call which command the
scanner to perform an action. In Visual Basic, enter the name of the control, followed by a
decimal point. A list of all available properties and methods appears. If you select a method
from the list, when you enter an open parenthesis a list of the parameters the method
requires from your program appears, along with their types.

The following methods send a command to the scanner. They all return the status, which
is zero if the command was successful.

2-6

ActiveX Control

SendCommand(Command As Long) As Long

Description

The control allows you to send the commands in Table 2-2 as a parameter to the method.

Example
Dim Status As Long
Status = SSIConnect1.SendCommand(ssiEnableScanner)
Table 2-2. Commands

Command Value Function

ssiTurnAimOn 0 Turns aiming light on*

ssiTurnAimOff 1 Turns aiming light off*

ssiTurnLedOn 2 Turns the LED specified by the LEDCode on*

ssiTurnLedOff 3 Turns the LED specified by the LEDCode off*

ssiEnableScanner 4 Enables scanner*

ssiDisableScanner 5 Disables scanner; scanner will not respond to a trigger pull*

ssiSendBeep 6 Sounds the beep specified by the BeepCode property*

ssiSWTriggerPull 7 Software trigger pull*

ssiSWTriggerRelease 8 Software trigger release*

ssiAbortimage 9 If sent when the scanner is sending image data after taking
a picture, the data transfer is aborted

ssiTakePicture 10 | Sets the imager to snapshot mode, rather than decode
mode. When the trigger is pulled, the imager takes a
picture and sends the data to the PC*

ssiStartVideoStream 11 Reserved - do not use

*These commands result in a status event that may be handled in your program. See Events on page

2-14.

**These commands result in the scanner sending data to your program. When the data is available,
you receive an event that can be handled by your program. If a problem occurred, your program can
receive a status event. See Events on page 2-14 for the types of events and how they may be

handled in your program.

2-7

=

& \ \ Simple Serial Interface (SSl) Software Developer’s Kit Programmer’s Guide

Table 2-2. Commands (continued)

Command Value Function

ssiRequestCapabilities 12 | Commands the scanner to send its capabilities data to the
pPC**

ssiRequestAllParameters 13 | Commands the scanner to send to the PC all supported
parameters and their current values**

ssiRequestVersionData 14 | Commands the scanner to send its version data to the PC**

ssiTerminateMacroPDF 15 When decoding MacroPDF, this aborts the current
sequence. Any buffered data is either discarded or sent to
the PC depending on the setting of the
SendMacroPDFDataOnAbort property™

ssiEnterLowPowerMode 16 | Commands the scanner to enter low power mode*

*These commands result in a status event that may be handled in your program. See Events on page

2-14.

**These commands result in the scanner sending data to your program. When the data is available,
you receive an event that can be handled by your program. If a problem occurred, your program can
receive a status event. See Events on page 2-14 for the types of events and how they may be

handled in your program.

2-8

ActiveX Control

RequestParameter(Parameter As Long) As Long

Description

This method commands the scanner to send the current setting for the given parameter
number. In the example, the scanner is asked for the current setting for the trigger mode.
The method returns zero if the command is successful. When the scanner sends the data
requested to the host PC, your program is notified with an event. For information on
handling the event, see Events on page 2-14.

Example
Dim Status As Long
Dim TriggerModeParam As Long
TriggerModeParam = 138
Status = SSIConnect1.RequestParameter(TriggerModeParam)

2-9

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

ChangeParameter(Parameter As Long, Value As Long) As
Long

Description

This method commands the scanner to change the current setting for the given parameter
number. In the example, the scanner is asked to change the current setting for the trigger
mode to Host Mode. The method returns zero if the command is successful. When the
command is processed, your program receives an event, which your program can handle.
See Events on page 2-14.

Note: Some scanners require setting the trigger mode parameter to Host
Mode during SSI communication. You must also set parameter
number 238, Decode Data Packet Format, to 1.

Example
Dim Status As Long
Dim TriggerModeParam As Long
Dim HostMode As Long
TriggerModeParam = 138
HostMode = 8
Status = SSIConnect1.ChangeParameter(TriggerModeParam, HostMode)

2-10

ActiveX Control

Parameter Numbers

Parameter numbers are provided in hexadecimal format, for example Stop Bit Select is
0x9D; Decode Event is 0xFO 0x00. Note that Stop Bit Select has a single hex number, while
Decode Event has two. Parameter numbers that have two hex numbers are called
extended parameter numbers. In extended parameter numbers, the first number is always
0xFO, OxF1 or OxF2.

The two hex numbers represent a four-digit hex value. For instance, the parameter number
for Decode Event OxF0 0x00 is the hex value 0xF00O, which in decimal is 61440.

Values may be either one or two hex numbers. The allowable values depend on the
parameter. For example, the beeper tone parameter may only have values of low
frequency, medium frequency or high frequency. When a value has 2 hex numbers, the
parameter number requires an additional hex number: O0xF4 is added in front of the
parameter number.

For example Beeper Tone has a non-extended parameter number with a value of only one
hex number: 0x91, or 145 in decimal. Its values may be set to Low Frequency (value 0x02
or 2 in decimal), Medium Frequency (value 0x01 or 1 in decimal), or High Frequency (value
0x00 or 0 in decimal).

To use the control's ChangeParameter method to change the beeper tone to low frequency,
use the following command:

Status = SSIConnect1.ChangeParameter(145, 2)

Decode Event has an extended parameter number whose value is only one hex number:
0xFO 0x00 (0xF000 in hex, 61440 in decimal). lts values may be set to 0 for disable, 1 for
enable.

To use the control's ChangeParameter method to change the Decode Event parameter to
its enable value, use the following command:

Status = SSIConnect1.ChangeParameter(61440, 1)
For an example of a parameter that requires a word value, Gain Setting is OxFO 0x37 (or
FOh, 37h), representing an extended parameter number of 0xF037. Its allowable values are
4 hex digits: 0080h, 00COh, 0100h, 0140h, etc. Since these values are not 2 hex digits, the
parameter number must be preceded by 0xF4, so the parameter number for Gain Setting
becomes 0xF4F037, or 16052279 in decimal.

To use the control's ChangeParameter method to change the Gain Setting parameter to a
value of 0080h (128 in decimal) use the following command:

2-11

=

Status = SSIConnect1.ChangeParameter(16052279, 128)

Table 2-3 contains a sample of some parameters used in the VS 4000. These parameters
may be enabled or disabled in the scanner. The associated values for these parameters

are zero (disable) and one (enable).

Table 2-3. VS 4000 Parameters

& \ \ Simple Serial Interface (SSl) Software Developer’s Kit Programmer’s Guide

Parameter Name

Parameter Number

Allowable Values

PARAMETER_SCANNING_PARAM

236 decimal or EC hex

Oor1

BEEP_AFTER_GOOD_DECODE_PARAM |56 decimal or 38 hex Oor1
DECODING_AUTOEXPOSURE_PARAM | 61481 decimal or F029 hex Oor1
DECODING_ILUMINATION_PARAM 61482 decimal or FO2A hex Oor1
IMAGE_CAP_AUTOEXPOSURE_PARAM | 61545 decimal or FO69 hex Oor1
IMAGE_CAP_ILLUMINATION_PARAM 61544 decimal or FO68 hex Oor1
UPCA_CODETYPE_PARAM 1 (decimal or hex) Oor1
UPCE_CODETYPE_PARAM 2 (decimal or hex) Oor1
UPCE1_CODETYPE_PARAM 12 decimal or 0C hex Oor1
EAN8_CODETYPE_PARAM 4 (decimal or hex) Oor1
EAN13_CODETYPE_PARAM 3 (decimal or hex) Oor1
BOOKLANDEAN_CODETYPE_PARAM 83 decimal or 53 hex Oor1
CODE39_CODETYPE_PARAM 0 (decimal or hex) Oor1
CODE39FULLASCII_CODETYPE_PARAM |17 decimal or 11 hex 0or1
TRIOPTICCODE39_CODETYPE_PARAM | 13 decimal or OD hex Oor1
CODE93_CODETYPE_PARAM 9 (decimal or hex) Oor1
COD128_CODETYPE_PARAM 8 (decimal or hex) Oor1
UCC128 CODETYPE_PARAM 14 decimal or OE hex Oor1
ISBT128_CODETYPE_PARAM 84 decimal or 54 hex Oor1
CODABAR_CODETYPE_PARAM 7 (decimal or hex) Oor1
I20F5_CODETYPE_PARAM 6 (decimal or hex) Oor1
D20F5_CODETYPE_PARAM 5 (decimal or hex) Oor1
MSIPLESSEY_CODETYPE_PARAM 11 decimal or 0B hex Oor1

2-12

Table 2-3. VS 4000 Parameters (continued)

ActiveX Control

Parameter Name

Parameter Number

Allowable Values

USPOSTNET_CODETYPE_PARAM 89 decimal or 59 hex Oor1
USPLANET_CODETYPE_PARAM 90 decimal or 5A hex Oor1
UKPOSTAL_CODETYPE_PARAM 91 decimal or 5B hex Oor1
JAPANPOSTAL_CODETYPE_PARAM 61474 decimal or F022 hex Oor1
AUSTRALIANPOST_CODETYPE_PARAM | 61475 decimal or F023 hex Oor1
PDF417_CODETYPE_PARAM 15 decimal or OF hex Oor1
MICROPDF417_CODETYPE_PARAM 227 decimal or E3 hex Oor1
DATAMATRIX_CODETYPE_PARAM 61476 decimal or F024 hex Oor1
MAXICODE_CODETYPE_PARAM 61478 decimal or FO26 hex Oor1
QRCODE_CODETYPE_PARAM 61477 decimal or F025 hex Oor1

2-13

& \ \ Simple Serial Interface (SSl) Software Developer’s Kit Programmer’s Guide

=

Events

Your program can receive the following events from the control:
Table 2-4. Events

Event

Cause

AllParametersAvailable

Command requesting all parameters

DecodeDataAvailable

Bar code was scanned

EventDataAvailable

Monitored event occurred

ImageDataAvailable

Trigger pull during imager mode

ImageTransferStatusAvailable

Image data is being sent from the scanner

ParameterAvailable

Command requesting a single parameter

ScannerCapabilities

Command requesting the scanner's capabilities

ScannerStatusAvailable

Scanner's command ack or timeout/error

VersionDataAvailable

Command requesting the scanner's version

VideoFrameAuvailable

Reserved

You may handle one or more of these events in your program. For instance, if you never
make a call to SendCommand(ssiRequestVersionData), you will not handle the
VersionDataAvailable event since you will never receive version data.

Event Handling in Visual Basic

To handle an event in Visual Basic:

1.

2-14

Select the name of your control from the drop-down menu on the left in the Code
window for your form.

Select an event from the drop-down menu on the right.

Visual Basic creates a sub-routine for this event. This sub-routine is the event

handler. Some event handlers get the event information as a parameter value,
while others require calling a method to retrieve this data during the event handling.

ActiveX Control

AllParametersAvailable

Description

The event handler for AllParametersAvailable is paired with a previous request using the
SendCommand(ssiRequestAllParameters) method. To retrieve the data, you must wait
until the data is available; then this event handler is called by the control. To retrieve the
data during the event handler, use the GetNextParameter method. The method may only
be called during this event handler, and may be called repeatedly until all parameters and
their values are retrieved. Its parameter NumValues indicates how many parameter values
were returned. If NumValues is less than or equal to zero, an error occurred and the
GetNextParameter method should not be called.

Example
Dim ParamNumber As Long

Dim ParamVal As Long

Dim Status As Integer

Do While NumValues >0 'NumValues came as an input param to this event handler
'‘GetNextParameter retumns the next Parameter number and its value

... and a status code which is set to zero when there is no parameter to retumn, or the
' ...index of the parameter returned within NumValues

Status = SSIConnect1.GetNextParameter(ParamNumber, ParamVal)

' check the status and do something like display the param number and value
'... here if the status is not zero. Ifitis zero, break out of the while loop.

Loop

2-15

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

DecodeDataAvailable

Description

The event handler for DecodeDataAvailable has a single parameter for the length of the
data received from the scanner. To retrieve the available data, call the method
GetDecodeData during this event handler if the length parameter is greater than zero. If the
length parameter is less than or equal to zero, an error occurred and GetDecodeData
should not be called.

Example
Dim SSlcodetype As Integer
Dim DecodeData As Variant
Dim NumDataChars As Long

' Send the Variant DecodeData to be filled with the scanner’s data along with the
"Visual Basic Constant vbString to indicate the type of data to be retumed and the
'...variable SSlcodetype which will be set to the ssi codetype id of the data.
NumDataChars = SSIConnect1.GetDecodeData(DecodeData, vbString, SSlcodetype)

Notes

The value for NumDataChars is one less than the value sent with the event handler since
the data returned from the scanner includes the SSICodetype. The maximum
NumbDataChars that will be returned is 5000. Note that with PDF417 bar codes, the data
may contain unprintable characters, including the null character. Although the data may be
accessed within the variant, it does not display as a string (e.g., fingerprint data held in the
bar code).

The type specifier is needed because although Visual Basic programs may manipulate the
data using a vbString, Visual C++ programmers use a data type specifier of VT_UI1, and
DecodeData would be a pointer to ColeSafeArray, allowing the returned data to be
manipulated as an array of unsigned character.

If the SSI CodeType returned has a value of 99, the DecodeData is formatted as decode
data packets as described in the SSI Programmer’s Guide.

2-16

ActiveX Control

EventDataAvailable

Description
The event handler for EventDataAvailable sends a parameter that is the event code.

You will receive scanner event type data if you set the scanner parameter to monitor a
particular type of event, and that event occurs.

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

ImageDataAvailable

Description

The event handler for ImageDataAvailable sends a parameter that contains the image data
as a picture. To display the picture in your program, drag and drop a picture box control onto
your form. In the event handler, set its picture to the image sent by the SSIConnect.

For example, for a picture box with the default name Picture1:

Picture1.Picture = Image

2-18

ActiveX Control

ImageTransferStatusAvailable

Description
The event handler for ImageTransferStatusAvailable sends two parameters:

» TotalFileLength of the image
* CurrentFileLength indicates how much data was transferred so far.

If you include this handler, you may build a status message that displays in a label control
while the scanner is transferring data:

StrMessage = "Received " & Str(CurrentFileLength) & "bytes of " & Str(TotalFileLength)

2-19

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

ParameterAvailable

Description

The event handler for ParameterAvailable has no parameters. This event is received in
response to an earlier method call to RequestParameter. To retrieve the data, call the
method GetParameter during this event handler sub-routine.

Example
Dim TriggerModeParamNum = 138 ' set the parameter number to the parameter that you
Dim ParamValue As Long ' ...requested earlier in the call to RequestParameter.
Dim Success As Boolean

' Send in the Parameter number, get back the Parameter’s value
Success = SSIConnect1.GetParameter(TriggerModeParamNum, ParamValue)

The method returns TRUE if the parameter data that was sent was for the parameter
number requested - in this example, if the ParamValue sent by the scanner was for the
trigger mode parameter, the return value is true. If you are trying to get the value for a
different parameter number than the one you requested, the function returns FALSE. This
function also returns FALSE if you call the GetParameter method more than once during
the handler, or if you call GetParameter anywhere other than in the ParameterAvailable
event handler sub-routine.

Following is an example of program flow:

Pressing the connect button calls the SSIConnect1.ConnectComPort method. If that
returns successful status, the call to get the value of the trigger mode parameter is made:

Status = SSIConnect1.RequestParameter(TriggerModeParam).

This method's return value indicates if the command was sent successfully. After your event
handler is called by the control, the data is available for access using the GetParameter
method.

2-20

ActiveX Control

ScannerCapabilities

Description

The event handler for ScannerCapabilities is paired with a previous call to
SendCommand(ssiRequestCapabilities). During the resulting ScannerCapabilities event
handler you may call the following methods to retrieve the scanner's capability data as long
as the NumCommands parameter is greater than zero:

* GetParityCheckCapabilities

* GetParityCapabilities

* GetStopBitsSupported

* MultiPacketOptionCapabilities
* GetSSICommandsSupported
* GetBaudRateCapabilities

Example
Dim NumBaudRates As Long
Dim BaudRates As Variant
Dim NumSSICommands As Long
Dim SSICommands As Variant
Dim odd As Boolean
Dim even As Boolean
Dim noparity As Boolean
Dim onestop As Boolean
Dim twostops As Boolean
Dim myopt1 As Boolean
Dim myopt2 As Boolean
Dim myopt3 As Boolean
Dim checkparity As Boolean
Dim dontchekparity As Boolean
Dim mystatus As Boolean

" mystatatus will be true if the capabilities were retrieved successfully

' the following functions return the capabilities of the scanner

2-21

& \ \ Simple Serial Interface (SSl) Software Developer’s Kit Programmer’s Guide

=

' For example, if the scanner supports parity checking, the checkparity param will be true
"...If the scanner supports odd parity, the parameter odd will be true, etc.

mystatus = SSIConnect1.GetParityCheckCapabilities(checkparity, dontchekparity)
mystatus = SSIConnect1.GetParityCapabilities(odd, even, noparity)
mystatus = SSIConnect1.GetStopBitsSupported(onestop, twostops)
mystatus = SSIConnect1.MultiPacketOptionCapabilities(myopt1, myopt2, myopt3)

' This method retumns the capabilities of the scanner with regard to the ssi commands

'.thatit supports. SSICommands contains the list of SSI Command opcodes as Long values, and
'its method retums the number of SSI commands that are supported.

NumSSICommands = GetSSICommandsSupported(SSICommands)
' This method retums the number of baud rates supported by the scanner and the param

' BaudRates contains the list of supported baud rates as Long values
NumBaudRates = GetBaudRateCapabilities(BaudRates)

2-22

ActiveX Control

ScannerStatusAvailable

Description

The event handler for ScannerStatusAvailable sends a parameter that is the status code.
The status code can represent either command completion (zero) or an error/timeout code.

When you send a simple command to the scanner (see Table 2-2 on page 2-7; note items
with a single asterisk) you receive either command completion status or the error/timeout
code if the command was not handled. You do not receive command completion status for
commands that request data; in this case, you either receive the data or an error/timeout
code.

2-23

& \ J Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

=

VersionDataAvailable

Description

The event handler for VersionDataAvailable has a single parameter for the length of the
data received from the scanner. The event is paired with a previous call to
SendCommand(ssiRequestVersion). During this event handler you may call the method
GetVersionData to retrieve the scanner's version data if the length parameter is greater
than zero. If the length parameter is less than or equal to zero, an error occurred and
GetVersionData should not be called.

Example
Dim VersionData As Variant
Dim NumDataChars As Long

' Send the Variant VersionData to be filled with the scanner’s data along with the
'Visual Basic Constant vbString to indicate the type of data to be retumed is a string
NumDataChars = SSIConnect1.GetVersionData(VersionData, vbString)

The type specifier is needed because although Visual Basic programs may manipulate the
data using a vbString, Visual C++ programmers would use a data type specifier of VT_UI1,
and VersionData would be a pointer to ColeSafeArray, allowing the returned data to be
manipulated as an array of unsigned character.

The VersionData string returned is scanner dependent. If the data format follows that of the
SSI specification, the string returned is formatted as 4 labeled fields separated by CRLF:
Software Revision:, Board Type:, Engine Code:, and Program Checksum:. If the data
format does not follow the specification, raw unformatted data is returned. In this case, non-
printable characters, including null characters, may be present in the data. The data is still
available but does not display as normal string data.

Note: Engine Code and Checksum are returned as hex digits.

2-24

2 3

Index

A

ActiveXcontrol 2-1
adding to Visual Basic 2-1
command methods 2-5
communicating with scanner 2-5
eventhandling 2-14
events 2-14
registering 2-1
setting properties 2-2

APl 1-1
AbortimageXfer 1-4
AbortMacroPdf 1-5
AimOn AimOff 1-6
EnterLowPwrMode 1-7
FlushMacroPDF 1-8
LedOn LedOff 1-9
PullTrigger 1-10
ReleaseTrigger 1-11
RequestAllParameters 1-12
RequestParameters 1-13
RequestScannerCapabilities 1-15
ReturnDLLVersion 1-16
ScanEnable ScanDisable 1-17
SetCapabilitiesBuffer 1-18
SetDecodeBuffer 1-19
SetlmageBuffer 1-20
SetParameterBuffer 1-22
SetParameters 1-23
SetParamPersistance 1-25
SetVersionBuffer 1-26
SetVideoBuffer 1-27
SnapShot 1-28
SoundBeeper 1-29
SSlconnect 1-2

SSIDisconnect 1-3
TransmitVersion 1-30
TransmitVideo 1-31
APlreturnvalues 1-32
B
beepcodes, 1-36
VS4000 2-2
beep command parameters 1-36
C
chapter descriptions %
command methods 2-5
ChangeParameter 2-10
RequestParameter 2-9
SendCommand 2-7
D
DLL
returndata 1-37
E
errorcodes 1-32, 1-34, 1-35
eventhandling 2-14
events 2-14
AllParametersAvailable 2-15
DecodeDataAvailable 2-16
EventDataAvailable 2-17
ImageDataAvailable 2-18
ImageTransferStatusAvailable 2-19
ParameterAvailable 2-20
ScannerCapabilites 2-21

Index-1

7

ScannerStatusAvailable 2-23
VersionDataAvailable 2-24
|
image preamble fields 1-39
information, service vi
introduction v, 1-1
L
library errorreporting 1-32
APlreturnvalues 1-32
SSI timeout messages 1-35
SSI WM error messages 1-34, 1-35
M
message packets 1-46
N
notational conventions %
P
parameter numbers 2-11
parameters
VS4000 2-12
R
relateddocuments Vi
S
scanner
command methods 2-5
communication 2-5
eventhandling 2-14
events 2-14
software handshaking
FeSPONSESv i 1-34
SSIAPI .. 1-1
AbortimageXfer 1-4
AbortMacroPdf 1-5
AimOn AimOff 1-6

Index-2

& \ Simple Serial Interface (SSI) Software Developer’s Kit Programmer’s Guide

EnterLowPwrMode 1-7
FlushMacroPDF 1-8
LedOn LedOff 1-9
PullTrigger 1-10
ReleaseTrigger 1-11
RequestAllParameters 1-12
RequestParameters 1-13
RequestScannerCapabilities 1-15
ReturnDLLVersion 1-16
ScanEnable ScanDisable 1-17
SetCapabilitiesBuffer 1-18
SetDecodeBuffer 1-19
SetlmageBuffer 1-20
SetParameterBuffer 1-22
SetParameters 1-23
SetParamPersistance 1-25
SetVersionBuffer 1-26
SetVideoBuffer 1-27
SnapShot 1-28
SoundBeeper 1-29
SSIConnect 1-2
SSIDisconnect 1-3
TransmitVersion 1-30
TransmitVideo 1-31
SSltimeout messages 1-35
SSI WM error messages 1-34, 1-35
SSIConnect 2-1
adding to Visual Basic 2-1
command methods 2-5
communicating with scanner 2-5
eventhandling 2-14
events ... 2-14
registering 2-1
setting properties 2-2
supportcenter vii
symbol supportcenter vii
T
timeoutmessages 1-35
transmission responses 1-34
\'}
video preamble fields 1-40

VS 4000 beepcodes 2-2

VS 4000 parameters 2-12

w

windows messages 1-38
decodedata 1-38
EITOIS . .ttt e 1-41
eventdata 1-46

Index

imagedata 1-39
imagetransfer 1-41
parameters 1-43
scanner capabilities 1-44
timeout 1-41
VErsion ... 1-42
videodata 1-40

Index-3

& \ \ Simple Serial Interface (SSl) Software Developer’s Kit Programmer’s Guide

7

Index-4

Tell Us What You Think...

We'd like to know what you think about this Manual. Please take a moment
to fill out this questionnaire and fax this form to: (631) 738-3318, or mail to:

Symbol Technologies, Inc.

One Symbol Plaza M/S B-4

Holtsville, NY 11742-1300

Attention: Technical Publications Manager

IMPORTANT: If you need product support, please call the appropriate

customer support number provided. Unfortunately, we cannot provide
customer support at the fax number above.

User’s Manual Title:

(please include revision level)

How familiar were you with this product before using this manual?
] Very familiar [] Slightly familiar [Not at all familiar

Did this manual meet your needs? If not, please explain.

What topics need to be added to the index, if applicable?

What topics do you feel need to be better discussed? Please be specific.

What can we do to further improve our manuals?

72-59860-01
Revision A - December 2002

Symbol Technologies, Inc. One Symbol Plaza, Holtsville N.Y. 11742-1300
http://www.symbol.com/manuals

http://www.symbol.com/manuals

	Contents
	About This Guide
	Introduction
	Chapter Descriptions
	Notational Conventions
	Related Documents
	Service Information
	Symbol Support Center

	Chapter 1 Simple Serial Interface (SSI) API
	API Descriptions
	SSIConnect
	SSIDisconnect
	AbortImageXfer
	AbortMacroPdf
	AimOn/AimOff
	EnterLowPwrMode
	FlushMacroPDF
	LedOn/LedOff
	PullTrigger
	ReleaseTrigger
	RequestAllParameters
	RequestParameters
	RequestScannerCapabilities
	ReturnDLLVersion
	ScanEnable/ScanDisable
	SetCapabilitiesBuffer
	SetDecodeBuffer
	SetImageBuffer
	SetParameterBuffer
	SetParameters
	SetParamPersistance
	SetVersionBuffer
	SetVideoBuffer
	SnapShot
	SoundBeeper
	TransmitVersion
	TransmitVideo

	Library Error Reporting
	API Return Values
	SSI WM_ERROR Messages
	SSI WM_TIMEOUT Messages

	Beep Command Parameters
	Data Returned by the DLL
	Windows Messages Sent to Calling Process

	Chapter 2 ActiveX Control
	Getting Started
	Registering the SSIConnect Component
	Adding the SSIConnect Component to Your Project
	Setting Properties

	Communicating with the Scanner Using Your Control
	Command Methods
	SendCommand(Command As Long) As Long
	RequestParameter(Parameter As Long) As Long
	ChangeParameter(Parameter As Long, Value As Long) As Long

	Parameter Numbers
	Events
	Event Handling in Visual Basic
	AllParametersAvailable
	DecodeDataAvailable
	EventDataAvailable
	ImageDataAvailable
	ImageTransferStatusAvailable
	ParameterAvailable
	ScannerCapabilities
	ScannerStatusAvailable
	VersionDataAvailable

	Index

