
MODBUS TCP with Kolver K-Ducer
introduction

Industrial communication protocols with serial cables

Based on RS-232 and/or RS-485 standards

Note:

Kolver EDU/TOP and K-Ducer don’t follow any of these protocols on their serial
ports.

They simply transmit the results string (printer string) at the end of each
screwdriving or on any errors, following the RS-232 standard.

Based on the TCP/IP standard

Based on other/custom standards

Industrial communication protocols via ethernet cables

RT
real
time

Supported directly by the K-Ducer on CN5

(and others) indirectly supported by the K-Ducer via procol converters such as
AnyBus. Must purchase a device with “MODBUS TCP Client” interface, and
configure it to communicate with the K-Ducer using MODBUS TCP

TCP/IP is the same standard used by non-industrial
communication protocols such as:
http (web browsing), FTP, SSH, telnet, etc

MODBUS TCP vs OPEN PROTOCOL
Both supported by K-Ducer

MODBUS TCP OPEN PROTOCOL

Specifies how messages are
constructed and how data is
to be exchanged

✔ ✔

Specifies a list of MID
commands specific to
screwdriving

✘ ✔

Ready-to-use libraries for PC
and virtually every PLC with
an ethernet port

✔ ✘

Plug-and-play use on many
‘MES’ software packages
(VGP+, FactoryLogix, ToolsNet, Tulip, ...)

✘ ✔

MODBUS TCP: Client vs Server
MODBUS TCP Server = K-DucerMODBUS TCP Client = PC, PLC

Ethernet Switch
(optional)

Client role:

Open/close TCP connection (port 502)*

Sending MODBUS requests
Messages must be constructed appropriately, following:

1. MODBUS specifications (unit ID, function codes, etc)*
2. K-Ducer MODBUS map

Server role:

Accept/refuse connection

Replying to messages (requests)

Server does NOT send unsolicited
messages (server only sends replies)

*usually taken care of by the library provided by PLC manufacturer

MODBUS Map
The MODBUS protocol has two types of data and two types of data access:

- 2 data types: single bit , and 16-bit word
- 2 access types: read only, and read+write

This results in four subdivisions (four arrays): discrete inputs, coils, input registers, and holding registers

Each of these four is an array of data, either bit or word, either read only or rear + write.

The manufacturer decides how to organize the data (settings, remote control commands, parameters etc)
onto these four arrays; the MODBUS protocol does not specify how these arrays are to be used, only the
types of data and acces that each one has.

The way the data is organized is called the MODBUS Map

Array name => Discrete inputs Coils Input registers Holding registers

Data type => 1-bit (boolean) 1-bit (boolean) 16-bit (word) 16-bit (word)

Access type => Read only Read + Write Read only Read + Write

MODBUS function codes
Every MODBUS request sent by the client contains the following:

- whether the request is to read or write some data
- which one of the four arrays to access
- which address (or range of addresses) of the array to read or write

The MODBUS function code is simply a number identifying the type of data request, as follows:

Array name => Discrete inputs Coils Input registers Holding registers

Data type => 1-bit (boolean) 1-bit (boolean) 16-bit (word) 16-bit (word)

Access type => Read only Read + Write Read only Read + Write

Function code to
read or write to
the array =>

0x02 (read
discrete input)

0x01 (read coil)
0x05 (write coil)

0x04 (read input
register)

0x03 (read holding
register)
0x06 (write holding
register)

MODBUS: message structure
Fortunately, the MODBUS protocol is widely supported by PLCs and PC libraries, so the end user rarely
has to worry about how to construct each message and TCP packet correctly.

Rather, the end user simply specifies the function code, the address of the data to read, or the address
of the data to write along with the value to write. The PLC/PC library will take care of building the TCP
packet, sending it, and receiving the response from the server (ie from the K-Ducer).

Bringing it all together: K-Ducer MODBUS Map
Array name => Discrete inputs Coils Input registers Holding registers

Data type => 1-bit (boolean) 1-bit (boolean) 16-bit (word) 16-bit (word)

Access type => Read only Read + Write Read only Read + Write

Function code to
read or write to
the array =>

0x02 (read
discrete input)

0x01 (read coil)
0x05 (write coil)

0x04 (read input register) 0x03 (read holding
register)
0x06 (write holding
register)

K-Ducer data or
commands
contained =>

Bits mirroring the
physical input
pins 1-20 of CN3
(read only! Not
for remote
control via
modbus)

Bits mirroring the physical
output pins 23-43 of CN3
(read only), plus:

Bits for remote control of
the screwdriver via
MODBUS: start, stop,
reverse, OK, ESC, Reset
(read + write access)

Words with data related to the
state of the screwdriver:

Current screwdriving state (ie
tightening, reversing)
Last torque and angle result,
Last error, if any
Screwdriver serial number,
And more (read only)

Words with all K-Ducer
configuration data:

All program and sequence
parameters (read+write,
write not recommended)

Program or sequence
currently selected
(read+write)

The complete map with all data addresses can be found in excel format in the “MODBUS TCP Resources” packet provided by Kolver

Communication with a K-Ducer via MODBUS TCP:
Steps to take:

1. On the K-Ducer, ensure the communication protocol selected (General Settings > page 4) is
MODBUS TCP and assign an appropriate IP address and subnet mask

2. From the PLC or PC, through the modbus functionality provided by the PLC vendor or PC library,
open a MODBUS TCP connection towards the K-Ducer IP address on port 502 (default MODBUS
TCP port)

3. Once the connection is opened, user can start sending and receiving MODBUS messages. Typically,
the PLC/PC will have pre-built commands for sending messages, where the user simply enters:
a. Desired MODBUS function code
b. Desired MODBUS data address to read/write
c. Desired value to write (for write commands) or desired PLC/PC variable to store results

Code examples for PLC/PC and more can be found in the “MODBUS TCP Resources” packet provided by Kolver

