Control System
Operation Manual

O

A Partner You Can Rely on in Production

Control System Version: V1.7
Version:

Copyright © ROKAE 2015-2023. All rights reserved.

|
Copyright © ROKAE 2015-2023. All rights reserved.

Contents in this manual are subject to change without notice. We assume no responsibility for
any errors that may appear in this manual.

Please understand that in no event shall we be liable for incidental or consequential damages
arising from the use of this manual and the products described herein.

We cannot foresee all possible dangers and consequences. Therefore, this manual cannot warn
the user of all possible hazards.

No part of this manual may be reproduced in any form.

If you find the contents of this manual wrong or in need of improvement or supplement, please
contact us for correction.

This manual is originally written in Simplified Chinese. Other language versions are translated.

Copyright © ROKAE 2015-2023. All rights reserved.
ROKAE (Shandong) Intelligent Technology Co., Ltd.
Shandong, China

1]
Copyright © ROKAE 2015-2023. All rights reserved.

Contents

Contents
CONTENTS . cesicictsscmsssssssssmssssssmssssssmssmssssssmsssssssssmssssssmssssssmssmsssnssmssssssnssasssnssnssnnssnssassn III
1 FILE LIS T . cciiisicsmssssssmsssssssssmssssssnsssssssssmssssssmsssssssssmssssssnssssssnssmssnsssmssassnsssmssnnsns 15
2 GLIOSSARY oitiinismssmssmssnsssssssssssssssssssssssssasssssnssnss 15
SINTRODUCTION ...iciictssnssmmsssssesssssssssasssssssssassssssmsssssssssnssssssasssssssssassssssmssssssassnsssnssns 16
3.1 Main INterface ...cccovvviiiiiiiiiiiiiiiiiiiiiisssssssssssssss s s s s s s s s s s s s s s s s s se s s e e 16
3 1.1 TOP StatUus BAT .eceueiiiiiiiciecee e e e e e 17
3.1.2 BOttOm StaAtUS Bar.....cciiiiiiiiiiieeieeseeee ettt st s enee s 17
3.2 Status MONItOTING ...ceeeeiiiiiiiiiiieeeeiiiiiiiiiiinieiiiiiiisiinsseessissssssssseesssnssnes 18
3.2.1 3D MOdel MONILOTINGeevevireriieririieiieiet e rte ettt ettt st e st bttt ee e b sa e b sbe e e e e enneneeenes 19
3.2.2 MUlti-task MONILOTINGccveruirterrirririieiieiet ettt sttt et r e st ne e nes 19
3.2.3 TO SINAl MONILOTINEeeurerireriieririeeieetest e ste st sttt ettt st e b sbe bttt et et e besae e b e saeesee e eeeneneenes 20
3.2.4 Network connection MONILOTINGcevevertererinrereeieeeetete st st sr st e et et re st ese e e eneneeenes 20
3.2.5 Register variable MONILOTINGcceeeeeeiereererisrerieeteet et st st sr sttt see b e st ese e e ene e enes 21
3.3 Operation INtErfaCe........ccvvvivieeriiiiiiiiiiiirrtiirn s sass s e e s s s s s aanneees 22
3.4 Function MOAUIEccoviviiiiiiiiiiiiiitiiiiiitiiitreiieeeisre st ssssseesesssnessssssnesesssssssesssnesssssnne 24
3.4.1 MENU MOAUIC. ... cetieiieieeiieiie sttt ettt et et et e te et esatesaeesaeesaeenseeneesasesseenseenseensesnsesneesaeenseensesnns 24
3.4.2 Robot programming MOAUIC.eccveruirriiriinierieeteeiesie st st ste et st esaeeste e be e sesneesseesaeesaeenseenes 24
3.4.3 Robot configuration MOAUIEcooiiriieiiriirieeee ettt e saeesaeenee s 25
3.4.4 Teach Pendant option MOAUIE........cceevuieiiriinieieeee ettt see e e 25
4 CONNECTING TO THE ROBOToirrrenersemssessssssssssssmssssssssssssssssmssssssasssssssesns 25
4.1 Robot network interface and IPccoovveiiiiiiiiiiiniiiiiiniiiineneieeesieseeeseeesssesnsee 26
4.2 Connecting to terminal deviCeS.........covvvereriiiiiiiiiinniiiiiiiiiiinneeeiiisssseee s sssssssses s ssssssssssseens 27
4.3 Connecting to the roDOtueeeiiiiiiiiiiiiiiiiiiiiiierre s e ssssssesssssssssssnnnnens 28
7 3 0 ol U 4 1 30
4.5 Disconnect and restore CONNECHIONcccoveeirisieneiiisineiiiisineiiisineiiiineeiessnesisseeisseesesssessssse 30
4.5.1 AULO TECOMMNECE.c..eeuveenrieitieiiieieesteeet ettt ettt se e st et e ettt et eene e r e e r e e resanesanesreesreenneenneemneeneesreennens 30
4.5.2 Plug & play Teach Pendant XPad2.........cccoovieiiiiiiiiniiienieeieesieese ettt st 31
5 OPERATING MODE AND SAFETY .corcrrcrrmrersmsssssssssssssssssssssesssssssssasssssssssassssssns 31
1l

Copyright © ROKAE 2015-2023. All rights reserved.

Contents

5.1 Safety Managementccccocieieiiiimiiiiiniiiiniiiiisieiissseissnseissnessssssesessnsessssssesssssssesessansens 31
5.1.1 ADOUL thiS SECLION ..euvieutiriieiiieitieiteerte et ettt ettt et et e st e st e sheesbe e bt eateeatesbee b e e beenbesaeesatesaeenaeenseenee 31
5.1.2 SAFCLY TETIMS .euveveriitieeieiieiie ettt sttt bbbt bbb st r e st neens 32
5.1.2.1 Safety SYMDOLSeeueeiiiiiiierieereteee et s s e e 32
5.1.2.2 SafetY fRATUTES ..eveveeueeieiirerie ettt sttt sttt e b st besrenes 33
523 S0P et 33
5.1.2.4 ENablING SWILCH c..cveiuiiiiiiiiiriietieeeeeee et s e e 34
5.1.3 Safety PrECAULIONS ...eeuveuviiiriintiriieriiiteit ettt ettt ettt r et b e e b sa e b sae st eeenenaenes 34
S.1.3.1 OVEIVIEW ettt sttt ettt et ettt sht e bt e bt e bt eabe e abesatesaeesbeesbe e bt eabeeatesbeesbeenbeenbeeabesntesanas 34
5.1.3.2 FOCUS ON USEI'S OWIN SAFELY ..e.vervireieiiiieiiieriieteneeee ettt s e 35
5.1.3.3 Recovering from €meTrgency SLOPSccecerirrereririrenienieniieresieeseereseesresee e st eeeesesneseeenes 35
5.1.3.4 Safety precautions in Manual MOdeccocereririiiieriininin e 35
5.1.3.5 Safety precautions in AULOMALIC MOAEccuerrereruirieerierieriinere ettt 36
5.1.3.6 Emergency handlingcccoiiiriiiiiiniieniecceeeeese sttt 36

R 00 TN I 2 (OSSR 36
5.1.3.6.2 Treatment of an electric ShOCKcccoiviriririeiiie e 37

5.2 Robot 0perating Mode........ccocveeeiiiiniiiiieiiiiiineiiiinieiieieimseemsemsememmemsemses 37
5.2.1 MANUAL MOGEeitiiiiiiiiieeiie sttt ettt ettt st e st sae e s be e beeatesatesae et e enbeenbesatesntesaeeneeenseenes 37
5.2.2 AUtOMALIC MOUE.eeutieutiiiieiiieitierte ettt ettt et et et e et esate st e saeesaeebeeatesatesaeesbeenbeenbesaeesaeesaeeneeenseenes 37
5.2.3 MO SWILCHINE .e.vevivieiieiieieiese ettt sttt st r e st neenes 38
5.2.3.1 About MOAE SWILCHING ...c..eovirtirririieiieieteese ettt et see s 38
5.2.3.2 Switching from Manual to AULOMALICc..ecverrerreeuieeeierieriiere ettt 38
5.2.3.3 Switching from Automatic t0 Manualccceceeeeiienieiinininiceeeee e 39

5.3 RoObOt POWEr ON/OfF ...ccooumeiiiiiieiiiiiiiiiiiittiiteiiec et sssn e s ssse e sesssne e e 39
5.3.1 RODOE POWET=0M ...ttt e st et e r e ene e see e saeesaeene e 39
5.3.2 RODOE POWET-OFT ..ottt sttt st bbb nnenes 40
6 MOTION CONTROL ...cistinsmsussesssnssssssssssssssssssssssnssnsas 40
6.1 JOZ MOUE ..ccoonerreeriiiiiiiiiineeteiiisiissaetee s ssass s e s s sssssssass s e s s s ssss s sanssessssessssssnnsesssssssssssnnsennsnssas 40
LI) T 1T 41
6.2.1 End-effector handlecoeriiiriirieieccesc ettt 42
6.2.2 POINt POSItION tEACHING ..e..vireveriieiiieiieie et steeste et este st e steesteeeesaeesaeesbe e be e besntesnaesaeesaeenseenes 43
6.2.3 Continuous trajectory tEACHINGeivviiriierieeeiee sttt sttt et s b e sb e s beesbeesneesares 43
6.2.4 Trajectory TEPTOAUCTION ..c.veiiiiirieerieeeieesteesiee st e et e st e s e st e e sbeesabeesbeesabeesbeesabeesseesbaesnseesares 46
7 ROBOT CONFIGURATION ...ccotiimmsmmmssmssmsasssssssssssssssssssssssssassssssssssssssssssssssnssnssnssnsss 46
7.1 BASIC SETIMES c.uuvvveeriiiiiiiiiiineeeiiiiiiisiinneeeiisissssssssssessssssssssssssessssssssssssssssssssssssssnssesssssssssssnnsnssssssss 46
7.1.1 User groups and PEIrMISSIONSccveerreerrueerreeriueerteesiseesreessseesteessseessesssseessseesssesssseessseesssessssesssses 46
7.1.2 CONTOILET SETLIIES .vveerureerureeriieerieesteeeiee st e st e sbe e s bt e sabeesabee s beeesbeesabeesabeesabeesnbeesabeesnseesabaesnseesases 47

[\

Copyright © ROKAE 2015-2023. All rights reserved.

Contents

7.1.3 ZET0 CaliDIATION. ¢..veeutieiteeiieieteittesie ettt ettt ettt et e st e she e s bt e bt et e eaeeebe e b e ebeeabesabesaeesaeenaeeeeeaee 50
7.1.4 BASE CAlIDIALION ..uveiutieiiiiiieiiieitieste ettt ettt ettt st st sae e s bt et e et e eatesbe e bt e beenbesatesatesaeenaeeneeeaee 53
7.1.5 DYNAIMIC SEIHIES ..everveeueeureteteriesrisieeie ettt sttt s ettt et e b st b sbeeb e bt et e b e e e b e sa e e b e saeere et e s ennenaenes 55
7.1.6 BOAY PATAIMELETS ...c.veveeueeiiiieieniestisieeit ettt sttt sttt st r e sbe bttt sa b sa e b sae et et eaenenaenes 58
7.1.7 KINEMALIC PATAIMELETSeeuveuvirerreerirreeteeetetere st sresresreeseetese st sresreere e st e e e s e s e resaeeresaeesee s esenneseeanes 59
7.1.8 FOIce CONLIOl PATAMELETSeovervieririeeiieiteteiente sttt ettt ettt st sr ettt se e sa e b sae e e nennesaeenes 61
7.1.9 QUICK TUIM SELLINZS . .evveueeureiiteriierieieeit ettt ettt st r ettt se e sa e b st e eenenaenes 63
7.1.10 Electronic NAmMEPIALec.ccoeruirrireeiieieieentesresie ettt sttt se e sr e st e 64
7.2 Safety Features......cuiiiiiiiiiiiiniiiiiniiiiiiiiieiiisneiisssieisssseisssnessssssesssssessssssnesssssssesesssnsses 67
T 2.1 SCOPEC -t e s 67
1o A 11 11 L PP 67
7.2.3 VITTUAL WALloiiiiiiiiieecece ettt st st sttt et eat e sa e et e et e et e st e satesaeenaeenteenee 68
7.2.4 COIlISION AELECLION ... eeuteeuieriieruiesteerte et et ettestee bt e beebesaeesaeesaeesaeeteenteeatesseesbeenbeensesatesaeesaeesseensesnes 69
7.2.5 SAfELY AICA .eoueeiiiiiieieee e e bbbt e bt e s e b e s b e e b e s beeereesares 70
7.2.6 SAfCLY MOMITOT c..euvetieieiieiieieteste sttt sttt et s et b e bbbt e b e e b sa e e b e sae b e e e enneneenes 73
7.2.7 Collaboration MOMEeecuerierieiieeriiertt ettt ettt et beste st e saeesaeeteeatesatesaeesbeenbeenbesasesaeesaeeseeenseenes 74
7.2.8 SAf@LY POSIHION c.euvetiiieieeiteteteste ettt sttt ettt st r e bbbttt se e et r e bt e b e ne e nes 75
7.3 Communication Configuration.........ccccceviiiiiiiiereiiiiiniiiinneieiiinse s ssssssesss e 76
7.3.1 System IO ConfigUration.........ccceereeeeieieniesenierere ettt sttt se e e b st eene e enes 76
7.3.2 EXternal COMMUNICATIONc..eiuierueereieteeteettesttenteeteetesaeesaeesaeesseensesntesatesseesseensesnsesasesnsesaeesseensesnns 77
7.3.3 BUS QOVICES .. utetietietieieeiie ettt sttt ettt st et e bt e beebesatesatesaeesae e bt eateeatesae et e e beenbesatesatesaeenaeenteenee 80
7.3.3.1 MOAbUS COMMUINICATIONevveervieieeteeiiesieesteesteeteetesteseesaeesaeesaeeseestesasesseesseenseensesnsesnsesneas 82
7.3.3.1.1 Modbus TCP CONTIGUIALIONccveeiirierieiiereerieerie ettt ettt estee e beeae e saeesaeeseeeneeenes 82
7.3.3.1.2 Modbus RTU CONTIGUIATIONeeuvieiiieiierieiiesieesieenieereeeeseee st esiee e etessesneesaeesaeeseeeneeenes 83
7.3.3.2 CC-Link COMMUNICALION ..cuveviriieenieiieteiesteeresie et steste st sie sttt seese s b st s esne e enes 83
7.3.3.2.1 CC-Link cONfIGUIAtION......ceerieriieiirieriesieseeseerie et eeeseteseeeseee e esessesneesaeesaeeseeenseenes 83
7.3.3.2.2 CC-Link IE Field Basic cONfigurationcoeceevueeruirierienieneenieeesie e seeseeeseeeseeenns 84
7.3.3.3 EtherCAT COMMUNICALION c..evviuriiienieiieieienieererie ettt sttt sttt s st sne e nes 84
7.3.3.4 PROFINET COMMUNICATION «..uviuvevieiienieienieetesie ettt st ere sttt se b saesre s enennenes 85
R T S 4 T) RS 86
T35 TO AEVICE .ottt h ettt s bbbt e bbb ae e h et neeenes 91
7.3.5.1 RegiSter reMOtE COMIIOLeiiuiiriieriieiieieeiienieesie et ete st e st saeesteeae et e saeesaeesse e beenbeensesnsesnnas 94
7.3.5.2 Modbus eXpansion Occecieiirienienieeieeie ettt et st s saeenaeenes 100
7.3.6 Serial COMMUNICATION ...eouveruririreriieriierieett ettt e st e r e et eseeereesr e e re e neeneeanesanes 102
7.3.7 End-effector t00] COMMUNICAtIONeoveeiiiiieiiniierieree ettt s 103
7.3.8 Electric gripper and SUCHOMN CUP ...eciveerieerierriienieesteesieesiteesreesiteesibeessseesaseessseesasesssseessesssseesas 104
7.3.9 RCT SN . cuveteuteeueeeiiteesite e sttt e sttt e sttt e st e sateesibeesuteesabeesabeesubeesabeesateesabeesabeesabeesaseesabeesnseesasaansseesas 106
3B 8 0T L 107
T4 1 LaSET WELAING .eouvveeeiiiiieeie ettt ettt e st st e e s it e e sabeesabeesabeesabeesabeesabeesabeesaseenas 107
7.4.2 Plating [iNe traCKING.......eeeveiiieeriieiieesie ettt st site et e st e e steesateesabeesateesabeesabeesabeesaseesaseesaseena 107
ARSI N L3 1140 0 72T (1) £ 107
Vv

Copyright © ROKAE 2015-2023. All rights reserved.

Contents

7.5.1 EtherCAT AUtNOTIZATION «...eouveiieiiieitieiteete ettt ettt ettt st et sbe et et et e sbeesbeesbeebeebeeeesanas 107
8 MENU MODULE ...coistismismssmsnsssmsasssnssssssssssssssssssssssssans 107
8.1 DIAGNOSIS .uvveiiinnriiiiiiiiiiiiiiiiiiieisire i n e sss e e as s e s s s e s e n s e s R s e e s s a s e s banne 107
8.1.1 Teach Pendant 10@........cccviririeiiiienit et st 108
8.1.2 CONLIOILET LOZS ..evveuvintiriiiiteeite ettt ettt st st ettt sb bbbt ebenae e 108
8.1.3 LOZ tIMELINE ..c.veneeiiiniiiisie ittt st st et e et sa e bbbt e ebenae e 108
8.1.4 INLEINAL LOZS . .eveueeuiiiiieite ettt sttt sa e bt nae 109
8.1.5 AdVANCEA OPHIONS ..veuviriiiiiieiieieterteer sttt st st e et sb e r e s bt ebe e e erenae e 109
81,6 EITOT TECOVETY ...couviiiiiiiiiiii ittt a e s s st sae e a e saa e sae e s b e b 110
T80/ 5 [| 2 111
820G B D 1) 11 L PR 113
8.3.1 Seven-axis redundant MOTIONcceerueerieriierieriereere ettt e st et e e e testesaeesaeesaeesesneesaeesseesaeens 113
8.3.2 ODbSACIC AVOIAANCE ...eeuvieueieiiieiiistieteeie ettt sttt ste ettt et ste e st e st e e s besatesaeesaeesaeentesneesaeesseenseens 114
8.3.3 COllISION EECTION .. .eeuveeuiieiiieeiestiettete et ete sttt e sttt et st e satesbe et e e e enbesatesaeesaeesaeensesneesaeasseenseens 114
8.3.4 COMPUANCE AEIMOcuviriiiiiieiieieiestiet ettt ettt sttt se e b s bt ese e e ere e 115
9 TEACH PENDANT OPTIONS...ccioummmsmmsmssmsasssssssssssssssssssssssssassssssssssssssssssssssnssnssnssns 115
9.1 ConnNection SELHNES ...ccceiiiiiiiiinrieiiiiiiiiiinreiiiiiiiiiiesreessisssssssssessssssssssssseesssssssssssssesssssssssssnnnnnes 116
L0 3 2 (U 1) 7 116
9.2.1 MUlti-language LOZccceiruiiiuiriiiiiriciee et 117
9.3 APPearance SEttiNgGScccevvvvereeiiiiiiiiisnniiiiiiiiiiineeeeiiissssissssesssiesssssssseesssssssssssssesssssssssssanssens 117
9.4 File MANAGEY ..ccccuureerriiiiiiiiiiineeiiiiiisisiinseeeisisssssssssessssssssssssssessssssssssssssessssssssssssssessssssssssnnsnnss 118
10 ROBOT MOTION FOUNDATION....ccuummmmmsmssmsassassasssssssssssssssssssassassssssssssssssssssas 118
L LTS I 1 1 1 L 118
(LT 20 2.0 0 X0 A3 1181 7N 119
10.2.1 TUIMINE ZOME ..eeuuveiirieriieeriieesiteesiteeetee st e steesabe e s bt e sbeesbeesbeessseesabeesssaesabeeesstesbaeenssesseeenseesseeen 121
10.2.2 Lookahead MeChanISIMcceevieueeriieiieecienertere et s 122
10.3 RoDOt fOrce CONLIolceeiiiueeiiiiieiiiiieiiiiiieiiiiteiieee et sssse s sessss e ssssassesessaneeae 122
10.3.1 Introduction to fOrce CONTIOL.....ccuiiriiiriiiiiriiiieie e e e 122
10.3.2 TMPEAANCE CONIIOL ...eiuriiiiiieiieiiieeiee sttt sttt e st e bt e s be e s sate s be e e sbeesbaeesasesbeeesssesnbeeen 122
10.3.3 OVETLAY ettt ettt st st e st e s b e s bt e sab et s sbee s bt e e bt e s be e e nabe e bt e e naeeennee s 123
10.3.4 APPIICATIONS ...eeetieiiiesiteeriiee sttt ettt e st e e e bt e sbe e s bt e s beeebeesabeessbaesabeeesatesbeeesssesaseeensnesaseean 124
\

Copyright © ROKAE 2015-2023. All rights reserved.

Contents

11 PROGRAMMING AND DEBUGGING. ... rrmrsersmsssnssmssssssmsssssssssmssssssssssssses 126
11.1 Programming preparationceuueieiiinieiinniiiseneimsmeeissiemmsiemsmeemsseemssem. 126
B g 1) 1 PO 127
11.2.1 Project INtOQUCTION ...c..eeuviieriiiriniiiiieie ettt st s st a e s enes 127
11.2.2 Project CONFIGUIATIONo.vevviriiiririiitieieeeeiet sttt sttt sa e st aesne e nes 128
T1.2.3 TASK JIST.tutteutertieitieste ettt ettt ettt ettt s h e e s bt e bt et e eateeaeesb e e b e enbeembesabesatesaeesbeenseenbeenee 129
11.2.3.1 What is MUltitasking?.........ccceviiiriiiiiiiiniii st 129
T1.2.3.2 TaSK LIStueueeiieiiieiieeiteteee ettt ettt et b et e bt et st e st e saeesbeesbeeatesaeesaeesbeenbeans 129
T1.2.3.3 INEW tASK .ttt ettt sttt ettt et et ae e e bt et e e b e e abesatesatesaeesbeenbeenbesaeesneesbeebeens 130
11.2.3.4 Starting and running taskscceceeveeiienininiiieeeeene e 131
11.2.3.5 Intertask COMMUNICATIONeeuveruveruierieerieerieesieeteeetesteesteeteeteseesaesaeesseesseensesnsesseesseensenns 132
11.2.4 LiSt OF VATIADIES ...veeveeiieieeieeiieritesie ettt sttt ettt e s st e st e b e e enbesatesaeesaeesaeeseeenseenee 132
T1.2.4.1 VATIADIES ...eouvieieieeieeiieieeie ettt sttt ettt et sa e et e e e besatesatesaeesaeenseentesneesnsesseenseens 132
11.2.4.1.1 BASIC COMCEPL c.veuvervieririeeieeiieieterteeresie ettt et st ettt sr sttt se b sae bbb enneseeenes 132
11.2.4.1.2 Variable deClaration...........ceceeiuerierierienieeiie et eeesicesieeste et see e st e saeeseesetesaeesaeenaeens 134
11.2.4.1.3 User variable Noldc..ooviiiiiiiiieiieee ettt 135
11.2.4.2 List Of VATIADIESeoueieieiieieeieeie ettt ettt st st st sae et st esaeesaaesaeens 136
11.2.5 POINE POSTLION LISt .euvevieieiiiieiiieriieteee ettt sttt st eb et ne e nes 138
L R O i 1§ OSSR 139
T1.2.7 TO SIZNAL LISt..cuvitiiiitieiieieete ettt sttt et r e st eb e ne e nes 139
T1.2.8 USCT fTAIME LISt ..eevieiieieeieeieeiesitest ettt sttt e bt et et et e s et e bt ebe e beenbesatesaeesaeesaeenseenseenee 141
T1.2.9 TOOL fTAIMC. ...ueeeietieiteesie ettt ettt st e st e s ae e bt et e st e sae e st e e beenbeenbesntesaeesaeesaeenseenseenes 142
11.2.9.1 WHat 15 @ 10017 ..eevieieiiiieiiie ettt st sttt 142
11.2.9.2 TOOI CONLET POINE...c.veerieniienieeieeieseesteesteeste e et eteseeesteesteenteensesnsesneesaeesseesseensesnsesssesseessenns 142
11.2.9.3 TOOI fTAIME......cveiiitieiecteet ettt sttt se e st b et neenes 143
11.2.9.4 TOO! 10ad PATAIMELETS.euveeurieuieriesiesieesteerie et eteseeesteeteeteestestesaeesaeesaeesseensesnsesssesseesseens 145
11.2.9.5 USE OF t0OIS ..eutiiiitiriieieeiestete ettt ettt se e bbbt neenes 146
11.2.9.6 EXternal t00]S.....c.civiiiiiiiiiiiiierienieseetet ettt 147
11.2.10 WOTk ObJECt frame 1St.....eecvieieriereierieeieeie ettt ettt sttt e beetesneesaeesaeesaeenseenes 148
11.2.10.1 What iS @ WOTK ODJECE? ..eeuviriiiieiieieierieerie ettt ettt et te e s st esaeesaeesesneesneesseeneeens 148
11.2.10.2 Definition of WOTK ODJECE ..ecverveiieiierieerieeet ettt ettt st st saeenaeens 149
11.2.10.3 USE Of WOTK ODJECL..c.veeiieiieiiiieiie sttt ettt ete st st saeesaeetesneesneesaeenanens 151
11.2.10.4 Use of external toOl/WOrK ODJECE.......covveruieriieiinieriesiieieeie e 151
T1.2. 11 VISION SYSEEIM ..veiiriiriieeriiiesieesieesieesteestee st e eteesbeesseesbeessseesabaesssaesabeeesssesbaeenssesseeesssessesen 152
11.2 RL PIOGIAMS cccciiiiiiiiiineeeiiiiiiisisnneneniiissssssssssesssnsssssssssssssnns 154
11.2.1 ADOUL RL LANGUAZE ..ccvveeiiieeieesieeeiee sttt ettt ettt st s sat e st e bt e s sba e s sabeesateesaneenneees 154
11.2.2 PrOZram SEIUCLUIEeeevveerreerieerieeeiteesteesteesteesteesbeessseesabeeesseesabaessseesaseeenssesasaeenssesseeesssesssenan 155
T1.2.2.1 OVEIVIEW .eeneiiiiiienieeriete st ste st sttt ettt st r et e er e san e see e senesreenaeenneenneeneeeneesreennens 155
11.2.2.2 Program MOAUIESccccueiiiiiiiieiieeeiee sttt ettt sbt e s bt sat e b e saee s bt e e saseenaeees 156
11.2.3 Pro@ram €AItINGgeeecveerieerieenieenieenieeetee st e et steessteesbeessseesbaessseesbeeesaeesabaeesssesseeenssesseeen 157
11.2.3.1 FUNCHOMN MEMU ...ttt sttt ettt et e seeesenesreesree st ene e e e eneesneesneens 157
Vi

Copyright © ROKAE 2015-2023. All rights reserved.

Contents

11.2.4 Program debUZZING........ccuecueriiriiiiiiiieieie sttt st sa e s e sae b saenes 158
11.2.4.1 PrOGIam POINLET ..cveeueeueeieriireriietteitetete st st sttt et se e sre bt st e ebesa e neseeebe e e e eneseeenes 158
11.2.4.2 MOTION POINEET ...veveieeiieiretiterie ettt sttt se s st s re et et sa e resae bt e s eneseeenes 158
11.2.4.3 Lookahead MECRANISINevuirieiieiiieieeie ettt ettt st st se e ettt esbeenaeens 158
11.2.4.4 Single-step deDUZZINGovvivririiiiiiieieer e 158
11.2.4.5 ReZAIN PAth...oviiiiiiiiiciciee et s et 159
11.2.4.6 MOVE PIOZIAM POINLETeouvireviirieiieieetenteresie st eteeereseesresresre st eseesesaesresresresaeeneeneneeanes 159
11.2.4.7 Variable ManagemeNnt..........cccerirririeieiieniinrenie ettt sttt sa e ne e enes 160

12 RL PROGRAMMING COMMANDS....iciusmmsmsnmsamssssnsssssssssssssssssssassassasssssssssssssnsas 161

B 00 B V1 1 1) (N 161

00 O L OSSR 161

00 0 L SRR 162

L T T B o111 o) (<RSP SPRR 162

L R 2 To Yo | OO PSS RSR 163

T2.1.5 SHIINE vttt st h s bt ettt et s bbbt ettt et R e bbb e enes 164

L2016 ATTAY 1ottt st sttt ae e st saeesaeea e 164

L T o) 165

T2.1.8 CLOCK .ttt ettt ettt et et s e st e et e bt et et e s st e s bt e b e et e et e e be e teeaeesheesaeenaeenteenes 166

12.1.9 IMPIICIt LYPE COMVEISION «.vvirririiieririeeieeitentete st er ettt st r sttt e b sa e b sbeebe e e nnesaeenes 167

0 I U703 1 B 1 - OO USSR 167

12,111 JOIMEEATZEEvevereteitieteeieeit ettt st ettt sb e e bt ae et e e b sa e b e sb e ebe e e e enenaenes 169

T2.1.12 100 et h e et r bt bt e e ne e enes 170

12,113 OTIOME ettt ettt e b s bt bttt e e s bbbt eb e et e e e b e ne e b e nb e eb e e e e e eneneeenes 173

L2114 POS ctteeitee ettt ettt ettt st ettt e bt sttt e bt e bt e bt e e b et e bt e e bt e hee e bt e e nbe e bt e e saneenneees 174

L B B o T 1 T OO PO P PRSP PR PTOUPTRPPO 174

121,16 TODEATZEL..cc.veeieeeieieeetee ettt et sttt e s bt e e bt e s bt e bt e sab et e bt e s be e e bt e sbeeessbeebeeenanesneeas 175

L O A T3 T 1D PSSR 176

L2118 SPEEA ettt ettt s b e e bt s bt e bt bt s bt e s bt e e nhte e be e e nate e bt e e naeeenneeas 177

T2.1.19 100Dttt e e b bbb e bbbt eenenreenes 179

L I (R 4 =0 - H PSSR 182

T2.1.21 WODJ ettt st s b e e h et s a bbbt e e nenreenes 183

120122 ZONEC .ttt ettt sr e na e ne s 185

L A I 10 (o (3 1<) 11 F o PSSR 188

12.1.24 SOCKEESEIVET ...ceuviiiietieieeee ettt ettt et ettt et r e r et se e senesanesreesneenneenneeaes 188

12.1.25 SOCKELCONM.eeuveeieeiieiieee ettt sttt et ettt r et sanesenesanesbeesreenneenneeaes 189

12.2 FUNCHOMS ceciuueeiiiiietiiiitetiiiieeeiesiteciissetessssseessesssnessesssnesessssessesssnessssssnesessssessesssnessssansssessaneses 191

12.2.1 FUNCHIONS 1.ttt st sttt et e r e r et eanesenesinesreesnee et enne s 191

B0 T 11711111 E: 1 1 11 L 191

12.3.1 Variable tyPe COMVETSION. ...cceiutiritiirieerieeeieesteeeiteesteessteesbeessbeesbeessseesbeessasesabeeesssessseeessseesseees 191

12.3.1. 1.1 SHTOBYLE ..ttt sttt sttt ettt s e st esabe e sabeesabeesabeesaseesabeesaneesas 191
Vil

Copyright © ROKAE 2015-2023. All rights reserved.

Contents

12.3.1.1.2 StETODOUDIE ...ttt ettt et sttt be et st eatesaaesaeens 192
12.3.1.1.3 SHTOINE ..ttt sttt sttt st e s e s e sareesareesaneenas 193
12.3.1. 1.4 BYteTOSI . 193
12.3.1.1.5 DECTOHEX ...eeeueieitieeiieeiite ettt sttt sttt sttt st e sttt e st e sabeesareesabeeeaneenas 194
12.3.1.1.6 DOUDBIETOBYLEcveviiieiieiieieierieerrt ettt st s 194
12.3.1.1.7 DOUDIETOSIE ...ttt ettt st st bt e saeebe et eaeesaaesbeens 194
12.3.1. 1.8 HEXTODEC ...eenieiiiieetee ettt ettt e s e st e s e enee e 195
12.3.1. 1.9 INTTOBYLE .o s 195
T2.3. 1. 110 INETOSEE tnttintt ettt sttt ettt et h e bt e b et et st e satesbeesbeebeenbeenbesaaesbeens 195
12.3.2 MOtiON COMMANGSeeuveeniieuiieiteettesteenteeteeteeatesttesaeesheeste e bt eabesatesueesbeebeenbeenbesabesabesaeesbeenseenseeaes 196
12.3.2.1 MOVEADST ...ttt ettt ettt a e bttt e b e et st e st e saeesbeesbeebesatesaeesbeenbeens 196
12.3.2.2 IMIOVET .ottt et ettt ettt e be e st b e et be e bt e ebe e e be e nbneenee s 197
12.3.2.3 IMOVEL ettt sttt et st et e ae e et e bt e e be e snteenee s 198
12.3.2.4 MOVEC ..ttt ettt sttt ettt st sa e s bt et e et e e besatesatesaeesaeenbeenteeateeneenseenteens 199
12.3.2.5 MOVET ettt et sttt e st be e s bt e bt e s bt e e be e e b et e bbe e bt e e nnteenee s 200
12.3.2.6 SEAICHL.....eiiieiieieeieteee ettt sttt ettt et st sa et e b et e st e s atesaeesaeenbeentesateeaeenbeenaeens 201
12.3.2.7 SEAICHC ...ttt sttt ettt sttt e s bt et e bt e be st e satesaeesaeenaeenteeatesaeenaeenaeens 203
12.3.3 Trigger COMMEAN.......eoueeueeietinrertieteeit ettt sttt ettt st b et e e et e b sbe bt eneneenes 204
12.3.3.1 THIGIO ittt sttt ettt sttt e s et et et e e besatesatesaeesaeenaeentesnsesaeesseenseens 204
12.3.3.2 THIZREE .ottt ettt st ettt sa e st e b et neenes 205
12.3.3.3 THIZL ettt sttt ne e nes 205
12.3.3.4 THIGC ettt ettt ettt ettt st st s bt ettt et e e ae e e bt et e en b e enbesatesatesaeesaeeseentesatesneenseenteens 206
12.3.4 Force control COMMEANAScceeiertieriieieriieniesie e seee sttt et et e bt et ebeebestesaeesaeesaeesaeeneeenes 207
12.3.4.1 CaliDSENSOTEITOTeoueiuiiiiiiriieieeieetetete ettt sttt s 207
12.3.4.2 FCINIE ottt bttt sttt sa bbbt et et e e e nes 208
12.3.4.3 SEtCONIIOITYPE ..eerutieeeeertieeiee sttt sttt sttt e sbe e s b e e bt e sbe e e st e s sneeesaseeneees 208
12.3.4.4 SetSenSOTUSETYPE ..eeeeeiriiiieiiesiee ettt sttt sttt sttt e bt e beesbe e e sate e bt e e saneenneees 209
12.3.4.5 SetCartNSSHHT....cc.eieeieieeere et s 209
12.3.4.6 SetINtCIIISHITVEC ..c..eeneeiiiiiierit et s 210
12.3.4.7 SetCartCLrISHTEVECc.eeteiiieriiieeeeeeee ettt s 210
12.3.4.8 SEINETIADIES .eeuuveeiiieeeieiieeetee sttt ettt s bttt s bt e be e e bt s bt e s be e e sabeesateesaneenneeas 211
12.3.4.9 SetCartFOrCEDEScoouiiiiiiiiieiieiee sttt s st 212
12.3.4.10 SetSINEOVEIIAYveieeieiiiieiie sttt ettt ae e st sae e s bt e e sareenneees 213
12.3.4. 11 SetLisSaJOUSOVEIIAY ...euveeierierieiieiiesteesie ettt ste et ee e eteseeseesaeesaeesaeentesnsesneesseenseens 213
12.3.4.12 SELOAG. ..ueeieiieteeieeeeee ettt et 214
12.3.4. 13 FOSTATT c.nveeieieee ettt sttt ettt s s sreesreenneen e sae e eneesneenens 215
12,314, 14 FCStOP e uteeiuteeeiee ittt ettt sttt st e s bt e st e s bt e s bt e s bt e s bt e e bt e e be e e sbee e beeensteebeeenateenbeeen 215
12.3.4.15 StArtOVEIIAY . cccuveeiieeeiee ittt sttt sttt e e sbt e s bt e s bt e sbe e e sabeesateesaneenneees 216
12.3.4.16 PaUSEOVEIIAYeiiuiiiiieiiiiieiie sttt ettt ettt e sbt e et e bt e s be e s sateesateesaeeenaeees 216
12.3.4.17 ReStATTOVETIAY ..eouveieiieeiiiiieiee sttt ettt sttt et sat e s bt e saeesnteesareenaeees 217
12.3.4.18 SOPOVETIAYueiiiiiiieiieeiee ettt sttt sttt at e st e e sateesat e e saeeenaeees 217
12.3.4.19 FCCONAFOTCE ...ttt s st st sneen 218
12.3.4.20 FCCONAPOSBOXveiiiirieriiienie sttt st st 219
12.3.4.21 FCCONATOTGUE ..cvvveeeieeeriiiieieesiee ettt ettt et sbe e st sb e bt e sbe e s satesbe e e sabesnteessseenseees 219
IX

Copyright © ROKAE 2015-2023. All rights reserved.

Contents

12.3.4.22 FCCONAWARIEWRILE ..ottt st st st sae e 220
12.3.4.23 GetEndTOOITOIGUEcvervirririiiiiriieietetcrenie ettt st 221
12.3.5 Drag and TEPIAY ..cc.eeveeueeeeieieteni ettt st s na s 221
12.3.5.1 ReplayPath c..cc.coiiiiiiiiiiien e 222
12.3.6 TO COMMEANGS.....etiiiiiieiie ettt ettt ettt e s bt e sbe e bt et e eatesaeesb e e bt e bt enbesabesatesaeesaeenseenseeaes 222
12.3.6.1 SEEDIOcutenieieitt ettt sttt ettt ettt ettt e e et et esaeeheen e et et e e e beeaeeteene et enteneetas 222
12.3.6.2 SELATIDOciieiieieeieeiee ettt ettt sttt te st e s be s et et e st e st enbeseeebesaeeneene et enseneentas 222
12.3.6.3 SEEGO ...ttt ettt ettt ettt ettt sb e sttt e te st be et eheen e et et e naeebeeaeeheene et enteneentas 223
12.3.6.4 SELAD ...ttt ettt ettt ettt b e aeeheen e et et e e e beeaeeheene et enteneents 223
12.3.6.5 PUISEDIO ..ttt ettt b bbb st st st he e bt et et eeaeenbeenbeens 223
12.3.6.0 PUISEREEZ....cuveiiiiiiiieeieecer et st s e 224
12.3.7 Communication COMIMANGSceeteerteerteriierierieneenteesteesteeteeaeesseesteesbeebesnbesatesasesaeesaeenseenseenes 224
12.3.7.1 OPENDEY...c.cviiiiiiiiiietieit ettt e et sr e s e 225
12.3.7.2 SOCKELACCEPE..e.veeveeeeieeitentietertt ettt ettt sttt st b e st b ettt sa e nesb e ebe et et eneseeanes 226
12.3.7.3 CLOSEDIEV ..ttt ettt sttt ettt st st esae et et e besatesatesaeesaeenseentesnsesneesseenseens 226
12.3.7.4 SENASIIING ...veveiiereeitetetest ettt st r e sttt et se e nesb e eb et e s e e nes 227
12.3.7.5 SENABYLE ...uvenriiiitieieeiteitet ettt ettt st et st ne s 228
12.3.7.6 REAABIL.....eiiieiieieeiieteee ettt ettt sttt ettt e e st s ate s et e saeesaeenbesatesneenbeenteens 228
12.3.7.7 REAABYLE ...ttt sttt sttt sa s 229
12.3.7.8 REAADOUDIC ... ittt ettt ettt st st st esaeesbeetesatesaeesaeenaeens 230
12.3.7.9 REAAINTveiiii ettt ettt ettt ettt et e st e sate s et e saeenbeentesasesneenseenseens 230
12.3.7.10 REAASIIINEG ..cuvevviveieeeetetee sttt bttt se e st ettt neenes 231
12.3.7.11 GEtSOCKEICOMNM......eitietieieeieeiesie st e st et et st e st e steebe e beebesatesaeesaeesaeesseensesnsesnsesseenseens 231
12.3.7.12 GEtSOCKEESETVET ...ttt sttt sttt ettt se e st sb et ne e nes 232
12.3.7.13 GOtBUTSIZE ..ottt s sttt 233
12.3.7.14 ClearBUSTerc..eoueieieiieieictere sttt st 233
12.3.8 Network COmMMANAc..coouiiiiiiiiieiieiicececerte et 234
12.3.8.1 SOCKEtCreate (EXPIred)eerveererrierieriereerieesit et etesteesteeteeteseeseesaeesaeesseensesnsesseesseenseens 234
12.3.8.2 SOCKELCIOSE (EXPITEA) +eeuveeurermrerierierieerieerieesteetestesteesteeteesesseseesaeesseessesnsesnsesseesseesseens 235
12.3.8.3 SocketSendString (EXPIred)cccveivereerierierieeeeetestesteenteestesteseesee e eseeeteseesaeesseeneeens 235
12.3.8.4 SocketSendByte (EXPIred) ...cccveeverierierieriiesie et steste ettt ste e st seeesee e eeesneesseeneeens 236
12.3.8.5 SocketReadBit (EXPIred) ..eveeveeevereerierieenieesieeteetesttesteesteeteseeseeseeseeesseeseseesseesseeneeens 236
12.3.8.6 SocketReadDouble (EXPIred).....c.eicvereereerieriieieniesieenteenieesieseeseeseeseeeseeessesneesseesseeseeens 237
12.3.8.7 SocketReadInt (EXPIred)eecveeueriuereereerieeiiteteeteseeesteesteeteseeseesaeesaeesseesesneesneesseenseens 237
12.3.8.8 SocketReadString (€XPired).....cccveivereereerierieeieeiesieesieesteesieseeseeseeseeesseeseeneesseesseesseens 238
12.3.9 LOZIC COMMEANASveieiiieriiieeieesieeeieesiee et sbe e et sbe e st e st e s bt e sabe e s sbtesbeeesaeesbaeesssesseeesssesnseeen 238
12.3.9.1 REIUITI c.eeiiiiie ettt s s st saeesn e e n e eneesneennens 238
12.3.9.2 WAL 1ttt e b ettt b et h e a e ne bbbt ne e nes 238
12.3.9.3 WAItUNLIL ..ottt sttt se bbbt neenes 239
12.3.9:4 BIRAK ..ottt s e st 239
12.3.9.5 TF. . LEISE if.. . EIS@ «eeeerieiieieceree ettt 239
12.3.9.0 GOLO ..ttt sttt ettt ettt ettt b e bttt st b e bbbt et et et be bt bttt ne e nes 240
12.3.9.7 FOT ettt ettt s st s r e n et ne e r e e re e 240
12.3.9.8 CONLINUE «..cuveeieiriieeieeteete ettt sttt ettt st r e senesenesreesreenneenneemeeeneesreennens 240
X

Copyright © ROKAE 2015-2023. All rights reserved.

Contents

12.3.9.9 INZONE ..ttt ettt ettt st e b e e e e bb e s bt e be e e be e e nnneenee s 241
12.3.9.10 WHILE ...ttt ettt b ettt st saeesbeesbeete st e saeesbeenbeens 241
12.3.9. 11 PAUSE. .ceueteiiteeteeeiiee ettt ettt ettt st e st bee s bt e be e s b e e e bb e s be e e nbb e e ne e e nbneenee s 242
12.3.9. 12 t1Y/CALCR .ttt e 242
12.3.9.13 SWILCRCASE ..uveveiiietiete ettt sttt ettt sttt et e bt ebe et e satesatesaeesaeenbeenbeeneeeasesbaenaeans 243
12.3.10 HOME COMMANG.coiuiiiieiieiiintiesttete ettt sttt et e bt ettt et e saeesb e e bt e beeabesatesatesaeesbeeneeeneeeaee 243
12.3.10.1 HOIMIE ettt ettt ettt e b e st beesab et e bee s be e e sneesbeeennnesaneeen 243
12.3.10.2 HOMIESEL ...ttt ettt sttt be e s bt e e bt e s bt e sneesbeeesnnesneeen 244
12.3.10.3 HOMESELAL ..ceeieiieeiee ettt ettt ettt st sbe e st e sbee st e sabeesne e e saneeneees 244
12.3.10.4 HOMEDET ...ttt ettt st st st b e sbe et st e saeesbeenbeens 245
12.3.10.5 HOMESPEEA ...c.veviiiiieiieiiierit ettt st s st st 245
12.3.10.60 HOMECIT ...ttt et sttt sa ettt et st e st saeesaeesbeebe et e saeesbeenbeens 245
12.3.11 Math COMMANGc.ueiieiiiieiieieeiest ettt st ettt et et e s et e st esbe e beenbesatesaeesaeesaeenseensesnes 246
L T8 R 3 1 OSSR RRRPRUPRRRN 246
12,3112 €08 tiuttiauteeiitte ettt ettt ettt ettt et e bt e bt e s bt e bt e s b et e bt e e be e e bt e e be e e nteebe e e nneeeneean 246
L T G = 1 OSSR RPRUPRRRN 246
L T B o | OSSR RURUPRRRN 246
L T B R I) ' FO SRR RRRURUPRPRN 246
T2.3.11.6 @C0S c.uuteueeeitieetee ettt ettt e et e st e e b e st e et e s bt e e bt e s b et e bt e s bt e be e s be e e bt e e bt e e nareereean 246
T2.3.11.7 AEAN ettt ettt ettt et e be e e b et e be e e bt e nee e bt e e nneeenee s 247
T2.3.11.8 SINN 1ottt sttt ettt ettt a et e b e et et esatesaeesaeenteenteeatesaeenbeenaeens 247
12.3.11.9 COSM ittt ettt ettt et st s aeenaeetesatesaeesaeenaeens 247
L T B R (R 1 Yo O STSRRRURUPRRRN 247
T2.3. 1111 @XP cveeueeueeeeienie sttt ettt ettt sttt ettt e b ettt b et h ettt a R r e e bttt neenes 247
1231112 10 ettt bttt h et ne R bt bttt neenes 247
12.3. 1113 10ZT0 ettt bttt e nh e bt eenes 248
T2.3.11.14 POW ettt e h ettt b e bt bt a et ne e R s r e e bttt ne e nes 248
)0 T B B T | PP P OO PPOPPTOPRRPP 248
1231110 COIL ettt ettt et sa e st b et neenes 248
1231117 £0OT .ttt ettt b et b ettt na e bt bt neenes 248
12.3.11.18 @DS ettt bttt h e bt bt ne e nes 248
12.3. 1119 TANA. ettt ettt ettt st et neenes 249
12.3.12 Bit OPETALION c..eeuvievieieeieeeesitesttesteetee e etesetesatesaeesaeesseesseensesseesssesseenseenseensesnsesnsesaeesseenseensesnes 249
12.3.12.1 BILANA ettt sttt se e sttt neenes 249
12.3.12.2 BItCRECK ittt sttt sttt et 250
12.3.12.3 BItCIRAL ..uveieiieeieeiee ettt s e st sreesn e e n e ene e re e neeas 250
12.3.12.4 BItLSH ot s e st 251
12.3.12.5 BItINEE c.uveeireeeiieesiiee sttt sttt s e st e st e s bt e s bt e s bt e st e e ebeeeabeeesbeeebeeensbesbeeenneesbeeen 251
12.3.12.0 BItOT ettt ettt s st r e nn e n e ne e r e ne e 252
12.3.12.7 BItRSH et s e st 252
12.3.12.8 BItSEl . eeuieiiieieiieeieeree sttt ettt s s st r e sn et reenreeas 253
12.3.12.9 BItXOT .ttt ettt s st n e e reenre e 253
12.3.13 SHING OPETALIONSeeeureerureerreerteesieesteeeteesbeeesseesbeessseesbeessseesbaesssaesbeeesseesasaeesssesnseeesssesssesen 254
12.3.13.1 SHFINA ..o e st st 254
Xl

Copyright © ROKAE 2015-2023. All rights reserved.

Contents

12.3.13.2 SILEM .ttt ettt st b et bt ettt se et ae bttt enteneeeas 254
12.3.13.3 SHIMAP ..ot e e 255
12.3.13.4 STIMALCH ...ttt ettt ettt et st st st e bbb et e it e nbeenaeens 255
12.3.13.5 SHIMEIMD ...ttt sttt ettt et ettt e bt et e bt et e st e satesaeesbeenbeentesasesneesbeenbeens 256
12.3.13.0 SHOTART ..ttt sttt ettt et s bt et e bt et e satesaeesaeesbeesbeeabesatesaeesbeenbeans 256
12.3.13.7 SHPATT ...ttt ettt sttt et et e st s b e et eae e st et et e seesbesaeebe e st e s enseneetas 257
12.3.13.8 SIESPIIt.cueeneeiesteeteeeeetete ettt ettt et et ettt et et e et e s be s et eae e st e st e s e seesbesaeeaeene et enseneeneas 257
12.3.13.9 SHTOBYLE. ..ottt e e s 258
12.3.13.10 StITODOUDIEcouietieieeieeie ettt ettt ettt et sttt e sbeesbeebe st e eaeesaaesaeens 259
12.3.13. 11 SHTOINE . ce.itett ettt ettt ettt st sttt e e st et e s aesae e st e st enbesaesbesaeeneeneensenseneeeas 259
12.3.14 OPETALOTS ..ottt s et a e bbb b e s sae e sa e 259
8.3.11.1 BASIC OPETALOTS ...eeuveuvireriirririeeiieitentete st r st ettt st b sre bttt be st b sre bt st enenesaenne e 260
8.3.11.2 OPEIatioN PIIOTILY «..eecveererueeririeeieeirertestertesresseeseeteeereste st e sbesre et e e e besaeeresbeeresat e e eneneennenee 262
12.3.15 ClOCK COMMEANGSeeuviiiieiieiieetientieie et ettt et este e et et e satesaee st e e be e beenbesntesaeesaeesaeenseenseenes 262
12.3.15.1 CIKREAQ ..cuveuietieeeeieeieieieie sttt ettt e te sttt e e e e saesbesaesaeeseensensessessesaessesneensensensenss 262
12.3.15.2 CIKRESEL .uveeueieiiieiietieieete e te st site st ste e sttt st e saeesae et e beenbesatesaeesaeesaeenseensesasesnsesseenseans 263
12.3.15.3 CIKSEATT.c.eeuvitestieieeeeeieientete et ee et ete st e tesaesteeseeneessessessesaesseeneensensessensessessesneensensessenses 263
12.3.15.4 CIKSEOP euveuvenrerrereerieetetesteste st steeseestesessessessessesseensensessessessesseeseensensessessessessesneensensensenses 264
12.3.16 Advanced COMMANGSccuireiruiertieniieieeieeie ettt e bttt et e sat e st e e be e beenbesatesatesaeesaeesaeenseenes 264
12.3.16.1 REITOOL ..ttt ettt ettt ettt st e saeesaeentesatesneesseenaeans 264
L0 T LT i PR SRSRP 265
12.3.16.3 CONTL ON/OFT ...iuiieieieiesieee sttt sttt sttt ettt saestesaeste e e enseseseennes 266
12.3.16.4 VEISEL...cueeeeiesieeteeteetete sttt ettt ettt st sttt e e st e s besaesseeneensensesaensesaesseeneensensensenns 267
12.3.160.5 ACCSEL...uviiiiiiiiiieeeeetee ettt e st st e 268
12.3.16.6 EulerTOQUALEITIONveeiuvieeieeiieeeieesteeeiteesteeseteesreeeseesssaseseeeseeensseensesenssesssseessseessses 268
12.3.16.7 QuaternioNTOEUIETccieiiiiiciiee et e e st e e st e e e ennes 269
12.3.16.8 GEtENALOOITOTUEveeiviieieierieeeiee ittt sttt st ettt sae e s bt e saneenneees 269
12.3.16.9 MOTIONSUD -.euvieieieiieteeieeteeiestestestee st esteeste st e saeesse e teenseensesasesneesaeesaeenseensesnsesssesseensenns 270
12.3.16.10 MOtIONSUPPIUScenvieniieiieeieeie sttt ettt sttt e et stesaeesaeesaeesseensesneesnsessaesanens 270
12.3.16.11 CONNECT (EXPIT€A) ...everervirrirreeeeienienresieeieeteeereseesre sttt eseeseseesreseesre e eeeseseennes 271
12.3.16.12 BreakLOoOKAREAA.coiviiriiriiriieeceeese et 271
12.3.16.13 GetRODOIMAXLOAAcovirieriieririieieeieice ettt 272
12.3.16.14 GEtRODOISTALEeoviiriiiiiiiiiierierieet ettt e 272
12.3.16.15 AutoIgnoreZone true/falSeccuereereerieiieieeieeteseete ettt st eseeeneeens 273
12.3.16.16 MotionWait AtFinePoint true/false..........ccovreeeeeeieninireeeccceese e 274
12.3.17 Function COMMANGS.........ccuieuirrierrienrierenente sttt ettt st sne e sreesreesreene s 275
12.3.17.1 CRODT ettt bbbt b ettt se e b sb e eb et e s e neenes 275
12.3.17.2 CJOMNET .ttt sttt b et eb et et se e b sbeebeese et e s e neenes 275
12.3.17.3 CalCTOINET ..ot s st st sn et nne e 276
12.3.17.4 CalCRODE ..ottt s st sttt e 276
123175 PIINE ettt ettt s e st s r e nn e n e e reenreea 277
12.3.17.6 POSEMULL.....oouiiiiiieceee et s st st et 277
12.3.17.77 POSEINV ..ttt s s st st n et ne 278
12.3.17.1 GERODADC ...ttt s st sttt 279
Xil

Copyright © ROKAE 2015-2023. All rights reserved.

Contents

12.3.17.2 SERODADC ..o s s e s 279
12.3.17.3 ROLRODADC ...ttt s s e s 280
12.3.18 RegIStET COMMANAS......couveriiiiririiitiiiteeetet ettt st sr et eb e aesnesaeenes 280
12.3.18.1 REadREZBYNAIMEcocviiiiiiiiriiiieietetcerie et st 280
12.3.18.2 WriteReZBYNAIMEcocveviiiiriiitiiieicietceie s 281
12.3.19 End-effector COMMANAS........ccceririiriiiiieiienieese ettt s s 281
12.3.19.1 JOAEIIGTIPINIL.c..eveeeeiieireiiierie ettt ettt s st 281
12.3.19.2 JOEIIGTIPMOVE....c..euiiuiiniiieriietieitetete ettt sttt e st st see s 281
12.3.19.3 JOEIIGTIPSIALUSeoveeureniiieriiitieieet ettt st st 282
12.3.19.4 JOEIISUCKINIL ...c.veveeiieiieiiierie ettt s s e s 282
12.3.19.5 JOAEIISUCKSELveveiieiieiiierit ettt s et 282
12.3.19.6 JOEIISUCKSIALUScoueiuriiiririiitieieetetest ettt s s st 283
Xl

Copyright © ROKAE 2015-2023. All rights reserved.

0 Contents

3.1 Main Interface

14
Copyright © ROKAE 2015-2023. All rights reserved.

1 File list

3.1 Main Interface

1 File list

xCore Control System offers an array of basic functions and extended functions. The following files are available to help you
master xCore quickly. Contact us if you need them.

Latest

ID Name . Introduction
version

1 xCore Control System User Manual V1.6.1 Describes the basic functions of the xCore Control System;
xVision User Manual V1.0.0 Describes the basic functions of xVision;

3 User Manual for L[cgter Welding Process V3.0 Describes the use of the Laser Welding Process Kit;

4 User Manual for xCore antrol System Describes the use of RCI and xCore-SDK;
Extended Functions

5 Operation Manualf or Plating Line vi2 Describes the use of Plating Line Tracking;

Tracking
6 RokaeStudio User Manual VI1.1.0 Describes the use of off-line programming software;

2 Glossary

HMI: Human Machine Interface;

HMID: HMI device;

RCI: Rokae Control Interface, external control interface for ROKAE robots, with real-time underlying control
supported;

SDK: Software Development Kit, which will gradually replace RCI to enable underlying robot control through C++ and
other languages;

Project: The collection of programs, tasks, and other objects that control the operation of the robot; data objects of a
project can be exported and reused in other projects or robots;

Task: In xCore, it is as it suggests;

Module: It refers to a program file in xCore;

Elbow: It is the angle between the arm plane and the reference plane. The arm plane refers to the plane formed by the
robot's lower arm and upper arm, and the reference plane refers to the arm plane formed when the three axes are set to
zero and the end-effector reaches the same pose;

RL: Rokae Robot Language. It provides various commands to assist the robot in building projects;

Robot Assist: It is the software launched by ROKAE that integrates the Teach Pendant function. Together with the new-
generation control system xCore. It can be used for functions such as robot motion control, programming, parameter
configuration, and status monitoring. It can run on xPad2 teach pendant, PC, and other devices;

15
Copyright © ROKAE 2015-2023. All rights reserved.

3 Introduction

3.1 Main Interface

3 Introduction

Overview

Robot Assist is the software launched by ROKAE that integrates the Teach Pendant function.
Together with the new-generation control system xCore, it can be used for functions such as robot
motion control, programming, parameter configuration, and status monitoring. Featured with a
friendly interface, it supports all current ROKAE robots (including industrial robots and cobots) and
will support newly-developed robots with ongoing updates. The software can be installed on PC,
Surface, and ROKAE's Teach Pendant xPad2. The devices can control a robot after getting connected
to it as long as they are in the same network segment as the robot.

Operating Environment

Besides xPad2, we suggest using a tablet or a laptop as the operating terminal. The recommended
configurations are shown in the table below.

Terminal Tablet Terminal Laptop

S 32GB ST 32GB

Capacity Capacity

System Memory | 4GB System Memory | 4GB

Screen Size 8.0 inches and above GPU Intel HD Graphics 4000 and
above

T i Network | \ou i or Wired LAN

Communication Communication

(S);’:é“;lmg Windows?7 64bit, Windows10 64bit, Ubuntu16.04, Ubuntu18.04

CPU Intel Core 13 and above

3.1 Main Interface

The main operation interface consists of the top status bar, the main display area, and the bottom

status bar.
A Robat Assist -
B b4l L
RefrsnPos Moveto (4 & (0
[« ¢
Task
Var
Paint
Path
10
Frame B
Toal
Wobj
Predefine
—— § @ ¥ I]
A The top status bar shows the buttons for entering the main menu, robot programming, robot configuration,

Teach Pendant option, Instant Log, Tool & Work Object Information, Status Monitoring interface, and
operation interface.

B The main display area shows the operation interface of each function module.
C The bottom status bar shows the connection status, the program running rate, operating mode, motion
16

Copyright © ROKAE 2015-2023. All rights reserved.

3 Introduction

3.1 Main Interface

| status, user information, and robot model. |

E Notes

Robot Assist interacts with the controller in real-time. Frequent changes in window size may cause
the interface to stop refreshing. In this case, restore by pressing Alt+Tab to switch between windows.

3.1.1 Top Status Bar

Explanation

The top status bar shows the buttons for entering the Main Menu, Current Project, Instant Log, Tool

& Work Object Information, Status Monitoring interface, and operation interface.

A Menu button - Click to select the desired function module such as diagnostic log, Help, and demo and
enter the corresponding sub-interface.

B Robot Programming button - Click to enter the Current Project sub-interface.

C Robot Configuration button - Click to enter function modules such as configuration, security,
communication, and authorization.

D Teach Pendant option button - Click to enter function modules such as connection, basic settings,

appearance adjustment, and file manager.

E Tools - Display the information of the tool currently in use and select the tool to be used.

F Work Objects - Display the information of the work object currently in use and select the work object to be
used.

G Status Monitoring interface button - Click to open/close the status monitoring interface.

H Operation interface button - Click to open/close the operation interface.

3.1.2 Bottom Status Bar

Explanation

The bottom status bar shows the connection status between Robot Assist and the robot, the program
running rate, the robot operating mode, robot status, motor status, current user information, and robot

model.

A Connection status between Robot Assist and the robot - Red slash is for disconnected and full gray is for
connected.
B Program running rate adjustment slide - Adjust the motion speed when the program is running. Adjustable

range: 1% - 100%.

This parameter is valid for both manual and automatic mode program operation rates.

Robot operating mode - Click to toggle between Manual and Automatic.

Robot status - Includes the robot motion status, system status, controller mode, etc.

Robot motor status - Red is for powered-on and gray is for powered-off, other statuses include emergency
stop and safety gate open. Click the button to power on the robot in Automatic mode.

F Current user information: operator, admin, and god. Click the button to enter the user login interface. The
default login password is 123456.

G Robot model information.

g O

Robot operating mode

n The Manual mode is used for robot programming and debugging.
In Manual mode, all robot motions are controlled manually by the user, and the robot will power on
the motor and respond to the motion commands only when it's enabled (the three-position switch is

in the middle position).

O
Nt The Automatic mode is used for continuous automated production,

17
Copyright © ROKAE 2015-2023. All rights reserved.

3 Introduction

3.2 Status Monitoring

in which the three-position enabling switch will be bypassed and the robot can work normally
without manual intervention.

When the robot is in Automatic mode, the system IO signals can be used to control the robot or to
obtain the robot's operating status. For example,

one DI signal can be used to start/stop the RL program and the other to control the motor power-on.

Robot status

The button on the bottom status bar shows the robot motion status, system status, controller
mode, etc.
Idle The program is stopped and the robot is not in motion.
Program The program is running. The button turns red when the robot is in motion.
running
Drag The controller can be dragged when it is in Drag mode. The button turns red when the
mode robot is in motion.
Demo The controller plays the Demo when it is in Demo mode. The button turns red when the
mode robot is in motion.
Identificat The controller is in Identification mode. The button turns red when the robot is in motion.
ion mode

Jog mode The controller is in Jog mode and changes with the start and stop of the Jog button.

RCI mode The controller is in RCI mode. The button turns red when the robot is in motion.
Collaborat The controller is in Collaboration mode, which is displayed in combination with other
ion mode status in the upper right corner of the icon.

Error An error occurs in the robot system.

0

Debug The controller is in Debug mode. The button turns red when the robot is in motion.
mode
Robot motor status
Powered- The robot motor is powered on.
on
Powered- The robot motor is powered off.
off
Emergenc The robot is in the emergency stop state. The robot motor cannot be powered on.
y stop E
Safety The safety gate is open. The robot motor cannot be powered on.
gate open G

3.2 Status Monitoring

Explanation

Click n on the top status bar to open the floating status monitoring interface, which monitors the
robot 3D model, task running status, IO signals, network connection, and register variables, which

are convenient for Jog and programming.

18
Copyright © ROKAE 2015-2023. All rights reserved.

3 Introduction

3.2 Status Monitoring

3.2.1 3D model monitoring

Explanation

The robot 3D Model interface displays the current 3D model of the robot, joint angles, joint torque,
elbows, the position of the robot end-effector in a certain frame, and the RPY angle and quaternion of
the robot end-effector relative to the rotation matrix of the base frame.

The robot 3D Model interface displays three frames: flange frame, base frame, and world frame.
When the base frame is calibrated, the 3D model monitoring interface and the base frame relative to
the world frame will change according to the calibration result.

The end-effector position can be displayed in three frames, namely the work object frame, the base
frame, and the world frame; the monitor data in the base frame is displayed by default.

AN Monitor O X

3D Model Task 10 Signal Socket Register Conveyor PersVariable

3.2.2 Multi-task monitoring

Explanation

The Multi-task monitoring interface displays the task type and running status of each task.

A Monitor 0 X
3DModel Task 10Signal Socket Register

task) Motion (g

19
Copyright © ROKAE 2015-2023. All rights reserved.

3 Introduction

3.2 Status Monitoring

Operation Description
1 Task name Tasks added to the project are displayed here.
2 Task type The task type can be configured in Project -> Task
List.
3 Eﬁr}‘]t;g:ﬁng the program to view the operation status Stop task: STOP|
Run task:

3.2.3 10 signal monitoring

Explanation

For xMate cobots, the IO signal monitoring interface displays the 4-channel DI and DO signals on
the robot base and the 2-channel DI and DO signals at the end-effector by default. For industrial
robots, the 10 signal monitoring interface displays configured 1O signals in the control cabinet by

default.
The IO simulation model can be turned on to test DI/DO signal value.
A Monitor a X
3D Model Task 10Signal Socket Register
Category: All , 10 board: AN , Signal Type: Al , Name “
Name Category Signal Type Start Port End Post Value Change Value Description
Dioo Universal 10 ROKAE_XMATE |. ol L] a off
Dot Universal 10 ROKAE_XMATE | ol 1 1 Off
Dio2 Universal 10 ROKAE_XMATE | 1] 2 2 off
D03 Universal 10 ROKAE_XMATE | o 3 3 off
D000 Universal 10 AOKAE_XMATE | Do o a off
0001 Universal 10 ROKAE_XMATE . [1+] 1 1 off
D002 Universal 10 ROKAE XMATE |, Do 2 2 off
D003 Universal 10 ROKAE_XMATE || Do 3 3 off
Do Universal 10 ROKAE XMATE ... Dl 0 [off
i1 Universal 10 ROKAE XMATE ol 1 1 off
0o1.0 Universal 10 ROKAE XMATE .. Do o a off
Do11 Universal 10 ROKAE_XMATE _ Do 1 1 off
0 Simulation Mode
Operation Description
1 Go to the IO Signal page and click the [IO Simulation | Only Admin or God users can activate this mode.
Mode] enabling switch to activate Simulation mode.
2 Click the DI/DO value buttons to start the simulation. Note that even not in the Simulation mode, DO
can also be forced to output.
3 Click the [IO Simulation Mode] button to turn off the | The actual value and the modified value button
Simulation mode. are not strongly correlated, and the modified value

button will be set to false after the simulation
Mode is turned off.

3.2.4 Network connection monitoring

Explanation

The network connection monitoring interface displays the information (IP address, port number) and
status of the network connections that are established with the controller. The connection status of
SOCKET, MODBUS, and RCI are displayed by default.

20
Copyright © ROKAE 2015-2023. All rights reserved.

3 Introduction

3.2 Status Monitoring

AN Monitor g X
3D Model Task 10Signal Socket Register

RCI

1337

1271001 closed

Operation

Description

[Type] The connection status of
MODBUS, RCI, and SOCKET can
be displayed.

The connection can be added and configured in the relevant
interface. SYS_SOCKET refers specifically to the connection of
external communication.

[Name] The name of the

MODBUS, RCI, and SYS_SOCKET are system default unique

connection. names. User-defined names are displayed for new connections.
[IP] The IP address of the For a client-side connection, the IP address of the server is played.
connection. For a server-side connection, its own IP address is played.

[Port] The port number of the
connection.

For a client-side connection, the port number of the server is played.
For a server-side connection, its own port number is played.

[Status] The current status of the
connection.

Generally, there are three types of connection status: Connected,
Disconnected, and Connecting. For a server-side connection, it
displays Monitoring when it is disconnected.

3.2.5 Register variable monitoring

Explanation

The register variable monitoring interface displays the information for each register. The content
filter is available for quick search.

21
Copyright © ROKAE 2015-2023. All rights reserved.

3 Introduction

3.3 Operation interface

AA Monitor
3D Model Task 10 Signal Socket Register

Device Al 4 Type Al 4 ReadWiite Al L Name Description Reset

Start Address ReadWrite

Function

Read-Only Register Simulation Mode

Operation Description
1 The user can customize content to be displayed using | The variable can be filtered by connection,
[Content Filter]. variable type, name, description, and others for a
clear view.
2 Please refer to the Modbus register variable
configuration for the definition of each column.

3.3 Operation interface

Explanation

Click or Bl on the top status bar to open the operation interface, which can be used to change

the robot control mode, control robot motion, and perform pose teaching.

The robot supports two types of pose teaching: JOG Mode and Drag Mode (for xMate cobots only).

» In Jog Mode, the Jog button is used to control the motion in the corresponding directions.

» In Drag Mode, directly and manually guide the robot's motion using the end-effector drag Pilot
handle or xPanel.

22
Copyright © ROKAE 2015-2023. All rights reserved.

3 Introduction

3.3 Operation interface

O O

S)

©@ O O O
O

Description
Drag settings zone, which shows that B, C, and D are drag-related options.
Drag space setting: joint space drag and Cartesian space drag.
Drag enabling switch - turn on/off Drag Mode.
Drag mode setting.
For joint space drag, only free drag is available. For Cartesian space drag, the three options of
translational drag only, rotational drag only, and free drag are available.
JOG setting zone. It shows that F, G, and H are jog-related options.
Jog reference frame setting - Select single-axis mode or Cartesian mode in Jog Mode and select the
reference frame in Cartesian mode, including world frame, base frame, flange frame, tool frame, and
work object frame.
G Jog speed setting - Set the robot Jog speed between 1% and 100% (expressed in a percentage relative to
the top Jog speed limit of 250 mm/s).
H Jog step mode setting - Set Jog mode to Continuous Jog or Stepping Jog, and the stepping increment
can be adjusted.
LK Switch function area - Switch between the Jog button and buttons L-Q.
J Jog button. For a 7-axis robot, J1 to J7 are displayed in the case of joint space Jog and X/Y/Z/A/B/C
and Elbow in the case of Cartesian space Jog. For a 6-axis robot, J1 to J6 are displayed in the case of
joint space Jog and X/Y/Z/A/B/C in the case of Cartesian space Jog.
Program start/stop button.
Program running buttons - previous/next.
Move to Zero Pose button.
Move to Drag Pose button.
Move to Shipping Pose button.
Move to Customized Home Pose button.
"Screenshot" button, to take a screenshot and save it to the local folder of the teach pendant. These
screenshots can be exported on the "Basic Settings" interface. The button is only shown on the teach
pendant. Note: When taking a screenshot on the teach pendant, the physical membrane button is
recommended. In the case of a pop-up window, the "Screenshot" button becomes inactive, and clicking
the button generates no response.

UOUJ>Z
o

|

=lo|~|o|z|z|c

E Notes

Please ensure the robot is currently in u manual mode and n powered off before performing
Jog and turning on the drag enabling switch.

23
Copyright © ROKAE 2015-2023. All rights reserved.

3 Introduction

3.4 Function module

3.4 Function module

Explanation

3.4.1 Menu module

Click the menu button . to open the function tabs. The function modules include the engineering
module, robot module, diagnosis module, demo module, option module, and help module. Click the
main menu button to switch between different function module tabs.

Diagnostic log
Teach pendant log It displays the log of the Robot Assist (HMI software);
Controller logs It displays the running log of the controller connected to the robot;
Log timeline It displays the log history visually through a timeline;
Internal logs It displays the underlying log information of the controller. In case of a robot failure,

Technical Support can quickly locate the cause of the problem by viewing the internal logs;

Advanced options They are used to assist developers with the diagnosis of the servo, ECAT, and other
equipment, and enable real-time thread alarm and monitoring and more. Since enabling the
diagnostic function will increase the workload of the controller, do not turn it on in actual

production unless necessary.

Help
About ROKAE A brief introduction to the interface, controller, and ROKAE robots
Introduction to It contains all specifications of industrial robots and cobots
Products
Software Upgrade It provides functions such as controller upgrade, controller backup, restoring factory settings,

restarting the robot, and erasing the robot configuration information

Demos

Four demos are provided to demonstrate xMate7 features such as DOF design, agility of redundant motion control, one-

touch stop sensitivity, and compliance of variable impedance stiffness.

AA Robot Assist - 0

xMate Functional Demonstration > J

Introduction
General motion exampies of seven-ais redundant masipditcr. inchding 2 e, maming zone. mul space e motion, e

Attent

Al the 10008 v DYOPECT SeTTINGS ave anvabed whem the 10bOL 5 i The sTate of Gemer D Cam Crdy b wend when The mork] Coxrdingts systerm COMCs with Mhe buse coordinate system

Features ustration

3.4.2 Robot programming module

Interface functions

24
Copyright © ROKAE 2015-2023. All rights reserved.

4 Connecting to the Robot

3.4 Function module

AA Robot Assist
WP n
[123) tesk0)) main | » main ~ |
=)
Ta | | GLOBALPROC main()
Var MoveAbs] jointtarget0,v1000,z50,tocl0
Point MoveAbs] jointtarget1,v1000,250,tool0
Pah //MoveAbs] jointtarget2,v1000,250,tocl0
Print(1)
o
Wait 2
frame Print(2)
Tool 1l 5 wait 2
Wobj Print(3)
Predefine Wait 2
Print(4) g
Wait 2
Print(5)
Wait 2
A
ENDPROC
= ® » @ ¥
A Tabs - used to switch between the Project Sub-objects Setup interfaces, including Task, Variable, Point
Position, Path, 10 Signal, User Frame, Tool Frame, Work Object Frame, Predefinition, etc.;
B Program edit area - for auxiliary programming of the robot and program command,
C Program file selection - used to switch between different tasks and program files for editing and
debugging;
D Program Debug Quick Positioning button - used to switch to main function or cursor;
E Program syntax check, loop mode, and output terminal;
F Program edit toolbar: undo, repeat, cut, paste, copy, move up one row, move down one row, batch
comment, delete current row, search and replace, auxiliary programming;

3.4.3 Robot configuration module

Set User group, controller settings, zero-point calibration, base frame calibration, dynamic parameter
identification, robot body parameters, kinematics parameters, force control parameters, quick turn;

Safety Soft limits, virtual wall, collision detection, safety area, safety monitor, collaboration mode;

settings, serial port settings;

Communication | System IO, external communication, register, IO device, bus device, end-effector tool, RCI

Process kit Laser welding, etc.;

Authorization EtherCAT authorization;

3.4.4 Teach Pendant option module

Connection It includes robot detection, robot connection, and auto reconnection settings;

Basic settings It includes software language settings, auto startup settings, IP binding, working area path
selection, graphic performance adjustment, and turning off 3D display;

Appearance It includes theme switching, control adjustment, and font adjustment.

Adjustment

File Manager It includes opening and browsing of cache folder, log folder, working area folder, etc.

4 Connecting to the Robot

Explanation

The devices (xPad2 teach pendant, PC) on which Robot Assist is running can be connected to any

Rokae robot as long as they are in the same LAN as the robot. The connection with the robot can be

established by robot detection or by manually entering the controller address.

The robot system only supports wired connection to the local area network (LAN) or direct

connection with a network cable:

» When using the Teach Pendant xPad2, directly connect xPad2 to the corresponding interface of

25
Copyright © ROKAE 2015-2023. All rights reserved.

4 Connecting to the Robot

4.1 Robot network interface and IP

the robot;

» When using a PC on which Robot Assist is running to debug a robot, the PC can be directly
connected to the robot via network cable;

» When switching between multiple robots, the robots can be connected to the same LAN and the
PC on which Robot Assist is running will detect the robots available for connection on the
same network segment;

» For scenarios where a wired connection is not convenient (such as on AGVs), the robot can be
connected to a wireless router via the reserved network interface on the robot control cabinet
(the network interface for xMate cobot base; the vision and debugging network interface of
industrial robot control cabinet) and then to the HMID wirelessly.

4.1 Robot network interface and IP

ID Introduction Picture

The xMate ER series cobot has two Ethernet network
interfaces on the base, of which the network interface
1 J2 defaults to the fixed IP address of 192.168.0.160,
and the network interface J1 defaults to an
automatically obtained IP address.

The xMate CR series cobot has only one Ethernet
network interface J1 (standard configuration) on the
base, which defaults to the fixed IP address of
192.168.0.160.

For an industrial robot using the XBC3 controller, the
controller features four longitudinally-arranged
Ethernet network interfaces, they are, from top to
bottom, EtherCAT device extension interface (used for
slave station extension); vision network interface (used
to connect industrial cameras, defaults to the fixed IP
address of 192.168.2.160); debugging network
interface (defaults to the fixed IP address of
192.168.0.160), and bus extension network interface

(optional).

For an industrial robot using the XBCS5 controller, the
controller features four horizontally-arranged Ethernet
network interfaces, they are, from left to right,
EtherCAT device extension interface (used for slave
station extension); vision network interface (used to

4 connect industrial cameras, defaults to the fixed IP
address of 192.168.2.160); debugging network
interface (defaults to the fixed IP address of
192.168.0.160), and bus extension network interface
(optional).

26
Copyright © ROKAE 2015-2023. All rights reserved.

4 Connecting to the Robot

4.2 Connecting to terminal devices

For the XBCS5 controller cabinet with high
protection rating, the controller cabinet reserves no
network interface on the control cabinet.

4.2 Connecting to terminal devices

ID Terminal Description
devices

The Teach Pendant xPad2 supports the xMate CR series cobots and industrial robots using the XBC5
controller cabinet. Connect the Teach Pendant xPad2 to the robot via a cable plug (for industrial
. <Pad2 robots, the interface is on the XBC5 controller cabinet; for xMate cobots, the interface is on the base
of the robots), and the connection is established. After the robot is powered on, the Teach Pendant
xPad2 will be powered on automatically, and the pre-installed Robot Assist software will run

automatically.

Method 1: Direct cable connection

Both the robot base and the controller cabinet feature one network interface that defaults as the
debugging network interface and is assigned with the fixed IP address of 192.168.0.160. This IP
address is the same for all robots and should not be modified arbitrarily. The PC on which Robot
Assist is running can be connected to the network interface directly via a network cable to control
the robot.

Method 2: External network interface connection

External network interface connection supports two types of settings: obtain an IP address
automatically or assign a static IP address.

Obtain an IP address automatically - Set the network interface J1 of cobots or the vision network
interface of industrial robots to DHCP mode. The robot is connected to a router with DHCP via the
network interface, which automatically assigns an IP address to the robot. The robot can then be
detected and connected via robot detection.

Assign a static IP address - Set the network interface J1 of cobots or the vision network interface of
industrial robots to the IP address in the required network segment. The robot is connected to a
router via the network interface and can then be visited and controlled via the robot's IP address.

IP address modification:

Using the Windows 10 operating system as an example, connect one end of the Ethernet cable to the
robot's J2 interface and the other end to the terminal device (PC). Click on the "Start > Control
Panel" menu on the terminal device (PC), and select "Network and Sharing Center". The "Network
and Sharing Center" window will pop up. Click on "Local Area Connection" in the "Network and
Sharing Center" window, and the "Local Area Connection Status" interface will appear. Click on
"Properties" in the "Local Area Connection Status" interface, and the "Local Area Connection
Properties" interface will appear. Double-click on "Internet Protocol Version 4 (TCP/IPv4)" in the
"Local Area Connection Properties" interface, and the "Internet Protocol Version 4 (TCP/IPv4)
Properties" interface will appear. Select "Use the following IP address" in the "Internet Protocol
Version 4 (TCP/IPv4) Properties" interface, modify the IP address, subnet mask, and default gateway
of the terminal device (PC), and confirm the changes. (The terminal device (PC) shares the same
subnet mask and default gateway with the robot and may use any unoccupied IP address in the same

network segment.)

27
Copyright © ROKAE 2015-2023. All rights reserved.

4 Connecting to the Robot

4.3 Connecting to the robot

Internet 4 (TCP/IPv4) Properties X
General

You can get IP settings assigned automatically if your network supports
this capability. Otherwise, you need to ask your network administrator
for the appropriate IP settings.

(O Obtain an IP address automatically

(®) Use the following IP address:
IP address: 192 . 168 . 0 .100
Subnet mask: | bS5 .255 .255 . 0
Default gateway:

Obtain DNS server address automatically

(®) Use the following DNS server addresses:

Preferred DNS server:

Alternative DNS server:

[validate settings upon exit Adyanced...

o] o

A Warning

When manually modifying the IP address of the robot's network interfaces, do not set different
network interfaces as static IP addresses of the same network segment; do not arbitrarily modify
the network mode and IP address (192.168.0.160) of the debugging network interface; do not
arbitrarily modify the network mode and IP address (192.168.1.160) of the Teach Pendant xPad's
network adapter card.

4.3 Connecting to the robot

Connecting to the robot

Go to Options -> Connection interface and enter the IP address of the robots.

28
Copyright © ROKAE 2015-2023. All rights reserved.

4 Connecting to the Robot

Robot detection

« Connection

Robot Service Detection

Bound IP; 0.0.00

Robot Service Connection

Address 192.168.19.129

Cantroller service Discannected

U

prace service Disconnedted

Automatic Reconnection
Open

[teconnect time 20 [10-20s) Reconnect number 1 (1-100)

4.3 Connecting to the robot

Robot Service Detection

System will detect any prepared robot with valid
connection to bound IF, you can
baund IF, this cperation will take effect after rastart.

Cantraller Service

Each robot starts an independent controller service
alter every hardware prepared

Upgrade Service

The upgrade service keeps running, so that the e, n @
contoller program can be upgraded at any time. =

Automatic Reconnecttion o
Tum an the functionwhen the netwark is disconnected, -~
itwill automatically reconnect. Otherwise, it will
disconnect directly. After the function is tumed on, the
reconnection time will be used for the specified
recannection time, and the reconnection will be
repeated nireconnect number] times. Citherwise keep
reconnecting.

H Notes

IP and ports are necessary for identifying the target controller. When you fail to connect
to the robot, check to see if the network is connected.

Explanation

HMI can detect and display all robots available on the same network segment for connection.

Click the network icon button - on the bottom status bar to enter the robot search interface,

and click Search Available Robot.

"

« Connection

Robot Service Detection

Bound IF; 0.0.00

Robot Service Connection
Address 19216819129
Controller service Disconnected

Upgrade service Disconnected

Automatic Reconnection
Open

[Reconnect time 20 [10~30s) Reconnect number 1 (1-=100)

Robot Service Detection

System will detect any prepared robot with valid
connection to bound IP, you can click here to change
houn IP, this operation will take effect after restart

Controller Service

Each robot starts an independent controller service
after every hardware prepared.

Upgrade Service

The upgrade service keeps running, so that the
«contoller program can be upgraded at any time.

Automatic Reconnecttion

Turn on the function.when the network is disconnected,
it will automatically reconnect. itherwise, it wil
disconnect directly. After the function is turmed on, the
reconnection time will be used for the specified
recannection time, and the reconnection will be
repeated n{reconnect number) times. Otherwise keep
reconnecting

H Notes

Copyright © ROKAE 2015-2023. All rights reserved.

4 Connecting to the Robot
4.4 User login

1. When searching for robots, please make sure the device on which Robot Assist is running
and the robots are on the same network and the network is connected.

2. Ifthe robots cannot be detected by searching for available robots when the device on which
Robot Assist is running and the robots are on the same network and the network is
connected, the connection requests sent by Robot Assist may be blocked by the firewall on
the device.

4.4 User login

Explanation

The default user is Operator after the robot is successfully connected. Click on the
bottom status bar to switch between users. The default password is 123456.

For details on user login and permissions, please refer to 5.1.1.1 User groups and permissions.

4.5 Disconnect and restore connection

Explanation

» Click the Disconnect button in the Connection interface to disconnect Robot Assist from the
controller.

» Simultaneous connection of multiple Robot Assist is not supported. Another Robot Assist can
only be connected after the current Robot Assist is confirmed to be disconnected or the robot is
restarted.

» The Robot Assist connection can be restored via user login in the same way it is connected for
the first time.

4.5.1 Auto reconnect

Explanation

In the Connection interface, the Automatic Reconnection function can be enabled by turning on the

switch. There are two ways for reconnecting:

» Check the checkbox to set reconnection interval and attempts to specify reconnection interval
and attempts (the total reconnection duration = reconnection interval * reconnection attempts).

» If the checkbox is not checked, no reconnection interval or attempts will be set and Robot Assist
will keep reconnecting to the controller.

30
Copyright © ROKAE 2015-2023. All rights reserved.

5 Operating Mode and Safety

« Connection

Robot Service Detection

Bound IP: 0.0.00

Robot Service Connection
Address 162.168,10.120
Controller sendce Disconnected

Upgrade service Disconnected

Automatic Reconnection
Open

Reconnect fime 20 (10~305) Reconnect number 1

[1-100)

4.5.2 Plug & play Teach Pendant xPad2

5.1 Safety Management

Robot Service Detection

System will detect any prepared robol with valid
connection to bound IF, you cen dlick here to change
‘bound IP, this cperation will take effect after restart.

Controller Service

tach rohot starts an independent controller service
after every hardware prepared.

Upgrade Service

The uparade service keeps running, so that the
contoller program can be upgraded at any time.

Automatic Reconnecttion

Turn on the functionwhen the network is disconnected,
it will automatically reconnect. Otherwise, it will
disconnect directly. After the function is turned on, the
reconnection time will be used for the specified
reconnection time, and the reconnection will be
repeated n{reconnect number) times. Otherwise keep
reconnecting.

Explanation

Follow the steps below to disconnect the Teach Pendant xPad2 from a powered-on robot. Direct
physical disconnection will cause an emergency stop for the robot.

» Go to the Basic Settings interface, and the current status is displayed in Teach Pendant Mode
Settings, which defaults to Teach Pendant Mode. Click the Switch Mode button to switch to No
Teach Pendant Mode. No Teach Pendant Mode will be displayed on the interface after a

successful switch.

» After the robot is switched to No Teach Pendant Mode, the Teach Pendant xPad2 can be
disconnected from the robot, and the robot will not come to an emergency stop in this case.

To reconnect the Teach Pendant xPad2 to the robot, follow the steps below:

» Establish a physical connection between the Teach Pendant xPad2 and the robot;

» Go to the Basic Settings interface, and the current status is displayed in Teach Pendant Mode
Settings, which should be No Teach Pendant Mode. Click the Switch Mode button to switch to
Teach Pendant Mode. Teach Pendant Mode will be displayed on the interface after a successful

switch.

ﬂ Notes

The plug & play Teach Pendant function is only available for some models. For models
that do not support this function, the system will prompt "Failed to switch Teach Pendant
Mode". For detailed model configurations, please consult our technical support.

5 Operating Mode and Safety

5.1 Safety Management

5.1.1 About this section

Copyright © ROKAE 2015-2023. All rights reserved.

31

5 Operating Mode and Safety

5.1 Safety Management

This section introduces the safety principles and processes that need to be noted when using robots.
The contents related to the design and installation of the external safety protection device of the robot

are not within this section.

5.1.2 Safety terms

5.1.2.1 Safety symbols

About safety symbols

There may be different degrees of danger when operating the robot in accordance with this manual,

so there will be a special safety symbol in the vicinity of dangerous operation instructions to remind

the user to be careful. The contents include:

» Anicon that indicates safety level and the corresponding name, such as warning, danger, prompt,
etc.;

» A brief description given to illustrate the possible consequences if the operator does not eliminate
the danger;

» The operating instructions on how to eliminate dangers.

Safety levels

Icon Name Description

DANGER For the contents that come with this sign, failure
of following the rules in operation will cause
serious or even fatal injury to personnel, and
will/may cause serious damage to the robot.

Warning For the contents that come with this sign, failure
of following the rules in operation may cause
serious and even fatal personal injury and will
cause great damage to the robot.

Electric shock hazard It indicates that the current operation may cause
an electric shock hazard with a serious or even
fatal injury.

Caution For those coming with this sign, failure of

following the rules in operation may cause
personal injury, and may cause damage to the
robot.

ESD It indicates that the components involved in the
current operation are sensitive to static electricity.
Failure to operate according to specifications may
cause damage.

Notes It is used to prompt some important information
or prerequisites.

e | APl o

Hazard description

Icon Name Description

Squeezing There may be an injury to the operators and
maintenance personnel who enter into the motion
range of the robot during debugging, repair,
overhaul, and tools clamping.

32
Copyright © ROKAE 2015-2023. All rights reserved.

5 Operating Mode and Safety
5.1 Safety Management

Hands Pinching The maintainers have the risk of hand pinching
when approaching tape drive parts during the
maintenance.

Strike There may be a serious injury to the operators and
maintenance personnel who enter into the motion
range of the robot during debugging, repair,
overhaul, and tools clamping.

Friction There may be an injury to the operators and
maintenance personnel who enter into the motion
range of the robot during debugging, repair,
overhaul, and tools clamping.

Parts fly out There may be a serious injury to the operators and
maintenance personnel who enter into the motion
range of the robot during debugging, repair,

overhaul, and tools clamping when tools or work
objects may fly out due to loose clamping.

Fire Electrical short circuits, burning wires/devices
may cause fire hazards, causing serious injuries.

Hot surface During the maintenance and repair of the
equipment, a burn may be caused if the
maintenance personnel touch the robot's hot
surface.

5.1.2.2 Safety features

Safety levels

The xCore system is equipped with specialized safety modules for handling safety-related signals,
and provides external safety symbol interfaces such as safety gates and safety gratings.

The signals handled by safety modules include:

» Emergency stop signal;

» Safety gate signal;

» Enabling switch signal;

5.1.2.3 Stop

Type of stop

Rokae robot supports two types of stop: emergency stop and controlled stop.

Emergency stop possesses the highest priority in the robot system. The emergency stop button, when

pressed, will immediately trigger the emergency stop sequence. All other control functions as well as

robot movements will stop, and the motor power for each joint will be cut off. The control system will

switch over to the emergency stop state which will be maintained until a manual reset.

After triggering the emergency stop, the system may take any of two different stop modes according to

different working conditions:

> STOP 0: When the power is cut off, the robot stops working immediately. This is an
uncontrolled stop. As each joint will stop as quickly as possible, the robot may deviate from the
set path. Such a protective stop can only be used when the safety assessment limits are exceeded

Emergency

stop or there is an error in the safety assessment module of the control system;

> STOP 1: When the power supply causes the robot to stop, the power is cut off when the robot
comes to a stop. This is a controlled stop and the robot will follow the set path. The power is cut
off after the robot stops moving;

ﬂ Notes

1. Emergency stop is only used to stop the robot immediately in case of danger.

2. Emergency stop should not be used for normal stops, otherwise, it may cause extra and
unnecessary wear to the brake and transmission system, which will eventually reduce the
robot's service life.

33
Copyright © ROKAE 2015-2023. All rights reserved.

5 Operating Mode and Safety

5.1 Safety Management

Controlled
stop

A controlled stop is to stop the program from running when the robot power is kept on.
> STOP 2: Controlled stop when the robot is powered on. The safety assessment control system

can keep the robot at the stopped location.

5.1.2.4 Enabling switch

Enabling device

The enabling device is a special switch with two contacts and three positions and is also called a
three-position enabling switch (hereinafter referred to as "enabling switch"). It is used to power

on/off the robot power supply in Manual Mode to enable robot motions.

The motor power is switched on only when the enabling switch is pressed and kept in the middle so

that the robot is in a state that is permitted for motion. Releasing or pressing the switch all the way

down will cut the power off.

Position1 [) [OFF]
Tap |- erelease T
— e v
Position 2 \—Ij‘ oN Reloase
Press
tightly \
Position3 | l — | OFF

1.
2.

Notes

The yellow button on the Handheld Enabling Device is the enabling switch. When the enabling
switch is pressed and held in the middle position, the robot will be powered on, the system will
enter the Motor On state, and you can jog the robot or execute a program. The robot will be
powered off and the system will return to the Motor Off state when the switch is released or
pressed all the way down.

In order to use the Teach Pendant safely, the following requirements must be observed:

Make sure the enabling switch functions properly in any circumstances.

Release the enabling switch immediately when no robot motion is required during
programming or debugging.

Any person who enters the robot's working space must carry a handheld enabling
device to prevent others from starting the robot without the knowledge of the involved
personnel.

A\

position!

Warning

It is strictly prohibited to use external devices to keep the enabling switch locked or stopped in the middle

5.1.3 Safety precautions

5.1.3.1 Overview

34
Copyright © ROKAE 2015-2023. All rights reserved.

5 Operating Mode and Safety
5.1 Safety Management

About the robot
In human-machine collaboration, xCore offers safety functions such as Collaboration Mode and
collision detection to ensure personal safety when collaborating with a robot. Please carefully read

the safety functions in Section 7.2 before operating the robot.

About this section
This section will describe some basic safety specifications for the end-users of the robot. However, it

cannot cover each specific circumstance due to limited space.

5.1.3.2 Focus on user's own safety

General principles
A few simple principles should be followed in order to operate the robot safely:
> Pay attention to the moving tools installed on the robot, such as the electric drill and electric saw.
They shall be stopped when approaching the robot;
> Pay attention to the work object surface or the robot arm body. The motor and casing temperature
of the robot may become very high after prolonged work;
> Watch out for grippers and objects gripped. If the gripper is opened, the workpiece could fall and
cause personal injury or equipment damage. Moreover, the gripper of the robot may be very powerful
and may cause injury if it is not used according to the specification.

5.1.3.3 Recovering from emergency stops

Explanation
In the case of an emergency stop, a reset is required to return to normal operation. The reset is a
simple but important procedure. It ensures that the robot system is not returned to production in a

hazardous condition.

Reset emergency stop button
All button-shaped emergency stop devices are equipped with one safety lock mechanism, which must
be released manually after being pressed to reset the emergency stop status of the device.
Most emergency stop buttons are released by rotation and the direction of rotation is indicated on the

button surface. Some buttons also support releasing by upward pulling.

5.1.3.4 Safety precautions in Manual mode

About the Manual mode
In Manual mode, the robot's movement is under manual control. You can jog the robot or execute a
program only when the enabling switch is held in the middle position.
The Manual mode is used during programming, debugging, and commissioning of the workstation.

Speed limit in Manual mode
In Manual mode, the speed of the robot's end effector is limited to 250 mm/s. This means that the
maximum speed of the robot will not exceed 250 mm/s whether you jog the robot or execute a

program, regardless of the speed set in the program.

35
Copyright © ROKAE 2015-2023. All rights reserved.

5 Operating Mode and Safety
5.1 Safety Management

Bypassing external safety signals

In Manual mode, signals of external safety devices such as the safety gate and safety grating will be
bypassed. This means that the emergency stop will not be triggered in Manual mode even if the
safety gate is open, which facilitates the debugging.

5.1.3.5 Safety precautions in Automatic mode

About the Automatic mode

The Automatic mode is used for running the robot program in production.
In Automatic mode, the enabling switch will be bypassed so that the robot can run automatically

without manual intervention.

Enabling external safety signals

External safety devices such as the safety gate and safety grating will be enabled in Automatic mode.
Opening the safety gate will trigger an emergency stop.

Safe troubleshooting in production

In most cases, the robot is part of the production line. Therefore, the impact of a robot fault may go
beyond the workstation itself. Likewise, problems with other parts of the production line may also
impact the workstation. For this reason, a troubleshooting plan should be designed by personnel who
are familiar with the entire production line to improve safety.

For example, a robot on the production line grabs workpieces from the conveyor belt. When the robot
encounters a fault, the robot maintenance personnel should consider additional safety measures for
working beside the moving conveyor belt to ensure uninterrupted production while the robot is under
repair.

For another example, when removing a welding robot from the production line for routine
maintenance, the robot supplying materials to it must also be stopped to avoid personal injury.

5.1.3.6 Emergency handling

5.1.3.6.1 Fire

Treatment of mild fire disaster
Do not panic and keep calm when a fire hazard is imminent or has not yet begun to spread; you can
use on-site fire-extinguishing devices to put out the flame. It is strictly prohibited to use water to put
out a fire caused by short circuits.

& Warning

The fire-extinguishing device on the working field of the robot shall be supplied by the user, the user shall
choose the appropriate fire-extinguishing device according to the actual situations of the field.

Treatment of severe fire disaster

If the fire has spread and is beyond control, the workers on site shall notify other workers
immediately to give up their personal belongings and evacuate immediately through emergency exits
rather than try to put out the fire. DO NOT use an elevator, and be sure to inform the fire department

during evacuation.

36
Copyright © ROKAE 2015-2023. All rights reserved.

5 Operating Mode and Safety

5.2 Robot operating mode

If a person's clothing catches fire, ask them not to run but to lie flat on the ground immediately. Put
out the fire using clothes or other suitable items and methods.

5.1.3.6.2 Treatment of an electric shock

Cut off power

When someone gets an electric shock, do not panic and cut off the power supply immediately.
Appropriate methods and measures shall be adopted without hesitation according to specific site
conditions. Generally, there are several methods and measures:

1) If the power switch or button is very near to the location of the electric shock, it shall be switched
off at once, and the power supply shall be cut off.

2) If the power switch or button is far away from the location of the electric shock, it is suggested to
use insulated pliers or ax, knife, and shovel with dry wooden handles to cut off live wires on the
mains' side (power supply), the separated wire must not contact with the human body.

3) If the conducting wire is over or under the body of the victim, it is suggested to use a dry stick, board,
bamboo pole, or other tools with insulated handles (by gripping the insulated handle) to remove the
wire. No metal bar or wet object shall be used to avoid the rescuer from also getting an electric shock.

Treatment of the wounded after being separated from the power source

1) If the wounded is conscious, he/she shall be made lie on the back and watched out. He/she is not
suggested to stand or walk for the time being.

2) If the wounded is unconscious, make him/her lie on the back to keep the airway open. Call the
wounded or pat him/her on the shoulder at an interval of 5 seconds to judge if he/she loses
consciousness. Do not call the wounded by shaking his/her head. Meanwhile, contact the hospital as
soon as possible.

3) If the wounded loses consciousness, his/her respiratory conditions and heartbeat shall be
confirmed within 10 seconds. If neither breath nor arterial pulse is sensed, the wounded may have a
cardiac arrest and shall be given immediate first aid treatment by cardiopulmonary resuscitation.

5.2 Robot operating mode

5.2.1 Manual mode

Explanation

The Manual mode is mainly used for robot programming and debugging.

In Manual mode, all robot motions are controlled manually by the user, and the robot will power on
the motor and respond to the motion commands only when its motion is enabled (the three-position
switch is in the middle position).

Tasks typically performed in Manual mode

The Manual mode is typically used to perform the following tasks:

> Jog the robot back close to the path after an emergency stop to continue running the program;

» Create and write RL programs;

» Debug the RL program, including but not limited to startup, stop, single-step run, and teaching
point update;

» Set control system parameters and calibrate frames;

» View and modify variables;

5.2.2 Automatic mode

Explanation

The Automatic mode is used for continuous automated production, in which the three-position
enabling switch will be bypassed and the robot can work normally without manual intervention.

37
Copyright © ROKAE 2015-2023. All rights reserved.

5 Operating Mode and Safety

5.2 Robot operating mode

When the robot is in Automatic mode, signals can be used to control the robot or to obtain the robot's
operating status. For example, one DI signal can be used to start/stop the RL program and the other to
control the motor power-on. See the Section 7.3.1 for the list of system IOs supported by the xCore
system.

Tasks forbade in Automatic mode

The Automatic mode is typically used to perform the following tasks:
» Load, start, and stop the RL program;

Return to the original programming path after an emergency stop;
Back up the system;

Clean the tools (according to the process requirements);

YV V V VY

Machine and process the work objects;

Restrictions in Automatic mode

Jog the robot.

Y V

Modify configuration files, configure the number of 1O boards, or set the robot installation
method.

Restore the backup.

Grant function authorization.

Set soft limits.

Create, modify, and delete 10.

Perform parameter identification.

Turn on/off collision detection.

Turn on/off Collaboration Mode.

Turn on/off Drag Teaching in Automatic Mode.

Perform calibration.

Create new variables.

VV Y VYV VY YVYYYVYYVYY

Update or restore to factory settings.
There may be other use restrictions depending on field situations. Please consult your system
integrator for further information.

5.2.3 Mode switching

5.2.3.1 About mode switching

Current mode

You can learn about the current mode of the control system by checking the mode icon on the bottom
status bar of Robot Assist.

P

. L. O .
nmdlcates that the controller is in Manual mode and- indicates that the controller is in
Automatic mode. Users can click the mode icon in the HMI interface to switch between different
operating modes.

Safety

For safety reasons, the system will cut off the power supply during mode switching (this means that
if the system is executing an RL program and the robot is in motion, the system will trigger STOP 1).

5.2.3.2 Switching from Manual to Automatic

When to switch from Manual to Automatic

38
Copyright © ROKAE 2015-2023. All rights reserved.

5 Operating Mode and Safety

5.3 Robot power on/off

When operators need to verify the programs at all states and speeds, or when the programs are ready
for full production, the system can be switched to Automatic mode.

A DANGER

When in Automatic mode, the robot may be triggered to move by an external signal without any warning.
Before switching to Automatic mode, please make sure that the collision detection is enabled to prevent
personal injury from accidental collisions between the robot and personnel!

Notes

& Warning

In Automatic mode, the robot can be remotely powered on and the RL program started, which means that the
robot may activate at any time.
Please consult your system integrator for the detailed configuration of the robot system.

5.2.3.3 Switching from Automatic to Manual

Switching from Automatic to Manual

(5 3y
Click the icon on the Robot Assist interface to switch from Automatic to Manual and see if

the icon changes to “ If yes, the mode is switched. If the switching fails, please troubleshoot
according to the real-time log information on the top status bar.

5.3 Robot power on/off

5.3.1 Robot power-on

Power-on in Manual mode

In Manual mode, the user can power on the motor by pressing the yellow three-position enabling
switch on the handheld Enabling Device and holding it in the middle position. If the sound of the
robot power-on is heard or a red power-on button on the bottom status bar of Robot Assist is
observed, the power-on is complete.

—
4 -\
/ -

Position1 [OFF

Tap 'l']rReIease

e) W— ‘
Position 2 t ON | Release

Press
d
tightly

Position3 | [| OFF

ﬂ Notes ‘

If the power-on fails, observe the real-time log to determine the robot's status at this time
and switch the robot to a state that supports power-on before trying again.

39
Copyright © ROKAE 2015-2023. All rights reserved.

6 Motion control
6.1 Jog mode

Power-on in Automatic mode

In Automatic mode, click the Power-On button on the bottom status bar of Robot Assist to power on
the motor. The method to determine whether the motor is properly powered on in this mode is the
same as that in Manual mode.

O O

5.3.2 Robot power-off

Power-off in Manual mode

In Manual mode, the user can power off the motor by releasing or pressing the yellow three-position
enabling switch all the way down to keep it in Position 1 or Position 3.

Power-off in Automatic mode

In Automatic mode, click the Power-Off button on the bottom status bar of the Robot Assist interface
to power off the motor.

A Warning

In case of emergency, press the Emergency Stop button on the manual Enabling Device for

emergency robot power-off. In need of power-on again, please reset the emergency stop switch
manually.

6 Motion control

6.1 Jog mode

Jog Settings

Joint space Jog or Cartesian space Jog is available for Jog motion.

Jog motion frames available for the Cartesian space Jog include world frame, base frame, flange

frame, tool frame, and work object frame.

Set Jog mode to Continuous Jog or Stepping Jog:

» In Continuous Jog mode, press the enabling switch to power on the robot. Then press the Jog
button. The robot will move continuously at the set Jog velocity until either the enabling switch
or the Jog button is released;

» In Stepping Jog mode, press and hold the Jog button. The robot is powered on and will move at a
fixed step length; The step length can be set to precisely adjust the robot pose;

» Jog speed can be set to control the robot motion speed during Jog. The speed range is from 1% to
100% (100% corresponds to the robot's top TCP speed of 250 mm/s). (Both Cartesian space
Jog and joint space Jog adopt TCP linear speed of 250 mm/s as the top Jog speed)

ﬂ Notes

In Stepping Jog mode, press and hold the Jog button. Wait until the robot moves at the specified
step length before releasing the Jog button. A short press may cause the robot to stop moving in
advance.

40
Copyright © ROKAE 2015-2023. All rights reserved.

6 Motion control

6.2 Drag mode

Quick turn

The HMI motion interface offers convenient adjustment to common robot poses, including
mechanical zero position, drag pose, shipping pose, and home pose.

The quick pose adjustment is available in Manual Mode in a way similar to Jog operation. In Manual
Mode, the robot is powered on via the enabling switch. When the button for the corresponding target
pose is pressed, the robot will move to the target pose in the joint space.

The motion speed can be adjusted via the Jog speed.

The Quick Turn features parameter configuration for users to use custom shipping poses, drag poses,
or Home poses. Set the parameters in the Robot Configuration -> Settings -> Quick Turn page. If the
custom configuration is not enabled, the default configuration takes effect.

6.2 Drag mode

Explanation

The Drag Mode of the xMate cobot is designed for users to achieve quick trajectory recording and
reproduction. During programming, the robot can be positioned easily by dragging it, which
substantially saves programming time.

Drag settings

The Drag Mode can be set to joint space drag or Cartesian space drag.

In the joint space Drag Mode, each axis moves independently and can be directly adjusted to reach
the desired pose.

In the Cartesian space Drag Mode, two options are available: Rotate Only and Translate Only. In
Rotate Only, the robot can be guided manually to rotate around TCP; in Translate Only, the robot can
be guided for translational motion in the Cartesian space in different directions.

When the robot is in Manual mode and powered off, turn on the drag enabling switch on the
operation panel, the robot is powered on automatically and enables Drag Mode. Press the enabling
button on the end-effector drag handle simultaneously to drag the robot for point position teaching
and trajectory recording.

H Notes

1. Set the drag mode and drag space before enabling Drag Mode.
2. After Drag Mode is enabled, the robot will be powered on automatically. In this case, the
drag mode and drag space cannot be set. Please disable Drag Mode before setting them.

A Warning

1. Before enabling Drag Mode, please ensure the robot's dynamic parameters and load

parameters are set accurately. Otherwise, a failure may occur when enabling Drag Mode, or
the robot may float during dragging.

2. Set the parameters using the dynamic parameter identification function and the load
identification function provided by the system.

A DANGER

Before using Drag Teaching, please ensure the following parameters are set correctly:

41
Copyright © ROKAE 2015-2023. All rights reserved.

6 Motion control
6.2 Drag mode

Robot model;

Robot installation method: floor mounting or ceiling mounting;

Dynamic parameters of the robot and its load;

. Mechanical zero calibration;

Otherwise, when the angles of axes are in the wrong state, the controller may not be able to
calculate the correct output torque, and the robot cannot work in Drag Mode properly.

N

Applicable models:

The Drag Mode and its extended functions (end-effector handle, point position teaching,
continuous trajectory teaching, and trajectory reproduction) are only available for xMate cobots.

6.2.1 End-effector handle

Explanation
Series Introduction Definition
Definition of buttons on end-effector Pilot handle:
The xMate ER series robot
end-effector integrates a Pilot
handle with an intelligent
interactive panel. In Drag
Mode, the buttons on the Pilot
xMate ER handle can be used for quick
point position teaching and No. Definition
continuous trajectory teaching, 1 Update the teaching point with the current pose, start/stop
providing better human- trajectory recording
machine interaction. 2 Next
3 Add the point position/trajectory in the list, confirm pop-up
window prompts
4 Previous
5 Delete the point position/trajectory in the list, cancel pop-up
window prompts
6 In Drag Mode, press the two enabling buttons at the same time
to activate the drag function
Definition of buttons on end-effector xPanel handle:
@
The xMate CR series robot
end-effector integrates an
xPanel handle with an
intelligent interactive panel. In
Drag Mode, the buttons on the
xMate CR .
Pilot handle can be used for
quick point position teaching
and continuous trajectory
teaching, providing better
human-machine interaction.
No. Definition
1 Update the teaching point with the current pose, start/stop
trajectory recording
2 Moves forward
3 Delete the point/track in the list and cancel the pop-up prompt
4 In Drag Mode, press the two enabling buttons at the same time to
42

Copyright © ROKAE 2015-2023. All rights reserved.

6 Motion control

6.2 Drag mode

5 activate the drag function

Moves backward

Add the midpoint/track to the list and confirm the pop-up prompt

6.2.2 Point position teaching

Explanation

Turn on the drag enabling switch on the operation panel, and the robot is powered on automatically
and enables Drag Mode. The following operations can be performed through Robot Assist and the
robot end-effector drag handle:

AA Robot Assist -
W € N ¥ o)
« Point List
Table Filter Type: Al , Name: Description: Reset Fiiter

Name Position j Description
il pointd Joint [0.00,0.00,0.00,000,0.00,0.00,000° toold wobj0

B pointl I), 90, toold wabj0
wobj0

Move to point2

Operation Description

Create/load a project and enter the Point List
interface

The end-effector buttons only respond when the current
page of Robot Assist is Point List or Path List.

Press the two enabling buttons on the end-
effector handle at the same time, drag the robot
to any position, and release the drag enabling
button. Press the Add Point button on the end-
effector handle.

A new teaching point of the current pose is added to the
end of the Point List, and the cursor is now at the new
teaching point.

Press the Previous/Next button on the end-
effector handle

Move the cursor to the previous/next point in the Point List
and select the point

Select a point to update in the Point List, drag
the robot to another position, and release the
drag enabling button. Press the Update Point
button on the end-effector handle.

The selected point in the Point List is updated with the
current pose.

Select a point to delete in the Point List. Press
the Delete Point button on the end-effector
handle and confirm.

A pop-up window prompt will appear when you try to
delete a path. If you press the OK button on the end-
effector handle, the selected path will be deleted from the
Path List. If you press the Cancel button on the end-
effector handle, the pop-up window will be closed, and the
selected path will remain on the Path List.

6.2.3 Continuous trajectory teaching

HMI operation

Turn on the drag enabling switch on the operation panel, and the robot is powered on automatically
and enables Drag Mode. The following operations can be performed through Robot Assist:
Step 1: Create/load a project, move the robot to any start position, and enter the Project -> Path

43
Copyright © ROKAE 2015-2023. All rights reserved.

6 Motion control

6.2 Drag mode

interface.

Bk L .
Step 2: Click on the Path List interface to create a new path. Enter the sub-interface for new
path settings.
AA Robot Assist -
o n %t

« Path List

Name otal Lengtmple Inter Teached DO Signals Description
oo tme 1 0 fae [PO00:DN.0LPOOI:
B vaaa tme 00 0 fake [D00.0:D10.0]
B o2 tme 1 0 fake 000.1:0101]
& & + £ L]
—— * 014 L

Step 3: Set the new path name, description, and total recording time. To record DO signals, click the
Select DO button and select DO signal in the pop-up window. A DI mapping signal can be set for
each DO signal, where the change of the DI signal will be recorded as the change of the DO signal
and be output to the DO signal when the path is recorded. If the DI signal is not associated with the
DO signal, the change of the DO signal will be recorded directly, and the output of the DO signal can
be manually set on the Status Monitoring - 1O Signal interface.

W
noe o= ~
« New Path
Base Info Record
Name trackd You can specify the recording duration.The cache will
be temporarily saved after recording, and you can
Description chose Lo discard of save,
Replay
Record Track There is priarity for playback of recoeded content in
the cache.and playbiack of saved contect when there is
Total Time 0 m 30 s no content in the cache,
Save Track
DO Signals ave the trace to a file for other modules to call,
fo—— x
Replay Track DO Signal Mapping Signal
Replay Mode (J Loop ROKAE XMATE ..
. .
Speed Rate 100% Cpotio S g
gopoit No Signal
Attention:May replay failed when a replay rate higher than 100%. + ROKAE XMATE L.
¥ 000 1 D0 1 .
Save Track D002 No Signal
Recorded Track no Restored Track no [JDO03 NoSignal P
- ¥ 1 i

Step 4: After the parameters are set successfully, click the Start Recording button to start trajectory
recording. During recording, drag the robot within the countdown time and set relevant DIO signals
to complete trajectory recording. If the Stop button is pressed during recording, the trajectory before

the stop time is recorded.

44
Copyright © ROKAE 2015-2023. All rights reserved.

6 Motion control

g un

« Edit Path: track2
Base Info
Name track2

Description
Record Track

Total Time 0 m 10
DO Signals

Replay Track

Replay Made ([Loop

Speed Rate

Attention:May replay failed when a replay rate higher than 100%

Save Track

Recorded Track no Restored Track no

100%

00:03

6.2 Drag mode

Record

You can specify the recording duraticn.The cache will
be tempararily saved after recording, and you can
chose to discard or save.

Replay

There is priority for playback of recoeded content in
the cache,and playback of saved contect when there is
no content in the cache.

Save Track

Save the trace to a file for other modules to call

0%

ﬂ Notes

The recorded trajectory is temporarily saved in the cache. You can discard it or save it as a file.
Recorded Trajectory Available/Unavailable is displayed on the page.

End-effector button operations

Turn on the drag enabling switch on the operation panel, and the robot is powered on automatically

and enables Drag Mode. The following operations can be performed through Robot Assist and the

robot end-effector drag handle:

AA Robot Assist

< Path List

Name Type otal Lengtmple Inter Teached

Operation

Description

Create/load a project, move the robot to any start
position, and enter the Path List interface.

The end-effector buttons only respond when the
current page of Robot Assist is Point List or Path
List.

Press the Add Path button on the end-effector handle

A new path is added to the end of the Path List, and
the cursor is now at the new path.

Press the Previous/Next button on the end-effector
handle

Move the cursor to the previous/next path in the
Path List and select the path

45

Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.1 Basic settings

4 Select a path in the Path List to start recording. Press | The trajectory recording starts after the Start
the Start Trajectory Recording button on the end- | Trajectory Recording button is pressed. Press the
effector handle and press the two enabling buttons on | Stop Trajectory Recording button to stop recording,
the end-effector handle at the same time to drag the | and the trajectory is saved automatically.

robot for trajectory recording.

5 Select a path to delete in the Path List. Press the Delete | A pop-up window prompt will appear when you try
Path button on the end-effector handle and confirm. to delete a path. If you press the OK button on the
end-effector handle, the selected path will be
deleted from the Path List. If you press the Cancel
button on the end-effector handle, the pop-up
window will be closed, and the selected path will
remain on the Path List.

6.2.4 Trajectory reproduction

Explanation

After a successful continuous trajectory teaching, the trajectory is recorded. Playback the recorded

trajectory on the recording interface and confirm, and then save it manually after confirmation.

Playback settings

Check Loop in the playback mode for looped playback.
The playback speed can be set between 1% and 300%.

ﬂ Notes

It is recommended to set the playback speed between 1% and 100%. When the playback speed is
greater than 100%, a drive following error might occur.

Playback operation

Step 1: Turn off the drag enabling switch and switch to Automatic mode. Click the Power-on button
to power on the robot.

Step 2: Click Playback for the robot to play the recorded trajectory.

Step 3: Confirm the trajectory after the trajectory playback is finished. Click Save for the recorded
trajectory to be saved as a file successfully.

Step 4: After completing the trajectory recording, trajectory confirmation, and trajectory save, click
Next to return to the directory list that displays the directory of the saved trajectories.

7 Robot Configuration

7.1 Basic settings

7.1.1 User groups and permissions

User levels

The xCore system is built-in with three user levels, namely Operator, Admin, and God, with the
operation permissions ranking from low to high.

Switching from a low-privileged user to a high-privileged user requires a password, which is 123456
by default. Otherwise, it is not required. A user of a higher permission level can modify the password

of a same- or lower-level user. The password of an Operator-level user cannot be modified.

Division of operational authority

Category Function Operator Admin God
Project Project management N Y Y
46

Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.1 Basic settings

(Create, Import, Export)

View project

(including program and object data such as Y Y Y
10 and variables)
Edit project
(including program editing and object N Y Y

settings such as tools)

Mode switching

Power on/off

Robot motion

Start/stop program

and program

Adjust program running speed

running

Single-step program debugging

APP running

Jog/drag interface

Running

Set auto-load project

interface

View runtime data

System upgrade

Data backup/recovery

User permission management

System settings

Function authorization

System time setting

System language setting

Controller reboot

Body parameter setting

Robot installation

Zero Calibration

Motion parameter recognition

Extended 10 module configuration

Robot settings

System IO setting

End tool setting

Socket setting

Safety setting

Clear servo alarms

RCI function setting

<z z |z|=<|Z|Z|z|z|z|Z|Z|Z|Zz|Zz|z|Z|Z|Z|Z|Z|z|Z|<|Z|Z|<|z|z|<|Z|Z

I A T e e B B B e I I e B - e T I I o)] e B o I I It] I
]]]]]] |]]]]]]]]]] |]]]]]] |]] |]

View log
Delete log
Log -
View/delete
management
Debug log
Log backup
Help interface View Help
AA Robot Assist
in *t lwobl © @
< User Group Drag
User Level User Group Rights.
God Operator
Run program
Password Bug report
| o | Admin
Edit program
Modify Password Change robot settings
Selected User God
Old Password God
New Password All permissions to control the robot
Confirm New Password
< —— « s Lod T
7.1.2 Controller settings
47

Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration
7.1 Basic settings

System information

Controller setting options are available in the xCore system to soft reboot or shut down the controller.
You need to save all configuration information before restarting. If the controller is shut down, the
controller software can only be restarted after the control cabinet is powered off and then powered on
again.

System configuration

The robot type, controller cabinet type, and safety board type should be properly configured to ensure
the robot works normally.

AA Robot Assist -

« Controller Setting
System Info

Version: 1603

Robot Type: xMateER3

MAC Address: A

Version Select

Robottype: xMateER3 , Control type: XBC_XMATE

Security module: ROKAE_MINI

Alias

Wi

System Time

Year 2022 Month 7 Day 26
Hour 10 Minute 0 Second 1

Alias

Set an alias for each controller, so that the robots in the same LAN can identify the controllers
conveniently. The alias will be displayed on the interface when the robot searches for controllers, as
shown in the figure below.

AN Robot Assist

I "
« Controller Setting

Version Select

Robot type: xMateER3 , Control type: XBC XMATE

Security module: ROKAE_MINI

Alias
AL

Systermn Time
Year 2022 Month 7 Day 26

Hour 10 Minute Second 1
Multi-loop encoder

Clear Alarm

IP Properties

Name ens33 . Mode dhep

System time

The system time shows the system time of the controller.
The system time provides an absolute time reference for functions such as logging to trace the
moment of relevant events.

48
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration
7.1 Basic settings

Click to check the robot's time reference to see if it is consistent with the system time.
The controller system time can be modified manually, or it can adopt the current system time of the
device on which Robot Assist is running. Users can directly modify the controller system time

. Ch to local ti . . .
manually or click to adopt the current system time of the device on which

Robot Assist is running as the controller system time.
When the system time displayed on Robot Assist is not consistent with the system time in the lower

. . . Change to local time
right corner of Robot Assist, the user can click to update the controller system

time with the system time of the device on which Robot Assist is running.
M Robot Assist

T e
FTH

< Controller Setting

(0]'4

System Time
Year 2022 Month 7 Day 26
Hour |10 Minute 0 Second 1

Multi-loop encoder

Clear Alarm

IP Properties

| Name ens33 . Mode dhcp B
|
| Ip 192.168.6.128
Mask 2552552550
sway Q2168

ONORONONORORV)

Speed —.— 20% ¥

A Warning

1. The system time is the absolute time standard for log information. Do not modify it arbitrarily. Wrong
system time will make it impossible for the user to trace the moment of a relevant event through the log.

2. Do not frequently perform the two operations - Obtain controller time or Set to current time. The interval
between two operations (either one or both) should be greater than 5 seconds.

o ¥ 2 God ¥ xMateER3

Multi-loop encoder

Clear multi-loop error messages on the encoder.

E Notes

1. This function is only available for industrial robots.

2. After replacing the encoder battery of the robot, use this function to clear error messages
before re-calibration.

System IP properties

Set the connection mode of the robot's external network interface. For details, refer to Chapter 4
Connecting to the Robot.

Log save levels

Set the log save level. There are three levels of log - "info", "warning", and "error", ranking from low

s

to high. Set the level from which the log is kept. The log of lower levels will only be displayed

49
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.1 Basic settings

online, and will not be kept in the log.

M Robot Assist — [m] X

Ay &
in # -

Controller Setting

Clear Alarm

IP Properties

Name ens33 . Mode dhcp P
Ip 192.168.6.128
Mask 255.255.255.0
Gateway 192.168.6.2
DNS Server 127.0.1.1

oo |

Log Save Levels

Levels infowarning,error

OODDDDD

For example, if "warning,error" are selected, the "info" level log will only be displayed when it
appears, and cannot be queried in Diagnosis or after the controller is restarted. The log of the
"warning" and "error" level will be displayed online, and can also be queried in Diagnosis or

after the controller is restarted. Query the history in Diagnosis -> Controller Log.
AN Robot Assist - [m] X

fa #

Controller Log

D Info Warning D Error

Id Title Date/Time Content
10020 /1 iEfEsTHERIERE 2022-07-26 09:46:25 1B BRIzl
10020 /1 EfESEERERE 2022-07-26 09:46:16 IEEFHTHERIEE
10020 /1 B REEEIERE 2022-07-26 09:46:12 BMEFFREESER
TR EREE 2022-07-26 09:46:07 IEEHFTHEEEE

DOOOOOO

PrePage NextPage
[2 God ¥ xMateER3

7.1.3 Zero Calibration

Explanation

The xCore system provides robot calibration, including mechanical zero calibration and force sensor
zero calibration. The calibration can be performed by "One-Key Calibrate" or Single Joint
Calibration;

50
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

M Robot Assist

ra

Calibration

Zero Calibration

The initial position of the robot motion

One-Key Calibrate

Force Sensor Calibration

The baseline of robot force control

One-Key Calibrate

Single Joint Calibration

Position Last Calibrated Encoder

J1 0 alibrat 0
J2 30 alibrat 0
J3 60 alibrat 0
J4 0 alibrat 0

Torque

alibrat

alibrat

alibrat

alibrat

Zero Calibration

The purpose of zero calibration
is to make the theoretical zero
in the control algorithm
coincide with the actual
mechanical zero, so that the
mechanical linkage system can
control system position and
speed command with correct
response.

Force Sensor Calibration

Please confirm that the robot is
in the mechanical zero position
before performing the force
sensor zero calibration. Each
axis torque sensor can be
calibrated independently or
with one key at the same time.

Angle Calibrate

‘When the current angle is
known, the known angle can be

7.1 Basic settings

ONCRCECRCECES)

Mechanical zero calibration

The purpose of mechanical zero calibration is to coincide the theoretical zero point in the control

algorithm with the actual mechanical zero so that the mechanical linkage system can make correct

responses to position and speed commands of the control system.

More generally, the zero calibration is to use certain pre-designed positioning devices on the

mechanical body to rotate the joints of the robot to a specific angle, and notify the control system of

recording the value of each joint motor encoder at this time.

& Warning

1

The mechanical zero point is the theoretical zero point in the robot control algorithm. Please do not
calibrate it arbitrarily and ensure that all robot joints are at the zero point using the mechanical zero
calibration block before calibration.

Do not perform the mechanical zero calibration on the robot after it is calibrated by a laser tracker.
Otherwise, the zero point calibrated by the laser tracker will be lost, therefore affecting the robot
accuracy. In case the zero point of the robot is lost, please contact ROKAE to restore the zero point.

Torque zero calibration

The purpose of the force sensor zero calibration is to coincide the theoretical joint torque zero with

the actual joint torque zero so that the mechanical linkage system can correctly capture the actual

torque of the joints. Put simply, the force sensor zero calibration is to move the robot's joints to a

specific location unaffected by gravity and notify the control system of recording the value of each

joint force sensor at this time.

& Warning

Torque zero calibration can also be performed in a non-mechanical zero; for optimal calibration accuracy, it is

recommended to set all joints to the mechanical zero before torque zero calibration.

Dynamic calibration of the torque sensor

51

Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration
7.1 Basic settings

During robot motion, zero drift is inevitable for torque sensors, which may cause the robot to float
during dragging. In the case of zero drift, dynamic calibration can be enabled. When the force
control-related commands such as enable drag, or force control are turned on in the RL program, the
system will automatically zero calibrate to ensure that force control-related functions can be used
normally.

& Warning

Dynamic calibration involves two risks:

1. If the robot is in contact with the environment during dragging, i.e., the
robot is in a non-free state, the calibrated zero may have a big error, which
may result in the wrong torque calculated and failure to enable force
control;

2. The robot may drift during dragging at certain positions after a torque
sensor zero calibration is performed when at a non-mechanical zero
position.

For these reasons, dynamic calibration should not be turned on unless the torque sensor zero sees serious
drifting.
This function is turned off by default.

Angle calibration settings

Due to space constraints in certain scenarios, the robot cannot return to the mechanical zero. In
this case, angle calibration is used to calibrate the robot. Angle calibration is to input the known
current angle to calibrate the robot, achieving the same result as the mechanical zero calibration.
Take the xMate7 Pro seven-axis robot as an example based on the assumption that there are
obstacles in the 4-axis space and the robot cannot return to the vertical state of the mechanical
zero, jog the 4-axis to 90 degrees individually to perform zero calibration. Input the current
angle in Angle Calibration to perform the "mechanical zero calibration".

AN Monitor O X

3D Model Task 10 Signal Socket Register

52
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.1 Basic settings

AN Monitor O X

3D Model Task 10 Signal Socket Register

« Calibration

position and speed command with

Farce Sensor Calibration

correct response.
The baseline of robot force control

Force Sensor Calibration
e Piss o ththe oot s e

mechanical zero pasition before
performing the force sensor zero

Single Joint Calibration
x

AAMonitor o ol

Position Last Calibrated Encoder Torque
3DModel Task 10 Signal Socket Register
1 0 Calibrate o o Calibrate
12 0 Calibrate o o Calibrate
J3 90 Calibrate o o Calibrate
J4 -0 Calibrate o o Calibrate
J5 0 Calibrate o o Calibrate
J6 0 Calibrate o o Calibrate

Angle Calibrate

Angle Set 0 0 0 0 o

Angle Calibrated 0 o 0 o o o

Please note that in the above example, although it is calibrated in a different orientation, the zero

of the robot remains in a vertical state. Therefore, if you directly use the e Quick Turn to
Zero function after a successful angle calibration by inputting the current angle of the 4-axis at
90 degrees, the robot will still move to the vertical state of the mechanical zero and thus collide
with the obstacles! So bear in mind that the Angle Calibration function calibrates the zero. It
does not mean that the zero is at the current angle.

7.1.4 Base calibration

What is the base frame?
The base frame at the center of the robot base is described relative to the world frame to confirm the
placement position of the robot. The base frame should be calibrated when the robot is installed at

any angle or there are multiple robots.

Base calibration

53
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.1 Basic settings

M Robot Assist

= oab
iy H

Base Calibration

4.J0OG robot, make TCP move
to a point on the xz plane, JOG
process using Cartesian
translation to calibrate.

TCP

afirm Poir afirm Poir firm Poir afirm Poir afirm Poir firm Poir

Confirm

ram Speed —'— ¥ NB12s-R16

ONONONONONONU,
O DDDODB®D

As shown in the picture above, the general steps to calibrate the base frame are as follows:

Operation Description

1 Use admin to log in to the system and calibrate the tool | The selected tool should be consistent with the
frame. tool installed on the flange.

2 Confirm the calibration method. The system supports the six-point method

(default) and manual input. If there is a known
offset of the base frame relative to the world
frame, it is advised to use manual input.

3 Define the position of the auxiliary point. When the tool is too far to reach the world frame.
The base frame can be calibrated by auxiliary
position.

The auxiliary position is defined according to the
world frame.

4 Jog to confirm each teaching point in turn. Users could choose whether to save the base
frame data according to the calibration result.

Manual input

A Rohat Assist

< Base Calibration

Modifying the base frame will take effect after the conirolfer is restarfed.

Set Mode

Manual

Manual Input

Incorrect input may cause unexcepted collisions, please confiim whether the data is correct!
Position

X0 mm Y 0 mmZ 0 mm

Orientation @ Fuler O Quaternion

A0 “B0 °Co

Installation

The base frame can be set by manual input. Manually input the position and orientation of the base
frame relative to the world frame. The orientation can be specified with Euler angles or quaternions.

54
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.1 Basic settings

Mounting method Description A B C
Floor mounting 0
Wall mounting A Power cable outlet is 0 90 0
above the base
Wall mounting B Power cable outlet is on -90 0 -90
the right of the base
Wall mounting C Power cable outlet is 180 -90 0

under the base

Wall mounting D Power cable outlet is 90 0 90
above the base

Ceiling mounting

A Warning

When manually inputting parameters to calibrate the base frame, make sure that the data is accurate. Incorrect
parameters may lead to unintended collisions.

7.1.5 Dynamic settings

Explanation

The dynamic settings page is used to set the dynamic model parameters of the robot. The dynamic
model is mainly used for functions such as robot force control, drag teaching, virtual wall, and
collision detection. Please ensure the robot's dynamic model parameters are correctly set. Otherwise,
the above functions may not work properly or may cause the robot to shake abnormally.

M Robotl Assist

o® o ¥ toolC
« Dynamic Idenfication

Test Attention

Please: clear the abstacles around the robot and make sure the robot has made: robot calibarion correctly “\L‘:,Z“'”"""“ are anly open to the experienced robot

Operation steps

stapl:
Preheat time Tum to automatic mode and motor on.
Please seloct the preheating timefhour) Step2
0 Test to make sure the robol run in the safe distance.
Step3:
Run Dynamic Identification Select preheating time.
Stop4:

Run identification program.
Coefficient of friction

fw fo: fo:

no 0 0
20 0 0
130 0 0
Mo 0 0
150 0 [
6 0 0 0
i @ XGod ¥ xMatefF

Dynamic parameter identification

Dynamic identification allows the robot to execute a series of preset trajectories and collect info
during the motion to calculate the body dynamic parameters required.

Step 1: Robot Configuration -> Settings -> Dynamic Settings

Step 2: Remove the obstacles around the robot. Make sure there are no obstacles (except the base) in
the reachable area of the robot. For details about the reachable area of the robot, refer to the robot
installation manual of each model.

Step 3: Preheat time is the continuous running time of identification. The longer the running time,
the better the identification performance. You can set the preheat time to 0, 1, 2, or 4 hour(s). If the
preheat time is set to 0 hour, the identification is finished after the robot completes a full trajectory,
which lasts about 1 minute.

55
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.1 Basic settings

Step 4: Click Start Running. The robot will now automatically execute the dynamic parameter
identification program.

Step 5: Wait for the identification result. If it shows the identification is successful, that means the
identification is finished normally. If it shows the identification failed, refer to the Error handling
section below.

Use restrictions

1. The dynamic parameter identification function is not available for XB12s-3 and XB12s-4.

2. Please ensure no obstacles exist in the reachable area of the robot.

3. Please ensure the robot zero calibration is correctly performed before use. For details about the
robot zero calibration, refer to Chapter 7.1.3.

4. Dynamic identification is not allowed when the robot is loaded.

5. The identification result will only take effect after the robot restarts.

Error handling:

1. Click the Stop button on Robot Assist to stop the identification process.

2. In case of emergency, press the emergency stop button to stop the robot immediately.

3. The identification result will not be recorded if it is interrupted. Re-execute the program for
identification.

Friction identification

Like dynamic parameter identification, friction identification allows the robot to execute a series of
preset trajectories and collect info during the motion to calculate the friction parameters required.
Dynamic identification and friction identification are two independent features, and their orders are
free.

Step 1: Robot Configuration -> Settings -> Dynamic Settings

Step 2: Turn off dynamic constraint and dynamic feedforward. For dynamic constraint and dynamic
feedforward switches, refer to the section below;

Step 3: The robot will now automatically execute the friction identification program after clicking
Start Running.

Step 4: Wait for the identification result. If it shows the identification is successful, that means the
identification is finished normally. The friction coefficient will only take effect after a restart, and the
identified friction coefficients for each axis are displayed on the current interface. If it shows the
identification failed, refer to the Error handling section below.

Use restrictions

1. Please ensure no obstacles exist in the reachable area of the robot.

2. Please ensure the robot zero calibration is correctly performed before use. For details about the
robot zero calibration, refer to Chapter 7.1.3.

3. Friction identification is not allowed when the robot is loaded.

4. The friction identification result will only take effect when the robot restarts.

Error handling:

1. Click the Stop button on Robot Assist to stop the identification process.

2. In case of emergency, press the emergency stop button to stop the robot immediately.

3. The identification result will not be recorded if it is interrupted. Re-execute the program for
identification.

4. In case of abnormal friction identification result, the nominal value is used, and a prompt is
displayed on the interface. If the nominal value is inappropriate, the friction coefficient can be
modified manually on the interface.

Friction settings

56
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration
7.1 Basic settings

A Robot Assist
B ¥ I $toold Lwobjl
« Body Params 5 Last updated: 2022/07/26 10:38:03
RD params RD parameter
Open RD parameter is a set of parameters used te describe the
relative pose relationship between robot links and is the
basis of robot kinematics
Xmm) ¥(mm) Z{mm)

Atlentions

Base 0 0 0 1. RD parameter should keep consistent with the robol's
actual links parameter Please pay attention when

s 1 0 -0 4 configuring, otherwise there may be e

Mis2 0 .0 | 391 is a default set of paramoters hetore the robot

arameter with

Axis3 0 o , 366 ated link parameter Lo improve the robol’s
absolute accuracy,.

Adisd 0 0 0
3. Please reboot the controller after modifying the DH

As5 0 .0 , 2503 parameters, or it s useless.
Check

Ads 6 0 0 0

- check the current rabot params and default robat params.

Import

reduction ratio
numerator denominator

Axis 1100 L1

Axis2 120 L

Axis 3 100 1

Axis4 80 1

specd —f——— 20 v © LGod T aate
The friction coefficient page displays the friction coefficients of the robot, including viscous friction
coefficient fv, Coulomb friction coefficient fc, and Coulomb friction coefficient bias fo. If friction

identification is not performed, nominal friction coefficients are displayed. If performed, the factory

identity friction coefficients are displayed. Friction coefficients can be modified manually and take
effect after restart. But users are not recommended to modify these parameters as the dynamic
functions may go wrong.

The third-order friction coefficient is an advanced function of the controller. The internal parameter

could not be modified by users.

Dynamic feedforward switch

1. The dynamic feedforward switch determines whether the controller turns on or off the dynamic
feedforward function and is turned on by default.

2. Users are not recommended to turn off the dynamic feed-forward function by themselves, which
may cause jitter when power on and worse trajectory accuracy.

3. The dynamics feedforward should be turned off in certain situations, including base frame
calibration when the robot adopts wall/ceiling mounting and friction identification.

M Robotl Assist

« Dynamic Idenfication

Test A

Please clear the abstacles around the robot and make sure the robot has made robot calibarion correctly [no functons areanly open to the xperiencest robot

Operation steps
Stepl:

Preheat time Tum to automatic mode and motor on.

Please select the preheating time{hour) Step2.

0) Test Lo make sure the robol run in the safe distance.
Step?

Run Dynamic Identification Select preheating time.

Stop4:

Run identification program.

Coefficient of friction

fw fo: fo
no 0 0
120 0 a
Bo 0]
Jao 0 o
5o 0 a
16 0 0 0
_.— 0 @ ® L Goc § xMatel

Dynamic constraint switch

1. The dynamic constraint switch determines whether the controller turns on or off the dynamic

57
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.1 Basic settings

constraint function and is turned on by default.

2. Users are not recommended to turn off the dynamic constraint function by themselves, which may
cause motor overload or abnormal shaking.

3. When the dynamic constraint switch is turned on, two options including "Nominal Dynamic
Params" and "Factory Identify Dynamic Params" are available. "Nominal Dynamic Params" means
nominal parameters will be used in the dynamic control. The same models using the "Nominal
Dynamic Params" will deliver the exact same motion velocity and takt time when executing the same
motion program, yet the motion performance may be weaker, or there may be motor overload. When
"Factory Identify Dynamic Params" is selected, the robot will be in the best dynamic control status
for the shortest takt time allowed, and the motor will be protected from overload. But robots running
the same motion program may be slightly different in velocity and takt time.

7.1.6 Body parameters

Explanation

Body parameters include RD parameters, reduction ratio, and coupling coefficient. These parameters
are all related to the robot body, including the properties of its mechanical mechanism and
components. The parameters on this page directly affects the accuracy of the robot motion. Please
modify them with discretion.

RD parameters

RD parameters are a set of parameters used to describe the relative pose relationship between the
robot's link frames. They are the foundation for robot kinematics.

A Robot Assist
WY oH tool) Lwoby

« Body Params 5 Last updated: 2022/07/26 10:38:03

RD parameter

RD parameter is a set of parameters used to describe the
relative pose relationship between robot links and is the
basis of robot kinemalics.

RD params
Open

Xm) ¥(mm) Z{mm)

Dase 0 0 .0 i keep consistent with the robot's
Axis 10 L0 , 3415 o le / when

394 efore the robet

Mis2 0 set of paramete
caves y. You can moti neter with
. 366 canrectly calibraled link parameler to improve the robol's

absolute accuracy.

Axis3 0

Avis4 0
3. Please reboot the controller after modifying the DH

, 2503 parameters, of it is useless.
Check

Axis 5 0

s e o = °
B3

Axis 6 0

reduction ratio

check the current robot params and detault robot params.

numerator denominator
Ais 1100 Ll
s 2 120 L
Avis3 100
Avis 4 80 L

Speed _'— i ¥ @ L God T xMate
» The RD parameters need to match the actual link parameters of the robot. Please configure the

parameters with caution. Otherwise, errors such as "exceeding the workspace" may occur.

» A set of parameters is configured as default settings before delivery. After calibrating the robot's
link parameters properly, modify the RD parameters to increase the robot's absolute accuracy.
Check the rationality of the calibrated RD parameters before modifying or importing parameters;

» Restart the controller for the modified RD parameters to take effect.

Reduction ratio

The reduction ratio is the parameter of the reducer in each axis of the robot. Do not modify the
factory settings. Configure the reduction ratio according to the manufacturer's instructions only after

replacing the reducer with a different model.

Coupling coefficient

58
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.1 Basic settings

The motion of the Axis 4, Axis 5, and Axis 6 of the robot is coupled. The coupling coefficient is used
to describe the coupled motion of other joints when these joints move. Do not modify the factory
settings. Modify the parameter according to the manufacturer's instructions only after replacing with
it a different model of reducer or driving element.

Use restrictions

Only God users can modify the parameter.

7.1.7 Kinematic parameters

Explanation

The kinematic parameters include the maximum speed, maximum acceleration, and maximum
acceleration jerk of each axis of the robot. The kinematic parameters affect the maximum speed,
maximum acceleration, and maximum acceleration jerk that the robot can achieve during motion, as
well as its takt time and smoothness. A set of parameters is configured as default settings before
delivery. Modifying the kinematic parameters may cause the robot to shake abnormally, report errors,

or reduce its service life. Please modify them with discretion.

AN Robot Assist

2

n System ready.

« Kinematic Params
Kineatic Params Kinematic Params
. o L o fe A L PN Kinematic params are used
joint max speed(®/s) joint max acc(°/s*2) joint max jerk(°/s"3) to limit the joint speed, joint
Axis 1 180 , 1500 , 5000 acc, and joint jerk.
. Velocity Smoothness
Axis 2 180 . 1500 . 5000 Coefficient
Axis 3 234 , 1500 , 5000 This parameter is used to
. smooth the motion speed
Axis 4 240 , 1500 , 5000 of the robot. The larger the
i parameter value, the 9
Axis 5 240 » 1500 , 5000 smoother the motion speed
f the robot.
Axis 6 300 , 1500 , 5000 ortherobo ()
Distance: 1.0~10.0
acc params Safety Control 9
acc 1 [03,1] Define the maximum time
X limit to disconnect sto. 9
jerk(s) 04 [0.05, 1]
Stop0: 0~300ms
VelSmoothCoef 1 [1,10] StopT: 150~1000ms 9
Stop2: >=150ms
O]

R F'r-::\glan'lSpeed.— 1% & @

59
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.1 Basic settings

AN Robot Assist

im ¥ I System ready.

Kinematic Params
VelSmoothCoet 1 11, 10] Stop1: 150~1000ms

Stop2: >=150ms

Search Max Stop Distance

Safety Control Define the maximum stop

Stopd 0 ms, Stopl 150 ms, Stop2 150 ms distance of search
command.

Distance: 0.5~20mm

Minimum Bending Radius

Search Max Stop Distance This parameter is used to

avoid the turning area
where the growth is too
short, affecting the

smoothness of the
movement.

Distance 2 mm

Set the minimum radius of the turning zone Distance: 0~10mm

MimiBendRadius 0 [0, Olmm Instruction

Save Please be careful to modify
the parameters.

Program Speed .— 1%

> Maximum Axis Velocity: the maximum velocity allowed for each axis during robot motion,
mainly limited by the motor velocity.
The factory parameters are generally adopted, and they do not require modification.

¥ O

3 A Offline ¥

> Maximum Axis Acceleration: the maximum acceleration allowed for each axis during robot
motion, mainly limited by the motor torque. The parameter takes effect when dynamic
constraint is turned off, and it limits the maximum acceleration for each axis during robot
motion; when the dynamic constraint is turned on, the parameter becomes invalid, and the
maximum acceleration for each axis during robot motion is calculated through the dynamic
model.
The maximum acceleration set should be no less than 3-5 times the maximum velocity of the
axis.

> Maximum Axis Jerk: the maximum jerk allowed for each axis during robot motion. Jerk is
the derivative of acceleration to time. In most cases, the higher the jerk, the more likely the
robot may shake during the motion, and vice versa. The actual jerk increases when the robot
passes through the turning zone. In this situation, the jerk has an obvious impact on the robot
takt. When the program involves many small turning zones, the jerk can be increased
appropriately to speed up the takt. Additional attention needs to be paid to the robot's shaking.
The maximum jerk set should be no less than 3-5 times the maximum acceleration of the axis.

> Acceleration Multiplier: This parameter is used to scale the robot's acceleration during
operation. The larger the value, the higher the robot acceleration, and vice versa.

> Acceleration Rise Time: The time for the robot acceleration to increase from the minimum to
the maximum. The smaller the value, the faster the robot accelerates, and vice versa.

> Velocity Smoothing Factor: This parameter is used to smooth the robot's velocity in the
turning zone. The larger the value, the less the robot slows down in the turning zone, and vice
versa. When the value is set to 1.0, the velocity is not smoothened when the robot passes
through the turning zone. The larger the value, the more likely the robot is to shake in the
turning zone.
This parameter is used to push the robot's ultimate performance. During commissioning,
firstly check how badly the robot is shaking when the parameter is set to 1.0. If the robot
shakes violently, the robot has reached its limit and there is no need to increase the value. If
the robot runs smoothly but the velocity drops severely when it passes through the turning
zone, this parameter can be gradually increased to make the motion smoother while observing
the robot's running status. This parameter can be increased by 0.1-0.5 each time.

> Safety Control: The time from the receipt of the stop signal to the full stop of the robot. The

60
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.1 Basic settings

smaller the value, the faster the robot stops, and vice versa.

Search Max Stop Distance: When a Search command is used, the distance traveled by the
robot TCP from the receipt of the stop signal to the full stop of the robot shall not exceed this
value.

Set the minimum radius of the turning zone: The shortest turning zone allowed that can be
specified by the turning zone radius. This parameter can be used to avoid generating a turning
zone too short and to make motion smoother. When the control system detects that the length
of a trajectory is below the set value of this parameter and the trajectory needs to generate a
turning zone, the control system will automatically combine the trajectory and the adjacent
trajectories into one trajectory and generate a turning zone with an appropriate length. The
larger the value, the longer the minimum turning zone and the smoother the robot passes
through the turning zone. When this parameter is set to 0, the control system strictly follows
the parameters to generate the turning zone.

Use restrictions

Only God users can modify the parameter.

7.1.8 Force control parameters

Explanation

Force control parameters are force control-related parameters adapted to the actual hardware

equipment and environment.

Important parameters can be adjusted and switched on the HMI interface. Two sets of control

parameters built into the controller can be flexibly selected based on the usage and the actual

application scenario.

M Robot Assist

<, e [1]
s # I

Force Control

System ready.
G Last updated: 2023/04/10 16:26:02

Base Stiffness Base Stiffness

@ Open

Stiffness Level

If the base
stiffness is set,
High . the robot will

adjust the
control
parameters
adaptively
according to
the base
stiffness level,
otherwise the
default control
parameters
will be used

Force Control Model

Type 2 b

Drag Optimization
Open

Run Force Control Identification Notification:

If there is
shaking due to
the instability
of the base,
the stiffness of
the base can
be adjusted to

o 3% A Offine ¥ N

Payload Info: Custom .
Quality m= 0 kg
Centroid x= 0

mm, y= 0 mm, z= 0 mm

Start Running

Program Speed .— 1%

ONONONONONO.

]

Base stiffness

There are two base stiffness modes: high and low. When the base stiffness level that matches the

actual installation environment is set, the robot will switch the corresponding basic control

parameters.

The high base stiffness control parameters are set to default after initialization and when the function
is disabled.

61
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration
7.1 Basic settings

Base Stiffness

@® Open

Stiffness Level ~ High y

The parameter does not require adjustment for common base scenarios. When the robot is mounted
on a flexible base or mobile platform, the base stiffness level needs to be changed to low. For

example, the robot sits on an AGV trolley.

Base Stiffness

. Open

Stiffness Level Low y

Force control model
The force control model enables the configuration of basic force control parameters. Be careful with

this developer option.
The 0 model is set to default after initialization and when no modification is made.

Force Control Model
Type 0 P

There is no need to adjust this parameter when the robot operates properly.

Drag optimization

Drag optimization is to improve the dragging experience and better force control in extreme

conditions.
The main purpose is motor overcurrent protection when the drag ends. The strategy of slowing down
and stopping is adopted for a better dragging experience. This function is enabled by default after the

initialization and when no modification is made.
Drag Optimization

@® Open

Force control parameter identification

It refers to the accurate identification of the control parameters by adding external loads.

Run Force Control Identification

PaylLoad Info: Custom .
Quality m= 0 kg
Centroid x= 0 mm, y= 0 mm, z= 0 mm

Start Running

[

62
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.1 Basic settings

A Warning

This function is for the experienced one only. Guidance by professionals or reference to the user manual
is required.

1. Dedicated calibration blocks should be first used as the loads in the identification process.

2. The actual load can also be input by customization when there are no appropriate tools.

7.1.9 Quick turn settings

Explanation

The HMI interface offers quick turn functions to conveniently adjust the robot to common poses.
Users can customize common poses and turn to a new custom orientation quickly on the HMI
interface after the setting is completed. It supports custom poses including the drag pose, shipping
pose, and Home pose etc.

This function can also turn the robot to some special orientations quickly while keeping the TCP
position and elbow (only available for 7-axis robots) unchanged, including the flange parallel to the
ground, the X axis of the tool frame perpendicular to the ground, the Y axis of the tool frame
perpendicular to the ground, and the Z axis of the tool frame perpendicular to the ground.

Operation

The quick pose adjustment is available in Manual Mode in a way similar to Jog operation. In Manual
Mode, the robot is powered on via the enable device. When the button for the corresponding target
pose is pressed, the robot will move to the target pose in the joint space.

The motion speed can be adjusted via the Jog speed.

Parameter configuration

The Quick Turn features parameter configuration. For users who want to use other shipping poses,
drag poses, or Home poses, they can set the parameters in the Robot -> Quick Turn page.

Turn on the Enable button, click the corresponding Quick Turn button in the Motion window, and the
robot will move to the modified position. If the parameter configuration is not enabled, Quick Turn
adopts the default pose.

Home pose

The following describes the settings of the Home pose and the definition of parameters in detail. The
Home pose can be set to a range based on the joint angle. When the robot joints remain within this
range, it is regarded that the robot is at the Home pose, and the system IO "Home State" is output.
The reference point of the Home pose can be taught and updated with "the current pose".

The following are the parameters:

Home Pose
O Default ® Custom p p

n 0 home err 0.1 +/- (0.1 - 30)
12 0 home err 0.1 +/- (0.1 - 30)
13 0 home err 0.1 +/- (0.1-30)
14 0 home err 0.1 +/- (0.1 - 30)
J5 0 home err 0.1 +/- (0.1 - 30)
J6 0 home err 0.1 +/- (0.1-30)

63
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.1 Basic settings

No. Name Meaning

1 Reference Value The reference value of origin for each joint.

The float value of the origin range symmetrically around the reference
2 Offset value. Offset value range: [0.1,30]. For example, if the reference value
is 1° and the offset value is 3°, the origin falls in the range of [-2°,4°].

The relationship between the origin range, the reference value and the offset value is shown as
follows:

Reference

Offset Value

Origin
Range

7.1.10 Electronic nameplate

Explanation

The electronic nameplate designed for industrial robots is installed in the robot body. It is mainly
used to save the data of the robot body and avoid the loss of basic data after the replacement of the
industrial computer or the controller cabinet.

The software functions of the electronics nameplate are mainly performed by the controller and
Robot Assist. The controller performs data reading, verification, overwriting, etc., while Robot Assist
is used to send operation commands related to the electronics nameplate and display data. After the
controller is turned on, it will first check if there is an electronic nameplate. If there is an electronic
nameplate, it will read the data normally, perform data verification, and store the verification result;
If there is no electronic nameplate and the user does not choose to use the electronic nameplate, it
will directly operate with the controller data; If there is no electronic nameplate and the user chooses
to use the electronic nameplate, a prompt "there is no electronic nameplate” will appear. After Robot
Assist is connected to the controller, it will first check the verification results of the electronics
nameplate data in the controller, and give different pop-up prompts based on the verification results.

Users can simply follow the pop-up prompts. For details, refer to Chapter 1.1.2.2.

Startup selection

After startup, the controller checks if the data in the electronic nameplate is the same as that in the
controller;

If they are same, the data in the controller will be used directly without any prompt;

Otherwise, a pop-up window will prompt whether to use the data in the electronic nameplate, as
shown in the figure below;

64
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.1 Basic settings

Electronic nameplate does not match, are you sure to
use electronic nameplate data?

If the data in the electronic nameplate is successfully used, it will overwrite the data in the controller
by default.

Here are several situations in which pop-up prompts appear:

1) If an electronic nameplate is detected and its data is different from that in the controller, a pop-up
window will prompt "Do you want to use the data in the electronic nameplate?". Select "Yes" to use
the data in the electronic nameplate and "No" to use the data in the controller directly;

2) After choosing to use the data in the electronic nameplate once, the electronic nameplate data will
be used by default after restart. If the data in the controller is again different from that in the
electronic nameplate, a pop-up window will prompt, "Do you want to use the data in the electronic
nameplate?";

3) If the electronic nameplate is not detected during startup, the controller data will be used by
default. If the electronic nameplate data is used once and cannot be detected after restart, a pop-up
window will prompt "Do you want to use the data in the controller?". Select "Yes", the controller
data will be used normally. Select "No", the controller will be in a malfunction state and cannot be
operated. In this case, restart the controller to solve the problem.

ﬂ Notes

1. When the model data in the electronic nameplate does not match that in the controller, the data in the
electronic nameplate cannot be used. To use the electronic nameplate data successfully, please ensure the
model data in the controller is same as that in the electronic nameplate.

Electronic nameplate interface

Click Robot Configuration -> Settings -> Electronic Nameplate on the Robot Assist interface to
display the information about the electronic nameplate. If an electronic nameplate is detected by the
controller, regardless of whether the electronic nameplate is used, the information of the electronic
nameplate parameter segments will be displayed on the interface;

The status of the electronic nameplate can be determined by the status bar on the interface with three
parameters: the electronic nameplate status, whether the electronic nameplate data matches the
controller data, and whether the Use Electronic Nameplate button is pressed during startup, as shown
in the figure below:

Nameplate

Status: Normal & UnMatch & Used

Export Nameplate Refresh

If an electronic nameplate is not detected during startup, the interface is as shown in the figure below:

65
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

Nameplate

7.1 Basic settings

Status: Not Existed & Unused

Export RC

ﬂ Notes

1. Regarding the third parameter in the status bar, if the Use Electronic Nameplate button is pressed, the
parameter displays In Use regardless of whether the data is successfully used.

Functions of electronic nameplate interface

Function

Description

Export controller data

Export the data of relevant parameter segments in the controller to a file

Export electronic nameplate
data

Export the data in the electronic nameplate to a file

Refresh

Synchronize the information of the electronic nameplate

Basic information

The parameter segments about the basic information of the electronic
nameplate. It is unable to be modified manually

Encoder battery voltage

The actual battery voltage of the encoder. It is measured during startup and
every 24 hours after a startup. It is unable to be modified manually

Run time

When the motor runs, the run time increases accordingly. The value is
refreshed every hour on the interface. This parameter cannot be modified
manually;

Mechanical zero parameters
and kinematic parameters

The current values of the controller and the electronic nameplate will be

displayed on the interface, respectively. This parameter cannot be modified
manually;

Dynamic parameters

The parameter segment is not displayed on the interface;

Overwrite electronic nameplate
data

Overwrite the data in the electronic nameplate with the data in the controller.

Nameplate

Status: Normal & UnMatch & Used

Basic Information

ID 18446744 g Robot Model NE< Hardware Version SN Data Farmat 429401
Monitor Information
Battery Voltage(v) Running Time{h)
Mech Zero
Robot Controller
Calibrate Time
Encoder Multiple
Encoder Single
Nameplate
Calibrate Time
Encoder Multiple
Encoder Single

Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

Kinematics Para
Robot Controller

Callbrate Time

Robot Dimension

Nameplate

Calibrate Time

Robot Dimension

Dynarmics Para

7.2 Safety Features

ﬂ Notes

1. All exported data are encrypted.

2. When the electronic nameplate is used, the controller automatically synchronizes the modified data to the
electronic nameplate after the robot performs zero calibration, robot parameter modification, or dynamic

parameter identification.

7.2 Safety Features

7.2.1 Scope

7.2.2 Soft limit

Safety Features

Industrial Robot

xMate cobot

Soft limit

Virtual wall

Collision detection

Safety area

Safety monitor

Collaboration mode

z|z|Z|=<|Z|=<

=]] =] <

Function Description

Soft limit is the function that sets the maximum motion range of each axis at the software level.

Users can set the soft limit according to the site conditions to avoid interference or collision between

the robot and peripheral equipment. The following figure takes a seven-axis robot as an example. The

number of axes and the soft limit of each axis vary with the model.

Copyright © ROKAE 2015-2023. All rights reserved.

67

7 Robot Configuration

7.2 Safety Features

M Robot Assist

- A
s ¥ &

Soft Limit
Enable
. Open

System ready.

Joint Coefficients

The software limit is a function
to set the maximummovement
range of each axis from the
software level Theuser can set
the software limit according to

Joint Coefficients

Axis 1 -175 - 175 the siteconditions.
Axis 2 175 _ 175 Avoid interference or collision
between the robot
Axis 3 -175 - 175 andsurrounding equipment.
. AttentionsThe soft limit range
Axis 4 175 - 175 cannot exceed the mechanical
. hard limitrange allowed by the
Axis 5 -175 - 175 robot body.
Axis 6 -175 - 175

ONONONONONO)
ODDDDDD

*® Program Speed.— 1% ¥ @ A Offline 13

A Warning

The range of soft limits cannot exceed the mechanical hard limit range allowed by the robot body.

When the robot is beyond the soft limit

7.2.3 Virtual wall

In some rare cases, the robot may move beyond the soft limit. For example, if the robot triggers an
emergency stop when it reaches the limit boundary,

it may exceed the soft limit when executing STOPO. If the robot has one or more joints beyond the
soft limit, Jog and running programs cannot be performed. At this time, the soft limit must be
canceled first, then return the overrun joint jog to the range within soft limit and enable again the soft
limit.

A Warning

Cancellation of the soft limit function can only be used to Jog the overrun joint back to the normal range when the
robot joint exceeds the soft limit.
The program will not run when the soft limit is canceled.

Function Description

xMate cobot provides virtual walls targeting certain medical care scenarios. For example, if xMate is
used as a physician's aid, the user can drag it to perform surgical operations. Virtual walls can be set
through the surgical navigation system to limit the operating space of the xMate end-effector flange.

» Virtual walls can be cuboids or spheres;
» The center and limit range of the virtual walls can be set as below:
» The center (unit: mm) is set with the base frame as the reference frame, and the current
flange position can be set as the center of the virtual walls;
» The limit range of the spherical virtual walls is defined by the spherical radius (unit: mm);
» The limit range of the cuboid virtual walls is defined by length (X), width (Y), and height

68
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

(Z2) (unit: mm);

7.2 Safety Features

AN Robot Assist

ia ¥ = System ready.
Virtual Wall
Virtual Wall
Virtual wall can only be activated with Drag Operation in cartesian
space.
Open
Cuboid

Pl

Center Point

X0 mm, Y 0 mm, Z 0 mm
Current Position

Border

X0 mm, Y 0 mm, Z 0 mm

“® Program Speed.— 1% & @

‘3 Last updated: 2023/04/10 16:26:02

Virtual Wall

The user can drag to operate
and set the virtual wall to limit
the operating space of the end
flange.

Operation steps

Step1:

Turn on the drag mode.
Step2:

Select the type of virtual wall.
Step3:

Set the center point of the
virtual wall.

Step4:

Set the range of the virtual
wall.

Steps:

Open the virtual wall.

CHONONONONONO,
ODDDDDD

A Offline

How to set:

Operation Description

1 Use admin to log in to the system and activate the drag | Virtual walls are only valid when the drag mode is

mode. on.

2 Select the virtual wall shape type. Cuboid and sphere are supported.

3 Determine the center of the virtual walls. Drag the robot to a location and click the Current
Location button on the interface to set the center
of the robot flange as the virtual walls.

4 Set the range of the virtual walls. The limit range of the spherical virtual walls is
defined by the spherical radius (unit: mm).
The limit range of the cuboid virtual walls is
defined by length (X), width (Y), and height (Z)
(unit: mm).

5 Enable the virtual walls. Click the Open button to activate the virtual walls.

7.2.4 Collision detection

Function Description

The collision detection function is a passive detection based on the robot's dynamics model

parameters. It detects a collision and implements preset countermeasures when the robot collides

with the outside.
» Collision detection is disabled by default.

» The collision detection mode contains the level setting and the single-axis setting.

Level setting: For different application scenarios, three levels of detection sensitivity are available:

low, medium, and high. The higher the sensitivity, the smaller the external force that triggers collision
detection. Low sensitivity is suitable for full-load full-speed, medium sensitivity for half-load 50%

automatic operation, and high sensitivity for JOG or collaboration mode. For example, high

sensitivity can be selected when the user jogs the robot and wants to activate collision detection. Low

sensitivity is recommended when the program is running at full speed with a full load in Automatic

mode.

Single-axis setting: It provides specific application scenarios for fine-tuning the interfaces of

detection sensitivity. The user can adjust the sensitivity axis by axis according to the collision

information provided on the HMLI. It allows the user to set the sensitivity suitable for the current

application scenario while balancing between sensitivity and stability.

69

Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.2 Safety Features

» Collision detection provides two trigger behaviors, action pause and safety stop.

Action pause: When detecting a collision, the robot will pause its current motion. When applied with
a downward force, the robot will resume its motion;

Safety Stop: When detecting a collision, the robot stops the current motion safely.

AN Robot Assist

by o
im ®

Virtual Wall

System ready.

Virtual Wall Virtual Wall
Virtual wall can only be activated with Drag Operation in cartesian The user can drag to operate
space. and set the virtual wall to limit
the operating space of the end
Open flange.
Cuboid P Operation steps

Stepi:

Center Point Turn on the drag mode.

X0 mm,Y 0 mm,Z 0 mm Step2:
. Select the type of virtual wall.
Current Position
Step3:
Border S.et the center point of the
virtual wall.
X0 mm,Y 0 mm,Z 0 mm Step4:

Set the range of the virtual
wall.

Step5:

Open the virtual wall.

(0] Aofine ¥

“® Program Speed.— 1% &

Notes

7.2.5 Safety area

1. During the execution of the program, when the robot moves at a high speed and collides with
external devices (stiff collision), and the collision force is too high, causing the servo driver to alarm
and stop, the robot can only run again when the collision is cleared, the robot restarted, and the servo
alarm reset.

2. Incorrect sensitivity mode selected may cause false collision alarm. Please select different
sensitivity thresholds for each application scenario.

3. The collision detection sensitivity is affected by the robot hardware, and there are differences in
sensitivity thresholds between different robots. Currently, the three sensitivity modes only provide a
set of nominal values. Users with have higher requirements for collision detection sensitivity can
fine-tune the sensitivity of each axis based on specific application scenarios through the single-axis
setting or adjust the detection sensitivity online through RL commands.

A Warning

Before using collision detection, the user must ensure that the following parameters are set correctly.
Otherwise, the controller may fail to calculate the correct output torque, resulting in a false alarm.

1. Robot model

. Robot installation method

2

3. Load information (tool)

4. Mechanical and sensor zeros
5

. Robot body parameters

Function Description

Safety areas restrict the robot's motion space. The user can define a number of safety areas in the

space (up to 10 in the controller system). When entering and exiting such safety areas, the robot can

70
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.2 Safety Features

selectively trigger the preset safety behaviors and automatically modify the register value of the

corresponding register function code bound to the safety area.

AW Robot Assist

by e
in # I

Safe Area

Overall Enable

Open

Signal Control

Open

AreaName IsEnable EnableState AreaType TriggerBehavior Monitor § c

Not Enable Box Area Collaboration ... Out Ar¢

Not Enable Box Area No behavior Out Ar¢

area? Not Enable Box Area No behavior Out Arc

area3 Not Enable Box Area No behavior Out Ar¢

aread Not Enable Box Area No behavior Out Ar¢ °
O D)

™~

@DDDD DD
CNcRCNCRCRCHe

= Program Speed —.— 20% & @
The safety area function can be turned on or off by the "Overall Enable". When this switch is off, all

¥ & Admin ¥ NB12s-R

safety areas become invalid.

Each safety area can be turned on or off independently through HMI or register.

A safety area can be turned on or off by signal: when "signal control" is on, whether a safety region is
"turned on or not" depends on the register bound with the function code "enable safe
regionOl~enable safe regionl0" (type: bool or int16, read/write: read-only), and the button under
the "IsEnable" column is disabled; when "signal control" is off, whether a safety region is "turned on
or not" can be directly set through HMI.

Users can modify the properties of any safety area.

Parameter explanation

» Safety areas can be rectangular or point-plane vector;
» Trigger behaviors include: no behavior, safety stop, and collaboration mode;
B No behavior: the robot has no specific action;
B Safety stop: the robot executes stop1 to stop and power off;
B Collaboration mode: the robot enters the collaboration mode (cobots only).
» The state of the region-bound register after triggering can be set: true/false;
B True: the register output signal is true when the safety area triggers a safety behavior, and
vice versa; (output true when entering the forbidden zone)
B False: the register output signal is false when the safety area triggers a safety behavior, and
vice versa; (output false when entering the forbidden zone)

For the rectangular region, the pose of the region's center can be determined by the pendant (TCP
relative to the robot base frame) or manual input; the length, width, and height of the cuboid can be
set manually; the orientation of the cuboid can also be set: inside indicates that when TCP moves into
the cuboid, a safety behavior and corresponding register state modification will be triggered, and the
inside space of the cuboid is the forbidden region; outside indicates that when TCP moves out of the
cuboid, a safety behavior and corresponding register state modification will be triggered, and the

inside space of the cuboid is the safety area while the space outside the cuboid is the forbidden zone.

71
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.2 Safety Features

AN Robot Assist

-
in ® H

Edit Area: area0

Area Edit

AreaName: area0

AreaType: @ Box Type O Point Plane Vector

Area Central Posture

Posture: @ Euler Angel (O Quaternion

A0 B O co
Position: X 0 YO Z0
Get TCP Posture

Area Range

x0 Ly0 1z0

2 Program Speed —.— 20% ¥ @ ¥

SNONOBONONONO,

A Admin ¥ NB12s-

For the point-plane vector zone, the pose can only be set through manual input; the safety area is in
the direction pointed by the Z-axis defining the orientation. Direction property: positive indicates that
the robot TCP enters the safety area to trigger a safety behavior and corresponding register state
modification; negative indicates that the robot TCP leaves the safety area to trigger a safety behavior
and corresponding register state modification.

AN Robot Assist

o

Edit A

Area Edit

rea: area0

AreaName: area0

AreaType: (O Box Type @ Point Plane Vector

Point Plane Vector Matrix
Position: X 0 Yo Z0
Posture: A 0 B 0O co

Direction: negative .

Trigger Behavior

Collaboration Mode .

The state of the register is set to: true

Previous Step Next Step
% Program Speed —.— 20% @ @ %

ONONONONONONO

L Admin ¥ NB12s-R1¢

Function bound register

Up to 10 control switches of whether the safety area is in effect and the trigger state of the

safety area can be bound to a register. The safety area switch is controlled externally, and

the safety area trigger state is fed back to external devices.

To bind the trigger state of the safety area to a register, first create a new register as shown below.
Select write only and "sta_safe region0l~sta_safe regionl0", which means the trigger state of the

corresponding safety area will be bound to the new register.

72
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration
7.2 Safety Features

AN Robot Assist

in ¥ =

< New Register

Basic Info

Name registerQ

Type bool ‘
Read Write read only >

Start Address 40000
Element Number 1
Description

Is Retain O

Function

Function enable_safe_region01

2 Program Speed —.— 20% ¥ @ ¥

SNONOBONONONO,

A Admin ¥ NB12s-

To bind the power switch of the safety area to a register, first create a new register as shown below.
Select read only and "enable safe regionOl~enable safe region10", which means the control switch
of the corresponding safety area will be bound to the new register.

7.2.6 Safety monitor

Explanation

Safety monitor targets the robot's normal operation. In this mode, thresholds of monitoring items are
higher than those in the Collaboration mode.

Parameter configuration

Admin or higher permission is required to configure safety monitoring as shown in the below
interface:
1. Setting all monitoring items and parameters in the Safety Monitoring interface, including:

A Maximum speed of each joint, with each axis set independently;
Maximum speed of each joint: [180, 150, 180, 180, 225, 225, 225] °/s

B Maximum linear speed of TCP: 1m/s, the threshold is shared by X/Y/Z with an available speed range of 0.0
-1 m/s

C Maximum torque of each joint, with each axis set independently;

Maximum torque of each joint for xMate3 Pro: [281.7, 338.1, 281.7, 281.7, 99.6, 99.6, 99.6] Nm.
Maximum torque of each joint for xMate7 Pro: [720, 720, 281.7,281.7, 124.5, 124.5, 124.5] Nm.

D Total power limit: 4476W. Available power range: 0 - 4476 W

2. When monitoring items are triggered, the robot performs STOP1.
3. Each monitoring item can be enabled/disabled independently and are off by default.

73
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.2 Safety Features

M Robot Assist

<

i ¥ = System ready.

< Safety Monitor

Joint Max Speed(°/s)

. Open
Params J1 10000 ,J2 10000 ,J3 10000 ,J4 10000
J5 10000 ,J6 10000 ,J7 10000

Joint Max Torque(Nm)

The joint maximum torque is 3.0 times rated torque need to know the rated torque temporarily controllet

. Open
Params J1 10000 .12 10000 ,J3 10000 ,J4 10000
J5 10000 ,J6 10000 ,J7 10000

Tep Max Speed(mmy/s)
. Open
*® Program Speed .— 1%

A Offline

®

*

7.2.7 Collaboration mode

Explanation

The Collaboration mode is a working mode where humans and robots share the working area. In this
mode, the robot running speed will be reduced based on the TCP maximum speed monitoring
parameter setting in the Collaboration mode.

Parameter configuration

Admin or higher permission is required to configure Collaboration mode as shown in the below

interface:

AN Robot Assist
<

i ¥ =n System ready.

< Collaboration

Enable

Open

Qverride(mm/s)

500

The safty monitor in the collaboration
Joint Max Speed(°/s)

Open
Params J1 0.001 ,J2 0.001 ,J3 0.001 ,J4 0.001
J5 0.001 ,J6 0.001 ,J7 0.001

Joint Max Torque(Nm)

The joint maximum torque is 3.0 times rated torque need to know the rated torque temporarily controffe.

Program Speed .— 1%

y @ ¥ A Offline

1. The range of monitoring parameters set in the Collaboration mode is as follows:

A Maximum joint speed: 15°/s. Each axis is set independently with the range of 0.0~15.0°/s

B Maximum linear speed of TCP: 0.25 m/s, the threshold is shared by X/Y/Z with an available speed range of
0.0 - 0.25 m/s

C Maximum torque of each joint, with each axis set independently;
Maximum joint torque: [140.9, 169.0, 140.9, 140.9, 49.8, 49.8, 49.8] Nm.

74
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration
7.2 Safety Features

[D | Total power limit: 192.7 W. Available power range: 0 - 192.7 W

2. In the Collaboration mode, STOP1 emergency stop is triggered when monitoring parameters
exceed limits.

7.2.8 Safety position

Explanation

xCore control system supports up to 8 safety positions with joint angles as reference. Each safety
position corresponds to a register function code (type: bool or intl6, read/write: write only,

sta_safe jnt posl~sta safe jnt pos8). When the current joint angle of the robot and the joint angle
set for a safety position are within the allowable error, the value of the register to which the
corresponding register function code for the safety position is bound to will be modified
automatically (when within the allowable error of the safety position, if the register type is bool, the
register value is true; if the register type is int16, the register value is 1). The user can understand the
robot's position relative to the safety position through this function.

Parameter configuration

AN Robot Assist
<

Ly g (1]
i ¥ m

< Safety Location

Location1 Safety Location
Joint Coordinates Allow Error @ Locationl
Location2

n: o 0 O

QO Location3
j2:0 0 O Location4
130 0 O Locations
14 0 0 O Location6
O Location7
)50 0 O Location8

-
>
=]
=]
w
-
<
I

2 Program Speed —.— 20% & @ ¥ A Admin ¥ NB12s-Ri¢

On the above page, click to select a safety position, move the robot to the desired position, and
manually set the allowable error of each joint; click "Save" to record the current safety position to
complete the setting.

The user can set whether to enable any safety position.

Function bound register

Up to 8 safety position states can be bound to a register, and the trigger state of whether reaching the
safety position is delivered to external devices through the register signal.

To bind the safety area state to a register, first create a new register as shown below. Select write only
and "sta_safe jnt posl~sta safe jnt pos 8", which means the feedback state of the corresponding
safety position will be bound to the new register.

75
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

A Robot Assist

< New Register

Basic Info

Name registerQ
Type bool
Read Write write only

Start Address 40000
Element Number 1
Description

Is Retain O

Function

Function sta safe_jnt pos1

Cancel

= Program Speed —. 1

7.3 Communication Configuration

7.3.1 System 10 Configuration

Explanation
The system IO is divided into system digital input and system digital output. The external controller
can send various commands to the xCore control system through system input, such as motor power-
on, startup procedure, emergency stop reset, etc. Also, the xCore system can send various states using
the system output 10.

System input

The system inputs supported by the xCore system include:

No. System input Remarks
1 Motor ON
2 Motor OFF
3 Program Start
4 Program Pause
5 PP to Main
6 Enter Collaboration Cobots only
7 Exit Collaboration Cobots only
8 Clear Alarm
9 MotorOn & Run Power on, pptomain, run in order
10 MotorOn & Continue Power on and run
11 MotorOff & Pause lg?fuse, wait for the robot to stop, and power
12 Emergency & Clear Alarm
13 Switch Manual
14 Switch Auto Only the function is effective in the manual
mode
15 Only for cobots. Need to enable Drag mode
Open Drag on the interface
16 Close Drag Only fc_>r cobots. Need to enable Drag mode
on the interface

All system inputs are pulse-triggered. To ensure that the xCore system receives external commands

76

Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

correctly, please ensure that the pulse width of the external input is not less than 300 milliseconds.

H Notes

The system input function is only valid in Automatic mode, and the signal from the system input in manual
mode will be ignored.

System output

The system outputs supported by the xCore system include:

No. System output Valid output Invalid output Remarks
1 Motor State Motor power-on Motor power-off
2 Running State Program running Program not running
3 Operate Mode Automatic mode Manual mode/Wait mode
4 Estop State Emergency stop Non emergency stop
5 Collision Detection Triggered Not triggered Cobots only
6 Collaboration State Collaboration mode Non-Collaboration mode Cobots only
7 Alarm State Alarm No alarm
8 Home State The robot TCP is at The robot TCP is not at

Home Home

All other system output signals are active at a high level except the "Operating Mode" signal.
For the signal "Operating Mode", the output is at a high level in Automatic mode and low in Manual

mode.

H Notes

The system output status is valid in both manual and automatic modes. However, for safety and availability
considerations, these signals are only to be used when the xCore is in Automatic Mode.

Use restrictions

After an 10 point is bound to the system IO, it cannot be forced to output or simulate input
operations.

7.3.2 External communication

Explanation

The xCore system provides a Socket-based external communication interface through which host
systems (PLC, MES, etc.) can send control commands to the robot or obtain the robot status.

The Socket communication interface supports the configuration of IP address, port number, and
communication terminator (suffix).

The Socket communication interface supports the robot to serve as a client or server, but only one
state at a time.

Enable interface

Before using the interactive commands, configure the parameters related to the Socket
communication and enable the function. This is operated on the Teach Pendant interface. Go to the
interface via Robot -> Communication -> External Communication, as shown in the figure below:

77
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

A Robot Assist

Enable

Open

Socket Configuration
Type Client

IP

Port 0

Suffix \n

Program Speed —.— 20% &

Socket

The upper system (PLC, MES,
etc) can send control
command to the robot or
obtain various states of the
robot through this interface.

4 You can define your own
terminator.

Control Command
Motor on: "motor_on”
Motor off: "motor_off"
PPToMain: "pp_to_main”
Start program: "start"
Stop program: "stop”
Clear alarm: "clear_alarm”

Switch auto:
"switch_mode:auto”
Switch manual:
"switch mode:manual®
A Admin ¥ NB12s-

® %

by g -
i ¥ =

Socket

Enable
Open

Socket Configuration
Type Server
Port 0O

Suffix \n

G Last updated: 2023/04/10 16:47:05

Socket

The upper system (PLC, MES,
etc) can send control
command to the robot or
obtain various states of the
robot through this interface.

- You can define your own
terminator.

Control Command
Motor on: "motor_on”
Motor off: "motor_off"
PPToMain: "pp_to_main"
Start program: "start”
Stop program: "stop”
Clear alarm: "clear_alarm"

Switch auto:
"switch_mode:auto”

Switch manual:
“switch_ mode:manual®

A Admin ¥ NB12s-R

ONONORBONONONO,

Parameters

When the robot is used as a client, the following parameters need to be configured:

No. Parameters Description
P Server IP, such as the IP address of the connected PLM and MES systems.
2 Port Server-side listening port
Suffix The suffix is the characters added to the end of the control commands or monitoring

commands sent from the server to the robot. They are typically simple terminators such as
\r, \n or \t. Please note combined suffixes can be used here without limitation on length,
such as \r\n, \r\t or \r\n\t. Visible characters such as letters can also be used.

The robot used as a server supports multiple connections. In this case, please pay attention to the

control sequence on the client side to avoid any conflict. The following parameters need to be

configured:
No. Parameters Description
1 Port Server-side listening port
2 Suffix The suffix is the characters added to the end of the control commands or monitoring

commands sent from the server to the robot. They are typically simple terminators such as
\r, \n or \t. Please note combined suffixes can be used here without limitation on length,
such as \r\n, \r\t or \r\n\t. Visible characters such as letters can also be used.

78

Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

List of interactive commands

The following table shows the information content supported by the external communication

interface and the corresponding command formats. Assume the user uses "\r" as the specified

command terminator ("\r" is an escape character for carriage return, the decimal value is 13).

Interaction commands include control commands, configuration commands, and monitoring

commands.

Control commands include:

Command name String sent Return value Remarks
Close the socket interface "xCore::SocketInterface::Disable" +"\r" No return value
2 Start the socket interface "xCore::SocketInterface::Enable" +"\r" No return value
3 Start . o "true" if success;
art program + o
prog Start™+ e "false" if failed
4 St "stop"+"\r" "true" if success;
op program o
P prog "false" if failed
"true" if success;
5 Clear servo alarms "clear alarm"+"\r" “false" if failed
. . . "true" if success;
6 Program pointer to main "pp_to_main"+"\r" "false" if failed
7 Mot . . "true" if success;
otor power-on +"\r" o
P motor_on"+"\r "false" if failed
"true" if success;
8 Motor power-off "motor_off" + "\r" "false" if failed
. "true" if success;
9 Switch to Manual mode "switch mode:manual"+"\r" e
- "false" if failed
] . "true" if success;
10 Switch to Automatic mode "switch mode:auto"+"\r" "ealse" if failed
- alse" if faile
"true" if success;
11 Enable Drag mode " e pos Cobots onl,
e open_drag"™+"\r "false" if failed Y
"true" if success;
12 Disable Drag mode " "\ pos Cobots onl,
¢ close_drag"+"\r "false" if failed Y
Monitoring commands shall include:
Command name String sent Return value Remarks
"true" if success; "false" if failed
1 Motor power status "motor_on_state" + "\r" true: motor power on; false: motor power
off
. "true" if success; "false" if failed
2 Program status "robot_running_state" + "\r" . K
- — true: running; false: not running
"true" if success; "false" if failed
3 Emergency stop "estop_state" + "\r" true: emergency stop; false: non emergency
stop
"true" if success; "false" if failed
4 Fault "fault_state" + "\r"
- true: fault; false: not fault
"true" if success; "false" if failed
5 Operating mode "operating_mode" + "\r" true: Automatic mode; false: Manual
mode/Wait mode
6 Get Cartesian position "cart_pos" + "\r" Cartesian position string + "\r"
. . "cart_pos: " + Cartesian position string +
7 Get Cartesian position "cart_pos_name" + "\r" g
r
8 Get axis position "jnt_pos" + "\r" Axis position string + "\r"
9 Get axis position "jnt_pos name" + "\r" "jnt_pos: " + axis position string +"\r"
10 Get axis velocity "jnt_vel" + "\r" Axis speed string + "\r" Unit: rad/s
11 Get axis velocity "jnt_vel name" + "\r" "jnt_vel: "+ axis speed string + "\r" Unit: rad/s
12 Get axis torque "jnt_trq" + "\r" Axis torque string + "\r" Unit: N.m
13 Get axis torque "jnt_trq_name" + "\r" "jnt_trq:" + axis torque string + "\r" Unit: N.m
Returns "true" if there is an output or
14 Home state output "home_state" + "\r" K K
"false" if there is no output

79

Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

Returns "true" if a collision detection is
16 | Collision detection state "collision_state" + "\r" triggered or "false" if no collision detection Cobots only
is triggered
The task currently performed by the robot,
including: .
° Ready: ready For details, please
° Jog: jog refer to the symbols
L] Load identification: load_identify and description of
17 Obtain robot task state "task_state" + "\r" i D ynamic !dent}ﬁcatlon: the robot's current
- dynamic_identify in Ch
[] Enable Drag Mode: drag status in Chapter
[] Program running: program 3.1.2 Bottom status
[] Demo: demo bar.
° RCE: rci
[Debug: debug
Note:
String format Unit
Cartesian
. X,¥,2,a,b,¢,q1,q92,93, q4 X, ¥, Z, unit: mm; a, b, ¢ unit: degree; q1~q4 are orientation quaternion
position
Axis position i1,32,33,j4,5,6,j7 Robot axis degree, unit: rad; rail position, unit: m;
Axis velocity vjl, vj2, vj3, vi4, vis, vj6, vj7 Robot axis velocity, unit: rad; rail velocity, unit: m/s;
. e The unit of the robot axis and track torque is the thousandth of the rated
Axis torque 41, 42, 3, tj4, j5, tj6, 7
torque of the motor;

7.3.3 Bus devices

Explanation
CC-Link, Modbus, EtherCAT, and PROFINET are supported. CC-Link includes CC-Link devices
(adapted via EtherCAT) and CC-Link IE Field Basic. EtherCAT can be used to expand 10
modules, PROFINET, EtherNet/IP, and other bus modules.

Supported Bus Protocol Supported method Remarks

TCP Master and slave
Modbus UDP Not supported
Industrial robots
RTU Master and slave
only
485 Remove device station Industrial robots
CC-Link (slavf) ‘ only
IE Field Basic Remove device station
(slave)
The following function codes are supported in Modbus:

Function code Meaning Supported
0x01 Read coil Supported
0x05 Write a single coil Supported
0xOF Write multiple coils Supported
0x02 Read discrete input Supported
0x04 Read input register Not supported
0x03 Read holding register Supported
0x06 Write a single holding register Supported
0x10 Write multiple holding registers Supported

Configuration

Click Robot Configuration -> Communication -> Bus Device. The page is divided into two parts.

All bus connections are managed on the upper part of the page, and the lower part displays the

attribute parameters of a certain bus connection. On the upper part of the page, each bus

connection can be enabled or disabled individually. When a bus connection is disabled, the I0s

configured for the connection will not be displayed in Status Monitoring -> IO Signal.

80
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

AA Robot Assist -

« Fieldbus Device

Type: All . Name: Reset
Name Mode Endian Enable

il modbus 0 MODBUS slaver CDAB

2 CCLINK slaver CDAB

el modbus 2 MODBUS master CDAB

Bl modbus 3 MODBUS slaver CDAB

[Name Value

Protol Type P
Slave ID 1

> TCP

> Hold Register

> Coils

» Discrete Input

Parameter name

Parameter explanation

Name

The first column of the management list is the name of the bus connections, used in the IO Device and Register
configuration. For example, the names in the above figure are modbus_0, modbus_1, modbus_2, and cclink, as shown in the
figure below:

> This name field is used in 10 device configuration to indicate which bus the IO device is related to;

> This name field is used in Register to indicate which bus the register is related to;

AA Robot Assist

W o %i 1
« |0 Device Config

Device Type
Type FIELDBUS

Fieldbus Device Info

Fieldbus Device Name /modbus 0,
cclink 1
maodbus_2
10Board D 2 modbus 3

Basic Info

Name modbus 0
DI Number \amica
DO Number Dynarmica
Al Number amically A

AQ Number Dynamically A

« New Register
Device
Type MODBUS

Name modbus 0

Basic modbus 2

Name modbus 3
Type int16 .
Read Write read only
Start Address 40000
Element Number 1

Description

Function

Function

Type

The second column of the management list is the type of bus connections, which can be selected when adding/editing a bus

81
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

device. Only CC-Link, Modbus, EtherCAT, and PROFINET are supported. CC-Link includes CC-Link devices (adapted via
EtherCAT) and CC-Link IE Field Basic. EtherCAT can be used to expand I0 modules, PROFINET, EtherNet/IP, and other
bus modules.

Mod The third column of the management list is the mode of the bus connections, indicating whether the current robot serves as a
ode
master or a slave on the bus.

The fourth column of the management list is endianness, mainly used for registers. Since each register occupies 2 bytes,
Endianness there are many hexadecimal sequences of the two bytes. This attribute needs to correspond to the master and the slave,
otherwise, the data will not meet the expectations. Four types of endianness are supported in the control system: ABCD,
CDAB (default), BADC, and DCBA.

The fifth column of the management list is the enabling button. It is used to enable or disable the bus function. Each bus

Enabling button | device can be enabled or disabled individually. Please note that after a bus device is disabled, the IOs configured on the bus

device will not be displayed in Status Monitoring -> 1O Signal.

7.3.3.1 Modbus communication

Click = at the lower right corner on the bus device page to enter the interface to
add a new communication bus device, and select the device type MODBUS. It supports the TCP
and RTU protocol, and the device can be configured as a master or slave.

7.3.3.1.1 Modbus TCP configuration

AN Robot Assist

Fieldbus Device

Device Type
Type MODBUS 4

Basic Info
Name modbus 0
Mode slaver

Endian CDAB

Extend Info

Protol Type TCP »
Slave ID 1

TCPIP 0.0.0.0

TCP Port 502

2 Program Speed —.— 20% @

Previous Step Next Step

A Admin

DNONONONONONO,
ONCECRONCRCNGC)

¥ ¥ NB12s-R1

O]

Parameter Introduction

Mode The robot can be selected as "master" or "slave".

Slave ID ‘When the robot serves as a slave, ensure that the overall configuration of the bus does not
conflict with other slaves. When the robot serves as a master, it indicates the target slave ID
that the robot expects to communicate with. Please note that when the robot serves as a
master, it only supports single-slave communication with external devices;

TCP/IP ‘When the robot serves as a slave, fill in 0.0.0.0, which means all network cards are
monitored. When the robot serves as a master, fill in the IP address of the target slave ID
that the robot communicates with;

TCP port The port number when the slave uses the TCP protocol;

Holding register The start address of the register affected by the function codes 0x03, 0x06, and 0x10. Each

start address register occupies 2 bytes;

Coil start address: The start address of the register affected by the function codes 0x01, 0x05, and 0xOF;

Discrete input start | The start address of the register affected by the function code 0x02

address:

82

Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3.3.1.2 Modbus RTU configuration

7.3 Communication Configuration

AN Robot Assist

by g -
i ¥ =

F

Device Type

Type MODBUS

Basic Info
Name modbus 0
Mode slaver

Endian CDAB

Extend Info
Protol Type
Slave ID

RTU Serial Name

Cancel

ieldbus Device

Hold Register Start Address 40000

= Program Speed —.— 20%

RTU ‘

(ONONONONONO

Previous Step Next Step

A Admin ¥ NB12s-R

)

+¥ O ¥

The Modbus RTU conception is partly the same as the Modbus TCP conception, which will not be

repeated here. Only the differences are described as follows:

RTU serial port name: Indicates the serial port medium used for bus communication. Configure it in

Robot Configuration -> Communication -> Serial Port Configuration, including the parameters for

communication.

7.3.3.2 CC-Link communication

Click <

at the lower right corner on the bus device page to enter the interface to add a

new communication bus device, and select the device type CCLINK. It supports the CC-Link and

CC-Link IE Field Basic protocol, and the device can be configured as slave only.

7.3.3.2.1 CC-Link configuration

AN Robot Assist

by g -
i ¥ =

F

Device Type

Type CCLINK

Basic Info

ieldbus Device

Name cclink 0 O

Mode slaver .

Endian CDAB P 9

Extend Info @

Protol Type cclink . O

cclink Baud Rate 156K 4

cclink Occupied Station Number 4 P 9
5

(<
= Program Speed —.— 20 & @ % L Admin ¥ NB12s-R1610

N
o
a

83

Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

Parameter Introduction
Mode For CC-Link and CC-Link IE Field Basic protocol, the device can be configured as a
slave only.
Protocol type cclink refers to the EtherCAT expansion CC-Link module

cclink baud rate Communication baud rate. Please note that the configuration of the master should match
that of the slave

Number of cclink 1 to 16 occupied stations can be configured. The default number is 4. Mode settings are

occupied stations recommended

7.3.3.2.2 CC-Link IE Field Basic configuration

AM Robot Assist

by g -
in ¥ =

Fieldbus Device

Device Type

Type CCLINK B

Basic Info
Name cclink 0
Mode slaver

Endian CDAB

Extend Info

Protol Type cclink ie .
cclink_ie NetCard 192.168.10.104 :ens33
cclink_ie Occupied Station Number 4 B
cclink_ie Protol Version 2 “

Previous Step Next Step
Program Speed —.— 20% W @ 3

Parameter Introduction

A Admin ¥ NB12s

Protocol type cclink_ie means the CC-Link IE Field Basic communication protocol that directly uses
the robot's Ethernet port.

cclink_ie network card Configure which Ethernet card is used for communication.

Number of cclink_ie 1 to 16 occupied stations can be configured. The default number is 4. Mode settings are
occupied stations recommended
cclink_ie protocol Verl or Ver2 is optional. Please ensure that it is consistent with that of the master
version

7.3.3.3 EtherCAT communication

Click —] at the lower right corner on the bus device page to enter the interface to add a
new communication bus device, and select the device type ETHERCAT. EtherCAT expansion
devices can be used to access PROFINET and EtherNet/IP modules.

84
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

A Robot Assist

= e
i ¥

Fieldbus Device

Device Type

Type ETHERCAT .

Basic Info
Name ethercat 0
Mode slaver .

Endian CDAB

Extend Info

Slaver Address 5000

ONONONONONO,

2 ProgramSpeed —f—— 20% & @ ¥
Slave address: The slave address number in the EtherCAT bus topology. Since the EtherCAT slave
address number 1000-4000 is occupied by the robot internal devices, to avoid device address conflict,
the EtherCAT slave address number of extended devices should not be less than 5000.

®

A Admin ¥ NB12s-R1610

7.3.3.4 PROFINET communication

Configuration

Click = U at the lower right corner on the bus device page to enter the interface to add a
new communication bus device, and select the device type PROFINET. The device can be configured
as a slave only. One PROFINET slave can be configured for one robot, and multiple robots can join the
same PROFINET network by modifying the PROFINET slave name to enable multiple slaves. The
model selected for Slots 1-6 should be consistent with the correspondent-side configuration.

AN Robot Assist

by g -
i ¥ =

Fieldbus Device

Device Type n
Type PROFINET .
Basic Info

Name profinet 0
Mode slaver

Endian CDAB

Extend Info

Station Name rokae

NetCard 192.168.10.104 : ens33 4
Update Period 10

Slot 1 Type DO_256 P

Previous Step Next Step
2 Program Speed —.— 20 & @ % LA Admin ¥ NB12s-R161(

Parameter explanation:

CNONONBONONONO,

Parameter Description
Device type PROFINET
Name PROFINET slave name. It should be consistent withs the correspondent-side configuration.
85

Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

Chinese characters are not allowed

Mode Only slaver is supported

Endianness Select DCBA generally, depending on the agreement between the communicating parties
Network card Select the network port to connect to the correspondent; includes the network card IP and name
Update period Default to 10ms, minimum 2ms

(ms)

Slot 1 type Only DO_256 model can be selected, indicating that 256 digital quantities are output from the

robot to the correspondent via slot 1
Slot 2 type Only DI_256 model can be selected, indicating that there are 256 digital inputs from the

correspondent to the robot via slot 2

Slot 3 type The option models include AO_Int16_8/ AO_Int16_16/ AO_Int16_32/ AO_Intl16_64/
AO_Int16_128/ AO_Int16_256. AO_Int16_8 means that there are 8 int16 analog outputs from the
robot to the correspondent via slot 3, and so forth

Slot 4 type The option models include Al Int16 8/ Al Intl6 16/ Al Int16 32/ Al Intl6 64/ Al Intl6 128/
Al Intl6 256. Al Int16 8 means that there are 8 int16 analog inputs from the correspondent to
the robot via slot 4, and so forth

Slot 5 type The option models include AO Float32 8/ AO Float32 16/ AO Float32 32/ AO Float32 64/
AO_Float32 128/ AO_Float32 256. AO_Float32_8 means that there are 8 float32 analog outputs
from the robot to the correspondent via slot 5, and so forth

Slot 6 type The option models include AI_Float32_8/ Al Float32 16/ AI_Float32 32/ Al Float32_64/

Al Float32 128/ Al Float32_256. Al Float32_8 means that there are 8 flaot32 analog inputs
from the correspondent to the robot via slot 6, and so forth

7.3.4 Register

Explanation
The register is a type of variable of robot that can be used to exchange data with external devices so
as to control the robot. The register can also be used as a variable in the current RL project. The
register variables can be operated by commands or assignments. The register is a concept related to
the robot itself, not a bus device. However, a specific register can be bound to a certain bus device for
communication and data exchange. Specify the binding relationship when adding or editing a
register. Each register occupies 2 bytes. For different types of variables, the number of registers
occupied is different.
Configuration
Click Robot Configuration -> Communication -> Register and add register variables using the three
buttons at the lower right corner of the interface.
AP Robot Assist
. L] - »
< Register
Ficaton ar e A e A e — e
BitBias End Addrespevice Namw Function Description [-]
micp_woi 6 40004 2 40035 madbus_1 FRENLT T
micp_wo_cartpos float 40100 wiiteonly 7 40113 modbus | sta_cart .
mepocated ot o0 ety 7 s
bool A0 oy 1 woon
e ool ey 1 s e
bool 40202 witeonty 1 40202 modbus_1 By T
bool 40203 write only 1 40203 modbus 1 fault T e
Bl mice_wo_home state bool 40205 witeony 1 40205 modbus1 sta_home Horme HEths
e 40207 modbus st stam -
bit 41000 readonly 64 41003 modbus 1 s+AEbiIE)
- & + [a L]
[— * ; y
Name

The first column of the register list is the name of the registers, which is used for RL to access the
register variables. Please note that the name on the list should be unique and should not be identical

with that of the variables in any RL list, otherwise, there will be a variable conflict in the RL.

86
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

Type
The second column of the register list is the type of the registers, with four types optional: bit, bool,
int16, and float. The details are as follows:

No. Type Description

1 bit The bit type register variable occupies only one bit of a register, and the bit array needs to be
an integer multiple of 16 bits. As shown in the figure above, for a bit type register starting
from 41000-bit, a variable with a size of 64 occupies 4 registers from 41000 to 41003.

bool A bool variable occupies 1 register.
intl6 An int16 variable occupies 1 register.
float A float variable occupies 2 registers.

About bit type registers:

AA Robot Assist

« New Register
Device
Type MODBUS

Name modbus 0

Basic Info

Name register0
Type bit

Read Write read only

Start Address 40000

Bit Bias 1 [1,16]

Element Number

Description

Function

Function

» As shown in the figure above, if the bit offset is checked, it means that a certain bit of a register
is occupied, and the optional value is 1-16.

» For bit type registers, the function binding is only available when the bit offset is checked.

» For bit type registers, the number of elements is automatically modified to 1 when the bit offset
is checked.

Parameter explanation

Parameter Description

The third column of the register list is the initial register, used to indicate the start address of the register. The address of
Initial register all registers cannot be occupied repeatedly, otherwise, a register conflict error will occur. For example, if one register
occupies 41000-41003, another register cannot start from 41002.

The fourth column of the register list is the read-write attribute, indicating whether the register is read or written from the
robot's perspective (not from the master or slave's perspective). For the state that the robot needs to output, it is a write-
Read-write only register (when the robot serves as a slave, the holding register function code is 0x03; when the robot serves as a
master, it is 0x06 or 0x10). For the command that the robot needs to receive from external devices, it is a read-only
register (when the robot serves as a slave, the holding register function code is 0x06 or 0x10; when the robot serves as a

master, it is 0x03).

The fifth column of the register list is the size, indicating the number of the variables. For variables greater than 1, the
variable can be referenced in the form of an array with the subscript starting from 1. Please note that it is different from
Size the number of registers. As shown in the figure above, for registers 40140-40153, the variable type is float, and each
float variable occupies 2 registers. Therefore, the size is 7, and the number of registers occupied is 2*¥7=14. The contents
of the register can be referenced in the RL program via mtcp_wo_cartvel[1]~ mtcp_wo_cartvel[7].

The bit type register is mapped to the position of the register. Each register occupies two bytes, i.e. 16 bits. The bit offset
Bit offset refers to the position of the corresponding register, and the offset value is 1-16. If the bit offset is not checked when the
bit type register is created, it is not displayed.

The sixth column of the register list is the end register, used to indicate the last register address occupied by the register
End register variable. When the register variables are arranged consecutively, this column will help users quickly plan the register
assignment. For example, the start address of the next register can be determined by adding 1 to the value of this item.

87
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

Device name

The seventh column of the register list is the device name. The device name is defined when the bus device is created,
indicating which bus device is bound to the register. The register can be bound to the CC-Link, CC-Link IE Field Basic,

Modbus, and EtherCAT devices.

Function

The eighth column of the register list is the function of the registers, with fixed function codes indicating the robot
function of the register. The function codes are fixed and unmodifiable. The description is shown in the table below.

There are two types of function codes: read-only and write-only.

Read-Only Function Codes

ID Function Code Name Suppor;;;el:inding Function

1 Blank N/A No function, custom input
2 ctrl_clear_alarm bit, int16, bool Clear servo alarms

3 ctrl estop_reset bit, int16, bool Emergency stop reset

4 ctrl_motor on_off bit, int16, bool Motor power-on/power-off

1: Powered-on; 0: powered-off

5 ctrl_pptomain

bit, int16, bool

Program pointer to main

6 ctrl_program_start_stop

bit, int16, bool

Program running/stop

7 ctrl_set_program_speed

bit, int16, bool

Set program running rate

8 ctrl_switch_operation_auto_manual bit, int16, bool Switch between Automatic mode
and Manual mode
1: Automatic mode; 0: Manual
mode

9 ctrl_motoron_pptomain_start bit, int16, bool Power on, Pointer to main, and start

program in order

10 | ctrl_motoron_start

bit, int16, bool

Power on and start program in
order

11 | ext cmd set

bit, int16, bool

Remote control function: issuing
commands
See Remote Control

12 | ext_reset

bit, int16, bool

Remote control function: overall
function reset
See Remote Control

13 | ext_resp_get

bit, int16, bool

Remote control function:
Acknowledge and clear the
previous command response.

14 | ext request data

int16 array

Remote control function: command
function code. Array, register with a
fixed size of 8.

All system inputs of the above system registers are pulse-triggered. To ensure that the xCore system receives
external commands correctly, please ensure that the pulse width of the external input is not less than 60

milliseconds.

Write-Only Function Codes

ID | Function Code Name Supported Binding Function
Types

1 Blank No function, custom output

2 ext_error_code intl6 Remote control function: error code

3 ext_resp_set bit, int16, bool Remote control function: response after
command execution

4 ext_response_data int16 array Remote control function: data to be fed
back. Array, register with a fixed size of
8.

5 sta_alarm bit, int16, bool Servo alarm status
1: Servo alarm; 0: No alarm

6 sta_error_code intl6 Robot error code.
Read error code = robot actual error
code - 30000

7 sta_collision bit, int16, bool Collision detection state
1: Collision detected; 0: No collision

88

Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

8 sta_error_code intl6 Reported robot error code

The error code is only a number. The
actual error can be checked with the
code (= reported robot error code -
30000).

9 sta_estop bit, int16, bool Emergency stop

1: Emergency stop currently triggered;
0: Normal

10 | sta home bit, int16, bool Whether the robot flange center is at
home

1: At home; 0: Not at home

11 | sta_motor bit, int16, bool Motor power status

1: Powered-on; 0: Powered-off

12 | sta_operation_mode bit, int16, bool Current operating mode
1: Automatic mode; 0: Manual mode

13 | sta_program bit, int16, bool Whether the program is currently
running
1: Program running; 0: Idle

14 | sta_program_speed intl6 Query the current program running
speed (in percentage terms).

15 | sta_cart _pose float array Query the current Cartesian space pose

of the robot. Requirements for bound
registers: float array, size - 8

16 | sta_jnt pose float array Query the current joint angle of the
robot. Requirements for bound registers:
float array, size - 8

17 | sta_jnt_trq float array Query the current joint torque of the
robot. Requirements for bound registers:
float array, size - 8, unit: N.m;

18 | sta_jnt vel float array Query the current joint velocity of the
robot. Requirements for bound registers:
float array, size - 8, unit: rad/s;

19 | sta_robot is busy int,bit,bool Whether the robot is executing time-
consuming operations such as pptomain:
1: Executing; 0: Idle

20 | sta_tcp pose float array Pose of the robot TCP. Requirements for
bound registers: float array, size - 7

21 | sta_tcp_vel float array Speed of the robot TCP. Requirements
for bound registers: float array, size - 7

22 | sta_tcp_vel mag float Robot TCP combined linear velocity

How to Use

The control system reads and modifies the registers in two ways: command or assignment.

For command type, two commands - WriteRegByName and ReadRegByName - are provided. The
assignment type is more intuitive and simple with the operator "=".

1) Command type:

» WriteRegByName(modbus_reg[index], rl_symbol)

The first parameter is the register name configured in Robot -> Register. [index] can be used to offset
the start address of the corresponding register. Limitation: 1 <= index <= the maximum size of the
register. The default index is 1.

The data in the control system (such as the number of cycles in the RL language) can be output to its
bound devices through registers. Assume it is defined as "int rl_value" in the control system. If you
want to output it to an external device, you can specify a register, such as the first register of
"mtcp_wo_i" in the default configuration. Simply add a WriteRegByName command in the RL

language, and the parameter will be sent to the external device via Register - Bus Device.

89
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

A Robot Assist

T o *® i
moabus test) tasko) main | = man v | Refrashpos Movers (U 3 [
S « &
Task GLOBAL PROC main()
Var int rl_value =0
point while(true)
rl_value += 1
Path WriteRegByName(mtcp_wo_ii], rl_value}
0 endwhile
ENDPROC
Frame
Tool
Wob]
Predefine
—— - ¥ L

» ReadRegByName(modbus_reg[index], rl_symbol)
Similar to the WriteRegByName command, it can update the value in the register to the variable of
the RL program, and therefore can be used to control the execution process of the RL program and
kinematic parameters, etc.

2) Assignment type

Directly use the operator "=". For example, "mtcp_wo_i[1] =1" is to update the value of the first
element of the register mtcp_wo i to 1. Similarly, "a =mtcp_wo_i[1]" is to update the value of the
first element of the register mtcp_wo i to the variable a of the RL program.

Register retain configuration
Register retain: Creates register a with the hold property whose current value is held on a non-volatile

storage medium when the robot restarts, shuts down, powers off, or when RL is stopped. When the
robot powers on again or RL is running again, the value of register a is restored to the value held
before the robot shuts down or RL is stopped.

The register retain configuration interface is shown below:

A Robot Assist
<

by g
T # =

< New Register

Name registerQ

Type bool B
Read Write read only B
Address 1 .
Address 2

Start Address 0

Element Number 1

Description

Is Retain

Function

Function enable_safe region01 »

Previous Step Next Step
= Program Speed —.— 20% @ @ 3

ONONONONONONUY,

A Admin ¥ NB12s-R161

Contlict checking during register import
The register address cannot be the same for the same register attribute (read and write) on one device.

If the address is the same, the newly imported one prevails, while the original conflicting register is
overwritten. A pop-up window prompts the user to choose whether to replace the current register.

When creating the 7 registers starting with ext: ext_cmd_set, ext_resp_set, ext_resp_get, ext_reset,

90
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3.5 10 device

7.3 Communication Configuration

ext_response_data, ext request data, ext error_code, if the register has been bound by the register
address, these addresses cannot be bound by another register. When importing the above 7 registers,
if the function codes have already been bound in the HMI, and the newly imported register list also
involves such function codes, the newly imported ones will prevail, and the original conflicting
register will be overwritten. A pop-up window will prompt the user to choose whether to replace the
current register.

Explanation

10 includes DI, DO, Al and AO. There are three types of signal sources: controller cabinet built-in,

EtherCAT expansion, and field bus expansion. For industrial robots, the controller cabinet has several
built-in DIs and DOs. For cobots, the base and the end-effector have several built-in DIs and DOs.
For industrial robots, the EtherCAT expansion interfaces are reserved on the controller cabinet to
connect EtherCAT expansion modules to generate new DI, DO, Al, and AO. The Modbus bus
expansion can also be configured with 10s.

AA Robot Assist — a x

1

« 10 Device Config
Type: Al .

ard Name DI Number DO Number Al Number
0 ETHERCAT ROKAE_XMAE _10_SLAVE 4 4 0 0

1 ETHERCAT ROKAE_XMATE_FOAT 10 SLAVE 2 2 0 0 <<On>»

AD Number

Extend Info

Device Class. Slave Address 20

Parameter

. z . . .
Click v at the lower right corner on the 10 device configuration page to enter the 10
device configuration interface. The parameters on the interface may vary with the device type.

AM Rabot Assict - s] X

« 10 Device Config
Device Type
Type ETHERCAT

EtherCAT Slave Info
Device Class Slave 10

Slave Address 2003

Basic Info

10 Board 1D 2

Name 10 _Device 2
DiNumber 8

DO Number 8

Al Number 0

AO Number D

91
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

AN fabot Assist - o X

«

10 Device Config

Device Type

Type ETHERCAT

EtherCAT Slave Info
Device Class Safefioard Extend 10

10 Board Index DIDO16 1

Basic Info

10 Board 1D 2

Name 0 Device 2
DI Number

DO Number

Al Number

AQ Number

M Robot Assist - a X

«

10 Device Config

Device Type

Type ETHERCAT

EtherCAT Slave Info
Device Class ~ SafeBoard Edend 10

10 Board Index AIAD4 2

Basic Info

10 Board D 2

Name 10 Device 2
DI Number

DO Number

Al Number 4

AQ Number 4

AlAD Cfg

AMode Voltage , Voltage |, Voltage , Voltage

AC Made Voltage

L Voltage |, Voltage , Voltage

A Rabot Assist - a X

-

|0 Device Config
Device Type

Type FIELDBUS

Fieldbus Device Info
Fieldbus Device Name modbus 0

Basic Info
10 Board ID 2
Name modbus 0

DI Number Dyna

DO Number Dynamically

cquirec

AlNumber Dynamically Acquired

AO Number Dynamically Acquirec

Parameter Description

Device type EtherCAT and FIELDBUS are optional. EtherCAT refers to 10 expansion with the EtherCAT

bus and expansion modules. The expansion modules can only serve as slaves, and the slave
address needs to be configured.

EtherCAT slave information - SafeBoard 10, SafeBoard Extend IO, xPanel 10, and Slave IO are optional. SafeBoard IO refers
Device type to the DI and DO on the robot safeboard. SafeBoard Extend IO refers to the expansion 10 on

the robot safeboard, generally the expansion IO on the safeboard in the XBC_5 controller

92
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

cabinet. xPanel 10 refers to the DI and DO of the end-effectors of the cobots. Slave IO refers to
the EtherCAT expansion module.

EtherCAT slave information -
10 board type

When SafeBoard Extend IO is selected in EtherCAT slave information - Device type, the option
10 board type appears for selection of the safeboard expansion IO board. DIO16_1, DIO16_4,
DIO16_5,DIO16_6, AIAO4_2, and AIAO4_3 are optional. The last digit of the option refers to
the address of the safeboard expansion IO board. Select the safeboard expansion IO board that
is actually connected. In addition to manual editing by the user, the controller can automatically
identify and add the safeboard expansion IO board.

EtherCAT slave information -
Slave address

The slave address of the expansion module in the EtherCAT bus topology. It should not conflict
with the address of the safeboards, joints, or the cobot end-effectors.

FIELDBUS - Bus device name

The custom name when a bus connection is created on the Bus Device page. It is used to
associate with the Bus Device.

10 board serial number

A virtual 10 board is generated for each IO device configuration for the control system to
classify and manage the 10 boards internally. The IO board serial number is the unique number
for virtual IO board management.

Name The custom name of the virtual 10 board. It is used for filtering in Status Monitoring -> IO
Signal.
Number of digital inputs Number of DIs.
Number of digital outputs Number of DOs.
Number of analog inputs Number of Als.
Number of analog outputs Number of AOs.

Analog Quantity IO
Configuration

When SafeBoard Extend IO is selected in EtherCAT slave information - Device type and
ATAO4 2 or ATAO4 3 is selected in IO board type, the option Analog 10 Configuration
appears. Each analog channel can be configured as voltage type or current type.

Status Monitoring

Monitor the created DI, DO, Al, and AO in Status Monitoring -> IO Signal. The 10 signals can be
filtered by Virtual IO Board Name. Only the IO signals currently configured on the virtual 10 board
will be displayed. You can also filter the signals by signal type. Only a certain type of DI, DO, Al,

and AO signals will be displayed.

"~

& 10 Device Config

Type: Al n

10 Board 1D Type

0 ETHERCAT

ROKAE XMATE 10 SLAVE 4 4 0 o <<On>>

1 ETHERCAT ROKAE_XMATE EOAT 10 SLAVE 2 2 [0 <<on>>

DiNumber DOMNumber AlNumber AONumber

A Monitor o x

IdModel Task 10Signal Socket Register

s 06
0000 Urivesal 0 ROKAE XMATE L. o 0 0 off O {'D

D) 5 3

0001 Urivrsa 0 ROKAE_XMATE | 0o 1 1 off
0002 Urivesal 10 ROKAE XMATE | 00 2 2 off
0003 Universal 0 ROKAE XMATE L %) 3 3 off 9 . @

Extelarmmy

Device Class

CRLO)
99
+ ¢ 0 09
b © ¥ 1]

How to Use

After the virtual 10 board is configured, a default name will be generated for the 10 signal. The
default name can be used directly in the RL program. Or you can bind and rename the created 10

signal in Project -> IO Signal, and use the new name in RL.

Use default name

The board IO Device 6 generates the DI6_X 10 signals by default. As shown in the figure, DI6 0 is

processed directly in the RL program.

93
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

Bind and rename in RL project

7.3 Communication Configuration

AR Robot Assist
I * L
) w0) main |+ main v] s RefreshPos Mowete (¥ @ [
Print_Console =
o — ¥ @B L e QO
:
Task GLOBAL PROC pmain(}
Var print{DO4_0)
oy WAt |
ENDPROC
path
0
Frame s
= J0Model Task 10Signal Socket Register
Clear
Wobj Catagory: Al . 10 towrd: modbus 2 . Signal Type: DO 5 rame
Predefine Mame Category 10 Board Signal Type Start Bort End Port
0040 Uriversa 10) o o
oo1 [re—) 1 T
oo 2 Universa 10 o 2 %0 2 2
D043 bwcl0 mods 2 00
ooss U0 o 2 %0 . s
bous hecsl0 ol 2 oc 5
004k U0 a2 0 s s
—— o 1

A Robot Assist

P *
< New IO Signal

Basic Info

Neme signait

Description

10 Board
ROKAE XMATE 101 SLAVE
Type EtherCAT device

MaxPort Input: 4 , Output: 4, AL 0, AG: 0

Signal Type

ol

7.3.5.1 Register remote control

Explanation

Remote control is a combination function performed with registers of 7 different functions. It is used
to achieve complex business logic interactions in a specific sequence. External devices can fulfill

functions such as robot Jog, updating point position, obtaining robot position and status, etc. via the
remote control function.

Register function

External devices use four types of registers to control the robot. These registers are read-only for the
robot.

Function Code Attribu | Type Size Function
Name te

Issuing commands

1. Set ext_cmd_set to 1 to send a request for command
execution. The request is responded only when

intl6 ext_cmd_set is set to 1.

Read- 1;1 l, 1 2. To avoid misoperation, be sure to set the command
only gﬁ ? data to the data area before execution. (The command
data is temporarily stored in the cache and is responded

only when ext_cmd_set is 1).
3. After the command is executed, clear ext_cmd_set
(setit to 0).

ext_cmd_set

94
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

Function reset:
1. The signal is used to enable the remote control
function. Always keep the register state at 1 when using

5 <t reset Read- ltl:tl?’ 1 the function.
ext_rese only l(:?t ’ 2. The function stops when the register state is 0.
3. The signal is also used for commands to reset or
interrupt the action when the interface function is
abnormal.
intl6, Acknowledge and clear the previous command
Read-
3 ext resp get bool, 1 response, and reset ext resp_set to 0.
only bit
Read- Command function code. Array, register with a fixed
4 ext request data onl intl6 8 size of 8. For details, refer to the introduction in the
y function code section.
External devices use three types of registers to obtain the robot status. These registers are write-only
for the robot.
Function Code Attribu . Function
No. Type Size
Name te
1 ext_error code \?Z:lt; intl6 1 Remote control function: error code
Write- int16, After responding to the control command, the robot sets
2 ext_resp_set onl ¢ bool, 1 the register to 1, indicating that the command is
y bit executed.
Write- . Remote control function: data to be fed back. Array,
3 ext_response_data intl6 8 . . .
only register with a fixed size of 8.

Procedure

The combined use of 7 types of registers and control flow are shown in the figure below:

95

Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

Initialize register:
ext_reset=0
ext_cmd_set =0

.

Enable remote control:
Keep ext_reset =1

:i

Prepare command:

Set
ext_request_data
[01-[71
h 4
Issuecommand:
Keep ext_cmd_set =1 Error occurred

Wait for instruction
processing result:
Query ext_resp_set =12

Reset command:
ext_reset =0

Read response:
Read ext_response_data

[o1~17]

Disable command issuing:
ext_cmd_set =0

A 4

Confirm that the result is read:
Keep ext_resp_get = 1 the
communication cyde of at least

one register v

Enable remote control again:
ext_reset=1

h 4

Confirm that the result is read:
ext_resp_get=0
ext_cmd_set =0

A 4

Normal Control
Process

Error Handling Process

Keep controlling?

Normal Control Process

Command format

Commands and responses are implemented with 8 registers individually.

The command signal ext_request data (eight registers occupied: reg0 - reg7) is used to specify the
data area of the commands and relevant parameters. A command consists of multiple characters:
1) Character: a 16-bit register.

2) Command format: a command consists of up to 8 characters and varies with the command. The
shortest command consists of 1 character.

| Command No. | Command No. 1 | Command No. 2 | | Command No. 7 |

96
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

The response signal ext _response data (eight registers occupied: reg0 - reg7) is used to obtain the
data area of the responses. A response consists of multiple characters:

1) Character: a 16-bit register.

2) Response format: a response consists of up to 8 characters and varies with the received command.
The shortest response consists of 1 character. However, an abnormal response always occupies 3
characters.

Command No. | Response No. 1 | Response No. 2 | I Response No. 7 I

The available command numbers are shown in the table below:

. Command Command Length
Command Type Description
Code Command Response

Set Jog space 1 2 3
Obtain Jog space 2 1 4
Set Jog speed 3 2 3
Obtain Jog speed 4 1 4
Set Jog step length 5 2 3
JOG Obtain Jog step length 6 1 4
Start Jog 7 4 2

Stop J i
op Jog (without 8 !)

parameters)
Update point position 9 2 2
Move to point position 10 2 2
Set tools 11 2 3
. Obtain current tool id 12 1 4
Setting -
. . Set work object 13 2 3
information
Obtain current work object
i 14 1 4
i

Command description

1) Set Jog space:

Command/Reply Command Parameter 1 Parameter 2
Code
Frame:
1: Joint space
2: World frame
Set Jog space 1 3: Flange frame N/A
4: Base frame
5: Tool frame
6: Work object frame
Reply 1 Result: 0 - Succeed; 1 - Fail. Error Code
2) Obtain Jog space:
Command Command Parameter 1 Parameter 2 Parameter 3
Code
Obtain Jog space 2 N/A N/A N/A
Reply 2 Result: Error Code Frame:
0 - Succeed; 1 - Fail 1: Joint space
2: World frame
3: Flange frame
4: Base frame
5: Tool frame
6: Work object frame
3) Set Jog speed:
Command/Reply ggfinemand Parameter 1 Parameter 2
Set Jog speed 3 Jog speed (1-100) N/A
Reply 3 Result: 0 - Succeed; 1 - Fail. Error Code
4) Obtain Jog speed:
Command ggfinemand Parameter 1 Parameter 2 Parameter 3
Obtain Jog speed 4 N/A N/A N/A
Repl 4 Result: Error Code Jog speed (1-100)
Py 0 - Succeed; 1 - g SP

97
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

Fail

5) Set Jog step length:

Command

Command/Reply Code Parameter 1 Parameter 2
1: Continuous
2: 10 mm step length
lse C;;t?lg step 5 3: 1 mm step length N/A
4: 0.1 mm step length
5:0.01 mm step length
Reply 5 Result: 0 - Succeed; 1 - Fail. Error Code

6) Obtain Jog step length:

Command ggg;mand Parameter 1 Parameter 2 Parameter 3
Obtain Jog step 6 N/A N/A N/A
length
1: Continuous
Result: 2: 10 mm step length
Reply 6 . . Error Code 3: 1 mm step length
0 - Succeed; 1 - Fail 4: 0.1 mm step length
5:0.01 mm step length
7) Start Jog:

The command is dependent on command code 1: set Jog space. In joint space, the value of parameter

1 represents the joint number (J1-J7: 1 for J1, ..., 7 for J7); in Cartesian space, it represents the (X, y,
z, a, b, ¢, elb) number (1 for x, ..., 7 for elb).

Command/Reply ggg;mand Parameter 1 Parameter 2
Operation mode:
Joint space - representing joint Jog direction:
Start Jog 7 number; 1: negative
Cartesian space - representing (X, y, z, | 2: positive
a, b, c, elb)
Reply 7 Result: 0 - Succeed; 1 - Fail. Error Code
8) Stop Jog:
Command/Reply Command Parameter 1
Code
Stop Jog 8 N/A
Reply 8 Result: 0 - Succeed; 1 - Fail.
9) Update point position:
Command/Reply gggr;mand Parameter 1 Parameter 2
Up('ia.te point 9 Number in the RL project point list N/A
position
Reply 9 Result: 0 - Succeed; 1 - Fail. Error Code
10) Move to point position:
Command/Reply ggg;mand Parameter 1 Parameter 2
Move to point 10 Motion mode: Number in the RL project point
position 1: MoveAbsj; 2: MovelJ; 3: MoveL list
Reply 10 Result: 0 - Succeed; 1 - Fail. Error Code
11) Set current tool:
Command/Reply ggg;mand Parameter 1 Parameter 2
Set current tools | 11 Number in the RL project tool list N/A
Reply 11 Result: 0 - Succeed; 1 - Fail. Error Code

12) Obtain current tool id:

Command/Reply ggg;mand Parameter 1 Parameter 2 Parameter 3
Obtain current 12 N/A N/A N/A
tool id

98

Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

[Reply [12 | Result: 0 - Succeed; 1 - Fail. | Error Code | Current tool id |

13) Set current work object:

Command/Reply ggglemand Parameter 1 Parameter 2
Set current work Number in the RL project work object
. 13 . N/A
object list
Reply 13 Result: 0 - Succeed; 1 - Fail. Error Code

14) Obtain current work object id:

Command/Reply ggg;mand Parameter 1 Parameter 2 Parameter 3

Obtain current

work object id 14 N/A N/A N/A

Reply 14 Result: 0 - Succeed; 1 - Fail. Error Code giurrent work object

Error Code

During command configuration, parameter errors, robot status mismatch, or other conditions may
lead to configuration failure. Error codes can be used to check the robot's problems in this case.

The control system has three types of error codes:
1) ext response data: error code of command execution results.

2) ext_error_code: The command cannot be executed, for example, the robot is busy or the remote
control flag bit is incorrect, etc.

3) sta_error_code: the robot error code. Read the register when an error occurs during Jog.

Normally, the error code should be used according to the following steps:

1) After sending the execution command (ext_cmd_set=1), first read ext_error_code. If there is no
error code, read the return value of ext_response_data. If the return value is not zero, read the
error code of ext_response_data.

2) For motion operations (Jog and move to point position), if the above return values are both 0,
read sta_error_code to see if there is a stop in the motion caused by an error (such as singularity
and overrun).

ext_error_code description:

Error Meaning Remarks
Code
01 Unsupported command
02 Invalid parameter
03 Incorrect control flag bit Check whether ext_resp_set is 0 or 1.
04 Robot busy The robot is executing a command and is forbidden
to respond to others.
05 No corresponding number found Tool, point position, and work object id
06 Unmatched point type and motion type The point type does not match the motion type for

the "Move to point position" command. For
example, only the MoveAbs] command can be
used for joint space points, and only the MoveJ or
MoveL command can be used for Cartesian space

points.
07 The number of axes entered does not match the model
11 Incorrect Manual/Auto Mode
12 Incorrect robot status. Please check if the robot is in | The robot can only be jogged in Jog Mode and can
Jog Mode. not be jogged in non-Jog Mode such as Drag
Mode.
13 Incorrect power-on status The robot can only be jogged when powered on.
14 The robot is in non-position mode and can not be | Similar to error code 12.
Jjogged
15 Report algorithm error when unable to start Jog The error is reported when the robot cannot be
jogged for various reasons.
20 Encounter singularity
21 Moved to target point If the robot moves to a point it has reached earlier,
an error occurs.
99

Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

7.3.5.2 Modbus expansion 10

Explanation

When real 1O electrical signals are required to interact with external devices, it is recommended to
use an adapter module. Connect the adapter module to the controller cabinet, and operate the adapter
module via the field bus supported by the control system. You are advised to choose Modbus 10
modules recommended by ROKAE. The module is a Modbus TCP slave and controls the robot
through the coil function. Therefore, the robot needs to be configured as a Modbus Master with the
coil function enabled.

Parameter configuration

According to the configuration method of the field bus and expansion 10s, configure Bus Device first
and then configure IO Device when using Modbus expansion module to expand real 10s.
1) Configure Bus Device

A Robot Assist

<« Fieldbus Device
Device Type

Type MODBUS

Basic Info

Name modbus 2

Endian CDAB

Extend Info

Protol Type e
Stave D 1

TP port 502
Hold Register Start Address 40000

Hold Register Number 2000

Coils Start Address. 0

Coils Number 24

Discrete Input Start Address 0

Discrete input Number 8

Parameter Value/Description
Master-slave mode Select "Master" to use the robot as a master.
1P ‘When the robot is the master, fill in the IP of the Modbus IO module.
Port number ‘When the robot is the master, fill in the port number of the Modbus 10 module.
Slave ID Modbus 10 module Slave ID
Coil status Modbus module "coil status" register. Range: 1 - 32, data type: int.
Input status Modbus module "input status" register. Range: 1 - 32, data type: int.
Connect After the parameters are configured, click "Connect" to complete the configuration.

2) Configure 10 Device Configuration

100
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

AA Robot Assist

-
¢« 10 Device Config
Device Type

Type FIELDBUS

Fieldbus Device Info

Fieldbus Device Name modbus 2 |

Basic Info

10Board 10 S

Mame modbus_2
DI Number
AO Number
[— » 5 2
Parameter Value/Description
Device type Select FIELDBUS.
Bus device name Select the device name defined in the Bus Device configuration.
Basic information Digital I/O and analog I/O configured in Bus Device configuration will be obtained
automatically. No configuration is required.

3) Enabling function and status monitoring

Please note that after the Bus Device and 10 Device Configuration are just configured, the configured
expansion 1Os will not be displayed in the status monitoring because the bus connection is not
enabled yet. To use these 1Os, enable the bus connection to correctly establish connection and
communication between the controller cabinet and the expansion 10 modules.

™ *x

< 10 Device Config

Type: AN Reset

DI Number AlNumber A Number

DO Number

ROKAE XMATE 10 SLAVE

P 10_Device &

AA Manitor o x

4 FIELDBUS

IDModel Task 10Signal Socket Register

Category: Al , IObogd medbum 2 SioaiType: Al

modtus 2 o

modbus 2 [

modbus_2 ol 4 4

oS Universal 10 modbus 2 o

oS Universal 0 medbus 2 ol 5 s

Extend Info (@ EI—]

Deviee Clats o 0 sinaoton vodr S

As shown in the figure, after the bus device is enabled, the connection between the controller and the
expansion modules is established and works properly. Now the IO of the bus device modbus 2 is
displayed in the status monitoring of the 10 signals, and the number of DIs and the total number of

DIs and DOs remains the same as the bus device configuration.

101
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

« 10 Device Config

Type: All

ETHERCAT ROKAE XMATE _I0_SLAVE 4
FIELDBUS

4 FIELDBUS modbus 2 16 16 o 0

AA Moniter o x

3DModel Task 10Signal Socker Register

Category: A

Change Value

Universal 10

Universal 10

Universal 10

Universal 10

Universal 10

Universal 10

Universal 10

Extend Info 7 Universal 10

Device Class xPan| 10 Simulation Mode I

7.3.6 Serial Communication

Explanation
Users can use serial ports to communicate with external devices. The use of serial ports requires
hardware support. For industrial robots, an RS-232 serial port is reserved on the XBC5 controller
cabinet. Or the USB interface on the controller cabinet can be used for serial communication via a
USB-to-RS-232 interface module. The cobots do not reserve relevant interfaces, and therefore do not
support serial communication.

Configurations

Before using the serial port, configure the following parameters: serial port name (used in RL), serial
port, baud rate, data bit, stop bit, and parity bit. Go to the configuration interface via Robot
Configuration -> Communication -> Serial Port Configuration, as shown in the figure below. Please
try to ensure that the parameter settings at both ends of the serial communication are consistent.
Otherwise, errors may occur in sending and receiving data.

AR Robor Assist -

L
« Serial Settings

Filtration Var Port: All . Baud: All . Name: Description: Resel

Name Port Baud DataBits Stop Bits

ll seriald Jdeu/.. 9600 & i None

102
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

AM Robot Assist =

]
« Edit Serial: serial0
Basic Info
Name serial)

Description

Basic Settings
Port Jdev/tys0

Baud Rate 9600

Advanced Settings
Data Bits 8
Stop Bits 1

Parity None

o]
ced —f————] 1 I
Parameter Description
The custom name to be used as the unique identifier in RL to use the serial port resources. Please note
Name the serial port name is subject to the name conflict restriction in the project. It should not be identical
with the existing network identifiers in the project or the existing identifiers of other serial ports.
System port. The control system lists all the serial port resources detected (including the USB-to-RS-
Port 232 ports) for users' selection and use. This is the name of the serial port resources detected by the

operating system.
Baud rate 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200 are optional.
Data bit 5, 6,7, and 8 bits are optional.

Stop bit 1, 1.5, and 2 bits are optional.

Parity bit Odd parity, Even parity, Mark parity, Space parity, and None parity are optional.

Use Serial Ports

After configuring the serial port, you can use the serial port interface in the RL program without
restarting. The serial port function involves a series of commands. For details, please refer to the
section about serial port commands in RL Commands.

7.3.7 End-effector tool communication

Explanation

The xMate robot can control the opening and closing of DH grippers, and the end-effector tool
interface supports IO communication and RS485 communication.
The function is only applicable to cobots, including the xMate ER series and xMate CR series.

Parameter setting

103
Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

MM Robot Assist
LY
& End Tool
Interface
10)
Trip
trip1

Functional Testing

A Robot Assist

« End Tool &

Interface
R§485

RS485
Manufactor
Default
Tiip

tripl p

Range of open force is [20-100] range of close force is 20-100]

trip1
Max position 50
Min position 0
Openforce 100

Close force 100

Functional Testing

7.3 Communication Configuration

5 Last updated: 2022/07/26 143705

Interface

Robot xMate is able to control the end tool through
digital signals and RS485, you can either simply drive
the tool with voltage measurment or select offered
RS485 protocols,

Functional Testing

Testing the function of robot, including run-time quota
of robot. Status will show the state of robat.

G Last updated: 2022/07/26 14:37:05

Interface

Robot xMate is able to control the end tool through
digital signals and RS485, you can either simply drive
the tool with voltage measurment or select offered
R5485 protocols.

Functional Testing

Testing the function of robot, including run-time quota
of rabot. Status will show the state of robot.

Parameter
setting

Value/Description

Interface

Communication protocol, optional controllable via IO or RS485.

Path

It includes two sets of travel attributes tripl and trip2, which contain the opening/closing

position and force.

Maximum
position

Maximum opening position, unit: percentage

Minimum
position

Minimum opening position, unit: percentage

Supporting
force

The force used when the gripper is opened, unit: percentage

Gripping force

The force used when the gripper is closed, unit: percentage

E Notes

RS485 supports setting of the gripper trip parameter. For IO control, the trip parameters can
only be set through the DH communication adapter.

7.3.8 Electric gripper and suction cup

104

Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3 Communication Configuration

Explanation

xMate CR and ER robots equipped with end-effectors support RS485 communication and are
adapted to Jodell electric grippers and suction cups. This interface is used to test the basic functions
of the electric gripper and suction cup.

This function is only available for cobots of the xMate ER series and the xMate CR series. Before
use, the user needs to confirm that the end-effector has the supported firmware version. In the case of
xMate CR models, the xPanel end-effector parameters should be correctly configured.

Parameter setting

A Robot Assist

<
Ly g
TR

< Elecclaw Chuck

Manufacturer/series Elecclaw
Chuck

junduo . EPG .

Interface type

RS485

4

Tool type
@ Elecclaw O Chuck

Communication Settings

Tool Status

pose: 0 speed: 0 force: O contactstate: Moving .

Tool Test
= Program Speed —. 100% & @ 3 A Admin
Currently, only Jodell Robotics with EPG series is supported through RS485 protocol.

ONONORONON,

Electric gripper and suction cup are supported. This interface is mainly used to test the hardware
connection and communication of electric gripper and suction cup and whether the two tools function
properly. The test interface of the electric gripper is shown above.

Initialization: to test an electric gripper, first enter the ID of the electric gripper and click the
"Initialization" button. If the electric gripper performs automatic detection and prompts successful
initialization , the electric gripper’s hardware connection and communication are sound, and the user
can proceed to the next step or use it.

Move to: After initialization, click the "Move to" button and control the electric gripper to move to
the specified position in the specified velocity and force. If the electric gripper reaches the specified
position or encounters objects and reaches the specified force, it will stop the motion, and the electric
gripper’s contact detection status will also be displayed on the test interface.

Parameter Value/Description
Tool ID Enter the ID of the electric gripper. This ID is the electric gripper ID set in the Jodell
Robotics debugging software
Tool position Set the position of the gripper, range 0-255
Tool velocity Set the velocity of the gripper, range 0-255
Tool torque Set the torque of the gripper, range 0-255

The suction cup configuration interface is shown below.

Initialization: to test a suction cup, first enter the ID of the suction cup and click the "Initialization"
button. If the software prompts successful initialization, the suction cup’s hardware connection and
communication are sound, and the user can proceed to the next step or use it.

Setup: After initialization, the suction cup parameters should be set as needed. When all parameters
are entered, click the "Setup" button to test the suction cup.

Parameter Value/Description
Channel The suction cup supports two channels. The user can choose the effectiveness of the two
selection channels at will.
Minimum Set the target vacuum level of the suction cup. The suction cup stops working when the inside
vacuum vacuum level reaches this value
105

Copyright © ROKAE 2015-2023. All rights reserved.

7 Robot Configuration

7.3.9 RCI setting

7.3 Communication Configuration

Maximum Set the target vacuum level of the suction cup. The suction cup starts working when the inside
Vacuum vacuum level is greater than this value

Timeout Times out when the minimum vacuum level specified is not reached in the specified time
period

A Robot Assist

<

W & =
< Elecclaw Chuck
Interface type

RS485

a

Tool type
@ Elecclaw O Chuck

Communication Settings

Tool Status

pose: 0 speed: 0 force: 0 contactstate: Moving

Tool Test

pose: 0 speed: 0 force: 0

= Program Speed —. 100% A Admin

Explanation

RClI is an external control interface, and the RCI communication setting is required before use.

Parameter setting

The IP address of the user PC should be filled in before turning on the Enabling switch. If the user
PC is directly connected to the robot via network cable, the IP address of the user PC should be in the
same network segment as the IP of the robot; if the user PC is connected to the robot via wireless or
router, the user PC should be in the same LAN as the robot. The port number is set to 1337 by
default.

The packet loss threshold is in percentage, which represents the packet loss rate during RCI
communication. For example, when the packet loss threshold is set to 10, it means that the packet
loss rate during RCI usage should not exceed 10%. The packet loss threshold is recommended to be
set between 10-20.

Turn on RCI

After the communication setting is completed, turn on the Enabling switch and press the Save button
to activate RCI.

After using RCI, turn off the Enabling switch and press the Save button to disable RCI.

Refer to the RCI User Manual for detailed RCI usage and routines.

106
Copyright © ROKAE 2015-2023. All rights reserved.

8 Menu module

7.4 Process kit

AA Robot Assist -

Q & R 6 ’ »
« RCl Settings
Enable RCl Instruction
Open RClis an external control interface. After the enable

switch is turned on, the robot will be able to be
controlled by an extemal controller

Communication Settings Belore open enable switch, the communication must
» setwith the user's PC IP address and port 1337, the
packet loss threshold Is a percentage, which represents

127.00.1 the percentage of data loss during the movement

After the communication setting is completed, turn on
Port the enable switch, switch to automatic mode, power on,
- and then you can control the robat through RC

When the enable switch s en, it is forbidden to contro
Package loss threshold the robot via HMI any more, such as JOG, drag, etc; if it

is necessary to adjust the robot status, tum off the RCI
] enable 1o operate;

When controlling the robot through RCI, hold the

emergency stop switch, and press the emergency stop
switch if necessary. Pay attention to safety!

7.4 Process kit

7.4.1 Laser welding

Refer to User Manual for Laser Welding Process Kit

7.4.2 Plating line tracking

Refer to Operation Manual for Plating Line Tracking

7.5 Authorization

7.5.1 EtherCAT Authorization

Explanation

An authorization code is used to authorize the EtherCAT communication.

E Notes

The robot cannot be powered on if the authorization code expires or the authorization fails.

8 Menu module

8.1 Diagnosis

Explanation

The xCore system provides a detailed log of operations that can be used to trace the operation of the
robot and identify the cause of the failure.
Filter the generated logs and view other operations using the log management interface.

107
Copyright © ROKAE 2015-2023. All rights reserved.

8 Menu module
8.1 Diagnosis

8.1.1 Teach pendant log

Explanation
AM Robot Assist
« HMI Log A
[currentRe O info [Waming [Error
Date/Time

Command project.r| taskrun failed i
‘Command project.r|_task.run failed 2022-07-26/14:14:14
Command project.r|_taskrun failed: motor power state error 2022-07-26/14:1409
Command project rl_task run failed 2022-07-26/14:13:49
‘Command project.r|_taskrun failed: motor power state error 2022-07-26/14:13:42 B
Command project.r|_task.back failed 2022-07-26/14:12:44
Command project.rl_taskrun failed: motor power state error 2022-07-26/14:12:41
Command motion more.quick,turn alec: motor power state eror 2022.07-26/181234
Synchwonization faied 2022.07-26/141228
Command dynamic.drag.set_params falled: motor power state error 2022-07-26/14:11:23
Di signal can only be changed in simulation mode. 2022-07-26/13:5807
Di signal can only be changed in simulation mode. 2022-07-26/13:5807
Di signal can only be changed in simulation mode. 2022-07-26/13:57:42
Dt signal can only be changed in simulation mode. 2022-07-26/1357:39
‘Synchronization failed 2022-07-26/13:45:59
Failed o push this o desice ctg el 2022-07-26/1345:59

Command projecLil_taskun failed

Jr — » @
A Filtering criteria area, in which the user can choose to view only the controller logs of the current

controller or the ones connected to the HMI, as well as select the log level for further filtering

B Log display page, where log title and generation time are displayed. The user can press
Previous/Next to switch between the previous and next pages

C Search area, where the user can search logs with keywords

8.1.2 Controller logs

Explanation
AA Rabot Assist
oo . * L
« Controller Log

10107 /', thigeigahzt i, fSFFIEFERTT 2022-07-26 10:23:56 thigahkm, fIFIETEES

50114 1 #TifaeER 2022-07-26 1001225 & = L, BELEE
10020 IR 2022-07-26 004625 IESIFTHELE

10020 /| ISR 2022-07-26 004616 IESHTHETE

10020 /| ISR 2022-07-26 09:46:12 IEEITTHESE 5
10020 | IERRTaR EiEn 2022-07-26 09:46:07 1RBIFTM BN

Filtering criteria area, in which the user can select log level for further filtering

B Log display page, where basic information such as log number, title, generation time, and content is
displayed. The user can press Previous/Next to switch between the previous and next pages

C Search area, where the user can search logs with keywords

8.1.3 Log timeline

108
Copyright © ROKAE 2015-2023. All rights reserved.

8 Menu module
8.1 Diagnosis

AA Rabot Assist

« Log Timeline A

tine 5225726 100757 etore 0o | RSN |
AT RC e
{WJ Q 2022-07-26/10:00:37
[ynchronization failed] Q) 2022-07-26/10:00:01
— | B
e cor "“"R(J © 2022-07-26/10:00401
SRONT| Q) 2022-07-26/09:58:55
=) o 2022-07-26/09:57:02
[EEERd O 2022-07-26/0957:02
RO o 2022-07-26/09:56:56.
! o 2022-07-26/09.56:45
[ErESim®RIGod Q) 2022-07-26/09:56:30
AR 0 2022.07-26/09:56:09
ERERC O 2022-07-26/09:56:09
[Disconnected with RC| o 2022-07-26/09:56:03 -]
. N 1 5

Search area, where the user can search logs with a specific time range

B Log display page. HMI logs are displayed on the left and RC logs on the right

8.1.4 Internal logs

Explanation
When a customer encounters a problem on-site, technical support can determine the cause of the

problem based on the log files.

W Robot Assist

« Internal Log

Log Files global 20220725.0g

annot read json file:
ic> cannot read json file:

[Ej07/2: /
[E107/25 he/xmate/project json"
[E/07/25 20:07:06.509]<m> <static> cannot read json file: * /cache/xmate/handle json"

[E|07/25 20:07:06.531]<m> <static> cannot read json file: * /cache/xmate/robot json”

8.1.5 Advanced options

Explanation

The Advanced Options interface is used to assist developers with the diagnosis of the servo, ECAT, and other
equipment, and enable real-time thread alarm and monitoring, etc. Since enabling diagnostic function will
increase the workload of the controller, only turn it on in actual production when necessary.

109
Copyright © ROKAE 2015-2023. All rights reserved.

8 Menu module
8.1 Diagnosis

AA Robot Assist -

« Advanced options

Servo Diagnosis Aavanced options

This interface function is used to assist developers to

The module servo diagnosis is used to save the data after servo error. Click the save button, and export the data after 5s. = 3
diagnose servo, ECAT and other equipment problems,

@ Open and enable real-time thread alarm monitoring and
other functions. Since the operation load of the

Save Diagnosis controller will be increased after the diagnosis function
is turned on, it is not necessary to turn it on in the

Export Diagnosis actual production environment.

Open File In Explore

EC Diagnosis
Open the diagnostic function of EC software for troubleshooting ECAT equipment faults.

@ Open

Timeout warning
Real time thread timeout waming can be sent after startup.

Open

Turn area
Turn area cancel warning can be sent after startup.

Open

Delay motion

Servo diagnosis The servo diagnostic module is used to save the data errors in the servo. Click the
Save button. The diagnostic data can be exported after 5s.

EC diagnosis The EC software diagnosis function can be used to assist in troubleshooting ECAT
devices.

Timeout warning Send real-time thread timeout warnings after enabled.

8.1.6 Error recovery

Explanation

When the robot reports errors, take the remedies suggested in the error details to recover from errors.
Contact ROKAE for after-sales service if an unrecoverable error occurs.

AA Robat Assist -

o s om e r

« Controller Log

O nfo B waming [Eror

[Title Content @
50518 1\ EHRAETHER LA 2022-07-26 10:25:46 GRS, ETARATR R S
10107 /' tRIEEENEM, FRIFIELRT 2022-07-26 102356 RESMR, EFELET
50114 /| ZHREAER 2022-07-26 10:1225 & A, BT, S Liaa
10020 /1", IEBHTHEIEE 2022-07-26 0%:46:25 IS5 THEEER
10020/ EEFTMBIEE 2022-07-26 09:46:16 SRR
10020 /1", IEBHTHERITE 2022-07-26 09:46:12 IS THETR
10020 /| iSRRI 2022-07-26 09:A6:07 BB

110
Copyright © ROKAE 2015-2023. All rights reserved.

8 Menu module

8.2 Help

AA Robot Assist

. - gL ; %

< Controller Log

Details
content: F35dMMEHEHIEER, (GTEAIM-RE S Em, 12aLE),

reason; SR EEEANEE IO

®

repair: 1 BGEERAT 2 FEnSBASWENFTERNTIHTER;

®

(5

¢

2

8.2 Help

Explanation

The Software Upgrade interface provides such functions as controller upgrade and backup, erase all

configurations, and factory reset.

AM Robot Assist

< e -
in ¥ =

Software Upgrade

Controller Upgrade Controller Upgrade n
The version of controller needs
Select ki O
elect package = to match the HMI version to
Interactive Data avoid compatibility problems.
Robot Configuration

Controller Log

Project Data Controller Backup

oooooo

Demo The controller packs all the
needed files and upload to
Servo local folder.

Upload

Controller Backup
Backup Options
Interactive Data
Robot Configuration
Controller Log
Project Data

ONONONONONONO,

A Admin ¥ NB12s-R

111
Copyright © ROKAE 2015-2023. All rights reserved.

8 Menu module

8.2 Help

A Robot Assist

<

o -

< Software Upgrade

Select folder

Restore Factory Settings

Reboot Robot

Restart the robot IPC. It is generally used when the factory settings
are restored / the controller cannot be started.

Erase Configuration

One click erase robot configuration (. rc_cfg), interactive data
configuration (interactive_data),projects dir, but keep user logs.
Please reboot the robot after erase the configuration!

Restore Factory Settings

The upgrade program restores the controller to the factory settings
and resets the executable program, configuration file, project and
interactive data.Log will be reserved.

ONONONONONO,

®

= Program Speed —.— 20% @ @

Controller upgrade: used to upload upgrade package and restore data. Two file formats are

¥ L2 Admin ¥ NB12s-R1610

supported: encrypted file and unencrypted package. After uploading, the prompt "Uploaded
successfully" will appear on the interface. Follow the pop-up prompt to restart the controller.

Data restoration: Select the data package for restoration through the controller upgrade, check the
data for restoration, and click Upload. Follow the pop-up prompt to restart the controller.

Controller backup: used to store backup data of the controller. Select the files for backup, click
Open to select the backup directory, and then click Export. An encrypted file is then exported.

HMI upgrade (for xPad2 only): Upgrade of the xPad HMI software. Open: Select the HMI
upgrade zip file in the USB drive directory. Upgrade: Click the "Upgrade" button to start the HMI
upgrade. After the HMI upgrade is completed, the HMI software will start automatically and the HMI
upgrade is finished.

Restart robot: Restart the IPC system, and the upgrade service connection needs to be established
for this operation.

Erase all configurations: Erase robot configuration files, custom configurations, user's project files,
etc. with one click. However, the operation logs of the control system will be retained. After clicking
this button, the user needs to manually restart the robot. The upgrade service connection needs to be
established for this operation.

Factory reset: Restore the control system to its factory default state. The control system
configuration files and the user's project files will be reset. However, the operation logs of the control
system will be retained. The upgrade service connection needs to be established for this operation.

To upgrade to the latest version of the controller, please contact us and request an installation

package of the latest controller version and the HMI software package.

» Download to local the installation package of the latest controller version and the HMI software
package.

» Open the upgraded HMI and connect to the controller and the upgrade service.

> Select Custom Configuration, Robot Configuration, Controller Log, and Project Data in the
Backup option, and export the backup after selecting the local folder directory for backup.

» Do not select Custom Configuration, Robot Configuration, Controller Log, Project Data Demo
Case, or Servo in the Controller Upgrade option. Choose the controller installation package
downloaded locally. The upgrade options will be configured based on the installation package.
Then, click to upload.

» After a successful upload, the HMI will prompt to restart the controller. The controller will be
successfully upgraded after the restart.

112
Copyright © ROKAE 2015-2023. All rights reserved.

8 Menu module

8.3 Demos

8.3 Demos

E Notes
1.

To prevent data loss during the upgrade, we recommend backup the controller

beforehand.

Do not select Custom Configuration, Robot Configuration, Controller Log, Project Data,
Demo Case, or Servo during a software upgrade, otherwise, information such as current
robot zero position, dynamics model, and project data will be overwritten.

Clicking the Erase all configurations or Factory reset button will reset the robot’s key
operation configuration files and delete user-defined project data. Please double-check

before performing the operation!

E Notes

When the HMI version does not match the controller version, HMI will display an
instant log message in the top status bar, which reads "Version mismatch. Recommend

HMI version: [xxx]".

8.3.1 Seven-axis redundant motion

Explanation

and null-space self-motion.

Common motions of the seven-axis redundant manipulator, including arc, straight line, turning zone,

Operation

Description

Use admin to log in to the system and switch to the
demo interface.

Select the feature for demonstration in the Demo list
on the left.

Click the mode switching button n on the bottom
status bar and switch to Auto Mode.

Click the Power-On button n on the bottom status
bar to power on the robot.

Click Play Demo in the upper right corner.

Click Stop Demo in the upper right corner after
demonstration and then select another demo.

To adjust the Demo threshold (such as sensitivity
in collision detection or stiffness in compliance
demo) during a demonstration, click Stop Demo
first and replay the demo after adjustment.

113

Copyright © ROKAE 2015-2023. All rights reserved.

8 Menu module
8.3 Demos

A Robot Assist

xMate Functional Demonstration » Run Demo. W Stop Demo

Introduction

@ Redundant Motion

Attention:
Allthe robot and project settings are invalid when the robot s in the state of demo! Demo can only be used when the world coordinate system coincides with the base coordinate system,
Features lllustration

8.3.2 Obstacle avoidance

Explanation

When the manipulator enters a narrow and deep box, it will not interfere with the box structure by
adjusting its orientation through null-space self-motion, which enables the robot to perform the
pickup and delivery task successfully.

A Robot Assist

xMate Functional Demonstration

Introduction

Attention:

Al the robot and project settings are invalid when the robot s in the state of demo! Demo can only be used when the world coordinate system coincid

Features lllustration

o ®
o ®
o:d
0+ ®
0:®
3
o—— * ¥

8.3.3 Collision detection

Explanation

Two settings are available in the collision detection demo: single-axis sensitivity setting; high,
medium, and low sensitivity setting.
When the robot stops after detecting the collision, you can press on the robot for it to continue its

normal operation.

114
Copyright © ROKAE 2015-2023. All rights reserved.

9 Teach pendant options

8.3 Demos

A Robot Assist

xMate Functional Demonstration S Ronpama, [m

Introduction

ion can stop in time after accidentally touching people or abjects.

A
Allthe

ot and project settings are invalid when the robat is in the state of demot D used when the world caincides with the base

coordinate system.
Features lllustration

Low Middle High

P rroid
D d d d d D

8.3.4 Compliance demo

Explanation

The compliance demo demonstrates the force control of xMate in Cartesian space with different
stiffness. This function is suitable for grinding, polishing, deburring, and other processes with high
grinding forces.

Two settings are available in the compliance demo: individual setting of end-effector translation,
rotation, and elbow stiffness; combined setting of translational and rotational motion.

AA Robot Assist

xMate Functional Demonstration

Introduction

Allthe robot and project settings arc inval
Features lllustration

Translate Rotate. Free

A aon
B 60%
c 0%
i o5

o —— L) ¥ o

A Warning

During the demonstration, all the robot configurations are invalidated. For example:
1. The base frame of the robot coincides with the world frame by default.

2. There is no load at the robot end-effector by default. Otherwise, the demonstration of
collision detection or compliance will be affected.

9 Teach pendant options

115
Copyright © ROKAE 2015-2023. All rights reserved.

9 Teach pendant options

9.1 Connection settings

9.1 Connection settings

Explanation

The connection interface is mainly used to detect and connect robots.

Search for available robots: Search for all robots in the same LAN (except direct connection).
When the robot is connected, it will be displayed that the controller service and the update service are
both connected.

Automatic reconnection: When the network between the robot and Robot Assist is disconnected,
Robot Assist will try reconnection automatically and will stop trying after the preset reconnection
time.

If the robot can not be found when Robot Assist and the robot are in the same LAN, or the real-
time position of the robot is not displayed on the 3D interface after connecting the robot, click the
blue text in the figure below or go to the Basic Settings interface and select the IP address assigned to
the LAN in the Bound IP Address drop-down box.

A Robot Assist
AT] * taol
« Connection
Robot Service Detection Robaot Service Detection
System will detect any prepared robot with valid

connectian o hound IP, you can dlick here to change
ound I¥, this aperation will take effect after restart

Bound IP: 192.168.6.1

Contraller Service

Each robot starts an independent controller service
- after every hardware prepared.

Upgrade Servics

5 The upgrade service keeps running, sa thal the
] contaller program can be upgraded at any lime.

Automatic Reconnecttion

aMate3 - 1.6.0.3 - 192.168.6.128 - Simulation
o Tum on the function.when the netwerk s disconnected,

AN it will automatically reconnect. Otherwise, it will
disconnect directly. After the function s turned on, the

Jocupied by: 192.166.6.1:1204 ; :
el by £-4 reconnection time will be used for the specified
reconnection time, and the recannection will be
repeated nireconnect number) times. Otherwise keep
Robot Service Connection recannecting.
Address 192.1668.6.128
Conlroller service Connected 1o [192.1 6561265050

Upgrade service Disconnected

Automatic Reconnection

9.2 Basic settings

Explanation

Language settings: Chinese and English are optional.

Teach pendant IP setting (only for xPad2): Set the static IP address for the teach pendant
connected to the robot.

Screenshot setting (only for xPad2): Take a screenshot of the teach pendant screen and save it in
the teach pendant directory. The picture format is JPG.

Bind IP address: Set the network card for connection of Robot Assist and the robot.

Workspace directory: Set the folder to save project files.

Graphic performance: Set the time interval (unit: ms, 100ms max.) for 3D model refreshing.

116
Copyright © ROKAE 2015-2023. All rights reserved.

9 Teach pendant options

AA Robot Assist

« Basic Setup
Language
English

Bound IP

192.168.6.1

Workspace path

Jworkspace

Graphic Performance

Refresh Interval 18

Disable 3D Monitor

Enable

TP Mode Setting
With TP Mode

9.2.1 Multi-language log

9.3 Appearance settings

Change Basic Settings
Most of these configurations are loaded before the
application is fully started, please restart manually after
any modification.

Startup

Enabling this feature will change your computer
settings, please make sure the operation is not belcked
by firewall or user rights unexcepledly.

Workspace

All the project files are saved in this folder, please make
sure the program has the access permission.

TP Mode Setting

The robot that supports the hot plug function of the
teaching pendant needs to be set to the corresponding

made before unplugging and connecting the teaching
pendant

Explanation

For xCore control system of version 1.7 and above, multi-language log is supported (only for

"controller log").

When HMI language changes, the controller will also change the language accordingly;

When the HMI and the controller set different languages, the controller will switch to the language of

the HMI when the connection is established.

Restart is not needed when the controller switches language. But some detailed log information only

takes effect after the switch, and the log generated before the switch may not be displayed in the

corresponding language.

9.3 Appearance settings

Explanation

Themes: The default style adapts to Windows 7. Only the font is different between the two styles.
Theme size: Set the interface font, control, icon, and layout size. Click Apply and restart to take

effect.

Mouse cursor switch (only for xPad2): Show and hide the mouse cursor. Takes effect immediately

after checking the selection box.

AA Robot Assist
o o=
« Appearance

Theme Switching

Select theme Default PC

Control Scaling

Font Scaling

Mouse Switching
Open Mouse Cursor

Theme Switching

Support to switch from one to another for vary
platfroms

Control Scaling

Scale the size of widgets, icons and layouts in ui

Font Scaling

Scale the size of text shown in surface.

Copyright © ROKAE 2015-2023. All rights reserved.

10 Robot Motion Foundation

9.4 File manager

9.4 File manager

Explanation

The file manager interface is used to quickly open folders in the Robot Assist software package. This
interface is only available for PC-based software.

Cache folder: used to store the cache of Robot Assist.

Log folder: used to open the folder with Robot Assist logs. The logs in the folder are consistent with
the internal log on the diagnostic interface. Click to open the folder for an individual backup.
Workspace folder: used to quickly open the folder with the robot project files.

W Robot Assist

h = *
« File Manager

Cache Folder Cache Folder

Total size 0.8 Kb This folder saves temporary files generated by HMI, so
that the offline user is also available to reach last saved

Total File Nurmer 4 data

Open In Explorer

Log Folder

This folder saves internal logs for HM|, especially useful
Total size 3909 Kb for tracking running problems.

Log Folder

Tatal File Mumer &

Workspace Folder

The lacal folder saves all files needed by project.

Workspace Folder
Total size 383 Kb

Tatal File Numer 45

10 Robot Motion Foundation

10.1 Frame

Explanation

The motion of the robot contains information such as position, velocity, acceleration, etc. This
information would be of practical significance by specifying the reference system. Therefore, before
Jog starts, we need to understand the frames used by the robot.

In addition, defining and using an appropriate frame helps simplify the programming process and
improve the use efficiency of the robot.

Frame

The xCore system adopts a rectangular frame (i.e. the Cartesian frame, hereinafter collectively
referred to as Cartesian Frame) to describe the position and orientation in a three-dimensional space.
The frames currently used in the xCore system is shown below:

118
Copyright © ROKAE 2015-2023. All rights reserved.

10 Robot Motion Foundation

10.2 Robot singularity

A. Flange Frame: It is defined at the center of the robot's end-effector flange but with no practical
meaning. It only serves as a reference when defining the tool/work object frame.

B. Tool Frame: It is defined on the tool. The robot programming position refers to the position of the
tool frame. For further information on the tool frame, refer to the Tools.

C. Base Frame: It is defined at the center of the robot base and is used to determine the robot's
position.

D. Work Object Frame: It is defined on the work objects. A well-defined work object frame can
greatly reduce the programming complexity and improve program reusability. For more information
on the work object frame, please refer to the Work object.

E. User Frame: It is used as a reference frame when defining the work object frame, and it cannot be
used separately.

F. World Frame: This frame does not have a specific position. When there is only one robot, the
frame can be considered to be at the center of the robot base, which coincides with the base frame.
When there are multiple robots or external devices that need coordinated motion, the world frame can
provide a unique reference system for these devices. The specific position can also be arbitrarily
specified on the premise that the base frame of other devices can be conveniently calibrated.

For the dependencies between different frames, please refer to variables "tool" and "wobj".

10.2 Robot singularity

Explanation

Under normal circumstances, the robot can use up to 8 different joint configurations to reach the pose
in the same working space. For details, please refer to the introduction of the confdata variable.
However, there are still a few special poses in the robot's working space that the robot can arrive at
using a myriad of different joint configurations. Such poses are called singularities. Singularities may
cause problems to the control system when calculating joint angles based on spatial position.

In general, the xMate robot features the following types of singularities:

1. Axis 2 singularity

2. Axis 4 singularity

3. Axis 6 singularity

4. Wrist singularity

There is no singularity problem when the robot performs joint motion.

When the robot performs a Cartesian space trajectory near the singularity, some joints may be very
fast. In order to not exceed the maximum joint velocity, the speed of the end-effector trajectory will
be automatically reduced.

119
Copyright © ROKAE 2015-2023. All rights reserved.

10 Robot Motion Foundation

10.2 Robot singularity

Axis 2 singularity

When the angle of Axis 2 is 0°, the robot experiences the Axis 2 singularity:

— |

—
-
[]
)
-

At this point, the robot cannot distinguish between the angles of Axis 1 and Axis 3 when calculating
inverse kinematics.

Axis 4 singularity

When the angle of Axis 4 is 0°, the robot experiences the singularity, and the pose is called the
extended position:

& ALE&EL) >

=T {

_—
-

In this pose, the robot is restricted to move in the direction parallel to Axis 3 or 5. This singularity
often appears when the robot is moving to the boundaries of the working space.

This singularity causes the robot to lose one degree of freedom at the root of the wrist (the root of the
wrist is unable to perform axial motion along the arm). In this case, the Axis 3 and Axis 5 positions
cannot be obtained when calculating inverse kinematics.

Axis 6 singularity

When the angle of Axis 6 is 0°, the robot experiences the Axis 6 singularity.

120
Copyright © ROKAE 2015-2023. All rights reserved.

10 Robot Motion Foundation
10.2 Robot singularity

) WG W ¥

A

£

omE=

At this point, the robot cannot distinguish between the angles of Axis 5 and Axis 7 when calculating
inverse kinematics.

Wrist singularity

When the robot's wrist center is right above Axis 1, the robot experiences the wrist singularity.

At this point, the robot cannot precisely calculate the angle of Axis 1 when calculating inverse
kinematics.

10.2.1 Turning zone

Explanation

For the manipulator, its motion is usually executed sequentially according to multiple trajectories
specified by the user. However, different trajectories specified by the user are usually not smoothly
connected to each other, so there are various "spikes". The presence of these "spikes" forces the robot
to stop at the end of a trajectory before executing the next trajectory. To enable continuous motion
between trajectories, it is necessary to eliminate such "spikes" and generate turning zones to
smoothly connect different trajectories specified by the user. See the following figure:

121
Copyright © ROKAE 2015-2023. All rights reserved.

10 Robot Motion Foundation

10.3 Robot force control

o wEETRR

HEXEEER

In addition, when the manipulator is moving in a joint space, it also moves along different
trajectories. The difference is that the trajectory is now no longer defined by the Cartesian space pose
but by the angle of each axis. This means that there should be turning zones when the robot moves in
the joint space.

For specific parameter settings of the turning zone, please refer to the variable "zone".

10.2.2 Lookahead mechanism

Explanation

Lookahead is: the control system handles the commands after the command the robot is currently
executing in advance during the movement. The introduction of the lookahead mechanism can be
advantageous in the following aspects:
» Obtain the speed of the front trajectory, the acceleration requirements, and the constraints of the
robot itself, so as to plan the optimal control strategy;
» Plan the turning trajectory of the turning zone according to the settings of the programmed
turning zone;
» Acquire an abnormal state near the soft limit/boundary, singularities, etc., so that it can be
processed in advance;
The lookahead mechanism cannot be closed manually. The system automatically looks ahead when
running the program. You can use the Program Pointer to view the lookahead position.
Some RL commands will interrupt the lookahead. When the compiler encounters such a command,
it will stop compiling until the robot executes the compilation of the corresponding command. Only
Print command, logical judgment command, and user-defined functions do not interrupt the
lookahead mechanism, and all other functions will interrupt the lookahead mechanism.

10.3 Robot force control

10.3.1 Introduction to force control

The robot force control is a process of interaction between the robot end-effector and forces in the external environment. In
non-contact robot motion control, only the position control process (velocity and accuracy) is considered. When there is
contact with the environment, pure position control requires very high accuracy of the robot and the environment to avoid
damaging the robot and the environment due to contact forces caused by position deviation. Unlike pure position control,
robot force control adopts a force/torque feedback loop when interacting with the environment. The loop is used to change the
motion characteristics of the robot, which enables dynamic interaction with the external environment. When there is deviation
or uncertainty between the robot and the external environment, the force control will intelligently adjust the preset position
trajectory to eliminate the internal force caused by the position deviation, thus ensure a smooth and safe interaction process.

10.3.2 Impedance control

Compared with traditional industrial robots, xMate is equipped with joint torque sensors, which enable it to sense joint torque
precisely. The joint torque information allows xMate to achieve force control through impedance; this enables compliant
interactive behavior of the robot. The interaction between the robot and the environment is like a virtual spring stiffness and
damping system. At this point, the robot is sensitive to external forces, which can cause the robot to deviate from a
predetermined trajectory. When the external force disappears, the robot can rebound to some extent.

122
Copyright © ROKAE 2015-2023. All rights reserved.

10 Robot Motion Foundation

10.3 Robot force control

ext

P des
In the process of impedance motion, the actual position of the robot will deviate from the desired position when affected by
the external forces in the environment. The deviation depends on the impedance stiffness and the external forces, and it can be
calculated through the ratio between the external force and the impedance stiffness. As shown above, the impedance stiffness
is set to K in the impedance control mode. Affected by external force Fex:, the robot's current position Peur will deviate from the
desired position Pdes, and the position deviation is Ax. The impedance force caused by this deviation and the external force
will eventually reach an equilibrium.

The impedance stiffness in each direction can be set individually, and the impedance force in each direction is the product of
the impedance stiffness and the position deviation in this direction. The impedance force in each direction adds to the total
impedance force. In the figure below, the robot's current position Peur deviates from the desired position Pqes affected by
external forces in the impedance mode. The deviations in the X and Y directions are Ax and Ay, the impedance stiffnesses are
Kx and Ky, and the impedance forces are Fx and Fy, respectively. The total impedance force F = Fx + Fy.

10.3.3 Overlay

123
Copyright © ROKAE 2015-2023. All rights reserved.

10 Robot Motion Foundation
10.3 Robot force control

When assembling work objects, humans would feel the change in force. If an obstruction (the work object is stuck) is
detected, humans will try shaking to ensure a smooth installation. Force control allows xMate to do the same thing, i.e.
Motion search. xMate supports sine overlay rotating around an axis and Lissajous overlay within a plane. Overlay is an
additional motion added to the specified motions. It allows the robot to shake, which enables it to better overcome obstacles
during the assembly process. Below is a sine overlay:

1. Desired trajectory

2. Actual trajectory (desired trajectory + overlay)

3. Overlay amplitude

4. Overlay period

Lissajous overlay means a sine overlay in two perpendicular directions within the plan, and the frequencies of the two
overlays are often proportional. For example, below shows the Lissajous overlay in the XY plane, where the frequency ratio
of x- and y-direction overlay are 2:1. The center point Pstrt is the desired pose, Xamp is the amplitude of the x-direction
overlay, and Yamp is the amplitude of the y-direction overlay.

start

amp

¥ 4

amp

X
10.3.4 Applications

The application scenarios of force control for industrial robots fall into two categories: constant force tracking and force-
controlled assembly.

1) Constant force tracking
Below shows a constant force tracking scenario. The robot ensures a constant contact force Faes with the surface, while the

robot can conform to the surface curve. Main applications include grinding and deburring.

124
Copyright © ROKAE 2015-2023. All rights reserved.

10 Robot Motion Foundation

10.3 Robot force control

Fdes Fd

es

Fy

es

Example program for constant force grinding: The robot is set to Cartesian impedance mode. The impedance stiffness and
load information are set, and force control is enabled. The work object is pressed onto the grinding surface through a desired
force in the z-direction. The observed force in the z-direction is monitored during the pressing process, and when the observed
force exceeds a certain threshold, the tool is considered to have contacted the surface. At this time, a desired trajectory in the
grinding direction is applied. The robot maintains a constant force during the motion, thus allowing constant force grinding.

VAR POSE T_POSE = PE:{0, 0, 0},{1, 0, 0, 0} //Tool frame

VAR POSE W_POSE = PE:{0, 0, 0},{1, 0, 0, 0} //Work object frame

Fclnit T POSE, W_POSE, 0 //Force control initialization. 0 means force control frame is set as the base frame
SetControlType 1 //Set Cartesian impedance as the impedance mode. 0: joint impedance 1: Cartesian impedance

SetCartCtrlStiffVec 500, 500, 0, 100, 100, 100 //Set the Cartesian impedance stiffness. The first three are translation

stiffness (0 ~ 1500), and the last three are rotation stiffness (0 ~ 100)

SetCartNsStiff 2.0 //Set null-space stiffness (0~4)

SetLoad 0.82,0,0,0.041,0,0,0 //Set load information

FcStart //Enable force control

SetCartForceDes 0, 0, -15, 0, 0, 0 //Set desired force in the Cartesian space. Apply -15N force in the z direction
FcCondForce -100, 100, -100, 100, -100, 10, true, 20.0 //Cartesian space force monitoring. Apply 10N force in the z
direction to trigger

FcCondWaitWhile //Enable the monitoring conditions set before

MoveL p0,v800,z50,t0010 //Motion command (desired trajectory)

FcStop //Disable force control

2) Assembly

If pure position control is used during the assembly, the robot may easily collide with the work object due to position and
modeling errors, which can cause damage to the work object or the robot.

But with force control, the robot will try to overlay (shake) to overcome the obstruction when it senses an external force over
the limit (work object jamming), thus allowing successful work object installation. As shown below, the position control on
the left results in a collision during assembly, while the force control on the right pushes the robot into the assembly hole
through the desired force Faes, and the jam is prevented through overlay Foverlay.

125
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.1 Programming preparation

= .
[

F oreﬂb | .

ol

Example program for force-controlled assembly: The robot is set to Cartesian impedance mode. The impedance stiffness and
load information are set, and force control is enabled. The work object is pressed into the mounting hole by applying the
desired force in the z-direction. The observed force in the z-direction is monitored during the press-in process, and when the
observed force exceeds a certain threshold, the tool is considered to be stuck. At the time, the preset Lissajous overlay is
executed to ensure that the work object is successfully pressed in. The position in the z-direction is monitored to determine
whether the work object has been successfully installed.

VAR POSE T_POSE = PE:{0, 0, 0},{1, 0, 0, 0} //Tool frame

VAR POSE W_POSE = PE:{0, 0, 0},{1, 0, 0, 0} //Work object frame

Fclnit T POSE, W_POSE, 0 //Force control initialization

SetControlType 1 //Set Cartesian impedance as the impedance mode. 0: joint impedance 1: Cartesian impedance
SetCartCtrlStiffVec 500, 500, 0, 100, 100, 100 //Set the impedance stiffness. The first three are translation stiffness (0 ~
1500), and the last three are rotation stiffness (0 ~ 100)

SetCartNsStiff 2.0 //Set null-space stiffness (0~4)

SetLoad 0.82,0,0,0.041,0,0,0 //Set load information

SetLissajousOverlay 0, 5, 5, 5, 5, 0 //set XY plane for Lissajous overlay, SN, 5Hz,5N, 5Hz, Orad

FcStart //Enable force control

SetCartForceDes0, 0, -15, 0, 0, 0 /Set desired force in the Cartesian space. There is a -15N desired force in the z
direction

FcCondForce -100, 100, -100, 100, -100, 10, true, 20.0 /Cartesian space force monitoring. Apply 10N force in the z
direction to trigger

FcCondWaitWhile //Enable the monitoring conditions set before

StartOverlay //Start overlay

VAR fcboxvol box1 = fcbv:{-1000.0, 1000.0, -1000.0, 1000.0, 250.0, 500.0} //Define a box area

FcCondPosBox F_POSE, boxl1, true, 20.0 //Box area monitoring. Triggered when the robot is out of the box area
FcCondWaitWhile //Enable the monitoring conditions set before

FcStop //Disable force control

11 Programming and Debugging

11.1 Programming preparation

Programming Tool
You can use Robot Assist and Rokae Studio for programming. Robot Assist is suitable for online
program modification, such as position and path variables. Rokae Studio is suitable for offline
programming and simulation, including project design, model selection, trajectory generation,

trajectory optimization, simulation debugging, and code generation.

126
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging
11.2 Project

For details on how to use Rokae Studio for offline programming, please refer to Rokae Studio User

Manual.

Define tool, payload, and work object
The tool, payload, and work object should be defined before programming. The default tool is tool0

and default work object is wobj0. Then you can define more required objects at any time.

Define frames
Confirm that the base frame is correctly set during robot installation.
You can define the tool frame and work object frame if needed before programming. Corresponding

frames should be defined when adding more objects later.
11.2 Project

11.2.1 Project introduction

Project overview

In the xCore controller, a project refers to the management collection of programs, tasks, and other
objects that control the operation of the robot. It is responsible for storing all the necessary
information needed for the robot to work, including:

» Task list;

Variable list;

Point position list;

Path list;

10O signal list;

User frame list;

Tool frame list;

Work object frame list;

Predefined parameters;

YV VY VY VY VYV VY

Vision system;

Open project

Click E in the upper left corner to enter the Project interface;

| A Robot Assist a s

e) o) me Jome <) A =
a e P X @B MY MR Qe
Task GLOBAL PROC main()

MoveAbs) jointtarget0,v1000,250,tool0
MoveAbs) jointtargetl,v1000,250, tool0

Point //MoveAbs] jointtarget2,v1000,250,tool0
Path PRINT(1)
Wait 2
= Print{2)
Frame Wait 2
Tool Print(3)
Wait2
Wobj Print{4)
Predefine WaitZ]
Print(5)
Wait2

ENDPROC

127
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2 Project

11.2.2 Project configuration

Explanation

The Project Configuration interface is used for the relevant configuration of the current project,
including:

» Sync projects between Robot Assist and the controller;

» Switch between projects;

» Import/export projects;

» Create, modify, and delete projects.

Sync projects between RobotAssist and the controller

Once the connection to the controller is established, local projects will be loaded and updated
immediately to stay consistent with those in the controller. Changes to important local project files
will be immediately synchronized to the controller to ensure proper robot functions, including tools,
work objects, and user frames. As RL codes are flexible, they will only be automatically pushed to
the controller during debugging. If unfinished work should be saved, click the Push to Controller
button to manually push the project to the controller.

Switch between projects

Click the drop-down menu below the selected project to display all projects. Select the desired
project and click Reload to switch to the project.

xMate3Pro_Composite_Function_Tailia m

() miemses

Create project
Click T to create a new project. The project name can only be a collection of letters, numbers, and
underscores " _".
After clicking the Create button, you will enter the New Project Wizard interface for easy creation
and import of related configurations. The default task for a new project is Task 0.

Modify project
Click © to modify the current project.

Delete project

)
Click to delete the current project.

128
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging
11.2 Project

A Robot Assist a X

< Project Configuration

project will be pushed to controller
y server when important value
changed, such as tool, wobj, user
frame and so on. Besides, the RL
Select Project code is transmitted by running
operation triggerd. If you want to
() keep your code safe at any time,
please press the buttons in this
Reload Set Default page manually.

123

Fl

Initially Use

| TraJe':t Params When using for the first time,

. please click the "+ button below
Traject Queue 10 to create a new project wizard,
Simpling Points 1000 Default Project

After selecting the projectclick the
Save Set default button to set the
selected project as default project.

Traject Queus

During RL program control

movement, trajectory foresight is

allowed, and continuous trajectory
P -

Files cannot be recovered once deleted!

11.2.3 Task list

11.2.3.1 What is Multitasking?

Explanation
The multi-task function is for running multiple robot programs at the same time; this function is
particularly useful in the following conditions:
» Monitor continuously one certain signal even if the main program stops operating. It is similar to
the background PLC function, but its response speed is much lower.
» The robot can send or receive various information when performing the main motion program,
without any restriction on the actuating logic of the main program.
» Receive some inputs through the teach pendant while working.
» Control and activate/deactivate external device.
11.2.3.2 Task list
Overview

The xCore system provides an interface for managing parallel tasks. The interface displays the
attributes of parallel tasks. And, the control logic of each task is implemented in Task. In the

interface, users can create, set, and delete tasks.

129
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2 Project

| A* Robot Assist

W ¥ N o
< Task List
Mame Auto Start Priority Description
v task0 Mation High Default
| main MOD Main Function
v taskl MNormal [v] Low

main MOD Main Function

11.2.3.3 New task

Task attribute
Task attribute Description

Task name The task name must be unique among all tasks, it shall only be composed by numbers,
letters, or underscores.

Its initial character shall not be a number and the maximum length of the task name is 30
characters.

Task type Motion tasks refer to those that allow RL commands to control the robot motion.

There shall be only one motion task.

Autostart It is used along with the Production mode. When selected, the program starts to re-
execute when the system is restarted. Normally, it will not be stopped by the teach
pendant or emergency stop.

Priority Set the task priorities

Create file When the main function generation is checked, the main function will be generated
automatically after task creation.

The same applies to other functions.
New task

At least one project shall be ensured in the resource manager when a new task is created.

130
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2 Project

A Robot Assist a *

« New Task

Basic Info
MName task2

Description

Task Info

Type Mormal

Running Property
Auto Start Enable
Priority LOwW a

Creating Files

Main Function Gemerate

Use restrictions

» Support up to 10 tasks.
» There shall be one motion task at most.
» Changes in the task type, task entry function, and whether a motion task take effect immediately.

11.2.3.4 Starting and running tasks

Explanation

ask0) . .
Click on the RL Code interface to select the task. Use the Start/Stop button or external signal
to control the start/stop of the selected task in case of manual or automatic enabling.

AA Robot Assist a =

123 tasko m m Refresh Pos Move to @ mi D
=) « @

Task GLOBAL PROC main()

MoveAbs] jointtarget0,v1000,250,to0l0

MoveAbs) jointtargetl,v1000,z50,tool0

Paint [/IMoveAbs) jointtarget2,v1000,250,tool0
Path PRINT(1)
0 Wait 2
Print(2)
Frame .
Wait 2
Tool Print(3) @
- Wait2
Wobj M M
) Print(4) ® O
Predefine Wait2 @
Print(5)
Wait2 @

ENDPROC

S
Q)

Use restrictions

» Generally, a background task will run cyclically. If a task does not contain any wait commands,
the background task may consume too much computing resources, causing the controller to be

131
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2 Project

unable to handle other tasks.

» The scopes of variable VARS and the constant CONST are limited to their respective tasks, but
the Global-level PERS variable is a global variable.

» When PPToMain is executing, all non-running tasks execute PPToMain.

» When there are tasks running, it is forbidden to modify the contents in the Task List interface.

11.2.3.5 Intertask Communication

Explanation

The intertask communication supports two methods: PERS variable and interruption.

Intertask communication by PERS variable

» Global-level PERS variables with the same name shall be defined in all task projects that
required communication and the type, dimension of variable data shall be identical.
» PERS variable shall be used to control task execution and data transmission where necessary.

Intertask coordination of execution sequence by interrupt

» Define interrupt and corresponding interrupt handler function in the task that requires waiting.
» Set interrupt trigger signal at the right place of the task being awaited.

Use restrictions

» Simply specify the initial value for the PERS variable in one of the tasks. If you have specified
an initial value for the same PERS variable in multiple tasks, the initial value defined in the
first running task will be used.

» When a task waits for another task by means of the PERS variable and the WaitUntil or WHILE
command, it is necessary to pay attention to coordinate with wait command (greater than 0.1s)
to avoid the program quickly executing the empty judgment command, and thus occupying too

much system resources.

11.2.4 List of variables

11.2.4.1 Variables

11.2.4.1.1 Basic concept

Variable naming rules

Variable names in the RL language can consist of letters, underscores, and numbers. However,
variable names cannot be the same as system keywords. See Keywords pre-definition for RL system
keywords.

In addition, there are the following precautions:

1. In the same module, GLOBAL and LOCAL level variables with duplicated names are not allowed;
2. In different modules, GLOBAL variables with duplicated names are not allowed;

3. In different modules, LOCAL variables with duplicated names are allowed;

4. In the same module, no variable (GLOBAL, LOCAL, excluding ROUTINE) is allowed to have a
name that conflicts with functions in this module;

5. In different modules, no GLOBAL level function and variable naming conflicts are allowed;

E Notes

When a variable name contains two characters only, please pay attention to not name the second
character "h" or "b", otherwise, the variables may be converted to hexadecimal or binary.

For more information, please refer to the Number system conversion.

132
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2 Project

Variable scope

The RL language system defines three scopes:

1. GLOBAL, visible to all modules in the current project, can be declared in the module declaration
area;

2. LOCAL, visible only to the current module, can be declared in the module declaration area;

3. Functions (ROUTINE), visible only within the current function, can only be declared within the
function body, and the scope type (GLOBAL or LOCAL) is not allowed to be specified when the
scope variable is declared,;

E Notes

Function (ROUTINE) scope applies to variables only, not to custom functions.

Storage type

Each variable is divided into variable (VAR), persistent variable (PERS), and constant (CONST),

depending on whether it can be modified during program execution.

» VAR (Variable), a variable that can be reassigned during a program run;

» CONST (Constant Variable), which cannot keep up with the change of the new value in the
process of operation, must be determined at the beginning;

» PERS (Persistent Variable), a continuous variable, during the execution of a program, if the value
of the variable type changes, the variable will be automatically amended from the initial value
to the current value, thus achieving the effect of "Persistent" storage.

H Notes

1. Even if the value of a PERS type variable is changed while the program is running, the initial
value displayed in the program editor declaration area is not immediately refreshed, and the
initial value displayed in the program editor declaration area is updated to the latest value
only when the program reloads.

2. The latest value of the PERS variable can be viewed at any time in the "variable
management" interface, whether the program is running or not.

Keywords pre-definition

The following are reserved keywords (case insensitive) that are predefined for the RL language:
Module, EndModule, Proc, EndProc, Func, EndFunc, TRAP, ENDTRAP, SetDO, DO _ALL,
SetGO, SetAO, WaitDI, Wait, WaitUntil, WaitWObj, WBID, Q,P,J, V, W, T, S, L,

CA, DURA, IGNORELEFT, EJ, 1], FCBV, FCCV, FCOL, FCXYZ, FCCART, PE, PER, TCP,
ORI, EX]J, CFG, PDIS, JDIS, MoveAbsJ, MovelJ, MoveL, MoveC, MoveT, LOCAL, TASK,
GLOBAL, VAR, CONST, PERS, INV, DOT, CROSS, sin, cos, tan, asin, cot, acos, atan,

atan2, sinh, cosh, tanh, In, log10, pow, exp, sqrt, ceil, floor, abs, rand, GetCurPos,

Print, PrintToFile, ClkRead, TestAndSet, IF , Else, Endif, WHILE, ENDWHILE, for, from,

to, endfor, Break, Continue, Del, Int, Double, Bool, String, BYTE, Robtarget, Speed,

Zone, Tool, Wobj, Jointtarget, TriggData, Load, FCBoxVol, FCSphereVol, FCCylinderVol,
FCXyzNum, FCCartNum, Pose, CLOCK, INTNUM, SYNCIDENT, TASKS, Call, Return, EXIT,
Pause, StopMove, StartMove, StorePath, RestoPath, True, False, Interrupt, When, Offs,
CalcJointT, CalcRobT, CRobT, RelTool, SocketCreate, SocketClose, SocketSendByte,
SocketSendInt, SocketSendString, SocketReadString, SocketReadBit, SocketReadlInt,
SocketReadDouble, AccSet, MotionSup, TrigglO, TriggJ, TriggL, TriggC, On, Off, clock,
intnum, userframe, pinf, ninf, FCFRAME WORLD, FCFRAME TOOL, FCFRAME WOBJ,
FCFRAME_PATH, FCPLANE XY, FCPLANE XZ, FCPLANE YZ, FC_LINE X, FC LINE Y,

133
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2 Project

FC LINE Z,FC ROT X,FC ROT_Y, FC_ ROT _Z, Offs, CalcJoinT, CalcRobT, CRobT, RelTool,
\\Start, \\Time, ClkReset, ClkStart, ClkStop, CONNECT, WITH, IDisable, IEnable,

ISignalDI, \\Single, \\SingleSafe, WaitWobj, DropWobj, Wobjldentifier, WobjAngle,

ActUnit, DeactUnit, INTNO, \\Exp, DoubleToStr, WaitSyncTask, FCAct, FCDeact,

FCLoadID, FCCalib, FCSupvForce, FCSupvTorque, FCSupvPosBox, FCSupvPosSphere,
FCSupvPosCylinder, FCSupvOrient, FCSupvOrient, FCSupvReoriSpeed, FCSupvTCPSpeed,
FCCondForce, FCCondTorque, FCCondOrient, FCCondReoriSpeed, FCCondPosBox,
FCCondPosCylinder, FCCondPosSphere, FCCondTCPSpeed, FCCondWaitWhile, FCRefLine,
FCRefRot, FCRefSpiral, FCRefCircle, FCRefForce, FCRefTorque, FCRefStart, FCRefStop,
FCSetSDPara

Number system conversion

Example 1

Example 2

Example 3

The RL language supports direct entry of hexadecimal, binary, or values of scientific notation by
adding a number system identifier to a number or letter.

Add the "h" suffix to 0~9, a~f, or A~F. The RL compiler treats the corresponding number or letter as
hexadecimal and converts it to decimal in the compiler, for example:

8h stands for 8 in hexadecimal and 8 in decimal;

bh stands for b in hexadecimal and 11 in decimal;

25h stands for 25 in hexadecimal and 37 in decimal;

Add the "b" suffix to 0~9, a~f, and A~F. The RL compiler treats the corresponding number or letter
as binary, for example:

1b stands for 1 in binary and 1 in decimal;

10b stands for 10 in binary and 2 in decimal;

1010b stands for 1010 in binary and 10 in decimal;

Add "e+x" after the number to indicate that the number is multiplied by 10 to the x power. For
example:

5e+20 represents 5x10%;

26e-15 represents 26x10°13;

112e-10 represents 112x10°19;

11.2.4.1.2 Variable declaration

Explanation

A declaration must be made before using the variable. The format of the variable declaration
command is as follows:

SCOPE STORAGE TYPE varname [= value]

Among them:

1. SCOPE is for variable scope. Please refer to Variable Scope;

2. STORAGE is for variable storage type. Please refer to Storage Types;

3. TYPE is for variable type and can be a basic type or a special type. Please refer to Variable Type;
4. varname is the variable name. Please refer to Variable Naming Rules;

The content in square bracket [] is optional and can be either initialized or not when variables are
declared. For variables that are not explicitly initialized when they are declared, the system
automatically assigns different initial values as per the type of the variable. The default initial value
may cause program execution problems in some cases. It is recommended to initialize each manually
added variable.

Example

134
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

Example 1

Example 2

Example 3

11.2 Project

The followings are a few examples for variable declarations:

VAR int counter = 8 //Declare the integer variable count and assign an initial value of 8
VAR double time = 2.5 //Declare floating-point variable time and assign an initial value of 2.5
VAR bool ifOpen = true //Declare the variable bool type ifOpen and assign the initial value to true

In general, no duplicate names are allowed for variables:

VAR int counter = 8

VAR double counter = 2.5

The compiler will report an error at this time by prompting "Failed to add variable".

However, global variables and local variables can have the same variable name:

VAR int counter = 1

GLOBAL int counter = 555

Although variables with different scopes allow duplicate names, it is not recommended to use
duplicate variables in order to avoid confusion and misuse, unless the variables with duplicate names
have special technological advantages.

E Notes

Variables cannot be declared inside a block of while and other loop commands, otherwise,
duplicate declarations are caused when this part of the code is repeatedly executed, resulting in a
"Fail to add variable" error.

Please declare the variables outside the loop body.

Use restrictions

» The ROUTINE variable that declares the PERS storage type is not supported;

» When there is a duplicate name for variables or functions of different levels, the compiler will
decide which variable to be used based on the priority of the scope. Variables with the highest
priority order will be selected first, and those with lower priority order will be obscured and
hidden. The priority of scopes is as follows:

B When the variable names are duplicated, the priority of scopes is as follows: ROUTINE>
LOCAL> GLOBAL;

B When the function names are duplicated, the priority of scopes is as follows: LOCAL >
GLOBAL,;

11.2.4.1.3 User variable hold

Explanation

Create user variable "a" with hold in an RL project. This user variable is marked as a pers variable,
then the value of this variable is held on the non-volatile storage media when RL stops, the robot
restarts, shuts down, or powers off. When the robot powers on again or RL is running again, the value
of variable a is restored to the value held. The initial value is assigned only when the variable is
created for the first time or re-edited.

Hold is available for such user variable types

Int, byte, double, bool, string, robtarget, jointtarget, pose, speed, zone, fcboxvol,

fespherevol, feeylindervol, fexyznum, fecartnum, torqueinfo, tool, wobj

User variable hold configuration

135
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2 Project

The variable hold is accessible on the RL project interface as shown in red box below:

AN Robot Assist

<

2 & = Hpalletd © [

=) « 8
Task =1 GLOBAL PROC main() ®
Var wobjindex =1 //#IRIC TS

\
bath While(wobjindex <= TrayCount("tray0")) // T{RBHUREIEIAFFEE
*
10 / 0 0%
ViR
Frame */
oD TrayUpdate("tray0", wobjindex) //EFHEEFHZIEE LIS AR
Predefine Movel TrayApproachPoint, v2000, z50, TrayTool, TrayWobj //H88 Ai=z/2
XVision Movel TrayWobjPoint, v2000, z50, TrayTool, TrayWobj //#188 AizzhZIT

SetDO DOO_0,false //32TEKFT
Movel TrayRetractPoint, v2000, z50, TrayTool, TrayWobj //#/128 Aiznh 2
wobjindex++ //ZBI T{F5+1)

O G o
= Program Speed —.— 20% 4@ @ 3

ONONONONONONU,
ODDDDDD

L Admin ¥ NB12s-R16

Click variable, point position, tool, or work object to create user variables of that type. All variables that
support the hold property have a "persistent”" drop-down box. Selecting true means that the variable is a
hold variable, i.e., marked as a pers variable. For example, to create a pers variable of type int,
configure it as follows: (and so on for other types)

A Robot Assist

< New Variable

Variable Type Variable Infomation

int . Intinfo.

. Min: -2,147,483,647
Basic Info Max: 2,147,483,647.

Name int0

Description

IsPers true .

Dimension + - NoArray

Select Variable

Current Item: int0

ONONONONONONU,

Edit Value
Previous Step Next Step
= Program Speed —.— 20% 9 @ % A Admin ¥ NB12s-R1610

11.2.4.2 List of variables

Explanation

The variable management interface allows the creation, viewing, modification, and deletion of almost

all variables in the robot system. The supported variable types include:

No. Variable type Description

Variables that cannot be modified by
1 System predefined variables users; it is used to store certain system
parameters, such as tool0/wobj0.

136
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

Variables that can be modified by
users and used in multiple programs,

2 User predefined variables such as user-calibrated tools, work
objects, etc.
Variables defined by the user in the
program, which are generally used
3 Program variables only in the current program and its

subprograms. Program variables
contain most of the types of variables
supported by the system.

For some types of variables that have specifically defined steps, such as tool/wobj (defined and
modified using the calibration interface), robtarget/jointtarget/speed/zone (defined and modified

11.2 Project

using an auxiliary programming interface). Although variables can be viewed and modified in the

Variable View interface, it is still recommended to use the dedicated interface for modification for the

sake of convenient operation and fewer errors. You are advised to only view variables in the variable

management interface.

E Notes

The variables that can be viewed and modified in the variable management interface are limited to

the variables used in the currently loaded robot program,

so the variables displayed will change after other programs are loaded.

Variable editing

If you need to add variables or modify an existing variable, you can click the "New" or "Modify"

button to enter the variable editing page for operation.

AA Robot Assist

« Variable List

¥ palletd

2= Program Speed —.— 20%

Table Filter Type: Al . Name: Description: eset Filte
NElS Type Dimension Initial Value
Il wobjindex int true No Arre 1
A tray0 in... int true No Arre 1
© D o
Refresh
& & + “ L

: 3 &L Admin ¥ NB12s

ONONONONONONO
CNCHCRCRONCNC)

-
<)
Q@

N
=]
E
nh?

Variable type Used to select variable types when creating a new variable. All supported types are listed in
the sidebar on the left.

Variable name The name of the variable to be inserted.

Array dimension To create or modify arrays, supported up to 3D arrays.

Module name The default is main.mod, or optionally stored in other mods.

Storage type Choose between CONST, PERS, and VAR. For more information, please refer to the Variable
declaration.

Scope Choose between GLOBAL and LOCAL. For more information, please refer to the Variable
declaration.

137

Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2.5 Point position list

11.2 Project

Explanation

The xCore system provides an interface for the management of teaching point positions. The

information of point positions used in the RL program needs to be configured in the point position

list before they can be used in the program.

In both the point position editing interface and the point position list interface, the current pose can

be used to update the teaching point position.

Add, modify, and delete point positions

The information of all point positions is configured on the point position list interface as shown

below:

AA Robot Assist

« Point List

Table Filter Type: Al . Name: Description: leset Filte

Position

[0.30, -0.30, 92.51, 11.19, 0.
00, 0.00, 0.00]°

Name Pers

Property

Description

i point0 Joint false toolx wobjx

Refresh Pos

Move to

ONONONONONONO,

% Program Speed —.— 20% & @ 3 A Admin ¥ NB12s

Name, which can be changed when performing the "New" or "Modify" operation.

Type, including joint space and Cartesian space.

Position: for joint space, displays the joint angle of seven axes for joint space; for Cartesian space, displays the
xyz coordinate and manipulator angle in the base frame.

Description: Users can describe the point position, and the description can be changed when performing the
"New" or "Modify" operation.

Edit point position

138
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2.6 Path list

TBD

11.2.7 10 signal list

11.2 Project

A Robot Assist

T %
s N

Edit Point: point0
Basic Info

Name point0

Description

Pers false
Refresh Pos

Property

Manual modification of Cartesian data has no effect on joint data and vice versa

O cart @ Joint

Joint(°)
J1.0.295190 J2 -0.29595 J3 92.50685 J4 11.19000

J50 60 70

Program Speed —.— 20% &

® %

Previous Step Next Step

L Admin ¥ NB12s-R16

Operation

Description

Use admin to log in to the system and switch to the
point position list interface

Click "+" in the bottom right corner to enter the
point position creation guide interface.

z . . L.
You can also click to modify the point position or

to delete the point position.

Name the current point position in the name field.

Add a description to the current point position in the
description field.

Optional

Click to update the position.

Update the teaching point with the current pose.

Select Cartesian or joint space point position

This is used to update the point position manually. If the
method in step 5 is used, this step can be omitted.

Manually enter the point position pose according to
the point position's attributes.

Explanation

signals.

In the xCore system, all common IO signals (including Profinet signals) can only be used in the
programs after being configured on the control panel's I/O Signal List interface, except for the default

signalxx type variables are used to store and access IO signals in the RL program. For details, refer to
the RL section.

Add, Modify, and Delete 10

as shown in the following figure:

The configuration of all general-purpose 1O signals is done on the relevant page of the control panel,

139

Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2 Project

P —
| AA Robot Assist a =

signal3

signald GO ROKAE ...

HE..-
gg

v)

(D)

o)

®eOed

(=

=

A 10 signal names that can be changed at the time you press "New" or "Modify".

The type of signals, including signaldi, signalgi, signaldo, signalgo, etc.

C 10 module number, which can be a standard 10 module provided by the company, or the Profinet bus or
Ethernet/IP bus

Address number, the physical address number corresponding to the IO credit mapping, starting from 0

E Function button area, on which you can new, modify, and delete 10 signals.

A Warning

If there is an error in the 10 configuration, for example, when the mapped 10 port exceeds the
physical limits or if the port is repeatedly assigned, the control system will enter the SYS ERR
state and give an alarm message on the HMI at the time of starting. In this case, the user is only
allowed to enter the system configuration interface, to correct the wrong configuration with no
other operation allowed.

View 10
The configured general-purpose IO can be viewed on the status monitoring interface, and only the
configured 10 can be seen. The forced output or simulation input of the 1O is supported.
General-purpose 10 cannot be viewed in the variable management interface.

Use 10
For the input signal (DI/GI), the state of the input node can be read directly in the RL program using
the variable name of the input signal.

Example 1

//Use the state of the digital input as a criterion for judgment

IF (dil == true)

do something...

ENDIF

For the output signal (DO/GO), special commands SetDO and SetGO can be used in the RL. See the
Explanation of each command for details.

Use restrictions

» User-defined I0s cannot be mapped to system outputs.

140
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging
11.2 Project

11.2.8 User frame list

Explanation

The user frame is used as a reference frame when defining the work object frame, and it cannot be
used separately.

Calibration of the user frame

The method for calibrating the user frame is the three-point method. Its operating steps are the same
as the three-point method for calibration of the tool frame.

Before calibrating the user frame, the user needs to calibrate a tool and then use the TCP of the tool
to calibrate the user frame. For more convenient operation, it is recommended to use tools with tips.

AM Robot Assist

AT [1}
N H

£ Hpalletd ©
ibrate User Frame: userframe1 &

« Cal

Calibration Operation Diagram Operation Info

1.JOG robot, set the calibrated
tool to the origin of the
desired user coordinate

<% system, and click "Confirm the
first point” button;

R 2.J0G robot, which makes TCP

s - move to a point on the X axis
- of the desired user coordinate
\ ™ system, and uses Cartesian

translation to calibrate in the
JOG process;

3.JOG robot, which makes TCP
move to the Y axis of the
expected user coordinate
system, selects a point, and
uses Cartesian translation to
calibrate in the JOG process.

Previous Step Next Step

LA Admin ¥ NB12s-R1

Cancel

ONONONONONONO,

Operation Description

Use admin to log in to the system and switch to the
user frame calibration interface.

Name the user frame to be calibrated in the name
field.

Manual input is allowed if the user frame is known in
advance. Calibration is not mandatory, and the user
frame defaults to the world frame.

Select the "Calibrate now" in the pose calibration
option.

Jog the robot, make TCP of the calibrated tool point
4 at the origin of the desired work object frame, and World frame
then click "Confirm the first point".

Jog the robot so that the TCP of the calibrated tool

5 can point at the point on the X-axis of the desired The line between the second point and the first point
work object frame, and then click "Confirm the is the X-axis of the work object frame.
second point".
iZE t}:)eié?:?:;: tg?rtl ttl;i Eé P;éth;g:lg;rgfee%;zile d The user can also select a point on the desired Y-axis
6 P P P because the point on the Y-axis is also on the XY

work object frame, and then click "Confirm the third

point"". plane.

141
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2.9 Tool frame

11.2 Project

11.2.9.1 What is a tool?

Definition

A tool is a device mounted on the end-effector flange of the robot to complete a specific process. The
common tools include pneumatic/electric grippers, welding guns, sprinklers, etc. No tool is
attached to the robot when it is delivered from the factory, and you need to purchase or design
appropriate tools according to the actual situation to complete the installation and setup in order to
make the robot work.

Any tool should be calibrated before using it to get TCP (Tool center point) data.

When using external tools tools should be installed at the fixed position within the operating range of
the robot instead of installing on the robot.

Explanation

A new tool needs to be defined before being used. In the xCore control system, the tool is saved and
used through the data type of the tool. To define a tool means to create a tool-type variable. With
regard to the details of the tool, please refer to the section of RL Programming Language (Tool).
Simply speaking, we need to obtain the following tool-related parameters:

» TCP and orientation of tool (calibrating the tool frame);

» Mass, center of gravity, and rotational inertia (dynamics parameters of the tool);
The definition of the tool can only be modified through the HMI coordinates calibration interface.
Please refer to the Calibration of tool coordinates for detailed steps. The tool-type variables can only
be viewed but not created or modified in the variable management interface.
After the new frames are defined in the calibration interface, users can modify the tool's dynamic
parameters using the manual input function or identify the tool's dynamic parameters through the
parameter identification interface.

E Notes

1. ToolO is a tool variable pre-defined by the system. Its tool coordinates coincide with the
flange coordinates and both share the same dynamic parameter of 0.

2. The Tool0 variable is not allowed to be modified.

11.2.9.2 Tool center point

Definition

Tool Center Point (TCP) is a specific point on the tool which is normally used by a robot to carry out
processing work, such as the wire tip of a welding gun, a tip of a pneumatic gripper, etc. The robot
can rotate around the TCP and transform while keeping the position of the TCP unchanged.
Different tools may have different TCP, and determining appropriate TCP according to actual
conditions can significantly increase programming efficiency.

TCP is also the origin of the tool frame. More details can be referred to from the introduction of tool
variables.

142
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging
11.2 Project

E Notes

Unless otherwise specified, all references to "robot position, velocity, acceleration" in this Manual
refer to the position, velocity, and acceleration of TCP relative to the work object frame.

Schematic diagram

11.2.9.3 Tool frame

Explanation

The calibration of the tool frame refers to the process of measuring the position and orientation

offsets of the tool frame relative to the flange frame.

If the manufacturer of the tool you are using provides these offset data, you can select "Manual

Input" on the teach pendant and input directly without calibrating.

As to those tools without size data, the user needs to use the three methods offered by xCore to

calibrate the tool frame.

» Four-point method, which is used to calibrate the origin of the tool frame;

» Three-point method, which is used to calibrate the orientation of the frame after calibration of the
origin of the frame by the four-point method;

» The six-point method, which is used to calibrate the origin and orientation of the frame at the
same time, is equivalent to the integration of the four-point method and the three-point method.

Calibration of the tool frame pose

Before the calibration of the tool frame, the user needs to prepare a fixed external point, which
should be located within the robot’s working range and can be contacted by the calibrated tool in a
very flexible position and orientation. In the HMI tool calibration interface, there are detailed
diagrams for reference.

143
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

< New Tool
Basic Info
Name toall
Description

Position

@ Robot hold o External

Pose Calibration

@ Calibrate now O Manual input O Do not calibrate

Calibration Method
O 6roints) 4Points @ 3 Points

Load Identification

O identify now () Manual input @ Do not identify

11.2 Project

Previous Step

Operation

Description

Select a point on the tool to be calibrated and make
this point as the origin of the tool frame, namely the
Tool Coordinates Point (TCP).

Generally, TCP is always the processing point, for
example, the wire tip of the arc welding gun, the
fingertip of the claw, etc.

It is also allowed to put the TCP on any part of the
tool according to the actual situation.

Click "+" in the bottom right corner of the tool list to
enter the New Tool Wizard interface.

Name the calibration tool.

Confirm whether the tool is a normal tool or an
external tool.

Switch between normal tool/external tool
according to different mounting method (external
or handheld).

Select the six-point calibration method.

You can also select the four-point or three-point
method.

The four-point method calibrates only the tool
origin while the three-point method calibrates
only the tool frame orientation.

Select immediate load identification.

If the customer does not require tool load
parameters, load identification can be omitted.

Jog the robot so that the selected TCP can be contacted
by the external point and then click "Confirm the first
point".

When two points are closing to each other, using
the incremental mode can better adjust positions.

Repeat Step 6 until the four points are all confirmed.

To obtain higher calibration precision, the
orientation difference between the four points
shall be as high as possible, which means the
robot should try to contact the external point in

144

Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2 Project

| different orientations.

A Robot Assist) ®

Calibrate Tool: tool1

Calibration Operation Diagram Operation Info

1. Jog robot, make the selected
TCP contact with the external
tip point, and then click
“Confirm the first point”
button;

-
.] 2. Change the robot posture,

‘ l. so that the robot can contact
the external tip point with
different posture as far as
possible, and in order to

/ obtain higher calibration
accuracy, the posture gap
between the four points should
be as large as possible,
Translate to calibrate,

00 88 -

=]

B8 *68 -

"

®6e

Confirm Point 1 Confirm Point 2 Confirm Point 3 Confirm Point 4

Confirm

QODOOO®

@

Previous Step Mext Step

A Warning

If the robot is installed on the track, it is prohibited to operate the track during the calibration. Otherwise, the
calibration will fail.

11.2.9.4 Tool load parameters

Explanation

As mentioned before, a complete definition of a tool needs to determine the kinematic parameter and

dynamic parameter of the tool. The xCore system uses a load type variable to save the dynamic

parameter of the object. As such the dynamic parameter of the tool is also called tool load. For details

please refer to the introduction of variables tool and wobj. In particular, when an external tool is

used, the corresponding work object load is saved in the load parameter in the tool variable.

Using the four-point method or six-point method can only determine the kinematic parameter of the

tool. The dynamic parameter of the tool needs to be defined separately and there are two methods to

define the load parameter of the tool:

» If there is data of tool load at hand, the user can select the manual input method on the tool frame
calibration interface to input the corresponding data directly.

» If the load of the tool is unknown, the user can use the load identification function of the xCore
system to identify.

Load identification

The load identification function can be conducive to the calculation of the dynamic parameters of the

tool.

Steps for tool load identification:

» 1. Switch the robot to the Automatic mode and power on;

» 2. Run the load-free identification program with no load and wait for the program to complete;

» 3. Mount the tool load and run the load identification program, and wait for the program to
complete;

145
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2 Project

» 4. When the identification is completed, the identification result pops up. Click to save.

A Robot Assist [m} ®

Identify Load for Tool: tool1

Tool Params Operation steps
Mass(kg) O
asska) Stepl:
Center of Gravity(mm) X 0 Yo Zao Please make sure the tool/wobj

is installed correctly.

Inertia Parameters
Steps:

Inerti. i T mi
nertia Axis @ tuler O Quaternion Please make the robot run in

A D BEO co the safe distance.

Inertialkg.mm?) ix 0 iy 0 iz 0 Step3:

i Turn to automatic mode and
Run |dentification Program mator on.

(Il Start Running Stepd:

Loaded Start Running Run identification program.

Cancel Previous Step Next Step

E Notes

1. Please make sure to define the dynamic parameter of the new tool accurately. Otherwise, it will affect the
motion of the robot and even damage the robot due to excessive load on some serious occasions.

2. Before the identification, switch on and preheat the robot in advance for more than half an hour so as to raise
the identification precision.

3. Load inertia calculation is based on the flange frame.

Load recognition is only supported in case of floor mounting.

Notes

The following circumstances during the identification will cause the identification to stop and all the

received identification data lost. In this case, the user has to re-start the identification:

» User selects other tools or switches to other interfaces halfway through identification;

» User triggers the emergency stop or safety stop for external parts when the identification program
is running;

» User switches from Automatic to Manual mode when the identification program is running.

& Warning

The identification program needs to be executed under the Automatic mode, therefore all prevention measures
should be effective. As the external control signal is able to start the robot at any time, please switch to the
Automatic mode after the installation with personnel evacuated to a safe area.

11.2.9.5 Use of tools

Use when robot jogs

If it is necessary to use a special tool for jog operation, select the desired tool in the drop-down list of

the '"Tool' in the menu on the upper side of the teach pendant interface.

146
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2 Project

Use in the program

It is very simple to use a special tool in the program, simply use the desired tool in the 'Tool'
parameter of the motion command. When programming the motion command in the 'Insert
command' interface of the teach pendant, the “Tool’ and ‘Work object’ in default are consistent with
those used during Jog operation, which means that the 'Tool' and 'Work object' in the menu at the
upper side of the interface are currently selected. For the detailed operating steps, please refer to

Insert command.

11.2.9.6 External tools

What is an external tool?

Generally, we install tools on the robot and use them to complete the specified jobs using the robot

motion. Such tools are called normal tools and include claw, suction cup, and welding gun.

But in some special situations, installing a tool on the robot will affect the normal use, for example:

1. The tool to be used is large or heavy, difficult to be installed on the robot, or probably affects the
robot's motion.

2. The work object to be processed is large and the working range of the robot cannot cover the
whole work object in normal situations.

3. Some special processing needs to be completed, for instance, grinding a square object needs the
tool to revolve around 4 corners respectively.

Under these circumstances, the effect of installing the work object on the robot while fixing the tool

on a certain external place turns out to be better and more convenient. We call these tools that are

installed outside the robot and fixed at a certain part the external tools (some brands call them

Stationary Tool or Remote TCP).

Creation of external tool

In the xCore system, the external tool is also described through the tool-type variables. There is a
special mark robhold in the tool-type variables used to define if the tool is a normal tool or an
external tool.

| A Robot Assist [X

< New Tool
Basic Info
Name toall
Description

Position

@ Robot hold o External

Pose Calibration

@ Calibrate now O Manual input O Do not calibrate

Calibration Method
O 6roints) 4Points @ 3 Points

Load Identification

O identify now () Manual input @ Do not identify

It is very simple to use the teach pendant to create an external tool by selecting a certain tool in the

tool calibration interface and then selecting External for Position.

147
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2 Project

Calibration of external tool frame

The external tool calibration is the same as the normal tool. It supports the four-point method, six-

point method, and manual input. But calibrating the external tool frame needs the normal tool that

has been already calibrated. We will take the four-point method here as an example.

Operation Description

1 Use admin to log in to the system and switch to the
tool frame calibration interface.

2 Calibrate a normal tool with a tip, or select a calibrated | This normal tool is used for the later calibration of
normal tool with the calibration precision as high as the external tool. This step can raise the precision
possible. of the external tool calibration effectively.

3 Jog the robot so that the TCP of the calibrated tool can
point at the origin of the desired external tool frame
and then click "Confirm the first point".

4 Jog the robot so that the TCP of the calibrated tool can The theory of how to select four points is the same
point at the origin of the desired work object in as the four-point method for normal tool
different orientations, and then confirm the second, calibration.
third, and fourth points respectively.

5 After the calibration, the system will pop up the For information on calibration precision, please
calibration error. Select whether to re-calibrate refer to Confirmation of calibration precision.
according to the error.

Notes

The external tool must be used together with the corresponding work object, meaning among the

robhold parameters which are selected at the same time in the tool and work object respectively, one

must be False while the other be True. Otherwise, the system will prompt an error and forbid jogging
the robot.
When using the external tool, the reference for defining the tool frame and the work object frame is

different from that for defining a normal tool. See the following form.

Frame

Definition of the normal tool
relative to ...

Definition of the external tool relative to ...

Work object frame

User frame

User frame

User frame

World frame

Flange frame

Tool frame

Flange frame

World frame

For more details, please refer to the introduction of tool variables.

11.2.10 Work object frame list

11.2.10.1 What is a work object?

Explanation

Work object refers to the object that is being processed or handled by a robot with a tool.

The xCore system uses wobj (Work Object) type variables to describe an actual work object.

The introduction of the concept of work object is to simplify the programming steps and raise

efficiency.

The motion trajectory of the robot is defined under this work object frame. There are two merits in

doing so.

» When the work object moves or multiple identical work objects are being processed, the user

only needs to recalibrate the work object frame instead of reprogramming since all the paths in

the program will be updated accordingly;

» Tt allows the processing of the work objects that are moved by external axis (such as track,

positioner, and so on).

Each work object actually contains two frames. One is the user frame relative to the work object,

which can be considered as the bench/table where the work object is put. This is very useful in

148

Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging
11.2 Project

processing multiple identical work objects. The other is the work object frame which is fixed on the
work object. All program paths are described under the work object frame.

Work object
coordinate system

User coordinate
system

11.2.10.2 Definition of work object

Explanation

It is necessary to define a new work object before using it. In the xCore system, the work object is
saved and used through wobj data. Defining a work object means creating a wobj variable.

The wobj variable does not contain any dynamic parameter, therefore the process of defining a work
object is the process of calibrating the work object frame.

E Notes

1. Wobj0 is a work object variable pre-defined by the system. Its user coordinate and work
object frame are all coincided with the world frame.

2. Same as t0ol0, wobj0 cannot be modified as well.

3. For PCB 3- or 4-axis robots, the work object frame only supports manual input. The
components of orientation A and C are set to 0, and manual user modification is prohibited.

Calibration of work object frame

The method for calibrating the work object frame is the three-point method. Its operating steps are
the same as the three-point method for calibration of the tool frame.

149
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

| AM Robot Assist

< New Wobj

Basic Info

Name wobjl

Description

Position

@ Robot hold (O External

Movable Object

Related Mechanical Unit

robot

Related User Frame

T

11.2 Project

@ O
@

(=

©)

=

Before calibrating a work object, the user needs to calibrate a tool and then use the TCP of the tool to

calibrate the work object frame.

For more convenient operation, it is recommended to use tools with tips.

Operation

Description

Use admin to log in to the system and switch to the
work object list interface.

Name the work object frame to be calibrated in the

The user frame is not mandatory.

then click "Confirm the first point".

2 userframe0 is selected by default, i.e.
name field.
the world frame.
3 Select external See below for the calibration of the
handheld work object
Jog the robot, make TCP of the calibrated tool point
4 at the origin of the desired work object frame, and World frame

Jog the robot so that the TCP of the calibrated tool
can point at the point on the X-axis of the desired

The line between the second point and

work object frame, and then click "Confirm the third
point".

> work object frame, and then click "Confirm the the_ first point is the X-axis of the work
S object frame.
second point".
Jog the robot so that the TCP of the calibrated tool .
can point at the point on the XY plane of the desired The user can also sclect a point on the
6 desired Y-axis because the point on

the Y-axis is also on the XY plane.

Calibration of handheld work object frame

For using the external tool function, the corresponding work object should be installed on the robot.

In this case, this is called a handheld work object.

The handheld work object also needs the calibration of the work object frame and must use the

calibrated external tool for calibration. For more details, please refer to the external tool function.

The general steps for calibration of handheld work object frame are as follows.

Operation

Description

Use admin to log in to the system and switch to the
work object frame calibration interface.

Name the work object frame to be calibrated in the
name field.

The user frame is not mandatory.
userframe0 is selected by default, i.e.
the world frame.

3 Select "Handheld"

4 Jog the robot so that the TCP of the calibrated
external tool can point at the origin of the desired

The line between the second point and
the first point is the X-axis of the work

150

Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging
11.2 Project

work object frame and then click "Confirm the first object frame.
point".

Jog the robot so that the TCP of the calibrated

. . . The li t th int
external tool can point at the point on the X-axis of ¢ line between the second point and

3 the desired work object frame, and then click the_ first point is the X-axis of the work
" o object frame.
Confirm the second point".
Jog the robot so that the TCP of the calibrated .
external tool can point at the point on the XY plane The user can also select a point on the
6 P p p desired Y-axis because the point on

of the desired work object frame, and then click

"Confirm the third point". the Y-axis is also on the XY plane.

| A Robot Assist a X

< New Wobj

Basic Info
MName wobjl

Description

Paosition

@ robothold O External

Movable Object
@ non-movable O M

Related Mechanical Unit

robot

Related User Frame

Ty

11.2.10.3 Use of work object

Use when robot jogs

If it is necessary to perform Jog operation in a special work object frame, select the desired work

object in the m drop-down list in the menu.

Use in the program

It is very simple to use a special work object in the program, simply use the desired work object in
the "Work object" parameter. When programming the motion command in the 'Insert command'
interface of the teach pendant, the ‘Tool’ and ‘Work object’ in default are consistent with those used
during Jog operation, which means that the 'Tool' and "Work object' in the menu at the upper side of
the interface are currently selected. For the detailed operating steps, please refer to Insert command.

E Notes

Generally, the work object parameter of the motion command is optional. As such, unless
otherwise specified, the system will use wobj0 by default.

The default wobj0 coincides with the world frame.

To use the external tool function, all work object parameters corresponding to the tools must be
designated.

11.2.10.4 Use of external tool/work object

151
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2 Project

Definition

To reduce the definition of default tools and work objects, whether the default tool tool0 and default
work object wobj0 are handheld or not depends on the user-selected tool and work object:

1) When the user-selected tool frame, such as tooll, is handheld, the default work object frame wobj0
is automatically made external, and wobj0 coincides with the user frame; when the user-selected tool
frame, such as tooll, is external, the default work object frame wobj0 is automatically made
handheld, and wobj0 coincides with the flange frame;

2) The same goes for the work object frame. When the work object frame, such as wobjl, is external,
the default tool frame tool0 is handheld and coincides with the flange frame; when the work object
frame, such as wobjl, is handheld, the default tool frame tool0 is external and coincides with the user
frame;

3) When both default tool frame tool0 and work object frame wobj0 are selected at the same time,
tool0 is handheld and coincides with the flange frame, and wobj0 is external and coincides with the
user frame.

3D interface display

Generally, users would like to display the pose of the manipulator end-effector in different frames,

thus:

1) When using a handheld tool, the 3D interface shows the pose of the selected tool frame relative
to the base/world/work object frames.

2) In the case of an external tool, the 3D interface shows the pose of the selected (handheld) work
object frame relative to the base/world frames when the base/world frames are selected; and the
pose of the selected (external) tool frame relative to the (handheld) work object frame when the
work object frame is selected.

] Hznd-held took Extarnal wark
object by default @
R - Tt =

L 1nesn 4w Menmmem| o o @ -
n - _Hand—_held work object relativeto bass
Icooldlnatesystem iy I o o S
_ Hand-hek work object relative to world ehace = : .

B =mers oominate systam E

! S —— .
¥ Tewss |External tool relative tohand-held work
— " wobject coordinate system a3 1.0000

l_li- O 0,000

§ EWCE 0000, 30.000. Q000 G0.000. 0.000. 900000000 l
WE(Ne: [0.000. 0.000. 0.000. G000, 0.000. Q.000. 0.000

User frame

By definition, the user frame is also divided into two types: external and handheld, which depend on
the corresponding work object frame. For example, when an external work object is used
(corresponding tool frame is handheld), the user frame is automatically made external and
represented in the world frame; when a work object handheld is used (corresponding tool frame is
external), the user frame is automatically made handheld and represented in the flange frame.

When the user frame is used, the corresponding work object frame must be clearly distinguished. If
the user frame is calibrated in the world frame, unexpected errors may appear when a handheld work
object is used.

11.2.11 Vision System

Explanation

152
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2 Project

Vision task programming can be considered to be on the same level as RL motion task programming.
After creating a new project, click xVision on the left side to open the vision task editing interface.

e

ETEo e 0 ¢

00 Bd

:

DODDDDD D
DD

Create, open, and rename vision tasks

Vision task is also a kind of "task". Click "Task" to view, create, open, and rename visual tasks.

A Robot Assist

i =

New Task

Basic Info

Name task1

Description

Task Info

Type Normal »

Running Property

Auto Start Enable
Priority Low 4

Creating Files

Main Function Generate

Previous Step Next Step
= Program Speed —.— 20% & @ %

A Admin ¥ NB12s-

153
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging
11.2 RL Programs

A Robot Assist

Auto Start Priority Description

n
=]
a

-

[

ONONONONONONU,

= Program Speed —.— 20% & @ ¥ A Admin

Visual tasks auto run on startup

Check the "Auto Start" attribute of the visual task, which is defined as the "auto run on startup" for
the visual task.After the selected project is loaded, the vision task with the "Auto Start" property
checked will be loaded and run in a loop automatically.

Note: Only one vision task can be checked.

AN Robot Assist

Ly e m
in ¥ =

< Task List
Type Auto Start Priority Description
bl task0 Motion High BRA
task1 Vision Low
& i + ra o
o)

o ¥ & Admin

2 Program Speed —.— 20% &

For more information on vision functions, please refer to xVision User Manual.

11.2 RL Programs

11.2.1 About RL language

Overview

Industrial robots are programmable devices that are suitable for many application scenarios. The
language used to program robots is called Robot Language.

154
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2 RL Programs

xCore system uses RL language as the programming language for all ROKAE robots.

RL Language is the abbreviation of ROKAE Robot Language. By using this language, users can
program to control the robot through the teach pendant.

The RL language program file has a suffix of .mod, for example, MoveObj.mod or
PickSomething.mod. Each program file forms a program module.

RL language commands are not case-sensitive. For example, MoveAbsJ, moveabsj and MOVEABS]J
are all regarded as the correct MoveAbsJ command. However, in order to maintain a uniform
language style, it is recommended to capitalize the initial letters.

Example

To demonstrate the features of the RL programming language, we can look at a simple program to
understand the basic structure and format of RL:

A Robot Assist a e

123) tasko m m Refresh Pos Moveto & & [0
8 «

Task GLOBAL CONST speed v5 = v:{1,5,500,0,0} (]

GLOBAL CONST speed v500= v:{1,5,500,0,0}

GLOBAL CONST speed v2000 = v:{1,5,500,0,0}

poin GLOBAL CONST speed v7000 = v:{1,5,500,0,0}

Path GLOBAL CONST zone v5 = 5:{5,3}

GLOBAL CONST tool tool0 = {true, {{0,0,0},{1,0,0,0}},{1,{55,0,30},{1,0,0,0},0,0,0}}

GLOBAL CONST wobj wobj0 = {FALSE, TRUE,"rebot",{700,600,200},{1,0,0,0},1}

frome GLOBAL VAR int counter = 3

Toal

D

GLOBAL PROC main()
Movel pointl,v500,25,to0l0
REcehis Movel point2,v500,25,tool0

Wobj

Movel point3,v500,25,tool0

ONOXO,

IF{counter > 6)
Movel pointl,v500,25,to0l0
ELSE

o

Among them:

» The entire program is divided into two major sections, the declaration section, and the
implementation section. The area before the first function in each Mod file is the declaration
section. For example, in main.mod, the part before GLOBAL PROC main is the declaration
section;

» VAR represents the storage type, indicating a variant. If the storage type is not declared, the RL
program defaults it to a variable;

» int, robtarget, speed, zone, and tool are the special variable types of the RL language;

Y

Movel, MoveAbsj, and MoveL are standard motion commands in the RL language;

> Contents after "//" and “/**/"are comments.

11.2.2 Program structure

11.2.2.1 Overview

Explanation

All program files in the xCore system are grouped according to the concept of "Project”. The
following features are contained:

1. The RL program is divided into three levels according to the scope size:

a) Project, the highest level, configures the default robot parameters, manages sub-objects and tasks;
b) Task, contains several program modules;

¢) Program modules, also known as the modules, are divided into program modules (.mod) and

155
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2 RL Programs

system modules (.sys). A program file is a module;

d) Functions, also known as the ROUTINE, a program block for repeated calls that are defined by
users;

2. A project can contain multiple tasks, each of which is independent and interacts with each other by
the interfaces provided.

3. A program can contain multiple program modules, but there is only one main.mod, which contains
a GLOBAL PROC main. The GLOBAL PROC main serves as the entry function of the entire
project;

4. RL language support the function defined by users, which can either be saved in the same program
file,or be saved in a different program file

5. The robot can only select one project for execution at a time.

The relationship among the project, program files, and functions are shown in the following figure:

Robot
J\—l Module Main
| Project a l | Project b I
Main function Proc Main
Task 1 Task a Custom
Task 2 Taskb -
< Module A

Task 3 Taskc Custom function

Custom

Configuration file.sys.

11.2.2.2 Program modules

Explanation

Program modules are either .mod or .sys files. Each program module contains a number of data
variables and functions that are used to implement specific robotic functions. A project can contain
multiple program files. Each program file can be copied and deleted, and other regular file operations
are also allowed.

In each project, there must be a program module that contains the main function that is used as the
entry function for the entire project. Loading and executing a project is essentially executing the main

function.

Module definition

The module is defined as:
PROC main()

ENDPROC
PROC test1()

ENDPROC
PROC test2()

156
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2 RL Programs

ENDPROC

E Notes

In each module, the code area located in front of the file and before the first function is called the declaration area. It
is used to store variable declarations for the GLOBAL and LOCAL scopes. Users are not allowed to directly modify
the area in the editor.

11.2.3 Program editing

11.2.3.1 Function menu

Explanation

To allow easy program debugging, the xCore system offers several powerful debugging features in
the program editor interface.

Menu function

AA Robot Assist — o X

Htooll !

Refresh Pos Move to 8 = D
8 « 8
Task GLOBAL CONST speed v5 = v:{1,5,500,0,0}| (]
GLOBAL CONST speed v500= v:{1,5,500,0,0}
GLOBAL CONST speed v2000 =v:{1,5,500,0,0}

123 task0

Point GLOBAL CONST speed v7000 = v:{1,5,500,0,0}
Path GLOBAL CONST zone v5 = s:{5,3}
. GLOBAL CONST tool tool0 = {true, {{0,0,0},{1,0,0,0}},{1,{55,0,30},{1,0,0,0},0,0,0}}
GLOBAL CONST wobj wobj0 = {FALSE,TRUE,"robot",{700,600,200},{1,0,0,0},1}
Ems GLOBAL VAR int counter = 3
Tool
Wob GLOBAL PROC main()
Movel point1,v500,25,tool0
Predefine Movel point2,v500,25,tool0

Movel point3,v500,25,tool0

IF{counter > 6)
Movel point1,v500,25,tool0
ELSE

QOOOOOO
ODDDDDD

Program pointer to Lo
Main Click to move the program pointer to the Main function, which is

equivalent to program reset.

Program pointer to .
cursor Click

to move the program pointer to the line where the cursor is located.

Check program Execute the program point to the Main check program to check whether there are certain
obvious errors in the current program, such as the duplicate name of the function and
missing key identifiers. It cannot check out all syntax errors.

Insert command Click © to insert motion commands and other commands.

Search program Click @ to search programs by keywords.

Comment command . * . . .
Click ¢} to comment on the selected code line. Multiple lines can be commented on at the

same time.

Move down code line Click N to move the selected code line down one line. Multiple lines can be moved

down at the same time.

M de li
ove codefime up Click T to move the selected code line up one line. Multiple lines can be moved up at the

same time.

Paste the entire line

Click = to insert the copied or cut content into the line of the cursor.

157
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2 RL Programs

Copy the entire line
Py et Click g to copy the selected line of code. Multiple lines can be copied at the same time.

Cut the entire line) 3% . . .)
Click to cut the selected line of code. Multiple lines can be cut at the same time.

Undo Click © to undo the previous operation.

Redo Click > to redo the previous operation undone.

Loop mode Click & to select loop or run only once.

Output box Click O to display the printing information and syntax information.
11.2.4 Program debugging

11.2.4.1 Program pointer

Explanation

The program pointer points to the line that has been parsed and run by the program.
On the HMI interface, the program pointer is indicated by a small green arrow (also called the green
pointer).

11.2.4.2 Motion pointer

Explanation

The motion pointer points to the current command the robot is executing;
On the HMI interface, the motion pointer is indicated by a red arrow.

11.2.4.3 Lookahead mechanism

Explanation

Lookahead means that the control system handles the subsequent program commands in advance when
the robot is executing the current command during robot movement.
The introduction of the lookahead mechanism can be advantageous in the following aspects:
» Obtain the speed of the front trajectory, the acceleration requirements, and the constraints of the
robot itself, so as to plan the optimal control strategy;
» Plan the turning trajectory of the turning zone according to the settings of the programmed
turning zone;
» Acquire an abnormal state near the soft limit/boundary and singular points, etc., so that it can be
processed in advance;
The lookahead mechanism cannot be turned off manually. The system automatically looks ahead when
running the program. You can use the Program Pointer to view the lookahead position.
Some RL commands will interrupt the lookahead. When the interpreter encounters such a command, it
will stop compiling until the robot executes the compilation of the corresponding command.
Only Print command, logical judgment command, and user-defined functions do not interrupt the
lookahead mechanism, and all other functions will interrupt the lookahead mechanism.

11.2.4.4 Single-step debugging

Explanation

The single-step operation status is also known as Single-step Mode, as against the Continuous Mode.
The robot can switch between the two modes in most cases.

Single-step running is mainly used for program debugging. The robot will execute commands of one
line at a time and pause the program after commands are completed, which is convenient for

158
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2 RL Programs

confirming whether teaching points meet requirements. When a multi-task project is being debugged,
single-step debugging will only execute the tasks displayed on the HMI debugging interface, and the
rest tasks will not be called.

If the single-step debugging executes read data commands (ReadDouble, ReadString, etc.), time-
related commands (Wait, WaitUntil, etc.), and logic commands (IF, GOTO, etc.), it will take two to
three clicks to complete the command due to the command characteristics.

Use restrictions

1. In Continuous mode where programs are executed automatically and the turning zone should be
processed, motion lookahead is available.

2. In Single-step mode where commands are executed directly without processing the turn zone,
motion lookahead is not available.

3. In Continuous Mode, motion only starts when there are enough lookahead points, and the system
only continues to parse the command when the robot is in place.

4. In Single-step mode, all next-step signals are triggered by the interface, without turning zone
processing and lookahead.

5. In Single-step Mode, no response is made when "Next" is clicked during motion.

6. In Continuous mode, callbacks during motion are responded to according to the lookahead logic.

7. The next step can go to any line and execute the command literally. RL programs only process
"program commands", without distinguishing between motion commands and logic commands.

10. When the robot pauses on the turning zone in Continuous mode, the next step will go back to the

target point corresponding to the current turning zone.

11.2.4.5 Regain path

Explanation

In some specific situations, the robot's position will deviate from its programmed path, for example:

» During the period when the program is stopped (excepting for program stop caused by program
reset), the robot is moved to another position by Jog;

» The emergency stop is triggered when the program runs, and the robot executes STOP 0;

When the program starts again from the stop position, if the system detects that the robot has

deviated from the programmed path,

the robot will then first perform a Regain Path motion to return to the original programming path.

To ensure safety, the movement speed of the robot is slower when returning to the programmed path,

and the movement of the robot can be stopped at any time by pressing the "Stop" button on the teach

pendant.

Use restrictions

The robot performs a joint trajectory when returning to the path, so the path of the end-effector is
unpredictable. Please observe whether or not it collides with the surrounding environment.

Only when the robot continues to execute from stop point at the middle of the program, the control
system will detect whether it deviates from the path.

If the deviation occurs, it will perform the regain path operation.

If the program is reset, then the system will not detect if it deviates from the path but will start
executing directly from the first line.

Please be careful to prevent possible collisions.

11.2.4.6 Move program pointer

Explanation

If you need to start the program after a line from the middle of the program, you can use this function

159
Copyright © ROKAE 2015-2023. All rights reserved.

11 Programming and Debugging

11.2 RL Programs

to move the program pointer to the line where the cursor is, and then the program can be executed
from a new position.

Operation

1 Pause the running program, click the screen and move the cursor to the desired line.

In the program editor interface, click the "Debug" button and select "Program Pointer to Cursor".

The program pointer PP will be moved to the selected line.

AW N

After the program pointer PP points to the target line, click the program to start or go next. The robot then will
slowly move from the current position to the target position of the specified line in the joint interpolation mode.

Use restrictions

There are the following restrictions for Move program pointer:
1. When using this function, the following commands will be ignored, and the compiler's compile
position will be directly moved to the target line. In addition, all other commands will not be
executed:
a) All motion commands;
b) SetDO, SetGO, Return, Wait, Print, and all Socket commands;
d) Function call line;
2. The condition of the flow control command is ignored when moving the program pointer.
3. Do not move the program pointer across functions. It is necessary to move the program pointer to
the beginning of a function via "program pointer to function" first, and then use the pointer function
of a program;
4. The pointer of a program can only be moved to the motion command line.

11.2.4.7 Variable management

Explanation
The variable management interface allows the creation, viewing, modification, and deletion of almost
all variables in the robot system.
Currently supported variable types include: int/ byte/ bool/ double/ string/ robtarget/ jointtarget/ speed/
zone/ clock/ pose/ fcboxvol/intnum tasks.

Explanation

Although all types of variables can be entered by users manually in the programming interface, it is
still recommended to use the dedicated interface for modification for the sake of convenient operation
and fewer errors. You are advised to view in the variable management interface only.

The variable management interface is as follows:

160
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

A Robot Assist

« New Variable
Variable Type

int

Basic Info
Name int1
Description

Dimension + - No Array

Select Variable

Current Item: int1

Edit Value

int 0

12 RL Programming Commands

12.1 Variables

Variable Infomation

Int info.

Min: -2,147,483,647
Max: 2,147 463,647,

Previous Step

12.1 Variables

COODDDD

12.1.1 Int

Explanation
The range of the integer int variable is -23'~231, It is recommended that the value is within the
specified range. If the value is in excess of the range, it will be assigned randomly, and the maximum
value range must not be exceeded when using it.

Example

For example, in the variable list, a variable is defined as follows:

Variable Type

int .

Basic Info

Name counter

Description

Dimension + - No Array

Select Variable

Current Item: counter

Edit Value

int 4

161

Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1 Variables

It represents the data counter that defines an integer global variable type, and its initial value is 4.

12.1.2 uint

Explanation
The range of the integer uint variable is 0~232-1. The maximum value range must not be exceeded
when using it.

Example

Similar to a signed integer, in the variable list:

Variable Type

uint p

Basic Info

Name uint0

Description

Dimension + - No Array

Select Variable

Current Item: uint0

12.1.3 Double

Explanation

Floating-point numbers are stored using 8 bytes. Do not exceed the value range when using them.

Example

For example, in the variable list, a variable is defined as follows:

162
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

Variable Type

double >

Basic Info

Name time|

Description

Dimension + - No Array

Select Variable

Current Item: time

Edit Value

double 1.5

12.1 Variables

It represents the local variable time that defines a floating-point, and its initial value is 1.5.

12.1.4 Bool

Explanation
The variable bool is mainly used for status or logic judgments. The value is true or false.
When it is assigned an int or double value, non-zero takes the value of true and zero takes the value
of false.

Example

Variable Type

bool p

Basic Info

Name ifClose

Description

Dimension + - No Array

Select Variable

Current Item: ifClose

Edit Value

bool true

For example, in the variable list, a variable is defined as follows:

163

Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1 Variables

It indicates that a bool type global variable ifClose is defined and the initial value is true.

12.1.5 String
Explanation
String-type variables consist of multiple letters or numbers and must be placed in double quotation
marks "" at the time of defining.
Example
For example, in the variable list, a variable is defined as follows:
Variable Type
string 4
Basic Info
Name name
Description
Dimension + - No Array
Select Variable
Current Iltem: name
Edit Value
string "rokae”
It indicates that a string variable name is defined and initialized to "rokae".
String variables support the "+" operation for string concatenation.
Example: name = "Rok" + "ae"
It indicates that the variable name is assigned to "Rokae".
12.1.6 Array
Explanation
An array is a collection of variables with the same type, either one-dimensional or multi-dimensional.
The elements in the array are accessed using subscripts. The subscript of each dimension begins with 1.
Example

For example, in the variable list, a variable is defined as follows:

164
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1 Variables

Variable Type

int .

Basic Info

Name table

Description

Dimension + - 1 16

Select Variable

Current ltem: table [1] [6]

Edit Value

int 8
It indicates that a two-dimensional array that contains 16 integer variables is defined. The value of
the sixth element of line 1 is assigned to 8.

E Notes

The total length of the array should not exceed 1000.

12.1.7 byte

Explanation
byte represents the unsigned byte in RL language, same as unsigned char in C++. The value range is
0~255, and negative values are not allowed. It is generally used in SocketSendByte command.
When the byte value exceeds the limit, the lower 8 bytes will be truncated automatically without
reporting an error.

Example

For example, in the variable list, a variable is defined as follows:

165
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1 Variables

Variable Type

byte P

Basic Info

Name data

Description

Dimension + - No Array

Select Variable

Current Item: data

Edit Value

byte 177

It defines a byte variable data, which has a value of 177.

H Notes

When the byte variable's value exceeds 255, it is automatically truncated, keeping only the lower
8 bits of the value, e.g. var byte data2=288, and the value of data2 is 32 after truncation.

12.1.8 clock

Explanation
The clock is used for timing, and clock-related commands are just like a stopwatch used for timing.
The time accuracy of clock type storage is 0.001s, and the maximum time interval is 45 days (i.e., 45
x 24 x 3600 seconds).

Example

For example, in the variable list, a variable is defined as follows:

166
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1 Variables

Variable Type

clock .

Basic Info

Name clockO

Description

Dimension + - No Array

Select Variable

Current Item: clockO

Edit Value

The following example shows how to use variable clock:

Example 1
ClkStart clock1

ClkStop clock1

interval=ClkRead(clock1)

ClkReset clockl

Interval (pre-declared double variable) reads the interval between ClkStart and ClkStop, in seconds

(s).

12.1.9 Implicit type conversion

Explanation

Currently, during data setup in the variable lists, data types are restricted. Values that do not match
the variable type cannot be successfully entered, thus avoiding type implicit conversion.

Example

For example, when defining the integer counter in the variable list, no decimals, only integers, can be
entered.

12.1.10 confdata

Explanation

The confdata (Robot Configuration Data) is used to define the morphological configuration data that
corresponds to the spatial target point.

For a 7-axis robot with redundancy, the same Cartesian space target corresponds to a maximum of 8
different inverse kinematics when the elbow is the same, therefore, it is necessary to use confdata to
specify the form to be selected.

In addition, since the robot uses revolute joints, any one of the joints exhibits the same status at 1°
and 361°. Therefore, after the form of the robot is selected, other methods are required to deal with
the multiple-loop problem of the joint. Here, we use the quadrant method to mark the approximate
range of joint angles. For example, when the joint angle is between 0 and 90 degrees, the quadrant
number is 0. When the joint angle is between 90 to 180 degrees, it is marked as 1; by analogy, for
every 90 degrees, the quadrant number is increased or decreased by 1. When the angle is negative,

the corresponding number of quadrants is also negative, as shown in the following figure (left:

167
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1 Variables

negative joint angle; right: positive joint angle). For robot joints, the angle increases when rotating
anticlockwise and decreases when rotating clockwise. In the figure below, the joint angle decreases
when a joint rotates clockwise, and the corresponding confdata changes as -1->-2->-3->-4 and 3->2-

>1->0, respectively.

For xMate, 7 parameters are needed to complete the confdata, including:

» cfl, to record the number of quadrants of the Axis 1;

» cf2, to record the number of quadrants of the Axis 2;

» cf3, to record the number of quadrants of the Axis 3;

» cf4, to record the number of quadrants of the Axis 4;

» cf5, to record the number of quadrants of the Axis 5;

» cf6, to record the number of quadrants of the Axis 6;

» cf7, to record the number of quadrants of the Axis 7,

» cfx, to record which position the robot uses to reach the target position. See the explanation below

for details.

Definition

cfl

Cf2

Cf3

Cf4

Cf5

Cfo

Cf7

cfx

Data type: int
The quadrant that corresponds to the Axis 1 angle.

Data type: int
The quadrant that corresponds to the Axis 2 angle.

Data type: int
The quadrant that corresponds to the Axis 3 angle.

Data type: int
The quadrant that corresponds to the Axis 4 angle.

Data type: int
The quadrant that corresponds to the Axis 5 angle.

Data type: int
The quadrant that corresponds to the Axis 6 angle.

Data type: int
The quadrant that corresponds to the Axis 7 angle.

Data type: int

The configuration number of the form used by the robot, ranging from 0 to 7.

Supplementary explanation

For xMate with redundant degrees of freedom, there are up to 8 different inverse kinematics for the
same end-effector Cartesian space pose when the elbow remains the same. The values of cfx from 0

to 7 represent 8 groups of inverse kinematic solutions, which are explained in detail as follows.

168
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1.11 jointtarget

12.1 Variables

Wrist center is on Axis | Wrist center on the . .

cfx Axis 6 angle is...
1. lower arm...

0 Front Front Positive

1 Front Front Negative

2 Front Rear Positive

3 Front Rear Negative

4 Rear Front Positive

5 Rear Front Negative

6 Rear Rear Positive

7 Rear Rear Negative

Explanation
To store the robot’s joint angle and the positions of external axes.
The unit of the joint angle is in degree, and the outer track is in mm.
Definition
robax
Angle of Robot Axis
Data type: double
robax contains 7 members of double type, which store the angle of the robot's 7 joints, in Degree.
extax
External Axis
Data type: double
The extax contains 6 members of double type and can store up to the position of 6 external axes.
If the external axis is a rotation axis, the unit is Degree; if the external axis is a linear axis, the unit is
mm.
Example

For example, in the variable list, a variable is defined as follows:

169
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1.12 load

Variable Type
jointtarget -
Basic Info

MName jointtarget0
Description

Dimension + -

Select Variable

Current Item: jointtarget0

Edit Value
robot_joint[0d] 0
robot_joint[1] 0
robot_joint[2] 0
robot_joint[3] 0
robot_joint[4] 0
robot_joint[5] 90
ext_joint[0] 10
ext joint[1] 0
ext joint[2] O
ext_joint[3] 0
ext_joint[4] 0

ext joint[5] 0

No Array

12.1 Variables

The above command defines a point named "jointtarget0" in the joint space. Except that the Axis 5 is

90 degrees, the other axes of the robot are all 0 degrees. The first external axis is set to 10 degrees or

10 mm, depending on the type of external axis; the remaining external axes are set to zero.

Explanation

The variable type load is used to store the dynamic parameters of the robot load.

170

Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1 Variables

There are two main types of robot loads:

» The tool or work object itself installed at the end-effector of the robot;

» Objects that the tool picks up/sucks up.
The variable load does not support individual creation. It can only be manually modified in the tool
calibration interface as a member of the tool-type variables or automatically modified by the control
system using the load identification function.
By defining the dynamic parameters of the load correctly, the robot can achieve optimal performance.

A Warning

Be sure to correctly define the dynamic parameters of the end-effector load of the robot, including

the tool itself and the two parts of the object captured by the tool. The wrong definition may lead

to the following consequences:

» The robot cannot maximize the ability to use the servo system, resulting in degraded
performance;

» The accuracy of the path is reduced, and the positioning error increases;

» Overloading of mechanical components results in a reduction in life or damage.

Definition

mass

cogx

cogy

cogz

ql~q4

In the xCore system, the load is treated as a rigid body. There are four parameters for describing the
load.

Mass
Data type: double
It describes the mass of the load, in kg.

The offset of the center of mass in the X-direction.

Data type: double

If the tool is mounted on the robot, cogx records the offset of the center of mass in the X direction of
the tool frame. If the external tool function is used, the cogx records the offset of the center of mass
of the load held by the gripper in the X direction of the work object frame.

The offset of the center of mass in the Y direction.

Data type: double

If the tool is mounted on the robot, cogy records the offset of the center of gravity in the Y direction
of the tool frame. If the external tool function is used, the cogy records the offset of the center of
mass of the load held by the gripper in the Y direction of the work object frame.

The offset of the center of mass in the Z direction.

Data type: double

If the tool is mounted on the robot, cogz records the offset of the center of gravity in the Z direction
of the tool frame. If the external tool function is used, the cogz records the offset of the center of
mass of the load held by the gripper in the Z direction of the work object frame.

Quaternion, to record the direction of the principal axis of inertia of the load.
Data type: double
When the tool is mounted on the robot, the orientation of the principal axis of inertia is described in

the tool frame. See the figure below for details:

171
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

ix

12.1 Variables

Load coordinate
system

When using an external tool, the direction of the principal axis of inertia is described in the work
object frame. See the figure below:

Gripper

External tools
Load

coordinate /
system

Work object
coordinate system

Inertia x

Data type: double

The inertia of the load along the x-axis, in kgm?.

Correctly defining the load inertia helps to improve the robot's movement accuracy, especially when
handling large objects. If ix, iy, iz are set to zero, the load will be treated as a mass point.

Usually, if the distance from the center of mass of the load to the flange center point is smaller than
the maximum size of the load itself, the load inertia should be defined, as shown in the following

figure:

172
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

iy

iz

12.1.13 orient

12.1 Variables

Load

@ Distance X

Size

Inertia y
Data type: double
The inertia of the load along the y-axis, in kgm?.

Inertia z
Data type: double
The inertia of the load along the z-axis, in kgm?.

Explanation
To store the orientation information of the frame or space rigid body.
Variables of type orient do not support individual creation or modification and are only used as
member variables of some variables.
Definition
The RL language system uses quaternions to represent orientations, so there are a total of 4
components expressed as follows:
ql
Data type: double
The 1% component of the quaternion.
q2
Data type: double
The 2" component of the quaternion.
q3
Data type: double
The 3" component of the quaternion.
q4

Data type: double
The 4™ component of the quaternion.

About the quaternions

We usually describe the orientation of the rigid body by using the rotation matrix. The quaternion is
another way to describe orientation more concisely.
The four components of the quaternion satisfy the following relationship:

G +a;+ai+ai=1
The rotation matrix and the quaternion can be converted to one another. It is supposed that there is a
rotation matrix R,

11 T2 T3
R=|r21 T2 7’23]

31 T32 733
then:

173
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1 Variables

_,H'11+T22+T'33+1 \
q1 = 2
q = "7 Tt sign qz = sign(rsp — 123)
2
q3 = Tz " T Tt 1 sign qz = sign(ryz — 131)
3 2
qa = T33 " " Tpt 1 sign qq = sign(ry; — 112)
2

12.1.14 pos
Explanation
It is used to store location information in 3D space.
Variables of pos type do not support individual creation or modification and are only used as member
variables of some variables.
Definition
As the RL language system describes three-dimensional space using the Cartesian frame, so the pos
variable has three components: X, y, and z.
X
Data type: double
The X coordinate of the position.
y
Data type: double
The Y coordinate of the position.
z
Data type: double
The Z coordinate of the position.
12.1.15 pose
Explanation
To store the position and orientation of Cartesian space.
Definition
X
Data type: double
The X coordinate of the position.
Y
Data type: double
The Y coordinate of the position.
Z
Data type: double
The Z coordinate of the position.
Q1
Data type: double
The 1% component of the quaternion.
Q2
Data type: double
The 2" component of the quaternion.
Q3

Data type: double
The 3" component of the quaternion.

174

Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

Q4

12.1.16 robtarget

12.1 Variables

Data type: double
The 4™ component of the quaternion.

Explanation
Cartesian positions and orientations for storing 3D space, which is used for MovelJ, MoveL, MoveC,
and MoveT commands.
Because of the multi-solvability of the inverse kinematics of the robot, the robot can arrive in many
different forms for the same target pose. In order to clearly specify the configuration form, the
robtarget variable also contains the robot configuration data.
Variables of the robtarget type are automatically created when the motion command is inserted by
auxiliary programming. Manually changing the internal value of the variable may lead to the non-
correspondence between the Pose and ConfData, and the robot cannot execute the motion command
normally.
& Warning
The use of Cartesian positions and orientations in robot programs is defined in the work object
frame. If the work object used in the end is not the same as that used during the initial
programming, the robot's motion will deviate from the desired path. Therefore, it shall be
confirmed that the changes in work object will not cause danger in the following two cases:
» Use the "Modify Command" function to change the wobj parameter of the command;
» The actual work object used is different from the one used in the program commands.
Improper use can result in personal injury or equipment damage!

Definition

trans
Spatial position
Data type: pos
The position offset stored in the reference frame.

rot
Orientation
Data type: orient
The orientation stored in the reference frame.

conf
Robot Configuration
Data type: confdata
To save the configuration data of the robot. Please refer to confdata for details.

extax
External Axes
Data type: double
The extax contains 6 members of double type and can store up to the position of 6 external axes.
If the external axis is a rotation axis, the unit is Degree; if the external axis is a linear axis, the unit is
mm.

Example

For example, in the variable list, a variable is defined as follows:

175
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1.17 signalxx

< New Variable

Variable Type

robtarget Y

cf1 0
Basic Info

cf2 O
Name robtarget0

o cf3 O

Description
Dimension + - No Array cts 0

cfs O
Select Variable

cfs O
Current ltem: robtarget0

cf7 O
Edit Value

cfx 1
X0

ext_joint[0] O
Y O

ext joint[1] 0
Z0
Qi o ext_joint[2] O
Q2 0 Eﬂjﬂiﬂt[a] 0
Q3 0 ext joint[4] O
Q4 0

ext_joint[3] 0

12.1 Variables

A Cartesian space pose named pl with the position and orientation (in quaternions) as shown above
is defined. The elbow is 10°, and the angles of the Axis 1, 3, 5, and 7 are between 0 and 90°. The
robot belongs to the first group of morphological configurations (see confdata for details), and all

external axes are in zero.

Explanation
Signalxx type variables are used to describe 1/O signals.
All signalxx type variables need to be defined in the "Input/Output” and then used in the program.
Direct declaration in the program is not supported.

Description

Signalxx currently only supports digital input and output, including the following variable types:

Variable type Used to describe... Description
signaldi Digital input signal The value is True or False, and only indicates the status
signaldo Digital output signal The value is True or False and is assigned to output

176
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1 Variables

A segment of continuous physical input port is defined as a
binary number that can be converted to decimal for use in
RL. It supports up to 16 DIs to constitute the group input.
Therefore, the value of signalgi ranges from 0 to (2”n -1),
with n as the number of DI points contained in group input

Digit group input

signalgi signal

A segment of continuous physical output port is defined as
a binary number that can be converted to decimal for use in
Digit group output RL. It supports up to 16 DOs to constitute the group output.
signal Therefore, the value of signalgo ranges from 0 to (2n -1),
with n as the number of DO points contained in the group
output

signalgo

The signaldo and signalgo types contain only signal references and can be assigned using separate
commands (e.g. SetDO, SetGO, etc.).
Signaldi and signalgi can be used to directly obtain the value of the corresponding input signal in the

program.
Example
Example 1
//Use the state of the digital input as a criterion for judgment
IF (dil == true)
do something...
ENDIF
Example 2
//Use the state of the digital group input as a criterion for judgment
For example, if the definition group input gi2 maps the first three bits of the 1 byte of Profinet 10,
then when the values of bit0 to bit2 are 0, 1, and 1, the value of gi2 is 110 (6 after being converted to
int). The same goes for group output (signalgo) as well.
IF (gi2 == 8)
do something...
endif
Notes

12.1.18 speed

» It is not supported to define/declare variables of type signalxx in the program. If such usage
occurs, the program will report an error. Before using variables of signalxx type, please
configure them in the IO signal list.

E Notes
1.

The scope of the signalxx variable is System, and its priority, when compared with other
scope types, is System> GLOBAL> LOCAL.

2. If'the variables declared in the Signal of the IO configuration interface and in the RL
programs have the same name, the variable of scope in a lower level will be selected.

Explanation
To define the speed of the robot and the external axes.
For users' convenience, the system presets the commonly used speed variables, which can be directly
selected through auxiliary programming. For details, please refer to Insert Command.

Definition

The speed-type variable contains 5 member variables: Joint Velocity Percentage, TCP Linear

Velocity, Orientation Velocity, External Axis Linear Velocity, and External Axis Angular Velocity.

Joint Velocity Percentage

Data type: double
It is used to specify the motion speed when the joint movement command is applied. It is applicable

to the commands MoveAbsJ and Movel. The value ranges from 1% to 100%.

177
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands
12.1 Variables

TCP Linear Velocity
Data type: double

It is used to define the linear velocity of the TCP. The value ranges from 0.001 mm/s to 7000 mm/s.

Orientation Velocity
Data type: double

It is used to define the rotation speed of the tool, ranging from 0.001 degrees/s to 500 degrees/s.

External Axis Linear Velocity
Data type: double

It is used to define the motion speed of the external linear axis, ranging from 0 mm/s to 5000 mm/s.

External Axis Angular Velocity
Data type: double

It is used to define the motion speed of the external rotary axes, ranging from 0 degrees/s to 1000
degrees/s.

Example

In the variable list:

Variable Type

speed 5

Basic Info

Name speed0

Description

Dimension + - No Array

Select Variable

Current Item: speed0

Edit Value

v_percent(%) 40

v_tcp(mmy/s) 300

v_ori(degree/s) 100

v_exl(mmy/s) 200

v_exj(degree/s) 100
The image above shows a definition of a speed variable named speed0, in which the joint rotation
speed is 40% of the maximum allowable speed, the TCP linear speed is 300 mm/s, the space rotation

speed is 100°/s, and the external axis angular velocity is 200°/s, and the external axis linear velocity
is 1,000 mm/s.

Predefined speed variables

The system predefines some common speed variables, as shown in the following table.

178
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1.19 tool

12.1 Variables

Name Joint ~ Velocity | TCP Linear | Orientation External ~ Axis | External Axis
Percentage Velocity Velocity Angular Velocity | Linear Velocity
v5 1% 5 mm/s 200°/s 1000°/s 5000 mm/s
v10 3% 10 mm/s 200°/s 1000°/s 5000 mm/s
v25 5% 25 mm/s 200°/s 1000°/s 5000 mm/s
v30 5% 30 mm/s 200°/s 1000°/s 5000 mm/s
v40 5% 40 mm/s 200°/s 1000°/s 5000 mnv/s
v50 8% 50 mm/s 200°/s 1000°/s 5000 mnv/s
v60 8% 60 mm/s 200°/s 1000°/s 5000 mm/s
v80 8% 80 mm/s 200°/s 1000°/s 5000 mm/s
v100 10% 100 mm/s 200°/s 1000°/s 5000 mm/s
v150 15% 150 mm/s 200°/s 1000°/s 5000 mnv/s
v200 20% 200 mm/s 200°/s 1000°/s 5000 mm/s
v300 30% 300 mm/s 200°/s 1000°/s 5000 mm/s
v400 40% 400 mm/s 200°/s 1000°/s 5000 mm/s
v500 50% 500 mm/s 200°/s 1000°/s 5000 mm/s
v600 60% 600 mm/s 200°/s 1000°/s 5000 mm/s
v800 70% 800 mm/s 200°/s 1000°/s 5000 mm/s
v1000 100% 1000 mm/s 200°/s 1000°/s 5000 mm/s
v1500 100% 1500 mm/s 200°/s 1000°/s 5000 mm/s
v2000 100% 2000 mm/s 200°/s 1000°/s 5000 mm/s
V3000 100% 3000 mm/s 200°/s 1000°/s 5000 mm/s
v4000 100% 4000 mm/s 200°/s 1000°/s 5000 mm/s
v5000 100% 5000 mm/s 200°/s 1000°/s 5000 mm/s
v6000 100% 6000 mm/s 200°/s 1000°/s 5000 mm/s
v7000 100% 7000 mm/s 200°/s 1000°/s 5000 mm/s
vmax 100% infinite 200°/s 1000°/s 5000 mm/s
E Notes
All space rotation speeds in the system's pre-defined speed variable are 200°/s. If there are special
requirements on the rotation speed of the end-effector of the robot, a new speed variable can be
defined for use according to the process requirements.

Explanation

The tool-type variables are used to record tool parameters, including TCP, orientation, and dynamic

parameters of the tools used by the robot.

The robot uses tools to interact with the outside world, so the tool variable will affect the motion of

the robot from the following aspects:

» Only the TCP will move according to the programmed path and speed. When the robot executes

a pure spatial rotation, only TCP will remain motionless;

» The motion path and speed specified during programming refer to the path and speed of the tool

frame relative to the work object frame. Therefore, replacing a well-calibrated tool or work

object does not affect the shape and speed of the path;

» When using external tools, the speed of programming refers to the speed of a work object

(relative to external tools).

Note that when using the external tool, tframe in the tool-type variable will record the zero position

and orientation offset of the external tool, while tload will record the dynamic parameters of the

gripper that is installed at the end-effector of the robot for grasping work object.

The data of the tool-type variable is stored in the database. When the program is loaded, it is read by
the program editor from the database. Therefore, do not try to modify the tool-type variable directly
in the program editor, and thus the unpredictable errors will be avoided. If you need to modify the
tool-type variable, please modify it through the calibration interface. See the Calibration of the tool
frame for details.

& Warning

Be sure to correctly define the dynamic parameters of the end-effector load of the robot, including
the tool itself and the two parts of the object captured by the tool. The wrong definition may lead

179
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1 Variables

to the following consequences:

» The robot cannot maximize the ability to use the servo system, resulting in degraded
performance;

» The accuracy of the path is reduced, and the positioning error increases;

» Overloading of mechanical components results in a reduction in life or damage.

Definition

robhold

tframe

Data type: bool

It is used to define whether the tool is installed on the robot. True indicates that the tool is installed
on the robot. False indicates that the tool is not installed on the robot and an external tool is being
used.

When making a jog or executing a program, only one of the robhold parameters can be True in the
tool/work object combination used at the same time. That is, if the robhold of the tool is True, the
corresponding work object robhold must be false, and vice versa, otherwise, the robot will prompt an
error, and it is impossible to make a jog or execute the corresponding program command.

Tool frame
Data type: pose
Record the tool frame of the tool used, including:
» TCP represents the offset in the x, y, and z directions relative to the robot end-effector flange
frame, in millimeters.
» The orientation offset of the tool frame relative to the flange frame is expressed in
quaternion. See the following figure for details:

Flange coordinate

Tool coordinate
system

system

H Notes

When using the external tool function, the TCP and orientation are defined relative to the world
frame.

180
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1 Variables

Tool coordinate
system

World coordinate
system

External tools

tload
Dynamic parameters of the tool
Data type: load
To record the dynamic parameters of the tool. For the common tool, tload describes the dynamic
parameters of the entire tool. For external tools, tload describes the dynamic parameters of the
gripper used by the robot (holding the work object).
For general tools installed on the robot, the load parameters include:
» The mass of the tool (weight), in kg;
» The center of gravity of the tool, described in the flange frame, in millimeters (mm);
» The direction of the principal axis of inertia, described in the flange frame; and
> The inertia magnitude of the tool along the principal axis of inertia, in kgm?. If all inertia

components are defined as 0 kgm?, the tool is treated as a Point Mass.

E Notes
If the robot is using an external tool, then the tload member is used to record the dynamic
parameters of the gripper installed on the robot. The meaning of the specific parameters remains
unchanged.
E Notes
Please note that the tload members only define the dynamic parameters of the gripper used by the
robot (holding the work object). The dynamic parameters of the gripped work object are not
included. To ensure that the robot performs optimally under all circumstances, you need to define
two tool variables to handle this situation:
» Atool saves all parameters of the gripper itself;
» Another tool saves all parameters of the gripper + gripped work object;
The use of different tools in the motion command would help implement the switching function
with or without load.

Example

181
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands
12.1 Variables

AN Robot Assist

L)
iz # -

< Input Callibrate Tool: tool1

Orientation
@ Euler O Quaternion

A0 B0 °Co
Position
X0 mm,Y 0 mm, Z 20 mm

Previous Step Next Step

2 Admin ¥ NB12s-R1

(O

W ¥ =

Identify Load for Tool: tool1

Tool Params Operation steps

Mass(kg) 4 Stepi:

Center of Gravity(mm) X 0 Y0 Z10 Please make sure the tool/wobj

is installed correctly.

Inertia Parameters
Step2:

Inertia Axi Eul terni
nertia Axis © tuler O Quatemion Please make the robot run in

A0 B O co the safe distance.
Inertia(kg.mm?) ix 0 iy 0 iz 0 Step3:
Turn to automatic mode and
Run Identification Program motor on.

UnlLoaded = Start Running Stepd:

Loaded Start Running Run identification program.

Previous Step Next Step
2= Program Speed —.— 20% ¥ @ 3

A work object named tool2 is defined, where the parameters are:

ONONORONONONO,

A Admin ¥ NB12s-R16

» The tool is mounted on the robot;

» TCP offsets in the XYZ directions relative to the flange frame are 100, 0, 220, and the orientation
is the same as the flange frame.

» The mass of the tool is 2kg, and the offset of the center of mass relative to the origin of the flange
frame in the XYZ directions are 20, 0, 50mm, respectively;

The tool is treated as a mass point and the inertia data is zero.

12.1.20 trigdata

Explanation

trigdata is used to store information data about the trigger events during robot motion, including
trigger conditions and trigger actions.

The trigger condition is usually reaching a specified location on the path; the trigger action can be
setting 10, setting variables, etc.

Variables of type trigdata cannot be defined by the assignment operator and can only be defined by a
specific RL command, so the information stored in each trigdata variable depends on the Trig

command as used, for example, the TriglO, etc.

182
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1 Variables

Then, it can be used by the corresponding movement commands TrigL, TrigC, TrigJ, etc.

Example

Example 1

12.1.21 wobj

The following example shows how to use the trigdata:

VAR trigdata gripopen
TriglO gripopen,0.5,do1,true
TrigL p1,v500,gripopen,fine,tooll

Explanation

wobj is an abbreviation for Work Object. Work object refers to an object processed, handled, or

transported by a robot.

All the positions used in the motion command are defined in the work object frame (if no work

object frame is specified, it defaults to the world frame. The world frame can be seen as a wobj0).

There are several benefits in doing this:

» The location of many processing points can be obtained from the design drawing of the work
object and used directly;

» When the robot is reinstalled or the work object is moved, you only need to re-calibrate the work
object frame to reuse the previous program and avoid reprogramming.

» With a suitable sensor provided, vibrations or slight movements of the work object can be
automatically compensated.

Under normal circumstances, if you do not define a specific work object frame, the control system

will then regard the world frame as the default work object frame wobj0. However, when using

external tools, the work object frame must be defined because the programming path and speed refer

to the path and speed of the work object, rather than the tool.

Usually, the work object frame is defined relative to the user frame, but if the user does not specify a

user frame, the work object frame is defined by default relative to the world frame. For details, see

the Robot's frames.

The work object actually consists of two frames, the user frame and the work object frame. Inserting

a user frame at the upper layer of the work object frame is to support the situation where multiple

identical work objects need to be machined. For an explanation of the defining relationships of the

relevant coordinates, see the explanation of oframe in the "Definitions" section.

E Notes

The data of the wobj-type variable is stored in the database. When the program is loaded, it is read
by the program editor from the database. Therefore, do not try to modify the wobj-type variable
directly in the program editor, and thus the unpredictable errors will be avoided. If you need to
modify the wobj-type variable, please modify it through the Calibration interface. For details,
please refer to the Definition of the work object.

Definition

robhold

ufprog

It is used to define whether the work object is mounted on the robot. True indicates that the work
object is mounted on the robot and the external tool is currently being used. False indicates that the

work object is not mounted on the robot and the normal tool is currently being used.

User Frame Programmed

Variable type: bool

It is used to define whether the user frame is fixed or moving. True indicates that the user frame is
fixed, False indicates that the user frame is moving, e.g., defines whether it is on an external

positioner or another robot.

183
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1 Variables

This value is mostly used when the robot is required to coordinate its movement with the positioner
or other robots.

ufmec
User Frame Mechanical Unit

Data type: string
The mechanical unit name is used to specify which mechanical unit the user frame is bound to. It is
useful only if ufprog is false.

oframe
Work Object Frame

Data type: pose
It is used to store the origin and orientation of the work object frame.

uframe id
Id of User Frame

Data type: int

It is used to store the id of the user frame. The corresponding user frame can be found by id.
When using normal tools (non-external tools), the frame definition chain is as follows:

» The work object frame is defined relative to the user frame;

» The user frame is defined relative to the world frame.

Tool coordinate
system

Work object
coordinate system

" User coordinate
system

When using external tools, the frame definition chain is as follows:
» The work object frame is defined relative to the user frame;
» The user frame is defined relative to the flange frame.

184
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands
12.1 Variables

Tool coordinate
system

Work object
coordinate system

Base coordinate
system

o ‘l
"‘—'—-—-—-—._._________‘ World coordinate

system

Example
In the variable list:
AN Robot Assist
¥ o
< Input Callibrate WorkObject: wobj2
Orientation
@ Euler O Quaternion
A0 °B 0O Cco
Position
X0 mm,Y 0 mm,Z 0 mm
Program Speed —.— 20% ¥ O % A Admin ¥ NB12s-
To define the work object named wobj2, where the parameters are:
» The work object is mounted on the robot;
> The work object frame is fixed and does not move with the external positioner or other robots;
» The coordinate values of the origin of the work object frame in the user frame are 300 mm, 600
mm, 200 mm, and the orientation is consistent with the user frame;
The user frame id is 1.
12.1.22 zone

185
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1 Variables

Explanation

The zone variable is used to define how a certain motion ends, or to define the size of the turning

zone between two motion trajectories.

For the same target point of robot commands, there are two processing methods in the motion

command:

1. When it is processed as a stop-point, the robot will move to the target point and reach the target
point at a speed of 0 before continuing to execute the next command,

2. When it is processed as a transition point, the robot will not move to the target point but will
start proceeding to the next target point at a place that is several millimeters away from such a
target point. The turning path will deviate from the programmed path. We call the transition

area between the two trajectories a turning area. See the following figure for details:

Turning radius

Programming

Turning zone target point

Starting point of
turning zone path

The size of the turning zone cannot exceed half of the path length. If it is exceeded, the system will
automatically reduce the turning zone to half the total path length.

The use of turning zones prevents the robot from starting and stopping frequently, significantly
reducing the cycle time.

Definition

distance

percent

Joint space trajectories and Cartesian space trajectories define turning zones with different
parameters. The variable contains two parts: distance and percent.

Size of turning zone in Cartesian space

Data type: double

It is used for the commands MoveL, MoveC, and MoveT to define the size of the turning zone for
Cartesian space trajectories, that is, when the robot moves to a point with a distance of several
millimeters to the target point, it starts to move to the next target point, in millimeters. The value
ranges from 0 to 200 mm.

Turning percentage

Data type: double

It is used for MovelJ and MoveAbslJ, indicating how far it is to the target angle when starting turning.
100% represents half the value of the entire rotation angle. For command MoveL with pure space-
rotation, the parameter Percent is used instead of Distance.

Example

For example, in the variable list, a variable is defined as follows:

186
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

Variable Type

zone .
Basic Info
MName zonel

Description target point

Dimension < =

Select Variable

Current ltem: zone0

Edit Value

distance 100

percent 50

No Array

12.1 Variables

A zone variable is defined, in which the size of the Cartesian turning zone is 100 mm and the size of

the joint space turning zone is 50%.

Pre-defined variables of turning zone

The system predefines some common turning zone variables, as shown in the following table.

Name zfges?:n tsl;r;;:g zone Turning percentage
fine 0 mm 0%

z1 1 mm 1%
z5 S mm 3%
z10 10 mm 5%
z15 15 mm 8%
720 20 mm 10%
z30 30 mm 15%
740 40 mm 20%
z50 50 mm 25%
z60 60 mm 30%
z80 80 mm 40%
z100 100 mm 50%
z150 150 mm 75%
7200 200 mm 100%

Use restrictions

In some special cases, the turning zone will be canceled. The system will report the log "Corner Path

Failed".

» At least one of the two trajectories is too short (1 mm/0.001 rad);

» The two trajectories are nearly parallel and the direction of motion is opposite;

» The two trajectories perform pure rotation with the motion axis reversed. Such that only the end-

effector axis rotates forward in the previous trajectory, and only the end-effector axis rotates

reverse in the latter trajectory.

When a warning for "Turning Zone Canceled" is generated, the program automatically treats the

affected command target point as a stop-point.

In addition to the special cases above, all logic commands will cancel the turning zone of the

previous motion command.

187

Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1 Variables

12.1.23 torqueinfo

Explanation

Describes the forces and torques applied to the robot
It includes joint space torque information and Cartesian space torque information

Definition
joint_torque
Data type: Joint space torque information

cart_torque
Data type: Cartesian space torque information

joint_torque.measure_torque
Data type: double array

Information of measured force in the joint space and the torque applied to each axis measured by the
force sensor

joint_torque.external torque
Data type: double array

Information of external force in the joint space, and information of the torque applied to each axis
measured by the controller based on the robot model and measured force

cart_torque.m_force
Data type: double array

Force in all directions (xyz) in the Cartesian space
cart_torque.m_torque

Data type: double array

Torque in all directions (xyz) in the Cartesian space

Examples

The following example shows how to use variable torqueinfo:

Example 1
Torquelnfo tmp_info = GetEndtoolTorque(tooll, wobjl)
//Obtain the information architecture of the torque applied to the tool at the end-effector of the robot
in the case of tooll wobjl

print(tmp_info.joint torque.measure torque)
print(tmp_info.joint torque.external torque)
//Print the measured force and external force of each axis

print(tmp_info.cart_torque.m_torque)
//Print Cartesian space torque

print(tmp_info.cart_torque.m_force[0])
print(tmp_info.cart_torque.m_torque[0])
//Print information of force and torque in X direction

12.1.24 SocketServer

Explanation

A Socket TCP server is established on the controller to listen for connections initiated by external
devices as the client. This server is only used to listen for connection requests and multiple
connections are supported. When a connection is established, a new SocketConn object is generated

for communication.

H Notes

1. Do not create (OpenDev) and destroy (CloseDev) server resources too often as it requires
time for system resource application and release. It is recommended to keep at least a
500ms time interval between creating and destroying resources, otherwise, system
resources will be overloaded and cause problems.

188
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1 Variables

2. This command only creates a server resource object, and the server creation is not
completed. The server needs to enter the listening state via OpenDev and SocketAccept.

3. The server supports multiple connections.

Definition

ip
Data type: string
The control system uses the ip parameter to match the network interface controller (NIC) and uses
the corresponding NIC for network listening. If this parameter is set to "0.0.0.0", it means listening
for the connections of all NICs. In most cases, it can be set to "0.0.0.0".

port
Data type: int
Listening port. When an external client initiates a connection, specify the value of the server port set
for this purpose.

name
Data type: string
The unique identifier of the server used in the RL program. It is unique within the project and can be
shared between multiple tasks without naming conflicts.

Examples

Example 1
SocketServer ss = {"192.168.0.160", 8090, "svr"} //Only listen for NIC with ip set to 192.168.0.160
SocketConn conn = SocketAccept("svr")

Example 2

12.1.25 SocketConn

SocketServer ss = {"0.0.0.0", 8090, "svr"} //Listen for all NICs of the robot
SocketConn conn = SocketAccept("svr")

Explanation

Socket TCP connection object, used for communication to external devices. There are two types:

1) The robot, as a client, initiates a connection and communication through the object to the TCP
server of the external device.

2) The robot acts as a server for communication connections to the counterpart device generated
when a connection is initiated by a TCP client of the external device. When multiple TCP client
connections are initiated by different external devices, one connection is generated for each
connection.

Definition

ip

port

name

Data type: string
When the robot is used as a client, this parameter indicates the ip of the external device's server.
When the robot is used as a server, this parameter indicates the ip of the external client when a

connection is established by the external device.

Data type: int
Listening port. When the robot initiates a connection, the server port of the external device should be
specified.

Data type: string
The unique identifier of the connection used in the RL program. It is unique within the project and
can be shared between multiple tasks among connections and between connection and server. Server

names should not conflict within the project.

189
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1 Variables

cache

Data type: int

Size of the cache, indicating max data received that can be cached. It can be left blank. 1 by default.

suffix

Data type: string

Terminator, indicating the end of a message. It can be left blank. "\r" by default.

attr

Data type: string

Connection attribute.

"incoming": Local server, connected by the opposite-end client. ip and port identify the client

information.

"outgoing": Local client, connected to the external server. ip and port identify the opposite-end server

connected.

"" and others: Unavailable connection, indicating that the connection has not been opened or

unestablished connection has been found.

state

Data type: string

Current communication connection status. Closed: connection closed; established: connection

established and working properly.

E Notes

1. When used as a client, the ip and port information should be set by the user. When used as
a server, the ip and port information should be automatically obtained from the accept
command. Do not modify these two values easily after the connection is established,
unless you are very clear about the use of these two values to avoid errors in program
logic and operation.

2. suffix can be reset at any time and can take effect until the next read. Use this feature with
caution, as it can cause communication data errors. suffix should be set before
communication and should not be modified again.

Examples

Example 1
//Server ip "192.168.0.202", port 8090, connection name "clt", cache default to 1, and suffix default to "\r"
SocketConn sennl = {"192.168.0.202", 8090, "clt"}

Example 2
//Server ip "192.168.0.203", port 8091, connection name "clt1", cache 2, and suffix default to "\r"
SocketConn scnn2 = {"192.168.0.203", 8091, "clt1", 2}

Example 3
//Server ip "192.168.0.204", port 8092, connection name "clt2", cache 2, and suffix "\n"
SocketConn scnn3 = {"192.168.0.204", 8092, "clt2", 2, "\n"}

Example 4

//Used as server, connection established by the external device

//Server ip "192.168.0.204", port 8092, connection name "clt2", cache 2, and suffix "\n"
SocketConn conn = SocketAccept("svrl")

Print(conn.ip) //ip of the external device

Print(conn.port) //Port of the external device to establish the connection
Print(conn.cache) //Buffer queue for receiving messages

Print(conn.suffix) //Sending and receiving suffix

190
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.2 Functions

12.2 Functions

12.2.1 Functions

Explanation

Use of functions can simplify the code structure, improve the readability and reuse rate of code. The
user can define the program segment as a new function that needs to be executed frequently so that it
can be conveniently called in the main program at any time.

Function definition

The function is defined as follows:
SCOPE PROC RoutineName()

//do something

ENDPROC

Where:

1. SCOPE is the function scope, which supports both the GLOBAL and LOCAL,;

2. PROC is the defining keyword of the function;

3. RoutineName is the function name. The naming rules are the same as the variable naming rules.
For details, see the Variable naming rules.

Function call

When calling a function, enter the function name directly in the program editor:

RoutineName()

Only other GLOBAL-level functions in this project or LOCAL-level functions in this module file
can be called. Recursive calls are not supported. Cross calls between two sub-functions is also not
supported.

Calling a function is treated as a separate program command in the compiler.

Notes

» 1Itis not allowed to define a function in a function.

12.3 Commands

12.3.1 Variable type conversion

12.3.1.1.1 StrToByte

Explanation

StrToByte is used to convert a string with a particular format to byte data.

Return value

Data type: byte

It represents the byte data obtained from the conversion.

Definition

StrToByte (ConStr, [\Hex] | [\Okt] | [\Bin] | [\Char])
ConStr
Data type: string

191
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

It represents the string to be converted. If the optional parameter does not exist, it is converted to

decimal by default.
\Hex

Identifier, convert by hexadecimal.
\Okt

Identifier, convert by octal.
\Bin

Identifier, converted in binary.
\Char

Identifier, converted according to Ascii character format.
Example
Example 1

VAR byte data

data = StrToByte(“10”) //10

data = StrToByte(“AE” \Hex) /174
data = StrToByte(“176” \Okt) /126
data = StrToByte(“00001010” \Bin) /10
data = StrToByte(“A” \Char) //65

Use restrictions

In the decimal system, the range cannot exceed 0-255, otherwise, an error is reported;
In the hexadecimal system, the range cannot be larger than FF, otherwise, an error is reported,
In the octal system, the range cannot be larger than 377, otherwise, an error is reported;

YV V V VY

In the binary system, the range cannot be larger than 11111111, otherwise, an error is reported.

12.3.1.1.2 StrToDouble

Explanation

StrToDouble is used to convert a string to floating-point data.

Return value

Data type: double
Floating-point variable converted from the string.

Definition
StrToDouble (ConStr)
ConStr
Data type: string
It represents the string to be converted.
Example
Example 1

VAR double db_data = StrToDouble("-10") //-10.0
db_data = StrToDouble("45.678") /1 45.678

Use restrictions

> If a non-decimal floating-point number is entered, an error is reported.

192
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.1.1.3 StrTolnt

Explanation

StrTolnt is used to convert a string to integer data.

Return value

Data type: int
Integer variable, converted from the string.

Definition
StrTolnt (ConStr)
ConStr
Data type: string
It represents the decimal numeric string to be converted.
Example
Example 1

VAR int int_data = StrTolnt("-10") //-10
int_data = StrToInt("45678") // 45678

Use restrictions

> The range of variables to be converted is -23' - 231, If the range is exceeded, an error is reported.
» If a non-decimal number is entered, an error is reported.

12.3.1.1.4 ByteToStr

Explanation

It is used to convert byte-type data to string-type data in a specified format.

Return value

Data type: string
The converted string-type data.

Definition

ByteToStr (BitData [\Hex] | [\Okt] | [\Bin] | [\Char])
BitData

Data type: byte

The byte-type data to be converted. Convert by decimal by default.
\Hex

Identifier, convert by hexadecimal.
\Okt

Identifier, convert by octal.
\Bin

Identifier, convert by binary.
\Char

Identifier, convert under Ascii character format.
Example
Example 1

VAR byte datal = 122
VAR string strl
strl = ByteToStr(datal) //°122”

193
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

str] = ByteToStr(datal \Hex) //”7A”

str] = ByteToStr(datal \Okt) //°172”

str] = ByteToStr(datal \Bin) //”01111010”

strl = ByteToStr(datal \Char) //’z”

Define byte-type variable datal and assign it with 122, convert datal to string-type data: 122 by
decimal; 7A by hexadecimal;172 by octal; 01111010 by binary; and

z by character.

12.3.1.1.5 DecToHex

Explanation

It is used to convert a decimal number to a hexadecimal number.

Return value

Data type: string
It represents the hexadecimal data obtained from the conversion, represented by 0-9, a-f, A-F.

Parameter

str

DecToHex(str)

Data type: string
It represents the decimal data to be converted, represented by 0-9.

Use restrictions

» Data range from 0 to 2147483647 or 0 to 7ffftfftf.

12.3.1.1.6 DoubleToByte

Explanation

It is used to convert a double-type variable or a double array to a byte array.

Return value

Data type: byte array
It represents the byte array obtained from the conversion, each double data is converted to 8 byte-
type data.

Parameter

doul

DoubleToByte(doul)

Data type: double
The double-type variable to be converted.

12.3.1.1.7 DoubleToStr

Explanation

It is used to convert a double-type variable to a string.

Parameter

DoubleToStr(Val, Dec)

194
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

Val

Dec

12.3 Commands

Data type: double
The double-type variable to be converted.

Data type: int
The number of decimal places to be kept.

Use restrictions

> The maximum number of decimal places is 15 digits.

12.3.1.1.8 HexToDec

Explanation

It is used to convert a hexadecimal number to a decimal number.

Return value

Decimal Integer data obtained from the conversion, represented by 0-9.

Parameter

str

HexToDec(str)

Data type: string
The hexadecimal data to be converted, represented by 0-9, a-f, A-F.

Use restrictions

12.3.1.1.9 IntToByte

> Data range from 0 to 2147483647 or 0 to 7ftfttftt.

Explanation

It is used to convert an int-type variable or an int array to a byte array.

Return value

It represents the byte array obtained from the conversion, each int data is converted to four byte data.
Data type: byte array

Parameter

intl

IntToByte(int1)

Data type: int or int array
It represents the int-type variable or int array to be converted.

Use restrictions

12.3.1.1.10 IntToStr

» Data range from -2147483647 to 2147483647.

Explanation

It is used to convert integer to string.

Return value

It represents the string obtained from the conversion.

195
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Parameter

IntToStr(intl)
intl
Data type: int
It represents the integer to be converted.

Use restrictions

» Data range from -2147483647 to 2147483647.

12.3.2 Motion commands

12.3.2.1 MoveAbs]J

Explanation

MoveAbs] (Move Absolute Joint) is used to move the robot and the external axis to a position
defined by the angle of the axis for rapid positioning or moving the robot to a precise axis angle. All
axes move synchronously and the end-effector of the robot moves along an irregular curve. Please be
aware of the risk of collision.

The tool parameter used in the MoveAbsJ command would not affect the end position of the robot,
but the tool parameters are still being used by the controller for dynamics calculations.

Parameter

MoveAbs] ToJointPos, Speed, Zone, Tool, [Wobj]
TThe parameter in [] is optional and can be omitted.

TojointPos
Target joint angle (7o Joint Position)

Data type: jointtarget
The target angle and position value of the robot and the external axis.

Speed
Motion Speed

Data type: speed

It is used to specify the motion speed of the robot when it executes MoveAbslJ, including the
translation speed of the robot end-effector, the rotation speed, and the motion speed of the external
axis.

Zone
Turning Zone

Data type: zone
It is used to define the size of the turning zone for the current trajectory.

Tool
Data type: tool

The tool used when executing the trajectory.
The command MoveAbsJ calculates the motion speed and the size of the turning zone using the tool's
TCP data.
[Wobj]
Work Object
Data type: wobj
The work object used when executing this trajectory.

When the tool is installed on the robot, this parameter can be ignored;

When using external tools, this parameter must be specified, and the robot will calculate the motion

speed and the size of the turning zone by using the data saved in wobj.

196
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Example

Example 1

Example 2

The following are some examples for MoveAbsJ:

MoveAbs]J j10, v500, fine, tooll

The robot moves along an irregular path at a velocity of v500 to the absolute joint angle as defined
by j10 using tooll, with a turning zone of 0.

MoveAbs] startpoint, v1000, z100, gripper, phone

The robot moves along the irregular path to the absolute joint angle defined by the startpoint at a
velocity of v1000 in the work object frame by using the tool gripper, with a turning zone of 100 mm.

12.3.2.2 Movel

Explanation

Movel (Move The Robot By Joint Motion) is used to move the robot from one point to another when
the motion trajectory of the robot end-effector is not required. All axes move synchronously and the
end-effector of the robot moves along an irregular curve. Please be aware of the risk of collision.
The biggest difference between the commands MoveJ and MoveAbs] is that the given target point
format is different. The target point of Movel is the spatial pose of the tool (TCP) rather than the
joint axis angle.

Parameter

ToPoint

Speed

Zone

Tool

[Wobj]

Movel ToPoint, Speed, Zone, Tool, [Wobj]
The parameter in [] is optional and can be omitted.

Target pose (To Point)
Data type: robtarget

The target position described in the Cartesian space.

Motion Speed

Data type: speed

It is used to specify the motion speed of the robot when it executes MovelJ, including the translation
speed of the robot end-effector, the rotation speed, and the motion speed of the external axis.

Turning Zone
Data type: zone
It is used to define the size of the turning zone for the current trajectory.

Data type: tool

The tool used when executing the trajectory.

The command Move] calculates the motion speed and the size of the turning zone using the tool's
TCP data.

Work Object

Data type: wobj

The work object used when executing this trajectory.

When the tool is installed on the robot, this parameter can be ignored;

When using external tools, this parameter must be specified, and the robot will calculate the motion

speed and the size of the turning zone by using the data saved in wob.

197
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Example
The following are some examples for Movel:

Example 1
Movel] p30, v100, z50, tooll
The robot moves the TCP along the irregular path to the target point defined by p30 at a velocity of
v100 using the tooll, with a turning zone of 50 mm.

Example 2
Movel endpoint, v500, z50, gripper, wobj2
The robot moves the TCP along the irregular path to the target point defined by the endpoint at a
velocity of v500 in the work object frame wobj2 by using the gripper, with a turning zone of 50 mm.

12.3.2.3 MoveL

Explanation
MoveL (Move Line) is used to move the TCP along a straight line to a given target position.
When the starting and ending orientations are different, the orientation will be rotated synchronously
with the position to the endpoint.
Since the translation and rotation speeds are specified separately, the final motion time of the MoveL
command depends on the change time of orientation, position, and elbow (whichever is longer) in
order not to exceed the specified speed limit. Therefore, when performing certain trajectories (for
example, small displacements but with large changes in orientation), if the robot is moving at a
significantly slower or faster speed, please check whether the rotation speed setting is reasonable.
When you need to keep the TCP stationary by only adjusting the tool orientation, you can achieve
this by specifying the starting point and endpoint for MoveL with the same position but with a
different orientation.

Parameter
MoveL ToPoint, Speed, Zone, Tool, [Wobj]
The parameter in [] is optional and can be omitted.

ToPoint
Target pose (7o Point)
Data type: robtarget
The target position described in the Cartesian space.

Speed
Motion Speed
Data type: speed
It is used to specify the motion speed of the robot when it executes MoveL, including the translation
speed of the robot end-effector, the rotation speed, and the motion speed of the external axis.

Zone
Turning Zone
Data type: zone
It is used to define the size of the turning zone for the current trajectory.

Tool
Data type: tool
The tool used when executing the trajectory. The speed in the command refers to the tool’s TCP
speed and rotation speed.

[Wobj]

Work Object

Data type: wobj

The work object used when executing this trajectory.

When the tool is installed on the robot, this parameter can be ignored;

198
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

When using external tools, this parameter must be specified, and the robot will calculate the motion
speed and the size of the turning zone by using the data saved in wob.

Example
The following are some examples for MoveL:

Example 1
MoveL p10, v1000, z50, tool0
The robot moves the TCP along the straight path to the target point defined by p10 at a velocity of
v1000 using the tool0, with a turning zone of 50 mm

Example 2
MoveL endpoint, v500, z50, gripper, wobj2
The robot moves the TCP along the straight path to the target point defined by the endpoint at a
velocity of v500 in the work object frame wobj2 by using the gripper, with a turning zone of 50 mm.

12.3.2.4 MoveC

Explanation
MoveC (Move Circle) is used to move the TCP along the arc through the middle auxiliary point to
the given target position.
When the starting and ending orientations are different, the orientation will rotate synchronously as
the position moves to the end position. The orientation at the auxiliary point does not affect the arc
motion process.
Since the translation and rotation speeds are specified separately, the final motion time of the MoveC
command depends on the change time of orientation, position, and elbow (whichever is longer) in
order not to exceed the specified speed limit. Therefore, in certain trajectories (for example, small
displacements but with large changes in orientation), if the robot is moving at a significantly slower
or faster speed, please check whether the rotation speed setting is reasonable.

Parameter
MoveC AuxPoint, ToPoint, Speed, Zone, Tool, [Wobj]
The parameter in [] is optional and can be omitted.

AuxPoint
Auxiliary Point
Data type: robtarget
The position of the auxpoint described in the Cartesian space is used to determine the size of the arc
and the direction of motion. The orientation of this point does not affect the execution of the final
trajectory.

ToPoint
Target pose (To Point)
Data type: robtarget
The target position described in the Cartesian space.

Speed
Motion Speed
Data type: speed
It is used to specify the motion speed of the robot when it executes MoveC, including the translation
speed of the robot end-effector, the rotation speed, and the motion speed of the external axis.

Zone

Turning Zone
Data type: zone
It is used to define the size of the turning zone for the current trajectory.

199
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

Tool

[Wobj]

12.3 Commands

Data type: tool
The tool used when executing the trajectory. The speed in the command refers to the tool’s TCP
speed and rotation speed.

Work Object

Data type: wobj

The work object used when executing this trajectory.

When the tool is installed on the robot, this parameter can be ignored;

When using external tools, this parameter must be specified, and the robot will calculate the motion
speed and the size of the turning zone by using the data saved in wobj.

Example

Example 1

Example 2

The following are some examples for MoveC:

MoveC p10, p20, v1000, z50, tool0

The robot moves the TCP along the arc, passing through the p10 point to the target point defined by
P20 at a velocity of v1000 using the tool0, with a turning zone of 50 mm.

MoveC auxpoint, endpoint, v500, z50, gripper, wobj2

The robot moves the TCP along the arc, passing through auxpoint to the target point defined by the
endpoint at a velocity of v500 in the work object frame wobj2 by using the gripper, with a turning
zone of 50 mm.

12.3.2.5 MoveT

Explanation

MoveT (Move trochoid) is used to move the TCP to a given target position through rotary stepping
with a trochoid passing through auxiliary points.

When the starting and ending orientations are different, the pose will rotate synchronously as the
position moves to the end position. The orientation at the auxiliary point does not affect the spiral
motion process.

Since the translation and rotation speeds are specified separately, the final motion time of the MoveT
command depends on the change time of orientation, position, and elbow (whichever is longer) in
order not to exceed the specified speed limit. Therefore, in certain trajectories (for example, small
displacements but with large changes in orientation), if the robot is moving at a significantly slower
or faster speed, please check whether the rotation speed setting is reasonable.

Parameter

AuxPoint

ToPoint

MoveC AuxPoint, ToPoint, Radius, Step, Speed, Zone, Tool, [Wobj]

The parameter in [] is optional and can be omitted.

Auxiliary Point

Data type: robtarget

The position of the auxpoint described in the Cartesian space is used to determine the size of the arc
and the direction of motion. The orientation of this point does not affect the execution of the final

trajectory.

Target pose (To Point)
Data type: robtarget
The target position described in the Cartesian space.

200
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

Radius

Step

Speed

Zone

Tool

[Wobj]

12.3 Commands

Cycloid radius
Data type: double

Radius of trochoid advance, in mm

Step length
Data type: double
Step length of trochoid advance, in mm

Motion Speed

Data type: speed

It is used to specify the motion speed of the robot when it executes MoveT, including the translation
speed of the robot end-effector, the rotation speed, and the motion speed of the external axis.

Turning Zone
Data type: zone
It is used to define the size of the turning zone for the current trajectory.

Data type: tool
The tool used when executing the trajectory. The speed in the command refers to the tool’s TCP
speed and rotation speed.

Work Object

Data type: wobj

The work object used when executing this trajectory.

When the tool is installed on the robot, this parameter can be ignored,

When using external tools, this parameter must be specified, and the robot will calculate the motion
speed and the size of the turning zone by using the data saved in wobj.

Example

Example 1

The following are some examples for MoveT:

MoveT p10, p20, 150, 50, v1000, z50, tool0

With tool0, the robot TCP draws a trochoid that passes point p10 in an arc at a velocity of v1000.
With a trochoid radius of 150 mm and a step of 50 mm, the TCP finally moves to the target position
defined by p20, with a turning zone size of 50 mm.

p20

p10

12.3.2.6 SearchL

Explanation

SearchL (Search Liner) is used to search the position when moving the TCP along a straight line.
During the movement, the robot will monitor a digital input (DI) signal. When the signal status
monitored matches the trigger mode, the robot immediately reads the current position.

The command can be used when the tool fixed to the manipulator is a probe used for surface

201
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

detection. Use the SearchL command to obtain the outline coordinates of the work object.
The command can only be used for motion tasks.

Parameter

action

di

trigger mode

SearchL [action,] di, [trigger mode,] save rob, target rob, Speed, Tool [,Wobj]
The parameter in [] is optional and can be omitted.

Action after triggering DI

Data type: keyword

Blank: no stop

\Stop: quick stop, which may cause the robot to deviate from the path. But the robot stops quickly.
Only available when the speed is below v100

\PStop: planned stop. The robot will stop on the specified path, without speed limits

Data type: DI signal
SearchL command triggers signal of specified action, and user-defined DI signal is used

DI signal trigger mode

Data type: keyword

Blank: posedge triggering by default
\Flanks: edge triggering (posedge/negedge)
\Posflank: posedge triggering

\Negflank: negedge triggering

\Highlevel: high-level triggering
\Lowlevel: low-level triggering

save rob
Data type: robtarget
Save the point position of the position data when the robot triggers the signal
target_rob
Data type: robtarget
Target point position of linear motion
Speed
Motion Speed
Data type: speed
It is used to specify the motion speed of the robot when it executes Search, including the translation
speed of the robot end-effector, the rotation speed, and the motion speed of the external axis.
Tool
Data type: tool
The tool used when executing the trajectory. The speed in the command refers to the tool’s TCP
speed and rotation speed.
[Wobj]
Work Object
Data type: wobj
The work object used when executing this trajectory.
When the tool is installed on the robot, this parameter can be ignored;
When using external tools, this parameter must be specified, and the robot will calculate the motion
speed and the size of the turning zone by using the data saved in wobj.
Example
The following are some examples for SearchL:
Example 1

SearchL di0, save rob, target rob, v500, tool0
The robot uses tool0 and TCP moves towards target rob in a straight line at v500. If di0 jumps to
high during the motion, the robot's coordinate information at the time of the signal jump is recorded

in save_rob.

202
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Example 2
SearchL \PStop, di0, \Lowlevel, save rob, target rob, v500, tool0
The robot uses tool0 and TCP moves towards target rob in a straight line at v500. If di0 is low during
the motion, the robot will immediately have a planned stop and record the robot's coordinate
information in save _rob when the signal is detected to be low.
12.3.2.7 SearchC
Explanation
SearchC (Search Circle) is used to search for a position when moving the TCP along a circle.
During the movement, the robot will monitor a digital input (DI) signal. When the signal status
monitored matches the trigger mode, the robot immediately reads the current position.
The command can be used when the tool fixed to the manipulator is a probe used for surface
detection. Use SearchC command
to obtain the outline coordinates of the work object.
The command can only be used for motion tasks.
Parameter
SearchC [action,] di, [trigger mode,] save rob, aux_rob, target rob, Speed, Tool [,Wobj]
The parameter in [] is optional and can be omitted.
action
Action after triggering DI
Data type: keyword
Blank: no stop
\Stop: quick stop, which may cause the robot to deviate from the path. But the robot stops quickly.
Only available when the speed is below v100
\PStop: planned stop. The robot will stop on the specified path, without speed limits
di

trigger mode

save rob

aux_rob

target rob

Speed

Data type: DI signal
SearchC command triggers signal of specified action, and user-defined DI signal is used

DI signal trigger mode

Data type: keyword

Blank: posedge triggering by default
\Flanks: edge triggering (posedge/negedge)
\Posflank: posedge triggering

\Negflank: negedge triggering

\Highlevel: high-level triggering
\Lowlevel: low-level triggering

Data type: robtarget
Save the point position of the position data when the robot triggers the signal

Data type: robtarget
Auxiliary point during circular motion

Data type: robtarget
Target point position of circular motion

Motion Speed
Data type: speed

203
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

It is used to specify the motion speed of the robot when it executes Search, including the translation
speed of the robot end-effector, the rotation speed, and the motion speed of the external axis.

Tool
Data type: tool

The tool used when executing the trajectory. The speed in the command refers to the tool’s TCP
speed and rotation speed.
[Wobj]
Work Object
Data type: wobj
The work object used when executing this trajectory.
When the tool is installed on the robot, this parameter can be ignored;
When using external tools, this parameter must be specified, and the robot will calculate the motion
speed and the size of the turning zone by using the data saved in wobj.

Example

The following are some examples for SearchC:

Example 1
SearchC di0, save rob, aux_rob, target _rob, v500, tool0

The robot uses tool0 and TCP moves at a speed of v500 towards target rob in a circle after passing
auxiliary point aux_rob. If di0 jumps to high during the motion, the robot's coordinate information at
the time of the signal jump is recorded in save rob.

Example 2
SearchC \PStop, di0, \Flanks, save rob, target rob, v500, tool0

The robot uses tool0 and TCP moves at a speed of v500 towards target rob in a straight line after
passing auxiliary point aux_rob. If di0 jumps from low to high or from high to low during the
motion, the robot immediately has a planned stop and the robot's coordinate information at the time
of the signal jump is recorded in save rob.

12.3.3 Trigger command

12.3.3.1 TriglO

Explanation

TrigglO is used to set a trigdata as an output I/O trigger during the motion. Digital output DO and
digital group output GO are supported.

Definition

TriglO TrigData,Distance,RefStart,SignalName, Value

Parameter:

TrigData (data type: trigdata) is a variable used to store the trigger data set by this TriglO.

Distance (data type: double, and non-negative (negative numbers are treated as 0)) defines the
location offset of the trigger event on the path. Whether the location offset is relative to the path start
or end is defined by RefStart;

RefStart (data type: bool) defines whether the trigger position is relative to the start point (true) or the
end point (false).

SignalName (data type: signaldo or signalgo) is the signal name of the digital output or digital group
output associated with this defined 1O event, which must be an output signal that has been set
correctly; //add

Value (data type: bool or int) defines the target value of the output signal when an 10 event is
triggered. The data type of the given value should match the SignalName type.

Example

Example 1
Refer to the TrigL example;

204
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.3.2 TrigReg

Explanation

TrigReg is used to set a trigdata to modify the register value during the motion; register types
supported include int16, bool, float, and bit.

Definition

TrigReg TrigData,Distance,RefStart,RegName, Value

Parameter:

TrigData (data type: trigdata) is a variable used to store the trigger data set by this TriglO.

Distance (data type: double, and non-negative (negative numbers are treated as 0)) defines the
location offset of the trigger event on the path. Whether the location offset is relative to the path start
or end is defined by RefStart;

RefStart (data type: bool) defines whether the trigger position is relative to the start point (true) or the
end point (false).

RegName refers to the register name, and the data type is not available. Note: Registers can not be
created in RL. The user needs to create new registers through "Robot -> Communication ->
Register";

Value (data type int16, bool, float, or bit) defines the target value of the register when a register
modification event is triggered. The data type of the given value should match the RegName type; if
the value specified by the user mismatches with the register type, the type will be transformed
automatically.

Example

Example 1
Refer to the TrigL example;

12.3.3.3 TrigL

Explanation

Like MoveL, TrigL is a command to perform linear motion in space. The difference is that TrigL can
perform predefined operations at several specified positions during the motion; the two commands
are the same in the number and meaning of other parameters.

Definition

TrigL ToPoint,Speed, Trigger,Zone, Tool,[Wobj]

Parameter:

ToPoint, or target pose (data type: robtarget), describes the target pose in Cartesian space;

Speed (type: speed) is used to specify the motion speed of the robot when it executes MoveL,
including the translation speed of the robot end-effector, the rotation speed, and the motion speed of
the external axis;

Trigger, or trigger condition and action, (type: trigdata; trigdata) must be the trigdata processed with
TrigX command, otherwise, the compiler will report an error when coming to this line.

Zone, or Turning zone (type: zone) is used to define the size of the turning zone for the current
trajectory;

Tool (type: tool);

[Wobj], or work object (type: wobj) refers to the work object used when executing this trajectory.
When the tool is installed on the robot, this parameter can be ignored; When using external tools, this
parameter must be specified, and the robot will calculate the motion speed and the size of the turning
zone by using the data saved in wobj.

205
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Example

Example 1

VAR trigdata tcl
VAR trigdata tc2
VAR trigdata tc3

//Set tcl, tc2, tc3

TriglO tcl,0,true,do2,true

TriglO tc2,60,false,do2,false

TrigReg tc3,80,true,r0,false //r0 is a bool type register

//Motion

MoveL p1,v500,z50,tool1
TrigL p2,v500,tc1,z50,to0l1
TrigL p3,v500,tc2,fine,tool1
TrigL p4,v500,tc3,fine,tool 1

10 will be false here
/{/

L — _gt_}":'m

o T— pd
// & —
e
pl ST

A \
/ Af\:“‘“‘k_:khx““*—xh do? will be false here
\ -

PR T
do2 will be true here ~—e p2

-

12.3.3.4 TrigC

Explanation

TriggC is similar to MoveC in that it is a command to execute circular motion. The difference is that
TriggC can perform predefined operations at several specified positions during the motion; the two

commands are the same in the number and meaning of other parameters.

Definition

TrigC AuxPoint,ToPoint,Speed, Trigger,Zone,Tool,[Wobj]

Parameter:

AuxPoint, or Auxiliary Point (data type: robtarget), describes the target pose in Cartesian space;
ToPoint, or target pose (data type: robtarget), describes the target pose in Cartesian space;

Speed (type: speed) is used to specify the motion speed of the robot when it executes MoveL,
including the translation speed of the robot end-effector, the rotation speed, and the motion speed of
the external axis;

Trigger, or trigger condition and action, (type: trigdata; trigdata) must be the trigdata processed with
TrigX command, otherwise, the compiler will report an error when coming to this line.

Zone, or Turning zone (type: zone) is used to define the size of the turning zone for the current
trajectory;

Tool (type: tool);

[Wobj], or work object (type: wobj) refers to the work object used when executing this trajectory.

206
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

When the tool is installed on the robot, this parameter can be ignored; When using external tools, this
parameter must be specified, and the robot will calculate the motion speed and the size of the turning
zone by using the data saved in wobj.

Example

Example 1
VAR trigdata tcl

//Set tcl
TriglO tcl,0,true,do2,true

//Motion
MoveL p1,v500,z50,tool1
TrigC p2,p3,v500,tcl,fine,tooll

pl p2

™~

do2 will be true here

p3

12.3.4 Force control commands

12.3.4.1 CalibSensorError

Explanation
It is used to clear the six-dimensional force measurement on the end-effector and use the current
measurement as zero point.
Definition
CalibSensorError
No parameters, and can be used directly.
Example
Example 1

Fclnit Tooll, Wobj0, 0

FcStart

SetSensorUseType 1

CalibSensorError

Set software zeroing for the six-dimensional force measurement and clear the zero.

Use restrictions

» This interface can only be called after executing SetSensorUseType 1, i.e. set software zeroing
for the six-dimensional force measurement. If not, the end-effector six-dimensional

measurement will not be cleared successfully.

207
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.4.2 Fclnit

Explanation
It is used for initialization before the force control is enabled, such as setting the work object, tool,
and force control frame.
Definition
Fclnit Tool, Wobj, ForceFrameRef
Tool
Data type: pose
The tool used for force control. The origin of the force control frame is the TCP of the tool (the
orientation is the same as the orientation of the frame selected in the third parameter). Note that all
adapter flanges used need to be included in the definition of the tool.
Wobj
Data type: pose
The work objects used for force control. Many force control functions are defined relative to the
work object frame, such as the orientation of the force control frame, the search mode, and
termination conditions. This parameter is Wobj0 by default.
ForceFrameRef
Data type: int
It is used to define the frame to which the force control frame is relative. It supports:
0: World frame
1: Work object frame
2: Tool frame
The default value is the work object frame (0).
Example
Example 1

Fclnit Tooll, Wobj0, 0
Initialize force control, and define the tooll and work object wobj0 used when force control is
enabled, and the definition of force control frame in relative to the world frame.

Use restrictions

» Fclnit is not allowed to be called again between Fclnit and FcStop.

12.3.4.3 SetControlType

Explanation

It is used to set the impedance control type.
Definition

SetControlType ctrl_type
ctrl type

Data type: int

Impedance control type, including:
0: Joint impedance

1: Cartesian impedance

208
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Example

Example 1

Fclnit Tooll, Wobj0, 0
SetControlType 0
Set joint impedance as the impedance control mode after executing Fclnit.

Use restrictions

» The impedance type can only be set after executing Fclnit and before executing FcStart.

12.3.4.4 SetSensorUseType

Explanation

It is used to set how to use the six-dimensional force measurement on the end-effector.

Definition

sensor_use_type

SetSensorUseType sensor_use type

Data type: int
Sensor usage method, supporting:
0: Dynamic compensation

1: Software zeroing

Example

Example 1

Fclnit Tooll, Wobj0, 0

FcStart

SetSensorUseType 0

Set dynamic compensation as the six-dimensional force measurement, which means the value can be

used directly without zeroing.

Use restrictions

» This interface can only be called after executing FcStart and before executing FcStop. If not, the
use method of the end-effector six-dimensional measurement will not be set successfully.

12.3.4.5 SetCartNSStiff

Explanation

It is used to set the null-space impedance stiffness.

Definition

cart_ns_stiff

SetCartNSStiff cart ns_stiff

Data type: double
Cartesian null-space impedance stiffness, range: 0~4, in N.m/rad.

Example

Example 1

Fclnit Tooll, Wobj0, 0

SetControl Type 1

SetCartNSStiff 2

Set Cartesian impedance as the impedance control mode and the null-space impedance stiffness as 2.

Use restrictions

209
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

» This interface can only be called after executing SetControlType 1, that is, setting Cartesian
impedance as the impedance control mode.

If not, the null-space impedance parameters will not be set successfully.

12.3.4.6 SetIntCtrlStiffVec

Explanation

It is used to set the joint impedance stiffness.
Definition

SetIntCtrlStiffVec jnt1_stiff, jnt2_stiff, jnt3_stiff, jnt4_stiff, jntS_stiff, jnt6_stiff, jnt7 stiff
jntl_stiff

Data type: double

Impedance stiffness of joint 1, range: 0~1500, in Nm/rad.
Int2_stiff

Data type: double

Impedance stiffness of joint 2, range: 0~1500, in Nm/rad.
Int3_stiff

Data type: double

Impedance stiffness of joint 3, range: 0~1500, in Nm/rad.
Int4_stiff

Data type: double

Impedance stiffness of joint 4, range: 0~1500, in Nm/rad.
IntS_stiff

Data type: double

Impedance stiffness of joint 5, range: 0~100, in Nm/rad.
Int6_stiff

Data type: double

Impedance stiffness of joint 6, range: 0~100, in Nm/rad.
Int7_stiff

Data type: double

Impedance stiffness of joint 7, range: 0~100, in Nm/rad.
Example
Example 1

Fclnit Tooll, Wobj0, 0

SetControl Type 0

SetJntCtrlStiffVec 1500,1500, 1500,1500,100,100,100

Set the joint impedance as the impedance control mode and the impedance stiffness of joints 1~7 as
1500, 1500, 1500, 1500, 100, 100, 100, respectively.

Use restrictions

» This interface can only be called after executing SetControl Type 0, that is, setting joint
impedance as the impedance control mode.

If not, the joint impedance parameters will not be set successfully.

12.3.4.7 SetCartCtrlStiftVec

Explanation

It is used to set the Cartesian impedance stiffness.

Definition

trans_stiff x

SetCartCtrlStiffVec trans_stiff x, trans_stiff y, trans_stiff z, rot_stiff x, rot_stiff y, rot_stiff z

210
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

trans_stiff y

trans_stiff z

12.3 Commands

Data type: double
Cartesian impedance force stiffness in the x-direction, range: 0~1500, in N/m.

Data type: double
Cartesian impedance force stiffness in the y-direction, range: 0~1500, in N/m.

Data type: double
Cartesian impedance force stiffness in the z-direction, range: 0~1500, in N/m.

rot_stiff x

Data type: double

Cartesian impedance torque stiffness in the x-direction, range: 0~100, in N.m/rad.
rot_stiff y

Data type: double

Cartesian impedance torque stiffness in the y-direction, range: 0~100, in N.m/rad.
rot_stiff z

Data type: double

Cartesian impedance torque stiffness in the z-direction, range: 0~100, in N.m/rad.
Example
Example 1

Fclnit Tooll, Wobj0, 0

SetControl Type 1

SetCartCtrlStiffVec 1000, 1000, 1000, 100, 100, 100

Set Cartesian impedance as the impedance control mode and the impedance force stiftness in x/y/z
direction as 1000, and the impedance torque stiffness as 100.

Use restrictions

» This interface can only be called after executing SetControlType 1, that is, setting Cartesian
impedance as the impedance control mode.
If not, the Cartesian impedance parameters will not be set successfully.

12.3.4.8 SetIntTrqDes

Explanation

Set the desired torque of the joint.
Definition

SetJntTrqDes tau_dl,tau_d2,tau_d3,tau d4,tau d5,tau d6,tau d7
tau_dl1

Data type: double

The desired torque of joint 1, range: 0~20, in N.m.
tau_d2

Data type: double

The desired torque of joint 2, range: 0~20, in N.m.
tau_d3

Data type: double

The desired torque of joint 3, range: 0~20, in N.m.
tau_d4

Data type: double

The desired torque of joint 4, range: 0~20, in N.m.
tau_dS

Data type: double

The desired torque of joint 5, range: 0~20, in N.m.
tau_d6

Data type: double

211
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands
12.3 Commands

The desired torque of joint 6, range: 0~20, in N.m.

tau_d7
Data type: double

The desired torque of joint 7, range: 0~20, in N.m.

Example
Example 1
Fclnit Tooll, Wobj0, 0
SetControl Type 0
FcStart
SetJntTrgDes 5,5,5,5,5,5,5
FcStop
Set the desired torque of all joints to SN.m.

Use restrictions

» This interface can only be called after executing FcStart and before executing FcStop. If not, the
desired joint torque will not be set successfully.

12.3.4.9 SetCartForceDes

Explanation

It is used to set the desired Cartesian force/torque.
Definition

SetCartForceDes force x, force y, force z, torque x, torque_y, torque z
force x

Data type: double

Desired Cartesian force in the x-direction, in N.
force y

Data type: double

Desired Cartesian force in the y-direction, in N.
force z

Data type: double

Desired Cartesian force in the z-direction, in N.
torque_x

Data type: double

Desired Cartesian torque in the x-direction, range: 0-20, in N.m.
torque_y

Data type: double

Desired Cartesian torque in the y-direction, range: 0-20, in N.m.
torque z

Data type: double

Desired Cartesian torque in the z-direction, range: 0-20, in N.m.
Example
Example 1

FcInit Tooll, Wobj0, 0
SetControl Type 1

FcStart

SetCartForceDes 0,0,5,0,0,0
FcStop

Set the desired Cartesian force/torque. Set the desired force in the z-direction to SN.

212
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Use restrictions

» This interface can only be called after executing FcStart and before executing FeStop. If not, the
desired Cartesian force/torque will not be set successfully.

12.3.4.10 SetSineOverlay

Explanation

It is used to set the sine overlay rotating around a single axis.
Definition

SetSineOverlay line dir, amplify, frequncy, phase, bias
line dir

Data type: int

line dir: overlay reference axis, supporting:

0: x-axis as the reference direction

1: y-axis as the reference direction

2: z-axis as the reference direction
amplify

Data type: double

Overlay amplitude, range: 0~10, in N.m.
frequncy

Data type: double

Overlay frequency, range: 0~5, in Hz.
phase

Data type: double

Overlay phase, range: 0~3.14, in rad.
bias

Data type: double

Overlay offset, range: 0~10, in N.m.
Example
Example 1

Fclnit Tooll, Wobj0, 0

SetControl Type 1

SetSineOverlay 0, 10, 5, 3.14, 2

Set rotary overlay around x-axis (0), amplitude: 10N.m, frequency: SHz, phase: 3.14, and offset:
2N.m.

Use restrictions

» This interface can only be called after executing SetControlType 1, that is, setting Cartesian
impedance as the impedance control mode, and before executing StartOverlay. If not, the sine

overlay will not be set successfully.

12.3.4.11 SetLissajousOverlay

Explanation

It is used to set the Lissajous overlay within a plane.
Definition

SetLissajousOverlay plane, amplify one, frequncy one, amplify two, frequncy two, phase diff
plane

Data type: int

213
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

amplify _one

frequncy one

amplify_two

frequncy two

12.3 Commands

Overlay reference plane, supporting:
0: XY plane as the reference plane
1: XZ plane as the reference plane
2: YZ plane as the reference plane

Data type: double
amplify _one: The amplitude of overlay in Direction 1, range: 0~10, in N.m.

Data type: double
frequncy one: The frequency of overlay in Direction 1, range: 0~5, in Hz.

Data type: double
amplify two: The amplitude of overlay in Direction 2, range: 0~10, in N.m.

Data type: double
frequncy two: The frequency of overlay in Direction 2, range: 0~5, in Hz.

phase_diff

Data type: double

phase_diff: The phase deviation between overlays in two directions, range: 0~3.14, in rad.
Example
Example 1

Fclnit Tooll, Wobj0, 0

SetControl Type 1

SetLissajousOverlay 0, 5, 2.5, 10, 5, 3.14

Set Lissajous overlay within the xy plane (0). The amplitude and frequency are SN.m and 2.5Hz in
the x-direction, and 10N.m and SHz in the y-direction. The phase deviation between the y-direction
and x-direction is 3.14.

Use restrictions

» This interface can only be called after executing SetControlType 1, that is, setting Cartesian
impedance as the impedance control mode, and before executing StartOverlay. If not, the
overlay will not be set successfully.

12.3.4.12 SetLoad

Explanation

It is used to set the load information used by the force control module.
Definition

SetLoad m,rx,ry,rz,Ixx,lyy,lzz
m

Data type: double

Load mass, unit: kg
X

Data type: double

The position of the load's center of mass on the x-axis of the flange frame, in mm.
ry

Data type: double

214
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

The position of the load's center of mass on the y-axis of the flange frame, in mm.

1z

Data type: double

The position of the load's center of mass on the z-axis of the flange frame, in mm.
Ixx

Data type: double

The inertia of the load's center of mass along the x-axis, in kg*mm~2.
Iyy

Data type: double

The inertia of the load's center of mass along the y-axis, in kg*mm"2.
Izz

Data type: double

The inertia of the load's center of mass along the z-axis, in kg*mm”2.
Example
Example 1

Fclnit Tooll, Wobj0, 0

FcStart

SetLoad 1,0,0,10,0.001,0.001,0.0001

Set the end-effector load as follows: the mass is 1kg, the component of the center of mass in the
flange frame is 0, 0, and 10 mm, and the inertia of the load relative to the load's center of mass frame
is 0.001kg*mm~"2, 0.001kg*mm”2, and 0.0001kg*mm"2, respectively.

Use restrictions

» The interface can only be called after executing FcStart. If not, the load parameters will not be
set successfully.

12.3.4.13 FcStart

Explanation
It is used to enable force control. It switches the robot from pure position control to force control.
Definition
FcStart
No parameters, and can be used directly.
Example
Example 1

Fclnit Tooll, Wobj0, 0
FcStart
Enable force control through FcStart after executing Fclnit. The robot is now in force control mode.

Use restrictions

» This interface is called after executing Fclnit. Before calling the command, the robot mechanical
zero, force sensor zero, and load information should be set correctly, and the body parameters
are identified correctly. Otherwise, the effectiveness of the force control function will be
affected or even disabled.

12.3.4.14 FcStop

Explanation

It is used to stop force control. The robot will switch from force control to position control.
Executing this command will automatically stop all overlays.

215
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Definition

FcStop

No parameters, and can be used directly.
Example
Example 1

Fclnit Tooll, Wobj0, 0

FcStart

FcStop

It is used to stop force control. The robot will switch from force control to position control.
Executing this command clears all force control states.

Use restrictions

» This interface is called after executing FcStart, and it will clear the force control state, such as
force control load information, impedance parameters, overlay, desired force, etc. To enable
force control again, Fclnit should be executed again.

12.3.4.15 StartOverlay

Explanation

Enable the overlay set before.
Definition

StartOverlay

No parameters, and can be used directly.
Example
Example 1

Fclnit Tooll, Wobj0, 0

SetControl Type 1

SetSineOverlay 0, 10, 5, 3.14, 2

SetLissajousOverlay 0, 5, 2.5, 10, 5, 3.14

FcStart

StartOverlay

Start the superposition of overlays set before. In the example, these overlays include the sine overlay
around the x-axis and the Lissajous overlay within xy plane.

Use restrictions

» The interface can only be called after executing FcStart. If not, the sine overlay will not be set
successfully.

12.3.4.16 PauseOverlay

Explanation

Pause the overlay.
Definition

PauseOverlay

No parameters, and can be used directly.
Example

216
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

Example 1

Fclnit Tooll, Wobj0, 0
SetControl Type 1
SetSineOverlay 0, 10, 5, 3.14, 2
FcStart

StartOverlay

PauseOverlay

Pause the overlay.

12.3 Commands

Use restrictions

» The interface can only be called after executing StartOverlay.

12.3.4.17 RestartOverlay

Explanation
Restart the paused overlays.
Definition
RestartOverlay
No parameters, and can be used directly.
Example
Example 1

Fclnit Tooll, Wobj0, 0
SetControlType 1
SetSineOverlay 0, 10, 5, 3.14, 2
FcStart

StartOverlay

PauseOverlay

RestartOverlay

Restart the overlays.

Use restrictions

» The interface can only be called after executing PauseOverlay. This interface is used in

conjunction with PauseOverlay to restart paused overlays.

12.3.4.18 StopOverlay

Explanation
Stop the overlays.
Definition
StopOverlay
No parameters, and can be used directly.
Example
Example 1

FcInit Tooll, Wobj0, 0
SetControlType 1
SetSineOverlay 0, 10, 5, 3.14, 2
FcStart

StartOverlay

StopOverlay

217

Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Stop the overlays.

Use restrictions

» The calling of the interface is of practical value can only after executing StartOverlay.

12.3.4.19 FcCondForce

Explanation
It is used to define termination conditions related to contact force.

Definition
FcCondForce xmin, xmax, ymin, ymax, zmin, zmax, IsInside, TimeOut

Xmin
Define the lower limit of the force limit in the X-direction. It indicates the maximum value in the
negative X-direction if the value is negative. The unit is N and the default value is negative infinity.
Data type: double

Xmax
Define the upper limit of the force limit in the X-direction. It indicates the minimum value in the
negative X direction if the value is negative. The unit is N and the default value is positive infinity.
Data type: double

ymin
Define the lower limit of the force limit in the Y-direction. It indicates the maximum value in the
negative Y direction if the value is negative. The unit is N and the default value is negative infinity.
Data type: double

ymax
Define the upper limit of the force limit in the Y-direction. It indicates the minimum value in the
negative Y direction if the value is negative. The unit is N and the default value is positive infinity.
Data type: double

zmin
Define the lower limit of the force limit in the Z-direction. It indicates the maximum value in the
negative Z direction if the value is negative. The unit is N and the default value is negative infinity.
Data type: double

zmax
Define the upper limit of the force limit in the Z-direction. It indicates the minimum value in the
negative Z direction if the value is negative. The unit is N and the default value is positive infinity.
Data type: double

IsInside
It is used to define whether the internal/external restriction condition is true.
Data type: bool

TimeOut
It is used to define the timeout period in seconds. The value taken ranges from 1 to 600.
Data type: double

Example

Example 1

Fclnit Tooll, Wobj0, 0

FcStart

FcCondForce -100, 100, -100, 100, -100, 100, true, 60

Define a termination condition. The condition is true when the contact force is within plus or minus
100N in the x/y/z-axis direction of the force control frame, and terminates when it exceeds 100N.
The timeout period is 60 seconds.

Use restrictions

» This interface can only be called after executing FcStart and before executing FcStop. If not, the

218
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

termination conditions of the contact force will not be set successfully.

12.3.4.20 FcCondPosBox

Explanation
It is used to define termination conditions related to contact location.
Definition
FcCondPosBox SupvFrame, Box, IsInside, Timeout
SupvFrame
It is used to determine in which frame the monitored spatial body will be defined. The frame is
derived by converting a work object frame onto a frame. The conversion of the frame is defined by
pose. By default, pose0 is used. That is, the work object frame is used without using any conversion.
Data type: pose
Box
Define a cuboid.
Data type: fcboxvol
IsInside
It is used to define whether the internal/external restriction condition is true.
Data type: bool
TimeOut
It is used to define the timeout period in seconds. The value taken ranges from 1 to 600.
Data type: double
Example
Example 1

Fclnit Tooll, Wobj0, 0

FcStart

VAR fcboxvol box1 = fcbv: {-100.0, 100.0, -200.0, 200.0, -300.0, 300.0}

VAR pose posel =pe:{0, 0, 0},{1, 0,0, 0}

FCCondPosBox posel, box1, false, 60

Define a termination condition. The termination condition is triggered when the robot TCP enters the
defined cuboid or waits more than 60 seconds.

Use restrictions

» This interface can only be called after executing FcStart and before executing FeStop. If not, the
termination conditions of the cuboid location will not be set successfully.

12.3.4.21 FcCondTorque

Explanation
It is used to define termination conditions related to contact torque.

Definition
FcCondTorque xmin, xmax, ymin, ymax, zmin, zmax, IsInside, TimeOut

Xmin
Define the lower limit of the torque limit in the X-direction. It indicates the maximum value in the
negative X-direction if the value is negative. The unit is N.m and the default value is negative
infinity.
Data type: double

Xmax

219
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

ymin

ymax

zmin

zmax

IsInside

TimeOut

12.3 Commands

Define the upper limit of the torque limit in the X-direction. It indicates the minimum value in the
negative X-direction if the value is negative. The unit is N.m and the default value is positive infinity.
Data type: double

Define the lower limit of the torque limit in the Y-direction. It indicates the maximum value in the
negative Y-direction if the value is negative. The unit is N.m and the default value is negative
infinity.

Data type: double

Define the upper limit of the torque limit in the Y-direction. It indicates the minimum value in the
negative Y-direction if the value is negative. The unit is N.m and the default value is positive infinity.
Data type: double

Define the lower limit of the torque limit in the Z-direction. It indicates the maximum value in the
negative Z-direction if the value is negative. The unit is N.m and the default value is negative
infinity.

Data type: double

Define the upper limit of the torque limit in the Z-direction. It indicates the minimum value in the
negative Z-direction if the value is negative. The unit is N.m and the default value is positive infinity.
Data type: double

It is used to define whether the internal/external restriction condition is true.
Data type: bool

It is used to define the timeout period in seconds. The value taken ranges from 1 to 600.
Data type: double

Example

Example 1

Fclnit Tool1, Wobj0, 0

FcStart

FcCondTorque -10, 10, -10, 10, -10, 10, true, 60

Define a termination condition. When the contact torque is greater than 10 Nm in any direction of the
force control frame, or the time exceeds 60s, the termination condition is triggered.

Use restrictions

» This interface can only be called after executing FcStart and before executing FeStop. If not, the
termination conditions of the contact torque will not be set successfully.

12.3.4.22 FcCondWaitWhile

Explanation
It is used to activate the previously defined termination conditions and wait until these conditions
become False or timeout in the current line.
Definition
FcCondWaitWhile
No parameters, and can be used directly.
Example
Example 1

Fclnit Tool1, Wobj0, 0
FcStart

220
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

FcCondTorque -10, 10, -10, 10, -10, 10, true, 60

FcCondForce -100, 100, -100, 100, -100, 100, true, 60

FcCondWaitWhile

Activates the termination conditions. The program blocks at the current position and waits for the
termination conditions to be triggered.

Use restrictions

» It can be used after the force control termination conditions are defined.

12.3.4.23 GetEndToolTorque

Explanation

It is used to get the current robot torque

Definition

GetEndToolTorque Tool, Wobj [, RefType]
The parameter in [] can be ignored.

Return value

Torque information
Data type: Torquelnfo

Parameter
Tool
The information of the tool currently in use.
Data type: Tool
Wobj
The information of the work object currently in use.
Data type: Wobj
RefType
Reference frame relative to the torque
Data type: Int
0: Default. Torque information of the end-effector relative to the world frame
1: Torque information of the end-effector relative to the flange frame
2: Torque information of the end-effector relative to the TCP
Example
Example 1

Fclnit Tooll, Wobj0, 0

FcStart

FcCondTorque -10, 10, -10, 10, -10, 10, true, 60

FcCondForce -100, 100, -100, 100, -100, 100, true, 60

FcCondWaitWhile

Activates the termination conditions. The program blocks at the current position and waits for the
termination conditions to be triggered.

Use restrictions

» It can be used after the force control termination conditions are defined.

12.3.5 Drag and replay

221
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.5.1 ReplayPath
Explanation
Replays the recorded trajectory using drag teaching. You can control the running rate during replay.
Refer to 4.2.4 Path Replay.
Definition
ReplayPath path [, rate] [, wobj/tool]
path
Data type: path
Type of playback of recorded path which is defined in the variable list generated by drag teaching.
rate
Data type: double
Replay percentage, 0.01-3.00. 0.01 means replay at 1% running rate when dragging; 1.00 at 100%
running rate; 3.00 at 300% running rate.
wobj/tool
Data type: toollwork object
Specify the end-effector for the replay command to be a tool or work object. During the replay, the
robot will change the replay control parameters according to the tool of the corresponding device to
improve the operating stability
Example
Example 1

12.3.6 10 commands

ReplayPath path , 1, tooll
Use the original running rate to record and replay.

12.3.6.1 SetDO
Explanation
It is used to set the value of a digital output signal.
Definition
SetDO DoName, Value
DoName
Data type: signaldo
Specify the name of the DO signal whose state should be changed. It must be a variable that has
already been defined on the 10 interface.
Value
Data type: bool
The target state of signaldo. Only true and false are supported.
Example
Example 1
SetDO do2, true
Set the digital output point corresponding to do2 as high level.
12.3.6.2 SetAlIDO
Explanation

It is used to set the value of all digital output signals.

222
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Definition
SetAlIDO Value
Value
Data type: bool
The target state of signaldo. Only true and false are supported.
Example
Example 1
SetAllIDO true
Set all digital output voltages to a high level, except DO bound with system function.
12.3.6.3 SetGO
Explanation
It is used to set the value output of a group.
Definition
SetGO GoName, Value
GoName
Data type: signalgo
Specify the name of the go signal whose value should be changed. It must be a variable that has
already been defined on the 1O interface.
Value
Data type: int
The target value of the go signal.
Example
Example 1
SetGO go3, 8
Set the value of a set of physical ports corresponding to go3 as 8.
12.3.6.4 SetAO
Explanation
It is used to set the value of an analog output signal.
Definition
SetAO AoName, Value
AoName
Data type: signalao
Specify the name of the ao signal whose value should be changed. It must be a variable that has
already been defined on the 10 interface.
Value
Data type: double
The target value of the ao signal.
Example
Example 1
SetAO ao3, 5.123
Set the value of a set of physical ports corresponding to ao3 as 5.123.
12.3.6.5 PulseDO
Explanation

223
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

To generate a pulse of a DO signal.

Definition

[\High]

(1).
[length]

signal

PulseDO [\High,] [length,] signal

When the command is executed, regardless of the current state, the signal state is always set to high
Specify pulse length: 0.001-2000s. Default to 0.2s when missing.

Data type: double or int

The signal to generate the pulse.
Data type: signaldo

Use restrictions

> If SetDO/SetGO is executed during PulseDO, PulseDO will be invalid and SetDO/SetGO will be

executed.
12.3.6.6 PulseReg
Explanation
Specify a register to generate a pulse signal for a specified time period and restore the initial value of
the register after the time period ends.
Definition
PulseReg Register, Value, Time
Register
The name of the register to generate the pulse signal
Data type: Bit|Bool register
Value
Specify the value of the pulse signal.
Data type: Bool,
Time

The duration of the pulse signal in seconds, with a limit range of [0.001, 10.0].
Data type: double

Use restrictions

» If WriteRegByName or register equal assignment is executed during PulseReg, the valid value of
the register will take effect depending on the last executed command. But the initial value
before executing PulseReg will be restored after the time period specified by PulseReg ends.

12.3.7 Communication commands

In the RL program, the robot can communicate with external devices through both Ethernet and serial
ports. A unified set of commands is designed for resource management and data sending and

receiving, which ensures consistent use experience.

Command set TCP client TCP server Serial port
OpenDev ~ ~ ~
SocketAccept N/A v N/A
CloseDev ~ ~ ~
SendString ~ ~ ~
SendByte ~ ~ ~
ReadBit N N \/
ReadByte N N \/
ReadDouble N \ N/A
ReadInt N \ N/A
224

Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

ReadString N, \ S
GetSocketConn \ N/A N/A
GetSocketServer N/A \ N/A
GetBufSize N/A N/A S
ClearBuffer N/A N/A S

12.3.7.1 OpenDev

Explanation

Used to open a listening server, initiate a connection as a client, and open a serial port resource,

depending on the object indicated by the parameter.

1) When opening the SocketServer object, the robot will initiate resource and complete port
binding and port listening.

2) When opening the SocketConn object, the robot will act as a TCP client and try to connect to
the external server according to the preset ip and port.

3) When opening the serial port resource, the serial port will be initialized according to the

window parameters and communication conditions will be provided.

Return value

N/A.

Definition

OpenDev(name)
name
Data type: string
The name of the client object or server object or serial port resource.

Example
Example 1

SocketConn scnn3 = {"192.168.0.200", 8090, "clt1", 2, "\n"}
try
OpenDev("clt1") // Try to connect to the remote server. If the connection is successful, the attr
of cltl will be modified to outgoing automatically.
string readstr = ReadString(30, "clt1")
..... // Logic processing of readstr
string sendstr = "hello server!"
SendString(sendstr , "clt1") //Use cltl's client connection to send data
/I A series of code
catch(ERROR e¢) // ERROR error type, including the file that generated the error, line number,
error code, and error content
/I A series of exception handling
Endtry

Example 2

SocketServer listenerl = {"192.168.0.200", 8090, "svr1"}
global pers bool exit = false
try

OpenDev("svr1") // Bind port, listen for port

while(exit != true)

SocketConn conn = SocketAccept("svrl") // Client connected via blocking receive

Endwhile

catch(ERROR e)
/I A series of exception handling

Endtry

Error handling

If an error is reported, the control system will throw an exception and report the cause of the error.
If the exception is not caught by the try block, the control system will stop the program.

225
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.7.2 SocketAccept

Explanation

Blocking wait for client connections to arrive, and complete client connection. This command is only

used when the robot is acting as a TCP server.

H Notes

1. The command will block the current task, so the correct way to use it is in multitasking.
There is a low-priority task continuously receiving and generating the communication
connection object SocketConn independently.

2. The command returns a connection operation object and has the ip and port information of
the client connection, which can be used by other parts of the program. The returned
connection object is a SocketConn structure with a name randomly assigned by the
system. After getting the connection object, please change the name of the connection
object to avoid connection loss.

3. The server supports multiple connections.

Return value

Data type: SocketConn

After an external device connects to the robot as a TCP client, the control system generates a
communication object that is used by the RL program to control communication read and write.

Definition

name

SocketConn conn = SocketAccept(name)

Data type: string
The name of the SocketServer object that has been prepared and opened successfully using OpenDev.

Examples

Example 1

SocketServer listener] = {"192.168.0.200", 8090, "svr1"}
global pers bool exit = false
try

OpenDev("svrl") // Bind port, listen for port

while(exit != true)

SocketConn conn = SocketAccept("svrl") // Client connected via blocking receive
conn.name = "client1" // Important! Give the communication connection a name, otherwise, it
will be difficult to read and write data by name
conn.suffix = "\n" // Optional, set the packet terminator

Endwhile

catch(ERROR e)
/I A series of exception handling

Endtry

Error handling

If an error is reported, the control system will throw an exception and report the cause of the error. If
the exception is not caught by the try block, the control system will stop the program.

12.3.7.3 CloseDev

Explanation

Close the resource, which can be used to close the TCP communication connection, TCP listening

server, or serial port resource.

Return value

226
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

N/A.

Definition

CloseDev(name)

name
Data type: string

SocketConn connection, listening server SocketServer object, or serial port resource used for

communication.

Examples

Example 1
SocketConn scnn3 = {"192.168.0.200", 8090, "clt1", 2, "\n"}
try
OpenDev("clt1")
string readstr = ReadString(30, "clt1")
..... // Logic processing of readstr
string sendstr = "hello server!"
SendString (sendstr , "clt1") /Use cltl's client connection to send data
/I A series of code
catch(ERROR ¢)
/I A series of exception handling
endtry
CloseDev("clt") // Close the socket client at last, regardless of whether an error occurs.
Example 2
SocketServer listener] = {"192.168.0.200", 8090, "svr1"}
global pers bool exit = false
try
OpenDev("svrl") // Bind port, listen for port
while(exit != true)
SocketConn conn = SocketAccept("svrl") // Client connected via blocking receive
conn.name = "client1" // Important! Give the communication connection a name, otherwise, it
will be difficult to read and write data by name
conn.suffix = "\n" // Optional, set the packet terminator
Endwhile
catch(ERROR e)
/I A series of exception handling
Endtry

CloseDev("client1") // Close communication with external TCP client. Important!
CloseDev("svr1") // Close the listening server

E Notes

1. In Example 2, there are two network objects, and you must close the communication
connection first and then the server object, otherwise it will generate a state of incomplete
resource release (TCP TIME_WAIT state).

2. If the robot has established multiple communication connections with external devices
when it acts as a server, you need to close these communication connections in order
before closing the server.

3. Inthe case of incomplete resource release, the control system needs to be restarted.
However, there is no need to worry too much, as there is redundancy in the number of
resources allowed in the control system; this ensures the program runs properly after a
small number of resources are occupied. However, it is necessary to avoid a large number
of resources being occupied due to incorrect use.

12.3.7.4 SendString

Explanation

Send a string outwards. It can be sent through the network or serial port, depending on the hardware
resource represented by the identifier in the parameter.

Definition

227
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

SendString(StringData, name)

StringData
Data type: string
The string data to be sent.
name
Data type: string
The name of the hardware resource used to send the data. It can be the SocketConn object with an
established TCP communication connection or the serial port resource successfully opened.
Example
Example 1
SendString("Hello World", "Socket0")
Send Hello World string outwards through Socket0. Socket0 is the SocketConn type that has been
defined and successfully connected.
Example 2
VAR String strl = "Hello World"
SocketSendString(strl, "Seriall")
Sends the string Hello World stored in strl outwards via Seriall. Seriall is a defined and successfully
opened serial port.
12.3.7.5 SendByte
Explanation

To send a byte outwards. It is very useful when sending ASCII characters.

Return value

N/A.
Definition
SendByte(ByteData, name)
ByteData
Data type: int, byte, or byte array
Send an unsigned byte or array from 0 to 255, mainly used for sending ASCII codes.
name
Data type: string
The name of the socket or serial port to send data.
Example
Example 1
SendByte(13, "socket0")
Send a carriage return through Socket0.
Example 2
VAR byte datal =13
SendByte(datal, "serial0")
First define a byte variable datal, which is actually a carriage return. Then send the data outwards
through serial0.
Example 3
VAR byte data2[2] = {13,17}
SendByte(data2, "socket0")
Send an array variable byte data2 through socket0. Sent all in the array.
Example 4
VAR byte data2[2] = {13,17,20}
SendByte(data2[2], “socket0”)
Sends a byte variable of data2[2] through socket0, which represents the 2" element of the array. The
value 17 of data2[2] will be sent without sending any other elements.
12.3.7.6 ReadBit
Explanation

The control system receives data by bit.

228
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands
12.3 Commands

1) Received by TCP through network communication. The externally sent data should end with the
terminator configured by SocketConn.

2) Received by serial communication. The external device only needs to send the data, with no
requirement on the terminator.

Return value

Data type: bool array
Store the received bit data using a bool array. Each bit corresponds to a bool member.

Definition

Ret = ReadBit(BitNum, TimeOut, name)
BitNum

Data type: int

The number of bits that need to be read. The size should be an integer multiple of 8.
TimeOut

Data type: int

Timeout period, in s, ranging from 0 to 86400 and is defaulted to 60s.
name

Data type: string

The name of the communication connection SocketConn or the serial port.
Ret

Data type: bool array

Received data. The first element of the array indicates the lowest bit.

Example

Example 1
bool groupio[16]
groupio = ReadBit(16, 60, "Socket0")
16 bit data is read by the SocketReadBit command and stored in a bool array named groupio with a
timeout period of 60 seconds.
Assume that the external device sends ASCII characters, 95 + terminator, the robot receives "95". As
the hexadecimal values of "9" and "5" are 0x39 and 0x35 respectively, the data received by the user
is 0x3935. At this time the groupio array from [1] to [16] is 1001 1100 1010 1100. The [1] is the low
bit of the data, which matches with 0x3935.

12.3.7.7 ReadByte

Explanation

Receive data with a certain number of bytes. Note that the data needs to be separated by commas.

Return value

Data type: byte array
Store the received data using a byte array.

Definition

Ret = ReadByte(ByteNum, TimeOut, name)
ByteNum

Data type: int

The number of bits that need to be read. The size should be an integer multiple of 8.
TimeOut

Data type: int

Timeout period, in s, ranging from 0 to 86400 and is defaulted to 60s.
name

Data type: string

The name of the communication connection SocketConn or the serial port.
Ret

Data type: byte array

Received data.
Example

229
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Example 1
byte rets[6] = {0,0,0,0,0,0}
rets = ReadByte(6,60,"clt1")
6-byte data is read and stored in a bool array named rets with a timeout period of 60 seconds.
Note that bytes from external devices need to be separated by commas, e.g. send "1,2,3,4,5,6"
When sending data via TCP, the data should end with the pre-defined terminator.
When sending data via serial port, the terminator is not required.

12.3.7.8 ReadDouble

Explanation

It is used to receive double-type data via Socket.The sent data should end with the pre-defined
terminator.
Note that this command is only valid for TCP network communication and when robots act as the

client/server, but not for serial ports.

Return value

Data type: double array
Store the received data using a double array.

Definition
Ret = ReadDouble(DoubleNum, TimeOut, name)
DoubleNum
Data type: double
The number of doubles to be read, up to 30.
TimeOut
Data type: int
Timeout period, in s, ranging from 0 to 86400 and is defaulted to 60s.
name
Data type: string
The name of the Socket used to receive the data.
Example
Example 1
double dd[10]
dd =ReadDouble(10, 60, "Socket0")
Read 10 double-type data and store them in a double array named dd with a timeout period of 60
seconds.
12.3.7.9 ReadInt
Explanation

It is used to receive int-type data via Socket. Externally sent data must end with the pre-defined
terminator.
Note that this command is only valid for TCP network communication and when robots act as the

client/server, but not for serial ports.

Return value

Data type: int
Store the received data using an int array.

Definition

Ret = ReadInt(IntNum, TimeOut, name)
IntNum

Data type: int

The number of int to be read, up to 30.
TimeOut

Data type: int

230
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Timeout period, in s, ranging from 0 to 86400 and is defaulted to 60s.

name
Data type: string
The name of the Socket used to receive the data.
Example
Example 1
int ii[10]
ii = ReadInt(10, 60, "Socket0")
10 int data are read and stored in an int array named ii with a timeout period of 60 seconds.
12.3.7.10 ReadString
Explanation
It is used to read a string and return it. Externally sent data should end with the pre-defined
terminator.

Return value

Data type: string
Store the received string.

Definition
Ret = ReadString(TimeOut, name, [len])
TimeOut
Data type: int
Timeout period, in s, ranging from 0 to 86400 and is defaulted to 60s.
name
Data type: string
The name of the socket or serial port to receive data.
len
Data type: int
Optional parameter, only used when reading through the serial port. Since the terminator is not
defined in the serial port, it is necessary to specify the length before successful reading and parsing.
Example
Example 1
VAR String strl
strl = ReadString(60, "Socket1")
Receive a string from Socket] and store it in strl with a timeout period of 60 seconds. Network
Communication
Example 2
VAR String strl
strl = ReadString(60, "serial0",5)
Receive a string for a length of 5 bytes from serial0 and store it in strl with a timeout period of 60
seconds. Serial port communication method.
12.3.7.11 GetSocketConn
Explanation

It is used to find the socket attribute set object using the socket connection name. The result obtained
by this command can be used for judgment and processing logic. It should be used only as a read-
only object. This command is only applicable to communication connections (including robot as
client, or as a server which has been connected to the channel for communication), not for listening
servers and serial ports.

Return value

Data type: SocketConn
The socket attribute object found by given name.

231
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Definition
Ret = GetSocketConn(name)
name
Data type: string
Name of communication connection SocketConn.
Ret
Data type: SocketConn
The socket attribute object found by given name.
Example
Example 1
SocketConn ret= GetSocketConn("client0")
Find SocketConn object with the name "client0". You can use ret to get the attributes of this
connection, including the ip address, port number, communication terminator, and connection state.
Queryable Query method | Meaning and example
properties
ip address ret.ip String, e.g. "192.168.0.161"
Port number ret.port integer, e.g. 8090
Attribute ret.attr Robot as server: "incoming".
Robot as client: "outgoing".
If the connection is not established: "" or other value, usually
blank
Cache size ret.cache 1~100
Name ret.name In the given example, it is "client0"
Connection ret.state closed, established
state
12.3.7.12 GetSocketServer
Explanation

Find the corresponding server attribute set object with the user-defined name. The result obtained by
this command can be used for judgment and processing logic. It should be used only as a read-only
object. This command is only applicable to listening servers (SocketServer objects), not to
communication connections (including robot as client, or as a server which has been connected to the
channel for communication) and serial ports.

Return value

Data type: SocketServer
The server attribute object found by given name.

Definition

Ret = GetSocketServer(name)
name

Data type: string

Name of communication connection SocketServer.
Ret

Data type: SocketServer

The socket attribute object found by given name.
Example
Example 1

SocketServer listener] = {"192.168.0.200", 8090, "svr1"}
OpenDev("svrl") // Bind port, listen for port
// Get the SocketServer object using the connection identifier "svrl", at this time ret will copy all the states of

listenerl in Task 1

SocketServer ret= GetSocketServer("svrl")
if(svrfindout.state == "listening") // Use SocketServer's attr attribute to judge if listening is in

underway

// Logic processing

endif

232

Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Queryable Query method | Meaning and example

properties

ip address ret.ip String, e.g. "192.168.0.161"

Port number ret.port integer, e.g. 8090

Name ret.name In the example above, it is "svrl"
Connection ret.state closed, listening, error

state

12.3.7.13 GetBufSize

Explanation

Get the amount of data not read in the buffer of the serial port, in bytes. The command is only
applicable to the serial port, not to the TCP server and the client.

Return value

Data type: int

The amount of unprocessed data in the buffer, in bytes.

Definition

Ret = GetBufSize(name)
name

Data type: string

The name of the serial port resource.
Ret

Data type: int

The amount of unprocessed data in the buffer, in bytes.
Example
Example 1

OpenDev("serial0")

int a = GetBufSize("serial0")

print(a)

12.3.7.14 ClearBuffer

Explanation

Clear the buffer. Any unread characters will be lost. The command is only applicable to the serial
port, not to the TCP server and the client.

Return value

N/A.
Definition

ClearBuffer(name)
name

Data type: string

The name of the serial port resource.
Ret

Data type: int

The amount of unprocessed data in the buffer, in bytes.
Example
Example 1

OpenDev("serial0

")

int a = GetBufSize("serial0")

print(a)

233

Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.8 Network command

12.3.8.1 SocketCreate (expired)

Explanation

Establish a Socket connection. By using the Socket command, the RL program can obtain data
from an external device or send out program data. The RL language supports the simultaneous
establishment of multiple different Sockets for connections of multiple external devices. Different
names should be used to distinguish between the different Sockets. The Socket command is based
on the TCP/IP protocol, so theoretically any external device that supports TCP/IP can
communicate with the RL program to exchange data. All data sent to the RL Socket command (i.e.
data received using the SocketRead series of commands) should end with a carriage return. All
data before the receipt of the carriage return will be merged into the same data processing. When
using the Socket function, the robot controller only supports connection to an external server as a
client.

Up to 10 Socket connections are supported.
Note that this command is marked as "expired" for it is used in xCore Control System version 1.3.

It is still valid in higher versions, but no longer maintained. Further use is not recommended.

Return value

Data type: bool
Return true if created successfully and false if failed

Definition
SocketCreate("ip_Address", Port, "Name" [,Cache] [, "Terminator"])
ip_Address
Data type: string Define the IPv4 address that needs to be connected to the server. The double
quotation marks shall be used to include it.
Port
Data type: int
Define the server port number.
Name
Data type: string
Define the name of a new Socket. Different names must be specified between different Sockets.
Cache
Data type: int
Define the size of the Socket cache. The communication data is stored in the cache queue and can
be omitted.
Terminator
Data type: string
Define the terminator type of socket communication, which can be omitted, default to "\r".
Example
Example 1

if (SocketCreate("10.0.6.11",8080,"S1",10,"\r"))
// Successful creation

else
// Error handling

endif

E Notes

3. Due to the limitation of the TCP/IP protocol resource release mechanism, do not call the
commands SocketCreate and SocketClose frequently. Otherwise, the program may run
incorrectly.

234
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

4. To avoid frequent calls to the SocketCreate and SocketClose commands in loop mode, it
is best to add a time delay between the two commands, e.g.
SocketClose("S1")
wait 0.1
SocketCreate("10.0.6.11",8080,"S1",10,"\r")

12.3.8.2 SocketClose (expired)

Explanation
It is used to close the Socket.
Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It
is still valid in higher versions, but no longer maintained. Further use is not recommended.
Definition
SocketClose ("SocketName")
SocketName
Data type: string
The name of Socket to be closed.
H Notes
Do not use the SocketClose command directly after the SocketSend series of commands. Failure
to do so may result in data transmission failures. Use the SocketClose command after receiving
the confirmation messages.
Example
Example 1

SocketClose("Socket0")

12.3.8.3 SocketSendString (expired)

Explanation
It is used to send a string outwards via Socket.
Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It
is still valid in higher versions, but no longer maintained. Further use is not recommended.
Definition
SocketSendString(StringData, "SocketName")
StringData
Data type: string
The string data to be sent.
SocketName
Data type: string
The name of the Socket used to send the data.
Example
Example 1
SocketSendString ("Hello World", "Socket(0")
Send Hello World string outwards through Socket0.
Example 2

VAR String strl = "Hello World"
SocketSendString(strl, "Socket0")
Send the strl stored string via SocketO.

235
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.8.4 SocketSendByte (expired)

Explanation
It is used to send a byte outwards through the Socket. It is very useful when sending ASCII
characters.
Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It
is still valid in higher versions, but no longer maintained. Further use is not recommended.
Definition
SocketSendByte(ByteData, "SocketName")
ByteData
Data type: int, byte, or byte array
Send an unsigned byte or array from 0 to 255, mainly used for sending ASCII codes.
SocketName
Data type: string
The name of the Socket used to send the data.
Example
Example 1
SocketSendByte(13, "socket0")
Send a carriage return through Socket0.
Example 2
VAR byte datal =13
SocketSendByte(datal, "socket0")
First define a byte variable datal, which is actually a carriage return. Then send it outwards through
Socket0.
Example 3

VAR byte data2[2] = {13,17}
SocketSendByte(data2, "socket0")
Send an array variable byte data2 through socket0.

12.3.8.5 SocketReadBit (expired)

Explanation

It is used to receive data by Bit through the Socket. Externally sent data must end with a carriage
return. Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It is still valid in
higher versions, but no longer maintained. Further use is not recommended.

Return value

Data type: bool
Store the received bit data using a bool array. Each bit corresponds to a bool member.

Definition

SocketReadBit(BitNum, TimeOut, "SocketName")
BitNum

Data type: int

The number of bits that need to be read. The size should be an integer multiple of 8.
TimeOut

Data type: int

Timeout period, in s, ranging from 0 to 86400 and is defaulted to 60s.
SocketName

Data type: string

The name of the Socket used to receive the data.
Example
Example 1

bool groupio[16]
groupio = SocketReadBit(16, 60, "Socket0")

236
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

16 bit data is read by the SocketReadBit command and stored in a bool array named groupio with a
timeout period of 60 seconds.

12.3.8.6 SocketReadDouble (expired)

Explanation

It is used to receive double-type data via Socket. Externally sent data must end with a carriage return.
Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It

is still valid in higher versions, but no longer maintained. Further use is not recommended.

Return value

Data type: double
Store the received data using a double array.

Definition
SocketReadDouble(DoubleNum, TimeOut, "SocketName")
DoubleNum
Data type: double
The number of doubles to be read, up to 30.
TimeOut
Data type: int
Timeout period, in s, ranging from 0 to 86400 and is defaulted to 60s.
SocketName
Data type: string
The name of the Socket used to receive the data.
Example
Example 1
double dd[10]
dd = SocketReadDouble(10, 60, "Socket0")
Read 10 double-type data using the SocketReadDouble command and store it in a double array
named dd with a timeout period of 60 seconds.
12.3.8.7 SocketReadInt (expired)
Explanation

It is used to receive int-type data via Socket. Externally sent data must end with a carriage return.
Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It

is still valid in higher versions, but no longer maintained. Further use is not recommended.

Return value

Data type: int
Store the received data using an int array.

Definition

SocketReadInt(IntNum, TimeOut, "SocketName")
IntNum

Data type: int

The number of int to be read, up to 30.
TimeOut

Data type: int

Timeout period, in s, ranging from 0 to 86400 and is defaulted to 60s.
SocketName

Data type: string

The name of the Socket used to receive the data.
Example
Example 1

237
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

int ii[10]

ii = SocketReadInt(10, 60, "Socket0")

10 int data is read by the SocketReadInt command and stored in an int array named ii with a timeout
period of 60 seconds.

12.3.8.8 SocketReadString (expired)

Explanation

It is used to read a string from Socket and return it. Externally sent data should end with a carriage
return.
Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It

is still valid in higher versions, but no longer maintained. Further use is not recommended.

Return value

Data type: string
Store the received string.

Definition
SocketReadString(TimeOut, "SocketName")
TimeOut
Data type: int
Timeout period, in s, ranging from 0 to 86400 and is defaulted to 60s.
SocketName
Data type: string
The name of the Socket used to receive the data.
Example
Example 1

VAR String strl
strl = SocketReadString(60, Socket1)

Receive a string from Socket] and store it in strl with a timeout period of 60 seconds.

12.3.9 Logic commands

12.3.9.1 Return

Explanation
Function or TRAP return.
When the program encounters a RETURN command, if the program is currently in a subroutine or
TRAP, the program will return to the previous function. If the program is currently in the main
function, the program ends directly.
12.3.9.2 Wait
Explanation
The program waits for a period of time ranging from 0 to 2147484 seconds.
Example
Example 1

Wait 2

Indicates waiting for 2 seconds.

238
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.9.3 WaitUntil
Explanation
The program waits until a certain condition is met.
Example
Example 1
WaitUntil(di2 == true)
It indicates that the second signal waiting for the second signal of the first DI module is true before
executing sentences followed.
12.3.9.4 Break
Explanation
Jumping out of the current loop, and is used in the WHILE loop in the RL language. When the
WHILE loop is executed to Break, regardless of WHILE's CONDITION, it will jump out from the
WHILE loop directly.
Example
Example 1

VAR int counter = 0
WHILE(1)

IF(counter == 5)

break

Endif
counter++
ENDWHILE
The program will jump out of the WHILE loop when the counter is 5.

12.3.9.5 IF.. Else if...Else

Explanation

Conditional judgment command.

Example

Example 1

[F(conditionl1)
/la
Else if (condition2)
//b
Else if (condition3)
/lc
Else
/id
Endif
Execute logic a when condition] is true, logic b when condition?2 is true, and so on.

239
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.9.6 Goto
Explanation
The Goto command allows the pointer to jump to the marked command.
Example
Example 1
inta=0
intb=9
Goto end
printf(a)
end:
printf(b)
Define two variables a and b, then use the printf function to print two commands. Use the Goto
command to force a jump to the end marker position of the print b command, at which point the print of
a will not be executed.
12.3.9.7 For
Explanation
Defines a loop control structure that executes a specified number of times.
Example
Example 1
For(int i from 1 to 10)
printf("i = %d\n", 1)
endfor
This program prints i 10 times from 1 to 10 by adding 1 each time in sequence.
Example 2

For(int i from 1 to 10 step 3)
printf("i = %d\n", 1)
Endfor
This program prints i 4 times from 1 to 10 by adding 3 each time in sequence.

Supplementary explanation

Continue and Break can be used to control the For flow. See the Continue and Break commands for
details.

12.3.9.8 Continue

Explanation
Exit this loop.
Continue executing the commands from the beginning of the loop, but just end the loop without
exiting from the loop body.

Example

Example 1

VAR int count = 0
WHILE(1)

240
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands
12.3 Commands

count++
IF(count == 1)
Continue
Else
break
MoveAbsl] j10, v500, fine, tooll
Endif
ENDWHILE.
The code for MoveAbsJ will not be executed.

12.3.9.9 Inzone

Explanation
It is used with SetDO or modbus, cclink, and other 1O operations or commands; this command can

ensure that the signal is triggered at a defined point position, instead of being triggered earlier by the

lookahead pointer.

Example

MoveL pl
MoveL p2
Inzone
SetDO dox, true
print(123)
EndInzone
MoveL p3

Supplementary explanation
In the example, an Inzone command is used. After the interpreter looks ahead to Inzone, instead of
executing this command immediately, it generates an additional function which includes SetDo and
print commands. This additional function takes effect when the motion command move p2 is

completed.
1. If there is a turning zone between the two motion commands p2 and p3, the additional function will

be executed at the moment when the robot reaches the turning zone
2. If there is no turning zone, the additional function will be executed at the moment the robot reaches p2

12.3.9.10 WHILE

Explanation
While loop allows you to write a loop control structure that keeps executing before conditions are

met.
Example
Example 1
int count = 0
while(count < 10)
count++
print(count)
endwhile

This program enables a loop that counts by 1 from 0 to 10 and prints.

Supplementary explanation
Continue and Break can be used to control the While flow. See the Continue and Break commands

for details.

241
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.9.11 Pause

Explanation

It is used to pause the program.
The program enters the pause state after the command before Pause is executed. The program can
only be resumed by clicking running on the teach pendant or receiving a restart signal through an

external program.

E Notes

This command does not support auxiliary programming for the moment.

12.3.9.12 try/catch

Explanation

The Try/Catch command allows the program writer to decide unique response measures after an error
occurs.

Example

Example 1

ReadOnce:
Try
Double xyz[3] = ReadDouble(3, timeout, socketname)
Robtarget 0.trans.x = xyz[1]
Robtarget 0.trans.y = xyz[2]
Robtarget 0.trans.z = xyz[3]

MoveL Robtarget 0, v2000, fine, tool0
Catch(error e)

SendString("Recv rob xyz error", socketname)

Goto ReadOnce

endtry

This program supports a simple application scenario. The communication command ReadDouble is
used to read a three-dimensional array from the TcpSocket as the xyz parameter of the motion point
position, and then the MoveL command is called to move to the corresponding Cartesian point.

If the try/catch command is not used and the point position received from the TcpSocket is wrong,
the robot will report "out of range" or "planning error" and stop the program.

If the try/catch command is used, the motion command error is still reported, but the program does
not stop. Instead, it jumps to the code segment between catch and endtry and handles the error as
desired by the user. In this example, SendString tells Socket the point position error received by the
host, and the host decides how to handle the error and calls the goto command to re-execute

ReadDouble and wait for the next position.

Commands whose errors can be caught by the try/catch command:

All motion commands (see 12.3.2 Motion commands)

All communication commands (see 12.3.7 Communication commands)

242
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.9.13 SwitchCase

Explanation

SwitchCase, like the IF command, controls the flow control based on the input variable conditions.
RL interpreter will compare the variables in the Case field in order based on the input variable
(condition).

If the two variables are equal, the interpreter will enter the code branch of the corresponding Case
and stop comparing and entering other code branches.

If all conditions are not met, it will enter the Default branch;

If no Case condition matches and there is no Default branch, it will enter no branch and the Switch
command ends;

Multiple conditions can be input for the Case command (see command structure Case C1, C12, C13
and example 1).

Command structure

Switch(condition)
Case C1,C12,C13:
Functions1()
Case C2:
Functions2()
Default:
DefaultFunction()
EndSwitch

Example

Example 1
reg_int is a register variable, the host (PLC) will update the value of the variable through relevant
register protocols (e.g. modbus, cclink). The production project expects the robot to execute the
corresponding function branch (e.g. a blocked trajectory) according to the value of the register. If the
register inputs 1, 2, and 3, then function A will be executed; if the register inputs 4, 5, and 6, then
function B is executed. If the above conditions are not met, function C will be executed in the Default
branch.
Switch(reg_int)
Case 1,2,3:
FunctionsA() // The robot follows point positions related to function A
Case 4,5,6:
FunctionsB() // The robot follows point positions related to function B
Default:
FunctionC() /I Execute function C if without specified input
EndSwitch

12.3.10 Home command

12.3.10.1 Home

Explanation

Make the robot return to the set Home through joint space motion.

243
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Definition

Home

The command includes no input parameters
Example
Example 1

HomeSet 0,30,0,60,0,90,0

Home

Use the HomeSet command to set the Home and then the Home command to move the robot to the
drag pose in the joint space.

Use restrictions

» Home pose setting must be enabled on the Robot Setup > Quick Turn interface or through the
HomeSet command before the Home command can be used, otherwise, an error is reported.

12.3.10.2 HomeSet

Explanation
Sets the robot's Home in the joint space
Definition
HomeSet axis1,axis2,axis3,axis4,axis5,axis6,axis7
axisx
Data type: double
Set the angle of home on each axis
Example
Example 1
HomeSet 0,30,0,60,0,90,0
Home
Use the HomeSet command to set the Home and then the Home command to move the robot to the
drag pose in the joint space.
12.3.10.3 HomeSetAt
Explanation
Obtain the setup data of the robot's Home
Definition

Return value

HomeSetAt(index)

Data type: double
Joint angle, in °

index
Data type: int
Get the joint angle of the specified axis at Home. When the index is 0, return if HomeSet is enabled,
1 means enabled, and 0 disabled.

Example

Example 1

244
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

HomeSet 0,30,0,60,0,90,0
double angle2 = HomeSetAt(2)
angle2 Get the joint angle of joint 2 at 30°.

12.3.10.4 HomeDef

Explanation

Determine if the Home is set

Definition

HomeDef()
Return value
Data type: bool
true Home already set
false Home not set

12.3.10.5 HomeSpeed
Explanation
Set the running speed of Home command
Definition
HomeSpeed Speed
Example
Example 1
HomeSpeed v1000
Home
Set the Home speed to V1000. Then the Home command moves the robot to Home at the speed of
V1000.
12.3.10.6 HomeClr
Explanation
Clear Home setting
Definition
HomeClr
Example
Example 1
HomeClr

Clear Home set in the program. The Home command will not be executed if cleared.

245
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.11 Math command

12.3.11.1 sin

Function definition: double sin(double x);
Description: sin() is used to calculate the sine of parameter x and return the result. x in radians;
Return value: Return the calculated result between -1 and 1.

12.3.11.2 cos

Function definition: double cos(double x);
Description: cos() is used to calculate the cosine of parameter x and return the result. x in radians;
Return value: Return the calculated result between -1 and 1.

12.3.11.3 tan

Function definition: double tan(double x);
Description: tan() is used to calculate the tangent of parameter x and return the result. x in radians;
Return value: Return the tangent of parameter x.

12.3.11.4 cot

Function definition: double cot(double x);
Description: cot() is used to calculate the cotangent of parameter x and return the result. x in radians;
Return value: Return the cotangent of the parameter x.

12.3.11.5 asin

Function definition: double asin(double x);

Description: asin() is used to calculate the arcsine of parameter x and return the result. Parameter x
ranges from -1 to 1,

beyond which error will be reported.

Return value: Return the calculated result between -P1/2 and PI/2, in radians.

12.3.11.6 acos

Function definition: double acos(double x);

Description: acos() is used to calculate the arccosine of parameter x and return the result. Parameter x
ranges from -1to 1,

beyond which error will be reported.

Return value: Return the calculated result between 0 and PI, in radians.

246
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.11.7 atan

Function definition: double atan(double x);
Description: atan() is used to calculate the arctangent value of parameter x and return the result.
Return value: Return the calculated result between -PI/2 and P1/2.

12.3.11.8 sinh

Function definition: double sinh(double x)

Description: sinh() is used to calculate the hyperbolic sine value of parameter x and return the result.
The mathematical definition is:

(exp(x) - exp(-x))/2;

Return value: Return the hyperbolic sine of parameter x.

12.3.11.9 cosh

Function definition: double cosh(double x)

Description: cosh() is used to calculate the hyperbolic cosine of parameter x and return the result.
The mathematical definition is:

(exp(x)+exp(x))/2;

Return value: Return the hyperbolic cosine of the parameter x.

12.3.11.10 tanh

Function definition: double tanh(double x);

Description: tanh() is used to calculate the hyperbolic tangent of parameter x and return the result.
The mathematical definition is:

sinh(x)/cosh(x);

Return value: Return the hyperbolic tangent of parameter x.

12.3.11.11 exp

Function definition: double exp(double x);
Description: exp() is used to calculate e to the x power, which is the ex value, and return the result;
Return value: Return the result of e to the x power.

12.3.11.12 log

Function definition: double log(double x);

Description: log() is used to calculate the logarithm value of x at the base of e and return the result.
That is, to find the natural logarithm of x,

In(x), x>0;

Return value: Return the natural logarithm value of parameter x.

247
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.11.13 log10

Function definition: double log10(double x);
Description: log10() is used to calculate the logarithm value of x at the base of 10, and return the
result. Where x>0;

Return value: Return the natural logarithm value of parameter x at the base of 10.

12.3.11.14 pow

Function definition: double pow(double x, double y);
Description: pow() is used to calculate x to the y power, which is the xy value, and return the result;
Return value: Return the result of x to the y power.

12.3.11.15 sqrt

Function definition: double sqrt(double x);

Description: sqrt() is used to calculate the square root of parameter x and return the result. The
parameter X must be positive;

Return value: Return the square root of parameter x.

12.3.11.16 ceil

Function definition: double ceil(double x);

Description: ceil() will return the minimum integer value no less than parameter x, and the result will
be returned in the double type.

Return value: Return a minimum integer value not less than the parameter x.

12.3.11.17 floor

Function definition: double floor(double x);

Description: floor() will return the maximum integer value not greater than the parameter x, and the
result will be returned in the double type.

Return value: Return the maximum integer value not greater than the parameter x.

12.3.11.18 abs

Function definition: int abs(int x)/double abs(double x);

Description: Find the absolute value of x, [x|;

Return value: When the input parameter is of int type, the output is also of int type. When the input
parameter is of double type, the output is also

of double type.

248
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3.11.19 rand

Function definition: rand()

12.3 Commands

Function description: To generate an integer random number;
Return value: An integer random number, ranging from 0 to 2147483647.

12.3.12 Bit operation

12.3.12.1 BitAnd

Explanation

BitAnd is used to generate logical conjunction (and) for byte type data. See table below:

5] [l
T
0(0|1(0[0|1]|1|0]| aatal : 3a
AND
O(0|1|0|0|0|1|0| daraz : 34
0lO|1(0|0[0|1]|0] garas : 34

Return value

Data type: byte

It indicates the result returned by performing logical conjunction of two byte-type data.

Definition

BitAnd (BitDatal, BitData2)
BitDatal

Data type: byte

The byte data 1 to be processed.
BitData2

Data type: byte

The byte data 2 to be processed.
Example
Example 1

VAR byte datal =34
VAR byte data2 = 38
VAR byte byte3 = BitAnd(datal, data2) /34

Define the byte-type variable datal and data2. assign them with the value of 34 and 38, respectively;
perform logical conjunction on datal and data2, the returned value of 34 is assigned to byte3.

249

Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.12.2 BitCheck

Explanation

To check whether a bit in a byte-type data is 1. If so, returns true, otherwise, false.

Return value

Data type: bool
true indicates the bit is assigned to 1, false indicates the bit is assigned to 0.

Definition
BitCheck (BitData, BitPos)
BitData
Data type: byte
Byte data to be operated.
BitPos
Data type: int
Position of byte to be operated, ranging from 1 to 8.
Example
Example 1
VAR byte datal = 130
VAR bool bl = BitCheck(datal, 8) //true
Definite byte datal and assign it with 130, check if the 8" bit of datal is 1 and return true if so.
12.3.12.3 BitClear
Explanation
To set a certain bit of byte- or int-type data to 0. The bit starts from 1.
Definition
BitClear BitData | IntData, BitPos
BitData
Data type: byte
Byte data to be operated.
IntData
Data type: int
The integer data to be operated.
BitPos
Data type: int
Position of the bit to be operated, ranging from 1 to 8 for byte data and 1 to 32 for int data.
Example
Example 1

VAR byte datal =255

BitClear datal 1//254

BitClear datal 2 //252

Define byte-type variable datal and assign it with 255, Perform BitClear on datal, set the first bit to
0, and 254 is returned, set the second bit to 0, and 252 is returned.

250
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.12.4 BitLSh

Explanation

It is used to perform logical left shift on byte-type data.

Return value

Data type: byte
It represents the byte data obtained by performing the left-shift operation.

Definition
BitLSh (BitData, ShiftSteps)
BitData
Data type: byte
Byte data to be operated.
ShiftSteps
Data type: int
The bits selected for the left shift, ranging from 1 to 8.
Example
Example 1
VAR int left shift=3
VAR byte datal =38
VAR byte data2
data2 = BiLSh(datal, left_shift) /48
Define byte-type variable datal, and assign it with 38, perform 3 bits left shift on datal, and 48 is
returned.
12.3.12.5 BitNeg
Explanation

It is used to perform logical negation on byte-type data.

Return value

Data type: byte
It represents the byte data obtained by performing the logical negation.

Definition

BitNeg (BitData)
BitData

Data type: byte

Byte data to be operated.
Example
Example 1

VAR byte datal =38

VAR byte data2

data2 = BitNeg(datal) /217

Define byte-type variable datal, and assign it with 38, perform logical negation on datal, and 217 is

returned.

251
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3.12.6 BitOr

12.3 Commands

Explanation

It is used to perform logical disjunction (or) on byte-type data.

Return value

Data type: byte

It represents the byte data obtained by performing the logical disjunction.

Definition
BitOr (BitDatal, BitData2)
BitDatal
Data type: byte
The byte data 1 to be processed.
BitData2
Data type: byte
The byte data 2 to be processed.
Example
Example 1
VAR byte datal =39
VAR byte data2 = 162
VAR byte data3
data3 = BitOr(datal, data2) //167
Define the byte-type variable datal and data2, assign them with the value of 39 and 162,
respectively; perform logical conjunction on datal and data2, and 167 is returned.
12.3.12.7 BitRSh
Explanation

It is used to perform the logical right shift on byte-type data.

Return value

Data type: byte

It represents the byte-type data obtained by performing the right-shift operation.

Definition
BitLSh (BitData, ShiftSteps)
BitData
Data type: byte
Byte data to be operated.
ShiftSteps
Data type: int
The bits selected for the right shift, ranging from 1 to 8.
Example
Example 1

VAR int right_shift =3

VAR byte datal =38

VAR byte data2

data2 = BiRSh(datal, right_shift) /4

Define byte-type variable datal, and assign it with 38, perform 3 bits right shift on datal, and 4 is

returned.

252
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.12.8 BitSet
Explanation
To set a certain bit of byte- or int-type data to 1. The bit starts from 1.
Definition
BitSet BitData | IntData, BitPos
BitData
Data type: byte
Byte data to be operated.
IntData
Data type: int
The integer data to be operated.
BitPos
Data type: int
Position of the bit to be operated, ranging from 1 to 8 for byte data and 1 to 32 for int data.
Example
Example 1
VAR byte datal =0
BitSet datal 1 //1
BitSet datal 2 //3
Define byte-type variable datal and assign it with 255, Perform BitSet on datal, set the first bit to 1,
and 1 is returned, set the second bit to 1, and 3 is returned.
12.3.12.9 BitXOr
Explanation

It is used to perform logical exclusive or on byte-type data.

Return value

Data type: byte
It represents the byte data obtained by performing the logical disjunction.

Definition

BitXOr (BitDatal, BitData2)
BitDatal

Data type: byte

The byte data 1 to be processed.
BitData2

Data type: byte

The byte data 2 to be processed.
Example
Example 1

VAR byte datal =39

VAR byte data2 = 162

VAR byte data3

data3 = BitOr(datal, data2) /133

Define the byte-type variable datal and data2, assign them with the value of 39 and 162,

respectively; perform logical exclusive or on datal and data2, and 133 is returned

253
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.13 String operations

12.3.13.1 StrFind

Explanation

It is used to find the position of a particular set of characters in the string from a specific location.

Return value

Data type: int
It represents the location of the first matching character. If the location is not found, the length of the
returned string is added by 1.

Definition
StrFind (Str ChPos Set [\NotInSet])
Str
Data type: string
It represents the string to be searched.
ChPos
Data type: int
It represents the starting position, starting from 1, if the location is off the boundary, an error is
reported.
Set
Data type: string
It represents the character set to be matched.
[\NotInSet]
Identifier, which identifies the character that cannot be matched in the character set.
Example
Example 1
VAR int found
found = StrFind("Robotics", 1, "aeiou") //2
Matching from the first character "R", and finding the second character "o" in the character set
“aeiou”, return matching location 2.
found = StrFind("Robotics", 1, "aciou" \NotInSet) //1
Matching from the first character "R", and finding the first character "R" is not in the character set
"aeiou", return matching location 1.
12.3.13.2 StrLen
Explanation

It is used to obtain the length of the string.

Return value

Data type: int
It represents the current string length, which is longer than or equal to 0.

Definition

StrLen (Str)

Str
Data type: string

It represents a string that requires the calculation of string length.

254
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Example
Example 1
VAR int num
num = StrLen("Robotics") //8
The length of the string "Robotics" is 8.
12.3.13.3 StrMap
Explanation

It is used to back up a string, all characters in it are replaced according to the specified mapping

relationship. The mapped characters correspond one to one according to their position, and the

unmapped characters remain the same.

Return value

Data type: string
It represents the replaced string.

Definition

StrMap (Str, FromMap, ToMap)
Str

Data type: string

It represents the original string.
FromMap

Data type: string

It represents the index of the mapping.
ToMap

Data type: string

It represents the value of the mapping.
Example
Example 1

VAR string str
str = StrMap("Robotics", "aeiou", "AEIOU") //RObOtlcs

Maps the string "Robotics", and "aeiou" is respectively mapped to "AEIOU".

Use restrictions

» FromMap and ToMap have to match with each other and have to be of the same length.

12.3.13.4 StrMatch

Explanation

It is used to search in a string, starting at the specified location, search for a particular format or a

string, and return the matched location.

Return value

Data type: int

It represents the position of the first character of the matched string. If there is no match, the string

length plus one is returned.

Definition

StrMatch (Str, ChPos, Pattern)

255
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Str
Data type: string
It represents the string to be searched.
ChPos
Data type: int
It represents the starting position, if the location exceeds the length range of the string, an error is
reported.
Pattern
Data type: string
It represents the format string to match.
Example
Example 1
VAR int found
Found = StrMatch(“Robotics”, 1, “bo”) //3
Search from the first character for "bo" and find a match at the third position, position 3 is returned.
12.3.13.5 StrMemb
Explanation

It is used to check whether a character in a string belongs to a specified character set.

Return value

Data type: bool
True indicates that the character in the string belongs to the specified character set. Otherwise, false

is returned.
Definition
StrMemb (Str, ChPos, Set)
Str
Data type: string
It represents the string to be checked.
ChPos
Data type: int
It represents the position of the character to be checked; if it exceeds the range of the string, an error
is reported.
Set
Data type: string
It represents the character set to be matched.
Example
Example 1
VAR bool memb
memb = StrMemb("Robotics", 2, "aeiou") //true
The second character o is a member of the character set "aeiou" and true is returned.
12.3.13.6 StrOrder
Explanation

It is used to compare two strings and return the Boolean value.

256
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Return value

Data type: bool
When strl<=str2, returns true, otherwise, false.

Definition
StrOrder (Strl, Str2)
Strl
Data type: string
It represents the first string value.
Str2
Data type: string
It represents the second string value.
Example
Example 1
VAR bool le
le = StrOrder("FIRST", "SECOND") //true
le = StrOrder("FIRSTB", "FIRST") //false
12.3.13.7 StrPart
Explanation

It is used to truncate a part of a string to generate a new string.

Return value

Data type: string
It represents the truncated string, truncating a string from a specified location with a specified length.

Definition
StrPart (Str, ChPos, Len)
Str
Data type: string
It represents the original string of a truncated string.
ChPos
Data type: int
It represents the starting position, and if it exceeds the range of the string, an error is reported.
Len
Data type: int
It represents the length for truncating.
Example
Example 1
VAR string part
part = StrPart("Robotics", 1, 5) /Robot
Truncate the string for a length of 5 bits from position 1 to get "Robot".
12.3.13.8 StrSplit
Explanation

It is used to split a string into an array of strings by specifying a separator

257
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Return value

Data type: string array
It represents the array of strings obtained by splitting

Definition
StrSplit (Str [, separator])
Str
Data type: string
It represents the original string to be split.
separator
Data type: string
A separator. All characters in the string are considered as a separator and can be defaulted. If no
separators exist, space can be considered as the default separator.
Example
Example

string str_arr[4] = StrSplit("test],test2;test3\test4", "\,;")
The string is split into four substrings (testl test2 test3 test4).

Use restrictions

» An error is reported when the input string is blank.
» If the split results do not match the length of the defined string, an error is reported.

12.3.13.9 StrToByte

Explanation

StrToByte can convert a string into byte type data

Return value

Data type: byte
The conversion result of a string.

Definition
StrToByte (Str [, trans])
Str
Data type: string
The string to be converted.
trans
Data type: enumeration
Indicates the mathematical binary format of the string. Available parameters include \Bin (binary),
\Okt (octal), \Hex (hexadecimal), \Char (character), and the default (no parameter, decimal)
Example
Example 1
Byte NumBin = StrToByte("10", \Bin)
Byte NumOkt = StrToByte("10", \Okt)
Byte NumBin = StrToByte("10")
Byte NumHex = StrToByte("10", \Hex)
The string "10" is converted to byte numbers in binary, octal, decimal, and hexadecimal in order, and
the results are:
2,8, 10, 16.
Example 2

Byte NumChar = StrToByte("0", \Char)

258
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

The character "0" is converted to 48 according to the conversion relationship between characters and
ASCII.

Use restrictions

» An error will be reported when the input string does not conform to the specified data format.

12.3.13.10 StrToDouble

Explanation

StrToDouble can convert a string into double type data

Return value

Data type: double
The conversion result of a string.

Definition
StrToDouble (Str)
Str
Data type: string
The string to be converted.
Example
Example

Double NumDouble = StrToDouble("3.1415926")
Convert string "3.1415926" into double type data.

Use restrictions

» An error will be reported when the input string does not conform to the specified data format.

12.3.13.11 StrTolnt

Explanation

StrTolnt can convert a string into Int type data

Return value

Data type: Int
The conversion result of a string.

Definition
StrToDouble (Str)
Str
Data type: string
The string to be converted.
Example
Example

Int Numlnt = StrToInt("99")
Convert string "99" into Int type data.

Use restrictions

12.3.14 Operators

» An error will be reported when the input string does not conform to the specified data format.

259
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

8.3.11.1 Basic operators

Arithmetic operators

Example 1

Example 2

Arithmetic operators include:

Operator Application
+ Plus
- Minus
* Multiply
/ Divide
% Modular arithmetic
- Decrement
++ Increment

The arithmetic operators support the operation of data defined as int or double type. The examples
for arithmetic operators are as follows:

VAR inta=1

VAR intb=2

VAR int ¢ =-b //Negate

VAR int ac = a * ¢ /Multiplication

The two operators ++ and --, also known as unary operators, are operators that operate on an
operand. RL does not distinguish between pre and post increment or decrement:

x =n++ //Means to add n by 1 and assign the n value to x

x =--n //Means to subtract n by 1 and assign the new value to x

Logical operators

Example 1

Logical operators support the operation of the basic data types, including

Operator Application

&& Logical conjunction
I Logical disjunction
< Less than
> Greater than

<= Less than or equal to

— Greater than or equal

to

== Equal to

I= Not equal to
! Take logical negation

Logic and && expressions are true if the results on both sides are true, and the logic or || expression

is true if one of the conditions of the two sides is true.

The examples for other logical operators are as follows:

VAR int res = 1

while(res < 3) /Compare to determine whether res is less than 3
res++

endwhile

di5 = 1di6 // Take logical negation

VAR int counter = 4

while(di7&&di8) /Calculate logical conjunction

260
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

if(counter == 5) //Whether it equals to
break
endif
endwhile

Assignment operators

Assignment operators include:

Operator Application

= Assignment

Addition

+= -
assignment

Subtraction
assignment

Multiplication
assignment

Division
assignment

Modulus

Y= .
assignment

The examples for assignment operators are as follows

VAR int numl =3

VAR int num2 =4

numl +=num2 //Equivalent to numl = numl + num2, then numl =7.
numl -=num?2 //Equivalent to numl = numl — num?2, then num1 = -1.
numl *=num?2 //Equivalent to num1 = num1 * num2, then num1 = 12.
numl /= num?2 //Equivalent to num1 = num1 / num?2, then num1 = 0.
numl %= num?2 //Equivalent to numl = numl % num?2, then num1 = 3.

Other operators

Example 1

Example 2

Operator Application

0 Parentheses

Dot operator

The examples for the operators are as follows:

VAR int num = arr[1] //Assign the first element of the array to num
VAR int num2 = (1+2)*3 //Using parentheses can change the order of operations, the value of num2

here is 9

Define a robtarget variable ptl
ptl.trans.x = 200 // Change the x coordinate of the ptl point to 200 using the

nn

. operator

Use restrictions

» The "." operator does not support modifications to the A, B, C members of robtarget variables.

261
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

8.3.11.2 Operation priority

Priority Operator Use form C%ﬁ:;??;;m
0 (Expression)/function name (formal
1 parameter list)
Variable name.
- -Expression Froml:fi;ht to
5 ++ ++ Variable name/Variable name ++
-- --Variable name/Variable name --
! |Expression
. . From left to
/ Expression / Expression right
3 * Expression * Expression
% Integer expression / Integer expression
+ Expression + Expression F“’“? left to
4 right
- Expression - Expression
> Expression > Expression Frorr?gl;tﬁ to
5 >= Expression >= Expression
< Expression < Expression
<= Expression <= Expression
. . From left to
= Expression == Expression ioht
6 rigl
1= Expression = Expression
7 && Expression && Expression Fror:;gl}?:% to
8 Il Expression || Expression Fm:g}f? to
= Variable = Expression Frornl:ﬁght to
/= Variable /= Expression
9 *= Variable *= Expression
Yo= Variable % = Expression
+= Variable += Expression
= Variable -= Expression

12.3.15 Clock commands

12.3.15.1 ClkRead

Explanation

It is used to read the value of the clock.

Return value

Data type: double
Returns the time interval between the stop time of the clock or the current time and the start of the
clock. The accuracy is 0.001s.

262
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands
12.3 Commands

Definition
ClkRead (Clock)
Clock
Data type: clock
Name of the clock.
Example
Example 1
VAR clock clockl
ClkStart clock1
ClkStop clockl
VAR double interval=ClkRead(clock1)
interval stores the time interval between start and stop of clockl.
12.3.15.2 ClkReset
Explanation
It is used to reset a clock.
ClkReset guarantees that the count is 0 before using a clock.
Definition
ClkReset Clock
Clock
Data type: clock
Name of the clock.
Example
Example 1
VAR clock clock1
ClkReset clock1
Reset clockl.
12.3.15.3 ClkStart
Explanation
It is used to start a clock.
When a clock starts, it will continue to count until the clock stops or the program resets. The clock
will continue to operate after the program stops or the robot is powered off.
Definition
ClkStart Clock
Clock
Data type: clock
Name of the clock.
Example
Example 1

VAR clock clockl
ClkStart clock1
Declare clock1, and start clockl.

263
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.15.4 ClkStop
Explanation
It is used to stop a clock.
When the clock stops, it stops counting. After the clock stops, it can be read for the interval, restarted,
or reset.
Definition
ClkStop Clock
Clock
Data type: clock
Name of the clock.
Example
Example 1
VAR clock clockl
ClkStart clockl
CIkStop clock1
Stop clockl.

12.3.16 Advanced commands

12.3.16.1 RelTool

Explanation

It is used to translate or rotate the spatial position in the tool frame as specified by the current

command.

There are two main differences from Offs:

» Offs is the offset relative to the work object frame, and RelTool is the offset relative to the tool
frame;

» The Offs function does not support offsets of orientations, but RelTool does.

Return value

Data type: robtarget
Return the new pose after the offset.

Definition

RelTool(Point, XOffset, YOffset, ZOffset, Rx, Ry, Rz [, Tool, Wobj])
Point

Data type: robtarget

The point to be offset, or the initial point of the offset command.
XOffset

Data type: double

Offset in the x-direction of the tool frame.
Y Offset

Data type: double

Offset in the y-direction of the tool frame.
ZOffset

Data type: double

Offset in the z-direction of the tool frame.

264
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

Ry

Rz

Tool

Wobj

12.3 Commands

Data type: double
The rotation angle around the x-axis of the tool frame.

Data type: double
The rotation angle around the y-axis of the tool frame.

Data type: double
The rotation angle around the z-axis of the tool frame.

Data type: tool

Contain tool frame information describing the Point position

Data type: wobj
Contain work object frame information describing the Point position

Example

Example 1

Example 2

Example 3

p2=RelTool(p1,100,0,30,20,0,0)

Since no tool and work object is specified, tool0 and wobj0 are used by default. Offset point p1 by
100 mm in the x-direction, 0 mm in the y-direction, and 30 mm in the z-direction on the work object
frame, and then rotate 20 degrees around the x-axis. Last assign the new target point position to p2.

p2=RelTool(p1,100,0,30,20,0,0, tool5, wobj6)

Offset point p1 by 100 mm in the x-direction, 0 mm in the y-direction, and 30 mm in the z-direction
on the wobj6 work object frame, and then rotate 20 degrees around the x-axis. Last assign the new
target point position to p2.

MoveL RelTool(p1, 100,0,30,20,0,0), v4000, fine, tool2, wobj4

RelTool is used along with the Move command. As no tool or work object frame is specified, the tool
and wobj of the Move command will be used. Offset point p1 by 100 mm in the x-direction, 0 mm in
the y-direction, and 30 mm in the z-direction on the wobj4 work object frame, and then rotate 20
degrees around the x-axis. Last assign the new target point position to p2.

E Notes

Auxiliary programming is not supported for the optional parameters (Tool and Wobj) of this
command.

12.3.16.2 Offs

Explanation

The position offset function, which is used to offset a point in the work object frame specified in the
current command by a distance and return the position value of a new point.

The translation offset is represented by X, y, and z, and the orientation rotation offset is represented
by Rx, Ry, and Rz.

Return value

Data type: robtarget
The new pose after the offset.

Definition

265
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Offs (Point, XOffset, YOffset, ZOffset [, Rx, Ry, Rz])

Point
Data type: robtarget
The point to be offset, or the initial point of the offset command.
XOftset
Data type: double
Offset in the x-direction of the work object frame.
Y Offset
Data type: double
Offset in the y-direction of the work object frame.
ZOffset
Data type: double
Offset in the z-direction of the work object frame.
Rx
Data type: double
The rotation angle around the x-axis of the tool frame.
Ry
Data type: double
The rotation angle around the y-axis of the tool frame.
Rz
Data type: double
The rotation angle around the z-axis of the tool frame.
Example
Example 1
p11=0ffs(p10,100,200,300)
Have the point p10 offset 100 mm in the x-direction, offset 200 mm in the y-direction, offset 300 mm
in the z-direction of the work object frame, and assign the position of the new target point to p11.
E Notes
This command does not support auxiliary programming for the moment.
12.3.16.3 ConfL On/Off
Explanation
There is a set of conf parameters (cf1-7, cfx) in the xMate Cartesian frame. The conf data
corresponding to the Cartesian coordinate points manually changed or written by the user may be
incorrect, which makes it impossible for the controller to resolve the path of the target point. But in
some scenarios, the user cares only about the robot's TCP location rather than the orientation. In this
case, ConfL Off can be used to remove conf limitations and the controller can try to compute a
feasible set of conf parameters (may not be calculated, resulting in failure of motion command)
Example
Example 1

pl.trans.x =

Movel pl, v1000

Only the frame is modified, not the cf parameters. This command is likely to cause the execution to
fail

266
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

ConfL Off
Movel p1, v1000
Disable conf check. The robot can move to point p1, but the orientation is uncertain

Example 2
ConfL On
Enable conf check
Notes
® The confrestriction is turned on (ConfL On) by default for the "Move to" function on the HMI
point position list interface;
® The conf restriction is turned off (ConfL Off) by default for RL programming.
12.3.16.4 VelSet
Explanation
The VelSet command allows for adjusting maximum motion speed for smoother motion when the
robot is handling fragile objects. Instead of being constant, the maximum velocity of each joint keeps
changing with load, body orientation, and other factors when the robot is moving. The VelSet
command scales the maximum velocity capability curve for a specific task path, and the scaled
maximum velocity capability curve is also a changing curve.
Definition
VelSet gain
gain
Data type: int
The maximum velocity capacity is specified in percentage, ranging from 1% to 100%, where 100%
means the maximum acceleration. The robot reports an error when going over the limit.
Example
Example 1
VelSet 50
Set the maximum velocity capability to half of the robot's default maximum velocity.
Notes

1. The VelSet command only affects the motion commands of the corresponding RL project, instead
of JOG, move-to, rapid motion, and other non-project functions.

2. The VelSet function will interrupt the turning zone. Please do not insert VelSet commands between
the motion commands that require a turning zone.

3. The difference between the VelSet command and the program running rate adjustment slide: the
program running rate adjustment slide modifies the user's expected velocity, for example, motion
command V4000, under 50% slide control, equals a user's expected velocity of V2000. But if the
robot is at its limits, the actual maximum velocity of this motion command is only V1000, then the
actual motion velocity of the robot does not change regardless of whether the velocity slide is at 50%
or 100%, because both V2000 and V4000 are above V1000. Changing the expected velocity during
this range will not impact the actual execution velocity; on the contrary, VelSet 50 does not change
the user's expected velocity but reduces the actual maximum velocity of the motion command by
50% during the motion planning process. Under the same motion command, the actual robot motion
velocity will be cut to half from V1000 to V500. The user should identify the difference between
these two functions.

4. Acceleration automatically reverts to the default (100%) during the following operations:

> RL program is reset manually (PP to Main)

> A new RL program is loaded

267
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands
12.3 Commands

12.3.16.5 AccSet
Explanation
The AccSet command allows for adjusting acceleration and deceleration for smoother movement
when the robot is handling fragile objects.
Definition
AccSet acc, ramp
acc
Data type: int
The acceleration and deceleration are specified as a percentage of the system preset value, ranging
from 30% to 100%, where 100% means the maximum acceleration, beyond which the robot will stop
and report an error.
ramp
Data type: int
The Jerk is specified as a percentage of the system preset value, ranging from 10% to 100%, where
100% means the maximum jerk, beyond which the robot will stop and report an error.
Example
Example 1
AccSet 50,15
Acceleration and jerk are set to half of the default.
Notes
Acceleration automatically reverts to the default (100%) during the following operations:
> RL program is reset manually (PP to Main)
> A new RL program is loaded
12.3.16.6 EulerToQuaternion
Explanation

It is used to convert Euler angle to quaternion.

Return value

It represents the conversion result, 0 means successful, others mean abnormal.

Parameter
EulerToQuaternion (type,A,B,C,q1,92,93,94)
type
Euler angle order type, including EULER_XYZ and EULER_ZYX.
AB,C
It represents the Euler angle to be converted.
Data type: double
ql~q4

It represents the quaternion obtained from the conversion.
Data type: double

268
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.16.7 QuaternionToEuler

Explanation

It is used to convert a quaternion to an Euler angle.

Return value

It represents the conversion result, 0 means successful, others mean abnormal.

Parameter
QuaternionToEuler (type,ql,92,93,94,A,B,C)
type
Euler angle order type, including EULER_XYZ and EULER ZYX.
ql~q4
It represents the quaternion to be converted.
Data type: double
AB,C
It represents the Euler angle obtained from the conversion.
Data type: double
12.3.16.8 GetEndtoolTorque
Explanation

Get the end-effector tool torque information in the tool frame specified by the current command,
which is used for the force control task.

Return value

Data type: Torquelnfo
End-effector torque information

Definition
GetEndtoolTorque(tool, wobj [, type])
tool
Data type: Tool parameter
This parameter should provide the current tool used by the robot, since the handheld load may
change at any time when the robot is working
wobj
Data type: Work object parameter
This parameter should provide the current work object used by the robot, since the handheld load
may change at any time when the robot is working
type
Data type: int enumeration
0 Torque of the end-effector relative to the world frame
1 Torque of the end-effector relative to the flange frame
2 Torque of the end-effector relative to the TCP
Example
Example 1

Torquelnfo tmp_info = GetEndtoolTorque(tooll, wobj1)
Obtain the information architecture of the torque applied to the tool at the end-effector of the robot in
the case of tooll wobjl

print(tmp_info.joint_torque.measure_torque)
print(tmp_info.joint torque.external torque)

269
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Print the measured force and external force of each axis

print(tmp_info.cart_torque.m_torque)
Print Cartesian space torque

print(tmp_info.cart torque.m_force[0])

print(tmp_info.cart torque.m_torque[0])
Print information of force and torque in X direction

12.3.16.9 MotionSup

Explanation
Used to turn on and off Collision Detection
Definition
MotionSup type [, level]
type
Data type: keyword
on to turn on, off to turn off
level
Data type: string
Additional parameter for MotionSup On, used to modify the collision detection sensitivity
"High" for high collision sensitivity
"Medium" for medium collision sensitivity
"Low" for low collision sensitivity
Example
Example 1
MotionSup On
//... Other commands
MotionSup Off
Turn on Collision Detection and then execute other commands. When the commands are executed,
use MotionSup Off to turn off Collision Detection
Example 2
MotionSup On, "High"
Turn on Collision Detection and set the detection sensitivity to high
12.3.16.10 MotionSupPlus
Explanation
MotionSupPlus (Motion Supervision Plus) is used to adjust the robot's joint collision detection
sensitivity in the RL program at any time.
MotionSupPlus x1,x2,x3,x4,x5,x6,x7, where x1 to x7 represent the collision detection sensitivity
thresholds in Nm for joints 1-7, respectively.
Example
Example 1

MotionSupPlus 5,20,7,20,6,20,5

Indicates the sensitivity thresholds of the 7 joints to be 5, 20, 7, 20, 6, 20, 5(Nm), respectively.
Note: For 6-axis robots, 7 parameters should be set too, where the first 6 parameters correspond to
joints 1-6.

This command is available for cobots and six-axis industrial robots, but not three- and four-axis

industrial robots.

270
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.16.11 CONNECT (expired)

Explanation

To associate the interrupt identifier with the TRAP scope.
Interrupts are defined by customizing an interrupt event and assigning an interrupt identifier.
Therefore, when the event occurs, the TRAP scope executes.

Definition

CONNECT Interrupt WITH TRAP
Interrupt

Data type: intnum

An interrupt descriptor.

The interrupt descriptor must be a global variable.
TRAP

Data type: string

TRAP scope name.

Example
Example 1
VAR intnum test_int
PROC main()
CONNECT test_int WITH test TRAP
ISignalDI dil, 1, test_int
The interrupt description test_int is connected to the TRAP scope test TRAP. When dil goes high,
an interrupt will be generated. In other words, when the signal dil goes high, the scope test TRAP
will be executed.

12.3.16.12 BreaklLookAhead

Explanation

This command informs the control system to cancel the lookahead and force the cancellation of the
turning zone between the previous motion command and the next motion command. The robot TCP
will move to the target point position of the previous motion command and then move to the next
point without the turning zone. The program pointer will also wait for the TCP to move to the target
point position of the previous motion command before continuing the lookahead scan.

Definition

BreakLookAhead
The command includes no parameters and no return value.

Example

Example 1
MoveL P1,v1000,z50,t00l0
BreakLookAhead
MoveL. P2,v1000,z50,to0l0
MoveL. P3,v1000,z50,t0010
1) The turning zone of point P1 is set to z50. Because of the BreakLookAhead command, the
lookahead and the turning zone will be canceled, and the robot TCP will move exactly to point P1
and then to P2. There is no BreakLLookAhead command between P2 and P3, so the robot will look
ahead at P2 and pass the z50 turning zone before moving to P3.
2) The BreakLookAhead command has the same effect as the wait 0 command.

271
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3.16.13 GetRobotMaxLoad

12.3 Commands

Explanation
Get the maximum load value of the current robot model.
Definition
Ret = GetRobotMaxLoad()
Ret
Data type: int
Maximum payload
Example
Example 1

int maxload = GetRobotMaxLoad()
print(maxload)

With xMate 7 as an example, return 7.

12.3.16.14 GetRobotState

Explanation
Get the current operating state of the control system. Use the 4-byte bit information to represent the
state of the control system, including fault, emergency stop, safety gate, operation mode, servo mode,
and motion state, as shown in following table.
No. State bits Meaning
1 Byte[1].bit[1] 1: Control system is not authorized
2 Byte[1].bit[2] 1: Control system recoverable faults
3 Byte[1].bit[3] 1: Control system fatal error
4 Byte[1].bit[4] 1: Servo system failure
5 Byte[1].bit[5] 1: Servo system fatal failure
6 Byte[1].bit[6] 1: Emergency stop
7 Byte[1].bit[7] 1: Safety gate stop
8 Byte[1].bit[8] Reserved
9 Byte[2].bit[1] Power-on state, 0: motor is not powered on; 1: motor is powered on
10 Byte[2].bit[2] Robot motion state, 0: idle; 1: in motion
11 Byte[2].bit[3] Operation mode, 0: manual mode; 1: automatic mode
12 Byte[2].bit[4] Servo mode, 0: position mode; 1: torque mode
13 Byte[2].bit[5] Reserved
14 Byte[2].bit[6] Reserved
15 Byte[2].bit[7] Reserved
16 Byte[2].bit[8] Reserved
17 Byte[3] Reserved
18 Byte[4] Reserved
Definition
Ret = GetRobotState()
Ret
Data type: byte array
Use four-byte types to represent the robot state.
Example
Example 1

byte st[4] = GetRobotMaxLoad()

print(st)

Return {0,5,0,0}. According to the table, the current state is: no fault, motor powered on, automatic

mode, servo is in position mode.

272

Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.16.15 AutolgnoreZone true/false

Explanation

Used to specify whether to allow the control system to automatically ignore the turning zone.
Definition

AutolgnoreZone true/false

AutolgnoreZone true: allow the control system to automatically ignore the turning zone;
AutolgnoreZone false: do not allow the control system to automatically ignore the turning zone;

Po p

1
$ > &

|

look-ahead distance

MoveL p3,v1000,z50,t0010
MoveL p4,v1000,fine,tool0 P4

 J

As shown above: The robot runs two MoveL commands with a z50 turning zone in between. During
the motion, the robot needs lookahead from its current position for smooth and safe motion. For
example, when the robot moves to po, it looks ahead to Pi. In this process, the control system pre-
processes the information between the two points.

As the robot moves forward, the lookahead end point also moves forward. At a certain point, the
lookahead end point p1 coincides with p2, the start point of the turning zone. If the control system has
received the second motion command, it can generate a turning zone properly and control the robot
to move along the predetermined trajectory; if the control system fails to receive the second motion
command, it cannot generate the turning zone, and it will process the turning zone according to the
AutolgnoreZone command status. See below for the logic:

AutolgnoreZone true: Instead of waiting for the second motion command, the control system will
cancel the turning zone and control the robot to move directly toward Ps.

AutolgnoreZone false: The control system will wait for the second motion command, during which
the robot will slow down until the turning zone trajectory is generated. If the robot fails to receive the
second motion command when reaching P2, the robot will stop moving and report an error through
HMI.

The failure of the robot to receive the second motion command timely is often a result of too many
non-motion commands between two motion commands, e.g.:

MoveL p3,v1000,z50,t00l0

For(int i from 1 to 10000)
printf("i = %d\n", 1)

endfor

MoveL p4,v1000.fine,tool0

Many print commands are added between two motion commands, and it takes a long time for the
control system to receive the second motion command after the first one is processed.
Default: AutolgnoreZone true

Example

Example 1

273
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

AutolgnoreZone true

MoveL p3,v1000,z50,t00l0

MoveL p4,v1000,fine,tool0

Allow the control system to automatically ignore the turning zone

Example 2
AutolgnoreZone false
MoveL p3,v1000,z50,t00l0
MoveL p4,v1000,fine,tool0
Do not allow the control system to automatically ignore the turning zone
12.3.16.16 MotionWaitAtFinePoint true/false
Explanation
When the robot is stationary and the user clicks Start, the control system will look ahead a certain
distance according to the lookahead parameter (see Chapter 10.2.2 Lookahead mechanism) before
starting the robot. This command sets whether the robot starts moving immediately when the
lookahead coincides with a fine point.
A fine point refers to the target point without a turning zone, i.e. a target point with the turning zone
parameter set to fine.
MotionWaitAtFinePoint true: The control system controls the start of the robot strictly according to
the lookahead parameters (see Chapter 10.2.2 Lookahead mechanism). The robot only starts to move
when the lookahead distance reaches the set value of the lookahead parameter or the lookahead of all
motion commands is completed. In this state, the control system can guarantee the set lookahead
distance.
MotionWaitAtFinePoint false: The control system does not strictly follow the lookahead parameters,
and the robot starts moving immediately when the lookahead coincides with the fine point. In this
state, the robot can still start smoothly when the program logic gets extremely complicated, but the
lookahead distance cannot be guaranteed.
Default: MotionWaitAtFinePoint false
Example
Example 1
MotionWaitAtFinePoint true
MoveL p1,v1000,fine,tool0
MoveL p2,v1000,fine,tool0
MoveL p3,v1000,fine,tool0
MoveL p4,v1000,fine,tool0
MoveL p5,v1000,fine,tool0
When the control system looks ahead to pi, it does not start the robot immediately, but checks
whether the current lookahead distance has reached the set length before deciding whether to start the
robot.
Example 2

MotionWaitAtFinePoint false
MoveL p1,v1000,fine,tool0
MoveL p2,v1000,fine,tool0
MoveL p3,v1000,fine,tool0
MoveL p4,v1000,fine,tool0
MoveL p5,v1000,fine,tool0
When the control system looks ahead to p1, it immediately starts the robot, instead of checking

whether the current lookahead distance has reached the set length.

274
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.17 Function commands

12.3.17.1 CRobT

Explanation

It is used to get the robot pose.

When using this function, you need to give the names of the tool and the work object. Return the
pose of the specified tool frame, the current axis configuration information, and the external axis
position.

When using CRobT, the robot should be in the stop state, i.e. the turning zone of the motion
command before CRobT should be set as fine.

Return value

Data type: robtarget
Return the current robot position, orientation, axis configuration data, and external axis information.

Definition

CRobT(Tool, Wobj)
Tool

Data type: tool

The tool used when calculating the position.
Wobj

Data type: wobj

The work object used when calculating the position.
Example
Example 1

p2 = CRobT(tooll, wobj2)

12.3.17.2 CJointT

Explanation

ClointT is used to read the current angle of the robot axes and external axes.
When using CJointT, the robot should be in the stop state, i.e. the turning zone of the motion
command before CRobT should be set as fine.

Return value

Data type: jointtarget
Rotation axis unit: degree; Linear axis unit: mm

Return the current angle value of the robot axes and the external axes

Definition

ClointT ()

Data type: function
Example
Example 1

VAR jointtarget j2
j2 =ClJointT ()

275
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

12.3.17.3 CalcJointT

Explanation

It is used to calculate the corresponding joint angle based on the specified robtarget variable.

Return value

Data type: jointtarget

Return the positions of joint angle and external axes corresponding to the input position.

The joint angle is in Degrees, the external axis of the straight line is in millimeters (mm), and the
rotation of the external axis is in Degrees.

Definition
CalcJointT (Rob_Target, Tool, Wobj)
Rob_Target
Data type: robtarget
The specified Cartesian space target point. Please note that the tool and work object used in the
definition of this point should be consistent with the tool/work object used in the CalcJointT
command, otherwise, it may lead to results error.
Tool
Data type: tool
The tool to be used when calculating the joint angle. Note that it needs to be the same as the one used
when defining the robtarget used.
Wobj
Data type: wobj
The work object to be used when calculating the joint angle. Note that it needs to be the same as the
one used when defining the robtarget used.
Example
Example 1
jpos2 = CalcJointT(ptl, tooll,wobj2)
Calculate the joint angle corresponding to tooll when it reaches ptl, and assign it to jpos2. ptl is
defined under the work object wobj2.
12.3.17.4 CalcRobt
Explanation

It is used to calculate the corresponding Cartesian space pose based on the specified joint angle.

Return value

Data type: robtarget

Return the Cartesian space pose of a given joint angle.

Definition

CalcRobt (Joint Target, Tool, Wobj)
Joint Target
Data type: jointtarget
The given joint angle for calculating Cartesian space pose.

Tool
Data type: tool

The tool used when calculating Cartesian space pose.

276
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Wobj
Data type: wobj
The work object used when calculating the Cartesian space pose.
Example
Example 1
ptl = CalcRobT (jpos1, tool2,wobj1)
Calculate the Cartesian space pose according to the joint angle jposl and assign it to ptl.
ptl is the pose described by the tool frame tool2 in the work object frame wobj1.
12.3.17.5 Print
Explanation
It is used to print and output the user-defined content to the teach pendant, and the user can then use
this function to debug the program.
The input parameters of the Print function are special, the number of input parameters is unlimited,
but there must be at least one, and each parameter must be a defined variable or a constant.
The system converts these variables into strings and concatenates them in series, and finally outputs
them to the debug window of the program editor.
Definition
Print (varl, var2,)
Example
Example 1
counter = 0
while(true)
counter++
Print(“‘counter = ”,counter)
endwhile
After the program is executed, the HMI's program debug window will print the following
information:
counter = 1
counter =2
counter = 3
counter = 4
E Notes
When you need to output a string, you can use double quotation marks "" to include the characters
you want to display, but nested double quotation marks in double quotation marks are not
supported.
12.3.17.6 PoseMult
Explanation

PoseMult is used to calculate the product of two pose changes.

277
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Definition
pose3 = PoseMult(posel, pose2)
Parameter explanation: posel and pose2 are input of the pose type, and pose3 is the return value of
the pose type.
Example
posel represents the pose of frame 1 relative to frame 0, and pose2 the pose of frame 2 relative to
frame 1. Pose3, the pose of frame 2 relative to frame 0 can be calculated through the following
method:
VAR pose posel
VAR pose pose2
VAR pose pose3
pose3 = PoseMult(posel, pose2)
z1
y1
posel z2
z0 posel
x1 \
yo _* y2
pose3 x2
x0
12.3.17.7 Poselnv
Explanation
Poselnv is used to calculate the inversion of a pose change.
Definition
pose2 = Poselnv(posel)
Parameter explanation: posel is input of the pose type, and pose?2 is the return value of the pose type.
Example

posel represents the pose of frame 1 relative to frame 0, and pose 2 the pose of frame 0 relative to
frame 1.

If posel is known, pose2 can be calculated through the following method:

VAR pose posel

VAR pose pose2

pose2 = Poselnv(posel)

278
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

z1

z0

y1
x1

pose2

y0
x0

12.3.17.1 GetRobAbc

Explanation
Get the Euler angle orientation ABC of the Cartesian space point P; the rotation sequence: the initial
frame (the work object frame selected in the motion command) first rotates around its own X axis,
then around its Y axis, and last around its Z axis

Definition
double db_arr[3] = GetRobABC(Point [, A, B, C])

Point
Data type: Cartesian point position
The Cartesian point position used when calculating the position.

A,B,C

Data type: double
The return value of the Euler angle orientation for the Cartesian point position.

Return value

Data type: double-type three-dimensional array
The return value of the Euler angle orientation for the Cartesian point position.

Example 1

point0 is a Cartesian point position variable. To convert the Euler angle orientation of the variable to
a Double variable of RL, use the following RL command

VAR double Rob_A

VAR double Rob B

VAR double Rob_C

// Assign the Euler angle of point0 to Rob_A|B|C

GetRobAbc(point0, Rob_A, Rob_B, Rob_C)

Example 2

point0 is a Cartesian point position variable. To generate an array of temporary variables to store the
Euler angles of the Cartesian point position, use the following RL command
double db_arr[3] = GetRobAbc(point0)

12.3.17.2 SetRobAbc

Explanation

Get the orientation of the Cartesian space point P based on the Euler angles ABC entered; the rotation

279
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

sequence: the initial frame (the work object frame selected in the motion command) first rotates

around its own X axis, then around its Y axis, and last around its Z axis.

Definition
SetRobABC(Point , A, B, C)
Point
Data type: Cartesian point position
The Cartesian point position whose orientation to be modified.
A,B,C
Data type: double
Set the Euler angle orientation for the Cartesian point position, in °.
Example 1
point0 is a Cartesian point position variable. Set the Euler angles of the point to 30°, 60°, and 90°.
SetRobAbc(point0, 30, 60, 90)
12.3.17.3 RotRobAbc
Explanation
Rotate the Euler angles from the existing orientation of the Cartesian space point P based on the
Euler angles ABC entered; the rotation sequence: the initial frame (orientation of the point P) first
rotates around its own X axis, then around its Y axis, and last around its Z axis. The input angles
ABC are added to the existing Euler angles.
Definition
RotRobABC(Point , A, B, C)
Point
Data type: Cartesian point position
The Cartesian point position whose orientation to be modified.
A,B,C
Data type: double
Set the Euler angle orientation for rotating the Cartesian point position, in °.
Example 1

point0 is a Cartesian point position variable. Rotate the point position around X, Y, and Z to 30°, 60°,
90°.
RotRobAbc(point0, 30, 60, 90)

12.3.18 Register commands

12.3.18.1 ReadRegByName

Explanation

Reads the value of the corresponding register according to the register name
Definition

ReadRegByName(RegData, Value)
RegData

Data type: Readable register variable
Setup -> Communication -> Register interface function, register variable.

280
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Value
Data type: bool/int/double
The register data will be written into Value, and if the register variable type mismatches with the
interpreter variable, the format will be converted automatically
Example
Example 1
int tmp_int
ReadRegByName(modbus_int read[6], tmp_int)
Read the data named modbus_int read with subscript 6 into tmp_int variable
12.3.18.2 WriteRegByName
Explanation
Reads the value of the corresponding register according to the register name
Definition
WriteRegByName(RegData, Value)
RegData
Data type: writable register variable
Setup -> Communication -> Register interface function, register variable.
Value
Data type: bool/int/double
The Value will be written into the register, and if the register variable type mismatches with the
interpreter variable, the format will be converted automatically
Example
Example 1

WriteRegByName(modbus_int_write[6], 200)
Write the data of INT 200 to the register corresponding to modbus_int_write[6].

12.3.19 End-effector commands

12.3.19.1 JodellGriplnit

Explanation
Initialization command of Jodell electric gripper
Definition
JodellGriplnit ID,wait_time
1D
Data type: Int variable
Establish communication, initialize Jodell electric gripper, parameter ID.
Wait_time
Data type: Int variable
Wait for the initialization to complete, wait time threshold, report error on timeout, in s.
12.3.19.2 JodellGripMove
Explanation
Motion command of Jodell electric gripper
Definition

JodellGripMove ID,Pos, Vel, Trq

281
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands
12.3 Commands

ID
Data type: Int variable
The gripper ID that controls the movement of the gripper.
Pos
Data type: Int variable
Target position, unitless, range 0-255.
Vel
Data type: Int variable
Electric gripper velocity, unitless, range 0-255.
Trq
Data type: Int variable
Force detected by electric gripper operation, unitless, range 0-255.
12.3.19.3 JodellGripStatus
Explanation
Obtain the status of Jodell electric gripper
Definition
JodellGripStatus ID,Pos, Vel, Trq,Contact
ID
Data type: Int variable
The gripper ID that obtains the movement status of the gripper.
Pos
Data type: Int variable
Obtain the electric gripper’s current position, unitless, range 0-255.
Vel
Data type: Int variable
Obtain the electric gripper’s velocity, unitless, range 0-255.
Trq
Data type: Int variable
Obtain the electric gripper’s torque, unitless, range 0-255.
Contact
Data type: Int variable
Obtain the electric gripper’s state, unitless, range 0-255, where bit6-7 indicate whether the electric
gripper detects an object.
Bit Name Value/Description
0 gAct 0: the electric gripper is being reset; 1: the electric gripper is in the
enabling state
2 gMode 0: the parameter control mode; 1: the parameterless control mode
3 gGTO 0: stop; 1: moving to the target position
4-5 gSTA 0: the electric gripper is being reset or in the inspection state; 1: being
activated; 2: not used; 3: activation completed
6-7 gOBJ 0: fingers are moving to the specified position; 1: fingers stop due to
contact with an object when opening to reach the specified position; 2:
fingers stop due to contact with an object when closing to reach the
specified position; 3: fingers reach the specified position, but no object
is detected.
12.3.19.4 JodellSuckInit
Explanation
Initialization command of Jodell suction cup
Definition
JodellSuckInit ID
ID

Data type: Int variable
Initialize the suction cup of this ID and detect if the suction cup of this ID is connected correctly.

12.3.19.5 JodellSuckSet

282
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

Explanation
The command for Jodell suction cup to operate. When this command is given, the suction cups
immediately start operating according to the set parameters.
Definition
JodellSuckSet ID,CH1_enable,CH1_VacMin,
CH1_VacMax,CH1_Waittime,CH2_enable,CH2 VacMin,CH2 VacMax,CH2 Waittime
1D
Data type: Int variable
The ID of the suction cup being controlled.
CHI1 _enable
Data type: Int variable
Whether the first channel of the suction cup is working or not. 1: working; 0: not working.
CH1_VacMin
Data type: Int variable
The minimum vacuum level of the first channel of the suction cup, range 0-255. 0 means pure
vacuum, and a value over 100 means releasing the suction cup; stop pumping when the actual
vacuum level is lower than this threshold;
CHI1_VacMax

CH1_Waittime

CH2_enable

CH2_VacMin

CH2_VacMax

CH2_ Waittime

Data type: Int variable

The maximum vacuum level of the first channel of the suction cup, range 0-255. 0 means pure
vacuum, and a value over 100 means releasing the suction cup; start pumping when the actual
vacuum level is higher than this threshold;

Data type: Double variable
Timeout value of the first channel of the suction cup;

Data type: Int variable
Whether the second channel of the suction cup is working or not. 1: working; 0: not working.

Data type: Int variable

The minimum vacuum level of the second channel of the suction cup, range 0-255. 0 means pure
vacuum, and a value over 100 means releasing the suction cup; stop pumping when the actual
vacuum level is lower than this threshold;

Data type: Int variable

The maximum vacuum level of the second channel of the suction cup, range 0-255. 0 means pure
vacuum, and a value over 100 means releasing the suction cup; start pumping when the actual
vacuum level is higher than this threshold;

Data type: Double variable
Timeout value of the second channel of the suction cup;

12.3.19.6 JodellSuckStatus

Explanation

Obtain the status of Jodell suction cup
Definition

JodellSuckStatus ID,Vacl,Contact1,Time Errl,Vac2,Contact2, Time Err2
ID

Data type: Int variable

The ID of the suction cup whose status is to be obtained.
Vacl

Data type: Int variable

Current vacuum level of the suction cup’s first channel obtained, range 0-100.
Contactl

Data type: Int variable
Current status of the suction cup’s first channel obtained, range 0-255, where bit6-7 indicates whether
the an object is detected. See the table below for status details.

| Bit | Name | Value/Description |

283
Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.3 Commands

0 gAct 0: the electric suction cup is not enabled; 1: the electric suction cup is
enabled

2 gMode 0: the automatic control mode; 1: the advanced control mode

3 gGTO 0: adjustment stopped; 1: the pressure or vacuum is being adjusted

4-5 gSTA 0: the electric suction cup is not activated; 1 & 2: the electric suction
cup is not used; 3: the electric suction cup is activated

6-7 gOBJ 0: below the minimum air pressure; 1: work object detected and
minimum pressure value reached; 2: work object detected and maximum
pressure value reached; 3: no object detected, object lost or detached.

Time Errl
Data type: Int variable
Whether the suction cup's first channel obtained triggers a timeout alarm.
Vac2
Data type: Int variable
Current vacuum level of the suction cup’s second channel obtained, range 0-100.
Contact2
Data type: Int variable
Current status of the suction cup’s second channel obtained, range 0-255, where bit6-7 indicates
whether an object is detected. See the table above for status details.
Time Err2

Data type: Int variable
Whether the suction cup's second channel obtained triggers a timeout alarm.

284
Copyright © ROKAE 2015-2023. All rights reserved.

	Contents
	1 File list
	2 Glossary
	3 Introduction
	3.1 Main Interface
	3.1.1 Top Status Bar
	3.1.2 Bottom Status Bar

	3.2 Status Monitoring
	3.2.1 3D model monitoring
	3.2.2 Multi-task monitoring
	3.2.3 IO signal monitoring
	3.2.4 Network connection monitoring
	3.2.5 Register variable monitoring

	3.3 Operation interface
	3.4 Function module
	3.4.1 Menu module
	3.4.2 Robot programming module
	3.4.3 Robot configuration module
	3.4.4 Teach Pendant option module

	4 Connecting to the Robot
	4.1 Robot network interface and IP
	4.2 Connecting to terminal devices
	4.3 Connecting to the robot
	4.4 User login
	4.5 Disconnect and restore connection
	4.5.1 Auto reconnect
	4.5.2 Plug & play Teach Pendant xPad2

	5 Operating Mode and Safety
	5.1 Safety Management
	5.1.1 About this section
	5.1.2 Safety terms
	5.1.2.1 Safety symbols
	5.1.2.2 Safety features
	5.1.2.3 Stop
	5.1.2.4 Enabling switch

	5.1.3 Safety precautions
	5.1.3.1 Overview
	5.1.3.2 Focus on user's own safety
	5.1.3.3 Recovering from emergency stops
	5.1.3.4 Safety precautions in Manual mode
	5.1.3.5 Safety precautions in Automatic mode
	5.1.3.6 Emergency handling
	5.1.3.6.1 Fire
	5.1.3.6.2 Treatment of an electric shock

	5.2 Robot operating mode
	5.2.1 Manual mode
	5.2.2 Automatic mode
	5.2.3 Mode switching
	5.2.3.1 About mode switching
	5.2.3.2 Switching from Manual to Automatic
	5.2.3.3 Switching from Automatic to Manual

	5.3 Robot power on/off
	5.3.1 Robot power-on
	5.3.2 Robot power-off

	6 Motion control
	6.1 Jog mode
	6.2 Drag mode
	6.2.1 End-effector handle
	6.2.2 Point position teaching
	6.2.3 Continuous trajectory teaching
	6.2.4 Trajectory reproduction

	7 Robot Configuration
	7.1 Basic settings
	7.1.1 User groups and permissions
	7.1.2 Controller settings
	7.1.3 Zero Calibration
	7.1.4 Base calibration
	7.1.5 Dynamic settings
	7.1.6 Body parameters
	7.1.7 Kinematic parameters
	7.1.8 Force control parameters
	7.1.9 Quick turn settings
	7.1.10 Electronic nameplate

	7.2 Safety Features
	7.2.1 Scope
	7.2.2 Soft limit
	7.2.3 Virtual wall
	7.2.4 Collision detection
	7.2.5 Safety area
	7.2.6 Safety monitor
	7.2.7 Collaboration mode
	7.2.8 Safety position

	7.3 Communication Configuration
	7.3.1 System IO Configuration
	7.3.2 External communication
	7.3.3 Bus devices
	7.3.3.1 Modbus communication
	7.3.3.1.1 Modbus TCP configuration
	7.3.3.1.2 Modbus RTU configuration

	7.3.3.2 CC-Link communication
	7.3.3.2.1 CC-Link configuration
	7.3.3.2.2 CC-Link IE Field Basic configuration

	7.3.3.3 EtherCAT communication
	7.3.3.4 PROFINET communication

	7.3.4 Register
	7.3.5 IO device
	7.3.5.1 Register remote control
	7.3.5.2 Modbus expansion IO

	7.3.6 Serial Communication
	7.3.7 End-effector tool communication
	7.3.8 Electric gripper and suction cup
	7.3.9 RCI setting

	7.4 Process kit
	7.4.1 Laser welding
	7.4.2 Plating line tracking

	7.5 Authorization
	7.5.1 EtherCAT Authorization

	8 Menu module
	8.1 Diagnosis
	8.1.1 Teach pendant log
	8.1.2 Controller logs
	8.1.3 Log timeline
	8.1.4 Internal logs
	8.1.5 Advanced options
	8.1.6 Error recovery

	8.2 Help
	8.3 Demos
	8.3.1 Seven-axis redundant motion
	8.3.2 Obstacle avoidance
	8.3.3 Collision detection
	8.3.4 Compliance demo

	9 Teach pendant options
	9.1 Connection settings
	9.2 Basic settings
	9.2.1 Multi-language log

	9.3 Appearance settings
	9.4 File manager

	10 Robot Motion Foundation
	10.1 Frame
	10.2 Robot singularity
	10.2.1 Turning zone
	10.2.2 Lookahead mechanism

	10.3 Robot force control
	10.3.1 Introduction to force control
	10.3.2 Impedance control
	10.3.3 Overlay
	10.3.4 Applications

	11 Programming and Debugging
	11.1 Programming preparation
	11.2 Project
	11.2.1 Project introduction
	11.2.2 Project configuration
	11.2.3 Task list
	11.2.3.1 What is Multitasking?
	11.2.3.2 Task list
	11.2.3.3 New task
	11.2.3.4 Starting and running tasks
	11.2.3.5 Intertask Communication

	11.2.4 List of variables
	11.2.4.1 Variables
	11.2.4.1.1 Basic concept
	11.2.4.1.2 Variable declaration
	11.2.4.1.3 User variable hold

	11.2.4.2 List of variables

	11.2.5 Point position list
	11.2.6 Path list
	11.2.7 IO signal list
	11.2.8 User frame list
	11.2.9 Tool frame
	11.2.9.1 What is a tool?
	11.2.9.2 Tool center point
	11.2.9.3 Tool frame
	11.2.9.4 Tool load parameters
	11.2.9.5 Use of tools
	11.2.9.6 External tools

	11.2.10 Work object frame list
	11.2.10.1 What is a work object?
	11.2.10.2 Definition of work object
	11.2.10.3 Use of work object
	11.2.10.4 Use of external tool/work object

	11.2.11 Vision System

	11.2 RL Programs
	11.2.1 About RL language
	11.2.2 Program structure
	11.2.2.1 Overview
	11.2.2.2 Program modules

	11.2.3 Program editing
	11.2.3.1 Function menu

	11.2.4 Program debugging
	11.2.4.1 Program pointer
	11.2.4.2 Motion pointer
	11.2.4.3 Lookahead mechanism
	11.2.4.4 Single-step debugging
	11.2.4.5 Regain path
	11.2.4.6 Move program pointer
	11.2.4.7 Variable management

	12 RL Programming Commands
	12.1 Variables
	12.1.1 Int
	12.1.2 uint
	12.1.3 Double
	12.1.4 Bool
	12.1.5 String
	12.1.6 Array
	12.1.7 byte
	12.1.8 clock
	12.1.9 Implicit type conversion
	12.1.10 confdata
	12.1.11 jointtarget
	12.1.12 load
	12.1.13 orient
	12.1.14 pos
	12.1.15 pose
	12.1.16 robtarget
	12.1.17 signalxx
	12.1.18 speed
	12.1.19 tool
	12.1.20 trigdata
	12.1.21 wobj
	12.1.22 zone
	12.1.23 torqueinfo
	12.1.24 SocketServer
	12.1.25 SocketConn

	12.2 Functions
	12.2.1 Functions

	12.3 Commands
	12.3.1 Variable type conversion
	12.3.1.1.1 StrToByte
	12.3.1.1.2 StrToDouble
	12.3.1.1.3 StrToInt
	12.3.1.1.4 ByteToStr
	12.3.1.1.5 DecToHex
	12.3.1.1.6 DoubleToByte
	12.3.1.1.7 DoubleToStr
	12.3.1.1.8 HexToDec
	12.3.1.1.9 IntToByte
	12.3.1.1.10 IntToStr

	12.3.2 Motion commands
	12.3.2.1 MoveAbsJ
	12.3.2.2 MoveJ
	12.3.2.3 MoveL
	12.3.2.4 MoveC
	12.3.2.5 MoveT
	12.3.2.6 SearchL
	12.3.2.7 SearchC

	12.3.3 Trigger command
	12.3.3.1 TrigIO
	12.3.3.2 TrigReg
	12.3.3.3 TrigL
	12.3.3.4 TrigC

	12.3.4 Force control commands
	12.3.4.1 CalibSensorError
	12.3.4.2 FcInit
	12.3.4.3 SetControlType
	12.3.4.4 SetSensorUseType
	12.3.4.5 SetCartNSStiff
	12.3.4.6 SetJntCtrlStiffVec
	12.3.4.7 SetCartCtrlStiffVec
	12.3.4.8 SetJntTrqDes
	12.3.4.9 SetCartForceDes
	12.3.4.10 SetSineOverlay
	12.3.4.11 SetLissajousOverlay
	12.3.4.12 SetLoad
	12.3.4.13 FcStart
	12.3.4.14 FcStop
	12.3.4.15 StartOverlay
	12.3.4.16 PauseOverlay
	12.3.4.17 RestartOverlay
	12.3.4.18 StopOverlay
	12.3.4.19 FcCondForce
	12.3.4.20 FcCondPosBox
	12.3.4.21 FcCondTorque
	12.3.4.22 FcCondWaitWhile
	12.3.4.23 GetEndToolTorque

	12.3.5 Drag and replay
	12.3.5.1 ReplayPath

	12.3.6 IO commands
	12.3.6.1 SetDO
	12.3.6.2 SetAllDO
	12.3.6.3 SetGO
	12.3.6.4 SetAO
	12.3.6.5 PulseDO
	12.3.6.6 PulseReg

	12.3.7 Communication commands
	12.3.7.1 OpenDev
	12.3.7.2 SocketAccept
	12.3.7.3 CloseDev
	12.3.7.4 SendString
	12.3.7.5 SendByte
	12.3.7.6 ReadBit
	12.3.7.7 ReadByte
	12.3.7.8 ReadDouble
	12.3.7.9 ReadInt
	12.3.7.10 ReadString
	12.3.7.11 GetSocketConn
	12.3.7.12 GetSocketServer
	12.3.7.13 GetBufSize
	12.3.7.14 ClearBuffer

	12.3.8 Network command
	12.3.8.1 SocketCreate (expired)
	12.3.8.2 SocketClose (expired)
	12.3.8.3 SocketSendString (expired)
	12.3.8.4 SocketSendByte (expired)
	12.3.8.5 SocketReadBit (expired)
	12.3.8.6 SocketReadDouble (expired)
	12.3.8.7 SocketReadInt (expired)
	12.3.8.8 SocketReadString (expired)

	12.3.9 Logic commands
	12.3.9.1 Return
	12.3.9.2 Wait
	12.3.9.3 WaitUntil
	12.3.9.4 Break
	12.3.9.5 IF…Else if…Else
	12.3.9.6 Goto
	12.3.9.7 For
	12.3.9.8 Continue
	12.3.9.9 Inzone
	12.3.9.10 WHILE
	12.3.9.11 Pause
	12.3.9.12 try/catch
	12.3.9.13 SwitchCase

	12.3.10 Home command
	12.3.10.1 Home
	12.3.10.2 HomeSet
	12.3.10.3 HomeSetAt
	12.3.10.4 HomeDef
	12.3.10.5 HomeSpeed
	12.3.10.6 HomeClr

	12.3.11 Math command
	12.3.11.1 sin
	12.3.11.2 cos
	12.3.11.3 tan
	12.3.11.4 cot
	12.3.11.5 asin
	12.3.11.6 acos
	12.3.11.7 atan
	12.3.11.8 sinh
	12.3.11.9 cosh
	12.3.11.10 tanh
	12.3.11.11 exp
	12.3.11.12 log
	12.3.11.13 log10
	12.3.11.14 pow
	12.3.11.15 sqrt
	12.3.11.16 ceil
	12.3.11.17 floor
	12.3.11.18 abs
	12.3.11.19 rand

	12.3.12 Bit operation
	12.3.12.1 BitAnd
	12.3.12.2 BitCheck
	12.3.12.3 BitClear
	12.3.12.4 BitLSh
	12.3.12.5 BitNeg
	12.3.12.6 BitOr
	12.3.12.7 BitRSh
	12.3.12.8 BitSet
	12.3.12.9 BitXOr

	12.3.13 String operations
	12.3.13.1 StrFind
	12.3.13.2 StrLen
	12.3.13.3 StrMap
	12.3.13.4 StrMatch
	12.3.13.5 StrMemb
	12.3.13.6 StrOrder
	12.3.13.7 StrPart
	12.3.13.8 StrSplit
	12.3.13.9 StrToByte
	12.3.13.10 StrToDouble
	12.3.13.11 StrToInt

	12.3.14 Operators
	8.3.11.1 Basic operators
	8.3.11.2 Operation priority

	12.3.15 Clock commands
	12.3.15.1 ClkRead
	12.3.15.2 ClkReset
	12.3.15.3 ClkStart
	12.3.15.4 ClkStop

	12.3.16 Advanced commands
	12.3.16.1 RelTool
	12.3.16.2 Offs
	12.3.16.3 ConfL On/Off
	12.3.16.4 VelSet
	12.3.16.5 AccSet
	12.3.16.6 EulerToQuaternion
	12.3.16.7 QuaternionToEuler
	12.3.16.8 GetEndtoolTorque
	12.3.16.9 MotionSup
	12.3.16.10 MotionSupPlus
	12.3.16.11 CONNECT (expired)
	12.3.16.12 BreakLookAhead
	12.3.16.13 GetRobotMaxLoad
	12.3.16.14 GetRobotState
	12.3.16.15 AutoIgnoreZone true/false
	12.3.16.16 MotionWaitAtFinePoint true/false

	12.3.17 Function commands
	12.3.17.1 CRobT
	12.3.17.2 CJointT
	12.3.17.3 CalcJointT
	12.3.17.4 CalcRobt
	12.3.17.5 Print
	12.3.17.6 PoseMult
	12.3.17.7 PoseInv
	12.3.17.1 GetRobAbc
	12.3.17.2 SetRobAbc
	12.3.17.3 RotRobAbc

	12.3.18 Register commands
	12.3.18.1 ReadRegByName
	12.3.18.2 WriteRegByName

	12.3.19 End-effector commands
	12.3.19.1 JodellGripInit
	12.3.19.2 JodellGripMove
	12.3.19.3 JodellGripStatus
	12.3.19.4 JodellSuckInit
	12.3.19.5 JodellSuckSet
	12.3.19.6 JodellSuckStatus

