

Raspberry Pi Foundation, UK registered charity 1129409

Learn with the
Raspberry Pi Foundation

Free for everyone anywhere in the world

Teaching resources
Discover training, resources, and
guidance to help you teach
computing with confidence.

teachcomputing.org

Digital making at home
Check out our code-along videos and
take part in Astro Pi Mission Zero
from home.

raspberrypi.org/learn

Project library
Browse our 200+ online project
guides that include step-by-
step instructions for learners.

projects.raspberrypi.org

Support for parents
Watch our support tutorials
and access engaging
resources for your child.

raspberrypi.org/learn

Raspberry Pi Foundation, UK registered charity 1129409

Raspberry Pi Foundation, UK registered charity 1129409

Learn with the
Raspberry Pi Foundation

Free for everyone anywhere in the world

Teaching resources
Discover training, resources, and
guidance to help you teach
computing with confidence.

teachcomputing.org

Digital making at home
Check out our code-along videos and
take part in Astro Pi Mission Zero
from home.

raspberrypi.org/learn

Project library
Browse our 200+ online project
guides that include step-by-
step instructions for learners.

projects.raspberrypi.org

Support for parents
Watch our support tutorials
and access engaging
resources for your child.

raspberrypi.org/learn

Raspberry Pi Foundation, UK registered charity 1129409
Raspberry Pi Foundation, UK registered charity 1129409

Learn with the
Raspberry Pi Foundation

Free for everyone anywhere in the world

Teaching resources
Discover training, resources, and
guidance to help you teach
computing with confidence.

teachcomputing.org

Digital making at home
Check out our code-along videos and
take part in Astro Pi Mission Zero
from home.

raspberrypi.org/learn

Project library
Browse our 200+ online project
guides that include step-by-
step instructions for learners.

projects.raspberrypi.org

Support for parents
Watch our support tutorials
and access engaging
resources for your child.

raspberrypi.org/learn

Raspberry Pi Foundation, UK registered charity 1129409
Raspberry Pi Foundation, UK registered charity 1129409

Learn with the
Raspberry Pi Foundation

Free for everyone anywhere in the world

Teaching resources
Discover training, resources, and
guidance to help you teach
computing with confidence.

teachcomputing.org

Digital making at home
Check out our code-along videos and
take part in Astro Pi Mission Zero
from home.

raspberrypi.org/learn

Project library
Browse our 200+ online project
guides that include step-by-
step instructions for learners.

projects.raspberrypi.org

Support for parents
Watch our support tutorials
and access engaging
resources for your child.

raspberrypi.org/learn

Raspberry Pi Foundation, UK registered charity 1129409

https://raspberrypi.org
https://raspberrypi.org/learn
https://projects.raspberrypi.org
https://teachcomputing.org

fter nearly five years of Hello World, we’re delighted to welcome you to our first-ever
special edition, The Big Book of Computing Pedagogy! This special edition focuses on
approaches to teaching computing in the classroom, and includes some of our favourite

pedagogically themed articles from previous issues of Hello World, as well as a couple of never-
seen-before pieces. It is structured around twelve pedagogical principles, originally developed by
the Raspberry Pi Foundation for the National Centre for Computing Education in England. These
principles, which are introduced on page five, are based on up-to-date research about the best
ways of approaching the teaching and learning of computing.

Computing education is still relatively new, and is constantly changing and adapting. Despite
leaving school less than ten years ago, my days in the computer lab were limited to learning
about how to add animations on PowerPoints and trying out basic Excel formulas (and yes,
there was still the odd mouse with a ball knocking about!). Computing education research is
even younger, and the Raspberry Pi Foundation is proud to be an important part of this growing
space, having launched the Raspberry Pi Computing Education Research Centre at the
University of Cambridge in the summer.

The Big Book of Computing Pedagogy aims to be your companion to learning about tried and
tested approaches to teaching computing. As with all Hello World issues, we’ve worked to bridge
the gap between research and practice, giving you accessible chunks of research, followed by
stories of trusty educators trying out an approach in their classroom or educational space.

We’d love to hear what you think of this very exciting collection. Get in touch at
contact@helloworld.cc or on Twitter @HelloWorld_Edu.

Gemma Coleman
Editor

HELLO, WORLD!

Hello World is published by the Raspberry Pi Foundation, 37 Hills Road, Cambridge,
CB2 1NT. The publisher, editor, and contributors accept no responsibility in respect of
any omissions or errors relating to skills, products, or services referred to in the magazine.
Except where otherwise noted, content in this magazine is licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0).

This magazine is printed on paper
sourced from sustainable forests and
the printer operates an environmental
management system which has been
assessed as conforming to ISO 14001.

A

EDITORIAL
Editor
Gemma Coleman

Subeditors
Louise Richmond and Amy Rutter

Subscriptions
Joshua Crossman

Social Media
Neena Patel and Claire MacDonald

Pedagogical consultant
James Robinson

DESIGN
criticalmedia.co.uk

Head of Design
Lee Allen

Designers
Ty Logan, Sam Ribbits

Photography
Raspberry Pi Foundation, Adobe Stock

Graphics
Rob Jervis

Cover and illustrations
©Muti, Folio Art

CONTRIBUTORS
Efthimia Aivaloglou, Samantha Baloro , George Boukeas, Claire Buckler,
Mark Calleja, Katharine Childs, Josh Crossman, Paul Curzon, Jonathan
Dickins, Catherine Elliott, Lucia Floriánová, Rebecca Franks, Ben Garside,
Sway Grantham, Will Grey, Shuchi Grover, Ben Hall, Amanda Haughs,
Katie Henry, Felienne Hermans, Nic Hughes, Simon Humphreys, Thom
Kunkeler, Hayley Leonard, Linda Liukas, Ursula Martin, Karl Maton, Tilman
Michaeli, Gemma Moine, Carrie Anne Philbin, Mareen Przybylla, Oliver
Quinlan, Neil Rickus, Calvin Robinson, James Robinson, Laura Sach, Stefan
Seegerer, Cynthia Selby, Sue Sentance, Lucinda Tuttiett, Jane Waite,
Matthew Wimpenny-Smith

Hello World is a joint collaboration:

The Big Book of Computing Pedagogy 3

mailto:contact@helloworld.cc
http://criticalmedia.co.uk
https://www.raspberrypi.org/
http://academy.bcs.org/

s a former computer science (CS)
professor and industry professional, I
have recently taken on a new role that
permits me to take deep dives into

studying CS education at primary and secondary
levels. In the USA alone, this means investigating
what it means to teach CS to over 50,000,000
students, all with their own backgrounds,
cultures, interests, and academic goals.

Given that schools in the USA are under state
and local district control, efforts to convince
over 13,000 school districts and 50 states
(plus US territories) that CS is not
a fad and deserves a place in the
classroom have been slow — but
steadily growing. This raises a critical
question for each school and district
as they embrace this change: how
do we train teachers to teach a brand
new subject area in a way that is most
impactful for all students?

There is no doubt that the United Kingdom is
ahead of the USA in its path of training teachers
to teach CS to all students. Computing at School
(CAS), the Raspberry Pi Foundation, and many
other organisations have provided training and free
resources to teachers, often relying on education
researchers to provide important guidance and
direction in finding promising teaching practices,
such as in this special edition of Hello World.

When I started to peruse the draft for The
Big Book of Computing Pedagogy, I was simply
stunned. I found the ready-to-consume content
to be solidly based on research evidence and

tried-and-true best practices from teachers
themselves. This resource provides valuable
insights into introducing computing to
students via unplugged activities, integrating
the Predict–Run–Investigate–Modify–Make
(PRIMM) pedagogical model, and introducing
physical devices for computing — all written in
a way that teachers can adopt and use in their
own classrooms.

We share in your successes of bringing CS to all
students in the UK, while at the same time work

to gain an understanding of the challenges
encountered in training teachers and

how those challenges are being
mitigated. This first special edition of
Hello World is another concentrated
effort to mitigate those challenges

by providing timely, evidence-based
resources in bite-sized pieces that

are ready for consumption — not just for
teachers in the UK, but all around the world. I have
no doubt that this will be a valuable resource to
both novice and experienced teachers, now and in
the future.

Monica McGill, EdD
Founder and CEO
CSEdResearch.org

Computer Science Teachers Association (CSTA)
Board Member
Association of Computing Machinery — Women
(ACM-Women) North America Committee,
Immediate Past Chair

FOREWORD
A

The Big Book of Computing Pedagogy4

http://CSEdResearch.org

The Big Book of Computing Pedagogy 5

Much of the work of the Raspberry Pi Foundation is underpinned
by our twelve principles of computing pedagogy

UNPLUG, UNPACK,
REPACK

WORK TOGETHER READ AND EXPLORE
CODE FIRST

LEAD WITH CONCEPTS STRUCTURE LESSONS MAKE CONCRETE

FOSTER PROGRAM
COMPREHENSION

MODEL EVERYTHING CHALLENGE
MISCONCEPTIONS

CREATE PROJECTS GETS HANDS-ON ADD VARIETY

HOW WE TEACH COMPUTING

6

10 CONCEPT MAPS
A tool for planning, teaching, learning,
and assessment

13 VELA CONCEPTS
Non-programming activities to teach
programming concepts

14 THE ‘RIGHT’ WAY?
Learning when to simplify concepts

16 LEARNING GRAPHS
A tool to plan for progression

34 CULTURALLY RELEVANT
PEDAGOGY
Drawing upon student experience and
cultural knowledge to make learning
more relevant

36 LEARNING THROUGH MAKING
Constructionism as a way of making
concepts concrete

38 SCRATCHMATHS
Integrating maths and computing

40 SCRATCH ENCORE
A culturally relevant Scratch curriculum

41 ENGINEERING SKILLS
Nurturing engineering skills in
all students

42 PLAYING WITH PLUGS
Breaking down abstract concepts

56 PEER INSTRUCTION
Combining carefully chosen MCQs
with peer discussion

58 PAIR PROGRAMMING
Pairing learners to work through
programming problems

60 COLLABORATIVE
PROBLEM-SOLVING
Could the future of learning be
working together?

62 ENCOURAGING TALK
Collaboration and communication
in the computing curriculum

64 VERSION CONTROL
A collaborative programming tool

68 CODE TRACING
Reading and analysing code first to
develop program comprehension

70 READ BEFORE YOU WRITE
Evidence-based approaches for
helping pupils to read code

72 ASSEMBLY LANGUAGE
Using Raspberry Pi to teach assembly
language to A level students

46 SEMANTIC WAVES
The ideal conceptual journey for novice
learners to follow

49 GO UNPLUGGED
The value of unplugged activities

50 CRAZY CHARACTERS
Reviewing a lesson activity using
semantic waves

20 COGNITIVE LOAD THEORY
How thoughtful instructional design
can reduce cognitive load

22 THE PRIMM APPROACH
A framework to structure
programming lessons

25 UDL
Universal Design for Learning
in computing

28 CODING & 21ST-CENTURY SKILLS
A framework developing coding
alongside critical thinking,
collaboration, creativity, and
communication skills

30 CURRICULUM DESIGN
The ABC approach to curriculum
design, introducing online and blended
formats to the classroom

CONTENTS
LEAD WITH
CONCEPTS MAKE CONCRETE WORK TOGETHER

READ AND
EXPLORE CODE
FIRSTUNPLUG,

UNPACK, REPACK

STRUCTURE
LESSONS

The Big Book of Computing Pedagogy 7

78 THE BLOCK MODEL
A useful tool for understanding
aspects of program comprehension

80 PARSON’S PROBLEMS
Exercises to develop learners’ program
comprehension

82 WRITING CODE
Evidence-based approaches for
helping pupils to write code

84 THE I IN PRIMM
Creating opportunities for students to
investigate code fully

104 ALTERNATIVE CONCEPTIONS
Research into the importance of
challenging misconceptions

106 ASSESSMENT FOR LEARNING
Diagnosing students’ learning needs
by asking the right questions

108 METAPHORS AND
MISCONCEPTIONS
Metaphors and methods to avoid
misconceptions

111 MULTIPLE CHOICE
How to write effective MCQs

112 INTRODUCTORY PROGRAMMING
Addressing misconceptions in
introductory programming

130 PHYSICAL COMPUTING
The methods and benefits of bringing
physical computing to the classroom

132 PHYSICAL COMPUTING
IN THE CLASSROOM
Guidelines for planning and applying
physical computing lessons

134 REFLECTIONS
Considering and overcoming the
barriers to physical computing

137 PRIMARILY PI
Teaching our youngest learners
physical computing

143 VARIETY IN TEACHING
Introducing variety in teaching and
assessment of programming activities

146 STORYTELLING
Using children’s literature to teach
computing to primary school pupils

148 RETRIEVAL PRACTICE
Bringing information to mind to
boost learning

152 THE INCLUSIVE CLASSROOM
Approaches to making computing
lessons more accessible and inclusive

154 ART AND ALGORITHMS
Creating algorithmic art in primary
computing lessons

156 PROGRAMMING AND PLAY
How embracing play can make
you a better educator

116 PROJECT-BASED LEARNING
Applying programming knowledge to
real-world scenarios

118 DIGITAL PROJECTS
Research about how children make
digital projects

122 A PATH TO AGENCY
Projects as a tool for students to take
charge of their own learning

124 DESIGN JOURNALS
Introducing design journals to
primary school students

90 WORKED EXAMPLES
Creating blueprints for solving new
but related problems

92 LIVE CODING
Developing programming solutions in
real time

94 VIDEOS AND SELF-EXPLANATION
Another approach to teaching
programming

96 MODELLING FOR LEARNERS
Top tips for implementing the
modelling approach

98 WATCH AND LEARN
How online video is changing the way
we teach computer science

100 SMELLY CODE
Passing on best practice when teaching
programming to primary students

FOSTER PROGRAM
COMPREHENSION

CHALLENGE
MISCONCEPTIONS GET HANDS-ON

ADD VARIETY
CREATE PROJECTS

MODEL
EVERYTHING

LEAD WITH
CONCEPTS

10 CONCEPT MAPS
13 USING NON-PROGRAMMING

ACTIVITIES TO TEACH
PROGRAMMING CONCEPTS

14 THE CODE’S NOT ALL RIGHT
16 LEARNING GRAPHS: TOOLS TO

PLAN FOR PROGRESSION

The Big Book of Computing Pedagogy 9

s a discipline, computing is broad, with connections

to many other subject areas. It is also rich in concepts

(for example variables, binary numbers, or the ‘fetch,

decode, execute’ cycle). While some are quite tangible, many

are very abstract in nature. As an educator, it can be easy to

get distracted by the technology, tool, programming language,

or context that your learners are using. However, it is the

concepts that should be the main focus of any teaching. With

a rich knowledge of these concepts, pupils can build a solid

understanding of all areas of computing, which can then be

applied to any new tools, contexts, programming languages,

and projects they encounter.

You can support learners’ conceptual understanding by

using key terms and vocabulary consistently to build a shared

understanding. Concepts can be explored and connected

using tools such as concept maps. You can also use glossaries

to help students define key terminology and

help them revise and revisit those terms in the

future. Regular recall and revision should form

part of your everyday practice, to ensure

that these concepts and the terms that

describe them become embedded in your

students’ understanding and vocabulary.

A IN THIS SECTION,
YOU WILL FIND:

 ■ What the research says:
concept maps

 ■ What the research says: using
non-programming activities to teach
programming concepts

 ■ Simplifying concepts

 ■ Learning graphs: tools to plan progression

The Big Book of Computing Pedagogy10

RESEARCH

A concept map captures knowledge
relevant to a focus question that provides
context for the map and helps direct its
construction and comprehension. Some
nodes in a map may not correspond to
concepts, but may be concrete examples
of concepts instead. Concept maps are a
means for “externalising cognition, making
mental models visible so that they can
be compared and combined”.2 As such,
they can be useful for representing the
knowledge of both educators and learners,
making them a versatile educational tool.

How to make them
Whether you want to use concept maps
for planning, to share with your learners,
or as a task for them to complete, you
can find examples online (helloworld.cc/
cmapex), and a guide to constructing them
follows below.

oncept maps are “graphical tools
for organising and representing

knowledge”.1 In education, they can
capture the knowledge of subject experts,
educators, and learners, so they can be
used for planning, teaching, learning, and
assessment. A related set of concepts
is shown in boxes (nodes) with lines
connecting them to indicate relationships.
These links are labelled (unlike in mind
maps) to describe the relationships
between them. Therefore, following a link
between concepts forms some meaning
or a short proposition. For example, in a
concept map about data structures, you
are likely to find the proposition: list → is
an example of a → data structure.

Concepts may be structured in a
hierarchy. Links that span across different
branches of the hierarchy are called cross-
links, and uncover deeper connections.

Determine the focus question: Specify what
the knowledge represented in a concept
map will be about. The focus question
can be broad, such as, “How are images
represented using binary digits?” or specific,
such as, “How does this piece of code work?”

Populate a short list of concepts:
Determine the list of concepts, ideas, or
keywords that are relevant to the focus
question. If it makes sense, order them
according to how general they are, or how
relevant they are to the focus question.
This is the first step towards structuring the
concepts into a hierarchy.

Explore the relationships between
concepts: Link related concepts with an
arrow and label the links to specify their
relationships. You should be able to form a
meaningful statement when following a link
from one concept to another.

Improve and refine: Building concept maps
is always an iterative process, and concept
maps should never be considered finished.

When using concept maps with learners,
the process of constructing them, or even
simply reading and interpreting them, must
be modelled by the educator. Building a
concept map can also be a collaborative
activity between either the learners and the
educator or small groups of learners.

How they can be used in education
Educators can use concept maps to capture
the knowledge that they aim to convey to
their learners. Concept maps have a specific
structure, which places restrictions on their
expressive power. Therefore, in order to
represent knowledge with a concept map,

CONCEPT MAPS

C

These versatile educational tools can help learners and
educators capture, communicate, and assess knowledge

n Concept maps can be used to represent the knowledge of both teachers and learners Credit: Vasily Merkushev/stock.adobe.com

http://helloworld.cc/cmapex
http://helloworld.cc/cmapex
http://stock.adobe.com

The Big Book of Computing Pedagogy 11

RESEARCH

educators have to break that knowledge
down into short propositions. This is a
challenging but illuminating process of
introspection and iterative refinement that
will help them create a representation
of their teaching content in a simple,
distilled form.

Concept maps that capture subject
knowledge can be used by educators in
a variety of ways. They can inform the

planning of a lesson or sequence of lessons;
they can serve as a means of communication
with other educators, especially if they are
drawn collaboratively; and they can also be
used to support teaching and assessment.

Concept maps can be presented to
learners as a supplementary way to provide
or summarise information. Educators
should start with a minimal skeleton map
that will be iteratively extended when new

knowledge is introduced, which will support
learners to organise this new information
and connect it to existing schemas (clusters
of connected ideas). Concept maps can also
be used as study guides and revision tools.

Finally, they can be used for assessment
in a number of ways. For example, educators
could ask learners to fill in concepts or
links, or to extend an existing concept map.
Learners could repeat this process over

several lessons: they could start with a
short list of concepts, which they could then
incorporate into their concept maps as the
lessons progress. This would help identify
misconceptions or gaps in understanding
at every step. Educators could use these
activities to aid recall or assess prior
knowledge, or to prompt learners to
summarise new concepts while connecting
them to form propositions.

CONCEPT MAPS ARE USEFUL FOR
REPRESENTING THE KNOWLEDGE OF
BOTH EDUCATORS AND LEARNERS

“

SUMMARY
Components

 n Concepts, which are often arranged in a
hierarchy, form the basis of concept maps.

 n Links connect the concepts to indicate
relationships between them. Cross-links
are links across different branches of
the hierarchy.

 n Labels on the links (usually verbs) specify
the relationships between the concepts.

 n A focus question provides context for the
concept map and guides its construction.

 n Propositions, or units of meaning, are
formed by following a link from one
concept to another, e.g. “A concept map
answers a focus question.”

 n In a concept map, examples are instances
of concepts that may be included to make
concepts clearer and more concrete.

Construction
 n Determine the focus question
 n Shortlist (and possibly order) the

relevant concepts
 n Connect concepts from the shortlist to

form propositions
 n Proceed iteratively; connecting,

rearranging, and refining

Uses
 n Informing the planning of

learning experiences
 n Facilitating communication and

collaboration between educators
 n Presenting or summarising information

for learners
 n Supporting learners to connect new

information to existing knowledge
 n Assessing learners’ prior knowledge,

misconceptions, and understanding of
new information

For concept maps to have a positive impact,
they need to be a fully integrated feature of
the teaching and learning process.

The Big Book of Computing Pedagogy12

RESEARCH

the connections between concepts. Their
potential to enhance learning, retention,
and transfer is often linked to cognitive
load theory: as learners struggle to identify
concepts, and as the connections between
concepts place a burden on working memory,
concept maps aid schema construction
within long-term memory by “serving as a
kind of template or scaffold to help organise
knowledge and to structure it, even though
the structure must be built up piece by
piece”.¹ This links back to the suggestion
that concept maps should be developed
iteratively, through “an orderly sequence of
iterations between working memory and
long-term memory, as new knowledge is
being received and processed”.1

There are many ways in which you can
use this beneficial educational tool. You can
find examples at helloworld.cc/cmapex, and
use them to support trialling this planning,
learning, and assessment technique in
your classroom.

Concept maps should be tightly
integrated into the teaching and
learning process, and they should only
be used for assessment if they have
been consistently used in teaching.

Why they should be used
There is sufficient evidence to suggest
that an integrated use of concept maps
in teaching can be beneficial to learners,
especially less confident learners, or those
who struggle with reading.3, 4, 5

Concept maps represent knowledge
visually, highlighting the structure and

REFERENCES
1 Novak, J. D., & Cañas, A. (2008). The Theory
Underlying Concept Maps and How to Construct
and Use Them. Florida Institute for Human and
Machine Cognition. helloworld.cc/concept1
2 Wilson, G. (2019). Teaching Tech Together. CRC
Press. helloworld.cc/concept2
3 Nesbit, J. C., & Adesope, O. O. (2006). Learning
With Concept and Knowledge Maps: A Meta-
Analysis. Review of Educational Research, 76(3),
413–448. helloworld.cc/concept3
4 Horton, P. B., McConney, A. A., Gallo, M., Woods, A.
L., Senn, G. J., & Hamelin, D. (1993). An investigation
of the effectiveness of concept mapping as an
instructional tool. Science Education, 77(1), 95–111.
helloworld.cc/concept4
5 Cañas, A. J., Coffey, J. W., Carnot, M. J., Feltovich,
P., Hoffman, R. R., Feltovich, J., & Novak, J. D. (2003).
A Summary of Literature Pertaining to the Use of
Concept Mapping Techniques and Technologies
for Education and Performance Support. Florida
Institute for Human and Machine Cognition.
helloworld.cc/concept5

CONCEPT MAPS
REPRESENT
KNOWLEDGE
VISUALLY

“

n Concept maps can be used as study or revision tools

Credit: Prostock-studio/stock.adobe.com

http://helloworld.cc/cmapex
http://helloworld.cc/concept1
http://helloworld.cc/concept2
http://helloworld.cc/concept3
http://helloworld.cc/concept4
http://helloworld.cc/concept5
http://stock.adobe.com

The Big Book of Computing Pedagogy 13

RESEARCH

time, whereas others might not be able to
distinguish between what goes inside a loop
and what precedes a loop. Although visual
block-based programming environments
such as Scratch, Alice, and Snap! have
helped with navigating through different
concepts, students still find it difficult to
make sense of programming languages.

For this study, the research team designed
non-programming activities to help students
engage with and understand the foundation
of programming concepts. Activities such as
Story Variables and Cats and Ladders were
designed to encourage students to come up
with a definition of a variable collaboratively,

rogramming takes place on a
computer, but research has shown

the potential of using non-programming
activities to teach concepts to novice
learners. The study, conducted by Shuchi
Grover and her colleagues at three urban
schools in the US, included 16 non-
programming activities over a 20-day
programme. The research team found
that the learning gains from students who
followed the intervention were significantly
higher than those of students who followed
the regular computer science curriculum.

From the moment learners engage with
any programming language or tool, they will
encounter variables, expressions, loops, and
abstraction — the VELA concepts — in one
way or another.

Some learners struggle with these
concepts, as they assume that variables
can have multiple values at the same

USING NON-PROGRAMMING
ACTIVITIES TO TEACH

PROGRAMMING CONCEPTS
P

STORY BY Thom Kunkeler

before applying this definition in practice. In
the first activity, students discussed multiple
examples in which variables were present,
such as: “Last week, I bought a pen for
$1.50; now it costs $3”, to identify what the
variable is and how it changes over time.

In the second activity, students put their
definition into practice by determining
the length of a ladder required to reach
distraught cats in Cats and Ladders.
Students produced a range of possible
values that were needed to rescue the
cats, and engaged in abstraction by
synthesising new variables based on
existing ones. Try the activities yourself!

PROGRAMMING
LANGUAGES CAN
BE HARD TO GRASP

“

FURTHER READING

 Grover, S., Jackiw, N., & Lundh, P.
(2019). Concepts before coding:
non-programming interactives to
advance learning of introductory
programming concepts in middle
school. Computer Science Education,
29(3) 1-30. helloworld.cc/nonprog

During the 20-day research intervention,
students participated in 16 activities. The
research team gathered data based on a pre-
and post-assessment of students’ introductory
programming skills, analysis of their Scratch
projects, and interviews with teachers and
students. There were higher learning gains
for students following the intervention, but

the findings were not linked to gender or
prior academic preparation, and all grades
participating in the study showed similar
learning gains. For teachers, these findings
should be taken as an incentive to experiment
with using non-programming activities to help
with teaching difficult concepts. Give some of
these non-programming activities a go!

TRY IT FOR YOURSELF!

Examples of activities Description

Story Variables
Introducing the idea of changing quantities in the real world
and giving them meaningful names

Cats and Ladders
Naming variables and creating expressions in a non-
programming context

Three Switches
Turning light switches on and off using Booleans, Boolean
operators, and abstractions

Alarm Clock
Modelling real-world alarm clock situations using variables,
arithmetic, logical expressions, and abstractions

http://helloworld.cc/nonprog

14

FEATURE

The Big Book of Computing Pedagogy

How do you decide when to teach a concept the right way, and when to simplify it?

THE CODE’S NOT ALL RIGHT
t’s a pretty common classroom task
— you have some data of various

types, and you want to teach students how
to print the data out as part of a sentence,
using Python. Here’s my example data:

number = 1
person = “Scott”

The exam board wants students to know
how to concatenate, so you might choose to
teach the + operator, although it’s a bit of a
pain that the students will also have to put
the spaces in the right place and remember
to cast the integer to a string:

print(“Thunderbird ” +
str(number) + “ is piloted by
” + person)

Alternatively, you might teach your
students to separate the different parts
with commas to avoid the casting issue. You
either don’t realise, or choose to disregard,
that this isn’t actually concatenation: it’s
taking advantage of the way Python’s pri
nt() function works:

print(“Thunderbird”, number,
“is piloted by”, person)

You could also choose to avoid the
casting issue in a different way by teaching
format(), but will this confuse the students?

print(“Thunderbird {} is
piloted by {}”.format(number,
person))

There are probably multiple other ways
to achieve the same goal, each with their
own benefits and drawbacks. Some people
will argue vehemently for one or another
(there’s a long-running debate about
format() within the Raspberry Pi Education
Team!), but which one is right?

Building a mental model
When teaching beginners, there is a
conflict to resolve: should you teach the
way a more experienced programmer
might approach a task, or teach the learner
to use a suboptimal method, which either
produces quick results or allows them to
better access and build a mental model of
what the program is doing?

When I was a teacher, I frequently
shared resources online, to help others
and save my fellow teachers valuable
time. Occasionally I would receive
feedback on my resources from IT
professionals — some was extremely
helpful, and some was less so. The helpful
feedback felt collaborative and helped
improve the outcome for children. These
professionals helped me to improve
my subject knowledge by providing a
friendly suggestion of an alternative way

I to approach a problem, where I hadn’t
realised that a different approach existed.
This was extremely welcome, and I am
indebted to people such as David Whale,
Martin O’Hanlon, and Andy Stanford-Clark
for their generous mentoring.

I would also sometimes receive feedback
on my resources from IT professionals
which highlighted occasions when I had
deliberately made a decision to teach
a concept in a suboptimal way, for a
pedagogical reason. These developers
pointed out so-called flaws and suggested
what they thought were better ways of
doing things, but they often forgot that, just
because they are good at programming,
that doesn’t necessarily mean that they
are good at teaching programming. I’ve
encountered developers who expect
eight-year-olds to have mastery of
concepts that are not introduced until A

n What thought processes do learners go through to create a simple game? Cr
ed

it:
 M

on
ke

y B
us

ine
ss

/s
to

ck
.ad

ob
e.c

om

15

FEATURE

The Big Book of Computing Pedagogy

level, and who forget that much of what
they know is not basic, obvious, or picked
up by telling a child once.

No shortcuts to failure
It is sometimes difficult for a teacher
to take off their experience goggles
and notice when they are cutting short
a learner’s thinking process. Here’s a
recent example from when I was writing
the Raspberry Pi resource SLUG!
(helloworld.cc/slug). The project is a clone
of the classic Snake game, in which the
player moves the slug around an 8 × 8

LED matrix, and red vegetables appear at
random locations for the slug to eat.

The algorithm I gave the learners to
implement, to randomly create vegetables
and display them on the LED matrix, was
as follows:

n Pick an x, y random coordinate on the
LED matrix

n Check whether this coordinate is currently
inhabited by the slug

n If it is, repeat steps one and two until you
pick a location that is outside the slug

n Draw the vegetable on the LED matrix

n Store the vegetable’s coordinate in a list
of vegetables

When my colleague tested the resource,
they asked, “Why are you storing the
vegetable’s coordinates in a list?” I realised
I had imposed my own shortcut, drawn
from my experience, on the learners
without intending to, and without realising
that I had done so.

I knew from experience that later on in
the program, you would need to know:

1. How many vegetables existed on the
screen (to avoid having too many)

2. Whether the slug was moving into
a coordinate containing a vegetable
(to eat it)

Both of these would require a record of
the vegetables. I was neatly sidestepping
a problem before it had happened, and
providing a more efficient approach.
However, the learner’s goal, at that point,
was simply to see the vegetables appear.
Sometimes, you purposely want to allow
your learners to fall into holes and write
inefficient code, so that they understand
why they have to improve it!

Which approach is right?
Perhaps disappointingly, I don’t have the
silver bullet answer. It depends entirely
on your learners — and that’s why you’re
a teacher, and your job is safe from being
taken over by robots! In my opinion, you
should decide how to teach concepts
in the way that provides the greatest
benefit to the learners you have. Are you
using the turtle module with some young
kids who struggle with typing? Go ahead
and use from turtle import * so
there’s less for them to type. Perhaps your
GCSE class is particularly good this year,
so why not throw in some dictionaries
and make a GUI? Is there an Oxbridge
hopeful in your A-level class? Show them
several different approaches, and have
a conversation about the benefits and
drawbacks of each.

It’s usually at this point that someone
says, “I can’t believe you’re condoning
teaching students things that are wrong
— you’re a terrible teacher!” To be totally
clear, I am not advising you to deliberately
teach bad practice (this is not a free pass
to use break!). Instead, I am saying that
it’s sometimes acceptable to simplify
concepts which introduce inefficiency.
It’s true that if you teach a programming
concept in a simplified way so that a
learner can understand it, you may later
find it hard to persuade the learner to

SOMETIMES, YOU WANT TO ALLOW
YOUR LEARNERS TO FALL INTO HOLES
AND WRITE INEFFICIENT CODE

“

abandon their safety blanket and adopt a
better programming practice. However,
some students will never make it to later if
you made the starting hurdle too high for
them to begin with. Which is best? Only
you can decide.

You have a list of numbers represented
as strings. You want to convert them all
to integers.

numbers = [“23”, “534”,
“52”, “98”, “87897”]

One method a student might use to
achieve this would be to iterate through the
list of numbers, converting each to an integer
in turn and adding the result to a new list.

method1 = []
for n in numbers:
 method1.append(int(n))

However, an experienced developer might
use a more efficient list comprehension:

method2 = [int(n) for n
in numbers]

Which method is the best one to teach
your learners?

HONEY, I SHRUNK
THE CODE

LAURA SACH
Laura is a former head of department
and has many years’ experience teaching
computer science in the classroom. She
now leads the A level content team for
Isaac Computer Science at the Raspberry Pi
Foundation (@codeboom).

16

FEATURE

Carrie Anne Philbin outlines an approach to mapping the computing curriculum

progression framework is the
backbone of any subject curriculum.

It illustrates the sequence in which pupils
learn, noting where they establish a
core understanding of a topic in order to
progress. As part of the National Centre for
Computing Education, my team developed
a bank of teaching resources that deliver
the computing curriculum in England.
In order to do this successfully, we
studied a lot of progression frameworks,
examination specifications, and even
some research papers. We found that
there are two quite different ways of
presenting progression that show what
should be taught and when it should be
taught, as well as information on how or
why concepts should be taught.

A The first approach is to create a
categorisation of skills and concepts in a list
or table. Sequencing is shown by having
objectives listed by Key Stage (learning
stages in England), year group, or the age
of the learners. Examples of this approach
include the Computing at School computing
progression pathways (helloworld.cc/path),
and the Massachusetts Digital Literacy and
Computer Science Curriculum Framework
(accessible from helloworld.cc/standards).
They are essentially lists of required
knowledge, bundled by theme.

Another approach is to use a map of
possible trajectories through learning
waypoints — key building blocks of
learning — and how they connect to
each other. This approach highlights

CARRIE ANNE PHILBIN
Carrie Anne is director of educator
support at the Raspberry Pi Foundation,
leading the development of resources to
teach computing.

LEARNING GRAPHS: TOOLS
TO PLAN FOR PROGRESSION

http://helloworld.cc/path
http://helloworld.cc/standards

The Big Book of Computing Pedagogy 17

FEATURE

where prerequisite knowledge needs to
be mastered before students can move
on, as well as the dependent knowledge
contained in other nodes (represented
by the boxes in the graphs; see image
above), each containing one part of the
computing curriculum that needs to be
mastered in order to progress. Cambridge
Mathematics (cambridgemaths.org) is
leading the way in “developing a flexible
and interconnected digital framework to
help reimagine mathematics education
3–19”. We’ve been lucky enough to learn
from their work, which has helped us to
create learning graphs.

A tool for teachers
The learning graphs organise computing
content — concepts, knowledge, skills, and
objectives — into interconnected networks.
We found that nodes often form clusters
corresponding to specific themes, and
we could connect them if they represent
two adjacent waypoints in the learning
process. Depending on the context, the

nodes in a learning graph could contain
anything, from the contents of a curriculum
strand across an entire Key Stage, to the
learning objectives of a six-lesson unit.
When our team started working on a
unit, the learning graphs were in a fluid
state: the team would first uncover the
structure of the content and the possible
journeys through it, without being bound
to a specific teaching pathway. The graphs
would eventually reach a fixed state, where
the nodes were further structured and
arranged to reflect our suggestions on the
order in which the content could actually
be delivered.

We believe that learning graphs can be
useful to teachers on a whole new level.

They directly inform lesson planning,
but they also add value by showing
opportunities to assess understanding
at landmark points in a lesson or unit. By
checking that students are grasping the
concepts, teachers are able to think more
about how they are teaching. They can
revisit knowledge that perhaps didn’t land
with learners the first time.

All progression frameworks are
subjective, and with little research into
computing education, we rely on
teachers’ experience of combining the
what we teach and how to teach it, to
help inform this work. If you’ve not taken
a look at our learning graphs, you can
access them via helloworld.cc/tcc.

LEARNING GRAPHS SHOW OPPORTUNITIES
TO ASSESS LEARNERS’ UNDERSTANDING AT
LANDMARK POINTS IN A LESSON OR UNIT

“

n In this learning graph for Python programming with Year 8 pupils, solid arrows show prerequisites while dotted arrows show a suggested order of learning

http://cambridgemaths.org
http://helloworld.cc/tcc

STRUCTURE
LESSONS

20 COGNITIVE LOAD THEORY
22 THE PRIMM APPROACH
25 UNIVERSAL DESIGN FOR

LEARNING IN COMPUTING
28 CODING AND 21ST-CENTURY SKILLS
30 COULD CURRICULUM DESIGN

BE AS SIMPLE AS ABC?

The Big Book of Computing Pedagogy 19

s in any other subject, computing lessons benefit

from structure, planning, and a well-thought-out

learning journey. There are several frameworks that

educators can use to help them structure their computing

lessons. For instance, before asking students to create

something new, you might ask them first to use an existing

example and modify it before moving on to creating their

own. This is the Use–Modify–Create framework, and it can be

really useful in helping learners to progress from working with

examples created by experts to building something that they

understand and own themselves.

If we think specifically about programming, a well-evidenced

and popular framework that has been developed over the last

few years is PRIMM. This acronym stands for Predict–Run–

Investigate–Modify–Make, representing the different stages of

a lesson or series of lessons.

Structuring lessons using such frameworks

ensures that differentiation can be built

in at various stages of the lesson. It also

helps to reduce cognitive load and ensures

that students are supported, engaged, and

challenged at the right moments.

A IN THIS SECTION,
YOU WILL FIND:

 ■ What the research says:
cognitive load theory

 ■ What the research says:
using PRIMM

 ■ What the research says: the
Universal Design for Learning
framework in computing

 ■ Coding and 21st-century skills: a
framework

 ■ The ABC curriculum design process

The Big Book of Computing Pedagogy20

RESEARCH

ability to process the information we’re
presented with.

As we learn from our experiences, new
information is stored in our long-term
memory for future recall. Over time, these
disparate elements of information are
connected with existing understanding
into collections of related knowledge, or
schemas. The goal of effective learning
design should be to facilitate the
movement of new ideas and information
from working memory into conceptually
sound schemas.

Balancing the load
Sweller’s1 2 research suggests that there are
two key stresses, or cognitive loads, acting
on the learner during a learning episode:
intrinsic load and extraneous load. The
intrinsic load placed on the learner relates to
the complexity (number of and interactivity

ognitive load theory (CLT) is a
learning theory concerned with the

limits of our working memory. There are
many instructional methods that educators
can use to avoid overloading working
memory to maximise learning experiences.
Computing educators should consider how
they can structure lessons and present
materials in light of this theory.

A model of cognition
CLT builds on the idea that human memory
has two distinct areas: short-term working
memory and long-term memory. While
our long-term memory can be seen as
essentially infinite, our working memory
is extremely limited, with different studies
suggesting a processing capacity of
between three and nine pieces of novel
information.1 This capacity can easily
become overloaded, impacting on our

of elements) of the concept(s) or skill(s) being
taught, the gap between the new learning
and their existing understanding, and any
misconceptions they already hold. Educators
should take steps to optimise intrinsic load
wherever possible.

The manner in which new concepts are
presented, explored, and applied can lead
to an unnecessary extraneous load being
placed on the learner. Having to juggle too
much new information, or unnecessary
information, from multiple sources can place
an increased load on the learner. Through
considered instructional design, educators
can minimise the extraneous load in
their activities.

Managing intrinsic load
As outlined, intrinsic load stems from
the gap between the learner’s existing
understanding and the new knowledge,
and the complexity of the new concept or
skill being taught. In seeking to reduce the
load placed on learners, we need to reduce
this gap. Educators should ensure that they
are aware of prerequisite knowledge and
learners’ existing understanding. When
planning the progression between concepts,
it can be helpful to use learning graphs,
which map connections and dependencies
between concepts (see page 16).

Break the learning up into smaller tasks, or
even individual elements. After being taught

COGNITIVE LOAD THEORY

C

Thoughtful instructional design and structure can help avoid overloading
working memory and maximise learning experiences in computing

OUR WORKING
MEMORY IS
EXTREMELY
LIMITED

“

n Educators should consider the cognitive, intrinsic, and extraneous load put on learners when they introduce and present new concepts

The Big Book of Computing Pedagogy 21

RESEARCH

in isolation, these elements can be revisited,
and connections made between them. This
is useful for highly complex concepts, but a
balance is needed in the classroom, where
teaching time is constrained and breaking
down too far could result in a lengthy and
disjointed learning sequence.3

Optimising instructional design
To manage the extraneous load placed on
learners, consider how you present your
materials. There are a number of observable
effects in CLT that positively or negatively
affect the cognitive load that learners
experience. See the table above for some
effects that are relevant to the teaching of
computing, and how you can both employ
and avoid them.

SUMMARY
Human memory

 n Working memory is extremely limited, with
capacity for as few as three to nine new
ideas at once

 n Long-term memory has no known limits
 n Learning occurs when new knowledge is

transferred from working memory to long-
term memory

 n Schemas are structured collections of
prior learning that can be recalled from
long-term memory

 n Schemas only occupy a single space in
working memory

Cognitive load theory
 n Cognitive load is a stress on a learner’s

working memory, reducing their ability to
acquire new learning

 n Intrinsic load relates to the complexity
of the learning task and the learner’s
existing understanding

 n Extraneous load is any additional stress
placed on the learner due to the way in
which the material is presented

Managing intrinsic load
 n Awareness of learners’ prior experience

and understanding helps to predict where
cognitive overload may occur

 n Breaking down the learning into suitable
learning episodes can help manage
cognitive load

Implications for instruction
 n Combine text and graphics when

presenting, and remove irrelevant detail
 n Present information both visually and

orally, as appropriate, without adding
additional load

 n Use worked examples to provide
scaffolding for novices

 n Use collaborative techniques such as
pair programming, which distribute the
cognitive load among learners

REFERENCES
1 Sweller, J., van Merriënboer, J. J. G., & Paas, F.
(2019). Cognitive Architecture and Instructional
Design: 20 Years Later. Educational Psychology
Review, 31(2), 261–292. helloworld.cc/cognitive1
2 Sweller, J. (1988). Cognitive Load During Problem
Solving: Effects on Learning. Cognitive Science, 12,
257–285. helloworld.cc/cognitive2
3 Reif, F. (2008). Applying Cognitive Science To
Education: Thinking And Learning In Scientific And
Other Complex Domains. MIT Press. helloworld.cc/
cognitive3
4 Mühling, A. (2016). Aggregating concept map
data to investigate the knowledge of beginning
CS students. Computer Science Education, 26(3),
176–191. helloworld.cc/cognitive4

EFFECT
IMPLICATIONS FOR
COMPUTING EDUCATORS

Split attention effect
Learners must combine information
from multiple sources, which increases
cognitive load

 n Combine diagrams with labels and related explanations
 n Annotate programs using comments, in particular identifying

common sections or patterns, known as sub-goals

Redundancy effect
Learners must process and disregard
repeated or unnecessary information,
which increases cognitive load

 n Avoid redundant information in diagrams and explanations
 n Use accessible language
 n Minimise ‘boilerplate code’ (having to write a lot of code to

accomplish only minor functionality)

Transient information effect
Information that doesn’t persist must
be stored in working memory, which
increases cognitive load

 n Provide learners with programming cheat sheets or
reference guides

 n Share or create concept maps4 with learners, and highlight
concepts and their relationships, to provide scaffolding and
reference material

Multimodal effect
Visual and oral information are
processed separately, which reduces
cognitive load

 n Combine static images, animations, and oral presentation to
spread the load

 n When modelling a process, narrate or prompt self-explanation
of the thought process to make it visible to learners

Worked example effect
Worked examples provide learners with
scaffolding and support to develop
generalised solutions, which reduces
cognitive load

 n Use partially or fully worked examples to provide possible
solutions to problems, e.g. programming tasks, binary/denary
conversions, compression algorithms, etc.

 n Use worked examples to model problem-solving processes,
including specifying, decomposing, prototyping, and testing

Collective working memory effect
Task elements are shared between a
group, which reduces cognitive load

 n Use techniques such as pair programming to share work
between learners and thereby spread the load

 n Poor communication between learners can add a cognitive
load cost, which could eliminate the benefits of this effect

http://helloworld.cc/cognitive1
http://helloworld.cc/cognitive2
http://helloworld.cc/cognitive3
http://helloworld.cc/cognitive3
http://helloworld.cc/cognitive4

The Big Book of Computing Pedagogy22

RESEARCH

the output. At this level, the focus is on the
function of the code.

Run: Students run the provided starter
program so that they can test their
prediction and discuss it with their peers.

Investigate: The teacher provides a range
of activities to explore the structure of the
code. This could include tracing, explaining,
annotating, and debugging.

Modify: Students edit the program to
change its functionality via a sequence of
increasingly challenging exercises. The
transfer of ownership moves from the code
being ‘not mine’ to ‘partly mine’ as students
gain confidence by extending the function
of the code.

RIMM is an approach that can
help teachers structure lessons

in programming. PRIMM stands for
Predict– Run–Investigate–Modify–Make,
representing the different stages of
a lesson or series of lessons. PRIMM
promotes discussion between learners
about how programs work, and the use
of starter programs to encourage the
reading of code before writing it.

The five stages of PRIMM
Educators work their way through
the following stages when using the
PRIMM approach:

Predict: Students discuss a starter program
and predict what it might do. They can
draw or write out what they think will be

Make: Students design a new program that
uses the same structures, but solves a new
problem (that is, has a new function).

You may not be able to go through all the
stages in one lesson, and you may focus
on one stage more than another. Using
the PRIMM framework gives you a way of
labelling what you are doing when you are
teaching programming.

The PRIMM approach builds and draws
on other research in computing education,
including Use-Modify-Create1, tracing
and reading code before writing2, the
Abstraction Transition Taxonomy3, and
the Block Model4. The focus on language
and talk, and the use of starter programs,
draw on sociocultural perspectives on how
children learn programming.

THE PRIMM APPROACH

P

A scaffolded approach to structuring programming lessons,
PRIMM encourages students to read code before they write it

n Planning a lesson using PRIMM

The Big Book of Computing Pedagogy 23

RESEARCH

Encouraging talk in the classroom
Classroom discussion is an important
aspect of the teaching of many subjects, but
it isn’t often referred to when it comes to
the teaching of programming. Many PRIMM
activities are carried out in pairs, and we
already know that pair programming is
an effective form of learning, and involves
learners practising articulating what to do
when writing a program. PRIMM goes a
step further and encourages Predict and
Investigate activities to be carried out
in pairs or small groups, away from the
computer. This has the following benefits:
n Talking about a program and how it works

helps learners to find the right terminology
to use to articulate their understanding.

Having a common language to talk about
programming constructs is important

n Actually verbalising out loud the steps of
a program that are difficult to understand
can help learners to focus on smaller
elements at a time

n Through dialogue with others, we can
ask and answer questions, and learn
from others

Read before you write
The first activity in a PRIMM-like lesson
involves predicting what a small segment of
code will do when it is run. It doesn’t require
stating how it will do that, just the outcome.
This shouldn’t be an assessed exercise, so
that all children are encouraged to have a
go, and it’s important that it is low stakes.
Sometimes the output can be drawn, and
sometimes the teacher will provide some
sample inputs, depending on what kind of
code it is.

SUMMARY
PRIMM is a way of structuring programming
lessons that focuses on:

 n Reading code before you write it
 n Working collaboratively to talk about

programs
 n Reducing cognitive load by unpacking and

understanding what code is doing
 n Gradually taking ownership of programs

when ready

The five stages of PRIMM are:

Predict
 n Focus on the function of the code
 n Encourage discussion
 n Work in pairs or threes

Run
 n Provide students with working code to run
 n Learners check against predictions

Investigate
 n Use a variety of activities, such as tracing,

annotating, and questioning
 n Encourage students to discuss and work

with the code in pairs or small groups

Modify
 n Modify code in small steps to add new

functionality
 n Apply what has been learnt about the

structure of the code
 n Gradual increase in difficulty

Make
 n Create a new program
 n Practise the programming skills that have

been learnt
 n Can be a design task or an open task

Does it work?
 n A study in 2018 with 500 learners aged

11–14 showed improved learning outcomes
after 8–12 weeks of programming lessons
using PRIMM5

 n PRIMM has been put into practice by many
teachers in primary and secondary schools
around the world

n The five stages of the PRIMM approach to structuring
programming lessons

PRIMM BUILDS
AND DRAWS
ON DECADES
OF RESEARCH

“

n PRIMM encourages students to work together and discuss their problem-solving Credit: stock.adobe.com/kegfire

http://stock.adobe.com/kegfire

The Big Book of Computing Pedagogy24

RESEARCH

does not experience the emotional angst
if it doesn’t work. That’s why in PRIMM,
the Run stage involves running a program
provided on a shared drive to check the
prediction. Gradually, once the student
has some understanding of how the code
works, they can modify the code and take
ownership of the new functionality.

Drawing on sociocultural theory
Social constructivism, in particular the
work of the psychologist Vygotsky,
can frame our understanding of novice
programmers and their learning. This
interpretation of the learning process can
help us to develop effective pedagogical
strategies. Vygotsky proposed that
mediated activity promotes higher
mental processes, and identified three
major forms of mediation: material tools,
psychological tools (including language),
and interaction with other human beings.
Mediation allows learners to act as
apprentices before internalising new
ideas, and sociocultural theory suggests
that movement from the social plane to
the cognitive plane supports the learning
of skills and knowledge7. With the PRIMM
approach, the starter programs that are
shared and discussed can be seen as
being on the social plane, with a mediated
progression to the cognitive plane once
they are understood and internalised.5

If you want to delve deeper into
PRIMM, see page 84 for more about the
Investigate stage.

This aspect of PRIMM builds on decades
of research that has shown that reading
code before writing it is an effective way
to learn programming. For example, work
by Lister and colleagues over many years
highlighted the importance of reading code
and being able to trace what it does before
writing new code. Comparing tracing skills
to code writing, they demonstrated that
novices require a 50 percent tracing code
accuracy before they can independently
write code with confidence.6

Not starting from scratch
It can be very stressful for novice
programmers to write code into a blank
editor window. The syntax needs to be
right, or quite intimidating error messages
can appear. It’s easy to be put off having
a go, or for teachers to resort to getting
students to copy code that they don’t yet
understand. By running a program that the
teacher has written, the learner doesn’t
have ownership of that starter program and

REFERENCES
1 Sentance, S., Waite, J., & Kallia, M. (2019).
Teaching computer programming with PRIMM:
a sociocultural perspective. Computer Science
Education. 29(2–3), 136–176 helloworld.cc/primm1
2 Lee, I. et al. (2011). Computational thinking
for youth in practice. ACM Inroads. 2(1), 32–37.
helloworld.cc/primmref2
3 Lister, R. et al. (2004). A multi-national
study of reading and tracing skills in novice
programmers. ACM SIGCSE Bulletin. 36(4), 119–150.
helloworld.cc/primm3
4 Cutts, Q. et al. (2012). The abstraction transition
taxonomy: developing desired learning outcomes
through the lens of situated cognition. Proceedings
of the Ninth Annual International Conference on
International Computing Education Research. New
York, ACM. 63–70. helloworld.cc/primm4
5 Schulte, C. (2008). Block Model: An Educational
Model of Program Comprehension as a Tool for a
Scholarly Approach to Teaching. Proceedings of
the Fourth International Workshop on Computing
Education Research. New York, ACM. 149–160.
helloworld.cc/primm5
6 Venables, A., Tan, G. & Lister, R. (2009). A closer
look at tracing, explaining and code writing
skills in the novice programmer. Proceedings of
the Fifth International Workshop on Computing
Education Research. New York, ACM. 117–128.
helloworld.cc/primm6
7 Walqui, A. (2006). Scaffolding instruction for
English language learners: A conceptual framework.
International Journal of Bilingual Education and
Bilingualism. 9(2), 159–180. helloworld.cc/primm7

n Reading code before writing it is a key element of PRIMM

n Running someone else’s code first can remove emotional angst for novice programmers

Credit: Tasty Content/stock.adobe.com

http://helloworld.cc/primm1
http://helloworld.cc/primmref2
http://helloworld.cc/primm3
http://helloworld.cc/primm4
http://helloworld.cc/primm5
http://helloworld.cc/primm6
http://helloworld.cc/primm7
http://stock.adobe.com

25

RESEARCH

The Big Book of Computing Pedagogy

niversal Design for Learning (UDL)
is a framework for considering

how tools and resources can be used to
reduce barriers and support all learners.
Based on findings from neuroscience, it
has been developed over the last 30 years
by CAST, a nonprofit education research
and development organisation based in
the USA. UDL is currently used across
the globe, with research showing that it
can be an efficient approach for designing
flexible learning environments and
accessible content.

Engaging a wider range of learners
is an important issue in computing,
which is often not chosen as an optional
subject by girls or those from some
minority ethnic groups. Researchers at

the Creative Technology Research Lab
(CTRL) in the USA have been investigating
how UDL principles can be applied to
computer science, to improve learning
and engagement for all students. They
have adapted the UDL guidelines to a
computing education context and begun to
explore how teachers use the framework
in their own practice. The hope is that
understanding and adapting how the
subject is taught could help to increase the
representation of all groups in computing.

A scientific approach
The UDL framework is based on
neuroscientific evidence that highlights
how different areas or networks in the brain
work together to process information during

U learning. Importantly, there is variation
across individuals in how each of these
networks functions and interacts with
each other. This means that a traditional
approach to teaching, in which a main task
is differentiated for students with special
educational needs, may miss out on the
variation in learning between all students
across different tasks.

The guidelines highlight opportunities to
consider learner differences when planning
lessons. The framework is structured
according to three main principles, which
are directly related to three networks in the
brain that play a central role in learning.
It encourages educators to plan multiple,
flexible methods of engagement in learning
(affective networks), representation
of the teaching materials (recognition
networks), and opportunities for action
and expression of what has been learnt
(strategic networks).

The three principles of UDL are each
expanded into guidelines and checkpoints
that allow educators to identify the
different methods of engagement,
representation, and expression to be
used in a particular lesson. Each principle
is also broken down into activities that
allow learners to access the learning
goals, remain engaged and build on their
learning, and begin to internalise the
approaches to learning, so that they are
empowered for the future.

UNIVERSAL DESIGN FOR
LEARNING IN COMPUTING

STORY BY Hayley Leonard

Credit: Andrew Ebrahim/unsplash

26

RESEARCH

The Big Book of Computing Pedagogy

Each principle of the UDL framework is associated with three areas of activity that may be considered when planning lessons or units of work. It will not
be the case that each area of activity should be covered in every lesson, and some may prove more important in particular contexts than others. The
full table and explanation can be found at Israel, M., Lash, T., & Jeong, G. (2017). Utilizing the Universal Design for Learning Framework in K-12 Computer
Science Education. Project TACTIC: Teaching All Computational Thinking Through Inclusion and Collaboration. Retrieved from University of Illinois,
Creative Technology Research Lab website: helloworld.cc/ctrl.

Multiple means of
engagement

Provide options for recruiting interests
Give students choice (software, project, topic)

Allow students to make projects relevant to their
culture and age

Multiple means of
representation

Provide options for perception
Model computing through physical representations
as well as interactive whiteboard/videos, etc.

Select coding apps and websites that allow
adjustment of visual settings (e.g. font size/contrast)
and that are compatible with screen readers

Multiple means of
action and expression

Provide options for physical action
Include CS unplugged activities that show physical
relationships of abstract computing concepts

Use assistive technology, including a larger or
smaller mouse or touchscreen devices

Provide options for sustaining effort and
persistence
Utilise pair programming and group work with
clearly defined roles

Discuss the integral role of perseverance and
problem-solving in computer science

Provide options for language, mathematical
expressions, and symbols
Teach and review computing vocabulary (e.g. code,
animations, algorithms)

Provide reference sheets with images of blocks, or
with common syntax when using text

Provide options for expression and
communication
Provide sentence starters or checklists for
communicating in order to collaborate, give
feedback, and explain work

Provide options that include starter code

Provide options for self-regulation
Break up coding activities with opportunities
for reflection, such as turn and talk, or written
questions

Model different strategies for dealing with
frustration appropriately

Provide options for comprehension
Encourage students to ask questions as
comprehension checkpoints

Use relevant analogies and make cross-curricular
connections explicit

Provide options for executive function
Embed prompts to stop and plan, test, or debug
throughout a lesson or project

Demonstrate debugging with think-alouds

EXAMPLES OF UDL GUIDELINES FOR COMPUTER SCIENCE
EDUCATION FROM THE CREATIVE TECHNOLOGY RESEARCH LAB

Credit: CDC/unsplash

http://helloworld.cc/ctrl

27The Big Book of Computing Pedagogy

RESEARCH

in different formats (such as oral and visual
presentations and demonstrations). They
were less likely to provide multiple means
of action and expression, and mainly
addressed this principle through supporting
students in planning work and checking
their progress against their goals.

Although the study included only four
teachers, it highlighted the flexibility of
the UDL approach in catering for different
needs within variable teaching contexts.
More research will be needed in future,
with larger samples, to understand how
successful the approach is in helping a
wide range of students to achieve good
learning outcomes.

Find out more about using UDL
There are numerous resources designed
to help teachers learn more about the UDL
framework and how to apply it to teaching
computing. The CAST website (helloworld.
cc/cast) includes an explainer video and
the detailed UDL guidelines. The Creative
Technology Research Lab website has
computing-specific ideas and lesson plans
using UDL (helloworld.cc/ctrl).

Applying UDL to computer
science education
While an advantage of UDL is that
the principles can be applied across
different subjects, it is important to think
carefully about what activities to address
these principles could look like in the case of
computer science.

Researchers at CTRL, led by Maya Israel,
have identified key activities, some of which
are presented in the table on the opposite
page. These guidelines will help educators
anticipate potential barriers to learning and
plan activities that can overcome them,
or adapt activities from those in existing
schemes of work, to help engage the widest
possible range of students in the lesson.

UDL in the classroom
As well as suggesting approaches to
applying UDL to computer science
education, the research team at CTRL has
investigated how teachers are using UDL
in practice. Israel and colleagues worked
with four novice computer science teachers
in US elementary schools to train them
in the use of UDL and look at how they
applied the framework in their teaching.

The research found that the teachers
were most likely to include in their teaching
multiple means of engagement, followed
by multiple methods of representation. For
example, they all offered choice in their
students’ activities and provided materials

FURTHER READING
 Israel, M., Jeong, G., Ray, M., & Lash, T.
(2020). Teaching Elementary Computer
Science Through Universal Design for
Learning. Proceedings of the 51st ACM
Technical Symposium on Computer
Science Education, 1220-1226.
helloworld.cc/udl1

 Rose, D. H., & Strangman, N. (2007).
Universal design for learning: Meeting the
challenge of individual learning differences
through a neurocognitive perspective.
Universal Access in the Information
Society, 5(4), 381-391. helloworld.cc/udl2

THE GUIDELINES HELP EDUCATORS
ANTICIPATE BARRIERS TO LEARNING AND
PLAN ACTIVITIES TO OVERCOME THEM

“

Maya Israel has previously presented her
research at one of the online Raspberry Pi
Foundation computing education research
seminars (helloworld.cc/mayaseminar).
There are more seminars like this, which
are free to attend and open to anyone from
anywhere around the world. For more
information about upcoming and previous
series and to sign up to attend, please visit
helloworld.cc/RPFseminars.

Credit: Design Cells/stock.adobe.com

http://helloworld.cc/cast
http://helloworld.cc/cast
http://helloworld.cc/udl
http://helloworld.cc/udl1
http://helloworld.cc/udl2
http://helloworld.cc/mayaseminar
http://helloworld.cc/RPFseminars
http://stock.adobe.com

The Big Book of Computing Pedagogy28

FEATURE

Ursula Martin shows how to include coding in a learning framework that
equips students for an uncharted future

CODING AND 21ST-CENTURY SKILLS

ow should schools prepare students
for lives in a digital society with a

dizzying pace of change? Since the 1980s,
educators, governments, charities, NGOs,
and companies have been trying to answer
this question. The 21st-century learning
framework, created in the USA and applied
in numerous countries, attempts to equip
students with the skills they will need. It
moves away from rote learning towards an
engagement with higher-order skills.

The four Cs of the learning framework
are often used by educators in the
USA to guide their teaching. They are
collaboration, communication, creativity,
and critical thinking. As coding becomes
integral to how students use technology
in the classroom, integrating coding into
the four Cs of the 21st-century learning
framework takes education to the next

level and helps to prepare students for
digital careers. This preparation cannot
begin too early; it should begin in
elementary school and continue to develop
as students move on into high school.

Coding and critical thinking
Critical thinking is a skill that students
need to develop in the classroom, to help
them to dispel misconceptions about what
they are learning. This also helps students
to ask questions that will lead them to a
better understanding of what they are
learning. Using coding to teach critical-
thinking skills helps students to solve the
problems they identify. For example, let’s
say there is a problem with lights being
left on in the classroom when the room is
empty. Students could code an Arduino to
turn the lights off if no motion is detected

in the room. This would require students
to use their critical-thinking skills to
determine how to solve this problem.

Coding and collaboration
Collaboration is simply working with
others to accomplish a specific goal. This
may not seem too hard, but it is a skill that
many students lack, and one that they
truly need, as they will eventually become
a part of a society that functions best
through collaborating with each other.
Any student can learn to code, but having
students code together opens a door to
developing better collaboration skills,
as well as enhancing their skills in other
subject areas. For example, students could
develop their maths skills by learning to
code Dash and Dot robots to travel on a
specific path. The path could be designed

H

n Using robots in the classroom helps children engage with coding from a young age

Cr
ed

it:
 m

yb
oy

s.m
e/

st
oc

k.a
do

be
.co

m

http://myboys.me/stock.adobe.com

The Big Book of Computing Pedagogy 29

FEATURE

by groups of students working together,
using basic geometry that the students
would have learnt in their maths classes.
Encouraging students to collaborate
to accomplish this task helps them to
understand that everyone’s thought
process is not the same, and that different
opinions can help to create a great project
and provide a richer outcome than one
person working alone.

Coding and communication
Communication is key in education
and in the workforce. Students must
learn good communication skills to be
effective in every aspect of their daily
routine, whether in the classroom or in
their working lives. Coding introduces a
different type of communication ability
to the learning process. As students
learn to code, they learn to communicate
by speaking and writing about what
they want to create, or what they have

previously learnt. For example, if students
are tasked with coding a drone to fly,
they must be able to work with others to
communicate exactly what they would like
their drone to do (fly, flip, and so on) and
how long they want that action to take

place for. This means using apps such as
the educational programming platform
Tynker, to figure out how to accomplish
this task. In this way, students not only
learn a new language, but they also learn
how to communicate what they have
learnt by having the drone perform the
tasks they coded it to do. Communication
is such an important skill for students to
develop and effectively use, and acquiring
coding knowledge can play a major part in
learning this skill.

n Students can enhance their
maths skills when learning code

URSULA MARTIN
Ursula has been an educator for 18
years. During that time, she has taught
biology, anatomy and physiology,
and environmental science. She is a
Raspberry Pi Certified Educator and
a District Level Technology Resource
Teacher in Mobile, Alabama, USA.

INTEGRATING CODING INTO THE LEARNING
FRAMEWORK TAKES EDUCATION TO THE
NEXT LEVEL AND HELPS TO PREPARE
STUDENTS FOR DIGITAL CAREERS

“

Coding and creativity
Creativity, as part of the learning process,
allows students to learn by thinking
outside the box. This helps students to
take ownership of their learning in a
non-traditional way. When coding is
added to this part of the learning process,
it introduces an opportunity for students
to use different types of technology
to create what they are learning
about. For example, as students study
biogeochemical cycles, they learn about
the carbon cycle and how it interchanges
with oxygen. A project on this could
include building a small greenhouse,
growing a plant in it, and coding a
Raspberry Pi to open and close the
windows of the greenhouse as the oxygen
and carbon dioxide levels reach certain
levels. This level of creativity would help
students to understand just how these
biogeochemical cycles work.

A different way to learn
Framing educational activities using the
four Cs of 21st-century learning
challenges students to learn in a non-
traditional way. Adding coding to this
process changes the dynamics of learning
altogether. Giving students the opportunity
to take ownership of their learning will
help teachers to become facilitators and
ensure that students better understand
how learning works.

Cr
ed

it:
 m

yb
oy

s.m
e/

st
oc

k.a
do

be
.co

m

http://myboys.me/stock.adobe.com

3030

FEATURE

rena Blended Connected (ABC)
curriculum design is a popular

and well-respected process used in
universities worldwide. Based on
Professor Diana Laurillard’s research and
designed and developed by University
College London (UCL), the process guides
educators to create or adapt sequences
of learning modules to include online
and blended elements. The process
centres decisions around the type of
learning that will take place rather than
the technology that will be used.

In early 2020, the Computing at School
(CAS) Research working group ran a series
of training sessions to introduce teachers
at primary and secondary schools to the
process, as it had potential benefits to
support the planning of learning during
school closures. Working with the team
at UCL, CAS Research developed training
that presented the basics of ABC. A group
of teachers then set to work trialling and
adapting ABC to their schools’ needs.

ABC explained
ABC is based on the idea that there are
six learning types (not to be confused with
the now-debunked visual, auditory, and
kinaesthetic learning styles): acquisition,
investigation, discussion, collaboration,
practice, and production. Educators review
the type of learning that they would like to
occur for a particular learning objective and
design an activity to meet the need.

To help educators, the ABC method
makes use of cards with suggestions
of potential activities for each type. The
potential activities are either a face-to-
face or an online option. As the computing
teachers who were taking part in the ABC
training started using the standard ABC
cards, they soon realised that they needed
to create their own sets for their own
situations. Rather than having just a face-
to-face and an online option, the group
decided to include three online options.
These were low-tech, mid-tech, and high-
tech: some teachers, and their students in

A some schools, had the skills and experience
to use quite complex software, whereas in
other situations, a more low-tech option
was needed. Two primary teachers and
two secondary teachers created sets of
context-specific cards. Since then, a set of
cards has also been created for delivering
professional development.

Uses and challenges
The computing teachers who trialled ABC
found the cards were a great way to help
them and their colleagues plan for remote
teaching. The cards have been used for
quick reviews of current planning and to help
develop new activities.

ABC has been used both by individual
teachers to review their lessons, and by
groups of teachers. In one school, the
cards have been very popular across the
whole school, and in another context, they
are being used to support professional
development for teachers across many
schools. Some of the teachers have also
used the ABC process for reviewing other
subjects, including English and maths. In
several primary settings, both specialist and
generalist teachers have started to use cards.
Teachers have used them not only to work
out remote activities, but also to help them
flip between remote and in-school delivery.

When developing the cards, teachers
audited the content to be delivered and
the resources that were usually used. The
process focused them on thinking about
alternative pedagogies. Approaches such as
flipped learning were encouraged, moving
away from an emphasis on passive learning
(acquisition) through watching videos. Some
teachers also reported that the process

A curriculum design process known as ABC is helping classroom teachers
review and plan more balanced online learning activities

COULD CURRICULUM DESIGN
BE AS SIMPLE AS ABC?

Acquisition
Learning through acquisition is about
what learners are listening to:
hearing a lecture or podcast, reading
from books or websites, or
watching demos or videos.

Collaboration
Learning through collaboration
embraces mainly discussion,
practice, and production. Building on
investigations and acquisition, it is
about taking part in the process of
knowledge building itself.

Discussion
Discussion requires learners to
articulate their ideas and questions,
and to challenge and respond to
the ideas and questions from the
teacher and/or their peers.

Investigation
Investigation encourages learners
to take an active and exploratory
approach to learning, to search
for and evaluate a range of
new information and ideas.

Practice
Practice enables knowledge to
be applied in context. The learner
modifies actions according to the
task, and uses feedback to improve.
Feedback may come from self-
reflection, peers or the teacher, or
from activity outcomes.

Production
Production is how the teacher
motivates learners to consolidate
what they have learnt by
articulating their current conceptual
understanding and reflecting on
how they used it in practice.

n Unlike now-debunked learning styles, the learning types in ABC are not distinct for a specific activity. Source: UCL

The Big Book of Computing Pedagogy 31

FEATURE

linked nicely with other frameworks for
integrating technology in the classroom, such
as the SAMR (Substitution, Augmentation,
Modification, and Redefinition) model and
the TPACK (Technological Pedagogical
Content Knowledge) model.

Teachers who trialled ABC noted that
those schools who had already implemented
a standardised approach to remote learning
(such as using Google Classroom, Microsoft
Teams, etc.) were at a great advantage.
However, ABC can also help schools that
are new to remote teaching. Sets of ABC
cards have been created for different
technology options, and these can be
shared, giving less experienced teachers a
menu of ideas to select from.

One of the main benefits of the
ABC approach is that it allows for the
development of remote teaching that isn’t
just centred around acquisition, production,
and the recall of information and facts, but
can expand into collaboration, investigation,
and discussion. ABC particularly highlights
where learning is passive, and also supports
teachers to include assessment.

Embedding formative and summative
assessment is a significant challenge in
designing remote education. Often, quite
high-tech options are needed to provide
timely feedback to pupils. Learning platforms
such as Google Classroom can be used for
online marking. Rubrics can be set up and

shared with pupils, for self-assessment,
questions asked in live lessons, and quizzes
used for asynchronous learning. Teachers
have found that ABC has helped them tackle
the assessment challenge by pinpointing
potential strategies and opportunities for
introducing assessment.

Other challenges to introducing ABC
have been not about the process itself, but
more about the contexts for learners and
schools. One such challenge has been the
range of pupils’ access to technology, while
another involves safeguarding restrictions.
Some schools found their pupils had to
share devices with siblings or parents who
were working from home, or that they only
had access to a phone or tablet device
in the evenings. The low-tech, mid-tech,
and high-tech options on the cards helped
teachers to begin to address these technical
and timing issues.

However, to know what low-tech, mid-
tech, and high-tech would look like in
context, teachers needed to ask families
what devices would be available to pupils,
and when. It would therefore be useful, as
part of the ABC process, to include a first
step of auditing the devices available to your
pupils. The audit needs to be done before
you start your cards. Similarly, you also
need to take into account the devices and
platforms available to teachers, and their
level of expertise.

Further challenges for the introduction of
ABC are those of CPD and time. Teachers
need training and time to enable them to
develop these cards in preparation for the
next period of remote education. In one
school, senior management was concerned
about how long the process would take, and
the additional teacher workload. However,
the teacher trialling the process is looking at
how ABC can be integrated into PPA time
once training has been delivered.

Taking it further and training in ABC
You can read about the original ABC
process at helloworld.cc/abc; to find out
how it has been adapted to our current
computing school context, visit helloworld.
cc/abc_cas. There, you can find a resource
describing ABC, and sets of example cards,
along with templates to create your own
sets. A set of resources to share the ABC
process with teachers is also available for
CAS members at helloworld.cc/casinabox.
Please contact Jane Waite (@janewaite) if
you would like more information about
using ABC in schools.

Creator of card: Matthew Wimpenny-Smith Date created: 19 May 2020 Context (e.g. phase, subject, school): Primary Key Stage 2

Card name: Practice

Current activity Alternative activities

Low-tech Mid-tech High-tech

Worksheet becomes Google Form
or other web-based activity for the
learner to complete, for example
interactive Seesaw activity.

Prep time: high initially
Feedback time: could be very fast
through self-marking

Worksheet converted to editable file
and then posted on Google Classroom
as one copy per child, or on Seesaw
app. Learner completes digitally via
keyboard or digital inking.

Prep time: some initially
Feedback time: quick and all digital

Worksheet is converted to digital
format and emailed to learner.
Learner prints and completes
worksheets, then photographs or
scans and emails back.

Prep time: quick
Feedback time: slow

Worksheet-based task
is photocopied and
handed out in class

AN EXAMPLE OF AN ABC CARD

JANE WAITE, MATTHEW
WIMPENNY-SMITH, CLAIRE
BUCKLER, CALVIN ROBINSON
& NIC HUGHES

http://helloworld.cc/abc
http://helloworld.cc/abc_cas
http://helloworld.cc/abc_cas
http://helloworld.cc/casinabox

MAKE CONCRETE
34 CULTURALLY RELEVANT

PEDAGOGY
36 LEARNING THROUGH MAKING
38 SCRATCHMATHS: INTEGRATING

COMPUTING AND MATHEMATICS
40 SCRATCH ENCORE: A CULTURALLY

RELEVANT SCRATCH CURRICULUM
41 “ENGINEERS MAKE THINGS

THAT HELP PEOPLE”
42 DON’T TOUCH THE PLUGS OR

BREAK ANYTHING!

The Big Book of Computing Pedagogy 33

any of the ideas that pupils will encounter in

computing are abstract and complex, and need

to be illustrated using concrete examples and

activities. Bringing these abstract concepts to life with real-

world contextualised examples, and connecting them to

other subjects, will help pupils assimilate new ideas into their

existing understanding.

There are many ways in which you might make an abstract

concept more concrete. One example that computing teachers

may be familiar with is the use of unplugged activities, in

which you take a computing concept and explore it in a non-

computing context. You can also make use of analogies and

storytelling to help connect a new concept with familiar

experiences and comparable examples.

When considering concrete examples or

providing context, you should reflect on

the diversity of experience and culture of

your learners. Use this knowledge of your

learners to help you to deliver culturally

responsive learning experiences.

M IN THIS SECTION,
YOU WILL FIND:

 ■ What the research says:
culturally relevant pedagogy

 ■ What the research says:
learning through making

 ■ What the research says:
integrating computing and maths

 ■ What the research says: a
culturally relevant Scratch curriculum

 ■ Cultivating engineering skills

 ■ Hands-on learning to break down
abstract concepts

The Big Book of Computing Pedagogy34

RESEARCH

all learners’ knowledge, ways of learning,
and heritage. It promotes the development
of learners’ critical consciousness of
the world, and encourages them to ask
questions about ethics, power, privilege,
and social justice. Culturally relevant
pedagogy emphasises opportunities
to address issues that are important to
learners and their communities.

Culturally responsive teaching2 builds on
the framework above to identify a range of
teaching practices that can be implemented
in the classroom. These include:

 ■ Drawing on learners’ cultural knowledge
and experiences to inform the curriculum

 ■ Providing opportunities for learners
to choose personally meaningful
projects and to express their own
cultural identities

 ■ Exploring issues of social justice
and bias

It is important when using the term
‘culture’ that we do not focus on only one
characteristic, such as ethnicity or race.
While a person’s ethnic background can
contribute to their culture, a person’s
cultural identity can be based on a number
of influences, including their age, gender,
where they live, their family income, and
their religious beliefs. Making computing a
subject that is responsive to these different
elements of learners’ cultural identities will
engage a wider range of learners.

Implementing culturally
relevant pedagogy
The Raspberry Pi Foundation (RPF) has
created guidelines for implementing

n order for computing to be
relevant, concrete, engaging and

accessible to all learners, educators should
reflect on their curriculum, materials, and
teaching practices. Educators can draw on
the full breadth of student experiences and
cultural knowledge, facilitate projects that
have personal meaning for learners, and
discuss issues of bias and social justice.

What is culturally relevant pedagogy?
Culturally relevant pedagogy1 is a
framework for teaching that emphasises
the importance of incorporating and valuing

culturally relevant and responsive
computing curriculum design and teaching
(helloworld.cc/crpguidelines). These
guidelines identify three main focus areas,
with some key elements outlined below:

 ■ Curriculum
 ■ Teaching approaches
 ■ Learning materials

Contextualise computing
Can you, for example, bring in the social,
historical, or political context of a particular
development in technology, ensuring
that not only the dominant culture is
represented? Can you make cross-curricular
links to other subjects, or link to specific
times in the school calendar (for example,
Black History Month)? Understanding
the relevance of theoretical concepts to
real life is important in keeping a wide
range of learners engaged in computing.

Allow student choice and promote
collaboration and discussion
For example, allowing learners to choose
a problem or issue that is personally
meaningful to them to address through
technology can encourage them to persist
when facing difficulties. Collaboration and
discussion allow learners to bring different
expertise and knowledge to tasks, which
can help challenge stereotypes about
computing as a career.

Ensure your learning materials are
accessible and inclusive
Consider the videos you use to introduce
a topic, for example: are there captions
that can support those with English as

CULTURALLY RELEVANT PEDAGOGY

SUMMARY
Culturally relevant pedagogy emphasises
valuing all learners’:

 ■ Knowledge
 ■ Heritage
 ■ Ways of learning

Culturally responsive teaching includes:
 ■ Opportunities for personally

meaningful projects
 ■ Curricula that draw on learners’ cultural

knowledge and experience
 ■ Exploration of ethics, social justice,

and bias

Benefits of culturally responsive
teaching include:

 ■ Improving learners’ attitudes towards
the subject

 ■ Encouraging more learners to select
computer science as a qualification

 ■ Improving understanding in core
computing concepts

I

Introducing culturally relevant pedagogical practices to your classroom can make
all learners feel welcome and represented, and that computing is for them

http://helloworld.cc/crpguidelines

The Big Book of Computing Pedagogy 35

RESEARCH

an additional language? Can the captions
be translated into other languages?
Do the videos represent computing in
a stereotypical way, or do they feature
diverse groups of people? Ensuring that
everyone can access and feel that they
belong to computing is important, as it
helps to engage and inspire learners.

You can think about these focus areas
like a tree, with the curriculum forming
the roots of the approach, and the
branches representing a number of
different teaching approaches you can
take to deliver the curriculum. The leaves
represent the learning materials you use
in your computing lessons. Beginning
with the curriculum and working your way
up will give you the strongest basis from
which to implement culturally relevant
pedagogy in your classroom.

Benefits
The aims of culturally relevant pedagogy
and culturally responsive teaching are to set
high standards for all learners in terms of
academic success, and to engage and retain
more diverse learners in a range of subjects.

In computing, taking this approach has:

 ■ Improved learners’ attitudes towards
the subject, increasing engagement,
confidence, and feelings of belonging3

 ■ Encouraged more learners to select
computer science as a qualification

 ■ Led to learning gains in computational
thinking and core computing concepts4 5

Providing authentic and meaningful contexts
for learning computing and identifying
different applications of computer science
outside of school can help more learners see
the relevance of computing to their lives and
their communities.

Considerations
In order to successfully design and
implement culturally responsive teaching,
educators must first understand the
approaches and reflect on their own
unconscious biases. Adding a few
activities as an add-on to regular
teaching will not have the same impact
on learners as incorporating the approach
throughout all lessons. You can improve
your understanding of the approach
by reading the RPF guidelines and
by looking up some of the resources
suggested for professional development.
These guidelines also encourage you to
reflect on how your own cultural identity
may affect the way you experience the
world, and computing as a subject.

It is also vital that teachers identify areas
in their current teaching where changes
could be made. It is useful to work on

this activity with a team of teachers, to
bring together different ideas and cultural
identities and ensure that culturally
relevant pedagogy is being implemented
similarly across different classes. It is
even better if teachers can work across
disciplines to incorporate culturally relevant
pedagogy in a cross-curricular way to help
embed the approach within the school.

Finally, uncovering unconscious biases
and discussing meaningful, complex
topics will include negotiating some
uncomfortable conversations with
colleagues and learners. It is important
to model how to deal with these
conversations sensitively. It is vital that
everyone is able to speak openly and feel
that their opinions and experiences are
being heard and valued.

Making your computing teaching
culturally relevant will include challenging
conversations and difficulties at times.
The reward, though, is a classroom where
everyone feels welcome and represented,
and feels that computing is most definitely
for them.

REFERENCES
1 Ladson-Billings, G. (1995). Toward a theory of
culturally relevant pedagogy. American Educational
Research Journal, 32(3), 465-491
helloworld.cc/culture1
2 Gay, G. (2000). Culturally responsive teaching:
Theory, research, and practice. Teachers College
Press helloworld.cc/culture2
3 Eglash, R., Gilbert, J. E., Taylor, V., & Geier, S. R.
(2013). Culturally responsive computing in urban,
after-school contexts: Two approaches. Urban
Education, 48(5), 629-656 helloworld.cc/culture3
4 Davis, J., Lachney, M., Zatz, Z., Babbitt, W., &
Eglash, R. (2019). A Cultural Computing Curriculum.
In: Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, 1171-
1175 helloworld.cc/culture4
5 McGee, S., et al. (2018). Equal Outcomes 4 All: A
Study of Student Learning in ECS. In: Proceedings
of the 49th ACM Technical Symposium on
Computer Science Education, 50-55
helloworld.cc/culture5

■ The focus areas of culturally relevant and responsive teaching can be represented by a tree

http://helloworld.cc/culture1
http://helloworld.cc/culture2
http://helloworld.cc/culture3
http://helloworld.cc/culture4
http://helloworld.cc/culture5

The Big Book of Computing Pedagogy36

RESEARCH

t’s pretty clear, if you know young
people, that making is something

that’s going to engage them. Active
lessons always get the popular vote from
classes, especially if they let students make
choices about what they work on. The
sense of achievement you get from making
something and sharing it with others or
taking it home is pretty motivating too.
There are always a few who would rather
have a theory lesson, but the engagement
you get from making is usually a powerful
motivator. It’s hugely important to get
people engaged with learning in order for
it to be successful, but learning is more
complicated than simply paying attention
to something. Seeing learning through
making only as a way to engage people
would be missing something much deeper.
For proponents of constructionism, it’s also
about how making interacts with the way
we develop understanding.

From concrete to abstract
The culture of education in the West can
often be very focused on the cognitive — the
abstract thinking that can be clearly defined
in learning objectives, exams, and books.
It tends to think of formal education as the
process of coming to understand abstract
ideas, with abstract ideas being the most
important level of understanding that can
then be applied to our everyday lives. Young
children usually start learning about numbers
through physically playing with concrete
objects such as blocks, counters, and toys,
but the aim is for them to move on to
being able to discuss and manipulate
numbers as abstract ideas. Dealing
with concepts on a totally abstract
level is hard, and children often have
to return to these concrete methods
to support their understanding. It
takes time before children can add
and subtract without the convenient aid

of fingers to count on; even when this is
mastered, they often return to counters when
learning about the more complex concept of
division. This trajectory from understanding
concepts in concrete, real-life terms
towards being able to explore them in the
abstract is explored well in the work of Jean
Piaget, almost universally taught in teacher
education courses across the Western world.

 Making is so much more than just a tool for engagement; its power can be harnessed
for a very different way of learning and understanding the world

LEARNING THROUGH MAKING

I

Credit:
Anita Ponne/stock.adobe.com

Credit: locrifa/stock.adobe.com

http://stock.adobe.com
http://stock.adobe.com

The Big Book of Computing Pedagogy 37

RESEARCH

Affective learning
While we see the cognitive side of learning
as key to understanding, we tend to see the
affective, or experiential and feelings-based,
side as useful for making learning engaging
and memorable, but not as a fundamental
part of it. Computer scientist and pioneer
of the constructionist movement Seymour
Papert saw it differently. In his seminal text
Mindstorms, he vividly relates the affective
experience of playing with cogs and gears as
a child, and how he came to an understanding
that machines could be both very structured
and creative ways of interacting with the world.

Papert writes about changing his world
view not only in terms of gaining knowledge,
but in terms of gaining a new relationship
with knowledge. Manipulating and exploring
the concrete objects of gears allowed him
to develop an affective understanding
of how machines work, and realise that
these complex constructions are knowable
and understandable. Mark Surman, the
executive director of the Mozilla Foundation,
describes this memorably as seeing the
‘Lego lines’ in the world; the visible joins
that help you understand that something

was made by a person, and that with the
right learning, that person could be you.

Learning as becoming
Such a change in understanding is quite
a shift from the way educators are often
encouraged to see learning; it’s a different
metaphor for the process. Much of the
time, our language about learning is based
on what Professor Anna Sfard calls the
‘learning as acquisition’ metaphor, in
which learning is seen as discrete blocks
of content that can be gradually acquired.
There are other metaphors; when exploring

the potential of learning through making,
it helps to think about the ‘learning as
becoming’ metaphor, the idea that we
learn in order to explore and develop
who we are as a person, and the way we
see our identity fitting in to the world.

New tools for learning
Much of this could be an argument for
learning through experience, but for Papert
it was using computers that was incredibly
powerful. Why? Computers allow us to
manipulate abstract concepts in a way we

simply can’t in the physical world. Logo
may seem like primitive software to us in
2021, but Papert saw its potential to allow
children to actively manipulate concepts
such as angles and geometry. This made
abstract concepts accessible for children to
manipulate and understand by feel, much as
sand and water trays in the early years allows
children to explore their understanding of
basic physics. We expect children to move
on from this playful, exploratory approach to
learning as they get older, but perhaps this
is only because we lack the tools to make
more sophisticated concepts concrete and
accessible to them to manipulate. The power
of computers for learning is described in
Papert’s writing not as being a way to deliver
content to children, but as a tool they can use
to explore and manipulate previously abstract
concepts in a concrete way.

Harnessing the tools
Making is often a fun and engaging way to
learn, yet its power can go beyond
engagement and towards a very different
way of learning and understanding the world.
It takes a shift in how we think about learning
and in the way we encourage young people
to use computers to understand the world.
These days, we certainly have more powerful
and sophisticated tools accessible to young
learners; perhaps the biggest challenge is
understanding how they can be used not
only to engage, but to learn in new ways that
are both effective and affective.

CHILDREN CAN USE COMPUTERS TO
EXPLORE AND MANIPULATE ABSTRACT
CONCEPTS IN A CONCRETE WAY

“

Credit: davit85/stock.adobe.com

http://stock.adobe.com

The Big Book of Computing Pedagogy38

RESEARCH

SCRATCHMATHS:
INTEGRATING COMPUTING

AND MATHEMATICS
vidence has shown that learning
programming can help students to

develop higher levels of understanding of
certain mathematical concepts. A project
from UCL Knowledge Lab at University
College London has been testing a fresh
approach involving learning computing
alongside mathematical concepts. They
have designed an integrated curriculum
using the programming environment
Scratch to teach mathematical ideas. A
recent evaluation has found that using
this approach improves computational

thinking. There was no evidence, however,
of an improvement in maths attainment,
as measured by Key Stage test scores.

ScratchMaths is a two-year computing-
and maths-based curriculum for pupils aged
nine to eleven. Scratch is used to integrate
coding activities into mathematical learning,
to address a key problem that students
have in learning mathematics: expressing
mathematical concepts in formal language.
The programme focuses on Scratch
programming skills and computational
thinking, with explicit links made to areas
of mathematics. ScratchMaths provides
teacher professional development to help
educators deliver the curriculum, along with
a range of teaching resources. John Morris,
head teacher at Ardleigh Green Junior
School in Essex, says, “For us, ScratchMaths
is a breath of fresh air because it allows us
to approach the teaching of mathematics in
a new, exciting, and engaging way.”

The Education Endowment Foundation
(EEF) funded the programme. It has
recently released a report produced by
Sheffield Hallam University evaluating the
impact of ScratchMaths on a sample of
schools that worked with the curriculum
over two years.

More than 100 schools, with over 6,000
pupils, were involved at the beginning
of the trial. Around half were in the

E intervention group in which ScratchMaths
was taught for at least one hour every
fortnight. In a randomised control trial,
they were compared to the other half of
schools, which did not use ScratchMaths.
Teachers in participating schools received
professional development for teaching
ScratchMaths, with teacher mediation seen
as a crucial factor in helping pupils build
links between computing and mathematics.

Participating schools were located
across England, including schools in
deprived areas. Piers Saunders, a lecturer
in mathematics education at UCL, explains,
“The curriculum was designed to meet
the needs of all children, not just for high-
attaining children, or those who often
attend clubs. It really was for all children,
as evidenced by the large range of national
schools that we had involved.”

Evaluation of impact
The independent team at Sheffield Hallam
University evaluated the computational
thinking scores of pupils after one year of
intervention, and the maths scores of pupils
after two years. They also gathered data
from teachers via surveys and telephone
interviews, and assessed how schools had
implemented ScratchMaths.

They found no evidence that
ScratchMaths impacted pupils’ Key

STORY BY Jonathan Dickins

n Explore: Moving from direct control to
planning or building behaviours

n Explain: Experiencing concepts before
defining them through discussions

n Envisage: Including unplugged activities
and encouraging identification with the
object being programmed

n Exchange: Providing the need to share or
build on others’ ideas

n bridgE: Explicit links to mathematics
national curriculum

THE FIVE Es OF
SCRATCHMATHS

The Big Book of Computing Pedagogy 39

RESEARCH

Stage 2 (ages seven to eleven) maths
attainment, as measured by Key Stage
scores. However, pupils in schools using
ScratchMaths made more progress in
computational thinking relative to schools
that did not implement ScratchMaths.
Teachers reported that ScratchMaths was
useful for addressing certain aspects of
the primary computing curriculum, and
good for improving Scratch skills.

This positive effect on computational
thinking skills did not differ between
boys and girls who took part in the
evaluation, which is a noteworthy
finding, as previous interventions in
programming education often highlight
gender differences in how children
benefit. The evaluation also found that
progress was highest for children who
were, or had been, eligible for free school
meals, suggesting that ScratchMaths is
an accessible curriculum for children of
different socio-economic backgrounds.

The report also found that many
schools did not fully implement
ScratchMaths during the trial, with
attendance of training sessions,
use of materials, and time spent
teaching ScratchMaths decreasing

between years one and two of the
trial. Pressures around the national
standardised assessment tests (SATs)
for ten- and eleven-year-old students
in the second year were reported as
a barrier to implementation for many
teachers. Some students involved in
the trial also experienced a change of
teacher between years one and two
of the trial, with incoming teachers not
receiving professional development from
ScratchMaths, and perhaps being less
proficient in Scratch.

Given that the second year of the
trial was the year in which computing
concepts were to be more explicitly linked
with mathematics ideas, it could be that
these pressures resulted in the lack of

improvement in mathematics attainment,
and that application of the curriculum as
intended could see the predicted effect on
mathematics attainment. It is also possible
that the timescale of the study wasn’t long
enough to observe this effect.

As the ScratchMaths resources are free
and online, schools from various regions
are exploring implementing the curriculum
in their settings. There is a trial underway
in Spain measuring the impact on students’
computational thinking skills, and some
educators have localised the resources
to make them relevant to their existing
computing and mathematics curriculum. In

n A resource from the ScratchMaths ‘Tiling patterns’ module

n All ScratchMaths resources are freely available at helloworld.cc/scratchmaths

the UK, local coordinators are in place to
advise on implementing ScratchMaths.

While ScratchMaths has not raised
mathematical attainment in this trial,
the report suggests that where there is
a need to develop teachers’ computing
skills, ScratchMaths could act as a low-
cost form of professional development,
helping teachers to develop computational
thinking skills in pupils.

You can find out more about
ScratchMaths and access resources at
helloworld.cc/scratchmaths. If you’re using
ScratchMaths in your classroom, we’d love
to hear your thoughts!

SCRATCHMATHS
IS A BREATH
OF FRESH AIR

“

http://helloworld.cc/scratchmaths
http://helloworld.cc/scratchmaths

The Big Book of Computing Pedagogy40

RESEARCH

oung people from minority groups
can sometimes feel excluded in the

computing classroom because learning
resources use real-world examples that
they cannot relate to. Educators can
make use of culturally relevant materials
to foster a sense of belonging in the
classroom, and this can help learners to
see computing as a subject where they fit
in. One resource that educators can use is
Scratch Encore, a US-designed curriculum
for students aged 10 to 14 in which equity
is valued as much as learning outcomes.
This equitable ethos translates into a set
of culturally responsive themes and topics
with which students can create Scratch
projects and learn computing concepts.

How does the curriculum work?
Scratch Encore consists of 15 different
modules covering a variety of different
computing topics. Educators can teach
each module using one of three strands:
Multicultural, Youth Culture, and Gaming.
The strands and themes within them were
developed through participatory design
sessions with educators, students, and
parents. Teachers can choose the strand
that they think will best resonate with their
learners. For example, they might choose to
teach events in Scratch using a multicultural
context, and then teach conditional loops
using projects themed around youth culture.

The resources are written around the
Use–Modify–Create approach, in which
learners begin by investigating existing
projects and then move on to applying
what they have learnt by creating their own
project. The resources were piloted with
a small group of teachers, who suggested
that they were useful in terms of student
engagement. An automated assessment

tool analysed the projects made in the
Create section and compared the frequency
of blocks used by students in their projects
against the blocks that had been taught
in the Use and Modify sections. The initial
results indicate that the Scratch Encore
curriculum may indeed be balancing equity
with learning outcomes.

Overcoming barriers to equity
The structure, content, and materials used
in Scratch Encore have been designed to
overcome several barriers to equity in the
computing classroom. The Use–Modify–
Create approach means that the beginning
of each module is heavily scaffolded,
ensuring that learners feel confident before
moving on to a more open-ended approach.
This approach also recognises that
teachers have varying levels of experience
and confidence. The curriculum makes
provisions for the diverse prior experiences

that students may have of using Scratch,
and provides a review of introductory
computing concepts in the first three
modules. Learners’ cultural backgrounds
are represented through the diverse themes
present in the three different strands;
furthermore, learners are given autonomy in
the Create section of each module. Finally,
the resources are available for free, so that
schools working within stretched budgets
are not excluded.

Although it’s still in the early stages of
research and development, Scratch Encore
provides a new approach to creating

Y

STORY BY Katharine Childs

SCRATCH ENCORE:
A CULTURALLY RELEVANT
SCRATCH CURRICULUM

a curriculum. It does this by carefully
considering the inequities and barriers to
learning computing and putting in place
strategies to overcome them. Teachers who
are preparing their own schemes of work
for learners may benefit from considering
the learning materials from an equity
perspective and identifying ways in which
they can engage learners by using culturally
relevant contexts.

n The Scratch Encore curriculum offers teachers a choice of
contexts for teaching computing concepts

SCRATCH ENCORE HAS BEEN DESIGNED
TO OVERCOME BARRIERS TO EQUITY “

FURTHER READING
 Franklin, D. et al. (2020). Scratch Encore:
The Design and Pilot of a Culturally-
Relevant Intermediate Scratch Curriculum.
In: Proceedings of the 51st ACM Technical
Symposium on Computer Science
Education. SIGCSE ’20. New York. 794–800.
helloworld.cc/scratchencorepaper

 The Scratch Encore curriculum:
helloworld.cc/scratch-encore

http://helloworld.cc/scratchencorepaper
http://helloworld.cc/scratch-encore

The Big Book of Computing Pedagogy 41

FEATURE

et’s get a fan and see if it works,”
says Edwina. Edwina, a student in

my grade class, had just finished building
a model of Theo Jansen’s Strandbeest — a
kinetic sculpture that walks in the wind. As
the fan came on, her sculpture began walking
across the table, and a few children cheered.
I had never seen Edwina with such a wide
smile. Then one of the legs fell off. Edwina
wrangled it back into place, explaining that
she’d need more time to “really fix the leg”.

As she and a few other students tinkered
with her sculpture, I reflected on what I’d
seen: a nine-year-old girl confidently dealing
with complexity, persistent in working on
challenging problems, flexible, and tolerant
of ambiguity. (Others may have noticed that
she has dyslexia, reads below grade level, and
struggles with a severe speech impediment.)

This is a public school. “You’re growing as an
engineer,” I say. She was puzzled: “What’s
an engineer?” Max, another student, gave a
definition that I still use to this day: “Engineers
make things that help people.”

Recognising engineering skill
Jennifer Cross, author of Creative Robotic
Systems for Talent-Based Learning
(helloworld.cc/roboticsystems) writes,
“Engineering design is the process of
developing a concrete solution for an ill-
defined problem within technical feasibility
constraints.” The good news is that
engineering doesn’t have to begin with costly

“L

“ENGINEERS MAKE THINGS
THAT HELP PEOPLE”

Katie Henry examines ways to cultivate engineering skills in all students

Katie is a former classroom and STEAM
teacher. She now works as Head of
Partnerships, North America, for the Micro:bit
Educational Foundation (@KatieHenryDays).

tools, programming, or robotics in your
classroom. It’s already happening on school
buses, at lockers, and — whether you realise
it or not — in your classroom. Introducing
young people to engineering starts with
learning to recognise engineering skill, and
helping students to recognise it. The next
sentence you speak can introduce a young
person to engineering. Below are five types
of engineering skill, what they might look
like in your classroom, and what you can say
to help students develop these skills.

n Intentional design Look for preplanning
or evidence of thinking ahead.
What you can say: “Tell me more about
your planning process.” Encourage
intentional action and allow students to
make their own decisions.

n Innovating Look for novel or risky efforts.
What you can say: “How did you decide
to try it this way?” Try to understand why
the student created something new, and
help them to consider their efforts from
another person’s point of view. Engineers
make things that help people!

n Refining and testing Look for efforts that
repeat and improve each time, in order to
reach a goal.
What you can say: “Can you share more
about your goal?” Encourage the student
to focus on their goal, generate more
solutions, and consider the strengths and

weaknesses of each solution. Engineers
inspect and adapt.

n Prototyping Look for evidence of a
student modelling an idea to reach
a goal.
What you can say: “In what ways does
this model represent your thinking?”
Prototyping takes many forms: ‘works-
like’ prototypes are working models;
‘looks-like’ prototypes are non-working.
Engineers use a variety of models, tools,
and strategies to better understand
their ideas.

n Communicating design Look for students
sharing ideas about something they’re
planning or are creating.
What you can say: “Who most needs to
hear your idea? What would be the best
way to share it with them?” Encourage
students to communicate their ideas in
multiple ways, for multiple audiences.
Engineers share what they discover and
make with others, in order to make their
ideas better.

ENGINEERING DOESN’T HAVE TO BEGIN
WITH COSTLY TOOLS OR ROBOTICS“

http://helloworld.cc/roboticsystems

4242

FEATURE

How can getting hands-on with computers (and wires!) help us to break
down abstract concepts in primary school computing?

DON’T TOUCH THE PLUGS
OR BREAK ANYTHING!

n an early article in Hello
World issue 5, I asked the question

“Is a Bee-Bot a computer?” and considered
children’s existing perceptions about
what a computer is and isn’t. However,
acknowledging the problem is one thing,
and finding new ways to teach it is
another. When I was a computing teacher,
I was looking for an exciting, discovery-
based learning activity that would allow
children to test their assumptions without
just being lectured about what makes a
computer a computer or what makes a
peripheral or an input device.

To do this, I looked to other subjects,
and in particular to one area where my
school was doing this really well: maths.
In maths, when we got to the tricky
concepts, we got out the cubes, the
pizza-shaded fraction sets, or the place
value number cards, and they allowed us
to demonstrate these concepts. Children
could then be left to explore, by moving
their manipulatives around and seeing
what they could discover. Could we do
this in computing?

Manipulatives in computing
Computing often seems a very hands-on
subject, because learners in computing
use technology. However, we know that
this isn’t enough for them to understand
how it works. Poking mindlessly at a
device ultimately just becomes frustrating,
and when you do manage to achieve
what you wanted, you’ve often forgotten
how you did it, so you can’t repeat it.

And then I saw the wires …
Desktop computers have many wires
plugged into them. If you have an ICT suite,
these wires may even be cable-tied into
the base unit, to prevent small fingers from
poking them, but this is where discovery
learning happens! This is where you can
explore what a computer needs to work,
and what are just useful extras.

Now what?
Firstly, my school didn’t have any desktop
computers the children could use (as lovely
as the office staff were, they’d probably
have drawn the line at us dismantling their
computers for the children to explore in the
middle of a work day). To get around this,
I used some Raspberry Pi computers, as
these are cheaper to get hold of, and a good
size for young children to explore. However,
if you have desktop computers, use those!

I started by showing the children the
Raspberry Pi under the visualiser with no

case, so you could see everything inside
(you can take the side off if you’re using a
regular desktop computer) and said, “This
is a computer.” This may seem counter-
intuitive for discovery learning, as I told
the children the answer, but there’s much
research that suggests children will often
conclude incorrectly based on their own
discoveries. I then got them to explore in
their groups and discover for themselves
what made it a computer, with each table
having their own computer. They had the
answer, but they had to make the journey.
This journey was documented using a
‘statements, questions, ideas’ model. Pupils
used big paper and discussed in table
groups what they could see on a Raspberry
Pi that suggested it was a computer
(statements), what questions they had or
would like to explore further to show that
Raspberry Pi is a computer (questions), or
any ideas that they had for what they would
like to do with this computer (ideas).

It has holes on the back

There are square things
drawn on

Everything is connected
with wires

This is where you plug in
the charger

What are the gold stick
things for?

Why aren’t all the holes the
same?

Why is there so much empty
space inside?

Could this be so that you can
plug in a keyboard?

This says power — is it like a
phone charger?

Is this what’s inside things
like traffic lights?

Statements Questions Ideas

n Students’ thoughts about what makes a Raspberry Pi a computer — yes, there are some misconceptions!

I

The Big Book of Computing Pedagogy 43

FEATURE

For older children, it can be fun to give them
working projects that don’t use a keyboard
and mouse, to get them to figure out how
the computers work. Using simple online
tutorials, in the past I’ve set up:

n A motion-sensor camera to take photos
when you’re nearby

n A warning system for when a plant needs
watering, using a micro:bit

n A simple robot using a controller to make
motors turn

This is a chance for children to explore what
has a computer inside it, and the various
inputs and outputs that are fit for purpose.

THE NEXT STEP
We shared this discussion as a class and

then I plugged everything in. We proved
that it is a computer, and that it works!

This is a very initial exploration, but it’s
the beginnings of the children recognising
inputs and outputs, as well as which parts
of a computer are required, and which
part are extra peripherals. With seven- to
eleven-year-olds, if I jumped straight to
asking the children to plug in a Raspberry Pi
and turn it on, they would miss a lot of the
dialogue that helps them to assimilate their
new understanding.

Playing with plugs
In the next lesson, I began by getting the
children to connect the peripherals to the
computer and giving them the chance
to turn it on in groups. There’s not much
that can go wrong here: it’s like a jigsaw
puzzle where each wire only connects in
one place. For example, if you tried to plug
an HDMI cable into the USB port, it simply

wouldn’t fit. The children were given time
to plug everything into an extension lead.
This is something the children had probably
never been allowed to do, and it was
both exciting and scary at the same time.
They’ve often been told that electricity is
dangerous, and that they shouldn’t touch
things, as they would hurt themselves, or
break them. While safety messages and
lessons about electricity are important
in children’s upbringings, there’s very
little damage the children could do to a
computer, particularly when it’s not even
plugged into the mains.

After they’d achieved this, I started to
challenge their misconceptions further. As
a class, they watched me with my nicely
connected computer, using the board as
my monitor. I asked, “What would happen

if I unplugged the keyboard?” This was met
by mostly horrified faces of learners who
thought the computer would crash and
never turn on again. So I did it. We held
our breaths. Nothing happened. It was all
very anticlimactic. I asked again, “What
happens?” This time, we concluded that
you can’t type anything. This didn’t seem
that important to most of the children, who
preferred clicking on things anyway. I then
repeated this process with the mouse and
the monitor, and then suggested it with the
power supply.

I didn’t actually disconnect the power, as
this is more likely to confuse or corrupt the
computer, but did the children recognise that
a computer needs a power source? This is
not a peripheral; it’s a vital component. Now,
you could discuss whether the computer is
still a computer if it doesn’t have a keyboard
or mouse. You just can’t use the keyboard or
mouse. How else could you control it? What
about voice control, such as Alexa or Siri?
Once again, you’re back to exploring what
inputs and outputs are, and what parts are
necessary for the computer to work, and the
children are refining their own definition of
what a computer is.

Using Raspberry Pis as a manipulative
in computing helped the students to grasp
concepts of an abstract nature. By starting
the exploration with the device unplugged,
the children were able to recognise
their own understanding, which led to a
more focused testing of these beliefs in
subsequent lessons.

These were the definitions I was given
when I first asked: “What is a computer?”

n A keyboard and a screen
n A machine with a keyboard
n A search engine
n A machine used for work

After these lessons, I was told:

n A computer has lots of switches and
plugs to plug things into; it doesn’t have
to have a screen

n A computer needs code on a microchip
to make it work; without that, pressing a
letter would make nothing happen

n Not all computers look like a computer;
they have different shapes and designs
and are used to meet different needs

While these answers still showed
some conceptual misunderstandings, I
think there’s noticeable progress in the
complexity of their answers and the larger
breadth with which they were trying to
draw their conclusions. Their reliance on
a computer’s functionality to define it is
reduced, and their explanations of what a
computer needs to be defined as such is
more dense.

Have you ever asked your class what a
computer is? You might be surprised at the
answers you get!

n You can use Raspberry Pis as manipulatives in computing

Sway is a senior learning manager at the
Raspberry Pi Foundation, where she leads
a team developing computing resources for
primary teachers (@SwayGrantham).

UNPLUG,
UNPACK, REPACK

46 SEMANTIC WAVES
49 GO UNPLUGGED FOR BETTER

COMPUTATIONAL THINKING
50 SEMANTIC WAVES AND CRAZY

CHARACTERS

The Big Book of Computing Pedagogy 45

uilding on the idea of making concepts concrete

is the idea that you should unplug complex terms

and concepts from the context of computing. The

practice of unplugged computing involves stepping away

from the context of computing, and often from the computers

themselves, to explore concepts in familiar settings. (This

shouldn’t be confused with simple offline activities in which

learners explore computing without the computer.)

An important requirement of any unplugged activity is that

learners make connections back to the computing context.

This is where you should apply a semantic wave approach. To

begin, you take the terminology used by experts and unpack

the meanings, making them simpler and more relevant to your

learners. After this, pupils can repack those simple meanings

into the expert terminology, ensuring that they understand their

nuances and can use them appropriately.

By following this wave from the original

meaning down to something familiar

and then back up, you can build pupils’

understanding and prevent them from

misunderstanding key terms or being limited

to overly simplistic language.

B IN THIS SECTION,
YOU WILL FIND:

 ■ What the research says:
semantic waves

 ■ What the research says:
unplugged activities for
computational thinking

 ■ Reviewing a lesson activity
using semantic waves

The Big Book of Computing Pedagogy46

RESEARCH

Following a semantic wave
Computing, and especially programming,
is a subject with lots of technical terms
that have precise technical meanings.
To succeed, learners have to master
the terminology while simultaneously
developing a firm understanding of
the concepts. A great strategy for
supporting learners is to make your
learning experiences follow a semantic
wave.1 This involves introducing
abstract concepts (with the associated
terminology), but then using simpler
language to explain their meaning.
This is why metaphors, analogies, and
unplugged computing are powerful ways
to teach, provided they are used well.2
However, it is important to then help

ducators can improve explanations
and learning activities in

computing by using semantic waves.
Semantic waves describe an ideal
conceptual journey for novice learners
to follow, shifting between expert and
novice understanding, abstract and
concrete context, and technical and
simple meanings. It is part of Legitimation
Code Theory (helloworld.cc/lct) or LCT
(Maton, 2013).¹ Semantic waves have
been successfully applied by educators
across many disciplines, including
computing, to plan and evaluate learning
experiences. The theory also helps
explain when and why metaphors and
unplugged teaching work (and why,
sometimes, they might not).

students link those simpler meanings
directly back to the abstract concepts
and associated technical language.

For example, when an educator
introduces variables and assignment
(using technical words and abstract
concepts), learners are at the top of a
semantic wave. To help learners descend
the semantic wave, the educator might
explain variables using boxes (helloworld.
cc/boxvariable). To help them descend
further, the educator might then illustrate
the explanation with physical props.
However, the educator shouldn’t leave
learners thinking that it is just about boxes,
by talking only about moving values
between boxes; they must help learners
link this back to the technical and abstract,
so that learners can surf back up the
semantic wave. For example, the educator
might do a step-by-step demonstration
of a sequence of assignments in Python
by putting values in boxes, or they might
have learners follow a program fragment,
to help learners repack the meanings.
In traversing this wave, educators can
support their learners in understanding
complex, abstract concepts that are
underpinned by concrete and familiar ideas.

Language and context
Experts and novices understand and
describe concepts differently. While
novices are more comfortable using
concrete contexts to express concepts
in simple language, experts are far more
likely to describe the same concepts in
the abstract, and to use precise technical
language. Unpacking and repacking
concepts is achieved by adjusting either of
these two aspects.

SEMANTIC WAVES

E

Educators can improve explanations in computing using semantic waves,
unpacking and repackaging abstract concepts, and technical language

n This is a semantic wave for a lesson about algorithms

http://helloworld.cc/lct
http://helloworld.cc/boxvariable
http://helloworld.cc/boxvariable

The Big Book of Computing Pedagogy 47

RESEARCH

By decreasing the complexity and
precision of the terminology (the semantic
density),1 educators can make ideas more
accessible to learners. Educators may start
with precise terminology such as ‘iteration’
or ‘selection’, but then use less precise
terms for novices (such as ‘repeating’ or
‘decision’). An important final step is to
return to the original and precise terms that
were used to introduce the concept.

The other approach to unpacking and
repacking concepts revolves around the
context through which they are presented

(their semantic gravity).1 Educators do this
all the time through analogy, unplugged
activities, physical computing, and so on.
A more contextualised exploration of a
concept gives learners a concrete example
to build their understanding. However, if
learners don’t then step back from their
concrete examples and view the concepts
in the abstract, their understanding may
become limited to the single context.

For both language and context,
the repacking phase in the semantic
wave is crucial: during this phase,
learners explore the nuance of technical
terms such as ‘algorithm’, as well as
where analogies work, and where

they break down. They move their
understanding from the specific and
concrete to the general and abstract.

Semantic profiles
Semantic profiles are visual representations
in a learning activity of changes in language
and context, and allow educators to critique
those experiences. Studies have identified
some common teaching patterns that have
poor semantic profiles, and therefore lead
to poor explanations, and make it harder for
students to learn, as follows:3

High flatlining: The educator might only
explain and discuss concepts in technical
language and abstract contexts. This is what
experts do when talking together. They do
not unpack the meanings at all, assuming
that the other has mastery of the language

SUMMARY
Following a semantic wave structure:

 n Helps make expert knowledge accessible
to novices

 n Varies the context of the concept to build
links with concrete examples

 n Connects the technical terminology used
in activities with simpler meanings

 n Helps learners to unpack new concepts
and repack them into more complex
contexts, to encourage the acquisition of
new knowledge

 n Promotes achieving a secure knowledge of
one concept before progressing to the next

 n Helps novices develop both understanding
of abstract concepts and mastery of
technical meanings

Considerations:
 n Plan your lessons around a semantic wave

structure; look for opportunities to unpack
and repack concepts

 n Evaluate your lesson plans and
explanations in detail, drawing the
semantic profile

 n Make sure that across your learning
resources you use both routes to
expertise, varying either the language or
the context

 n Avoid semantic flatlines (never unpacking
or repacking concepts)

 n Complete each semantic wave and avoid
down escalators

 n Encourage learners to write their own
explanations using semantic waves

n A high flatlining semantic profile

SEMANTIC WAVES DESCRIBE AN
IDEAL CONCEPTUAL JOURNEY FOR
NOVICE LEARNERS TO FOLLOW

“

n Educators can use simpler language to convey meaning,
but they should always return to the technical language Credit: stock.adobe.com/Gorodenkoff

http://stock.adobe.com/Gorodenkoff

The Big Book of Computing Pedagogy48

RESEARCH

the next concept before having repacked the
simpler meanings into the technical meanings.

Reviewing learning activities
An important use of semantic waves, and
particularly semantic profiles, is as a basis
for reviewing learning activities. In a recent
paper, Waite et al.4 used this methodology to
review the Barefoot activity Crazy Characters
(helloworld.cc/crazycharacters). You can read
a summary of the paper on page 50.

Try this in your next lesson! By using
semantic waves and profiles, you can
predict and monitor learners’ challenges and
improve their learning experiences.

This article was adapted from Paul Curzon’s
blog,5 which is based on the work of Karl
Maton1 applied to a computing context. We
would like to thank them both for their input.

and concepts. Such an explanation is
incomprehensible to a novice learner, as they
do not understand the terminology.

Low flatlining: The educator might only use
simpler examples and language, and never
make the links to the concepts they are trying
to explain, or move out of specific contexts.
For example, in a lesson about algorithms, if
the educator just talks about recipes, learners
may understand the explanation, but never
understand how recipes are like algorithms,
or how they are not.

Down escalators: The educator may
structure an explanation to take learners
down the semantic wave, but not back up.
The educator makes a link from a technical
concept, but learners do not repack the ideas
during the activity. The class moves on to

REFERENCES
1 Maton, K. (2013). Making semantic waves: A key
to cumulative knowledge-building. Linguistics and
Education, 24(1), 8–22. helloworld.cc/semantic1
2 Curzon, P. et al. (2018). Teaching of concepts.
In: Sentance, S., Barendsen, E., & Schulte,
C. (eds.), Computer Science Education:
Perspectives on Teaching and Learning in
School. London, Bloomsbury Publishing, (pp.
91–108). helloworld.cc/semantic2
3 Maton, K. (2019). Semantic waves: Context,
complexity and academic discourse. In: Martin,
J. R., Maton, K., & Doran, Y. J. (eds.), Accessing
Academic Discourse: Systemic Functional
Linguistics and Legitimation Code Theory. London,
Routledge, (pp. 59–85). helloworld.cc/semantic3
4 Waite, J., Maton, K., Curzon, P., & Tuttiett, L. (2019).
Unplugged Computing and Semantic Waves:
Analysing Crazy Characters. UKICER: Proceedings
of the 1st UK & Ireland Computing Education
Research Conference. New York, Association for
Computing Machinery. helloworld.cc/semantic4
5 Curzon, P. (2019). Tip 9: Follow Semantic Waves
— Learning To Learn (To Program). helloworld.cc/
semantic5

n A low flatlining semantic profile

n A down escalator semantic profile

n Educators should link the concrete example (e.g. recipes) back to
the abstract concept (e.g. algorithms) or they will be ‘low flatlining’ Credit: stock.adobe.com/baibaz

http://helloworld.cc/crazycharacters
http://helloworld.cc/semantic1
http://helloworld.cc/semantic2
http://helloworld.cc/semantic3
http://helloworld.cc/semantic4
http://helloworld.cc/semantic5
http://helloworld.cc/semantic5
http://stock.adobe.com/baibaz

RESEARCH

The Big Book of Computing Pedagogy 49

thinking, decomposition, evaluation,
and generalisation.

For this study, the researchers designed
eight 45-minute lessons for an unplugged
classroom, as well as lesson plans for a
plugged-in group. Unplugged activities
were chosen from the computing education
resources website Code.org. In the first

session, students were asked to pair up for
the Graph Paper Programming exercise,
in which students ‘program’ one another
to draw pictures by giving each other
instructions for drawing on a 4x4 grid,
such as ‘move a square to the right’ or ‘fill
the square with colour’. Another example

nplugged activities are a great
option for students who do not

have access to computers at home, and
new research shows the benefits of such
activities for computational thinking. Many
of these activities can be done with only
a pen and piece of paper, an instruction
sheet, and a partner — such as a parent or
guardian, sibling, or classmate.

A group of researchers from the
University of Castilla-La Mancha in Spain,
led by Javier del Olmo-Muñoz, were
interested in the relationship between
unplugged activities and computational
thinking. They found that students who
start out in computing education with
unplugged activities before switching
over to computer-based activities show
a significant advantage in computational
thinking skills compared to their peers.

Jeannette Wing defined computational
thinking, widely considered an important
aspect of computing education, as “the
thought processes involved in formulating
a problem and expressing its solution(s)
in such a way that a computer — human

or machine — can effectively carry [them]
out”. However, it may not be obvious to
educators that developing computational
thinking doesn’t need to take place in
a classroom, and that it can be taught
without the use of computers. This will be
particularly useful for students who fall ill
for long periods of time, or need to stay at
home for remote learning, such as during
the coronavirus pandemic. In addition to
the advantage of not requiring computers,
these activities have been found to be
great for learning computational thinking
skills such as abstraction, algorithmic

of an unplugged activity is My Robotic
Friends, in which students adapt the set
of symbols from the first exercise and take
turns participating as a robot, acting out the
algorithm defined by their partner.

Throughout the research intervention,
students from one group engaged in
three unplugged activities, followed by
two plugged-in ones, and another group
engaged in only plugged-in activities.
Using tests before, during, and after the
activities, students were assessed on their
computational thinking skills, and they also
completed a motivational survey for the
activities. As well as the higher learning gains
of the unplugged group, the findings indicate
that these students were more motivated
about their instruction. For parents,
guardians, and educators, these findings
illustrate the benefits of experimenting with
unplugged activities from home. Code.org
activities are free to access.

STORY BY Thom Kunkeler

GO UNPLUGGED FOR BETTER
COMPUTATIONAL THINKING

FURTHER READING
 Del Olmo-Muñoz, J., Cózar-Gutiérrez R., & González-Calero, J.A. (2020). Computational thinking
through unplugged activities in early years of Primary Education. Computers & Education, 150.
helloworld.cc/unpluggedct

n An example of an unplugged activity from Code.org

COMPUTATIONAL THINKING DOESN’T
HAVE TO BE TAUGHT IN A CLASSROOM “

U

http://Code.org
http://Code.org
http://helloworld.cc/unpluggedct
http://Code.org

The Big Book of Computing Pedagogy50

FEATURE

Reviewing a lesson activity using semantic waves

SEMANTIC WAVES AND
CRAZY CHARACTERS

Following a whole-class activity, learners
then design their own algorithm in order
to draw their own crazy character.

Where did Crazy Characters come from?
In 2012, Michael Gove disapplied the
English ICT Curriculum, creating a two-year
hiatus while we, primary teachers, awaited
a new statutory ICT curriculum.

In the meantime, we were still required
to deliver the old curriculum, or to start
to teach what we thought might come
next. I [Jane] recall being at BETT, the
big computing education trade show, as
the announcement was made, and then
frantically searching for resources and
people who could help me rewrite my
school’s ICT subject planning. I recently
found my first revised scheme of work,
which I created for September 2012 – there
was no mention of algorithms, but there
were learning objectives such as, ‘I
can predict the results of someone
else’s instructions.’

Many computing lesson plan versions
later, in spring 2014, I applied for a
secondment from my school and for a

job as a content author on the Barefoot
Computing Programme. Managed by
the British Computer Society (BCS),
the initiative was funded by the DfE
and BT, and was one of the first of
many successful, innovative, and crucial
Computing at School (CAS) programmes
to support teachers in their delivery of
computer science in school. Very luckily, I
got the job and my life changed completely.

Over the next year, the Barefoot team
developed resources that demystified the
computer science elements of the new
computing curriculum. Using an iterative
approach, we wrote concept documents
and their associated classroom activities,
publishing as we went along. The algorithms
concept was first, and I was tasked with
thinking of an introductory unplugged activity.
In June 2014, Crazy Characters was born.

Crazy Characters was one of the first
resources on the new Barefoot website,
part of the very first continuing professional
development (CPD) presentation, and is still
a staple of the Barefoot volunteer workshop
delivered to teachers in schools. When
writing the activity, I was keen to make sure

An activity with weaker semantic gravity would
be to ask learners to memorise a definition of
an algorithm without any context, such as ‘an
algorithm is a set of precise rules or steps to solve a
problem’. Semantic gravity would become stronger
by adding an example, such as ‘an algorithm is a set
of precise rules or steps to solve a problem, such as

an unambiguous set of steps to draw a square’. This
activity has now shifted from weaker to stronger
semantic gravity. It would be strengthened further
if learners then engaged in a practical activity of
creating algorithms to draw squares in which the
need for sides of equal length was explored, to
highlight the importance of precision.

SEMANTIC GRAVITY EXAMPLES

JANE WAITE
Jane is a research scientist at the
Raspberry Pi Foundation. Her interests
include using design in primary
programming, semantic waves, PRIMM,
and migrating to online teaching
using ABC.

KARL MATON
Karl is the director of the LCT
Centre for Knowledge-Building at
the University of Sydney. Karl is the
creator of Legitimation Code Theory
(LCT), which is being widely used
to shape research and practice in
education, sociology, and linguistics.

LUCINDA TUTTIETT
Lucinda is the Barefoot Education and
Liaison Manager with the South West
Grid for Learning. She taught in primary
schools for 18 years before moving into
the advisory services in Bristol and
Somerset, supporting schools with ICT,
and then the computing curriculum.

razy Characters is a free online
lesson plan which introduces

algorithms to primary pupils using an
unplugged activity. It is one of the free
resources available from the Barefoot
website (helloworld.cc/crazycharacters).
In the activity, learners are asked to
follow verbal instructions (see Figure 1)
to draw a crazy, made-up character. The
instructions are not very precise, so that
learners can then improve the algorithm.

C

http://helloworld.cc/crazycharacters

The Big Book of Computing Pedagogy 51

FEATURE

that it was easy to run in class, fun, and,
most importantly, gently introduced this new
word ‘algorithm’ by doing, rather than telling.

I built on the way in which I normally
taught instruction writing in literacy, which
included a spot of curiosity, teachers getting
things wrong, humour, and peer review.
I had no idea that five years later I would
be asking Professor Karl Maton, a leading
education researcher, to review the lesson
plan and to investigate my planning in
terms of semantic waves.

Semantic waves — what are they?
I was introduced to semantic waves
by Professor Paul Curzon, who has
written about their potential for teaching
programming (helloworld.cc/curzonblog).
The notion of semantic waves is part of
a wider theory called Legitimation Code
Theory or LCT, created and developed by
Karl Maton (helloworld.cc/maton2013).
Very simply put, we can use semantic
waves to review learning activities, and

abstract the process of learning to better
think about how learners develop an
understanding of knowledge. The overall
aim is that, by doing this, we can reflect on
and improve teaching experiences for our
students. To explain these ideas, I need
to briefly outline two concepts introduced
on pages 46–47: semantic gravity and
semantic density.

Semantic gravity explores the context
of meanings, and how much of meaning
depends on the social context to make
sense. So where meanings are more
concrete (such as practical examples, or
those from personal experience), semantic
gravity is stronger; where meanings are more
abstract (such as theory), semantic gravity is
weaker. Changes in semantic gravity can be
shown over time, such as when teachers or
students move from theory to examples, or
from practical activities to a concept.

Semantic density explores the complexity
of meanings. Where meanings are relatively
simple, such as something that is described
in everyday language, semantic density is
weaker; where meanings are more complex,
such as in the case of technical concepts,
semantic density is stronger.

We can depict changes in semantic
gravity and semantic density as a semantic
profile; an example is shown in Figure 2.

In this example from teaching biology, the
teacher begins by discussing a scientific
concept in abstract and technical terms.
The teacher and students then unpack
some of its meanings in everyday language,
through practical and concrete examples.
Finally, the students repack those examples
into technical terms by completing a table
of concepts. This moves from abstract
and complex meanings down to more
grounded and simpler meanings, and
then back up to abstract and complex
meanings. These movements up and down
are called semantic waves, and a rapidly
growing body of research is showing that
they are crucial for knowledge-building in
classrooms. Study after study is showing
that waves enable knowledge to be
built, while flatlines (such as continuous
description or incessant theorising) hinder
knowledge building. These insights are now

feeding into teacher training, curriculum
planning, and classroom practice.

Enough of the theory — we now need
a concrete example, so we are going to
strengthen our own semantic gravity!

Creating the semantic profile for
Crazy Characters
I contacted the creator of semantic waves,
Karl Maton, asked him if he could help me
create a semantic profile for a resource,
and suggested Crazy Characters, as it is
very familiar to me, is still very popular with
teachers, and was also due for a review.

In an online hang-out, Karl read the
lesson plan, and together we walked very
carefully through each step of it and drew
up the semantic profile. We profiled the plan
as though a teacher was following the plan
to the letter.

What does the semantic profile for
Crazy Characters look like?
The semantic profile for just the introductory
part of the Crazy Characters lesson is

SEMANTIC GRAVITY EXPLORES THE
CONTEXT OF MEANINGS AND LOOKS AT
HOW MUCH MEANING DEPENDS ON THE
SOCIAL CONTEXT TO MAKE SENSE

“

An activity asking learners to ‘follow the
instructions to draw a square’ would
have weaker semantic density than one
requiring learners to ‘follow the algorithm
to draw a square’. This is because the
first activity is less complex, as the term
‘instruction’ has a less complex meaning
than the term ‘algorithm’.

SEMANTIC DENSITY

n Figure 1 Teachers read out their algorithm
for how to draw a Crazy Character Credit: Jane Waite

To get the most out of this article,
download the Crazy Character lesson
plan and walk through it with us:
helloworld.cc/crazycharacters.

A USEFUL LINK

http://helloworld.cc/curzonblog
http://helloworld.cc/maton2013
http://helloworld.cc/crazycharacters

The Big Book of Computing Pedagogy52

FEATURE

to the practical activity (strengthening
the semantic gravity as the context is
introduced). If there was no connection, the
line on the profile would break.

CONCRETE ACTIVITY Next, the teacher
is asked to read out the steps to enable the
learners to draw the crazy character. The
wave is low on the profile: it is a concrete
activity (stronger semantic gravity) and
likely to be expressed through relatively
simple meanings (weaker semantic
density), unless learners start to use the
term ‘algorithm’. If this were the case, there
would be little spikes of semantic density.

COUNTER-EXPECTANCY The teacher
is asked to be very vague with the
instructions given to learners. The aim is
that when they ask the pupils to share
their drawings, the images will be very
different, and they can say that they did
not expect this to be the case, and ask
why. This is called counter-expectancy.
This means that the context in which the
learners are developing their understanding
is challenged and alternative options are
raised. This increases the meaning of the
concept. On the semantic profile, this is
shown as a step up (widening the context
weakens semantic gravity; adding meaning
strengthens semantic density).

STAGED RETURN Next, the teacher is
instructed to ask the learners how they
could improve the algorithm. Learners
start to think about making the algorithm
more precise, but this is still in a relatively

shown in Figure 3. It is broadly a U-shape,
but with steps coming out of the U. We will
now go through each of the lesson plan
steps and explain the wave.

SIGNALLING To start with, the teacher is
asked to explain to students that a special
new word is going to be used. Learners
are signalled that something important
is coming, that a concept high up the
semantic profile is on the way. Learners
are NOT provided with a definition at this
stage. Instead, curiosity and expectancy
are kept high, so they can form their own
understanding of the term later through the
practical experience. There is no practical
concrete activity going on here, so semantic
gravity is weaker.

CONCEPT INTRODUCTION The term
‘algorithm’ is introduced as the teacher
starts to use the word. The teacher should
NOT explain what the word means at this
point. There is no practical activity here
(weaker semantic gravity), but it is clear that
the term is a complex and technical one
(stronger semantic density).

CONNECTING In the plan, the teacher is
instructed to say that they are going to use
the algorithm now. This clear connection of
the concept to the activity is very important.
The connection enables learners to add the
knowledge they gain during the practical
activity to their emerging understanding of
the meaning of the concept. As shown in
Figure 3, the semantic profile line drops, like
a bungee rope, as we connect the theory

specific context. On the graph, this shows
as another step upwards (adding meaning
strengthens semantic density).

PACKING Finally, the lesson plan instructs
the teacher to ask a generic question of
‘What was the algorithm?’ This is a more
general view of the activity, requiring
the learner to ‘repack’ their accumulated
understanding from the practical activity.
Again, this is moving up the profile, further
away from a specific context, and adding
more meanings (reducing context weakens
semantic gravity).

THE REST OF THE LESSON We have
not profiled the rest of the lesson for this
article. Broadly, it follows a similar set of
patterns. However, the highly prescriptive
nature of the introduction is loosened
as the learners create their own Crazy
Character algorithms. Included in this is
the introduction of a further concept, that
of debugging, as they ask their friends to
implement their algorithms as drawings
and then, together, debug the
algorithm in order to produce the same
imagined character.

How has creating the semantic profile
been useful?
By drawing the semantic profile for Crazy
Characters with Karl Maton, I have had the
opportunity to apply semantic waves from
theory to practice. This experience has
provided a number of useful outcomes.

Firstly, it has introduced me to a
language that has helped me describe

Some research indicates that learners from
more socially advantaged homes may be
more comfortable with semantic waves than
students from less advantaged homes, who
may experience less semantic waving. The
rationale is that some learners are more likely
to have generalised and complex meanings
explained to them, from a very young age.
In other words, the ‘why’ question gets
answered, and experiences are provided that
exemplify the ‘why’.

ADVANTAGE

n Figure 2 This example of a semantic wave comes from biology teaching (Maton, 2013) Credit: Karl Maton & Jane Waite

The Big Book of Computing Pedagogy 53

FEATURE

the lesson plan. Secondly, and more
importantly, semantic profiling has
enabled me to analyse and reveal why
the learning activity worked. It showed
how ideas were introduced in a concrete
way and more complex meanings were
gradually added, stepwise, to develop a
more general and abstract understanding.
Thirdly, the process has supported my
review of the activity, helping me think
of ideas to improve and build upon the
lesson plan. Finally, I have concluded that
semantic profiling is a practical and useful
approach that I will continue to explore and
use when designing teacher professional
development, and in creating lesson
planning material.

Would you like to change
Crazy Characters?
To maintain the semantic wave I would like
to add a follow-on lesson that applies in a
programming context what was learnt in
this unplugged lesson. I would also like to
reorder the learning intentions to match
the Use–Modify–Create theory (helloworld.

cc/umc) and I would increase the use
of the term ‘design’, following my own
research area.

However, overall, I would not change
the main steps of the Crazy Character
lesson plan. By creating the semantic
profile, I have revealed how the plan
provides a carefully scaffolded learning
experience to help learners develop an
understanding of the meaning of the
algorithm concept. As shown in Figure
3, the lesson plan includes a signal
that a new concept is to be taught,
introduces the concept, connects theory
to a concrete activity, incorporates a
concrete activity, and increases the
meanings condensed within the concept
to reveal a ‘packed’ (complex) definition
of the concept.

Working with Karl Maton on reviewing
Crazy Characters has been thoroughly
enjoyable. I am indebted for the time
he has kindly spent supporting me in
writing this article. I would also like to
thank Lucinda Tuttiett, who read through
the article and helped keep it real!

Does all this mean that the profile for Crazy
Characters will always be the same?

No. The profile is likely to be different each
time it is delivered. We have analysed the
lesson plan as though it is delivered to the
letter of the plan. Teachers are likely to
change how they deliver the lesson, so the
semantic profile will be different each time
they deliver it. Similarly, different learners
will engage in an activity in different ways.
This will mean that each learner experiences
a different personal semantic profile based
on their own knowledge-building event.

SEMANTIC PROFILES

n Figure 3 This is the semantic profile for the Crazy
Characters lesson plan (introduction only)

I now have a fledgling understanding of
how semantic waves can be used to reflect
on and develop teaching activities, and we
hope that by sharing our semantic profile of
a popular lesson plan, we will help others
learn about this approach.

Credit: Karl Maton & Jane Waite

http://helloworld.cc/umc
http://helloworld.cc/umc

WORK TOGETHER
56 PEER INSTRUCTION
58 PAIR PROGRAMMING
60 DISCOVERING COLLABORATIVE

PROBLEM-SOLVING
62 COLLABORATION AND COMMUNICATION

IN THE COMPUTING CURRICULUM
64 COLLABORATION IN

PROGRAMMING PROJECTS

The Big Book of Computing Pedagogy 55

ollaboration is crucial. Not only is it highly prevalent

in modern computing professions, but it is also a

valuable way for individual pupils to learn from

their peers. Working together stimulates classroom dialogue,

the articulation of concepts, and the development of shared

understanding. Specifically, you can use activities such as pair

programming and peer instruction.

Pair programming is an effective approach to programming

in which pupils share the cognitive load placed upon them.

They work in pairs, with one pupil focusing on the wider

problem and the other focusing on the implementation of the

code they are working on. Research demonstrates that this

approach supports learners in developing their programming

confidence and ability.

Peer instruction is another approach to working together.

It is a great way of building a shared understanding

between your pupils, while identifying and

challenging misconceptions. You can support

your pupils’ development by providing

opportunities for conversation through

structured group tasks, to enable them to

articulate concepts and develop their own

shared understanding.

C IN THIS SECTION,
YOU WILL FIND:

 ■ What the research says:
peer instruction

 ■ What the research says:
pair programming

 ■ Collaborative problem-solving

 ■ Encouraging communication and
collaboration in the classroom

 ■ Version control in
programming projects

The Big Book of Computing Pedagogy56

RESEARCH

other subjects, including computing.2, 3
Here, we explore PI and its benefits, look
at constructing a good multiple-choice
question (MCQ), and give some advice on
bringing PI to your classroom.

What is peer instruction?
PI is a teaching approach that combines
pre-instruction, MCQs, and peer discussion.
Pre-instruction includes reading, videos,
and so on, which learners can use to
study and become familiar with the
material in question before the class. The
educator will carefully construct MCQs
based on the pre-instruction material. In
class, those MCQs are combined with
peer discussion to explore and challenge
student understanding.

PI is carried out as follows:

1. Learners complete a pre-instruction
task (ideally outside class) to help
them become familiar with the relevant
concepts and knowledge.

2. The teacher poses a carefully selected
MCQ. Learners have limited time to
individually vote for their answer, using a
method such as voting cards, clickers, or
raising their hands.

3. Learners then discuss the question and
their answers in small groups, aiming for
a consensus.

eer instruction (PI) is an
instructional technique first

proposed in the 1990s by Eric Mazur,1
whose research demonstrated the
benefits of focused discussion for pupils’
understanding and retention in physics.
Subsequent studies have highlighted
similar benefits of using PI in teaching

4. The teacher displays the same question,
and now, learners vote according to their
group consensus.

5. Optionally, the teacher shares the
results of both votes to highlight where
responses have changed.

6. Finally, the teacher leads a class
discussion about the question, sharing
the correct answer and exploring the
incorrect answer options (distractors).

Benefits
While most studies examining PI have so
far focused on its use in higher education,
the practice offers many benefits which
should transfer to other settings:

 ■ Mazur1 demonstrated that PI leads to
significant learning gains for learners:
those engaged with PI made up to
twice as much progress as other
learners. Similar effects have been
found in subsequent studies,2 which
also highlight the importance of the
discussion element of PI.

 ■ The same studies indicate that using
PI in teaching helps students to
retain knowledge.

 ■ Once PI is part of the regular teaching
practice, most students value the
approach, recognise its benefits, value
the discussion, and would recommend
PI to their other teachers.2

PEER INSTRUCTION

SUMMARY
Peer instruction (PI) can replace a traditional
teaching approach by combining pre-
instruction, multiple-choice questions (MCQs),
and peer discussion, to encourage deeper
engagement with the content in question.

Benefits
 ■ It is a straightforward approach for

educators to apply in their classrooms
 ■ It leads to roughly double the learning

gains when compared with no PI
 ■ Learners value the PI approach, especially

the discussion element
 ■ Learners are more likely to retain key

concepts and knowledge taught using PI
 ■ Peer-led discussion promotes learning

Considerations
 ■ PI should follow some pre-instruction

stimulus, ideally before the lesson
 ■ Make sure that learners understand the

rationale and benefits of PI
 ■ Always encourage participation over

accuracy; PI is a tool for learning, not
assessment

 ■ Give learners challenging questions and
enough time to discuss them

 ■ Decide whether you want to collect
response data, and if so, how

P

Using peer instruction in lessons helps students learn, retain,
and discuss computing concepts

■ An example of a multiple-choice question

MOST PUPILS
RECOMMEND PI
TO THEIR OTHER
TEACHERS

“

The Big Book of Computing Pedagogy 57

RESEARCH

 ■ PI is fairly straightforward to implement,
and evidence shows that even teachers
who are new to the practice can quickly
see its positive effects.2

 ■ Some researchers cite anecdotal
evidence that PI may encourage learners
to develop a growth mindset.4

What makes a good MCQ?
Carefully constructed MCQs are a key
aspect of PI. Good-quality MCQs are
harder to write than you would think, as
teachers have to predict the misconceptions
their learners are likely to hold. For some
topic areas, there are lists of known
misconceptions; for others, teachers need to
rely on their experience. While there are no
definitive rules for developing MCQs, these
are some guidelines:5

 ■ Questions should be clear
and unambiguous

 ■ Each question should test only one concept
 ■ Learners should be able to answer

questions quickly
 ■ Teachers should learn something from

each incorrect response
 ■ It shouldn’t be possible to answer

correctly while still holding on to
a misconception

The image on page 56 shows an example
of an MCQ. Can you identify the correct
response and explain what might lead
learners to select the incorrect responses?

Considerations for applying PI
 ■ For many teachers and learners,

classroom PI represents a change in
practice. It is important to be clear about
the purpose of this approach and how it
can benefit learners.

 ■ PI isn’t an assessment tool, but a means
of instruction. Educators should shift
the focus away from getting the correct
answers, and instead, promote the
participation and discussion aspects of
the technique.

 ■ A PI activity should be given as much
time as possible. This is especially
important for the discussion step, which
should last at least two to four minutes.1
This can feel like a long time, but it is
time well spent.

 ■ If using an online voting system — such
as handheld clickers or web-based
quizzes — the recorded data can be
helpful in predicting which learners may
require extra interventions.

 ■ Questions should be challenging
enough to promote discussion. Mazur
suggests that the best results are seen
where 50 percent of learners get the
initial question wrong.1

 ■ Pre-instruction is important. With older
learners, a flipped approach is best, in
which students are introduced to the
learning material before the class. They
prepare by reading, watching a video,
or similar. Where home learning is not
possible, PI activities should build on

previous lessons, or even on content
studied earlier in the lesson.

Where to start
If you’d like to try PI in your classroom,
consider the following tips:

 ■ Review your content and highlight
opportunities for pre-instruction.
Consider what learning can be moved
outside the classroom to allow for
discussion time during the lesson.

 ■ Review and trial some existing MCQs
(helloworld.cc/computingMCQs) using
PI to diagnose some of your learners’
misconceptions.

 ■ Write your own MCQs, describe the
misconception that each answer
addresses, and share the questions with
other educators.

 ■ Encourage learners to deepen their
understanding of a topic by writing their
own MCQs.

 ■ Visit peerinstruction4cs.com for more
guidance and resources.

■ The peer instruction process

REFERENCES
1 Crouch, C. H., & Mazur, E. (2001). Peer instruction:
Ten years of experience and results. American Journal
of Physics, 69(9), 970–977. helloworld.cc/peer1
2 Porter, L. et al. (2016). A Multi-institutional Study
of Peer Instruction in Introductory Computing. In:
Proceedings of the 47th ACM Technical Symposium
on Computing Science Education. New York, ACM.
358–363. helloworld.cc/peer2
3 Simon, B., & Cutts, Q. I. (2012). Peer instruction:
a teaching method to foster deep understanding.
Communications of the ACM, 55(2), 27–29.
helloworld.cc/peer3
4 Simon, B., Hundhausen, C., McDowell, C., Werner,
L., Hu, H., & Kussmaul, C. (2019). Students As
Teachers and Communicators. In: Fincher, S.
& Robins, A. (eds.) The Cambridge Handbook
of Computing Education Research. Cambridge
Handbooks in Psychology. Cambridge, Cambridge
University Press, 827–858. helloworld.cc/peer4
5 Barton, C. (2017, November 29). What makes a
good diagnostic question? Medium. Available from:
helloworld.cc/peer5. helloworld.cc/peer5

http://helloworld.cc/computingMCQs
http://peerinstruction4cs.com
http://helloworld.cc/peer1
http://helloworld.cc/peer2
http://helloworld.cc/peer3
http://helloworld.cc/peer4
http://helloworld.cc/peer5
http://helloworld.cc/peer5

The Big Book of Computing Pedagogy58

RESEARCH

equally to the task. Poor communication can
be detrimental to the pair’s collaboration
and can cancel out the benefits of pair
programming. Therefore, an essential part
of making pair programming a success
is ensuring that learners have a good
understanding of the driver and navigator
roles that they will fulfil during the task.

The driver will control the keyboard,
mouse, or pen, depending on the task. They
will type the code, or write out the algorithm
as instructed by the navigator. These tasks
have a low-level cognitive demand for the
learner and allow them to concentrate on
writing code accurately, rather than also
having to focus on tasks such as problem-
solving, deciphering the instructions, and
algorithm development.

air programming is a pedagogical
approach that you can use in

your classroom; it involves two learners
working together on a problem to develop
programs. Pair programming was first
used in the software industry and later
came to education as the observed
benefits became clear.

What is pair programming?
The application of this concept is more
structured than simply asking two learners
to work together. It involves specific driver
and navigator roles. Pairing learners without
giving guidance as to how you want them to
work together can often lead to one, or both,
learners quickly losing focus. Ideally, both
learners should be engaged and contribute

The navigator will support the driver,
watching with a keen eye for any errors
being made. The navigator will also play
a strategic role by thinking of alternative
solutions to problems, reading the notes
from the teacher, or even walking around
the class to look at what others are doing.
These tasks have a higher cognitive
demand than the tasks of the driver, but as
the navigator doesn’t have the responsibility
of having to write the code, the load on
each member of the pair is reduced.

Learners choose, or are assigned, an
initial role, and once the task has started
they swap roles regularly — approximately
every five to ten minutes, depending on the
activity. This will make sure that everyone
is playing an equal and active role, and
that learners are encouraged to both take
ownership of the problem that they are
solving, and to think in different ways.

Benefits
Several benefits of pair programming
have been observed in a range of studies.
Through pair programming, the individual
cognitive load of both the learners is
reduced, because the tasks to complete are
shared between them. This is known as
the collective working memory effect (see
page 20). Pair programming “separates
tasks with low-level demands (typing,
computer management, and navigation)
from tasks with higher cognitive demands
(syntax analysis, algorithm development
and problem search)”.1 However, poor
communication between learners can
create additional cognitive load, which
could eliminate the benefits of this
effect. Modelling and developing strong
communication skills is therefore key (see
the ‘Pairing learners’ section).

PAIR PROGRAMMING

SUMMARY
Driver/navigator

 ■ Learners take turns playing the role of the
driver and the navigator, swapping roles at
regular intervals

 ■ The driver controls the keyboard and mouse
and writes the code

 ■ The navigator focuses on the wider aims of the
task, spots errors, problem-solves, and reads
out instructions to the driver

Benefits
 ■ Reduction in individual cognitive load via the

collective working memory effect (see page 20)
 ■ Improved confidence in finding solutions,

particularly among female students
 ■ Improved quality of programs (fewer errors,

more efficient and elegant code)
 ■ Retention of learners’ interest in the activities,

lessons, and subject

Key considerations
 ■ Communication between driver and navigator

is key: spend time modelling, emphasising, and
rewarding these skills

 ■ Spend time ahead of the lesson carefully
planning the pairings based on skills,
personalities, or friendships

 ■ Ensure that the driver and navigator are
always working on the same task at the
same time

 ■ Experiment with length of time spent in each
role to suit your learners’ needs

 ■ Ensure that summative assessment is based
on paired and individual work/tests, with a
greater weighting given to individual work

 ■ Check that both members of the pair are
fulfilling their roles, and do not allow one
person to dominate

P

Educators can use pair programming to support learners in
producing better solutions to complex programming problems

The Big Book of Computing Pedagogy 59

RESEARCH

Another benefit of pair programming
is the likely improvement of the quality
of the programs produced by the
learners. The learners support each
other by debugging, spotting syntax
errors as they occur, and making their
code more elegant and efficient.

Although most studies conducted
so far have been with university
students, the results suggest that pair
programming has its biggest impact
with learners who have less advanced
skills and lower confidence, or with
groups of learners who are studying
introductory courses in programming.2

Research shows that pair programming
benefits all learners. However, there is some
evidence that suggests that the technique
has a greater impact on girls. In studies
conducted on learners taking foundation
programming courses in higher education,
Werner et al. reported a significant increase
in confidence levels reported by the women
who were paired, compared with those who
worked independently.3 Similar findings by
Braught et al. showed that women who
worked alone were more frustrated than
women who worked in pairs.4

While evidence shows that pair
programming can benefit girls in terms of
results and their perception of the subject,

there is no evidence to suggest that it has a
negative impact on boys. Hanks et al. found
that female students had more positive
impressions of pair programming than
their male counterparts, but the differences
were not statistically significant.2 Allowing
female learners to work together might
help maximise some of the benefits of
this approach.

Practical considerations
Pairing learners: As an educator, you will
need to use your professional judgement
to choose the best pairings in order to
optimise the benefits of the collective
working memory effect.1 Key factors that
could be considered when creating pairs
include the following:

 ■ Learners’ personalities and their degree
of comfort working together should be
considered for sustained or complex
tasks, as the pair will benefit from their
established relationship.5

 ■ Many studies advocate focusing on the
skill sets of the learners when pairing.
While there is no consensus from the
research as to which skill-based pairings
are most successful, it is good to start by
pairing learners with more advanced skills
with those with less advanced skills.

Whichever method of pairing you opt for, it
is important to check in regularly with pairs
to ensure that they are working well.

Assessment: Learners should be assessed
on both their paired work and their
individual work. It is not recommended
that any summative assessment be based
solely on the work that they complete as a
pair. Preston5 makes two recommendations
for assessment to encourage individual
accountability with pair programming:

 ■ Assessment should require students to
develop code, interpret code, or both

 ■ Assessment scores for individuals
should be weighted more heavily than
the joint project score when determining
the final grade

Further advice and guidance on pair
programming can be found in a paper
focused on middle schools, by Werner
and Denning.6

■ Pair programming requires specific driver and navigator roles

REFERENCES
1 Sands, P. (2019). Addressing cognitive load in the
computer science classroom. ACM Inroads, 10(1),
44–51. helloworld.cc/pair1
2 Hanks, B. et al. (2011). Pair programming in
education: a literature review. Computer Science
Education, 21(2), 135–173. helloworld.cc/pair2
3 Werner, L., Hanks, B., & McDowell, C. (2004).
Pair-programming helps female computer science
students. ACM Journal of Educational Resources in
Computing, 4(1). helloworld.cc/pair3
4 Braught, G., Wahls, T., & Eby, L.M. (2011). The Case
for Pair Programming in the Computer Science
Classroom. ACM Transactions on Computing
Education, 11(1), 1–21. helloworld.cc/pair4
5 Preston, D. (2005). PAIR programming as a model
of collaborative learning: a review of the research.
Journal of Computing Sciences in Colleges, 20(4),
39–45. helloworld.cc/pair5
6 Werner, L., & Denning, J. (2009). Pair Programming
in Middle School: What Does It Look Like? Journal
of Research on Technology in Education, 42(1),
29–49. helloworld.cc/pair6

Cognitive load
shared via

collective memory

effective
Requires

communication

Swap roles regularly

NavigatorDriver
 Focusses on the wider aims of
 the task
 Provides guidance, spots errors,
 problem-solves, and helps decipher
 instructions

 Focusses on the implementation
 Operates the computer
 Takes advice from the navigator

http://helloworld.cc/pair1
http://helloworld.cc/pair2
http://helloworld.cc/pair3
http://helloworld.cc/pair4
http://helloworld.cc/pair5
http://helloworld.cc/pair6

60

OPINION

nstead of teaching in routine ways, imagine
basing lessons on open-ended questions
such as “How much paint is needed to paint a

classroom?”, with the aim of developing collaborative
skills and problem-solving. Collaborative problem-
solving (CPS) is loosely defined as a group of people
working together on a shared problem. A recent report
commissioned by Nesta, and written by academics at
UCL, argues for a greater use of CPS in education.

CPS brings together individual problem-solving and the
process of collaboration, and is one of the most important
skills needed by this generation. However, it can be very
easy for collaboration to become a one-sided affair, with
one person taking over. The success of the collaborative
activity depends on the skills and attitudes of learners in
relation to each other, as well as on the type of activity.

The Nesta report states that there are five essential
features of successful collaborative learning:

I

Could the future of learning be working together?

DISCOVERING COLLABORATIVE
PROBLEM-SOLVING

SAMANTHA BALORO ASSISTANT EDUCATIONAL PSYCHOLOGIST

n Positive interdependence
Learners work harmoniously together, without one
member taking over

n Promotive interaction
Learners support each other when completing tasks

n Individual accountability
Learners are committed to their section of work, and feel
responsible for the group’s success in the task

n Interpersonal and group skills need to be developed
Learners won’t necessarily have or use high-level
collaboration skills

n Group processing
Learners reflect on their working relationship, and consider
how it can be improved jointly and individually

Studies have found that engaging in collaborative group-
based learning promotes positive attitudes to schooling,
and improves the social climate of classrooms. It also
results in learners being more actively engaged in their
learning and having higher levels of motivation. The reason
for this change in students’ attitudes to learning may be
because engaging in CPS involves students being able to:

1 Articulate, clarify, and explain their thinking

2 Listen to ideas from others, which in turn leads to
developing understanding in areas that were previously
unclear to them

3 Resolve conflicts by presenting counter-explanations,
evidence, and arguments to others, as well as actively
engaging in the construction of ideas and thinking in
order to co-construct knowledgeCredit: stock.adobe.com/New Africa

http://stock.adobe.com/New

The Big Book of Computing Pedagogy 61

OPINION

Samantha Baloro is an assistant educational
psychologist. She completed the Raspberry Pi Foundation

research internship in 2017.

Current research in UK schools has found that, although
learners are often seated in pairs or groups during school
activities, it is rare that active collaboration occurs in ways
that are cognitively beneficial. When examining the amount
of collaboration occurring in different subjects, it was also
found that maths and humanities students were less likely
to participate in collaborative work than
science students.

There might be a number of
reasons for the scarcity of meaningful
collaborative problem-solving. Here’s a
shortlist of the potential issues that have
been considered in the research:

n The gap between CPS and the current national
curriculum in England, which focuses on exams

n The high workloads teachers are faced with

n Teachers being hesitant to practise CPS because they
will have less control over learners

n Teachers not having enough training or confidence
to teach CPS

n Students not enjoying working in groups

The success of CPS also depends on how teachers
organise, engage, and set up tasks, as well as how they
support groups. This is very often difficult to get right, as
nobody can assume that just by putting people in groups,
collaboration is naturally going to occur. It is important
to avoid being too directive, as this can negatively affect
group collaboration. When facilitating CPS, teachers should
monitor group interactions while asking open-ended
questions to challenge students and encourage them to
reflect on their views.

Behaviour management is another aspect that needs
to be considered. CPS can lead to increased noise and
disagreements among learners. It is important to introduce
CPS activities in the classroom gradually and frequently, so
that learners and teachers can develop the skills needed for
productive CPS, such as self-control and productive conflict

resolution. Most importantly, it is not possible to implement
collaborative problem-solving without the active support
of a school’s senior leadership team. This involves ensuring
that they understand the importance of CPS and allow
teachers sufficient time to attend training and embed it into
practice. In short, it’s not an approach that can be rolled out
without consideration.

But it’s worth bearing in mind that the research shows
that when done right, CPS can significantly benefit
children’s cognitive attitude to learning, and can help
considerably when it comes to their development of
crucial skills such as teamwork and problem-solving.
Implementing it involves a tricky balancing act, and more
research is needed on collaborative problem-solving and its
application in the classroom.

The full report is available at helloworld.cc/CPS. Nesta
has also completed an exploratory pilot looking at
collaborative problem-solving discussion in the classroom,
available at helloworld.cc/CPSdiscussion.

ENGAGING IN COLLABORATIVE
GROUP ACTIVITIES PROMOTES
POSITIVE ATTITUDES TO LEARNING

“

http://helloworld.cc/CPS
http://helloworld.cc/CPSdiscussion

FEATURE

The Big Book of Computing Pedagogy62

he English computing curriculum
states that pupils must be able to

create content and express themselves.
This can lead to a range of collaboration
and communication opportunities. In
particular, Reid and his colleagues
outline that having technology available
enables pupils to develop a variety of
social skills, such as communication,

negotiation, problem-solving, and
collaboration (helloworld.cc/reid02). To
engage pupils in computing lessons and
ensure coverage across the curriculum,
Computing at School says there’s a
need to undertake creative projects in
a “fun and collaborative environment”
and, when tasks undertaken are
relevant to the pupils’ interests, they can

T

Neil Rickus examines ways to provide opportunities for talk, and to
enable pupils to collaborate effectively in computing lessons

undertake “exploratory talk” (helloworld.
cc/mercer08) in the safe and secure
environment of the classroom. So,
how can we provide opportunities for
collaboration when teaching computing?

Computational thinking and
program development
Barefoot Computing defines computational
thinking, which underpins the computing
curriculum, as a combination of six
concepts and five approaches, with each
area providing opportunities for pupils
to work together. Barefoot’s approach
to collaboration could involve a range of
pedagogical techniques, such as paired
programming, which allows pupils to
develop their programs together, with
one pupil solely using the input devices,
while the other pupil focuses on the
required instructions. Collaboration
also complements a number of other
computational thinking approaches, such
as debugging and persevering, which
may not be as effective if approached
independently. Teachers have also noted
the “positive motivational impact” that
collaborating on programming tasks has
on individuals and on the class as a whole
(helloworld.cc/sentance15).

In DT, the “engineering design process”
(helloworld.cc/bers10) is often followed,

COLLABORATION AND
COMMUNICATION IN THE
COMPUTING CURRICULUM

©Image is licensed under CC2.0 and was taken by Lucélia Ribeiro

Pupils discuss bugs, or errors in their program’s
code, while working together at the computer

http://helloworld.cc/reid02
http://helloworld.cc/mercer08
http://helloworld.cc/mercer08
http://helloworld.cc/sentance15
http://helloworld.cc/bers10

FEATURE

The Big Book of Computing Pedagogy 63

with the Imagine and Plan stages allowing
children to articulate their ideas and
share their thoughts with others. Such a
process is increasingly being used when
implementing physical computing projects,
which ensures pupils have carefully
thought about both the physical and
programming elements of their project
before beginning work. The process also
allows children to regularly evaluate and
improve their work, which, as Dawes
and her colleagues state, lets them “talk
[the outcome] into existence” through the
various iterations of their project.

Teacher input
When teaching programming, teachers
need to ensure they focus on the concepts
being taught, rather than on the hardware
or software being used, as pupils can
become disengaged if they keep using the
same technology on an ongoing basis. By
using technical language, pupils become
more familiar with technical terms, which
is essential as they produce more complex
projects and move to using text-based
programming environments (helloworld.cc/
kolling15). When working with others, this
can also allow pupils to articulate clearly
how their programs function, and it can also
facilitate debugging.

When using paired programming and
other collaborative teaching approaches,
(such as C3B4ME, in which pupils have
to ask three peers for assistance before
asking the teacher), teacher modelling is
needed, to demonstrate to pupils how they
should interact (helloworld.cc/bird14). This
enables children to ensure they empathise,
listen, and potentially continue their
conversations in more depth, rather than the
exchange ending in a dispute (helloworld.
cc/littleton13). Teachers with limited
experience of delivering computing lessons
can use these pedagogical techniques
to act more as a facilitator, rather than a
knowledge bearer, and can help to avoid
them being inundated with “lazy questions”
(helloworld.cc/bird14). However, this
process needs to be carefully managed, to
ensure more able pupils aren’t continuously
disturbed during lessons, and that the lesson
is challenging for all pupils.

Block-based programming environments
can facilitate further speaking and listening

activities. For example, most environments
allow sound to be recorded for inclusion in
pupils’ programs, and a spoken narrative
can often be recorded while the program is
on the screen.

Introducing IT elements
Unplugged computing activities enable
pupils to develop their understanding of
computational thinking without the need
for technology. Many unplugged activities,
such as Phil Bagge’s Sandwich Robot
(helloworld.cc/sandwich), require pupils
to limit their vocabulary choices and give
precise, unambiguous instructions, while
developing their understanding of the
computational thinking areas of abstraction
(removing unnecessary detail), evaluating,
and collaborating. These activities also
provide opportunities to introduce other
technologies into lessons, such as the
camera on a tablet device, which pupils
could use to film their peers in role to
assess the quality of their instructions, and
to aid debugging.

The use of IT to record audio and video
can also enhance other areas of the
computing programme of study. E-books
containing multimedia content created
by the pupils provide opportunities to
share their work with an audience beyond
the classroom and, when considered
in conjunction with Papert’s theory of
constructionism, this use of technology
is likely to enhance pupil outcomes by
providing an audience for their work. When
pupils are including information gained
from their own online research, the most

successful pupils use “exploratory talk”
(helloworld.cc/knight15) to assist with
“sorting out his or her own thoughts”
(helloworld.cc/mercer08).

Other recording technologies, such as
talking picture apps, which allow recordings
to be synchronised with the movement
of a character’s lips, can enable pupils
to demonstrate their understanding of
curriculum areas without the barrier of
having to produce written content. For
certain pupils with special educational
needs and disabilities, particularly those
with autism, the use of a computer can even
help to reduce anxiety and effectively aid
communication, according to the Autism
Education Trust.

So, how can you provide more
opportunities for pupils to talk and
collaborate when teaching computing? Let
me know your thoughts via Twitter
@computingchamps.

TALK DURING COMPUTING

Speaking and listening activities
in computing lessons need to be
carefully managed. Giving your
learners too much freedom can lead
to off-task behaviour, while limiting
collaboration reduces opportunities
for pupils to learn from each other. We
work carefully with pupils to model
the appropriate language for talk,
and encourage them to use technical
vocabulary where possible.

NEIL RICKUS
Neil is a senior lecturer in computing
education at the University of Hertfordshire.
He is a CAS community leader and a
Raspberry Pi, Google, and Microsoft
Certified Educator (@computingchamps).

http://helloworld.cc/kolling15
http://helloworld.cc/kolling15
http://helloworld.cc/bird14
http://helloworld.cc/littleton13
http://helloworld.cc/littleton13
http://helloworld.cc/bird14
http://helloworld.cc/sandwich
http://helloworld.cc/knight15
http://helloworld.cc/mercer08

FEATURE

The Big Book of Computing Pedagogy64

etting pupils to collaborate
effectively on programming projects

is tricky. We often can’t see how much
work each pupil has done, and it’s hard
to interrupt the flow of work to provide
constructive feedback. It’s also difficult to
bring the reality of the world of work, and
how programmers work in industry, into the
classroom. Smerge is a free Snap! add-on
developed by a research team in Germany
that helps tackle these issues.

What is a version-control system?
Version control is crucial in real-world
software development. Whether you are
working in a small or large team, collaborating
face to face or remotely, knowing where you

are up to in the creation and modification of
your code is essential. Learning about version
control and its underpinning concepts as a
core computational practice is important, as is
learning how to use it. However, professional
tools are extremely complex, and even
professional software developers can have
problems with them.

Version control for Snap!
Smerge is an easy-to-use, beginner-friendly
online version-control system for the Snap!
block-based language. Smerge enables
students to work together collaboratively to
develop programs. Teachers and peers can
provide feedback on specific versions of a
project, giving hints, tips, and suggestions
for improvement, and they can do this in
class or at home.

The design of Smerge was based on
a review of professional version-control
systems and how they were used in
computer science classrooms. While being
tailored to novice programmers, Smerge still
includes all core concepts of professional
version-control systems, which are:

n Project history: In Smerge, the project and
its history are visualised in a project history
diagram (a graph).

n Committing: Changes are added to a
project by committing them to the version-
control system. Changes are committed to
Smerge by simply clicking on an add-on
Snap! block (Post to smerge).

n Branching: Branching opens an alternative
path so that changes can be made in
parallel. A branch might be used for
developing new features or fixing bugs,
without impacting the current state of
the project. This is where Smerge differs
from many existing systems. Each person

editing the shared program is provided
with their branch automatically.

n Merging: A version-control system
simplifies combining changes and the
resolution of conflicts. For merging, users
select which nodes they want to merge
in the project history diagram and confirm
their selection. When possible, conflicts
are resolved automatically by Smerge. If
they cannot be resolved automatically, the
conflicting code fragments are shown in a
merge view in Snap! for the person editing
the program to sort out.

n Data backup: Having all files backed up
to version control allows for returning
to every (older) version easily, and thus
enables risk-free trial and exploration of
different ideas. In Smerge, old versions can
be accessed using the graph.

How to Smerge
To get started with Smerge, the teacher or
students create a project on smerge.org.
At no point do they need to register on the
Smerge system. Students might start from
a given template, or a plain Snap! project.
Imagine that a team wants to create a
game such as Asteroids, the classic arcade
shooter game. One student can develop
the functionality to move the spaceship,
and another to program the feature to
shoot missiles.

To start implementing this in Snap!, each
of the students just double-clicks on the
node they would like to edit. Every student is
automatically provided with their own branch
to work on. Then they just use their usual
Snap! window for programming. When they
have finished adding their feature, they post
their program back to Smerge by using the
custom Post to smerge Snap! block, found
on the variables palette.

Smerge was created for classrooms and offers
teaching and learning features:
n Enables collaboration on project-based

learning with Snap!
n Teachers can supply custom sample code
n Teachers and students can provide

feedback or marking and suggest
alternative ways forward

n Helps teach industry version-control skills
n Helps students think about the

development process by making it more
transparent

n Students can see the version history, revert
changes, and go back to old versions

n Teachers and students can easily share
projects with no need to register and no
personal information stored

USEFUL SMERGE
FEATURES

Stefan Seegerer, Tilman Michaeli, and Jane Waite introduce Smerge, a free version-control
system for the block-based programming language Snap!

COLLABORATION IN
PROGRAMMING PROJECTS

G

http://smerge.org

FEATURE

The Big Book of Computing Pedagogy 65

One of the students then activates the
‘merge’ mode in Smerge. This is done by
clicking the ‘merge’ button. The student
selects the two nodes to be merged and
confirms the selection. The code will be
automatically merged, resulting in a new
version. If more than one student changed
the code for the same script in the same
sprite, both versions of that changed script
are retained by Smerge and both are shown
in the new merged code. This enables the
students to discuss the conflict, test the two
options, and choose which version to keep.

Project ideas
You can use Smerge for any Snap! project.
Here are some ideas to foster collaboration:

n Animal dance party: The teacher creates
a starter program, with one dancer and
music. Every student then adds their own
dancer to the party.

n Celebration card: In this project, students
collaboratively create a celebration card,
such as a birthday card. Every student
creates one letter, and the letters are
shown, one after the other. This involves
students working out how to coordinate the
appearance of each sprite.

n Quizzes: The teacher provides a starter quiz
and students add extra questions. Lots of
testing might be needed here to check that

shared variables, such as a score, are used in
the same way by all contributors.

n Animated story: Students storyboard the
animation of a story, figure out what work
needs to be done, and share the work
between group members.

n Games: Last but not least, students can
collaboratively create games, as each
student focuses on its different parts.

Pedagogy ideas
As well as modelling how Smerge works, try
a Use–Modify–Create approach. Create an
example Smerge project and ask students
to explore the project history. Then ask
them to take one branch to make their own
version. Ask the students to work in pairs
to compare their versions and discuss a
potential combined version. Encourage using
the ‘merge’ mode, and compare the results
with their expectations. You could start more
simply, introducing collaboration later on.

Using Smerge in the classroom provides
many valuable opportunities to address
important aspects of collaboration and
program design. When using version-control
systems, students learn to decompose
functionality sensibly, create reusable
functions, think about interfaces or test data,
and meaningfully name sprites, assets, or
descriptions of what has been changed.
Smerge is free to access at smerge.org.

STEFAN SEEGERER
Stefan is a researcher, developer, speaker
and educator. He works at the Free
University of Berlin, Germany, exploring
ways to make computing accessible to
everyone (@StefanSeegerer).

TILMAN MICHAELI
Tilman is a researcher at the Computing
Education Research Group at the FAU in
Germany. He works on projects such as
developing concepts for the classroom
supporting debugging skills, and fostering
collaboration for programming projects (@
TilmanMichaeli).

JANE WAITE
Jane is a research scientist at the Raspberry
Pi Foundation. Her current interests include
using design in primary programming,
semantic waves, PRIMM, and migrating to
online teaching using ABC (@janewaite).

n Smerge makes version control simple

http://smerge.org

READ AND EXPLORE
CODE FIRST

68 CODE TRACING
70 READ BEFORE YOU WRITE
72 ASSEMBLY LANGUAGE ON

THE PI: “LEARNING HOW TO
WALK AGAIN”

The Big Book of Computing Pedagogy 67

here is no doubt that programming can be a highly

rewarding and satisfying experience for everyone.

However, you should be in no rush to have your

students write their first independent program; in doing so,

you may miss out some important steps.

We typically wouldn’t ask pupils to write before they had

learnt the basics of reading, or encourage them to write

number sentences before they had learnt to count. Likewise,

there is a body of evidence that suggests that engaging pupils

in reading code that other people have written before they

create their own code can enhance and improve their ability to

write better code later on.

Students should be able to review,

interpret, understand, and manipulate

code. This approach applies to all sorts of

programming experiences, whether they

are text-based (for example, Python) or

block-based (for example, Scratch).

T IN THIS SECTION,
YOU WILL FIND:

 ■ What the research says:
code tracing

 ■ Evidence-based approaches
for helping pupils to read code

 ■ Teaching assembly language
on Raspberry Pi to older
pupils

The Big Book of Computing Pedagogy68

RESEARCH

effective precursor to code writing and
independent programming.

When tracing code, learners review
chunks of code, or whole programs, and
record their expected behaviour and
execution flow at various stages. They can
capture this through annotation as well as
by recording the program output at each
stage. You may ask learners to trace a piece
of code, predict the outcome, and then
guide them through the code, line by line,
to test their prediction. Typically, you’ll ask
learners to predict away from the computer,
to ensure they focus on reading rather than
executing the code. You could also give

learners short sections of code in the form
of worked examples (see page 90), or ask
them to complete trace tables where some
values are provided, and they can use code
tracing to record the missing values. Then,
with this secure understanding, you can
allow learners to create their own programs
featuring the concepts they have traced.
While there is no single approach to tracing,
there are some clearly defined methods,
such as TRACS1 tracing, which may be
helpful for learners to follow.

Benefits
Harrington2 identified that when learning to
program, learners build their understanding
in a hierarchical way. Tracing is at the most

eveloped in the early 2000s,
code tracing is a well-established

approach to help learners build their
program comprehension. Put simply,
it involves reading and analysing code
before running it, to predict its outcome.
Novice programmers should be competent
in code tracing before they can confidently
write programs of their own. Here, we
explore code tracing, its benefits, how it
fits in with the concept of the notional
machine, and how you can use code
tracing in the classroom.

What is code tracing?
It is widely understood that young learners
should ideally have developed some
reading skills before they begin learning
to write. Similarly, in computing, there is
a body of evidence to suggest that code
tracing, a form of code reading, is an

basic level, followed by explaining the
code, and finally progressing to writing.
Many other studies have been completed
based on this theory. Hertz and Jump, who
developed the trace-based teaching model,
found that starting a class with 20–30
minutes of tracing increased attainment
and decreased dropout rates.3 A 2004
study found that learners who could trace
effectively less than 50 percent of the time
could not explain the code effectively.4 Code
tracing can help to reduce the cognitive
load placed on learners. By focusing
learners’ efforts on existing and working
programs, and by answering specific

questions, educators can avoid unnecessary
extraneous load being placed on learners.
If learners have the opportunity to trace
code, they can comprehend the code and
its function before seeing it in action. Many
other subjects explore similar ideas, such as
the Talk for Writing framework in literacy,
and progressing from concrete objects
to abstract numerals in mathematics.
This approach also helps develop
learners’ understanding of the notional
machine — how the code is executed.

If we accept that there is a broad
consensus advocating code tracing as an
effective strategy with a range of evidence
to support the claim, what should we
consider when using it in the classroom?

CODE TRACING

SUMMARY
Tracing involves:

 ■ Reading the code
 ■ Interpreting the meaning
 ■ Recording the flow and/or outputs

Benefits of tracing:
 ■ Fosters program comprehension
 ■ Improves code writing
 ■ Supports learners in analysing and

explaining code
 ■ Exposes misconceptions
 ■ Reduces cognitive load
 ■ Helps learners develop a consistent

notional machine

D

Reading code before writing it is vital, and code tracing is an
ideal activity to develop learners’ program comprehension

STARTING A CLASS WITH 20–30 MINS
OF TRACING INCREASES ATTAINMENT
AND DECREASES DROPOUT RATES

“

The Big Book of Computing Pedagogy 69

RESEARCH

The notional machine
When tracing code, learners apply their
current understanding of how a machine
works: their notional machine. This concept
was first introduced by Benedict du Boulay
and describes the conceptual model that
learners have about how a computer
processes instructions and data.5

The notional machine can look very
different depending on the type of
programming language being used. In
Scratch, it is simple to run more than one
process concurrently (threading), whereas
in most text-based languages (including
Python), this is more complex. This has
implications for how we begin to teach
programming in Scratch. Learners may
demonstrate that they can use threads,
but may not understand how the machine
handles them. This gap in their notional
machine understanding can lead to gaps

in their knowledge, or to misconceptions.
If you encourage learners to use threads
in Scratch without addressing the notional
machine, it may lead to problems later when
learners find threading more difficult to
achieve in Python.

In-context application
You can incorporate code tracing in the
classroom as a standalone activity, or as
part of a broader approach:

 ■ The PRIMM (Predict–Run–Investigate–
Modify–Make) approach is ideally suited
to tracing, as PRIMM requires learners
to Predict as its first step, which involves
reading and tracing (see page 22).

 ■ You can begin a programming activity
or project by providing learners with an
existing project or snippet of code for
them to trace.

 ■ Tracing is also a great way to check
learners’ understanding of the
capabilities of the notional machine.
Using examples in which specific
misconceptions may lead to an incorrect
solution, tracing can expose and help
address this misconception.

If you would like to try some code tracing
activities, the Teach Computing Curriculum
‘Programming’ units include examples
(helloworld.cc/tcctracing).

REFERENCES
1 Donaldson, P., & Cutts, Q. (2018). Flexible low-cost
activities to develop novice code comprehension
skills in schools. Proceedings of the 13th Workshop
in Primary and Secondary Computing Education, 1-4.
helloworld.cc/tracing1
2 Harrington, B., & Cheng, N. (2018). Tracing vs. Writing
Code: Beyond the Learning Hierarchy. Proceedings
of the 49th ACM Technical Symposium on Computer
Science Education, 423-428. helloworld.cc/tracing2
3 Hertz, M., & Jump, M. (2013). Trace-based teaching
in early programming courses. Proceedings of the
44th ACM Technical Symposium on Computer
Science Education, 561-566. helloworld.cc/tracing3
4 Lister, R., Adams, E. S., Fitzgerald, S., Fone, W.,
Hamer, J., Lindholm, M., McCartney, R., Moström, J.
E., Sanders, K., Seppälä, O., Simon, B., & Thomas,
L. (2004). A multi-national study of reading and
tracing skills in novice programmers. ACM SIGCSE
Bulletin, 36(4), 119-150. helloworld.cc/tracing4
5 Du Boulay, B. (1986). Some Difficulties of Learning
to Program. Journal of Educational Computing
Research, 2(1), 57-73. helloworld.cc/tracing5

http://helloworld.cc/tcctracing
http://helloworld.cc/tracing1
http://helloworld.cc/tracing2
http://helloworld.cc/tracing3
http://helloworld.cc/tracing4
http://helloworld.cc/tracing5

The Big Book of Computing Pedagogy70

efore students can write code,
they need to be able to read

code. Computer science pedagogy is
often based around the ideas of Piaget’s
constructivism (in which pupils develop
their knowledge through exploration) and
Papert’s constructionism (in which pupils
learn through creating artefacts). However,
learners need guidance to gain useful
knowledge efficiently, and to organise
that knowledge in a clear and logical way.
They need to be able to break a problem
down, remove the unnecessary detail,
find patterns, and think algorithmically
before they can start to write programs for
solving problems.

Just as we wouldn’t expect a young child
to write prose before they can read, we
need to provide guided approaches that

use direct instruction and scaffolding to
help our students read code before they
can be expected to write code themselves.
These guided approaches are needed
just as much as, if not more than, creative
discovery activities.

Explain the code
My first approach to improving code
comprehension is to ask my pupils to explain
in plain English what a piece of code does.
There are many variations on this activity,
but I find that it works well when pupils
explain to each other what the code does.
That way, pupils have valuable contributions
from others that they can then incorporate
into their own written explanations.

We could take this further and ask
students to carry out various explorations of

the code. For instance, pupils could annotate
or add comments to code, list and explain
the purpose of the variables and functions,
and create structure diagrams. I particularly
enjoy doing this with the UK’s AQA A level
Computer Science prerelease material — a
reasonably substantial piece of code that
enables a rich investigatory experience
(helloworld.cc/aqaprerelease).

Worked examples
Another approach is to use worked
examples (see page 90). They can be
delivered by modelling with live coding, or
by using tutorial guides. In a live-coding
demonstration the teacher explains each
step of the code as it is being written. This
is beneficial because students can see how
teachers tackle problems. Pupils also see that

B

READ BEFORE YOU WRITE
Will Grey shares some evidence-based approaches for helping pupils to read code

n It’s important to give students the
ability to read and understand code
before they start writing it

FEATURE

http://helloworld.cc/aqaprerelease

FEATURE

The Big Book of Computing Pedagogy 71

making errors is a normal part of the coding
process. Another benefit of live coding is
that the pace of delivery is generally slow,
and this may help some groups of pupils
— I have found it particularly helpful with
underachieving boys.

Nevertheless, demonstrations need to be
kept short and progress only a few steps
at a time, so as not to overload working
memory. Lessons should have several
shorter demonstrations spaced throughout,
rather than fewer longer demonstrations.
Perhaps live-coding demonstrations could be
prerecorded as screencasts with audio and
made available to pupils to watch, pause,
and replay in their own time, thereby helping
pupils who did not follow the first time
around. I tend to couple the demonstrations
with tutorial guides because it gives my
pupils greater autonomy. I have used worked
examples across the age ranges to deliver
lessons on Scratch to lower secondary
pupils, all the way through to advanced
concepts in Python such as server-side
scripting with sixth-form students.

Sub-goals
The third approach is to group individual
steps under meaningful sub-goal labels. In
addition to helping students organise and
structure the code in a coherent manner,
this reduces the load on working memory
because individual steps are chunked
together. Pupils could be asked to do this
themselves, or sub-goal labels could be
provided by the teacher, according to the
specific needs of the student.

Trace the code
Tracing code by hand to simulate the
outcome of each instruction in an algorithm
is another method (see previous article).

WILL GREY
Will is head of computing at Comberton
Village College in the UK, and coordinator
of the CAS South Cambridgeshire
Community of Practice. He has developed
a comprehensive set of resources for A
level and GCSE computer science at
helloworld.cc/grey.

This is where the student replicates the
task of the computer by keeping track and
recording the values of the variables at each
step, and performing the various arithmetic
and logical operations. Pupils find tracing
code tricky, as it requires considerable
patience and concentration to not lose
their train of thought. It takes practice to
master, especially when tracing recursive

algorithms like merge sort. I tend to practise
these regularly with my GCSE and A level
groups – both with the familiar algorithms for
searching, sorting, and traversing, and with
algorithms they have not seen before. There
are plenty of past paper questions across the
exam boards that can be used support this
activity (see the previous article for more).

Parson’s Problems
Parson’s Problems bridge the gap between
reading and writing code (see page 80).
Here, code is presented to pupils jumbled
up. The task is to put the instructions into
the correct order so that the whole code
performs a predefined task. Students
do not need to be concerned with
remembering syntax, and can focus on
logic and sequencing. They make a lovely

starter activity, and can come
in a variety of forms, from those
on a computer to paper-based
and jigsaw-type puzzles with
snippets of code that can be
pieced together —but these do
require quite a bit of preparation.

Putting it all together
Once pupils have gained
comprehension of the various
programming constructs and
seen them applied in different
contexts, they will be able to
write better code. There are
many scaffolded techniques that
can help students write code by
taking away the challenges of
code design and abstraction.

These ideas for reading code are
generally very simple to implement, and can
be used together and alongside methods
for writing code and more general teaching
pedagogies, such as flipped learning, direct
instruction, questioning, and verbal
feedback, to deliver effective lessons on
coding in visual and textual languages to
schoolchildren of all ages.

FURTHER READING

 Lopez et al. (2008). Relationships
between reading, tracing and writing
skills in introductory programming. In:
Proceedings of the Fourth international
Workshop on Computing Education
Research. New York. 101-112. helloworld.
cc/lopez2008

THERE ARE MANY SCAFFOLDED
TECHNIQUES THAT CAN HELP
STUDENTS LEARN TO WRITE CODE

“

n An example of a Parson’s Problem: can you rearrange the code to draw a square?

http://helloworld.cc/grey
http://helloworld.cc/lopez2008
http://helloworld.cc/lopez2008

FEATURE

The Big Book of Computing Pedagogy72

Simon Humphreys shares how Raspberry Pi’s ARM processor makes it a great tool for
A level students to get their hands dirty with assembly language

ASSEMBLY LANGUAGE ON THE PI:
“LEARNING HOW TO WALK AGAIN”

ssembly language programming
is on every university computer

science course and also in numerous
advanced level courses — so it must be
important! The instruction set for the UK’s
AQA A level is akin to the ARM instruction
set used on Raspberry Pi, making it a
great tool for bare-metal programming.
In this article, I discuss taking a PRIMM
(Predict–Run–Investigate–Modify–Make)
approach as one way of introducing the
topic, and look at how to encourage
students to use a real processor to build
programs using ARM assembly.

Why learn assembly language?
Programming in assembly is the closest we
ever come to the CPU and its architecture,
as each assembly instruction is shorthand
for the binary code the CPU executes. There
is no better way of understanding the role

of the processor, how it executes programs
and manages memory, than by attempting
some low-level programming using a
given instruction set. It helps us to answer
questions such as:

n How is an integer stored in memory?
n How does the computer carry out an ‘if–

then–else’ statement?
n What happens when one function calls

another function?
n How does the computer know where to

return to after running a function?

There are many brilliant simulators,
especially the new ARMlite Assembly
Language Simulator by Peter Higginson,
that can help students to take what
they learn in that sandbox to a real
processor (helloworld.cc/ARMlite). I highly
recommend using it, along with Richard

Pawson’s book Computer Science From
the Metal Up (helloworld.cc/pawsonbook).

If your school has a set of Raspberry
Pis, it’s easy to make a start with real-
world assembly and give your students
insights into how their high-level code
is ultimately made to work on a given
architecture. Putting into practice some
of the fundamental concepts of computer
science (for example, binary arithmetic,
allocation of memory, working with the
stack, character set encoding, or the
handling of interrupts) should help to make
them better high-level programmers.

We’ll now look at a simple example,
following the PRIMM approach to teaching
and learning programming, which can be
equally applied to low-level languages as
high-level. The following overview should
take one lesson to cover, with additional
time for extensions.

A

©C
on

ne
ct

wo
rld

/st
oc

k.a
do

be
.co

m

http://helloworld.cc/ARMlite
http://helloworld.cc/pawsonbook
http://stock.adobe.com

FEATURE

The Big Book of Computing Pedagogy 73

A SIMPLE EXAMPLE (CONTINUED OVERLEAF)

PREDICT
Ask students if they can work out what the following
ARM assembly language program does.
1. .data

2. first: .word 5

3. second: .word 8

4.

5. .text

6. .global _start

7.

8. _start:

9. ldr r0, =first @ get address of first value

10. ldr r0, [r0] @ get value at that address in r0

11. ldr r1, =second @ get address of second value

12. ldr r1, [r1] @ get value at that address in r1

13.

14. cmp r1, r0 @ compare: is r1 > r2

15. bgt _greater @ if true, branch

16. b _exit @ jump over to exit

17. _greater:

18. mov r0, r1 @ true, put return code of 1

19. _exit:

20. mov r7, #1

21. swi 0

OK, perhaps it’s an unfair question if they’ve
never encountered ARM assembly instructions
before, but the comments have been left in place
for students, and should provide some clues!

RUN
Ask students to enter the code in an editor of
their choice and save it as max.s, then in a
terminal window, enter the following commands
(the dollar is the terminal prompt):
$ as max.s -o max.o

$ ld max.o -o max

$ max ; echo $?

If all goes well, the value 8 will be displayed
(note: the command echo $? displays the value
in register 0 on the screen).
Does the answer provide any further clue as to
the program’s purpose? If in doubt, the Scratch
example pictured should make it clear.

n A classic max program
using Scratch

INVESTIGATE
There may be several activities we can do
with our students to dig into the code, for
example reminding them about the role of
the CPU in fetching, decoding, and executing
instructions. Here, we’ll just deconstruct
what is happening in the code from the
Predict stage, section by section, line by line.

Lines 1–3
This is the _data- section, and here we
declare our data. Each is given a label, a
size, and a value. The first label, first:,
will allocate 4 bytes of memory, and assigns
the value 5 to that address. The label is a
symbolic address, meaning it points to a
memory address. The second label does the
same thing, but with a different value.
This is equivalent in a high-level language to:

int first = 5;

int second = 13;

Lines 5-6
This is the code section. Our instructions start here and
the entry point, _start, is given by another label.

Lines 8-21
This is the code for our program. Each line has either
a label or an instruction, with labels placed on their
own line to help with readability. Each instruction is
an operation, or opcode (operation code), followed
by the operation’s operands.

Lines 9-12
These lines fetch the data values from memory. We
start by getting the address of our first value and
copying it into register 0, then we fetch the item
of data at that address and copy it into register 0
(overwriting the address). The next two lines do the
same thing for our second value, using register 1.
Note that the direction of operation, ldr r0,
=first, will copy the address of our data item into
register 0, and not the other way around.
The CPU has a number of registers. Some are
general-purpose, and others are set aside as special-
purpose, for example, the program counter. The ARM
CPU has 16 of these, with r0 and r1 being two of the
general-purpose registers.
Now we have our two values in two registers, where
they can be processed by further instructions.

FEATURE

The Big Book of Computing Pedagogy74

A SIMPLE EXAMPLE (CONTINUED)

Line 14
The two values are compared using the cmp
instruction. Internally, the processor will subtract
one value from the other and update another
register, the flags register, based on the outcome of
that operation. For example, if the result is negative,
the negative flag will be set to 1. Other flags include
the zero flag and the carry and overflow flags.

SIMON HUMPHREYS
Simon is the vice chair of Computing
at School (CAS). He is also a computer
science teacher at Hills Road Sixth Form
College in Cambridge, UK.

The above exercise does need to come
with a health warning! One of my students
described programming in assembly
as learning how to walk all over again.
Assembly does not come with nicely
prepared features such as variables, loops,
selection constructs, or functions, and even
the data types and manipulation of memory
are left to us to manage. But stick with it —
the pay-off is rewarding.

Where next?
In a short article, all we can do is scratch
the surface of such a fascinating area. This
example provides many insights into the role
of the CPU; how a compiler would take source
code and translate it into machine code; how

memory is allocated; and that a variable is just
an address of a fixed size. The registers can
be inspected using a debugging tool such as
GDB (helloworld.cc/gdb), and students can
also see the role of the program counter and
how it is updated as the program progresses.

Assembly language programming is
fascinating, tricky, and irritating in equal
measure. For A level, the problems set are
usually no more difficult than rewriting a
simple high-level algorithm that uses one or
more of the constructs such as our example.
Taking students further, to build functions or
manipulate the stack, provides genuine
insights and will make them better high-level
language programmers — but perhaps
that’s for another article!

Line 15
The instruction bgt means ‘branch if greater
than’. As high-level language programmers, we’ve
been taught to avoid using the GOTO instruction,
but we cannot avoid it in assembly! It’s the
only way we can force the CPU to jump to a new
address and fetch data/instructions from that
address. In this case, we jump to the address

defined by the label _greater
if the second value is greater
than the first.

Line 16
Line 16 contains another branch
instruction. This is unconditional:
just jump or GOTO the address
specified, _exit.
The branch instructions can take a
number of conditional commands,
e.g. eq branch if equal, ne branch
if not equal, lt branch if less
than, etc.
The combination of the compare
instruction, cmp, and a branch,
bxx, is the equivalent of an ‘if–

then–else’ statement, so either line 16 or line 18 will
be executed.

Line 19
We then fall through to the _exit section, which
ensures we exit gracefully from the program.
Thus, the program is a classic introductory
programming problem, returning the larger of two
given values.

MODIFY
We can then invite students to carry out a number
of potential activities, such as returning the
smaller of the two values, or providing three
values to compare against each other.

MAKE
Once the students know how to write an
equivalent ‘if–then–else’ construct and how to
branch, it becomes relatively trivial to introduce
loop constructs such as ‘do–while’, which have a
conditional expression at the bottom of the loop
and need to jump back to the top of the loop.

PROGRAMMING IN ASSEMBLY IS THE
CLOSEST WE EVER COME TO THE
CPU AND ITS ARCHITECTURE

“

http://helloworld.cc/gdb

helloworld.cc/subscribe
TO SUBSCRIBE VISIT:

SUBSCRIBE
TODAY

Not a UK-based
educator?
 • Subscribe to receive

the free PDF on the
day it is released

• Read features and
news at helloworld.cc

• Teaching resources and
ideas used by over 90
percent of our readers

 • Exclusive news,
research findings, and
in-depth features

• Delivered to your
door three times a year

Why
subscribe?

FREEIN PRINTfor UK-based educators

FREE
PDF
for anyo

ne,

anywher
e

http://helloworld.cc/subscribe
http://helloworld.cc

FOSTER PROGRAM
COMPREHENSION

78 PROGRAM COMPREHENSION
AND THE BLOCK MODEL

80 PARSON’S PROBLEMS
82 HOW TO SUPPORT YOUR

STUDENTS TO WRITE CODE
84 THE I IN PRIMM

The Big Book of Computing Pedagogy 77

hen teaching programming, it is important for learners

to understand a program from multiple perspectives,

including how it is written (syntax and symbols) and

how it executes, as well as its function or purpose.

There are many ways in which you might support program

comprehension, but particular examples include activities

that promote debugging and tracing, and the use of Parson’s

Problems. Additionally, tasks that ask pupils to consider the

purpose of a program (or a small part of a program) are very

helpful. Other beneficial tasks include selecting appropriate

names for variables, functions, or entire programs; predicting

the output of a program; or matching programs to their purpose.

The Block Model is a helpful framework through which to

view this notion of program comprehension, as it captures

twelve perspectives through which a programmer might

view a program. Each of these perspectives is useful,

and you should encourage your pupils to be

able to use each perspective and move

between them.

Embed these comprehension activities

into your practice on a regular basis to

secure understanding and build stronger

connections with new knowledge.

W IN THIS SECTION,
YOU WILL FIND:

 ■ What the research says:
the Block Model

 ■ What the research says:
Parson’s Problems

 ■ Teaching students to write code

 ■ The Investigate stage of PRIMM
and the Block Model

The Big Book of Computing Pedagogy78

RESEARCH

The challenges of programming
Although programming is a valuable and
rewarding skill to learn, many learners find
the process challenging:

 ■ Even simple programs are rich in
concepts that can cause cognitive
overload in learners

 ■ Learners may rush to write programs
too soon, before they have read and
understood the relevant concepts

 ■ Programs often don’t work first time,
demanding resilience and persistence

 ■ Learners need to switch between
different abstractions, the problem,
the program text, and its execution,

s the name suggests, program
comprehension concerns

understanding programs and includes
not only understanding the program as
written, but how the program works,
and its purpose. In recent years, program
comprehension has been recognised as
an important part of learning to program.
It is something that can be easily missed,
as learners dive straight into writing
programs before they have learnt to
read them. So, what exactly is program
comprehension, why is it so important,
and how can educators develop these
skills with their learners?

constantly moving from single lines to
the program as a whole

 ■ Learners also need a mental model (a
notional machine) for how the computer
works and will execute the program

These challenges do not mean that
programming is intrinsically difficult, and
recognising them can help educators
identify where they can support
their learners.

Program comprehension
Experienced programmers demonstrate a
high degree of program comprehension. As
well as having a robust notional machine,
they can develop programming ‘plans’
(chunks of code that perform a specific task),
based on common features in programs that
they have seen. They can then use these
plans or patterns to interpret, explain, adapt,
debug, and create programs.

Novice programmers know of very few
programming plans, and have limited
awareness of how programs are executed.
Their focus may be limited to decoding
individual words in a program, rather than
comprehending their meaning, or the
meaning of the wider program. We must
understand how to bridge this gap.

Program comprehension tasks
There are many great examples of activities
that promote program comprehension,
including code tracing, Parson’s Problems,
PRIMM, and tasks in which learners ‘explain
the purpose’. A teacher-focused study1
identified more than 60 different activities
that could support learners in developing
program comprehension skills. It also
highlighted that many of these activities

PROGRAM COMPREHENSION
AND THE BLOCK MODEL

A

Understanding programs before we write them is vital, and
the Block Model can help to foster program comprehension

■ The Block Model

The Big Book of Computing Pedagogy 79

RESEARCH

were already used to assess program
comprehension, rather than support its
development. As program comprehension
is broad and there are many activities
available, it can be difficult to know which
activities to use in which circumstances.

The Block Model
One tool for understanding and categorising
aspects of program comprehension is the
Block Model2, which consists of twelve areas
of comprehension where four levels and
three dimensions interact. The framework
defines four distinct levels at which the
learner may focus on a program:

 ■ Atoms, the smallest elements, are the
keywords, symbols, and syntax, or a
single line of code

 ■ Blocks are small chunks of code that
perform a task — for example, single
lines, loops, or selection statements

 ■ Relationships are the connections
between blocks, and the manner in
which they work together, such as
function calls and return values

 ■ Macro structure refers to the program
as a whole

The framework also considers the
‘dimension’ of the program, or how the
learner is viewing it:

 ■ The program exists as a static piece of
text. This dimension is the ‘text surface’
and is where learners need to consider
the program’s grammar and syntax.

 ■ When the program is executed, it
becomes a dynamic object that may
behave differently depending on its
inputs. This dimension is known as the
‘program execution’.

 ■ The ‘function’ dimension is where
learners consider the intended purpose
of the code, whether that be an
individual atom, block, or full program.

The Block Model therefore comprises
twelve areas of program comprehension
that learners should be able to
move between as they develop their
understanding. The related ‘holey quilt’
theory3 suggests that learners begin with
varying levels of knowledge in each zone,

ranging from fragile to deep. Knowledge
is deepened and supported over time by
learning activities targeting each zone.

Mapping tasks to the Block Model
It is important to devise activities that
develop comprehension in each of these
zones. By considering each dimension in
turn, we can identify tasks that may foster
comprehension at each level of focus.

Comprehending the text surface can
be tricky, as learners need to discern
the meaning of the program from text
with unfamiliar terms, structures, and
syntax. Without support, they may get
stuck focusing on the program at the
level of atoms. A simple strategy is to
identify aspects of the code within the
text. By identifying examples of variables,
conditions, functions, and so on, educators
can help learners make sense of the text,
and connect it to underlying concepts.

When considering program execution,
several approaches could be used to help
develop understanding. Learners could trace
simple programs, determining the end state
of variables or the inputs required to reach a
specific state. They could complete Parson’s
Problems, which transcend the text surface
and enable learners to focus on the correct
sequence of instructions for a specified goal.
Similarly, they could investigate the effect
of swapping two lines of code, or try to find
lines that can never run.

Learners can also benefit from exploring
function. Asking learners to explain
the function of a line, snippet, or entire
program is a great place to start. They
will have to use clues within the text and
observe the execution. Educators can vary
the degree of challenge by the clues they
leave in the programs. Educators can also
connect function back to text by asking
learners to provide meaningful names for
variables, functions, or entire programs.
Alternatively, learners could be given a
description of the purpose and identify
a program that matches, or compare
multiple programs to find which are
functionally equivalent.

There are many options to choose from,
but the most important step is to review our
own practice, to find and fill those gaps in
learners’ program comprehension.

SUMMARY
Programming has several challenges:

 ■ It is concept-rich, leading to
cognitive overload

 ■ It balances comprehension with coding
experience

 ■ It demands persistence and resilience
 ■ Learners need a secure mental model

of computation

Program comprehension:
 ■ Allows learners to interpret, explain,

adapt, debug, and create programs
 ■ Supports learners to develop

programming patterns or plans
 ■ Can be divided into twelve zones using the

Block Model
 ■ Learners should develop knowledge

in each zone and be able to move
between them

Comprehension tasks:
 ■ Educators can use the Block Model

framework to categorise tasks
and identify gaps where students
need support

 ■ A range of strategies already exist that
have been mapped to the Block Model

REFERENCES
1 Izu, C. et al. (2019). Program Comprehension:
Identifying Learning Trajectories for Novice
Programmers. ITiCSE ’19: Proceedings of the 2019
ACM Conference on Innovation and Technology
in Computer Science Education. New York, ACM.
261–262. helloworld.cc/comprehension1
2 Schulte, C. et al. (2010). An introduction to
program comprehension for computer science
educators. In Clear, A. & Russell Dag, L. (eds.)
ITiCSE-WGR ’10: Proceedings of the 2010 ITiCSE
working group reports. New York, ACM (pp. 65–86).
helloworld.cc/comprehension2
3 Clear, T. (2012). The hermeneutics of program
comprehension: a ‘holey quilt’ theory. ACM Inroads.
3(2), 6–7. helloworld.cc/comprehension3

http://helloworld.cc/comprehension1
http://helloworld.cc/comprehension2
http://helloworld.cc/comprehension3

The Big Book of Computing Pedagogy80

RESEARCH

Problems, their benefits, the concept of
distractors, and how to write a Parson’s
Problem task.

What is a Parson’s Problem?
A Parson’s Problem is a task in which
learners are given all of the blocks or lines
of code needed to solve a problem. The
lines of code, though, have been jumbled
so that they are no longer in the correct
order. Learners are asked to reorganise the
code into the correct order to perform a
specific task.

The short example in Figure 1 shows
some jumbled lines of code (in Python and
Scratch), and sets out the task that needs to
be completed. Why not see if you can solve
the problems in the example?

Parson’s Problems can be applied to
both text- and block-based programming
and can vary in difficulty, to accommodate
learners’ existing understanding. For
example, when you feel that learners are
ready, you could provide them with lines
of code and ask them to work out the
indentation themselves (known as 2D
Parson’s Problems).

There are many ways in which Parson’s
Problems can be presented to learners.
They make for excellent offline or paper-
based activities that could be done
individually, in pairs, or in small groups.
You may choose to create problems
directly in the development environment,
to allow learners to immediately test their
solutions. Alternatively, there are online
tools such as js-parsons that allow you
to create your own interactive problems
(helloworld.cc/jsparsons).

Parson’s Problems can be used to
support formative assessment, as
classroom discussion following the

n important precursor to learning
how to write computer programs

is having the necessary program
comprehension to interpret the function
and structure of existing programs.
One tool that can help learners develop
program comprehension is Parson’s
Problems. Here, we explore Parson’s

activity plays an important part in learners’
development. Immediate feedback
also avoids any misconceptions being
committed to long-term memory.

Benefits
The main benefit of Parson’s Problems is
that the learner is focusing on the structure
and logic of blocks of code, rather than on
the syntax of individual text elements (the
‘atoms’ of the Block Model). The process
reduces the cognitive load experienced
by learners, allowing them to practise
sequencing and problem-solving with code.
This experience is particularly helpful in the
early stages of learning to program, when
learners may be easily frustrated and put off
by repeated unsuccessful attempts to solve
a problem. Parson’s Problems also expose
learners to logic and syntax that they may
not be fully familiar with.

Denny et al.1 suggest that learners’
solutions to a Parson’s Problem “make clear
what students don’t know (specifically in
both syntax and logic)”. These solutions
can allow for an easier analysis of the
common errors that learners make, whereas
“the open-ended nature of code-writing
questions makes identifying such errors
difficult”. For example, when using a
Parson’s Problem, we can be sure that an
error was not caused by a typing mistake.

Parson’s Problems can promote some
higher-order thinking in learners than
simple code tracing (reading code and
identifying its purpose or output). Parson’s
Problems can act as a stepping stone
between the lowest and highest categories
— being able to read and interpret code,
and being able to write original code,
which involves evaluation and creation (the
highest categories in Bloom’s taxonomy).

PARSON’S PROBLEMS

SUMMARY
Parson’s Problems support learners by:

 ■ Developing their understanding of how
the program is executed (their ‘notional
machine’ - see page 69)

 ■ Reducing cognitive load
 ■ Focusing on blocks of code, rather

than on syntax
 ■ Providing all the correct code in an

engaging challenge
 ■ Promoting dialogue and discussion

about code

Benefits of Parson’s Problems:
 ■ Constrain the logic
 ■ Avoid common syntax errors that can be

barriers to learning to code
 ■ Model good programming practices
 ■ Provide the potential for

immediate feedback
 ■ Make it easier to identify common

misconceptions
 ■ Increase engagement of learners

Advice for writing Parson’s Problems:
 ■ Share problems with only a single solution
 ■ Allow learners to manipulate actual code

blocks
 ■ Provide a clear description of the problem
 ■ Clearly show the desired logic
 ■ Share multiple similar problems over time

A

Educators can foster program comprehension by using
Parson’s Problems to reorganise jumbled lines of code

http://helloworld.cc/jsparsons

The Big Book of Computing Pedagogy 81

RESEARCH

Izu et al.2 place Parson’s Problems in the
‘Blocks’ row of the Block Model proposed
by Schulte (see page 78). They state that
“novice programmers should develop
program comprehension skills as they learn
to code so that they are able both to read
and reason about code created by others,
and to reflect on their code when writing,
debugging or extending it”. They also state
that Parson’s Problems support learners
in developing their understanding of the
‘notional machine’ (see page 69).

Distractors
Some Parson’s Problems include distractors.
These are incorrect blocks or lines of code
that are included in the set of provided
code, meaning that learners need to be
selective about which blocks they use; see
the example below.

The inclusion of distractors can add
an additional level of challenge3 for more
confident learners. However, care should be
taken, as they may unnecessarily increase

the cognitive load or the time spent on a
task, or even result in a misconception or
error being committed to long-term memory.

Advice for writing Parson’s Problems
Explain clearly to your learners what
the program should do when correctly
sequenced; this reduces their cognitive load.
Additionally, Denny et al.1 recommend making
sure that there is a unique answer for each
question; that is, there should only be one
ordering of the lines that achieves the goal.

Ensure that learners manipulate the
actual lines of code, rather than using
letters or numbers as a shorthand. Working
with real lines of code helps to develop

their familiarity with the syntax and the
construction of the code.

In theory, it is possible for learners
to guess the correct answer to a
simple Parson’s Problem without fully
understanding the construct or logic being
tested. Asking more than one question over
time that tests the same logic or construct
can reduce this concern.

Providing structure (such as braces,
colons, or indentation) can make a question
more accessible, as learners can use these
visual clues to develop their solution.
Providing this structure can also make it
possible to tackle problems including more
complex programming concepts.

REFERENCES
1 Denny, P., Luxton-Reilly, A., & Simon, B. (2008).
Evaluating a New Exam Question: Parsons Problems.
ICER ’08: Proceedings of the Fourth International
Workshop on Computing Education Research. New
York, ACM. 113–124. helloworld.cc/parsons1
2 Izu, C. et al. (2019). Fostering Program Comprehension
in Novice Programmers - Learning Activities and
Learning Trajectories. ITiCSE-WGR ’19: Proceedings
of the Working Group Reports on Innovation &
Technology in Computer Science Education. New York,
ACM. 27–52. helloworld.cc/parsons2
3 Harms, K. J., Chen, J., & Kelleher, C. L. (2016). Distractors in
Parsons Problems Decrease Learning Efficiency for Young
Novice Programmers. ICER ’16: Proceedings of the 2016
ACM Conference on International Computing Education
Research, New York, ACM. 241–250. helloworld.cc/parsons3

price = 3.50
quantity = 5
total = price * Quantity
total = price * quantity
print(total)
print(“total”)

Rearrange the lines of code to create a
program that outputs the total cost to
the customer. Be aware that there are
two lines of code that will cause errors
in your program if used.

EXAMPLE

WORKING WITH
REAL CODE
HELPS DEVELOP
FAMILIARITY
WITH SYNTAX

“

■ Figure 1 Examples of Parson’s Problems in Python and in Scratch

http://helloworld.cc/parsons1
http://helloworld.cc/parsons2
http://helloworld.cc/parsons3

The Big Book of Computing Pedagogy82

FEATURE

Will Grey shares some evidence-based approaches for teaching
students to write code

HOW TO SUPPORT YOUR
STUDENTS TO WRITE CODE

or many children, writing code can
be a daunting prospect. To help

our students learn to write code, we can
use a range of scaffolded pedagogies.
Initially, these approaches take ownership
of the code away from the students,
giving them confidence to explore and
experiment. Gradually, as the students
gain confidence, we can reduce the
amount of support until they are able to
write their own programs independently.

On page 70 of this special edition, I
shared approaches to support pupils
learning to read code. These included
activities such as explaining, predicting, and
tracing code, as well as live demonstrations
with worked examples. Now, I’ll share some
evidence-based approaches to support
pupils who are learning to write their
own code.

Fixing broken code
Children can find and fix common syntax,
runtime, and logical errors in a piece of
code. These errors might include missing
brackets, missing speech marks, spelling
mistakes, or missing variable declarations.
Pupils can use the programming language’s
translator to help find the errors by making
the fixes and then running the code to test
that it works.

Pupils will need to be made aware of
how the errors present themselves – this
is unique to each translator and language
and is not always obvious. For instance,
in the default IDLE Python interpreter, it
can be unclear where each error is located.
Once pupils are familiar with a variety of
common error messages, their causes, and
how to fix them, they will be able to debug
their own code with greater confidence

and resilience. For extra challenge,
debugging exercises can be carried out
on paper, where there is no feedback from
the translator.

Completion problems and pseudocode
We can give children partial solutions to
complete. This has scope for a variety
of levels of differentiation: as students
progress, we can gradually leave out
more code. Initially, students might be
given most of the code but with parts of
some statements missing. Then, we might
remove statements completely. Next, we
could remove several lines or complete
blocks of code. Finally, we could remove
all code and only provide comments to
the pupils. If these comments are detailed
enough, then this is like converting from
pseudocode into working code.

n Learning to write code can be a challenge for students, but
there are evidence-based approaches to support them

F

Credit: Stock.adobe.com/Gorodenkoff

http://Stock.adobe.com/Gorodenkoff

The Big Book of Computing Pedagogy 83

FEATURE

At some point, children will need to
plan their own code with pseudocode. It is
difficult and does require the application of
high-level computational thinking, where
pupils perform abstraction and code design.
A good approach is to get pupils to write
the comments for each line of their program
before they start coding.

Parson’s Problems
As introduced in my previous article,
Parson’s Problems are problems in which
the code is presented to children all jumbled
up. The aim of the activity is to put the
instructions into the correct order so that
the whole code performs a specified task.
Students do not need to be concerned with
remembering syntax and can focus on logic
and sequencing. These problems will help
develop students’ program comprehension,
preparing them for writing their own code.

Modifying code and tinkering
Pupils can make modifications to a piece
of code to adapt it for a slightly different
purpose. Suppose we have a Scratch
program that draws a square. We could ask
pupils to modify the code to draw a triangle,
pentagon and circle, for instance. We could
extend pupils’ understanding and get them
to find patterns in the relation between
internal angles of a shape and the number
of sides – we know finding patterns is a key
aspect of computational thinking.

When pupils are modifying and
completing code, a crib sheet that provides

the basic syntax of constructs with some
examples is a helpful aid. Pupils should
be encouraged to organise any code that
they write so that they can reuse the code
in the future. The ability to recognise code
that can be adapted to a new context is an
important skill.

Pair programming and collaboration
Social constructivist approaches that use
collaboration and pair programming, where

two students work together
on a single computer, can
support students who are
learning to write code. Within
each pair, one student does
the coding and the other
observes, reviews and gives
feedback. Students in each
pair should regularly switch
roles (see page 58 for more).

A tactical seating plan can
be employed – with mixed
attainment pairs, or pairs
who can challenge each
other. Even if each student
is working independently
on their own code, pupils
should still be encouraged
to collaborate with their
neighbours. Collaborative
approaches are often more
effective than coding activities
where pupils work in isolation
without the support of
their peers. Moreover, the
cooperative and social nature
of this approach has been
shown to be particularly
successful at engaging girls.

Planning lessons
We cannot expect children to be able to
write code before they have learned how
to read code. Through careful planning of
lessons and sequences of lessons, we can
slowly remove the scaffolding as pupils

gain greater independence as they progress
from reading and using code, through
modifying code to ultimately writing their
own code to solve problems.

The great news is that the PRIMM
(Predict, Run, Investigate, Modify, Make)
model offers a framework around which
we can plan our lessons. For each lesson
episode within this structure, we can pick
and mix from our assortment of techniques
where pupils read code before they write

WE CANNOT EXPECT CHILDREN TO BE
ABLE TO WRITE CODE BEFORE THEY HAVE
LEARNED HOW TO READ CODE

“

n A Python crib sheet that students can refer to when writing code

code and gain increasing ownership of the
code as they progress (see page 22).

If we consistently apply scaffolded
approaches for reading and writing
code in our lessons, we can make the
experience of learning to code for children
a lot less intimidating, and a good deal
more enjoyable.

WILL GREY
Will is head of computing at Comberton
Village College, UK, and coordinator of the
CAS South Cambridgeshire Community of
Practice. He has developed a comprehensive
set of resources for A level and GCSE
computer science at helloworld.cc/grey.

http://helloworld.cc/grey

The Big Book of Computing Pedagogy84

FEATURE

here are several reasons why some
students find programming difficult

to grasp. Combining understanding the
syntax of a programming language with
the need to work out logical solutions
can lead to high cognitive load. Students
can also become easily disheartened
when faced with errors or programs that
don’t work. And copying code without
understanding it can lead to students
developing misconceptions.

To address some of these issues, I
developed the PRIMM approach to teaching
programming. Following this approach,
teachers can structure programming
lessons with five elements as follows:
Predict, Run, Investigate, Modify, and Make.
The approach is outlined on page 22, but
here is a refresher.

n Predict: Students discuss a program
and predict what it might do, drawing or
writing out what they think will be the
output. At this level, the focus is on the
function of the code.

n Run: Students run the program so that
they can test their prediction and discuss
it in class.

n Investigate: The teacher provides a range
of activities to explore the structure of the
code; this involves activities such as tracing,
explaining, annotating, and debugging.

n Modify: Students edit the program to
change its functionality via a sequence
of increasingly challenging exercises; the
transfer of ownership moves from the
code being ‘not mine’ to ‘partly mine’ as
students gain confidence by extending the
function of the code.

T

FEATURE

n Make: Students design a new program that
uses the same structures but solves a new
problem (e.g. has a new function).

There are three key principles underlying
PRIMM, all emerging from research in
computer programming education. The
first is that students should learn to read
before they write. The excitement of writing
a new program and creating something
that works means we don’t spend enough
time reading and learning from simple, well-
written programs first. In literacy, we learn
to read first, and at a level beyond what we
can write. We learn from reading examples
of the written word. The same can apply to
programming. There is a substantial body
of research around tracing and reading
programs that has shown that reading first is
beneficial for novice programmers.

Sue Sentance explores how the Block Model — a framework for program
comprehension — can create opportunities for students to investigate code fully

THE I IN PRIMM

The Big Book of Computing Pedagogy 85

FEATURE

The second principle is that students
should talk about their programs. This
works at three levels: we need to find
the right language or terminology to use
to articulate our understanding; we are
helped by verbalising what may be a
complete mishmash in our head; and we
also share in the creation of understanding
through dialogue with others.

The final principle is that students should
start with code that isn’t their own. Using
a starter program, written by somebody
else who takes responsibility for any bugs,
reduces the emotional strain caused by
our programs failing. We often hear that
students in computing should build up
resilience, because their programs will
always fail. However, I believe that by
providing code written by somebody else
first, we protect our students from the
disappointment, anxiety, and frustration that
we’ve all felt when our programs fail. This is
especially important for young learners, but
applies to anyone learning to code.

The Investigate phase of PRIMM gives
us the opportunity to devise creative
activities and ask insightful questions about
a program. In this way, we are moving
from thinking about what the code does to
how it does it. Armed with this knowledge,
learners should be more confident to tackle
their own programs.

In the Investigate phase, we often use a
range of activities. Here are some examples:
1. Ask, “What would happen if those two

lines were the other way round?”
2. Ask, “What would happen if the input to

the program were ____ ?”
3. Ask students to draw on the program to

identify blocks of code or types of construct.
4. Draw the flow of control on the program

showing what line is executed when a
loop is exited, for example.

5. Ask students to identify the scope of a
variable.

6. Identify the purpose of a single statement.

MORE ABOUT PRIMM
PRIMM was established from a combination of experience and research, so not surprisingly, many
experienced teachers will recognise elements from their own practice. It’s very useful if you are new to
teaching programming, or are struggling to get your students to understand a particular concept. If you’ve
never heard of PRIMM, here are some resources to have a look at:

n PRIMM: A research-based article on p.22 of this special edition of Hello World
n PRIMM: Something for your programming pedagogy toolkit? Sue Sentance, Hello World issue 4, pp.62-63
n Programming pedagogies: PRIMM. Oliver Quinlan, Hello World issue 5, p.25
n Reusing familiar techniques. Jane Waite, Hello World issue 6, pp.74-75
n An overview of PRIMM: primmportal.com
n Sentance, S., Waite, J, & Kallia, M. (2019). Teachers’ Experiences of using PRIMM to Teach

Programming in School, SIGCSE ’19: Proceedings of the 50th ACM Technical Symposium on Computer
Science Education, 476-482. helloworld.cc/primmexperiences

STUDENTS SHOULD START WITH CODE
THAT ISN’T THEIRS — THIS REDUCES THE
EMOTIONAL STRAIN CAUSED BY FAILING

“

n One of the principles underlying PRIMM is that
students should talk about their programs Credit: stock.adobe.com/sutlafk

http://primmportal.com
http://helloworld.cc/primmexperiences
http://stock.adobe.com/sutlafk

The Big Book of Computing Pedagogy86

FEATURE

These activities can be varied and
added to, and many teachers have been
very innovative in how they ask students
questions that really get them thinking.
However, we can fall into the trap of
asking the same questions about code, and
discover that we are not really supporting
understanding as much as we could.

The Block Model
This is where the Block Model comes
into play. The Block Model was created
by Carsten Schulte and gives us some
insight into the various granularities of
skills that new programmers need. As
outlined on page 78, the Block Model
is a grid with two axes — one showing
the size of the programming element
under consideration, and the other the
distinction between the structure of the
program, the execution of the program,
and the function of the program. In 2019,
Cruz Izu and Carsten Schulte led research
that mapped classroom activities using
the model, leading me to link the idea to
PRIMM. The Block Model ensures that the
Investigation stage of PRIMM addresses
the range of skills required to thoroughly
understand a program.

From atoms to macro structure
At the bottom of the Block Model is the
atom: a single language element such as
a variable, or the word ‘if’. The top is the
least granular end of the scale, where
we have the macro structure: the whole
program. Between these two extremes
we have blocks of code, and relationships
between blocks of code. Using the Block
Model enables us to reflect on whether our
questioning spans all these four levels.

Structure versus function
When we ask students to predict, we
ask them what a program might do. This
relates to the function of the program or
piece of code. In contrast, the structure
of the program relates to the syntax and
how the program is constructed. For
example, we might be using the keyword
‘for’ in Python to indicate the beginning
of a loop. There is one more column:

FEATURE

n Schulte, C. (2008). Block Model:
an educational model of program
comprehension as a tool for a scholarly
approach to teaching. Proceedings of
the Fourth International Workshop on
Computing Education Research, 149–160
helloworld.cc/iinprimm1

n Izu, C. et al. (2019). Fostering
Program Comprehension in Novice
Programmers — Learning Activities and
Learning Trajectories. ITiCSE-WGR ’19
Proceedings of the Working Group
Reports on Innovation and Technology
in Computer Science Education, 27-52.
helloworld.cc/iinprimm2

FURTHER READING

IN THE INVESTIGATE PHASE WE DEVISE
ACTIVITIES AND ASK INSIGHTFUL
QUESTIONS ABOUT A PROGRAM

“

program execution. This relates to the flow
of control and values of variables when the
program runs, or what code is called when.

http://helloworld.cc/iinprimm1
http://helloworld.cc/iinprimm2

The Big Book of Computing Pedagogy 87

FEATURE

SUE SENTANCE
Sue is chief learning officer at the
Raspberry Pi Foundation. An ex-teacher,
a teacher-trainer, and an academic,
she is passionate about research in
computing education.

s

(M) Macro structure 2. Ask, “What would happen if the
input to the program were ____?”

(R) Relationships 5. Ask students to identify the
scope of a variable

4. Draw the flow of control on the
program

(B) Blocks 3. Ask students to draw on the
program to identify blocks of
code or types of construct

1. Ask, “What would happen if those
two lines were the other way
round?”

4. Draw the flow of control

(A) Atoms 6. Identify the purpose of a single
statement

(T) Text surface (P) Program execution (F) Function

Architecture/Structure Relevance/Intention

THE BLOCK MODEL

For example, if we have a ‘for’ loop in
Python, the program execution level helps
us to understand the flow of control back
through the loop code a given number of
times, and the impact this has on the value
of the stepper variable.

Twelve zones of understanding
Looking at the Block Model in its entirety,
we can see that it gives us twelve zones
of program comprehension. So the
question is: can we devise activities or ask
questions about a program that develops
knowledge in each of these twelve zones?
It’s a challenge to do this, but if we don’t,
we may not totally support students’ full
understanding of the program.

If we take, as an example, some of the
questions and activities I outlined earlier,
we could start to put some of them into
the Block Model and identify the gaps. The

exact placement of each task in the table
above may vary depending on the views of
the teacher, but in this case, it’s clear that
there are gaps. For example, I can see that
there is a gap at the bottom left, at Atoms/
Text surface. To address this, I could add
the following — “Can you locate a function
call in the program?” — to my list of
questions to ask the students.

What I’ve outlined here would take a lot
of time and effort to do in every lesson, but
an enhanced awareness of the types of
questions and activities we use will help us
understand our students’ difficulties with
programming. I haven’t tested this widely,
but I believe that it may help us develop a
language we can use to understand our
own practice as programming teachers. The
approach adds to our pedagogical content
knowledge and increases metacognition
relating to the teaching of programming.

I’m keen to hear from any teachers who
try to apply the Block Model in their PRIMM
lessons! Do contact me via Hello World at
contact@helloworld.cc and let me know
how you get on!

AN AWARENESS OF THE TYPES OF
ACTIVITIES WE USE WILL HELP US
UNDERSTAND STUDENTS’ DIFFICULTIES

“

mailto:contact@helloworld.cc

MODEL
EVERYTHING

90 WORKED EXAMPLES
92 LIVE CODING
94 LEARNING TO PROGRAM VIA

VIDEOS AND SELF-EXPLANATION
96 HOW MODELLING CAN SUPPORT

LEARNERS
98 WATCH AND LEARN
100 SMELLY CODE

The Big Book of Computing Pedagogy 89

here are many practices and processes in computing

that can easily be taken for granted: for example,

program debugging, tracing programs and

algorithms, and compressing data. These are all skills pupils

need to learn and practise, and as an educator, your role

is to model them. Your learners will benefit from modelled

techniques, as they can demonstrate a correct method,

highlight best practice, or surface an otherwise hidden

thought process. There are many ways to model things for

your learners, including worked examples and live coding.

A worked example provides a complete (or partially

complete) model process for solving a problem or achieving a

task. This scaffolded approach can be particularly beneficial

for novice learners, helping them to complete similar tasks

before you gradually remove support.

In programming specifically, educators can model the

programming and debugging process through live coding,

in which teachers write programs live with their students.

The teacher explains their thought processes,

modelling how to construct the program, making

mistakes, and showing what to do when

things go wrong. Taking this approach can

help demonstrate the thought processes and

methods of an expert, which pupils can then

apply in their own programming practice.

T IN THIS SECTION,
YOU WILL FIND:
■ What the research says:

worked examples

■ What the research says:
live coding

■ What the research says:
learning to program via videos

■ How modelling can support learners

■ How video is changing the way we
teach computing

■ Smelly code: best practice in
teaching block-based programming

The Big Book of Computing Pedagogy90

RESEARCH

problems. They can be used in many
areas of computing and are particularly
useful for supporting programming
practice. Learners who encounter worked
examples in conjunction with practice
problems are more likely to develop
and assimilate strategies for solving
similar problems.1 Here, we’ll discuss
how worked examples can reduce
cognitive load, the different types of
worked examples, and how to design and
integrate them into your lessons.

Reducing cognitive load
Worked examples help reduce the
extraneous cognitive load placed on a
learner’s working memory by providing a
model solution for a problem, which the
learner can read, understand, and adapt to
solve similar problems.

When a learner is given a partial or
complete solution, they do not need
to recall as much from their long-term

orked examples demonstrate an
‘expert’ solution to a problem.

They are used in many subjects to
support novices, who use the examples
as blueprints for solving new but related

memory.2 If a concept is included in the
solution, the learner can quickly retrieve
and apply their existing understanding
relating to that concept. Partially complete
problems help focus learners on particular
concepts, because learners only need to
focus on the missing aspects.

In focusing learners’ attention on
structural elements of problems, worked
examples support students to organise
their new knowledge into ‘schemas’
(clusters of connected ideas) within long-
term memory3 (see page 20).

Product versus process
There are typically two types of worked
examples found in literature. Both support
the learner by modelling solutions
to problems:

 ■ Process-oriented examples model the
steps taken to reach a particular solution.
They may be written down (for example,

WORKED EXAMPLES

SUMMARY
Worked examples can:

 ■ Help reduce extraneous cognitive load
 ■ Aid learners in assimilating new knowledge

into their existing understanding
 ■ Be especially useful for novices during the

early stages of learning

Good worked examples:
 ■ Include sub-goal labelling to highlight

structure and common programming
‘patterns’

 ■ Present relevant information in an
integrated manner

 ■ Combine multiple modes of delivery, such
as visual and aural explanations

 ■ May only be partial and require learners to
complete them as part of exploration

In a learning sequence:
 ■ Combine worked examples with similar

practice problems
 ■ Alternate worked examples and practice

problems to keep the example in mind
 ■ Use at least two examples for each

concept or ‘pattern’ explored
 ■ Fade the use of worked examples over time
 ■ Focus on examples that emphasise

program structure over surface details

Illustrating process:
 ■ Educators should explicitly model their

approach to solving a problem
 ■ Process-oriented worked examples

emphasise how a solution was reached
 ■ Product-oriented worked examples provide

a possible solution

W

Educators can use worked examples to support novices to
develop their programming practice

■ A product-oriented worked example written in Python

Worked example (partial)

Integrated instructions

Sub-goals labels highlighting
stages in the solution

Comments used as questions
and reflection prompts

Incomplete elements for
learners to resolve

Possible problems focussed
on finite iteration

Product-oriented worked example written in Python

Write a program that
uses a loop to draw
another regular polygon.

Make a program that
prints the message "Hip
Hip Hooray!" three times.

#Use a turtle object and a finite loop to
#draw a square with two sides 100 pixels long.

#Add required functions
from turtle import Turtle

Initialise a turtle object
t = Turtle()

Move/turn once per side
for side in range (): # <- What value here?
 t.forward()
 t.right(90)

The Big Book of Computing Pedagogy 91

RESEARCH

helloworld.cc/poewritten), demonstrated
by an expert, or captured on video (for
example, helloworld.cc/poevideo).

 ■ Product-oriented examples model one
possible solution and allow learners
to examine and apply the solution to a
new context.

There is evidence that complete novices
benefit more from process-oriented
worked examples, as they provide rationale
for each aspect of the solution. Learners
with some experience will then benefit
more from product-oriented examples,
from which they can infer the rationale.4

Designing worked examples
When designing worked examples,
educators should consider the following
effects that may affect learners’ cognitive
load and ability to follow an example.

The split attention effect occurs when
information about a problem or example
is presented separately. To follow the
example or solve the problem, learners
must first combine the separate sources of
information in working memory. If possible,
educators should integrate all of the
information into one clear representation.

Similarly, the redundancy effect occurs
when information is duplicated within a
problem unnecessarily, or other redundant
information is included. Learners may still
process this information as they try to
understand the problem, which results in
an unnecessary cognitive burden.

Take advantage of the multimodal effect
by presenting key information both visually
and aurally, as the brain will process these
separately. Studies have shown that
presenting the same information — and

more specifically, worked examples — in
another mode, either simultaneously or
sequentially, can support learners in their
comprehension, and therefore, their ability
to solve future problems.

It is broadly accepted that novices (in
many fields) tend to focus on the context
of a problem and the surface details,
rather than the underlying structure and
common elements to solutions. Educators
can use sub-goal labelling to identify
the important components or steps in a
solution and highlight them to learners. To
do this, educators could use explanatory
comments or annotations, visual labels or
highlights, or white space to group related
instructions into ‘chunks’.1

The learning sequence
Educators should also consider how to
combine worked examples with practice
problems and other worked examples.

It is important to consider variety:
presenting the same concept or programming
pattern across multiple examples and
problems within varied contexts. This
variety helps learners to focus on structural
connections between the solutions and
therefore focus on the general concept, rather
than the surface details of the problem.

Research suggests that the more
worked examples learners experience,
the more they benefit, and that educators
should expose learners to at least two
worked examples for each concept or
pattern. Some studies also suggest
that learners should be presented with
example and practice pairs5, which require
them to understand an example, then
apply it in practice. Alternatively, learners
could review one example problem, then

complete several practice problems, which
would require them to hold the example in
their working memory for longer.

Worked examples are highly beneficial
for novices, because they support them
to build patterns for programs and
procedures. However, as learners develop
their expertise, they benefit more from
solving new problems than from working
from examples. Educators should use
worked examples while a concept is
new and gradually fade this support.3 In
doing so, they can support learners in
developing a useful collection of common
programming patterns which they can
apply, adapt and build on.

REFERENCES
1 Atkinson, R. K., Derry, S. J., Renkl, A. & Wortham,
D. (2000). Learning from Examples: Instructional
Principles from the Worked Examples Research.
Review of Educational Research. 70(2), 181–214.
helloworld.cc/workedex1
2 Sweller, J., Ayres, P. & Kalyuga, S. (2011). Cognitive
Load Theory. New York, Springer. helloworld.cc/
workedex2
3 Sweller, J., van Merriënboer, J. J. G. & Paas, F.
(2019). Cognitive Architecture and Instructional
Design: 20 Years Later. Educational Psychology
Review. 31(2), 261–292. helloworld.cc/workedex3
4 van Gog, T., Paas, F. & van Merriënboer, J.J.
(2008). Effects of Studying Sequences of Process-
Oriented and Product-Oriented Worked Examples
on Troubleshooting Transfer Efficiency. Learning
and Instruction. 18(3), 211–222. helloworld.cc/
workedex4
5 Abdul-Rahman, S. S. and du Boulay, B. (2010).
Learning Programming via Worked-examples. In:
Proceedings of PPIG-WIP 2010, 7–8 January 2010,
Dundee. helloworld.cc/workedex5

Complete
worked
example

Practice
problem

Partial
worked
example

Practice
problem

Partial
worked
example

Practice
problem

Practice
problem

Novice learner Experienced learnerFading of scaffolding

■ Educators should use worked examples while a concept is new, then fade this support over time

http://helloworld.cc/poewritten
http://helloworld.cc/poevideo
http://helloworld.cc/workedex1
http://helloworld.cc/workedex2
http://helloworld.cc/workedex2
http://helloworld.cc/workedex3
http://helloworld.cc/workedex4
http://helloworld.cc/workedex4
http://helloworld.cc/workedex5

The Big Book of Computing Pedagogy92

RESEARCH

Live coding demonstrates to learners
the incremental nature of programming.
It shows that problems are decomposed
into small sections that are programmed,
tested, and debugged, before the next
stage is worked upon. It models good
programming practice and shows learners
that a plan for a program is formulated
and followed, rather than a solution being
formed on an ad hoc basis.

Bringing programming to life is
essential to show learners that program
development is non-linear. Code moves
around and changes as a solution is
developed. Live coding models how
programs should be tested frequently to
debug them. It also shows learners how to
solve common errors that may occur when
using a new concept.

hen learners read static, completed
programs, they aren’t exposed to

the troubleshooting that has already taken
place to get to that end product. This is
known as being product-focused. Live
coding is when an educator develops the
solution to a problem in front of the class
for learners to follow, which is known as
being process-focused.

Bringing programming to life
Novice programmers can often look
at a finished program and have the
misconception that it has been written
from top to bottom, and that a skilled
programmer always knows exactly what
they are doing and doesn’t make any
mistakes. As any programmer knows, this
is not the case.

Cognitive apprenticeships
Allowing learners an insight into
the thought processes of an expert
programmer follows the teaching
approach of cognitive apprenticeships:
employing methods traditionally used
in apprenticeships in the teaching and
learning of cognitive skills. The idea of
cognitive apprenticeships was introduced
by Collins et al.1 in 1987. They believed
that “teaching methods should be
designed to give students the opportunity
to observe, engage in, and invent or
discover expert strategies in context”. At
its core, a cognitive apprenticeship involves
modelling, coaching, and scaffolding.

Modelling involves an expert showing
learners how to carry out a task, which
“requires the externalization of usually
internal (cognitive) processes and activities”
by the educator.1 In live coding, an educator
develops a program in front of a class
while highlighting their choices, decisions,
mistakes, and debugging strategies.

Coaching is where educators give
learners a challenge that is slightly too
difficult for them and support them towards
finding the solution through feedback and
further modelling. Live coding is a great
example of a coaching strategy, and is a
way of guiding learners through a task that
would usually be unattainable.

Through live coding, educators can
provide scaffolding for learners in how
they break down a problem and highlight
milestones or sub-goals. As learners
attempt their own programming tasks, they
can work towards these sub-goals, or apply
the same technique to novel problems.

Slowing down
Live coding is very different to reading
solutions on a worksheet or in a textbook.

LIVE CODING

SUMMARY
According to the literature, the key benefits of live
coding are that it:

 ■ Reduces cognitive load through collaboration
 ■ Makes the process of learning programming

easier to understand for novices
 ■ Helps learners understand the process

of debugging
 ■ Exposes learners to good

programming practices

Good practice when live coding:
 ■ Select an appropriate programming challenge

to teach a new concept, consolidate learning,
or address misconceptions

 ■ Talk to your learners and ask them questions
 ■ Narrate your inner monologue
 ■ Make and fix mistakes, either planned

or accidental
 ■ Slow down to give your learners time to process

 ■ Show learners that code isn’t written from top
to bottom in a linear way; it moves around as it
is developed

 ■ Be visible: let learners see your face, and don’t
turn your back for too long

 ■ Pause to write things on the board, draw
diagrams, and work things out

 ■ Use the largest font possible without losing
view of the full line of code

 ■ Break the code into small chunks (decompose)
and use sub-goal labelling while forming
the solution

Strong links with worked examples:
Live coding helps novices learn by observing an
expert programmer working through a problem,
and so it has strong links to the concept and
benefits of worked examples (see page 90).

W

Live coding brings coding to life for learners by
demonstrating the thought processes of a programmer

The Big Book of Computing Pedagogy 93

RESEARCH

Those examples show a final, polished
solution without any insight into how the
programmer has made decisions about
their code. The Role of Live-Coding2 paper
states that “when students begin to learn
programming, usually they don’t have a
good idea about where to start”.

If you write your solution in front of
learners it forces you to slow down,
which helps you think about what you
are doing, and enables learners to follow
your process. It is important that you don’t
simply copy and paste the solution from
one tab into a new window; this defeats
the purpose, and your learners may get lost
very quickly. You could write some notes
about how you solved the problem and
keep these on your desk as a prompt.

Learners benefit from following
the process of your work, as it keeps
them engaged in finding the solution.
This is another reason why slowing
down is important. You can chunk the
demonstration and have sections where
learners watch, and sections where

they code. It is important that they don’t
miss key things while they are typing,
so monitor their progress as you carry
out your session. You can also provide
video recordings of your sessions, to help
learners who may need a recap or who
learn at a different pace. If you decide to
record your live-coding session, make sure
you stick to the live-coding principles.

Predicting, testing, and debugging
When carrying out a live-coding session, it
is important that it doesn’t become a tutorial
that leads learners to the perfect solution on
their first attempt. The learners are part of
the journey. The best way to engage them
is to ask them to make predictions about the
program before it is run.

Wilson’s Teaching Tech Together3
emphasises the importance of making
mistakes while live coding. Mistakes should
be embraced because they allow learners
to see that programmers don’t get it right
first time, and often have to review and
fix their work to find a solution. When

live coding, you should plan intentional
mistakes, but should also be confident
when making unintentional mistakes.
Intentional mistakes should link to common
errors or learner misconceptions in order
to target and alleviate them. You should
also test your program continually. This
helps learners to see this as a natural part
of programming and teaches them to test
their own work frequently.

When making intentional mistakes,
encourage learners to predict what will
happen, before running the code. Doing
this will help learners suggest strategies
to fix those errors. Miller et al.4 discovered
that “students who predict are significantly
more likely to correctly report the outcome
of a demonstration”. Outcomes were
improved whether their prediction was
correct or incorrect. Therefore, asking
prediction-focused questions while live
coding is an important part of the process.

The benefits of live coding are evident.
Try bringing programming to life in your
next class and help learners understand
the journey that a program takes.

REFERENCES
1 Collins, A., Brown, J.S., & Newman, S. E. (1987).
Cognitive apprenticeship: teaching the craft
of reading, writing, and mathematics. BBN
Laboratories, Cambridge, MA., Centre for the Study
of Reading, University of Illinois. Report number:
403. helloworld.cc/livecode1
2 Raj, A. G. S., Patel, J. M., Halverson, R., &
Halverson, E. R. (2018). Role of Live-coding in
Learning Introductory Programming. ACM. 13, 1–8.
helloworld.cc/livecode2
3 Wilson, G. (2009). Teaching tech together: how
to create and deliver lessons that work and build
a teaching community around them. Taylor &
Francis. helloworld.cc/livecode3
4 Miller, K., Lasry, N., Chu, K., & Mazur, E. (2013).
Role of physics lecture demonstrations in
conceptual learning. Physical review physics
education research. 9(2), 1–5. helloworld.cc/
livecode4

IN LIVE CODING, AN EDUCATOR DEVELOPS
A PROGRAM IN FRONT OF A CLASS, WHILE
HIGHLIGHTING THEIR CHOICES AND DECISIONS

“

http://helloworld.cc/livecode1
http://helloworld.cc/livecode2
http://helloworld.cc/livecode3
http://helloworld.cc/livecode4
http://helloworld.cc/livecode4

RESEARCH

The Big Book of Computing Pedagogy94

LEARNING TO
PROGRAM VIA VIDEOS

AND SELF-EXPLANATION
esults from a small study of
high-school students in Denmark

suggest that an approach combining
guided instructional videos with questions
prompting students to reflect on their
learning can help them learn to program.
The researchers have named the approach
‘stepwise self-explanation’.

Novice learners face various difficulties
while acquiring programming skills. In
particular, they struggle to combine and use
basic structures to build a program, and to
apply acquired knowledge to new situations.

Making programming easier
Aureliano, Tedesco, and Caspersen (2016)
explored how to make learning programming
easier for novices. They used an approach
in which students answered questions
prompting them to explain what they were
learning as they watched instructional
videos on how to build a program.

The video instructions were taken from
The Joy of Code series, which was developed
to teach students to program in Java via the
Greenfoot development tool. The videos
are structured according to the stepwise

n Students watched videos from The Joy of Code series

R improvement framework, providing step-
by-step guidance. After watching video
instructions about a piece of code, students
answered questions about its purpose and
functionality. For example, they explained
which part of the code made an object move.
The researchers compared this method
with another approach in which students
self-studied the same videos, but did not do
any self-explanation. Although the research
cannot confirm how significant the difference

STORY BY Lucia Flóriánová

Stepwise improvement is a framework
that advises learning programming
by developing small pieces of code
systematically and incrementally. It
encompasses three types of activities
that programmers use to build a program:
extension, refinement, and restructuring.

Stepwise self-explanation is an approach
to learning programming that combines
the stepwise improvement framework
with self-explanation. In this study, this
was achieved using instructional videos
alongside a list of questions about them.

STEPWISE
IMPROVEMENT

RESEARCH

The Big Book of Computing Pedagogy 95

engagement. Asking students a small
number of questions can direct their
attention to the most important learning
objectives and computing concepts. Using
instructional videos that are built around
small pieces of code is not only engaging,
but also guides students through a new
topic, giving them the opportunity to come
back to the parts they missed or about which
they are unsure.

between the two groups is, there was a
positive correlation between students’ self-
explanations and their final results. Students
also left positive feedback.

What makes the approach work?
Caspersen and Kölling (2009) explain that
the stepwise improvement framework is like
taking students for a guided tour instead
of leaving them to walk around randomly
— it draws attention to the most important
aspects of programming education. It breaks
down the content and gives the instruction
materials a frame that guides learners
through programming processes. However,
the structure of the instruction materials itself
is not enough to make novice programmers
learn, as they do not yet know how to study
for the needs of a programming course.
This can be mitigated through the use of
self-explanation, which guides students
further through the instruction materials.

Previous studies have found that students
who generated explanations of instructions
or programs learnt more and scored better
in problem-solving.

Students enjoyed this method of learning.
They appreciated that the videos presented
the content step-by-step, and found them
easy to follow. They also liked that they could
rewind or rewatch videos when needed.
Groups using self-explanation commented
that the question prompts helped them
to remember things and summarise what
they’d learnt.

In the classroom
Efficient teaching of programming takes
students through the right level of detail
when they are ready for it, but also prompts
them to think about what the code is doing
as they learn. Stepwise self-explanation
is one way to provide a balance between
teachers’ guidance and students’ cognitive

THE STEPWISE IMPROVEMENT
FRAMEWORK IS LIKE TAKING
STUDENTS FOR A GUIDED TOUR

“

FURTHER READING
 Aureliano, V. O., Tedesco, P., &
Caspersen, M. E. (2016). Learning
programming through stepwise
self-explanations. 11th Iberian
Conference on Information Systems
and Technologies, 1-6. helloworld.cc/
aureliano2016

 Caspersen, M. E., & Kölling, M. (2009).
STREAM: A First Programming
Process. ACM Transactions on
Computing Education, (9)1/4.
helloworld.cc/caspersen2009

 The Joy of Code videos:
 helloworld.cc/joyofcode

n Well-placed questions can direct students’ attention

http://helloworld.cc/aureliano2016
http://helloworld.cc/aureliano2016
http://helloworld.cc/caspersen2009
http://helloworld.cc/joyofcode

FEATURE

The Big Book of Computing Pedagogy96

Josh Crossman explains the modelling approach: by demonstrating a new
concept, teachers can both support their learners and develop their own

understanding of the key skills and materials being introduced

HOW MODELLING CAN
SUPPORT LEARNERS

hen giving learners the opportunity
to use new skills or software,

it is important to show them how
first. Teachers can demonstrate a new
concept by using a recorded video, or by
modelling it for the learners. Modelling is
an instructional teaching strategy in which
a teacher demonstrates a new skill or
approach to learning. Teachers first model
the task or skill for learners, and then
learners begin the task and work through it
at their own pace.

Schools use modelling across various
disciplines, such as writing, handwriting,
mathematical strategies, and science
experiments. It’s a powerful strategy that
can be used across many different subjects,
and computing is no different.

As we have been developing units for
the Teach Computing Curriculum (TCC)
(helloworld.cc/tcc), we have reflected on the

tried and tested techniques that help make
computing lessons a success. In this article, I
will share some of our top tips for modelling.

Improved confidence
Perhaps the biggest benefit of modelling
is the confidence and competence that
teachers gain from using the software.
In the TCC Year 6 (ages 10 to 11) ‘3D
modelling’ unit, learners are shown how
to create a 3D shape and change the
viewing angle in the 3D modelling software
Tinkercad (helloworld.cc/3Dmodelling).
Teachers who are new to 3D modelling
may not have come across changing the
viewing angle before.

Through prelesson preparation, and
of course, through using the software
when modelling, teachers may encounter
misconceptions, errors, and perhaps
shortcuts that the learners might make in

their own use. For example, in Tinkercad,
teachers can click on the viewing cube
to jump to different views. As their own
confidence improves, supporting the
learners with their errors or misconceptions
will become easier.

Thinking aloud
If teachers provide a monologue — or think
aloud — as they model, learners get the
opportunity to observe expert thinking that
they wouldn’t usually have access to. It
allows learners to follow more closely what
the teacher is doing and why they are doing
it. More precisely, it can reduce the extra
cognitive load of having to deconstruct each
step for themselves (see page 20 for more
about cognitive load theory).

As teachers know their own learners
best, they can tailor the language they use
when modelling, to make it as beneficial
as possible for their particular learners.
This ensures that teachers can meet their
learners’ needs in a more targeted way.

Greater freedom
Questioning is a key part of modelling —
this includes both the teacher’s questioning
of their learners to draw out understanding,
and the learners’ questioning of the
skills and processes the teacher is using.
Modelling can enable teachers to give
context to their answers to the questions,
ensuring they are able to show alongside
the tell. This will help to make their answers
more visual and concrete.

Additionally, the freedom of modelling
ensures that teachers are able to meet

W

Credit: stock.adobe.com/insta_photos

http://ncce.io/tcc
http://helloworld.cc/3Dmodelling
http://stock.adobe.com/insta_photos

FEATURE

The Big Book of Computing Pedagogy 97

JOSH CROSSMAN
Josh is a programme coordinator at the
Raspberry Pi Foundation, working across
programmes such as the Teach Computing
Curriculum and Hello World. He is a
Raspberry Pi Certified Educator and a former
primary teacher.

the needs of all the learners in the room.
This could mean revising an area that
wasn’t fully understood by some, or
perhaps moving at a slower or quicker
pace, depending on the learners’ level of
understanding. For example, in lesson
one of the ‘3D modelling’ unit of the TCC,
teachers could break up the content in the
video into smaller chunks, perhaps allowing
the learners to get to grips with the viewing
angle before introducing the zoom buttons.

Impromptu learning
In line with the benefit of greater freedom
discussed previously, modelling also allows
for more impromptu learning. As students
ask questions, teachers may need to
explore different areas of the software, or
be challenged by questions about a skill
they hadn’t previously thought about. Using
the freedom provided by modelling can lead
to a deeper level of understanding. Equally,
it can reinforce the skills used in previous
lessons, giving learners the chance to
consolidate their learning as they progress
to the next stage.

As teachers narrate their modelling, it can
also bring to the forefront things they do
instinctively. Learners can pick up on these
things, such as keyboard shortcuts (copy,
paste, and duplicate come to mind) that
teachers might use naturally. We do these
things all the time when using new software
or learning new things, but we might not
always use the opportunity to share them.
Modelling can also lead to exploration of a
skill that might benefit learners, but wasn’t
originally planned for the lesson.

Making mistakes
By demonstrating computing experiences
live with their learners, teachers can
encourage the sharing of mistakes, both
intentional and unintentional. Making and
demonstrating mistakes is OK — in fact,
it should be celebrated! Allowing learners
to see that their teachers aren’t immune
to making mistakes can be encouraging
for less confident learners and help them
to build resilience. More importantly, it
enables learners to see how to respond to
mistakes, particularly when combined with
the thinking aloud approach mentioned
previously. This can be a powerful tool
for encouraging perseverance.

By sharing mistakes and thinking aloud,
teachers can guide their learners through
strategies to overcome a range of obstacles.
Use phrases such as: “When I first looked
at this problem, I didn’t know where to
start”, or, “It’s OK to feel frustrated at
this point; I often do.”

Video demonstrations vs live modelling
As well as live modelling, there is the
option of demonstrating software using
prerecorded videos. This means that you
can show the video to learners and they
can follow along and learn the skills you
need them to know. However, many of the
benefits to modelling, such as impromptu
learning and improved confidence, will not
be gained in this way.

Recorded video definitely has a place
in the classroom — particularly in the
context of the pandemic — but modelling
these skills yourself, making mistakes, and

n Modelling can improve teachers’ confidence
in using unfamiliar software

developing ideas as you go are invaluable
ways to share learning experiences. If you
do show your learners videos instead of
using live modelling, here are some tips for
including the modelling approaches:

n Watch the video before the lesson and
practise the thinking aloud approach

n Share the video with learners and think
aloud as the video is shown; allow the
learners to attempt the task before asking
them to share their own modelling of it

n Punctuate the video with your own
questions, and don’t be afraid to pause to
answer questions posed by the learners

Throughout our work on the TCC, my
colleagues and I recorded videos that could
be used to model key skills. Our aim was to
ensure that the content was as accessible
as possible for the full range of teachers
who may use it.

Though live modelling may take longer
than displaying a prerecorded video, it is a
great way to share the learning experience.
In my view, it has many benefits over
the more passive prerecorded approach.
Hopefully, many teachers will watch these
videos and gain the confidence to give
modelling a try.

Modelling is a journey, and teachers
inevitably won’t get it right every time —
but sharing that experience with the
learners may turn out to be the most
powerful part of the exercise.

OPINION

The Big Book of Computing Pedagogy98

remember writing my first computer program
on a BBC Micro as if it were yesterday. It was
of course during a maths lesson; I had already

completed the set work, so I was allowed to use the
computer! Logo was my favourite – typing commands to
make pretty geometric pictures on a monitor was exciting.

The BBC Micro has a lot to answer for. It inspired a
generation of computer enthusiasts and professionals like
me, and led to the development of Raspberry Pi computers
and other small form-factor programmable devices. But
what was really revolutionary about the BBC Micro was
its accompanying television series, called The Computer
Programme, where you could learn to use it alongside the
hosts, Chris Serle and Mac.

Before this TV programme, the most common way
to learn about computers and how to program them
was through magazines and books, or even the trusty
computer manual. The availability of video tuition really
helped me, and now, 30 or so years later, we have video-
based platforms that provide content on every aspect of
computing, computer science, and technology. They can help
us both develop our subject knowledge as computer science
specialists and support our students through all the stages
of their learning.

Content for teachers
Continued professional development (CPD) can be tricky to
fit in with the everyday demands of being a teacher. Trying to
find time to be released from the timetable to attend courses

is always a cause of frustration. Thankfully, Computing at
School (which spends every moment thinking about how
it can support computer science teachers) created CAS TV
(helloworld.cc/castv), a YouTube channel full to the brim with
content for teachers at every stage of their computing journey.
Videos include tips and tricks on teaching particular concepts
at different learning stages, learning how to plan a scheme of
work, and even how to engage underrepresented groups.

Some CAS TV videos also explore creativity and innovation
with leading developers. Genevieve Smith-Nunes looks at
how dance can represent data (helloworld.cc/dataanddance),
and Andrew Fitzgibbon introduces computer vision and
machine learning (helloworld.cc/computervision). Many
of the videos are delivered by practising teachers in both
primary and secondary schools, including Phil Bagge, as well
as leading teacher trainers such as Miles Berry, Jane Waite,

I

How online video is changing the way we teach computer science

WATCH AND LEARN

CARRIE ANNE PHILBIN DIRECTOR OF EDUCATOR
SUPPORT AT THE RASPBERRY PI FOUNDATION

n Access bite-sized CPD from leading teacher trainers on the CAS TV YouTube channel

http://helloworld.cc/2hktjzb
http://helloworld.cc/dataanddance
http://helloworld.cc/computervision

OPINION

The Big Book of Computing Pedagogy 99

and Alan O’Donohoe. It is a one-stop shop for a short burst of
professional development.

Learning with online video is now so popular that
whole courses are developed for video delivery, for
example on the Open University’s FutureLearn platform,
or Harvard and MIT’s edX. In the last few years, this
MOOC (Massive Open Online Course) structure has

moved towards developing educators as well as teaching
students. The Raspberry Pi Foundation has a number of
courses on FutureLearn, where you can learn online at
your own pace (helloworld.cc/rpifuturelearn), including
Programming pedagogy in secondary schools, Teaching
physical computing to 5-11-year-olds, and Object-
oriented programming in Python. The MOOC model also
includes plenty of social interaction, with the FutureLearn
platform promoting lots of discussion points and plenty of
opportunities for comments.

Content for students
One of the best features of online video is that it can be
played over and over, slowed down, or paused. There were
days when I wished I could replay my teachers’ explanations,
especially when I was revising! Online videos can also be
used to help supplement the teaching of difficult concepts.

It can sometimes be difficult to understand how the ALU
works, for example, and then explain it to someone else, or
answer an exam question on it. Thankfully, the team behind
the YouTube Crash Course channel has created an entire
series on computer science (helloworld.cc/crashcourse),
supported by PBS Digital Studios. The videos break down
concepts into ten-minute chunks of explanation, with
animations to show what is happening. Another great
channel is Computerphile (helloworld.cc/computerphile),
which boasts videos “all about computers and computer
stuff”, and is really fun to watch. Resources like this make
great homework or revision exercises, and give students the
extra support they might need.

Carrie Anne Philbin is the director of educator
support at the Raspberry Pi Foundation, a Computing

at School board member, author and YouTuber (@
MissPhilbin).

VIDEOS CAN HELP US AND
OUR STUDENTS THROUGH ALL
STAGES OF LEARNING

Skills-based videos are a great way to supplement
student and teacher development, especially in
programming. When I’m trying to work out how to write a
function in an unfamiliar language, I’m often drawn to find
the answer through online video. I learnt lots about Python
thanks to Trevor Payne’s video tutorials. They start off with
the basics of computer programming and expand to cover
broader and deeper topics (helloworld.cc/pythonvideos).

Embracing video
While teaching in a secondary school in Dagenham, UK,
I noticed two things: most of the students who had chosen
my subject were boys, and they would often search for
supplementary material — not on Google, but on YouTube.
I decided that I would start to create online video content
that demonstrated my passion for computer science
and digital making, as well as what I was learning or
teaching at the time. My channel, Geek Gurl Diaries

(helloworld.cc/geekgurl), was a real labour of
love outside the classroom. Although I’ve taken
a break from producing video content for Geek
Gurl Diaries, I encourage you as a computing
education practitioner to try creating some
educational videos yourself. You’ll help your
students even more than you already do, and

without realising it, you’ll also help many more learners
around the world.

When I think back to how I learnt about computer science,
I know that video played a key role. When I think about my
continued learning in this field, I know that I turn to video first
to find what I am looking for. When it comes to teaching, I
make videos for others to learn from. Let’s embrace online
video — even though I’m sure we will never be able to
compete with the original title: The Computer Programme.

n Find free, high-quality educational videos for everyone on the Crash Course YouTube channel

n Find practical lessons at Geek Gurl Diaries

“

http://helloworld.cc/rpifuturelearn
http://helloworld.cc/2ugM0ox
http://helloworld.cc/2hkMtVP
http://helloworld.cc/2w2pceq
http://helloworld.cc/2ugI7Ad

FEATURE

The Big Book of Computing Pedagogy100

Are we passing on best practice when we teach
block-based programming to primary school pupils?

SMELLY CODE
hen we teach literacy in primary
school, we use high-quality texts

to model the features we would like our
pupils to learn. In poetry, we demonstrate
alliteration and onomatopoeia through
the work of popular children’s poets.
When teaching programming, do we
do the same? Do we know who the
good programmers are in the Scratch
community? Are we even sure what good-
quality programs look like?

What is smelly code?
Smelly code is code that displays some
feature that indicates an underlying problem
with the program. The program may do
some things correctly, but good code
should be of high quality, and readable, too!
Unreadable or convoluted code is much
more likely to contain subtle bugs, hiding in
those whiffy places.

Several researchers have investigated
programs from the Scratch community,
and concluded that most are smelly! One

researcher looked at more than a million
programs, while another checked 250,000
(see box for links). One of the research
teams concluded that some of the things
we want children to learn and make
progress in for programming were lacking in
the code sampled.

Don’t worry — the researchers did not
check all this code by hand! They have
programs that do their checking for them.
There is also the fabulous Dr. Scratch
(drscratch.org) that you can use to analyse
your own code.

Names matter
One example of a bad smell is a sprite
that has not been renamed, and still uses
its default name. Why is this important?
Renaming a sprite might make our code
easier to read, and indicates that we are
thinking about what our program is doing.
So, if the Scratch Cat is the narrator for an
animation, rename it Narrator. If the Elephant
asks questions in a quiz, call it Quizmaster.

n There is a bug in one of the scripts. Which is the easiest version to understand and debug?
Thanks to Barefoot Computing for the original project. Code remixed by Jane Waite

W Variables, broadcast messages,
backgrounds, and costumes need renaming
too. Just calling a variable ‘a’, or ‘variable’,
makes our code harder to read and change.
Children (and professional programmers)
can work on a program over several weeks,
or take an old program as the basis to start
writing a new one, so this matters a lot.

Superfluous stuff
Another bad smell is caused by redundant
stuff: code blocks, variables, sprites, and
messages left lying around which don’t do
anything. If children added a casual full stop
or a random word into a sentence, we might
question it. Sometimes we do pull code
apart as we are debugging, and leave code
fragments at the side as we work out what
the problem is, but when we save and share
our code, we should tidy it up.

The researchers found other bad smells
too, such as the same code being used
for different sprites, and within the same
sprite. Some repeated code for a single
sprite can be implemented more elegantly,
for example by using a loop. We can reduce
repeated code by using clones, or by
controlling the program using a main thread
of commands, and synchronising activity
through broadcasts and other techniques.

One of the smelliest aspects found by
both researchers was very long scripts.
Long scripts can be very hard to understand
and debug, and often imply a lack of
decomposition and design.

Make your own blocks
An aspect of Scratch that was missing from
the sampled scripts was custom blocks.
These purple blocks can be programmed
to do a particular job for a sprite. Once a
custom block is made, we can reuse it over
and over again, and if it needs changing, we
only need to change it in one place.

Using custom blocks demonstrates that
we are breaking up our solutions into bite-

http://drscratch.org

FEATURE

The Big Book of Computing Pedagogy 101

sized chunks. Learning to spot potential
custom blocks and work with them is a very
important habit that gets children ready to
learn more about procedures and functions
in text-based languages.

Forever or until?
Another feature missing from the code was
conditional repeats, or conditional loops.
These commands allow us to control how a
repeat ends based on another aspect of the
program: for example, repeating an action
until the space bar is clicked, or repeating
something four times. Conditional repeats
are important, as they show that we are

thinking carefully about why and how we
are looping. Someone reading the code can
see clearly how the loop will end.

Do you naturally model code using
‘forever’ commands, rather than ‘repeat
until’, or ‘repeat x times’? Does evolving
rather than designing our programs
contribute to lots of ‘forevers’ and not many
‘untils’? The use of forever loops is seen by
many experts as a bad habit.

Get ready before you go
Something else that is often missing from
scripts is resetting stuff: setting variables
to a start value, resetting sprites to a start
position, clearing up any shapes we have
drawn with the pen, and so on. This is
sometimes called initialisation, and it is
an important idea. If you do not include
initialisation in your Scratch code, and you
run it twice in the same sitting, the values
and states from the end of your last run will
become your subsequent start points. This
can be very confusing, and you can’t be
sure what your program will do.

Creating programs that always do
the same thing whenever you run them
is a very good habit. In fact, some code
needs initialising to work at all. Learning
about initialisation is an important part
of preparing children for the transition to
text-based programming.

n XXXXXXXXX

In your scheme of work, does the
example code you use reset sprites to
a start position? Do you explicitly teach
resetting variables to a start value? Are
there targeted tasks and guided exploration
activities in your planning that reveal the
importance of initialisation? Whatever
form of scaffolding you use to teach
programming, is initialisation covered?

So what, and what next?
Does bad-smelling code matter? There is
plenty of research that says it does. If you
give novice programmers smelly code, they
will either have a poorer understanding of
what the code does, or find it more difficult
to modify the code, depending on the
particular type of whiff!

I don’t have all the answers, but there is
emerging research in this area. I think that as
a teaching community, we are ready to talk
about what makes good-quality block-based
programs, and to look at what kinds of habits
we are exemplifying in our teaching.

How about investing in your CPD? Try
a free online programming course, such as
Teaching programming to 5–11-year-olds,
at helloworld.cc/programmingcourse. If
you’re in the UK, ask your local CAS Regional
Centre about programming courses. Find out
more so you can help your pupils to write
lovely, sweet-smelling code.

n Predict what this seaside script will draw. Code written
by Jane Waite, inspired by the fantastic ScratchMaths

Dr. Scratch:
drscratch.org

ScratchMaths:
helloworld.cc/scratchmaths

Find your CAS regional centre:
helloworld.cc/casregional

Find your CAS Hub:
helloworld.cc/cashub

BCS Certificate in Computer Science Teaching:
helloworld.cc/bcscertificate

Scratch research:
helloworld.cc/scratchresearch1
helloworld.cc/scratchresearch2
helloworld.cc/scratchresearch3

FURTHER READING

JANE WAITE
Jane is a research scientist at the Raspberry
Pi Foundation. Her interests include using
design in primary programming, semantic
waves, PRIMM, and migrating to online
teaching using ABC (@janewaite).

http://helloworld.cc/programmingcourse
http://drscratch.org
http://helloworld.cc/scratchmaths
http://helloworld.cc/2tZhiEt
http://helloworld.cc/2t4ljCY
http://helloworld.cc/2tZpq7V
http://helloworld.cc/2sOnlw2
http://helloworld.cc/2tUFes7
http://helloworld.cc/2tZfxah

CHALLENGE
MISCONCEPTIONS

104 ADDRESSING STUDENTS’
ALTERNATE CONCEPTIONS IN
COMPUTING

106 ASSESSMENT FOR LEARNING
108 WHAT’S IN THE BOX? METAPHORS

AND MISCONCEPTIONS
111 MULTIPLE CHOICE
112 TACKLING NOVICE LEARNERS’

NAIVE CONCEPTIONS IN
INTRODUCTORY PROGRAMMING

The Big Book of Computing Pedagogy 103

rom their very earliest experiences of computing,

pupils can easily develop alternate conceptions

about a concept, including what it means and how

it can be applied. This underdeveloped understanding, if left

unchecked, can undermine students’ understanding and their

ability to grasp concepts in the future.

As an educator, it is therefore important for you to understand

the common misconceptions that students are likely to

encounter, many of which are well documented. Identification of

misconceptions is an important step, as is understanding their

impact; while many alternate conceptions can impede future

understanding, others may be valid steps in a learning journey

that can be addressed later on. There is a range of techniques

you can use to help challenge or avoid alternate

conceptions where needed. In particular, concept

mapping can be used by pupils to connect

and define concepts visually, while peer

instruction can be used to challenge students

and engage them in dialogue, which can help

uncover and address misconceptions.

F IN THIS SECTION,
YOU WILL FIND:

 ■ What the research says:
challenging misconceptions

 ■ What the research says:
asking the right questions

 ■ Metaphors and misconceptions

 ■ Using multiple-choice questions

 ■ Misconceptions in introductory
programming

The Big Book of Computing Pedagogy104

RESEARCH

Although there is little research that has
evidenced this, we suspect there are a
number of alternative conceptions around
computing. We must therefore also look
to research in other subjects that form
the traditions that underpin computing, in
particular maths, science, and engineering.
Some psychologists claim that alternative
conceptions can be very persistent.2

In presenting learners with accurate
conceptions that challenge their existing
understanding, a state of “cognitive
disequilibrium”3 is reached, in which

lternative conceptions (often
referred to as misconceptions)

are beliefs commonly held about a
concept by students that are overly
simplified or inaccurate. Where these
beliefs contradict with reality or accepted
scientific understanding, they can cause
confusion and affect students’ efficacy
and, ultimately, their performance.1 It is
therefore vital that computing educators
understand commonly held alternative
conceptions, how they arise, and how they
can be addressed.

learners must reconcile the conflicting
pieces of information. While this creates
an opportunity to replace an alternative
conception, learners may choose to discard
accurate information that doesn’t fit with
their existing mental models. Educators
therefore need to be aware of common
alternative conceptions that their learners
may hold. They should develop a range of
strategies that support learners through
their misconceptions, encouraging them
to recognise them as wrong, but without
labelling them in this way.

Sources of alternative conceptions
According to Piaget, learners build new
understanding by combining experience
with existing mental models. Educators
help facilitate this learning by providing
learning experiences and supporting
learners to integrate the experience with
their existing understanding. An alternative
conception can arise in a number of ways
when learners’ experiences and their mental
models interact in different ways.
Research4 from science education proposes
five categories of alternative conceptions:

 ■ Preconceived notions involve learners
making intuitive conceptual leaps based
on their everyday experience. They do
not have sufficient relevant experience
of a concept or phenomenon, so they
use their existing experience to fill in the
gaps. For example, learners who are used
to Scratch, which automatically handles
concurrent execution of code, may expect
similar behaviour from Python.

ADDRESSING STUDENTS’
ALTERNATIVE CONCEPTIONS

SUMMARY
Alternative conceptions (commonly known as
misconceptions) can develop when new knowledge
conflicts with a learner’s existing mental models.

Alternative conceptions can be categorised as:

 ■ Preconceived notions are intuitive but
inaccurate leaps made about new ideas, based
on existing knowledge

 ■ Non-scientific beliefs can arise when a
learner’s mental models have been informed
by non-authoritative sources and are counter to
accepted science

 ■ Conceptual misunderstandings occur when
instruction fails to challenge existing mental
models and learners attempt to resolve these
independently with mixed success

 ■ Vernacular misconceptions occur where
new terminology is the same as that used in
another context or everyday language, but with
another meaning

 ■ Factual misconceptions derive from false facts
or information that have been assimilated into
memory without being challenged

Become familiar with commonly occurring
misconceptions:

 ■ Review existing research into alternative
conceptions in computing

 ■ Reflect on your own experience
 ■ Share common alternative conceptions with

your peers and the community

Identify alternative conceptions through:
 ■ Varied opportunities for classroom talk
 ■ Diagnostic multiple-choice questions

Effective ways to address alternative
conceptions include:

 ■ Constructing individual or group concept maps
 ■ Reach consensus around a concept using

peer instruction

A

Addressing misconceptions in computing develops students’
understanding, development and confidence

The Big Book of Computing Pedagogy 105

RESEARCH

 ■ Non-scientific beliefs can arise when
a learner’s mental models have been
informed by information provided by
a non-authoritative source, counter to
accepted science. An example from
programming might be the ‘superbug’5
— a belief that a computer possesses

innate intelligence that can go beyond
what it is told to do, which causes the
learner to have unrealistic expectations
of the machine.

 ■ Conceptual misunderstandings occur
when learners experience instruction of
insufficient depth. The experience fails
to challenge existing mental models and
confront conflicts. Learners attempt to
resolve these independently, with mixed
success. In computing, we regularly use
analogy to unpack and explain abstract
concepts. Learners may be left equating
the analogy and the concept, unless
educators spend time distinguishing
between them (see page 46).

 ■ Vernacular misconceptions occur when
terminology and symbols have different
meanings in different contexts. Learners
can project meaning from their existing
mental models onto the new experience,
causing confusion. For example,
computing shares many terms with
maths (variables, graphs, etc.) that have
different meanings in the two subjects.

 ■ Factual misconceptions derive from
false facts that have been assimilated
into memory without being challenged.
An example is the common belief that
Apple Macs are immune to viruses.

Identifying alternative conceptions
The first step in mitigating alternative
conceptions is identification. Educators
need an awareness of potential or common
alternative conceptions, and the ability to
recognise them in their learners. Before
teaching new material, it is valuable
for educators to reflect on alternative

conceptions that their learners might
develop. This reflection might include:

 ■ Reviewing the research about
common alternative conceptions in
programming6, 7 (there is limited research
into wider areas of computing)

 ■ Reflecting on their own experience of
teaching a topic, and any alternative
conceptions that past learners exhibited

 ■ Discussion with peers sharing their
collective experience of alternative
conceptions (as well as strategies to
address them)

Educators also need strategies to spot
misconceptions as they occur. Some
techniques include (but aren’t limited to):

 ■ Classroom talk and discussion: whether
this takes the form of questioning,
whole-group or peer discussions,
providing opportunities for learners
to express their understanding and
listening to them is crucial

 ■ Carefully designed multiple-choice
questions can be used to probe
learners’ understanding and highlight
alternative conceptions

Challenging alternative conceptions
Many alternative conceptions can be
addressed with relative ease during
instruction, and may even be corrected by
the learner. However, many will require
more work, as the learner already holds
a model that they will probably resist
replacing. To address these persistent
alternative conceptions, learners need the
opportunity to construct (or reconstruct) an
accurate model. This opportunity can be
provided in a number of ways, including:

 ■ Creating concept maps to help
externalise learners’ understanding and
highlight their alternative conceptions

before the accurate model can be re-
assimilated (see page ten).

 ■ Peer instruction, to help learners explore
and challenge their own mental models
as they collaborate to form a shared
understanding around a concept (see
page 56).

In approaching learners’ alternative
conceptions, there is no single approach
that will work for all learners. However,
educators who are able to identify their
learners’ common alternative conceptions
are better equipped to support their
learners’ understanding8, development,
and confidence.

REFERENCES
1 Kallia, M. & Sentance, S. (2019). Learning
to use functions: The relationship between
misconceptions and self-efficacy. Proceedings of
the 50th ACM Technical Symposium on Computer
Science Education (752-758). helloworld.cc/
misconception1
2 Eggen, P. & Kauchak, D. (2001). Educational
Psychology: Windows on Classrooms. Pearson.
helloworld.cc/misconception2
3 Wadsworth, B. J. (1971). Piaget’s theory of
cognitive development: An introduction for
students of psychology and education. McKay.
helloworld.cc/misconception3
4 Davis, B. G. (1997). Misconceptions as barriers
to understanding science. Science teaching
reconsidered: A handbook. The National Academies
Press, 27-32. helloworld.cc/misconception4
5 Pea, R. D. (1986). Language-independent
conceptual “bugs” in novice programming. Journal
of educational computing research, 2(1), 25-36.
helloworld.cc/misconception5
6 Sorva, J. (2018). Misconceptions and the Beginner
Programmer. In: Computer Science Education:
Perspectives on Teaching and Learning in School,
171. helloworld.cc/misconception6
7 Swidan, A., Hermans, F., & Smit, M. (2018).
Programming Misconceptions for School Students.
Proceedings of the 2018 ACM Conference on
International Computing Education Research (151-
159). helloworld.cc/misconception7
8 Sadler, P. M. et al. (2013). The Influence of
Teachers’ Knowledge on Student Learning in Middle
School Physical Science Classrooms. American
Educational Research Journal, 50(5), 1020-1049.
helloworld.cc/misconception8

LEARNERS MAY DISCARD ACCURATE
INFORMATION THAT DOESN’T FIT WITH
THEIR EXISTING MENTAL MODELS

“

http://helloworld.cc/misconception1
http://helloworld.cc/misconception1
http://helloworld.cc/misconception2
http://helloworld.cc/misconception3
http://helloworld.cc/misconception4
http://helloworld.cc/misconception5
http://helloworld.cc/misconception6
http://helloworld.cc/misconception7
http://helloworld.cc/misconception8

RESEARCH

The Big Book of Computing Pedagogy106

the teacher not just delivering and then
assessing later, but regularly checking for
understanding and adapting their teaching.
It’s also about the learners getting regular
insight into how they are learning and,
crucially, having an opportunity to act on
the feedback they get and ensure that they
are making progress. The assessment is
designed to serve the students’ learning,
and not to certify that they have achieved
a set standard.

Assessment revolution
This work led to many developments in
schools, with the government in the UK
taking up ‘assessment for learning’, teachers
being trained to regularly assess students’
learning within lessons, and students being
provided with feedback to act on as they

learn. More recently this approach has been
supported by John Hattie’s meta-analysis
of influences on achievement in schools,
which puts feedback at the very top in
terms of the size of the measured effect
(helloworld.cc/hattie).

Truly effective formative assessment is
not just about finding out whether students
have ‘got it’ yet. It’s about understanding
how they are thinking about a topic, what
misconceptions or naive understandings
they have, and how your teaching and
activities can be adjusted to address them.
Given the abstract nature of computing, the
potential for misconceptions is very high.

Diagnostic questions
Edtech company Diagnostic Questions
is seeking to address this with its online
assessment platform. Its assessments look
familiar at first: multiple-choice questions
with four answers. Multiple-choice
questions have been given a bad reputation
by some educators, but their quality comes
down to how the questions themselves
are put together. If a question has a correct
answer and three laughably implausible
answers, it won’t be a useful tool. However,
if each answer represents a different level of
understanding, or a common misconception,
then the answer the student gives is useful,
even if it is the wrong one. Imagine being
told after an assessment not just who got
the right answers, but why those who
got it wrong did so, and potentially the
misconception you need to address for each
group of students.

STORY BY Oliver Quinlan

Diagnose your students’ learning needs by asking the right questions

ASSESSMENT FOR LEARNING
ention assessment in schools
and most people think of tests.

Memories of creaky exam halls and
regulation stationery may come first,
but there are several developments in
assessment that can change how we
think about discovering what students
have learned.

Back in the late nineties, Black and
Wiliam challenged educators’ views on
assessment with their seminal work Inside
the Black Box, which popularised the
idea of ‘assessment for learning’. They
suggested an approach which brought
assessment into the learning activities
themselves. When this is executed well,
students are given feedback as they
learn and have the opportunity to act
on this feedback immediately. It’s about

M

n Assessment for learning is designed to serve the students’ learning — not to certify that they have achieved a set standard

http://helloworld.cc/hattie

RESEARCH

The Big Book of Computing Pedagogy 107

In 2017, Diagnostic Questions started
working with Computing at School, the
Centre for Evaluation and Monitoring, and
later, Cambridge Assessment to bring this
approach to computer science. Project
Quantum is a project exploring the potential
for crowdsourcing diagnostic questions for
the computing curriculum, and using them
for formative assessment. They have been
encouraging teachers to add questions to
the platform, and use the questions already
available with their students to help them
better understand their learning. This
project brings the potential of a relatively

new approach to assessment to computer
science teachers, and a chance to better
understand how students make sense
of difficult topics.

Comparative judgement
Creativity, problem-solving, and original
approaches are key to computing, yet these
things are very difficult to assess using
traditional approaches. It’s very common
in education to use criteria to assess how
well students are performing. We might
set them a programming problem and
then tick off whether they have used a
loop or an ‘if’ statement, showing that they

have understood those things. However,
real-life programming is often more about
the elegance of the design of a solution.
What if the most accomplished student
doesn’t use the things you have on your
checklist? This is a particular problem when
using wide briefs for tasks, or even open-
ended projects.

Comparative judgement is a field
relatively new to education practice,
which offers huge potential for solving
this problem. It’s based on well-
established research showing that
humans are relatively poor at making

objective judgements about individual
objects, but very good at making
comparisons. Play a musical note to most
people and ask them what it is and they
will struggle. Play them two notes and ask
them which is higher and they are likely to
be successful. Repeat this several times,
with a clever algorithm to keep track,
present them with the right combinations,
and you can come up with a scale. These
rankings have been shown to be very
reliable — even more so if you involve
several people as judges.

This method has been shown to work
well even for judging things for which we

don’t have clearly defined criteria, such as
looking at workings in maths and asking,
‘Who is the better mathematician?’ It can
also be reliable even when the judges are
peers at a similar level of proficiency. This
opens up some exciting new ground for
the assessment of skills that involves
approaching problems in an open-ended
way, and assessing complex skills without
resorting to trying to predefine what
successful students must do. Assessment
organisation No More Marking is exploring
this approach for English and maths
in partnership with schools.

Assessment is all about students getting
better at something, but it seems there are
also some promising avenues for educators
to get better at assessment.

CREATIVITY AND PROBLEM-SOLVING ARE
KEY TO COMPUTING, BUT DIFFICULT TO
ASSESS USING TRADITIONAL APPROACHES

“

n Inside the Black Box:
helloworld.cc/blackbox

n Diagnostic Questions:
diagnosticquestions.com

n Project Quantum:
helloworld.cc/quantum

n No More Marking:
nomoremarking.com

FURTHER
INFORMATION

http://helloworld.cc/2tZXFsy
http://diagnosticquestions.com
http://helloworld.cc/2jAJXL3
http://www.nomoremarking.com

FEATURE

The Big Book of Computing Pedagogy108

Teaching new concepts is more difficult if the related vocabulary isn’t familiar to learners, but
explaining variables using the box metaphor runs the risk of misconceptions

WHAT’S IN THE BOX?
 METAPHORS AND MISCONCEPTIONS

he English Key Stage 2 (ages
seven to eleven) Computing

curriculum requires pupils to “work with
variables”. Variables are the first step of
students learning about data structures.
Students will encounter many data
structures, such as arrays, lists, and
binary trees, as they progress into Key
Stage 3 and beyond. But in primary,
we just have to help them “work with
variables”. Simply put, a variable is a
reference — pointing to somewhere in
memory — where a value is stored.

An example of this would be to store a
date, say today’s date, in memory location
1, and our birth date in memory location
2. To remember which date is where, we
use variable names, such as Today’s Date
and Jane’s Birthday.

The first mental model that pupils
develop about a concept is important, as
it can be very hard to change and, if it’s
not right, can lead to barriers to learning
and loss of confidence. Variables are a
fundamental idea for programming, so it’s
worth thinking carefully about what mental
models pupils will develop for this concept.

‘Variable’ is a term that students might
come across in a range of contexts (this
is called topical word learning), such as
its colloquial use referring to something
that varies, or in other school subjects
such as science or maths. However,
each of these contexts has subtly
different meanings than the computer
programming concept of a variable.

How does the metaphor work?
The box metaphor goes as follows:
1. As shown in Figure 1, the box is made

and a label is placed or written on it. The
box is the variable, and has a variable
name (Score) — we’ve created a variable!

2. As shown in Figure 2, values can be
placed in the box — simply put, these
might be numbers, text, or yes/no type
values, and can be the initial value or
updated values

3. As shown in Figure 3, values can be
retrieved from the box by looking inside

STORY BY Jane Waite, Felienne Hermans, and Efthimia Aivaloglou

FEATURE

One way to explain computer
programming variables is to use a
metaphor. Metaphors often have a
limited shelf life — they work for so long
and then they need to be replaced, as
there will be differences between the
working of the metaphor and the concept
we are linking it to. This is true of the
metaphors and methods used to explain
programming variables. A common
metaphor used to explain variables is the
box metaphor. This seems like an attractive
way to make a new word more familiar.

n Figure 1 Create a variable: make and label a box

T

All
 fig

ure
s b

y J
an

e W
ait

e a
nd

 bo
x f

rom

Pix
ab

ay
 CC

0 P
ub

lic
 D

om
ain

The Big Book of Computing Pedagogy 109

FEATURE

So why might things go wrong?
Firstly, pupils might think that more than
one value can be in the box at any point in
time. For example, if 1 is added to a score,
they might think that the original value and
the 1 are now in the box. They might also
think that to find out the current value of
the variable, they need to perform some
kind of action to add up all the numbers
in the box. Similarly, if a text value is put
in a box, pupils might think that the value
that was there before is still in the box,
and that there are lots of text values. This
might lead them to create a mental model
where a variable has not just one value,
but lots of values, and to believe that they
can also access the old values.

A variable, however, doesn’t hold
multiple values; a variable references one
place in memory and holds just one single
value at any point in time. The old values
that were there before can’t be retrieved.
Simply put, as a variable is written to, the
old value is overwritten.

What did the research find?
At a large museum in Amsterdam, the
research team set up an experiment.
They taught nearly 500 participants,
two-thirds of whom were children and
one-third parents, about variables using
Scratch. Half of the participants were
taught using the box metaphor and half
using a label metaphor. All the participants
were then asked some questions. One
question specifically targeted whether

participants thought a variable could hold
more than one value. Those who were
taught using the box metaphor were far
more likely to have the misconception
that variables hold multiple values for

n Figure 2 Set, store, change, or update values: put
them in the box

n Figure 3 Select, retrieve, or get values: look in the box

IF A TEXT VALUE IS PUT IN A BOX, PUPILS
MIGHT THINK THAT THE VALUE THAT WAS
THERE BEFORE IS STILL IN THE BOX

“

FEATURE

The Big Book of Computing Pedagogy110

FEATURE

text values. However, for a simpler
question on what value had been first
stored in the variable, the box metaphor
participants performed better than the
label metaphor group.

It seems that the shelf life of the box
metaphor was reached as soon as more
than one value had been saved to the
variable, but starting with the box metaphor
was a better way to get the basic concept
of saving the first value into a variable. If you
want to find out more about the research,
led by Felienne Hermans and Efthimia
Aivaloglou at Delft University of Technology
and the Open University in the Netherlands,
read about it in Felienne’s blog (helloworld.
cc/boxmetaphor), which includes a link to
the research paper.

What other metaphors or methods
are there to explain variables?
Labels: A variable is a label. Here, the
variable is explained as being a label, like
a temperature or the name of a person.
In the Dutch research on variables, they
explained this by always showing
‘x is 5’, compared to ‘x contains 5’ in the
box metaphor.

Hoops: This is similar to the box, but
rather than using a box, a large hoop is
used. This means you can more easily see
the values in the variable, and you can
throw things into it, such as beanbags
representing points for a score. Can you
see what misconception this might lead to?

Thin tubes: Rather than a big box, a
thin tube is used, with cards used to
represent the variable. The cards fit
snuggly in the tube, so only the last
variable to be put in the box can be seen.
This still implies that there are lots of
values in the variable, and perhaps worse
still, that there’s an ordered stack of
previous values in the tube.

Paper, pegs, and a washing line: Write
the value on a piece of paper, and write or
fix the variable name on the peg. Peg the

value to the washing line when a value is
set, unpeg when a value changes, and peg
up the new value.

Mini whiteboard: Write the variable
name in small letters at the top of the
card. Write the value in big letters on the
board. When a new value is set, wipe out
the old value and write the new value to
replace it.

There are other metaphors and
methods — which do you use? You can
share your ideas on Felienne’s blog — she
would love to hear about your approaches.

Which is the best?
As far as we know, there has been no
research to compare all the metaphors
and methods available to teach variables,
although Felienne’s team are looking at this
now. Nor has there been research to look
at the long-term impact of the different
approaches for different programming
languages, nor of the long-term impact on
pupil confidence of using metaphors with a
short shelf life.

Jane personally likes the whiteboard
method, as primary pupils are familiar with
using whiteboards. They are often available
in primary classes, and using them to keep
a record of scores is common in games
and quizzes. Using quizzes to introduce
variables is a common context, so it’s easy
to link this method from an unplugged
method to a programming activity.

Using metaphors and unplugged
methods for helping children learn concepts
seems like a good idea, but there can be
misconceptions lurking. Misconceptions
may be acceptable for a while — we may
decide that being able to start the learning
process off from an easy starting point is
worth the problem of having to address
the misconception later. However, as
teachers, we need to be aware of this,
so that we plan for the unlearning and
reteaching, and are aware of potential

barriers to learning that we may have put
in place because of the mental models
we have helped learners to develop.

If you would like to find out more about
metaphors and misconceptions, you can
try out the Barefoot Computing Variables
Unplugged activity with your class, which
uses the whiteboard method to explain
variables (helloworld.cc/
variablesunplugged). Or, if you’re based in
the UK, sign up for one of the primary
professional development sessions with
the National Centre for Computing
Education, or talk to your local CAS Master
Teachers.

USING METAPHORS AND UNPLUGGED
METHODS SEEMS LIKE A GOOD IDEA, BUT
THERE CAN BE MISCONCEPTIONS LURKING

“

COMMON MISCONCEPTIONS

The misconception of thinking that more
than one thing can be in a variable can be
reinforced if an unplugged activity is used to
explain the metaphor. For example, if beanbags
are thrown into the box to represent adding
individual points to a score, or if pieces of
paper are thrown into a box to represent the
next answer to a question, learners can see
and may even have physically enacted this
idea of having multiple values in a variable.

A second misconception is that when a value is
retrieved from a variable, the value is no longer in
the variable, or no longer in the box — it has been

taken out. As shown in Figure 3, you can attempt to
reduce this misconception by showing a telescope
to represent retrieving the value, and using the
phrase ‘look in the box’. But it’s easy for children
to think they can actually take the value out of the
box, particularly if an unplugged activity involves
taking beanbags or pieces of paper out of a box to
see what the value is.

A variable doesn’t lose its value when the
value is retrieved, but continues to hold the value,
whether the value is retrieved or not. The value
persists until the value is overwritten by a new
value, or until the value is deleted.

http://helloworld.cc/boxmetaphor
http://helloworld.cc/boxmetaphor
http://helloworld.cc/variablesunplugged
http://helloworld.cc/variablesunplugged

The Big Book of Computing Pedagogy 111

FEATURE

n This question shows how ordering can be used to assess
the skill of sequencing

Can you really use multiple-choice questions
to assess programming and computational thinking?

MULTIPLE CHOICE
o teachers ask questions just for
fun? Or do they ask questions to

find out what their students know and
do not know? Multiple-choice questions
(MCQs) offer the advantage of being
quick to mark, and have the potential for
gamification. But how can MCQs be used
to assess programming concepts and
computational thinking?

Question design
All MCQs should be based on sensible design
criteria. You can find lots of advice, based
on very good research, about designing
MCQs. They have been used for summative

assessment in the context of medicine for
many years. However, teachers tend to use
them more formatively: to identify what needs
to be taught or reviewed, and to help students
improve. The box at the bottom left of this
page lists some top tips for writing MCQs.

Distractors and challenges
The importance of good distractors (incorrect
answers) should not be underestimated.
Trying to predict what a student does not
know can be challenging. When choosing
the alternative incorrect responses to an
MCQ, consider the types of misconception
you have identified among your students. For
example, if a student uses a box analogy for
a variable, they may believe it can hold two
values at the same time. A distractor that
expresses that understanding would help
identify students who need additional help
before moving on. You should also consider
common errors in processes. A student with
a misconception about indexing may always
be out by one, so a response incorporating
this misunderstanding would also make a
good distractor.

It’s not difficult to write an MCQ that
assesses students’ ability to recall a fact. It’s
much more challenging, but not impossible,
to write MCQs that assess application,
analysis, or creation. With application, a
question could be confined to a single step
in a multistep processes. Analysis can be
assessed by asking ‘what if’ questions, in
which students predict what will happen
next. An even more challenging assessment
of analytical skills is to define a requirement,
such as an output, and ask the student to
select which program solution meets that
requirement. Certainly, MCQs don’t lend
themselves to the creation of program
solutions. However, they can be used in
ordering exercises, where students are

D

n Assess one, and only one, objective

n Provide four response options

n Provide one, and only one,
clearly correct response

n Do not use “none of the above”
or “all of the above”

n Use distractors based on misconceptions
and common errors

n Make all distractors plausible

n Give necessary and clear context first,
if required; then, separately,
ask the question

n Use images as appropriate to support
context, or as alternative responses

n Keep sentences short so they are easier
to understand

n Make all response options
grammatically parallel

n Make all response options similar lengths

TOP TIPS
FOR MCQ DESIGN

asked to choose the correct sequence of
instructions to meet a requirement. Slightly
simpler would be asking a question that
just required the identification of a single
instruction to fill a gap.

Getting started
Writing questions with a colleague is an
excellent way to get started with writing
MCQs. Receiving feedback on questions is
the best way to improve them. As time goes
on, remember to go back and review your
questions. If one distractor is never being
selected, you’re missing an opportunity to
test a true misconception.

One of the simplest ways to get started
with MCQs is to join a group and share your
work. Project Quantum is a joint project to
crowdsource computing MCQs. Find out
more at helloworld.cc/quantum.

CYNTHIA SELBY
Cynthia is a senior lecturer and
PGCE computer science tutor at
the University of Southampton
and a member of the CAS
Project Quantum Content Group.

n This question demonstrates assessment of tracing and predicting

http://helloworld.cc/2eN44Vr

FEATURE

The Big Book of Computing Pedagogy112

Shuchi Grover discusses common patterns of problems exhibited by students
during their early programming activities

TACKLING NOVICE LEARNERS’
NAIVE CONCEPTIONS IN

INTRODUCTORY PROGRAMMING

traditional text-based languages do, by
allowing early programming experiences
to focus on designing and creating, and
avoiding issues of programming syntax.

This article describes several of the
naive conceptions and difficulties that
novice programmers (regardless of their
age or grade level) exhibit in introductory
programming settings.

The superbug
First, we hark back to the 1980s and
the work of Roy Pea (doctoral advisor at
Stanford University, and my mentor) on
language-independent conceptual bugs.
Roy and colleagues found that many such
bugs in students’ code in environments such
as Logo could be traced to what he called
a superbug: the belief that a computer can
somehow interpret a student’s intention with
some sort of intelligent interpretive process.

Another key source of difficulties lies in a
weak understanding of the temporal logic
of programs and program states — the
mental model of a program as a sequence of
instructions, where actions at any point are
the result of what has gone before (including
values of variables, and other attributes of
objects), and determine what happens next,
unless code is placed in event handlers
which are triggered by an action at any time.

These two shortcomings impact
students’ fundamental understanding of
data and control flow in general, and in
particular of concepts such as initialisation,
loops, and how state changes with each
iteration of the loop (including values of

he naive conceptions of novice
learners result in frequently

observed sources of confusion across age
levels and regions. While some aspects of
novice difficulties studied over the decades
are specific to text-based and object-
oriented languages and programming
environments (such as the confusion
related to the = operator, which stands for
assignment in programming and equality
in mathematics), several others persist,
even in the context of commonly used
block-based programming environments.

Recent investigations suggest that
learner misconceptions endure even
when students are using child-friendly
block-based interfaces. These graphical
programming environments, inspired by the
low floors of Seymour Papert’s philosophy,
are engaging. They afford a much more
motivating programming experience than

variables), as well as how to create logical
expressions in order to manage repetition
and the conditional logic of ‘if’ commands.

Variables
Learners need to understand that variables
are named values or quantities, and that
their values can change over the course of a
program. Some difficulties with variables in
block-based programming environments are:

n A hangover from maths that leads
learners to think variables stand for a
mystery, unknown value and have names
such as ‘x’ or ‘y’. Research encourages
teachers to speak of a variable as having
a ‘role’ in a program, and having a
meaningful name. Learners should be
guided to make that leap.

n The metaphor of a variable as a box or
placeholder leads learners to assume

n Figure 1 What does the programmer believe will be stored
in Scratch’s answer variable?

T

n Figure 2 What are the roles of Counter and
NumberOfTimes in this Scratch code?

The Big Book of Computing Pedagogy 113

FEATURE

that a variable can hold multiple values
at a time. A teacher might target this
misconception with a debugging exercise
using buggy code, as in Figure 1 (that’s
not the only problem with this code!).

n Despite syntactic simplifications and
scaffolds such as colour and shape in
environments like Scratch, learners need
help understanding the semantics of
variable use. What does it mean to control
a loop with a variable, or an expression
that contains a variable (Figure 2)?

n When does the value of a variable change?
Many students will incorrectly answer the
question in Figure 3, even after learning
about set and change blocks in Scratch.

n Assigning a variable to another somehow
links the two, causing a change in the
value of one to result in a change in value
of the other (even after the assignment).

Loops
In my work, I have found that students often
struggle to distinguish between what goes
inside a loop and what precedes or follows
a loop. This is often the case when a first or
last iteration is different from the ‘inner’ part
that repeats. In addition:

n When there are multiple blocks inside a
loop, instead of thinking of the loop as
executing the entire sequence of actions,
some students believe that each action is
repeated separately before subsequent
action(s) are similarly separately repeated.

n Some students struggle to understand
that an expression involving the control
variable of a loop can have different
values in each cycle of the loop. They
believe that a loop repeats the same
set of actions, and expect loops to
produce exactly the same output in
every iteration.

n Off-by-one, or fence post errors, in loops
have been well documented in several
studies involving various age groups.
Most middle school students in Israel,
and those in two classrooms in California,
incorrectly answered a question from
the 2012 Israel National Exam shown in
Figure 4.

n Many students, in my experience, also
struggle to formulate a loop-terminating
condition involving a Boolean expression.

Boolean logic
Students have been found to perform
less well on logic-based questions on the
Advanced Placement Computer Science
A Exam in the USA than on any other
type of question. The Boolean AND/OR
operators are often mistakenly interpreted
as they are in the English language.
Specifically, students tend to misinterpret
the OR operator as true when one of the
operands is true, but not both. We found
this to be the case with middle school
students learning Scratch. In order to
address this, we should encourage students
to create Boolean expressions to model
real-world phenomena.

For example, write an expression to
model the situation in which a car gives a
warning beep if:

n The driver’s seat belt is not locked
n The passenger’s seat belt is not locked
n The car is being driven

How can teachers help?
The first part of the solution is awareness. It is
a rare teacher who will not attempt to address
these student difficulties if they are aware
of them. Secondly, most misconceptions
can be addressed if students are confronted
with them explicitly. I have long argued for
a balanced pedagogy of programming that
combines active exploration approaches with
methods of scaffolding that enable knowledge
construction and deep understanding of
targeted concepts.

Besides the ideas and examples shared,
other useful strategies that have been known
to work include demonstrating flow of control
through visualisations and code tracing;
having students trace code, including but
not limited to ‘unfurling’ loops that involve

variables whose value changes in each
iteration and involve a termination condition
based on that variable; and targeting known
difficulties and misconceptions head-on
through code comprehension, worked
examples, and debugging exercises.

Lastly, conversational metaphors, though
strong pedagogical techniques to introduce
concepts in new learning contexts, should
be avoided. Mapping conventions for
natural human language instructions onto
programming can exacerbate the problem.

n Grover, S., & Basu, S. (2017). Measuring
Student Learning in Introductory Block-Based
Programming: Examining Misconceptions
of Loops, Variables, and Boolean Logic.
Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science
Education, 267-272 helloworld.cc/grover2017

n Pea, R. D. (1986). Language-independent
conceptual ‘bugs’ in novice
programming. Journal of Educational
Computing Research, 2(1), 25-36 helloworld.
cc/pea1986

FURTHER READING

n Figure 3 What is the value of the variable ‘steps’
after the following code sequence is executed?

n Figure 4 What will the sprite say when the above script is executed?

SHUCHI GROVER
Shuchi is a learning scientist and computer
science and STEM education researcher (@
shuchig).

http://helloworld.cc/grover2017
http://helloworld.cc/pea1986
http://helloworld.cc/pea1986

CREATE
PROJECTS

116 PROJECT-BASED LEARNING
118 HOW CHILDREN MAKE

DIGITAL PROJECTS: RESEARCH
FROM COOLEST PROJECTS 2018

122 PROJECT-BASED LEARNING:
A PATH TO AGENCY

124 A YEAR WITH DESIGN JOURNALS

The Big Book of Computing Pedagogy 115

upils need opportunities to apply the skills,

knowledge, and understanding they have developed,

and project-based activities can be a great way to

facilitate this. Projects give pupils a goal, an audience, and

a brief to fulfil, for which they need to make autonomous

decisions about the skills, knowledge, and tools they will need.

Projects are a valuable context in which pupils can develop

their design, analysis, and evaluation skills, as well as providing

chances for them to collaborate. Projects that are rooted in

learners’ experience and environment are particularly powerful,

as they allow them to solve the problems that matter to them,

increasing their intrinsic motivation to learn.

Projects also help learners develop their skills and

understanding beyond computing, as they

involve them imagining, making, and sharing

their ideas. Over the course of a project,

learners will have to practise planning,

organise their tasks to fit the time available,

and communicate their idea and progress

with stakeholders.

P IN THIS SECTION,
YOU WILL FIND:

 ■ What the research says:
project-based learning

 ■ What the research says:
how children make digital projects

 ■ Projects as a path to agency

 ■ Using computing design journals

The Big Book of Computing Pedagogy116

RESEARCH

available technology, and an appropriate
level of skills.3

A strong project idea often has a personal
dimension that aligns with the learner’s
own interests. The project aims to create
something of value to them, or to solve a real-
world problem that they deem important. In
this phase, creating a storyboard, sketch, or
design for the project helps the learner shape
a realistic, visible project concept aimed at a
particular set of users or the performance of
a specific function.

Educators have an important role to
play by designing thoughtful prompts to
encourage project ideas. A good project
prompt is brief and solvable, yet contains
enough ambiguity so that the learner can
“satisfy the prompt in their own voice”.4

Supporting project development
Some aspects of the next stage of PBL,
the Make phase, will be more challenging

roject-based learning (PBL) is an
approach to teaching computing in

which the learning activities are organised
around the design, creation, and evaluation
of a digital artefact. Working as individuals
or in small groups, learners deepen and
consolidate their knowledge through
hands-on, tangible experiences that allow
them to reflect on their learning.1 While
a PBL approach can be applied across
computing to develop a range of digital
artefacts, here, we explore the specific
benefits relating to programming.

Creating a strong project concept
Projects are typically split into three
different stages: Imagine, Make, and
Connect or Share. During the Imagine phase
of PBL, the key to successful learning is
choosing an appropriate project. Research
shows that a successful digital project
requires a well-researched idea, access to

for learners than others. Project-based
learning is cognitively rich5 and requires
both technical thinking about the code (and
perhaps the hardware), and organisational
thinking about the development of the
project. One challenge for learners in PBL
is the transfer of conceptual programming
knowledge into the skills required to write
their own programs. It can be equally
challenging to manage time spent on the
project, to ensure that there is progression
from start to finish.

Educators can refer to previous activities,
such as worked examples (page 90) and
Parson’s Problems (page 80), to support
conceptual transfer. Multiple representations,
such as side-by-side algorithmic and coded
solutions, can help students identify patterns
in the structure and generalise these to use
in their own projects.

Tools such as individual or class checklists,
checkpoints where teacher approval is
required, and design notebooks for planning
and reflection, can scaffold the development
of learners’ project management skills, as
well as helping educators to keep an overall
sense of progress.6

Sharing projects with others
Projects are made for people to use, and
the final part of each iterative cycle is to
Share. Testing, presenting, and eliciting

PROJECT-BASED LEARNING

SUMMARY
Through project-based learning, learners can:

 ■ Apply their existing computing knowledge to
new situations

 ■ Deepen their understanding of programming
concepts

 ■ Develop skills valued by employers in the
workplace, such as planning, organisation, and
communication2

Projects usually take place over a number
of sessions and will typically be split into
several stages:

 ■ Imagine: Developing an idea of something to
make, and planning the resources needed

 ■ Make: Building and testing the digital artefact,
with the goal of realising the original idea

 ■ Connect/Share: Sharing the project with an
audience to elicit feedback, and reflecting on
what has been learnt during the project

In practice, the stages of PBL may not be
implemented linearly. More often, they are part
of an iterative process in which some stages are
repeated one or more times.

PBL often involves using a mixture of software,
hardware, and other physical material. The hands-
on element of the project can help learners to more
easily connect their digital artefact with their
learning, and to better track their progress.

P

A project-based learning approach helps learners to apply
their programming knowledge to real-world scenarios

HANDS-ON
EXPERIENCES
CONSOLIDATE
KNOWLEDGE

“

The Big Book of Computing Pedagogy 117

RESEARCH

user feedback helps learners to shape their
project and identify potential improvements.
The project audience can be:

 ■ In the classroom — obtaining peer
feedback from other learners

 ■ In the school community — presenting
at an assembly, or to older or younger
learners

 ■ In the wider community — obtaining
feedback from parents or community
groups

 ■ Public — via the appropriate use of
social media or the school website, or
by entering projects into exhibitions,
showcases, or competitions

Assessing PBL
Artefact-based questions (ABQs) support
assessment for learning, because as
learners reflect on their project, they also
reflect on what they have learnt. ABQs can
be about:

 ■ The project — why was this project
chosen? What was the original concept?

 ■ The code — what does this section of
the code do? Why have you taken this
approach?

 ■ The process — which part of the project
was most successful? What changed
during the project development?

 ■ The outcomes — did you make what
you planned to? How did user feedback
shape your artefact?

At the end of a project, learners may still
have areas of uncertainty and questions of
their own. Connecting their learning back
to the wider knowledge domain of the
scheme of work or curriculum can help to
situate their learning in context. Note that
failure to make these links can reproduce
inequities in access and opportunity.7 Why
not try this approach out in your classroom,
to help learners apply their programming
knowledge to real-world scenarios?

REFERENCES
1 Papert, S. (1980). Mindstorms: Computers,
children, and powerful ideas. New York, Basic Books.
helloworld.cc/pbl1

² Menzies, V., Hewitt, C., Kokotsaki, D., Collyer,
C., & Wiggins, A. (2016). Project Based Learning:
evaluation report and executive summary. Education
Endowment Foundation. helloworld.cc/pbl2

³ Quinlan, O., & Sentance, S. (2020). Ideas,
Technology and Skills: A taxonomy for digital
projects. In: Tangney, B., Byrne, J. R. & Girvan, C.
(eds.) Constructionism 2020, The University of
Dublin. Trinity College Dublin, Ireland, May 26-29,
TARA, 2020. 357-365. helloworld.cc/pbl3
4 Martinez, S. L., & Stager, G. (2013). Invent to Learn:
Making, Tinkering, and Engineering in the Classroom.
Torrance, California, Constructing Modern
Knowledge Press. helloworld.cc/pbl4
5 Vossoughi, S., & Bevan, B. (2014). Making and
Tinkering: A Review of the Literature. Successful
Out-of-School Learning: A Consensus Study, National
Research Council Board on Science Education (1–55).
helloworld.cc/pbl5
6 Fields, D. A., & Kafai, Y. B. (2020). Hard Fun With
Hands-On Constructionist Project Based-Learning.
In: Grover, S. (ed.) Computer Science in K–12: An A to
Z handbook on teaching programming (75–82). Palo
Alto, Edfinity. helloworld.cc/pbl6
7 Vossoughi, S., Escudé, M., Kong, F., & Hooper, P.
(2013). Tinkering, Learning & Equity in the After-
School Setting. Paper presented at FabLearn 2013,
27–28 October 2013, Stanford, CA. helloworld.cc/pbl7

http://helloworld.cc/pbl1
http://helloworld.cc/pbl2
http://helloworld.cc/pbl3
http://helloworld.cc/pbl4
http://helloworld.cc/pbl5
http://helloworld.cc/pbl6
http://helloworld.cc/pbl7

The Big Book of Computing Pedagogy118

RESEARCH

HOW CHILDREN MAKE DIGITAL
PROJECTS: RESEARCH FROM
COOLEST PROJECTS 2018

oolest Projects is a science fair-
style exhibition that takes place all

over the world. Young digital makers bring
their projects to share with others. Judges
award some projects in each category,
but the main emphasis is on sharing and
learning from others.

In 2018, the Raspberry Pi Foundation
(RPF) Research team conducted research
at the international and UK events.
We explored how children create with
technology and what makes the events
successful and special. Most importantly,

we found what makes children excited
while learning, and what motivates them to
take projects and learning to the next level.

Making digital projects
Problems and ideas, technology and skills
Projects had different stories. Some
children started with identifying a problem
that they wanted to solve and then thought
of ways to achieve it. Others started with
looking at their skills, or the technology
they had available, and then found ways to
use those in a project.

STORY BY Lucia Flóriánová

C All children had to balance the
relationship between three areas:

1 Compelling ideas or social problems they
wanted to solve

2 Technology they had available
3 Skills they had or needed to develop

to complete a project

Adult mentors helped them negotiate the
balance and refine the ideas so that they
were realistic and achievable.

n Children often make projects that use technology to solve a real-world problem they care about

The Big Book of Computing Pedagogy 119

RESEARCH

Teams and roles
Some projects were created by individuals,
and some by teams. In teams, participants
either collaborated flexibly or took on
specific roles. Sometimes the roles related
to different technical aspects, such as
a Python Programmer or a Hardware
Engineer. In other teams, some children
wrote the code and others took on non-
technical roles, such as writing a story or
music for a game, or developing artwork.

While some children were deeply
immersed in the project creation, others took
roles such as Games Tester, or just joined
in to see what it was all about. Through
attending alongside their friends and
undertaking peripheral tasks, newcomers
became familiar with practices and language
within the community. It can be a beginning
of their own journey towards becoming
practitioners themselves. Lave and Wenger
call this ‘legitimate peripheral participation’
(helloworld.cc/lpp).

Why Coolest Projects is so great
Agenda, drive, and learning
Children were very invested in the projects
they brought to the event, and what they
learnt. Many said they made more ambitious
projects than they would normally do,

or took their existing ones to the next
level. This was because they had set their
sights on the event and wanted to create
something special. Most children spent a
long time on their projects and were very
passionate about them. They often had
a desired result in mind and worked hard
to achieve it. This often required learning
something new, such as programming
concepts or languages. Children often
mentioned that they didn’t know how to
do something, or how to fix a problem,
but intentionally went on to find out how.
Learning became a part of the fun and
agenda; children learnt with enthusiasm
because they decided they needed to in
order to achieve the result they wanted.
It was also made more effective because
it happened in a context, and because
children got to apply immediately what they
had learnt in practice.

However, it’s important for children to have
an adult or materials that guide them and help
them troubleshoot if they get stuck. It’s also
important that children don’t set unachievable
goals that could cause frustration.

Combining programming with other areas
Many projects were interdisciplinary and
combined digital making with knowledge

Programming in schools turned out to be an
important influence on many children at the
events. A number of children said their first
steps in programming were taken at primary
school. It was through these early positive
experiences that they became interested in
digital making.

There are simple ways you can use what
we found worked in the classroom. For
example, sharing projects with each other at
the end of a lesson or looking for interesting
examples online is one way of getting
inspiration. Motivating children to think
about goals or benefits their project will
have on a community can create a similar
investment in learning. Presenting projects
at a small exhibition for parents, school
open days, or an assembly can help children
feel important and build confidence.

IN THE CLASSROOM

in other areas, such as health, security,
environment, or robotics. Children often
created projects that used technology
to solve a real-world problem that
they noticed and cared about. Such
an approach to computing can trigger

n Through speaking about something they care about and know in detail, children gain confidence

http://helloworld.cc/lpp

The Big Book of Computing Pedagogy120

RESEARCH

Many of the projects we’ve seen were programmed
in Scratch. They varied from full beginners’
projects to very elaborate ones, and we were
delighted to see that children with all levels of
experience benefitted from showcasing their work.

In the Pollution (or Shadow Neighbours) game,
two boys aged seven and eight created a simple
Scratch game that served to raise awareness
about pollution and its negative effects. It had a
crab character catching plastic waste and was
controlled by a keyboard.

The Rebel Quiz was a project programmed
by two girls aged eight. They wanted to provide
inspiring role models for girls by introducing
strong female characters through the quiz. After a
player answered a series of questions about their

personality and interests, they were told which
Rebel Girl they were.

Dance Magic was a Scratch game with an
element of physical computing. The simple dance
game told a player where they should move. The
player then had to press the right pressure pad
with a right, left, up, or down arrow. The creators
were inspired by a famous dance game.

The Random Games was an elaborate
project created by a 16-year-old. He combined
six different games of diverse genres into
one computer program. Some of the games
included a player playing a piano, or a character
controlled on a 3D interface. This refutes the
assumption that Scratch is only for beginners and
younger children!

SCRATCH AT ALL LEVELS
interest in technology and motivate
children with different interests to get
involved with digital making. It can help
them see that technology can be used as
a tool for achieving a particular goal, and
isn’t necessarily the goal itself. Projects
also became a medium for interdisciplinary
learning. Digital making can support other
subjects beyond computing, bringing
powerful tools to these areas.

Sharing and confidence
Even children who initially seemed shy
presented their projects with confidence.
Children understood the projects deeply,
and focused on explaining how their
projects worked and how they made
them. This took away the awkwardness
of talking to unfamiliar and diverse
audiences. They benefited from talking
about things that they were passionate
about and seeing other people’s interest.
Through speaking about something that
they know intimately and feel proud of,
children experience success. They can gain
confidence and become more comfortable
with presenting in general.

Inspiration and the power
of seeing other projects
Children often look for inspiration in
projects done by others and examples of
what they could do with technology and
skills they have. Coolest Projects enables
children to do just that; to look at projects
at their own level and see what they could
do. Seeing other participants’ projects was
the children’s favourite part of both events.
They spent a lot of time walking around
the exhibition and asking other participants
about their work. Some children said they
felt more confident after seeing that their
projects were similarly advanced or more
advanced than others people’s. Others
found inspiration for improvements they
could make to their own projects, as they
were impressed by the potential that an
idea similar to theirs could have.

You can read the full report at
helloworld.cc/coolestresearch, and more
research from the Raspberry Pi Foundation
on page 357 of helloworld.cc/taxonomy.

You can find out more about Coolest
Projects 2021, which was fully virtual, at
coolestprojects.org. n Seeing other participants’ projects was children’s favourite part of the event

http://helloworld.cc/coolestresearch
http://helloworld.cc/taxonomy
http://coolestprojects.org

helloworld.cc/subscribe
TO SUBSCRIBE VISIT:

SUBSCRIBE
TODAY

Not a UK-based
educator?
 • Subscribe to receive

the free PDF on the
day it is released

• Read features and
news at helloworld.cc

• Teaching resources and
ideas used by over 90
percent of our readers

 • Exclusive news,
research findings, and
in-depth features

• Delivered to your
door three times a year

Why
subscribe?

FREEIN PRINTfor UK-based educators

FREE
PDF
for anyo

ne,

anywher
e

http://helloworld.cc
http://helloworld.cc/subscribe

The Big Book of Computing Pedagogy122

FEATURE

Mark Calleja investigates project-based learning, a teaching method that
gives students the tools to take charge of their own learning

PROJECT-BASED LEARNING:
A PATH TO AGENCY

roject-based learning is about
asking your students to solve a

real-world problem by designing and
creating a project over a specific period of
time. Getting started with project-based
learning in your classroom requires a bit
of a shift in thinking. Instead of providing
an activity that demonstrates prior
knowledge or acts as a unit assessment,
students’ learning is directly embedded
into, and emerges from, the investigative
and design processes they engage in,
while solving the problem you’ve posed.
That is to say, their project is the unit: it’s
the vehicle for teaching the knowledge
and skills that students need to learn,
as well as the assessment process that
demonstrates their learning. I’m a huge
proponent of teaching this way, for a
whole host of reasons.

Creating solutions from the ground up
Agency: There’s a massive difference
for your learners between being asked
whether they know the answer to a
problem, and being asked to find a
solution to one. The first question assumes
knowledge (and thereby frames a lack of
knowledge as failure) and has a narrow
focus, while the second gives learners the
room to be wrong or not know yet, and to
develop real understanding and practical
skills in a self-directed way.
Engagement: Learners with more agency
are likely to be more engaged in their
learning, too. A huge benefit of project-
based learning is the scope it gives you to
set relevant, real-world problems for your
students. Being able to relate their learning
to their own lives motivates students: when
they see that they can apply new skills and

knowledge to other situations in their lives,
they understand the true purpose of the
work they’re doing.
Universal skills: Project-based learning
doesn’t give students ready answers to
a specific problem; it asks them to build
a mental toolkit for understanding any
problem, so that they can create solutions
from the ground up. By enabling this in-
depth learning, you equip your students for
real life, letting them practise skills required
in most industries today: taking initiative,
working responsibly, decomposing and
solving problems, collaborating in teams,
and communicating their ideas clearly.

Giving the power back to your learners
When your learners are interested and
engaged with their own learning, your job
changes from passing on knowledge and

n Learners with more agency will be more engaged in their learning

P

The Big Book of Computing Pedagogy 123

FEATURE

managing motivation to facilitating and
inspiring. In project-based learning, you
direct learners towards information instead
of handing them answers, and you support
them in creating something they didn’t know
they were capable of.

One way to get started with project-based
learning is to use a bank of Python resources,
developed with the National Citizen Service,
that embody this idea (originally developed
for a two-day hackathon - see resources
box). The resources include 14 help sheets
(with accompanying YouTube animations)
that provide images of each basic electronic
component, a simple wiring diagram with
numbered GPIO pins, and gpiozero code
snippets to execute its basic functions, all on
one handy page.

The help sheets cover the most common
simple components used in digital making,
from LEDs to infrared motion sensors,
cameras, Bluetooth remote controls, and
beyond. There are also sheets that explain
Raspberry Pi’s Sense HAT’s on-board
sensors, joystick, and LED array, with
accompanying code examples. We also
made sheets that cover commonly used
processes in digital making, such as playing
sounds with Python, making a remote
control with the Blue Dot Bluetooth app,
and setting up a Raspberry Pi-based gadget
to function automatically as your students
intend it to, as soon as they power it up.

The intention behind the sheets is that
you will first support your students through
the design discussions they’ll need to
have before they start making things, and

show them the library of components they
have available. When they know what
functionality they want from their invention
(and what’s possible given their time and
hardware constraints), learners need only
teach themselves using the sheets and
videos to make their ideas real. All of the
code is broken into three sections, to make
each Python script modular; students can
simply combine the code snippets on the
sheets to make larger scripts that create
more complex functionality.

If you’d like to replicate our hackathon
model, we have released the facilitator’s
guide to running the full two-day
experience, complete with session timings,
delivery notes, workshop slides, and a
student support document called the
Developer Manual in which participants can
make notes and get discussion prompts and
tips throughout their build process.

MARK CALLEJA
Mark works for the Raspberry Pi
Foundation, where he creates educational
projects. He is a teacher, maker, hacker,
and a Raspberry Pi Certified Educator
(@M1st3r_C).

PROJECT-BASED
LEARNING ASKS
STUDENTS TO
BUILD A TOOLKIT
OF SOLUTIONS

“

Guides to running hackathons are available
to download at helloworld.cc/hackathon and
helloworld.cc/componentsheets.

RESOURCES TO
SUPPORT PROJECT-
BASED LEARNING

n Learners need only teach themselves using the sheets
and videos provided to make their ideas real

n Why not run a hackathon with your own students?

http://helloworld.cc/hackathon
http://helloworld.cc/componentsheets

The Big Book of Computing Pedagogy124

FEATURE

Introducing design journals to primary pupils, and how it went

he national curriculum for
computing in England states that

computing has deep links with science,
and with design and technology. In my
school, in both these subjects, pupils have
exercise books in which they make plans
and do designs. The national curriculum
also states that pupils in Key Stage 2
(aged seven to eleven) should be able to
design and write programs.

With this in mind, I decided to make
sure that pupils spent time in the design
stage of their computing projects and that I
would facilitate this with the introduction of
specific design journals.

So, I introduced a computing design
journal which was simply an A4 book with
plain pages. I decided on plain pages as I
didn’t want the pupils to feel constrained.
I wanted them to have the freedom to
develop their designs in any way they
saw fit.

This article explains how we have
been using design journals, and presents
responses and views from the pupils’
perspective. It covers three main aspects.
Firstly, how the journals have helped
children to better understand their
computing projects. Secondly, how the
journal has helped them to self-assess
their work and indicate their levels of
confidence. Finally, to help pupils improve
their computational thinking and problem-
solving skills.

Recent research papers have suggested
that design can help novice and struggling
programmers develop an awareness of
what is doable, and also that design helps
with self-regulation, much in the same way

as planning does in writing (helloworld.cc/
designjournals).

The initial reaction
I decided to give design journals to pupils
in Years 4 to 6 in my school (pupils aged
eight–eleven). The initial reaction from
the pupils was one of shock and delight.
Many opened their books and questioned
why they had blank pages. My reply was,
“These are not exercise books like you get in
English; they are design journals — they are
a place where you can formulate your ideas
and solve problems.”

T The children took my word for it and were
excited by the idea and intrigued by how
they could use them throughout the year.

Design in computing lessons
I sold the journals to pupils as being
different to exercise books. I explained that
they were more like the sketchbooks they
used in art or design. I didn’t constrain the
use of the journals, but wanted the children
to engage with them and get to grips with
the design process in computing.

So, whenever we did a computing
project throughout the year, I would ask

A YEAR WITH
DESIGN JOURNALS

n Using the design journal to help plan a simple algorithm
to program a Crumble buggy to drive around a square
on the classroom floor

http://helloworld.cc/designjournals
http://helloworld.cc/designjournals

The Big Book of Computing Pedagogy 125

FEATURE

the children to use their journal to plan
their ideas, storyboards, and algorithms,
encouraging them to make informal notes
and sketches with anything that they
thought might help them.

The journal was also a useful place for
them to stick sheets in, for example, during
the prediction part of PRIMM where they
could write notes all around the sample
code and self-assess their responses using

traffic light colours. They could use it if they
had to figure out a problem, or design an
algorithm, or look at what the levels would
look like in a Scratch game.

It’s fair to say that I’m still experimenting
with what works and how these books fit
into the workflow of the lessons. The images
alongside this article highlight the versatility
of the design journal and the reason I went
for an A4 book with blank pages.

Pupil voice
After a year of using the journals, I wanted
to assess their impact on pupils’ learning
of computing. I conducted a pupil voice
survey with year 5 and 6 pupils. I asked
them a range of questions, and I found
some interesting results. I should note that
I got more responses from year 6 (53) than

MATTHEW
WIMPENNY-SMITH
Matthew is leader of digital strategy and a
computing subject leader. He has worked
for Headington School Oxford, UK, for the
last seven years in the Prep School, teaching
EYFS, Key Stage 1, and Key Stage 2. He is
a CAS Master Teacher and the Oxfordshire
Primary Community Leader. He is also a
BCS Certified computer science teacher,
Raspberry Pi Certified Educator, Google L1,
and NCCE facilitator (@MWimpennyS).

JANE WAITE
Jane is a research scientist at the Raspberry
Pi Foundation. Her interests include using
design in primary programming, semantic
waves, PRIMM, and migrating to online
teaching using ABC (@janewaite).

n Bar charts showing responses to having a design journal in computing.
The scale is 1 to 5, with 1 being ‘not useful’ and 5 being ‘extremely useful’

I DIDN’T WANT TO CONSTRAIN THE USE
OF THE JOURNALS, BUT WANTED THE
CHILDREN TO ENGAGE WITH THEM

“

n Some students glued things into their journals and made notes on
Scratch code for the prediction part of PRIMM

n A pupil using their journal to plan what the
levels will look like for their Scratch maze
game coding project

The Big Book of Computing Pedagogy126

FEATURE

n Pie chart showing year 5 responses to a question on the impact of a design-first approach to coding

n Pie charts showing impact of the journals on
improving student learning of coding

n Pie chart showing year 6 responses to a question on the impact of a design-first approach to coding

I did from year 5 (18), due to other events
taking place in school at the same time as
the survey.

Still, the children found having a design
book more useful than not for computing,
and this was reflected both within the
written responses of the pupils, which
generally showed a positive impact on
learning. It is notable that nearly half of both
year five and six found it useful or extremely
useful. One year six pupil commented that
“it is much easier to then actually do the
task because you have already planned it
out! You’re more sure of what to actually
do. I would definitely say to use the design
books again!” You can find all the written
responses from the survey at helloworld.cc/
designjournalsurvey.

Despite nearly half the year five and six
pupils thinking that the design journals were
either very or extremely useful, they weren’t
so sure it helped with their actual coding. In
fact, over half of the year six respondents
said ‘maybe’ when asked whether they
felt having a design book improved their
learning of coding. I wonder, though, if the
question was a little muddled.

Although the sample size was a lot
smaller, the year five response to the same
question showed that well over half of the
pupils were more positive when asked
about improved coding from a design-first
approach. Still, just shy of a third of pupils
in years five and six answered no, that it
didn’t help their coding. I would say that at
this age group, there are always a number
of pupils who don’t see the benefit of doing

designs or planning before getting started,
independent of subject.

On reflection, I should not have included
‘maybe’ as an option, or perhaps I could
have included a scale similar to the
usefulness of journal question. Also, it was
not clear as to whether all the students
associated design with improvements
in coding. In the future, I will think about

how I define the role of the design
journal better so it has more purpose in
the lessons. However, this is early days
and I did intentionally keep the role of
the journal loose to enable creativity. I
wanted to facilitate the process of design
and encourage learners (and myself) to

experiment and to see how the journal
might fit into the design activity, rather than
have the journal seen as a product in itself.

In another question to pupils. I asked
about the impact of design, and whether
they felt it helped improve the outcome
of their coding project. I was keen to
investigate students’ views on the impact
of designing before coding, and whether

they felt this approach improved the
outcomes of the finished project. Both
year groups were positive on this, i.e. that
having a design before starting the coding
improved the outcomes of the project.
Again, perhaps I shouldn’t have offered
‘maybe’ as an option here. I now need to

THIS IS EARLY DAYS, AND I DID INTENTIONALLY
KEEP THE ROLE OF THE JOURNAL LOOSE TO
ENABLE CREATIVITY

“

http://helloworld.cc/designjournalsurvey
http://helloworld.cc/designjournalsurvey

The Big Book of Computing Pedagogy 127

FEATURE

n Bar chart showing year 6 responses to a design-first approach. The scale
is 1 to 5. with 1 being ‘not useful’ and 5 being ‘extremely useful’

n Bar chart showing year 5 responses to a design-first approach. The scale
is 1 to 5, with 1 being ‘not useful’ and 5 being ‘extremely useful’

n Bar chart showing year 5 responses to the impact of traffic light self-assessment. The scale is 1 to 5 – 1 is ‘not useful’ and 5 is ‘extremely useful’

n Bar chart showing year 6 responses to the impact of traffic light self-assessment. The scale is 1 to 5 – 1 is ‘not useful’ and 5 is ‘extremely useful’

develop a way to measure the impact of a
design journal perhaps with a group who
don’t do design versus a group who do.

Positive responses to a design-first
approach were repeated in a second
question on how useful it was to have
a design to follow in the first place.
Interestingly though, the year five pupils
found it more useful than year six. This may
have been due to the unmatched sample
size between the two cohorts, or it may be
because of different material being covered.
Or maybe something else! I will have to
compare next time round and perhaps
ask some open questions, or ask pupils to
discuss it all between them and make notes
on their discussion.

During the design stage of projects,
I would often ask pupils to assess their
designs for confidence using the red, amber,
and green traffic light colours, along with
‘purple polishing pen’ annotations and
edits similar to the ‘purple editing pen’ that
they were used to using in their literacy
lessons. Using this method helped the
children gauge an understanding of what
they considered to be doable. This continual
annotation not only helped me to identify
gaps in their understanding, but also helped
to make their computational thinking and
problem-solving more visible. It also acted
as an indicator to me (and to them) of
how confident they were feeling about
their programming projects as they were
being developed.

The responses to the survey found that
over 60 percent of pupils surveyed found
this method of self-assessment useful or
very useful. This has highlighted to me that
this is an effective way for pupils to gauge
their own confidence and understanding of
a project and its design, and is an effective
tool for assessment for learning.

Conclusion: Stick or ditch design journals?
Based on the responses to the pupil voice
survey and my own experience, I definitely
intend to use design journals for this
age group in the new academic year. On
reflection, I need to develop my practice to
incorporate them more in my teaching, and
to develop their purpose and role as a tool
to build their design-first approach. Also,
to improve the visibility of computational
thinking and problem-solving.

It’s clear from the experiment that the
children benefitted from having a journal in
the subject at this level. I also need to be
consistent with what I call them – either a
design journal or a design book. I think
defining them as a journal makes them
more of a ‘creative’ and ‘process’ space,
whereas a book is seen more as an end
product; an outcome space for polished
work, requiring marking and scrutiny. I
might just go with journal...

©
 Im

ag
es

 c
ou

rt
es

y
of

 M
at

th
ew

 W
im

pe
nn

y-
Sm

ith

GET HANDS-ON
130 PHYSICAL COMPUTING
132 BRINGING PHYSICAL

COMPUTING TO THE CLASSROOM
134 A JOURNEY INTO PHYSICAL

COMPUTING
137 PRIMARILY PI: TEACHING PHYSICAL

COMPUTING AT PRIMARY

The Big Book of Computing Pedagogy 129

esearch shows that physical computing and

making activities are highly engaging approaches

for learners, giving them a sensory, tactile, and

creative experience in which they can combine computing

with art, craft, and design. Physical computing is both a

tool to engage learners and a strategy to help them develop

their understanding in more creative ways. This approach

also has the benefit of supporting and engaging a diverse

range of learners in tangible and challenging tasks. There

is some evidence, for example, that girls engage more with

physical computing because a physical project may have more

immediate real-world applications.

Educators can use physical computing to teach many

different areas of computing curricula across all year groups.

While primarily supporting the development of programming

skills, it can also support more conceptual curriculum areas.

Through physical computing, learners can encounter,

develop, and practise the entire range of

programming skills and concepts, including

sequences, loops, conditions, functions, and

data structures. Alongside applying these

concepts, learners will also encounter other

languages, models of programming, and

novel computer systems.

R IN THIS SECTION,
YOU WILL FIND:

 ■ What the research says:
physical computing

 ■ Bringing physical computing
to the classroom

 ■ Overcoming barriers to
physical computing

 ■ Physical computing for
primary students

The Big Book of Computing Pedagogy130

RESEARCH

are typically situated within meaningful
contexts such as plant monitoring, social
enterprise, or even performance, allowing
students to develop their understanding of
subjects beyond computing.

Relevance and inclusion
The last decade has seen a growth in
computing across a range of education
settings. Whether through formal
education and curricula or the many
clubs, competitions, and other non-
formal settings, there are many more
opportunities for young people to learn
about and develop the knowledge
and skills associated with computing.
Despite this growth, there are significant
challenges ahead for educators in how

they address the equity, inclusivity, and
relevance of computing. While educators
are applying plenty of well-established
good practices, there are still groups within
our increasingly diverse learners that are
underserved, including girls and ethnic
minorities. As well as providing access and
opportunities to learn about computing,
educators need to consider new
approaches that support a broad range of
learner backgrounds.

As an approach, physical computing
is established as a highly motivating
experience for learners,2 particularly due
to its tangible and interactive outcomes.
This positive response can be observed in

hysical computing is a broad term
to describe activities in which

learners write programs to interact with
the real world using specialist hardware.
While there are many examples of
physical computing devices (as well as
many ways to program them), they can
typically do a combination of some or all
of the following:

 ■ Control a simple output component,
such as lights and buzzers

 ■ Measure or record the environment in
some way, including through sensors,
buttons, and switches

 ■ Drive and control motors to
create movement

Benefits to learners
Beyond the engaging nature of physical
computing, there is emerging evidence
of its learning benefits in computing and
beyond. Learners typically learn to program
using high-level languages and produce
screen-based applications, independent
of the hardware on which they run.
Physical computing can promote a broader
perspective, bridging learners’ theoretical
knowledge of how the hardware works and
their program writing skills.

There is some evidence that physical
computing activities can support a learner’s
program comprehension,1 particularly in
relation to the purpose and function of a
program. The physicality of the project
provides clues to the intended purpose of a
program, as well as to how it is likely to work.

Depending on the context and the
approach of a project, learners are also able to
develop broader, more holistic skills, including
collaboration, communication, and design and
prototyping skills. Physical computing projects

students, with traditionally underserved
minorities engaging with physical computing.
Girls, in particular, have reported higher
levels of confidence in computing following
physical computing activities.3

Physical computing provides a
hands-on experience for learners, with
real and immediate feedback. In line
with constructivist learning theory,
there is a tangible artefact for them to
touch, manipulate, observe, and build,
which helps build confidence. Physical
computing can also promote greater
intrinsic motivation in learners through
more practical and relevant examples
of computing, allowing them to solve
problems that matter to them. Additionally,
physical computing can be applied to a

wide range of scenarios with some very
accessible starting points and plenty of
advanced concepts to explore. This breadth
and depth facilitate choice, progression,
and creativity for learners.

Spoilt for choice
There is no doubt that physical computing
activities add some additional challenges for
educators, including cost, training, logistics,
and troubleshooting. However, many of
these difficulties can be addressed through
planning and experience. The last few years
has seen an explosion in the number of
educational physical computing devices.
This expansion of the tools available means

PHYSICAL COMPUTING

P

By embedding physical computing into their practice, educators can provide
engaging, relevant, and inclusive learning experiences

EVIDENCE IS EMERGING OF THE LEARNING
BENEFITS OF PHYSICAL COMPUTING
BOTH IN COMPUTING AND BEYOND

“

The Big Book of Computing Pedagogy 131

RESEARCH

that there is now a diverse ecosystem of
devices suitable for learners. Hardware
developments mean that these devices
have become more capable and cheaper.
Many now incorporate simple design
features such as colour-coded connectors
and have improved software that make
them generally more accessible and easier
to use with a wide range of learners.

To better help educators understand
the different features of devices across
this ecosystem, Hodges et al.4 present a
categorisation taxonomy that provides a
broad distinction between devices. When
considering a device(s) to work with,
educators should review the features,
connection method, and means of
programming, as well the flexibility that
each device provides. An adaptation of this
taxonomy can be found in Figure 1.

Getting started: Hardware, content,
and training
Getting started with physical computing can
be a rewarding experience for learners, but

it is not without its challenges. Educators
should consider the following:

 ■ Start small. Focus on a small cohort,
an individual concept, or a single
activity or lesson.

 ■ Is there any suitable content available
already that you could use and adapt?

 ■ Is there any training available to
support you?

 ■ Are there other educators locally that
you could collaborate with or observe?

 ■ With the above in mind, which devices
would best suit your immediate needs
and allow for maximum future flexibility?
Can you borrow the equipment before
you buy it?

As an educator, adopting physical
computing can be an engaging and highly
beneficial experience for your learners.
While this journey is not without its
challenges, there have never been as many
device options or as much support or
content available as there is right now.

SUMMARY
Physical computing:

 ■ Uses specialist hardware to interact with
the real world

 ■ Involves writing programs to control output
devices (such as lights, buzzers, or motors)

 ■ Allows learners to record and measure the
environment through buttons and sensors

Benefits:
 ■ It provides a holistic experience of

computing, combining hardware
and software

 ■ It may support program comprehension
by providing physical clues to a
program’s purpose

 ■ It develops broader skills, including
collaboration and design and prototyping

 ■ It connects to subjects beyond computing

Relevance and inclusion:
 ■ Physical computing can provide

opportunities for a broad range of learners
 ■ Learners (particularly girls) find physical

computing engaging
 ■ There are opportunities to vary context and

level of challenge (high ceiling, low floor,
wide walls)

 ■ It provides space for learners to be
expressive and creative

REFERENCES
1 Jayathirtha, G., & Kafai, Y. B. (2021). Program
Comprehension with Physical Computing: A
Structure, Function, and Behavior Analysis of Think-
Alouds with High School Students. Proceedings
of the 26th ACM Conference on Innovation and
Technology in Computer Science Education V. 1,
143-149. helloworld.cc/physical1
2 Przybylla, M., & Romeike, R. (2018). Impact
of Physical Computing on Learner Motivation.
Proceedings of the 18th Koli Calling International
Conference on Computing Education Research,
Article 9, 1-10. helloworld.cc/physical2
3 Sentance, S., & Schwiderski-Grosche, S. (2012).
Challenge and Creativity: Using .NET Gadgeteer
in Schools. Proceedings of the 7th Workshop in
Primary and Secondary Computing Education, (pp.
90-100). helloworld.cc/physical3
4 Hodges, S., Sentance, S., Finney, J., & Ball, T.
(2018). Physical computing: A key element of
modern computer science education. Computer,
53(4), 20-30. helloworld.cc/physical4

■ Figure 1 This physical computing device categorisation taxonomy was adapted from Hodges et al.4

http://helloworld.cc/physical1
http://helloworld.cc/physical2
http://helloworld.cc/physical3
http://helloworld.cc/physical4

The Big Book of Computing Pedagogy132

FEATURE

Why and how should we teach physical computing in computer science education?
Here are some useful guidelines for lesson planning and how to apply it in class

hysical computing is an
interdisciplinary field involving

the creative arts and design processes. It
brings together hardware and software
components, and joins the virtual world of
computers to the physical world of humans
by using concepts from embedded systems
design and its neighbouring disciplines.

Products of physical computing make use
of sensors and actuators to interact with their
environment. Tools include microcontrollers
and mini computers, often with extensions to
facilitate component handling. Projects are of
an iterative nature, quickly leading to working
prototypes, such as the interactive garden
at the end of this article. When planning
and creating interactive objects, the focus
is on ideas and intended interactions with
the audience or environment. Purposeful
tinkering is encouraged, to develop ideas and
figure out how things work.

Benefits of physical computing
It all makes physical computing a promising
approach for introducing embedded systems

and underlying concepts in computer science
(CS) teaching at secondary level. Many skills
and competencies are gained. Programming
concepts and control structures such as
decisions, loops, variables, comparisons,
or arithmetic operations are used to make
objects that can flash lights, move, or make
sounds reacting to their environment.
Content related to embedded systems
design, such as sensors, measurement,
control, or common practices when working
in larger projects, is also relevant.

P In physical computing, pupils learn with
(and about) interactive objects and systems,
by creating tangible real-world products from
their imagination. This can be used to promote
creative learning in CS education, and boost
students’ motivation. It fits the learning
theory of constructionism. In this theory,
learning is most effective in contexts where
learners construct knowledge and develop
competencies from their initiative and for a
personally relevant purpose, while engaged
in creating visible artefacts. With physical

BRINGING PHYSICAL
COMPUTING TO THE CLASSROOM

n Introduction and motivation: provide examples
in a short tutorial session

n Tinkering: let learners explore the tools — provide
manuals and cheat sheets

n Brainstorming: find ideas for projects

n Project planning: give guidance with worksheets

n Presentation and discussion: reflect on ideas
and plans

n Creation: let learners work, in groups of two
to four

n Exhibition and reflection: present the project to
an audience (open-door day, school party, etc.)

EXEMPLARY LESSON STRUCTURE

n Pupils creatively design, craft, program, and build interactive objects using
Snap4Arduino and Arduino with pre-assembled sensors and actuators

The Big Book of Computing Pedagogy 133

FEATURE

computing, these are not only visible, but also
tangible — similar to artistic sculptures.

Guidelines for teaching
To make it easier to start teaching physical
computing, researchers developed guidelines
and design principles for teaching and
learning scenarios, as well as classroom-
ready materials (helloworld.cc/myig).

Using a design-based research approach,
theoretical concepts were tested in
classrooms and evaluated with pupils and
teachers. Promoting constructionist and
creative activities, such as tinkering and
prototyping, has proven to be a key part of
successful learning scenarios. Contrary to
expectations, it is not necessary to focus
strictly on project planning before introducing
tools for positive impact in the evaluated
domains, but it helps stimulate ideas and
creativity. A commonality in less successful
courses was missing structure in project
planning and implementations. Providing
scaffolds is particularly helpful in groups that
are not used to project work.

This results in the following design
principles for physical computing teaching:

1 Integrate tinkering activities in dedicated
learning phases in which content
knowledge and skills are acquired

2 Let learners create their own
interactive objects

3 Let learners develop working prototypes
4 Provide interesting themes and open

topics to trigger imagination and creativity

5 Integrate creative methods
6 Integrate technical aspects with art/crafting
7 Provide scaffolds to structure the process

of project work, including planning from
a user perspective and planning from a
developer perspective (non-technical and
technical viewpoints)

8 Choose suitable construction kits and
programming environments for the target
group (low floors, wide walls, high ceilings)

9 Provide suitable crafting material and tools
for the intended projects

10 Prepare a joint exhibition of all objects
11 Present the results to an audience

My Interactive Garden
My Interactive Garden (MyIG) is a lesson
series that uses these ideas. A theme of
creating an interactive garden exhibition
was used to call for ideas and collaboration
and encourage a variety of projects.
Learners design, craft, program, and build
objects using a construction kit based on the
microcontroller platform Arduino, with pre-
assembled sensors and actuators, and using
the block-based programming environment
Snap4Arduino.

They are provided with material and
worksheets that structure the project work.
In tinkering activities and learning phases,
pupils learn and acquire specific concepts

and skills. For instance, they are introduced
to sensors and actuators as means of
analogue and digital inputs and outputs;
to ideas of events that can take place in
parallel or serial; and to continuous-time and
discrete systems.

In project work, learners develop prototypes
in short iterations, which are discussed with
their classmates and teacher throughout
the process. They also detect problems and
possible misunderstandings early, and find
solutions to occurring problems. Finally,
the students present their projects in an
exhibition and discuss their experience with

the audience. They explain the purpose and
functionality of their interactive objects and
reflect on their progress.

MyIG and other physical computing
settings were looked at in a cross-sectional
pre- and post-intervention study (helloworld.
cc/myig). Courses adhering to the design
principles were more successful than most
others. Physical computing can motivate
learners more than many other activities in
CS classrooms. MyIG implementations on
average showed motivation values over
twice as high as general physical computing
activities, and appealed better to female
students. In 71 percent of the analysed
MyIG courses, the existing gap between
boys’ and girls’ learner motivation in CS
classes narrowed.

The consistent implementation of design
principles for physical computing teaching
generally showed positive results. In addition
to higher learner motivation, most pupils liked
the projects, had more fun, and felt more
competent than in their prior lessons.

MAREEN PRZYBYLLA
Mareen is head of the endowed
professorship for computer science
didactics at the College of Education
Schwyz, Switzerland. Her research focuses
on physical computing in computer science
education (@MPrzybylla).

PROVIDING SCAFFOLDS IS HELPFUL IN
GROUPS NOT USED TO PROJECT WORK

“

http://helloworld.cc/myig
http://helloworld.cc/myig
http://helloworld.cc/myig

The Big Book of Computing Pedagogy134

FEATURE

Rebecca Franks shares some of the barriers to introducing physical computing
into the classroom, and how you can overcome them

A JOURNEY INTO
PHYSICAL COMPUTING

uring my 15 years as a computing
teacher, I always wanted to learn

more about physical computing and
develop activities for the classroom, but
I had many barriers in my way. Now that
I’m out of the classroom and developing
resources for the computing curriculum
in the UK, I have learnt how to remove
those barriers. Physical computing is really
inspiring, but doesn’t always appear on a
typical computing curriculum.

By exploring physical computing, I have
found out why it is so important that young
people experience it. I have spoken to
educators around the globe who are using
it successfully, and discovered some of the
challenges that teachers face when trying to
implement it in their classrooms. I have found
fantastic resources and learnt new skills,
which I will share with you in this article.

Why physical computing?
From making an LED blink to programming
a robotic turtle such as a Sphero, or creating
a weather station, physical computing takes
programming away from being solely on
the screen and moves it into the real world.
When a student’s project works, they can
see their creation move, or light up, or
record some data from the environment
in real time — and these can be brilliant
‘Aha!’ moments.

Recent research has highlighted that
physical computing can play a huge role in
increasing the motivation of learners, and in
particular, the motivation of girls. Learners

are creating real, tangible devices that give
them instant feedback.

It’s been found that girls tend to like
creating things that make a difference to
people’s lives. If you set a class a project
in which they need to make a device that
can help with wider issues, such as global
warming, this can motivate them to learn
more about how to program and build their
own devices. Physical computing also lends
itself to an interactive and collaborative
approach in the classroom, which is an
important factor in girls’ attitudes towards
the subject, too.

A lot of the research on physical
computing education has resonated with
my own experiences. As a child in IT
lessons, I loved drawing patterns with
Logo on the BBC Micro, and became quite
proficient at using the applications on the
Acorn Archimedes. I also really enjoyed
my DT lessons, in which we would use the
machinery to make clocks out of acrylic,
and solder wires and batteries to make
pinball machines. At that age, I would
never have thought that computing and
soldering were linked in any way. It never
came up. And I had no idea that you could

D

n This collection of parts can be used to create a robot
buggy as part of a physical computing activity

PHYSICAL COMPUTING INCREASES
MOTIVATION AS LEARNERS CREATE TANGIBLE
DEVICES THAT GIVE INSTANT FEEDBACK

“

The Big Book of Computing Pedagogy 135

FEATURE

have a career that used those skills. It was
a classic situation of I couldn’t see it, so I
couldn’t be it.

This is why I believe it is so important
that we introduce physical computing into
our schools. It opens doors to all sorts
of opportunities that learners might not
otherwise be aware of.

Physical computing in clubs
The cross-curricular and project-based nature
of physical computing, in which children
can work on designing, programming, and
making a product with an end goal, lends
itself well to being a part of informal learning
settings such as coding clubs.

Gary Quinn, who runs a Code Club at
Lostock High School in Greater Manchester,
uses a range of physical computing devices
with his students. He uses the Makey
Makey — an integrated input/output device
that allows students to create devices
such as keyboards made of fruit — and
the micro:bit, a microcontroller board that
he uses with electronics kits. He told me:
“Nothing beats that feeling of achievement
students get from seeing their code run
before their eyes in the real world. They

love to show off their creations to peers
and staff alike! The students always
comment on the fun factor and want to
see every project through to a conclusion.
While they are learning about code, circuits,
accelerometers, and everything in between,
it doesn’t feel like an effort to them.”

Quinn values the engaging impact that
physical computing has on his learners: “The
excitement and anticipation are unmatched
by paper or screen-based activities, and
gone are the days when the Scratch Cat
moving across the screen would suffice.”

Ali Alzubaidy, a Code Club volunteer
in Iraq, uses physical computing to
demonstrate to his students the links
between technology and other subjects.
For example, to teach his group about the
geography of Iraq, he loads a map of the
country into Scratch, and learners create
the code to allow a Makey Makey device to
interact with it.

He describes the delight in his class when
working with physical computing: “When
the kids made anything with tech, they
were so happy.” Ali told me he believes that
physical computing is important because it
builds students’ confidence with technology,

THEY LEARN WITHOUT REALISING IT, AND
I’VE FOUND THAT THIS IS THE KEY TO
CREATING POWERFUL, ENGAGING LESSONS

“

improves their logical thinking, builds team-
working skills, and prepares students for
their future careers.

Challenges of getting physical
computing in the classroom
So if physical computing is so popular
with learners, and it has positive effects on
their learning, why isn’t there more of it in
computing classrooms?

For me, the limiting factor was time.
When I was a teacher, I purchased
an Arduino starter kit — a small
microcontroller board with modular sensors
and electronics — to see if I could start
building my own projects. I had success
following the set tutorials, but really
struggled if I wanted to make something
independently. I kept trying to get into
physical computing, but I found it tricky
to put time aside to dedicate to really
understanding how it all worked.

Research has shown I’m not alone.
In 2018, the Raspberry Pi Foundation
published a report that found Raspberry
Pi computers — single-board computers
that lend themselves well to physical
computing projects — are quite popular
in schools, but that teachers often stick to
simple projects that rely on step-by-step
instructions, rather than giving learners
more open-ended tasks. This is potentially
due to time constraints, but also the
knowledge and experience of the teacher.
An open-ended idea can lead to the
teacher needing a wide range of physical
computing knowledge.

For teachers to start using physical
computing in their computing lessons, they
need access to high-quality lesson plans.
Good resources can help to build teachers’

n Ali Alzubaidy leads a lesson using micro:bits with his Code Club in Iraq

n One of Rebecca’s recent makes is a
postcard with decorative LEDs attached

The Big Book of Computing Pedagogy136

FEATURE

REBECCA FRANKS
Rebecca is a learning manager at the
Raspberry Pi Foundation. She writes
resources for the Teach Computing
Curriculum and taught computing for over
15 years (@FranksberryPi).

confidence, making them more likely to use
physical computing in their lessons.

The Teach Computing Curriculum
(helloworld.cc/tcc) provides comprehensive
physical computing units. They
demonstrate clearly how to progress
learners’ understanding of physical
computing devices such as Crumbles and
micro:bits. The lessons include guidance
for the teacher and helpful guides that
learners can use to help them debug any
issues they may encounter. The resources
are published under an Open Government
Licence and are free for anyone to
download from anywhere in the world.

Getting started
Physical computing is so important for
our young people. It helps them build

connections between the real world and
programming, while giving them something
exciting to focus on. They learn without
realising it, and I’ve found that this is the key
to creating powerful and engaging lessons.

If you are in the same position that I was
in with physical computing — wanting to
start, but feeling nervous or uncertain of
how to do so — my advice is to just relax
and enjoy making something. Buy some
really cheap components and have a go.
See it as a journey, not a race. And try not
to compare yourself too much to some of
the awesome makers out there. They were
all beginners in the same place you were
once, and will be very willing to help you
out if you need some advice. You won’t
regret it — and you never know where your
adventures could take you!

“If I cut this wire and solder it to another wire,
will it still work?”

This is a question that I found myself
asking on my work Slack channel a few months
ago. At the time, I was working through the
Raspberry Pi Foundation’s Build a Robot Buggy
course (helloworld.cc/buggy). Instead of just
soldering some wires together to see what
happened, I went straight to my colleagues
and asked the question. I wondered, “Why am
I asking this question, when I could just solder
the wires together and see what happens? Why
don’t I have the confidence to just do it?” I was
so apprehensive about simply jumping in and
trying something.

It can be really intimidating to be around
people who know so much more about a subject
than you. Low self-efficacy is quite a common
thing for women to experience, and I definitely
fell into this category when it came to physical
computing. I had a little chat with myself and
decided that, from then on, I was just going to
give it a go and see what happens. This change in
attitude has been liberating for me.

I made a commitment to just have a go at
things and stop questioning myself. I started
shoving loads of bits of card into my buggy to
make the wheels work a bit better. I unscrewed
and swapped out the wheel bearing, as it had
gone sticky, and I replaced a broken sensor,

MY ADVENTURES IN PHYSICAL COMPUTING

and tried different ways to stick parts into the
box. After lots of trial and error, I had a fully
functional robot buggy, and it felt great!

Since building my buggy and learning how
to solder properly, I have become much more
confident at trying new things. And yes, I did
solder those jumper wires together, and yes, they

did work! I think as adults, we can sometimes
feel as if we are wasting time if we just sit and
have a go at making something. We feel like it
has to have a purpose or an end goal. It really
doesn’t; you can get so much satisfaction from
making a random thing. One of my recent makes
is a postcard with decorative LEDs!

n Rebecca’s robot buggy experience taught
her to have a go and see what happens

http://helloworld.cc/tcc
http://helloworld.cc/buggy

The Big Book of Computing Pedagogy 137

With a little support, even our littlest learners
can learn physical computing skills

PRIMARILY PI: TEACHING PHYSICAL
COMPUTING AT PRIMARY

ducators are often hesitant to use
physical computers with primary-

aged students. But with a little scaffolding,
even our youngest learners can learn
programming and physical computing
with something like Raspberry Pi. Here
are some tips for supporting primary-aged
students through physical computing
projects in the classroom.

Getting started
I teach in a school that does not currently
have specific computer science classes, so
often my students come to me with different
levels of experience in coding, or with no
experience at all. For that reason, I usually
start our physical computing work with a
couple of offline lessons about computers
and algorithms. This year, my favourite
resource has been the Hello Ruby books.
These stories about a little girl named Ruby,
who gets into all sorts of adventures inside
her computer, are a great introduction for
young students to hardware, software,
coding, and the internet. The Hello Ruby
website (helloruby.com) also has all

sorts of offline activities geared towards
young students, for practising computing
terminology, thinking logically, writing
algorithms, and more (see page 156).

Once students have been introduced
offline to vocabulary and concepts they’ll
need in our digital making project, we use
Code.org’s self-paced lessons to introduce
block-based coding languages and how
to write a sequence of code with blocks.
Students work through a handful of lessons
to get a grasp of the basics of block-
based coding, including:

n Dragging and dropping blocks into a
workspace

n Connecting blocks
n Writing a sequence of directions from top

to bottom
n How to trash blocks when you make

a change
n How to run your program
n Analysing for errors and debugging

The Code.org intro lessons also help students
practise basic computing skills that many

n Amanda creates printable task cards for students
based on lessons on the Raspberry Pi Projects website

E don’t have when they start school. Most of
our primary students are more familiar with
touchscreens and tablets than they are with
computers, so we also need to teach them:

n How to use a mouse or trackpad
n How to click and drag with a mouse or on

a trackpad
n How to right-click on a mouse or trackpad
n How to navigate software menus

and toolbars

Learning by making
After a few lessons in Code.org, we dive into
our work in Scratch and physical computing.
One of the things that I loved about Picademy
(the course for becoming a Raspberry Pi
Certified Educator) was the project-based
approach, so I decided to adapt that format
for my own students. Learning within a
relevant context in any subject area tends
to be more motivating for my students than
trying to learn skills in a siloed approach, so
we start by introducing what we’ll be making.
Then we teach the individual coding and
electronics skills that we need to get there.

FEATURE

http://helloruby.com
http://code.org
http://code.org
http://code.org

The Big Book of Computing Pedagogy138

FEATURE

The Sense HAT add-on is also a favourite
among my primary programmers and is
easy for young students to code using
Scratch. They love lighting up LEDs and
drawing pictures on the Sense HAT with
just a few blocks.

Another way that I scaffold the electronics
work for my young students is by setting
up breadboards for them ahead of time. I
organise the LEDs, buttons, resistors, and
jumper cables on the breadboard, and then
walk students through how to connect the
jumper cables to the GPIO pins. As they
become more comfortable with using and
programming on their Raspberry Pis, we
move onto circuitry and get students setting
up their own breadboards, or plugging in
their own HATs and picameras.

Getting coding
One of the (many) reasons I’m keen on
Raspberry Pi computers is the ability
for students to program the physical
world using Scratch. The ease with
which students learn Scratch makes the
introduction to physical computing that
much more approachable.

Using Scratch does require some amount
of reading skill, however. The colour-coded
blocks help, but depending on the grade
level and reading skills of our students, I
sometimes start with an explicit vocabulary
lesson, to help students with the language
they’ll need while coding. Just as we would
in other subject areas, we might display the
blocks we’ll be using on a chart and practise
reading them together, using physical cues
and images or sketches to help students
learn the words.

Sometimes we print out the Scratch
blocks on paper (available on ScratchEd
at helloworld.cc/scratched) and practise
reading them and putting them into the
sequence we want ahead of time before
we work on the computers. We sometimes
have students act out the code, as well,
so that they can test whether the program
they’ve planned will move their sprite the
way that they want it to. Students can
then use the plan they made on paper as
a resource for finding the blocks they need
once they get started in Scratch.

Other times, I’ve loaded a prewritten
Scratch program onto the students’
computers, with the blocks they need

away the animals, but I’m still not sure how
our camera will know that it’s time to take
a picture … What else will it need? ... Oh,
Henry, great idea … cameras usually have a
button. OK, let’s add that to our plan.”

Scaffolding electronics
When working with young students, hooking
up the electronics (LEDs, jumper cables,
picameras, motors, etc.) can sometimes
become frustrating and slow down their
work, especially during their first lessons on
a Pi. For learners aged four to seven, I do all
the electronics set-up in advance.

For my second- to fourth-grade students,
I usually set up the electronics for them
prior to the first couple of lessons, but as we
progress through the project I release a little
more of the electronics set-up each time
we move to a new lesson. Diagrams and
prebreadboarded models allow students to
learn some basic breadboarding skills by
copying examples.

One of my favourite add-ons for digital
making with young students is the Pibrella
HAT by Cyntech and Pimoroni. After several
days of modelling, our young students
quickly learn how to put HATs on Raspberry
Pis properly. And with LEDs, buzzers, and
buttons already built into the board, and the
ability to program the HAT in Scratch, it’s a
great alternative to breadboarding. (Plus the
inputs and outputs on the Pibrella HATs make
it easy to also program motors, sensors, and
more, so this versatile HAT has become one
of the most used tools in our electronics kits!)

I tend to integrate our physical computing
projects into units currently being taught
at my school, and I design the lessons with
a cross-curricular approach. Some of my
favourite projects have included:

n Learning about traffic lights with our
Kindergarten traffic engineers (integrated
with our ‘community jobs’ unit)

n Writing gold-finding programs in
Minecraft with our fourth-graders, aged
nine to ten (integrated with our ‘California
Gold Rush’ unit)

n Designing urban wildlife cameras with
my second-graders, aged seven to eight
(while learning about ecosystems in their
habitat-themed literacy unit)

n Digital voting booths with both second-
and third-graders, aged eight to nine
(integrated with our government units)

I like to embed opportunities for students
to think like designers within the project.
Even if I already have a plan for how we’re
going to make something, we launch with
a student-led brainstorm, asking students
what elements our digital making projects
should include, and why. What might we
need to create an effective wildlife camera?
How should we design our digital voting
booth to make voting an engaging process?
If needed, I ask guiding questions to help
them come up with any missing pieces in
our plan: “So far you’ve all decided that our
wildlife cameras need the camera lens, and
no flash, because we don’t want to scare

FEATURE

n During a mini-lesson, students learn next steps
in their program and then return to their stations
with their teams to try what they’ve just learned

http://helloworld.cc/scratched

The Big Book of Computing Pedagogy 139

FEATURE

already in the scripting area, but out of
order. Students decide what order the
blocks need to go in and then snap them
together to create their program.

I’m also a fan of the ‘learning by copying’
method of learning to code. For all the
projects I’ve done with my classes, I’ve
created activity cards that walk students
through each step of the project so they
can copy (and eventually, customise, when
they’re ready) the code that they need,
line by line. The cards include large visuals
and diagrams, along with code students
can copy to create their own projects. I will
often include pop-outs in the diagrams
that explain in a couple of words what
certain blocks or lines of code mean or do,
so students can learn programming and
computer science concepts while making.

The activity cards allow students and
teams to move at their own pace on a
project, and to check and debug their
work against an already-working program.
The task cards have also become a great
way for me to teach students how to
read technical texts and follow a set of
given directions in order to put something
together, and a way for students to work on
projects in their own time, not just at times
that I’m leading the lesson for them.

Student becomes the teacher
I like to group my primary-aged students
into teams of three when working on a
physical computing project. We try to
balance each team with students who

feel that they are most skilled or most
comfortable in each of the following areas:

n Coder and typer
n Debugger and editor
n Engineer and electrician

Sometimes I create the teams ahead of
time, but sometimes I ask students to think
about the skill they feel most comfortable
in and then get them to build and balance
their own teams.

While everyone on the team will get
a chance to participate in all parts of the
project, we tell students that if they feel
they are the strongest coder on the team,
they can also be the coding coach on their
team. The strongest editors will be the
coach in that area, and while we expect
everyone on the team to take time to check
spelling, capitalisation, spacing, and so on
in the code, the editor will lead the process.
The engineers and electricians are the
students who feel most comfortable with
setting up the hardware and sometimes,
setting up circuits.

This team format is a great way for us
to explicitly teach students collaboration
skills. Primary-aged students aren’t always
naturally skilled at making sure everyone
gets a turn, so before students are allowed
to get to work on projects, we discuss as
a class what strategies we’ll use to make
sure that each person on the team is able
to participate. I often set up the expectation
that each person will take a turn dragging a

block into the code and then pass the mouse
to the next person, continuing the rotation
until the entire program is written.

As for direct instruction skills lessons,
I also try to keep my students moving
frequently. I usually break my physical
computing lessons into sets of mini lessons.
Students come to the carpet for a mini
lesson, then go back to stations to work for
a bit, then I call them back for next steps,
and then send them back to their stations to
work. Chunking the lessons gives students
smaller benchmarks to work towards, and
more manageable amounts of information
to try and remember at one time. And
bringing them to the carpet ensures
they’re focused on the new lesson and
less tempted to continue working while I’m
giving new directions.

As they learn new skills, student experts
start to emerge — one of the best benefits of
the team approach to physical computing in
our classroom. I don’t have to be the only
helper in the room. As some students start to
become more and more confident in their
programming skills, they become the helpers
in the room, not only for their own team, but
also for others in our class and, sometimes,
for me as well.

n Students work in teams on their physical
computing projects, helping each other to
learn and troubleshoot

AMANDA HAUGHS
Amanda is a second-grade educator and
learning designer at the Campbell School
of Innovation in San Jose, California, USA.
She is a Raspberry Pi Certified Educator,
Apple teacher, Google Certified Educator,
and Leading Edge Certified Professional
Learning Leader.

ADD VARIETY
143 VARIETY IN TEACHING

AND ASSESSMENT
OF PROGRAMMING
ACTIVITIES

146 STORYTELLING IN
COMPUTING EDUCATION

148 RETRIEVAL PRACTICE
152 THE INCLUSIVE COMPUTING

CLASSROOM
154 ART AND ALGORITHMS
156 PROGRAMMING AND PLAY

The Big Book of Computing Pedagogy 141

omputing is a broad discipline with connections to

many subject areas, especially engineering, maths,

and science. Each subject area prioritises different

aspects of computing and requires different pedagogical

approaches. Educators will each have their own perspective

on computing, which in turn may influence their approach to

teaching and learning. In order to provide the greatest number

of entry points to the greatest number of students, educators

need to present a holistic experience of computing.

From lesson to lesson, the focus of teaching and assessment

is likely to change. You may be focused on your learners

acquiring new understanding, perhaps by teaching abstract

concepts through representation. You might need them to

explore new knowledge through explanation, demonstration,

or practical activities, or even to apply past

learning to create an artefact.

Expanding the approaches in your personal

teaching toolbox allows you to adapt your

instruction to suit different objectives, keep

pupils engaged, and encourage and foster

greater independence.

C IN THIS SECTION,
YOU WILL FIND:

 ■ What the research says:
adding variety in programming

 ■ What the research says:
storytelling in computing education

 ■ Retrieval practice

 ■ Approaches for an inclusive
computing classroom

 ■ Algorithmic art for primary students

 ■ Programming and play

START A CODE CLUB
IN YOUR SCHOOL!

It’s easy to get your school coding! Code Club provides everything you need to

run coding clubs for 9- to 13-year-olds with free, step-by-step project
guides for learning Scratch, Python, and HTML/CSS.

“I run a Code Club in our school for children in Year 5 and
6, which is always popular. Code Club activities encourage
learning independence, and the children love to share the
games they’ve coded with each other.” Jill, Teacher

Code Club is part of the Raspberry Pi Foundation (registered charity no. 1129409)

Join Code Clubs across the world giving young people
opportunities to have fun while learning to code!

Code Club is free

Code Club offers engaging, hands-on activities that
have been designed to spark curiosity and inspire
creative thinking

Our free online training is perfect for teachers who are new
to coding or are starting a Code Club for the first time

Get involved at codeclub.org

It’s easy to get your school coding! Code Club provides everything you need to
run coding clubs for 9- to 13-year-olds with free, step-by-step project guides

for learning Scratch, Python, and HTML/CSS.

The Big Book of Computing Pedagogy 143

RESEARCH

 ■ Computing is engineering It concerns
the design and development of artefacts,
including software and systems. It
incorporates user research, prototyping,
testing, and evaluation.

 ■ Computing is maths Logic and
mathematics are present throughout
computing; our software and
systems are built on mathematical
principles, and we use mathematical
techniques to describe and reason
about programs.

ccording to the work of Tedre,1
computing is a broad discipline built

principally on three traditions, each bringing
its own perspectives. Those involved in
the field of computing tend to see it as
either one concerned with engineering
and design, as a branch of mathematics
and logic, or as a science. Each tradition
has a different focus, prioritises different
knowledge and skills, and invites different
teaching approaches. However, all form
part of computing as a whole.

 ■ Computing is science Computing is
pervasive across almost every field of
science. We use computers to explore
and model the physical world, and to
make predictions and discoveries.

Beyond these three traditions, computing
is connected to other areas such as the
arts, where computing is applied as a
medium, or philosophy and ethics, where
the application of computing provides rich
material for discussion.

Depending on our experience, we’re
each likely to favour one or more of these
perspectives, and that may impact how
we present computing to our learners.
In understanding these traditions and
the broader connections, educators can
provide their learners with a complete and
holistic computing experience. This enables
them to provide a variety of meaningful
entry points to the discipline supported by
appropriate pedagogy.

Variety within teaching approaches
Whether during a single lesson or an entire
course, computing educators need to be
able to apply a variety of pedagogical
strategies. These will vary depending on the
subject matter, the learners, and the aims of
each learning experience.

Engineering is concerned with making an
artefact that solves a problem or addresses
a user need, and can link computing to
other areas of the curriculum. In computing,

VARIETY IN TEACHING
AND ASSESSMENT OF

PROGRAMMING ACTIVITIES

SUMMARY
Perspectives on computing
Computing is a broad discipline rooted in three
main traditions:

 ■ Computing as engineering is concerned with
design and development

 ■ Maths is integral to computing systems,
software, and how we describe them

 ■ Most fields of science apply computing to
model and explore the physical world

Classroom strategies
A holistic approach to teaching computing reflects
each of these perspectives, their priorities
and practices:

 ■ An engineering perspective leads to more
project-based learning with scaffolding to

support individual learners. Assessment
approaches might include classroom talk
and ongoing feedback through code reviews,
showcases, and portfolios.

 ■ A maths perspective focuses on acquisition
and construction of knowledge, using
representations to explore abstract
concepts, and regular recall and practice
of facts and processes. Classroom talk and
multiple-choice questions are used to surface
learners’ understanding.

 ■ A science perspective leads to a more enquiry-
based approach in which explanations,
demonstrations, and practical activities
develop understanding and learners
predict and experiment. Practice questions
and classroom talk are used to check
understanding and critical thinking.

A

Computing is a broad discipline. Educators should vary their perspectives,
teaching approaches, and assessment strategies to suit the subject

matter in question and learners’ experiences and needs

The Big Book of Computing Pedagogy144

RESEARCH

A HOLISTIC APPROACH TO TEACHING
COMPUTING REFLECTS EACH OF THESE
THREE DIFFERENT TRADITIONS

“

an artefact could be a program, system,
or digital media. Physical computing, in
particular, is an obvious way of learning
about computing through an engineering
lens (see page 130). For example:

 ■ Project-based learning is closely
associated with this perspective.
Learners apply their prior knowledge
to a problem focusing on one or more
aspects of the design process.

 ■ Specifically when programming, you can
adjust the scaffolding and support you
provide to learners, depending on their
needs and your focus.2

Maths is concerned with understanding,
applying, and connecting abstract concepts.
The same is true for areas of computing
with links to maths, where learners need to
understand abstract concepts, recall facts,
and practise calculations and processes.
In these situations, educators adopt
approaches that focus on the acquisition and
construction of understanding. For example:

 ■ Representation is a key part of a
mastery approach to maths, using
different modes of representation,
including physical objects, pictorial
representations, and eventually, symbols
and language. This approach may be a
successful way to teach learners about
binary number systems, for example.

 ■ We can use varied and regular recall
of concepts and processes to secure
existing understanding, challenge

misconceptions, form connections, and
develop a coherent understanding.

A science-based view of computing
involves more enquiry-based practices in
which understanding is constructed through
prediction, exploration, and observation.
We can also use simulations, practical
demonstrations, and experiments to
develop students’ skills and understanding.3
For example:

 ■ Learners develop their inquiry skills
when programming with the PRIMM
methodology; they predict and validate
their predictions, as well as investigating
and asking questions of the code (see
page 22).

 ■ Topics such as computer systems or
networks4 contain plenty of substantive
ideas or facts that can be explored
through a combination of explanation,
demonstration, or experimentation.
Educators have to select the best
balance of approaches to suit each new
concept and their learners’ needs.

Another lens through which to understand
computing is its role in society and the
ethical and personal implications of

using technology. Offering learners the
opportunity to discuss ideas and engage
in meaningful classroom talk, whether with
the teacher or their peers, can support a
rich understanding of concepts.5 Some
examples of possible approaches include
collaborative methods such as pair
programming and peer instruction, which
can help challenge misconceptions and
build confidence. Discussion and debate
are particularly relevant to computing,

as the reach and impact of technology
is fertile ground for legal, moral, and
ethical discussions. The social and cultural
connections educators draw upon have
an impact on how learners engage with
a topic. Rooting your practice in your
students’ lived experiences, cultural
knowledge, and background makes their
learning more relevant and accessible (see
page 34).

Variety within assessment
Recent reviews of research on the
assessment of computing have concluded
that much work is still needed to create
reliable assessment approaches suitable for
all teachers and for every student. However,
there is general agreement that using a

■ A science-based view of computing involves prediction, exploration and observation

Cr
ed

it:
 tw

ins
te

rp
ho

to
/s

to
ck

.ad
ob

e.c
om

http://stock.adobe.com

The Big Book of Computing Pedagogy 145

RESEARCH

after lessons, can be another quick and
regular assessment approach, too.

More traditional assessment tasks,
such as multiple-choice questions
(MCQs) and free-text questions, provide
formative and summative assessment
opportunities. Although effective MCQs can
be challenging to create and offer limited
feedback, they can be a quick and low effort
way to discover student understanding.

Some work can also be marked
automatically, and other handy online tools
are available, such as software to create
Parson’s Problems, where students reorder
jumbled lines of code or pseudocode
(helloworld.cc/parsonspseudo), or software
that detects programming constructs in
students’ Scratch programs (drscratch.org).

What is also important to remember
is that formative assessment includes a
feedback loop. Students need to understand
what they have or have not understood

and what is next. In choosing formative
assessment approaches, teachers must
consider which assessment approach gives
the best feedback for their pupils for the
subject material you’re covering and for the
context of the learning at that point in time.

To expand the range of strategies you
can use in the classroom, reflect on your
perspective of computing. Does your
perspective impact the approaches you
favour? What new practices could you try
that could increase entry points for your
students and enhance their experience?
How else could you capture and assess your
learners’ understanding?

variety of assessment approaches helps
give teachers a much better picture — a
holistic view — of student progress.6

Classroom talk is an important assessment
tool and provides teachers with an
opportunity to assess student understanding
in depth and provide feedback. Using design
scenarios where students can discuss and
adapt example programs highlight their
skills as well as knowledge. Code reviews
and showcases where students talk about
their work can provide peer and teacher
assessment opportunities.7

Incorporating assessment activities into
lessons embeds assessment. For example,
portfolio creation and analysis, or reflection
journals requiring students to answer key
questions during project development,
encourage continuous self-assessment.
Using entry and exit tickets, where students
quickly record knowledge or confidence
about current learning topics before and

REFERENCES
1 Tedre, M. (2014). The Science of Computing:
Shaping a Discipline. CRC Press. helloworld.cc/
variety1
2 Waite, J., & Liebe, C. (2021). Computer Science
Student-Centered Instructional Continuum.
Proceedings of the 52nd ACM Technical Symposium
on Computer Science Education (1246-1246).
helloworld.cc/variety2
3 GOV.UK. (2021). Research review series: science.
helloworld.cc/variety3
4 National Centre for Computing Education. (2021,
July 15). Computer Systems and Networking Within
the Computing Curriculum. Teaching and Learning
Reports. helloworld.cc/variety4
5 Sentance, S., & Waite, J. (2021). Teachers’
Perspectives on Talk in the Programming
Classroom: Language as a Mediator. Proceedings
of the 17th ACM Conference on International
Computing Education Research (266-280).
helloworld.cc/variety5
6 Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X.
(2020). Assessing computational thinking: A
systematic review of empirical studies. Computers
& Education, 148, 103798. helloworld.cc/variety6
7 Grover, S., Sedgwick, V., & Powers, K. (2020).
Feedback through formative check-ins. In: S. Grover
(ed.), Computer Science in K-12: An A to Z Handbook
on Teaching Programming. Edfinity.
helloworld.cc/variety7

■ Introduce variety in computing lessons through different subject perspectives, teaching approaches, and assessment strategies

http://helloworld.cc/parsonspseudo
http://drscratch.org
http://helloworld.cc/variety1
http://helloworld.cc/variety1
http://helloworld.cc/variety2
http://GOV.UK
http://helloworld.cc/variety3
http://helloworld.cc/variety4
http://helloworld.cc/variety5
http://helloworld.cc/variety6
http://helloworld.cc/variety7

RESEARCH

The Big Book of Computing Pedagogy146

hildren’s traditional stories, nursery
rhymes, and literature provide a

rich source of sequences and repetition.
At the 14th Workshop in Primary and
Secondary Computing Education in
Glasgow in 2019 (WiPSCE’19), Sarah
Twigg and colleagues presented an
approach that uses children’s literature to
teach computing to primary school pupils.
The team from Lancaster University
hopes the familiar contexts of children’s
stories will engage pupils and raise the
confidence of non-specialist teachers in
delivering the curriculum.

Identifying computing concepts
in children’s literature
The team reviewed 50 popular children’s
picture books to identify key computing
constructs, namely sequencing, repetition,
and selection. The books included
programming constructs to varying degrees,
but 16 books included all three constructs,
and all 50 could be used to demonstrate
sequencing. Several books were then used
as the basis for sample teaching resources,
which were trialled in some classrooms and
code clubs.

The teaching approach: Read, Act,
Model, and Program (RAMP)
An approach named RAMP builds up
subject knowledge and appropriate
vocabulary in a storytelling context. The
format begins by reading through the story;
the teacher asks questions about what
is happening, and introduces computing
terminology. Children then act out the story
and are asked about repeating patterns

of behaviour and what triggers them.
The model element of the approach then
involves constructing the sequence of
events in the story, using either images
from the book, or printouts of lines of
code or blocks from Scratch. Children are
asked to identify repeating patterns and
choice points in the story, making links to
the computing terminology throughout.
The program step is supported by the
sample lesson resources developed for
specific books. It involves using the
computer to produce the program that
has been designed through the previous
unplugged activities.

C Teachers’ evaluation of the resources
Responses from teachers who were
asked about their experiences were highly
positive. In particular, teachers said that
the first three stages (Read, Act, and
Model) were very engaging for the pupils.
They provided multiple opportunities for
differentiation and working together at
different levels of ability.

Some teachers suggested, however, that
some non-specialist computing teachers
might find the step up to the Program stage
daunting. The authors are using this feedback
to help them develop the teaching resources.
They are continuing to work with teachers

STORY BY Hayley Leonard

STORYTELLING IN
COMPUTING EDUCATION

LESSON EXAMPLE
Computing concepts represented in We’re Going on a Bear Hunt by Michael Rosen:

order. On their way back home, they go
through the environments in reverse order.

Repetition: At least one example of a
pattern of repeated dialogue, actions,
or environment.

Example: Repetition of particular phrases
in each environment, for example, “We’re
going on a bear hunt.”

Selection: At least one example of a choice
of dialogue, actions, or environment.

Example: The end of the repeated dialogue
varies depending on the environment;
for example, in the river they say,
“Splash splosh!”
n Text © 1989 Michael Rosen, Illustrations © 1989 Helen Oxenbury,

From WE’RE GOING ON A BEAR HUNT by Michael Rosen. Reproduced by
permission of Walker Books Ltd, London SE11 5HJ, www.walker.co.uk

Sequencing: A list of events
to be followed in order.

Example: The characters on the bear hunt
go through six different environments in

http://www.walker.co.uk

RESEARCH

The Big Book of Computing Pedagogy 147

to investigate whether more support is
required for the transition to the final stage,
or whether this should be separated from the
other elements of the approach.

An inclusive approach
Teaching computing principles to young
children can be a challenge. A creative
storytelling approach is low-cost and
uses familiar contexts that are intuitive
to teachers and parents. Twigg and her
colleagues suggest that this approach has
benefits for diversity in computing, and
they are particularly interested in its use
with disabled students. The collaborative
activities and active discussion involved
could also be beneficial in engaging more
girls in computing. A pilot study testing this
approach more widely started in England
in September 2020, as part of the Gender
Balance in Computing programme of
research (helloworld.cc/genderbalance).

FURTHER READING
 Twigg, S., Blair, L., & Winter, E (2019).
Using children’s literature to
introduce computing principles and
concepts in primary schools: work
in progress. Proceedings of the 14th
Workshop in Primary and Secondary
Computing Education (WiPSCE’19).
Association for Computing Machinery,
New York, NY, USA, Article 23, 1-4.
helloworld.cc/literature

THE APPROACH
IS LOW-COST
AND USES
FAMILIAR
CONTEXTS

“

Cr
ed

it:
 st

oc
k.a

do
be

.co
m/

Ra
wp

ixe
l.c

om
Cr

ed
it:

 st
oc

k.a
do

be
.co

m/
Br

uc
he

z B
en

oit

http://helloworld.cc/genderbalance
http://helloworld.cc/literature
http://stock.adobe.com/Rawpixel.com
http://stock.adobe.com/Bruchez

FEATURE

The Big Book of Computing Pedagogy148

Gemma Moine explains how she uses retrieval practice, an effective learning strategy
and an evidence-based teaching technique, in her computer science classroom

RETRIEVAL PRACTICE

n recent years, educational
research has praised the findings

of cognitive psychology research on
retrieval practice: the idea that bringing
information to mind can boost learning.
It’s been revealed that the mechanics
of the memory have a large impact on
learning. Understanding research and
translating this into the classroom is key,
but it can be very difficult for teachers to
put into practice when workloads are high
and time is precious.

The majority of retrieval tasks undertaken
in my classroom have been taken (magpied)
from amazing teachers who have posted
examples on social media, and adapted for
computer science. I highly recommend you
research the topic further using the original
source links provided for further examples
and ideas. This article aims to give teachers
a toolbox of simple retrieval tasks that can

easily be embedded into the classroom.
Tasks are ordered in preparation time, to help
teachers decide which ones they may like to
trial in the classroom.

Brain dumps
How: Brain dumps are among the easiest
retrieval practice tasks you can incorporate
into the classroom with minimal preparation.
Students have a maximum of five minutes to
write down as much as they can recall on a
specific topic given by the teacher. Answers
can be written on paper or — my favourite
— straight onto the desk with board markers.
Students love a bit of desk graffiti.
Extend: Another useful task is for students
to identify areas to revisit by highlighting
missed areas on the brain dumps on their
knowledge organisers or mind maps. This
could be extended further to a homework
activity in which students are required to

FEATURE

make flashcards on the identified missing
topics and then test one another at the
beginning of the next lesson.
Original idea: Magpied and adapted from
@RetrieveLearn.

Take three
How: This is a super-quick and easy-to-
embed retrieval task. Ask students to write
down on paper three things they learnt last
lesson, last week, or last term. Give students
the opportunity to think-pair-share what
they have written down.
Extend: Ask students to find peers with
written comments from the same topic (or
where there are linkages between topics)
and discuss.

Mystery object
How: Place an object on the desk, then ask
students to recall as much as they can about

I

n Get students to talk through what they learnt last lesson to a rubber duck!

The Big Book of Computing Pedagogy 149

FEATURE

the item. It could be a stick of RAM, an old
network switch, two different types of wires,
input/output devices, or an old floppy disk.
Students write down what they can recall
and compare that to mind maps, knowledge
organisers, or notes.
Workload: Contact your IT network
manager for old computers or spare parts.

Fill in the blanks
How: Another quick retrieval task is to take
a knowledge organiser or mind map, cover
some of the words, and ask students to try to
recall what is missing. This is a slight cheat,
as students can see visual prompts, so it’s
more of a guided retrieval practice. I tend to
use it as a follow-on from a previous lesson’s
retrieval practice task in which gaps in
knowledge or understanding were identified.
Workload: Laminate knowledge organisers
and mind maps in advance to make them
reusable, then use stickies or page flags to
cover the words.

Talk to the duck!
How: Many computing classrooms have
adopted debugging code with the aid of
the faithful rubber duck (helloworld.cc/
rubberduck). Make the duck part of an
easy retrieval task by asking students

to talk through with the duck what they
learnt last lesson, week, or term. Bringing
that information to mind changes the way
information is stored and makes it easier for
students to recall later.
Workload: Use a screwdriver to remove the
squeak and save teacher headaches!

Emoji links
How: Students link emojis to sections from
a theory topic; this should take no more than
five minutes to complete. Emojis should be
purposefully selected, with a few random
emojis, to see what fun ideas the students
can come up with. This retrieval task is also a
nice example of incorporating dual coding in
the classroom.
Extend: This task could be extended as
homework, with students using a different-
coloured pen to find further links using their
knowledge organisers, mind maps, notes,
or flashcards.
Workload: Reduce the teacher workload by
setting as homework the challenge to design
the emoji grids based on a given topic.

Flash cards
How: Following the Leitner flash card
method is an effective technique for retrieval

GEMMA MOINE
Passionate about computer science, Gemma
is a secondary computer science teacher at
the British School Al Khubairat in Abu Dhabi,
United Arab Emirates (@BSAKComputing,
@BSAKAbuDhabi).

n Make the tasks universal, so the activity
can be easily modified across topics.

n Make the tasks quick to complete, so they
do not dominate the lesson.

n Tasks should involve everyone. Each activity
outlined here can be completed individually,
in pairs, or small groups.

n Each task described here takes from three
to ten minutes. Students may take longer at
first, but pace should quicken once the task
has been used in lessons a couple of times.

n Tasks need to be low-stake and should not
require recording of results. It’s important
to circulate, to observe any common
misconceptions.

n Feedback is essential, so that students know
what they got right! This does not mean
more work for the teacher – students should
self-mark by comparing their answers
to mark schemes, knowledge organisers
(single A4 documents that contain key basic
facts and knowledge on a given topic), mind
maps, flash cards, or notes.

TOP TIPS

n A mystery object exercise

n An emoji link exercise

http://helloworld.cc/rubberduck
http://helloworld.cc/rubberduck

FEATURE

The Big Book of Computing Pedagogy150

n Quizizz is a useful tool that allows for self-marking, while also letting
teachers track progress

n One of the ‘Ten minutes on’ sheets

practice. This involves using spaced practice
and recall, by writing answers down before
turning flash cards over to check the
answers. Impact Wales has an amazing
poster to help guide students through this
process (helloworld.cc/leitner), but students
can use envelopes to store different piles.
This task should take no more than three to
five minutes of lesson time and is an excellent
method to help prepare students for revision.
Workload: Students should create their own
flash cards, as the process of writing them
helps reinforce learning.

Great packet race
How: Students race across a map of the
USA, claiming states (renamed with a tech
twist) as they answer questions correctly.
The map is generic and can be played on any
topic. If played on a teacher’s board, students
can work in teams to answer questions.
The game can also be printed and played
in small groups. Questions and answers
can be prepared, or students can use their
knowledge organisers, mind maps, or flash
cards to generate questions.
Workload: Use the retrieval grids mentioned

later in the article for the teacher question
bank, to reduce workload.
Extend: Set the task of annotating the map
after the game as homework, linking the name
of tech states to theory topics and keywords.
Original idea: Magpied and adapted from
@SPBeale (helloworld.cc/mapgame).

Ten minutes on
How: Students have ten minutes to list,
explain, or compare one specific topic. They
also need to annotate an image, which nicely
incorporates dual coding, and plan how they
would answer an exam-style question.
Extend: Students can
complete their final exam-style
question and answer as homework.

Quizizz self-marking quiz
How: Create a free teacher account on
quizizz.com and make a bank of quizzes
on each topic needed. The questions are

multiple choice and allow for pictures and up
to five possible answers. The quiz can be set
as a live game, homework, or solo game, and
can be played by students using a pin code
or shared via Google Classroom or Remind.
Quizzes should take three to five minutes for
students to complete, and the system self-
marks. Quizizz also has a feature that allows
teachers to track students’ progress.
Workload: You can search for existing
quizzes on Quizizz to save and edit if
needed. Once quizzes are saved, they can be
reused with very little preparation.

Retrieval grids
How: This task involves a little more
planning, but retrieval grids are a flexible tool
for low-stakes retrieval and feedback. Each
box is colour-coded to represent whether
the knowledge was learnt last lesson, last
week, last month, or way back! Simply add
questions on one slide and answers on
the following slide. Display the grid on the
teacher’s board or on students’ screens,
then ask students to fill in their answers
individually on a printed blank grid or directly
into their books. The answer grid can be
displayed and students self-mark their work.
Workload: It can be time-consuming
to prepare this retrieval task, but
you could set up a template at the
beginning of the academic year with
20 blank question-and-answer slides.
As you work through topics, you can
add questions to different slides.
Extend: Ownership can also be taken
by students themselves. My sixth-form
students were each given a blank template
at the beginning of the year and asked to
periodically update their own versions. You
can also print and laminate the questions
and answer grids back to back and use them
periodically with individuals.
Original idea: Magpied and adapted from
@KateJones_teach.

©
 Im

ag
e

co
ur

te
sy

 o
f @

Im
pa

ct
W

al
es

IT’S BEEN REVEALED THAT THE
MECHANICS OF THE MEMORY HAVE A
SIGNIFICANT IMPACT ON LEARNING

“

n The great packet race exercise

http://helloworld.cc/leitner
http://helloworld.cc/mapgame
http://quizizz.com

The Big Book of Computing Pedagogy 151

FEATURE

Go fetch!
How: This retrieval task is a high-energy
one that gets students moving around
the classroom. Complete the template
squares with a description or a key fact on
part of a topic. Students race to find the
corresponding answers on snippable sheets
placed around the classroom. The answers
are glued or written into the corresponding
box, and students can add extra details for
bonus points.
Extend: Make it harder by not including all
the answers on the snippable sheets.
Original idea: Magpied and adapted from
@SPBeale.

Thinking quilts
How: Students use the topics along the
bottom of the grid to identify related
keywords on the main grid. Links between
the grid and the topics should be the same
colour, with some keywords potentially
sharing several topics. Students then use the
grid to answer exam-style questions. The
task has visual prompts, so is not a complete
recall task, but it’s a great revision resource.
Extend: Blank spots can be left for students
to fill in additional keywords from their own
recall, or a blank topic can be left along the
bottom for students to identify.
Original idea: Magpied and adapted from
@KKNTeachLearn.

Retrieval practice is such a powerful
technique! If you want to learn more about
the topic, I would highly recommend the
following books: Make It Stick by Peter
C. Brown, Henry L. Roediger, and Mark A.
McDaniel, and Powerful Teaching by Pooja
K. Agarwal and Patrice M. Bain.

Finding time to read can be difficult,
so I also recommend searching online
for chapter summaries on the books.
The retrievalpractice.org website
is brimming with techniques and
further information on the topic.

FURTHER READING

n Above and below: retrieval grids require a little
more planning, but they are worth the effort

n The ‘Go fetch!’ activity involves placing answers around the classroom,
and gets people on their feet!

n An example of a thinking quilt

Noughts and crosses
How: Display a simple noughts and crosses
(tic-tac-toe) grid on the teacher’s interactive
board. Split the class into two teams and
get each one to write down five questions.
Each team takes turns to answer questions,
and if a team gets an answer right, places
the team’s symbol (nought or cross), in a
chosen space on the grid. The winning
team is the one with three symbols in a row.
Alternatively, students work in pairs with
their own printed grid and play between two.
Speed it up: Previous homework could be
for students to bring three questions and
answers to the lesson, with the team then
selecting five questions to use, or students
could use their flash cards as question banks.
Original idea: Magpied and adapted from
@BsaktL.

http://retrievalpractice.org

FEATURE

The Big Book of Computing Pedagogy152

Make your computing lessons more accessible and inclusive for learners with special
educational needs and disabilities, with effective approaches that are beneficial for all students

onsider the students in your
computing classes. What are their

strengths and weaknesses; their passions
and hates; the barriers they face in learning?
In an ideal world we would be able to meet
the precise needs of every individual learner,
but this is simply not practicable.

However, there are some ways to make
your computing lessons more inclusive and
accessible for the greatest number of learners,
in particular those with special educational
needs and disabilities (SEND). The good news
is that these approaches harness effective
pedagogy that can benefit all students in your
computing classroom.

In this article, I will outline a few ways for
you to improve your practice, in terms of how
information is presented to students and how
students interact with the learning material.
And a word of warning before we get started:
these approaches won’t work for 100 percent
of students, 100 percent of the time! Some
students may require specific adaptations.
Talk to your individual students and find out
what works for them.

Reduce cognitive load
One of the most effective changes we can
make as teachers is to reduce the cognitive
load of learning new information and
concepts. There has been an increased focus
on understanding the role of cognitive load in
the classroom in recent years and, for more
detail, you can read Phil Bagge’s article in
Hello World issue 8, and the article on page
20 of this special edition.

In essence, the amount of new information
being introduced to learners can lead to
cognitive overload, as the capacity of their

working memory is finite. The complexity of
the information and how it is presented can
also increase cognitive load. Many students
with SEND have poor working memory and
so can reach overload sooner than their peers.

Here are some ways to reduce cognitive
load for learners with SEND:

n Teach key vocabulary in advance of a topic.
Provide word lists that can be sent home
for students to learn, ideally with image
support. When the word is then met in the
classroom, the learner doesn’t have to use
up working memory decoding the word,
or remembering how it is spelt, and can
concentrate on understanding it in context.

n Teach basic skills explicitly and routinely.
Once knowledge is transferred to long-term
memory, it doesn’t use space in working
memory. As such, if students have a routine
of logging on and accessing work from
the same folder at the same stage in each
lesson, it’s more likely to become habit.

n Introduce content in smaller chunks, and
practise what is learnt before moving on.

n Use familiar contexts to introduce new
programming and computer science
concepts, such as repetition and selection.
This can be done effectively in unplugged
tasks, to reduce the amount of new
information being introduced at one time.

Accessible teaching materials
Provide information in a range of formats
— such as text, images, video, and audio
— so that students with sensory disabilities
can access content, and to support weaker
readers. In addition, presenting information
both verbally (narration or text) and non-

C

THE INCLUSIVE
COMPUTING CLASSROOM

verbally (for example as an image) allows
the learner to access more working memory
capacity, and can enhance recall. This is the
central idea of Paivio’s dual coding theory
(helloworld.cc/paivio1971).

When it comes to font, colour, layout, and
content, ensure materials are accessible by
the greatest number of students. For example:
n Use a sans-serif font of at least 12pt in

documents or 24pt in presentations
n Avoid italics and underlining, which make

text harder to read
n Include lots of white space and break up

text with titles, paragraphs, and bullet points
to help readers make sense of content

n Make sure that the text colour contrasts
well with the background colour, and don’t
use colour as a sole indicator of meaning

n Use simple language where possible, and
keep your sentences short

Finally, you can make your teaching materials
more accessible by making the most of in-

n Provide word lists with image support so learners
can prelearn key words

http://helloworld.cc/paivio1971

The Big Book of Computing Pedagogy 153

FEATURE

built assistive technology in the everyday
tools you use. Immersive Reader in Microsoft
OneNote and Office 365 will read text
aloud and highlight key parts of speech, and
includes a picture dictionary (see onenote.
com/learningtools). Pupils with poor or slow
typing can use Voice Typing in Google Docs

to add content. Android tablets and iPads
also include a number of accessibility options,
including magnifier, zoom, screen readers, and
colour options.

Provide variety in activities
Provide a variety of ways for students to
interact with learning material, for example by
using a mix of unplugged activities, physical
computing devices, and screen-based tasks.

Unplugged activities tackled away from
technology are an effective way of introducing
computer science and programming concepts.
Curzon et al. detail how they can help
students make sense of abstract concepts

through physical objects that can be touched
and described. “This can make it much easier
to explore the concepts involved and makes
it easier to ask questions about things that
aren’t understood … By providing a physical
representation, the learner can point to and
ask the question at the level of the analogy

rather than having to fully verbalize it at the
technical level.” (helloworld.cc/curzon2018).

Allow students to present their learning
through a range of media, for example
animations, videos, comic strips, and graphic
organisers. A student with poor spelling
and slow writing may be able to express
themselves far more effectively, and with a
wider vocabulary, by recording a video or
audio clip or drawing a diagram than via a
written answer to a question.

Scaffolding learning activities
The Use–Modify–Create model posited
by Lee et al (helloworld.cc/lee2011) is

incredibly useful for scaffolding learning
across the computing curriculum (also
the more detailed PRIMM framework, see
page 22). The cognitive load associated
with creating digital content or writing
a program from first principles is much
greater than when adapting a working
model. Students can begin by running
working programs or playing a good-
quality animation. They can learn about the
key concepts and features without having
to worry about making mistakes or writing
a large amount of text.

Students can then move on to modifying
a working program or a template of digital
content to create a more personalised
version. This provides a level of guaranteed
success in the activity, which will help
to boost the confidence of learners
with SEND and increase engagement
with the learning. This model also helps
teachers to include every student in
the lesson, with a number of different
entry levels. You can find a selection of
Scratch activities at sheffieldclc.net/
scratch that can be used to scaffold
learning for all students, with options to
debug, order, explore, and modify code.

For more information on these strategies,
and more specific advice on programming
environments and activities, try the Raspberry
Pi Foundation’s free online course Creating an
Inclusive Classroom: Approaches to
Supporting Learners with SEND in
Computing (helloworld.cc/sendcourse).

CATHERINE ELLIOTT
Catherine is the SEND lead for the Sheffield
eLearning Service (sheffieldclc.net), and
she works on ways to make the subject
accessible to all learners. She is a member
of the CAS Include working group, and
leads the SEND Virtual and the Sheffield
and South Yorkshire Secondary CAS
Communities (@catherinelliott).

ONE OF THE MOST EFFECTIVE CHANGES WE
CAN MAKE IS TO REDUCE COGNITIVE LOAD“

n Example of a Scratch
activity where students
can put the command
blocks in the correct
order to create a
working program

http://onenote.com/learningtools
http://onenote.com/learningtools
http://helloworld.cc/curzon2018
http://helloworld.cc/lee2011
http://sheffieldclc.net/scratch
http://sheffieldclc.net/scratch
http://helloworld.cc/sendcourse
http://sheffieldclc.net

FEATURE

The Big Book of Computing Pedagogy154

Katharine Childs takes inspiration from the artist Sol LeWitt to
create algorithmic art in primary computing lessons

ART AND ALGORITHMS
t first sight, computing and art are
an unlikely combination: computing

seems precise, prepared, and predictable;
art seems creative, expressive, and
ambiguous. Sol LeWitt (1928–2007) was
an American artist who conceptualised
that the instructions for creating art were
as important as the finished piece. He
gave his instructions and diagrams to
other people so that they could follow
them and create wall paintings.

I have developed primary computing
activities based on a particular type of
LeWitt’s art. These comprise coloured
stripes, and involve children writing their
own algorithm to draw a stripy picture. An
algorithm is a sequence of instructions or a
set of rules to achieve something — in this
case, some artwork. Once the algorithms
have been written, children will work in
pairs. One child can take the role of the artist
who reads out their instructions, and the
other will be the creator who carries out the
directions exactly as they are instructed. It’s
worth noting that LeWitt made some of his
instructions deliberately ambiguous, whereas
in the classroom, children will need to be
precise with their algorithms so that they can
be interpreted by a computer, or by a human
artist working in a robotlike way.

Adapting across learning stages
This idea works well as an unplugged activity;
choose art materials that can quickly create
blocks of colour, for example painting on large
sheets of paper taped to the floor, or using
chalks on the playground tarmac. Just like
LeWitt’s art, the creative space needs to have
some boundaries marked, so that children
can use positional language to describe
where to add the stripes. Horizontal or

A

n This wall drawing by Sol LeWitt, in the Spoleto Carandente Museum, is an
inspirational starting point for children to write algorithms for their own artwork

Cr
ed

it:
 W

iki
me

di
a C

om
mo

ns

The Big Book of Computing Pedagogy 155

FEATURE

vertical stripes are the easiest to work with,
and the activity can be made simpler by using
only two colours, or made more complex by
using stripes in a repeating pattern. Children
will need to think carefully about when to
put the pen (or paint or chalk) down onto the
paper, and when to pick it up again.

At upper primary, the activity could also
be used to write an algorithm to create
art in Scratch, a free online programming
environment (scratch.mit.edu). It is useful
for children to do a small-scale, unplugged
version of their design to help them plan
their work and give them the structure of
their algorithm. Although Scratch contains
a paint editor for freehand drawing, the
activity works best by programming a sprite
to draw the stripes one by one on the stage.
This will involve some careful calculations to
determine the starting and finishing position
of the sprite on each line, and pupils could
use variables to store and update the values
of these positions. As the sequence of
instructions grows, children may notice that
they repeatedly go to the starting position,

put the pen down, draw the stripe, pick
the pen up, then change the coordinates
and the pen colour ready for the next line.
Spotting this pattern helps to determine
where to use a repeat loop in the algorithm.

Common misconceptions
When writing algorithms, pupils often
underestimate how precise the instructions
need to be so that a computer can
understand them. This precision can be
misunderstood in two ways:

1 Missing out steps: It’s easy to make
assumptions about what needs to happen
to create a piece of art. In these activities,
a common misconception is that children
forget to explicitly say when to put the
pen down on the paper and when to pick
it up. Having someone else carry out their
instructions is a good way of spotting

these omissions, and can help children
to debug their algorithm by finding and
fixing errors in it.

2 Missing out detail: Children often make the
steps in their algorithms too ambiguous.
Adding in detail such as positional
language can help to make algorithms
more precise. This might include using
vocabulary such as ‘left’, ‘right’, ‘under’,
or ‘touching’ at lower-primary level,
while upper-primary pupils may be able
to incorporate precise measurements.
Watching someone else carry out their
instructions is a useful way to get children
to think about how to improve their
algorithm by adding precision.

Effective scaffolding
You can support pupils to write precise
algorithms by scaffolding this activity with
examples. A useful technique is to model
how to decompose a task into small steps,
including deciding what to do first. Pupils can
write the first part of the algorithm, test it on
a small-scale, check it for errors, amend what

they have done so far, and then write some
more. This run–test–fix–add cycle is a good
habit to develop, and can be used as part of
a toolbox of techniques to be displayed on
tables or on the whiteboard.

There are many opportunities for gotcha
moments when writing an algorithm for
someone else, so expect to hear comments
such as, “I didn’t mean that!” Modelling
how to learn from failure at the start of the
activity creates a classroom culture in which
mistakes aren’t a problem in themselves, as
long as you persevere and put them right.
Classroom displays often include the final
version of a piece of work, but displaying an
algorithm including errors side by side with
the debugged version sends a powerful
message that it’s OK to fail and learn.

Learning from failure is also important
when pupils take the role of the creator and
follow the algorithm. Some children may

KATHARINE
CHILDS
Katharine is a programme
coordinator at the Raspberry

Pi Foundation and a former primary school
teacher (@IAmKatharineC).

need support to understand that their role
is to help the artist by working in a robotlike
way, rather than adding in steps or detail.

At the end of this activity, the artwork and
their algorithms make a great display. Match
algorithm and art together, or jumble them
up and see if others can do the matching!

For further ideas for algorithmic art,
check out Hello World issue 9, focused on
computing and the arts, particularly pages
74–75 and 87–89.

More information about Sol LeWitt:
helloworld.cc/Tate_LeWitt

An unfinished basic version of a Scratch
project referencing LeWitt’s work:
helloworld.cc/LeWitt1

A completed Scratch project referencing
LeWitt’s work:
helloworld.cc/LeWitt2

FIND OUT MORE

MODELLING HOW TO LEARN FROM FAILURE
CREATES A CLASSROOM CULTURE IN
WHICH MISTAKES AREN’T A PROBLEM

“

http://scratch.mit.edu
http://helloworld.cc/Tate_LeWitt
http://helloworld.cc/LeWitt1
http://helloworld.cc/LeWitt2

FEATURE

The Big Book of Computing Pedagogy156

How embracing play made me a better educator

PROGRAMMING AND PLAY
For me, computing was magical,

charming, and imaginative — but the
materials teaching it were often dull
and uninspiring.

Programming as make-believe
Most of my childhood was spent in a very
immersive world of make-believe. My
siblings and I built small villages in the
woods for Moomins and created galactic
maps around Star Wars heroes. On the
asphalt in our front yard, we sailed in a
self-made raft and imagined a mysterious
sea around us.

This is the way I relate to programming,
even today. Being able to build ever
more complicated worlds and structures
without the need for physical components
like LEGO bricks is fascinating, especially
for a child. Most children, at least once in
their lives, feel very powerless. Someone
else comes up with the rules — but
not in programming.

How is programming related to play?
When I decided to learn programming
back in 2009, using narrative as a learning
tool was a natural fit. I was learning a
programming language called Ruby, and
every time I ran into a word or concept I
didn’t understand (such as ‘object-oriented
programming’ or ‘garbage collection’), I
would try to explain the concept as a six-
year-old girl called Ruby would explain
it. This project eventually turned into a
series of books explaining and celebrating
computing, from the tiniest Booleans to the
most immense algorithms.

Luckily, on my journey to writing about
computing in early childhood, I stumbled
upon the work of Seymour Papert and
Alan Kay, which made me realise that

creativity was something that had been
built into computing education, but was
something we’d somehow lost. Even
Alan Turing wrote a whimsical note in an
early artificial intelligence paper on how
we should teach computers like children,
teaching them to learn to learn.

Whenever I asked educators about
play and programming, they would
direct me to apps that gamified learning.
Programming education was experienced
through completing challenges, collecting
points, or winning competitions. But the
type of programming I really enjoyed was
full of other types of play: finding and
giving support, exploration, and the joy of
finding a new way to solve a problem. To
rediscover playfulness in programming, I
needed to visit a small town in Italy.

FEATURE

e can find inspiration to become
better technology educators in

unlikely places. Follow me on my journey
to rediscover playfulness in programming,
which took me, among other places, to a
small town in Italy.

When I first started writing storybooks
about programming, I knew almost nothing
about pedagogy. I enjoyed programming,
but I mixed Piaget with Papert and didn’t
differentiate between computational thinking
and constructivism. I just had a strong sense
of the kind of world I’d like to create.

W

n Decomposition and logical thinking
As Ruby says, “Even the biggest problems
in the world are just tiny problems stuck
together.” Every programmer starts by
breaking down the problem at hand.

n Creativity and collaboration
Even though the instructions a programmer
gives to a computer need to be exact, in
the right sequence, and carefully named,
programming is also highly creative.
Encourage students to instruct each other
on how to brush their teeth, and see how
many different ways there are to give
the necessary commands!

n Debugging and persistence
Learning to program is all about learning
to overcome mistakes. Even the best
programmers forget a semicolon from
time to time, and need to go back and find
the mistake.

CREATIVITY IN
PROGRAMMING

“The computer is like a foreigner, and if
you want to talk to it, you have to speak
its language.”

“Yes, but the computer has to
understand how we talk, too, and it has
to do what we want it to do.”

The Hundred Languages of Children:
the Reggio Emilia experience
in transformation

The Big Book of Computing Pedagogy 157

FEATURE

The third thing that resonated with me is
the idea of observing children at work and
responding to their unique needs. I’ve learnt
to simplify my writing, creating exercises and
materials that have only a single concept
to teach. Reggio Emilia also suggests that
we shouldn’t use words as shortcuts to
knowledge. Computer science is riddled with
abstract words such as functions, Booleans,
and decomposition. But what does a loop
feel like? And can we find conditionals in
the everyday surroundings of kids, such as
the way they choose clothes for a rainy or
sunny day? Computational thinking concepts
are more fascinating when we notice their
presence all around us. Inspired by Reggio
Emilia, I’ve practised making computer science
concrete, specific, and understandable to the
child. A computer can take a thousand forms.

I wish to see programming become one
tool in a big box of self-expression – along
with crayons, blocks of wood, prisms, and
pipettes. This can help us to present a
more colourful, exciting computing culture.
Why does Reggio Emilia keep inspiring
me after 70 years of existence? I think the
answer lies in wonder. These pedagogical
movements have helped me to rediscover
my own wonder around technology. It is
this wonder that allows me to invent new
teaching practices that offer unusual and
beautiful pathways to computing.

n Hello Ruby: helloruby.com

n The Hundred Languages of Children:
helloworld.cc/100lang

n Understanding the Reggio Approach:
Early Years Education in Practice:
helloworld.cc/reggio

FURTHER READING

n Download this free exercise to build a computer out of paper
and get to know the components inside it at helloruby.com/play

The hundred languages of children
In an Italian city called Reggio Emilia, I finally
found the framework of thinking I needed
to create Ruby’s world. Reggio Emilia is
an educational approach for preschool
and primary education, named after the
city where it began. From the outside, it
has very little to do with computing: the
approach highlights respect, responsibility,
and community through artistic exploration
and discovery.

The first thing I learned to love from
Reggio Emilia was the idea of a hundred
languages. Its core idea is that a child has
hundreds of ways of expressing themselves:
with clay, gestures, paint, and rubber stamps.
However, in schools we often limit children to
writing and reading. Reggio Emilia educators
treat the computer as just one more material
to learn, alongside paper, ruler, pens, and
movement — one of the hundred languages.

The second thing I fell in love with in
Reggio Emilia was the open-ended nature of
projects that can take all sorts of twists and
turns. Many of my own favourite exercises
start with kids posing questions that interest
them, like “What kind of computer would
a dolphin doctor need?”, “What is the
world’s most dangerous animal?”, or “What
if my paper computer could print candy?”
Throughout the process of exploring and
experimenting, they learn about abstraction,
collaboration, and media literacy, and
develop a plethora of powerful ideas I would
never have anticipated. That’s why most
of the exercises I create for kids include
discussion points, and very few of them have
right or wrong answers. I think it is important
to give kids permission to trust themselves,
and to allow for many right answers
to a question.

LINDA LIUKAS
Linda is a programmer, storyteller, and
illustrator from Helsinki, Finland. She is
author of the ‘Hello Ruby’ series.

http://www.helloruby.com
http://helloworld.cc/2tiQVXk
http://helloworld.cc/2syy79u
http://helloruby.com/play

158 The Big Book of Computing Pedagogy

Everything you need to know about our computing and
digital making magazine for educators

Q WHAT IS HELLO WORLD?
Hello World is a magazine for computing and
digital making educators. Written by educators,

for educators, the magazine is designed as a platform to
help you find inspiration, share experiences, and learn
from each other.

Q

A

WHO MAKES
HELLO WORLD?
The magazine is a joint collaboration between
its publisher, Raspberry Pi, and Computing at

School (part of BCS, the Chartered Institute for IT).

Q WHY DID WE MAKE IT?
There’s growing momentum behind the idea of
putting computing and digital making at the heart

of modern education, and we feel there’s a need to do
more to connect with and support educators, both inside
and outside the classroom.

A

A

Q

A

WHEN IS IT AVAILABLE?
Your 100-page magazine is available three times
per year. Check out our new podcast too, to get

more great Hello World content between issues.

“HELLO, WORLD!”

Hello World is free now and forever as a Creative
Commons PDF download. You can download every
issue from helloworld.cc. Visit the site to see if
you’re entitled to a free print edition, too.

IT’S FREE!

http://www.helloworld.cc

WANT
TO GET

INVOLVED?
There are numerous ways for you to get involved with the magazine.

Here are just a handful of ideas to get you started.

Give us feedback
Help us make your magazine better —
your feedback is greatly appreciated.

Ask us a question
Do you have a question you’d like to ask? We’ll
feature your thoughts and ideas.

Tell us your story
Have you had a success (or failure) you think the
community would benefit from hearing about?

Write for the magazine
Do you have an interesting article idea? Visit
helloworld.cc/writeforus to submit your idea.

FIND US ONLINE
www.helloworld.cc

@HelloWorld_Edu

fb.com/HelloWorldEduMag

GET IN TOUCH Want to talk? You can reach us at:

contact@helloworld.cc

NEXT
ISSUE
OUT
OCTOBER

2021

The Big Book of Computing Pedagogy 159

http://helloworld.cc/writeforus
http://www.helloworld.cc
https://twitter.com/HelloWorld_Edu
https://www.facebook.com/HelloWorldEduMag
mailto:contact%40helloworld.cc?subject=

helloworld.cc

https://helloworld.raspberrypi.org/

