
Majeed Kazemitabaar
PhD Candidate

University of Toronto

majeed.cc
@MajeedKazemi

Research Seminars
February 2024

Learning to Code
with
Natural Language Programming
powered by LLMs

Studying the effect of AI Code Generators on Supporting Novice Learners in Introductory
Programming (CHI’23)
Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David Weintrop, Tovi Grossman

How Novices Use LLM-based Code Generators to Solve CS1 Coding Tasks in a Self-Paced
Learning Environment (Koli Calling’23)
Majeed Kazemitabaar, Xinying Hou, Austin Z. Henley, Barbara J. Ericson, David Weintrop, Tovi Grossman

CHI Conference in Human Factors in Computing
Hamburg, Germany, May 2023

Koli Calling Conference in Computing Education Research
Koli, Finland, Nov 2023

CHI Conference in Human Factors in Computing
Hamburg, Germany, May 2023

Koli Calling Conference in Computing Education Research
Koli, Finland, Nov 2023

Intro: Natural Language Programming

OpenAI ChatGPT
Released: November 2022

Github Copilot
Released: June 2021

Intro: LLMs Trained on Code

language to code code to code

Natural Language Code

• Code Generation

Intro: Generative Operations

Code Natural Language

• Explanation

• Evaluation

Code Code

• Completion

• Summarization

• Repair

• Translation

Enables Natural Language Programming

INTRODUCTORY PROGRAMMING

image source: futurelearn.com

Enables Natural Language Programming

INTRODUCTORY PROGRAMMING

> ask the user to enter a number

num = int(input("enter a number: "))

LLM

image source: futurelearn.com

Intro:

Focus on problem-solving aspects of computing

Potential Benefits

Natural Language Programming

Intro:

Focus on problem-solving aspects of computing

Help with debugging and fixing syntax errors

Potential Benefits

Natural Language Programming

Intro:

Focus on problem-solving aspects of computing

Help with debugging and fixing syntax errors

Generating a variety of correct solutions

Potential Benefits

Natural Language Programming

Potential DrawbacksPotential Benefits

Focus on problem-solving aspects of computing

Help with debugging and fixing syntax errors

Generating a variety of correct solutions

Intro: Natural Language Programming

Potential Drawbacks

Usage Challenges:

Properly express their intentions

Potential Benefits

Focus on problem-solving aspects of computing

Help with debugging and fixing syntax errors

Generating a variety of correct solutions

Intro: Natural Language Programming

Potential Drawbacks

Usage Challenges:

Properly express their intentions

Understand, verify and use AI-generated code

Potential Benefits

Focus on problem-solving aspects of computing

Help with debugging and fixing syntax errors

Generating a variety of correct solutions

Intro: Natural Language Programming

Potential Drawbacks

Usage Challenges:

Properly express their intentions

Understand, verify and use AI-generated code

Learners might become overly-dependent

Behavioral Challenges:

Potential Benefits

Focus on problem-solving aspects of computing

Help with debugging and fixing syntax errors

Generating a variety of correct solutions

Intro: Natural Language Programming

Potential Drawbacks

Usage Challenges:

Properly express their intentions

Understand, verify and use AI-generated code

Learners might become overly-dependent

Academic integrity, plagiarism, and attribution

Behavioral Challenges:

Ethical Issues:

Potential Benefits

Focus on problem-solving aspects of computing

Help with debugging and fixing syntax errors

Generating a variety of correct solutions

Intro: Natural Language Programming

source: www.artimatic.io

Intro: Impact on Learning

New York City Public School:

“ChatGPT doesn’t help build critical-
thinking and problem-solving skills”

January 2023

Seattle public school district:

“The district does not allow cheating
and requires original thought and work
from students”

January 2023

RESEARCH GOAL

Scale Programming Education?

Explore the Impact of using AI Code Generators
on Young Students When Learning to Write Code
for the First Time.

RESEARCH GOAL

Scale Programming Education?

RESEARCH QUESTIONS

RESEARCH QUESTIONS

RQ1
Code Composition:
How do learners’ task performance differ with and without AI code
generators?

RESEARCH QUESTIONS

RQ2
Manual Code Modification:
How does prior access to the AI code generator affect learners’ ability to
manually modify code?

RQ1
Code Composition:
How do learners’ task performance differ with and without AI code
generators?

RESEARCH QUESTIONS

RQ2
Manual Code Modification:
How does prior access to the AI code generator affect learners’ ability to
manually modify code?

RQ3
Learning Retention:
What are the effects on learning performance and retention from using
an AI code generator versus not using?

RQ1
Code Composition:
How do learners’ task performance differ with and without AI code
generators?

CONTROLLED STUDY

Baseline Group

36 Participants

Codex Group

33 Participants

Had access to AI Code Generator

10 Sessions

Self-Paced Python Training
7 Sessions

Evaluation
2 Sessions

Scratch Intro + Pre-Test
1 Session

Scratch
Lecture

Scratch
Pre-Test

Immediate
Post-Test

Retention
Post-Test

one week later

Code
Authoring x45

Code
Modifying

Session 1

STUDY PROCEDURE

1 2 3 4 5 6 7 8 9 10

Self-Paced Python Training
7 Sessions

Evaluation
2 Sessions

Scratch Intro + Pre-Test
1 Session

Scratch
Lecture

Scratch
Pre-Test

Immediate
Post-Test

Retention
Post-Test

one week later

Code
Authoring x45

Code
Modifying

Sessions 2 to 8

STUDY PROCEDURE

1 2 3 4 5 6 7 8 9 10

Self-Paced Python Training
7 Sessions

Evaluation
2 Sessions

Scratch Intro + Pre-Test
1 Session

Scratch
Lecture

Scratch
Pre-Test

Immediate
Post-Test

Retention
Post-Test

one week later

Code
Authoring x45

Code
Modifying

Session 9 to 10

STUDY PROCEDURE

1 2 3 4 5 6 7 8 9 10

AI ASSISTED PROGRAMMING

Coding Steps
Optional AI Code Generator

Self-Paced Python Learning

Logs all Activities

https://github.com/MajeedKazemi/coding-steps
Available Open Source:

AI ASSISTED PROGRAMMING Coding Steps Demo

User Study

Participants

Total Participants: 69 (21 female, 48 male)

Ages: 10 – 17 (M=12.53, SD=1.83)

Recruitment: from multiple coding camps

Prior Programming Experience: 64 indicated using Scratch

Intro + Scratch Pre-Test

1 Session

Study Procedure

EvaluationSelf-Paced Python Training

1. Scratch Lecture (75 mins)

Topics: variables, operators,

conditionals, loops, and arrays

2. Scratch Pre-Test (45 mins)

25 Multiple-Choice Questions

Same Topics

Intro + Scratch Pre-TestSTUDY PROCEDURE

Immediate
Post-Test

Retention
Post-Test

one week laterCode
Authoring x45

Code
Modifying

Intro + Pre-Test

Scratch
Lecture

Scratch
Pre-Test

Scratch Pre-Test SamplesSTUDY PROCEDURE

3 4 5 6

What does this program say? What does this program say?

100 10 101 11

What does this program say?

var1 10 5 9

EvaluationSelf-Paced Python Training

Immediate
Post-Test

Retention
Post-Test

one week laterCode
Authoring x45

Code
Modifying

Intro + Pre-Test

Scratch
Lecture

Scratch
Pre-Test

Self-Paced Python Training

7 Sessions

Study Procedure

Intro + Pre-Test

Scratch
Lecture

Scratch
Pre-Test

Two Normalized GroupsSTUDY PROCEDURE

Evaluation

Immediate
Post-Test

Retention
Post-Test

one week later

Self-Paced Python Training

Code
Authoring x45

Code
Modifying

Codex Group

• Count: 33 Participants

• Gender: 11 Female

Scratch Pre-Test: 63%

Baseline Group

• Count: 36 Participants

• Gender: 10 Female

Scratch Pre-Test: 60%

basics
8 coding + 6 MCQ

data-types
4 coding + 4 MCQ

conditionals
8 coding + 10 MCQ

loops
18 coding + 9 MCQ

arrays
7 coding + 10 MCQ

Python TopicsSTUDY PROCEDURE

Intro + Pre-Test

Scratch
Lecture

Scratch
Pre-Test

Evaluation

Immediate
Post-Test

Retention
Post-Test

one week later

Self-Paced Python Training

Code
Authoring x45

Code
Modifying

Task Description:

Repeatedly generate a random number from 0 to
100 until it generates 50. Then display the
number of times it took to generate the number.

Sample Output:

It took 27 attempts.

1. Authoring Task
Task Description:

Modify the program so it stops on any of the
numbers 25, 50, or 75.

2. Modifying Task

Authoring + Modifying TasksSTUDY PROCEDURE

Intro + Pre-Test

Scratch
Lecture

Scratch
Pre-Test

Evaluation

Immediate
Post-Test

Retention
Post-Test

one week later

Self-Paced Python Training

Code
Authoring x45

Code
Modifying

Codex Group:
Access to AI Code Generation

Without AI Code Generation
(Regardless of Condition)

Evaluation Post-Tests

2 Sessions

Study Procedure

Self-Paced Python Training

Code
Authoring x45

Code
Modifying

• 5 Code Authoring Tasks

• 5 Code Modification Tasks

• 40 Multiple-Choice Questions

1. Immediate Post-Test 2. Retention Post-Test

one week later • 5 Code Authoring Tasks

• 5 Code Modification Tasks

• 40 Multiple-Choice Questions

No Python Documentation ∗ No Instructor Hints ∗ No AI Code Generators

Evaluation Post-TestSTUDY PROCEDURE

Intro + Pre-Test

Scratch
Lecture

Scratch
Pre-Test

Evaluation

Immediate
Post-Test

Retention
Post-Test

one week later

Results

Self-Paced Python Training
7 Sessions

Code
Authoring x45

Code
Modifying

Differences in task performance measures

Overall Completion rate (progress)

Task Completion time

Task Correctness score

Overall Task Completion Rate (%)

Authoring + Modifying Tasks

Codex Baseline
0%

20%

40%

60%

80%

100%

Training PhaseRESULTS

Significant Difference: p<.006

91%
79%

Authoring Tasks

Training PhaseRESULTS

Task Correctness Score (%)

0%

20%

40%

60%

80%

100%

Codex Baseline
0

75

150

225

300

375

450

Task Completion Time (s)

Codex Baseline

80%

43% 210s

357

AI Code Generator Usage

Training PhaseRESULTS

• Students used the code generator n=1646 times (1.21 times per task)

• 32% (n=530) of prompts were an exact copy of the task description

• Final code of 49% tasks was 100% AI generated (unmodified)

AI Code Generator Usage

Training PhaseRESULTS

• Students used the code generator n=1646 times (1.21 times per task)

• 32% (n=530) of prompts were an exact copy of the task description

• Final code of 49% tasks was 100% AI generated (unmodified)

AI Code Generator Usage

Training PhaseRESULTS

• Students used the code generator n=1646 times (1.21 times per task)

• 32% (n=530) of prompts were an exact copy of the task description

• Final code of 49% tasks was 100% AI generated (unmodified)

Differences in manual code modification

Without the AI Code Generator

Task Completion Time (s)

Codex Baseline
0

50

100

150

200

250

300

Modifying Tasks
without AI code generators

Task Correctness Score (%)

Training PhaseRESULTS

Codex Baseline
0%

20%

40%

60%

80%

100%

66%
57%

225s 244s

Differences in Learning Performance and Retention

Self-Paced Python Training

Code
Authoring x45

Code
Modifying

• 5 Code Authoring Tasks

• 5 Code Modification Tasks

• 40 Multiple-Choice Questions

1. Immediate Post-Test 2. Retention Post-Test

one week later • 5 Code Authoring Tasks

• 5 Code Modification Tasks

• 40 Multiple-Choice Questions

No Python Documentation ∗ No Instructor Hints ∗ No AI Code Generators

Intro + Pre-Test

Scratch
Lecture

Scratch
Pre-Test

Evaluation

Immediate
Post-Test

Retention
Post-Test

one week later

Immediate Post-TestRESULTS

Authoring Modifying Multiple-Choice

Immediate Post-TestRESULTS

Codex Baseline

Correctness Score (%) Correctness Score (%) Correctness Score (%)

Codex Baseline Codex Baseline

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

61% 63% 60% 59%
49% 42%

Self-Paced Python Training

Code
Authoring x45

Code
Modifying

• 5 Code Authoring Tasks

• 5 Code Modification Tasks

• 40 Multiple-Choice Questions

1. Immediate Post-Test 2. Retention Post-Test

one week later • 5 Code Authoring Tasks

• 5 Code Modification Tasks

• 40 Multiple-Choice Questions

No Python Documentation ∗ No Instructor Hints ∗ No AI Code Generators

Intro + Pre-Test

Scratch
Lecture

Scratch
Pre-Test

Evaluation

Immediate
Post-Test

Retention
Post-Test

one week later

Retention Post-TestRESULTS

Retention Post-TestRESULTS

Authoring Modifying Multiple-Choice

Codex Baseline

Correctness Score (%) Correctness Score (%)

Codex Baseline

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

59%
50% 47%

35%

Correctness Score (%)

Codex Baseline

0%

20%

40%

60%

80%

100%

44%
35%

Differences in Perceptions about Learning and Frustration

Student PerceptionsRESULTS

Eager to continue learning about programming

Felt stressed, discouraged, and irritated

Felt that I learned a lot about Python Programming

Not at all Completely

Student PerceptionsRESULTS

Eager to continue learning about programming

Felt stressed, discouraged, and irritated

Felt that I learned a lot about Python Programming

Not at all Completely

Student PerceptionsRESULTS

Eager to continue learning about programming

Felt stressed, discouraged, and irritated

Felt that I learned a lot about Python Programming

Not at all Completely

KEY TAKEAWAYS

Overall, having access to AI Code Generators:

• Significantly increased completion rate of tasks

• Significantly Increased code-authoring performance (correctness)

• Did not decrease manual code modification performance

• Felt more motivated, and less stressed during the training phase

• Slightly increased performance on retention tests

Let’s dig deeper…

How prior programming skills affects learning
performance with and without Codex?

But how…?

Divided learners into four groups based on Scratch pre-test scores
and access to Codex

Effect of Prior ProgrammingRESULTS

Codex High Baseline High

Top 50%

0%

20%

40%

60%

80%

100% 86% 82%

Scratch Pre-Test Score (%)

Codex Low Baseline Low

Lower 50%

0%

20%

40%

60%

80%

100%

42% 37%

Scratch Pre-Test Score (%)

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

Top 50% Lower 50%

Authoring

Top 50% Lower 50%

Modifying

Top 50% Lower 50%

Multiple-Choice

Evaluation Phase: Retention Test

Effect of Prior ProgrammingRESULTS

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

Top 50% Lower 50%

Authoring

Top 50% Lower 50%

Modifying

Top 50% Lower 50%

Multiple-Choice

Evaluation Phase: Retention Test

Effect of Prior ProgrammingRESULTS

To understand the benefits and
drawbacks of LLM-powered Coding tools,
it’s crucial to know how students use them

Part Two:

We analyzed usage patterns of students using Codex

RESEARCH QUESTIONS

RQ1 How Novices Use AI Code Generators?

RESEARCH QUESTIONS

RQ2 Effect of Coding Approaches on Learning?

RQ1 How Novices Use AI Code Generators?

• 1379 submitted tasks (356 manually, without Codex)

• 1666 Codex usages (1.62 usage per task)

• Code edit logs + Console run logs + Codex usages

Collected Data:

Analysis Interface

Submit

Run Code

Codex

Manual Edit

Run Code

Manual Edit

CodexSequence
of Actions:

Analysis Interface

Codex Usage
• Prompt Message

• Similarity with Task Description

• Generated Code

Analysis Interface

Manual Code Edit
• Code Before Edit vs. After Edit

• Diff: Before vs. After

• Key-Strokes Count

Analysis Interface

Code Execution
• Code that was Executed

• Console Input and Output

Analysis Interface

Code Submission
• Code that was Submitted

• Any feedback provided by TAs

Analysis Interface

Submit

Run Code

Codex

Manual Edit

Run Code

Manual Edit

CodexSequence
of Actions:

When did Learners Use Codex?

Results

Focus of Thematic Analysis:
• Prior manual edits

• Prior codex usage

• Existing state of code

Five Primary Situations:

0

100

200

300

400

500

600

700

800

At the Beginning After Clearing the Editor After Manual Coding After Using Codex While Having the
Solution

RQ1 A

46%

5%

17%

34%

1%

When did Learners Use Codex?

Five Primary Situations:

0

100

200

300

400

500

600

700

800

At the Beginning After Clearing the Editor After Manual Coding After Using Codex While Having the
Solution

RQ1 A

46%

5%

17%

34%

1%

When did Learners Use Codex?

Five Primary Situations:

0

100

200

300

400

500

600

700

800

At the Beginning After Clearing the Editor After Manual Coding After Using Codex While Having the
Solution

RQ1 A

46%

5%

17%

34%

1%

When did Learners Use Codex?

Five Primary Situations:

0

100

200

300

400

500

600

700

800

At the Beginning After Clearing the Editor After Manual Coding After Using Codex While Having the
Solution

RQ1 A

46%

5%

17%

34%

1%

When did Learners Use Codex?

Five Primary Situations:

0

100

200

300

400

500

600

700

800

At the Beginning After Clearing the Editor After Manual Coding After Using Codex While Having the
Solution

RQ1 A

46%

5%

17%

34%

1%

When did Learners Use Codex?

Five Primary Situations:

0

100

200

300

400

500

600

700

800

At the Beginning After Clearing the Editor After Manual Coding After Using Codex While Having the
Solution

RQ1 A

46%

5%

17%

34%

1%

😰

When did Learners Use Codex?

Situation: Starting with Codex (n=760, 46%)

RQ1 A

0 100 200 300 400 500 600

Break Down Task into Subgoals and Generate First Subgoal

Rephrase Task Description Generate Entire Solution

Copy Full Task Description Generate Entire Solution

Common Behaviors When Using Codex at The Beginning:

66%

7%

26%

When did Learners Use Codex?

Situation: Starting with Codex (n=760, 46%)

RQ1 A

0 100 200 300 400 500 600

Break Down Task into Subgoals and Generate First Subgoal

Rephrase Task Description Generate Entire Solution

Copy Full Task Description Generate Entire Solution

Common Behaviors When Using Codex at The Beginning:

66%

7%

26%

When did Learners Use Codex?

Situation: Starting with Codex (n=760, 46%)

RQ1 A

0 100 200 300 400 500 600

Break Down Task into Subgoals and Generate First Subgoal

Rephrase Task Description Generate Entire Solution

Copy Full Task Description Generate Entire Solution

Common Behaviors When Using Codex at The Beginning:

66%

7%

26%

When did Learners Use Codex?

Situation: Starting with Codex (n=760, 46%)

RQ1 A

0 100 200 300 400 500 600

Break Down Task into Subgoals and Generate First Subgoal

Rephrase Task Description Generate Entire Solution

Copy Full Task Description Generate Entire Solution

Common Behaviors When Using Codex at The Beginning:

😊 Self-Regulated

66%

7%

26%

😰

When did Learners Use Codex?

0 20 40 60 80 100 120 140

After Writing Mostly Correct Code

After Mostly Correct Code with Minor Issues

After Mostly Incorrect Code

Situation: After Manual Coding (n=282, 17%)

RQ1 A

State of Code When Using Codex After Manual Coding:

27%

41%

36%

When did Learners Use Codex?

0 20 40 60 80 100 120 140

After Writing Mostly Correct Code

After Mostly Correct Code with Minor Issues

After Mostly Incorrect Code

Situation: After Manual Coding (n=282, 17%)

RQ1 A

State of Code When Using Codex After Manual Coding:

27%

41%

36%

When did Learners Use Codex?

0 20 40 60 80 100 120 140

After Writing Mostly Correct Code

After Mostly Correct Code with Minor Issues

After Mostly Incorrect Code

Situation: After Manual Coding (n=282, 17%)

RQ1 A

State of Code When Using Codex After Manual Coding:

😊 Self-Regulated

27%

41%

36%

When did Learners Use Codex?

Situation: After Using Codex (n=572, 34%)

When did Learners Use Codex?RQ1 A

• Decomposing Tasks into Multiple Subgoals: Write Next Subgoal with Codex

1

2

1

2

243 Codex Usages (15%) 84 Codex Usages (5%)

Situation: After Using Codex (n=572, 34%)

When did Learners Use Codex?RQ1 A

• Decomposing Tasks into Multiple Subgoals: Write Next Subgoal with Codex

😰 Over-Reliance

1

2

1

2

243 Codex Usages (15%) 84 Codex Usages (5%)

Situation: Already Having the Solution (n=16, 1%)

RQ1 A

Have Solution

😊 Self-Evaluation

Use Codex to Generate Solution

Check and Edit Own Solution

When did Learners Use Codex?

What did Learners Ask from Codex?

Results

Focus of Thematic Analysis:
• What parts of the task?

• Requesting Syntax or Logic?

0

100

200

300

400

500

600

700

800

Generate the Entire Solution Generate New Subgoals Fix Existing Code

What are they asking for using Codex?

What did Learners Ask from Codex?RQ1 B

43%
37%

7%

0

100

200

300

400

500

600

700

800

Generate the Entire Solution Generate New Subgoals Fix Existing Code

What are they asking for using Codex?

What did Learners Ask from Codex?RQ1 B

43%
37%

7%

0

100

200

300

400

500

600

700

800

Generate the Entire Solution Generate New Subgoals Fix Existing Code

What are they asking for using Codex?

What did Learners Ask from Codex?RQ1 B

43%
37%

7%

0

100

200

300

400

500

600

700

800

Generate the Entire Solution Generate New Subgoals Fix Existing Code

What are they asking for using Codex?

What did Learners Ask from Codex?RQ1 B

43%
37%

7%

😰

When Decomposing Task into Subgoals

RQ1 B

0

100

200

300

400

500

600

700

Completely New Subgoal Similar to Existing Code

21%

79%

0

100

200

300

400

500

600

700

Pure Syntax Syntax and Logic

15%

85%

What did Learners Ask from Codex?

When Decomposing Task into Subgoals

RQ1 B

😰

0

100

200

300

400

500

600

700

Completely New Subgoal Similar to Existing Code

21%

79%

0

100

200

300

400

500

600

700

Pure Syntax Syntax and Logic

15%

85%

😊

What did Learners Ask from Codex?

Novice Learners’ Prompt Properties

Results

Focus of Thematic Analysis:
• Prompt Content

• Vagueness

• Relationship to Task Description

0

100

200

300

400

500

600

700

800

900

1000

Copy Entire Task Description Partial Copy from Task
Description

Reworded Versions of Task
Description

Included Less Detail or Vague
Interpretations of Task

Incorrectly Interpretted Task

Five Primary Properties:

Novice Learners’ Prompt PropertiesRQ1 C

52%

14%
21%

13%

2%

😰

😊

0

100

200

300

400

500

600

700

800

900

1000

Copy Entire Task Description Partial Copy from Task
Description

Reworded Versions of Task
Description

Included Less Detail or Vague
Interpretations of Task

Incorrectly Interpretted Task

Five Primary Properties:

Novice Learners’ Prompt PropertiesRQ1 C

52%

14%
21%

13%

2%

0

100

200

300

400

500

600

700

800

900

1000

Copy Entire Task Description Partial Copy from Task
Description

Reworded Versions of Task
Description

Included Less Detail or Vague
Interpretations of Task

Incorrectly Interpretted Task

Five Primary Properties:

Novice Learners’ Prompt PropertiesRQ1 C

52%

14%
21%

13%

2%

0

100

200

300

400

500

600

700

800

900

1000

Copy Entire Task Description Partial Copy from Task
Description

Reworded Versions of Task
Description

Included Less Detail or Vague
Interpretations of Task

Incorrectly Interpretted Task

Five Primary Properties:

Novice Learners’ Prompt PropertiesRQ1 C

52%

14%
21%

13%

2%

0

100

200

300

400

500

600

700

800

900

1000

Copy Entire Task Description Partial Copy from Task
Description

Reworded Versions of Task
Description

Included Less Detail or Vague
Interpretations of Task

Incorrectly Interpretted Task

Five Primary Properties:

Novice Learners’ Prompt PropertiesRQ1 C

52%

14%
21%

13%

2%

0

100

200

300

400

500

600

700

800

900

1000

Copy Entire Task Description Partial Copy from Task
Description

Reworded Versions of Task
Description

Included Less Detail or Vague
Interpretations of Task

Incorrectly Interpretted Task

Five Primary Properties:

Novice Learners’ Prompt PropertiesRQ1 C

52%

14%
21%

13%

2%

😰

😊

Prompts Similar to Pseudo-Code (n=89, 5%)

Novice Learners’ Prompt PropertiesRQ1 C

Prompt 1: “for n in numbers, if n > l, set l to n”

😊 Self-Regulated

Prompt 2: “print Largest number: l”

Prompt: “find the largest number”

Utilizing AI-Generated Code

Results

Focus of Thematic Analysis:
• Placement of AI-Generated Code

• Modifying Existing or Generated Code

• Testing and Verifying Code

Verifying: Tinkering with AI-Generated Code

Utilizing AI-Generated CodeRQ1 E

Verifying: Running and Testing AI-Generated Code

Utilizing AI-Generated CodeRQ1 E

Common Behaviors When Using Codex at The Beginning:

0 200 400 600 800 1000 1200

Submitted AI-Generated Code Without Running

Moved Immediately to Use Codex for Next Subgoal

Deleted AI Code

Properly Tested AI-Generated Code

Verifying: Running and Testing AI-Generated Code

Utilizing AI-Generated CodeRQ1 E

Common Behaviors When Using Codex at The Beginning:

0 200 400 600 800 1000 1200

Submitted AI-Generated Code Without Running

Moved Immediately to Use Codex for Next Subgoal

Deleted AI Code

Properly Tested AI-Generated Code

Verifying: Running and Testing AI-Generated Code

Utilizing AI-Generated CodeRQ1 E

Common Behaviors When Using Codex at The Beginning:

0 200 400 600 800 1000 1200

Submitted AI-Generated Code Without Running

Moved Immediately to Use Codex for Next Subgoal

Deleted AI Code

Properly Tested AI-Generated Code

Verifying: Running and Testing AI-Generated Code

Utilizing AI-Generated CodeRQ1 E

Common Behaviors When Using Codex at The Beginning:

0 200 400 600 800 1000 1200

Submitted AI-Generated Code Without Running

Moved Immediately to Use Codex for Next Subgoal

Deleted AI Code

Properly Tested AI-Generated Code

Verifying: Running and Testing AI-Generated Code

Utilizing AI-Generated CodeRQ1 E

Common Behaviors When Using Codex at The Beginning:

0 200 400 600 800 1000 1200

Submitted AI-Generated Code Without Running

Moved Immediately to Use Codex for Next Subgoal

Deleted AI Code

Properly Tested AI-Generated Code

😰 Over-Reliance

Verifying: Manually Adding Code to Verify

Utilizing AI-Generated CodeRQ1 E

2. Generated Code + Placed1. Prompt Codex

> generate two
random numbers
between 1 and 6
and check both
if they are
greater than 3

OpenAI
Codex

import random
roll1 = random.randint(1, 6)
roll2 = random.randint(1, 6)
if roll1 > 3 and roll2 > 3:
 print("Both greater than 3")

import random
roll1 = random.randint(1, 6)
roll2 = random.randint(1, 6)
print(roll1, ",",roll2)
if roll1 > 3 and roll2 > 3:
 print("Both greater than 3")

3. Added Verification Code

Student added a new line
print(roll1, ",",roll2)
to verify the AI-generated code.

Verifying: Manually Adding Code to Verify

Utilizing AI-Generated CodeRQ1 E

2. Generated Code + Placed1. Prompt Codex

> generate two
random numbers
between 1 and 6
and check both
if they are
greater than 3

OpenAI
Codex

import random
roll1 = random.randint(1, 6)
roll2 = random.randint(1, 6)
if roll1 > 3 and roll2 > 3:
 print("Both greater than 3")

import random
roll1 = random.randint(1, 6)
roll2 = random.randint(1, 6)
print(roll1, ",",roll2)
if roll1 > 3 and roll2 > 3:
 print("Both greater than 3")

3. Added Verification Code

Student added a new line
print(roll1, ",",roll2)
to verify the AI-generated code.

😊 Self-Regulation

AI Code Generator Coding Approaches

Results

Manual (without Codex)

The final submitted code was 100%
manually written.

29% tasks

Manual (without Codex)

The final submitted code was 100%
manually written.

29% tasks

AI Step-by-Step
Decomposed task into multiple, consecutive
Codex usages, with no manual coding

6% tasks

Hybrid
A few subgoals were AI-generated, while
other subgoals were written manually

19% tasks

Manual (without Codex)

The final submitted code was 100%
manually written.

29% tasks

AI Step-by-Step
Decomposed task into multiple, consecutive
Codex usages, with no manual coding

6% tasks

AI Single Prompt
Use a single prompt (either by copying the
task, or rewording) to solve the entire task

46% tasks

Hybrid
A few subgoals were AI-generated, while
other subgoals were written manually

19% tasks

Manual (without Codex)

The final submitted code was 100%
manually written.

29% tasks

AI Step-by-Step
Decomposed task into multiple, consecutive
Codex usages, with no manual coding

6% tasks

What is the Relationship between
Authoring and Modifying Tasks for Each
Coding Approach?

Self-Paced Python Training
7 Sessions

Code
Authoring x45

Code
Modifying

Relationship between Authoring and Modifying Tasks

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

AI Single Prompt AI Step-by-Step Hybrid Manual
Authoring Modifying

96%

62%

76%

55%

77%
73%

63%

73%

Relationship between Authoring and Modifying Tasks

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

AI Single Prompt AI Step-by-Step Hybrid Manual
Authoring Modifying

96%

62%

76%

55%

77%
73%

63%

73%

Relationship between Authoring and Modifying Tasks

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

AI Single Prompt AI Step-by-Step Hybrid Manual
Authoring Modifying

96%

62%

76%

55%

77%
73%

63%

73%

Relationship between Authoring and Modifying Tasks

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

AI Single Prompt AI Step-by-Step Hybrid Manual
Authoring Modifying

96%

62%

76%

55%

77%
73%

63%

73%

Relationship between Authoring and Modifying Tasks

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

AI Single Prompt AI Step-by-Step Hybrid Manual
Authoring Modifying

96%

62%

76%

55%

77%
73%

63%

73%

😰

😊

What is the Relationship between utilizing
each of the Coding Approaches and Post-
Test Evaluation Tests?

• 5 Code Authoring Tasks

• 5 Code Modification Tasks

• 40 Multiple-Choice Questions

1. Immediate Post-Test 2. Retention Post-Test

one week later • 5 Code Authoring Tasks

• 5 Code Modification Tasks

• 40 Multiple-Choice Questions

No Python Documentation ∗ No Instructor Hints ∗ No AI Code Generators

Coding Approaches:

45 Authoring Tasks (7 Training Sessions) Evaluation Post-Tests

Manual (without Codex)

AI Step-by-Step

Hybrid

AI Single Prompt

Each Student during Training:

. . .

Utilization of Each Coding Approach

33 dots, each representing a student

Utilization of Coding Approach
During Training

Evaluation
Score

100%

0% 100%

Correlation Analysis:
Utilization of Coding Approach with Post-Test Evaluation Score

AI Single Prompt

Hybrid

Manual

AI Step-by-Step

AI Single Prompt

Hybrid

Manual

AI Step-by-Step

AI Single Prompt

Hybrid

Manual

AI Step-by-Step

AI Single Prompt

Hybrid

Manual

AI Step-by-Step

AI Single Prompt

Hybrid

Manual

AI Step-by-Step

😊

😰 Negative Correlation

Positive Correlation

KEY TAKEAWAYS

Signs of Self-Regulation

• Attempting manual coding before using Codex and

using the Hybrid AI Coding Approach

• Prompting Codex mainly for syntax

• Actively adding code to verify AI-generated code

• Tinkering with AI-generated code to understand it

Signs of Over-Reliance

• Frequent usage of the AI Single Prompt approach

• Copying the task description and submitting

generated code without any editing

• Prompting Codex for code similar to existing code

• Over-trust: submitting code without running

Research Seminars
February 2024

Studying the effect of AI Code Generators on Supporting Novice Learners in Introductory
Programming (CHI’23)
Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David Weintrop, Tovi Grossman

How Novices Use LLM-based Code Generators to Solve CS1 Coding Tasks in a Self-Paced
Learning Environment (Koli Calling’23)
Majeed Kazemitabaar, Xinying Hou, Austin Z. Henley, Barbara J. Ericson, David Weintrop, Tovi Grossman

Majeed Kazemitabaar
University of Toronto

Xinying Hou
University of Michigan

Austin Z. Henley
Microsoft Research

Barbara J. Ericson
University of Michigan

David Weintrop
University of Maryland

Tovi Grossman
University of Toronto

135

CHI Conference in Human Factors in Computing
Hawaii, USA, May 2024

We developed an LLM-powered pedagogical Assistant
named CodeAid with five main features that responds
to various programming-related questions and help
requests.

Unlike unmoderated LLMs, CodeAid produces
responses without revealing direct code solutions.
Instead, it helps students by producing pseudo-code,
suggested fixes and natural language responses.

We deployed CodeAid at a large class of 700 students,
interviewed 22 students about their usage, and then
interviewed 8 computing educators.

Our results help guide the design of future AI-powered
assistants for educational settings.

New Paper: CodeAid
To be Presented at CHI 2024

Design Goals of Educational AI Assistants

