

Raspberry Pi Foundation, UK registered charity 1129409

Learn with the
Raspberry Pi Foundation

Free for everyone anywhere in the world

Teaching resources
Discover training, resources, and
guidance to help you teach
computing with confidence.

teachcomputing.org

Digital making at home
Check out our code-along videos and
take part in Astro Pi Mission Zero
from home.

raspberrypi.org/learn

Project library
Browse our 200+ online project
guides that include step-by-
step instructions for learners.

projects.raspberrypi.org

Support for parents
Watch our support tutorials
and access engaging
resources for your child.

raspberrypi.org/learn

Raspberry Pi Foundation, UK registered charity 1129409

Raspberry Pi Foundation, UK registered charity 1129409

Learn with the
Raspberry Pi Foundation

Free for everyone anywhere in the world

Teaching resources
Discover training, resources, and
guidance to help you teach
computing with confidence.

teachcomputing.org

Digital making at home
Check out our code-along videos and
take part in Astro Pi Mission Zero
from home.

raspberrypi.org/learn

Project library
Browse our 200+ online project
guides that include step-by-
step instructions for learners.

projects.raspberrypi.org

Support for parents
Watch our support tutorials
and access engaging
resources for your child.

raspberrypi.org/learn

Raspberry Pi Foundation, UK registered charity 1129409
Raspberry Pi Foundation, UK registered charity 1129409

Learn with the
Raspberry Pi Foundation

Free for everyone anywhere in the world

Teaching resources
Discover training, resources, and
guidance to help you teach
computing with confidence.

teachcomputing.org

Digital making at home
Check out our code-along videos and
take part in Astro Pi Mission Zero
from home.

raspberrypi.org/learn

Project library
Browse our 200+ online project
guides that include step-by-
step instructions for learners.

projects.raspberrypi.org

Support for parents
Watch our support tutorials
and access engaging
resources for your child.

raspberrypi.org/learn

Raspberry Pi Foundation, UK registered charity 1129409
Raspberry Pi Foundation, UK registered charity 1129409

Learn with the
Raspberry Pi Foundation

Free for everyone anywhere in the world

Teaching resources
Discover training, resources, and
guidance to help you teach
computing with confidence.

teachcomputing.org

Digital making at home
Check out our code-along videos and
take part in Astro Pi Mission Zero
from home.

raspberrypi.org/learn

Project library
Browse our 200+ online project
guides that include step-by-
step instructions for learners.

projects.raspberrypi.org

Support for parents
Watch our support tutorials
and access engaging
resources for your child.

raspberrypi.org/learn

Raspberry Pi Foundation, UK registered charity 1129409

https://teachcomputing.org/
https://projects.raspberrypi.org/en
https://www.raspberrypi.org/learn/

fter the warm reception our first special edition, The Big Book of Computing
Pedagogy, received, we’re pleased to welcome you to our second special edition,
The Big Book of Computing Content. While the first book focused on how we can

teach computing, this new book is about what we can teach within the discipline and really
demonstrates the wide applications of this constantly evolving subject.

We have structured The Big Book of Computing Content around the Raspberry Pi
Foundation’s framework for formal computing education. This framework was originally
developed by the Foundation for the Teach Computing Curriculum, as part of England’s
National Centre for Computing Education, and comprises eleven strands, each consisting of
a range of conceptual and applied knowledge outcomes. It aims to categorise computing
content to both demonstrate the breadth of computing as a discipline and to provide a
common language to describe the different competencies and areas of study.

This book complements our first special edition; as such, it follows the same principle of
introducing you to up-to-date research followed by our favourite stories, from past Hello
World issues, of educators putting a concept into practice. For each of the strands, you’ll find
a table of learning outcomes illustrative of the kinds of knowledge and understanding that
learners could develop at each stage of their formal computing education, from ages 5 to 19.

The second album is always a difficult one, so we’d love to hear your thoughts about this
edition! Last time, we heard of educators setting up Big Book reading groups, of leaders
using the book to support pre-service teachers, and even of a translation into Thai! Please
get in touch to let us know how you’re using The Big Book of Computing Content at
contact@helloworld.cc or on Twitter at @HelloWorld_Edu. Happy reading, happy learning!

Gemma Coleman
Editor

HELLO, WORLD!

Hello World is published by the Raspberry Pi Foundation, 37 Hills Road, Cambridge,
CB2 1NT. The publisher, editor, and contributors accept no responsibility in respect of
any omissions or errors relating to skills, products, or services referred to in the magazine.
Except where otherwise noted, content in this magazine is licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0).

This magazine is printed on paper
sourced from sustainable forests and
the printer operates an environmental
management system which has been
assessed as conforming to ISO 14001.

A

EDITORIAL
Editor
Gemma Coleman

Subeditors
Louise Richmond and Amy Rutter

Subscriptions
Joshua Crossman

Social media
Neena Patel

Pedagogical consultant
James Robinson

DESIGN
criticalmedia.co.uk

Head of design
Lee Allen

Designers
Ty Logan, Sam Ribbits, Olivia Mitchell

Photography
Raspberry Pi Foundation, Adobe Stock

Graphics
Rob Jervis

Cover and illustrations
© Muti, Folio Art

CONTRIBUTORS
James Abela, Chris Aviles, Pete Bell, George Boukeas, Mac Bowley, Claire
Buckler, Andy Bush, Katharine Childs, Jon Chippindall, Helen Clothier,
Gemma Coleman, Josh Crossman, Paul Curzon, Diane Dowling, Emily
Dreimann, Catherine Elliott, Lucia Flóriánová, Ben Garside, Ged Gast, Sway
Grantham, Andreas Grillenberger, Hannah Hagon, Ben Hall, Tony Harkins,
Matt Hogan, Zach Huffman, Michael Jones, Peter Kemp, Eirini Kolaiti, Thom
Kunkeler, Doug Lloyd, Duncan Maidens, David J. Malan, Alan Merrett,
Matthew Moore, Martin O’Hanlon, Matthew Parry, Rob Parker, Simon
Peyton Jones, Carrie Anne Philbin, Pam Popay, Paul Powell, Oliver Quinlan,
James Robinson, Harriet Ryder, Stefan Seegerer, Sue Sentance, Charlotte
Spenceley, Jane Waite, Matthew Wimpenny-Smith, Andreas J. C. Woitzik

Contributing Partner

3

Hello World is published by
the Raspberry Pi Foundation

The Big Book of Computing Content

mailto:contact@helloworld.cc
http://criticalmedia.co.uk
http://academy.bcs.org/
https://twitter.com/HelloWorld_Edu

upporting educators in providing high-quality

computing education has always been integral

to the mission of the Raspberry Pi Foundation.

In 2018, having delivered in-person training to

over 2000 educators, our content and curriculum team began

developing more curriculum resources. The UK government had

recently announced significant future investment in supporting

computing educators as we began a piece of work to help us

describe the subject of computing and in particular, the common

threads running through it.

At the time, schools in England were offering the relatively new

national curriculum subject of computing for learners aged 5–14,

followed by elective qualifications in computer science. While

exam specifications typically provided detailed learning outcomes

categorised into several areas of study, England’s national

curriculum for computing consisted only of 25 statements outlining

expectations for learners.

When describing computing, it was common to divide the

subject into three areas: information technology, computer

science, and digital literacy. Although this went some way towards

outlining computing as a discipline, it was our view that this model

created an artificial divide between aspects of the subject that

were seen as more or less technical. Our more holistic view of

computing recognised that concepts and skills within computing

were far more interconnected.

There are, of course, many existing approaches to dividing

up the subject matter, in the form of exam specifications,

textbooks, schemes of learning, and various progression guides.

We reviewed examples of these from England and beyond, and

decided on some principles for our organisational structure:

n �It should represent the whole of computing, incorporating

what had commonly been categorised as computer science,

information technology, and digital literacy

n �Our structure should be capable of being applied across

phases — the knowledge encountered by five-year-olds should

be categorised using the same model as that used for our

oldest learners

n �The structure would initially focus on the English national

curriculum, but would be independent of any particular exam

specification, and would be capable of adaptation to new

curricula in the future

n �Computing as a discipline is a broad mixture of concepts and

skills that need to be represented in any structure

Following these principles, we initially identified ten themes or

strands that threaded through a learner’s journey in computing

education (see the diagram on the next page). This representation

of the knowledge and skills that make up computing became

known as our computing taxonomy. This taxonomy subsequently

became a cornerstone of the work of the National Centre for

Computing Education in England (of which the Raspberry

Pi Foundation is a consortium partner), providing a common

language to describe computing.

Given the interconnected nature of computing, we embrace a

best-fit approach to content categorisation, choosing the most

appropriate strand or strands for each idea. In developing our

content, we identified that four of the strands were best taught

throughout the others, in context rather than as discrete topics (the

horizontal strands in the diagram on the next page). An example is

‘Safety and security’, which focuses on supporting learners to realise

the benefits of technology without putting themselves at risk. While

this could be taught as one discrete experience, revisiting this strand

throughout a learner’s journey provides regular reinforcement, as

well as grounding it in the context of other strands.

Computing is, of course, a constantly evolving field and as such,

our taxonomy will evolve with it. Since 2018 we’ve developed our

taxonomy to incorporate what we’ve learnt, such as our response

to the rapid emergence of artificial intelligence (AI) in recent years.

AI represents a significant area of study and so is now represented

as its own strand in our current taxonomy.

What we present in this book represents our work so far

in describing the diverse range of concepts and skills within

computing. We hope this book, and our taxonomy framework,

resonates with your teaching. We welcome your feedback and

contributions to help us develop this model further.

INTRODUCTION
S

The Big Book of Computing Content4

5The Big Book of Computing Content

Formal education content produced by the Raspberry Pi Foundation is
mapped to the following strands of computing concepts and skills

HOW WE ORGANISE
COMPUTING KNOWLEDGE

IMPACT OF TECHNOLOGY

DESIGN AND DEVELOPMENT

SAFETY AND SECURITY

EFFECTIVE USE OF TOOLS

AR
TIF

IC
IA

L I
NT

EL
LIG

EN
CE

DA
TA

 AN
D

IN
FO

RM
AT

IO
N

PR
OG

RA
MM

IN
G

AL
GO

RI
TH

MS
 AN

D
DA

TA
 ST

RU
CT

UR
ES

CR
EA

TIN
G

ME
DI

A

NE
TW

OR
KS

CO
MP

UT
IN

G
SY

ST
EM

S

The Big Book of Computing Content6

10 �COMPUTING SYSTEMS,
IN SUMMARY

12 �WHAT IS A COMPUTER?
Computing systems as foundational
knowledge

14 �THE IPO MODEL
The importance of the IPO model to all
aspects of computing

16 �AND OR NOT
Hands-on Boolean logic gates

17 �MINECRAFT
Exploring logic gates in Minecraft

20 �QUANTUM COMPUTING
Introducing the world of
quantum information

36 �CREATING MEDIA, IN SUMMARY

38 �THRESHOLD CONCEPTS
Defining, identifying, and approaching
the teaching of threshold concepts

40 �ART AND COMPUTING
Art, creativity, and computer science

44 �3D-ANIMATED FILM
Democratising digital culture with
3D-animated film

46 �LEADING WITH CONCEPTS
Separating the learning from the tool

66 �PROGRAMMING, IN SUMMARY

68 �BLOCKS TO TEXT
The transition from block- to
text-based programming

70 �LEVELS OF ABSTRACTION
Different perspectives
when programming

73 �TEACHING CHILDREN TO CODE
The benefits of coding

76 �THE WIDER CURRICULUM
Introducing programming through
the broader curriculum

78 �PROGRAMMING ASSESSMENT
A comprehensive approach to
assessing a program

82 �DATA AND INFORMATION,
IN SUMMARY

84 �DATA LITERACY
Fostering data literacy competencies

86 �VISUALISATIONS
Captivating data visualisations

88 �REAL-LIFE DATA
A project to bring data to life

90 �BIG DATA
Teaching databases using big data

50 �ALGORITHMS AND DATA
STRUCTURES, IN SUMMARY

52 �IN DEFENCE OF PSEUDOCODE
The power of pseudocode

59 �CONFIDENCE AND PERSONALITY
The links between computational
thinking and personality

60 �FROM FAKEBOT TO BEE-BOT
Learning to program with Fakebots

62 �ABSTRACTION
Teaching abstraction skills

24 �NETWORKS, IN SUMMARY

26 �TEACHING APPROACHES
The themes and tiers model

29 �FILIUS
A tool to liven up networking lessons

30 �THE JOURNEY OF NETWORKING
Exploring the history of networking

32 �THE PRINCIPLES OF NETWORKING
Using Packet Tracer

CONTENTS
COMPUTING
SYSTEMS CREATING MEDIA PROGRAMMING

DATA AND
INFORMATION

ALGORITHMS
AND DATA
STRUCTURESNETWORKS

The Big Book of Computing Content 7

94 �ARTIFICIAL INTELLIGENCE,
IN SUMMARY

96 �AI ETHICS
Engaging children with AI ethics

98 �BIG IDEAS
Big ideas in AI education

100 �POPBOTS
AI for preschoolers

101 �THE HISTORY OF AI
Snapshots from history to
engage learners

104 �AI IN ACTION
Kick-starting discussions on AI

126 �DESIGN AND DEVELOPMENT,
IN SUMMARY

130 �WORKING INNOVATIVELY
The importance of team diversity

131 �ONE DESIGN, THREE WAYS
Design in the primary classroom

134 �AGILE METHODOLOGIES
Working like a software developer

136 �TESTING
Promoting a culture of positive failure

156 �EFFECTIVE USE OF TOOLS,
IN SUMMARY

158 �THE DIGITAL DIVIDE
Bridging the digital divide

160 �SUPPORTING SEND STUDENTS
Key digital skills for SEND learners

162 �A WHOLE-SCHOOL APPROACH
The benefits of embedding digital
skills across the curriculum

164 �TABLETS
Using tablets to enhance
cross-curricular learning

166 �PHOTOGRAPHY
Creating young digital artists

168 �LOGGING ON
Getting the basics right

140 �SAFETY AND SECURITY,
IN SUMMARY

142 �ONLINE SAFETY
What learners think they know and
what they actually know

145 �LESSONS FROM INDUSTRY
What students can learn from the
cybersecurity industry

146 �DISCRETE ONLINE SAFETY
Rethinking how we can approach
online safety teaching

148 �ONLINE LEARNING
Safeguarding in online lessons

150 �BRINGING CYBERSECURITY
TO LIFE
Activities and tools to engage learners

152 �KNOW THY ENEMY
Learning to think like a hacker

153 �CARRY ON HACKING
Why we should teach children to hack

108 �IMPACT OF TECHNOLOGY,
IN SUMMARY

110 �CONTEXTS TO INSPIRE
A framework of ideas, technology,
and skills

112 �MORALS AND ETHICS
The moral and ethical dimension of
computing education

115 �HACKING AND THE LAW
What the law says about hacking

118 �UPGRADE CULTURE
The environmental impact of
technology

122 �AIR POLLUTION PROJECT
Engaging health and
environmental contexts

ARTIFICIAL
INTELLIGENCE

DESIGN AND
DEVELOPMENT

EFFECTIVE USE
OF TOOLS

SAFETY AND
SECURITY

IMPACT OF
TECHNOLOGY

COMPUTING
SYSTEMS

10 	 COMPUTING SYSTEMS, IN SUMMARY
12 	� WHERE ARE ALL THE

COMPUTING SYSTEMS?
14 	 HOW DOES THIS WORK?
16 	 AND OR NOT: GETTING IT RIGHT
17 	 EXPLORING LOGIC GATES IN MINECRAFT
20 	 QUANTUM COMPUTING:

AS EASY AS A PENNY FLIP

The Big Book of Computing Content 9

he study of computing systems is all about

understanding what a computer is and how its

constituent parts work together as a whole. A solid

grasp of this concept is absolutely essential for any computing

student; understanding how a computer system works allows

learners to write instructions for computers, as well as to

create artefacts with them. Knowing how a system stores

images in memory, for example, might influence how students

create and save images for a specific purpose.

Within this concept, students will focus on hardware and

software, and the further they explore these themes, the more

granular their focus will become. With hardware, for example,

learners will gradually shift their focus from thinking about the

system as a whole, to the individual devices, to how individual

components (for example, the central processing unit or

memory) work, and eventually, to the physical processes on

which the system is built. Similarly, learners will

typically begin by unpacking the difference

between hardware and software, before

coming to understand the different types

of software, and finally, how hardware and

software work together in a computer system.

T IN THIS SECTION,
YOU WILL FIND:

	■ Learning outcomes: 		
computing systems, in summary

	■ What the research says:
what is a computer?

	■ The input–process–output model

	■ Hands-on Boolean logic gates

	■ Logic gates in Minecraft

	■ Introducing the world of
quantum information

The Big Book of Computing Content10

IN SUMMARY

COMPUTING
SYSTEMS

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Identify familiar examples of computing systems in

the local environment

	■ Name types of computing device, such as
laptop, desktop, tablet, etc.

	■ Recognise key features of computing systems

	■ Describe the features and uses of different
computing systems

	■ Explain some capabilities and limitations of
computing systems

	■ Examine how computers process input data in
order to produce outputs (IPO)

	■ Explain that computers require input to
perform a task

	■ Explain that computers produce useful output
from a task

	■ Identify the inputs, processes, and outputs
of specific computing systems

	■ Classify a broad range of input/output devices

	■ Identify the capabilities and limitations
of individual computing devices
and components

	■ Write programs that use the inputs and outputs of
a physical computing device

	■ Describe an extended IPO model that includes
storage (IPOS)

	■ Compare general-purpose, purpose-built,
and embedded devices

	■ Identify the purpose of a computing system’s core
internal components (CPU, memory, storage)

	■ Define an operating system and summarise
its role

	■ Identify simple logic gates (AND, OR, NOT)

	■ Convert between binary and denary
representations of numbers

	■ Explain the purpose of compression and provide
examples of its use

	■ Build and program systems using physical
computing components such as buttons,
LEDs, and sensors

	■ Distinguish between different types of software
such as application, utility, and system

	■ Describe each stage of the fetch–decode–
execute cycle

	■ Compare different types of memory and storage
including cache, RAM, and secondary storage

	■ Describe different methods and media
used to store data

	■ Describe the functions performed by the
operating system

	■ Explain the function of internal CPU
components and their effect on performance

	■ Identify common logic gates and circuit diagrams
and explain their function

	■ Construct truth tables and simple Boolean
expressions to represent logic

	■ Solve problems by using calculations
and conversions with binary, denary, and
hexadecimal numbers

	■ Describe how some common compression
techniques work

	■ Build and program physical computing systems
that exhibit autonomous behaviour, such as
robots, control systems, etc.

	■ Explain the structure and operation of the main
computer architectures

	■ Describe the function, application, and
principle of operation of specialist hardware
and software

	■ Explain the role of registers and buses in the fetch–
decode–execute cycle

	■ Explain the role of the BIOS in configuring
and booting hardware

	■ Explain how resourcing and scheduling are managed
by the operating system

	■ Create and convert between Boolean
expressions, circuit diagrams, and
truth tables

	■ Apply the rules of Boolean algebra to manipulate
logical expressions

	■ Apply bitwise operations on pairs of
binary numbers

	■ Explain the difference between high- and low-level
languages and the need for program translators

IN SUMMARY

Understand what a computer is, and
how its constituent parts function
together as a whole

The Big Book of Computing Content 11

IN SUMMARY

In the table below, you will find learning outcomes associated with

the ‘Computing systems’ strand of the Raspberry Pi Foundation’s

computing taxonomy. These learning outcomes are illustrative of the

kinds of knowledge and understanding that learners could develop in

this area of computing. They are not prescriptive, but instead aim to

illustrate the wide applications of the discipline.

These learning outcomes were originally developed to complement

the English national curriculum for computing, and as such, stage 1

roughly corresponds to ages 5–7, stage 2 to ages 7–11, stage 3 to

ages 11–14, stage 4 to ages 14–16, and stage 5 to ages 16–19.

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Identify familiar examples of computing systems in

the local environment

	■ Name types of computing device, such as
laptop, desktop, tablet, etc.

	■ Recognise key features of computing systems

	■ Describe the features and uses of different
computing systems

	■ Explain some capabilities and limitations of
computing systems

	■ Examine how computers process input data in
order to produce outputs (IPO)

	■ Explain that computers require input to
perform a task

	■ Explain that computers produce useful output
from a task

	■ Identify the inputs, processes, and outputs
of specific computing systems

	■ Classify a broad range of input/output devices

	■ Identify the capabilities and limitations
of individual computing devices
and components

	■ Write programs that use the inputs and outputs of
a physical computing device

	■ Describe an extended IPO model that includes
storage (IPOS)

	■ Compare general-purpose, purpose-built,
and embedded devices

	■ Identify the purpose of a computing system’s core
internal components (CPU, memory, storage)

	■ Define an operating system and summarise
its role

	■ Identify simple logic gates (AND, OR, NOT)

	■ Convert between binary and denary
representations of numbers

	■ Explain the purpose of compression and provide
examples of its use

	■ Build and program systems using physical
computing components such as buttons,
LEDs, and sensors

	■ Distinguish between different types of software
such as application, utility, and system

	■ Describe each stage of the fetch–decode–
execute cycle

	■ Compare different types of memory and storage
including cache, RAM, and secondary storage

	■ Describe different methods and media
used to store data

	■ Describe the functions performed by the
operating system

	■ Explain the function of internal CPU
components and their effect on performance

	■ Identify common logic gates and circuit diagrams
and explain their function

	■ Construct truth tables and simple Boolean
expressions to represent logic

	■ Solve problems by using calculations
and conversions with binary, denary, and
hexadecimal numbers

	■ Describe how some common compression
techniques work

	■ Build and program physical computing systems
that exhibit autonomous behaviour, such as
robots, control systems, etc.

	■ Explain the structure and operation of the main
computer architectures

	■ Describe the function, application, and
principle of operation of specialist hardware
and software

	■ Explain the role of registers and buses in the fetch–
decode–execute cycle

	■ Explain the role of the BIOS in configuring
and booting hardware

	■ Explain how resourcing and scheduling are managed
by the operating system

	■ Create and convert between Boolean
expressions, circuit diagrams, and
truth tables

	■ Apply the rules of Boolean algebra to manipulate
logical expressions

	■ Apply bitwise operations on pairs of
binary numbers

	■ Explain the difference between high- and low-level
languages and the need for program translators

12 The Big Book of Computing Content

hen I first started teaching
programming and algorithms to

five-year-olds, I began by using Bee-Bots,
small floor robots you can program by
pressing directional arrows on their backs.
The theory behind using such devices
is that they are more concrete than
programming on-screen, and therefore
more accessible for younger learners.
However, I kept coming unstuck. How do
learners connect what they’re doing on
a Bee-Bot with the computer systems all
around them? Here is the research I read
and the tasks I tried on my quest to find
an answer!

Manipulatives
Let’s take a minute to go back to some
of our favourite learning theorists: Jean
Piaget and Jerome Bruner (helloworld.
cc/piaget1952 and helloworld.cc/
bruner1964). Piaget believed learners
couldn’t even begin abstract thinking until
they were eleven, and Bruner recognised
that learners needed to do repeated actions
first (action-based thinking) before they
could represent those actions on paper
(image-based thinking). Both theorists
support the idea that we need to work on a
learner’s concrete understanding and that,
as a learner progresses, they will transfer
this to more abstract contexts.

This application of learning theory
supports what many educators have
found when using manipulatives such
as Bee-Bots. For example, researchers
Sapounidis and Demetriadis conducted a

study to compare a tangible user interface
for controlling a robot with a graphical user
interface (helloworld.cc/sapounidis2013).
In interviews with the participating
children, they initially preferred the tangible,
suggesting that it seemed more fun and
engaging. Younger children got on better
with the tangible system, although this could
be more to do with their developing mouse-
control skills. Other research on physical
computing also finds increased engagement
with hands-on tools, and greater problem-
solving skills, so there is definitely support
for this approach — but this is where things
started to unravel for me.

I found that learners could explain what
an algorithm was, and that a program was
‘a set of instructions that runs on a computer
to tell it what to do’. Both met the curriculum
needs, but I wasn’t convinced they could
link these two facts together. Could they
connect what they were doing on the Bee-
Bot to the computing systems around them?
Did they understand what a computer was?

What is a computer?
According to my class of nine- to eleven-
year-olds, a computer is:

n A piece of technology
n A keyboard and a screen
n A search engine
n A machine used for work
n A metal brain
n A machine with a keyboard
n An information device
n Electric

W This simple question highlighted a wealth of
alternate conceptions about programming
and computing systems. Many children
identified that a computer needed a
keyboard. Many also believed that the
terms ‘machine’, ‘technology’, ‘electrical
device’, and ‘computer’ were all synonyms.
The other commonality was describing the
computer’s function, as if we just need to
know what it does to define it. This view of a
definition leads to a reduced understanding
of what computers are capable of.

Here’s a useful activity to explore this
question with younger children. First, get a
piece of paper folded into quarters. In the
first quarter, learners have two minutes to
draw a picture of a computer. Nearly all of
them will draw a laptop. Discuss what they
drew — did their laptops include a keyboard
and a mouse? What about a screen? By
acknowledging the parts of a computer, you
can later explore which parts are necessary
for a computer to work. Now move on to
the second quarter. This time, ask learners
to draw a different type of computer;
you will usually get a mixture of desktop
computers or games consoles connected to
a TV. Again, talk about the parts. Now you
can have a discussion about there being
no keyboard on a games console. Repeat
this process, but change the question to
‘What objects do you think have a computer
inside them?’ Each drawing they do leads to
interesting discussions, from traffic lights, to
remote control cars, to iPads.

My learners now had two discrete
chunks of knowledge: how to program

STORY BY Sway Grantham

WHERE ARE ALL THE
COMPUTING SYSTEMS?

RESEARCH

http://helloworld.cc/piaget1952
http://helloworld.cc/piaget1952
http://helloworld.cc/bruner1964
http://helloworld.cc/bruner1964
http://helloworld.cc/sapounidis2013

13The Big Book of Computing Content

a Bee-Bot, and that laptops were
computers. However, without a bridge
to connect them, this learning began to
seem disjointed. If it’s not a computer,
it can’t run a program, so what are
they learning from playing with it? The
answer took me back to the research
about manipulatives and those early-
learning theories I introduced at the start
of the article. Learners needed to have
a concrete, conceptual understanding
of what a computer is before they
could start comprehending the more
abstract role of a program in that system.
We needed to spend more time teaching
computing systems.

What does that look like?
Even the youngest learners can start
learning about what a computer is and how
to recognise one. They start with spotting
buttons, wires, and batteries, and then
talk about what they do. If they recognise
that when a button is pressed, there are
instructions to follow, they’re beginning
to understand what a computer is and
where you’re likely to find them. As children
move through lower primary, we can begin
spotting buttons and discussing what might
happen if we press them. This is where we
can start differentiating between things that
use electricity and those that run a program.

By upper primary, we explore the world
around us and try to work out what the
algorithm would be. We use input–process–
output to decide if something has a computer
inside it (see the next article for more on this).
Each time we use this model, we reaffirm
what an input and output are, as well as
the basic concept of programs running on
computers. For example, what’s the input on
an iPad? How do we tell it what to do? There’s

a home button and a touchscreen, or we can
talk to it using Siri. What code runs when we
press the home button? Something like ‘when
button pressed, show home screen’. And then
the output? We can see it on the touchscreen.
This simple model allows us to test different
machines or items of technology and tell if
they’re computers or not.

One misconception I regularly hear
is children referring to a monitor as a
computer. Using this model, we can test
this alternate conception. What’s the input?
There are buttons. What happens when
we press them? It says ‘no input’. What’s
the program it’s running? It’s not doing
anything, because there’s no laptop plugged

in. Then is it a computer? No. We now have
a way to start conversations about whether
a device is a computer and therefore
whether a device is running a program.

Having developed this solution to my
problem with teaching computing systems
prior to programming, I repeated the ‘What
is a computer?’ question a year later with
learners of the same age. This time I got
much more varied and detailed responses.
Here are some examples:

n �A computer has lots of switches and

plugs to plug things into; it doesn’t have
to have a screen

n �A computer needs code on a microchip
to make it work; without that, pressing a
letter would make nothing happen

n �Not all computers look like a computer;
they have different shapes and designs
and are used for different things

While these answers are not perfect, in just
a year I was seeing noticeable progress
in the complexity of the answers given.

I found similar benefits when teaching
programming, where learners could tell me
that a wide range of devices ran programs,
including Bee-Bots and beyond! Since
these early discoveries, I ensure that each
September, I start teaching with an age-
appropriate introduction to computing
systems and make regular links back to this
learning when I teach programming later
on. The Bee-Bot discussed here was one
example of a manipulative, but there are
many more examples, from floor robots, to
Raspberry Pis, to microcontrollers. There are
many ways for you to challenge learners’
concepts of what a computer is, including
embedded systems where you can find
computers in washing machines, traffic
lights, or automatic doors.

Learners must learn the ubiquitousness of
programming to grow their understanding of
a world they’re a part of. And as a teacher,
once you start these conversations, you
never know where they’ll end up! Take
some time this week to ask your class
‘What is a computer?’ and carve out time
in your curriculum to ensure learners
have a foundational understanding of
computer systems.

RESEARCH

WHAT IS A COMPUTER? THIS QUESTION
HIGHLIGHTS A WEALTH OF ALTERNATE
IDEAS ABOUT COMPUTING SYSTEMS

“

FURTHER READING
 �Piaget, J. (1952). The origins of
intelligence in children (Vol. 8, No.
5, 18–1952). New York: International
Universities Press. helloworld.cc/
piaget1952

 �Bruner, J. S. (1964). The course
of cognitive growth. American
Psychologist. 19(1), 1. helloworld.cc/
bruner1964

 �Sapounidis, T., & Demetriadis, S.
(2013). Tangible versus graphical user
interfaces for robot programming:
exploring cross-age children’s
preferences. Personal and Ubiquitous
Computing. 17(8), 1775–1786.
helloworld.cc/sapounidis2013

http://helloworld.cc/piaget1952
http://helloworld.cc/piaget1952
http://helloworld.cc/bruner1964
http://helloworld.cc/bruner1964
http://helloworld.cc/sapounidis2013

14 The Big Book of Computing Content

FEATURE

The input–process–output model can support young learners with
understanding the technology around them

HOW DOES THIS WORK?
ometimes, when you ask a
question of young learners, you are

pretty sure you know what their response
will be. Other times, they take you by
surprise: you blink, try to keep calm,
and begin unpicking exactly where that
answer came from. This is what happened
when Sway asked a class of seven- to
eight-year-olds how automatic doors
worked. One child rationally explained
that a person was watching the door on a
camera, and when someone approached
the door, they pressed a button and the
doors opened. Simple.

While this is a perfectly reasonable
explanation, it is not the correct one.
Instead, it highlights that our learners often
have no idea how information technology
(IT) actually works, what it does, or why
something is happening. This makes it seem

magical at best, and sentient at worst. This
article will explore some common alternate
conceptions that learners hold about
computing systems, and how you can use
the input–process–output (IPO) model to
support learners in making sense of the IT
around them.

The IPO model
All computers work with inputs, processes,
and outputs (see Figure 1). All computers
accept inputs, which are entered into
or received by a computer. They can be
generated in many ways, including by a
user pressing a key on a keyboard, or a
computer receiving a signal from another
device. The process then determines what
the computer does with that input. It can
process the same input in different ways,
depending on the program running. The

S output is how the computer finally presents
the results of the process. It can return the
results to the user in many ways, such as
displaying text on a screen, creating printed
materials, or playing a sound from a speaker.

In today’s connected world, it’s easy
to overlook the processes taking place in
devices that learners don’t immediately
recognise as computer systems, such as
pedestrian crossings or washing machines.
This can lead to learners developing
alternate conceptions about what is
happening, making it harder for them to
apply their understanding of programming
or input and output devices as they gain
more knowledge. We can’t build knowledge
on insecure foundations, so the sooner we
identify these misconceptions, the better.

Does a lamp have a computer inside it?
As we start to pay attention to the world
around us, we begin to recognise different
groups of objects that have similar
properties, such as natural or manufactured,
mechanical or electrical. However, as these
objects become more complex, it can be
hard to tell which groups they belong
to. This ambiguity can make learners
overgeneralise their understanding of how
something works. Taking time to break this
down with the IPO model allows learners to
reflect on their assumptions.

Let’s imagine a desk lamp. Does it
have an input? Yes — I press a button to
trigger what I want to happen. Does it
have an output? Yes — the light turns on.
Now comes the important part: is there
a process? No — there is no program
receiving data that the button has been n �Figure 1 A simple example of the IPO model

The Big Book of Computing Content 15

FEATURE

pressed. Instead, the switch on the
lamp creates a circuit for the electricity
to flow through, allowing the bulb to
light. Therefore, most lights do not have
computers inside of them.

Computers are really clever
The feeling we have that computers are
magical, before we start to understand
how they work, is often reinforced when
the device can do something we do not
know how to do ourselves. One of the most
prevalent and early alternate conceptions
that learners hold about computers is that
they are ‘really clever’.

To address this, let’s consider looking
for information on a website to answer
a question. What is the input? Using the
keyboard to type in keywords that tell
the computer what I’d like to know. The

search engine’s computer then processes
this data by running a program to find
relevant information. What is the output?
A website showing a list of other websites
on my screen. Do I have the answer to my
question? Most often, no. I now have to
go to each web page and decide if it has
the answers that I need. Taking learners
through each step in the model highlights
how much of the process is reliant on
human interaction to work, and how
computers are only as powerful as the
humans that use and program them.

IPO takes place on one device
Without understanding how a system
works, it can be very easy to make
assumptions. One afternoon, the internet
went down at my (Josh’s) school. My class,
however, didn’t believe me! Why? Because
the interactive whiteboard was still working.
These assumptions become more important

when we begin considering personal
data, what’s stored locally on the device
you are using, and what’s uploaded to the
internet. I’ve found that this is particularly
challenging with certain apps on tablets
that may also back up online.

To unpick this, it’s important to start
considering larger and more complex
systems, such as ATMs. The input (data from
the keypad) and the output (the information
displayed on the screen) are clear. However,
much of the process is not happening on the
computer within the ATM — it’s using the
internet. The computer in the ATM sends the
input data through the internet to the server
at the cardholder’s bank, to check it’s correct.
This is the process. Then the server sends
back the output data to show the outcome
on the screen. The first data processed will
check whether the PIN number is accurate,

but each instruction after that will begin
the process again. Even if learners can’t
accurately recognise what’s happening on a
device and what’s happening online, having
these IPO conversations can support them in
thinking about what’s happening before they
create content and potentially share it online.

From programming, to collecting data from
sensors, to recognising technology around
us, the IPO model applies to almost all
aspects of computing. Starting activities with
the question ‘How does this work?’ can
evolve into learners recognising the many
and varied IPO systems in the world around
them. You can then get creative, letting
learners invent imaginary systems to put the
IPO model into practice (see helloworld.cc/
tccsystems1). Initially, the processes will be
assumptions, but as learners’ experiences
grow, these approaches become a chance
for them to imagine the computer systems
that will change the world.

OUR LEARNERS OFTEN HAVE NO IDEA HOW
INFORMATION TECHNOLOGY WORKS, WHAT
IT DOES, OR WHY SOMETHING IS HAPPENING

“

JOSH CROSSMAN AND
SWAY GRANTHAM
Josh is a programme coordinator at the Raspberry
Pi Foundation, working across programmes such
as the Teach Computing Curriculum and Hello
World. Sway is a senior learning manager at
the Raspberry Pi Foundation. She leads a team
developing computing resources for primary
teachers. Josh and Sway are both former primary
teachers (@SwayGrantham).

The Raspberry Pi Foundation’s free online
courses:
n Teach Computing Systems and Networks

to 5- to 11-year-olds: helloworld.cc/
systemscourse

n Get Started Teaching Computing in
Primary Schools: Preparing to teach 5–11
year olds: helloworld.cc/primarycourse

Free lessons and activities in the Teach
Computing Curriculum:
n Connecting computers (ages seven to

eight): helloworld.cc/tccsystems1
n Systems and searching (ages nine to

ten): helloworld.cc/tccsystems2

IPO Model overview document:
n helloworld.cc/IPOsheet

FURTHER RESOURCES

http://helloworld.cc/tccsystems1
http://helloworld.cc/tccsystems1
http://helloworld.cc/systemscourse
http://helloworld.cc/systemscourse
http://helloworld.cc/primarycourse
http://helloworld.cc/tccsystems1
http://helloworld.cc/tccsystems2
http://helloworld.cc/IPOsheet
https://twitter.com/SwayGrantham

16 The Big Book of Computing Content

FEATURE

Michael Jones brings hands-on Boolean logic gates to his upper-secondary classroom

AND OR NOT: GETTING IT RIGHT

TTL LOGIC CIRCUIT
With this combination of parts, your
students can build and test simple two-input
Boolean systems. Just swap out the TTL to
change the type of logic gate. Apart from
the TTL chips, the components you need
are likely to be available from your design
and technology department cupboard. Add
another chip to test the Boolean logic on
two chips/gates in series.

oolean logic can be interesting
and enjoyable, and can be learnt

in a practical way: this was the promise
I made to my upper-secondary students.

NOT getting it right
Staring at the first year of a new GCSE
syllabus a few years ago, I started
wondering how to teach it. In particular,
I was concerned about some of the drier
aspects, such as logic gates.

To quote our exam board, OCR:

LEARNERS SHOULD HAVE STUDIED THE

FOLLOWING:

n TRUTH TABLES

n �COMBINING BOOLEAN OPERATORS

USING AND, OR, AND NOT TO TWO

LEVELS

n �APPLYING LOGICAL OPERATORS IN

APPROPRIATE TRUTH TABLES TO SOLVE

PROBLEMS

The key word here is ‘studied’.
Traditionally, Boolean logic is delivered
with: “This is a NOT gate. This is the
truth table for the NOT gate. This is the
symbolic representation of the NOT gate.”
Repeat for the other gates. If this works for
you and your students, fine. However, for
many students it is not fine, and it turns a
learning opportunity into a chore.

I realised that most students could
understand the theory, but found it hard to
relate this to a real computer, full of circuits
and electrical signals. I didn’t feel that my
students were getting the full value out
of this topic. With the demise of design
and technology departments across
UK schools, we may have lost the link
between the circuit and the theory.

AND getting it right
What did we do about it? In that first year
of the new syllabus, our investigation

of logic gates was just that — an
investigation. Going back to the very
basics of computer circuits, armed with
breadboards, resistors, and TTL (transistor–
transistor logic) chips, we undertook a
journey into building systems that model
Boolean logic. This approach incorporated
an exploration of basic electronics, and
taught me not to assume that my students
understand how circuits work. In planning
the sessions, I initially made the mistake of
assuming an understanding of resistors,
anodes, cathodes, and LEDs.

Working with the basic components
enabled my students to embed the
knowledge that a circuit is essentially the
same, regardless of which logic gate they
are creating. This allowed us to conduct
blind testing of the chips based on the
output produced through the pressing of
the two input buttons. The process was
very much hands-on and unplugged:
not a line of Python or Java in sight, and
yet we were programming. If you can
encourage students to ask the basic
question ‘Why does the light go on if I hold
down both buttons, but not if only one
button is pressed?’, it is only a short hop
from there to creating the truth table.

Advanced logic
Early in the process, I recognised that
we had an opportunity to go beyond
the confines of the syllabus and launch
more advanced logic gate investigations,
through the development of half and
full adders. Using physical circuits that
were a natural development of the two-
button, one-TTL chip circuit (requiring
an additional input chip and some basic
components to service the LEDs), we
created systems that could add two bits
and output the result.

As a result of their explorations, the
students now understand Boolean logic.

More importantly, they also understand the
integral part it plays in computer systems
as diverse as calculators and aircraft
control computers.

B

MICHAEL JONES
Michael is the director of computer
science at Northfleet Technology College
in the UK. He is a CAS Master Teacher,
Raspberry Pi Certified Educator, Chartered
Information Technology Professional, PGCE
Subject Leader, MIT App Inventor Educator,
and Specialist Leader of Education
(@MikeJonesCSTalk).

https://twitter.com/MikeJonesCSTalk

The Big Book of Computing Content 17

FEATURE

Martin O’Hanlon shares how you can introduce logic
gates to students by creating circuits in Minecraft

EXPLORING LOGIC
GATES IN MINECRAFT

ogic gates can be difficult to
visualise, and it can be tricky to

understand why they are useful in the real
world. They are often described as black
boxes; their operations being entirely
abstract, with the output being the only
indication of their function. Minecraft
(minecraft.net) is a brilliant tool that can
help bring logic gates to life for you and
your learners, providing a sandbox to
create logic gates from simple components,
understand their operation, and connect
them to outputs in a virtual world before
exploring how they react to inputs.

Building circuits in Minecraft
Before looking at logic gates, it’s
important to first understand how you
can create circuits and transmit binary

signals in Minecraft. In the real world,
circuits are created by using wires to
conduct electricity, and the presence of
an electrical voltage (meaning there is
electricity flowing through the circuit)
indicates that the output is 1, or on. In
Minecraft, circuits are created using
‘redstone dust’, a material used to conduct
power (see Figure 1), and as in the real
world, electricity flowing through the
circuit indicates that the output is 1, or on.
Input devices in Minecraft (for example,
buttons, switches, and pressure plates)
generate power that can be transferred to
output devices (for example, lamps, doors,
and dispensers). For instance, connect
a switch to a lamp block using redstone
dust and turn the switch on; power is
conducted through the redstone dust and
the lamp turns on (Figure 1).

In addition to redstone dust and
input and output devices, there are
also components for making more
sophisticated circuits, such as redstone
torches, repeaters, and comparators.
Redstone torches are essential for
creating logic gates, as they are not only
a source of power, similar to a battery,

L

but they can also invert a signal (for
example, if the power is on, the torch will
be off, and vice versa). This ability to act
like a switch allows you to use redstone
torches in similar ways to transistors, the
basis of all logic circuits.

Constructing logic circuits
By connecting redstone dust and redstone
torches together in the right configuration,
you can create logic gates. The simplest
logic gate is a NOT gate whose output is
the opposite of the input (for example, if
the input is on, the output is off). This can
be produced using a redstone torch to
invert the input (Figure 2).

n �Figure 1 The power from the switch transfers through the redstone
dust and turns the lamp on

n �Figure 2 A switch is mounted on a block and connected to a
lamp via a redstone torch; when the switch is off, the lamp is
on, and vice versa

http://minecraft.net

18 The Big Book of Computing Content

FEATURE

A practical example of the use of a NOT
gate is to create a night light. You can do
this by connecting a daylight detector
(which is powered when the sun is up) to a
lamp via a NOT gate (Figure 3). At night, the
daylight detector will be off; the NOT gate
will invert this signal and turn the lamp on.

n �Figure 3 A night light which uses a NOT gate to turn on a
lamp when it gets dark n �Figure 4 NOT, OR, AND, and XOR logic gates created in Minecraft

You can also create OR, AND, and XOR
gates using redstone torches, dust, and
blocks (Figure 4):

n �An OR gate is simply the connection
between two inputs. When either or both
inputs are on, the output is also on.

n �An AND gate’s output is on when both
inputs are on. To create an AND gate,
you need to use two redstone torches
to invert the input connected to a third
redstone torch, which will output on
when both inputs are also on.

n �An XOR (exclusive OR) gate’s output
is on when either input is on, but off
when both inputs are on. The layout

of the XOR gate with redstone is more
complicated, needing seven redstone
torches connected together. This mirrors
the complexity of constructing an XOR
from NOT, OR, and AND gates.

Investigating how these gates work,
and seeing the interaction between the
input switches and the lamp, can help
learners develop an understanding of each

Fully functional computers have been created using redstone in Minecraft by building on top of
logic circuits like those introduced in this article.

There are some very impressive builds, including this quad-core computer with user interfaces
and displays (helloworld.cc/minecraftcomputer).

A REDSTONE COMPUTER

http://helloworld.cc/minecraftcomputer

The Big Book of Computing Content 19

FEATURE

REVIEW THE INPUT AND OUTPUT BLOCKS
AND COMPONENTS, AND LET YOUR
IMAGINATION GUIDE WHAT YOU CREATE

“

n �Figure 5 An AND gate is used to create a door that can only
be opened by two players working together

n �Figure 6 You can create more complex circuits, such as this
automatic sheep alarm, by linking multiple gates together

MARTIN O’HANLON
Martin loves technology and creates online
learning experiences for the Raspberry Pi
Foundation. As a child he wanted to either be a
computer scientist, an astronaut, or a snowboard
instructor. You will find him on Twitter talking
about all these things (@martinohanlon).

gate’s operation and act as an engaging
introduction to truth tables.

Connecting the Minecraft world
Using these logic gates and different
input and output devices in Minecraft, you
can create realistic devices, for example,
a door that can only be opened by two
players at the same time by using two

buttons connected to a door via an AND
gate (Figure 5). This is also an excellent
opportunity to introduce logic circuit
diagrams, connecting the abstract to the

concrete (see the diagram in the top left
of Figure 5).

Multiple logic gates and circuits can also
be linked together to create more complex
devices. Take some time to look through
the different input and output blocks and
components in Minecraft, and let your
imagination guide what you create. You may
also find it useful to create a logic circuit

diagram before embarking on your build.
While writing this article, I experimented

myself, and created an alarm that beeps
when one of my sheep in the Minecraft
world leaves its pen. The alarm is
automatically activated at night, but
also has a switch so I can also turn it on
manually during the day (Figure 6).

Minecraft and its redstone give you the
opportunity to play and experiment with
logic gates and circuits, without being
constrained by the physicality of creating
actual electrical circuits. I hope you have as
much fun as I did!

©
MI

KH
AI

L/
st

oc
k.a

do
be

.co
m

http://stock.adobe.com
https://twitter.com/martinohanlon

20 The Big Book of Computing Content

FEATURE

Andreas J. C. Woitzik and Stefan Seegerer introduce the world of
quantum information through a quantum penny flip game

QUANTUM COMPUTING:
AS EASY AS A PENNY FLIP

uantum computing has become
one of the hot topics in new

technologies over the last few years.
Put simply, a quantum computer

is “a machine that harnesses some
of the unique properties of quantum
physics to solve problems that are too
complex for regular computers and
even supercomputers” (helloworld.cc/
quantumc). There are strong promises of a
possible quantum speed-up of computers,
though there are still many obstacles to
overcome. In 2019, researchers claimed
they had achieved quantum supremacy,
a situation in which a quantum computer
can solve a specific task much faster than
any classical computer could (helloworld.
cc/arute2019). The specific task they

solved was highly artificial and not useful
at all, but it showed us that quantum
technologies are progressing fast. With
many players from industry investing a
lot of money and time in this technology,
it cannot hurt for students to learn a little
more about the topic.

So let us start you off. We are all used
to traditional computers with their bits and
bytes. Their power stems from being able
to very quickly and efficiently manipulate
those bits, which we interpret as either 0
or 1. Quantum computing is different: the
fundamental bit of information is a qubit
(quantum bit). Qubits are used to store
quantum information. A qubit can take the
values 0 or 1, but more than that, it can also
store a superposition of them both. Being in
a superposition means that the qubit can be
partially regarded as a 0 and partially as a 1
at the same time.

Quantum penny flip game
Students can find quantum computing hard
to grasp. To make it more approachable,
we can describe superpositions, one of the
core concepts, with a quantum penny flip
game. David Meyer originally proposed
this game in a 1998 paper, but we have
created an online version of the game at
helloworld.cc/quantumpenny. Before you
continue reading, give the game a go — it
is intended to be played by two people
on a mobile phone.

FEATURE

In the game, two people, let’s say
Alice and Bob, compete in predictions
about the outcome of a penny flip. In the
classical world, if we spin a coin, there
is a 50 percent chance of it landing on
either side, heads (0) or tails (1). When it is
spinning, we can consider the coin to be in
a superposition of heads and tails. In this
version of the game, Alice would prepare
the penny as either heads or tails, put it in a
box, and give the box to Bob. He would then
decide whether to flip the box, and return it
to Alice. Alice could also choose to flip the
box again before opening it with Bob. If the
coin showed heads, Alice would win.

In the quantum version, Alice gets a
special quantum coin which she can prepare
as either heads, tails, or in a superposition
of both. The superposition is visualised by
a spinning coin. If Alice decides to prepare
the coin in a superposition, Bob’s flip of
the box does not alter the state of the coin.
Since Alice can also revert the superposition
and Bob cannot change it, she now has
full knowledge of the state of the coin and
therefore can always win the game.

Further discussions
This game functions as a motivating entry
point to the world of quantum computing.
While the classical coin behaves like
a bit, the quantum coin behaves like a
qubit. A subsequent discussion in class
allows students to transfer the principle

Q

n �A quantum coin can be in a state of heads, tails, or a
superposition of them both

http://helloworld.cc/quantumc
http://helloworld.cc/quantumc
http://helloworld.cc/arute2019
http://helloworld.cc/arute2019
http://helloworld.cc/quantumpenny

The Big Book of Computing Content 21

FEATURE

to computational ideas. For example, it is
easy to see that a bit can be represented
by a qubit, as the quantum coin has the
states of heads, tails, and the superposition
of heads and tails. With that in mind, it
can be argued that a quantum computer
can perform every computation a classical
computer can do, as long as they both have
the same number of bits and qubits. But

by using its additional states, a quantum
computer can, in theory, perform some
tasks better than its classical counterpart.

You can also move to discussions of
a more advanced algorithm, Grover’s
algorithm, which uses the concept of
superposition to search in an unsorted
list. Imagine your unsorted wardrobe
contains 100 coats in 100 compartments
and you want to find your yellow coat. In
a worst-case scenario, you might need to
look in all the compartments before finding
the coat. Using superposition, though,
Grover’s algorithm only has to look at the
wardrobe ten times before revealing the
right position of the object you are looking
for (see helloworld.cc/groversalgorithm for

more). This is useful in a lot of problems that
involve an unstructured search.

The penny flip activity can also lead to a
discussion about the fragility of quantum
information and from there, to quantum
cryptography. Once a superposition state is
observed, it collapses, and from there, the
coin can show only either heads or tails.
This feature, an obstacle for those wanting

to build a quantum computer, forms the
basis of many quantum cryptography
protocols. The BB84 key exchange
protocol, for example, uses superposition
not only to exchange cryptographic keys
securely, but also to uncover whether there
is an eavesdropper (see page 34 of issue
18 of Hello World for more).

Quantum computing is still very new,
and the various unknowns and the abstract
nature of it can make it hard for students to
grasp. An activity such as the penny flip
game, though, can provide an accessible
entry point to a technology that may
eventually change the way we understand
the world. What better incentive could
there be to give it a go?

n �Students can explore the game, searching for a reliable strategy

A QUANTUM BIT, OR QUBIT, CAN TAKE THE
VALUES 0 OR 1, BUT CAN ALSO STORE
A SUPERPOSITION OF THEM BOTH

“

STEFAN SEEGERER
Stefan is the quantum education manager
at IQM Quantum Computers, exploring ways
to make quantum computing accessible to
everyone (@StefanSeegerer).

ANDREAS J. C. WOITZIK
Andreas is a PhD student in quantum
information science in the Quantum Optics
and Statistics group at the University of
Freiburg, Germany. He is interested in
bringing quantum information to schools.

©
An

ne
ma

rie
 W

oe
ste

http://helloworld.cc/groversalgorithm
https://twitter.com/StefanSeegerer

NETWORKS
24 	 NETWORKS, IN SUMMARY
26 	� APPROACHES TO TEACHING NETWORKING
29 	 MAKE NETWORKS INTERESTING 		
	 WITH FILIUS
30 	 THE JOURNEY OF NETWORKING
32 	� THE PRINCIPLES OF NETWORKING

MADE EASIER WITH PACKET TRACER

The Big Book of Computing Content 23

etworks is a strand very closely related to, and

often taught in conjunction with, computer systems.

While learning about computer systems is about

understanding how these individual systems work, studying

networks is about understanding how they work together. In

our interconnected world, understanding how networks work

is crucial for all computing students.

Many learners will develop experience of using networks

before they explore how they work, which gives them an

understanding of their value and some of their applications.

Learners are likely to begin thinking in broad terms about what a

network is and some common components, before exploring the

role of addresses, protocols, and so on. Later, they will explore

how different networks are physically connected, and how data

is transmitted through different layers and across a network.

One challenge this topic presents is that it is very theoretical

in nature, as hands-on activities can be impractical in school.

However, educators can make the area more concrete by using

network simulation tools (such as Packet Tracer)

and relating to learners’ direct experiences of

being connected. This strand is also rich with

opportunities for exploring other related

strands, including safety and security, and

data and information.

N IN THIS SECTION,
YOU WILL FIND:

	■ Learning outcomes: 		
networks, in summary

	■ What the research says:
the themes and tiers model

	■ Livening up your networking lessons

	■ The history of networking

	■ Using Packet Tracer

The Big Book of Computing Content24

IN SUMMARY

NETWORKS

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Describe some uses of the World Wide Web

	■ Make use of online tools for searching,
authoring, and communicating

	■ Explain that computers can work together

	■ Explain how the internet operates as a global
network of networks

	■ Identify internet services other than the
World Wide Web

	■ Describe how search engines find, select, and
rank results

	■ Explain that all networked devices have
their own IP address

	■ Explain the need for common methods (protocols)
of communication

	■ Describe how data is transmitted in small
chunks or ‘packets’

	■ Identify practical uses of networks along with
common network components

	■ Explain how bandwidth can be used as a measure
of network performance

	■ Describe and give examples of networking
protocols used to provide different services

	■ Describe some of the technical vulnerabilities
associated with computer networks

	■ Explain the role of a firewall in protecting
a network

	■ Outline the journey of a message sent
across a network

	■ Identify scenarios where wired or wireless
networks are more suitable

	■ Describe the use and structure of different types
of network (WAN, LAN, PAN)

	■ Explain how physical networks can host
multiple associated logical networks

	■ Make use of simulations to explore the
transmission of data through a network

	■ Describe how DNS servers translate URLs
into IP addresses

	■ Outline how wired and wireless networks can be
configured for performance and security

	■ Describe how a network can be represented
as layers using the TCP/IP model

	■ Explain how data passes through each network
layer as it is transmitted and received

	■ Explain how data transmission is measured and
categorised and the factors that affect performance

	■ Explain the domain name hierarchy and how
domain name servers resolve IP addresses

	■ Compare client/server with peer-to-peer
communications systems and understand how
client/server systems communicate

	■ Describe the purpose and function of a
comprehensive range of network hardware

	■ Describe each layer within the TCP/IP and OSI
models and how data passes between them during
transmission

	■ Describe a wide range of protocols
and standards used across a layered
network model

	■ Explain the relationship between MAC and
IP addresses

	■ Explain how data is encapsulated at each
layer as segments, packets, and frames

IN SUMMARY

Understand how networks can be
used to retrieve and share information
and enable global communication

The Big Book of Computing Content 25

IN SUMMARY

In the table below, you will find learning outcomes associated with

the ‘Networks’ strand of the Raspberry Pi Foundation’s computing

taxonomy. These learning outcomes are illustrative of the kinds of

knowledge and understanding that learners could develop in this

area of computing. They are not prescriptive, but instead aim to

illustrate the wide applications of the discipline.

These learning outcomes were originally developed to complement

the English national curriculum for computing, and as such stage 1

roughly corresponds to ages 5–7, stage 2 to ages 7–11, stage 3 to

ages 11–14, stage 4 to ages 14–16, and stage 5 to ages 16–19.

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Describe some uses of the World Wide Web

	■ Make use of online tools for searching,
authoring, and communicating

	■ Explain that computers can work together

	■ Explain how the internet operates as a global
network of networks

	■ Identify internet services other than the
World Wide Web

	■ Describe how search engines find, select, and
rank results

	■ Explain that all networked devices have
their own IP address

	■ Explain the need for common methods (protocols)
of communication

	■ Describe how data is transmitted in small
chunks or ‘packets’

	■ Identify practical uses of networks along with
common network components

	■ Explain how bandwidth can be used as a measure
of network performance

	■ Describe and give examples of networking
protocols used to provide different services

	■ Describe some of the technical vulnerabilities
associated with computer networks

	■ Explain the role of a firewall in protecting
a network

	■ Outline the journey of a message sent
across a network

	■ Identify scenarios where wired or wireless
networks are more suitable

	■ Describe the use and structure of different types
of network (WAN, LAN, PAN)

	■ Explain how physical networks can host
multiple associated logical networks

	■ Make use of simulations to explore the
transmission of data through a network

	■ Describe how DNS servers translate URLs
into IP addresses

	■ Outline how wired and wireless networks can be
configured for performance and security

	■ Describe how a network can be represented
as layers using the TCP/IP model

	■ Explain how data passes through each network
layer as it is transmitted and received

	■ Explain how data transmission is measured and
categorised and the factors that affect performance

	■ Explain the domain name hierarchy and how
domain name servers resolve IP addresses

	■ Compare client/server with peer-to-peer
communications systems and understand how
client/server systems communicate

	■ Describe the purpose and function of a
comprehensive range of network hardware

	■ Describe each layer within the TCP/IP and OSI
models and how data passes between them during
transmission

	■ Describe a wide range of protocols
and standards used across a layered
network model

	■ Explain the relationship between MAC and
IP addresses

	■ Explain how data is encapsulated at each
layer as segments, packets, and frames

26 The Big Book of Computing Content

APPROACHES TO
TEACHING NETWORKING

e can see the use and application
of computing devices in many

areas of our world, from the personal
devices we use on a daily basis to the
systems that control and automate
industrial processes. Through these
devices, we are almost always connected
to a wider network in some form or
another. An understanding of how our
networks, systems, and devices work is
therefore foundational knowledge for all
students of computing.

Teach Computing and the Raspberry
Pi Foundation propose that we can
organise the knowledge and skills within
the teaching and learning of networks
and computer systems into four broad
themes (helloworld.cc/rpf2021). In turn,
we can then divide these themes into four
tiers of detail/abstraction, and the relevant

STORY BY Katharine Childs, James Robinson, and Andy Bush

W concepts can be mapped to each of the
resulting 16 areas as a themes and tiers
model (Figure 1).

The themes and tiers model
The four key themes are as follows:

HARDWARE
This covers the physical devices and
components that work together to form
a computer system. The deeper learners
explore this theme, the more they focus on
how different components work, as well as
the logical concepts and physical processes
on which the system is built.

SOFTWARE
This encompasses internet services
(including cloud computing), operating
systems, applications, utilities (such as

drivers), and assembly/machine-code
language. Learners begin by understanding
software that is visible to them, such as
the operating system on their computer,
before moving onto more abstract
software concepts.

NETWORK ARCHITECTURE
This includes an understanding of the
different types of computer network, the
components that make up a network, and
how these components are connected
together. As learning in this theme
progresses, learners can design and
build their own simple network to a
given specification.

DATA TRANSMISSION
This theme focuses on how data moves
around networks. Students begin by
learning about common protocols for
transferring data across networks, and then
move on to understanding methods to make
sure data is transmitted securely, reliably,
and rapidly.

While these themes help describe the
content within the study of networks and
computer systems, they are still very broad
concepts. At different points in a learner’s
journey, they may explore the same or similar
concepts, albeit from a different perspective
or level of abstraction. For example, within
the data transmission theme, learners may
first find out that devices within a network
can communicate with each other. Later,
they explore the reasons why protocols are
needed, and after they delve deeper, they

RESEARCH

n �Figure 1 The themes and tiers model
of computer systems and networks

http://helloworld.cc/rpf2021

The Big Book of Computing Content 27

become aware of a range of protocols and
their uses. Eventually, they become familiar
with how those protocols are implemented.

Learners therefore examine the system
and wider networks from a range of
perspectives. Teach Computing and the
Raspberry Pi Foundation refer to these
perspectives as tiers, with learners moving
from the highest, most abstract tier, to the
lowest tier, as follows:

System/network tier: a highly abstract view
in which learners focus on how systems and
networks are used to solve problems.

Device tier: learners are concerned with
familiar computing devices, including
computers, phones, tablets, and
embedded systems.

Component tier: learners look inside the
device and understand the purpose of
common constituent parts that make up
every computing device.

Implementation tier: learners focus on
the specific details of how the smallest
components are built, how they work, and
how they are controlled.

We can see how these themes and tiers
can interact in Figure 2.

Teaching approaches
for computer networks
Teaching about networks requires a balance
between theoretical concepts and practical
activities, to help learners move from the
system tier through to the implementation
tier. The theories underpinning computer
networks are too abstract to be understood
without practical examples, but practical
activities alone will not provide the deeper
understanding of the principles and protocols
that underpin a fully functioning network.

COMPUTER SYSTEMS NETWORKS

HARDWARE SOFTWARE NETWORK ARCHITECTURE DATA TRANSMISSION

SYSTEM/
NETWORK

	■ Purposes of systems
	■ Benefits of

computer systems
	■ Monitoring and

controlling systems
	■ Remote storage

	■ Web services
	■ Cloud computing
	■ Software as a service
	■ Control systems software
	■ Virtual machines

	■ What a network is
	■ Purpose, uses, and risks
	■ The internet
	■ WAN, LAN, and PAN
	■ Network topologies

	■ How and why we use networks
	■ Data can be routed across

a network
	■ Network performance,

bandwidth, and latency

DEVICE 	■ General purpose vs purpose-
built embedded devices

	■ Common device features
	■ Peripherals

	■ Operating systems
	■ Application software
	■ Open/closed source
	■ Human–computing

interaction
	■ User interfaces

	■ Devices within the network
	■ Client–server and peer-to-

peer networking
	■ Thin and thick clients
	■ Portable devices

	■ Connectivity
	■ Role of protocols
	■ Application layer protocols
	■ DNS and IP addressing
	■ Servers, email, web, etc.

COMPONENT 	■ Role of common
components:
•	 Storage
•	 CPU
•	 RAM, ROM, and cache
•	 Sensors

	■ Utility software
	■ Controlling IO devices
	■ Hierarchy of programming

languages

	■ Wired and wireless
connections

	■ Switches, access points,
routers, gateways,
bridges, etc.

	■ NICs and WNICs

	■ Transport layer protocols
	■ DHCP
	■ Network address translation
	■ WebSockets

IMPLEMENTATION 	■ CPU architecture(s)
	■ Fetch–decode–execute cycle
	■ Logic gates/circuits
	■ Buses
	■ Interrupts
	■ Storage media

	■ Device drivers and BIOS
	■ Program translators
	■ Assembly and machine-code

language
	■ Libraries, linkers, and

loaders

	■ MAC addressing
	■ Characteristics of

transmission media,
including copper, fibre
optic, radio waves, etc.

	■ Network layered model(s)
	■ Collision detection

and avoidance
	■ Multiplexing
	■ Circuit and packet

switching

RESEARCH

n �Figure 2 Networks and computer systems content organised by themes and tiers

WE NEED A BALANCE OF THEORETICAL
CONCEPTS AND PRACTICAL ACTIVITIES“

28 The Big Book of Computing Content

We can classify teaching approaches
for learners aged five to eighteen into
the seven different categories shown
in Figure 3, which have been adapted
from the work of researchers Prvan and
Ožegović (helloworld.cc/prvan2020). This
categorisation offers a range of approaches
that you can try out in your classroom
setting, supporting you with striking that
balance between theory and practice:

Using network simulators: network
simulators help learners to design,
configure, and compare network topologies
in a risk-free virtual environment. The
network design can then be tested for
performance, bandwidth, and latency, and
modified as required. Examples of network
simulation tools include Packet Tracer from
Cisco (see the article on page 32 for more
on this tool).

Using multimedia and animations: using
high-quality video content provides learners
with a visual overview of network activity.
For example, animations can show some of
the paths taken during data transmission,
and images can illustrate the different
sections of a datagram, including the header
and footer.

Using visual analogies: teachers can draw
on real-world examples to help explain
abstract concepts. An analogy such as
the way a letter moves through the postal
system can be used to compare the way
that data is routed through a network.

When using analogies, it is recommended
that a semantic wave approach is used, to
unpack theoretical concepts using concrete
examples and then repack learners’
understanding with clear links back to the
theory, to avoid misconceptions (see the
‘Unplug, Unpack, Repack’ section of The Big
Book of Computing Pedagogy for more on
semantic waves — helloworld.cc/bigbook).

Using network monitoring tools: network
monitoring tools provide visible information
about real-world networks to help learners
better understand the process of routing
data across a network. This information
can be used as a diagnostic tool to think
critically about errors in data transmission
or to better understand the behaviour of
packet exchanges between network layers.
Use of these tools is dependent on network
security settings, but even basic Windows
commands such as ‘tracert’ can provide
interesting learning points about the speed
and route of data across networks.

Problem-based learning: identifying
errors in a network and fixing them is a
type of active learning that can provide
opportunities for deeper understanding of
concepts. Ensure that the network failures
are designed to maximise the opportunity for
learning, and to offer opportunities for group
discussions to identify potential solutions.

Playing games: game-based learning
includes creating scenarios involving
insecure or faulty networks and challenging

learners to work as a team to problem-
solve. This can be a highly motivating
context for learners, although teachers
must also make sure to pre-teach the prior
knowledge learners need and to model
examples of successful collaboration.

Practical activities: tasks such as setting
up a physical network with low-cost
equipment provide valuable hands-on
experience to illustrate theoretical principles.
For example, we can configure Raspberry Pi
to act as a server, and in doing so, learners
must set up a static IP address and connect
to a default gateway and DNS server. By
configuring and testing these settings,
learners gain a deeper understanding of
how networks are implemented in real-
world situations.

There are a number of different practical
considerations when choosing a teaching
approach for each topic. It is recommended
that teachers work with their school IT staff
to identify opportunities and constraints,
including available equipment, security
protocols that are in place on the school’s
network, and whether high-quality
visualisation resources such as videos or
animations are available. We should use
carefully planned units of work to involve
coverage across the themes and tiers model,
and to strike the balance between theory
and practice, supporting your learners with
developing and understanding these
foundational skills and knowledge.

RESEARCH

FURTHER READING
 �Teach Computing and the Raspberry
Pi Foundation. (2021). Computer
Systems and Networking Within
the Computing Curriculum [White
paper]. helloworld.cc/rpf2021

 �Prvan, M., & Ožegović, J.
(2020). Methods in Teaching
Computer Networks: A Literature
Review. ACM Transactions on
Computing Education, 20(3), 1–35.
helloworld.cc/prvan2020

TYPE OF APPROACH SUBTYPE OF APPROACH

VISUALISATION 	■ Using network simulators
	■ Using multimedia and animations
	■ Using visual analogies
	■ Using network monitoring tools

ACTIVE LEARNING 	■ Problem-based learning
	■ Playing games

HANDS-ON LEARNING 	■ Practical activities

n �Figure 3 A classification of teaching approaches for computer networks

http://helloworld.cc/prvan2020
http://helloworld.cc/bigbook
http://helloworld.cc/rpf2021
http://helloworld.cc/prvan2020

The Big Book of Computing Content 29

FEATURE

Paul Powell shares how you can liven up your lessons on networking

MAKE NETWORKS
INTERESTING WITH FILIUS

etworking can be dull. Lots of
terminology, acronyms, technical

detail, and bits of binary. Apart from the
underlying sense that it makes YouTube
work, what exactly is the point of knowing
all this stuff? Some schools are lucky
enough to be able to make a network of
Raspberry Pis and get them talking to each
other, but not every department will have
the funds, the space, or the wide range of
skills needed.

Filius to the rescue
Trying to get around this issue for my upper-
secondary class (aged 15–16), I started
looking for a network simulator. Everything
I found was either too complex (GNS3 or
Packet Tracer) or too restrictive (the Teach-
ICT simulator). Eventually I stumbled upon
Filius, a good midpoint between the two.
Filius is an open-source Java app that was
written first in German, and then translated
into English, including a decent English guide
on the website (helloworld.cc/filius).

Filius lets you set up a network with
computers, switches, routers, and cables.
At the most basic level, this can be used
to connect the basic components. Each
machine can be set up with an IP address,
and then the simulation can be run. When
in simulation mode, you can install software
onto the machines. You can use this to
ping between machines, and you can see
the packets going back and forth as green
pulses along the wires, or by right-clicking
any computer or router and inspecting the
packets as they go back and forth.

Once the basics of a LAN are out of the
way, Filius then lets you set up multiple
networks, routing tables, web servers and
web browsers, email, DHCP, and more. This
might all sound a little daunting, especially

with classes that are a little less than
attentive. Fortunately, Filius lets you load
and save your networks, so you can prepare
them in advance to teach specific concepts.

Making it accessible
Adapting the concept of the PRIMM
(Predict–Run–Investigate–Modify–Make)
approach to programming, I tried to structure
the activities so that students began with
a supported activity. Typically, this meant
giving students a network that was already
set up, with an element of the network
working. Students had to predict what the
network would do (mostly based on machine
names and topology) and simulate (run) the
network, as well as carrying out a few tasks,
investigating the settings, modifying the
settings of a non-working portion to get it
running, and then making a new section of
the network.

This approach was very successful with
my class. Everyone was engaged, and it

N

helped explain the different forms of
addressing. The next step will be to break
the tasks down further so that any students
who are struggling can begin to work
more independently.

PAUL POWELL
Paul currently works as a solution delivery
manager for a software development
provider. Before this he was a computing
teacher in the UK for ten years.

n ��Two connected networks showing client/server communications

http://helloworld.cc/filius

30 The Big Book of Computing Content

FEATURE

To help our young learners understand the internet better, we need to follow
the development of networking from the first connected computers

THE JOURNEY
OF NETWORKING

he power of a single computer is
well understood. The speed and

accuracy with which it can run through
an algorithm or solve the most complex
problems is outstanding. However, it’s
only the tip of the iceberg when compared
to the power of networked computers.

The internet is the biggest worldwide
network of devices, and has truly
transformed almost every aspect of how
we live, work, and play. Virtually all our
infrastructure is reliant on this global
connectivity. The ubiquitous nature of
its availability and ease of access has
resulted in it replacing costly dedicated
connections and transforming just
about everything. Electrical generation,
water distribution, transport networks,
banks, government, the media, and most
of education would cease to function
with no network connectivity. Children
might relate to the idea of losing Facebook
or Snapchat, but fail to realise there would
be no power distribution and little food in the
shops if there was no network.

The networks we have today and the
rules they follow are partially a legacy of
older technology. If we had a clean slate
and could start again, we wouldn’t build
the internet we have today. Hence, to
understand the internet, we need to follow
the development of networking from the
very first connected computers.

Early connections
As computers developed, it was recognised
that they could be connected to share
information. With two computers, it was
easy to provide a dedicated link between
them and use electrical voltages to represent
the binary 1s and 0s of the data to be sent.

T The electrical signals are referred to as ‘layer
1’ or the ‘physical layer’ because they’re the
closest to the physical connections.

Three computers can be connected with
three connections. Four computers need six
connections, and so on. The advantage of
this system was that each computer could
choose where to send the information, just
by selecting the appropriate connection.
The downside was the number of

connections and thus connectors on each
device; a fully meshed network (Figure 1) of
six computers would need five connections
from each computer and fifteen connections
in total. Imagine what 100 connected
computers would look like! What was
needed was a way of using a single wire
that all devices could connect to, and a
way of somehow sharing usage of the wire
between them all. Two distinct solutions
evolved: the ‘ring’ and ‘bus’ topologies.

Ring
Rather than connecting each computer
directly to every other computer, they can
be connected in a ring topology (Figure 2).
The data passes round the ring, with each
computer ‘seeing’ the data and also passing
it on. The computer that puts the data in the

ring can remove it if it returns. But how do we
ensure the data only goes to the computer
we want to send it to, as it now goes through
all the computers?

The solution involves giving each computer
in our ring a unique address. Before we send
our data out, we add the destination address
to the front of the data. For the receiving
computer to know who to reply to, we also
add our own address as the source address.

 This addition of a source address and
destination address to the data forms

a ‘frame’. The process of adding this
additional data is called ‘encapsulation’.

It’s similar to placing the data in an
envelope and putting the destination

address on the front and the sender’s
address on the back. The process that

encapsulates the data with addresses is
called ‘layer 2’ or the ‘data link’ layer. The

format of the frame is therefore:

SOURCE
ADDRESS

DESTINATION
ADDRESS

DATA

As the frame is passed around the ring, each
computer compares the destination address
to its own address. If there’s a match, the
computer reads the frame and has received
the data. Computers that don’t match the
address just forward the frame on.

Ring-type networks are used today
in synchronous optical networking
(SONET) and synchronous digital
hierarchy (SDH) networks.

Bus
Another option to connect multiple computers
together is to connect them all to a common
wire. Initially, this was a thick coaxial cable,
similar to a TV cable. Each computer was

n ��Figure 2 A ring topologyn ��Figure 1 Fully meshed network

The Big Book of Computing Content 31

FEATURE

connected to the cable with a ‘tap’, which
was a spike in a clamp, tightened up with a
nut. This visualisation of many computers
being connected to a common wire inspired
the name ‘bus topology’, with the idea of a
bus that people can get on and off as they
wish (Figure 3).

The single wire meant that only one
computer could send data at any one time,
and the data would go to every computer on
the wire. The technology was called ‘ethernet’
and used a set of rules called CSMA/CD to
manage what would happen when more than
one computer tried to send data at the same
time. Mechanical issues with the taps and dry
joints led to these networks being unreliable
and difficult to fix. An improvement used a
thinner coaxial cable and special connectors
called BNC connectors. This was called
‘thin ethernet’, and the original cabling was
retrospectively renamed ‘thick ethernet’.

Just like in a ring network, all the computers
need an address. This is the media access
control (MAC), ethernet, physical or hardware
address. Data is encapsulated, with a header
containing the source and destination
address, to make a data frame. In early
ethernet networks, the frames were received
by all computers, and each compared the
destination address to its own address. If
there was a match, the computer read the
frame and received the data; otherwise, the
frame was just ignored. The format of the
frame is therefore:

SOURCE
ADDRESS
(6 bytes)

DESTINATION
ADDRESS
(6 bytes)

DATA (up to
1500 bytes)

Cabling
With thin and thick ethernet networks, the
electrical signals that carried the binary data
were protected from interference by the
braiding in the coaxial cable. This shielded
the inner conductor by providing an electrical
Faraday cage around the core.

Improvements in technology meant the
data could be sent over a pair of wires twisted
together in the same way as wires are twisted
in a telephone cable. One pair is used to
transmit data, and the other to receive it.

 The cable is called an ‘unshielded twisted
pair’ (UTP), and is commonly, although
incorrectly, known as an ethernet cable.
Connection is made via RJ45 plugs.

Hub
To provide resilience and simplify
connections, the bus was collapsed into a
box called a hub. Each device connected
directly to the hub on its own RJ45 port.
Inside the hub, signals were
received on one pair; they
were then regenerated,
and just like the bus, were
transmitted out of all ports.
This simple, reliable, and
cheap way to connect
computers led to a high
growth in the number of local
area networks (LANs) with multiple
computers connected using an ethernet
hub. We call hubs ‘layer 1’ or ‘physical
layer’ devices, because they just regenerate
the electrical signals with no notion of the
structure of the frame.

Switch
Hubs just forward data frames out of all
ports, because they have no knowledge of
which computers are connected to which
ports, and have no understanding of the
data they’re forwarding. However, advances
in electronics have allowed us to improve
the efficiency of our ethernet networks by
putting some intelligence in the hub. They
can now inspect the frame and examine the
source and destination ethernet addresses.
Clearly, the device is now much more than
our humble hub, and is called a ‘switch’.

Initially, the switch will not know the
addresses of the connected computers, so
it defaults to hub behaviour and switches
incoming frames out of all ports. However,
it learns which addresses are connected to
which ports by examining source addresses
on incoming frames, which are stored in
a table within the switch. Hence, future

frames are switched to the right ports. We
call switches ‘layer 2’ devices because they
understand the headers at layer 2, the data
link layer.

The function of encapsulation is provided
by the network interface card
(NIC) in the computer. Different
interfaces, such as wired,
wireless, and 3G/4G, will all have
different NICs. No matter the
media (except fibre), there’s still
the possibility of some electrical
interference with the signal,
and spikes in the voltage. These

spikes can result in a binary 0 being
interpreted as a binary 1, or vice versa. It may
not be obvious that an error has occurred,
so we use a ‘check-field’ at the end of the
frame to enable us to detect errors. Thus our
ethernet frame is now:

SOURCE
ADDRESS
(6 bytes)

DESTINATION
ADDRESS
(6 bytes)

DATA (up
to 1500
bytes)

CHECK-
FIELD

When receiving the frame, we check the
check-field to see if any errors have occurred.
If an error occurs, we discard the frame.

The next evolution was the
interconnection of all these LANs and the
birth of the internet protocol (IP) ... but that’s
another article! When trying to explain how
the internet works, it’s vital to appreciate
that it has been a journey over some six or
seven decades — and we hope this article
has been a helpful start!

 DESCRIPTION	 VIDEO	 SCRATCH ANIMATION
 Fully meshed networked computers	 helloworld.cc/meshedvideo	 helloworld.cc/meshedscratch
 Ring-based network	 helloworld.cc/ringvideo	 helloworld.cc/ringscratch
 Ethernet bus-based network	 helloworld.cc/busvideo	 helloworld.cc/busscratch
 Ethernet hub-based network	 helloworld.cc/hubvideo	 helloworld.cc/hubscratch
 Ethernet switch-based network	 helloworld.cc/switchvideo	 helloworld.cc/switchscratch
 NIC sending data frame	 helloworld.cc/NIC1video	 helloworld.cc/NIC1scratch
 NIC receiving data frame	 helloworld.cc/NIC2video	 helloworld.cc/NIC2scratch

RESOURCES TO VISUALISE NETWORKS

n ��Figure 3 Bus topology

DUNCAN MAIDENS
Duncan is the director of computer science
education at the Raspberry Pi Foundation.

http://helloworld.cc/meshedvideo
http://helloworld.cc/2IbSHDC
http://helloworld.cc/ringvideo
http://helloworld.cc/2rdYrlI
http://helloworld.cc/busvideo
http://helloworld.cc/2HMHp9y
http://helloworld.cc/hubvideo
http://helloworld.cc/2jr5Uu0
http://helloworld.cc/switchvideo
http://helloworld.cc/2HSNq0s
http://helloworld.cc/NIC1video
http://helloworld.cc/2KtpHpf
http://helloworld.cc/NIC2video
http://helloworld.cc/2KzQksC

32 The Big Book of Computing Content

FEATURE

Cisco’s powerful simulation tool encourages practice, discovery, and troubleshooting, and lets students
experiment with network behaviour by building complex networks — plus it’s free to schools!

THE PRINCIPLES
OF NETWORKING

MADE EASIER WITH PACKET TRACER

reliable network forms the heart
of any technology infrastructure,

and networking is now at the forefront of
technology innovation in our increasingly
digital world. Teachers must therefore
be equipped to teach networking in
classrooms, particularly given the skills
shortages in this area. With many teachers
struggling to tackle networking principles,
purchasing switchers, routers, and other
such devices might appear to offer
the perfect solution. For most schools,
however, this isn’t a practical or affordable
option, which is why Cisco has created the
next best thing for teaching networking —
Packet Tracer (helloworld.cc/packettracer).

What is Packet Tracer?
Packet Tracer simplifies the complexity of
teaching networking, while giving
students valuable hands-on experience.
Cisco developed Packet Tracer to help its
Networking Academy students achieve
the best learning experience while gaining
practical networking technology skills.
 Packet Tracer is a powerful simulation
tool that students can use to build, explore,
and troubleshoot a variety of network
environments as if the hardware were
with them in the room. By dragging and
dropping routers, switches, and various
other types of network devices, they can
develop virtual network worlds. This paves
the way for teachers and students to
explore, experiment, and discover an almost
unlimited array of networking concepts
and technologies.

A Key features
Packet Tracer has two workspaces —
logical and physical — which you can easily
switch at the click of a button. The logical
workspace allows users to build coherent
network topologies by placing, connecting,
and clustering virtual network devices. The
physical workspace provides a graphical
physical dimension of the logical network,
giving a sense of scale and placement in how
network devices such as routers, switches,
and hosts would look in a real environment.
The physical view also provides geographic
representations of networks, including
multiple cities, buildings, and wiring closets.

Packet Tracer also gives you two
operating modes to visualise the behaviour
of a network: real-time mode and simulation
mode. In real-time mode, the network
behaves as real devices do, with immediate
real-time responses for all network
activities. Simulation mode gives students
a viable alternative to real equipment and
allows them to get configuration practice
before working with physical equipment.

Supports teaching networking
The Packet Tracer tool contains many
exciting features that offer an extra
dimension to teaching computing. Schools
can easily teach and demonstrate complex
technical models, as well as networking
concepts and protocols, using an
interactive environment. n Solving puzzles collaboratively enables student-led learning

Founded in 1997, Cisco Networking
Academy (helloworld.cc/ciscoacademy)
is a not-for-profit IT skills and career
building programme that connects millions
of students, educators, and employers
worldwide. As part of this programme,
Cisco partners with learning institutions
to deliver technical training and problem-
solving experiences to individuals studying
networking, security, and IoT technologies.

CISCO NETWORKING
ACADEMY

http://helloworld.cc/packettracer
http://helloworld.cc/ciscoacademy

The Big Book of Computing Content 33

FEATURE

One key feature, the Activity Wizard,
allows teachers to write their own learning
activities by setting up different scenarios.
They can customise these scenarios with
instructional text, while creating initial and
final network topologies and predefined
packets. The Activity Wizard also includes

grading and feedback capabilities. In
addition, you can save and share activities
with other teachers and students.

Packet Tracer helps the teaching of
networking by:

n � Providing a visual demonstration of
complex technologies and configurations

n � Letting teachers author customised,
guided activities that provide immediate
feedback through the Activity Wizard

n � Facilitating numerous learning activities,
such as individual and group lab activities,

homework, assessments, games, network
design, troubleshooting, modelling tasks,
case studies, and competitions

n � Allowing self-paced learning outside the
classroom

n � Supporting social learning processes by
enabling collaboration and competition

The student experience
Packet Tracer’s hands-on approach
to learning means students will be
better equipped to apply concepts and
configuration fundamentals when exposed
to real equipment. By experimenting with
network behaviour and asking ‘what
if’ questions, students will gain a solid
understanding of how devices connect and
communicate in a live network, and how
data flows from one device to another.

The software uses a drag-and-drop
user interface, allowing students to add
and remove simulated network devices
as they wish, and lets students practise
using a command-line interface. This is a
fundamental component of learning how to
configure routers and switches. Just as the
physical equipment allows you to modify

hardware, Packet Tracer offers the ability to
insert interface cards into modular routers
and switches, which then become part of
the simulation.

Students can also learn how to design
complex and large networks, which isn’t
always possible using physical hardware.
From the very basics, such as connecting a PC
to a hub, or setting up a server and building
a local area network (LAN) and wide area
network (WAN), students can build an almost
unlimited number of environments. And as
they gain practical experience of configuration,
troubleshooting, and other tasks, they become
more confident in their abilities. In addition, the

BY EXPERIMENTING, STUDENTS WILL
UNDERSTAND HOW DEVICES CONNECT
AND COMMUNICATE IN A LIVE NETWORK

“ simulation-based learning environment helps
students develop essential business skills,
such as decision-making, creative and critical
thinking, and problem-solving.
 To access Packet Tracer and explore a
range of networking activities suitable for
the classroom, sign up for one of the free
courses at helloworld.cc/packettracer. If
you want to know more about becoming a
Cisco Networking Academy, which gives
you access to extra learning materials and
activities, and professional development
such as Python, C++, C, cybersecurity, and
Linux courses, visit helloworld.cc/
ciscoacademy.

HELEN CLOTHIER
Helen is a Country Digital Acceleration
skills programme manager at Cisco.

n The physical workspace offers a graphical view of the logical network

n Multiuser games provide fun learning opportunities
for collaboration and competition

Packet Tracer allows users to build and
configure a functioning computer network
in a simulated environment. Traffic is
simulated, with web and email servers being
used by a variety of desktop applications.
Simulations work in either real-time
mode, as they would in a physical network
environment, or in simulated mode, where
users can see the actual packets and frames
moving through the network and decode the
layers structure of ethernet, IP, and TCP.

Duncan Maidens, director of computer
science at the Raspberry Pi Foundation

HOW DOES PACKET
TRACER HELP
YOU TO TEACH
NETWORKING?

http://helloworld.cc/packettracer
http://helloworld.cc/ciscoacademy
http://helloworld.cc/ciscoacademy

CREATING MEDIA
36 	� ��CREATING MEDIA, IN SUMMARY
38 	 THRESHOLD CONCEPTS
40 	� ��ART, CREATIVITY, AND

COMPUTER SCIENCE
44 	 DEMOCRATISING DIGITAL CULTURE

WITH 3D-ANIMATED FILM
46 	 �SEPARATING THE LEARNING FROM

THE APPLICATION

The Big Book of Computing Content 35

n important set of digital skills that learners

develop through their computing studies is the

ability to work with a variety of media, from text,

to 2D and 3D graphics, to audio and video, to interactive

media. Whether developing new media or integrating and

combining existing content, learners encounter a range of

common concepts and skills, including grouping, layering,

and alignment. Additionally, learners should develop an

understanding of how different media are represented and

stored by a computing device. This aspect connects to other

strands, providing context while also helping learners to

evaluate the relative merits of different media formats and

consider factors such as compression and file types.

The journey for learners will probably begin with simple

and familiar media, including text and images, and gradually

expand into a broader mixture of media such as animations,

3D models, and videos. Once they are comfortable with a

selection of media types, learners can become more selective

about the suitability of different media for different projects.

As they progress into the later stages of their

computing education, their ability to create

media will be valuable, but unless they

are taking a specialised media-related

qualification, it is unlikely to be the focus of

their computing studies.

A IN THIS SECTION,
YOU WILL FIND:

	■ Learning outcomes: 		
creating media, in summary

	■ What the research says:
threshold concepts in creating media

	■ Art, creativity, and computer science

	■ 3D-animated films

	■ Separating the learning from the tool

The Big Book of Computing Content36

IN SUMMARY

CREATING MEDIA

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Identify different forms of media, including text,

images, video, and sounds

	■ Explain that text can be displayed in
different styles

	■ Contrast the strengths and drawbacks of using
technology to create media

	■ Make use of a range of input devices to
create and capture media

	■ Combine text and images in documents

	■ Distinguish between examples of vector/
bitmap images

	■ Distinguish between an editable
multimedia project and the exported media
it can produce

	■ Make use of layering when working with images,
sounds, and video

	■ Explain how grouping can be used to work
with multiple digital objects

	■ Select and apply suitable text formats for a range
of purposes

	■ Explain what ‘good’ looks like for a
particular digital artefact

	■ Capture and edit images, sounds, and video for a
given purpose

	■ Create multimedia including sounds,
images, video, and 3D objects

	■ Select, manipulate, and arrange multimedia
for a purpose

	■ Explain the use cases for both vector and
bitmap images

	■ Describe how vector and bitmap images
are stored

	■ Explain the factors that affect the quality of
collected or created media

	■ Identify ways in which digital artefacts can
be manipulated and the motivations for
doing so

	■ Decide from examples what makes specific digital
artefacts ‘good’

	■ Describe how digital artefacts can be made
more usable and accessible

	■ Combine software tools to create digital artefacts

	■ Create or adapt digital artefacts to make
them suitable for different audiences

	■ Apply consistent styles and common assets to
give digital artefacts a shared identity

	■ Explain how the technical properties of different
media affect a finished product

	■ Describe physical factors (such as lighting
or noise) that affect the quality of recorded
or captured media

	■ Describe the means by which text, images, and
sounds are represented using binary numbers

	■ Apply a wide range of techniques to
compose and enhance digital artefacts

	■ Develop and apply templates to speed up
production and improve consistency

	■ Find and create digital assets that
are suitable and compatible with a
final product

	■ Analyse digital media products, identifying their
purpose and intended audiences

	■ Propose, design, create, and evaluate digital
artefacts using a range of media

	■ Describe how both vector and bitmap images
are created

	■ Describe the process by which sound
(analogue) is sampled and stored digitally

	■ Calculate the expected file size of different media
based upon their attributes

	■ Describe the impact of changing media
attributes (such as colour depth or sample
rate) on quality and storage needs

	■ Choose appropriate media formats comparing
quality, file size, and performance

IN SUMMARY

Select and create a range of
media including text, images,
sounds, and video

The Big Book of Computing Content 37

IN SUMMARY

In the table below, you will find learning outcomes associated

with the ‘Creating media’ strand of the Raspberry Pi Foundation’s

computing taxonomy. These learning outcomes are illustrative of the

kinds of knowledge and understanding that learners could develop in

this area of computing. They are not prescriptive, but instead aim to

illustrate the wide applications of the discipline.

These learning outcomes were originally developed to complement

the English national curriculum for computing and as such, stage 1

roughly corresponds to ages 5–7, stage 2 to ages 7–11, stage 3 to

ages 11–14, stage 4 to ages 14–16, and stage 5 to ages 16–19.

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Identify different forms of media, including text,

images, video, and sounds

	■ Explain that text can be displayed in
different styles

	■ Contrast the strengths and drawbacks of using
technology to create media

	■ Make use of a range of input devices to
create and capture media

	■ Combine text and images in documents

	■ Distinguish between examples of vector/
bitmap images

	■ Distinguish between an editable
multimedia project and the exported media
it can produce

	■ Make use of layering when working with images,
sounds, and video

	■ Explain how grouping can be used to work
with multiple digital objects

	■ Select and apply suitable text formats for a range
of purposes

	■ Explain what ‘good’ looks like for a
particular digital artefact

	■ Capture and edit images, sounds, and video for a
given purpose

	■ Create multimedia including sounds,
images, video, and 3D objects

	■ Select, manipulate, and arrange multimedia
for a purpose

	■ Explain the use cases for both vector and
bitmap images

	■ Describe how vector and bitmap images
are stored

	■ Explain the factors that affect the quality of
collected or created media

	■ Identify ways in which digital artefacts can
be manipulated and the motivations for
doing so

	■ Decide from examples what makes specific digital
artefacts ‘good’

	■ Describe how digital artefacts can be made
more usable and accessible

	■ Combine software tools to create digital artefacts

	■ Create or adapt digital artefacts to make
them suitable for different audiences

	■ Apply consistent styles and common assets to
give digital artefacts a shared identity

	■ Explain how the technical properties of different
media affect a finished product

	■ Describe physical factors (such as lighting
or noise) that affect the quality of recorded
or captured media

	■ Describe the means by which text, images, and
sounds are represented using binary numbers

	■ Apply a wide range of techniques to
compose and enhance digital artefacts

	■ Develop and apply templates to speed up
production and improve consistency

	■ Find and create digital assets that
are suitable and compatible with a
final product

	■ Analyse digital media products, identifying their
purpose and intended audiences

	■ Propose, design, create, and evaluate digital
artefacts using a range of media

	■ Describe how both vector and bitmap images
are created

	■ Describe the process by which sound
(analogue) is sampled and stored digitally

	■ Calculate the expected file size of different media
based upon their attributes

	■ Describe the impact of changing media
attributes (such as colour depth or sample
rate) on quality and storage needs

	■ Choose appropriate media formats comparing
quality, file size, and performance

38 The Big Book of Computing Content

ven if you have never heard of or
used the term ‘threshold concepts’,

you will be teaching them day in, day
out, both in your computing classes and
in any other subjects you may teach.
Researchers Meyer and Land introduced
the term to education in 2003, stressing
the importance of the idea as “akin to a
portal, opening up a new and previously
inaccessible way of thinking about
something. It represents a transformed
way of understanding, or interpreting,
or viewing something without which the
learner cannot progress” (helloworld.cc/
meyer2003). This article will explore the
research behind defining and identifying
threshold concepts, with a focus on
‘Creating media’ topics, before suggesting
some approaches to introducing them to
your classroom.

Identifying threshold concepts
Researcher Peter Davies suggests two
methods for identifying threshold concepts

(helloworld.cc/davies2006). The first
approach includes the engagement of
two distinct disciplines, and specifically,
the views in which these disciplines
examine the same situation. The second
approach, which is mostly used in the
current literature, such as Janet and Nathan
Rountree’s 2009 paper (helloworld.cc/
rountree2009), suggests that to identify
threshold concepts, the researcher should
concentrate on people inside and outside
of the community; that is, on the different
ways in which students and experts
experience the situation.

The Raspberry Pi Foundation has
defined threshold concepts within
computing education in a similar way.
When deciding whether or not a concept is
a threshold concept, we at the Foundation
use the following criteria:

n �A threshold concept should be relevant
to two or more topic areas within the
subject (portability)

E n �A threshold concept should be revisited
from a teaching and learning perspective
several times across different ages and
stages of learning (buildability)

 In some subjects, threshold concepts are
easy to identify. Consider young readers,
for example. They are initially taught
the threshold concept of phonics, which
introduces them to the alphabet and letter
sounds, which they can blend into simple
and then more complex words. They are
then introduced to the threshold concept
that not all words are spelled as they sound.

The same is true in computing, or at
least some elements of it. In programming,
in the Teach Computing Curriculum, we
introduce four threshold concepts, one
per year group from ages seven to eleven:
sequence, repetition, selection, and variables
(helloworld.cc/tcc). By isolating these
four concepts, you can introduce each
progressively, and gradually develop an
understanding of each one. We have found

STORY BY Ben Hall

THRESHOLD CONCEPTS

RESEARCH

n �Understanding threshold concepts is vital if learners are
to progress and build subsequent skills and concepts

©
be

eb
oy

s/
st

oc
k.a

do
be

.co
m

http://helloworld.cc/meyer2003
http://helloworld.cc/meyer2003
http://helloworld.cc/davies2006
http://helloworld.cc/rountree2009
http://helloworld.cc/rountree2009
http://helloworld.cc/tcc
http://stock.adobe.com

39The Big Book of Computing Content

that there is a broad consensus that this
order is appropriate at this age range.

In some areas of computing, however,
threshold concepts are not as widely agreed
on or accepted. The content and curriculum
team at the Raspberry Pi Foundation has
picked out ‘Creating media’ as an example
of a strand of computing that could
benefit from an approach more based on
threshold concepts. At a high level, we
have identified a number of commonalities
when working with computer-based media.
Whether you’re creating a presentation
or producing a video, you will need some
understanding of:

n Files
n Text
n Images
n Audio/video
n Animation
n Layers
n Objects
n Hyperlinks
n Preview
n Templates

There may be more concepts than this;
research in this area of computing education
is underdeveloped, so we aim to narrow
down to the key concepts. Some of the

items in the list above can be considered
more skills-based than others, for example
file management. But there are some
clear concepts that can be considered as
thresholds to further learning:

n Layers
n Objects
n Hyperlinks
n Preview
n Placeholders
n Templates/styles (global application)
n Colour accessibility

Once identified, these concepts can be
introduced progressively across a range
of media, teaching students concepts and
skills that are transferable across different

areas of the computing curriculum. For
example, if a student understands layering
in desktop publishing, they will be at a
significant advantage when they move on
to creating vector drawings, as the concept
is fundamentally the same in both types of
media. This can deliver significant benefits
to students across all age ranges:

n �The identification of threshold concepts

accentuates their importance
n �Skills and concepts can be introduced

systematically in one context before being
applied to others

n �The transition between learning stages
can be smoother, with less need to recap

n �Students learn to apply concepts across
different curriculum areas

Pedagogical strategies
Now that we have considered how we
define and identify threshold concepts, we
need to look at the best way of teaching
them to learners and the pedagogical
strategies that might be most suitable for
threshold concepts in the ‘Creating media’
strand of computing. In programming, there
is a great deal of research into the best
ways of teaching new skills and concepts.
Thousands of educators have implemented
and iterated strategies such as Use–Modify–

Create and Predict–Run–Investigate–Modify–
Make (PRIMM). In ‘Creating media’, there is
nowhere near as much to go on. So, is there
scope to adapt some of the strategies that
are so widely used in programming to other
areas of the curriculum?

Let’s consider the Use–Modify–Create
strategy introduced by researcher Lee
and her colleagues, which gives students
a structure for learning to program
(helloworld.cc/lee2011). At the Use
stage, students use an existing program,
analysing what it does and how it does it.
They then apply this knowledge to modify
parts of the program so that it achieves a
different outcome, before creating their own
program from scratch.

Could a similar approach work in

‘Creating media’? Instead of Use, for
example, could students ‘consume’ a
particular type of media? Take vector
drawings as an example. In isolation,
many students will not be familiar with
the concept of vector drawings. To
familiarise them with it, you could ask
learners to edit or adapt a vector graphic
so that it suits a different audience or
purpose (that is, as part of the Modify
stage). This could involve changing the
position, order, or colour of objects, but
crucially, not creating anything new.

At this point, you could cover threshold
concepts associated with layers, objects, and
colours, without the added cognitive load of
students having to think about creating their
own idea. They could then build upon this
experience to create a new artefact, with the
scaffolding of existing content. It may be that
you are actually already doing some of this
in your own practice, but having a structure
could help you to formalise and standardise
your approach.

It is vital that we know how to define,
identify, and approach the teaching of
threshold concepts in the computing
classroom, to ensure that learners can
progress and build subsequent skills and
concepts successfully. Evidently, there is
still work to be done within this area for
‘Creating media’ topics. How could you
apply these ideas in your classroom, and
are there any other ideas you might be able
to weave in?

RESEARCH

‘CREATING MEDIA’ TOPICS COULD BENEFIT
FROM A THRESHOLD CONCEPT APPROACH“

FURTHER READING
 �Meyer, J., & Land, R. (2003).
Threshold concepts and troublesome
knowledge. ETL Project. helloworld.
cc/meyer2003

 �Davies, P. (2006). Threshold concepts:
How can we recognise them? In J.
Meyer, & R. Land (Eds.), Overcoming
barriers to student understanding.
Routledge. helloworld.cc/davies2006

 �Rountree, J., & Rountree, N. (2009).
Issues regarding threshold concepts
in computer science. Conferences in
Research and Practice in Information
Technology Series, 95, 139–146.
helloworld.cc/rountree2009

http://helloworld.cc/lee2011
http://helloworld.cc/meyer2003
http://helloworld.cc/meyer2003
http://helloworld.cc/davies2006
http://helloworld.cc/rountree2009

40 The Big Book of Computing Content

FEATURE

Paul Curzon, Jane Waite, and Ged Gast argue that art and computing
have a lot more in common than you might imagine

ART, CREATIVITY,
AND COMPUTER SCIENCE

oth computing and art involve
creativity, innovation, and

imagination. And people who possess
both artistic and computing skills can
make wonderful things happen.

Art involves a creative process, and
creating an emotionally or intellectually
engaging work of art requires more than
just skill with a chisel or paintbrush and
an understanding of the medium. It needs
innovation, creativity, and imagination.
To most people, this may sound a million
miles from the stereotype of the computer
programmer, whose work is based on
logical thinking, but the links are deeper
than you might imagine. Computer science
also involves great creativity, innovation,
and imagination.

On top of these high-level similarities
in approach, artists are increasingly
using digital media, and this opens new
opportunities for interactive art for those
with programming and electronics skills.

The creative computer scientist
Programming is obviously creative in the
loose sense that it involves constructing
new things, but it is also creative in a more
inventive sense. When programming, you
are not creating things by rote, and not
following a fixed plan; you are devising
something that has never existed before. If
you approach opportunities creatively, you
may even completely change the way the
world does things.

Take the original iPhone keyboard. Before
its launch, Apple
had a problem: the
virtual keyboard
was unusable. The
buttons were just
too small. Lots of
engineers worked on
the problem, trying
out different keyboard
layouts, but nothing worked. With the launch
looming, the situation looked dire. Without
a usable keyboard, the product would flop.
Then someone thought about it differently.
Rather than using a different layout, they
had the idea of writing a program that would
predict which letter was most likely to come
next, based on those that had gone before,
and making the area of those keys larger. It
worked, and the iPhone went on to become
one of the company’s biggest ever successes.
It took creativity, innovation, and imagination
to come up with this winning solution, and
skill with the medium to make it work.

Art and the machine
Artists now have new media to play with.
By using programs and electronics as
media, they can create interactive art.
For example, Soda Constructor was a
program that implemented a simple 2D
line-drawing program. However, it also
added in the laws of physics. Points were
masses, and lines were springs with rules
based on Newton’s and Hooke’s laws.
Springs could also be turned into muscles
that were given periodic energy boosts,

making them stretch and contract. Users
made a digital drawing and then switched
on the laws of physics, and their pictures
would come alive. You could even make
creatures, following all kinds of body
shapes and means of locomotion, that
moved around the screen. The result was
an amazing program that won a BAFTA
for interactive art.

Interactive programs create imagery
on a computer screen, but digital art can
also escape into the real world. Physical
installations can be computer-controlled,
creating, for example, sound and light

n ��The original iPhone keyboard represented a breakthrough with
its ability to have the software step in and help the user

B

ARTISTS ARE INCREASINGLY
USING DIGITAL MEDIA TO
CREATE INTERACTIVE ART

“

©
No

De
nm

an
d/

sto
ck

.ad
ob

e.c
om

http://stock.adobe.com

The Big Book of Computing Content 41

FEATURE

shows, where sculptures include light
and sound effects controlled by sensors.
Epic-scale examples include the work of
artist Leo Villareal, who turned the San
Francisco Bay Bridge into a pulsating,
ever-changing work of art by covering it
in lights controlled by a computer. Artist
Di Mainstone had a different approach to
turning bridges into art. At Tower Bridge in
London, she put digital sensors on bridge
cables attached by lines to a performer’s
clothing. As the bridge vibrated with traffic
and people, and the performer moved,
the angle and length of the lines were
measured and different sounds produced.
Human and bridge thus became one
augmented artistic instrument.

Another example of the use of digital
creative practice in art is the wonderful
sculpture The Hive, at Kew Gardens in
London. It is an architectural-scale sculpture
in the shape of a walk-in beehive. It is
covered in lights that pulse, controlled by
the activity of bees in hives in the Gardens.

This kind of art often uses very simple
combinations of sensors, lights, and sounds
with simple computer control. The artist is
writing programs as an essential part of the
creative process. As an artistic medium, it
is now within the reach of school students,
combining programming, electronics, and
art. If you have a creative spark, you can
make similar kinds of art with simple sensor
kits such as Arduinos and Raspberry Pis.

n ��The Photogrowth project simulates the behaviour of artificial ants as they travel on a canvas
Images used with permission of CDV Lab. Source image: Just Be Yourself by Kirsten Sims

n ��Artist Leo Villareal covered the San Francisco Bay Bridge with lights controlled by a computer

©
Jo

hn
 Na

ka
ta

/s
to

ck
.ad

ob
e.c

om

JANE WAITE
Jane has worked both as
a primary teacher and in
industry as a developer.
She worked on the Barefoot

programme, was CAS London manager,
and is now a senior research scientist at
the Raspberry Pi Foundation.

GED GAST
Ged is a visual arts
specialist, an education
consultant, and a past
president of the National

Society for Education in Art and Design
(NSEAD).

PAUL CURZON
Paul is a professor of
computer science at
Queen Mary University
of London and co-

founded both cs4fn (cs4fn.org)
and Teaching London Computing
(teachinglondoncomputing.org).
He is author of the book The Power of
Computational Thinking.

http://stock.adobe.com
http://cs4fn.org
http://teachinglondoncomputing.org

42 The Big Book of Computing Content

FEATURE

Algorithmic art
In interactive art, artists use computers
and electronics as media, like canvases.
In some works, though, algorithms play
a more fundamental role, generating the
art themselves.

Arguably, artists have been using
algorithms for a long time — following rules
as part of the artistic process. Perhaps the
most stunning examples of this are the
geometric images of Islamic art — and
the word ‘algorithm’ itself comes from the
Persian scholar al-Khwārizmī and his ninth-
century book on the algorithms behind
the Hindu–Arabic numeral system. We are
taught simple algorithms in art classes at
school, dating back to the Renaissance,
such as those used to get perspective
right. Maths, algorithms, and art have been
intertwined, at least informally, for centuries.

Taking this idea further leads to
algorithmic or generative art. Now, rather
than the work arising purely from the
creativity of an artist, it is generated by an
algorithm that the artist creates. Different

artworks result because the algorithm has
elements of randomness in it, or because the
artist tweaks the starting parameters (the
inputs to the algorithm). Or, the artist may
devise variations on the algorithm, exploring
the different kinds of result that emerge
from different changes. So in algorithmic
art, algorithms themselves become a
medium for the artist to work with, just like
organising colour and expressive marks on
a surface, painting with oils, or constructing
in clay. The artist is also adding artistic
judgement by deciding which images to
keep and which to discard.

There are lots of places to get inspiration
for the algorithms behind algorithmic art.
One good source is in the algorithms of
nature. A particularly creative example
of this, from the University of Coimbra’s
CDV Lab, is a program called Photogrowth
(helloworld.cc/photogrowth). It involves
breeding a colony of virtual ants that
deposit ink as they crawl over an initial
image. The brighter colours of the starter
picture act as food sources for the ants,

and their trails lead other ants to those
sources. If they don’t find enough ‘food’, the
ants die. If they do find enough, however,
they reproduce, leading to more ants to
continue developing the picture. Here, the
parameters you can set include things like
the thickness of the trails the ants leave.

Many other kinds of algorithm can be
used. Our article on algorithmic doodle art
in Hello World issue 9 (pages 87–89), gives
some simple and unplugged algorithmic
art activities for the classroom, using
algorithms that mirror the developmental
processes of plants. Students may find
it intriguing to use these as a means of
exploring the way in which our minds
generate doodles and how the rules of
abstraction could, or might, function.
Another way is to try to create a program
that codifies the way human artists work —
an algorithm for human art.

The art of AARON
AARON is a robotic painting device
created by the artist Professor Harold
Cohen. AARON’s creations have appeared
in art galleries worldwide. Just as we
learn the basics of art in school, AARON
has been taught the rules of art, such as
composition and perspective. It also knows
about things in the world, such as how the
parts of a person’s body are connected.
AARON has another kind of knowledge
too: creative procedural knowledge. It
knows how to follow the steps to create
a painting. For example, it starts with the
background of a new painting, and works
its way forward to the foreground. By
following these in-built rules that codify
artistic knowledge, AARON creates novel

n ��The Hive at Kew Gardens has a distinctive mesh frame constructed
from 170,000 aluminium parts and 1000 LED lights

Teaching London Computing:
helloworld.cc/londonart

National Society for Education in
Art and Design: nsead.org

TechPathways London:
helloworld.cc/techpath

ART & COMPUTING RESOURCES

THE ALGORITHMS
THEMSELVES
BECOME THE
MEDIUM THAT
THE ARTIST
WORKS WITH

“

©
Mi

ro
sla

v P
os

av
ec

c/
st

oc
k.a

do
be

.co
m

http://helloworld.cc/photogrowth
http://helloworld.cc/londonart
http://nsead.org
http://helloworld.cc/techpath
http://stock.adobe.com

pictures. Each picture it paints is different,
and it even chooses the subject to paint.

In creating AARON, Cohen made a great
step forward in understanding creativity,
and researchers interested in understanding
computational creativity continue to pursue
that mission. Ultimately, work like Cohen’s
is about writing programs that help us
understand what it means to be human.

Computers and judgement
The next step for algorithmic art is to take
the human out of the loop and let the
computer itself judge which pictures are
‘good’. This is a key part of creativity, and
feeds back into a human’s development as
an artist. Great artists don’t churn out lots
of mediocre paintings, with a few being
chosen as brilliant. They get better, and they
develop a distinctive style of their own. This
development as an artist goes hand in hand
with the development of their judgement
and so their creativity. Computer scientists
working in the area of computational
creativity are exploring ways for algorithms
to exercise this kind of judgement.

Ant art and the Photogrowth program
explore one kind of algorithm that can
provide judgement: a kind of artificial
intelligence algorithm called a genetic
algorithm. This allows the program to
take a further step, so that the computer
itself judges the images it produces, and
feeds that into the creative process. In this
approach, the artist develops a ‘fitness
function’ — an algorithm that gives images
a score as to how well they conform to
a particular aesthetic. The best images
then ‘breed’: their parameter settings are
used to create a new virtual ant colony,
but with mutations — slight adjustments
— to favour those winning settings. Over
time, the ratings of the surviving paintings
improve, as only the best survive each
round, just as animal species adapt to
better survive in their environment.

There are many more links between
computing, maths, creativity, and art.
And we would argue that the world
needs more computer scientists who are
trained artists, and artists who are trained
computer scientists.

Digital technology has been used in art and
design classrooms since the mid-1980s, mainly
as a tool for digital drawing or manipulating
and reproducing images or objects in different
formats. The 1990s and early 2000s saw the
greatest range of creative digital practice, with
developments in digital video, animation, and even
game design. Overlapping with this, England’s
1999 ICT curriculum included elements of art and
design in developing ideas and making things
happen, for example with digital photography,
multimedia, and animation.

However, recent cuts to school budgets, an
increased emphasis on the computer science
elements of computing, and changes to secondary
examinations have had a significant negative
impact on digital art and design in class. Many
secondary schools have phased out the specialist
software shared by art and design departments,
mostly leaving digital photography as the only
digital art offering. In computing departments,
some new digital media courses are being
introduced. In the UK, these include Creative iMedia
and BTEC Creative Digital Media Production.

Some craftspeople and designers use
technology as their main creative tool; others,
such as the ceramicist Michael Eden, use
technology alongside traditional processes and
techniques. He uses CAD for rapid prototyping,
and 3D printing in a plaster and gypsum material
with a non-fired ceramic coating to create some
of his digital forms. Multisensory work, 3D design,
and generative art have become part of the art
and design landscape. Famous artists such as

Bill Viola use film, electronic sound, and digital
images; William Kentridge combines drawing
and animation; Jenny Holzer creates immersive
installations of words and pictures using
programming. Creative industries such as web
design, interface design, games development,
advertising, marketing, animation, and film
incorporate digital art and design.

Have classroom practices and examination
requirements kept pace with the changes in the
world of art and creative media? Some people
have called for young learners to have earlier
access to relevant information on digital media
careers, and an increased exposure to the skills
needed in digital art and design professions
and the creative industries. Furthermore, some
suggest that increasing the computing content
in art lessons could address the lack of boys
opting to study art and design, while more art in
computing lessons could contribute to improving
the representation of girls in computer science.

Teachers in the UK can access support to
increase digital art and design in schools by
joining the National Society for Education in Art
and Design (NSEAD) at nsead.org. NSEAD has a
new guidance document on digital art and design.
Teachers can also make use of its digital audit
tool to reflect on what actions and development
their school needs. When planning actions, you
can find resources at Teaching London Computing
(helloworld.cc/londonart), TechPathways London
(helloworld.cc/techpath), and in the other ideas
presented in Hello World issue 9, which focused
on computing and the arts.

COMPUTING AND ART
IN THE CLASSROOM

n ��Digital photography is now the only digital
art offering at many secondary schools

The Big Book of Computing Content 43

FEATURE

©
Jir

i H
er

a/
sto

ck
.ad

ob
e.c

om

http://nsead.org
http://helloworld.cc/londonart
http://helloworld.cc/techpath
http://stock.adobe.com

44 The Big Book of Computing Content

FEATURE

3D animation still takes serious computing power, but there are
ways to bring it into your classroom

DEMOCRATISING DIGITAL
CULTURE WITH

3D-ANIMATED FILM
ne reason for the inclusion of
programming in the English national

computing curriculum in 2014 was the
idea of democratising digital technology:
we wanted people to be creators of the
systems they consume. Apps, websites,
computer programs, and games are built
using programming, so we need to teach
our children how to code.

However, coding is not the only
component of digital creativity. Much
of what you see in films, on TV, and
in computer games has a 3D digital
component, and we are also seeing
growth in virtual and augmented reality
technologies. If we want to democratise
digital culture, we also need to enable
young people to create 3D digital content.
But how do we go about this?

ICT has been replaced in UK schools
by computing, which focuses more on
computer science. Where ICT courses
might previously have had digital art
components, the replacement qualifications
in computer science do not. Even if a school
wanted to teach 3D digital animation,
maybe through its media studies course,
it would require teachers with the skills to
teach it, potentially expensive software,
and hefty computer hardware. Today,
3D animation is one of the last areas of
digital creativity that still requires serious
computing power. You can program
industry-standard Python through a web
browser, and most programs a beginner will

write can complete almost instantaneously.
To create with 3D animation, though, you’re
going to need a fairly decent computer and
a dedicated graphics card.

Even then, if you make short films, you’ll
need to wait hours, if not days, for something
to render — to make each of the individual
frames of a film. When Pixar’s artists had
finished making the characters, props, and
shots, Monsters University would have taken
495.78 years to render on a single computer.
They used thousands of computers to get
around the problem, but this solution is not
available to schoolchildren!

Foundations
I co-founded 3Dami (3dami.org) in 2012
with the intention of giving students the
tools, skills, and contacts they needed to
start making their own 3D digital content.

O

I was a secondary-school teacher with
students interested in getting into film,
games, and animation. There was, and still
is, a shortage of people working in these
areas. A 2018 Nesta report, Which digital
skills do you really need?, lists animation
and multimedia production as the top areas
of growth for jobs in the digital sector
(helloworld.cc/nesta2018).

Film, games, and animation are generally
quite straightforward careers to get children
interested in, as they are often already avid
consumers. But it’s less straightforward to
get students to make informed decisions
about choosing these careers, based on
actual experience. We wanted students
to be able to gain real experience using
industry-standard tools, so they could
choose their future education and careers
more wisely.

n Blender 3D computer graphics software is free and used in industry

http://3dami.org
http://helloworld.cc/nesta2018

The Big Book of Computing Content 45

3Dami runs a seven-day camp where
teams of nine students create every part
of an animated short. On the first day, the
students write a story for their team to work
to — this means lots of paper and pens, and
a complete, albeit paper-based, storyboard
by the end of the day. Students then work on
computers to create all the props, characters,
sets, animations, and shots that make their
film, with the premiere on day seven. Among
the nine students, two are given roles as
director and producer, with the director taking

the artistic lead, and the producer using an
asset management system to allocate tasks
to the rest of the team and queue up the
shots for rendering. We set up a ‘render farm’
— hundreds of computers linked together —
to speed things up. A shot of seven seconds
at 24 frames a second means 168 separate
frames, and a normal computer might take
45 minutes to do one frame, or 5.25 days to
complete the shot. If we split the 168 frames
across 168 computers, the shot would be
ready in 45 minutes.

Ownership
The aim is for students to own their film
and the management of it. We don’t use
pre-made assets, and we avoid lecturing.
Students tend to learn from each other and
only ask questions when people on their

team can’t help. Computing concepts such as
modular design and computational efficiency
are natural to 3D animation. One student
might make a character that appears in
multiple shots; another might make a bucket
that’s used in some of the same shots. Once
these assets are linked, we have a film, and
if there’s an artistic change to the character’s
hair, it will be immediately updated in all the
shots because it’s linked. Learning modular
design through programming is much more
difficult — a buggy module will probably

break a program, and a buggy haircut will
just look a little rubbish. Trying to get shots
rendered in time is always a problem, and
students need to think carefully about how
they set up their animations. Inefficient shots
can bring even the fastest computer to its
knees for hours at a time; in particular, smoke
simulations and hair can be very computer-
intensive. Someone learning how to program
rarely meets a problem where they need to
write more efficient code, but thinking about
efficiency is a daily task in 3D animation.

It’s important for students to use industry
tools where possible, as this is the only way
they can get a true feel for what it’s like to
work in an area. We base our work on the
open-source Blender 3D computer graphics
software (blender.org). Blender is free, and
is used for films, TV, and games, such as

IT’S IMPORTANT THAT STUDENTS USE
INDUSTRY TOOLS TO GET A TRUE FEEL
FOR WHAT IT’S LIKE TO WORK IN AN AREA

“
the visual effects in the TV series The Man
in the High Castle. Blender runs on old
hardware that you will often find in schools.
If you can’t get permission to install it, it’s
less than a gigabyte and will run off a USB
stick or shared drive.

Many of our students are now studying
digital art, film, computer science, and
engineering at university, and several work
in the games and film industries. 3D digital
art is a skills shortage area that many
students love! If you’d like to get started,
please check out the materials we’ve made
for schoolchildren over at b3d101.org and
helloworld.cc/blenderprojects.

n Visit the Raspberry Pi website for projects to get you started

FEATURE

PETER KEMP
Peter is a senior lecturer in computing education
at King’s College London, UK. He taught
computing in secondary schools through the
Teach First scheme and set up 3Dami in 2012.

http://blender.org
http://b3d101.org
http://helloworld.cc/blenderprojects

FEATURE

The Big Book of Computing Content46

omputing is a broad discipline,
rich in concepts and skills, which

can be taught through many different
technologies and software applications.
As we have developed units of work for
the Teach Computing Curriculum (TCC)
(helloworld.cc/tcc), we have reflected
on how best to support learners in
developing lifelong understanding
and skills. An important aspect of this
is separating the learning from the
applications used to teach it (such as
software packages and programs) and
instead, leading with concepts.

This principle is of particular relevance
in the ‘Creating media’ strand of the TCC,
where learners select and create a range
of media including text, images, sounds,
and video. It is imperative that learners can
use their knowledge and understanding
more widely, rather than getting lost in the
nuance of particular applications.

Scaffolding conceptual understanding
Leading with concepts is, of course, a
consideration to make more broadly when
teaching. In literacy classes, for example,
learners might write a diary entry, using
either pencil and paper or a word processor.
The learner may be proficient at using either
medium, but that doesn’t mean they can
write a good-quality diary entry! They have
to learn how to structure it, as well as the
importance of writing in the first person and
the use of appropriate vocabulary.

Similarly, when teaching computing,
you generally need a tool or software

C

Josh Crossman explores the importance of leading teaching with
concepts and skills, rather than the nuances of software applications

application to bring concepts to life. Which
software application you choose will
depend on a number of factors, such as
accessibility for learners; the time it takes
to understand how to use it; and whether
it is a free or a paid-for product. The key
thing to recognise is that the application
should be used to scaffold conceptual
understanding, rather than being an
integral part of the learning.

Benefits
By following a more application-agnostic
approach to teaching computing, we can
achieve several benefits:

Transferable knowledge
With such a range of digital applications
available, it is important that learners
develop knowledge that can be easily
transferred. If educators lead with concepts
rather than tools, learners will be able
to reapply their knowledge to other
applications and technologies in their lives.
A simple example is understanding the copy
and paste function. It is a key concept that,
once understood, can be applied to most
other applications and programs.

Learner independence
As learners become familiar with how to
accomplish certain tasks, they become
more independent. This enables them to
traverse different applications more easily
as they progress. When learners need to
create more complex media, for example,
they will need to use an application with

more complex features. In the TCC, this
involves learners progressing from basic
vector drawing applications, such as
Google Drawings in Year 5 (aged 9–10)
to more complex applications such as
Inkscape in Year 8 (aged 12–13). With
an understanding of key concepts and
skills, learners can apply this knowledge
with less support, allowing educators to
focus on embedding new concepts and
understanding instead.

Software variations
Throughout the TCC ‘Creating media’
units, we have chosen software
applications that are free, accessible, and
learner-friendly. However, the majority
of these applications are web-based, so
require the internet. Whether a school
has a strong enough internet connection
will be a factor in deciding whether that
application is suitable, or whether a locally
downloaded application would be more
beneficial. This is a very specific use case,
but developing units of work that aren’t
focused on the specifics of a tool makes
it much easier to transfer lessons to other
applications if necessary.

Teacher questioning
The questions we ask as educators are
arguably one of the most important
aspects of teaching and learning. When
teaching learners processes to achieve
something within a piece of software,
such as how to draw a line, the only
understanding you can ask of those

SEPARATING THE LEARNING
FROM THE APPLICATION

http://helloworld.cc/tcc

The Big Book of Computing Content 47

learners is to repeat the process back
to you. This is low-level understanding,
relying solely on their memory. If, instead,
you teach them to recognise the familiar
line icon, make connections with how they
apply other tools such as the shape tool,
and encourage learners to consider prior
knowledge, your questions can be deeper,
such as: “How can I create a line to add to
my drawing?” and “How did you know to
choose this specific tool?”

The benefits of this approach are
numerous, but it can be daunting for a
teacher initially. If learners are used to

being told every icon to click, you may
have to transition to a more open approach
by using games, such as making learners
detectives who have to search for clues as
to what different icons can do. The effort
will be worth it, though — I promise!

Assessment
Changing how you approach teaching and
learning when making use of software can
also have an impact on assessment. There
are new questions to consider, such as:

How much should we assess a learner’s
ability to use the specific functions of a tool?
What if they achieved the correct end goal,
but in a convoluted way? Having a clear
focus on the conceptual understanding
rather than the process of using a tool or
application allows greater clarity when
assessing learning.

Throughout the ‘Creating media’ strand
of the TCC, we use rubrics as possible
summative assessment tools for educators
to use. We have tried to ensure these
rubrics are always focused on the concepts
and skills introduced in the learning, rather

than on the nuances of an application. In
the Year 5 vector-drawing unit (helloworld.
cc/y5vector), for example, learners are
assessed on whether they can move
objects to different layers in the drawing
in a suitable way that fulfils the required
task. To achieve this, learners will first
need a conceptual understanding of what
layering is in vector-drawing software; they
will then need to identify the process for
ordering objects in the layers; and they will
finally need to choose a suitable scenario in

which they could make use of their layering
knowledge. It will be evident from the
learner’s final product where they have used
this skill and whether they have understood
the concept, enabling a more focused
assessment of their holistic understanding.

As with any subject, we want to
maximise learning time and ensure learners
can apply concepts and skills to other areas
of their learning. Removing the specifics of
the software application allows us to do
this, and ensures the teaching and learning
experience is driven by the learner’s needs
and not by the application used.

n �It’s important to lead teaching with concepts and skills rather
than with the specifics of a particular tool

FEATURE

JOSH CROSSMAN
Josh is a programme coordinator at the
Raspberry Pi Foundation, working across
programmes such as the Teach Computing
Curriculum and Hello World. He is a
Raspberry Pi Certified Educator and a
former primary teacher.

©
pe

trr
go

sk
ov

/s
to

ck
.ad

ob
e.c

om

THE KEY THING TO REMEMBER IS THAT
APPLICATIONS SHOULD SCAFFOLD
CONCEPTUAL UNDERSTANDING

“

http://helloworld.cc/y5vector
http://helloworld.cc/y5vector
http://stock.adobe.com

ALGORITHMS
AND DATA
STRUCTURES

50 	� ALGORITHMS AND DATA
STRUCTURES, IN SUMMARY

52 	 IN DEFENCE OF PSEUDOCODE
59 	 �COMPUTATIONAL THINKING,

CONFIDENCE, AND PERSONALITY
60 	 FROM FAKEBOT TO BEE-BOT
62 	 �ABSTRACTION:

THE IMPORTANT BITS

The Big Book of Computing Content 49

lgorithms and data structures enable learners to

explore and express core programming concepts in

a more abstract manner, independent of a specific

programming language. In this way, algorithms and data

structures are useful for planning, expressing, and comparing

the intended operation of a computer program.

From an early stage, learners will plan and represent their

programming plans in a variety of ways, including designing

sketches and simple pictorial or symbolic algorithms, eventually

progressing to more formal approaches, including flow charts

and pseudocode. At the upper stages of school education,

learners will begin to use standard algorithms (such as those

for sorting, searching, and route finding) to make comparisons

between different approaches and develop an understanding

of algorithmic complexity. Later in their education, learners also

typically study abstract and complex data structures, such as

stacks, queues, and trees, as well as the algorithms used to

manipulate them.

A IN THIS SECTION,
YOU WILL FIND:

	■ Learning outcomes: 		
algorithms and data structures,
in summary

	■ What the research says:
the power of pseudocode

	■ What the research says:
computational thinking and
personality

	■ Learning to program with Fakebots

	■ Teaching abstraction skills

The Big Book of Computing Content50

IN SUMMARY

ALGORITHMS AND
DATA STRUCTURES

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Identify that algorithms are clear, precise steps to

complete a task

	■ Recognise the role of algorithms as part of
program design

	■ Decompose a simple task into two smaller tasks

	■ Express algorithms through symbols, simple
sketches, and in written form

	■ Adapt a template or example to plan an
algorithmic solution

	■ Describe how algorithms relate to program design

	■ Distinguish between a program and
an algorithm

	■ Recognise that different algorithms can achieve
the same outcome

	■ Follow an algorithm in order to predict the
outcome and identify errors

	■ Decompose a task into several smaller tasks

	■ Choose appropriate formats to express
algorithms and designs (sketches,
flowchart symbols, text)

	■ Design solutions that reflect the capabilities and
constraints of the intended system

	■ Describe how algorithms relate to different parts
of a programmed solution

	■ Distinguish between real-world scenarios
and computational models

	■ Walk through an algorithm recording the value
of variables

	■ Analyse algorithms and suggest
potential improvements

	■ Express algorithms using text and flowcharts

	■ Independently decompose a task into
smaller tasks, events, and actions

	■ Use abstraction to highlight key parts of a task
when designing a solution

	■ Write algorithms for whole solutions or
individual components

	■ Recognise factors that affect the efficiency of
searching and sorting algorithms

	■ Describe how common searching and
sorting algorithms work

	■ Use trace tables to walk through algorithms

	■ Compare algorithms and select the most
efficient for a given scenario

	■ Explain the need for abstraction and
decomposition when planning a program

	■ Use formal flowchart symbols to
communicate algorithms with others

	■ Use a shared pseudocode to communicate
algorithms with others

	■ Write algorithms that manipulate data
structures such as lists, arrays, and records

	■ Describe a range of standard algorithms including
searching, sorting, graph traversal, and shortest path

	■ Describe how the complexity of an
algorithm is measured in terms of time and
space requirements

	■ Distinguish between problems that are tractable,
intractable, and unsolvable

	■ Analyse standard algorithms and express
their efficiency using big O notation

	■ Compare the efficiency and suitability of algorithms
for different scenarios

	■ Represent and convert algorithms
using pseudocode, flowcharts, and
structured English

	■ Use data structures and abstract data types to
organise and manipulate data effectively

	■ Explain the difference between static and
dynamic data structures

	■ Design the main parts of an application including
the interface, required data, and key algorithms and
data structures

IN SUMMARY

Comprehend, design, create, compare,
and evaluate algorithms

The Big Book of Computing Content 51

IN SUMMARY

In the table below, you will find learning outcomes associated with

the ‘Algorithms and data structures’ strand of the Raspberry Pi

Foundation’s computing taxonomy. These learning outcomes are

illustrative of the kinds of knowledge and understanding that learners

could develop in this area of computing. They are not prescriptive,

but instead aim to illustrate the wide applications of the discipline.

These learning outcomes were originally developed to complement

the English national curriculum for computing, and as such, stage 1

roughly corresponds to ages 5–7, stage 2 to ages 7–11, stage 3 to

ages 11–14, stage 4 to ages 14–16, and stage 5 to ages 16–19.

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Identify that algorithms are clear, precise steps to

complete a task

	■ Recognise the role of algorithms as part of
program design

	■ Decompose a simple task into two smaller tasks

	■ Express algorithms through symbols, simple
sketches, and in written form

	■ Adapt a template or example to plan an
algorithmic solution

	■ Describe how algorithms relate to program design

	■ Distinguish between a program and
an algorithm

	■ Recognise that different algorithms can achieve
the same outcome

	■ Follow an algorithm in order to predict the
outcome and identify errors

	■ Decompose a task into several smaller tasks

	■ Choose appropriate formats to express
algorithms and designs (sketches,
flowchart symbols, text)

	■ Design solutions that reflect the capabilities and
constraints of the intended system

	■ Describe how algorithms relate to different parts
of a programmed solution

	■ Distinguish between real-world scenarios
and computational models

	■ Walk through an algorithm recording the value
of variables

	■ Analyse algorithms and suggest
potential improvements

	■ Express algorithms using text and flowcharts

	■ Independently decompose a task into
smaller tasks, events, and actions

	■ Use abstraction to highlight key parts of a task
when designing a solution

	■ Write algorithms for whole solutions or
individual components

	■ Recognise factors that affect the efficiency of
searching and sorting algorithms

	■ Describe how common searching and
sorting algorithms work

	■ Use trace tables to walk through algorithms

	■ Compare algorithms and select the most
efficient for a given scenario

	■ Explain the need for abstraction and
decomposition when planning a program

	■ Use formal flowchart symbols to
communicate algorithms with others

	■ Use a shared pseudocode to communicate
algorithms with others

	■ Write algorithms that manipulate data
structures such as lists, arrays, and records

	■ Describe a range of standard algorithms including
searching, sorting, graph traversal, and shortest path

	■ Describe how the complexity of an
algorithm is measured in terms of time and
space requirements

	■ Distinguish between problems that are tractable,
intractable, and unsolvable

	■ Analyse standard algorithms and express
their efficiency using big O notation

	■ Compare the efficiency and suitability of algorithms
for different scenarios

	■ Represent and convert algorithms
using pseudocode, flowcharts, and
structured English

	■ Use data structures and abstract data types to
organise and manipulate data effectively

	■ Explain the difference between static and
dynamic data structures

	■ Design the main parts of an application including
the interface, required data, and key algorithms and
data structures

52 The Big Book of Computing Content

IN DEFENCE OF PSEUDOCODE
hen I used to teach programming,
it didn’t take me long to realise

how easily my students could confuse or
even forget basic structural elements of
a programming language. They would be
tripped up by misusing capitalisation, white
space, or parentheses. Basic syntax errors
such as these would sidetrack students
from focusing on developing a solution.
Instead, they would resort to trying out
every possible instruction they could find
online in the hope that it would solve their
errors. It turns out that my experiences
weren’t unique, and are also supported by
research in computing education.

The case for simple languages
In 2006, researcher Linda Mannila and
her colleagues compared 60 programs
written by students aged 16–19 after
their first programming course, in either
Python (a simple language, developed for
its readability) or Java (a more advanced
language). They analysed the assignments,
both in terms of syntax and logic errors
and their overall functionality (helloworld.
cc/mannila2006).

The results were remarkable.
Programming in Python not only helped
students avoid making syntax errors,
but also allowed them to solve the given

problem. The percentage of Python
programs that ran correctly and fulfilled the
intended purpose was more than double
that of the Java programs.

One potential drawback of teaching
programming in Python rather than a more
complex language, such as Java, is that it
could do students a disservice if they then
needed to relearn aspects of programming
when moving to a less intuitive language,
like Java. However, the team did not find
this to be the case: students who had first
learnt to program with Python were at no
disadvantage when switching to Java.

So if choosing a simple language can play
such a positive role in student progression,
why not opt for that option?

From simple to pseudocode
Researchers Allison Elliott Tew and Mark
Guzdial took the matter of programming
language choice even further (helloworld.
cc/tew2011). In 2011, they developed
a way of comparing the knowledge of
university students who took introductory
programming courses in Java, MATLAB,
and Python. They wanted to make the
assessment language-independent, so
they used pseudocode instead of any
of the taught programming languages.
Pseudocode makes use of simple English
to describe what a program does. It is laid
out in a similar manner to a programming
language, but removes some of the clutter
that is needed for a machine to understand
the code — clutter that increases the
complexity to a human reader.

W

RESEARCH

STORY BY Eirini Kolaiti

n In a 2006 study, students who had first learnt to program with Python were at no disadvantage when switching to Java

 ©
 m

ac
iek

90
5/

sto
ck

.ad
ob

e.c
om

http://helloworld.cc/mannila2006
http://helloworld.cc/mannila2006
http://helloworld.cc/tew2011
http://helloworld.cc/tew2011
http://stock.adobe.com

53The Big Book of Computing Content

The results demonstrated that a
pseudocode-based assessment can
accurately determine students’ programming
competency, regardless of their
programming background. This means that
students could transfer their comprehension
of fundamental programming concepts to
pseudocode notation. Reversing this logic,
surely we can use pseudocode to scaffold
the learning of programming concepts.

Walk before you run (a program)
In 2004, an international group of
researchers, led by Raymond Lister at
the University of Technology in Sydney,
conducted a study regarding programming

competency across seven countries
(helloworld.cc/lister04). Instead of asking
students to produce their own programs,
the researchers examined whether students
could understand existing code (written in
Java or C++) by predicting the output of a
given program. The results suggest that
what stops many students from performing

well in programming tasks is not a lack
of ability to problem-solve, but a fragile
knowledge of fundamental concepts.
Students were unable to hand-trace code
(where the values of variables are calculated
by hand) because of an insufficient
command of basic programming tasks,
such as iterating over an array or the use of
recursion. These areas are mostly related to
an ability to read code rather than write it.

From these pieces of research, one could
argue that as educators we should use
programs in pseudocode to foster these
preliminary skills, so that students benefit
from a reduction in the cognitive load caused
by language-specific syntax. After all, most

programming languages are not designed
with the aim of teaching programming,
whereas pseudocode can be adapted to
meet the needs of the students.

Pseudocode activities can be used in
lessons in order to practise reading and
tracing code, and as an opportunity to
discuss basic programming concepts.

REBECCA FRANKS
Learning manager at the Raspberry Pi
Foundation

I asked upper-secondary computer
science teachers on Twitter which type
of pseudocode they used for designing
programs. 38 percent followed their exam-
board-specific pseudocode and 53 percent
did not specify a syntax. Several commented
that it was more important that learners
could effectively design their own programs
and that the syntax used was less relevant.

In UK GCSE qualifications (for ages 14–16),
there is currently no requirement for
students to use a specific pseudocode
syntax. However, most exam boards have
their own unique approach to pseudocode
for presenting questions. Students need to
be familiar with these to answer questions
successfully. Exam questions will indicate
the form or response required, whether it’s
a specific programming language, natural
English, pseudocode, or a flowchart.

PSEUDOCODE AT GCSE

PSEUDOCODE LOOKS LIKE A PROGRAMMING
LANGUAGE, BUT IT REMOVES SOME OF THE
CLUTTER SO IT’S EASIER TO UNDERSTAND

“

RESEARCH

http://helloworld.cc/lister04

54 The Big Book of Computing Content

function linear_search(list, element)
 for i = 0 to len(list) - 1
 x = list[i]
 if x == element then
 return TRUE
 endif
 next i
 return FALSE
endfunction

v = ['Bob', 'Doug', 'Alice']
value = input("Enter search string or q to quit: ")
WHILE value != ‘q’ AND value != ‘Q’
 print(linear_search(v, value))
 value = input("Enter search string or q to quit: ")
ENDWHILE

def linearSearch(list, element):
 for x in list:
 if x == element:
 return True
 return False
v = ['Bob', 'Doug', 'Alice']
while True:
 value =input("Enter search string or q to quit: ")
 if value.lower() == 'q':
 break
 else:
 print linearSearch(v, value)

Linear search in pseudocode:

Linear search in Python:

Here are some ideas on how to incorporate
pseudocode into your teaching:

n �Start activities with pseudocode to discuss
concepts before converting into code to deal
with syntax errors, to test/debug the algorithm,
and to check the algorithm’s structure. It should
be easier to write an algorithm after students
have worked on a pseudocode version, rather
than starting with a programming language.

n �Ask students to write a program using
pseudocode and then swap with a partner for
them to write it in a programming language.

n �Give snippets of pseudocode to test basic
misconceptions, for example in the use
of recursion.

n �Give small programs that students can hand-
trace, writing out the values of variables as the
program progresses, to check they understand
the code.

PSEUDOCODE ACTIVITIES
Students could then convert the pseudocode
programs (their own or each other’s) into
compilable code. This gives them the
opportunity to experiment with how to
implement algorithmic constructs using the
specific features of a programming language,
and how to deal with syntax errors. Having
the stepping stone of pseudocode therefore
helps with the skills needed to test and
debug algorithms.

Pseudocode can also be used for
formative assessment. Low-stakes tests
and starter activities that use pseudocode
snippets to test specific misconceptions can
help unpack the underlying processes of
program execution. I have found that
challenging students with small, targeted
pseudocode programs helps with
engagement and information retention. In
this way, pseudocode could pave the way
towards gaining fundamental knowledge
and skills through reading and tracing code
before moving on to writing actual
programs and dealing with the inevitable
corollary of syntax errors.

RESEARCH

FURTHER READING
 �Mannila, L., Peltomäki, M., &
Salakoski, T. (2006). What about
a simple language? Analyzing the
difficulties in learning to program.
Computer Science Education, 16(3),
211–227. helloworld.cc/mannila2006

 �Tew, A., & Guzdial, M. (2011). The
FCS1: A language independent
assessment of CS1 knowledge.
SIGCSE’11 - Proceedings of the 42nd
ACM Technical Symposium on
Computer Science Education, 111–116.
helloworld.cc/tew2011

 �Lister, R., Adams, E. S., Fitzgerald,
S., Fone, W., Hamer, J., Lindholm, M.,
McCartney, R., Moström, J. E., Sanders,
K., Seppälä, O., Simon, B., & Thomas,
L. (2004). A multi-national study of
reading and tracing skills in novice
programmers. ACM SIGCSE Bulletin,
36(4), 119-150. helloworld.cc/lister04

http://helloworld.cc/mannila2006
http://helloworld.cc/tew2011
http://helloworld.cc/lister04

55The Big Book of Computing Content

import java.util.Vector;
 public class JavaEx {
 public static boolean linearSearch(Vector v,
Object o) {
 for (int i=0; i 5 v.size(); i++) {
 if (v.elementAt(i).equals(o)) {
 return true;
 }
 }
 return false;
 }

 public static void main(String args[]){
 Vector v = new Vector();
 BufferedReader in = new BufferedReader(
 new InputStreamReader (Systems.in)
);
 String[] values = {"Bob", "Doug", "Alice"};

 for (int i = 0; i 5 values.length; i++) {
 v.addElement(values[i]);
 }
 String value;
 while (true) {
 System.out.println("Enter search string
or" + " q to quit: ");
 value = in.readLine();
 if (value.toLowerCase().equals("q")) {
 break;
 }
 else {
 System.out.println(linearSearch(v,
value));
 }
 }
 }
}

Linear search in Java:

n Linear search in Python, Java, and pseudocode from Mannila and colleagues’ 2006 research. Reprinted by permission of the publisher (Taylor & Francis Ltd, tandfonline.com)

n Pseudocode activities can be used in lessons to practise reading and tracing code

RESEARCH

 ©
 Pa

eG
AG

/s
toc

k.a
do

be
.co

m

http://Systems.in
http://tandfonline.com
http://stock.adobe.com

The Big Book of Computing Content56

SUBSCRIBE
TODAY

• Teaching resources and
ideas used by over 90
percent of our readers

�• Exclusive news,
research findings,
and in-depth features

• Delivered to your
door four times a year

Why
subscribe?

FREE
IN PRINT
for UK-ba

sed

educator
s

https://helloworld.raspberrypi.org/subscribe

The Big Book of Computing Content 57

helloworld.cc/subscribe
TO SUBSCRIBE VISIT:

Not a UK-based educator?
• Buy a print copy from helloworld.cc/store

— we ship to over 50 countries

�• Subscribe to receive the free PDF on the
day it is released

• Read features and news at helloworld.cc

FREEPDF
for anyone, anywhere

http://helloworld.cc/store
http://helloworld.cc
https://helloworld.raspberrypi.org/subscribe
https://helloworld.raspberrypi.org/subscribe
https://helloworld.raspberrypi.org/subscribe

• Get more great Hello World content
between issues

• Hear directly from the educators
behind our articles

• Listen on the move — delve a little
deeper and have some fun along the way

• Apple Podcasts	
helloworld.cc/applepod

• Spotify		
helloworld.cc/spotifypod

• Google Podcasts
helloworld.cc/googlepod

• Amazon Music 	
helloworld.cc/amazonpod

Listen to Hello World’s
podcast now:

OUR MOST POPULAR EPISODESHow moral is your machine? Ethics in computing educationAccessible and inclusive computing
education: where to start?How can we get everyone excited about code?

HEAR FROM
THE WRITERS!

Subscribe to the podcast!

SCAN ME

http://helloworld.cc/applepod
http://helloworld.cc/spotifypod
http://helloworld.cc/googlepod
http://helloworld.cc/amazonpod

The Big Book of Computing Content 59

 A positive link between computational
thinking and extraversion, on the other
hand, contradicts most existing research,
and challenges stereotypes. The consensus
used to be that brilliant programmers are
usually introverted, but this seems to be
changing. Computing is becoming less of
a solitary activity, and now involves more
social interaction and collaboration.

Improving computational thinking
These findings provide new insight into
how we should approach computing
education. Although computational
thinking is a cognitive psychological
process, it is significantly influenced by
non-cognitive factors.

To make children think computationally,
educators should therefore focus on their
development beyond cognitive abilities,
such as boosting confidence in

programming. It would be especially useful
to improve children’s self-efficacy in
specific computing tasks, and helping
children see their success through concrete
examples can be one way of making them
learn more. Finally, it is paramount to teach
computing in an environment that
welcomes different types of personality
and is freed from stereotypes about a
typical computational thinker.

RESEARCH

omputational thinking is a topic
that’s widely discussed within

computing education. It’s a key thinking
skill that students need to develop if they
are to live in a technology-driven society.
 Computational thinking is generally
understood as a type of logical thinking that
can help students to problem-solve, both
with and without the use of computing
devices. It relates to children’s cognitive
abilities, such as their reasoning, spatial,
numeracy, and problem-solving abilities.

More than cognitive ability
Román-González and his colleagues,
however, concluded in their 2017 study
that cognitive abilities weren’t the only
link to computational thinking skills: they
studied how computational thinking is
also linked to the non-cognitive factors of
self-efficacy and personality. Quantitative
analysis suggests that only 27 percent
of computational thinking is explained
by cognitive factors. Almost the same
proportion — 24 percent — is related to
non-cognitive factors, mainly self-efficacy,
openness to experience, conscientiousness,
and, surprisingly, extraversion.
 The study found a possible link between
students’ computational thinking and their
self-efficacy — that is, students’ perceptions
of how well they performed. It appears
that if learners believe they can perform
well, they’re likely to achieve better results.
Lower self-efficacy in girls could also help to
explain the gender gap in computing.
 Computational thinking also seems to be
linked to openness and conscientiousness.
This finding doesn’t come as a surprise,
as these are the aspects of personality
that are most closely related to academic
performance, dealing with open-ended
problems, and persistence in working on
difficult tasks.

COMPUTATIONAL THINKING,
CONFIDENCE, AND PERSONALITY

STORY BY Lucia Flóriánová

C
©

St
oc

kP
ho

to
Pr

o/
st

oc
k.a

do
be

.co
m

FURTHER READING

 �Román-González, M., et al. (2018).
Extending the nomological network
of computational thinking with
non-cognitive factors. Computers
in Human Behavior, 80, 441–459.
helloworld.cc/gonzalez2018

http://stock.adobe.com
http://helloworld.cc/gonzalez2018

Jane Waite and Pam Popay share how laminated card representations of
popular floor robots can help students learn to program

FROM FAKEBOT TO BEE-BOT
s a resource to help pupils learn to
program, the Bee-Bot floor robot

has been a success in primary classrooms
and clubs in the UK. A present-day
simplified version of Seymour Papert’s
Logo turtle robot, the plastic device
looks like a 20cm bee with a smiling face,
bright colours, and simple buttons on
its back to control its motion. Over three
quarters of a million units have been sold
by the education providers TTS since the
product’s launch in the early 2000s, with
other similar products on the market also
being used by educators.

Each Bee-Bot has a left and a right button,
and straight on and reverse buttons, which
can be combined to write a program which,
when run, causes the robot to move around
the room. There is also a ‘Clear’ button and
a ‘Go’ button. The ‘Go’ button executes the

sequence of commands that were most
recently entered since the last time ‘Clear’
was pressed. The ‘Clear’ button wipes the
device’s memory, and if it’s switched off, the
memory is also cleared.

The birth of Fakebots
In 2013, Pam Popay and a colleague at BT
were spending a lot of their time developing
and trialling resources to support the newly
proposed computing curriculum in schools
in Suffolk, UK. When they discovered that all
the schools they were visiting had Bee-Bots,
it seemed obvious that they should develop
some resources to be used with the devices
which could support the delivery of the
new intended computing curriculum across
different year groups.

The BT team started with ‘having a go’
sessions that introduced children to the

A

FEATURE

Bee-Bots. Rather than randomly playing
with the device, pupils were encouraged
to think like scientists and examine what
each button did. By doing this more guided
activity, the students gradually discovered
the functionality of the Bee-Bot.

As the team from BT developed more
tasks, they realised that students needed
a way to record their planned sequence of
instructions, as it was hard for children to
debug their intended instructions without it.
After experimenting with different methods,
they introduced a set of arrow cards along
with ‘Go’ and ‘Clear’ cards. The children used
the cards to construct a command list, which
they could then test. Finally, when students
thought the sequence was correct, they
were then given the Bee-Bot to program.
However, it soon became clear that the
physical robot was a distraction from the

n �A pupil uses a Bee-Bot: can you spot
the Barefoot Fakebot to the side?

©
BT

 an
d B

CS
 B

ar
ef

oo
t

60 The Big Book of Computing Content

thinking process and that pupils wanted to
use trial and error instead of thinking ahead
to work out the solution to the problem.

During a lesson break, Pam had an idea.
She found some card in the classroom, drew
around a Bee-Bot, and added buttons and a
face. She then introduced this paper-based
representation of a Bee-Bot to the class.
Pupils were now asked to complete activities
with the card bee, while the Bee-Bots rested
safely in their beehive. One of the students in
that class called the card bee a Fakebot, and
this is what they have been called since.

Pupils used the Fakebot to test their
planned sequences of commands. They
worked in teams: one pupil was the
sequence designer and could organise the
sequence of commands using the arrow
cards, and another pupil controlled the
Fakebot, using it to test the arrow card
command sequence. Once the team thought
all was well, they could collect a real Bee-
Bot, and a third member of each team, the
programmer, entered the commands into
it. The group then waited to see what
happened. During this time, they followed
the arrow card sequence as the Bee-Bot
moved around.

Through working with Fakebots, Pam has
recognised several essential features that
can impact on their successful use. Firstly,
they must be the correct size, so that their
tested movements are relatively accurate.
Secondly, depending on the activity, it can be

useful to have Bee-Bots with distinguishing
features, such as different eyes, so that each
group knows which Fakebot is theirs. Thirdly,
if required, a Fakebot can have L (left) and R
(right) written on them to help children recall
vocabulary for discussing movement.

Fakebots as a widespread resource
Around the time she was introducing
Fakebots in teaching resources, Pam shared
her findings about the Fakebot with Jane
Waite, who was very excited by the idea.
Both Pam and Jane were involved in the
development of the Barefoot Computing
programme at the time, and included
Fakebots in the Barefoot resources. Set up
by BT and Computing at School, Barefoot
helps to empower primary-school teachers
across the UK to deliver the computing
curriculum brilliantly with free and engaging
lesson plans, online guides, and workshops.

It would be fantastic to hear how
educators are using Fakebots in their
classrooms and how they affect pupil
learning. Please share your experiences with
us on Twitter (@janewaite).

You can find Fakebot activities, such as
Barefoot’s Bee-Bot Basics Activity and Bee-
Bots 1, 2, 3 Programming, at helloworld.cc/
beebot1 and helloworld.cc/beebot2 along
with other downloadable resources that help
bring computing to life in the classroom.

Bee-Bots and Fakebots are also used in
resources from the Teach Computing
Curriculum (helloworld.cc/tcc_robot) and
TTS (helloworld.cc/tts).

FAKEBOT
RESOURCES

n ��Barefoot Fakebots are available on the Barefoot website,
but you can get your children to make their own

n �The original Fakebots are still pinned
to Pam’s noticeboard at BT

©
BT

 an
d B

CS
 Ba

ref
oo

t

©
Pa

m
Po

pa
y

61The Big Book of Computing Content

FEATURE

JANE WAITE
& PAM POPAY
Jane is a senior research scientist at the
Raspberry Pi Foundation. Pam works on
education engagement strategy at BT.

http://helloworld.cc/beebot1
http://helloworld.cc/beebot1
http://helloworld.cc/beebot2
http://helloworld.cc/tcc_robot
http://helloworld.cc/tts
https://twitter.com/janewaite

62 The Big Book of Computing Content

Matthew Parry discusses the concept of abstraction and shares ideas on how
to teach abstraction using the PRIMM approach and My Blocks in Scratch

ABSTRACTION:
THE IMPORTANT BITS

he Collins English Dictionary
defines abstraction as “the process

of formulating generalised ideas or
concepts by extracting common qualities
from specific examples” or “something
which exists as a general idea rather than
as an actual example”. In other words, it
is about removing complexity in order to
increase understanding, without losing the
core message.

We encounter abstractions around
us every day. They can be shortened
versions of something, to give an example
of the whole thing. For example, the
British television programme Match of
the Day shows only highlights of football
matches; music websites allow you to
stream excerpts of upcoming albums;
and the blurb on the back of a book gives
only an indication of the whole story.

Abstractions can also be symbols that
are used to convey meaning while reducing
complexity. Examples are road signs,
the London Tube map, class timetables,
and infographics.

We also regularly entertain abstract ideas in
our day-to-day living. For example, most of us
have only a conceptual understanding of most
of the machines we use. We use the terms
‘car’, ‘microwave’, and ‘mobile phone’ without
really knowing what they do or having any
concept of how they work.

Word problems in mathematics are a
great example of abstraction. Pupils need to
choose (abstract) the relevant information
from the description in order to create the
number sentence that solves the problem.

Abstraction in computer science
Within computer science, abstraction is
one of the key elements of computational
thinking. Barefoot Computing states that

“abstraction is about simplifying things
— identifying what’s important without
worrying too much about detail”, while
educational researcher Keith Turvey says
that “abstraction is a process by which
any unnecessary detail is omitted in order
to help us to solve a problem or achieve a
specific outcome”.

One of the aims of England’s National
Curriculum for Computing is to ensure that
all pupils “can understand and apply the
fundamental principles and concepts of
computer science, including abstraction,
logic, algorithms, and data representation”.

Abstraction allows us, as computer
scientists, to concentrate on the important
bits of developing a solution by ignoring the
irrelevant detail — much as pupils do for
maths word problems.

For example, we may have been asked to
create an algorithm for making a cup of tea.
In our algorithm, we can ignore some of the
complexity that this task would entail, such
as how to use a kettle, and use (abstract)

T

FEATURE

instructions such as ‘switch the kettle on’
in order to make our algorithm simpler and
easier to understand.

Abstraction in Scratch
The majority of programming languages are
abstractions. They hide the complexity and,
for us humans, the incomprehensibility of
the binary instructions that computers use.
A lot of the keywords and commands within
programming languages, for example the
print and input commands, also abstract
more complex tasks.

Within Scratch, there are a number of
blocks that abstract the processing that is
being performed under the hood. Figures 1
and 2 below show two such blocks, and you
can see the steps that are hidden from the
user in their captions.

Abstraction lesson idea using Scratch
Using decomposition and the PRIMM
(Predict–Run–Investigate–Modify–Make)
pedagogical approach to structuring

n ����Figure 1:
1st step: get current direction of the sprite
2nd step: add 15 to the current direction
3rd step: set direction to the new value

n ����Figure 2:
1st step: create new x value by randomly selecting a number between -240 and 240
2nd step: create new y value by randomly selecting a number between -180 and 180
3rd step: move to the new x and y position

63The Big Book of Computing Content

programming lessons (see the boxout for
more details), we can unpick another of the
Scratch blocks to begin to understand how
abstraction works.

Take your class through the
following steps, referencing Figure 3:

Predict: ask your students to look at the

code and ask them, “What does this code
snippet do? What will happen to the sprite?”

Run: get your students to run the
program and ask them, “Does the code do
what you thought it would? If not, can you
work out why?”

Investigate: ask your students to label and
comment on the code. You can ask questions
such as, “What does each block do? What
do the numbers represent? What happens if
you change the numbers?”

Modify: ask students to alter the code
to make the sprite bounce on the left-hand
edge of the screen too.

Make: get students to add code to make
the sprite bounce at the top and bottom of
the screen too. Ask them what they will have
to change to test this code. For an added
challenge, ask students to try and replicate
the if on edge, bounce block.

Abstraction using My Blocks
Using My Blocks in Scratch is an excellent
way to develop understanding of abstraction.
In creating an abstraction, pupils must fully
understand what information needs to be
hidden from the user.

One of the complexities of teaching
Scratch to younger children is the need
for them to understand coordinates and
the use of negative numbers to control the
movement of a sprite around the stage.
We can use abstraction to hide those

complexities by creating new blocks to move
left, right, up, and down. Take students
through the following steps:

Predict: what do you think the block in
Figure 4 will do?

Run: using the when right arrow key is
pressed block, run the Move Right x steps
block. Does it do what you thought it would?

Investigate: investigate the block
definition in Figure 5. How does it work? Will
it work for all directions?

PRIMM is a pedagogical approach to structuring programming lessons. It follows this structure:
Predict: discuss the program and predict what it might do; what will be the output?
Run: run the program to test the predictions.
Investigate: explore the structure of the code using tracing, explaining, annotating, debugging, etc.
Modify: edit the program to change its functionality via a sequence of ever-more challenging exercises
to gain confidence by extending the function of the code.
Make: design a new program that uses the same structures but solves a new problem.

You can read more at helloworld.cc/primm.

THE PRIMM APPROACH

Modify: can you create other blocks for
moving left, up, and down?

Make: can you create another block called
stay on screen, to stop the body of the sprite
going off the screen? Can you then amend
the move right, left, up, and down blocks to
include this stay on screen block?

Jeannette Wing, who is recognised as
having defined computational thinking, refers
to abstraction as the most crucial thought
process in computer science. Abstractions
are everywhere in computing: they hide the
complexity of the underlying processes,
whether that complexity is in an algorithm, a
program, the computer itself, or your own
understanding of what the internet is. As
with all tricky concepts, the more practice
and examples you engage with, the more
concrete the notion becomes — even with
something as abstract as abstraction.

TO CREATE AN ABSTRACTION, PUPILS
MUST UNDERSTAND WHAT INFORMATION
NEEDS HIDING FROM THE USER

“

MATTHEW PARRY
Matthew is a senior lecturer in initial
teacher training at the University of Derby,
UK. He is also a CAS Community Leader,
a Raspberry Pi Certified Educator, a
Barefoot Ambassador, and an NCCE course
facilitator (@Matthew_Parry_).

n ����Figure 3 n ����Figure 4

n ����Figure 5

FEATUREFEATURE

http://helloworld.cc/primm
https://twitter.com/matthew_parry_?lang=en

The Big Book of Computing Content

PROGRAMMING
66 	� PROGRAMMING, IN SUMMARY
68 	� BLOCKS TO TEXT
70 	 LEVELS OF ABSTRACTION
73 	 �WHY WE SHOULD TEACH CHILDREN

TO CODE
76 	 INTRODUCING PROGRAMMING 		
	 THROUGH THE WIDER CURRICULUM
78 	 �COMPREHENSIVE PROGRAMMING

ASSESSMENT

65The Big Book of Computing Content

rogramming allows learners to apply concepts

from across computing in creative and innovative

ways to solve problems relevant to them. Through

programming, learners can create new tools and experiences,

solve complex problems, and express ideas.

As learners move through school, they will progress their

understanding and application of programming. Students

learn to read and write simple programs from their first year

of school, and over time, they develop their understanding

of key programming concepts. Initially, they will focus on

sequence, repetition, selection, and variables. Later, students

will encounter more complex ideas, such as modularisation,

recursion, and data structures. This experience usually

culminates with students learning about alternative

programming paradigms, including object-oriented and

functional programming. Throughout this journey, students will

use ever more sophisticated tools and languages.

We can apply programming across a wide range

of contexts to solve a diverse range of problems.

This broad application of the skill, alongside

the increasing pervasiveness of computing

in all areas of our lives, makes programming

an important and relevant skill for all learners.

P IN THIS SECTION,
YOU WILL FIND:

	■ Learning outcomes: 		
programming, in summary

	■ What the research says:
moving from block-based to text-
based programming

	■ What the research says:
levels of abstraction

	■ Why we should teach children to code

	■ Programming and the wider curriculum

	■ Comprehensive programming
assessment

The Big Book of Computing Content66

IN SUMMARY

PROGRAMMING

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Predict the outcome of a sequence of commands

	■ Recognise that changing a sequence of
commands can have an impact on the output

	■ Create short sequences of commands for a given
purpose

	■ Compare programs and their output to an
algorithm in order to identify issues

	■ Make changes to programs when they don’t behave
as expected

	■ Make predictions about the outcome of programs
containing selection and repetition

	■ Recognise that evaluating a condition will
result in either true or false

	■ Recognise that repeated sequences of commands
can be replaced with a loop

	■ Write programs that include selection to
alter program flow based on a condition

	■ Write programs that include count-controlled,
condition-controlled, and infinite loops

	■ Describe how variables can be used in
programs

	■ Describe the importance of initialisation to create
consistency

	■ Use tracing, testing, and debugging
techniques to identify and fix issues

	■ Modify or incorporate elements of existing
programs to create a new program

	■ Annotate code with comments to describe
functionality or design decisions

	■ Read, trace, and predict the outcome and purpose
of programs written in text- and block-based
languages

	■ Distinguish between event-based and
procedural programming

	■ Identify how subroutines can be used to make
program code more manageable

	■ Manipulate data held in variables, applying
concatenation and arithmetic operators

	■ Use lists to retrieve, add, and remove items and
perform iteration on a list

	■ Use a combination of logical operators to
construct more complex conditions

	■ Apply a systematic approach to testing programs

	■ Use comments and documentation to help
make programs easy to follow, test, and
adapt

	■ Trace and predict the outcome and purpose
of programs comprising multiple functions

	■ Define subroutines that make use of parameters
and return values

	■ Describe the properties of simple data
structures such as lists and arrays

	■ Implement familiar program ‘patterns’ to solve
common problems and use appropriate libraries
and modules as needed

	■ Interpret and write code that contains
nested statements such as nested
selection and nested iteration

	■ Describe how a record data structure can be
implemented using dictionaries and lists

	■ Manipulate variables using suitable
operators or methods, converting between
data types when necessary

	■ Use variables within subroutines and events and
distinguish between local and global variables

	■ Incorporate validation techniques into
programs to help minimise errors

	■ Perform both iterative and final testing on
programs to ensure they function correctly

	■ Document a programming project to
explain design decisions

	■ Predict the outcome and purpose of
programs written in a range of languages and
using different paradigms

	■ Describe the role of objects, classes, methods, and
attributes within the object-oriented paradigm

	■ Contrast the differences in how code is
expressed in the functional programming
paradigm compared to other approaches

	■ Describe the role of events, messages, and the main
loop in event-based programming

	■ Write programs using a broad range of
programming paradigms and languages

	■ Write programs that use recursion to solve problems

	■ Build programs that use existing or custom
classes and objects

	■ Create programs that implement data structures
such as stacks, queues, and trees

	■ Incorporate exception handling actions to
make programs more robust

	■ Apply a range of testing approaches to ensure
functionality, performance, and robustness of
programs

IN SUMMARY

Read, write, test, and debug computer
programs that provide meaningful
output or solve a problem

The Big Book of Computing Content 67

IN SUMMARY

In the table below, you will find learning outcomes associated

with the ‘Programming’ strand of the Raspberry Pi Foundation’s

computing taxonomy. These learning outcomes are illustrative of the

kinds of knowledge and understanding that learners could develop in

this area of computing. They are not prescriptive, but instead aim to

illustrate the wide applications of the discipline.

These learning outcomes were originally developed to complement

the English national curriculum for computing, and as such, stage 1

roughly corresponds to ages 5–7, stage 2 to ages 7–11, stage 3 to

ages 11–14, stage 4 to ages 14–16, and stage 5 to ages 16–19.

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Predict the outcome of a sequence of commands

	■ Recognise that changing a sequence of
commands can have an impact on the output

	■ Create short sequences of commands for a given
purpose

	■ Compare programs and their output to an
algorithm in order to identify issues

	■ Make changes to programs when they don’t behave
as expected

	■ Make predictions about the outcome of programs
containing selection and repetition

	■ Recognise that evaluating a condition will
result in either true or false

	■ Recognise that repeated sequences of commands
can be replaced with a loop

	■ Write programs that include selection to
alter program flow based on a condition

	■ Write programs that include count-controlled,
condition-controlled, and infinite loops

	■ Describe how variables can be used in
programs

	■ Describe the importance of initialisation to create
consistency

	■ Use tracing, testing, and debugging
techniques to identify and fix issues

	■ Modify or incorporate elements of existing
programs to create a new program

	■ Annotate code with comments to describe
functionality or design decisions

	■ Read, trace, and predict the outcome and purpose
of programs written in text- and block-based
languages

	■ Distinguish between event-based and
procedural programming

	■ Identify how subroutines can be used to make
program code more manageable

	■ Manipulate data held in variables, applying
concatenation and arithmetic operators

	■ Use lists to retrieve, add, and remove items and
perform iteration on a list

	■ Use a combination of logical operators to
construct more complex conditions

	■ Apply a systematic approach to testing programs

	■ Use comments and documentation to help
make programs easy to follow, test, and
adapt

	■ Trace and predict the outcome and purpose
of programs comprising multiple functions

	■ Define subroutines that make use of parameters
and return values

	■ Describe the properties of simple data
structures such as lists and arrays

	■ Implement familiar program ‘patterns’ to solve
common problems and use appropriate libraries
and modules as needed

	■ Interpret and write code that contains
nested statements such as nested
selection and nested iteration

	■ Describe how a record data structure can be
implemented using dictionaries and lists

	■ Manipulate variables using suitable
operators or methods, converting between
data types when necessary

	■ Use variables within subroutines and events and
distinguish between local and global variables

	■ Incorporate validation techniques into
programs to help minimise errors

	■ Perform both iterative and final testing on
programs to ensure they function correctly

	■ Document a programming project to
explain design decisions

	■ Predict the outcome and purpose of
programs written in a range of languages and
using different paradigms

	■ Describe the role of objects, classes, methods, and
attributes within the object-oriented paradigm

	■ Contrast the differences in how code is
expressed in the functional programming
paradigm compared to other approaches

	■ Describe the role of events, messages, and the main
loop in event-based programming

	■ Write programs using a broad range of
programming paradigms and languages

	■ Write programs that use recursion to solve problems

	■ Build programs that use existing or custom
classes and objects

	■ Create programs that implement data structures
such as stacks, queues, and trees

	■ Incorporate exception handling actions to
make programs more robust

	■ Apply a range of testing approaches to ensure
functionality, performance, and robustness of
programs

68 The Big Book of Computing Content

lock-based programming software
is an established part of any

teacher’s toolbox, used to introduce
learners to programming. These
applications have an engaging user
interface with vivid coloured blocks that
can be quickly snapped together and
moved around on the screen to create a
program. Scratch is a very popular block-
based application, but there are several
other similar environments, including
Snap!, Pencil Code, Blockly, and more.

A regular area for debate among
teachers of programming is how best
to support the transition from visual
programming to text-based languages.
Visual languages and environments are
a hugely powerful tool for introducing
students to the concepts of programming,
allowing them to explore concepts, solve
problems, and create products through
programming. However, it’s important
to get the experience of working in
text-based languages, both to cover the
curriculum and to develop the skills for
the next stage. This article will explore
common challenges when making the
transition from blocks to text, and the tools
you can use to support this.

Common challenges
Many learners have access to computers
or mobile devices, or have some experience
using them. Despite this, when learning
to use a text-based language, there are
still some major hurdles for students
to overcome, many which have little to
do with their ability to think logically
or computationally.

Even students who have grown up with
a games console, laptop, or tablet will often
struggle in the early days when it comes
to typing — they are often more used to
typing with their thumbs on an on-screen

keyboard. Young learners in particular can
become very frustrated by this, as it can
take several minutes to type out even the
shortest of programs, and they spend a
lot of their time learning the basic syntax
rules, which leaves little time for them to
experiment and be creative. You can use
software to help correct errors in code,
but these applications are often quite
complicated and unsuitable for beginners.

This means that learners have become
accustomed to not recognising errors, such
as a missing capital letter, until after they
run their programs.

There can also be problems relating to
a learner’s literacy. Even without learning
difficulties such as dyslexia and dyscalculia,
many young learners are unable to recognise
the difference between:

for i in range(5):
and
For I in ragne 5:

when they first type the line. Even the
best programmers will occasionally make
mistakes, such as typing Flase instead
of False.

Rethinking the transition
Researchers Dorling and White, however,
suggest that we might want to think
about this transition in a different way
(helloworld.cc/dorling2015). They
explored approaches including unplugged,
visual, and textual programming, and the

B ways students engaged with problem-
solving in these contexts. They discovered
that it was valuable to think about these
different media as pedagogical tools,
with different strengths for teaching and
learning, rather than as stages students
leave behind as they progress.

In their research, they outlined a
pathway that used unplugged, block-
based, and text-based approaches to

teach the fundamental control structures
of programming (sequence, repetition,
function, selection, and communication).
The specific languages used were Logo,
Python, and Scratch; all three share
similarities of sequential processing with
a sprite or turtle and the reward of the
instant feedback of sprite or turtle activity
on the screen.

The researchers chose a cross-curricular
context (geometric shapes and patterns)
to teach the background of each of the
control structures. By using this approach,
Dorling and White concluded that “there
is established pedagogy in other subjects
that can be effectively used in a computing
lesson. In turn, it was also evident that
programming could enhance the delivery of
other curricula topics.”

Having a linear transition from blocks
to text without any cross-curricular
context may not be a suitable approach
to take when learning programming.
When introducing new concepts, such as
local and global variables, learners may
find using block-based programming

STORY BY Matt Hogan

FROM BLOCKS TO TEXT

RESEARCH

YOUNG LEARNERS OFTEN HAVE TO WASTE
TIME LEARNING BASIC SYNTAX RULES,
LEAVING LITTLE TIME FOR CREATIVITY

“

http://helloworld.cc/dorling2015

69The Big Book of Computing Content

languages easier to use and understand.
It gives learners an opportunity to see the
similarities between two languages and a
clear context that they understand.

Tools to support
When learners are new to text-based
programming, they may feel apprehensive
about learning code. It is worth discussing
how they are feeling and trying to mitigate
any risk of them being put off text-based
programming. Hybrid platforms such
as the micro:bit MakeCode editor and
EduBlocks are a great way of doing this.
These online platforms have developed a
block-to-text feature, which includes a tool
to drag and drop blocks of code, similar to
Scratch, although the blocks correspond
more directly to Python code. These online
platforms also give the ability to toggle
between blocks and Python code, or to
split the screen to view blocks and code
next to each other.

These tools help to bridge the gap
between block-based and text-based
programming languages by:

n �Using a familiar drag-and-drop user
interface

n �Allowing users to transition between 		
block-based and text-based methods
while creating a program

n �Helping learners become familiar with
Python code in a way that reduces errors
that could arise when typing code into
the micro:bit editor

Dual-modality environments
Some applications, for example Pencil
Code, offer a dual-modality (or hybrid)
environment, in which learners can write
and see the same program in a text-
based and a block-based programming
environment side by side. The key point
of dual-modality environments is that
the code is displayed automatically in
the alternative text-based format: block-
based code is automatically translated
to text-based code, and vice versa. In a
2017 study, researcher David Weintrop
set out to test the assumption at the
heart of dual-modality applications, that
being able to match a text-based program
to its block-based equivalent supports
the development of understanding
program syntax in a text-based language
(helloworld.cc/weintrop2018).

Weintrop carried out a 15-week study
with 14-to-16-year-old students in the US
to investigate the differences in learning
when using block-based, text-based, or
hybrid (a mixture of both, using a dual-
modality platform) programming tools. The
90 students in the study were divided into
three groups. Each group was set the same
tasks with the same learning objectives, but
they used either block-based programming,
text-based programming, or the hybrid
environment. After five weeks, students
were given a test to assess learning
outcomes, and they were asked questions
about their attitudes to programming,
specifically their perception of computing

and their cofidence with programming.
After another ten weeks, all the students
were taught Java, and then the test and
attitudinal questions were taken again.

The results showed that at the five-week
point, the students who had used block-
based programming scored more highly in
their learning outcome assessment than
the text and hybrid groups, but at the final
assessment after 15 weeks, the scores of all
the groups were roughly equivalent. In terms
of students’ perceptions of computing and
their confidence levels, the responses of the
block-based group were very positive at the
five-week point, but less positive after 15
weeks. Taking both methods of assessment
into account, the hybrid group showed the
best results, and the use of block-based
programming did not hamper students’
transition to text-based programming.
Although more research is needed to
support the conclusions of Weintrop’s study,
the approach of the hybrid group can be
adopted in many classrooms.

Block-based languages are valuable
when introducing any new programming
concept to learners, and the development
of more and more hybrid models makes it
easier for learners to identify the similarities
between blocks and text. Perhaps there is
no linear path from blocks to text; maybe
the important thing is that teachers know
and understand the tools that can be
added to their toolbox in order for them to
teach programming effectively to their own
learners, in their own specific context.

RESEARCH

FURTHER READING

 �Dorling, M., & White, D. (2015).
Scratch: A Way to Logo and
Python. SIGCSE ’15, March 04
–07 2015, Kansas City, USA.
helloworld.cc/dorling2015

 �Weintrop, D., & Wilensky,
U. (2018). How block-based,
text-based, and hybrid block/
text modalities shape novice
programming practices.
International Journal of
Child-Computer Interaction.
helloworld.cc/weintrop2018

©
Ke

njo
/s

to
ck

.ad
ob

e.c
om

n �Learners don’t necessarily need to leave block-based
programming behind as they progress

http://helloworld.cc/weintrop2018
http://helloworld.cc/dorling2015
http://helloworld.cc/weintrop2018
http://stock.adobe.com

70 The Big Book of Computing Content

earning to program is broader than
simply learning to write code. While

coding is a big part of the programming
process, programming also encompasses
analysing and understanding the task or
problem being addressed, designing a
solution, and testing and debugging the
program. If we try to teach all these things
to novice programmers at the same time,
the cognitive load overwhelms them. The
skill of abstraction — routinely adjusting
your focus and the level you’re working at
while developing a programmed solution
— is therefore a vital skill to introduce to
learners. These different perspectives or
levels can be modelled by the levels of
abstraction (LOA) hierarchy. There are
several variations of this hierarchy, but this
article discusses the model outlined by
researcher Jane Waite and her colleagues
(helloworld.cc/waite18).

The LOA framework
This hierarchy emphasises the critical role that
abstraction plays in developing programs. It
describes four levels, encompassing different
degrees of abstraction. We can characterise
the four levels as follows:

TASK
The task outlines the problem to be solved,
or describes what the project should
actually do.

With younger learners, a teacher often
defines a task. As students become more
experienced, they can expand a given task
or develop a task themselves. Later, they
may work from formal specifications or user

requirements, and may even define the task
independently through user research.

DESIGN
The design level includes the algorithm,
which outlines the process and logic that
will exist within the program. The design
may also contain other aspects, such as
artwork, sounds, and sketches of what the
project will look like, or how it will be put
together. This level contains more detail
than the overall task, but doesn’t yet refer
to the code or programming languages that
will be used. Learners can use a range of
tools to represent their design, including
text, sketches, flowcharts, and diagrams.

CODE/BUILD
The code level (or build level, for physical
computing projects) represents a static
program that implements the design from the
level above. This could be constructed in any
number of programming languages, including
both block- and text-based programs.
Learners will be limited to the languages and
tools they are familiar with initially. As their
confidence and repertoire increases, they can
be more discerning about choosing the best
tool to implement their design.

RUN THE PROJECT
At the lowest level, the programmer is
concerned with how the program behaves
when it is run. Does it run? Are there errors?
Does the program behave as expected?
These are all important questions at this
level. Here, learners need to know how to
test their programs, find and correct errors,

L and trace the execution of their code to
ensure they understand its behaviour.

These levels of abstraction do not represent
a linear pathway to developing a project.
While learners will often begin at the task
level and will generally progress towards
running the project, they will frequently need
to switch back and forth between levels.

LOA in practice
While expert programmers regularly move
through these different levels without even
realising it, it’s important to scaffold them
for novice learners. This means that when
you are planning a programming unit of
work, you need to consider which level the
lesson is working at, and what support
learners might need at each level. You
should use this approach across different
projects, genres of program, and age
groups. This will ensure that as learners
begin to move from novice to expert,
progressing through each of the levels
becomes routine. The rest of this article will
now exemplify this through a programming
project from the Teach Computing
Curriculum for learners aged ten to eleven
(helloworld.cc/tccLOA). Learners should
complete the project mostly independently
so you can assess their understanding of
variables across three one-hour lessons.

THE TASK
Give students the following task:

Create a ‘catching’ game that includes a
score and at least three falling objects. The
objects should fall at different speeds.

STORY BY James Robinson, Andy Bush, and Sway Grantham

LEVELS OF ABSTRACTION

RESEARCH

http://helloworld.cc/waite18
http://helloworld.cc/tccLOA

71The Big Book of Computing Content

As a teacher, I want the learners to
demonstrate their understanding of
variables. This means I don’t want them to
choose a task that might limit this, and so
in this project, I have provided the task. In
another unit, the focus will be different and
I might work with learners to identify the
user requirements themselves.

THE DESIGN
For context, these learners will have had
several years’ experience working through
the levels of abstraction, so they know how
to use designs and implement them. Before
this task, they will also have completed three
lessons introducing the concept of variables.

Every programming language is slightly
different in how it can be used. It is important
for learners to have an understanding of
this before they begin designing, or they
may plan a project that is unachievable. In
this project, we provide a ‘program stub’,
which is part of the program they will
need to complete the task (helloworld.cc/
fruitcatcher). Give learners time to familiarise
themselves with this project before they
begin their design, so they can remind
themselves of the Scratch environment and
its capabilities. The stub will also maintain
learners’ focus on variables. Providing the
code for the sprites that will not use variables
means learners will spend their time
designing and implementing the parts of the

program that do require an understanding of
variables. This also means that the activities
will largely be at the designing and coding
levels of abstraction.

The main design activities can now begin.
Learners need to choose their assets (sprites,
sounds, and backgrounds). This is also their
opportunity to begin personalising their
project; it’s important that learners recognise
there is no one right answer, and that they
can achieve the task in different ways.

Just like the program stub we provided,

the algorithm and design for that part of the
program have been provided for learners
(Figure 1). This models to learners how
we write algorithms, and create this part
of the program design. It also gives them a
reference for their next step:

Write two algorithms (include a drawing
and a description) for the two new sprites
you chose. Each sprite must change
the score by a different amount, should
move at a different speed, and could be a
different size.

Again, you can see how this part of the
task guides the design to include a focus
on the variables (score, speed, and size),
but leaves learners free to design their
own programs independently. The last
step, before we move on to the coding
level, is to encourage students to check
back with their original task. Does their
design meet the requirements you gave
them? Once they are confident that it
does, they can begin their implementation
at the coding level.

THE CODING/BUILDING
Learners can refer to Figure 1 and its
implementation in the program stub
to scaffold what they need to do next.
The unit of work also contains a design
worksheet, which is organised so that
learners can approach each section
independently:

1. Add sprites with the necessary artwork
2. Initialise variables — use clear names!
3. Algorithm for sprite 1
4. Algorithm for sprite 2

RESEARCH

AS LEARNERS MOVE FROM NOVICE TO
EXPERT, PROGRESSING THROUGH EACH OF
THESE LEVELS SHOULD BECOME ROUTINE

“
©

MI
CH

AE
L Z

EC
H/

st
oc

k.a
do

be
.co

m

http://helloworld.cc/fruitcatcher
http://helloworld.cc/fruitcatcher
http://stock.adobe.com

72 The Big Book of Computing Content

As this project is an assessment piece,
learners are largely left to implement
their programs with this scaffolding. If
learners do not have much experience at
implementing code, you might spend more
time making links between the algorithm
and the code.

Working at the code level is also an
opportunity to observe more general
programming skills: are learners testing
each bit of code as they go? Do they
duplicate chunks of code rather than
rewriting very similar scripts for each
sprite? These will be opportunities for you
to engage with learners while they are
creating their projects, depending on what
the focus of your unit is.

RUNNING THE PROJECT
It can sometimes be difficult to distinguish
between the levels of coding/building and
running the project, as learners should be
repeatedly cycling through coding and
running, to check t hat their program is

working. This can become a problem if
learners find a bug in their programming.
Most debugging will happen at the coding
level, especially in the early stage of text-
based languages where many of the errors
are syntax-related. However, if learners
find themselves with a logic error, or a
more substantial bug, they may need to
revisit their algorithm to work out what it
is doing and to plan an alternative solution.
An easy way to spot whether you need to
bring learners back to the design level is if
their approach to debugging has resorted
to changing random blocks/values ‘just in
case’ because they have no idea why their
program is not working. Talking through
the algorithm and precisely what it is
doing, and then working out the bit that’s
not clear and rewriting that section, will
support these learners.

The other aspect of this level that should
not be overlooked is testing. This is not the
same as just running the code as you are
working through the project. Testing is about

checking whether your program behaves
as expected for the task or design. In this
project, for example, a program might run
successfully, but perhaps the items of fruit
are flying up into the air instead of into the
fruit-catcher bowl. This is what testing is for.

Working through these levels within a
unit of work gives learners the opportunity
to develop skills at a realistic pace and
gives you the opportunity to scaffold
specific skill sets. This ultimately ensures
that learning to program is an option for a
wider range of learners.

RESEARCH

FURTHER READING
 �The National Centre for Computing
Education. (2022). Programming and
Algorithms within the Computing
Curriculum. helloworld.cc/p&areport

 �Waite, J. L., Curzon, P., Marsh, W.,
Sentance, S., & Hadwen-Bennett,
A. (2018). Abstraction in action:
K-5 teachers’ uses of levels of
abstraction, particularly the design
level, in teaching programming.
International Journal of Computer
Science Education in Schools, 2(1),
14–40. helloworld.cc/waite18

IF LEARNERS START CHANGING RANDOM
VALUES ‘JUST IN CASE’ , YOU’LL KNOW
IT’S TIME TO BRING THEM BACK A LEVEL

“

n �Figure 1 The information above prompts learners how to write the algorithm and create the program design for this task

http://helloworld.cc/p&areport
http://helloworld.cc/waite18

73The Big Book of Computing Content

Simon Peyton Jones explores how programming can bring computer
science to life for learners

WHY WE SHOULD TEACH
CHILDREN TO CODE

n a March 2019 blog post
(helloworld.cc/schleicher2019),

Andreas Schleicher, director of education
and skills at the OECD, asked, “Should
schools teach coding?” This was
somewhat misreported in the press as
“Teaching children coding is a waste of
time, OECD chief says” (helloworld.cc/
telegraph2019). But it’s a good question.

Let’s start at the beginning, though.
Technology moves fast. To equip our
young people to flourish in a world of
change, we therefore strive to give them
a foundational understanding of the world
that surrounds them, and an intellectual
toolbox that will equip them to deal with
successive waves of technology. For
that reason, the computing curriculum in
England, introduced in September 2014,
established computer science (not just
coding, and with computational thinking at
its core) as a foundational subject that all
children learn, alongside maths and science,
from primary school onwards. The previous
ICT curriculum focused on technology;
the current curriculum focuses on ideas
and principles. As the famous aphorism

puts it, “Computer science is no more
about computers than astronomy is about
telescopes.”

But if computer science is not about
computers, what is it about? It is the
study of information, computation, and
communication. Take information, for
example: suppose I show you a picture of the
French national flag, and one of the Mona
Lisa, and ask, ‘Which picture contains more
information?’ What does that even mean?
A way to make the question more precise
might be, ‘Suppose I dictated instructions
to you over the phone; which picture would
take you longer to reproduce?’

Clearly the Mona Lisa has more
information in this sense: it would be
slow and painstaking for me to dictate
instructions so that you could reproduce
it at your end, even rather approximately.
Thus, we have begun to speak of
information as a measurable quantity. We
start to think about how tightly we could
compress data before transmitting it, and
how we could detect, and perhaps correct,
errors made during transmission. All this
is called information theory; it is part of
computer science, it has a substantial
body of theory, and it has immediate
practical consequences.

Where coding fits in
What, then, is the role of coding or
programming (the terms are roughly
equivalent) in computer science? Coding is
not the message of England’s computing

curriculum, but its medium. Coding is the
lab work of computer science: it motivates,
illuminates, and brings to life the dry bones
of theory. Without programming, computer
science would be a dry, theoretical husk
of a subject. Imagine a music lesson
in which the students only studied the
rules of counterpoint or the structure of a
sonata, but never brought them to life by
performing or composing any music.

But that’s not all: programming is more
than mere medium. As Fred Brooks put it,
“The scientist builds in order to study, but
the engineer studies in order to build.” Most
of programming’s body of knowledge is
organised around the challenge of building
ever more ambitious edifices of software,
and having them actually work and be
useful. Programming is the very stuff of
computer science.

Coding is phenomenally creative.
The same Fred Brooks wrote that, “The
programmer, like the poet, works only
slightly removed from pure thought-stuff.
He builds his castles in the air, from air,
creating by exertion of the imagination. Few
media of creation are so flexible, so easy
to polish and rework, so readily capable of
realising grand conceptual structures.”

When a child does a science experiment,
she is seeing physical principles at work,
coming to life in front of her eyes. If she
does the experiment right, we know what
will happen. In contrast, when she writes a
program, no one knows what will happen.
The programmer brings into the world a

I

SIMON PEYTON JONES
Simon is a British computer scientist
who researches the implementation and
applications of functional programming
languages, particularly lazy functional
programming.

FEATURE

http://helloworld.cc/schleicher2019
http://helloworld.cc/telegraph2019
http://helloworld.cc/telegraph2019

74 The Big Book of Computing Content

FEATURE

new creation, formed from an infinitely
malleable substance, which does something
new, conjured from the mind of its creator.
We are not limited by the strength of wood,
or the budget of the school workshop:
in programming, we are limited only by
our own ability or inability to manage the
complexity of our creation.

Self-assessment and risks
Coding offers immediate, tangible feedback.
No need to wait for the teacher to mark
your essay, as in English; in computing, the
program runs, or not, and remorselessly
exposes the logical errors in your thinking.
When hunting a bug in a malfunctioning
program, we form a hypothesis about
what is wrong. We formulate tests that
will confirm or refute that hypothesis.
In the light of the results of those tests,
we refine the hypothesis, and so on; it is
the scientific method in action. Even for
students who will never explicitly program
again, programming teaches understanding
and reasoning skills that are needed

by everyone: business innovators (for
identifying a need or potential); scientists
(for working with data and developing
computational models of scientific
processes); those procuring software (for
example in health services, for knowing
what is possible and what they should be

looking for); or end users (because one must
always have a notional machine model of
what a given piece of software is doing).

Programming is a tremendously useful and
marketable skill. In every corner of business,
and in every part of our daily lives, there are
programs, and they all need to be written,
modified, fixed, and stitched together. There is
tremendous demand for skilled programmers,
who command high salaries as a result.

And yet, and yet. There are two risks
here. First, there is the risk that we
confuse the medium with the message.
I fear a future prime minister giving a
speech saying, “The new computing
curriculum has been a great success:
every child now leaves school fluent in

Python.” What a disaster that would be!
The computing curriculum is focused on
ideas and principles, not on a particular
technology such as Python. Yes, some of
those ideas (sequence, iteration, choice,
abstraction) are directly embodied and
brought to life in Python, but Python is just
one embodiment among many, not the
thing itself. Once pupils have learnt to code
in one language, they should be able to

WE ARE LIMITED ONLY BY OUR OWN
ABILITY OR INABILITY TO MANAGE THE
COMPLEXITY OF OUR CREATION

“

OPINIONFEATURE

n �Without programming, computer science
would be a dry, theoretical husk of a subject

©
pa

tp
itc

ha
ya

/s
to

ck
.ad

ob
e.c

om

http://stock.adobe.com

75The Big Book of Computing Content

quickly teach themselves others built on the
same concepts, and should also be able to
recognise those same concepts appearing
in the wider world that surrounds them.

The second risk is that we may forget
that the school computing curriculum
is for the many, not the few. I certainly
hope that the education our young people
receive will inspire some of them to be the
software developers of the future. But many
more will become lawyers and plumbers,
hairdressers and doctors. They all learn the
elementary principles of natural science,
and similarly they should all learn the
elementary principles of computer science.
And, just as mathematics appears in primary
schools mainly in the guise of arithmetic, so
computer science will appear mainly in the
form of simple programming. Just as no one
confuses arithmetic with the manifold glories
of mathematics, so we should not confuse
programming with computer science.

Tomorrow’s problems
Returning to Schleicher’s blog post, he
says, “The risk is that we will again be
teaching students today’s techniques to
solve tomorrow’s problems; by the time
today’s students graduate, these techniques
might already be obsolete. We should
instead focus on the computational thinking
that underpins these techniques, and that
students can use to shape the technologies
of tomorrow.”

Fair enough — and indeed, computational
thinking is already explicitly at the core
of the English national curriculum, from
start to finish. But teaching programming
is emphatically not ‘teaching today’s
techniques to solve tomorrow’s problems’.
Programming is computational thinking
incarnate, brought to life, made tangible,
executable, and useful. It provides a
powerful way to practise and so develop
those computational thinking skills,

and understand them deeply. People
occasionally say, ‘In the future, computers
will program themselves,’ but I believe they
are mistaken — we will simply increase the
ambition of the programs we write.

So yes, to answer the question, we should
teach our children to code. But we should do
so not as an end in itself, but rather as a
powerful and effective means to motivate,
illuminate, and exemplify the underlying
principles of computer science. There is no
more intellectually exciting, creative, or
practically useful subject. I want to convey to
our young people a visceral sense of that
richness and creative possibility, and by far
the best way to do so is to share with them
the joy and beauty of programming.

Andreas Schleicher’s blog post:

helloworld.cc/schleicher2019

The Telegraph’s interpretation of
Schleicher’s blog post: helloworld.cc/
telegraph2019

FURTHER READINGONCE PUPILS HAVE LEARNT TO CODE IN
ONE LANGUAGE, THEY SHOULD BE ABLE TO
QUICKLY TEACH THEMSELVES OTHERS

“

FEATURE

n �Whatever learners want to be when they grow up,
learning to program teaches them vital skills

©
St

oc
kIm

ag
eF

ac
to

ry
/s

to
ck

.ad
ob

e.c
om

http://linkedin.com/pulse/should-schools-teach-coding-andreas-schleicher
http://helloworld.cc/telegraph2019
http://helloworld.cc/telegraph2019
http://stock.adobe.com

76 The Big Book of Computing Content

Ben Hall looks at the crossover between literacy and
coding, and how it can help in the primary classroom

INTRODUCING
PROGRAMMING THROUGH
THE WIDER CURRICULUM

uch of the research around
how we learn to program, and

which approaches are most successful,
has been focused on older learners,
particularly undergraduates or those
transitioning to text-based languages.
There is comparatively little research on
how children learn to program from an
early age. If we want children to become
curious and confident programmers,
then an understanding of their formative
experience would certainly help.

 Computing is usually seen as a STEAM
(science, technology, engineering, arts, and
maths) subject. However, are we missing
a trick? Are there parallels between
programming and literacy, and could this

broaden the appeal of the subject for both
learners and teachers?

Researcher Jane Waite and her
colleagues drew parallels between the
design level of a program — where a pupil
uses simple language to explain what
characters will be needed and what they
will do — and the planning of writing in a
literacy lesson (helloworld.cc/waite2018).
Researcher Raymond Lister and colleagues
also investigated the links between writing
skills and early programming, but in the
context of text-based (in this case Python)
languages for older learners (helloworld.
cc/lister2009). Can this research help
us develop our understanding of how
the youngest learners are introduced
to programming?

Skill acquisition
As a former specialist computing

teacher in a primary school, I
have been fortunate to teach

learners from the age of six
right through to the age of

thirteen. This has given
me some insight into how
children pick up key skills.

I’ve typically introduced
computing to the
youngest learners by
looking at concepts such
as instructions, and
developing vocabulary to
help learners access floor
robots such as Bee-Bots

(see the photo below) or Code-a-Pillars.
This works really well in a continuous
provision environment where children
immerse themselves in the language
before applying it to a different context,
much as you might do with many other
subjects. Using Fakebots or grids can be
a really useful way to introduce directional
language (see the article on page 60
for more on this). Once the language is
secure, we can then introduce symbols to
represent movements.

This is very similar to literacy, where
children are immersed in the language
through opportunities to listen to
stories and explore books. Through this,
they understand that books convey
meaning and that they have an order
and a sequence: spot the link? Sway
Grantham, a senior learning manager at
the Raspberry Pi Foundation, explores
this connection in a blog post, analysing
‘Talk for Coding’ as an approach based
on Pie Corbett’s ‘Talk for Writing’ learning
sequence (helloworld.cc/grantham2017).
She draws upon research that concluded
that sequence, structure, and clarity
of expression are as important in
programming as they are in writing
(helloworld.cc/burke2010).

Parallels
As children’s literacy skills develop and
they become more aware of structure in
writing, there are some interesting parallels
we can draw on.

M

FEATURE

http://helloworld.cc/waite2018
http://helloworld.cc/lister2009
http://helloworld.cc/lister2009
http://helloworld.cc/grantham2017
http://helloworld.cc/burke2010

77The Big Book of Computing Content

Firstly, nursery rhymes. They’re
sequenced (for example, One, Two, Three,
Four, Five), and may include some form
of repetition (such as Hickory Dickory
Dock or Ten Green Bottles). Knowledge of
these patterns can be directly applied to a
sequence of instructions, or even used as a
basis for programming projects. In ScratchJr,
we have the perfect platform for storytelling.
One of my favourite learning sequences
with Year 1 (aged 5–6) tied in with their
class book at the time, The Three Little Pigs,
which they retold through ScratchJr.

I was careful not to bring in the
programming element too quickly; it

was much more effective when children
were able to plan an element, using a
storyboard, which they could then apply
within the tool. This is very similar to how
most literacy teachers would encourage
children to plan a story before writing
it. Design in programming is equally
important, and this is a way to introduce
it by using a known context and drawing
from prior learning. There are many

parallels with literacy — we plan writing
and design algorithms, and storyboards
can be used for both.

The research suggests that this
approach is not widely used: Waite and
colleagues identified that 82 percent of
primary teachers thought that design in
programming was at least very useful,
whereas only 44 percent actually used
it in their teaching ‘always’ or ‘usually’.
Double this number ‘always’ or ‘usually’
used planning in writing. This could
reflect a lack of confidence in teachers’
subject knowledge, a shortage of materials
to support design-led activities, or the

curriculum itself. In England, the curriculum
for English states that children should ‘plan,
evaluate, and improve’ their writing — but
there is no mention of planning or design
in computing.

 It can be helpful to draw upon other
subjects, not just literacy, in your primary
computing classes. Consider languages.
How could learners apply their experience
of learning a second spoken language to

that of learning a programming language?
In maths, when you teach patterns and
sequencing, how can you translate these
into the corresponding programming
concepts? Can you link debugging to the
process of correcting errors in other
subjects? A great way to develop your
computing teaching is to ensure you use all
your experience, from all of your primary
curriculum, to make computing as
accessible as possible to the broadest
range of learners.

SEQUENCE, STRUCTURE, AND CLARITY
OF EXPRESSION ARE AS IMPORTANT IN
PROGRAMMING AS THEY ARE IN WRITING

“

BEN HALL
Ben is a learning manager at the
Raspberry Pi Foundation, developing
curriculum resources for England’s
National Centre for Computing Education.
He was previously a primary teacher
specialising in computing (@hengehall).

FEATURE

https://twitter.com/hengehall

78 The Big Book of Computing Content

COMPREHENSIVE
PROGRAMMING
ASSESSMENT

etermining whether a student’s
code is correct is an important

part of the grading process. Whether you
use an autograder, or benchmark student
code through a series of manual unit
tests, it’s fairly easy to determine whether
a student has considered the solutions
to your test cases in their solution. But
while correctness is important, there are
other important questions to consider.
For example:

n �Did the student at least attempt to
solve the program at hand, even
if they struggled along the way
with syntax, such that their code
might not compile? Particularly
among students less comfortable
with coding, rewarding effort is a
reminder that it’s OK to struggle.

n �Is it actually possible to read the
student’s code? Poor indentation
(unless programming in Python!) and
no commenting might not matter to
the processor, but to an instructor it
can cause quite the headache!

n �How efficient is the student’s
code? If the program is correct, but
takes 15 minutes to run, is it all
that useful?

D about the decisions they make in their
code, and to put them into a mindset of
continuous improvement. We rarely give
out a perfect score in design, as there are
almost always areas where we can make
improvements. We ourselves are in a
mindset of continuous improvement, and
we feel that if we can find opportunities to
design better solutions to our problem sets
(and year after year, we almost always do),
our students should be able to as well.

At CS50, Harvard University and Yale
University’s largest open-learning course,
we respectively grade for scope, style,
and design, in addition to assessing for
correctness. It is design, however, that
we’ll discuss further here.

What to look for
If correctness asks the question ‘Does
it work?’, then design asks the question
‘How does it work?’ Our goal in assessing
design is to get students thinking critically

DAVID J.
MALAN
David is a Gordon McKay
Professor of the Practice of
Computer Science at the

Harvard John A. Paulson School of Engineering
and Applied Sciences in Massachusetts, USA.
He is the instructor for CS50.

DOUG LLOYD
Doug is senior preceptor
in computer science at
the Harvard University
Division of Continuing

Education in Massachusetts, USA. He
is the course manager for CS50.

Establishing whether a program works needn’t
be the only goal of assessment

n �CS50 staff grading student work at a grading party

FEATURE
© CS50, cs50.harvard.edu.

http://cs50.harvard.edu

79The Big Book of Computing Content

Some questions that we consider when
looking at design include:

n �How frequently do the same lines
of code repeat?

n �Does a student’s code have an
over-reliance on loops or magic
numbers?

n �Did the student choose the most
efficient algorithm?

n �Was the code broken into
functions or subroutines
where appropriate?

n ��How many lines of code did the
student write? The length of a
student’s submission is often,
though not always, a good indicator
of how well-designed that code is;
if fewer lines of code are needed,
the student is probably taking
advantage of an efficiency.

Trade-offs
Unlike the other three axes — correctness,
which we can assess with autograders;
style, which we can assess with linters; and
scope, which a quick glance can assess —
grading design can take significant time and
effort for experienced and inexperienced
teachers alike. Students in CS50 submit their
code to course staff via GitHub, and teaching
fellows can offer feedback via comments on
GitHub’s web interface. The ability to use
‘saved replies’ for issues that might recur
in the work of multiple students can save
some time over writing the same comment

n �Students get help from CS50 staff members during office hours

© CS50, cs50.harvard.edu.

FEATURE

n �Scope rewards student effort in solving
problems, reiterating the importance of a culture
of error and normalising the idea that failure
to completely solve a problem is not a total
failure, but a learning opportunity (did you try?)

n �Correctness judges the performance of a
student’s code, either using a test harness or via
manual execution of the code (does it work?)

n �Design considers the efficiency,
elegance, and clarity of a student’s
code from an organisational standpoint
(how does it work?)

n �Style is the most human-focused axis, and
considers how readable and well-commented
the code is for others who might need to read it
(how does it look?)

Assessing programming through different axes allows us to test several skills via a single assignment:

A MULTI-AXIS GRADING PHILOSOPHY

out again, and grading design only becomes
quicker and easier once you’ve seen multiple
different solutions to the same problem, and
you’re familiar with common errors.

That said, the qualitative feedback
received via the design axis is, in our opinion,
the most valuable. Comments on design
should get students thinking about what
makes one solution better (or worse) than
another, even if both have the same output.
This reinforces the notion that there is not
always one right answer, and we hope it will
encourage students to be more aware of
their programming decision-making.

http://cs50.harvard.edu

DATA AND
INFORMATION

82 	 DATA AND INFORMATION, IN
SUMMARY

84 	� ��FOSTERING DATA LITERACY
COMPETENCIES IN THE
CLASSROOM

86 	 DATA VISUALISATIONS
FOR INQUISITIVE MINDS

88 	 �USING DATA TO OPTIMISE A
SCHOOL GARDEN

90 	 TEACHING DATABASES USING BIG
DATA

The Big Book of Computing Content 81

ata and information is a strand of computing that

focuses on how data is stored, organised, and used

to represent the real world and provide meaningful

insights. Most data collection, storage, and analysis will involve

computers, and as such, this area of computing particularly

complements other school subjects, with a practical focus on

collecting, storing, and analysing data at scale. The study of

data and information also provides a solid basis for learners

to understand the role of artificial intelligence in analysing and

interpreting data.

There are skills and concepts associated with each stage

of a data life cycle, which involves questioning, collecting,

implementing, analysing, and sharing. The

implementation stage of this process, in

particular, involves the application of

computing. Learners will use, design, and

compare different tools and approaches

to storing data digitally, including text files,

spreadsheets, and databases.

D IN THIS SECTION,
YOU WILL FIND:

	■ Learning outcomes: 		
data and information, in summary

	■ What the research says:
fostering data literacy competencies

	■ Captivating data visualisations

	■ A real-life data project

	■ Boosting engagement with big data

The Big Book of Computing Content82

IN SUMMARY

DATA AND
INFORMATION

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Explain that data can be helpful in answering

questions

	■ Collect, group, and compare simple data

	■ Explain that names/labels can be used to
describe objects

	■ Identify how attributes can be used to
compare objects

	■ Describe how data can be presented
pictographically

	■ Present data using pictographs and
simple charts

	■ Identify that yes/no questions can be used to
structure data

	■ Answer questions using decision trees

	■ Use sensors/data loggers to collect data

	■ Explain how data can be searched and
ordered using different fields

	■ Use suitable tools and applications (including
spreadsheets) to handle data

	■ Use AND/OR operators to refine searches

	■ Choose an appropriate format to present data

	■ Identify the differences between data and
information

	■ Describe the stages of the data life
cycle, including questioning, collecting,
implementing, analysing, and sharing

	■ Collect, process, and analyse quantitative data to
answer a specific question

	■ Explain the need for being selective when
working with large data sets

	■ Apply formulas within a spreadsheet to process
data

	■ Use sorting and filtering techniques to help
identify patterns in data

	■ Present data in a range of different formats to aid
understanding

	■ Design a model to represent specific objects and
relationships within a scenario

	■ Describe the role of a database and its data
model in structuring and organising data

	■ Explain how a relational database is implemented
through tables and keys

	■ Compose SQL expressions that
add, retrieve, and update data in an
existing database

	■ Explain how data can be organised, stored, and
retrieved using files

	■ Identify sources of potential bias within a
data set at each part of the data life cycle

	■ Distinguish between quantitative and qualitative
data

	■ Prepare data for analysis, importing,
structuring, and cleaning as appropriate

	■ Report on findings, making use of descriptive
statistics and visualisations

	■ Distinguish between public and private
data sets and work with both

	■ Produce a relational data model to represent a
scenario

	■ Describe approaches to optimising
databases, including normalisation

	■ Explain how databases handle and process multiple
transactions

	■ Construct database tables, relationships, and
views using SQL

	■ Design, build, and interact with a database using a
database management system

	■ Describe the relationship between artificial
intelligence, machine learning, and big data

	■ Describe the kinds of problem that data science
can address

	■ Design and conduct a data science
investigation, identifying a problem, data
sources, and methodology

	■ Build interactive data dashboards to summarise
data and aid analyses

	■ Identify potential sources of bias within data
analysis

IN SUMMARY

Understand how data is collected,
organised, and analysed to explore
real-world scenarios

The Big Book of Computing Content 83

IN SUMMARY

In the table below, you will find learning outcomes associated with

the ‘Data and information’ strand of the Raspberry Pi Foundation’s

computing taxonomy. These learning outcomes are illustrative of the

kinds of knowledge and understanding that learners could develop in

this area of computing. They are not prescriptive, but instead aim to

illustrate the wide applications of the discipline.

These learning outcomes were originally developed to complement

the English national curriculum for computing, and as such, stage 1

roughly corresponds to ages 5–7, stage 2 to ages 7–11, stage 3 to

ages 11–14, stage 4 to ages 14–16, and stage 5 to ages 16–19.

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Explain that data can be helpful in answering

questions

	■ Collect, group, and compare simple data

	■ Explain that names/labels can be used to
describe objects

	■ Identify how attributes can be used to
compare objects

	■ Describe how data can be presented
pictographically

	■ Present data using pictographs and
simple charts

	■ Identify that yes/no questions can be used to
structure data

	■ Answer questions using decision trees

	■ Use sensors/data loggers to collect data

	■ Explain how data can be searched and
ordered using different fields

	■ Use suitable tools and applications (including
spreadsheets) to handle data

	■ Use AND/OR operators to refine searches

	■ Choose an appropriate format to present data

	■ Identify the differences between data and
information

	■ Describe the stages of the data life
cycle, including questioning, collecting,
implementing, analysing, and sharing

	■ Collect, process, and analyse quantitative data to
answer a specific question

	■ Explain the need for being selective when
working with large data sets

	■ Apply formulas within a spreadsheet to process
data

	■ Use sorting and filtering techniques to help
identify patterns in data

	■ Present data in a range of different formats to aid
understanding

	■ Design a model to represent specific objects and
relationships within a scenario

	■ Describe the role of a database and its data
model in structuring and organising data

	■ Explain how a relational database is implemented
through tables and keys

	■ Compose SQL expressions that
add, retrieve, and update data in an
existing database

	■ Explain how data can be organised, stored, and
retrieved using files

	■ Identify sources of potential bias within a
data set at each part of the data life cycle

	■ Distinguish between quantitative and qualitative
data

	■ Prepare data for analysis, importing,
structuring, and cleaning as appropriate

	■ Report on findings, making use of descriptive
statistics and visualisations

	■ Distinguish between public and private
data sets and work with both

	■ Produce a relational data model to represent a
scenario

	■ Describe approaches to optimising
databases, including normalisation

	■ Explain how databases handle and process multiple
transactions

	■ Construct database tables, relationships, and
views using SQL

	■ Design, build, and interact with a database using a
database management system

	■ Describe the relationship between artificial
intelligence, machine learning, and big data

	■ Describe the kinds of problem that data science
can address

	■ Design and conduct a data science
investigation, identifying a problem, data
sources, and methodology

	■ Build interactive data dashboards to summarise
data and aid analyses

	■ Identify potential sources of bias within data
analysis

84 The Big Book of Computing Content

FOSTERING DATA LITERACY
COMPETENCIES IN SCHOOL

oday, data analysis is everywhere:
large companies collect and

analyse masses of data to systematically
promote their products, while social
media platforms use data analysis to
suggest friends.

Nowadays, everyone is confronted
with new challenges because of the
increasing and widespread relevance of
data; these include deciding which personal
and foreign data is shared with others
(including services on the internet), under
which conditions, and for which purpose.
We also need to ask what others can do
with, and read from, this data. And it’s not
just children and young people who need
to gain skills in this area — we all need to
become data literate.

Data literacy competencies
But what does data literacy mean?
According to widely accepted definitions,
data-literate people are able to work with
and handle data in a meaningful way —
for example, by acquiring, structuring, or
analysing it.

In recent years, I have investigated this
topic further with the Friedrich-Alexander-
Universität Erlangen-Nürnberg Computing
Education Group. We have looked at
data literacy from a computing education
point of view, taking into account various
perspectives. We looked at the technical
perspective on the large topic of data, and
we also considered students’ and teachers’
perspectives, as well as requirements from
society. On this basis, we developed a data
literacy competency model (Figure 1).

This model characterises data-
related competencies from two different
perspectives: content areas and process
areas. The content areas clearly emphasise
technical aspects and hence are focused
on computer science content. In contrast,
the process areas take a more practically
oriented perspective, illustrating what can
be done with data.

These two types of competency area
are closely intertwined, meaning that each
data literacy competency has to connect to
at least one content and one process area.
For example, the competency to visualise
data and analyse results incorporates both
a content aspect (such as knowing different
visualisation methods and their purpose)

and a process aspect (such as being able
to prepare data in a way that is suitable
for visualising it and creating the aspired
visualisation). Although the competency
model was developed with a focus on
computing education, we can also adapt it
to incorporate aspects from other subjects.
After all, computer science is not the only
subject that is dealing with data today. Other
topics can contribute important elements too,
particularly to the content areas, enriching
the model and extending its usability.

The life cycle of data
When trying to include data literacy
competencies in school teaching, the
question often arises as to where to start.

T

n ��Figure 1 According to the research-based data literacy competency model, each data literacy competency must
have both content-related and process-related aspects

RESEARCH

STORY BY Andreas Grillenberger

85

Most computing lesson plans probably have
various connection points to data literacy,
so there are multiple possibilities for data
literacy teaching. Yet it is crucial to keep in
mind the entire process of working with
data. When only discussing distinct parts
of this topic (for example the analysis),
other important aspects are missing (such
as gathering data, or justifying the analysis
from an ethical perspective).

We therefore also developed the data
life cycle model (Figure 2) as a structure
for teaching data literacy. This model
provides a structure for teachers and
students when working with data and
emphasises the complete process, not
just a small part of it. Of course, we can’t
consider all aspects in the same depth
in school, but using the data life cycle
helps to bring together all the knowledge
and skills students gain throughout their
computing education.

For example, aspects related to
data modelling, implementation, and
optimisation are already in most computing
curricula, and so only need to be connected
with other elements of the data life cycle.
When working with databases, you can
gather and structure real data in class for
efficiency, storing them in the database

instead of discussing fictitious examples.
The important question, therefore, is not
where to start with teaching data literacy,
but where to connect it to what we already
teach. The data life cycle helps to identify
such connection points.

Fostering data literacy in school
Several challenges have to be overcome
when fostering data literacy competencies
in school. For example, we have to identify
suitable tools, select appropriate examples
that are relevant and motivating to
students, and work out which concepts can
foster these skills.

We cannot teach most data literacy
competencies through theory alone;
suitable examples and appropriate data
play a significant role in teaching these
competencies. Such data is available from
various sources today. The application
programming interfaces (APIs) of widely
known services on the internet (such as
Twitter) aren’t the only data sources we
can use; there are also rich and easy-to-use
data sets available, such as those released
by public administrations as part of open-
data projects. For example, data.gov.uk
contains open data published by the UK
government and public bodies.

An exemplary project, particularly
considering data analysis, is based on real
data about school students. For example,
learners could examine a data set about
Portuguese students that was released
on the UCI Machine Learning Repository,
helloworld.cc/UCIdataset. Students can
analyse this using simple tools (like Orange,
orange.biolab.si), to predict grades based
on the information contained in the data set.

As this setting directly concerns students,
particularly if the teacher presents it as a
possible new way to grade them, it raises
several ethical problems that directly affect
the students. The resulting discussions that
arise on challenges, risks, and opportunities,
along with the possibility of directly working
with and analysing large amounts of data,
lead to another challenge. Although this
article has taken a computing education
perspective on data literacy, the topic also
affects and applies to many other subjects.
We should therefore consider data literacy
an interdisciplinary topic, and it should be
taught in school accordingly.

Fostering data literacy in school is an
open challenge to which we all can, and
must, contribute if we are to prepare our
students for a life in a world where we use
data continuously and everywhere.

The Big Book of Computing Content

n ��Figure 2 The data life cycle model gives a structure for teaching data literacy, for both teachers and students

RESEARCH

FURTHER READING
 �Grillenberger, A. & Romeike, R.
(2018). Developing a Theoretically
Founded Data Literacy Competency
Model WiPSCE ’18, October 4–6, 2018,
Potsdam, Germany. helloworld.cc/
grillenberger2018

http://data.gov.uk
http://helloworld.cc/UCIdataset
http://orange.biolab.si
http://helloworld.cc/grillenberger2018
http://helloworld.cc/grillenberger2018

86 The Big Book of Computing Content

isualising data is the art of being
able not only to present data in a

visual format, but to truly tell a story with
it. A good visualisation will bring data
to life, aiming to provide the audience
with something that they might not have
been able to spot merely by looking at
numbers on a page. While writing a unit
on data science for the Teach Computing
Curriculum, I became infatuated with
the creative ways in which people have
visualised data, drawing out trends,
correlations, and patterns. In this article,
I want to highlight some of the best
visualisations that are adaptable for
most age groups, so you can use them
to inspire your classes and get them
thinking about data.

Telling a story with data
Take a look at the data you can see in Figure
1 below. Can you extract any meaning from
it? What story is it telling you? You can
inspect the data in more detail here: ncce.io/
minard-data.

This data relates to Napoleon’s 1812
march on Russia. The numbers alone don’t
tell much of a story, but in 1869 Charles
Joseph Minard, a French civil engineer known
for his information graphics, produced what
is now widely regarded as the best statistical
graph of all time; see Figure 2.

The visualisation shows Napoleon’s
army, departing at full strength from the
Polish border to Russia, and then their
subsequent retreat. The thickness of the
lines represents the size of the army, with

the beige line representing the march on
Moscow and the black line representing
the retreat back to Poland. The scale
of the losses becomes very clear when
you compare the thickness of the two
lines: Napoleon set off with 422,000
troops and returned with just 10,000.

Other forms of data have also
been represented in the visualisation.
Geographical features such as locations and
rivers crossed have been plotted, as well as
the varying temperatures at different points
on the march and retreat. If you look closely,
this helps you to see where and why tragedy
occurred at various points on the journey.
During the retreat on 28 September 1813,
the data labels on the black line read 50,000,
before dropping to 28,000, showing that
22,000 men died crossing the Berezina river
near Minsk!

What I love about this visualisation is that
the more you look at it, the more you see.
The visualisation really made me feel as
though I understood a little more about the
story of Napoleon’s march on Russia — a
story that I certainly wouldn’t have been
able to get by simply studying the data as
numbers on a page.

Effecting change with data
As well as telling a story with data,
visualisations can be starting points to
bring about change or to help gain support
for a cause. The next historical example
dates back to 1854, when there was an
outbreak of cholera in the Soho area of
London. At the time, it was a commonly
held belief that cholera was caused by bad
air in the area. A physician named John
Snow held an alternative belief that cholera
was being transmitted by a contaminated
water supply. To help prove this theory,

How to get your students started with data science by introducing
exciting and interesting visualisations

DATA VISUALISATIONS
FOR INQUISITIVE MINDS

V

n �Figure 2 Statistical graph of Napoleon’s march on Russia

n �Figure 1 What does this data tell you?

FEATUREOPINIONFEATURE

http://ncce.io/minard-data
http://ncce.io/minard-data

87The Big Book of Computing Content

he mapped the deaths from cholera in
the Soho area. The map revealed that the
deaths were centred around Broad Street,
and the residents there were getting their
water from the pump on this street.

By visualising the data in this way (now
known as a dot map, a map type that uses
a dot symbol to show the presence of a
feature or phenomenon), Snow was able
to convince the local council to disable the
water pump. It is widely recognised that this
visualisation helped to save many lives.

Getting hands-on with
interactive visualisations
Moving from the past to the present day,
the final point I would like to highlight is
a free visualisation tool by Gapminder
(helloworld.cc/gapminder). This software
allows you to view global data and see
how it has changed over time. The default
data in the bubble graph compares life
expectancy with income. By using the
slider and clicking on the ‘Play’ button, you
can see how this has changed from the
year 1799 to the present day.

The data on the x- and y-axes is
customisable, allowing you to compare a
huge range of other factors, such as CO₂
emissions and educational standards. I
like this tool, compared to the historical
examples I’ve discussed, as it is much
more hands-on for students, and presents
opportunities to discuss concepts such as
trends, correlation, and outliers.

After allowing students to see the data
available to them, a good activity would be
to get the class to think about what factors

make a country a great place to live. They can
then use the Gapminder tool to investigate
which country best fits their ideals.

Practical suggestions for the classroom
As suggested, the Gapminder tool is a good
place to start to get students exploring data
sets. You can also use the Turner’s Graph
of the Week website (helloworld.cc/turner)
to reinforce the idea of using visualisations
to spot trends and correlations, as well as
to make predictions and gain insights. The
site provides free worksheets that include
visualised data and sets of questions to
prompt analysis of the data, perfect for in-
class activities and homework.

I’d recommend allowing time for your
students to explore the visualised data sets
on the Information is Beautiful website,
including data talking points such as ‘riskiest
activities during the pandemic’, and how
much music streaming services pay their
artists (helloworld.cc/information). Another
favourite of mine is Dear Data (helloworld.cc/
deardata), a project between two information
designers to collect data about their lives each

BEN GARSIDE
Ben works for the Raspberry Pi Foundation
and is also a Computing at School
community leader. Recently, Ben has
been developing resources for the Teach
Computing Curriculum, as well as writing
online courses and content for Isaac
Computer Science (@BenberryPi).

week and visualise it on a postcard sent to
each other. A nice follow-up activity to the
Dear Data website would be to ask students
to spend a week collecting and visualising
data about their own lives. For example, they
could monitor their mobile phone or app
usage, or what food they’ve eaten. Once they
have completed the activity, ask them to write
a short report on what they have learnt from
their visualised data and how they might use
the information to make changes in their lives.

Finally, data science is not just the remit of
computing. Do explore the cross-curricular
opportunities that you could take advantage
of when teaching visualisations; the
examples in this article have clear links with
history, geography, and maths.

Using some of these examples and tools,
I hope your students will have understood
that visualisations can be much more
creative than the traditional bar and pie
charts we’re all used to seeing, and that
data has the power to tell a story, share
information, and bring about change.

n �Global data over time in the Gapminder tool

n �Cholera dot map

FEATURE

http://helloworld.cc/gapminder
http://helloworld.cc/turner
http://helloworld.cc/information
http://helloworld.cc/deardata
http://helloworld.cc/deardata
https://twitter.com/BenberryPi

88 The Big Book of Computing Content

Chris Aviles describes how his class uses data to make their gardens more productive

s a society, we have never before
collected more data about

individuals. Despite this, most people and
institutions do a poor job of interpreting
data and using it to make meaningful
change. I wanted to tackle this problem on a
local scale with my learners in FH Grows.

FH Grows is the name of my seventh-
grade class (aged 12–13), and a student-run
agriculture business at Knollwood Middle
School in Fair Haven, New Jersey. In FH
Grows, we grow produce and sell it, both
online and through student-run farmers’
markets. Any produce we don’t sell is
donated to our local soup kitchen. To get the
most out of our school gardens, students
have built sensors and monitors using
Raspberry Pis. These sensors collect data,
which allows me to teach students how to
get better at interpreting data themselves,
and how to turn it into action.

Turning data into action
In the greenhouse, our gardens, and our
alternative growing stations (we have
hydroponics, aquaponics, and aeroponics)
we use sensors to log temperature, humidity,
and other important data points. This data
is streamed in real time on a site I created
for the class. When students come into the
classroom, one of the first things we do is
look at the live data on the site and find out
what is going on in our gardens. Over the
course of the semester, students are taught
about ideal growing conditions. If, when
we look at the data, we see that conditions
aren’t ideal, it’s time to get to work.

If we see that the greenhouse is too hot,
over 85 degrees Fahrenheit, students go
and open the greenhouse door. We check
the temperature a bit later, and if it’s still

too hot, students turn on a fan. But how
many fans do we need to turn on? After
experimenting, we know that each fan
lowers the greenhouse temperature by
between 7 and 10 degrees. Opening the
door and turning on both fans can bring a
greenhouse that’s pushing 100 degrees
in late May or early June down to a more
manageable 80 degrees.

Turning data into action can allow for
some creativity as well. Overwatering plants
can be a real problem; we found that our
plants were turning yellow because we were
watering them every day when we didn’t
need to. How could we solve this problem
and become more efficient at watering?
Students built a Raspberry Pi that used a
moisture sensor to find out when a plant
needed to be watered. We used a plant with
this moisture sensor in the soil as our control
plant. We figured that if we watered the

A

FEATURE

control plant at the same time as we watered
all our other plants, when the control plant
was dry (giving a negative moisture signal),
the rest of the plants in the greenhouse
would need to be watered as well.

This method of determining when to
water our plants worked well. We rarely
ever saw our plants turn yellow from
overwatering again. Here is where the
creativity came in. We received a signal from
Raspberry Pi when the soil was not wet
enough, so we played around with what we
could do with that signal. We displayed it
on the dashboard along with our other data,
but we also decided to make the signal send
us an email from the plant. When I showed
students how this worked, they decided to
write the message from the plant in the first
person. So every week or so, we received an
email from Carl the Control Plant asking us to
come out and water him!

USING DATA TO OPTIMISE
A SCHOOL GARDEN

n �How does your garden grow?

89The Big Book of Computing Content

n �Our Pi prediction system has given us far more accurate data

If students didn’t honour Carl’s request
for water, if they didn’t use data to know
when to cool the greenhouse, or if they had
not done the fan experiments to see how
much cooler their measures would make
the greenhouse, all our plants, such as the
basil we sell to the pizza places in town,
would die. This is the beauty of combining
data literacy with a school garden: failure
to interpret data, then take action based on
their interpretation, has real consequences:
our produce could die. When it takes 60–120
days to grow the average vegetable, the loss
of plants is significant. We lose all the time
and energy that went into growing those
plants, as well as all the revenue they would
have brought us. Furthermore, I love the
urgency that combining data and the school

garden creates, because many students
have learnt the valuable life lesson that not
making a decision is also making a decision.
If students freeze or do nothing when
confronted with the data about the garden,
that too has consequences.

Using data to spot trends
and make predictions
The other major way we use data in
FH Grows is to spot trends and make
predictions. This is different to using data to
create the ideal growing conditions in our
garden every day; the sensors we use also
provide a way for us to use information about
the past to predict the future. FH Grows has
about two years’ worth of weather data from
our Raspberry Pi weather station (there are
guides available online if you wish to build a
weather station of your own). By collecting
weather data year after year, we can start to
determine important information such as the
best time to plant our veggies.

For example, one of the most useful
data points on our Raspberry Pi weather
station is the ground temperature sensor.
Last semester, we wanted to squeeze in a
cool-weather grow in our garden. This post-
winter grow can be done between March

and June if you time it right. Getting an extra
growing cycle from our garden is incredibly
valuable, not only to FH Grows as a business
(as we would be growing more produce
to sell), but as a way to get an additional
learning cycle out of the garden.

So, using two seasons’ worth of ground
temperature data, we set out to predict
when the ground in our garden would be
cool enough to do this cool-veggie grow.
Students looked at the data we had from the
weather station and compared it to different
websites that predicted the last frost of
the season in our area. We found that the
ground right outside our door warmed up
two weeks earlier than the more general
prediction given on weather websites. With
this information, we were able to get a full
cool-weather grow at a time where our
garden used to lie dormant.

We also used Raspberry Pi to help us
predict whether or not it was going to rain
over the weekend, by using it to connect to
Weather Underground and looking at data
from previous years. If we believed it would
not rain over the weekend, we would water
our gardens on a Friday. If we thought it
would rain, we let Mother Nature water our
gardens for us. Our prediction, using the Pi

and previous data, was more accurate for
our immediate area than the general weather
reports you would get on the radio or an
app, as those considered a much larger area
when making their predictions.

It seems that we are going to be collecting
even more data in the future, and it is
important that we get our students
comfortable working with it. The school
garden supported by Raspberry Pi’s amazing
ability to collect data is a boon for any
teacher who wants to help students learn
how to interpret data and turn it
into action.

CHRIS AVILES
Chris is a Raspberry Pi Certified Educator
and a teacher at Knollwood Middle
School in the Fair Haven school district
in New Jersey, USA. There, he runs the
renowned Fair Haven Innovates program he
created in 2015.

FAILURE TO INTERPRET DATA THEN ACT
ON THEIR INTERPRETATION HAS REAL
CONSEQUENCES: OUR PRODUCE COULD DIE

“

FEATURE

90 The Big Book of Computing Content

Databases are fundamental to modern society, so why do many young people
(and their teachers) find the topic less than engaging?

TEACHING DATABASES
USING BIG DATA

here has been major curricular
change in Scottish computing

education over the last eight years.
Previously, there were separate
qualifications in computing and
information systems. To generalise,
the former focused on programming
and the second on databases. The
new qualifications, introduced in
2014, combined these two separate
qualifications into one new qualification
called ‘computing science’. A more recent
update introduced SQL queries at all levels
of computing science.

Soon after this update, at a meeting
with local computing teachers, we
were discussing, first, the importance
of databases in the study of computing
science and, second, how it can be difficult
to engage pupils in a topic that can be drier
than programming or designing websites.

How can a topic that underpins so much
of modern technology be seen as boring or
irrelevant by pupils who, unwittingly or not,

interact with huge data sets multiple times
in a day? In this article, I’d like to explore an
approach to learning about databases that
show pupils the relevance of understanding
and being able to extract meaning from
modern data sets.

Big data
Imagine an introductory database lesson
that talks about the millions and billions
of records and fields contained in the
Amazon or Twitter databases. Pupils, keen
to get insight into the technology behind
these huge enterprises, are then directed
to Microsoft Access, where they have to
create a single table, declare a few fields,
and create a handful of records in an
address book or music database. This
discrepancy, between the reality of huge,
enterprise-scale databases and what
pupils can actually create, is massive. How
many of us have asked pupils to enter five
or ten records into a database, with no
actual thought as to the educational value?

Why do we need a database to store ten
records? A spreadsheet, or even a table in
Word, would allow us to store and see this
information at a glance.

To see the need for databases, and
their enormous power and value, we must
use big data: data sets with thousands
of records, data that requires queries
and sorts in order to tell us something
meaningful. Multiple, linked tables can then
be used to show why careful design of
databases is so important. Close to home
for me, for example, Glasgow City Council
and the Scottish Government publish a
range of data sets about crime, education,
environment, and population, which can be
used in class (helloworld.cc/glasgowdata
and helloworld.cc/scotlanddata).

The Scottish Index of Multiple Deprivation
is an excellent, interactive example of data
being used to analyse and compare huge
amounts of socioeconomic data (helloworld.
cc/smd). Simply comparing Glasgow and
Edinburgh shows stark differences, but

n �Inside Airbnb offers vast amounts of data relating to hosts, listings, and reviews

HOSTS LISTINGS REVIEWSHas Has

T

FEATURE

http://helloworld.cc/2HHHFCu
http://helloworld.cc/2w8RBDY
http://helloworld.cc/smd
http://helloworld.cc/smd

91The Big Book of Computing Content

what can we say about the educational,
health, and employment opportunities for
children growing up in rural versus urban
areas? Drumchapel and Bearsden are
neighbouring areas of Glasgow, but have
vastly different opportunities for young
people growing up just a few streets apart.

Airbnb
Another powerful example is the big
data available about Airbnb. Airbnb
has disrupted the world of travel and
accommodation, and the site Inside Airbnb
(helloworld.cc/airbnb) allows you to
download vast amounts of data that has
been scraped from the site for many of the
most popular destinations in the world.
This context allows us to see the real-world
website and the database behind it.

These data sets require some analysis
and work before they can be used
in a classroom situation. Using the
Edinburgh Airbnb data (helloworld.cc/
edinburghairbnb), I downloaded listings,
hosts, and review data for thousands of
destinations in the capital and imported
it into Access. Some fields needed a little
work to make them usable. Creating a
relational database of the data allows us to
illustrate the cardinality of the data.

This data is too much to take in just by
looking through the tables, but we can
now start to construct queries. If I wanted
to stay near the Scottish Government
building in the EH99 postcode area, but
could only afford £60 a night for at least
two bedrooms, which table or tables would
I look in, and what criteria would I use? The
SQA exam board that my school follows
plans queries as shown in Figure 1. From
there, it’s then trivial to code this query:

SELECT listing_url, summary,
price, bedrooms
FROM Listings
WHERE bedrooms>1 AND price 0
<=60 and zipcode LIKE ‘EH99%’
ORDER BY review_scores_rating
DESC;

Looking at a single listing on the Airbnb
website will show you the listing, some
host information, and a summary of their
reviews. What better illustration of a join?
This view is created dynamically using data
from all three tables.

Data on Inside Airbnb is updated
regularly. Pupils can click on the URLs

contained in the database and verify
that the data they’re examining is for a
real host with a real listing in a real city. I
believe this authenticity, and the quantity
of data used, will start to show pupils the
value of database management software.
The focus on SQL will mean they don’t
become experts in Access but, instead,
come to understand the underlying
structure of databases and the language
used to query the data.

Other discussions will follow. Is it legal
to scrape data? None of the downloaded
data is hidden or hacked, but do we
have the right to extract, store, and
manipulate it? How could bot software
be programmed to scrape the data? Why

n �Figure 1 By identifying which tables are being queried, you can spot any joins that are required.
Thinking at this stage about fields, criteria, and ordering leads naturally to writing the query in SQL

Field(s)
Table(s)
Search criteria
Sort order

listing_url, summary, price, bedrooms

Listings

Bedrooms > 1, price <=60, zipcode=EH99%

review_scores_rating Desc

might the web server view the scraper
software as an attack?

Then we can look at the social and
economic implications of Airbnb. Would
you like to live alongside someone who
lets out their apartment to multiple people
250 nights of the year? What impact has
the site had on the hotel industry? What

impact does it have on cities that welcome
lots of tourists each year? Does Airbnb
drive up rents and restrict availability for
local residents?

There are lots of other sources of
large data sets out there. I hope this article
provides you with a helpful starting point
for finding examples that will grab the
attention of the young people in your
classes, which they’ll want to manipulate
and manage.

Many of our young people will be big
fans of online streaming services, and
will likely be familiar with the Internet
Movie Database (IMDb). Data sets
from IMDb and its vast library of films
and television series can be found at
datasets.imdbws.com, with information
about the data at imdb.com/interfaces.
This could be an engaging context to
explore and manipulate.

IMDB

TO SEE THE POWER AND VALUE OF
DATABASES, WE MUST LOOK TO DATA
SETS WITH THOUSANDS OF RECORDS

“

TONY HARKINS
Tony is head of computing at St Aloysius’
College, Glasgow.

FEATURE

http://helloworld.cc/2JFzaso
http://insideairbnb.com/edinburgh
http://datasets.imdbws.com
http://www.imdb.com/interfaces
http://insideairbnb.com/edinburgh

ARTIFICIAL
INTELLIGENCE

94 	 ARTIFICIAL INTELLIGENCE,
IN SUMMARY

96 	� ENGAGING CHILDREN
WITH AI ETHICS

98 	 BIG IDEAS IN AI EDUCATION
100 	 �POPBOTS OPEN AI TO THE

YOUNGEST LEARNERS
101 	 SNAPSHOTS FROM THE

HISTORY OF AI
104 	� ARTIFICIAL INTELLIGENCE

IN THE CLASSROOM

The Big Book of Computing Content 93

rtificial intelligence (AI) encompasses a range of

technologies that analyse large data sets to identify

patterns, which they then use to make predictions,

classify objects, or generate entirely new artefacts.

In developing an understanding of AI, learners will explore

examples of different AI applications and the crucial role of

data in these systems. In comparison to traditional rule-based

systems, where decisions made by the system are governed

by programmed rules, AI systems make decisions based on

patterns in data — patterns that may be harder for humans

to explain. Learners will explore how AI systems make use of

models, as well as looking at how such models are generated.

Alongside this technical knowledge, learners will also need to

understand the social and ethical implications of AI.

Artificial intelligence is an emerging technology, and as such

is a new strand within the Raspberry Pi Foundation’s taxonomy

of formal education content. While there is a broad consensus

as to the importance of learners understanding, applying, and

building with AI systems, there is less agreement

about what, how, and when we should teach it.

Many relevant tools, initiatives, and resources

are nonetheless available, and there are

multiple active research projects in this area.

This section therefore provides an insight into

AI education at this point in time.

A IN THIS SECTION,
YOU WILL FIND:

	■ Learning outcomes: 		
artificial intelligence, in summary

	■ What the research says:
AI ethics

	■ What the research says:
big ideas in AI education

	■ AI for preschoolers

	■ The history of AI

	■ Ideas for discussions in the classroom

The Big Book of Computing Content94

IN SUMMARY

ARTIFICIAL
INTELLIGENCE

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Recognise that AI systems are computing

systems that are designed and built by people

	■ Describe examples of the problems
associated with using and trusting AI
systems

	■ Describe the purpose of familiar AI applications

	■ Name examples of AI applications in a wider
societal context

	■ Contrast the benefits and issues of using
and trusting AI systems

	■ Describe how data is key to AI systems and the
decisions they make

	■ Describe examples of where AI can
generate digital artefacts

	■ Describe examples of where AI can classify
(images, sounds, text, etc.)

	■ Understand that AI systems can be used to
make predictions

	■ Describe a model as a representation of the real or
a fictional world

	■ Recognise that a model’s performance can
be improved by adding more training data

	■ Describe how the quality of data determines the
success of an AI application

	■ Explain how AI systems pose a potential threat to
equal opportunities

	■ Identify common types of AI application

	■ Identify the parts of a system that are AI and the
parts that are not

	■ Compare data-driven models and
rule-based models

	■ Describe how the data life cycle is applied to an
AI system

	■ Train a machine learning model

	■ Explain the difference between training and
test data

	■ Evaluate the performance of a
decision-tree model

	■ Describe how a machine learning model is trained

	■ Name ethical standards and guidelines for
creating and using AI

	■ Compare the advantages and disadvantages of
supervised learning algorithms

	■ Design and test supervised learning
solutions for classification problems

	■ Train models and incorporate them into a
programmed solution

	■ Evaluate whether a model is fit or not fit for
purpose

	■ Identify a neural network as a supervised learning
algorithm

	■ Identify the different components of a
neural network and describe their purpose

	■ Evaluate the performance of a neural network

	■ Describe the main AI paradigms

	■ Describe the potential social, cultural, and
economic impacts of AI

	■ Compare AI learning types (supervised,
unsupervised, reinforcement)

	■ Compare AI task types (classification,
regression, clustering, generative, decision-
making)

	■ Identify different AI engines (e.g. decision trees,
k-nearest neighbors, neural networks, linear
regression)

	■ Explain that different engines have different
levels of explainability

	■ Choose the right algorithm to solve a particular
problem

	■ Describe the role of weights and
backpropagation during the training of a
neural network

IN SUMMARY

Understand the capabilities and
limitations of artificial intelligence,
along with its applications and wider
impacts

The Big Book of Computing Content 95

IN SUMMARY

In the table below, you will find suggested learning outcomes

associated with the ‘Artificial intelligence’ strand of the Raspberry

Pi Foundation’s computing taxonomy. These learning outcomes are

illustrative of the kinds of knowledge and understanding that learners

could develop in this area of computing. They are not prescriptive,

but instead aim to illustrate the wide applications of the discipline.

These learning outcomes were originally proposed to complement

the English national curriculum for computing, and as such, stage 1

roughly corresponds to ages 5–7, stage 2 to ages 7–11, stage 3 to

ages 11–14, stage 4 to ages 14–16, and stage 5 to ages 16–19.

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Recognise that AI systems are computing

systems that are designed and built by people

	■ Describe examples of the problems
associated with using and trusting AI
systems

	■ Describe the purpose of familiar AI applications

	■ Name examples of AI applications in a wider
societal context

	■ Contrast the benefits and issues of using
and trusting AI systems

	■ Describe how data is key to AI systems and the
decisions they make

	■ Describe examples of where AI can
generate digital artefacts

	■ Describe examples of where AI can classify
(images, sounds, text, etc.)

	■ Understand that AI systems can be used to
make predictions

	■ Describe a model as a representation of the real or
a fictional world

	■ Recognise that a model’s performance can
be improved by adding more training data

	■ Describe how the quality of data determines the
success of an AI application

	■ Explain how AI systems pose a potential threat to
equal opportunities

	■ Identify common types of AI application

	■ Identify the parts of a system that are AI and the
parts that are not

	■ Compare data-driven models and
rule-based models

	■ Describe how the data life cycle is applied to an
AI system

	■ Train a machine learning model

	■ Explain the difference between training and
test data

	■ Evaluate the performance of a
decision-tree model

	■ Describe how a machine learning model is trained

	■ Name ethical standards and guidelines for
creating and using AI

	■ Compare the advantages and disadvantages of
supervised learning algorithms

	■ Design and test supervised learning
solutions for classification problems

	■ Train models and incorporate them into a
programmed solution

	■ Evaluate whether a model is fit or not fit for
purpose

	■ Identify a neural network as a supervised learning
algorithm

	■ Identify the different components of a
neural network and describe their purpose

	■ Evaluate the performance of a neural network

	■ Describe the main AI paradigms

	■ Describe the potential social, cultural, and
economic impacts of AI

	■ Compare AI learning types (supervised,
unsupervised, reinforcement)

	■ Compare AI task types (classification,
regression, clustering, generative, decision-
making)

	■ Identify different AI engines (e.g. decision trees,
k-nearest neighbors, neural networks, linear
regression)

	■ Explain that different engines have different
levels of explainability

	■ Choose the right algorithm to solve a particular
problem

	■ Describe the role of weights and
backpropagation during the training of a
neural network

96 The Big Book of Computing Content

approach teaching young people about it.
Researchers Mhairi Aitken and Morgan

Briggs at The Alan Turing Institute have
found that many curricula designs focus on
AI and data science skills and capabilities,
to “equip the next generation to pursue
careers in these fields” (helloworld.cc/
aitken2022). They make the case that
AI education needs to go beyond simply
preparing young people for careers, and
that we should instead make it a priority
to encourage discussions about the social
and ethical ways in which AI is designed,
developed, and deployed.

Why is this important?
Aitken and Briggs stress that learning
about AI through this lens is important;
children need to understand the role of AI
in their lives and critically engage with this
technology if they are to make informed
choices about how they interact with it. The
paper illustrates that it’s almost guaranteed
that every young person will at some point
interact with, or be the subject of, a decision
made by an AI system. For example, if a child
interacts with a voice-based digital home
assistant, or uses a social media app, they
will be submitting their data and interacting

RESEARCH

rtificial intelligence (AI) is a term that
is now in most people’s vocabulary,

even if the meaning isn’t always understood.
With huge amounts of data constantly being
generated in the world, alongside regular
developments in hardware capabilities, more
and more systems that we interact with, or
that make decisions about us, use AI. As a
result, educators are becoming increasingly
interested in teaching young people about
this technology. At the same time, there isn’t
a huge amount of evidence-based research
in this area of education, so curriculum
designers are making choices as how best to

ENGAGING CHILDREN
WITH AI ETHICS

STORY BY Ben Garside

A

©
ke

nt
oh

/s
to

ck
.ad

ob
e.c

om

http://helloworld.cc/aitken2022
http://helloworld.cc/aitken2022
http://stock.adobe.com

The Big Book of Computing Content 97

RESEARCH

FURTHER READING
 �Aitken, M., & Briggs, M. (2022).
Engaging children with AI ethics. In
AI, data science, and young people.
Understanding computing education
(Vol 3). Proceedings of the Raspberry
Pi Foundation Research Seminars.
helloworld.cc/aitken2022

with AI applications, perhaps unbeknown
to them! These examples might both seem
harmless, but many such systems aren’t
designed with children in mind, and without
children having a basic education about
how they work, there may be unforeseen
problems. Aitken and Briggs quote the
case of a ten-year-old child who asked an
Amazon Alexa for a challenge, with Alexa
responding with a challenge that placed the
child’s safety at risk.

The paper also describes how AI systems
might have an impact on “shaping children’s
views of the world”, such as deciding what
content to display to them online, what
content to filter out, and influencing the

friendships they develop via social media.
AI could also “impact and shape children’s
lives” through influencing the provision
of services. A recent example Aitken and
Briggs point to was the algorithm used by
Ofqual (England’s Office of Qualifications
and Examinations Regulation) to help
determine grades after examinations were
cancelled in 2020 due to the pandemic.
The algorithm awarded exam grades which
clearly showed that students from less
privileged backgrounds were disadvantaged
compared with students who attended
private schools. The system was designed
to achieve fairness, but because of a lack
of attention towards ethical considerations,
the result was a system that “exacerbated
existing inequalities in society leading to
unfair outcomes”. AI is clearly increasingly
impacting children’s lives and shaping the
future societies in which they will live and
work. Aitken and Briggs conclude that it
is therefore vital that children and young
people are equipped to interrogate and
understand the role of AI systems.

Child-centred AI
As well as the more negative examples
discussed above, the paper highlights that
“children and young people have a unique
set of needs, and it is important to note that
if developed ethically and responsibly and
with children’s voices included and listened
to, AI technologies could provide beneficial
outcomes”. For example, the researchers
argue that within education, AI could help
support children’s learning, such as through
real-time translation, allowing children
to access global educational resources,
or by supporting those with visual or
hearing impairments. However, to ensure
that children’s needs and interests are

accounted for, ethical principles need to be
followed. Here, Aitken and Briggs introduce
an area of research called child-centred
AI, which aims to ensure that children are
involved throughout all stages of the AI life
cycle in a “meaningful and worthwhile way”.
A summary of the main components of
child-centred AI are as follows:

n �Helping children to make informed
choices about their interactions with, and
uses of, AI

n �Enabling children and young people to
play a role in discussions shaping future
AI practices

n �Ensuring the next generation of developers
and policymakers are equipped with an
understanding of the ethical considerations
around AI and its uses

n �Ensuring ethical mindsets of future
developers and members of the tech
industry

Organisations that are creating and using
AI may find it challenging to put child-

centred AI into practice. The paper thus
recommends a substantive approach
to engaging children around AI ethics,
engaging young people in discussions
that help them understand the role and
impact AI has in their lives and allows them
to “critique the ways that AI is designed,
developed, and deployed”. The researchers
focus on the benefits of this type of
approach and highlight that if young people
are involved in this way, they are better
equipped to make “informed choices” and
to “hold AI systems and their developers to
account”. Translating this for the classroom,
this means that to engage children with
AI, we should begin with no assumptions
about what they already know, and should
promote a dialogue, asking questions like:

n �What do you know about AI? What do
you want to know?

n �What are your concerns, interests, and
priorities?

n �What are the important issues in your
lives to which AI might relate, or have a
positive or negative impact?

As the paper concludes, it is essential for
future AI workforces to include a “diverse
mix of skills and expertise encompassing
technical, social, ethical, legal, and policy
dimensions”. While there is a place for
teaching young people the technical skills
related to AI, children and wider society
would clearly benefit from education going
beyond this and teaching them about the
importance of ethics and critical thinking
within this ever-changing technology.

AI IS INCREASINGLY IMPACTING CHILDREN’S
LIVES AND SHAPING THE FUTURE SOCIETIES
IN WHICH THEY WILL LIVE AND WORK

“

http://helloworld.cc/aitken2022

98 The Big Book of Computing Content

ideas shared in one of these seminars,
presented by Professor Dave Touretzky
and Professor Fred Martin, about how to
approach teaching AI.

AI4K12
The AI4K12 project (ai4k12.org),
spearheaded by Touretzky and Martin,
focuses on teaching AI in K–12 (that is, to
learners aged 4–18) in the US. The AI4K12
team has aligned its vision for AI education
to the CSTA standards for computer science
education (helloworld.cc/CSTAstandards).
These standards, published in 2017,

describe what educators should teach in US
schools across the discipline of computer
science, but they say very little about AI. As
such, this was the stimulus for starting the
AI4K12 initiative.

The AI4K12 project has a number of goals.
One is to develop a curated resource directory
for K–12 teachers, and another is to create
a community of K–12 resource developers.
Several members of the AI4K12 working
group are practitioners in the classroom who
have made a huge contribution to taking this
project from idea stage to fruition. If you’ve
heard of AI4K12 before, it’s probably because
of the Five Big Ideas the team has set out, to
encompass the AI field from the perspective
of school-aged children (helloworld.cc/
fivebigideas). These ideas are:

1. �Perception: the idea that computers
perceive the world through sensing

2. �Representation and reasoning: the idea
that agents maintain representations of
the world and use them for reasoning

3. �Learning: the idea that computers can
learn from data

4. �Natural interaction: the idea that
intelligent agents require many types
of knowledge to interact naturally
with humans

5. �Societal impact: the idea that artificial
intelligence can impact society in both
positive and negative ways

We sometimes hear concerns that
resources being developed to teach AI
concepts to young people are too narrowly
focused on machine learning, particularly
supervised learning for classification.
It’s clear from the AI4K12 Five Big Ideas
that the team’s definition of the AI field
encompasses much more than this one

RESEARCH

rom September 2021 to March
2022, the Raspberry Pi Foundation

hosted a series of seminars in partnership
with The Alan Turing Institute focused
on artificial intelligence (AI), machine
learning, and data science education
(helloworld.cc/AIseminars). These are
important topics in both the Foundation’s
learning resources for learners and
educators, and for our programmes of
research, and will only become more
important as AI increasingly becomes
ingrained in our societies. In this article, I
will summarise and explore some of the

BIG IDEAS IN AI EDUCATION
STORY BY Sue Sentance

F

©
AI

4K
12

n �The AI4K12 project’s Five Big Ideas in AI

http://ai4k12.org
http://helloworld.cc/CSTAstandards
http://helloworld.cc/fivebigideas
http://helloworld.cc/fivebigideas
http://helloworld.cc/AIseminars

The Big Book of Computing Content 99

RESEARCH

FURTHER READING

 �Touretzky, D. S., & Martin, F. (2022,
January 11). Teaching Artificial
Intelligence in K-12 [seminar
presentation]. Raspberry Pi
Research Seminar.
helloworld.cc/touretzky2022

area. Despite being developed for a US
audience, I believe the description laid out
in these five ideas is immensely useful to all
educators, researchers, and policymakers
around the world who are interested in
AI education.

During the seminar, Touretzky and Martin
shared some great practical examples.
Martin explained how the big ideas
translate into learning outcomes for each
of the four age groups (ages 5–8, 9–11,
12–14, and 15–18). You can find out more
about their examples in their presentation
slides (helloworld.cc/AI4K12ppt) or

the seminar recording (helloworld.cc/
AI4K12seminar).

I was struck by how much the AI4K12
team has thought about progression
— what you learn when, and in which
sequence — which we do really need to
understand well before we can start to
teach AI in any formal way. For example,
looking at how we might teach visual
perception to young people, children might
start when very young by using a tool such
as Teachable Machine to understand that
they can teach a computer to recognise
what they want it to see (helloworld.
cc/teachablemachine), then move on to
building an application using Scratch plug-
ins or CalypsoAI (calypsoai.com), and then
to learning the different levels of visual
structure and understanding the abstraction
pipeline — the hierarchy of increasingly
abstract things.

Glass and opaque boxes
Touretzky and Martin support teaching AI
to children using a glass-box approach. By
this we mean that we should give students
information about how AI systems work,
and show the inner workings, so to speak.
The opposite would be an opaque-box

approach, which would mean showing
students an AI system’s inputs and outputs
only, to demonstrate what AI is capable of
without trying to teach any technical detail.

The AI4K12 researchers are keen
for learners to understand, at an age-
appropriate level, what is going on inside
an AI system, not just what the system can
do. They believe it’s important for young
people to build mental models of how AI
systems work, and that when young people
get older, they should be able to use their
increasing knowledge and skills to develop
their own AI applications.

 What does AI thinking look like?
Touretzky addressed the question of
what AI thinking looks like in school. His
approach was to start with computational
thinking (he used the example of
the Barefoot project’s description of
computational thinking as a starting point;
helloworld.cc/barefootCT) and describes
AI thinking as an extension that includes
the following skills:

n �Perception
n �Reasoning
n �Representation
n �Machine learning
n �Language understanding
n �Autonomous robots

He went described AI thinking as furthering
the ideas of abstraction and algorithmic
thinking commonly associated with
computational thinking, stating that with AI,
computation actually is thinking. My view is
that to fully define AI thinking, we need to
dig a bit deeper into, for example, what is
involved in developing an understanding of
perception and representation.

Thinking back to a previous Raspberry
Pi Foundation research seminar,

WE MUST UNDERSTAND PROGRESSION —
WHAT YOU LEARN WHEN, AND IN WHICH
SEQUENCE — BEFORE WE CAN TEACH AI

“

Professor Matti Tedre and Dr Henriikka
Vartiainen shared their description of
computational thinking 2.0 (helloworld.
cc/tedreseminar). Their description
focuses only on the ‘Learning’ aspect of
the AI4K12 Five Big Ideas, and on the
distinct ways that thinking underlies
data-driven programming and traditional
programming. From this, we can see some
differences between how different groups
of researchers describe the thinking skills
young people need in order to understand
and develop AI systems. Tedre and
Vartiainen are working on a more granular
description of machine learning thinking,
which has the potential to impact the way
we teach machine learning in school.

Another description of AI thinking comes
from Juan David Rodríguez García, who
presented his system, LearningML, at
another of the Raspberry Pi Foundation’s
seminars (helloworld.cc/garciaseminar).
Rodríguez García drew on a paper by
Brummelen, Shen, and Patton (helloworld.
cc/brummelen2019), who extended
Brennan and Resnick’s CT framework
of concepts, practices, and perspectives
(helloworld.cc/brennan2012) to include
concepts such as classification, prediction,
and generation, together with practices
such as training, validating, and testing.

What I take from this is that there is
much still to research and discuss in this
area! It’s a real privilege to be able to hear
from experts in the field and compare and
contrast different standpoints and views.

Read more from our AI and data science
education presenters in their write-
ups of their seminars (helloworld.cc/
RPFseminarpapers).

http://helloworld.cc/touretzky2022
http://helloworld.cc/AI4K12ppt
http://helloworld.cc/AI4K12seminar
http://helloworld.cc/AI4K12seminar
http://helloworld.cc/teachablemachine
http://helloworld.cc/teachablemachine
http://calypsoai.com
http://helloworld.cc/barefootCT
http://helloworld.cc/tedreseminar
http://helloworld.cc/tedreseminar
http://helloworld.cc/garciaseminar
http://helloworld.cc/brummelen2019
http://helloworld.cc/brummelen2019
http://helloworld.cc/brennan2012
http://helloworld.cc/RPFseminarpapers
http://helloworld.cc/RPFseminarpapers

100 The Big Book of Computing Content

From Siri to gaming, artificial intelligence is all around us.
Ben Hall explores an innovative project that makes this

technology accessible to preschoolers

POPBOTS OPEN AI TO THE
YOUNGEST LEARNERS

ery often, the most vivid examples
of how quickly children learn and

progress can be seen in the youngest age
groups. A great example is how children
use construction-based resources such as
wooden blocks, train tracks, or LEGO®.
Often, children experience these for the
first time when they enter the primary
classroom. Initially, they will use these
resources in quite a free, unstructured way.
Over time, with guidance and support,
they construct increasingly complex and
imaginative models, often linked to other
areas of learning. The models from the end
of the year are unrecognisable from those
constructed at the beginning.

Can the same be said of children’s
first encounters with technology in the
classroom? Many schools will provide access
to tablets or computers as part of their
early-years provision, but how much of that
is about consuming the technology, and do
children relate it to real-world applications?
In my experience, simply having the devices
available is not enough — most children start
school able to navigate their way around a

tablet, and merely exposing them to it will
not introduce new concepts. How can we
develop children’s computing knowledge so
it will encourage them to be more than just
passive users?

AI literacy
Could artificial intelligence (AI) provide
an answer? A Massachusetts Institute of
Technology team has aimed to make AI
accessible by developing PopBots, small
robots that are used to introduce AI to
children. They have also developed easy-to-
use resources to complement the hardware.

One such resource explores machine
learning, where a robot can be programmed
to sort healthy or unhealthy foods. Children
begin by classifying foods for the robot,
but soon realise it would take too long to
do this for every single food type. Through
supervised machine learning, children can
quickly train PopBots to classify foods and
develop their own understanding of healthy
eating. Through this simple activity, children
become AI-literate creators — turning a
passive device into something that makes
informed, intelligent decisions.

Randi Williams, who worked on the
PopBots project, gives her view on
introducing children to AI: “Children’s
views of themselves relative to technology
change. Their views of how much they can
participate in technological invention change.
I love the fact that early AI education makes
children feel more curious about their world,
and empowered to change it.”

Research-led
PopBots are still in the early stages of
development and are not yet widely available.
Despite this, there is already a growing body
of research investigating the inclusion of AI
in the curriculum at an early age. Williams
would like to see PopBots developed as an
open-source platform that students could
build from classroom materials. Research
supports further development.

A recent paper by Williams and colleagues
investigates how AI can influence young
children’s perceptions of robots (helloworld.
cc/williams2019). They found perceptions
of robots are shaped at an early age, so
for children to be AI-literate, their earliest
experiences should be meaningful and
informed. It is an emerging technology, so
the research is at an early stage, but there is
no doubt that AI will increasingly shape our
world. Helping children develop a conceptual
understanding at an early age needs to be at
the forefront of curriculum development.

V

BEN HALL
Ben is a learning
manager at the
Raspberry Pi
Foundation. He’s
a former primary
teacher, a CAS
Master Teacher,

and a Raspberry Pi Certified Educator
(@hengehall).

PopBots are constructed using LEGO and use a
mobile phone with additional LEGO or Arduino
peripherals. Users interact with them via a
programming interface on a tablet or computer.

WHAT IS A POPBOT?

FEATURE

http://helloworld.cc/williams2019
http://helloworld.cc/williams2019
https://twitter.com/hengehall

101The Big Book of Computing Content

George Boukeas introduces fascinating
stories to share with your students

SNAPSHOTS FROM
THE HISTORY OF AI

he story of artificial intelligence
(AI) is a story about humans trying

to understand what makes them human.
Some of the episodes in this story are
fascinating, and could help learners catch a
glimpse of what the field is about and, with
luck, compel them to investigate further.

The imitation game
In 1950, Alan Turing published a
philosophical essay titled Computing
Machinery and Intelligence, which started
with the words: “I propose to consider the
question: can machines think?” Yet Turing
did not attempt to define what it means
to think. Instead, he suggested a game as

a proxy for answering the question: the
imitation game.

In modern terms, you can imagine
a human interrogator chatting online
with another human and a machine. If
the interrogator does not successfully
determine which of the other two is the
human and which is the machine, then
the question has been answered: this is a
machine that can think.

This imitation game is now a fiercely
debated benchmark of artificial intelligence
called the Turing test. Notice the shift in
focus that Turing suggests: thinking is to be
identified in terms of external behaviour, not
in terms of any internal processes. Humans

are still the yardstick for intelligence, but
there is no requirement that a machine
should think in the same way humans do,
as long as it behaves in a way that suggests
some sort of thinking to humans.

In his essay, Turing also discusses
learning machines. Instead of building
highly complex programs that would
prescribe every aspect of a machine’s
behaviour, we could build simpler programs
that would prescribe mechanisms for
learning, and then train the machine to learn
the desired behaviour. Turing provides an
excellent metaphor that could be used in
class to describe the essence of machine
learning: “Instead of trying to produce a
programme to simulate the adult mind,
why not rather try to produce one which
simulates the child’s? If this were then
subjected to an appropriate course of
education one would obtain the adult brain.
We have thus divided our problem into
two parts. The child-programme and the
education process.”

It is remarkable how Turing even
describes approaches that have since
evolved into established machine learning
methods: evolution (genetic algorithms),
punishments and rewards (reinforcement
learning), and randomness (Monte Carlo
tree search). He even forecasts the main
issue with some forms of machine learning:
opacity. “An important feature of a learning
machine is that its teacher will often be very
largely ignorant of quite what is going on
inside, although he may still be able to some
extent to predict his pupil’s behaviour.”

T

FEATURE
©

ch
ris

do
rn

ey
/s

to
ck

.ad
ob

e.c
om

http://stock.adobe.com

102 The Big Book of Computing Content

The evolution of a definition
The term ‘artificial intelligence’ was coined
in 1956, at an event called the Dartmouth
workshop. It was a gathering of the field’s
founders; researchers who would later have
a huge impact, including John McCarthy,
Claude Shannon, Marvin Minsky, Herbert
Simon, Allen Newell, Arthur Samuel, Ray
Solomonoff, and W. S. McCulloch.

The simple and ambitious definition for

artificial intelligence, included in the proposal
for the workshop, is illuminating: “making
a machine behave in ways that would
be called intelligent if a human were so
behaving”. These pioneers were making the
assumption that “every aspect of learning
or any other feature of intelligence can in
principle be so precisely described that a
machine can be made to simulate it”. This
assumption turned out to be false, and led to
unrealistic expectations and forecasts. Some
50 years later, McCarthy himself stated that
“it was harder than we thought”.

Modern definitions of intelligence
are of a distinctly different flavour:
“Intelligence is the quality that enables an
entity to function appropriately and with
foresight in its environment” (helloworld.
cc/nilsson2009). Some even speak of
rationality: “doing the right thing, given
what it knows” (helloworld.cc/russell-
norvig1995).

Playing games: search
A lot of research in artificial intelligence
has focused on games. Over the
years, programs for playing draughts,
backgammon, and many other games have
reached competence levels that surpassed
the best human players.

However, chess was the most prominent
game, right from the start. Alan Turing
and David Champernowne developed
a basic algorithm called Turochamp for
playing chess back in 1948. It took years
for that algorithm to be implemented into a

program, and Turing famously played a few
games with human opponents executing
the algorithm by hand. Claude Shannon
wrote Programming a Computer for
Playing Chess in 1950, in which he laid the
foundation for many of the search techniques
that would later be applied in games
(helloworld.cc/shannon1950).

Search is the main approach for playing
many of these games, systematically

generating and evaluating positions
and moves. That may sound trivial for a
computer, but the number of combinations
in non-trivial problems quickly explodes
exponentially, and a brute-force
enumeration of all the possible outcomes is
impossible. Shannon estimated the number
of different chess games to 10120. In these
vast search spaces, a lot of thought needs
to go into evaluating search states, to guide
the search effort and prune non-promising
search paths.

In his paper, Shannon discussed the
value of research in games, explaining that
a solution “will act as a wedge in attacking
other problems of a similar nature and
of greater significance”. Indeed, search
was the driving force behind many of the
landmark achievements in the field: making
plans and schedules, proving theorems
with logic, solving algebraic problems,
making inductions, and so on.

Deep Blue
In 1996, the chess world champion Garry
Kasparov played against Deep Blue, a
purpose-built IBM computer. Deep Blue
became the first chess machine to ever win
a game and, a year later, the first to win
a match against a world champion under
regular time controls. Kasparov’s defeat
made the headlines and is considered a
milestone in the history of AI.

The main driving force behind Deep Blue
was search: it was able to generate and
evaluate 200 million positions per second.

INTELLIGENCE IS THE QUALITY THAT
ENABLES AN ENTITY TO FUNCTION
APPROPRIATELY AND WITH FORESIGHT

“

The evaluation function was handcrafted
by human experts, and the only form of
learning was the system’s ability to fine-
tune some of its parameters.

Modern chess-playing programs need
to evaluate far fewer positions and do
not require specialised hardware to vastly
outperform human players. The last known
win by a human against a top chess-
playing machine was in 2005.

Deep Blue’s victory was part of an
impressive string of achievements,
but there were problems that seemed
elementary and yet proved extremely hard
to tackle. This was eloquently summarised
in Don Knuth’s remark: “AI has by now
succeeded in doing essentially everything
that requires ‘thinking’ but has failed to
do most of what people and animals do
‘without thinking’ — that, somehow, is
much harder!” It is only very recently that
AI has made breakthroughs in the latter
class of problems, such as image and
speech recognition, and this is the main
reason it has become so prominent.

Watson
In 2011, Watson, a computer system built
by IBM, competed against two human
champions in a game of Jeopardy! The
highly publicised match resulted in an
impressive win for Watson, in a context that
would traditionally have been considered
extremely hard for a computer to tackle.

Watson is not really a computer system
for playing Jeopardy!, though. It is a system
that uses multiple different techniques
to answer questions posed in natural

Artificial Intelligence by Michael Wooldridge
helloworld.cc/wooldridge2018

Machine Learning for Humans by Vishal Maini and
Samer Sabri helloworld.cc/maini2017

The Quest for Artificial Intelligence: A History of Ideas
and Achievements by Nils Nilsson helloworld.cc/
nilsson2009

Machines Who Think by Pamela McCorduck
helloworld.cc/mccorduck2004

FURTHER READING

FEATURE

http://helloworld.cc/nilsson2009
http://helloworld.cc/nilsson2009
http://helloworld.cc/russell-norvig1995
http://helloworld.cc/russell-norvig1995
http://helloworld.cc/shannon1950
http://helloworld.cc/wooldridge2018
http://helloworld.cc/maini2017
http://helloworld.cc/nilsson2009
http://helloworld.cc/nilsson2009
http://helloworld.cc/mccorduck2004

103The Big Book of Computing Content

language. In order to answer a question,
Watson generates multiple hypotheses and
seeks to support them by drawing evidence
from a body of sources. In other words,
Watson is able to provide justification for
its answers. There are many areas where
Watson is now being applied; one of the
most prominent involves assisting doctors
with diagnosis and suggested treatment.

Watson’s level of complexity is
astonishing, and it would be impossible to
develop such a system without some form
of learning. Echoing Turing’s comments
about learning machines, Grady Booch,
who was involved in building Watson,
remarked that “building a cognitive system
[like Watson] is fundamentally different
than building a traditional software-
intensive system of the past. We don’t
program them. We teach them.”

Neural networks
A neural network receives input values
and computes output values, which are
influenced by a set of parameters called
the weights. The function computed
is a composition of simpler functions,
represented by individual neurons. Building
a neural network boils down to how
these simpler functions are organised
and composed (the network ‘topology’),

also taking the weights into account. A
neural network can learn in the sense that
its weights can be modified, swaying the
output in more desirable directions.

Behind every recent breakthrough
in artificial intelligence, you will find
a neural network. Teaching a neural
network of sufficient complexity requires
a significant amount of training instances
and computational power. Even though
neural networks have been around for
decades, it is only in the last few years
that their potential has been realised, as
the amount of available training data has
skyrocketed and computing power, along
with dedicated hardware, has become
more readily available.

AlphaGo
Go is an ancient strategy game for two
players, who take turns placing black and
white pieces (stones) on a 19x19 board.

It is a notoriously difficult game for
computers. The number of possible board
positions is estimated at an astronomical
10170. Traditional search techniques
are pointless in such a vast space of
possibilities, and it has proved very hard
to develop functions that reliably evaluate
positions in order to guide the search.
Researchers estimated that it might take
decades for machines to beat humans at
Go, which was considered to be the holy
grail of game AI.

Enter AlphaGo, a computer program by
DeepMind. In 2017, AlphaGo beat Ke Jie,
the world’s top-ranked player at the time,
following victories over other high-ranking
professional players.

AlphaGo combines previously known
methods in a novel way. It studies
human games or uses self-play, in
order to learn how to evaluate positions
and moves. It uses neural networks to
compute its evaluation functions and
modify them while learning. It searches
through the vast space of possible
positions by taking random samples,
instead of searching systematically.

This is such a promising generic
approach that AlphaZero, a generalised
version of the program, used only self-play
to achieve a superhuman level of play in
the games of chess, Shogi, and Go within
24 hours. This is a step closer to Turing’s
vision of a blank slate child-programme,
endowed with the ability to learn.

GEORGE
BOUKEAS
George is a former
computing teacher
and is now a Python
engineer while figuring
out what he wants to
do when he grows up.

n Neural networks are behind nearly all AI technology

THE STRATEGY
GAME GO WAS
ALWAYS THE
HOLY GRAIL
OF GAME AI

“

FEATURE
©

Ale
xy

 Na
pa

lko
v/

sto
ck

.ad
ob

e.c
om

http://stock.adobe.com

104

FEATURE

The Big Book of Computing Content

here’s little doubt that artificial
intelligence (AI) has captured our

collective imagination. TV series and films
increasingly explore the implications of this
technology, from family favourites such
as WALL-E to the distinctly darker Black
Mirror. Robotics companies, meanwhile,
are transforming the more benign of these
visions into reality: Hanson Robotics’

lifelike robot Sophia, for example, has
become a familiar sight on talk shows, and
has even starred in music videos.

At the same time, our understanding of
how we personally interact with AI in our
day-to-day lives, and how we can use it to
our advantage, remains limited. Ask a class
of 13-year-olds what they think of when
they hear ‘artificial intelligence’, for example,
and the answers tend towards a common
theme: ‘creepy’; ‘sinister’; ‘taking over the
world’. How do we keep interest levels up
while grounding AI in reality and preparing
students for the workplaces of the future?

For young people to be able to lead and
succeed in the data-driven economy, a
strong understanding of this ever-evolving
technology is paramount. To engage
students with this topic, lessons should not
only highlight the many forms that artificial
intelligence can take in the real world, but
also offer a tangible experience of and

interactions with the technology. Here are
just a few of the angles from which we can
approach this topic, and suggestions for
resources that can complement them.

AI in action
With the recent proliferation of smart
speakers and virtual assistants, this
technology can be a useful framework for
an initial discussion around the key tenets
of artificial intelligence. Most young people
will have been exposed to these devices
in some form; fewer, however, are likely
to identify them as an example of AI. You
could ask students:
n �What does AI look like?
n �What does it sound like?
n �To what extent should it mirror

human behaviour?
Google’s Duplex AI assistant is a great
example of the capabilities and potential of
this technology. In a popular video of the

EMILY
DREIMANN
Emily is a digital
communications
officer who
previously worked
at the David & Jane
Richards Family
Foundation
(@em_dreimann).

Emily Dreimann shares ideas for kick-starting discussions on artificial intelligence

ARTIFICIAL INTELLIGENCE
IN THE CLASSROOM

T

FEATURE

n �A strong understanding of AI is paramount if young
people are to succeed in the data-driven economy

https://twitter.com/em_dreimann

105The Big Book of Computing Content

assistant in action, we can hear it making
calls to several businesses, sounding
sufficiently humanlike in its interactions to
fool the real humans on the other end of the
line. This somewhat unnerving potential of
AI is likely to hook students, while it remains
grounded in reality as an aid and time saver,
rather than a replacement, for humans.

Quick, Draw! is a great resource for
highlighting to students another manifestation
of AI. The game challenges the user to create
a series of doodles, while a neural network
attempts to guess what they are drawing.
Coupled with its hands-on, accessible nature,
this activity has the potential to engage even
the most reluctant of students.

Not so intelligent?
At the same time, we need students to be
critical in their appraisal of AI technology.
The statement that ‘Machine learning is
written in Python; artificial intelligence is
written in PowerPoint’ is a great starting
point for this discussion. You could ask
students what they understand by this. The
aim here is to draw out the idea that we can
already see machine learning in action in
industries across the globe, while AI arguably
remains a theoretical concept. Has anyone
yet created a truly intelligent machine?

There is a wealth of resources that we
can draw on to assist students in forming
their own opinions in this debate. The Turing
test, for example, is an important concept for
students to understand and remains a useful
benchmark against which to measure the
capabilities of AI technology. Encourage your
students to read aloud some transcripts for
entries to the Loebner Prize, a now defunct

annual Turing test competition. Would any
of these have convinced them they were
speaking to a real human?

On the website AI Weirdness, meanwhile,
research scientist Janelle Shane publishes
the entertaining results of her experiments
training neural networks on existing content
across a range of topics, from cat names
to knitting patterns. Taking Halloween

costumes as an example, you could allow
students to explore; with suggestions such
as ‘sentient stone’ and ‘a skunk in a moose
suit’, it should quickly become apparent to
them that this technology has some way to
go in capturing the uniquely human traits of
creativity and humour.

Branching out
AI and machine learning can also be ideal
starting points for generating lively debate
around other key topics in computing. An
unplugged activity in which students create
their own algorithm to guide a visitor from
the school reception to their classroom
is an ideal catalyst for a discussion about
the differences between how people and
machines make sense of instructions. We
can highlight the ability of humans to apply

common sense when determining a course
of action as a strength that machines cannot
emulate. This can encourage students to
understand AI as a tool to complement us,
rather than compete with us.

Meanwhile, developments in self-driving
vehicle technology present a unique
opportunity for students to explore ethics
in the context of computer science. Moral

Machine, developed by the Massachusetts
Institute of Technology, is an interactive
tool that asks the user to judge the most
acceptable outcomes of a series of moral
dilemmas faced by a self-driving car. By
engaging with this modern take on the
classic trolley problem, students develop a
deeper and more personal understanding
of the ethical challenges surrounding
artificial intelligence.

These activities have been popular in
schools I have worked with. Teachers have
commented that pupils were “fully engaged”
and found the topic “really interesting”. By
providing students with an interactive forum
in which to explore AI, we have an excellent
opportunity to support the next generation
in confidently claiming their place in the
modern world.

AI ARGUABLY REMAINS A THEORETICAL
CONCEPT, WHILE MACHINE LEARNING CAN
ALREADY BE SEEN IN ACTION IN INDUSTRY

“

AI and machine learning form a key part of
Get Creative With Data, a data science course
for students aged 11–14 from the David & Jane
Richards Family Foundation (@DJRichardsFF).

Complete course materials are available for
free to all state schools. For more information
about introducing the course at your school,
visit djrff.org.

GET CREATIVE
WITH DATA

FEATURE

n �Smart speakers can be a useful starting
point for a discussion about AI

©
An

th
on

y B
ro

wn
/s

to
ck

.ad
ob

e.c
om

http://djrff.org
http://stock.adobe.com
https://twitter.com/DJRichardsFF

IMPACT OF
TECHNOLOGY
108 	 IMPACT OF TECHNOLOGY, IN

SUMMARY
110 	� INSPIRING YOUNG PEOPLE WITH

CONTEXTS THEY CARE ABOUT
112 	 HOW MORAL IS YOUR MACHINE?
115 	 �THE THIN BLUE PIXELATED LINE
118 	 DOES UPGRADE CULTURE NEED

AN UPGRADE?
122 	 �PROTECTING CHILDREN FROM

BREATHING HAZARDOUS AIR

The Big Book of Computing Content 107

earners are constantly surrounded by technology,

and new innovations impact every part of their

lives. For them to become successful digital citizens

or go on to develop new technologies themselves, learners

need to understand the impact that technology has on

individuals and on society at large. Technology may impact for

better or worse, and in a wide range of ways, including health

and well-being, careers, privacy, global politics, equality, and

the environment.

Our approach to learning about the impact of technology

begins with learners identifying technology around them

and its direct impact on them as individuals, both at home

and at school. Beyond this focus, they then start to explore

the benefits and issues for society, specifically through the

lens of moral, ethical, and legal frameworks, and the rights

of individuals and organisations. Ultimately, they begin to

think more from a global perspective, considering issues of

equity and challenges facing the environment. Throughout

their study, learners will encounter familiar

examples and contexts, as well as considering

the challenges presented by emerging

technologies such as artificial intelligence

and machine learning.

L IN THIS SECTION,
YOU WILL FIND:

	■ Learning outcomes: 		
impact of technology, in summary

	■ What the research says:
contexts to inspire

	■ Morals and ethics in computer science

	■ What the law says about hacking

	■ Upgrade culture

	■ Air pollution project

The Big Book of Computing Content108

IN SUMMARY

IMPACT OF
TECHNOLOGY

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Identify and describe familiar examples of

information technology

	■ Identify information technology that can be
used in more than one way

	■ Use information technology for different activities

	■ Explain why we use information technology
and some of its benefits

	■ Identify tasks that are managed by computer
systems

	■ Recognise that human decisions determine
the use and impact of information
technology

	■ Explain how the internet allows data to be
shared globally

	■ Explain the benefits of a given information
technology system

	■ Explain similarities and differences between
digital and non-digital tools

	■ Consider ownership and copyright when
selecting content

	■ Analyse information sources to judge their
credibility

	■ Explain the benefits of information
technology for individuals and wider
society

	■ Describe the potential harms of information
technology upon society and individuals

	■ Recognise the need for laws related to the
misuse of computers and data

	■ Describe the difference between legal, ethical,
and moral behaviours

	■ Consider content copyright and credit
sources of information

	■ Discuss uses of information technology that may
be considered immoral or unethical

	■ Explain the importance of seeking diverse
perspectives in evaluating and improving
digital artefacts

	■ Contrast the varying access, knowledge, and
opportunities of different global communities in
relation to information technology

	■ Identify the positive and negative impact
that computing has on the environment

	■ Describe the sustainability challenges associated
with digital technologies

	■ Outline the benefits and risks to individuals
as a result of emerging technologies
(for example AI)

	■ Describe the rights that individuals have in
relation to their personal data

	■ Outline laws that aim to protect individuals and
organisations from digital crime

	■ Describe examples of situations where
digital technologies introduce bias or
reduce equity

	■ Identify the challenges of legislating and enforcing
the law in a global digital world

	■ Discuss the impact that emerging
technologies will have on the workforce and
economies

	■ Outline the data protection principles that
developers and organisations must comply with

	■ Describe the laws that aim to protect
individuals from malicious communication

	■ Evaluate the societal impacts of digital
technologies, including how we work, communicate,
learn, and entertain

	■ Compare the positive and negative impacts
of digital technologies on our physical and
mental health

	■ Identify factors that affect the accessibility,
usability, and cultural relevance of digital
technologies

	■ Discuss the ways in which technological
products and tools cater for all members of a
diverse population

IN SUMMARY

Understand the impact of computer
systems on individuals, organisations,
and society

The Big Book of Computing Content 109

IN SUMMARY

In the table below, you will find learning outcomes associated with

the ‘Impact of technology’ strand of the Raspberry Pi Foundation’s

computing taxonomy. These learning outcomes are illustrative of the

kinds of knowledge and understanding that learners could develop in

this area of computing. They are not prescriptive, but instead aim to

illustrate the wide applications of the discipline.

These learning outcomes were originally developed to complement

the English national curriculum for computing, and as such stage 1

roughly corresponds to ages 5–7, stage 2 to ages 7–11, stage 3 to

ages 11–14, stage 4 to ages 14–16, and stage 5 to ages 16–19.

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Identify and describe familiar examples of

information technology

	■ Identify information technology that can be
used in more than one way

	■ Use information technology for different activities

	■ Explain why we use information technology
and some of its benefits

	■ Identify tasks that are managed by computer
systems

	■ Recognise that human decisions determine
the use and impact of information
technology

	■ Explain how the internet allows data to be
shared globally

	■ Explain the benefits of a given information
technology system

	■ Explain similarities and differences between
digital and non-digital tools

	■ Consider ownership and copyright when
selecting content

	■ Analyse information sources to judge their
credibility

	■ Explain the benefits of information
technology for individuals and wider
society

	■ Describe the potential harms of information
technology upon society and individuals

	■ Recognise the need for laws related to the
misuse of computers and data

	■ Describe the difference between legal, ethical,
and moral behaviours

	■ Consider content copyright and credit
sources of information

	■ Discuss uses of information technology that may
be considered immoral or unethical

	■ Explain the importance of seeking diverse
perspectives in evaluating and improving
digital artefacts

	■ Contrast the varying access, knowledge, and
opportunities of different global communities in
relation to information technology

	■ Identify the positive and negative impact
that computing has on the environment

	■ Describe the sustainability challenges associated
with digital technologies

	■ Outline the benefits and risks to individuals
as a result of emerging technologies
(for example AI)

	■ Describe the rights that individuals have in
relation to their personal data

	■ Outline laws that aim to protect individuals and
organisations from digital crime

	■ Describe examples of situations where
digital technologies introduce bias or
reduce equity

	■ Identify the challenges of legislating and enforcing
the law in a global digital world

	■ Discuss the impact that emerging
technologies will have on the workforce and
economies

	■ Outline the data protection principles that
developers and organisations must comply with

	■ Describe the laws that aim to protect
individuals from malicious communication

	■ Evaluate the societal impacts of digital
technologies, including how we work, communicate,
learn, and entertain

	■ Compare the positive and negative impacts
of digital technologies on our physical and
mental health

	■ Identify factors that affect the accessibility,
usability, and cultural relevance of digital
technologies

	■ Discuss the ways in which technological
products and tools cater for all members of a
diverse population

110 The Big Book of Computing Content

any young people get into making
things with computers through

an early interest in the technology itself.
There are many others who may not be
as fascinated by technology for its own
sake, but given the right context, can see
it as a powerful tool to make a difference
to the things they care about.

One such compelling context is health
and well-being. We see just how many
children care deeply about issues in this
area every year from the projects entered
to Coolest Projects, the Raspberry Pi
Foundation event showcasing young
people’s digital projects.

Back in 2018, the Foundation carried
out some research looking at the stories
behind the projects children presented
at the events in the UK and Ireland. One
of the most highly regarded projects at
the UK event was Be Healthy, an app to
guide people’s diets and health habits.
The young creator of this app took a
holistic view of health and created a single
app that could encourage people to live
healthy lives in a variety of ways. They
focused very much on the design of the
app, starting with the goals they wanted
to achieve and then exploring how they
would realise them with the technology.

Another was Locking Medical Box, a
physical computing project that supported

people with mental health issues with
managing their medication. The idea for
this project came from the interest in
health issues of one of the project team
and drew on the experience of their
parent, who was working in healthcare.
The team had worked together before and
met through a summer coding camp. For
this project, they wanted to take skills they
had learnt together and apply them to an
area they all cared about. They combined
a lot of thoughtful design work with both
hardware and software skills to realise
their idea as a working prototype.

M Ideas, technology, and skills
From our research into these and
many other projects, we put together
a framework to help us understand the
different ways in which young people
approach making digital projects. We found
that successful digital projects involve three
key areas: ideas, technology, and skills.

What tends to happen is that young
people start their projects with an
emphasis on one of these three areas.
Many start with the technology that they
have access to and explore its potential
uses. This is an important consideration,

STORY BY Oliver Quinlan

INSPIRING YOUNG
PEOPLE WITH CONTEXTS

THEY CARE ABOUT

n �The interaction of ideas, technology, and
skills in the Locking Medical Box project

RESEARCH

111The Big Book of Computing Content

FURTHER READING
 �Hulleman, C. S., & Harackiewicz,
J. M. (2009). Promoting Interest and
Performance in High School Science
Classes. Science, 326(5958), 1410-
1412. helloworld.cc/hulleman2009

 �Kemp, P. E. J., Berry, M. G., & Wong,
B. (2018). The Roehampton Annual
Computing Education Report.
University of Roehampton, London.
helloworld.cc/kemp2018

as a lack of access to technology can be
very limiting. This approach appeals to
young people with a strong interest in
technology for its own sake, and allows
them to explore the possibilities of
particular technologies.

Some young people start with skills they
have learnt or want to learn, and create a
project to apply these skills. In our research,
we found that this approach was less
common than the other two. It is a focus
that we saw being taken by young people
who already had quite a lot of experience
with computing and digital making.

Other young people start with an idea
in an area they care about and want to
make a difference to. This approach can
be a challenge for adults to facilitate, as
it requires young people to figure out
how they can execute ideas that are
often quite ambitious, using technology
they have access to and skills they can
realistically acquire during the course of
the project. It is a common tendency to be
ambitious with ideas, but matching them
to a comfortably challenging level of skill
and the technology available to them can
require some support.

Evidence from research into formal
education shows that when computing
lessons address contexts young people
feel apply to them, such as health and well-
being, it can help to motivate groups that
are usually less engaged with computing,
particularly girls (see the ‘Further reading’
box). This suggests that encouraging
young people to approach digital making by
focusing on the ideas that matter to them
could be an effective way of opening up the
activities to a wider range of students.

The Foundation is currently working
together with Apps for Good (helloworld.
cc/appsforgood) and the Behavioural
Insights Team (helloworld.cc/thebit)
to explore this approach to computing
lessons in schools, as part of the RPF
Gender Balance in Computing research
project. For more information, and for
examples of projects that you could share
with young people, see the publication
How Children Make Digital Projects
at helloworld.cc/projectsresearch.

TIPS FOR TAKING AN ‘IDEAS
FIRST’ APPROACH TO PROJECTS

n �Make it clear to young people that the
focus isn’t on learning about technology
for its own sake, but using technology
to make a difference to things they care
about.

n �Share examples of projects linked to
topics like health and well-being, and
help young people see that they can use
digital technology in contexts like this
that they may not realise are possible.

n �Set aside time away from the technology
to talk to young people about the areas
that interest them and the issues they
care about; understanding this well will
help you notice opportunities to build on
their interests.

n �Try to help learners break down their
ambitious ideas into chunks or steps
that might be more achievable with the
skills, technology, and time available.

n �Help learners work out what the
minimum viable version of their idea is,
so they can get to something functional
quickly and feel a sense of achievement;
they can always iterate and add to it
later on.

n �Be prepared for young people to want to

do things you might not know how to do
yourself. Support them to use forums (if
age-appropriate) and online resources.
You don’t have to know everything, but
you can help them figure out how to learn!

n �The Be Healthy app creator
at Coolest Projects

RESEARCH

http://helloworld.cc/issue17insights1
http://helloworld.cc/issue17insights2
http://helloworld.cc/appsforgood
http://helloworld.cc/appsforgood
http://helloworld.cc/thebit
http://helloworld.cc/projectsresearch

112 The Big Book of Computing Content

Diane Dowling explores the moral and ethical dimension of computer science education

HOW MORAL IS YOUR MACHINE?
he A-level computer science
specification of all English exam

boards requires students aged 17–18
to have the ability to ‘articulate the
individual (moral), social (ethical), legal,
and cultural opportunities and risks of
digital technology’.

The terms ‘ethics’ and ‘morals’ are
sometimes used interchangeably, as both
refer to behaviour that can be labelled as
‘right’ or ‘wrong’. Ethics may be guided or
directed by codes of conduct in schools or
workplaces, or by faith leaders, for those
who practise a religion. Ethical guidance
is provided to computing professionals
by external bodies such as the British
Computer Society, which sets the
professional standards of competence,
conduct, and ethical practice for computing
in the United Kingdom.

On the other hand, morals are guided by
our own principles and a sense of permitted
behaviour. Charles Darwin maintained
that “Of all the differences between man

and the lower animals, the moral sense or
conscience is by far the most important.” It
is a generally accepted view that as humans
we all have:

n The ability to anticipate the consequences

of our own actions
n The ability to make value judgements
n The ability to choose between alternative

courses of action

Although we all have the capacity for
moral behaviour, our individual moral code
is not biologically determined, but arises as
a result of human experience. The society
in which we live influences our morals;
for young people, they will be formed by
the views of parents, teachers, and other
people they interact with. Increasingly
for most of us, this will include content
consumed through the internet. The
internet does not respect national borders;
thoughts and ideas can be readily shared
on social media, in chat rooms, and on

T

FEATURE

forums. Such a wide sphere of influence
can and will result in diverse views of
what is right and wrong, even between
members of the same household.

Some moral values are widely held by
most societies, but there can be shades of
grey in even the most widely held beliefs.
‘Thou shalt not kill’ is a tenet of many
religions, and most people, when asked,
will agree that killing another human being
is wrong. However, across the globe, 56
countries retain the death penalty, and
research shows that in these countries,
the majority of the population agrees that
the penalty is an appropriate punishment
for those in society who commit the most
serious crimes.

An interesting dilemma arises when we
have to choose between two alternative
courses of action, where both are morally
reprehensible. An example of such a
dilemma is the much-studied trolley problem.
In this thought experiment, there is a
runaway trolley. Ahead, on the tracks, there

©
pa

tp
itc

ha
ya

/s
to

ck
.ad

ob
e.c

om

http://stock.adobe.com

113The Big Book of Computing Content

are five people tied up and unable to move;
the trolley is heading straight for them. You
are standing, some distance away, next to
a lever. If you pull this lever, the trolley will
switch to a different set of tracks. However,
you notice that there is one person on the
side track. You have two options:

n Do nothing and allow the trolley to kill the
five people on the main track

n Pull the lever, diverting the trolley onto the
side track, where it will kill one person

The dilemma can be made more challenging
by adapting the alternatives to include
children or animals, or by varying age,
gender, intelligence, or socioeconomic
factors. Examples of how the trolley problem
can be used in the classroom were given by
Marc Scott on page 86 of Hello World issue
12 (helloworld.cc/12).

Make the link
The moral conundrum is interesting, but how
does any of this relate to computer science?
The fact is that many of today’s computer
science students will become the software
engineers of the future, and a large number
will be faced with the task of designing
and writing code for artificial intelligence
applications such as self-driving cars.
These programs will have to make complex,
autonomous decisions that are often a
matter of life or death.

The prospect of delegating moral
decision-making to machines can be
fascinating or frightening, depending on
your outlook. The trolley problem can be
abstracted to encompass many moral
dilemmas. Sometimes, unprecedented
situations such as the coronavirus
pandemic will throw up new dilemmas. In
hospitals worldwide, medics were forced
to prioritise their patients. Who gets a
ventilator when there is insufficient supply
for all those who need one? Would it be
better if a machine had the responsibility

for making this impossible choice?
An algorithm may ensure that consistently

reliable decisions are made, but whose
morals will determine the way that
autonomous machines are programmed?
Would you rather a human could override a
machine-made decision, or that rules were
absolute and consistently applied? Machine
learning muddies the debate still further.
Neural networks used for this purpose are
difficult to analyse in order to determine
why a decision was produced, so there is a
serious issue of accountability.

The Massachusetts Institute of Technology
has created a website — moralmachine.net
— that is collecting data to help researchers
by providing a platform for “building a
crowd-sourced picture of human opinion
on how machines should make decisions
when faced with moral dilemmas, and
crowd-sourcing assembly and discussion of

potential scenarios of moral consequence”.
Projects such as this will allow researchers
to gain a better understanding of the choices
that humans make.

In guiding young people through the
moral maze, there are many topics that can
be discussed in the classroom to promote
lively discussion. Facilitating a debate in

which students propose arguments for both
sides will allow a wide range of views to
be shared and discussed. However, there
are issues that need careful consideration;
for example, when discussing autonomous
vehicles, a young person with a friend or
family member who has been involved in a
traffic accident might find this a very hard
topic to engage with.

Life-and-death choices are at the
extreme end of the decision dilemma.
There are many less contentious areas that
could be discussed. In her excellent book,
Hello World: Being Human in the Age of
Algorithms, mathematician Hannah Fry
introduces a range of topics, from medicine
to law, where algorithms are already being
used to automate decision-making. For
example, in some US states, an algorithm
that uses data about a defendant to estimate
their likelihood of committing a future
crime is deployed to recommend whether

DELEGATING MORAL DECISION-MAKING
TO MACHINES CAN BE FASCINATING OR
FRIGHTENING, DEPENDING ON OUTLOOK

“

n Charles Darwin wrote of humans’ sense of morality

n Surveillance and privacy are hotly debated topics in ethics

FEATURE

©
ca

ifa
s/

sto
ck

.ad
ob

e.c
om

©
Go

od
pic

s/
sto

ck
.ad

ob
e.c

om

http://helloworld.cc/12
http://moralmachine.net
http://stock.adobe.com
http://stock.adobe.com

114 The Big Book of Computing Content

someone awaiting trial should be granted
bail. If you search for more information on
this, you will quickly find some fascinating
examples of bias in the data.

Artificial intelligence and automated
decision-making are not the only topics in
which morals play an important role. The use
of big data, and the ability of organisations
and government to analyse personal
information, are also worth discussing.

The power of the state to monitor
behaviour is always contentious. Advances
in facial recognition technology are enabling
some regimes to monitor and track their
citizens, putting in doubt the principle of
informed consent. Since December 2019,
all mobile phone users in China registering
new SIM cards must submit to facial
recognition scans, giving rise to suspicion of
mass state surveillance.

Such an initiative would previously have
been widely vilified by more democratic
societies but, since coronavirus has
swept the globe, many governments
are now deploying tracking apps. In the
UK, the government released an app to
automatically collect details of those we
had been in close contact with, to help
control the spread of the virus. Many will
applaud such initiatives, but defenders of
civil liberties and the right to privacy will
be dismayed by such developments; their
moral code would not condone such a
measure, even for the greater good.

The use of social media and other
online platforms is another area that

can facilitate lively debate. How much
freedom should people have to express
a viewpoint? Where is the line between
what is allowed and what should be
banned? In the 2019 UK General Election,
many female candidates said that they
felt unsafe. In research funded by Joseph
Rowntree Reform Trust, analysis of
139,564 tweets sent on a single day in
November 2019, which either replied to
or otherwise mentioned any of the 2503
election candidates who used Twitter,
found that 23,039 (16.5 percent) of the
total were abusive.

Of greater relevance to teenagers might
be the death of Molly Russell, a 14-year-
old girl who took her own life in 2017. Her
Instagram account contained distressing
material about self-harm and suicide.
Molly’s father claimed the algorithms used
by some online platforms push similar
content towards you, based on what you
had been previously looking at.

However, there are also stories of
social media being used for collective
change. In 2017, actor Alyssa Milano
encouraged people to say ‘me too’ if they
had experienced sexual harassment or

assault, and the #MeToo hashtag quickly
swept the globe and empowered victims to
speak out. Social media also gives a voice
to many who live in less liberal societies. In
Hong Kong, activists have been able to use
social media to communicate and organise
large-scale demonstrations against what
they saw as an attempt by the Chinese
government to undermine the region’s
autonomy and civil liberties.

Plan for morals and ethics
Integrating the study of morals and ethics
into your scheme of work for computer
science will provide the opportunity to
relate real-world issues to more theoretical
topics, and to make them relevant to the
world we live in. Many of the topics
introduced in this article are emotionally
challenging, and teachers may feel
uncomfortable introducing them into the
classroom. However, many of these issues
are relevant and important for older learners
who are nearing adulthood. Teachers have a
unique place in the lives of young people
and an important role in steering and
guiding their moral development.

DIANE DOWLING
Diane is a learning manager at the
Raspberry Pi Foundation, where she works
on the Isaac Computer Science platform.
In her spare time, she is a trustee of a
national charity that runs robotics events
for sixth-formers.

INTEGRATING THE STUDY OF MORALS
AND ETHICS WILL RELATE REAL-WORLD
ISSUES TO MORE THEORETICAL TOPICS

“

n Sometimes, social media can inspire positive change

FEATURE

©
St

an
isl

av
/s

to
ck

.ad
ob

e.c
om

http://stock.adobe.com

115The Big Book of Computing Content

ention ‘hacking’ or ‘hackers’ to
your class and you might spot a

few smiles or exchanged glances. There
might even be confessions of “I managed
to hack so-and-so’s Roblox account once.”
Pupils’ eagerness to identify as hackers
might be somewhat explained by the
romanticisation of hacking in popular
culture. But let’s be absolutely clear: without
express permission, unauthorised access
to any computer system is illegal, and our
pupils need to know this so they don’t find
themselves on the wrong side of the law. In
this article, we’ll unpick a little about what
the law says around hacking and other

M

Jon Chippindall and Alan Merrett discuss what the law says about hacking
and the resources you can use to educate your learners

cybercrimes, and share some resources you
can use to educate your pupils. Although
this article focuses on UK law, its learnings
should still be relevant for all.

“It’s OK, I only teach primary”
You might question whether we need to
be covering the legalities of hacking in
primary schools, as surely these pupils are
too young to be at risk of offending — but
you’d be surprised. The Pathways Into Cyber
Crime report from the UK’s National Crime
Agency (NCA) highlighted that 61 percent of
hackers start hacking before the age of 16,
and many can trace their pathways back to

discussions in game-modding forums at the
top end of primary-school age (helloworld.
cc/ncareport). Looking at the makeup of
many digital literacy curricula, perhaps
we’ve spent too much time on teaching
how to protect against cybercriminals at the
expense of reminding pupils not to become
cybercriminals themselves! What’s more, the
advent of new off-the-shelf hacking tools has
lowered the bar of the technical knowledge
required to undertake cyberattacks, so it’s
more important than ever that we educate
pupils from a young age on what is and isn’t
OK to do with computers.

There is also a real positive opportunity
here to promote cybersecurity career choices
and strike an appropriate balance of stick
and carrot. Pupils need to know what is
illegal, but they also need to know that if they
have an interest in the computer science
behind hacking, there is an ever-growing
world of jobs available to them when they’re
a bit older. Many offenders interviewed by
the NCA and police officers were motivated
not through malicious intent, but by genuine
curiosity, and by the satisfaction to be gained
from solving the complex technical challenge
of the hack. If we can get these pupils on
the right track, they’ll be a huge asset to any
organisation that employs them to defend
their digital interests. So, what does the law
actually say?

THE THIN BLUE
PIXELATED LINE

n �Figure 1 Child-friendly translations of the laws constituting the UK’s Computer Misuse Act 1990

FEATURE

http://helloworld.cc/ncareport
http://helloworld.cc/ncareport

FEATURE

The Big Book of Computing Content116

What the law says
In the UK, the Computer Misuse Act 1990
(helloworld.cc/cma1990) sets out what
constitutes illegal activity with a computer.
There are five elements of the law, which were
translated into child-friendly explanations as
part of Barefoot’s Be Cyber Smart resources;
these are shown in Figure 1. This figure also
shows details of the sentences people can
receive if convicted of each element, including
imprisonment and fines.

To bring the Computer Misuse Act to life,
let’s look at a selection of real prosecutions
to illustrate the elements that make up the
law. The following case information was
taken from a record of convictions available
at helloworld.cc/cmacases. This record
could be explored with older pupils to
deepen their understanding of when and
how the law is broken, but please be aware
that some cases include crimes of a sexual
nature that are inappropriate for students.

Case 1
A 22-year-old student created software
capable of harvesting names and passwords
for various online services. They deployed the
software to gather these credentials so that
they could then access the services for free.
They were imprisoned for six months after
they were found guilty of creating the software
to harvest login credentials (breaking law 5)
and accessing the services without permission
(breaking law 1).

Case 2
A disgruntled Jet2 employee launched a
revenge attack that shut down Jet2’s booking
system and accessed the CEO’s email.
Recovery cost the company £165,000 (about
$188,000). The person was convicted of
accessing Jet2’s files without permission and
subsequently damaging them (breaking laws
1 and 3). They were sentenced to ten months
in prison and their laptop was destroyed.

Case 3
A student hacked into social media and
gaming accounts using a program they had
created, and then sold the personal information
from them (breaking laws 1 and 4). They
were sentenced to four months’ imprisonment,
suspended for one year.

From these three cases alone, we can see
the far-reaching impact of cybercrimes. Here,
the victims include those whose online services
were being used without their permission,
and social media users whose personal
information was sold without their knowledge
— potentially leading to further crimes such
as identity theft. In their interviews, the NCA
learnt that cybercriminals often see their crimes
as victimless. With large-scale hacks, though,
the number of victims can vastly surpass those
affected by traditional crimes, as demonstrated
in these case studies. Most large businesses
now employ cybersecurity teams to prevent
hacks by regularly testing their organisation’s
defences. These penetration testers are
just one example of the careers available
in cybersecurity.

MANY CYBERCRIMINALS INTERVIEWED
WERE MOTIVATED NOT BY MALICE, BUT
BY GENUINE INTEREST AND CURIOSITY

“

FURTHER
RESOURCES

barefootcomputing.org/cyber: all the
activities mentioned in the article
and more can be downloaded here.

cyberchoices@nca.gov.uk or
NCCUprevent@nca.gov.uk: email
addresses for additional cybercrime-
related support in the UK.

©
oz

/s
to

ck
.ad

ob
e.c

om

FEATURE

http://helloworld.cc/cma1990
http://helloworld.cc/cmacases
http://barefootcomputing.org/cyber
mailto:cyberchoices@nca.gov.uk
mailto:NCCUprevent@nca.gov.uk
http://stock.adobe.com

117The Big Book of Computing Content

By introducing pupils to the Computer
Misuse Act 1990 (or your country’s
equivalent) and case studies such as these,
we can lead discussions to educate pupils on
what constitutes the illegal use of computers,
the impact of these crimes, and the sentences
perpetrators can receive. Here is a selection of
questions to lead a discussion with pupils:

n � How was the law broken?
n � What specific part of the law was broken?
n � Who are the victims? How are they affected?
n � What might the punishment be?

Taking this one step further, the free Barefoot
You’re the Jury resources, which can be
downloaded for free at barefootcomputing.
org/cyber after a quick registration, suggest
turning classrooms into courtrooms and
putting pupils in the roles of defendant,

barrister, and jury members. Pupils then hear
a number of cybercrime cases and for each,
consider whether the law has been broken,
who the victims are, and what the punishment
might be. The resources even include
templates to create a barrister’s wig for pupils
and a judge’s wig for the teacher!

From the same set of resources, You’re the
Cyber Security Expert brings us back to the
positive opportunities of the topic, namely
raising awareness of cybersecurity careers. It
does this by giving pupils a taste of life in
this field as they learn what a brute-force
hack is and, importantly, what strategies we
could deploy to guard against it. So, for
those pupils who exchanged a knowing
glance at the mention of hacking, let’s
harness that curiosity and raise their
awareness of the rewarding careers that
pursue this interest legally.

JON CHIPPINDALL &
ALAN MERRETT
Jon (pictured) is the Barefoot director and
the computing lead at Crumpsall Lane
Primary School in Manchester, UK. He also
leads the computing PGCE at The University
of Manchester. Alan is a senior officer in the
Cyber Prevent Team at the UK’s National
Crime Agency. He has 34 years of law
enforcement experience, including overt
and covert roles with HM Customs and a
team leader role at the UK’s Interpol Desk
and Fugitives Unit.

FEATURE

http://barefootcomputing.org/cyber
http://barefootcomputing.org/cyber

The Big Book of Computing Content118

Mac Bowley questions our habit of swiftly replacing devices with newer
versions, with some interesting discussion points for students

echnology is more embedded in
our lives than ever before, and

most of us now carry a computer in our
pocket everywhere we go. On top of that,
the length of time for which we use each
individual piece of technology has rapidly
decreased. This is what’s referred to as
upgrade culture, a cycle that sees many
of us replacing our most trusted devices
every two to three years with the latest
products offered by tech giants such as
Apple and Samsung.

How we got to this point is hard to
determine, and there does not seem to

T be a single root cause of upgrade culture.
This is why I want to start a conversation
about it, so we can challenge our current
perspectives and establish fact-based
attitudes. I think it’s time that we, as
individuals and as a society, examined our
relationship with new technology.

What is the natural lifespan of a device?
Digital technology is still so new that
there is really no benchmark for how long
digital devices should last. This means
that the decision-making power has by
default landed in the hands of device

manufacturers and mobile network carriers,
and for their profit margins, a two- or three-
year life cycle of devices is beneficial.

Where do you, as a consumer, see your
role in this process? Is it wrong to want
to upgrade your phone after two or three
years of constant use? Should phone
companies slow their development, and
would this hinder innovation? And, if you
really need to upgrade, is there a better use
for your old device than living in a drawer?
These questions defy simple answers, but
your students should be aware of their role
in this process as consumers, so this is a
great area for in-class discussion.

How does this affect the environment?
As with all our behaviours as consumers,
the impact that upgrade culture has on
the environment is an important concern.
Environmental issues and climate change
aren’t anything new, but they’re currently at
the forefront of the global conversation, and
with good reason.

There are a number of issues around the
manufacture of our mobile devices, such as
the large amounts of energy required. Here,
though, I would like to focus on another n ��Is it wrong to want to upgrade your phone after two or three years of constant use?

DOES UPGRADE CULTURE
NEED AN UPGRADE?

©
sa

sh
az

er
g/

sto
ck

.ad
ob

e.c
om

FEATURE

http://stock.adobe.com

119The Big Book of Computing Content

aspect of the environmental impact of
device production: the materials that are
used to create some of the tiny components
that form our technological best friends.

Some components of your phone
cannot be created without using rare
chemical elements, such as europium and

dysprosium. (In fact, there are 83 stable
non-radioactive elements in the periodic
table, and 70 of them are used in some
capacity in your phone; see helloworld.
cc/phoneelements). Upgrade culture
means there is high demand for these
materials, and deposits are becoming
more and more depleted. If you’re hoping

there are renewable alternatives, you’ll
be disappointed: a study by researchers
working at Yale University found that there
are currently no alternative materials that are
as effective (helloworld.cc/graedel2013).

Then there’s the issue of how the
materials are mined. The market trading

these materials is highly competitive, and
more often than not, manufacturers buy
from the companies that offer the lowest
prices. To maintain their profit margins,
these companies have to extract as much
material as possible, as cheaply as they
can. As you can imagine, this leads to
mining practices that are less than ethical

or environmentally friendly. As many of
the mines are located in distant areas of
developing countries, these problems may
feel remote to you, but they affect a lot of
people and are a direct result of the market
we are creating by upgrading our devices
so frequently.

Many of us agree that we need to do
what we can to counteract climate change,
and that to achieve anything meaningful,
we have to start looking at the way we
live our lives. This includes questioning
how we use technology. It will be through
discussion and opinion-gathering that we
can start to make more informed decisions
— both as individuals and as a society.

The obsolescence question
You probably also have that one friend/
colleague/family member who swears by
their five-year-old mobile phone and scoffs

n ��A common trope of mobile phone adverts is the overwrought
comparison of your current device with a newly launched version

WE HAVE LET DEVICE MANUFACTURERS
AND NETWORK CARRIERS TELL US HOW
LONG OUR DIGITAL DEVICES SHOULD LAST

“

© Kirill Gorlov/stock.adobe.com
FEATURE

http://helloworld.cc/phoneelements
http://helloworld.cc/phoneelements
http://helloworld.cc/graedel2013
http://stock.adobe.com

The Big Book of Computing Content120

at the prices of the newest models. These
people are often labelled as sticklers who are
afraid to join the modern age, but is there
another way of seeing them? The truth is, if
you’ve bought a phone in the last five years,
then — barring major accidents — it will most
likely still function, and be just as effective as
it was when it came out of the box. So why
are so many consumers upgrading to new
devices every two or three years?

There isn’t a single reason, but I believe
marketing departments should shoulder
much of the responsibility. Using marketing
strategies, device manufacturers and
mobile network carriers purposefully
encourage us to view the phones we
currently own in a negative light. A
common trope of mobile phone adverts
is the overwrought comparison of your
current device with a newly launched
version. Thus, with each passing day

after a new model is released, our opinion
of our device worsens, even if only on a
subconscious level.

This marketing strategy is related
to a business practice called planned
obsolescence, which sees manufacturers
purposefully limiting the durability of their
products in order to sell more units. An
early example of planned obsolescence
is the light bulb, invented by the Edison
company. It was relatively simple for the
company to create a light bulb that would
last 2500 hours, but it took years and
a coalition of manufacturers to make a
version that reliably broke after 1000 hours
(helloworld.cc/lightbulb). We’re all aware
that the light bulb revolutionised many
aspects of life, but it turns out it also had
a big influence on consumer habits and on
what we see as acceptable practices by
technology companies.

n ��The length of time for which we use individual pieces
of technology has declined rapidly

n ��Manufacturers often purposefully limit the durability of
their products in order to sell more units

© R_yosha/stock.adobe.com

© Onidji/stock.adobe.com
FEATURE

http://helloworld.cc/lightbulb
http://stock.adobe.com
http://stock.adobe.com

121The Big Book of Computing Content

The widening digital divide
The final aspect of the impact of upgrade
culture that I want to examine relates to
the digital divide. This term describes the
societal gap between the people with
access to, and competence with, the latest
technology, and the people without these
privileges. To be able to upgrade, say,
your mobile phone to the latest model
every two years, you either need a great
degree of financial freedom, or you need
to tie yourself to a 24-month contract that
may not be easily within your means. As a
society, we revere the latest technology and
hold people with access to it in high regard.
What does this say to people who do not
have this access?

Inadvertently, we are widening the
digital divide by placing more value on new
technology than is warranted. Innovation
is exciting, and commercial success is

celebrated — but do you ever stop and ask
who really benefits from this? Is your new
phone really that much better than the old
one, or could it be that you’re mostly just
basking in the social rewards of having the
newest bit of kit?

What do you think? Time for you to
discuss with your students! Here are some
discussion starters to use with them:

◊ When you are in charge of buying your
own phone, what can you do to make
the device last longer than the usual
two- to three-year upgrade cycle?

◊ Do you think upgrade culture is
something that should be addressed
by mobile phone manufacturers and
providers, or is it caused by our own
consumption habits?

◊ How might we address upgrade culture?
Is it a problem that needs addressing?

Upgrade culture is one of the topics for
which we offer you a discussion forum on
our free online Impact of Technology
course (helloworld.cc/impactoftech). The
course, designed for educators, also
covers how to facilitate classroom
discussions about these topics — sign up
today to take part for free!

MAC BOWLEY
Mac is a learning manager at the Raspberry
Pi Foundation. When he isn’t teaching, you
can usually find him tinkering with his latest
project (@Mac_Bowley).

WE ARE WIDENING THE DIGITAL DIVIDE
BY PLACING MORE VALUE ON NEW
TECHNOLOGY THAN IS WARRANTED

“

WHAT ABOUT RASPBERRY PI TECHNOLOGY?
Obviously, this article wouldn’t be complete if we didn’t share our
perspective as a technology company. So here’s Raspberry Pi Trading CEO
Eben Upton:

ON OUR HARDWARE AND SOFTWARE
“Raspberry Pi tries very hard to avoid obsoleting older products. Obviously
the latest Raspberry Pi 4 (helloworld.cc/pi4) runs much faster than
Raspberry Pi 1 (something like 40 times faster), but a Raspberry Pi OS
(helloworld.cc/rpiOS) image we release today will run on the very earliest
Raspberry Pi prototypes from the summer of 2011. Cutting customers off
from software support after a couple of years is unethical, and bad for
business in the long term: fool me once, shame on you; fool me twice, shame
on me. The best companies respect their customers’ investment in their
platforms, even if that investment happened far in the past.
 “What’s even more unusual about Raspberry Pi is that we aim to keep our
products available for a long period of time. So not only can you run a 2020
software build on a 2014 Raspberry Pi 1B+; you can actually buy a brand-new
1B+ to run it on (helloworld.cc/pi1b).”

ON THE ENVIRONMENTAL IMPACT OF OUR HARDWARE
“We’re constantly working to reduce the environmental footprint of
Raspberry Pi. If you look at the USB connectors on Raspberry Pi 4, you’ll see
a chunky black component. This is the reservoir capacitor, which prevents
the 5V rail from dropping too far when a new USB device is plugged in. By
using a polymer electrolytic capacitor from our friends at Panasonic, we’ve
been able to avoid the use of tantalum.
 “When we launched the official USB-C power supply for Raspberry
Pi 4 (helloworld.cc/piUSBC), one or two people on Twitter asked if we
could eliminate the single-use plastic bag that surrounded the cable and
plug assembly inside the box. Working with our partners at Kuantech, we
found that we could easily do this for the white supplies, but not for the
black ones. Why? Because when the box vibrates in transit, the plug scuffs
against the case; this is visible on the black plastic, but not on the white.
So for now, if you want to eliminate single-use plastics, buy a white supply.
In the meantime, we’ll be working to find a way (probably involving cunning
origami) to eliminate plastic from the black supply.”

FEATURE

http://helloworld.cc/impactoftech
http://helloworld.cc/pi4
http://helloworld.cc/rpiOS
http://helloworld.cc/piUSBC
https://twitter.com/Mac_Bowley
https://www.raspberrypi.com/products/raspberry-pi-1-model-b-plus/

The Big Book of Computing Content122

James Abela shares how his computer science students solved the very real problem of
predicting air pollution and looks at the classroom environment that made this possible

PROTECTING CHILDREN FROM
BREATHING HAZARDOUS AIR

n 2018, Indonesia burned
approximately 529,000 hectares of

land. That’s an area more than three times
the size of Greater London, or almost the
size of Brunei. With so much forest being
burned, the whole region felt the effects of
the pollution. Schools frequently had to ban
outdoor play and PE lessons, and on some
days, schools were closed completely. Many
schools in the region had an on-site CO2
detector to reveal when pollution was bad,
but by the time the message could get out,
children had already been breathing in the
polluted air for several minutes.

My Year 12 students (aged 16–17)
followed the news and weather forecasts
intently, and we all started to see how
the winds from Singapore and Sumatra
were sending pollution to us in Kuala
Lumpur. We also realised that if we had

I measurements from around the city, we
might have some visibility as to when
pollution was likely to affect our school.

Making room for student-led projects
I’ve always encouraged my students to
do their own projects, because it gives
programming tasks meaning and creates
something they can be genuinely proud
of. The other benefit is that it gives them
something to talk about in university essays
and interviews, especially as they often
need to do extensive research to solve the
problems central to their projects.

This project was much more than this:
it was a genuine passion project in every
sense of the word. Three of my students
approached me with the idea of tracking
CO2 to give schools a better idea of when
there was pollution and which way it was
going. They’d had some experience of using
Raspberry Pi computers, and knew that it
was possible to use them to make weather
stations, and that the latest versions had
wireless LAN capability that they could use.
I agreed to support them during allocated
programming time, and to help them reach
out to other schools.

I was able to offer students support with
this project because I flip quite a lot of the
theory in my class. Flipped learning is a
teaching approach in which some direct
instruction, for example reading articles
or watching specific videos, is completed
at home. This enables more of our class
time to be used to answer questions, work

through higher-order tasks, or do group
work, and it creates more supervised
coding time.

I initially started doing this because when
I set coding challenges for homework, I
often had students who confessed they had
spent all night trying to solve it, only for me
to glance at the code and notice a missing
colon or indentation issue. I began flipping
the less difficult theory for students to do
as homework, to create more programming
time in class where we could resolve issues
more quickly. This then evolved into a
system in which students could work much
more at their own pace, and eventually led
to a point at which older students could,
in effect, learn through their own projects,
such as the pollution monitor.

Building the pollution monitor
The students started by looking at existing
weather station projects — for example,
there is an excellent tutorial at helloworld.
cc/weatherstation. Students discovered
that wind data is relatively easy to get over
a large area, but the key component would
be something to measure CO2.

We found a sensor (the CCS811 sensor
module) on a Malaysian site called Lazada.
It was designed to work with an Arduino,
and so we connected our Raspberry Pi
via its USB port to an Arduino, and so to
the CO2 sensor. You could also order a
more accurate sensor directly from the
Arduino store (the MG-811 sensor) or
order a variety of sensors from eBay, such

n ��Arduino sensor used for
detecting pollution

©
Ar

du
ino

.cc

FEATURE

http://helloworld.cc/weatherstation
http://helloworld.cc/weatherstation
http://Arduino.cc

123The Big Book of Computing Content

as the MQ-135 hazardous gas sensor. We
then used the Get started with Arduino
guide (helloworld.cc/getstartedarduino)
to help us connect the two together. The
advantage for us was that the CO2 sensor
module we bought was designed to
interface with the Arduino, so it was easier
to install. It is also possible to connect
Raspberry Pi directly to such a sensor
using a breadboard, an analogue-to-digital
converter (MCP3008 will work), a 1K
resistor, and a 470 ohm resistor (see the
circuit design image above).

We were very pleased to see that
data started to come through showing
us the CO2 levels. Our plan was to run
the Raspberry Pis headless and export
this data to Google Sheets. We found
an excellent way to do this in Python
using the Google Sheets API (helloworld.
cc/sheetsapi). This meant that our
spreadsheet was automatically loaded with
real data, and from there we could make
a visualisation to show the CO2 data as it
was being generated. We also contacted
other schools around Kuala Lumpur to
see if they would be interested in putting
a device on their roof, and most were
interested in the idea.

Beaten to the punch
We were not the only ones with such an
idea, and a company called IQAir began
selling the AirVisual Pro around this time,
which did almost exactly what we hoped
to do, and did it incredibly well. Schools
were already very receptive to the idea
and quickly invested in the technology. It
is still very impressive to think that three
Year 12 students came up with an idea that
solved the very real concern of pollution
visibility and were only fractionally behind a
commercial solution.

This project really helped these students
to decide whether they enjoyed the
hardware side of computing, and solving
real-world issues encouraged them to see
computing as a practical subject. This is a
message that has resonated with other
students, and we’ve since doubled the
number of students taking A-level computer
science. Since doing this project, I’ve
encouraged students to take on the
Extended Project Qualification (helloworld.
cc/extendedproject). This will give them
time to explore concepts fully and allow
them to put their programming to good use,
tackling problems that interest them and
that the world needs solving.

IT WAS A GENUINE
PASSION PROJECT
IN EVERY SENSE

“

JAMES ABELA
James is the head of computing at Garden
International School in Kuala Lumpur,
Malaysia. He is an RPi Certified Educator,
founder of the South East Asian Computer
Science Teachers Association, and author of
The Gamified Classroom (@eslweb).

n ��Circuit design of the CO2 sensor using just Raspberry Pi; designed on circuito.io

FEATURE

http://helloworld.cc/getstartedarduino
http://helloworld.cc/sheetsapi
http://helloworld.cc/sheetsapi
http://helloworld.cc/extendedproject
http://helloworld.cc/extendedproject
http://circuito.io
https://twitter.com/eslweb

DESIGN AND
DEVELOPMENT
126 	 DESIGN AND DEVELOPMENT,

IN SUMMARY
130 	 TEAM DIVERSITY AS A PREDICTOR OF

INNOVATION
131 	 �ONE DESIGN, THREE WAYS
134 	 AGILE METHODOLOGIES IN THE

CLASSROOM
136 	 �TESTING: THE FEAR LOVE OF

FAILURE

The Big Book of Computing Content 125

henever learners develop a digital artefact, whether

it be a program, video, database, or something

else, they will typically engage in some design and

development activities. These activities incorporate analysis,

planning, implementation, testing, and evaluation. Throughout

their journey in computing, learners should apply and hone

these skills using relevant tools and techniques. Most learners

will have some previous experience of design processes from

other subjects, but they may not necessarily associate them

with computing.

In the early stages of their learning, there is a focus on

learners planning and communicating their ideas and

discovering the value in planning before they put those

ideas into practice. They will also learn to express the key

requirements of a task and to provide feedback on their own or

others’ solutions. As they progress, they will encounter more

formalised approaches to designing, testing, and evaluating

their products. Increasingly, the responsibility for analysis,

user research, and establishing success criteria for a particular

project will shift to the learners themselves, until

they are able to independently design and

develop significantly complex digital artefacts

that meet the needs of their audience.

W IN THIS SECTION,
YOU WILL FIND:

	■ Learning outcomes: 	
design and development, in summary

	■ What the research says:
the importance of team diversity

	■ Design in the primary classroom

	■ Agile methodologies

	■ Testing and a culture of positive failure

The Big Book of Computing Content126

IN SUMMARY

DESIGN AND
DEVELOPMENT

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Outline the broad requirements of a task

	■ Experiment with different tools and
approaches to understand what is possible
before building a solution

	■ Use planning templates to sketch and describe
solutions before building them

	■ Follow a plan to create a solution

	■ Choose appropriate media from a limited selection

	■ Gather and provide feedback on
finished artefacts

	■ Check that a solution meets the task requirements

	■ Explain the key requirements a digital artefact has
to fulfil to meet the needs of its audience

	■ Explain the limits of what is possible with
available tools, time, and understanding

	■ Describe the benefits of planning before creating
a project

	■ Create structured plans for solutions
using templates (flowcharts,
storyboards, diagrams)

	■ Create a first draft or prototype of a solution,
including key features

	■ Iterate and improve a solution
incorporating suitable media

	■ Test and gather feedback on a solution throughout
its development

	■ Evaluate the success of a solution for
the task

	■ Summarise the requirements, purpose, and
audience of a task

	■ Analyse existing solutions to identify what
is possible and what ‘good’ looks like

	■ Identify appropriate planning techniques for a
given project

	■ Develop and communicate plans for
projects using formal structured formats

	■ Build limited prototypes that prioritise the
required features of a solution

	■ Choose design assets to suit the purpose
and audience of a task

	■ Test finished artefacts alongside alternative
solutions as part of evaluation

	■ Compare an artefact with the task and
user requirements

	■ Seek feedback from a broad range of individuals
to improve a digital artefact

	■ Develop success criteria based on a project brief
and user research

	■ Research around a problem to determine
the size, feasibility, and scope of a
planned solution

	■ Decompose a problem into manageable chunks
and produce project plans

	■ Build a project, recording versions and
documenting decisions

	■ Develop and collaborate on a project following a
modular or staged approach

	■ Distinguish between different types of
testing and their purposes

	■ Select and apply a range of suitable tests to a
digital artefact

	■ Evaluate a project using previously defined
success criteria

	■ Gather feedback on the accessibility of a digital
product in order to improve the user experience
for all

	■ Describe different approaches and
methodologies to software development,
such as prototyping and the agile approach

	■ Identify a problem and produce a clear brief that
includes measurable objectives

	■ Research a problem, making
recommendations as to its feasibility,
benefits, and risks

	■ Produce comprehensive plans, detailing all aspects
of a project

	■ Generate and apply test plans to digital and
physical artefacts

	■ Explain the features that make a digital
artefact maintainable and extendable

	■ Explain what is meant by the functionality,
effectiveness, usability, and reliability of a
digital artefact

	■ Evaluate a project against its project brief
and objectives

	■ Use collaboration tools to design and develop a
digital artefact as part of a team

IN SUMMARY

Understand the steps involved in
analysing, planning, creating, and
evaluating computing artefacts

The Big Book of Computing Content 127

IN SUMMARY

In the table below, you will find learning outcomes associated

with the ‘Design and development’ strand of the Raspberry Pi

Foundation’s computing taxonomy. These learning outcomes are

illustrative of the kinds of knowledge and understanding that learners

could develop in this area of computing. They are not prescriptive,

but instead aim to illustrate the wide applications of the discipline.

These learning outcomes were originally developed to complement

the English national curriculum for computing, and as such, stage 1

roughly corresponds to ages 5–7, stage 2 to ages 7–11, stage 3 to

ages 11–14, stage 4 to ages 14–16, and stage 5 to ages 16–19.

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Outline the broad requirements of a task

	■ Experiment with different tools and
approaches to understand what is possible
before building a solution

	■ Use planning templates to sketch and describe
solutions before building them

	■ Follow a plan to create a solution

	■ Choose appropriate media from a limited selection

	■ Gather and provide feedback on
finished artefacts

	■ Check that a solution meets the task requirements

	■ Explain the key requirements a digital artefact has
to fulfil to meet the needs of its audience

	■ Explain the limits of what is possible with
available tools, time, and understanding

	■ Describe the benefits of planning before creating
a project

	■ Create structured plans for solutions
using templates (flowcharts,
storyboards, diagrams)

	■ Create a first draft or prototype of a solution,
including key features

	■ Iterate and improve a solution
incorporating suitable media

	■ Test and gather feedback on a solution throughout
its development

	■ Evaluate the success of a solution for
the task

	■ Summarise the requirements, purpose, and
audience of a task

	■ Analyse existing solutions to identify what
is possible and what ‘good’ looks like

	■ Identify appropriate planning techniques for a
given project

	■ Develop and communicate plans for
projects using formal structured formats

	■ Build limited prototypes that prioritise the
required features of a solution

	■ Choose design assets to suit the purpose
and audience of a task

	■ Test finished artefacts alongside alternative
solutions as part of evaluation

	■ Compare an artefact with the task and
user requirements

	■ Seek feedback from a broad range of individuals
to improve a digital artefact

	■ Develop success criteria based on a project brief
and user research

	■ Research around a problem to determine
the size, feasibility, and scope of a
planned solution

	■ Decompose a problem into manageable chunks
and produce project plans

	■ Build a project, recording versions and
documenting decisions

	■ Develop and collaborate on a project following a
modular or staged approach

	■ Distinguish between different types of
testing and their purposes

	■ Select and apply a range of suitable tests to a
digital artefact

	■ Evaluate a project using previously defined
success criteria

	■ Gather feedback on the accessibility of a digital
product in order to improve the user experience
for all

	■ Describe different approaches and
methodologies to software development,
such as prototyping and the agile approach

	■ Identify a problem and produce a clear brief that
includes measurable objectives

	■ Research a problem, making
recommendations as to its feasibility,
benefits, and risks

	■ Produce comprehensive plans, detailing all aspects
of a project

	■ Generate and apply test plans to digital and
physical artefacts

	■ Explain the features that make a digital
artefact maintainable and extendable

	■ Explain what is meant by the functionality,
effectiveness, usability, and reliability of a
digital artefact

	■ Evaluate a project against its project brief
and objectives

	■ Use collaboration tools to design and develop a
digital artefact as part of a team

The Big Book of Computing Content128

SUBSCRIBE
TODAY

• Teaching resources and
ideas used by over 90
percent of our readers

�• Exclusive news,
research findings,
and in-depth features

• Delivered to your
door four times a year

Why
subscribe?

FREE
IN PRINT
for UK-ba

sed

educator
s

https://helloworld.raspberrypi.org/subscribe

The Big Book of Computing Content 129

helloworld.cc/subscribe
TO SUBSCRIBE VISIT:

Not a UK-based educator?
• Buy a print copy from helloworld.cc/store

— we ship to over 50 countries

�• Subscribe to receive the free PDF on the
day it is released

• Read features and news at helloworld.cc

FREEPDF
for anyone, anywhere

https://helloworld.raspberrypi.org/subscribe
http://helloworld.cc/store
http://helloworld.cc
https://helloworld.raspberrypi.org/subscribe
https://helloworld.raspberrypi.org/subscribe

130 The Big Book of Computing Content

both in face-to-face university settings
and in online classrooms, for the course
‘Nanotechnology and nanosensors’. The
diversity of a team was rated according
to four variables: gender, native language,
academic discipline, and academic level.
Not surprisingly, the group of online
learners was more diverse than the group
of university students, with followers from
over 150 countries. The group of university
students, although less diverse in native
language than the online group, showed
slightly more diversity in gender.

To understand how diversity relates to
project innovation, both groups of learners
were split up into teams of four and were
asked to develop a new product. In the
creative stage, students had to create
new ideas, and in the application stage,
the implementation was carried out. The
innovation of students’ team projects was
assessed on product necessity, STEM
interdisciplinarity, market readiness, and
innovation type.

eam diversity is one of the
core advantages of learning in

groups, and new research has shown
its benefits for project innovation. The
study, conducted at the Israel Institute
of Technology, found that the inclusion
in classroom settings of people from
various academic disciplines and levels
helps students create innovative and
implementable solutions. Individual
differences, researchers found, invite
students to approach situations in
various ways, and stimulate new ideas
and fresh perspectives.

Over the past few decades, student
populations have become increasingly
mixed on biodemographic variables such
as gender, age, and ethnicity. Although
barriers to participation in education still
persist, classrooms are increasingly mixed,
especially in online settings.

For this study (helloworld.cc/usher2019),
Usher and Barak were interested in how
diversity relates to project innovation,

TEAM DIVERSITY AS A PREDICTOR OF INNOVATION

T

STORY BY Thom Kunkeler

The results of the study indicate that
diverse teams were rated more highly on
project innovation, both for online and face-
to-face learners. This evidence supports
the idea that working in collaboration with
people from diverse backgrounds enhances
creative ideas and innovative solutions. In
particular, the study found that a mixture of
academic discipline and academic level — the
task-related diversity — was key to project
innovation. For teachers, this type of research
should be taken as an incentive to experiment
with classroom diversity for group projects.
So, how diverse is your classroom?

RESEARCH

FURTHER READING
 �Usher, M., & Barak, M. (2019). Team
diversity as a predictor of innovation
in team projects of face-to-face
and online learners. Computers
& Education, 144. helloworld.cc/
usher2019

©
Sv

itl
an

a/
st

oc
k.a

do
be

.co
m

n Working in collaboration with people from diverse backgrounds enhances creativity

http://helloworld.cc/usher2019
http://helloworld.cc/usher2019
http://helloworld.cc/usher2019
http://stock.adobe.com

131

Matthew Wimpenny-Smith explores the importance of implementing design in
programming lessons through a project with his upper-primary learners

ONE DESIGN, THREE WAYS
esign is very important, but can
often be overlooked in computing

projects, as we tend to be too quick to
jump straight into the coding or making
stage. Without good design and an
understanding of how to implement it,
though, we don’t get good products or
services — or code, for that matter! So
why do we encourage children to be
creators rather than consumers, without
any consideration given to design?

Back in April 2018, I (Matthew)
attended a fantastic three-day course
run by Jane Waite called Diving Deep
into Primary Programming, where there
was much discussion and debate about
how to implement design in computing
lessons. For the 2019 academic year, I
then set myself the goal of getting my
pupils to really think about design and
how to implement it.

Of course, spending time thinking
about design required a shift in both my
own mindset and that of the learners.
This included helping them not to be
tempted to just jump in and start coding,
but to think critically and apply their
computational thinking skills. They also
needed to learn their own limitations, such
as what is possible within the software
and hardware they’re using, how long they
have to complete a project, and what skills
they need to meet their design ideas — in
other words, what is doable.

I’m very fortunate to teach computing
across all year groups in my school. In
the preceding six years we had done
some design, but usually not with a clear
purpose of what I was expecting, or how
we would use the designs within the
coding process. I therefore wanted to

Christmas message project
It was a sunny October day in London
and, as I was having lunch with Jane,
the conversation turned to what I was
planning to teach my Year 6 pupils (aged
ten to eleven) after half term. I said, “I am
thinking about starting to transition them

D

formalise this, as I’d noticed that spending
time on design helps with the process of
decomposition and the abstraction skills of
computational thinking. Alongside this, we
need to help pupils to evaluate software
and hardware, and decide what might be
the best way to implement a design.

n Figure 1 The results of the pre-assessment show levels of pupil confidence across the three systems

All
 im

ag
es

 co
urt

es
y o

f M
att

he
w

Wi
mp

en
ny

-Sm
ith

FEATURE

The Big Book of Computing Content

132

from blocks to text coding.” Jane asked,
“Are they ready to move on?” and warned
me not to do it too soon, emphasising the
need for a firm foundation of block-based
programming. I was intrigued to find out
whether they were ready, so over that lunch
meeting, we thrashed out the idea for a
design implementation project that would
give me more information on what they
currently knew and could do.

The project asked a simple question:
could the pupils create a design and
independently implement it in a variety
of software that I felt they were proficient
in, including block-based code, and could
I then move them on to a text-based
language using the same design?

Christmas was approaching, so we
settled on the idea of creating a Christmas
message for other pupils in the school, with
the added language twist of it being in
different spoken languages, such as French,
Japanese, and so on.

I chose Google Slides, Scratch, and a
micro:bit for the implementation, then
started with a pre-assessment to find
out levels of pupil confidence within the
three implementations. The results of this
assessment showed without a doubt that
they felt most confident using Google
Slides, followed by Scratch, and then the
micro:bit, as highlighted by the bar graphs
in Figure 1.

The results of this are perhaps
predictable, mainly because of pupils
having lots of exposure to Google Slides
across all their lessons, and limited
exposure to Scratch, mainly via my
computing lessons (one hour per week,
plus one hour of Code Club for those who
were keen). And only those who attended
my Code Club or had enthusiastic parents
or siblings in the senior school had any
exposure to the micro:bit before this project.
I did, however, briefly demonstrate the
micro:bit just before the pre-assessment.

Design stage
After the pre-assessment, the pupils
worked on their paper designs, followed by
a self-assessment for confidence using red,
amber, green (RAG). I set them a challenge
to implement their design as closely
as possible within the three different
systems (Google Slides, Scratch, and

micro:bit). Between each implementation, I
photocopied their designs and asked them
to reassess them for confidence, and also
to make notes on how they would need to
change their designs to fit the limitations
of the software. This helped to highlight
their initially ambitious ideas and hone
their critical thinking around what was
actually possible, given their knowledge
and understanding plus the curriculum
time constraints.

Implementation stage
The pupils found they could implement
their designs with little change in both
Slides and Scratch, drawing on their
existing knowledge (you can watch a
video of the implementation in Scratch at
helloworld.cc/scratchimplementation).
However, I realised after pre-teaching
how to use the micro:bit that this was a
different approach, moving away from
a block-based language to a text-based

 n The pupil design being implemented in Google Slides

n The pupil design being reviewed based on the implementation

FEATURE

The Big Book of Computing Content

http://helloworld.cc/scratchimplementation

133

this, to show them how to implement ideas
and know what is doable. It seems that
the current way I teach Scratch isn’t quite
hitting the mark, and I need to do more
research in my class to explore this.

This was emphasised by the results of
another question, this time asking them if
they felt ready to move on from Scratch
(Figure 3). The results show that over 50
percent were either not sure or not ready.
This classroom research has highlighted
the need for me to ask my pupils about
their learning more often, and not to move
them on until they’re ready. I also need to
do more to develop my pedagogy of
teaching computing — but that’s for
another article!

n Figure 2 Summary of the post-assessment survey results

interface, and that their designs would
need to be modified. I purposefully kept
them constrained to just being able to
display and scroll through text and images
on the micro:bit LED matrix, and I would
use the text-based Mu editor. The next
three lessons were a busy time for the
class as they adapted their designs and
taught themselves how to scroll and
display images on the micro:bit. They also
discovered that there were limitations,
such as not being able to display certain
languages, for example those with Cyrillic-
based alphabets.

Post-assessment
The post-assessment survey highlighted
some interesting results (Figure 2).
Predictably, the pupils’ confidence
with using Google Slides was high, but
interestingly, there was a shift in how they

felt about Scratch. It must be noted that
for this project, I intentionally gave limited
support with both Slides and Scratch.

The results and comments from the
post-assessment suggested that pupils
found following a design constraint
in Scratch harder than they initially
thought. This led me to realise that they
overestimated their abilities with Scratch.
One pupil who found it challenging even
asked, “Please can I just do the whole
project in Slides?”

Perhaps pupils may have been
overconfident with Scratch, as in the past,
they’ve tended not to stick to an initial
idea once they got started, and just done
what was easy as they wrote the code;
or perhaps they are used to copying code
without truly understanding it. Scratch is
complex, and learning how to implement a
design isn’t easy. I need to work more on

n Figure 3 Pie chart showing how many of the pupils
 felt they were ready to move on from Scratch

FEATURE

The Big Book of Computing Content

MATTHEW
WIMPENNY-SMITH
Matthew is leader of digital strategy and a
computing subject leader. He has worked
for Headington School Oxford, UK, for the
last seven years in the Prep School, teaching
EYFS, Key Stage 1, and Key Stage 2. He is
a CAS Master Teacher and the Oxfordshire
Primary Community Leader. He is also a
BCS Certified computer science teacher,
Raspberry Pi Certified Educator, Google L1,
and NCCE facilitator (@MWimpennyS).

JANE WAITE
Jane is a research scientist at the Raspberry
Pi Foundation. Her interests include using
design in primary programming, semantic
waves, PRIMM, and migrating to online
teaching using ABC (@janewaite).

https://twitter.com/MWimpennyS
https://twitter.com/janewaite

134

Introducing agile practices into the classroom has lots of benefits beyond giving
students a taste of what working as a software developer entails

AGILE METHODOLOGIES
IN THE CLASSROOM

eing agile means moving and
responding quickly, and it’s also

an adjective that is applied to a range
of methodologies developed to improve
the software development process and
life cycle. It means being able to respond
to shifting requirements, industry
changes, and unforeseen problems. It
usually involves cross-disciplinary teams
of developers collaborating, planning,
and reviewing software together and
one of its key tenets is to work in short
iterations, building the minimal product
you need and then refactoring and
improving it later.

It stands in contrast to the more
traditional ‘waterfall’ approach, in which
a product flows down through several
fixed stages, from initially deciding the

requirements, through design, building,
testing, and then finally delivery. Years
might have passed between the first and
final stages. Years is a long time in the tech
world, and by that time, the requirements
might well have changed. But too late
— the product has already been signed,
sealed, and delivered.

Why in the classroom?
I teach software development to adults,
preparing them for work in the industry.
Exposing them to common industry practices
and structuring their classroom like a
development shop is important in preparing
them for work. However, the techniques
and ideas that I’m going to talk about can be
applied to all areas of life, and provide tools
for tackling any project or problem.

n �Free tools such as trello.com can be used
as kanban boards to organise workflow

There is a whole range of methodologies
and frameworks that can be used to help
you work in a more agile way. I won’t go into
all of them — just a few favourites that we
employ in the classroom every day.

Pair programming
This is the most important agile methodology
we use. During a project (which we call a
‘sprint’ and lasts two days), we pair students
for about half the time. We initially give
students a quarter of the allotted coding time
to explore aspects of the problem alone, and
then we randomly pair them up to continue
working. When they pair, they have to start
again, integrating ideas from both of their
initial explorations. At the end, they split
again and independently finish up the project
in whatever way they prefer.

B

The Big Book of Computing Content

FEATUREOPINIONFEATURE

http://trello.com

135

How to pair
While pairing, students work together on
one of their computers and follow a strict
driving–navigating model, as explained
in the boxout. With this set-up, students
have no choice but to try to explain and
communicate their ideas. This can be
challenging at first, but continual practice
at explaining technical concepts and ideas
helps students embed what they’re learning
and discover the areas they don’t fully
understand.

Every 30 minutes, we ask students to
swap roles. This might involve using a
version-control system to push their work
to a service such as GitHub and then pull it
down on the other student’s computer, or it
could just mean swapping who is using the
same computer.

Scrum
Scrum is a framework for managing roles
and workflow in an agile way. A few
things we’ve borrowed from Scrum are
the concepts of stand-up meetings and
retrospectives. If students are working on a
project in a small group over several days,
we help them organise stand-up meetings
at the beginning of the class, where they

stand in a circle and each student has a
few minutes to explain what they’ve been
working on, what they found challenging
and whether they’ve overcome it, and what
they want to achieve today. We use this in
combination with kanban (explained below).
We think it’s important for every student to
hear what other students struggled with, as
everyone will be struggling with something.

We also encourage group retrospectives,
where upon finishing a sprint, the group will
discuss what went well, what didn’t go well,

and what could have been done differently.
Sometimes, students will keep ongoing blogs
or logs of their work on a project and use this
to refer back to during retrospectives.

Kanban
The principle of kanban methodology is to
be able to visualise the work and tasks to
be completed. Kanban means ‘billboard’ in
Japanese and that’s usually what you use —
some kind of billboard divided into columns.
Tasks can be moved from column to column
as they progress through the development
workflow. Sometimes, the board is drawn
up on a whiteboard, but free software such
as Trello (trello.com) can also be used. You
can tag individuals on cards, add additional

PRACTICE AT EXPLAINING TECHNICAL
CONCEPTS AND IDEAS HELPS STUDENTS
EMBED WHAT THEY’RE LEARNING

“

The driver:
n � �	Is the one using the computer
n � �	Listens to the navigator
n � �	�Implements the ideas of the navigator
n � �	Can question the navigator

The navigator:
n � �	Directs the driver
n � �	Explains their ideas
n � �	Doesn’t touch the computer
n � �	Can use pen and paper to help explain

 their thinking

DRIVING AND
NAVIGATING

information, and upload attachments.
GitHub has a similar board system called

Projects. GitHub Projects are great because
you can integrate your cards with GitHub
Issues and link to parts of your code.

Many students on our course end up
using kanban to organise everything, from
studying, to job hunting, to general life!

‘Just make it work’
Another concept we spend a lot of time
talking about is the minimum viable product
(MVP). Building an MVP means building
the most bare-bones version of the product
that will work. We discourage students from
trying to create the most amazing, all-bells-
and-whistles product on the first attempt,
because who knows how the specification
might end up changing later and how much
time we will have wasted.

Beyond practical implication, stressing the
importance of ‘just make it work’ encourages
small wins, which boost confidence.
Students can improve, refactor, and rethink
their initial attempt, but at least they’ve got
something to show for their work so far.
Creating something that ‘just works’ also
gives us a starting point to talk about how
we can make the code cleaner and more
modular, or to consider edge cases.

n ��Students driving and
navigating on a project

HARRIET RYDER
Harriet teaches software development to
adults in one of the UK’s leading boot camps.

The Big Book of Computing Content

FEATURE

http://www.trello.com

136

Pete Bell offers tips for inculcating a culture of testing
(and failing!) in the computing classroom

TESTING: THE FEAR
LOVE OF FAILURE

ne of my fondest memories of
teaching is when a group of ten-

year-old students visited my secondary
school for a computing experience day.
The first question I asked students was,
“What does FAIL stand for?” After I’d
given them the answer (First Attempt
In Learning), I spent a few minutes
telling them that the second time they
fail, it changes its meaning to “Further
Attempts in Learning” and that, each time
they fail, it just means they are learning
how to improve. Throughout the day, I
rewarded students who told me they’d
got something wrong. At the end of their
experience day, I walked them to the
minibus, and the head teacher came over
and asked them what they’d been doing.
One young lad shouted passionately
“We’ve been learning to FAIL!” I’ll admit to
being a bit nervous about what the head’s
reaction might be, but he just grinned and
said “Brilliant!”

In our culture, we reward people for doing
things right and punish them for getting
them wrong. Wrong is bad; right is good. Do
you recognise this in your students? ‘I tested
my product thoroughly and found there was
nothing I could improve.’ This might not be a
result of laziness or a lack of understanding;
it could just be a student wanting to show
that they got it all right, because ‘right’ is
‘good’, so that means they did ‘good’ —
right? So, because testing is (mostly) the
process of identifying things that are wrong,
the challenge is: how do you help students
unlearn that wrong is bad?

Normalising testing
It’s important to instil a love of failure and
improvement in your classroom, and we
can do this by normalising testing. Here are
a few tips:

Don’t test only code: it seems simple to
build testing into upper-primary or lower-
secondary programming sessions. However,
when programming is still so new as a
concept, it is tough for students to think
about what might be wrong with their work:
they don’t know what they don’t know.

Instead, you could initially plan a lesson
on testing something that’s more familiar to
students, like some pre-prepared directions
to the school library for an open day, or for
someone with a visual impairment. If you
add in a few mistakes along the way, it will
give students a chance to find errors and
correct them. You could also test a piece of
writing, a drawing, a piece of music, or a
mathematical equation.

Model how to fail well: in my first interview
for an ICT teacher role, I couldn’t turn the
projector on. Embarrassing? Yes! However,
in my feedback, I was told that part of the
reason I was appointed was the way in
which I told the students that I’d made an
error and then calmly talked them through
my process of checking (testing) each
potential cause as I went about solving
the problem.

In a programming lesson, modelling
failure could take the form of a live-coding
demonstration. Almost every time I have
shown students a programming concept
during one of these demonstrations, the
thing doesn’t work as I thought it should …
and that’s more than OK!

INSTILLING A LOVE OF FAILURE AND
IMPROVEMENT IS IMPORTANT, AND WE
CAN DO THIS BY NORMALISING TESTING

“

Make it explicit early: build debugging into
lessons all the way from primary and lower
secondary, so that it becomes a standard
part of the programming process.

Build a culture of support and
improvement: programming lessons should
build confidence. One method you can use
is pair programming, which has been shown
to improve social and communication skills
(see the article on page 58 of The Big Book
of Computing Pedagogy for more on this).
However, allow a little longer for students to
find a solution through collaboration.

Model it and scaffold it: provide students
with a test plan for a short piece of code and
demonstrate how to use it. Have a look at the
test plans section of Isaac Computer Science
for examples (helloworld.cc/testplans).

The testing process
Coursework projects and non-examined
assessments have historically been
structured to reflect the waterfall
development methodology, where
testing is a process that’s carried out
after development. More recently, mark

schemes for these types of project have
been updated to reflect more modern
agile methodologies, in which students
are expected to apply agile development
principles, with testing assessed throughout
the process (see the previous article for
more on agile methodologies).

O

The Big Book of Computing Content

FEATUREOPINIONFEATURE

http://helloworld.cc/testplans

137

So how can students best show their
understanding of testing for formal
assessment? Let’s walk through it by using
an advanced-level project (for students
aged 16+) as an example, where students
submit a coding solution to an identified
problem, along with a report explaining their
testing process:

n � In their project report, students should
demonstrate how they have put theory
into practice. From the start, students
should be able to explain their approach
to testing — justifying an agile approach,
for example.

n � Having analysed and decomposed the
problem, students could then identify a
range of (not necessarily all) data that could
be used in acceptance testing to show that
the system works as intended, including
validation tests to check the robustness
of some of the planned subprograms.
Students can show how they have
embedded testing holistically by testing
a few of their designs with end users and
updating those designs based on feedback.

n � Students should be selective when
choosing subprograms to test, focusing
on those that can provide opportunities
to best demonstrate good testing
practice. Examples are login systems,
timers, scoring systems, storage and

network requirements, or specific uses
of a particular data structure. Some
subprograms or classes will be very similar,
so it’s best to test more than one of the
same type only if it allows a student to
show a new testing concept.

n � In addition to the more obvious
opportunities to carry out iterative
unit tests, it is important to document
integration testing to check how a few
modules work together, preferably ones
with interesting edge cases. You can
read more about types of testing on
Isaac Computer Science at helloworld.cc/
testingtypes.

n � When a solution has been through this
alpha phase, end users can then carry out
some usability testing — approaching this
as a beta-test opportunity that is again
cross-referenced to the success criteria
identified at the analysis stage.

An advanced-level student wants to see
where they went wrong and how they
fixed it. Although it’s not always part of
the assessment criteria, it is important
for students to reflect on their journey as
learners, including how they have developed
wider twenty-first-century skills, such
as critical thinking as they planned and
executed their tests; creativity as they
developed their solution; collaboration as

they supported their peers during code
reviews; and communication as they
articulated their coding journey in a report.
Above all, they should have built resilience as
they planned and iterated their development
as a result of testing feedback.

In the end, isn’t education all about learning
that failure is OK? With that in mind, there
was no need for me to be so nervous about
my head teacher’s reaction to my group’s
exclamation that they’d been failing with me
all day. It’s his job to see where improvements
can be found; he was just testing.

The Big Book of Computing Content

FEATURE

PETE BELL
Pete is a learning manager at the
Raspberry Pi Foundation. He was
previously a computing teacher for 23
years and the head of his school’s STEM
faculty. Pete is also an experienced
assessment designer (@petejbell).

n �The waterfall methodology compared to the more modern agile methodology

 ©
 An

ch
/s

toc
k.a

do
be

.co
m

http://helloworld.cc/testingtypes
http://helloworld.cc/testingtypes
http://stock.adobe.com
https://twitter.com/petejbell

SAFETY AND
SECURITY
140 	 SAFETY AND SECURITY, IN SUMMARY
142 	� ONLINE SAFETY: WHAT DO

LEARNERS KNOW?
145 	 LESSONS FROM THE

CYBERSECURITY INDUSTRY
146 	 �WHY DISCRETE ONLINE SAFETY

TEACHING IS NOT ENOUGH
148 	 SAFEGUARDING IN ONLINE LESSONS
150 	� ACTIVITIES AND TOOLS TO

BRING CYBERSECURITY TO LIFE
152 	 KNOW THY ENEMY
153 	� KEEP CURIOUS AND CARRY

ON HACKING

The Big Book of Computing Content 139

ike most tools, computing systems promise many

advantages, benefits, and opportunities — but they

are not without their risks. A vital part of computing

education is for learners to develop their understanding of

these risks and the steps they can take to mitigate them. This

topic area has a few different dimensions to it that are more or

less relevant at each learning stage.

Early on, we need to support learners in becoming safe

users of digital technology, so that they can realise the

benefits of such technologies without putting themselves

at risk. While online personal safety should be present in

every school subject area, computing classes provide a space

for learners to understand the limits of computing and how

technology can be exploited.

Personal safety lessons continue to thread through all

learning stages, with the focus shifting to the risks and threats

relevant to learners’ ages and the technologies they

use. However, as learners progress, they should

also begin to consider safety and security from

an organisational and societal standpoint, as

well as delving into the technical innovations

that help keep systems secure.

L IN THIS SECTION,
YOU WILL FIND:

	■ Learning outcomes: 		
safety and security, in summary

	■ What the research says:
media use and attitudes

	■ Online safety teaching

	■ Safeguarding in online lessons

	■ Cybersecurity activities and tools

	■ Thinking like a hacker

The Big Book of Computing Content140

IN SUMMARY

SAFETY AND
SECURITY

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Explain how to use computing equipment safely

	■ Use information technology safely and
with respect

	■ Demonstrate safe behaviour when working online

	■ Give examples of personal information
and know who it should and should not be
shared with

	■ Outline how individuals should report concerns
about content or contact from the internet

	■ Demonstrate safe and responsible behaviour when
using a range of information technology

	■ Demonstrate how to keep passwords and
other credentials safe and secure

	■ Describe when individuals might be asked for
personal data online

	■ Explain the security risks of linking to or
sharing content owned by others

	■ Explain how misleading information or media can
pose a security risk

	■ Explain the attributes and practices that make a
password secure

	■ Explain how online activity leaves a lasting
digital footprint

	■ Explain common techniques used to exploit
individuals and steal personal data

	■ Describe how users can control where and
with whom their personal data is shared

	■ Describe common threats to computing systems
and ways to protect against them

	■ Understand the risks and related
precautions associated with online services

	■ Explain the purpose of encryption along with
examples of its use

	■ Identify where and how to report
inappropriate content, contact, or conduct

	■ Explain how safety and security principles apply in
emerging contexts or technologies

	■ Describe examples of some vulnerabilities
of computing systems, networks,
and software

	■ Recommend security measures and practices for
different scenarios

	■ Explain the need to balance security with
other considerations including usability,
cost, and ethics

	■ Describe a range of malware and the threats that
it can pose

	■ Explain the rights and responsibilities that
individuals and organisations have with
regard to personal data

	■ Outline the role of encryption in protecting data
and its importance in data security

	■ Describe authentication techniques used
to improve security, such as biometrics,
captchas, and two-factor authentication

	■ Describe the strategies that organisations can use
to keep their systems and information secure

	■ Explain the concept of computational security

	■ Explain what a vulnerability is and how it is
introduced or exploited in a system

	■ Explain how senders and messages can
be authenticated using digital signatures
and certificates

	■ Describe the process, applications, and limits
of modern cryptography techniques

	■ Apply and compare a range of ciphers to encrypt
and decrypt data

	■ Attempt to decipher encrypted data applying
common cryptanalysis techniques

	■ Distinguish between symmetric and asymmetric
encryption schemes

	■ Describe strategies and techniques
to protect against common security
vulnerabilities

IN SUMMARY

Understand the risks of using
technology, and how to protect both
individuals and systems

The Big Book of Computing Content 141

IN SUMMARY

In the table below, you will find learning outcomes associated with

the ‘Safety and security’ strand of the Raspberry Pi Foundation’s

computing taxonomy. These learning outcomes are illustrative of the

kinds of knowledge and understanding that learners could develop in

this area of computing. They are not prescriptive, but instead aim to

illustrate the wide applications of the discipline.

These learning outcomes were originally developed to complement

the English national curriculum for computing, and as such stage 1

roughly corresponds to ages 5–7, stage 2 to ages 7–11, stage 3 to

ages 11–14, stage 4 to ages 14–16, and stage 5 to ages 16–19.

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Explain how to use computing equipment safely

	■ Use information technology safely and
with respect

	■ Demonstrate safe behaviour when working online

	■ Give examples of personal information
and know who it should and should not be
shared with

	■ Outline how individuals should report concerns
about content or contact from the internet

	■ Demonstrate safe and responsible behaviour when
using a range of information technology

	■ Demonstrate how to keep passwords and
other credentials safe and secure

	■ Describe when individuals might be asked for
personal data online

	■ Explain the security risks of linking to or
sharing content owned by others

	■ Explain how misleading information or media can
pose a security risk

	■ Explain the attributes and practices that make a
password secure

	■ Explain how online activity leaves a lasting
digital footprint

	■ Explain common techniques used to exploit
individuals and steal personal data

	■ Describe how users can control where and
with whom their personal data is shared

	■ Describe common threats to computing systems
and ways to protect against them

	■ Understand the risks and related
precautions associated with online services

	■ Explain the purpose of encryption along with
examples of its use

	■ Identify where and how to report
inappropriate content, contact, or conduct

	■ Explain how safety and security principles apply in
emerging contexts or technologies

	■ Describe examples of some vulnerabilities
of computing systems, networks,
and software

	■ Recommend security measures and practices for
different scenarios

	■ Explain the need to balance security with
other considerations including usability,
cost, and ethics

	■ Describe a range of malware and the threats that
it can pose

	■ Explain the rights and responsibilities that
individuals and organisations have with
regard to personal data

	■ Outline the role of encryption in protecting data
and its importance in data security

	■ Describe authentication techniques used
to improve security, such as biometrics,
captchas, and two-factor authentication

	■ Describe the strategies that organisations can use
to keep their systems and information secure

	■ Explain the concept of computational security

	■ Explain what a vulnerability is and how it is
introduced or exploited in a system

	■ Explain how senders and messages can
be authenticated using digital signatures
and certificates

	■ Describe the process, applications, and limits
of modern cryptography techniques

	■ Apply and compare a range of ciphers to encrypt
and decrypt data

	■ Attempt to decipher encrypted data applying
common cryptanalysis techniques

	■ Distinguish between symmetric and asymmetric
encryption schemes

	■ Describe strategies and techniques
to protect against common security
vulnerabilities

142 The Big Book of Computing Content

eaching online safety is hard.
Curriculum requirements vary from

class to class, from year to year, and even
from one term to the next. Teachers have
to work hard to ensure they know how to
use specific tools safely, how to support
young people, and that the tools they’re
using are still relevant. On top of this,
there are the broader trends in terms of
what tools students are using. Each year
in the UK, Ofcom (the UK government’s
communications regulator) produces a
report about children and parents’ media
use and attitudes, which highlights some
of these trends. In the 2022 report, 99
percent of 3–17-year-olds had been online
in the last year (helloworld.cc/ofcom2022).
While this fact is perhaps no surprise,
pair it with research conducted by Peter
Macaulay and colleagues concluding that
students think they are better at keeping
themselves safe online than they really
are (helloworld.cc/macaulay2020), and
it appears we need to review our online
safety curriculum focus.

How are learners using tech?
A helpful first step in providing suitable
online safety education is understanding
how technology is being used by learners
of different ages. Classes will vary, but the

Ofcom report suggests that children aged
3–4 largely use video-sharing platforms
(89 percent) and watch TV and films
online (81 percent). These continue to be
popular activities for those aged 5–7 (95
percent and 74 percent respectively). By
the 8–11 age group, 84 percent are using
messaging sites and apps as one of their
main online activities. This trend continues
with those aged 12–15, with 91 percent
using social media and 73 percent using
live-streaming apps and websites. Finally,
by 16–17, 100 percent had a mobile
phone and this was their primary device
for interacting online.

This high level of exposure to the
internet can lull educators and parents
into a false sense of security; they may
think that young people therefore have
the skills they need to navigate this
world successfully. And to an extent,
they are right. These tools are designed
to be intuitive, and through experience,
people learn how to use them more
proficiently. However, we don’t want
learning about online safety to happen
through experience. Knowing there is
a report button on a website does not
mean you know what you should report,
what behaviour is unacceptable or
inappropriate, or why you should report it.

T This conceptual understanding needs to
underpin online safety education.

What do learners actually know?
Researcher Macaulay and his
colleagues used questionnaires with
learners aged 9–11 to compare their
subjective knowledge of online safety
to their objective knowledge. Subjective
knowledge is how learners feel about their
own ability, while objective knowledge
reflects their actual understanding.

To measure subjective knowledge,
learners were asked to rate statements
such as ‘I know what to do to stay safe
on the internet’ and ‘I know what things
could put me in danger or upset me on
the internet’ on a four-point scale, from
‘Disagree a lot’ to ‘Agree a lot’. To then
measure their objective knowledge,
learners were asked open questions such
as ‘What things might put someone in
danger of harm, or make them feel upset,
when they use the internet?’ and ‘What
things can you do to stay safe from
harm or getting upset on the internet?’
The learners’ ideas about the dangers
of the internet were then grouped into
six categories of the most common
responses: people online pretending to
be somebody else; being in contact with

STORY BY Sway Grantham

ONLINE SAFETY: WHAT DO
LEARNERS KNOW?

RESEARCH

There’s a large gap between what learners think they know about online safety and what they
actually know, but some small changes to classroom focus can make all the difference

http://helloworld.cc/ofcom2022
http://helloworld.cc/macaulay2020

143The Big Book of Computing Content

people we do not know; sharing personal
information/personal photographs or
videos; cyberbullying; inappropriate and/or
distressing content; and computer viruses.

This study found that children felt safe
online, and that their subjective knowledge
was high. This was especially true of boys
and older children (in this study, ‘older
children’ were eleven). In contrast, when
their objective knowledge was tested,
students could only identify, on average,
two out of the six categories of online safety
risks. When faced with these two conflicting
sets of knowledge — what learners think
they know, and what they actually know
— children’s subjective knowledge was the
biggest predictor of how safe they felt they
were online. This is worrying, as it may lead
students to wrongly conclude that they are
internet-savvy and get complacent when
considering the risks they are taking online.

Improvements with age?
There is not yet an equivalent study for
learners aged twelve and above, but the
Ofcom report can give us some insights.
As part of their report, Ofcom asked young
people what features indicated that a social
media post was genuine, whether they

could spot a fake social media profile, and
how they identified sponsored search results
and content from influencers. Unfortunately,
objective knowledge about online safety
doesn’t seem to improve massively with
age, with the numbers varying very little
between the 12–15 and 16–17 age groups.

Overall, these young people were best at
recognising fake profiles (64 percent and
65 percent respectively). Few of them were
able to identify sponsored content, either
in searches or from influencers (38/39
percent for 12–15 year olds and 44/48
percent for 16–17 year olds), and very few
were able to recognise whether a social
media post was genuine (11 percent and
13 percent respectively). For age groups
in which six out of ten children stated that
they used social media to get their news,
this is clearly a problem that needs to be
addressed through education.

Changing online safety education
Many of the strategies outlined in the
article on page 146 would help move
online education towards where it needs to
be. However, there are also some specific
pedagogies and approaches that are
particularly relevant to ensuring we are
improving learners’ objective knowledge
and not just their subjective knowledge.

LEAD WITH CONCEPTS
Teachers can often fall into the online safety
trap of focusing on teaching a process, such
as how to report inappropriate comments.
However, what is missing here are the
concepts underpinning the process to
ensure attitudinal change. Understanding
what comments to report and why you
should report comments is much more
powerful than just learning about the
actual process.

RESEARCH

A HIGH LEVEL OF INTERNET EXPOSURE
CAN LULL TEACHERS AND PARENTS
INTO A FALSE SENSE OF SECURITY

“

n �Young people can’t always identify sponsored
content, or whether a social media post is genuine ©

Gr
ap

hic
ro

ya
lty

/s
to

ck
.ad

ob
e.c

om

http://stock.adobe.com

144 The Big Book of Computing Content

MAKE CONCRETE
There is often a nervousness among
teachers when it comes to teaching learners
about being safe online, due to potentially
encouraging uptake among those who do
not already use the tools, or being aware
that they do not meet the stipulated age to
use the tool being discussed. However, we
teach children to cross roads safely before
we expect them to do it independently. The
more skills we can give learners that are
grounded in real-life, concrete knowledge
rather than theoretical knowledge, the easier
it is for them to apply them. This could be
through using social stories and debates to
discuss morals and ethics, or by using role
play, for example becoming data detectives
to find ‘hidden’ information about someone
through the content they post online.

ASSESS ONLINE SAFETY
What this research highlights is that the
confidence with which learners will discuss
online safety is not a fair assessment of
their actual understanding. By teaching
key concepts and using concrete

examples, there should be content that
you can objectively assess to inform future
approaches to teaching and learning. There
are some examples in the research shared
in this article, and others have been built
into resources, such as in the Raspberry Pi
Foundation’s Teach Computing Curriculum
units (for example, the unit of work for
students aged ten to eleven at helloworld.
cc/TCCcommunication).

These changes to educators’ practice
are not substantial. They do require
some preparation and some time spent
understanding the learners in your
classrooms each year, but as teachers, you
do that every day. However, actively making
objective online safety a focus could prevent
a student from learning about the risks of
online safety the hard way.

RESEARCH

FURTHER READING

 �Macaulay, P. J. R., et al. (2020).
Subjective versus objective
knowledge of online safety/dangers
as predictors of children’s perceived
online safety and attitudes towards
e-safety education in the United
Kingdom. Journal of Children and
Media, 14(3), 376-395. helloworld.
cc/macaulay2020

 �Ofcom. (2022). Children and
parents: media use and attitudes
report 2022. helloworld.cc/
ofcom2022

THE CONFIDENCE WITH WHICH LEARNERS
DISCUSS ONLINE SAFETY IS NOT A FAIR
ASSESSMENT OF THEIR UNDERSTANDING

“

n �Even if a child isn’t old enough to use a particular platform,
it can still be beneficial to teach them about its dangers

©
Ale

sia
Ka

n/
sto

ck
.ad

ob
e.c

om

http://helloworld.cc/TCCcommunication
http://helloworld.cc/TCCcommunication
http://helloworld.cc/macaulay2020
http://helloworld.cc/macaulay2020
http://helloworld.cc/ofcom2022
http://helloworld.cc/ofcom2022
http://stock.adobe.com

The Big Book of Computing Content 145

ybersecurity topics in school
computer science curricula often

focus on defending against cybersecurity
attacks and understanding the ethical and
societal implications of data privacy. In
programming topics, however, a proactive
approach to writing secure code is also
important. A research project called
Motivating Jenny (motivatingjenny.org),
supported by the UK’s National Cyber
Security Centre, has created a number
of tools to help developers consider
the security of their code and embed
a workplace culture in which software
security is seen as a fundamental value.
Although this research has been conducted
in industry, there are many ways in which
educators can translate the findings into
good classroom practice.

Real-world industry perspectives
In a 2019 study by the Motivating Jenny
project, researchers took an ethnographic
perspective. An ethnographic research study
aims to find out more about the behaviours
and routines of a group through direct
observation, and researchers conducting
this study met with professional developers
in their workplaces to find out more about
their beliefs, attitudes, and experiences
with writing secure code. The write-up of
the study provides a real-world example of
a computing career and is useful for both
teachers and pupils.

The researchers ran a series of workshops
with groups of professional developers,
with the aim of finding out more about how
social interactions and a culture of software
development contributed to supporting
developers in writing secure code. In the
first part of the workshop, participants read
various examples of a security compromise
that had taken place, each with a different
focus or perspective. They then all read

a first-person account of the impact of
the security breach. Finally, the workshop
concluded with a discussion of participants’
own experiences. Prompt cards and values
cards kept the group conversations focused
on attitudes, beliefs, and behaviours, to
create discussions that were “refreshingly
different” and “participatory”.

Applying findings to the classroom
The findings from the workshops were
designed to be applied to professional
settings. However, the themes that
emerged could be equally relevant to the
computing classroom:

Personal stories resonate: cybersecurity
can often seem like an abstract or
intimidating topic. However, all software
and systems are designed and implemented
by people. Consider how to use examples
of real-life security compromises, such as
the first-person account that was used

C

in the research, in teaching and learning
(helloworld.cc/firstperson).

Values can support positive
discussions: in the research, using
values helped to create positive, non-
confrontational conversations. Your
school community is likely to have a set
of values to help each pupil shape their
understanding of the world. For example,
a classroom wall display that links
cybersecurity considerations to the school’s
values is a powerful way of modelling this
and providing useful discussion prompts.

Group discussion through play is
effective: the researchers gamified group
discussions by using a timer and prompt
cards. This provided a valuable structure
to conversations and helped to give each
participant a chance to speak. Consider
how this approach could work when you
are leading classroom discussions with
your pupils.

STORY BY Katharine Childs

LESSONS FROM THE
CYBERSECURITY INDUSTRY

FURTHER READING
 �Lopez, T., Sharp, H., Tun, T., Bandara, A., Levine, M., & Nuseibeh, B. (2019, May 28). Talking
about Security with Professional Developers. 7th International Workshop Series on
Conducting Empirical Studies in Industry, Montreal, Canada. helloworld.cc/lopez2019

n �Using prompt cards and values cards can help to stimulate
positive conversations about cybersecurity issues ©

su
cc

es
sp

ho
to

/s
to

ck
.ad

ob
e.c

om

RESEARCH

http://motivatingjenny.org
http://helloworld.cc/firstperson
http://helloworld.cc/lopez2019
http://stock.adobe.com

146

nter any primary school and you
will find strategies for keeping

yourself safe being modelled every day of
the year. From not running with scissors
to negotiating whether it’s acceptable to
declare who someone else can or can’t
play with at lunchtime, we are constantly
guiding learners to recognise boundaries,
be honest about their choices, and develop
a little common sense that jumping off
something really high may hurt. Yet, more
often than not, I see online safety relegated
to computing lessons and Safer Internet
Days. One-off lessons are simply not
enough to safeguard our learners.

We all want to keep our learners safe, and
it’s challenging to ensure our online safety
curriculum stays up to date. I recommend
asking yourself the following three questions
when reviewing online safety in your school:
“What’s your context?”, “What’s trending?”,
and “Where is it relevant?”

What’s your context?
It can be very tempting to start a school year
or unit of work with several discrete online
safety lessons. These often demonstrate to
outside observers that online safety is taught
in your school (there’s a timetabled lesson
for it!) and reassure you that learners have
some safety skills before you begin using
technology more prevalently. However, what
we often see here is a lack of context.

For example, if we ask learners what
personal information is, they can tell us it’s
their name, school, address, and phone

number, and they know that they shouldn’t
share those things online. Then they share
a photo of themselves on social media in
their school uniform, in front of their house,
with their best friend. Without the context,
such as different ways and places we share
information about ourselves online, learners
often imagine that the only time they need
to be careful about this is when someone is
directly asking for their contact information.

What’s trending?
The digital world that your learners are
a part of is constantly changing. New
apps, games, social media, and other
technological advances are constantly
being introduced, so teaching the same
online safety lessons year-on-year isn’t
suitable. Keeping up with the latest trends

is challenging, but remember that you work
with the real experts! Ask your learners
what’s popular at the moment, how it
works, and what safety measures they
take when using that technology. Creating
a safe space for them to share openly and
honestly gives you the power to support
them in making the right decisions to keep
themselves safe and know how to handle
new situations. Equally, your online safety
curriculum should be reactive and allow you
to address new issues as they arise.

Where is it relevant?
The conversation around online safety is no
longer solely about online safety. It’s about
how learners handle their digital selves in
all aspects of their development, and this
requires both computing and non-computing

E

Sway Grantham shares suggestions on how to ensure your
primary online safety curriculum is fit for purpose

WHY DISCRETE ONLINE
SAFETY TEACHING IS

NOT ENOUGH

TIPS FOR INCORPORATING ONLINE
SAFETY INTO THE SCHOOL DAY

n �Read some online safety books such as Chicken Clicking (helloworld.cc/chicken) or When Charlie
McButton Lost Power (helloworld.cc/charlie) to open up different conversations.

n �In science, when learning about what humans need to stay healthy, could you extend this to a conversation
about healthy and unhealthy behaviours with device use?

n �When discussing stories about friendships in personal, social, health, and economic (PSHE) education
classes or assemblies, do you include the differences between online friendships and offline ones?
Opening up the conversations you are already having is a great way to encourage more honest discussion.

n ��ProjectEVOLVE has a range of activities to meet statements of the Education for a Connected World
Framework (register to access these free resources at helloworld.cc/evolve). These range from discussion
questions to vocabulary that inspires reflection. Why not use these to start or end your school day?

FEATUREOPINIONFEATURE

The Big Book of Computing Content

http://helloworld.cc/chicken
http://helloworld.cc/charlie
http://helloworld.cc/evolve

147

skills — for example, a learner’s self-image
and identity, managing relationships with
friends, building a reputation, avoiding
bullying and isolation, and having a healthy,
balanced lifestyle. If we leave these skills to
be developed solely in computing lessons,
we not only misrepresent their importance,
but we also wouldn’t have a great deal
of time left to teach anything else! Online
safety has to be taught throughout the
school day in various contexts, whether it’s
a casual conversation at break about online
gaming with friends, or a social story about
friends who were unkind either with or
without technology.

In the computing classroom
After asking yourselves those three
questions, there may still be some topics
to be addressed in your computing lessons
that are relevant to the content you are
teaching. This is a great opportunity to
use learners’ developing technological
skills while addressing online safety in a
contextual way.

In the Teach Computing Curriculum (TCC),
we teach learners about sharing personal
information throughout the ‘Creating media’

units, as they consider what is and isn’t
OK to include in the artefacts they create
(helloworld.cc/tcc). When learning about
searching for media or information, learners
explore managing information online and
the issues they need to consider around
copyright and ownership. Across all units, we
encourage learners to manage their online
accounts and think about the online reputation
they are creating, as well as their rights to
privacy and security. Each of these examples
offers relevant opportunities to learn the skills
of online safety and digital citizenship within
the context of their computing units of work.

These TCC units are also linked to
the Education for a Connected World
Framework, created by the UK Council
for Internet Safety (helloworld.cc/
connectedworld). Even if you’re not teaching
in the UK, this framework is a great resource
for understanding the breadth of online
safety and digital citizenship. Although it
includes recommended learning outcomes
for learners aged 4 to 18, it doesn’t
recommend the most appropriate times and
places to teach that content. For the TCC,
we chose the most pertinent aspects to
computing, but the rest is up to you.

SWAY GRANTHAM
Sway is a senior learning manager at the
Raspberry Pi Foundation. She leads a
team developing computing resources for
primary teachers (@SwayGrantham).

n ��Your online safety curriculum is vital if your learners are to grow up safe and empowered

Your online safety curriculum is vital for
your learners if they are to grow up safe and
empowered. Yet spending more time on
topics relating to safety does not necessarily
mean greater learning outcomes. Use these
three questions as a starting point to review
your online safety curriculum and to ensure
that it is as prevalent as instructions about
not running with scissors!

©
An

at
oly

 Ti
ply

as
hin

/s
to

ck
.ad

ob
e.c

om
FEATURE

The Big Book of Computing Content

http://helloworld.cc/tcc
http://helloworld.cc/connectedworld
http://helloworld.cc/connectedworld
http://stock.adobe.com
https://twitter.com/SwayGrantham

148

How do you organise live learning sessions
that are both safe and help young people to

learn? Carrie Anne Philbin investigates

ransitioning learning from a face-
to-face interaction to online can

sound straightforward, especially as we
now live in a society where it’s common to
have access to devices and the internet. In
a school environment, it is relatively easy to
promote the welfare of young people and
vulnerable adults and to keep them safe,
thanks to well-established routines built on
decades of learning. So if we find ourselves
having to teach online, how do we promote
the well-being of young people while they
learn? Here are some tips that might help,
based on feedback and ideas from brilliant
educators and leading children’s charities
such as the UK’s NSPCC (nspcc.org.uk),
who have tested different approaches to
hosting online sessions.

There are four areas to think about if you
want to host online teaching sessions:

n �Choosing the right technology
n �Communicating with young people

and parents
n Designing your session
n Child protection

Choosing the right technology
There are lots of different tools you could
use to host live sessions, and they vary
in their functionality, cost, and usability.
When choosing a technology, think about
how you intend to use it and how your
intended audience will use it. Consider
whether it allows private communication
between you and young people, or

SAFEGUARDING IN
ONLINE LESSONS

between young people, as this could
be a safeguarding risk. Use your school
account and not a personal account when
using online tools, and check the privacy
settings. It’s also a good idea to test
the functionality of the technology with
colleagues, perhaps by having a practice
run of your session. They can stress-test
any interactive features, and provide you
with useful feedback to incorporate before
you run it with students.

Another consideration is access. Does
the technology you want to use require
young people to have an online account?
This may be an issue for learners below
the age of 13. Do check your school
e-safety policy, as it is likely that there is
already guidance available on this issue.

T
©

pa
tri

ck
/s

to
ck

.ad
ob

e.c
om

FEATUREOPINIONFEATURE

The Big Book of Computing Content

http://nspcc.org.uk
http://stock.adobe.com

149

Communicating with young
people and parents
Every organisation that provides activities
for children and young people needs to
get consent from a parent or carer for their
child to participate. A well-written consent
form will support your efforts to ensure
parents, carers, and children understand the
benefits and risks of online lessons, as well
as providing written consent for children
to take part. The NSPCC has an example
consent form to help get you started
(helloworld.cc/consent).

It’s also a good idea to share a link to your
online session in advance with parents,
carers, and young people, as well as any
instructions they will need for joining. You
could also share what you are planning for
your learners to work on, including links
to any online projects or PDF files they
may need. This will help your students
to prepare for the session, and keep their
adults informed about the learning you
want them to experience.

Designing your session
As with any lesson, you should design
the session structure and prepare your
materials before you announce that you’re
going live online. If it is your first time using
the online technology, I’d recommend
having an introduction or starter activity

that gives students the opportunity to play
with the features. If there is a live comment
stream, you might ask them to all say who
they are and what they’re hoping to learn in
the session. I find that allowing this type of
structured play reduces the opportunity for
misusing the technology later.

You should also consider where you will
present your session from. The NSPCC
suggests you should be in “a neutral area
where nothing personal or inappropriate can
be seen or heard in the background”.

I’d also advocate having another teacher
or responsible adult acting as a teaching
assistant during the lesson. They can
moderate any feature misuse and keep an
eye out for any safeguarding issues.

Child protection
Whether you are teaching online or in class,
you have the same responsibilities as a
teacher, and that means if you see or hear
anything that worries you during the
session, or a child discloses anything to you

via email, you must disclose this to your
child protection lead immediately. Make sure
you have their contact details to hand and
check your school’s safeguarding and child
protection policy and procedures.

CARRIE ANNE PHILBIN
Carrie Anne is director of educator support
at the Raspberry Pi Foundation, and the host
of Crash Course Computer Science and
GeekGurlDiaries.

YOU HAVE THE SAME SAFEGUARDING
RESPONSIBILITIES AS A TEACHER, WHETHER
YOU’RE TEACHING ONLINE OR IN CLASS

“

n �NSPCC: undertaking remote teaching safely
(helloworld.cc/NSPCC)

n �GOV.UK: Education for a Connected
World framework (helloworld.cc/
connectedworld)

n �GOV.UK: coronavirus safeguarding
guidance (helloworld.cc/safeguarding)

n �Childnet: teachers and professionals
section (helloworld.cc/childnet)

n �UK Safer Internet Centre: social media
guides (helloworld.cc/saferinternet)

SAFEGUARDING
ONLINE GUIDES
FOR TEACHERS

©
Su

sh
im

an
/s

to
ck

.ad
ob

e.c
om

FEATURE

The Big Book of Computing Content

http://helloworld.cc/consent
http://helloworld.cc/NSPCC
http://GOV.UK:
http://helloworld.cc/connectedworld
http://helloworld.cc/connectedworld
http://GOV.UK:
http://helloworld.cc/safeguarding
http://helloworld.cc/childnet
http://helloworld.cc/saferinternet
http://stock.adobe.com

FEATURE

The Big Book of Computing Content150

eaching cybersecurity can be
dull without hands-on practical

experiences and exercises. Fortunately,
my passion for cybersecurity and my over
20 years of experience as a data security
engineer have helped me to understand
how to motivate my students to acquire
the real-world skills needed for success in
industry. In this article, I’m going to present
activities and tools you can use to link
cybersecurity topics and skills to the world
outside the classroom walls.

Projects with real-life consequences
I recently gave my students a taste of
industry experience through a data security
project about our internal IT infrastructure.
Working alongside a team of remote
penetration testers, I identified weaknesses
in our own school system that could allow

T

Rob Parker shares how his school teaches cybersecurity skills using real-life
tools and projects, increasing engagement and excitement in the classroom

a data breach. We then set up various
machines mimicking commonly known
vulnerabilities, to demonstrate how a
penetration tester could identify weaknesses
and how they could be fixed. Running
an activity such as this not only has the
advantage of keeping our school network as
secure as possible, but also helps students to
understand the types of threat schools face,
and how to put their learning into action.

This project particularly stressed the
importance of keeping all operating systems
up to date and using suitable security
software, and the real-life consequences
of not doing so. Students absolutely
thrived during this project, as it allowed
them to develop some basic skills that
ethical hackers and penetration testers
use in industry, as well as practical skills
they can use in their everyday lives. It also

allowed for topical classroom discussions
in which students debated the advantages,
disadvantages, difficulties, and ethics
of such a project. Students are always
interested to learn more from real-life case
studies that help them relate personally to
the importance of cybersecurity. Khanteepop
Thaipradith, one of my students at Steam
Labs, shared, “I learn ethical hacking to keep
myself updated with the news and security.
By going through the process of ethical
hacking, I’m able to gain knowledge in order
to use it to secure myself, as well as people
around me, from being hacked.”

Professional real-world tools
Another way of increasing engagement
in cybersecurity teaching is through using
tools that are actually used in industry.
We use Raspberry Pis preloaded with Kali
Linux, a system commonly used by industry
specialists, to teach students about evolving
threats in cybersecurity (helloworld.cc/
kalilinux). Students learn the fundamental
skills and steps needed to protect themselves
against these threats, and the importance of
ensuring that any data that is transmitted is
encrypted. Using Kali Linux, students explore
how to scan devices and sniff packets of data
that are being transmitted. They learn how
penetration testers identify whether particular
ports are open on network devices using
a TCP half-open port scan, and then look
at what action a penetration tester would
take if there were ports open that could be
dangerous (you can learn more about how to
do this at helloworld.cc/sniffpacket).

ACTIVITIES AND TOOLS TO BRING
CYBERSECURITY TO LIFE

n �Keep students engaged with cybersecurity
by using real-life tools and projects

http://helloworld.cc/kalilinux
http://helloworld.cc/kalilinux
http://helloworld.cc/sniffpacket

The Big Book of Computing Content 151

Another great way of putting cybersecurity
into practice is by using Secure Shell. Using
Raspberry Pi’s command line, students learn
how to access a device remotely by analysing
the weaknesses in its security. The students
take the perspective of the hacker, and
search for areas of weakness. From there,
we challenge them to think of ways of fixing
the issues in the system. Any skilled ethical
hacker or penetration tester has to be able to
understand offensive security and think like
a malicious hacker. Students are taught the
ethics behind cybersecurity, and they thrive
when learning about the skills that ethical
hackers develop and use in higher education.

Similarly, we use Shodan (shodan.io),
which can index every device connected to
the internet, to demonstrate the importance
of keeping devices that are connected to the
internet up to date. We use it to explore how
a hacker could potentially take advantage
of a device using an outdated operating

system. Wireshark (wireshark.org) is
another powerful real-life tool you can use
in cybersecurity lessons. It analyses network
traffic and explores how encryption works,
underlining the importance of having a strong
password. Our students quickly discover how
easy it is to crack a user’s password using
tools such as John the Ripper (helloworld.

cc/john), and why systems block multiple
password attempts when individuals use
brute-force tools such as Hydra. Through
these activities, we’re developing their
analytical and problem-solving skills, which
they can transfer to everyday life and other

parts of their education. Importantly, students
finish these lessons with the know-how they
need to help protect themselves and their
families’ devices from this type of hacking.

VirtualBox (virtualbox.org) is another
great tool, particularly if you’re low on time
and budget. It is a well-rounded, free, open-
source piece of virtualisation software. This

type of software allows you to install and use
applications and operating systems other than
those running on your computer. This means
you can look at malicious files safely without
infecting your computer, which can be a
great starting point for applying cybersecurity
knowledge and skills in the classroom.
Raspberry Pi OS Lite is another good place to
start. You can download a headless image and
teach students how to access devices without
a keyboard, mouse, or monitor.

If educators develop fun and exciting
projects in cybersecurity, we will start to
unlock our students’ ability to excel, and help
them to keep their own data and devices
secure, as well as those of the organisations
they work for in the future.

ANY SKILLED ETHICAL HACKER HAS TO
UNDERSTAND OFFENSIVE SECURITY
AND THINK LIKE A MALICIOUS HACKER

“

ROB PARKER
Rob is a computer science educator and the data
protection officer at St Andrews International
School, Bangkok. He is also a robotics and
technology coach at Steam Labs (steamlabs.
co.th), a specialist online school that teaches
robotics, computer science, and ethical hacking.
Rob is a certified Ethical Hacker with EC-Council.

FURTHER
RESOURCES

n �helloworld.cc/steamblog: blog at Steam
Labs (an online school that teaches
robotics and ethical hacking), where I post
free cybersecurity content for schools at
the request of other global educators

n �helloworld.cc/robparker: my LinkedIn
profile; here, you can contact me for help
with designing lessons and raise queries
about how to integrate cybersecurity into
the classroom

FEATURE

http://shodan.io
http://wireshark.org
http://helloworld.cc/john
http://helloworld.cc/john
http://virtualbox.org
http://steamlabs.co.th
http://steamlabs.co.th
http://helloworld.cc/steamblog
http://helloworld.cc/robparker

The Big Book of Computing Content152

now thy enemy. This is one of the
most famous tenets of warfare,

according to the legendary Chinese
general Sun Tzu. It’s great advice on
the battlefield, and its utility extends to
the teaching of cybersecurity. In a way,
cybersecurity is war: an ever-evolving
conflict between those who want
information and those who have that
information. By the time I start teaching
phishing, the majority of students have
already been phished. If you want to beat
the bad guys, I teach them, you have
to walk a mile in their shoes to really
understand them.

Walk a mile
When I introduce cybersecurity, I use as
many real-world examples as possible. I
keep every single phishing email I get in
a folder, so that when we study phishing,
we are studying primary sources. I pick out
a few and we study each one as a class.
We ask ourselves, what is this person
trying to accomplish? How are they trying

K

Pretending to be the bad guys adds depth, understanding, and fun to
cybersecurity classes, and helps us to become better good guys

to accomplish it? What is their motivation?
Understanding the offence improves our
defence. Understanding the techniques
phishers use helps us to identify them more
quickly and accurately.

After studying these emails, it’s time for
students to show me what they’ve learnt,
by phishing me. In doing so, they have to
ask themselves the same questions: what
am I trying to accomplish, and how? Some
students’ emails are more convincing than
others, but they all make it clear that they
know what a phishing attempt looks like.
Most of them are funny, and occasionally,
one of them actually fools me. Any student
that does this gets extra credit and provides
the entire class with another learning
opportunity: it’s a win-win situation.

By studying and then creating real-life
artefacts, we deepen our understanding of
them. Being the bad guys makes us better
good guys. So, the next time you study a
threat, have your students emulate it. Have
them write a clickbait title for a fake news
article, or equate a spurious correlation with

causation. In doing so, they gain a level of
understanding that does not come with
simply studying the subject. They understand
their foe, and as Sun Tzu said, “If you know
the enemy and know yourself, you need not
fear the result of a hundred battles.”

KNOW THY ENEMY

Most real-life phishing emails try to alarm you into
acting quickly and irrationally. Aaron, last year’s winner,
appealed to my lack of attention. I primarily use Google
Docs for grading, and receive about 50 emails every
week that all say “[Student] has invited you to edit
the following document” with the little blue Google
Docs icon. I click these without a second thought. Aaron
knew that, and exploited it. This provided a meaningful
teaching moment in class.

ZACH HUFFMAN
Zach is an upper-school computer science
teacher at the Hun School of Princeton
in New Jersey, USA. He is an avid gamer
and has spent the last five years teaching
computer science, from kindergarten all
the way up to 12th grade (@ltwheat).

PHISHING CONTEST: THE WINNING ENTRY

FEATUREOPINIONFEATURE

https://twitter.com/ltwheat

The Big Book of Computing Content 153

ver time, the meaning of the word
‘hacking’ has changed. Today, it

often has pejorative connotations around
bad things that bad people do on their
computers. However, the term has much
more positive origins, with its first recorded
use coming from the Tech Model Railroad
Club at the Massachusetts Institute of

Technology (MIT) in the 1950s. Members
of this club enjoyed taking apart model
trains to discover how they worked,
with the aim of enhancing them; they
were ‘hacking’ the technology they were
working with. In this article, I argue that
hacking shouldn’t be used as a dirty word,
and that teaching students how to hack
isn’t necessarily a bad thing.

When I was a teacher, I often asked
classes to open up old computers over a
series of lessons about hardware. We would
look at their components, see how they fit
together, and discuss what we could do
to improve the machines. This method of
teaching students about hardware had more
benefits than just visualising the abstract:
without realising it, I’d been teaching my
students how to hack. Just as Grace Hopper
famously enjoyed dismantling clocks as a
child to figure out how they worked, my

O

Ben Garside explores the meaning behind the word
‘hacking’ and makes the case for teaching students to hack

students were learning how to be problem-
solvers and how to fill the gaps in their
knowledge. They were learning to hack, in
the spirit of the original meaning of the term.

Developing students’ problem-solving
skills is no bad thing, but what if we were
to take this a step further and also teach
students how to hack in the more common,

malicious sense of the word? When writing
cybersecurity units for the Teach Computing
Curriculum (helloworld.cc/tcccyber1 and
helloworld.cc/tcccyber2), this is exactly what
we did. We made the conscious decision,
in places, to go beyond the theory of how
these attacks work and give students the
opportunity to explore the code that makes
them happen. We created activities in which
learners use very unsophisticated code that
could be used for a brute-force attack, as well
as an activity in which students perform an
SQL injection on a fake website.

We’re not encouraging students to become
criminals, of course, and we contextualise
these activities with the ethics and legalities
of these types of action. As Zach argues
in the previous article, I believe that we’re
encouraging students to get a deeper
understanding so that they can better
protect themselves against real threats. I

relate this approach to the karate principle.
Although martial arts do teach people how
to do harmful things to other human beings,
a sensei is there to guide students in self-
control and discipline. Relating this to hacking,
students can easily go online and follow
hacking tutorials, but at home, there is no
sensei there to guide them about the rights
and wrongs of their choices. As educators, we
need to remember our role as sensei.

Let’s keep teaching our students to be
curious about technology, to want to know
how something works, to be problem-
solvers, and, therefore, to be hackers — just
like the good people of MIT’s Tech Model
Railroad Club.

KEEP CURIOUS AND
CARRY ON HACKING

BEN GARSIDE
Ben is a learning manager for the
Raspberry Pi Foundation. He has worked
on the production of the Teach Computing
Curriculum, and on online courses including
the recently released Introduction to
Machine Learning and AI (@BenberryPi).

WE DECIDED TO GO BEYOND THE THEORY
AND GIVE STUDENTS THE CHANCE TO
EXPLORE THE CODE BEHIND THESE ATTACKS

“

FEATURE

http://helloworld.cc/tcccyber1
http://helloworld.cc/tcccyber2
https://twitter.com/BenberryPi

EFFECTIVE
USE OF TOOLS
156 	 EFFECTIVE USE OF TOOLS,

IN SUMMARY
158 	� THE DIGITAL DIVIDE
160 	 KEY DIGITAL SKILLS FOR YOUNG

PEOPLE WITH SEND
162 	 �A WHOLE-SCHOOL APPROACH

TO DIGITAL SKILLS
164 	 USING TABLETS TO ENHANCE

CROSS-CURRICULAR LEARNING
166 	 �CREATING DIGITAL ARTISTS:

YOUNG PHOTOGRAPHERS
168 	 LOGGING ON AND BEYOND

The Big Book of Computing Content 155

he idea that learners start school as digital natives,

competent in everything digital, is a myth. While

some learners will have already developed

confidence in using digital tools, this experience will vary

greatly between students and will probably be limited to a

narrow set of skills. In order to access and progress learning in

all areas of a computing curriculum, learners need opportunities

to develop skills such as using a keyboard and mouse, saving

and organising their work, and more. This doesn’t mean that

we need to dedicate entire lessons to typing skills, but instead

we need to provide opportunities to develop these skills

alongside the broader concepts and skills within computing.

Initially, the focus for learners will be on developing the

basic skills required to access learning, using a range of

devices and simple software. As learners experience more

devices, tools, and software, we can challenge them to see

the commonalities between them, allowing them

to learn to use new tools more quickly. They

will then be able to be more selective in the

tools they use for specific tasks, and will

gradually become able to use specialist

tools and software.

T IN THIS SECTION,
YOU WILL FIND:

	■ Learning outcomes: 		
effective use of tools, in summary

	■ What the research says:
the digital divide

	■ Digital skills for SEND learners

	■ Whole-school approach to digital skills

	■ Tablets and cross-curricular learning

	■ Young digital artists

	■ Logging on for lower primary

The Big Book of Computing Content156

IN SUMMARY

EFFECTIVE
USE OF TOOLS

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Recognise the different applications of information

technology in different contexts

	■ Control a device using a touchscreen

	■ Independently power up and sign in to
computing equipment

	■ Use a keyboard to enter and modify text,
including the use of shift and backspace

	■ Use a mouse to control a computer, including
clicking, selecting, and dragging

	■ Use a range of hardware, including cameras
and programmable toys

	■ Use a selection of online and offline
software applications

	■ Explain the purpose of different buttons and
features of applications

	■ Save work between sessions and reopen it

	■ Explain how undo can be used to revert
a change

	■ Identify the features and limitations of different
devices

	■ Describe how to use different
tools successfully

	■ Explain the uses of different communication and
collaboration tools

	■ Use a range of input and output devices to
capture, manipulate, and share data and
digital media

	■ Connect digital devices and transfer files to and
from them

	■ Use appropriate communication and
collaboration tools during a project

	■ Find useful and suitable information online

	■ Save work using useful and identifying
filenames

	■ Use cut, copy, and paste, as well as simple
formatting tools

	■ Apply existing IT experience and skills to
new applications and contexts

	■ Describe how different hardware devices may be
better suited to specific uses

	■ Describe how different software
applications are suited to
different purposes

	■ Be familiar with a range of online communication
and collaboration tools

	■ Combine software tools to create
digital products

	■ Save and organise files within folders and create
multiple versions where appropriate

	■ Select hardware and software tools that
are appropriate for a specific task

	■ Apply past experience of hardware and software
to new devices and programs

	■ Describe the features of specialist programming
software such as IDEs

	■ Use collaborative revision tools to provide
feedback and suggestions

	■ Apply versioning to files to provide a
version history

	■ Demonstrate responsibility for files
through organisation and backup strategies

	■ Explain the purpose and benefits of templating
and styling tools

	■ Use templating and styling tools to create
consistency within digital products

	■ Use a range of specialist software in developing
digital artefacts

	■ Adapt to new software tools, combining past
experience with available documentation
and support

	■ Use appropriate software tools to support planning,
development, organisation, and collaboration

	■ Use collaborative tools to connect and
collaborate remotely with others

IN SUMMARY

Select and use appropriate
hardware and software tools

The Big Book of Computing Content 157

IN SUMMARY

In the table below, you will find learning outcomes associated with

the ‘Effective use of tools’ strand of the Raspberry Pi Foundation’s

computing taxonomy. These learning outcomes are illustrative of the

kinds of knowledge and understanding that learners could develop in

this area of computing. They are not prescriptive, but instead aim to

illustrate the wide applications of the discipline.

These learning outcomes were originally developed to complement

the English national curriculum for computing, and as such, stage 1

roughly corresponds to ages 5–7, stage 2 to ages 7–11, stage 3 to

ages 11–14, stage 4 to ages 14–16, and stage 5 to ages 16–19.

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
	■ Recognise the different applications of information

technology in different contexts

	■ Control a device using a touchscreen

	■ Independently power up and sign in to
computing equipment

	■ Use a keyboard to enter and modify text,
including the use of shift and backspace

	■ Use a mouse to control a computer, including
clicking, selecting, and dragging

	■ Use a range of hardware, including cameras
and programmable toys

	■ Use a selection of online and offline
software applications

	■ Explain the purpose of different buttons and
features of applications

	■ Save work between sessions and reopen it

	■ Explain how undo can be used to revert
a change

	■ Identify the features and limitations of different
devices

	■ Describe how to use different
tools successfully

	■ Explain the uses of different communication and
collaboration tools

	■ Use a range of input and output devices to
capture, manipulate, and share data and
digital media

	■ Connect digital devices and transfer files to and
from them

	■ Use appropriate communication and
collaboration tools during a project

	■ Find useful and suitable information online

	■ Save work using useful and identifying
filenames

	■ Use cut, copy, and paste, as well as simple
formatting tools

	■ Apply existing IT experience and skills to
new applications and contexts

	■ Describe how different hardware devices may be
better suited to specific uses

	■ Describe how different software
applications are suited to
different purposes

	■ Be familiar with a range of online communication
and collaboration tools

	■ Combine software tools to create
digital products

	■ Save and organise files within folders and create
multiple versions where appropriate

	■ Select hardware and software tools that
are appropriate for a specific task

	■ Apply past experience of hardware and software
to new devices and programs

	■ Describe the features of specialist programming
software such as IDEs

	■ Use collaborative revision tools to provide
feedback and suggestions

	■ Apply versioning to files to provide a
version history

	■ Demonstrate responsibility for files
through organisation and backup strategies

	■ Explain the purpose and benefits of templating
and styling tools

	■ Use templating and styling tools to create
consistency within digital products

	■ Use a range of specialist software in developing
digital artefacts

	■ Adapt to new software tools, combining past
experience with available documentation
and support

	■ Use appropriate software tools to support planning,
development, organisation, and collaboration

	■ Use collaborative tools to connect and
collaborate remotely with others

158 The Big Book of Computing Content

ow wide is your use of computers
and digital devices? Think about

your day so far: from the moment you got
up to the moment you now find yourself
reading this article, where and how have
you interacted with computers? What are
the purposes of your interactions with
technology — work, social, play? Are these
interactions all productive? And what else
do you have planned for the day that will
involve technology?

Now that you have reflected on your own
interactions, what about those of others?
Not everyone has access to digital devices.
There has been a great deal of research in
recent years into the digital divide, a term
first used by psychologist Lloyd Morrisett.
This is the gap between those who have

and do not have access to computers and
the internet. A 2019 study by Lloyds Bank
identified that “11.9 million people (22%) do
not have the Essential Digital Skills needed
for day-to-day life in the UK” (helloworld.
cc/lloyds2019). As the use of technology
has expanded, the range of services
available on devices has also increased,
and consequently, so has the digital divide.
Of the tasks you have completed using
computers so far today, how many could
you have completed if you had not been
able to access some kind of digital device?

Causes of the digital divide
The causes of the digital divide are wide-
ranging and complex. There are numerous
papers offering ideas, including those from

H researchers Korupp and Szydlik (helloworld.
cc/korupp2005). They analyse the causes
of the digital divide through three lenses:
human capital, which relates to people’s
education and their experiences with
technology at work; family composition,
which considers the make-up and income
of a household; and social context, which
considers an individual’s generation, gender,
ethnic background, and geographical
location. Within these groups there are
complex factors that can either exacerbate
or mitigate the divide. Whatever the cause,
the impact is that these people or groups
are excluded from some aspects of society.

The digital divide came into sharp focus
during the coronavirus pandemic. The need
for people to isolate from each other, and

STORY BY Ben Hall

THE DIGITAL DIVIDE

RESEARCH
©

St
ud

ioD
in/

st
oc

k.a
do

be
.co

m

n ��How many of the tasks you completed today could
you have done without access to a digital device?

http://helloworld.cc/lloyds2019
http://helloworld.cc/lloyds2019
http://helloworld.cc/korupp2005
http://helloworld.cc/korupp2005
http://stock.adobe.com

159The Big Book of Computing Content

the expansion of online services, meant
that the pace of change increased hugely.
Schoolchildren found themselves in home
learning environments, needing laptops
or tablets and, crucially, bandwidth, to
access their learning. Such a scenario was
unthinkable before the pandemic. Some
children and families adapted quickly and
easily, using devices they already had and
dedicating spaces in their homes to school-
based activities. Others were less fortunate,
coping with very limited space and having
in many cases to share devices unsuitable
for learning, such as mobile phones,
between multiple siblings. Researchers
Holmes and Burgess highlight that only 51
percent of the poorest households have
internet access, compared to 99 percent of
the richest (helloworld.cc/holmesburgess);
it is very clear that the pandemic has
exacerbated existing inequalities.

Looking through Korupp and Szydlik’s
social context lens, older people have
also been badly affected by the pandemic
and the acceleration of the digital divide.
Services such as booking a doctor’s
appointment or ordering a prescription
moved online, and the pace of change left
many behind, with inadequate support
provided to help this group come to terms
with new ways of doing things.

Digital natives
Are any groups immune to the digital
divide? You may have come across the
term ‘digital native’, a term first introduced
by researcher Marc Prensky in 2001
(helloworld.cc/prensky2001). This term is
often used to describe young people who
have been brought up using computers
and the internet from a very young age.
Unfortuantely, articles such as Prensky’s
perpetuated a widely held belief that if
you can use a tablet or phone to access
content online, you are somehow a digital
native and can use these skills across
many platforms and technologies —

therefore, this group surely cannot be
victims of the digital divide?

These beliefs have now been challenged.
In a 2019 study, researcher Scolari focused
on media literacy, breaking down the
term into ten ‘new literacies’ (helloworld.
cc/scolari2019). He found that the term
digital native has “more problems than
advantages”. Not all young people, for
example, have access to devices, and much
of the behaviour of these so-called digital
natives is focused on the consumption of
digital content, such as watching something
online or playing with a device. This does
not involve using digital tools to their
full extent; consumers are not producing
anything by doing this, or thinking about
how they could make best use of the tools
they have at their disposal. In fact, labelling
people as digital natives can actually
widen the digital divide. It peddles the false

assumption that the skills associated with
the effective use of tools do not need to be
taught to learners, which could lead to a life
surrounded by technology they can never
fully understand or exploit.

Bridging the digital divide
So what can we do? We cannot ignore
the problem. The growth in the use of
computers and the internet is unstoppable,
but that does not mean the digital divide
also needs to widen. More work needs
to be done to ensure that everyone
has access to digital tools as and when
they need them, as well as access to
opportunities to help them develop their
skills. While computers are still expensive,
there are tools available that can provide
access to key services at a reasonably
low cost. Raspberry Pi is a great example
— for less than $50, you can buy a fully
functional personal computer that will
plug straight into most modern TVs. From
the start of the pandemic to the end of
2021, the Raspberry Pi Learn at Home
initiative distributed nearly 6000 fully

functional computer sets to educationally
disadvantaged young people in the
UK. The impact was immediate: young
people were more engaged with learning;
parents reported positive changes in their
children’s attitude and behaviour; and
youth and social workers deepened their
relationships with families, enabling them
to provide better support (helloworld.cc/
RPFreview2021).

There have been a number of other
similar initiatives advocating the idea of
one laptop per child (OLPC). However, it’s
important to stress that equipment alone
will not necessarily deliver improvements.
Researchers Thapa and Sein studied an
OLPC scheme in Nepal that had been
widely regarded as a success. They found
that it wasn’t the technology per se that
brought quality education to these schools,
but rather, it was the ecosystem around
the deployment of these devices that had
a more significant role in the success story
(helloworld.cc/thapa2018). Similarly, the
Learn at Home initiative has been backed
by significant support, to ensure that
students were able to get the most from
the devices they were provided with.

While the pandemic widened the digital
divide, it also drew attention to it. With
the issue now more in the spotlight, there
are opportunities for more research and
more initiatives to broaden digital inclusion
and ensure that digital tools can be
used effectively by all.

RESEARCH

FURTHER READING
 �Prensky, M. (2001). Digital Natives,
Digital Immigrants, Part 1. On The
Horizon. 9(5), 1–6.
helloworld.cc/prensky2001

 �Thapa, D., & Sein, M. K. (2018). An
ecological model of bridging the
digital divide in education: A case
study of OLPC deployment in Nepal.
The Electronic Journal of Information
Systems in Developing Countries.
84(2). helloworld.cc/thapa2018

 �Korupp, S. E. (2005). Causes and
Trends of the Digital Divide. European
Sociological Review (ESR). 21(4),
409–422. helloworld.cc/korupp2005

IT IS CLEAR THAT THE PANDEMIC HAS
EXACERBATED INEQUALITIES BETWEEN
THE RICHEST AND POOREST HOUSEHOLDS

“

http://helloworld.cc/holmesburgess
http://helloworld.cc/prensky2001
http://helloworld.cc/scolari2019
http://helloworld.cc/scolari2019
http://helloworld.cc/RPFreview2021
http://helloworld.cc/RPFreview2021
http://helloworld.cc/thapa2018
http://helloworld.cc/prensky2001
http://helloworld.cc/thapa2018
http://helloworld.cc/korupp2005

160

OPINIONFEATURE

The Big Book of Computing Content

omputing curricula generally cover
a wide range of skills, concepts,

and knowledge, and much of the focus is
often on creative projects, programming,
and abstract computer science concepts.
There is a powerful argument, however,
for ensuring that we teach the basic skills
well in the first instance, with a particular
benefit for young people with special
educational needs and disabilities (SEND).

Basic digital skills are any skills that are
required to access and use a computer
effectively. The concept of digital natives
has been widely discredited, but many
teachers believe that young people just
‘get’ computers and can use them with
ease, as they are more confident users.
However, although children may be
experts at swiping and accessing content
on certain devices, such as tablets, they
often lack keyboard and mouse skills, and
the understanding of the basics of an
operating system.

Basic digital literacy is equally
important. The skills and knowledge
required to communicate effectively and
to use current and emerging technologies
are essential if students are to remain
safe and act appropriately online. Young
people with additional learning needs
and disabilities can be among the most
vulnerable in terms of online risks and
behaviours.

Catherine Elliott shares the importance of teaching key digital and digital literacy
skills, and looks at how you can build them with your students

KEY DIGITAL SKILLS FOR
YOUNG PEOPLE WITH SEND

Why is developing fluency in basic
digital skills and literacy important?
1. It reduces cognitive load
Cognitive load relates to the number of items
a person can hold in their working memory.
For many younger pupils and students with
SEND, basic skills such as logging on and
opening files are not practised enough to be
moved to long-term memory, and therefore
rely on working memory. This results in the
frustrating position of a child spending much
of a lesson simply accessing a computer and
finding work. Once these actions become
fluent, learners can concentrate on the
content of the lesson more effectively.

2. It increases confidence in using
technology
Once learners become fluent in using the
computer in basic ways, their confidence
will develop. This will help to increase
their motivation and contribute to a feeling
of achievement.

3. It enables learners to use assistive
technologies effectively and make simple
modifications to content to support
their learning
Mainstream applications and devices
now have a greater amount of assistive
technology built in — for example, Immersive
Reader in Microsoft 365, Voice Typing in
Google Docs, and Speak Screen on the

iPad. If we can teach young people how to
use these options independently as part
of computing lessons, it will help them to
become more effective in their learning.
Similarly, highlighting how to increase the
size of text or change the background colour
in documents will allow learners to modify
digital documents to be more accessible.

4. Digital skills open up greater
opportunities for employment
There are few jobs where digital skills are
not required, and even the application
process generally requires the use of some
elements of technology. For students who
are not taking an IT or computer science
qualification, schools need to consider how
to teach key employability skills, such as
sending emails and searching for information
online. A functional skills qualification in IT
would greatly benefit some learners with
SEND in preparing them for their next steps
in education or employment.

5. It helps students use technology safely
and responsibly
Young people need to be taught about the
risks of online technologies, how to act
appropriately online, and where to go for
help with safely accessing key services.
They need the same opportunities for
learning, entertainment, and shopping as
their peers.

C

161

OPINIONFEATURE

The Big Book of Computing Content

How can we teach key skills effectively?
n �Develop fluency through routine. For

example, pupils open and save work from
the same folder each lesson, and have a
routine for logging on when they enter the
ICT suite or access a laptop. Share these
routines with the other teachers these
learners work with.

n �Provide support materials for learners for
habitual actions — create a set of simple
instructions for each step, with image
support. For example, log on, open an
application, save work, and take a photo
on the iPad.

n �Provide lots of opportunities for repetition
to consolidate learning — time spent
repeating an action multiple times, or
practising keyboard and mouse skills,
is worthwhile for helping key skills to
become fluent early in the year. Consider
how to combine this with other meaningful
tasks in the classroom, or to assist with
other learning goals (for example, typing
practice to support spelling).

n �Teach learners how to use assistive
technologies built into the mainstream
tools that are available at school or at
home through a learning platform. There
are a number of tools to allow students to
dictate rather than type, have text read to

them, or add subtitles to videos. Where
possible, share these with parents to use
at home.

n �Show students how to adapt digital
content to make it more accessible.
A great benefit of the pandemic has
been that we have been able to provide
lesson content for students to access
in their own time, so they can revisit
and consolidate their learning. If this is
in an editable format (such as Word,
PowerPoint, or Google Docs), learners
can change the background colour,
increase the font size, choose a more
readable typeface, and increase line
spacing to make it more readable. If you
are providing videos to watch, enable the
use of closed captions.

n �Model safe and responsible use of
technology in the classroom, and make
your actions explicit through commentary
and discussion.

n �When teaching digital literacy and online
safety, make sure you discuss risks and
behaviour in several different situations
and contexts, as some young people
with SEND struggle to generalise their
knowledge. Issues also need explaining
explicitly for those students who can’t
infer risk from subtle cues.

n �Support weaker readers
with the Immersive Reader
tool, built into Microsoft
365 products and the Edge
browser, and as an extension
in Chrome (see helloworld.
cc/immersivereader for
more info)

n �Enable Speak Selection in the
Accessibility settings on the
iPad to enable students to
listen to any selected text

n �Try the Voice Typing option
in the Tools toolbar in Google
Docs to allow learners to
convert speech to text; there
is also a dictation function
via the keyboard on iPad
and Android tablets, and in
Microsoft Word online

ASSISTIVE TECHNOLOGY IN MAINSTREAM APPLICATIONS

Computing often doesn’t receive enough
space in the curriculum. However, an
investment of time and effort in developing
key digital and digital literacy skills early in a
child’s computing journey will pay
dividends later in increased confidence,
fluency, and access to learning for all of
your students.

CATHERINE ELLIOTT
Catherine is the SEND lead for the Sheffield
eLearning Service (sheffieldclc.net), and she
works on ways to make computing accessible to
all learners. She is a member of the CAS Include
working group, and leads the SEND Virtual and
the Sheffield and South Yorkshire Secondary CAS
Communities (@catherinelliott).

©
 ep

ixp
rod

uc
tio

ns
/st

oc
k.a

do
be

.co
m

http://helloworld.cc/immersivereader
http://helloworld.cc/immersivereader
http://sheffieldclc.net
http://stock.adobe.com
https://twitter.com/catherinelliott

162

Claire Buckler shares the benefits of embedding digital
skills across the curriculum

A WHOLE-SCHOOL
APPROACH TO DIGITAL SKILLS

ike most schools, at Devonport High
School for Boys (DHSB), we want to

ensure that all of our students are equipped
with the digital skills they need to thrive
in the world. We have been working hard
to ensure that even those students who
don’t choose to take computer science are
technologically literate. Across the school,
technology has a strong presence. We
operate a bring-your-own-device policy,
which will shortly be replaced with a one-
student-to-one-Chromebook scheme.
Most departments have Chromebooks or
iPads, and we encourage students to use
mobiles phones as learning devices. As a
Google Reference School, we use Google
tools in creative and innovative ways across
the whole of our curriculum. This healthy
relationship with technology is essential
for our students, to ensure that they are
data-aware and can use digital tools to

communicate and collaborate — vital skills
for being digitally literate after leaving
school. We offer a coding club here twice
a week, which is full of students who don’t
take computer science as an option but still
see the benefits of learning to code.

The benefit of support
All of this comes from having a school that
sees digital literacy as an essential skill and
is happy to provide the time and resources
to get all staff and students on board. My
role is a great example of this: I am the
director of the Learning Commons, a library
and digital breakout space. We have 60
Chromebooks, which are available at break
times, and an innovative learning space.
The Learning Commons is often booked out
by teachers who enjoy the freedom that
the space offers compared to a traditional
classroom. Our assistant head, Nick

L

FEATURE

Berryman, will bring his business students
in when they need to access technology.
He says, “Digital literacy is an important
skill, and at DHSB we have embraced this.
The Learning Commons inspires the future
generation to be creative and learn the skills
needed to adapt.” Google Expeditions is
currently a favourite app among teachers
and students, who can use our class set
of Google Cardboards — the affordable
VR headsets.

Another way we involve students in
technology is with our Digital Leader
scheme. Students take the roles of IT
helpdesk staff, and we assign technical
support tickets to them. They are an
amazing resource for the school, saving time
and allowing technical staff to concentrate
on infrastructure issues. Students who
are successful in their bid to be part of the
Digital Leader scheme take the Google
Applied Digital Skills course (helloworld.cc/
digitalskillscourse). They are available to run
theatre lighting, set up for assemblies, lead
Code Club sessions, and produce graphics
and informatics for school departments.

We currently have over 30 Digital
Leaders, with a healthy waiting list. Some
of the team are also e-safety ambassadors
and run relevant workshops. The students
involved show fantastic problem-solving
and creative thinking skills. But the most
amazing thing about these students, in my
opinion, is that very few of them are taking
computer science as an elective at GCSE.
Clearly, they have a great relationship with
technology. One of our Digital Leaders,

Devonport High School for Boys was
approached to be a Google Reference School
and we opted to use Google for Education
to reduce costs and improve productivity
and efficiency. More importantly, we value
how the apps empower young people to
collaborate, rather than more traditional
virtual learning environments which limit
collaboration and learning.

BECOMING A GOOGLE REFERENCE SCHOOL
DAN ROBERTS, HEAD TEACHER AT DEVONPORT HIGH SCHOOL FOR BOYS

The Big Book of Computing Content

http://helloworld.cc/digitalskillscourse
http://helloworld.cc/digitalskillscourse

163

George, told me he feels he has improved
his digital skills by being part of the team,
and this had enabled him to take different
elective subjects at GCSE.

No time for complacency
With constant access to technology, we
need to be mindful that our students don’t
fall into the trap of becoming passive users,
but stay curious and enthusiastic about
how technology works. We need to ensure
that we still encourage students who do
not opt to study computer science to find
technology interesting and relevant. The
next step for our school is to implement a
maker space. Our maker space will be part
of the Learning Commons, and students
will be encouraged to experiment there at
break times and after school. Rather than
being shoehorned into one subject, any
teacher will be able to use the space to
create and innovate across the curriculum.
Part of our culture here is to inspire an
innovative and entrepreneurial spirit in
all our students. Maker spaces achieve
this by encouraging students to design,
experiment, and build in a hands-on
environment, without being required to

meet any specified outcome, and the best
thing about it is it will be led, of course, by
our Digital Leaders.

Getting started
While having a supportive senior leadership
team has been key to our success, there are
many small wins available. Setting up a
Digital Leader scheme may seem labour-
intensive, but we have quickly seen the
benefits. Offering a Code Club is simple
— the codeclub.org resources don’t need
any planning. A maker space may seem a
lot of work, or expensive, but could be as
simple as a few Raspberry Pis or micro:bits,
with some electrical components, most of
which are reasonably priced. All of these
could encourage more students, outside of
those who choose to study computing, to
be inspired by technology.

STUDENTS IN OUR DIGITAL LEADER SCHEME
ACT AS OUR IT HELPDESK AND WE ASSIGN
TECHNICAL SUPPORT TICKETS TO THEM

“

n ��DHSB Learning Commons is a space where
students are encouraged to use digital technology
as a tool for learning and collaboration

CLAIRE BUCKLER
Claire is director of the Learning Commons
and a teacher of computer science
at Devonport High School for Boys in
Plymouth, UK. She is a Level 2 Google
Educator and Community Leader/Trainer for
Computing at School (@clairegowland).

FEATURE

The Big Book of Computing Content

http://codeclub.org
https://twitter.com/clairegowland

164

Charlotte Spenceley shares her experience of incorporating tablets into her teaching
approach, and how this has benefited both her and her primary pupils

USING TABLETS TO ENHANCE
CROSS-CURRICULAR LEARNING

am fortunate to work in a school
where significant investments

have been made to promote and develop
the computing curriculum — and one key
benefit is that every pupil aged seven to
eleven has their own tablet.

Nearly two years ago, I was given the
opportunity to work with an experienced
computing specialist to develop a cross-
curricular approach to using tablets in the
classroom. This opportunity came about
through fortunate timetabling and as a
result of my reputation for being interested
in using technology with my students —
I’m one of a small number of people who
know how to get the interactive display
and sound in the school hall to work at the
same time! The specialist, who was known
to our head teacher, was employed at the
school to lead the computing curriculum,
provide our pupils with stimulating
opportunities, and deliver continuing
professional development for staff.

When implementing the use of tablets
in the classroom, our aims were for pupils
to develop key literacy skills, explore new
routes for creativity, and learn how to record
and evaluate their work.

Because of these investments in
developing the computing curriculum, I have
learnt more about using technology in the
classroom in the past 18 months than I have
in almost ten years of teaching. Prior to this,
my experience of computer science was very
limited and I had scarcely been exposed to
computing or technology in the classroom.
Tablets were my starting point, and I had one
afternoon a week with our specialist, and a

I science curriculum to adapt around the topic
of rocks. We began our journey with this
topic for timetabling reasons, but quickly
adapted the lessons learnt to other areas of
the curriculum, such as history and English.

Getting started with the tablets
Our journey began with eliciting the pupils’
understanding and curiosity by using the
PicCollage app to write questions over a
photograph of a rock. Straight away, my
students and I encountered problems: we
couldn’t get the camera covers off the cases;
we didn’t know how to capitalise letters;
and we were afraid to press any buttons

n �Let children explore the apps
n �Teach them what key symbols

mean; for example, press + to add
something

n �Introduce one skill at a time

INTRODUCING
TABLETS TO
YOUR PUPILS

n �Using Adobe Spark Video, we were able to bring to
life an investigation into the permeability of rocks

FEATURE

The Big Book of Computing Content

165

for fear of “destroying the tablets” (to use
the children’s words). I questioned myself
throughout: was the time used to model
every tap worth it? Was every child making
progress from their individual starting point?
What was the difference between this and
the tried and tested strategies?

Despite these initial hurdles, the dialogue
created through this activity allowed for
thoughtful, memorable, and reflective learning
among the group. Writing on the tablets
also helped to alleviate the apprehension
that some of the children felt about writing
in exercise books. Misconceptions were
identified, understanding was assessed, and
I was able to reflect on my teaching. As with
most things in a school environment, I learnt
that patience needed to be embraced, and
that the quality of participation, confidence,
and problem-solving skills witnessed in
one afternoon justified the time needed to
embed routines. Most importantly, I learnt
that children need to be taught how to
use technology in a meaningful way, and
not to assume that all young people are
digital natives — a term often used to
describe the generation that has grown up
in the era of technology and the internet.

Growing more confident
We were eager to build on our initial
exercise, and our subsequent activities
explored different methods of recording. A
popular app with my class is Balloon Stickies
Plus, an application that allows you to add
speech bubbles to photos. Not only do they
like the name, they also enjoy being able to
choose between typing and voice recording,
and the freedom to present their work the
way they want to. I have found that taking
away the structure of an exercise book has
allowed children to focus on the content and
creativity of their learning.

One of the most positive changes I’ve
seen in my pupils is their ability to reflect
on their own evolving knowledge. Using
Adobe Spark Video, we were able to bring
to life an investigation on the permeability of
rocks. We used technology to look back at
prior learning, and this helped to predict and
justify the results. As each experiment was
conducted, the tablets were used to record
the results visually. Spark Video supported
our observations, reasoning, and conclusions
by allowing us to explain each step verbally
and annotate the video with additional
information. Having to record experiments

by written methods can sometimes hinder
engagement and enthusiasm. However, by
patiently developing the skills needed to use
tablets as an effective learning tool, children
can grow more confident with taking risks,
and become more engaged, reflective, and
digitally literate learners.

Overcoming barriers
I am still working to overcome some barriers:
balancing book work with technology;
figuring out how to show constructive
marking and give feedback on the tablets;
and planning the next steps in embedding
the cross-curricular use of technology in my
setting. However, my pupils are becoming

“confident”, “reflective”, and “enthusiastic”
learners (to use their own words again) and I
believe that this shows the strong impact
that tablets can have when used as a
learning tool in the primary classroom.

ONE OF THE MOST POSITIVE CHANGES IN
MY PUPILS IS THE ABILITY TO REFLECT
ON THEIR OWN EVOLVING KNOWLEDGE

“

n �Writing on tablets helped to alleviate the apprehension
some of the children felt about writing in books

CHARLOTTE SPENCELEY
Charlotte is an upper-primary teacher and
school council lead at Giffard Park Primary
School in the UK. She is also a newly
qualified teacher mentor and is the health
and well-being champion at her school.

FEATURE

The Big Book of Computing Content

166

or the past three years, I’ve had the
pleasure of running a photography

club for a small group of children. It’s given
me the opportunity to share one of my
own passions with the pupils, as well as
helping them to get creative more often.
In my opinion, too much of primary school
life is taken up by English and maths! We
need to give pupils the chance to let their
creativity flow, and create something
unique and memorable.

Each week, the club meets up and
spends an hour playing with a set of
cameras in and around our school. I set
them a challenge or a theme each week,
and we head off to see what we can snap.
It might be as simple as giving them a title
such as ‘Stone’ or ‘Shadows’ and seeing
what they come up with. Other weeks, we
might go on quick trips, or maybe look at
the work of a professional photographer.
The teaching comes from talking about
photography concepts during each of
these activities. We talk about lighting,
composition, the rule of thirds, and what
they think makes a good photograph.

Sharing is key
There’s no point in the pupils taking all
these wonderful pictures if they are never
seen again! Our club has a few different
ways of sharing their beautiful work. First,

at the start of the year, they’re given a
large art pad to be used as their portfolio.
This is for them to keep and use. It’s not a
book that gets marked, but a pad that gets
admired. It should be a reflection of their
work and a space for them to show off
their talent.

The second way is our own little
blog space. The idea is for the pupils to
keep it up to date and share their work.
It looks great and is an excellent way for
them to showcase their photos. The trick
with this is to find a blogging platform with
a healthy storage allowance, otherwise
you’ll fill it up pretty quickly. This has also
been a great way for us to share the work
with students’ parents. I can quickly send
out the link in an email so they can see the
great work their kids do in the club.

The last method is a favourite of the
pupils. Taking a wall in one of the main
school corridors, we’ve created our very
own Photography Club Gallery. They
get to pick their favourite snaps (some
of them would not be my choice!) and
display them in frames, labelled with their
names and the camera used. All I did was
buy the cheapest frames I could find at
IKEA, and they love the gallery. We have
a three-month policy on changing the
photos, just to make sure the gallery stays
fresh and new. The pupils have even been

F

Creating future artists and photographers is much more than just point and shoot

commissioned to take some shots for
the staffroom walls by the deputy head
teacher! This is such a positive experience
for the kids and is hopefully something
they’ll remember for a long time.

Simple equipment
When getting started and looking at buying
equipment for a club like this, it’s important
to remember that the type of camera used
really doesn’t matter. Honestly!

We started off with some simple point-
and-shoots: bog-standard, cheap, and
cheerful. The trick was to get the kids
thinking about how they could use them
in different and interesting ways, and
how they could make sure the subject in
the photograph was captivating. After a
few months, I managed to beg, steal, and
borrow from the head to get some Sony
A5000s. These cameras are great. They
have all the power of a DSLR, but they’re
small enough for little hands. These were
a bit pricey and are fairly delicate — a
scenario that will fill all primary-school
teachers with dread. So with the little
funding I had left, I bought a few ‘rough
and tough’ cameras. I chose the Ricoh
WG-30, and I can’t recommend these
cameras enough. They’re waterproof,
shockproof, and even have digital
microscope capability. They really

CREATING DIGITAL ARTISTS:
YOUNG PHOTOGRAPHERS

FEATURE

The Big Book of Computing Content

167

stopped me from worrying when a child
was running down the mud track in the
middle of the Yorkshire Dales!

Allowing the children to investigate and
explore with the cameras has been one of
my drives for the club. One way I’ve done
this is by collecting bits and pieces for us to
use with the cameras. I’ve been to camera
shops and bought old, broken, and scrap
SLR lenses. They’re great for looking at how
a camera works, but also for holding up to
the lens of your cheap camera and taking
some interesting snaps. I’ve also added a
few small torches for painting with light. Do
a few Google searches to find out how you
can achieve this; it’s incredible. Using a slow

shutter speed, you can paint using the light
of a torch. So cool! My personal favourite
piece of equipment, though, is a glass
ball. Pick one up on eBay for little money,
and get ready to take some unbelievable
pictures. They make even the most novice
photographer look like a pro.

Three years on…
Having worked with the same small group
of children for such a long time, I’ve seen
them develop right before me. The club
has seen them change into future artists. It
has instilled in them a sense of aesthetic.
It has given them the opportunity to create
something with the sole purpose of looking

good. I’m not sure how often we get to do
that in a primary school anymore, with all
the pressure of tests. My biggest hope is
that it’s passed on a love and enthusiasm
for photography in the pupils, and that it’s
something they’ll remember doing. I can’t
wait to see some of their portfolios in
future life. Fingers crossed!

n A simple glass ball can create magical images

n �On a cold and frosty morning, use the macro
setting for some interesting close-ups

n Use the slow shutter speed on a DSLR to paint with lightn The DSLR pro photographers!

n Broken equipment is given new life in the hands of inquisitive minds

FEATURE

The Big Book of Computing Content

MATTHEW MOORE
Matthew is a computing specialist at a primary
school in Bradford, UK. He is also a CAS Master
Teacher and Hub Leader, as well as a Raspberry
Pi Certified Educator.

168

Sway Grantham shares tips on how to teach children under
seven to log on to school computers independently

ust like blowing their noses or tying
their shoelaces, logging on to school

computers is a skill young primary-school
students need to learn. However, many
children can find logging on by themselves
quite challenging. Here are some top tips
to help you get your youngest learners
logging on to devices independently.

Simple usernames and passwords
Consider what is making it hard for
the learners to log on. If it’s unrealistic
usernames and passwords, you should
speak to the IT manager, or whoever
controls your logins, and make these
appropriate for the age and ability of the
children. Their first name and a ‘1’ for Year
1, and a three-letter password, is more
than enough for this age group. However,
you should avoid them all having the same
password, as we do not want to advocate
this, even with our youngest learners.

Check and build the foundations
There is a range of foundational skills
that children need before they can log on
independently, including turning on and
shutting down computers safely, using a
keyboard, and using a mouse to click in
a box. Do your students have these skills
already? If they don’t, it’s worth spending
some time on developing them, so that
logging on isn’t an overwhelming task.

Teach it explicitly
If you plan a lesson in which the outcome is
that learners have logged on successfully,
you can break down each step and take
your time, without feeling the pressure of
moving on to other lesson content. For those
learners who still struggle, a visual prompt
is often useful — you can hand them a chart
showing each of the steps, to encourage
them to continue independently.

Peer support
Can the children who have mastered the
skill support those who haven’t, until they
become more independent? I would often
set table challenges for everyone on one
table to get logged on, awarding school
points for the fastest table. This encouraged
the more capable children to support those
who were struggling, reducing the time
pull on the teacher, and also allowing the
learners to learn from their peers. I also had
a rule that the only person allowed to touch
the computer was the person who was
using it, so the helpers could tell them what
to do, but not do it for them!

Don’t let it be a barrier
If, after trying all of the above, you still have
some learners who are struggling, they
should still be able to access the computing
curriculum with support. Just like if a child
was unable to dress themselves for PE,

you would eventually intervene, but you
might set them a personal target to work
on that specific skill until they got there. We
don’t want to impact the children’s attitude
to computing because they struggle with
logging on.

Logging on is a skill that many adults
take for granted, but it is a skill in itself. We
need to give it the amount of time it
deserves, so that we can get the majority of
our learners to do it independently as soon
as possible. This not only makes our lives
easier, but it also broadens the learners’
opportunities for using technology across
the curriculum in the future.

J

SWAY GRANTHAM
Sway is a senior learning manager at the
Raspberry Pi Foundation, where she leads
a team developing computing resources for
primary teachers (@SwayGrantham).

LOGGING ON AND BEYOND

FEATURE

The Big Book of Computing Content

©
ye

llo
wj

/s
to

ck
.ad

ob
e.c

om

http://stock.adobe.com
https://twitter.com/SwayGrantham

NOTES

Everything you need to know about our computing and
digital making magazine for educators

Q WHAT IS HELLO WORLD?
Hello World is a magazine and accompanying
podcast for computing and digital making

educators. Written by educators, for educators, the
magazine is designed as a platform to help you find
inspiration, share experiences, and learn from each other.

Q

A

WHO MAKES
HELLO WORLD?
The magazine and the accompanying podcast
are produced by the Raspberry Pi Foundation.

A

Q

A

WHEN IS IT AVAILABLE?
Your 100-page magazine is available three times
per year — keep an eye out for special editions

too! Check out our podcast at helloworld.cc/podcast to
get more great Hello World content between issues.

“HELLO, WORLD!”

Hello World is free now and forever as a Creative
Commons PDF download. You can download every
issue from helloworld.cc. Visit the site to see if
you’re entitled to a free print edition, too.

IT’S FREE!

Q WHY DID WE MAKE IT?
There’s growing momentum behind the idea of
putting computing and digital making at the heart

of modern education, and we feel there’s a need to do
more to connect with and support educators, both inside
and outside the classroom.

A

170 The Big Book of Computing Content

http://helloworld.cc/podcast
http://www.helloworld.cc

WANT
TO GET

INVOLVED?
There are numerous ways for you to get involved with the magazine —

here are just a handful of ideas to get you started

Give us feedback
Help us make your magazine better —
your feedback is greatly appreciated.

Ask us a question
Do you have a question you’d
like to share? We’ll feature your thoughts
and ideas.

Tell us your story
Have you had a success (or failure) you think the
community would benefit from hearing about?

Write for the magazine
Do you have an interesting article idea? Visit
helloworld.cc/writeforus to submit your idea.

FIND US ONLINE
www.helloworld.cc

@HelloWorld_Edu

fb.com/HelloWorldEduMag

GET IN TOUCH Want to talk? You can reach us at:

contact@helloworld.cc

171

THEME:
 COMPUTER SYSTEMS

& NETWORKS

NEXT
ISSUE OUT

JANUARY 2023

The Big Book of Computing Content

http://helloworld.cc/writeforus
http://www.helloworld.cc
https://twitter.com/HelloWorld_Edu
http://fb.com/HelloWorldEduMag
mailto:contact%40helloworld.cc?subject=

helloworld.cc

https://helloworld.raspberrypi.org/

