
 

 

 

 

 

 

 

 

 

 
 

 

 

 

Using the Modbus TCP Client Interface of the UR Robot 
 

Original instructions (EN) 

Version: 0.1.4 

 

Polyscope version 

3.8/5.2 and above 

 

 

  



  

All rights reserved 2   
 
 

 

  

The information contained herein is the property of Universal Robots A/S and shall not be reproduced in whole or in part 

without prior written approval of Universal Robots A/S.  

The information herein is subject to change without notice and should not be construed as a commitment by Universal Robots 

A/S. This manual is periodically reviewed and revised. 

 

Universal Robots A/S assumes no responsibility for any errors or omissions in this document. 

 

Copyright © 2009–2018 by Universal Robots A/S 

 

The Universal Robots logo is a registered trademark of Universal Robots A/S. 



  

All rights reserved 3   
 
 

 

Contents  
Using the Modbus TCP Client Interface of the UR Robot ....................................................................... 1 

1. General information........................................................................................................................... 4 

1.1 Purpose....................................................................................................................................... 4 

2. Introduction ........................................................................................................................................ 5 

2.1 Understanding Modbus client versus server ........................................................................... 5 

2.2 What is a Modbus TCP interface? ............................................................................................ 5 

2.3 When to use a Client or Server? ................................................................................................ 5 

i. Client ........................................................................................................................................... 5 

ii. Server .......................................................................................................................................... 6 

Conveyor Tracking ............................................................................................................................. 6 

3. Quick start (Robot as Modbus client communicating to device acting as server) ....................... 7 

3.1 Polyscope Setup ........................................................................................................................ 7 

i. Network Address ....................................................................................................................... 7 

ii. MODBUS Client I/O Setup.......................................................................................................... 8 

3.2 Modbus Device Setup (Phonex Contact ILB as example) .................................................... 12 

i. Network Setup .......................................................................................................................... 12 

ii. Watchdog settings IO module................................................................................................. 13 

4.     Modbus Signals and variables ....................................................................................................... 14 

4.1 DIGITAL INPUTS and OUTPUTS ................................................................................................... 14 

4.2 REGISTER INPUTS and OUTPUTS ............................................................................................... 14 

5.Using Modbus signals (variables) in a robot program ...................................................................... 16 

6. Accessing bits from script commands ............................................................................................. 17 

7.Using internal Modbus client access robots server registers and bits ............................................ 18 

8.Modbus Specifications ........................................................................................................................ 18 

8.1 Register update rate...................................................................................................................... 18 

8.2 Addressing..................................................................................................................................... 18 

9.Modbus functions available ................................................................................................................ 19 

10.Modbus error message with exception codes ................................................................................ 20 

11.Terminology ....................................................................................................................................... 21 

12.Related Articles .................................................................................................................................. 22 

 

  



  

All rights reserved 4   
 
 

 

1. General information 
 

1.1 Purpose 
 

This article provides a complete understanding of the Universal Robots robot controller 

Modbus TCP client interface (using the robot as a client to access some other Modbus 

server). 

 

For information regarding the robots Modbus server, please consult document 16377. This 

article was written assuming the Modbus functionality provided with Polyscope version 5.2 

and 3.8 (eSeries and CB3 robots respectively).  

For older versions of Polyscope there might be some differences. 

 

This article also provides a quick example of using the robots Modbus client interface to 

expand the robots IO through a Phoenix Contact IO block that behaves as a Modbus/tcp 

server. 

  



  

All rights reserved 5   
 
 

 

2. Introduction 
 

2.1 Understanding Modbus client versus server 
 

The UR robot can behave as Modbus client or server.  

The Modbus TCP protocol is a client/server type of architecture so it’s important when 

determining how to use the Modbus interface and setup communication with other Modbus 

devices to understand which device is the client and which is the server.  

It’s also important to keep the terminology straight. Client = master and server = slave. The 

client is making requests of the server. The server is passively listening for requests and the 

server is never initiating communications on the bus on its own (unsolicited). 

 

2.2 What is a Modbus TCP interface? 
 

The Modbus TCP protocol is the evolution of Modbus serial protocol (developed by Modicon in 

1979) implemented under an Ethernet TCP/IP network communications stack.  

Some people might refer to the Modbus TCP client as a fieldbus communications ‘driver’.  

When using the UR robot Modbus TCP client interface, it can be used to communicate to other 

robots, PLC’s, HMI’s or IO devices (when the IO device is functioning as a Modbus server). 

To understand more of the history of this protocol and different uses, this web site is a good 

resource: http://www.simplymodbus.ca/index.html 

 

2.3 When to use a Client or Server? 
 

i. Client 
If your goal is to expand the IO of the robot and no external PLC is involved in your 

system design, then one way to do this is to use an external fieldbus style IO 

module. Most fieldbus style IO modules (Phoenix Contact, WAGO, etc) only function 

as a modbus server hence the robot must be the client. Within the Universal Robots 

user manual for CB3 version 3.8 section 13.11 (Polyscope: Installation -> Modbus 

Client IO Setup) discusses the modbus client module configuration in detail. For 

eSeries robots this is detailed in section 16.4.1 of the user manual (Polyscope: 

Installation -> Fieldbus -> Modbus Client IO Setup). 

 

  

http://www.simplymodbus.ca/index.html


  

All rights reserved 6   
 
 

 

ii. Server 
If the external device ONLY behaves as a Modbus client, then in this situation the 

robot would have to behave as the server. 

If you want the robot to be the passive recipient in your communication scheme, 

then it might be more appropriate to use it as the server.  

If you had two UR robots that needed to share a lot of data (as an example for some 

type of coordination) then it might make sense to make one the server (slave) and 

the other one the client (master), but the UR robot can function as both client and 

server at the same time.  

Using the robot as a server is going to use less CPU resources, if that is a concern 

then it might be better to let the external device (PLC or HMI) be the client. Most 

HMI’s and PLC’s will function as a Modbus client and if that is the case, then it’s 

better to designate the robot as the server in this communication scheme.  

Conveyor Tracking  

If you are attempting something like conveyor tracking where the conveyor counts 

are coming from an encoder via Modbus, one option is to have the conveyor signals 

being read by the PLC (because the PLC is more deterministic) and then have the 

PLC communicate the encoder counts via Modbus/tcp, as the client and use the 

Modbus server of the robot.  

This makes the PLC the master, which is responsible for getting the conveyor 

encoder counts to the robot in a timely fashion. 

 

 

However, if the encoder is capable of behaving as a Modbus server then the robot 

can be the client.  

There is an existing article on the UR support portal that discusses this scenario: 

How To article 18426; Conveyor tracking using encoder that outputs a Modbus 

register.  

https://www.universal-robots.com/how-tos-and-faqs/how-to/ur-how-tos/conveyor-

tracking-using-encoder-that-outputs-a-modbus-register-18426/ 

  

https://www.universal-robots.com/how-tos-and-faqs/how-to/ur-how-tos/conveyor-tracking-using-encoder-that-outputs-a-modbus-register-18426/
https://www.universal-robots.com/how-tos-and-faqs/how-to/ur-how-tos/conveyor-tracking-using-encoder-that-outputs-a-modbus-register-18426/


  

All rights reserved 7   
 
 

 

3. Quick start (Robot as Modbus client 

communicating to device acting as server) 
 

The following example shows setting up a connection to a Phoenix Contact IO block, that 

behaves as a Modbus server. The Phoenix module is a p/n 2832962 (ILB ETH 24 DI16 

DIO16-2TX).  This is known as an Inline Block IO module with a built-in Modbus/TCP 

buscoupler. 

  

3.1 Polyscope Setup 
 

i. Network Address 
The robot needs to have an IP address that is compatible with the IP address of the 

device you are trying to communicate with. The network address setup on the robot 

is shown in section 15.5 of the Universal Robots CB3 User Manual. For an eSeries 

model these network settings are in a different place within the Polyscope GUI 

(Settings > System > Network).  When you are setting it up as a static IP (or DHCP, 

etc) then make sure you have an IP address and subnet mask for the robot that 

matches the device. As an example, if the robot has an IP address of 172.16.1.2 

then the device should be something like 172.16.1.199 and they should both have a 

subnet mask of 255.255.255.0 

Here is an example of how that network setup looks, on the eseries network setup 

screen (notice that it indicates Network is Connected if robot is plugged into a valid 

hub/switch – this only indicates a valid electrical connection to an Ethernet device, 

not that it is communicating to anything yet): 

 

For network connectivity robustness, the best approach is to have the controller and 

Modbus device plugged in to an Ethernet switch/hub. In addition, you can have a 

laptop plugged into this network and use the ping command in the command 

prompt/terminal from the PC, to make sure the robot and device both have valid IP 

addresses. 



  

All rights reserved 8   
 
 

  

ii. MODBUS Client I/O Setup 
 

1. On the robot, the Modbus client interface is setup within the Installation settings. 

In CB3 robots (Polyscope 3.x) this is accessible from Installation > Modbus Client. 

On the eSeries you can get to this from within Polyscope, Installation > Fieldbus > 

Modbus. To set this up you need to know the IP address of the device and from the 

device manufacturers documentation, you need to understand where the data you 

want to access resides in terms of its address offset. 

2. As an example see the image below, where we have configured a Phoenix ILB 

module with IP address 172.16.1.199. For the Phoenix ILB module, when mapping 

to digital outputs as coils (discrete bits), the addressing starts at 0.  

For digital input (contacts) the addressing start at 16 (this may seem odd but for the 

Phoenix module this is a special case and is explained in more detail below). Every 

manufacturer does this differently. See the screenshot below as an example of how 

to map a DO (at address 0) and a DI on the Phoenix module. 

 

Figure: Modbus client IO setup 

   

 

Selecting the Value checkbox will toggle that output ON. In this example we have 

the DO wired to the DI, so the DI comes on at the same time. The green circle to the 

left of the ‘Digital Output’ field, shows the status of that signal as to whether the 

robots Modbus client driver can communicate to it or not. Green is good, gray is no 

connection, yellow would indicate some type of error. 

 

In most cases it is recommended 

to check ‘show advanced options’ 

and then enable the option for 

sequential mode (this will make 

the communications less 

vulnerable to network collisions 

and more robust). 
Status indicator (green is good 

connection, valid addressing, etc) 



  

All rights reserved 9   
 
 

 

To get more detailed information about Modbus client I/O setup, see section 13.11 of the 

CB3 user manual or section 16.4.1 in the eSeries user manual.  

Sequential mode is described in more detail there as well, as the errors you might see for 

signal connectivity status. 

 

Here is a quick view of where/how sequential mode is enabled: 

 

 

 



  

All rights reserved 10   
 
 

  

 SPECIAL CASE OF ADDRESS MAPPING FOR PHOENIX IO MODULE 

The address of IO within the Modbus table for the Phoenix module, has the DI’s of the 

Phoenix modules starting at address 16 as indicated above. This might seem strange, but 

this information can be derived from the Phoenix documentation (7046_en_02.pdf). This 

module is a special case because the first 4 slots are DIO modules, which means the first 

16 bits are usable as DI or DO and depending on which way you are using them dictates 

how they should be mapped (addressed). In our example, we are using the first 16 bits as 

DO’s and therefore they start with addressing at 0 and the next 16 bits are ONLY DI’s and 

their addressing starts at 16 according to this table from the Phoenix document: 

 

 

 

  



  

All rights reserved 11   
 
 

 

The physical Phoenix ILB module looks like this: 

 

 

 

If the Modbus IO module is configured properly (watchdogs disabled, etc, more on that 

below) then if you disconnect the Ethernet cable connecting the module to your network the 

status indicator on the left will go gray and when you reconnect the cable the status should 

go back to green.  

In other words, if the module is setup properly (as per the manufacturer’s instructions) it 

should automatically recover from most normal network faults.  

This should be the goal with ANY fieldbus IO modules. 

 

  

Input and Output 

modules, used as 

DO here (as DO’s 

addressing starts 

at 0) 

Input only modules 

(addressing starts 

at 16) 



  

All rights reserved 12   
 
 

 

3.2 Modbus Device Setup (Phoenix Contact ILB as example) 
 

Here we are discussing a specific example of setting up the Phoenix Contact ILB 

Modbus/TCP module (see image above). We do not go in to every detail but only try to 

highlight the configuration options that will ensure the most success. In general, you 

should always consult the manufacturer’s instructions for more specific details. 

 

i. Network Setup 
 

1. To setup the IP address of the Phoenix module for the first time, you need to use 

a MS Windows utility from Phoenix (this utility uses a bootp protocol, it’s called 

IP_Assign.exe and it incorporates an IP assignment wizard). Please consult the 

Phoenix user manual for the use of that utility. Once the IP address is setup you 

can get access to the configuration pages of the module. Most modules like this 

have a built-in web server with configuration pages that allow you to do things 

like disable watchdog functions (which is really useful). 

 

2. Phoenix IP configuration - Once the Phoenix module has an IP address that is 

compatible with a PC on the same network, you can access the module through 

its web server pages. From here you can adjust some settings such as changing 

some component of the IP address or the watchdog. In the image below we 

have opened a browser and entered the IP address of the Phoenix module 

(172.16.1.199) and we get this configuration page: 

 

 



  

All rights reserved 13   
 
 

 

ii. Watchdog settings IO module 
 

1. Most Modbus servers (as IO modules in particular) have some type of watchdog 

function. The purpose of the watchdog is to give the user some way to control 

the failsafe state of the IO such that IF the network were to go down, or the 

Modbus client (the robot controller in this scenario) were to quit communicating 

with the module, that it would assert its digital outputs to a certain state. The 

problem with this watchdog functionality typically is that when the network 

connection is broken, and the watchdog is tripped, the only way to recover is to 

cycle power on the IO module (this functionality is vendor specific). This is really 

inconvenient for many reasons. So, if your goal is to have a robust network 

connection from the robot controller to the IO device that will recover 

automatically from network anomalies then disabling the watchdog of the IO 

module is a good idea. Here is how that is done on the Phoenix ILB module: 

 

 

After disabling the watchdog, you need to Apply and Reboot to save this setting 

in non-volatile storage on the module, so it is retained after a power cycle of the 

module. 

 

 

 

************** END OF QUICK START SECTION **************  

 

 



  

All rights reserved 14   
 
 

 

4.Modbus Signals and variables  
 

When we setup Modbus modules in the Modbus client IO setup section within the Installation 

settings, Polyscope will generate some URscript functions for us (transparent to the programmer) 

that read and write to these signals. These Polyscope functions (and the Modbus/TCP client driver 

of the robot) are only capable of reading/writing to Boolean data (bits or coils) and register data 

(16 bit to be specific). You cannot communicate with Modbus devices that incorporate string data 

(ascii) or floating-point data, the driver does not support this.  

 

4.1 DIGITAL INPUTS and OUTPUTS 
 

The Modbus client IO setup allows you to read/write digital signals (Boolean). Once these are 

mapped in the client IO setup, Polyscope creates the variable that gets mapped to that signal.  

In the case of a Modbus digital input that variable will be a Boolean and therefore it can only be 

True or False (it can contain no other value). In the image below mb_DI_start is an example of such 

a signal. If the signal is an output, then it can only be set via the SET command to Hi (ON) or Low 

(OFF). 

 

 

4.2 REGISTER INPUTS and OUTPUTS 
 

The Modbus register data types that the Modbus client can access are limited to 16-bit registers. 

The UR controller cannot deal with 32 bits register data. Assuming the Modbus server that the 

robot’s client is connected to, is serving up 16 bit register data then in the image below we have a 

register input mapped to mb_Recipe. This variable will contain a 16-bit unsigned integer value. So, 

if we read in a value where the MSB of this word is set such as 1000 0000 0000 0000 (binary) we 

will see a value of 32768 stored in the variable mb_Recipe. 

 

  



  

All rights reserved 15   
 
 

 

 

The equivalent URscript functions that gets called from this setup (what gets contributed to the 

overall program_name.script file from the installation) are documented in the script manual.  

Those URscript functions are: 

Modbus_add_signal() 

Modbus_delete_signal() 

Modbus_get_signal_status() 

Modbus_send_custom_command() 

Modbus_set_digital_input_action() 

Modbus_set_output_register() 

Modbus_set_signal_update_frequency() 

 

 

See the URscript Programming Language manual to learn more about these functions 

and their parameters. Of course, you need to be careful if using these functions in a 

program directly and setting up configurations within the ‘MODBUS Client IO Setup’ 

screen of the installation as conflicts could arise.  

 

 

  



  

All rights reserved 16   
 
 

 

5.Using Modbus signals (variables) in a robot 

program 
 

When you create a modbus client module and have a signal name defined, Polyscope will allow 

you to use that signal or variable within a program. In the example above, we have various signal 

names defined and mapped to some external server:  

mb_DI_start ; is a digital input telling the program to start 

mb_DI_stop ; is a DI telling program to stop 

mb_DO_running ; is a DO telling the external equipment that the program is running 

some sequence 

mb_Recipe ; is a register input that tells the program what ‘recipe’ to run. In other 

words, which part to pick up and place somewhere 

 

 

  



  

All rights reserved 17   
 
 

 

Following is an example of how all these signals might be used in a program that is driven by these 

signals from an external source (perhaps a PLC with a Modbus server module). 

 

So, the Modbus signals can be used in many different Polyscope commands such as: 

- Wait (waiting for digitals or analogs/register inputs) 

- Set (setting digital outputs to ON or OFF, setting analog outputs) 

- If-Then-Else expression 

- Loop 

- Assignment (as long as you assign to a similar variable type) 

- Switch-Case 

 

6. Accessing bits from script commands 
 

If you had a Modbus register being read by the robot and wanted to access the bit level data within 

that register (example – to determine if a particular bit was set) there are URscript functions for 

doing this.  If you wanted to read the MSB from the variable mb_Recipe (shown above) then that 

function would look like this: 

   Bin_list:=integer_to_binary_list(mb_Recipe)  << using an Assignment command >> 

   And then we could evaluate ‘Bin_list[0] =? True’ to determine if that bit was really set. 

There is a corresponding function called binary_list_to_integer() which will convert the values in a 

binary list back to an integer to it can be written back out to a device via a Modbus output register. 

  



  

All rights reserved 18   
 
 

 

7.Using internal Modbus client access robots server 

registers and bits 
 

Any data/status produced by the robots own Modbus server can be accessed by a program 

running on the robot by using the Modbus client module with an IP address of 127.0.0.1 (the 

‘loopback address’). As an example, if you wanted to read the state of ALL of the robots physical 

digital outputs into a register this is what that configuration would look like (in this case DO_0 and 

DO_1 are set therefore this is an integer value of 3) : 

 

 

8.Modbus Specifications 
 

8.1 Register update rate 
 

Whatever you set it to, not guaranteed to be updated at that rate necessarily since Modbus 

communications are non-deterministic and lower priority in the robot controller. 

 

8.2 Addressing 
i. 0-based 

ii. Unsigned integer 

iii. Indexing - Some MODBUS units use designated addresses for each function code, 

i.e. Siemens use: coils (generally addressed as 0xxxx), contacts (1xxxx), input 

registers (3xxxx), holding registers (4xxxx). To solve this issue, address "x" is 

reflected at 10000+"x", 20000+"x", 30000+"x" and 40000+"x" Address 0 is also 

reflected at address 9999, as some units have an address starting at 1 

 



  

All rights reserved 19   
 
 

 

9.Modbus functions available 
 

The Modbus client interface supports Function Codes 0x01 through 0x06. The function code is a 

low-level code that is embedded within the protocol and sent to a server. Below is a description of 

what these function codes mean and do within the Modbus protocol. 

a. 0x01: READ_COILS (read output bits) 

b. 0x02: READ_DISCRETE_INPUTS (read input bits) 

c. 0x03: READ_HOLDING_REGISTERS (read output registers) 

d. 0x04: READ_INPUT_REGISTERS (read input registers) 

e. 0x05: WRITE_SINGLE_COIL (write output bit) 

f. 0x06: WRITE_SINGLE_REGISTER(write output register) 

 

For more detail on this see section 16.4 of the URx Software Manual. Here is an excerpt: 

 

 

 

 

  



  

All rights reserved 20   
 
 

 

10.Modbus error message with exception codes 
 

a) E1 ILLEGAL FUNCTION (0x01) The function code received in the query is not an 

allowable action for the server (or slave). 

b) E2 ILLEGAL DATA ADDRESS (0x02) The function code received in the query is not 

an allowable action for the server (or slave), check that the entered signal address 

corresponds to the setup of the remote MODBUS server. 

c) E3 ILLEGALDATAVALUE (0x03) A value contained in the query data field is not an 

allowable value for server (or slave), check that the entered signal value is valid for 

the specified address on the remote MODBUS server. 

d) E4 SLAVE DEVICE FAILURE (0x04) An unrecoverable error occurred while the server 

(or slave) was attempting to perform the requested action. 

e) E5 ACKNOWLEDGE (0x05) Specialized use in conjunction with programming 

commands sent to the remote MODBUS unit. 

f) E6 SLAVE DEVICE BUSY (0x06) Specialized use in conjunction with programming 

commands sent to the remote MODBUS unit, the slave (server) is not able to 

respond now. 

 

  



  

All rights reserved 21   
 
 

 

11.Terminology 
 

a) Modbus TCP – Protocol built upon a TCP/IP stack that implements the Modbus 

communication protocol on Ethernet. 

b) Server – Servers are passive software components that ‘serve data requests’ to 

clients. Servers do no initiate communications unsolicited. Server = slave. 

c) Client – The client is also known as the master and it is the software component in 

the communications architecture that is soliciting data from the server. Client = 

master. 

d) Coil – A coil refers to a traditional PLC relay coil but it basically equates in modern 

day terminology/usage to a digital output. 

e) Contact – refers to a digital input. 

f) Register – Integer data, usually used to represent analog data or a counter from an 

encoder or drive. 

g) Bit – Could be a digital output or input or some binary element of a word (16 bits) 

data type. 

h) Read – The Modbus client is typically reading input contacts from some device. 

i) Write – The Modbus client is typically writing to a coil or register that represents 

some output data type. 

j) Slave ID – Each slave in a network (slaves are under control of the master/client) 

has a unique unit address from 1 to 247. For most devices under Modbus TCP the 

slave ID is not used and if that is the case then it is set to 255. The UR Modbus TCP 

client driver does this by default but it also gives you the ability to change it if 

needed (see below). 

  



  

All rights reserved 22   
 
 

 

12.Related Articles 
  

Using a barcode reader directly with the robot – 19450 

 

Data Source Matrix For Remote Access – 33474 

 

Conveyor tracking with wizard – 21733 

 

Switch case – 18861 

 

Modbus Register and Digital I/O – 19252 

 

Modbus TCP server article - 16377 

 


