

xCore
Control System

Operation Manual

A Partner You Can Rely on in Production

I
Copyright © ROKAE 2015-2023. All rights reserved.

Control System Version: V1.7

Version:

Copyright © ROKAE 2015-2023. All rights reserved.

II
Copyright © ROKAE 2015-2023. All rights reserved.

Contents in this manual are subject to change without notice. We assume no responsibility for

any errors that may appear in this manual.

Please understand that in no event shall we be liable for incidental or consequential damages

arising from the use of this manual and the products described herein.

We cannot foresee all possible dangers and consequences. Therefore, this manual cannot warn

the user of all possible hazards.

No part of this manual may be reproduced in any form.

If you find the contents of this manual wrong or in need of improvement or supplement, please

contact us for correction.

This manual is originally written in Simplified Chinese. Other language versions are translated.

Copyright © ROKAE 2015-2023. All rights reserved.

ROKAE (Shandong) Intelligent Technology Co., Ltd.

Shandong, China

Contents

III
Copyright © ROKAE 2015-2023. All rights reserved.

Contents

CONTENTS ... III

1 FILE LIST.. 15

2 GLOSSARY ... 15

3 INTRODUCTION .. 16

3.1 Main Interface .. 16

3.1.1 Top Status Bar ... 17

3.1.2 Bottom Status Bar .. 17

3.2 Status Monitoring ... 18

3.2.1 3D model monitoring .. 19

3.2.2 Multi-task monitoring .. 19

3.2.3 IO signal monitoring .. 20

3.2.4 Network connection monitoring .. 20

3.2.5 Register variable monitoring ... 21

3.3 Operation interface ... 22

3.4 Function module ... 24

3.4.1 Menu module ... 24

3.4.2 Robot programming module .. 24

3.4.3 Robot configuration module .. 25

3.4.4 Teach Pendant option module .. 25

4 CONNECTING TO THE ROBOT .. 25

4.1 Robot network interface and IP ... 26

4.2 Connecting to terminal devices ... 27

4.3 Connecting to the robot .. 28

4.4 User login .. 30

4.5 Disconnect and restore connection ... 30

4.5.1 Auto reconnect ... 30

4.5.2 Plug & play Teach Pendant xPad2 ... 31

5 OPERATING MODE AND SAFETY.. 31

Contents

IV

Copyright © ROKAE 2015-2023. All rights reserved.

5.1 Safety Management .. 31

5.1.1 About this section .. 31

5.1.2 Safety terms ... 32

5.1.2.1 Safety symbols .. 32

5.1.2.2 Safety features ... 33

5.1.2.3 Stop ... 33

5.1.2.4 Enabling switch ... 34

5.1.3 Safety precautions ... 34

5.1.3.1 Overview ... 34

5.1.3.2 Focus on user's own safety .. 35

5.1.3.3 Recovering from emergency stops .. 35

5.1.3.4 Safety precautions in Manual mode .. 35

5.1.3.5 Safety precautions in Automatic mode .. 36

5.1.3.6 Emergency handling .. 36

5.1.3.6.1 Fire .. 36

5.1.3.6.2 Treatment of an electric shock .. 37

5.2 Robot operating mode ... 37

5.2.1 Manual mode ... 37

5.2.2 Automatic mode... 37

5.2.3 Mode switching ... 38

5.2.3.1 About mode switching ... 38

5.2.3.2 Switching from Manual to Automatic ... 38

5.2.3.3 Switching from Automatic to Manual ... 39

5.3 Robot power on/off ... 39

5.3.1 Robot power-on ... 39

5.3.2 Robot power-off .. 40

6 MOTION CONTROL ... 40

6.1 Jog mode ... 40

6.2 Drag mode ... 41

6.2.1 End-effector handle ... 42

6.2.2 Point position teaching .. 43

6.2.3 Continuous trajectory teaching .. 43

6.2.4 Trajectory reproduction ... 46

7 ROBOT CONFIGURATION .. 46

7.1 Basic settings ... 46

7.1.1 User groups and permissions ... 46

7.1.2 Controller settings ... 47

Contents

V

Copyright © ROKAE 2015-2023. All rights reserved.

7.1.3 Zero Calibration... 50

7.1.4 Base calibration ... 53

7.1.5 Dynamic settings ... 55

7.1.6 Body parameters .. 58

7.1.7 Kinematic parameters .. 59

7.1.8 Force control parameters ... 61

7.1.9 Quick turn settings ... 63

7.1.10 Electronic nameplate ... 64

7.2 Safety Features .. 67

7.2.1 Scope ... 67

7.2.2 Soft limit .. 67

7.2.3 Virtual wall .. 68

7.2.4 Collision detection ... 69

7.2.5 Safety area ... 70

7.2.6 Safety monitor ... 73

7.2.7 Collaboration mode ... 74

7.2.8 Safety position ... 75

7.3 Communication Configuration ... 76

7.3.1 System IO Configuration ... 76

7.3.2 External communication .. 77

7.3.3 Bus devices .. 80

7.3.3.1 Modbus communication .. 82

7.3.3.1.1 Modbus TCP configuration ... 82

7.3.3.1.2 Modbus RTU configuration .. 83

7.3.3.2 CC-Link communication ... 83

7.3.3.2.1 CC-Link configuration .. 83

7.3.3.2.2 CC-Link IE Field Basic configuration .. 84

7.3.3.3 EtherCAT communication ... 84

7.3.3.4 PROFINET communication .. 85

7.3.4 Register .. 86

7.3.5 IO device ... 91

7.3.5.1 Register remote control ... 94

7.3.5.2 Modbus expansion IO ... 100

7.3.6 Serial Communication ... 102

7.3.7 End-effector tool communication .. 103

7.3.8 Electric gripper and suction cup .. 104

7.3.9 RCI setting ... 106

7.4 Process kit ... 107

7.4.1 Laser welding .. 107

7.4.2 Plating line tracking ... 107

7.5 Authorization .. 107

Contents

VI
Copyright © ROKAE 2015-2023. All rights reserved.

7.5.1 EtherCAT Authorization .. 107

8 MENU MODULE ... 107

8.1 Diagnosis ... 107

8.1.1 Teach pendant log .. 108

8.1.2 Controller logs ... 108

8.1.3 Log timeline .. 108

8.1.4 Internal logs ... 109

8.1.5 Advanced options .. 109

8.1.6 Error recovery .. 110

8.2 Help ... 111

8.3 Demos .. 113

8.3.1 Seven-axis redundant motion .. 113

8.3.2 Obstacle avoidance .. 114

8.3.3 Collision detection ... 114

8.3.4 Compliance demo .. 115

9 TEACH PENDANT OPTIONS ... 115

9.1 Connection settings ... 116

9.2 Basic settings ... 116

9.2.1 Multi-language log .. 117

9.3 Appearance settings .. 117

9.4 File manager ... 118

10 ROBOT MOTION FOUNDATION ... 118

10.1 Frame .. 118

10.2 Robot singularity ... 119

10.2.1 Turning zone .. 121

10.2.2 Lookahead mechanism .. 122

10.3 Robot force control ... 122

10.3.1 Introduction to force control .. 122

10.3.2 Impedance control ... 122

10.3.3 Overlay .. 123

10.3.4 Applications ... 124

Contents

VII
Copyright © ROKAE 2015-2023. All rights reserved.

11 PROGRAMMING AND DEBUGGING ... 126

11.1 Programming preparation .. 126

11.2 Project ... 127

11.2.1 Project introduction ... 127

11.2.2 Project configuration ... 128

11.2.3 Task list .. 129

11.2.3.1 What is Multitasking? .. 129

11.2.3.2 Task list .. 129

11.2.3.3 New task .. 130

11.2.3.4 Starting and running tasks ... 131

11.2.3.5 Intertask Communication .. 132

11.2.4 List of variables ... 132

11.2.4.1 Variables .. 132

11.2.4.1.1 Basic concept .. 132

11.2.4.1.2 Variable declaration ... 134

11.2.4.1.3 User variable hold ... 135

11.2.4.2 List of variables ... 136

11.2.5 Point position list ... 138

11.2.6 Path list .. 139

11.2.7 IO signal list... 139

11.2.8 User frame list ... 141

11.2.9 Tool frame .. 142

11.2.9.1 What is a tool? ... 142

11.2.9.2 Tool center point .. 142

11.2.9.3 Tool frame.. 143

11.2.9.4 Tool load parameters .. 145

11.2.9.5 Use of tools .. 146

11.2.9.6 External tools ... 147

11.2.10 Work object frame list .. 148

11.2.10.1 What is a work object? .. 148

11.2.10.2 Definition of work object .. 149

11.2.10.3 Use of work object ... 151

11.2.10.4 Use of external tool/work object .. 151

11.2.11 Vision System .. 152

11.2 RL Programs ... 154

11.2.1 About RL language .. 154

11.2.2 Program structure .. 155

11.2.2.1 Overview ... 155

11.2.2.2 Program modules ... 156

11.2.3 Program editing ... 157

11.2.3.1 Function menu ... 157

Contents

VIII
Copyright © ROKAE 2015-2023. All rights reserved.

11.2.4 Program debugging .. 158

11.2.4.1 Program pointer ... 158

11.2.4.2 Motion pointer ... 158

11.2.4.3 Lookahead mechanism .. 158

11.2.4.4 Single-step debugging ... 158

11.2.4.5 Regain path .. 159

11.2.4.6 Move program pointer ... 159

11.2.4.7 Variable management... 160

12 RL PROGRAMMING COMMANDS ... 161

12.1 Variables .. 161

12.1.1 Int .. 161

12.1.2 uint ... 162

12.1.3 Double ... 162

12.1.4 Bool ... 163

12.1.5 String ... 164

12.1.6 Array .. 164

12.1.7 byte .. 165

12.1.8 clock .. 166

12.1.9 Implicit type conversion .. 167

12.1.10 confdata ... 167

12.1.11 jointtarget ... 169

12.1.12 load .. 170

12.1.13 orient .. 173

12.1.14 pos ... 174

12.1.15 pose .. 174

12.1.16 robtarget ... 175

12.1.17 signalxx ... 176

12.1.18 speed .. 177

12.1.19 tool ... 179

12.1.20 trigdata ... 182

12.1.21 wobj ... 183

12.1.22 zone ... 185

12.1.23 torqueinfo .. 188

12.1.24 SocketServer .. 188

12.1.25 SocketConn.. 189

12.2 Functions ... 191

12.2.1 Functions ... 191

12.3 Commands .. 191

12.3.1 Variable type conversion.. 191

12.3.1.1.1 StrToByte .. 191

Contents

IX

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.1.1.2 StrToDouble .. 192

12.3.1.1.3 StrToInt ... 193

12.3.1.1.4 ByteToStr .. 193

12.3.1.1.5 DecToHex ... 194

12.3.1.1.6 DoubleToByte ... 194

12.3.1.1.7 DoubleToStr .. 194

12.3.1.1.8 HexToDec ... 195

12.3.1.1.9 IntToByte .. 195

12.3.1.1.10 IntToStr ... 195

12.3.2 Motion commands ... 196

12.3.2.1 MoveAbsJ .. 196

12.3.2.2 MoveJ .. 197

12.3.2.3 MoveL ... 198

12.3.2.4 MoveC ... 199

12.3.2.5 MoveT ... 200

12.3.2.6 SearchL .. 201

12.3.2.7 SearchC ... 203

12.3.3 Trigger command ... 204

12.3.3.1 TrigIO .. 204

12.3.3.2 TrigReg .. 205

12.3.3.3 TrigL .. 205

12.3.3.4 TrigC.. 206

12.3.4 Force control commands ... 207

12.3.4.1 CalibSensorError ... 207

12.3.4.2 FcInit ... 208

12.3.4.3 SetControlType .. 208

12.3.4.4 SetSensorUseType ... 209

12.3.4.5 SetCartNSStiff ... 209

12.3.4.6 SetJntCtrlStiffVec .. 210

12.3.4.7 SetCartCtrlStiffVec .. 210

12.3.4.8 SetJntTrqDes ... 211

12.3.4.9 SetCartForceDes .. 212

12.3.4.10 SetSineOverlay .. 213

12.3.4.11 SetLissajousOverlay .. 213

12.3.4.12 SetLoad .. 214

12.3.4.13 FcStart ... 215

12.3.4.14 FcStop.. 215

12.3.4.15 StartOverlay... 216

12.3.4.16 PauseOverlay ... 216

12.3.4.17 RestartOverlay ... 217

12.3.4.18 StopOverlay ... 217

12.3.4.19 FcCondForce ... 218

12.3.4.20 FcCondPosBox .. 219

12.3.4.21 FcCondTorque ... 219

Contents

X

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.4.22 FcCondWaitWhile ... 220

12.3.4.23 GetEndToolTorque .. 221

12.3.5 Drag and replay ... 221

12.3.5.1 ReplayPath .. 222

12.3.6 IO commands... 222

12.3.6.1 SetDO .. 222

12.3.6.2 SetAllDO ... 222

12.3.6.3 SetGO .. 223

12.3.6.4 SetAO .. 223

12.3.6.5 PulseDO .. 223

12.3.6.6 PulseReg .. 224

12.3.7 Communication commands ... 224

12.3.7.1 OpenDev .. 225

12.3.7.2 SocketAccept ... 226

12.3.7.3 CloseDev ... 226

12.3.7.4 SendString ... 227

12.3.7.5 SendByte ... 228

12.3.7.6 ReadBit .. 228

12.3.7.7 ReadByte ... 229

12.3.7.8 ReadDouble ... 230

12.3.7.9 ReadInt .. 230

12.3.7.10 ReadString ... 231

12.3.7.11 GetSocketConn .. 231

12.3.7.12 GetSocketServer .. 232

12.3.7.13 GetBufSize .. 233

12.3.7.14 ClearBuffer .. 233

12.3.8 Network command .. 234

12.3.8.1 SocketCreate (expired) .. 234

12.3.8.2 SocketClose (expired) ... 235

12.3.8.3 SocketSendString (expired) ... 235

12.3.8.4 SocketSendByte (expired) ... 236

12.3.8.5 SocketReadBit (expired) ... 236

12.3.8.6 SocketReadDouble (expired) ... 237

12.3.8.7 SocketReadInt (expired) .. 237

12.3.8.8 SocketReadString (expired) ... 238

12.3.9 Logic commands ... 238

12.3.9.1 Return .. 238

12.3.9.2 Wait ... 238

12.3.9.3 WaitUntil ... 239

12.3.9.4 Break ... 239

12.3.9.5 IF…Else if…Else .. 239

12.3.9.6 Goto ... 240

12.3.9.7 For ... 240

12.3.9.8 Continue .. 240

Contents

XI
Copyright © ROKAE 2015-2023. All rights reserved.

12.3.9.9 Inzone .. 241

12.3.9.10 WHILE .. 241

12.3.9.11 Pause .. 242

12.3.9.12 try/catch ... 242

12.3.9.13 SwitchCase .. 243

12.3.10 Home command ... 243

12.3.10.1 Home ... 243

12.3.10.2 HomeSet .. 244

12.3.10.3 HomeSetAt .. 244

12.3.10.4 HomeDef ... 245

12.3.10.5 HomeSpeed ... 245

12.3.10.6 HomeClr .. 245

12.3.11 Math command .. 246

12.3.11.1 sin .. 246

12.3.11.2 cos .. 246

12.3.11.3 tan .. 246

12.3.11.4 cot .. 246

12.3.11.5 asin... 246

12.3.11.6 acos .. 246

12.3.11.7 atan .. 247

12.3.11.8 sinh .. 247

12.3.11.9 cosh .. 247

12.3.11.10 tanh .. 247

12.3.11.11 exp ... 247

12.3.11.12 log .. 247

12.3.11.13 log10 .. 248

12.3.11.14 pow .. 248

12.3.11.15 sqrt ... 248

12.3.11.16 ceil ... 248

12.3.11.17 floor ... 248

12.3.11.18 abs .. 248

12.3.11.19 rand .. 249

12.3.12 Bit operation .. 249

12.3.12.1 BitAnd ... 249

12.3.12.2 BitCheck .. 250

12.3.12.3 BitClear ... 250

12.3.12.4 BitLSh ... 251

12.3.12.5 BitNeg ... 251

12.3.12.6 BitOr .. 252

12.3.12.7 BitRSh ... 252

12.3.12.8 BitSet ... 253

12.3.12.9 BitXOr ... 253

12.3.13 String operations .. 254

12.3.13.1 StrFind ... 254

Contents

XII
Copyright © ROKAE 2015-2023. All rights reserved.

12.3.13.2 StrLen .. 254

12.3.13.3 StrMap ... 255

12.3.13.4 StrMatch .. 255

12.3.13.5 StrMemb .. 256

12.3.13.6 StrOrder ... 256

12.3.13.7 StrPart .. 257

12.3.13.8 StrSplit ... 257

12.3.13.9 StrToByte... 258

12.3.13.10 StrToDouble .. 259

12.3.13.11 StrToInt .. 259

12.3.14 Operators ... 259

8.3.11.1 Basic operators .. 260

8.3.11.2 Operation priority .. 262

12.3.15 Clock commands ... 262

12.3.15.1 ClkRead ... 262

12.3.15.2 ClkReset .. 263

12.3.15.3 ClkStart .. 263

12.3.15.4 ClkStop .. 264

12.3.16 Advanced commands ... 264

12.3.16.1 RelTool .. 264

12.3.16.2 Offs .. 265

12.3.16.3 ConfL On/Off .. 266

12.3.16.4 VelSet... 267

12.3.16.5 AccSet .. 268

12.3.16.6 EulerToQuaternion .. 268

12.3.16.7 QuaternionToEuler .. 269

12.3.16.8 GetEndtoolTorque ... 269

12.3.16.9 MotionSup ... 270

12.3.16.10 MotionSupPlus .. 270

12.3.16.11 CONNECT (expired) ... 271

12.3.16.12 BreakLookAhead ... 271

12.3.16.13 GetRobotMaxLoad .. 272

12.3.16.14 GetRobotState ... 272

12.3.16.15 AutoIgnoreZone true/false ... 273

12.3.16.16 MotionWaitAtFinePoint true/false ... 274

12.3.17 Function commands ... 275

12.3.17.1 CRobT ... 275

12.3.17.2 CJointT .. 275

12.3.17.3 CalcJointT ... 276

12.3.17.4 CalcRobt .. 276

12.3.17.5 Print ... 277

12.3.17.6 PoseMult .. 277

12.3.17.7 PoseInv .. 278

12.3.17.1 GetRobAbc .. 279

Contents

XIII
Copyright © ROKAE 2015-2023. All rights reserved.

12.3.17.2 SetRobAbc .. 279

12.3.17.3 RotRobAbc .. 280

12.3.18 Register commands.. 280

12.3.18.1 ReadRegByName .. 280

12.3.18.2 WriteRegByName ... 281

12.3.19 End-effector commands ... 281

12.3.19.1 JodellGripInit... 281

12.3.19.2 JodellGripMove ... 281

12.3.19.3 JodellGripStatus .. 282

12.3.19.4 JodellSuckInit .. 282

12.3.19.5 JodellSuckSet .. 282

12.3.19.6 JodellSuckStatus .. 283

0 Contents

3.1 Main Interface

14

Copyright © ROKAE 2015-2023. All rights reserved.

1 File list

3.1 Main Interface

15

Copyright © ROKAE 2015-2023. All rights reserved.

1 File list

xCore Control System offers an array of basic functions and extended functions. The following files are available to help you

master xCore quickly. Contact us if you need them.

ID Name
Latest

version
Introduction

1 xCore Control System User Manual V1.6.1 Describes the basic functions of the xCore Control System;
2 xVision User Manual V1.0.0 Describes the basic functions of xVision;

3
User Manual for Laser Welding Process

Kit
V3.0

Describes the use of the Laser Welding Process Kit;

4
User Manual for xCore Control System

Extended Functions

Describes the use of RCI and xCore-SDK;

5
Operation Manual for Plating Line

Tracking
V1.2

Describes the use of Plating Line Tracking;

6 RokaeStudio User Manual V1.1.0 Describes the use of off-line programming software;

2 Glossary

⚫ HMI: Human Machine Interface;

⚫ HMID: HMI device;

⚫ RCI: Rokae Control Interface, external control interface for ROKAE robots, with real-time underlying control

supported;

⚫ SDK: Software Development Kit, which will gradually replace RCI to enable underlying robot control through C++ and

other languages;

⚫ Project: The collection of programs, tasks, and other objects that control the operation of the robot; data objects of a

project can be exported and reused in other projects or robots;

⚫ Task: In xCore, it is as it suggests;

⚫ Module: It refers to a program file in xCore;

⚫ Elbow: It is the angle between the arm plane and the reference plane. The arm plane refers to the plane formed by the

robot's lower arm and upper arm, and the reference plane refers to the arm plane formed when the three axes are set to

zero and the end-effector reaches the same pose;

⚫ RL: Rokae Robot Language. It provides various commands to assist the robot in building projects;

⚫ Robot Assist: It is the software launched by ROKAE that integrates the Teach Pendant function. Together with the new-

generation control system xCore. It can be used for functions such as robot motion control, programming, parameter

configuration, and status monitoring. It can run on xPad2 teach pendant, PC, and other devices;

3 Introduction

3.1 Main Interface

16

Copyright © ROKAE 2015-2023. All rights reserved.

3 Introduction

Overview

Robot Assist is the software launched by ROKAE that integrates the Teach Pendant function.

Together with the new-generation control system xCore, it can be used for functions such as robot

motion control, programming, parameter configuration, and status monitoring. Featured with a

friendly interface, it supports all current ROKAE robots (including industrial robots and cobots) and

will support newly-developed robots with ongoing updates. The software can be installed on PC,

Surface, and ROKAE's Teach Pendant xPad2. The devices can control a robot after getting connected

to it as long as they are in the same network segment as the robot.

Operating Environment

Besides xPad2, we suggest using a tablet or a laptop as the operating terminal. The recommended

configurations are shown in the table below.

Terminal Tablet Terminal Laptop
Storage

Capacity
32GB

Storage

Capacity
32GB

System Memory 4GB System Memory 4GB

Screen Size 8.0 inches and above GPU
Intel HD Graphics 4000 and

above
Network

Communication
Wi-Fi

Network

Communication
Wi-Fi or Wired LAN

Operating

System
Windows7 64bit, Windows10 64bit, Ubuntu16.04, Ubuntu18.04

CPU Intel Core I3 and above

3.1 Main Interface

The main operation interface consists of the top status bar, the main display area, and the bottom

status bar.

A The top status bar shows the buttons for entering the main menu, robot programming, robot configuration,

Teach Pendant option, Instant Log, Tool & Work Object Information, Status Monitoring interface, and

operation interface.
B The main display area shows the operation interface of each function module.
C The bottom status bar shows the connection status, the program running rate, operating mode, motion

3 Introduction

3.1 Main Interface

17

Copyright © ROKAE 2015-2023. All rights reserved.

status, user information, and robot model.

Notes

Robot Assist interacts with the controller in real-time. Frequent changes in window size may cause

the interface to stop refreshing. In this case, restore by pressing Alt+Tab to switch between windows.

3.1.1 Top Status Bar

Explanation

The top status bar shows the buttons for entering the Main Menu, Current Project, Instant Log, Tool

& Work Object Information, Status Monitoring interface, and operation interface.

A Menu button - Click to select the desired function module such as diagnostic log, Help, and demo and

enter the corresponding sub-interface.
B Robot Programming button - Click to enter the Current Project sub-interface.
C Robot Configuration button - Click to enter function modules such as configuration, security,

communication, and authorization.
D Teach Pendant option button - Click to enter function modules such as connection, basic settings,

appearance adjustment, and file manager.
E Tools - Display the information of the tool currently in use and select the tool to be used.
F Work Objects - Display the information of the work object currently in use and select the work object to be

used.
G Status Monitoring interface button - Click to open/close the status monitoring interface.
H Operation interface button - Click to open/close the operation interface.

3.1.2 Bottom Status Bar

Explanation

The bottom status bar shows the connection status between Robot Assist and the robot, the program

running rate, the robot operating mode, robot status, motor status, current user information, and robot

model.

A Connection status between Robot Assist and the robot - Red slash is for disconnected and full gray is for

connected.
B Program running rate adjustment slide - Adjust the motion speed when the program is running. Adjustable

range: 1% - 100%.

This parameter is valid for both manual and automatic mode program operation rates.
C Robot operating mode - Click to toggle between Manual and Automatic.
D Robot status - Includes the robot motion status, system status, controller mode, etc.
E Robot motor status - Red is for powered-on and gray is for powered-off, other statuses include emergency

stop and safety gate open. Click the button to power on the robot in Automatic mode.
F Current user information: operator, admin, and god. Click the button to enter the user login interface. The

default login password is 123456.
G Robot model information.

Robot operating mode

 The Manual mode is used for robot programming and debugging.

In Manual mode, all robot motions are controlled manually by the user, and the robot will power on

the motor and respond to the motion commands only when it's enabled (the three-position switch is

in the middle position).

 The Automatic mode is used for continuous automated production,

3 Introduction

3.2 Status Monitoring

18

Copyright © ROKAE 2015-2023. All rights reserved.

in which the three-position enabling switch will be bypassed and the robot can work normally

without manual intervention.

When the robot is in Automatic mode, the system IO signals can be used to control the robot or to

obtain the robot's operating status. For example,

one DI signal can be used to start/stop the RL program and the other to control the motor power-on.

Robot status

The button on the bottom status bar shows the robot motion status, system status, controller

mode, etc.

Idle

The program is stopped and the robot is not in motion.

Program

running

The program is running. The button turns red when the robot is in motion.

Drag

mode

The controller can be dragged when it is in Drag mode. The button turns red when the

robot is in motion.

Demo

mode

The controller plays the Demo when it is in Demo mode. The button turns red when the

robot is in motion.

Identificat

ion mode

The controller is in Identification mode. The button turns red when the robot is in motion.

Jog mode

The controller is in Jog mode and changes with the start and stop of the Jog button.

RCI mode

The controller is in RCI mode. The button turns red when the robot is in motion.

Collaborat

ion mode

The controller is in Collaboration mode, which is displayed in combination with other

status in the upper right corner of the icon.

Error

An error occurs in the robot system.

Debug

mode

The controller is in Debug mode. The button turns red when the robot is in motion.

Robot motor status

Powered-

on

The robot motor is powered on.

Powered-

off

The robot motor is powered off.

Emergenc

y stop

The robot is in the emergency stop state. The robot motor cannot be powered on.

Safety

gate open

The safety gate is open. The robot motor cannot be powered on.

3.2 Status Monitoring

Explanation

Click on the top status bar to open the floating status monitoring interface, which monitors the

robot 3D model, task running status, IO signals, network connection, and register variables, which

are convenient for Jog and programming.

3 Introduction

3.2 Status Monitoring

19

Copyright © ROKAE 2015-2023. All rights reserved.

3.2.1 3D model monitoring

Explanation

The robot 3D Model interface displays the current 3D model of the robot, joint angles, joint torque,

elbows, the position of the robot end-effector in a certain frame, and the RPY angle and quaternion of

the robot end-effector relative to the rotation matrix of the base frame.

The robot 3D Model interface displays three frames: flange frame, base frame, and world frame.

When the base frame is calibrated, the 3D model monitoring interface and the base frame relative to

the world frame will change according to the calibration result.

The end-effector position can be displayed in three frames, namely the work object frame, the base

frame, and the world frame; the monitor data in the base frame is displayed by default.

3.2.2 Multi-task monitoring

Explanation

The Multi-task monitoring interface displays the task type and running status of each task.

3 Introduction

3.2 Status Monitoring

20

Copyright © ROKAE 2015-2023. All rights reserved.

 Operation Description

1 Task name Tasks added to the project are displayed here.

2 Task type The task type can be configured in Project -> Task

List.

3 Start running the program to view the operation status

of the task. Stop task:

Run task:

3.2.3 IO signal monitoring

Explanation

For xMate cobots, the IO signal monitoring interface displays the 4-channel DI and DO signals on

the robot base and the 2-channel DI and DO signals at the end-effector by default. For industrial

robots, the IO signal monitoring interface displays configured IO signals in the control cabinet by

default.

The IO simulation model can be turned on to test DI/DO signal value.

 Operation Description

1 Go to the IO Signal page and click the [IO Simulation

Mode] enabling switch to activate Simulation mode.
Only Admin or God users can activate this mode.

2 Click the DI/DO value buttons to start the simulation. Note that even not in the Simulation mode, DO

can also be forced to output.

3 Click the [IO Simulation Mode] button to turn off the

Simulation mode.
The actual value and the modified value button

are not strongly correlated, and the modified value

button will be set to false after the simulation

Mode is turned off.

3.2.4 Network connection monitoring

Explanation

The network connection monitoring interface displays the information (IP address, port number) and

status of the network connections that are established with the controller. The connection status of

SOCKET, MODBUS, and RCI are displayed by default.

3 Introduction

3.2 Status Monitoring

21

Copyright © ROKAE 2015-2023. All rights reserved.

 Operation Description

1
[Type] The connection status of

MODBUS, RCI, and SOCKET can

be displayed.

The connection can be added and configured in the relevant

interface. SYS_SOCKET refers specifically to the connection of

external communication.

2
[Name] The name of the

connection.
MODBUS, RCI, and SYS_SOCKET are system default unique

names. User-defined names are displayed for new connections.

3
[IP] The IP address of the

connection.
For a client-side connection, the IP address of the server is played.

For a server-side connection, its own IP address is played.

4
[Port] The port number of the

connection.
For a client-side connection, the port number of the server is played.

For a server-side connection, its own port number is played.

5
[Status] The current status of the

connection.

Generally, there are three types of connection status: Connected,

Disconnected, and Connecting. For a server-side connection, it

displays Monitoring when it is disconnected.

3.2.5 Register variable monitoring

Explanation

The register variable monitoring interface displays the information for each register. The content

filter is available for quick search.

3 Introduction

3.3 Operation interface

22

Copyright © ROKAE 2015-2023. All rights reserved.

 Operation Description

1 The user can customize content to be displayed using

[Content Filter].
The variable can be filtered by connection,

variable type, name, description, and others for a

clear view.

2 Please refer to the Modbus register variable

configuration for the definition of each column.

3.3 Operation interface

Explanation

Click or on the top status bar to open the operation interface, which can be used to change

the robot control mode, control robot motion, and perform pose teaching.

The robot supports two types of pose teaching: JOG Mode and Drag Mode (for xMate cobots only).

➢ In Jog Mode, the Jog button is used to control the motion in the corresponding directions.

➢ In Drag Mode, directly and manually guide the robot's motion using the end-effector drag Pilot

handle or xPanel.

3 Introduction

3.3 Operation interface

23

Copyright © ROKAE 2015-2023. All rights reserved.

No. Description

A Drag settings zone, which shows that B, C, and D are drag-related options.
B Drag space setting: joint space drag and Cartesian space drag.
C Drag enabling switch - turn on/off Drag Mode.
D Drag mode setting.

For joint space drag, only free drag is available. For Cartesian space drag, the three options of

translational drag only, rotational drag only, and free drag are available.
E JOG setting zone. It shows that F, G, and H are jog-related options.
F Jog reference frame setting - Select single-axis mode or Cartesian mode in Jog Mode and select the

reference frame in Cartesian mode, including world frame, base frame, flange frame, tool frame, and

work object frame.
G Jog speed setting - Set the robot Jog speed between 1% and 100% (expressed in a percentage relative to

the top Jog speed limit of 250 mm/s).
H Jog step mode setting - Set Jog mode to Continuous Jog or Stepping Jog, and the stepping increment

can be adjusted.
I, K Switch function area - Switch between the Jog button and buttons L-Q.
J Jog button. For a 7-axis robot, J1 to J7 are displayed in the case of joint space Jog and X/Y/Z/A/B/C

and Elbow in the case of Cartesian space Jog. For a 6-axis robot, J1 to J6 are displayed in the case of

joint space Jog and X/Y/Z/A/B/C in the case of Cartesian space Jog.
L Program start/stop button.
M Program running buttons - previous/next.
N Move to Zero Pose button.
O Move to Drag Pose button.
P Move to Shipping Pose button.
Q Move to Customized Home Pose button.
R "Screenshot" button, to take a screenshot and save it to the local folder of the teach pendant. These

screenshots can be exported on the "Basic Settings" interface. The button is only shown on the teach

pendant. Note: When taking a screenshot on the teach pendant, the physical membrane button is
recommended. In the case of a pop-up window, the "Screenshot" button becomes inactive, and clicking

the button generates no response.

Notes

Please ensure the robot is currently in manual mode and powered off before performing

Jog and turning on the drag enabling switch.

3 Introduction

3.4 Function module

24

Copyright © ROKAE 2015-2023. All rights reserved.

3.4 Function module

Explanation

Click the menu button to open the function tabs. The function modules include the engineering

module, robot module, diagnosis module, demo module, option module, and help module. Click the

main menu button to switch between different function module tabs.

3.4.1 Menu module

Diagnostic log

Teach pendant log It displays the log of the Robot Assist (HMI software);

Controller logs It displays the running log of the controller connected to the robot;

Log timeline It displays the log history visually through a timeline;

Internal logs It displays the underlying log information of the controller. In case of a robot failure,

Technical Support can quickly locate the cause of the problem by viewing the internal logs;

Advanced options They are used to assist developers with the diagnosis of the servo, ECAT, and other

equipment, and enable real-time thread alarm and monitoring and more. Since enabling the

diagnostic function will increase the workload of the controller, do not turn it on in actual

production unless necessary.

Help

About ROKAE A brief introduction to the interface, controller, and ROKAE robots

Introduction to

Products

It contains all specifications of industrial robots and cobots

Software Upgrade It provides functions such as controller upgrade, controller backup, restoring factory settings,

restarting the robot, and erasing the robot configuration information

Demos

Four demos are provided to demonstrate xMate7 features such as DOF design, agility of redundant motion control, one-

touch stop sensitivity, and compliance of variable impedance stiffness.

3.4.2 Robot programming module

Interface functions

4 Connecting to the Robot

3.4 Function module

25

Copyright © ROKAE 2015-2023. All rights reserved.

A Tabs - used to switch between the Project Sub-objects Setup interfaces, including Task, Variable, Point

Position, Path, IO Signal, User Frame, Tool Frame, Work Object Frame, Predefinition, etc.;
B Program edit area - for auxiliary programming of the robot and program command;
C Program file selection - used to switch between different tasks and program files for editing and

debugging;
D Program Debug Quick Positioning button - used to switch to main function or cursor;
E Program syntax check, loop mode, and output terminal;
F Program edit toolbar: undo, repeat, cut, paste, copy, move up one row, move down one row, batch

comment, delete current row, search and replace, auxiliary programming;

3.4.3 Robot configuration module

Set User group, controller settings, zero-point calibration, base frame calibration, dynamic parameter

identification, robot body parameters, kinematics parameters, force control parameters, quick turn;

Safety Soft limits, virtual wall, collision detection, safety area, safety monitor, collaboration mode;

Communication System IO, external communication, register, IO device, bus device, end-effector tool, RCI

settings, serial port settings;

Process kit Laser welding, etc.;

Authorization EtherCAT authorization;

3.4.4 Teach Pendant option module

Connection It includes robot detection, robot connection, and auto reconnection settings;

Basic settings It includes software language settings, auto startup settings, IP binding, working area path

selection, graphic performance adjustment, and turning off 3D display;

Appearance

Adjustment

It includes theme switching, control adjustment, and font adjustment.

File Manager It includes opening and browsing of cache folder, log folder, working area folder, etc.

4 Connecting to the Robot

Explanation

The devices (xPad2 teach pendant, PC) on which Robot Assist is running can be connected to any

Rokae robot as long as they are in the same LAN as the robot. The connection with the robot can be

established by robot detection or by manually entering the controller address.

The robot system only supports wired connection to the local area network (LAN) or direct

connection with a network cable:

➢ When using the Teach Pendant xPad2, directly connect xPad2 to the corresponding interface of

4 Connecting to the Robot

4.1 Robot network interface and IP

26

Copyright © ROKAE 2015-2023. All rights reserved.

the robot;

➢ When using a PC on which Robot Assist is running to debug a robot, the PC can be directly

connected to the robot via network cable;

➢ When switching between multiple robots, the robots can be connected to the same LAN and the

PC on which Robot Assist is running will detect the robots available for connection on the

same network segment;

➢ For scenarios where a wired connection is not convenient (such as on AGVs), the robot can be

connected to a wireless router via the reserved network interface on the robot control cabinet

(the network interface for xMate cobot base; the vision and debugging network interface of

industrial robot control cabinet) and then to the HMID wirelessly.

4.1 Robot network interface and IP

ID Introduction Picture

1

The xMate ER series cobot has two Ethernet network

interfaces on the base, of which the network interface

J2 defaults to the fixed IP address of 192.168.0.160,

and the network interface J1 defaults to an

automatically obtained IP address.

2

The xMate CR series cobot has only one Ethernet

network interface J1 (standard configuration) on the

base, which defaults to the fixed IP address of

192.168.0.160.

3

For an industrial robot using the XBC3 controller, the

controller features four longitudinally-arranged

Ethernet network interfaces, they are, from top to

bottom, EtherCAT device extension interface (used for

slave station extension); vision network interface (used

to connect industrial cameras, defaults to the fixed IP

address of 192.168.2.160); debugging network

interface (defaults to the fixed IP address of

192.168.0.160), and bus extension network interface

(optional).

4

For an industrial robot using the XBC5 controller, the

controller features four horizontally-arranged Ethernet

network interfaces, they are, from left to right,

EtherCAT device extension interface (used for slave

station extension); vision network interface (used to

connect industrial cameras, defaults to the fixed IP

address of 192.168.2.160); debugging network

interface (defaults to the fixed IP address of

192.168.0.160), and bus extension network interface

(optional).

4 Connecting to the Robot

4.2 Connecting to terminal devices

27

Copyright © ROKAE 2015-2023. All rights reserved.

5

For the XBC5 controller cabinet with high

protection rating, the controller cabinet reserves no

network interface on the control cabinet.

4.2 Connecting to terminal devices

ID Terminal
devices

Description

1 xPad2

The Teach Pendant xPad2 supports the xMate CR series cobots and industrial robots using the XBC5

controller cabinet. Connect the Teach Pendant xPad2 to the robot via a cable plug (for industrial

robots, the interface is on the XBC5 controller cabinet; for xMate cobots, the interface is on the base

of the robots), and the connection is established. After the robot is powered on, the Teach Pendant

xPad2 will be powered on automatically, and the pre-installed Robot Assist software will run

automatically.

2 PC

Method 1: Direct cable connection

Both the robot base and the controller cabinet feature one network interface that defaults as the

debugging network interface and is assigned with the fixed IP address of 192.168.0.160. This IP

address is the same for all robots and should not be modified arbitrarily. The PC on which Robot

Assist is running can be connected to the network interface directly via a network cable to control

the robot.

Method 2: External network interface connection

External network interface connection supports two types of settings: obtain an IP address

automatically or assign a static IP address.

Obtain an IP address automatically - Set the network interface J1 of cobots or the vision network

interface of industrial robots to DHCP mode. The robot is connected to a router with DHCP via the

network interface, which automatically assigns an IP address to the robot. The robot can then be

detected and connected via robot detection.

Assign a static IP address - Set the network interface J1 of cobots or the vision network interface of

industrial robots to the IP address in the required network segment. The robot is connected to a

router via the network interface and can then be visited and controlled via the robot's IP address.

IP address modification:

Using the Windows 10 operating system as an example, connect one end of the Ethernet cable to the

robot's J2 interface and the other end to the terminal device (PC). Click on the "Start > Control

Panel" menu on the terminal device (PC), and select "Network and Sharing Center". The "Network

and Sharing Center" window will pop up. Click on "Local Area Connection" in the "Network and

Sharing Center" window, and the "Local Area Connection Status" interface will appear. Click on

"Properties" in the "Local Area Connection Status" interface, and the "Local Area Connection

Properties" interface will appear. Double-click on "Internet Protocol Version 4 (TCP/IPv4)" in the

"Local Area Connection Properties" interface, and the "Internet Protocol Version 4 (TCP/IPv4)

Properties" interface will appear. Select "Use the following IP address" in the "Internet Protocol

Version 4 (TCP/IPv4) Properties" interface, modify the IP address, subnet mask, and default gateway

of the terminal device (PC), and confirm the changes. (The terminal device (PC) shares the same

subnet mask and default gateway with the robot and may use any unoccupied IP address in the same

network segment.)

4 Connecting to the Robot
4.3 Connecting to the robot

28

Copyright © ROKAE 2015-2023. All rights reserved.

Warning

When manually modifying the IP address of the robot's network interfaces, do not set different

network interfaces as static IP addresses of the same network segment; do not arbitrarily modify

the network mode and IP address (192.168.0.160) of the debugging network interface; do not

arbitrarily modify the network mode and IP address (192.168.1.160) of the Teach Pendant xPad's

network adapter card.

4.3 Connecting to the robot

Connecting to the robot

Go to Options -> Connection interface and enter the IP address of the robots.

4 Connecting to the Robot

4.3 Connecting to the robot

29

Copyright © ROKAE 2015-2023. All rights reserved.

Notes

IP and ports are necessary for identifying the target controller. When you fail to connect

to the robot, check to see if the network is connected.

Robot detection

Explanation

HMI can detect and display all robots available on the same network segment for connection.

Click the network icon button on the bottom status bar to enter the robot search interface,

and click Search Available Robot.

Notes

4 Connecting to the Robot

4.4 User login

30

Copyright © ROKAE 2015-2023. All rights reserved.

1. When searching for robots, please make sure the device on which Robot Assist is running

and the robots are on the same network and the network is connected.

2. If the robots cannot be detected by searching for available robots when the device on which

Robot Assist is running and the robots are on the same network and the network is

connected, the connection requests sent by Robot Assist may be blocked by the firewall on

the device.

4.4 User login

Explanation

The default user is Operator after the robot is successfully connected. Click on the

bottom status bar to switch between users. The default password is 123456.

For details on user login and permissions, please refer to 5.1.1.1 User groups and permissions.

4.5 Disconnect and restore connection

Explanation

➢ Click the Disconnect button in the Connection interface to disconnect Robot Assist from the

controller.

➢ Simultaneous connection of multiple Robot Assist is not supported. Another Robot Assist can

only be connected after the current Robot Assist is confirmed to be disconnected or the robot is

restarted.

➢ The Robot Assist connection can be restored via user login in the same way it is connected for

the first time.

4.5.1 Auto reconnect

Explanation

In the Connection interface, the Automatic Reconnection function can be enabled by turning on the

switch. There are two ways for reconnecting:

➢ Check the checkbox to set reconnection interval and attempts to specify reconnection interval

and attempts (the total reconnection duration = reconnection interval * reconnection attempts).

➢ If the checkbox is not checked, no reconnection interval or attempts will be set and Robot Assist

will keep reconnecting to the controller.

5 Operating Mode and Safety

5.1 Safety Management

31

Copyright © ROKAE 2015-2023. All rights reserved.

4.5.2 Plug & play Teach Pendant xPad2

Explanation

Follow the steps below to disconnect the Teach Pendant xPad2 from a powered-on robot. Direct

physical disconnection will cause an emergency stop for the robot.

➢ Go to the Basic Settings interface, and the current status is displayed in Teach Pendant Mode

Settings, which defaults to Teach Pendant Mode. Click the Switch Mode button to switch to No

Teach Pendant Mode. No Teach Pendant Mode will be displayed on the interface after a

successful switch.

➢ After the robot is switched to No Teach Pendant Mode, the Teach Pendant xPad2 can be

disconnected from the robot, and the robot will not come to an emergency stop in this case.

To reconnect the Teach Pendant xPad2 to the robot, follow the steps below:

➢ Establish a physical connection between the Teach Pendant xPad2 and the robot;

➢ Go to the Basic Settings interface, and the current status is displayed in Teach Pendant Mode

Settings, which should be No Teach Pendant Mode. Click the Switch Mode button to switch to

Teach Pendant Mode. Teach Pendant Mode will be displayed on the interface after a successful

switch.

Notes

The plug & play Teach Pendant function is only available for some models. For models

that do not support this function, the system will prompt "Failed to switch Teach Pendant

Mode". For detailed model configurations, please consult our technical support.

5 Operating Mode and Safety

5.1 Safety Management

5.1.1 About this section

5 Operating Mode and Safety

5.1 Safety Management

32

Copyright © ROKAE 2015-2023. All rights reserved.

This section introduces the safety principles and processes that need to be noted when using robots.

The contents related to the design and installation of the external safety protection device of the robot

are not within this section.

5.1.2 Safety terms

5.1.2.1 Safety symbols

About safety symbols

There may be different degrees of danger when operating the robot in accordance with this manual,

so there will be a special safety symbol in the vicinity of dangerous operation instructions to remind

the user to be careful. The contents include:

➢ An icon that indicates safety level and the corresponding name, such as warning, danger, prompt,

etc.;

➢ A brief description given to illustrate the possible consequences if the operator does not eliminate

the danger;

➢ The operating instructions on how to eliminate dangers.

Safety levels

Icon Name Description

DANGER For the contents that come with this sign, failure

of following the rules in operation will cause

serious or even fatal injury to personnel, and

will/may cause serious damage to the robot.

Warning For the contents that come with this sign, failure

of following the rules in operation may cause

serious and even fatal personal injury and will

cause great damage to the robot.

Electric shock hazard It indicates that the current operation may cause

an electric shock hazard with a serious or even

fatal injury.

Caution For those coming with this sign, failure of

following the rules in operation may cause

personal injury, and may cause damage to the

robot.

ESD It indicates that the components involved in the

current operation are sensitive to static electricity.

Failure to operate according to specifications may

cause damage.

Notes It is used to prompt some important information

or prerequisites.

Hazard description

Icon Name Description

Squeezing There may be an injury to the operators and
maintenance personnel who enter into the motion

range of the robot during debugging, repair,

overhaul, and tools clamping.

5 Operating Mode and Safety

5.1 Safety Management

33

Copyright © ROKAE 2015-2023. All rights reserved.

Hands Pinching The maintainers have the risk of hand pinching

when approaching tape drive parts during the

maintenance.

Strike There may be a serious injury to the operators and

maintenance personnel who enter into the motion

range of the robot during debugging, repair,

overhaul, and tools clamping.

Friction There may be an injury to the operators and

maintenance personnel who enter into the motion

range of the robot during debugging, repair,
overhaul, and tools clamping.

Parts fly out There may be a serious injury to the operators and

maintenance personnel who enter into the motion

range of the robot during debugging, repair,

overhaul, and tools clamping when tools or work

objects may fly out due to loose clamping.

Fire Electrical short circuits, burning wires/devices

may cause fire hazards, causing serious injuries.

Hot surface During the maintenance and repair of the

equipment, a burn may be caused if the
maintenance personnel touch the robot's hot

surface.

5.1.2.2 Safety features

Safety levels

The xCore system is equipped with specialized safety modules for handling safety-related signals,

and provides external safety symbol interfaces such as safety gates and safety gratings.

The signals handled by safety modules include:

➢ Emergency stop signal;

➢ Safety gate signal;

➢ Enabling switch signal;

5.1.2.3 Stop

Type of stop

Rokae robot supports two types of stop: emergency stop and controlled stop.

Emergency

stop

Emergency stop possesses the highest priority in the robot system. The emergency stop button, when

pressed, will immediately trigger the emergency stop sequence. All other control functions as well as

robot movements will stop, and the motor power for each joint will be cut off. The control system will

switch over to the emergency stop state which will be maintained until a manual reset.

After triggering the emergency stop, the system may take any of two different stop modes according to

different working conditions:

➢ STOP 0: When the power is cut off, the robot stops working immediately. This is an

uncontrolled stop. As each joint will stop as quickly as possible, the robot may deviate from the

set path. Such a protective stop can only be used when the safety assessment limits are exceeded

or there is an error in the safety assessment module of the control system;

➢ STOP 1: When the power supply causes the robot to stop, the power is cut off when the robot

comes to a stop. This is a controlled stop and the robot will follow the set path. The power is cut

off after the robot stops moving;

Notes

1. Emergency stop is only used to stop the robot immediately in case of danger.

2. Emergency stop should not be used for normal stops, otherwise, it may cause extra and

unnecessary wear to the brake and transmission system, which will eventually reduce the

robot's service life.

5 Operating Mode and Safety

5.1 Safety Management

34

Copyright © ROKAE 2015-2023. All rights reserved.

Controlled

stop

A controlled stop is to stop the program from running when the robot power is kept on.

➢ STOP 2: Controlled stop when the robot is powered on. The safety assessment control system

can keep the robot at the stopped location.

5.1.2.4 Enabling switch

Enabling device

The enabling device is a special switch with two contacts and three positions and is also called a

three-position enabling switch (hereinafter referred to as "enabling switch"). It is used to power

on/off the robot power supply in Manual Mode to enable robot motions.

The motor power is switched on only when the enabling switch is pressed and kept in the middle so

that the robot is in a state that is permitted for motion. Releasing or pressing the switch all the way

down will cut the power off.

Notes

The yellow button on the Handheld Enabling Device is the enabling switch. When the enabling

switch is pressed and held in the middle position, the robot will be powered on, the system will

enter the Motor On state, and you can jog the robot or execute a program. The robot will be

powered off and the system will return to the Motor Off state when the switch is released or

pressed all the way down.

In order to use the Teach Pendant safely, the following requirements must be observed:

1. Make sure the enabling switch functions properly in any circumstances.

2. Release the enabling switch immediately when no robot motion is required during

programming or debugging.

3. Any person who enters the robot's working space must carry a handheld enabling

device to prevent others from starting the robot without the knowledge of the involved

personnel.

Warning

It is strictly prohibited to use external devices to keep the enabling switch locked or stopped in the middle

position!

5.1.3 Safety precautions

5.1.3.1 Overview

5 Operating Mode and Safety

5.1 Safety Management

35

Copyright © ROKAE 2015-2023. All rights reserved.

About the robot

In human-machine collaboration, xCore offers safety functions such as Collaboration Mode and

collision detection to ensure personal safety when collaborating with a robot. Please carefully read

the safety functions in Section 7.2 before operating the robot.

About this section

This section will describe some basic safety specifications for the end-users of the robot. However, it

cannot cover each specific circumstance due to limited space.

5.1.3.2 Focus on user's own safety

General principles

A few simple principles should be followed in order to operate the robot safely:

➢ Pay attention to the moving tools installed on the robot, such as the electric drill and electric saw.

They shall be stopped when approaching the robot;

➢ Pay attention to the work object surface or the robot arm body. The motor and casing temperature

of the robot may become very high after prolonged work;

➢ Watch out for grippers and objects gripped. If the gripper is opened, the workpiece could fall and

cause personal injury or equipment damage. Moreover, the gripper of the robot may be very powerful

and may cause injury if it is not used according to the specification.

5.1.3.3 Recovering from emergency stops

Explanation

In the case of an emergency stop, a reset is required to return to normal operation. The reset is a

simple but important procedure. It ensures that the robot system is not returned to production in a

hazardous condition.

Reset emergency stop button

All button-shaped emergency stop devices are equipped with one safety lock mechanism, which must

be released manually after being pressed to reset the emergency stop status of the device.

Most emergency stop buttons are released by rotation and the direction of rotation is indicated on the

button surface. Some buttons also support releasing by upward pulling.

5.1.3.4 Safety precautions in Manual mode

About the Manual mode

In Manual mode, the robot's movement is under manual control. You can jog the robot or execute a

program only when the enabling switch is held in the middle position.

The Manual mode is used during programming, debugging, and commissioning of the workstation.

Speed limit in Manual mode

In Manual mode, the speed of the robot's end effector is limited to 250 mm/s. This means that the

maximum speed of the robot will not exceed 250 mm/s whether you jog the robot or execute a

program, regardless of the speed set in the program.

5 Operating Mode and Safety

5.1 Safety Management

36

Copyright © ROKAE 2015-2023. All rights reserved.

Bypassing external safety signals

In Manual mode, signals of external safety devices such as the safety gate and safety grating will be

bypassed. This means that the emergency stop will not be triggered in Manual mode even if the

safety gate is open, which facilitates the debugging.

5.1.3.5 Safety precautions in Automatic mode

About the Automatic mode

The Automatic mode is used for running the robot program in production.

In Automatic mode, the enabling switch will be bypassed so that the robot can run automatically

without manual intervention.

Enabling external safety signals

External safety devices such as the safety gate and safety grating will be enabled in Automatic mode.

Opening the safety gate will trigger an emergency stop.

Safe troubleshooting in production

In most cases, the robot is part of the production line. Therefore, the impact of a robot fault may go

beyond the workstation itself. Likewise, problems with other parts of the production line may also

impact the workstation. For this reason, a troubleshooting plan should be designed by personnel who

are familiar with the entire production line to improve safety.

For example, a robot on the production line grabs workpieces from the conveyor belt. When the robot

encounters a fault, the robot maintenance personnel should consider additional safety measures for

working beside the moving conveyor belt to ensure uninterrupted production while the robot is under

repair.

For another example, when removing a welding robot from the production line for routine

maintenance, the robot supplying materials to it must also be stopped to avoid personal injury.

5.1.3.6 Emergency handling

5.1.3.6.1 Fire

Treatment of mild fire disaster

Do not panic and keep calm when a fire hazard is imminent or has not yet begun to spread; you can

use on-site fire-extinguishing devices to put out the flame. It is strictly prohibited to use water to put

out a fire caused by short circuits.

Warning

The fire-extinguishing device on the working field of the robot shall be supplied by the user, the user shall

choose the appropriate fire-extinguishing device according to the actual situations of the field.

Treatment of severe fire disaster

If the fire has spread and is beyond control, the workers on site shall notify other workers

immediately to give up their personal belongings and evacuate immediately through emergency exits

rather than try to put out the fire. DO NOT use an elevator, and be sure to inform the fire department

during evacuation.

5 Operating Mode and Safety

5.2 Robot operating mode

37

Copyright © ROKAE 2015-2023. All rights reserved.

If a person's clothing catches fire, ask them not to run but to lie flat on the ground immediately. Put

out the fire using clothes or other suitable items and methods.

5.1.3.6.2 Treatment of an electric shock

Cut off power

When someone gets an electric shock, do not panic and cut off the power supply immediately.

Appropriate methods and measures shall be adopted without hesitation according to specific site

conditions. Generally, there are several methods and measures:

1) If the power switch or button is very near to the location of the electric shock, it shall be switched

off at once, and the power supply shall be cut off.

2) If the power switch or button is far away from the location of the electric shock, it is suggested to

use insulated pliers or ax, knife, and shovel with dry wooden handles to cut off live wires on the

mains' side (power supply), the separated wire must not contact with the human body.

3) If the conducting wire is over or under the body of the victim, it is suggested to use a dry stick, board,

bamboo pole, or other tools with insulated handles (by gripping the insulated handle) to remove the

wire. No metal bar or wet object shall be used to avoid the rescuer from also getting an electric shock.

Treatment of the wounded after being separated from the power source

1) If the wounded is conscious, he/she shall be made lie on the back and watched out. He/she is not

suggested to stand or walk for the time being.

2) If the wounded is unconscious, make him/her lie on the back to keep the airway open. Call the

wounded or pat him/her on the shoulder at an interval of 5 seconds to judge if he/she loses

consciousness. Do not call the wounded by shaking his/her head. Meanwhile, contact the hospital as

soon as possible.

3) If the wounded loses consciousness, his/her respiratory conditions and heartbeat shall be

confirmed within 10 seconds. If neither breath nor arterial pulse is sensed, the wounded may have a

cardiac arrest and shall be given immediate first aid treatment by cardiopulmonary resuscitation.

5.2 Robot operating mode

5.2.1 Manual mode

Explanation

The Manual mode is mainly used for robot programming and debugging.

In Manual mode, all robot motions are controlled manually by the user, and the robot will power on

the motor and respond to the motion commands only when its motion is enabled (the three-position

switch is in the middle position).

Tasks typically performed in Manual mode

The Manual mode is typically used to perform the following tasks:

➢ Jog the robot back close to the path after an emergency stop to continue running the program;

➢ Create and write RL programs;

➢ Debug the RL program, including but not limited to startup, stop, single-step run, and teaching

point update;

➢ Set control system parameters and calibrate frames;

➢ View and modify variables;

5.2.2 Automatic mode

Explanation

The Automatic mode is used for continuous automated production, in which the three-position

enabling switch will be bypassed and the robot can work normally without manual intervention.

5 Operating Mode and Safety

5.2 Robot operating mode

38

Copyright © ROKAE 2015-2023. All rights reserved.

When the robot is in Automatic mode, signals can be used to control the robot or to obtain the robot's

operating status. For example, one DI signal can be used to start/stop the RL program and the other to

control the motor power-on. See the Section 7.3.1 for the list of system IOs supported by the xCore

system.

Tasks forbade in Automatic mode

The Automatic mode is typically used to perform the following tasks:

➢ Load, start, and stop the RL program;

➢ Return to the original programming path after an emergency stop;

➢ Back up the system;

➢ Clean the tools (according to the process requirements);

➢ Machine and process the work objects;

Restrictions in Automatic mode

➢ Jog the robot.

➢ Modify configuration files, configure the number of IO boards, or set the robot installation

method.

➢ Restore the backup.

➢ Grant function authorization.

➢ Set soft limits.

➢ Create, modify, and delete IO.

➢ Perform parameter identification.

➢ Turn on/off collision detection.

➢ Turn on/off Collaboration Mode.

➢ Turn on/off Drag Teaching in Automatic Mode.

➢ Perform calibration.

➢ Create new variables.

➢ Update or restore to factory settings.

There may be other use restrictions depending on field situations. Please consult your system

integrator for further information.

5.2.3 Mode switching

5.2.3.1 About mode switching

Current mode

You can learn about the current mode of the control system by checking the mode icon on the bottom

status bar of Robot Assist.

 indicates that the controller is in Manual mode and indicates that the controller is in

Automatic mode. Users can click the mode icon in the HMI interface to switch between different

operating modes.

Safety

For safety reasons, the system will cut off the power supply during mode switching (this means that

if the system is executing an RL program and the robot is in motion, the system will trigger STOP 1).

5.2.3.2 Switching from Manual to Automatic

When to switch from Manual to Automatic

5 Operating Mode and Safety

5.3 Robot power on/off

39

Copyright © ROKAE 2015-2023. All rights reserved.

When operators need to verify the programs at all states and speeds, or when the programs are ready

for full production, the system can be switched to Automatic mode.

DANGER

When in Automatic mode, the robot may be triggered to move by an external signal without any warning.

Before switching to Automatic mode, please make sure that the collision detection is enabled to prevent

personal injury from accidental collisions between the robot and personnel!

Notes

Warning

In Automatic mode, the robot can be remotely powered on and the RL program started, which means that the
robot may activate at any time.

Please consult your system integrator for the detailed configuration of the robot system.

5.2.3.3 Switching from Automatic to Manual

Switching from Automatic to Manual

Click the icon on the Robot Assist interface to switch from Automatic to Manual and see if

the icon changes to . If yes, the mode is switched. If the switching fails, please troubleshoot

according to the real-time log information on the top status bar.

5.3 Robot power on/off

5.3.1 Robot power-on

Power-on in Manual mode

In Manual mode, the user can power on the motor by pressing the yellow three-position enabling

switch on the handheld Enabling Device and holding it in the middle position. If the sound of the

robot power-on is heard or a red power-on button on the bottom status bar of Robot Assist is

observed, the power-on is complete.

Notes

If the power-on fails, observe the real-time log to determine the robot's status at this time

and switch the robot to a state that supports power-on before trying again.

6 Motion control
6.1 Jog mode

40

Copyright © ROKAE 2015-2023. All rights reserved.

Power-on in Automatic mode

In Automatic mode, click the Power-On button on the bottom status bar of Robot Assist to power on

the motor. The method to determine whether the motor is properly powered on in this mode is the

same as that in Manual mode.

5.3.2 Robot power-off

Power-off in Manual mode

In Manual mode, the user can power off the motor by releasing or pressing the yellow three-position

enabling switch all the way down to keep it in Position 1 or Position 3.

Power-off in Automatic mode

In Automatic mode, click the Power-Off button on the bottom status bar of the Robot Assist interface

to power off the motor.

Warning

In case of emergency, press the Emergency Stop button on the manual Enabling Device for

emergency robot power-off. In need of power-on again, please reset the emergency stop switch

manually.

6 Motion control

6.1 Jog mode

Jog Settings

Joint space Jog or Cartesian space Jog is available for Jog motion.

Jog motion frames available for the Cartesian space Jog include world frame, base frame, flange

frame, tool frame, and work object frame.

Set Jog mode to Continuous Jog or Stepping Jog:

➢ In Continuous Jog mode, press the enabling switch to power on the robot. Then press the Jog

button. The robot will move continuously at the set Jog velocity until either the enabling switch

or the Jog button is released;

➢ In Stepping Jog mode, press and hold the Jog button. The robot is powered on and will move at a

fixed step length; The step length can be set to precisely adjust the robot pose;

➢ Jog speed can be set to control the robot motion speed during Jog. The speed range is from 1% to

100% (100% corresponds to the robot's top TCP speed of 250 mm/s). (Both Cartesian space

Jog and joint space Jog adopt TCP linear speed of 250 mm/s as the top Jog speed)

Notes

In Stepping Jog mode, press and hold the Jog button. Wait until the robot moves at the specified

step length before releasing the Jog button. A short press may cause the robot to stop moving in

advance.

6 Motion control
6.2 Drag mode

41

Copyright © ROKAE 2015-2023. All rights reserved.

Quick turn

The HMI motion interface offers convenient adjustment to common robot poses, including

mechanical zero position, drag pose, shipping pose, and home pose.

The quick pose adjustment is available in Manual Mode in a way similar to Jog operation. In Manual

Mode, the robot is powered on via the enabling switch. When the button for the corresponding target

pose is pressed, the robot will move to the target pose in the joint space.

The motion speed can be adjusted via the Jog speed.

The Quick Turn features parameter configuration for users to use custom shipping poses, drag poses,

or Home poses. Set the parameters in the Robot Configuration -> Settings -> Quick Turn page. If the

custom configuration is not enabled, the default configuration takes effect.

6.2 Drag mode

Explanation

The Drag Mode of the xMate cobot is designed for users to achieve quick trajectory recording and

reproduction. During programming, the robot can be positioned easily by dragging it, which

substantially saves programming time.

Drag settings

The Drag Mode can be set to joint space drag or Cartesian space drag.

In the joint space Drag Mode, each axis moves independently and can be directly adjusted to reach

the desired pose.

In the Cartesian space Drag Mode, two options are available: Rotate Only and Translate Only. In

Rotate Only, the robot can be guided manually to rotate around TCP; in Translate Only, the robot can

be guided for translational motion in the Cartesian space in different directions.

When the robot is in Manual mode and powered off, turn on the drag enabling switch on the

operation panel, the robot is powered on automatically and enables Drag Mode. Press the enabling

button on the end-effector drag handle simultaneously to drag the robot for point position teaching

and trajectory recording.

 Notes

1. Set the drag mode and drag space before enabling Drag Mode.

2. After Drag Mode is enabled, the robot will be powered on automatically. In this case, the

drag mode and drag space cannot be set. Please disable Drag Mode before setting them.

Warning

1、 Before enabling Drag Mode, please ensure the robot's dynamic parameters and load

parameters are set accurately. Otherwise, a failure may occur when enabling Drag Mode, or

the robot may float during dragging.

2、 Set the parameters using the dynamic parameter identification function and the load

identification function provided by the system.

DANGER

Before using Drag Teaching, please ensure the following parameters are set correctly:

6 Motion control
6.2 Drag mode

42

Copyright © ROKAE 2015-2023. All rights reserved.

1. Robot model;

2. Robot installation method: floor mounting or ceiling mounting;

3. Dynamic parameters of the robot and its load;

4. Mechanical zero calibration;

Otherwise, when the angles of axes are in the wrong state, the controller may not be able to

calculate the correct output torque, and the robot cannot work in Drag Mode properly.

Applicable models:

The Drag Mode and its extended functions (end-effector handle, point position teaching,

continuous trajectory teaching, and trajectory reproduction) are only available for xMate cobots.

6.2.1 End-effector handle

Explanation

Series Introduction Definition

xMate ER

The xMate ER series robot

end-effector integrates a Pilot

handle with an intelligent

interactive panel. In Drag

Mode, the buttons on the Pilot

handle can be used for quick

point position teaching and

continuous trajectory teaching,

providing better human-

machine interaction.

Definition of buttons on end-effector Pilot handle:

No. Definition

1 Update the teaching point with the current pose, start/stop

trajectory recording

2 Next

3 Add the point position/trajectory in the list, confirm pop-up

window prompts

4 Previous

5 Delete the point position/trajectory in the list, cancel pop-up

window prompts

6 In Drag Mode, press the two enabling buttons at the same time

to activate the drag function

xMate CR

The xMate CR series robot

end-effector integrates an

xPanel handle with an

intelligent interactive panel. In

Drag Mode, the buttons on the

Pilot handle can be used for

quick point position teaching

and continuous trajectory

teaching, providing better

human-machine interaction.

Definition of buttons on end-effector xPanel handle:

No. Definition

1
Update the teaching point with the current pose, start/stop

trajectory recording

2 Moves forward

3 Delete the point/track in the list and cancel the pop-up prompt

4 In Drag Mode, press the two enabling buttons at the same time to

6

1

4 5

6

2 3

6 Motion control
6.2 Drag mode

43

Copyright © ROKAE 2015-2023. All rights reserved.

5 activate the drag function

6 Moves backward

7 Add the midpoint/track to the list and confirm the pop-up prompt

6.2.2 Point position teaching

Explanation

Turn on the drag enabling switch on the operation panel, and the robot is powered on automatically

and enables Drag Mode. The following operations can be performed through Robot Assist and the

robot end-effector drag handle:

 Operation Description

1 Create/load a project and enter the Point List

interface
The end-effector buttons only respond when the current

page of Robot Assist is Point List or Path List.

2 Press the two enabling buttons on the end-

effector handle at the same time, drag the robot
to any position, and release the drag enabling

button. Press the Add Point button on the end-

effector handle.

A new teaching point of the current pose is added to the

end of the Point List, and the cursor is now at the new

teaching point.

3 Press the Previous/Next button on the end-

effector handle
Move the cursor to the previous/next point in the Point List

and select the point

4 Select a point to update in the Point List, drag

the robot to another position, and release the

drag enabling button. Press the Update Point

button on the end-effector handle.

The selected point in the Point List is updated with the

current pose.

5 Select a point to delete in the Point List. Press

the Delete Point button on the end-effector

handle and confirm.

A pop-up window prompt will appear when you try to

delete a path. If you press the OK button on the end-

effector handle, the selected path will be deleted from the
Path List. If you press the Cancel button on the end-

effector handle, the pop-up window will be closed, and the

selected path will remain on the Path List.

6.2.3 Continuous trajectory teaching

HMI operation

Turn on the drag enabling switch on the operation panel, and the robot is powered on automatically

and enables Drag Mode. The following operations can be performed through Robot Assist:

Step 1: Create/load a project, move the robot to any start position, and enter the Project -> Path

6 Motion control
6.2 Drag mode

44

Copyright © ROKAE 2015-2023. All rights reserved.

interface.

Step 2: Click on the Path List interface to create a new path. Enter the sub-interface for new

path settings.

Step 3: Set the new path name, description, and total recording time. To record DO signals, click the

Select DO button and select DO signal in the pop-up window. A DI mapping signal can be set for

each DO signal, where the change of the DI signal will be recorded as the change of the DO signal

and be output to the DO signal when the path is recorded. If the DI signal is not associated with the

DO signal, the change of the DO signal will be recorded directly, and the output of the DO signal can

be manually set on the Status Monitoring - IO Signal interface.

Step 4: After the parameters are set successfully, click the Start Recording button to start trajectory

recording. During recording, drag the robot within the countdown time and set relevant DIO signals

to complete trajectory recording. If the Stop button is pressed during recording, the trajectory before

the stop time is recorded.

6 Motion control
6.2 Drag mode

45

Copyright © ROKAE 2015-2023. All rights reserved.

 Notes

The recorded trajectory is temporarily saved in the cache. You can discard it or save it as a file.

Recorded Trajectory Available/Unavailable is displayed on the page.

End-effector button operations

Turn on the drag enabling switch on the operation panel, and the robot is powered on automatically

and enables Drag Mode. The following operations can be performed through Robot Assist and the

robot end-effector drag handle:

 Operation Description

1 Create/load a project, move the robot to any start

position, and enter the Path List interface.
The end-effector buttons only respond when the

current page of Robot Assist is Point List or Path

List.

2 Press the Add Path button on the end-effector handle A new path is added to the end of the Path List, and

the cursor is now at the new path.

3 Press the Previous/Next button on the end-effector

handle
Move the cursor to the previous/next path in the

Path List and select the path

7 Robot Configuration

7.1 Basic settings

46

Copyright © ROKAE 2015-2023. All rights reserved.

4 Select a path in the Path List to start recording. Press

the Start Trajectory Recording button on the end-

effector handle and press the two enabling buttons on

the end-effector handle at the same time to drag the

robot for trajectory recording.

The trajectory recording starts after the Start

Trajectory Recording button is pressed. Press the

Stop Trajectory Recording button to stop recording,

and the trajectory is saved automatically.

5 Select a path to delete in the Path List. Press the Delete

Path button on the end-effector handle and confirm.
A pop-up window prompt will appear when you try
to delete a path. If you press the OK button on the

end-effector handle, the selected path will be

deleted from the Path List. If you press the Cancel

button on the end-effector handle, the pop-up

window will be closed, and the selected path will

remain on the Path List.

6.2.4 Trajectory reproduction

Explanation

After a successful continuous trajectory teaching, the trajectory is recorded. Playback the recorded

trajectory on the recording interface and confirm, and then save it manually after confirmation.

Playback settings

Check Loop in the playback mode for looped playback.

The playback speed can be set between 1% and 300%.

 Notes

It is recommended to set the playback speed between 1% and 100%. When the playback speed is

greater than 100%, a drive following error might occur.

Playback operation

Step 1: Turn off the drag enabling switch and switch to Automatic mode. Click the Power-on button

to power on the robot.

Step 2: Click Playback for the robot to play the recorded trajectory.

Step 3: Confirm the trajectory after the trajectory playback is finished. Click Save for the recorded

trajectory to be saved as a file successfully.

Step 4: After completing the trajectory recording, trajectory confirmation, and trajectory save, click

Next to return to the directory list that displays the directory of the saved trajectories.

7 Robot Configuration

7.1 Basic settings

7.1.1 User groups and permissions

User levels

The xCore system is built-in with three user levels, namely Operator, Admin, and God, with the

operation permissions ranking from low to high.

Switching from a low-privileged user to a high-privileged user requires a password, which is 123456

by default. Otherwise, it is not required. A user of a higher permission level can modify the password

of a same- or lower-level user. The password of an Operator-level user cannot be modified.

Division of operational authority

Category Function Operator Admin God

Project Project management N Y Y

7 Robot Configuration

7.1 Basic settings

47

Copyright © ROKAE 2015-2023. All rights reserved.

(Create, Import, Export)

View project

(including program and object data such as

IO and variables)

Y Y Y

Edit project

(including program editing and object

settings such as tools)

N Y Y

Robot motion

and program

running

Mode switching N Y Y

Power on/off N Y Y

Start/stop program Y Y Y

Adjust program running speed N Y Y

Single-step program debugging N Y Y

APP running Y Y Y

Jog/drag interface N Y Y

Running

interface

Set auto-load project N Y Y

View runtime data Y Y Y

System settings

System upgrade N Y Y

Data backup/recovery N Y Y

User permission management N Y Y

Function authorization N Y Y

System time setting N Y Y

System language setting N Y Y

Controller reboot N Y Y

Robot settings

Body parameter setting N N Y

Robot installation N Y Y

Zero Calibration N Y Y

Motion parameter recognition N N Y

Extended IO module configuration N Y Y

System IO setting N Y Y

End tool setting N Y Y

Socket setting N Y Y

Safety setting N Y Y

Clear servo alarms N Y Y

RCI function setting N Y Y

Log

management

View log Y Y Y

Delete log N Y Y

View/delete

Debug log
N N Y

Log backup N Y Y

Help interface View Help Y Y Y

7.1.2 Controller settings

7 Robot Configuration

7.1 Basic settings

48

Copyright © ROKAE 2015-2023. All rights reserved.

System information

Controller setting options are available in the xCore system to soft reboot or shut down the controller.

You need to save all configuration information before restarting. If the controller is shut down, the

controller software can only be restarted after the control cabinet is powered off and then powered on

again.

System configuration

The robot type, controller cabinet type, and safety board type should be properly configured to ensure

the robot works normally.

Alias

Set an alias for each controller, so that the robots in the same LAN can identify the controllers

conveniently. The alias will be displayed on the interface when the robot searches for controllers, as

shown in the figure below.

System time

The system time shows the system time of the controller.

The system time provides an absolute time reference for functions such as logging to trace the

moment of relevant events.

7 Robot Configuration

7.1 Basic settings

49

Copyright © ROKAE 2015-2023. All rights reserved.

Click to check the robot's time reference to see if it is consistent with the system time.

The controller system time can be modified manually, or it can adopt the current system time of the

device on which Robot Assist is running. Users can directly modify the controller system time

manually or click to adopt the current system time of the device on which

Robot Assist is running as the controller system time.

When the system time displayed on Robot Assist is not consistent with the system time in the lower

right corner of Robot Assist, the user can click to update the controller system

time with the system time of the device on which Robot Assist is running.

Warning

1. The system time is the absolute time standard for log information. Do not modify it arbitrarily. Wrong

system time will make it impossible for the user to trace the moment of a relevant event through the log.

2. Do not frequently perform the two operations - Obtain controller time or Set to current time. The interval

between two operations (either one or both) should be greater than 5 seconds.

Multi-loop encoder

Clear multi-loop error messages on the encoder.

Notes

1、 This function is only available for industrial robots.

2、 After replacing the encoder battery of the robot, use this function to clear error messages

before re-calibration.

System IP properties

Set the connection mode of the robot's external network interface. For details, refer to Chapter 4

Connecting to the Robot.

Log save levels

Set the log save level. There are three levels of log - "info", "warning", and "error", ranking from low

to high. Set the level from which the log is kept. The log of lower levels will only be displayed

7 Robot Configuration

7.1 Basic settings

50

Copyright © ROKAE 2015-2023. All rights reserved.

online, and will not be kept in the log.

For example, if "warning,error" are selected, the "info" level log will only be displayed when it

appears, and cannot be queried in Diagnosis or after the controller is restarted. The log of the

"warning" and "error" level will be displayed online, and can also be queried in Diagnosis or

after the controller is restarted. Query the history in Diagnosis -> Controller Log.

7.1.3 Zero Calibration

Explanation

The xCore system provides robot calibration, including mechanical zero calibration and force sensor

zero calibration. The calibration can be performed by "One-Key Calibrate" or Single Joint

Calibration;

7 Robot Configuration

7.1 Basic settings

51

Copyright © ROKAE 2015-2023. All rights reserved.

Mechanical zero calibration

The purpose of mechanical zero calibration is to coincide the theoretical zero point in the control

algorithm with the actual mechanical zero so that the mechanical linkage system can make correct

responses to position and speed commands of the control system.

More generally, the zero calibration is to use certain pre-designed positioning devices on the

mechanical body to rotate the joints of the robot to a specific angle, and notify the control system of

recording the value of each joint motor encoder at this time.

Warning

1、 The mechanical zero point is the theoretical zero point in the robot control algorithm. Please do not

calibrate it arbitrarily and ensure that all robot joints are at the zero point using the mechanical zero

calibration block before calibration.

2、 Do not perform the mechanical zero calibration on the robot after it is calibrated by a laser tracker.
Otherwise, the zero point calibrated by the laser tracker will be lost, therefore affecting the robot

accuracy. In case the zero point of the robot is lost, please contact ROKAE to restore the zero point.

Torque zero calibration

The purpose of the force sensor zero calibration is to coincide the theoretical joint torque zero with

the actual joint torque zero so that the mechanical linkage system can correctly capture the actual

torque of the joints. Put simply, the force sensor zero calibration is to move the robot's joints to a

specific location unaffected by gravity and notify the control system of recording the value of each

joint force sensor at this time.

Warning

Torque zero calibration can also be performed in a non-mechanical zero; for optimal calibration accuracy, it is

recommended to set all joints to the mechanical zero before torque zero calibration.

Dynamic calibration of the torque sensor

7 Robot Configuration

7.1 Basic settings

52

Copyright © ROKAE 2015-2023. All rights reserved.

During robot motion, zero drift is inevitable for torque sensors, which may cause the robot to float

during dragging. In the case of zero drift, dynamic calibration can be enabled. When the force

control-related commands such as enable drag, or force control are turned on in the RL program, the

system will automatically zero calibrate to ensure that force control-related functions can be used

normally.

Warning

Dynamic calibration involves two risks:

1. If the robot is in contact with the environment during dragging, i.e., the
robot is in a non-free state, the calibrated zero may have a big error, which

may result in the wrong torque calculated and failure to enable force

control;

2. The robot may drift during dragging at certain positions after a torque

sensor zero calibration is performed when at a non-mechanical zero

position.

For these reasons, dynamic calibration should not be turned on unless the torque sensor zero sees serious

drifting.

This function is turned off by default.

Angle calibration settings

Due to space constraints in certain scenarios, the robot cannot return to the mechanical zero. In

this case, angle calibration is used to calibrate the robot. Angle calibration is to input the known

current angle to calibrate the robot, achieving the same result as the mechanical zero calibration.

Take the xMate7 Pro seven-axis robot as an example based on the assumption that there are

obstacles in the 4-axis space and the robot cannot return to the vertical state of the mechanical

zero, jog the 4-axis to 90 degrees individually to perform zero calibration. Input the current

angle in Angle Calibration to perform the "mechanical zero calibration".

7 Robot Configuration

7.1 Basic settings

53

Copyright © ROKAE 2015-2023. All rights reserved.

Please note that in the above example, although it is calibrated in a different orientation, the zero

of the robot remains in a vertical state. Therefore, if you directly use the Quick Turn to

Zero function after a successful angle calibration by inputting the current angle of the 4-axis at

90 degrees, the robot will still move to the vertical state of the mechanical zero and thus collide

with the obstacles! So bear in mind that the Angle Calibration function calibrates the zero. It

does not mean that the zero is at the current angle.

7.1.4 Base calibration

What is the base frame?

The base frame at the center of the robot base is described relative to the world frame to confirm the

placement position of the robot. The base frame should be calibrated when the robot is installed at

any angle or there are multiple robots.

Base calibration

7 Robot Configuration

7.1 Basic settings

54

Copyright © ROKAE 2015-2023. All rights reserved.

As shown in the picture above, the general steps to calibrate the base frame are as follows:

 Operation Description

1 Use admin to log in to the system and calibrate the tool

frame.
The selected tool should be consistent with the

tool installed on the flange.

2 Confirm the calibration method. The system supports the six-point method

(default) and manual input. If there is a known

offset of the base frame relative to the world

frame, it is advised to use manual input.

3 Define the position of the auxiliary point. When the tool is too far to reach the world frame.

The base frame can be calibrated by auxiliary

position.

The auxiliary position is defined according to the

world frame.

4 Jog to confirm each teaching point in turn. Users could choose whether to save the base

frame data according to the calibration result.

Manual input

The base frame can be set by manual input. Manually input the position and orientation of the base

frame relative to the world frame. The orientation can be specified with Euler angles or quaternions.

7 Robot Configuration

7.1 Basic settings

55

Copyright © ROKAE 2015-2023. All rights reserved.

Mounting method Description A B C

Floor mounting 0 0 0

Wall mounting A Power cable outlet is

above the base
0 90 0

Wall mounting B Power cable outlet is on

the right of the base
-90 0 -90

Wall mounting C Power cable outlet is

under the base
180 -90 0

Wall mounting D Power cable outlet is

above the base
90 0 90

Ceiling mounting

Warning

When manually inputting parameters to calibrate the base frame, make sure that the data is accurate. Incorrect

parameters may lead to unintended collisions.

7.1.5 Dynamic settings

Explanation

The dynamic settings page is used to set the dynamic model parameters of the robot. The dynamic

model is mainly used for functions such as robot force control, drag teaching, virtual wall, and

collision detection. Please ensure the robot's dynamic model parameters are correctly set. Otherwise,

the above functions may not work properly or may cause the robot to shake abnormally.

Dynamic parameter identification

Dynamic identification allows the robot to execute a series of preset trajectories and collect info

during the motion to calculate the body dynamic parameters required.

Step 1: Robot Configuration -> Settings -> Dynamic Settings

Step 2: Remove the obstacles around the robot. Make sure there are no obstacles (except the base) in

the reachable area of the robot. For details about the reachable area of the robot, refer to the robot

installation manual of each model.

Step 3: Preheat time is the continuous running time of identification. The longer the running time,

the better the identification performance. You can set the preheat time to 0, 1, 2, or 4 hour(s). If the

preheat time is set to 0 hour, the identification is finished after the robot completes a full trajectory,

which lasts about 1 minute.

7 Robot Configuration

7.1 Basic settings

56

Copyright © ROKAE 2015-2023. All rights reserved.

Step 4: Click Start Running. The robot will now automatically execute the dynamic parameter

identification program.

Step 5: Wait for the identification result. If it shows the identification is successful, that means the

identification is finished normally. If it shows the identification failed, refer to the Error handling

section below.

Use restrictions

1. The dynamic parameter identification function is not available for XB12s-3 and XB12s-4.

2. Please ensure no obstacles exist in the reachable area of the robot.

3. Please ensure the robot zero calibration is correctly performed before use. For details about the

robot zero calibration, refer to Chapter 7.1.3.

4. Dynamic identification is not allowed when the robot is loaded.

5. The identification result will only take effect after the robot restarts.

Error handling:

1. Click the Stop button on Robot Assist to stop the identification process.

2. In case of emergency, press the emergency stop button to stop the robot immediately.

3. The identification result will not be recorded if it is interrupted. Re-execute the program for

identification.

Friction identification

Like dynamic parameter identification, friction identification allows the robot to execute a series of

preset trajectories and collect info during the motion to calculate the friction parameters required.

Dynamic identification and friction identification are two independent features, and their orders are

free.

Step 1: Robot Configuration -> Settings -> Dynamic Settings

Step 2: Turn off dynamic constraint and dynamic feedforward. For dynamic constraint and dynamic

feedforward switches, refer to the section below;

Step 3: The robot will now automatically execute the friction identification program after clicking

Start Running.

Step 4: Wait for the identification result. If it shows the identification is successful, that means the

identification is finished normally. The friction coefficient will only take effect after a restart, and the

identified friction coefficients for each axis are displayed on the current interface. If it shows the

identification failed, refer to the Error handling section below.

Use restrictions

1. Please ensure no obstacles exist in the reachable area of the robot.

2. Please ensure the robot zero calibration is correctly performed before use. For details about the

robot zero calibration, refer to Chapter 7.1.3.

3. Friction identification is not allowed when the robot is loaded.

4. The friction identification result will only take effect when the robot restarts.

Error handling:

1. Click the Stop button on Robot Assist to stop the identification process.

2. In case of emergency, press the emergency stop button to stop the robot immediately.

3. The identification result will not be recorded if it is interrupted. Re-execute the program for

identification.

4. In case of abnormal friction identification result, the nominal value is used, and a prompt is

displayed on the interface. If the nominal value is inappropriate, the friction coefficient can be

modified manually on the interface.

Friction settings

7 Robot Configuration

7.1 Basic settings

57

Copyright © ROKAE 2015-2023. All rights reserved.

The friction coefficient page displays the friction coefficients of the robot, including viscous friction

coefficient fv, Coulomb friction coefficient fc, and Coulomb friction coefficient bias fo. If friction

identification is not performed, nominal friction coefficients are displayed. If performed, the factory

identity friction coefficients are displayed. Friction coefficients can be modified manually and take

effect after restart. But users are not recommended to modify these parameters as the dynamic

functions may go wrong.

The third-order friction coefficient is an advanced function of the controller. The internal parameter

could not be modified by users.

Dynamic feedforward switch

1. The dynamic feedforward switch determines whether the controller turns on or off the dynamic

feedforward function and is turned on by default.

2. Users are not recommended to turn off the dynamic feed-forward function by themselves, which

may cause jitter when power on and worse trajectory accuracy.

3. The dynamics feedforward should be turned off in certain situations, including base frame

calibration when the robot adopts wall/ceiling mounting and friction identification.

Dynamic constraint switch

1. The dynamic constraint switch determines whether the controller turns on or off the dynamic

7 Robot Configuration

7.1 Basic settings

58

Copyright © ROKAE 2015-2023. All rights reserved.

constraint function and is turned on by default.

2. Users are not recommended to turn off the dynamic constraint function by themselves, which may

cause motor overload or abnormal shaking.

3. When the dynamic constraint switch is turned on, two options including "Nominal Dynamic

Params" and "Factory Identify Dynamic Params" are available. "Nominal Dynamic Params" means

nominal parameters will be used in the dynamic control. The same models using the "Nominal

Dynamic Params" will deliver the exact same motion velocity and takt time when executing the same

motion program, yet the motion performance may be weaker, or there may be motor overload. When

"Factory Identify Dynamic Params" is selected, the robot will be in the best dynamic control status

for the shortest takt time allowed, and the motor will be protected from overload. But robots running

the same motion program may be slightly different in velocity and takt time.

7.1.6 Body parameters

Explanation

Body parameters include RD parameters, reduction ratio, and coupling coefficient. These parameters

are all related to the robot body, including the properties of its mechanical mechanism and

components. The parameters on this page directly affects the accuracy of the robot motion. Please

modify them with discretion.

RD parameters

RD parameters are a set of parameters used to describe the relative pose relationship between the

robot's link frames. They are the foundation for robot kinematics.

➢ The RD parameters need to match the actual link parameters of the robot. Please configure the

parameters with caution. Otherwise, errors such as "exceeding the workspace" may occur.

➢ A set of parameters is configured as default settings before delivery. After calibrating the robot's

link parameters properly, modify the RD parameters to increase the robot's absolute accuracy.

Check the rationality of the calibrated RD parameters before modifying or importing parameters;

➢ Restart the controller for the modified RD parameters to take effect.

Reduction ratio

The reduction ratio is the parameter of the reducer in each axis of the robot. Do not modify the

factory settings. Configure the reduction ratio according to the manufacturer's instructions only after

replacing the reducer with a different model.

Coupling coefficient

7 Robot Configuration

7.1 Basic settings

59

Copyright © ROKAE 2015-2023. All rights reserved.

The motion of the Axis 4, Axis 5, and Axis 6 of the robot is coupled. The coupling coefficient is used

to describe the coupled motion of other joints when these joints move. Do not modify the factory

settings. Modify the parameter according to the manufacturer's instructions only after replacing with

it a different model of reducer or driving element.

Use restrictions

Only God users can modify the parameter.

7.1.7 Kinematic parameters

Explanation

The kinematic parameters include the maximum speed, maximum acceleration, and maximum

acceleration jerk of each axis of the robot. The kinematic parameters affect the maximum speed,

maximum acceleration, and maximum acceleration jerk that the robot can achieve during motion, as

well as its takt time and smoothness. A set of parameters is configured as default settings before

delivery. Modifying the kinematic parameters may cause the robot to shake abnormally, report errors,

or reduce its service life. Please modify them with discretion.

7 Robot Configuration

7.1 Basic settings

60

Copyright © ROKAE 2015-2023. All rights reserved.

➢ Maximum Axis Velocity: the maximum velocity allowed for each axis during robot motion,

mainly limited by the motor velocity.
The factory parameters are generally adopted, and they do not require modification.

➢ Maximum Axis Acceleration: the maximum acceleration allowed for each axis during robot

motion, mainly limited by the motor torque. The parameter takes effect when dynamic

constraint is turned off, and it limits the maximum acceleration for each axis during robot

motion; when the dynamic constraint is turned on, the parameter becomes invalid, and the

maximum acceleration for each axis during robot motion is calculated through the dynamic

model.
The maximum acceleration set should be no less than 3-5 times the maximum velocity of the

axis.

➢ Maximum Axis Jerk: the maximum jerk allowed for each axis during robot motion. Jerk is

the derivative of acceleration to time. In most cases, the higher the jerk, the more likely the

robot may shake during the motion, and vice versa. The actual jerk increases when the robot

passes through the turning zone. In this situation, the jerk has an obvious impact on the robot

takt. When the program involves many small turning zones, the jerk can be increased

appropriately to speed up the takt. Additional attention needs to be paid to the robot's shaking.
The maximum jerk set should be no less than 3-5 times the maximum acceleration of the axis.

➢ Acceleration Multiplier: This parameter is used to scale the robot's acceleration during

operation. The larger the value, the higher the robot acceleration, and vice versa.

➢ Acceleration Rise Time: The time for the robot acceleration to increase from the minimum to

the maximum. The smaller the value, the faster the robot accelerates, and vice versa.

➢ Velocity Smoothing Factor: This parameter is used to smooth the robot's velocity in the

turning zone. The larger the value, the less the robot slows down in the turning zone, and vice

versa. When the value is set to 1.0, the velocity is not smoothened when the robot passes

through the turning zone. The larger the value, the more likely the robot is to shake in the

turning zone.
This parameter is used to push the robot's ultimate performance. During commissioning,

firstly check how badly the robot is shaking when the parameter is set to 1.0. If the robot

shakes violently, the robot has reached its limit and there is no need to increase the value. If

the robot runs smoothly but the velocity drops severely when it passes through the turning

zone, this parameter can be gradually increased to make the motion smoother while observing

the robot's running status. This parameter can be increased by 0.1-0.5 each time.

➢ Safety Control: The time from the receipt of the stop signal to the full stop of the robot. The

7 Robot Configuration

7.1 Basic settings

61

Copyright © ROKAE 2015-2023. All rights reserved.

smaller the value, the faster the robot stops, and vice versa.

➢ Search Max Stop Distance: When a Search command is used, the distance traveled by the

robot TCP from the receipt of the stop signal to the full stop of the robot shall not exceed this

value.

➢ Set the minimum radius of the turning zone: The shortest turning zone allowed that can be

specified by the turning zone radius. This parameter can be used to avoid generating a turning

zone too short and to make motion smoother. When the control system detects that the length

of a trajectory is below the set value of this parameter and the trajectory needs to generate a

turning zone, the control system will automatically combine the trajectory and the adjacent

trajectories into one trajectory and generate a turning zone with an appropriate length. The

larger the value, the longer the minimum turning zone and the smoother the robot passes

through the turning zone. When this parameter is set to 0, the control system strictly follows

the parameters to generate the turning zone.

Use restrictions

Only God users can modify the parameter.

7.1.8 Force control parameters

Explanation

Force control parameters are force control-related parameters adapted to the actual hardware

equipment and environment.

Important parameters can be adjusted and switched on the HMI interface. Two sets of control

parameters built into the controller can be flexibly selected based on the usage and the actual

application scenario.

Base stiffness

There are two base stiffness modes: high and low. When the base stiffness level that matches the

actual installation environment is set, the robot will switch the corresponding basic control

parameters.

The high base stiffness control parameters are set to default after initialization and when the function

is disabled.

7 Robot Configuration

7.1 Basic settings

62

Copyright © ROKAE 2015-2023. All rights reserved.

The parameter does not require adjustment for common base scenarios. When the robot is mounted

on a flexible base or mobile platform, the base stiffness level needs to be changed to low. For

example, the robot sits on an AGV trolley.

Force control model

The force control model enables the configuration of basic force control parameters. Be careful with

this developer option.

The 0 model is set to default after initialization and when no modification is made.

There is no need to adjust this parameter when the robot operates properly.

Drag optimization

Drag optimization is to improve the dragging experience and better force control in extreme

conditions.

The main purpose is motor overcurrent protection when the drag ends. The strategy of slowing down

and stopping is adopted for a better dragging experience. This function is enabled by default after the

initialization and when no modification is made.

Force control parameter identification

It refers to the accurate identification of the control parameters by adding external loads.

7 Robot Configuration

7.1 Basic settings

63

Copyright © ROKAE 2015-2023. All rights reserved.

Warning

This function is for the experienced one only. Guidance by professionals or reference to the user manual

is required.

1. Dedicated calibration blocks should be first used as the loads in the identification process.

2. The actual load can also be input by customization when there are no appropriate tools.

7.1.9 Quick turn settings

Explanation

The HMI interface offers quick turn functions to conveniently adjust the robot to common poses.

Users can customize common poses and turn to a new custom orientation quickly on the HMI

interface after the setting is completed. It supports custom poses including the drag pose, shipping

pose, and Home pose etc.

This function can also turn the robot to some special orientations quickly while keeping the TCP

position and elbow (only available for 7-axis robots) unchanged, including the flange parallel to the

ground, the X axis of the tool frame perpendicular to the ground, the Y axis of the tool frame

perpendicular to the ground, and the Z axis of the tool frame perpendicular to the ground.

Operation

The quick pose adjustment is available in Manual Mode in a way similar to Jog operation. In Manual

Mode, the robot is powered on via the enable device. When the button for the corresponding target

pose is pressed, the robot will move to the target pose in the joint space.

The motion speed can be adjusted via the Jog speed.

Parameter configuration

The Quick Turn features parameter configuration. For users who want to use other shipping poses,

drag poses, or Home poses, they can set the parameters in the Robot -> Quick Turn page.

Turn on the Enable button, click the corresponding Quick Turn button in the Motion window, and the

robot will move to the modified position. If the parameter configuration is not enabled, Quick Turn

adopts the default pose.

Home pose

The following describes the settings of the Home pose and the definition of parameters in detail. The

Home pose can be set to a range based on the joint angle. When the robot joints remain within this

range, it is regarded that the robot is at the Home pose, and the system IO "Home State" is output.

The reference point of the Home pose can be taught and updated with "the current pose".

The following are the parameters:

7 Robot Configuration

7.1 Basic settings

64

Copyright © ROKAE 2015-2023. All rights reserved.

No. Name Meaning

1 Reference Value The reference value of origin for each joint.

2 Offset
The float value of the origin range symmetrically around the reference
value. Offset value range: [0.1,30]. For example, if the reference value

is 1° and the offset value is 3°, the origin falls in the range of [-2°,4°].

The relationship between the origin range, the reference value and the offset value is shown as

follows:

Reference
Value

δ Offset Origin
Range

δ

7.1.10 Electronic nameplate

Explanation

The electronic nameplate designed for industrial robots is installed in the robot body. It is mainly

used to save the data of the robot body and avoid the loss of basic data after the replacement of the

industrial computer or the controller cabinet.

The software functions of the electronics nameplate are mainly performed by the controller and

Robot Assist. The controller performs data reading, verification, overwriting, etc., while Robot Assist

is used to send operation commands related to the electronics nameplate and display data. After the

controller is turned on, it will first check if there is an electronic nameplate. If there is an electronic

nameplate, it will read the data normally, perform data verification, and store the verification result;

If there is no electronic nameplate and the user does not choose to use the electronic nameplate, it

will directly operate with the controller data; If there is no electronic nameplate and the user chooses

to use the electronic nameplate, a prompt "there is no electronic nameplate" will appear. After Robot

Assist is connected to the controller, it will first check the verification results of the electronics

nameplate data in the controller, and give different pop-up prompts based on the verification results.

Users can simply follow the pop-up prompts. For details, refer to Chapter 1.1.2.2.

Startup selection

After startup, the controller checks if the data in the electronic nameplate is the same as that in the

controller;

If they are same, the data in the controller will be used directly without any prompt;

Otherwise, a pop-up window will prompt whether to use the data in the electronic nameplate, as

shown in the figure below;

7 Robot Configuration

7.1 Basic settings

65

Copyright © ROKAE 2015-2023. All rights reserved.

If the data in the electronic nameplate is successfully used, it will overwrite the data in the controller

by default.

Here are several situations in which pop-up prompts appear:

1) If an electronic nameplate is detected and its data is different from that in the controller, a pop-up

window will prompt "Do you want to use the data in the electronic nameplate?". Select "Yes" to use

the data in the electronic nameplate and "No" to use the data in the controller directly;

2) After choosing to use the data in the electronic nameplate once, the electronic nameplate data will

be used by default after restart. If the data in the controller is again different from that in the

electronic nameplate, a pop-up window will prompt, "Do you want to use the data in the electronic

nameplate?";

3) If the electronic nameplate is not detected during startup, the controller data will be used by

default. If the electronic nameplate data is used once and cannot be detected after restart, a pop-up

window will prompt "Do you want to use the data in the controller?". Select "Yes", the controller

data will be used normally. Select "No", the controller will be in a malfunction state and cannot be

operated. In this case, restart the controller to solve the problem.

Notes

1. When the model data in the electronic nameplate does not match that in the controller, the data in the
electronic nameplate cannot be used. To use the electronic nameplate data successfully, please ensure the

model data in the controller is same as that in the electronic nameplate.

Electronic nameplate interface

Click Robot Configuration -> Settings -> Electronic Nameplate on the Robot Assist interface to

display the information about the electronic nameplate. If an electronic nameplate is detected by the

controller, regardless of whether the electronic nameplate is used, the information of the electronic

nameplate parameter segments will be displayed on the interface;

The status of the electronic nameplate can be determined by the status bar on the interface with three

parameters: the electronic nameplate status, whether the electronic nameplate data matches the

controller data, and whether the Use Electronic Nameplate button is pressed during startup, as shown

in the figure below:

If an electronic nameplate is not detected during startup, the interface is as shown in the figure below:

7 Robot Configuration

7.1 Basic settings

66

Copyright © ROKAE 2015-2023. All rights reserved.

Notes

1. Regarding the third parameter in the status bar, if the Use Electronic Nameplate button is pressed, the

parameter displays In Use regardless of whether the data is successfully used.

Functions of electronic nameplate interface

Function Description

Export controller data Export the data of relevant parameter segments in the controller to a file

Export electronic nameplate

data

Export the data in the electronic nameplate to a file

Refresh Synchronize the information of the electronic nameplate

Basic information The parameter segments about the basic information of the electronic

nameplate. It is unable to be modified manually

Encoder battery voltage The actual battery voltage of the encoder. It is measured during startup and

every 24 hours after a startup. It is unable to be modified manually

Run time When the motor runs, the run time increases accordingly. The value is

refreshed every hour on the interface. This parameter cannot be modified

manually;

Mechanical zero parameters

and kinematic parameters

The current values of the controller and the electronic nameplate will be

displayed on the interface, respectively. This parameter cannot be modified

manually;

Dynamic parameters The parameter segment is not displayed on the interface;

Overwrite electronic nameplate

data

Overwrite the data in the electronic nameplate with the data in the controller.

7 Robot Configuration

7.2 Safety Features

67

Copyright © ROKAE 2015-2023. All rights reserved.

Notes

1. All exported data are encrypted.

2. When the electronic nameplate is used, the controller automatically synchronizes the modified data to the

electronic nameplate after the robot performs zero calibration, robot parameter modification, or dynamic

parameter identification.

7.2 Safety Features

7.2.1 Scope

Safety Features Industrial Robot xMate cobot

Soft limit Y Y
Virtual wall N Y

Collision detection Y Y
Safety area N Y

Safety monitor N Y
Collaboration mode N Y

7.2.2 Soft limit

Function Description

Soft limit is the function that sets the maximum motion range of each axis at the software level.

Users can set the soft limit according to the site conditions to avoid interference or collision between

the robot and peripheral equipment. The following figure takes a seven-axis robot as an example. The

number of axes and the soft limit of each axis vary with the model.

7 Robot Configuration

7.2 Safety Features

68

Copyright © ROKAE 2015-2023. All rights reserved.

Warning

The range of soft limits cannot exceed the mechanical hard limit range allowed by the robot body.

When the robot is beyond the soft limit

In some rare cases, the robot may move beyond the soft limit. For example, if the robot triggers an

emergency stop when it reaches the limit boundary,

it may exceed the soft limit when executing STOP0. If the robot has one or more joints beyond the

soft limit, Jog and running programs cannot be performed. At this time, the soft limit must be

canceled first, then return the overrun joint jog to the range within soft limit and enable again the soft

limit.

Warning

Cancellation of the soft limit function can only be used to Jog the overrun joint back to the normal range when the

robot joint exceeds the soft limit.

The program will not run when the soft limit is canceled.

7.2.3 Virtual wall

Function Description

xMate cobot provides virtual walls targeting certain medical care scenarios. For example, if xMate is

used as a physician's aid, the user can drag it to perform surgical operations. Virtual walls can be set

through the surgical navigation system to limit the operating space of the xMate end-effector flange.

➢ Virtual walls can be cuboids or spheres;

➢ The center and limit range of the virtual walls can be set as below:

➢ The center (unit: mm) is set with the base frame as the reference frame, and the current

flange position can be set as the center of the virtual walls;

➢ The limit range of the spherical virtual walls is defined by the spherical radius (unit: mm);

➢ The limit range of the cuboid virtual walls is defined by length (X), width (Y), and height

7 Robot Configuration

7.2 Safety Features

69

Copyright © ROKAE 2015-2023. All rights reserved.

(Z) (unit: mm);

How to set:

 Operation Description

1 Use admin to log in to the system and activate the drag

mode.
Virtual walls are only valid when the drag mode is

on.
2 Select the virtual wall shape type. Cuboid and sphere are supported.
3 Determine the center of the virtual walls. Drag the robot to a location and click the Current

Location button on the interface to set the center

of the robot flange as the virtual walls.
4 Set the range of the virtual walls. The limit range of the spherical virtual walls is

defined by the spherical radius (unit: mm).

The limit range of the cuboid virtual walls is

defined by length (X), width (Y), and height (Z)

(unit: mm).
5 Enable the virtual walls. Click the Open button to activate the virtual walls.

7.2.4 Collision detection

Function Description

The collision detection function is a passive detection based on the robot's dynamics model

parameters. It detects a collision and implements preset countermeasures when the robot collides

with the outside.

➢ Collision detection is disabled by default.

➢ The collision detection mode contains the level setting and the single-axis setting.

Level setting: For different application scenarios, three levels of detection sensitivity are available:

low, medium, and high. The higher the sensitivity, the smaller the external force that triggers collision

detection. Low sensitivity is suitable for full-load full-speed, medium sensitivity for half-load 50%

automatic operation, and high sensitivity for JOG or collaboration mode. For example, high

sensitivity can be selected when the user jogs the robot and wants to activate collision detection. Low

sensitivity is recommended when the program is running at full speed with a full load in Automatic

mode.

Single-axis setting: It provides specific application scenarios for fine-tuning the interfaces of

detection sensitivity. The user can adjust the sensitivity axis by axis according to the collision

information provided on the HMI. It allows the user to set the sensitivity suitable for the current

application scenario while balancing between sensitivity and stability.

7 Robot Configuration

7.2 Safety Features

70

Copyright © ROKAE 2015-2023. All rights reserved.

➢ Collision detection provides two trigger behaviors, action pause and safety stop.

Action pause: When detecting a collision, the robot will pause its current motion. When applied with

a downward force, the robot will resume its motion;

Safety Stop: When detecting a collision, the robot stops the current motion safely.

Notes

1. During the execution of the program, when the robot moves at a high speed and collides with

external devices (stiff collision), and the collision force is too high, causing the servo driver to alarm

and stop, the robot can only run again when the collision is cleared, the robot restarted, and the servo

alarm reset.

2. Incorrect sensitivity mode selected may cause false collision alarm. Please select different

sensitivity thresholds for each application scenario.

3. The collision detection sensitivity is affected by the robot hardware, and there are differences in

sensitivity thresholds between different robots. Currently, the three sensitivity modes only provide a

set of nominal values. Users with have higher requirements for collision detection sensitivity can

fine-tune the sensitivity of each axis based on specific application scenarios through the single-axis

setting or adjust the detection sensitivity online through RL commands.

Warning

Before using collision detection, the user must ensure that the following parameters are set correctly.

Otherwise, the controller may fail to calculate the correct output torque, resulting in a false alarm.

1、 Robot model

2、 Robot installation method

3、 Load information (tool)

4、 Mechanical and sensor zeros

5、 Robot body parameters

7.2.5 Safety area

Function Description

Safety areas restrict the robot's motion space. The user can define a number of safety areas in the

space (up to 10 in the controller system). When entering and exiting such safety areas, the robot can

7 Robot Configuration

7.2 Safety Features

71

Copyright © ROKAE 2015-2023. All rights reserved.

selectively trigger the preset safety behaviors and automatically modify the register value of the

corresponding register function code bound to the safety area.

The safety area function can be turned on or off by the "Overall Enable". When this switch is off, all

safety areas become invalid.

Each safety area can be turned on or off independently through HMI or register.

A safety area can be turned on or off by signal: when "signal control" is on, whether a safety region is

"turned on or not" depends on the register bound with the function code "enable_safe_

region01~enable_safe_region10" (type: bool or int16, read/write: read-only), and the button under

the "IsEnable" column is disabled; when "signal control" is off, whether a safety region is "turned on

or not" can be directly set through HMI.

Users can modify the properties of any safety area.

Parameter explanation

➢ Safety areas can be rectangular or point-plane vector;

➢ Trigger behaviors include: no behavior, safety stop, and collaboration mode;

◼ No behavior: the robot has no specific action;

◼ Safety stop: the robot executes stop1 to stop and power off;

◼ Collaboration mode: the robot enters the collaboration mode (cobots only).

➢ The state of the region-bound register after triggering can be set: true/false;

◼ True: the register output signal is true when the safety area triggers a safety behavior, and

vice versa; (output true when entering the forbidden zone)

◼ False: the register output signal is false when the safety area triggers a safety behavior, and

vice versa; (output false when entering the forbidden zone)

For the rectangular region, the pose of the region's center can be determined by the pendant (TCP

relative to the robot base frame) or manual input; the length, width, and height of the cuboid can be

set manually; the orientation of the cuboid can also be set: inside indicates that when TCP moves into

the cuboid, a safety behavior and corresponding register state modification will be triggered, and the

inside space of the cuboid is the forbidden region; outside indicates that when TCP moves out of the

cuboid, a safety behavior and corresponding register state modification will be triggered, and the

inside space of the cuboid is the safety area while the space outside the cuboid is the forbidden zone.

7 Robot Configuration

7.2 Safety Features

72

Copyright © ROKAE 2015-2023. All rights reserved.

For the point-plane vector zone, the pose can only be set through manual input; the safety area is in

the direction pointed by the Z-axis defining the orientation. Direction property: positive indicates that

the robot TCP enters the safety area to trigger a safety behavior and corresponding register state

modification; negative indicates that the robot TCP leaves the safety area to trigger a safety behavior

and corresponding register state modification.

Function bound register

Up to 10 control switches of whether the safety area is in effect and the trigger state of the

safety area can be bound to a register. The safety area switch is controlled externally, and

the safety area trigger state is fed back to external devices.

To bind the trigger state of the safety area to a register, first create a new register as shown below.

Select write only and "sta_safe_region01~sta_safe_region10", which means the trigger state of the

corresponding safety area will be bound to the new register.

7 Robot Configuration

7.2 Safety Features

73

Copyright © ROKAE 2015-2023. All rights reserved.

To bind the power switch of the safety area to a register, first create a new register as shown below.

Select read only and "enable_safe_region01~enable_safe_region10", which means the control switch

of the corresponding safety area will be bound to the new register.

7.2.6 Safety monitor

Explanation

Safety monitor targets the robot's normal operation. In this mode, thresholds of monitoring items are

higher than those in the Collaboration mode.

Parameter configuration

Admin or higher permission is required to configure safety monitoring as shown in the below

interface:

1. Setting all monitoring items and parameters in the Safety Monitoring interface, including:

A Maximum speed of each joint, with each axis set independently;

Maximum speed of each joint: [180, 150, 180, 180, 225, 225, 225] °/s
B Maximum linear speed of TCP: 1m/s, the threshold is shared by X/Y/Z with an available speed range of 0.0

- 1 m/s
C Maximum torque of each joint, with each axis set independently;

Maximum torque of each joint for xMate3 Pro: [281.7, 338.1, 281.7, 281.7, 99.6, 99.6, 99.6] Nm.

Maximum torque of each joint for xMate7 Pro: [720, 720, 281.7, 281.7, 124.5, 124.5, 124.5] Nm.
D Total power limit: 4476W. Available power range: 0 - 4476W

2. When monitoring items are triggered, the robot performs STOP1.

3. Each monitoring item can be enabled/disabled independently and are off by default.

7 Robot Configuration

7.2 Safety Features

74

Copyright © ROKAE 2015-2023. All rights reserved.

7.2.7 Collaboration mode

Explanation

The Collaboration mode is a working mode where humans and robots share the working area. In this

mode, the robot running speed will be reduced based on the TCP maximum speed monitoring

parameter setting in the Collaboration mode.

Parameter configuration

Admin or higher permission is required to configure Collaboration mode as shown in the below

interface:

1. The range of monitoring parameters set in the Collaboration mode is as follows:

A Maximum joint speed: 15°/s. Each axis is set independently with the range of 0.0~15.0°/s
B Maximum linear speed of TCP: 0.25 m/s, the threshold is shared by X/Y/Z with an available speed range of

0.0 - 0.25 m/s
C Maximum torque of each joint, with each axis set independently;

Maximum joint torque: [140.9, 169.0, 140.9, 140.9, 49.8, 49.8, 49.8] Nm.

7 Robot Configuration

7.2 Safety Features

75

Copyright © ROKAE 2015-2023. All rights reserved.

D Total power limit: 192.7 W. Available power range: 0 - 192.7 W

2. In the Collaboration mode, STOP1 emergency stop is triggered when monitoring parameters

exceed limits.

7.2.8 Safety position

Explanation

xCore control system supports up to 8 safety positions with joint angles as reference. Each safety

position corresponds to a register function code (type: bool or int16, read/write: write only,

sta_safe_jnt_pos1~sta_safe_jnt_pos8). When the current joint angle of the robot and the joint angle

set for a safety position are within the allowable error, the value of the register to which the

corresponding register function code for the safety position is bound to will be modified

automatically (when within the allowable error of the safety position, if the register type is bool, the

register value is true; if the register type is int16, the register value is 1). The user can understand the

robot's position relative to the safety position through this function.

Parameter configuration

On the above page, click to select a safety position, move the robot to the desired position, and

manually set the allowable error of each joint; click "Save" to record the current safety position to

complete the setting.

The user can set whether to enable any safety position.

Function bound register

Up to 8 safety position states can be bound to a register, and the trigger state of whether reaching the

safety position is delivered to external devices through the register signal.

To bind the safety area state to a register, first create a new register as shown below. Select write only

and "sta_safe_jnt_pos1~sta_safe_jnt_pos 8", which means the feedback state of the corresponding

safety position will be bound to the new register.

7 Robot Configuration

7.3 Communication Configuration

76

Copyright © ROKAE 2015-2023. All rights reserved.

7.3 Communication Configuration

7.3.1 System IO Configuration

Explanation

The system IO is divided into system digital input and system digital output. The external controller

can send various commands to the xCore control system through system input, such as motor power-

on, startup procedure, emergency stop reset, etc. Also, the xCore system can send various states using

the system output IO.

System input

The system inputs supported by the xCore system include:

No. System input Remarks

1 Motor ON

2 Motor OFF

3 Program Start

4 Program Pause

5 PP to Main

6 Enter Collaboration Cobots only

7 Exit Collaboration Cobots only

8 Clear Alarm

9 MotorOn & Run Power on, pptomain, run in order

10 MotorOn & Continue Power on and run

11
MotorOff & Pause

Pause, wait for the robot to stop, and power

off

12 Emergency & Clear Alarm

13 Switch Manual

14
Switch Auto

Only the function is effective in the manual

mode

15
Open Drag

Only for cobots. Need to enable Drag mode

on the interface

16
Close Drag

Only for cobots. Need to enable Drag mode

on the interface

All system inputs are pulse-triggered. To ensure that the xCore system receives external commands

7 Robot Configuration

7.3 Communication Configuration

77

Copyright © ROKAE 2015-2023. All rights reserved.

correctly, please ensure that the pulse width of the external input is not less than 300 milliseconds.

Notes

The system input function is only valid in Automatic mode, and the signal from the system input in manual

mode will be ignored.

System output

The system outputs supported by the xCore system include:

No. System output Valid output Invalid output Remarks

1 Motor State Motor power-on Motor power-off

2 Running State Program running Program not running

3 Operate Mode Automatic mode Manual mode/Wait mode

4 Estop State Emergency stop Non emergency stop

5 Collision Detection Triggered Not triggered Cobots only

6 Collaboration State Collaboration mode Non-Collaboration mode Cobots only

7 Alarm State Alarm No alarm

8 Home State The robot TCP is at

Home
The robot TCP is not at

Home

All other system output signals are active at a high level except the "Operating Mode" signal.

For the signal "Operating Mode", the output is at a high level in Automatic mode and low in Manual

mode.

Notes

The system output status is valid in both manual and automatic modes. However, for safety and availability

considerations, these signals are only to be used when the xCore is in Automatic Mode.

Use restrictions

After an IO point is bound to the system IO, it cannot be forced to output or simulate input

operations.

7.3.2 External communication

Explanation

The xCore system provides a Socket-based external communication interface through which host

systems (PLC, MES, etc.) can send control commands to the robot or obtain the robot status.

The Socket communication interface supports the configuration of IP address, port number, and

communication terminator (suffix).

The Socket communication interface supports the robot to serve as a client or server, but only one

state at a time.

Enable interface

Before using the interactive commands, configure the parameters related to the Socket

communication and enable the function. This is operated on the Teach Pendant interface. Go to the

interface via Robot -> Communication -> External Communication, as shown in the figure below:

7 Robot Configuration

7.3 Communication Configuration

78

Copyright © ROKAE 2015-2023. All rights reserved.

Parameters

When the robot is used as a client, the following parameters need to be configured:

No. Parameters Description

1 IP Server IP, such as the IP address of the connected PLM and MES systems.

2 Port Server-side listening port

3 Suffix The suffix is the characters added to the end of the control commands or monitoring

commands sent from the server to the robot. They are typically simple terminators such as

\r, \n or \t. Please note combined suffixes can be used here without limitation on length,

such as \r\n, \r\t or \r\n\t. Visible characters such as letters can also be used.

The robot used as a server supports multiple connections. In this case, please pay attention to the

control sequence on the client side to avoid any conflict. The following parameters need to be

configured:

No. Parameters Description

1 Port Server-side listening port

2 Suffix The suffix is the characters added to the end of the control commands or monitoring
commands sent from the server to the robot. They are typically simple terminators such as

\r, \n or \t. Please note combined suffixes can be used here without limitation on length,

such as \r\n, \r\t or \r\n\t. Visible characters such as letters can also be used.

7 Robot Configuration

7.3 Communication Configuration

79

Copyright © ROKAE 2015-2023. All rights reserved.

List of interactive commands

The following table shows the information content supported by the external communication

interface and the corresponding command formats. Assume the user uses "\r" as the specified

command terminator ("\r" is an escape character for carriage return, the decimal value is 13).

Interaction commands include control commands, configuration commands, and monitoring

commands.

Control commands include:

 Command name String sent Return value Remarks

1 Close the socket interface "xCore::SocketInterface::Disable" +"\r" No return value

2 Start the socket interface "xCore::SocketInterface::Enable" +"\r" No return value

3 Start program "start"+"\r"
"true" if success;

"false" if failed

4 Stop program
"stop"+"\r"

"true" if success;

"false" if failed

5 Clear servo alarms "clear_alarm"+"\r"
"true" if success;

"false" if failed

6 Program pointer to main "pp_to_main"+"\r"
"true" if success;

"false" if failed

7 Motor power-on "motor_on"+"\r"
"true" if success;

"false" if failed

8 Motor power-off "motor_off" + "\r"
"true" if success;

"false" if failed

9 Switch to Manual mode "switch_mode:manual"+"\r"
"true" if success;

"false" if failed

10 Switch to Automatic mode "switch_mode:auto"+"\r"
"true" if success;

"false" if failed

11 Enable Drag mode "open_drag"+"\r"
"true" if success;

"false" if failed
Cobots only

12 Disable Drag mode "close_drag"+"\r"
"true" if success;

"false" if failed
Cobots only

Monitoring commands shall include:

 Command name String sent Return value Remarks

1 Motor power status "motor_on_state" + "\r"

"true" if success; "false" if failed

true: motor power on; false: motor power

off

2 Program status "robot_running_state" + "\r"
"true" if success; "false" if failed

true: running; false: not running

3 Emergency stop "estop_state" + "\r"

"true" if success; "false" if failed

true: emergency stop; false: non emergency

stop

4 Fault "fault_state" + "\r"
"true" if success; "false" if failed

true: fault; false: not fault

5 Operating mode "operating_mode" + "\r"

"true" if success; "false" if failed

true: Automatic mode; false: Manual

mode/Wait mode

6 Get Cartesian position "cart_pos" + "\r" Cartesian position string + "\r"

7 Get Cartesian position "cart_pos_name" + "\r"
"cart_pos: " + Cartesian position string +

"\r"

8 Get axis position "jnt_pos" + "\r" Axis position string + "\r"

9 Get axis position "jnt_pos_name" + "\r" "jnt_pos: " + axis position string +"\r"

10 Get axis velocity "jnt_vel" + "\r" Axis speed string + "\r" Unit: rad/s

11 Get axis velocity "jnt_vel_name" + "\r" "jnt_vel: "+ axis speed string + "\r" Unit: rad/s

12 Get axis torque "jnt_trq" + "\r" Axis torque string + "\r" Unit: N.m

13 Get axis torque "jnt_trq_name" + "\r" "jnt_trq:" + axis torque string + "\r" Unit: N.m

14 Home state output "home_state" + "\r"
Returns "true" if there is an output or

"false" if there is no output

7 Robot Configuration

7.3 Communication Configuration

80

Copyright © ROKAE 2015-2023. All rights reserved.

16 Collision detection state "collision_state" + "\r"

Returns "true" if a collision detection is

triggered or "false" if no collision detection

is triggered

Cobots only

17 Obtain robot task state "task_state" + "\r"

The task currently performed by the robot,

including:
⚫ Ready: ready

⚫ Jog: jog

⚫ Load identification: load_identify

⚫ Dynamic Identification:

dynamic_identify

⚫ Enable Drag Mode: drag

⚫ Program running: program

⚫ Demo: demo
⚫ RCI: rci

⚫ Debug: debug

For details, please

refer to the symbols

and description of

the robot's current

status in Chapter

3.1.2 Bottom status

bar.

Note:

 String format Unit

Cartesian

position
x, y, z, a, b, c, q1, q2, q3, q4 x, y, z, unit: mm; a, b, c unit: degree; q1~q4 are orientation quaternion

Axis position j1, j2, j3, j4, j5, j6, j7 Robot axis degree, unit: rad; rail position, unit: m;

Axis velocity vj1, vj2, vj3, vj4, vj5, vj6, vj7 Robot axis velocity, unit: rad; rail velocity, unit: m/s;

Axis torque tj1, tj2, tj3, tj4, tj5, tj6, tj7
The unit of the robot axis and track torque is the thousandth of the rated

torque of the motor;

7.3.3 Bus devices

Explanation

CC-Link, Modbus, EtherCAT, and PROFINET are supported. CC-Link includes CC-Link devices

(adapted via EtherCAT) and CC-Link IE Field Basic. EtherCAT can be used to expand IO

modules, PROFINET, EtherNet/IP, and other bus modules.

Supported Bus Protocol Supported method Remarks

Modbus

TCP Master and slave

UDP Not supported

RTU Master and slave
Industrial robots

only

CC-Link

485
Remove device station

(slave)

Industrial robots

only

IE Field Basic
Remove device station

(slave)

The following function codes are supported in Modbus:

Function code Meaning Supported

0x01 Read coil Supported

0x05 Write a single coil Supported

0x0F Write multiple coils Supported

0x02 Read discrete input Supported

0x04 Read input register Not supported

0x03 Read holding register Supported

0x06 Write a single holding register Supported

0x10 Write multiple holding registers Supported

Configuration

Click Robot Configuration -> Communication -> Bus Device. The page is divided into two parts.

All bus connections are managed on the upper part of the page, and the lower part displays the

attribute parameters of a certain bus connection. On the upper part of the page, each bus

connection can be enabled or disabled individually. When a bus connection is disabled, the IOs

configured for the connection will not be displayed in Status Monitoring -> IO Signal.

7 Robot Configuration

7.3 Communication Configuration

81

Copyright © ROKAE 2015-2023. All rights reserved.

Parameter name Parameter explanation

Name

The first column of the management list is the name of the bus connections, used in the IO Device and Register

configuration. For example, the names in the above figure are modbus_0, modbus_1, modbus_2, and cclink, as shown in the

figure below:

➢ This name field is used in IO device configuration to indicate which bus the IO device is related to;

➢ This name field is used in Register to indicate which bus the register is related to;

Type The second column of the management list is the type of bus connections, which can be selected when adding/editing a bus

7 Robot Configuration

7.3 Communication Configuration

82

Copyright © ROKAE 2015-2023. All rights reserved.

device. Only CC-Link, Modbus, EtherCAT, and PROFINET are supported. CC-Link includes CC-Link devices (adapted via

EtherCAT) and CC-Link IE Field Basic. EtherCAT can be used to expand IO modules, PROFINET, EtherNet/IP, and other

bus modules.

Mode
The third column of the management list is the mode of the bus connections, indicating whether the current robot serves as a

master or a slave on the bus.

Endianness

The fourth column of the management list is endianness, mainly used for registers. Since each register occupies 2 bytes,

there are many hexadecimal sequences of the two bytes. This attribute needs to correspond to the master and the slave,

otherwise, the data will not meet the expectations. Four types of endianness are supported in the control system: ABCD,

CDAB (default), BADC, and DCBA.

Enabling button

The fifth column of the management list is the enabling button. It is used to enable or disable the bus function. Each bus

device can be enabled or disabled individually. Please note that after a bus device is disabled, the IOs configured on the bus

device will not be displayed in Status Monitoring -> IO Signal.

7.3.3.1 Modbus communication

Click at the lower right corner on the bus device page to enter the interface to

add a new communication bus device, and select the device type MODBUS. It supports the TCP

and RTU protocol, and the device can be configured as a master or slave.

7.3.3.1.1 Modbus TCP configuration

Parameter Introduction

Mode The robot can be selected as "master" or "slave".

Slave ID When the robot serves as a slave, ensure that the overall configuration of the bus does not

conflict with other slaves. When the robot serves as a master, it indicates the target slave ID

that the robot expects to communicate with. Please note that when the robot serves as a

master, it only supports single-slave communication with external devices;

TCP/IP When the robot serves as a slave, fill in 0.0.0.0, which means all network cards are

monitored. When the robot serves as a master, fill in the IP address of the target slave ID

that the robot communicates with;

TCP port The port number when the slave uses the TCP protocol;

Holding register

start address

The start address of the register affected by the function codes 0x03, 0x06, and 0x10. Each

register occupies 2 bytes;

Coil start address: The start address of the register affected by the function codes 0x01, 0x05, and 0x0F;

Discrete input start

address:

The start address of the register affected by the function code 0x02

7 Robot Configuration

7.3 Communication Configuration

83

Copyright © ROKAE 2015-2023. All rights reserved.

7.3.3.1.2 Modbus RTU configuration

The Modbus RTU conception is partly the same as the Modbus TCP conception, which will not be

repeated here. Only the differences are described as follows:

RTU serial port name: Indicates the serial port medium used for bus communication. Configure it in

Robot Configuration -> Communication -> Serial Port Configuration, including the parameters for

communication.

7.3.3.2 CC-Link communication

Click at the lower right corner on the bus device page to enter the interface to add a

new communication bus device, and select the device type CCLINK. It supports the CC-Link and

CC-Link IE Field Basic protocol, and the device can be configured as slave only.

7.3.3.2.1 CC-Link configuration

7 Robot Configuration

7.3 Communication Configuration

84

Copyright © ROKAE 2015-2023. All rights reserved.

Parameter Introduction

Mode For CC-Link and CC-Link IE Field Basic protocol, the device can be configured as a

slave only.

Protocol type cclink refers to the EtherCAT expansion CC-Link module

cclink baud rate Communication baud rate. Please note that the configuration of the master should match

that of the slave

Number of cclink

occupied stations

1 to 16 occupied stations can be configured. The default number is 4. Mode settings are

recommended

7.3.3.2.2 CC-Link IE Field Basic configuration

Parameter Introduction

Protocol type cclink_ie means the CC-Link IE Field Basic communication protocol that directly uses

the robot's Ethernet port.

cclink_ie network card Configure which Ethernet card is used for communication.

Number of cclink_ie

occupied stations

1 to 16 occupied stations can be configured. The default number is 4. Mode settings are

recommended

cclink_ie protocol

version

Ver1 or Ver2 is optional. Please ensure that it is consistent with that of the master

7.3.3.3 EtherCAT communication

Click at the lower right corner on the bus device page to enter the interface to add a

new communication bus device, and select the device type ETHERCAT. EtherCAT expansion

devices can be used to access PROFINET and EtherNet/IP modules.

7 Robot Configuration

7.3 Communication Configuration

85

Copyright © ROKAE 2015-2023. All rights reserved.

Slave address: The slave address number in the EtherCAT bus topology. Since the EtherCAT slave

address number 1000-4000 is occupied by the robot internal devices, to avoid device address conflict,

the EtherCAT slave address number of extended devices should not be less than 5000.

7.3.3.4 PROFINET communication

Configuration

Click at the lower right corner on the bus device page to enter the interface to add a

new communication bus device, and select the device type PROFINET. The device can be configured

as a slave only. One PROFINET slave can be configured for one robot, and multiple robots can join the

same PROFINET network by modifying the PROFINET slave name to enable multiple slaves. The

model selected for Slots 1-6 should be consistent with the correspondent-side configuration.

Parameter explanation:

Parameter Description

Device type PROFINET

Name PROFINET slave name. It should be consistent withs the correspondent-side configuration.

7 Robot Configuration

7.3 Communication Configuration

86

Copyright © ROKAE 2015-2023. All rights reserved.

Chinese characters are not allowed

Mode Only slaver is supported

Endianness Select DCBA generally, depending on the agreement between the communicating parties

Network card Select the network port to connect to the correspondent; includes the network card IP and name

Update period

(ms)

Default to 10ms, minimum 2ms

Slot 1 type Only DO_256 model can be selected, indicating that 256 digital quantities are output from the

robot to the correspondent via slot 1

Slot 2 type Only DI_256 model can be selected, indicating that there are 256 digital inputs from the

correspondent to the robot via slot 2

Slot 3 type The option models include AO_Int16_8/ AO_Int16_16/ AO_Int16_32/ AO_Int16_64/

AO_Int16_128/ AO_Int16_256. AO_Int16_8 means that there are 8 int16 analog outputs from the

robot to the correspondent via slot 3, and so forth

Slot 4 type The option models include AI_Int16_8/ AI_Int16_16/ AI_Int16_32/ AI_Int16_64/ AI_Int16_128/

AI_Int16_256. AI_Int16_8 means that there are 8 int16 analog inputs from the correspondent to

the robot via slot 4, and so forth

Slot 5 type The option models include AO_Float32_8/ AO_Float32_16/ AO_Float32_32/ AO_Float32_64/

AO_Float32_128/ AO_Float32_256. AO_Float32_8 means that there are 8 float32 analog outputs

from the robot to the correspondent via slot 5, and so forth

Slot 6 type The option models include AI_Float32_8/ AI_Float32_16/ AI_Float32_32/ AI_Float32_64/

AI_Float32_128/ AI_Float32_256. AI_Float32_8 means that there are 8 flaot32 analog inputs

from the correspondent to the robot via slot 6, and so forth

7.3.4 Register

Explanation

The register is a type of variable of robot that can be used to exchange data with external devices so

as to control the robot. The register can also be used as a variable in the current RL project. The

register variables can be operated by commands or assignments. The register is a concept related to

the robot itself, not a bus device. However, a specific register can be bound to a certain bus device for

communication and data exchange. Specify the binding relationship when adding or editing a

register. Each register occupies 2 bytes. For different types of variables, the number of registers

occupied is different.

Configuration

Click Robot Configuration -> Communication -> Register and add register variables using the three

buttons at the lower right corner of the interface.

Name

The first column of the register list is the name of the registers, which is used for RL to access the

register variables. Please note that the name on the list should be unique and should not be identical

with that of the variables in any RL list, otherwise, there will be a variable conflict in the RL.

7 Robot Configuration

7.3 Communication Configuration

87

Copyright © ROKAE 2015-2023. All rights reserved.

Type

The second column of the register list is the type of the registers, with four types optional: bit, bool,

int16, and float. The details are as follows:

No. Type Description
1 bit The bit type register variable occupies only one bit of a register, and the bit array needs to be

an integer multiple of 16 bits. As shown in the figure above, for a bit type register starting

from 41000-bit, a variable with a size of 64 occupies 4 registers from 41000 to 41003.

 bool A bool variable occupies 1 register.

 int16 An int16 variable occupies 1 register.

 float A float variable occupies 2 registers.

About bit type registers:

➢ As shown in the figure above, if the bit offset is checked, it means that a certain bit of a register

is occupied, and the optional value is 1-16.

➢ For bit type registers, the function binding is only available when the bit offset is checked.

➢ For bit type registers, the number of elements is automatically modified to 1 when the bit offset

is checked.

Parameter explanation

Parameter Description

Initial register

The third column of the register list is the initial register, used to indicate the start address of the register. The address of

all registers cannot be occupied repeatedly, otherwise, a register conflict error will occur. For example, if one register

occupies 41000-41003, another register cannot start from 41002.

Read-write

The fourth column of the register list is the read-write attribute, indicating whether the register is read or written from the

robot's perspective (not from the master or slave's perspective). For the state that the robot needs to output, it is a write-

only register (when the robot serves as a slave, the holding register function code is 0x03; when the robot serves as a

master, it is 0x06 or 0x10). For the command that the robot needs to receive from external devices, it is a read-only

register (when the robot serves as a slave, the holding register function code is 0x06 or 0x10; when the robot serves as a

master, it is 0x03).

Size

The fifth column of the register list is the size, indicating the number of the variables. For variables greater than 1, the

variable can be referenced in the form of an array with the subscript starting from 1. Please note that it is different from

the number of registers. As shown in the figure above, for registers 40140-40153, the variable type is float, and each

float variable occupies 2 registers. Therefore, the size is 7, and the number of registers occupied is 2*7=14. The contents

of the register can be referenced in the RL program via mtcp_wo_cartvel[1]~ mtcp_wo_cartvel[7].

Bit offset

The bit type register is mapped to the position of the register. Each register occupies two bytes, i.e. 16 bits. The bit offset

refers to the position of the corresponding register, and the offset value is 1-16. If the bit offset is not checked when the

bit type register is created, it is not displayed.

End register

The sixth column of the register list is the end register, used to indicate the last register address occupied by the register

variable. When the register variables are arranged consecutively, this column will help users quickly plan the register

assignment. For example, the start address of the next register can be determined by adding 1 to the value of this item.

7 Robot Configuration

7.3 Communication Configuration

88

Copyright © ROKAE 2015-2023. All rights reserved.

Device name

The seventh column of the register list is the device name. The device name is defined when the bus device is created,

indicating which bus device is bound to the register. The register can be bound to the CC-Link, CC-Link IE Field Basic,

Modbus, and EtherCAT devices.

Function

The eighth column of the register list is the function of the registers, with fixed function codes indicating the robot

function of the register. The function codes are fixed and unmodifiable. The description is shown in the table below.

There are two types of function codes: read-only and write-only.

Read-Only Function Codes

ID Function Code Name
Supported Binding

Types
Function

1 Blank N/A No function, custom input

2 ctrl_clear_alarm bit, int16, bool Clear servo alarms

3 ctrl_estop_reset bit, int16, bool Emergency stop reset

4 ctrl_motor_on_off bit, int16, bool Motor power-on/power-off

1: Powered-on; 0: powered-off

5 ctrl_pptomain bit, int16, bool Program pointer to main

6 ctrl_program_start_stop bit, int16, bool Program running/stop

7 ctrl_set_program_speed bit, int16, bool Set program running rate

8 ctrl_switch_operation_auto_manual bit, int16, bool Switch between Automatic mode

and Manual mode

1: Automatic mode; 0: Manual

mode

9 ctrl_motoron_pptomain_start bit, int16, bool

Power on, Pointer to main, and start

program in order

10 ctrl_motoron_start bit, int16, bool

Power on and start program in

order

11 ext_cmd_set bit, int16, bool Remote control function: issuing

commands

See Remote Control

12 ext_reset bit, int16, bool Remote control function: overall

function reset

See Remote Control

13 ext_resp_get bit, int16, bool Remote control function:

Acknowledge and clear the

previous command response.

14 ext_request_data int16 array Remote control function: command

function code. Array, register with a

fixed size of 8.
All system inputs of the above system registers are pulse-triggered. To ensure that the xCore system receives

external commands correctly, please ensure that the pulse width of the external input is not less than 60

milliseconds.

Write-Only Function Codes

ID Function Code Name Supported Binding

Types
Function

1 Blank No function, custom output

2 ext_error_code int16 Remote control function: error code

3 ext_resp_set bit, int16, bool Remote control function: response after

command execution
4 ext_response_data int16 array Remote control function: data to be fed

back. Array, register with a fixed size of

8.
5 sta_alarm bit, int16, bool Servo alarm status

1: Servo alarm; 0: No alarm

6 sta_error_code int16 Robot error code.

Read error code = robot actual error

code - 30000
7 sta_collision bit, int16, bool Collision detection state

1: Collision detected; 0: No collision

7 Robot Configuration

7.3 Communication Configuration

89

Copyright © ROKAE 2015-2023. All rights reserved.

8 sta_error_code int16 Reported robot error code

The error code is only a number. The

actual error can be checked with the

code (= reported robot error code -

30000).
9 sta_estop bit, int16, bool Emergency stop

1: Emergency stop currently triggered;
0: Normal

10 sta_home bit, int16, bool Whether the robot flange center is at

home

1: At home; 0: Not at home
11 sta_motor bit, int16, bool Motor power status

1: Powered-on; 0: Powered-off

12 sta_operation_mode bit, int16, bool Current operating mode

1: Automatic mode; 0: Manual mode

13 sta_program bit, int16, bool Whether the program is currently

running

1: Program running; 0: Idle
14 sta_program_speed int16 Query the current program running

speed (in percentage terms).
15 sta_cart_pose float array Query the current Cartesian space pose

of the robot. Requirements for bound
registers: float array, size - 8

16 sta_jnt_pose float array Query the current joint angle of the

robot. Requirements for bound registers:

float array, size - 8
17 sta_jnt_trq float array Query the current joint torque of the

robot. Requirements for bound registers:

float array, size - 8, unit: N.m;
18 sta_jnt_vel float array Query the current joint velocity of the

robot. Requirements for bound registers:

float array, size - 8, unit: rad/s;
19 sta_robot_is_busy int,bit,bool Whether the robot is executing time-

consuming operations such as pptomain:

1: Executing; 0: Idle
20 sta_tcp_pose float array Pose of the robot TCP. Requirements for

bound registers: float array, size - 7
21 sta_tcp_vel float array Speed of the robot TCP. Requirements

for bound registers: float array, size - 7
22 sta_tcp_vel_mag float Robot TCP combined linear velocity

How to Use

The control system reads and modifies the registers in two ways: command or assignment.

For command type, two commands - WriteRegByName and ReadRegByName - are provided. The

assignment type is more intuitive and simple with the operator "=".

1) Command type:

➢ WriteRegByName(modbus_reg[index], rl_symbol)

The first parameter is the register name configured in Robot -> Register. [index] can be used to offset

the start address of the corresponding register. Limitation: 1 <= index <= the maximum size of the

register. The default index is 1.

The data in the control system (such as the number of cycles in the RL language) can be output to its

bound devices through registers. Assume it is defined as "int rl_value" in the control system. If you

want to output it to an external device, you can specify a register, such as the first register of

"mtcp_wo_i" in the default configuration. Simply add a WriteRegByName command in the RL

language, and the parameter will be sent to the external device via Register - Bus Device.

7 Robot Configuration

7.3 Communication Configuration

90

Copyright © ROKAE 2015-2023. All rights reserved.

➢ ReadRegByName(modbus_reg[index], rl_symbol)

Similar to the WriteRegByName command, it can update the value in the register to the variable of

the RL program, and therefore can be used to control the execution process of the RL program and

kinematic parameters, etc.

2) Assignment type

Directly use the operator "=". For example, "mtcp_wo_i[1] = 1" is to update the value of the first

element of the register mtcp_wo_i to 1. Similarly, "a = mtcp_wo_i[1]" is to update the value of the

first element of the register mtcp_wo_i to the variable a of the RL program.

Register retain configuration

Register retain: Creates register a with the hold property whose current value is held on a non-volatile

storage medium when the robot restarts, shuts down, powers off, or when RL is stopped. When the

robot powers on again or RL is running again, the value of register a is restored to the value held

before the robot shuts down or RL is stopped.

The register retain configuration interface is shown below:

Conflict checking during register import

The register address cannot be the same for the same register attribute (read and write) on one device.

If the address is the same, the newly imported one prevails, while the original conflicting register is

overwritten. A pop-up window prompts the user to choose whether to replace the current register.

When creating the 7 registers starting with ext: ext_cmd_set, ext_resp_set, ext_resp_get, ext_reset,

7 Robot Configuration

7.3 Communication Configuration

91

Copyright © ROKAE 2015-2023. All rights reserved.

ext_response_data, ext_request_data, ext_error_code, if the register has been bound by the register

address, these addresses cannot be bound by another register. When importing the above 7 registers,

if the function codes have already been bound in the HMI, and the newly imported register list also

involves such function codes, the newly imported ones will prevail, and the original conflicting

register will be overwritten. A pop-up window will prompt the user to choose whether to replace the

current register.

7.3.5 IO device

Explanation

IO includes DI, DO, AI, and AO. There are three types of signal sources: controller cabinet built-in,

EtherCAT expansion, and field bus expansion. For industrial robots, the controller cabinet has several

built-in DIs and DOs. For cobots, the base and the end-effector have several built-in DIs and DOs.

For industrial robots, the EtherCAT expansion interfaces are reserved on the controller cabinet to

connect EtherCAT expansion modules to generate new DI, DO, AI, and AO. The Modbus bus

expansion can also be configured with IOs.

Parameter

Click at the lower right corner on the IO device configuration page to enter the IO

device configuration interface. The parameters on the interface may vary with the device type.

7 Robot Configuration

7.3 Communication Configuration

92

Copyright © ROKAE 2015-2023. All rights reserved.

Parameter Description

Device type EtherCAT and FIELDBUS are optional. EtherCAT refers to IO expansion with the EtherCAT

bus and expansion modules. The expansion modules can only serve as slaves, and the slave

address needs to be configured.

EtherCAT slave information -

Device type

SafeBoard IO, SafeBoard Extend IO, xPanel IO, and Slave IO are optional. SafeBoard IO refers

to the DI and DO on the robot safeboard. SafeBoard Extend IO refers to the expansion IO on

the robot safeboard, generally the expansion IO on the safeboard in the XBC_5 controller

7 Robot Configuration

7.3 Communication Configuration

93

Copyright © ROKAE 2015-2023. All rights reserved.

cabinet. xPanel IO refers to the DI and DO of the end-effectors of the cobots. Slave IO refers to

the EtherCAT expansion module.

EtherCAT slave information -

IO board type

When SafeBoard Extend IO is selected in EtherCAT slave information - Device type, the option

IO board type appears for selection of the safeboard expansion IO board. DIO16_1, DIO16_4,

DIO16_5, DIO16_6, AIAO4_2, and AIAO4_3 are optional. The last digit of the option refers to

the address of the safeboard expansion IO board. Select the safeboard expansion IO board that

is actually connected. In addition to manual editing by the user, the controller can automatically

identify and add the safeboard expansion IO board.

EtherCAT slave information -

Slave address

The slave address of the expansion module in the EtherCAT bus topology. It should not conflict

with the address of the safeboards, joints, or the cobot end-effectors.

FIELDBUS - Bus device name The custom name when a bus connection is created on the Bus Device page. It is used to

associate with the Bus Device.

IO board serial number A virtual IO board is generated for each IO device configuration for the control system to

classify and manage the IO boards internally. The IO board serial number is the unique number

for virtual IO board management.

Name The custom name of the virtual IO board. It is used for filtering in Status Monitoring -> IO

Signal.

Number of digital inputs Number of DIs.

Number of digital outputs Number of DOs.

Number of analog inputs Number of AIs.

Number of analog outputs Number of AOs.

Analog Quantity IO

Configuration

When SafeBoard Extend IO is selected in EtherCAT slave information - Device type and

AIAO4_2 or AIAO4_3 is selected in IO board type, the option Analog IO Configuration

appears. Each analog channel can be configured as voltage type or current type.

Status Monitoring

Monitor the created DI, DO, AI, and AO in Status Monitoring -> IO Signal. The IO signals can be

filtered by Virtual IO Board Name. Only the IO signals currently configured on the virtual IO board

will be displayed. You can also filter the signals by signal type. Only a certain type of DI, DO, AI,

and AO signals will be displayed.

How to Use

After the virtual IO board is configured, a default name will be generated for the IO signal. The

default name can be used directly in the RL program. Or you can bind and rename the created IO

signal in Project -> IO Signal, and use the new name in RL.

Use default name

The board IO_Device_6 generates the DI6_X IO signals by default. As shown in the figure, DI6_0 is

processed directly in the RL program.

7 Robot Configuration

7.3 Communication Configuration

94

Copyright © ROKAE 2015-2023. All rights reserved.

Bind and rename in RL project

7.3.5.1 Register remote control

Explanation

Remote control is a combination function performed with registers of 7 different functions. It is used

to achieve complex business logic interactions in a specific sequence. External devices can fulfill

functions such as robot Jog, updating point position, obtaining robot position and status, etc. via the

remote control function.

Register function

External devices use four types of registers to control the robot. These registers are read-only for the

robot.

No. Function Code

Name
Attribu

te
Type Size Function

1 ext_cmd_set
Read-

only

int16,

bool,

bit
1

Issuing commands

1. Set ext_cmd_set to 1 to send a request for command

execution. The request is responded only when
ext_cmd_set is set to 1.

2. To avoid misoperation, be sure to set the command

data to the data area before execution. (The command

data is temporarily stored in the cache and is responded

only when ext_cmd_set is 1).

3. After the command is executed, clear ext_cmd_set

(set it to 0).

7 Robot Configuration

7.3 Communication Configuration

95

Copyright © ROKAE 2015-2023. All rights reserved.

2 ext_reset
Read-

only

int16,

bool,
bit

1

Function reset:

1. The signal is used to enable the remote control

function. Always keep the register state at 1 when using

the function.

2. The function stops when the register state is 0.
3. The signal is also used for commands to reset or

interrupt the action when the interface function is

abnormal.

3 ext_resp_get
Read-

only

int16,

bool,

bit
1

Acknowledge and clear the previous command

response, and reset ext_resp_set to 0.

4 ext_request_data
Read-

only
int16 8

Command function code. Array, register with a fixed

size of 8. For details, refer to the introduction in the

function code section.

External devices use three types of registers to obtain the robot status. These registers are write-only

for the robot.

No.
Function Code

Name
Attribu

te
Type Size

Function

1 ext_error_code
Write-

only
int16 1

Remote control function: error code

2 ext_resp_set
Write-

only

int16,

bool,

bit
1

After responding to the control command, the robot sets

the register to 1, indicating that the command is

executed.

3 ext_response_data
Write-

only
int16 8

Remote control function: data to be fed back. Array,

register with a fixed size of 8.

Procedure

The combined use of 7 types of registers and control flow are shown in the figure below:

7 Robot Configuration

7.3 Communication Configuration

96

Copyright © ROKAE 2015-2023. All rights reserved.

Start

Init ialize register:
ext_reset = 0

ext_cmd_set = 0

Enable remote control:
Keep ext_reset = 1

Prepare command:
Set

ext_request_data
[0]-[7]

Issue command:
Keep ext_cmd_set = 1

Confirm that the result is read:
Keep ext_resp_get = 1 the

communication cycle of at least
one register

Read response:
Read ext_response_data

[0]~[7]

 Wait for instruction
processing result:

Query ext_resp_set = 1?

N

Y

Confirm that the result is read:
ext_resp_get = 0
ext_cmd_set = 0

Keep controll ing?

End

N

Y

Normal Control Process

Error Handl ing Process

Reset command:
ext_reset = 0

Error occurred

Disable command issuing:
ext_cmd_set = 0

Enable remote control again:
ext_reset = 1

Normal Control
Process

Command format

Commands and responses are implemented with 8 registers individually.

The command signal ext_request_data (eight registers occupied: reg0 - reg7) is used to specify the

data area of the commands and relevant parameters. A command consists of multiple characters:

1) Character: a 16-bit register.

2) Command format: a command consists of up to 8 characters and varies with the command. The

shortest command consists of 1 character.

Command No. Command No. 1 Command No. 2 …… Command No. 7

7 Robot Configuration

7.3 Communication Configuration

97

Copyright © ROKAE 2015-2023. All rights reserved.

The response signal ext_response_data (eight registers occupied: reg0 - reg7) is used to obtain the

data area of the responses. A response consists of multiple characters:

1) Character: a 16-bit register.

2) Response format: a response consists of up to 8 characters and varies with the received command.

The shortest response consists of 1 character. However, an abnormal response always occupies 3

characters.

Command No. Response No. 1 Response No. 2 …… Response No. 7

The available command numbers are shown in the table below:

Command Type Description
Command

Code

Command Length

Command Response

JOG

Set Jog space 1 2 3

Obtain Jog space 2 1 4

Set Jog speed 3 2 3

Obtain Jog speed 4 1 4

Set Jog step length 5 2 3

Obtain Jog step length 6 1 4

Start Jog 7 4 2

Stop Jog (without

parameters)
8 1 2

Update point position 9 2 2

Move to point position 10 2 2

Setting

information

Set tools 11 2 3

Obtain current tool id 12 1 4

Set work object 13 2 3

Obtain current work object

id
14 1 4

Command description

1) Set Jog space:

Command/Reply Command

Code
Parameter 1 Parameter 2

Set Jog space 1

Frame:

1: Joint space

2: World frame

3: Flange frame
4: Base frame

5: Tool frame

6: Work object frame

N/A

Reply 1 Result: 0 - Succeed; 1 - Fail. Error Code

2) Obtain Jog space:

Command Command

Code
Parameter 1 Parameter 2 Parameter 3

Obtain Jog space 2 N/A N/A N/A
Reply 2 Result:

0 - Succeed; 1 - Fail
Error Code Frame:

1: Joint space

2: World frame

3: Flange frame
4: Base frame

5: Tool frame

6: Work object frame

3) Set Jog speed:

Command/Reply
Command

Code
Parameter 1 Parameter 2

Set Jog speed 3 Jog speed (1-100) N/A
Reply 3 Result: 0 - Succeed; 1 - Fail. Error Code

4) Obtain Jog speed:

Command
Command

Code
Parameter 1 Parameter 2 Parameter 3

Obtain Jog speed 4 N/A N/A N/A

Reply 4
Result:

0 - Succeed; 1 -
Error Code Jog speed (1-100)

7 Robot Configuration

7.3 Communication Configuration

98

Copyright © ROKAE 2015-2023. All rights reserved.

Fail

5) Set Jog step length:

Command/Reply
Command

Code
Parameter 1 Parameter 2

Set Jog step
length

5

1: Continuous

2: 10 mm step length
3: 1 mm step length

4: 0.1 mm step length

5: 0.01 mm step length

N/A

Reply 5 Result: 0 - Succeed; 1 - Fail. Error Code

6) Obtain Jog step length:

Command
Command

Code
Parameter 1 Parameter 2 Parameter 3

Obtain Jog step

length
6 N/A N/A N/A

Reply 6
Result:

0 - Succeed; 1 - Fail
Error Code

1: Continuous

2: 10 mm step length

3: 1 mm step length
4: 0.1 mm step length

5: 0.01 mm step length

7) Start Jog:

The command is dependent on command code 1: set Jog space. In joint space, the value of parameter

1 represents the joint number (J1-J7: 1 for J1, ..., 7 for J7); in Cartesian space, it represents the (x, y,

z, a, b, c, elb) number (1 for x, ..., 7 for elb).

Command/Reply
Command
Code

Parameter 1 Parameter 2

Start Jog 7

Operation mode:

Joint space - representing joint

number;

Cartesian space - representing (x, y, z,

a, b, c, elb)

Jog direction:

1: negative

2: positive

Reply 7 Result: 0 - Succeed; 1 - Fail. Error Code

8) Stop Jog:

Command/Reply Command

Code
Parameter 1

Stop Jog 8 N/A

Reply 8 Result: 0 - Succeed; 1 - Fail.

9) Update point position:

Command/Reply
Command

Code
Parameter 1 Parameter 2

Update point
position

9 Number in the RL project point list N/A

Reply 9 Result: 0 - Succeed; 1 - Fail. Error Code

10) Move to point position:

Command/Reply
Command

Code
Parameter 1 Parameter 2

Move to point

position
10

Motion mode:

1: MoveAbsj; 2: MoveJ; 3: MoveL
Number in the RL project point

list
Reply 10 Result: 0 - Succeed; 1 - Fail. Error Code

11) Set current tool:

Command/Reply
Command

Code
Parameter 1 Parameter 2

Set current tools 11 Number in the RL project tool list N/A
Reply 11 Result: 0 - Succeed; 1 - Fail. Error Code

12) Obtain current tool id:

Command/Reply
Command

Code
Parameter 1 Parameter 2 Parameter 3

Obtain current

tool id
12 N/A N/A N/A

7 Robot Configuration

7.3 Communication Configuration

99

Copyright © ROKAE 2015-2023. All rights reserved.

Reply 12 Result: 0 - Succeed; 1 - Fail. Error Code Current tool id

13) Set current work object:

Command/Reply
Command

Code
Parameter 1 Parameter 2

Set current work

object
13

Number in the RL project work object

list
N/A

Reply 13 Result: 0 - Succeed; 1 - Fail. Error Code

14) Obtain current work object id:

Command/Reply
Command

Code
Parameter 1 Parameter 2 Parameter 3

Obtain current

work object id
14 N/A N/A N/A

Reply 14 Result: 0 - Succeed; 1 - Fail. Error Code
Current work object

id

Error Code

During command configuration, parameter errors, robot status mismatch, or other conditions may

lead to configuration failure. Error codes can be used to check the robot's problems in this case.

The control system has three types of error codes:

1） ext_response_data: error code of command execution results.

2） ext_error_code: The command cannot be executed, for example, the robot is busy or the remote

control flag bit is incorrect, etc.

3） sta_error_code: the robot error code. Read the register when an error occurs during Jog.

Normally, the error code should be used according to the following steps:

1） After sending the execution command (ext_cmd_set=1), first read ext_error_code. If there is no

error code, read the return value of ext_response_data. If the return value is not zero, read the

error code of ext_response_data.

2） For motion operations (Jog and move to point position), if the above return values are both 0,

read sta_error_code to see if there is a stop in the motion caused by an error (such as singularity

and overrun).

ext_error_code description:

Error

Code
Meaning Remarks

01 Unsupported command

02 Invalid parameter

03 Incorrect control flag bit Check whether ext_resp_set is 0 or 1.
04 Robot busy The robot is executing a command and is forbidden

to respond to others.
05 No corresponding number found Tool, point position, and work object id
06 Unmatched point type and motion type The point type does not match the motion type for

the "Move to point position" command. For

example, only the MoveAbsJ command can be

used for joint space points, and only the MoveJ or
MoveL command can be used for Cartesian space

points.
07 The number of axes entered does not match the model

11 Incorrect Manual/Auto Mode

12 Incorrect robot status. Please check if the robot is in

Jog Mode.
The robot can only be jogged in Jog Mode and can

not be jogged in non-Jog Mode such as Drag

Mode.
13 Incorrect power-on status The robot can only be jogged when powered on.
14 The robot is in non-position mode and can not be

jogged
Similar to error code 12.

15 Report algorithm error when unable to start Jog The error is reported when the robot cannot be

jogged for various reasons.
20 Encounter singularity

21 Moved to target point If the robot moves to a point it has reached earlier,

an error occurs.

7 Robot Configuration

7.3 Communication Configuration

100

Copyright © ROKAE 2015-2023. All rights reserved.

7.3.5.2 Modbus expansion IO

Explanation

When real IO electrical signals are required to interact with external devices, it is recommended to

use an adapter module. Connect the adapter module to the controller cabinet, and operate the adapter

module via the field bus supported by the control system. You are advised to choose Modbus IO

modules recommended by ROKAE. The module is a Modbus TCP slave and controls the robot

through the coil function. Therefore, the robot needs to be configured as a Modbus Master with the

coil function enabled.

Parameter configuration

According to the configuration method of the field bus and expansion IOs, configure Bus Device first

and then configure IO Device when using Modbus expansion module to expand real IOs.

1) Configure Bus Device

Parameter Value/Description

Master-slave mode Select "Master" to use the robot as a master.

IP When the robot is the master, fill in the IP of the Modbus IO module.

Port number When the robot is the master, fill in the port number of the Modbus IO module.

Slave ID Modbus IO module Slave ID

Coil status Modbus module "coil status" register. Range: 1 - 32, data type: int.

Input status Modbus module "input status" register. Range: 1 - 32, data type: int.

Connect After the parameters are configured, click "Connect" to complete the configuration.

2) Configure IO Device Configuration

7 Robot Configuration

7.3 Communication Configuration

101

Copyright © ROKAE 2015-2023. All rights reserved.

Parameter Value/Description

Device type Select FIELDBUS.

Bus device name Select the device name defined in the Bus Device configuration.

Basic information Digital I/O and analog I/O configured in Bus Device configuration will be obtained

automatically. No configuration is required.

3) Enabling function and status monitoring

Please note that after the Bus Device and IO Device Configuration are just configured, the configured

expansion IOs will not be displayed in the status monitoring because the bus connection is not

enabled yet. To use these IOs, enable the bus connection to correctly establish connection and

communication between the controller cabinet and the expansion IO modules.

As shown in the figure, after the bus device is enabled, the connection between the controller and the

expansion modules is established and works properly. Now the IO of the bus device modbus_2 is

displayed in the status monitoring of the IO signals, and the number of DIs and the total number of

DIs and DOs remains the same as the bus device configuration.

7 Robot Configuration

7.3 Communication Configuration

102

Copyright © ROKAE 2015-2023. All rights reserved.

7.3.6 Serial Communication

Explanation

Users can use serial ports to communicate with external devices. The use of serial ports requires

hardware support. For industrial robots, an RS-232 serial port is reserved on the XBC5 controller

cabinet. Or the USB interface on the controller cabinet can be used for serial communication via a

USB-to-RS-232 interface module. The cobots do not reserve relevant interfaces, and therefore do not

support serial communication.

Configurations

Before using the serial port, configure the following parameters: serial port name (used in RL), serial

port, baud rate, data bit, stop bit, and parity bit. Go to the configuration interface via Robot

Configuration -> Communication -> Serial Port Configuration, as shown in the figure below. Please

try to ensure that the parameter settings at both ends of the serial communication are consistent.

Otherwise, errors may occur in sending and receiving data.

7 Robot Configuration

7.3 Communication Configuration

103

Copyright © ROKAE 2015-2023. All rights reserved.

Parameter Description

Name

The custom name to be used as the unique identifier in RL to use the serial port resources. Please note

the serial port name is subject to the name conflict restriction in the project. It should not be identical

with the existing network identifiers in the project or the existing identifiers of other serial ports.

Port

System port. The control system lists all the serial port resources detected (including the USB-to-RS-

232 ports) for users' selection and use. This is the name of the serial port resources detected by the

operating system.

Baud rate 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200 are optional.

Data bit 5, 6, 7, and 8 bits are optional.

Stop bit 1, 1.5, and 2 bits are optional.

Parity bit Odd parity, Even parity, Mark parity, Space parity, and None parity are optional.

Use Serial Ports

After configuring the serial port, you can use the serial port interface in the RL program without

restarting. The serial port function involves a series of commands. For details, please refer to the

section about serial port commands in RL Commands.

7.3.7 End-effector tool communication

Explanation

The xMate robot can control the opening and closing of DH grippers, and the end-effector tool

interface supports IO communication and RS485 communication.

The function is only applicable to cobots, including the xMate ER series and xMate CR series.

Parameter setting

7 Robot Configuration

7.3 Communication Configuration

104

Copyright © ROKAE 2015-2023. All rights reserved.

Parameter

setting
Value/Description

Interface Communication protocol, optional controllable via IO or RS485.
Path It includes two sets of travel attributes trip1 and trip2, which contain the opening/closing

position and force.
Maximum

position
Maximum opening position, unit: percentage

Minimum

position
Minimum opening position, unit: percentage

Supporting

force
The force used when the gripper is opened, unit: percentage

Gripping force The force used when the gripper is closed, unit: percentage

Notes

RS485 supports setting of the gripper trip parameter. For IO control, the trip parameters can

only be set through the DH communication adapter.

7.3.8 Electric gripper and suction cup

7 Robot Configuration

7.3 Communication Configuration

105

Copyright © ROKAE 2015-2023. All rights reserved.

Explanation

xMate CR and ER robots equipped with end-effectors support RS485 communication and are

adapted to Jodell electric grippers and suction cups. This interface is used to test the basic functions

of the electric gripper and suction cup.

This function is only available for cobots of the xMate ER series and the xMate CR series. Before

use, the user needs to confirm that the end-effector has the supported firmware version. In the case of

xMate CR models, the xPanel end-effector parameters should be correctly configured.

Parameter setting

Currently, only Jodell Robotics with EPG series is supported through RS485 protocol.

Electric gripper and suction cup are supported. This interface is mainly used to test the hardware

connection and communication of electric gripper and suction cup and whether the two tools function

properly. The test interface of the electric gripper is shown above.

Initialization: to test an electric gripper, first enter the ID of the electric gripper and click the

"Initialization" button. If the electric gripper performs automatic detection and prompts successful

initialization , the electric gripper’s hardware connection and communication are sound, and the user

can proceed to the next step or use it.

Move to: After initialization, click the "Move to" button and control the electric gripper to move to

the specified position in the specified velocity and force. If the electric gripper reaches the specified

position or encounters objects and reaches the specified force, it will stop the motion, and the electric

gripper’s contact detection status will also be displayed on the test interface.

Parameter Value/Description
Tool ID Enter the ID of the electric gripper. This ID is the electric gripper ID set in the Jodell

Robotics debugging software
Tool position Set the position of the gripper, range 0-255
Tool velocity Set the velocity of the gripper, range 0-255
Tool torque Set the torque of the gripper, range 0-255

The suction cup configuration interface is shown below.

Initialization: to test a suction cup, first enter the ID of the suction cup and click the "Initialization"

button. If the software prompts successful initialization, the suction cup’s hardware connection and

communication are sound, and the user can proceed to the next step or use it.

Setup: After initialization, the suction cup parameters should be set as needed. When all parameters

are entered, click the "Setup" button to test the suction cup.

Parameter Value/Description
Channel

selection
The suction cup supports two channels. The user can choose the effectiveness of the two

channels at will.
Minimum

vacuum
Set the target vacuum level of the suction cup. The suction cup stops working when the inside

vacuum level reaches this value

7 Robot Configuration

7.3 Communication Configuration

106

Copyright © ROKAE 2015-2023. All rights reserved.

Maximum

Vacuum
Set the target vacuum level of the suction cup. The suction cup starts working when the inside

vacuum level is greater than this value
Timeout

period
Times out when the minimum vacuum level specified is not reached in the specified time

7.3.9 RCI setting

Explanation

RCI is an external control interface, and the RCI communication setting is required before use.

Parameter setting

The IP address of the user PC should be filled in before turning on the Enabling switch. If the user

PC is directly connected to the robot via network cable, the IP address of the user PC should be in the

same network segment as the IP of the robot; if the user PC is connected to the robot via wireless or

router, the user PC should be in the same LAN as the robot. The port number is set to 1337 by

default.

The packet loss threshold is in percentage, which represents the packet loss rate during RCI

communication. For example, when the packet loss threshold is set to 10, it means that the packet

loss rate during RCI usage should not exceed 10%. The packet loss threshold is recommended to be

set between 10-20.

Turn on RCI

After the communication setting is completed, turn on the Enabling switch and press the Save button

to activate RCI.

After using RCI, turn off the Enabling switch and press the Save button to disable RCI.

Refer to the RCI User Manual for detailed RCI usage and routines.

8 Menu module

7.4 Process kit

107

Copyright © ROKAE 2015-2023. All rights reserved.

7.4 Process kit

7.4.1 Laser welding

Refer to User Manual for Laser Welding Process Kit

7.4.2 Plating line tracking

Refer to Operation Manual for Plating Line Tracking

7.5 Authorization

7.5.1 EtherCAT Authorization

Explanation

An authorization code is used to authorize the EtherCAT communication.

Notes

The robot cannot be powered on if the authorization code expires or the authorization fails.

8 Menu module

8.1 Diagnosis

Explanation

The xCore system provides a detailed log of operations that can be used to trace the operation of the

robot and identify the cause of the failure.

Filter the generated logs and view other operations using the log management interface.

8 Menu module

8.1 Diagnosis

108

Copyright © ROKAE 2015-2023. All rights reserved.

8.1.1 Teach pendant log

Explanation

A Filtering criteria area, in which the user can choose to view only the controller logs of the current

controller or the ones connected to the HMI, as well as select the log level for further filtering

B Log display page, where log title and generation time are displayed. The user can press

Previous/Next to switch between the previous and next pages

C Search area, where the user can search logs with keywords

8.1.2 Controller logs

Explanation

A Filtering criteria area, in which the user can select log level for further filtering

B Log display page, where basic information such as log number, title, generation time, and content is

displayed. The user can press Previous/Next to switch between the previous and next pages

C Search area, where the user can search logs with keywords

8.1.3 Log timeline

8 Menu module

8.1 Diagnosis

109

Copyright © ROKAE 2015-2023. All rights reserved.

A Search area, where the user can search logs with a specific time range

B Log display page. HMI logs are displayed on the left and RC logs on the right

8.1.4 Internal logs

Explanation

When a customer encounters a problem on-site, technical support can determine the cause of the

problem based on the log files.

8.1.5 Advanced options

Explanation

The Advanced Options interface is used to assist developers with the diagnosis of the servo, ECAT, and other

equipment, and enable real-time thread alarm and monitoring, etc. Since enabling diagnostic function will

increase the workload of the controller, only turn it on in actual production when necessary.

8 Menu module

8.1 Diagnosis

110

Copyright © ROKAE 2015-2023. All rights reserved.

Servo diagnosis The servo diagnostic module is used to save the data errors in the servo. Click the

Save button. The diagnostic data can be exported after 5s.

EC diagnosis The EC software diagnosis function can be used to assist in troubleshooting ECAT

devices.

Timeout warning Send real-time thread timeout warnings after enabled.

8.1.6 Error recovery

Explanation

When the robot reports errors, take the remedies suggested in the error details to recover from errors.

Contact ROKAE for after-sales service if an unrecoverable error occurs.

8 Menu module

8.2 Help

111

Copyright © ROKAE 2015-2023. All rights reserved.

8.2 Help

Explanation

The Software Upgrade interface provides such functions as controller upgrade and backup, erase all

configurations, and factory reset.

8 Menu module

8.2 Help

112

Copyright © ROKAE 2015-2023. All rights reserved.

Controller upgrade: used to upload upgrade package and restore data. Two file formats are

supported: encrypted file and unencrypted package. After uploading, the prompt "Uploaded

successfully" will appear on the interface. Follow the pop-up prompt to restart the controller.

Data restoration: Select the data package for restoration through the controller upgrade, check the

data for restoration, and click Upload. Follow the pop-up prompt to restart the controller.

Controller backup: used to store backup data of the controller. Select the files for backup, click

Open to select the backup directory, and then click Export. An encrypted file is then exported.

HMI upgrade (for xPad2 only): Upgrade of the xPad HMI software. Open: Select the HMI

upgrade zip file in the USB drive directory. Upgrade: Click the "Upgrade" button to start the HMI

upgrade. After the HMI upgrade is completed, the HMI software will start automatically and the HMI

upgrade is finished.

Restart robot: Restart the IPC system, and the upgrade service connection needs to be established

for this operation.

Erase all configurations: Erase robot configuration files, custom configurations, user's project files,

etc. with one click. However, the operation logs of the control system will be retained. After clicking

this button, the user needs to manually restart the robot. The upgrade service connection needs to be

established for this operation.

Factory reset: Restore the control system to its factory default state. The control system

configuration files and the user's project files will be reset. However, the operation logs of the control

system will be retained. The upgrade service connection needs to be established for this operation.

To upgrade to the latest version of the controller, please contact us and request an installation

package of the latest controller version and the HMI software package.

➢ Download to local the installation package of the latest controller version and the HMI software

package.

➢ Open the upgraded HMI and connect to the controller and the upgrade service.

➢ Select Custom Configuration, Robot Configuration, Controller Log, and Project Data in the

Backup option, and export the backup after selecting the local folder directory for backup.

➢ Do not select Custom Configuration, Robot Configuration, Controller Log, Project Data Demo

Case, or Servo in the Controller Upgrade option. Choose the controller installation package

downloaded locally. The upgrade options will be configured based on the installation package.

Then, click to upload.

➢ After a successful upload, the HMI will prompt to restart the controller. The controller will be

successfully upgraded after the restart.

8 Menu module

8.3 Demos

113

Copyright © ROKAE 2015-2023. All rights reserved.

Notes

1. To prevent data loss during the upgrade, we recommend backup the controller

beforehand.

2. Do not select Custom Configuration, Robot Configuration, Controller Log, Project Data,

Demo Case, or Servo during a software upgrade, otherwise, information such as current

robot zero position, dynamics model, and project data will be overwritten.

3. Clicking the Erase all configurations or Factory reset button will reset the robot’s key

operation configuration files and delete user-defined project data. Please double-check

before performing the operation!

Notes

When the HMI version does not match the controller version, HMI will display an

instant log message in the top status bar, which reads "Version mismatch. Recommend

HMI version: [xxx]".

8.3 Demos

8.3.1 Seven-axis redundant motion

Explanation

Common motions of the seven-axis redundant manipulator, including arc, straight line, turning zone,

and null-space self-motion.

 Operation Description

1 Use admin to log in to the system and switch to the

demo interface.

2 Select the feature for demonstration in the Demo list

on the left.

3
Click the mode switching button on the bottom

status bar and switch to Auto Mode.

4
Click the Power-On button on the bottom status

bar to power on the robot.

5 Click Play Demo in the upper right corner.

6 Click Stop Demo in the upper right corner after

demonstration and then select another demo.
To adjust the Demo threshold (such as sensitivity

in collision detection or stiffness in compliance

demo) during a demonstration, click Stop Demo

first and replay the demo after adjustment.

8 Menu module

8.3 Demos

114

Copyright © ROKAE 2015-2023. All rights reserved.

8.3.2 Obstacle avoidance

Explanation

When the manipulator enters a narrow and deep box, it will not interfere with the box structure by

adjusting its orientation through null-space self-motion, which enables the robot to perform the

pickup and delivery task successfully.

8.3.3 Collision detection

Explanation

Two settings are available in the collision detection demo: single-axis sensitivity setting; high,

medium, and low sensitivity setting.

When the robot stops after detecting the collision, you can press on the robot for it to continue its

normal operation.

9 Teach pendant options

8.3 Demos

115

Copyright © ROKAE 2015-2023. All rights reserved.

8.3.4 Compliance demo

Explanation

The compliance demo demonstrates the force control of xMate in Cartesian space with different

stiffness. This function is suitable for grinding, polishing, deburring, and other processes with high

grinding forces.

Two settings are available in the compliance demo: individual setting of end-effector translation,

rotation, and elbow stiffness; combined setting of translational and rotational motion.

Warning

During the demonstration, all the robot configurations are invalidated. For example:

1、 The base frame of the robot coincides with the world frame by default.

2、 There is no load at the robot end-effector by default. Otherwise, the demonstration of

collision detection or compliance will be affected.

9 Teach pendant options

9 Teach pendant options

9.1 Connection settings

116

Copyright © ROKAE 2015-2023. All rights reserved.

9.1 Connection settings

Explanation

The connection interface is mainly used to detect and connect robots.

Search for available robots: Search for all robots in the same LAN (except direct connection).

When the robot is connected, it will be displayed that the controller service and the update service are

both connected.

Automatic reconnection: When the network between the robot and Robot Assist is disconnected,

Robot Assist will try reconnection automatically and will stop trying after the preset reconnection

time.

If the robot can not be found when Robot Assist and the robot are in the same LAN, or the real-

time position of the robot is not displayed on the 3D interface after connecting the robot, click the

blue text in the figure below or go to the Basic Settings interface and select the IP address assigned to

the LAN in the Bound IP Address drop-down box.

9.2 Basic settings

Explanation

Language settings: Chinese and English are optional.

Teach pendant IP setting (only for xPad2): Set the static IP address for the teach pendant

connected to the robot.

Screenshot setting (only for xPad2): Take a screenshot of the teach pendant screen and save it in

the teach pendant directory. The picture format is JPG.

Bind IP address: Set the network card for connection of Robot Assist and the robot.

Workspace directory: Set the folder to save project files.

Graphic performance: Set the time interval (unit: ms, 100ms max.) for 3D model refreshing.

9 Teach pendant options

9.3 Appearance settings

117

Copyright © ROKAE 2015-2023. All rights reserved.

9.2.1 Multi-language log

Explanation

For xCore control system of version 1.7 and above, multi-language log is supported (only for

"controller log").

When HMI language changes, the controller will also change the language accordingly;

When the HMI and the controller set different languages, the controller will switch to the language of

the HMI when the connection is established.

Restart is not needed when the controller switches language. But some detailed log information only

takes effect after the switch, and the log generated before the switch may not be displayed in the

corresponding language.

9.3 Appearance settings

Explanation

Themes: The default style adapts to Windows 7. Only the font is different between the two styles.

Theme size: Set the interface font, control, icon, and layout size. Click Apply and restart to take

effect.

Mouse cursor switch (only for xPad2): Show and hide the mouse cursor. Takes effect immediately

after checking the selection box.

10 Robot Motion Foundation

9.4 File manager

118

Copyright © ROKAE 2015-2023. All rights reserved.

9.4 File manager

Explanation

The file manager interface is used to quickly open folders in the Robot Assist software package. This

interface is only available for PC-based software.

Cache folder: used to store the cache of Robot Assist.

Log folder: used to open the folder with Robot Assist logs. The logs in the folder are consistent with

the internal log on the diagnostic interface. Click to open the folder for an individual backup.

Workspace folder: used to quickly open the folder with the robot project files.

10 Robot Motion Foundation

10.1 Frame

Explanation

The motion of the robot contains information such as position, velocity, acceleration, etc. This

information would be of practical significance by specifying the reference system. Therefore, before

Jog starts, we need to understand the frames used by the robot.

In addition, defining and using an appropriate frame helps simplify the programming process and

improve the use efficiency of the robot.

Frame

The xCore system adopts a rectangular frame (i.e. the Cartesian frame, hereinafter collectively

referred to as Cartesian Frame) to describe the position and orientation in a three-dimensional space.

The frames currently used in the xCore system is shown below:

10 Robot Motion Foundation

10.2 Robot singularity

119

Copyright © ROKAE 2015-2023. All rights reserved.

A. Flange Frame: It is defined at the center of the robot's end-effector flange but with no practical

meaning. It only serves as a reference when defining the tool/work object frame.

B. Tool Frame: It is defined on the tool. The robot programming position refers to the position of the

tool frame. For further information on the tool frame, refer to the Tools.

C. Base Frame: It is defined at the center of the robot base and is used to determine the robot's

position.

D. Work Object Frame: It is defined on the work objects. A well-defined work object frame can

greatly reduce the programming complexity and improve program reusability. For more information

on the work object frame, please refer to the Work object.

E. User Frame: It is used as a reference frame when defining the work object frame, and it cannot be

used separately.

F. World Frame: This frame does not have a specific position. When there is only one robot, the

frame can be considered to be at the center of the robot base, which coincides with the base frame.

When there are multiple robots or external devices that need coordinated motion, the world frame can

provide a unique reference system for these devices. The specific position can also be arbitrarily

specified on the premise that the base frame of other devices can be conveniently calibrated.

For the dependencies between different frames, please refer to variables "tool" and "wobj".

10.2 Robot singularity

Explanation

Under normal circumstances, the robot can use up to 8 different joint configurations to reach the pose

in the same working space. For details, please refer to the introduction of the confdata variable.

However, there are still a few special poses in the robot's working space that the robot can arrive at

using a myriad of different joint configurations. Such poses are called singularities. Singularities may

cause problems to the control system when calculating joint angles based on spatial position.

In general, the xMate robot features the following types of singularities:

1. Axis 2 singularity

2. Axis 4 singularity

3. Axis 6 singularity

4. Wrist singularity

There is no singularity problem when the robot performs joint motion.

When the robot performs a Cartesian space trajectory near the singularity, some joints may be very

fast. In order to not exceed the maximum joint velocity, the speed of the end-effector trajectory will

be automatically reduced.

Z

Z

Z

Z
Z

Z

X

X

X

X

X

X

Y

Y
Y

Y

Y

Y

(A)

(B)

(C)

(D)

(E)

(F)

10 Robot Motion Foundation

10.2 Robot singularity

120

Copyright © ROKAE 2015-2023. All rights reserved.

Axis 2 singularity

When the angle of Axis 2 is 0°, the robot experiences the Axis 2 singularity:

At this point, the robot cannot distinguish between the angles of Axis 1 and Axis 3 when calculating

inverse kinematics.

Axis 4 singularity

When the angle of Axis 4 is 0°, the robot experiences the singularity, and the pose is called the

extended position:

In this pose, the robot is restricted to move in the direction parallel to Axis 3 or 5. This singularity

often appears when the robot is moving to the boundaries of the working space.

This singularity causes the robot to lose one degree of freedom at the root of the wrist (the root of the

wrist is unable to perform axial motion along the arm). In this case, the Axis 3 and Axis 5 positions

cannot be obtained when calculating inverse kinematics.

Axis 6 singularity

When the angle of Axis 6 is 0°, the robot experiences the Axis 6 singularity.

10 Robot Motion Foundation

10.2 Robot singularity

121

Copyright © ROKAE 2015-2023. All rights reserved.

At this point, the robot cannot distinguish between the angles of Axis 5 and Axis 7 when calculating

inverse kinematics.

Wrist singularity

When the robot's wrist center is right above Axis 1, the robot experiences the wrist singularity.

At this point, the robot cannot precisely calculate the angle of Axis 1 when calculating inverse

kinematics.

10.2.1 Turning zone

Explanation

For the manipulator, its motion is usually executed sequentially according to multiple trajectories

specified by the user. However, different trajectories specified by the user are usually not smoothly

connected to each other, so there are various "spikes". The presence of these "spikes" forces the robot

to stop at the end of a trajectory before executing the next trajectory. To enable continuous motion

between trajectories, it is necessary to eliminate such "spikes" and generate turning zones to

smoothly connect different trajectories specified by the user. See the following figure:

10 Robot Motion Foundation

10.3 Robot force control

122

Copyright © ROKAE 2015-2023. All rights reserved.

In addition, when the manipulator is moving in a joint space, it also moves along different

trajectories. The difference is that the trajectory is now no longer defined by the Cartesian space pose

but by the angle of each axis. This means that there should be turning zones when the robot moves in

the joint space.

For specific parameter settings of the turning zone, please refer to the variable "zone".

10.2.2 Lookahead mechanism

Explanation

Lookahead is: the control system handles the commands after the command the robot is currently

executing in advance during the movement. The introduction of the lookahead mechanism can be

advantageous in the following aspects:

➢ Obtain the speed of the front trajectory, the acceleration requirements, and the constraints of the

robot itself, so as to plan the optimal control strategy;

➢ Plan the turning trajectory of the turning zone according to the settings of the programmed

turning zone;

➢ Acquire an abnormal state near the soft limit/boundary, singularities, etc., so that it can be

processed in advance;

The lookahead mechanism cannot be closed manually. The system automatically looks ahead when

running the program. You can use the Program Pointer to view the lookahead position.

Some RL commands will interrupt the lookahead. When the compiler encounters such a command,

it will stop compiling until the robot executes the compilation of the corresponding command. Only

Print command, logical judgment command, and user-defined functions do not interrupt the

lookahead mechanism, and all other functions will interrupt the lookahead mechanism.

10.3 Robot force control

10.3.1 Introduction to force control

The robot force control is a process of interaction between the robot end-effector and forces in the external environment. In

non-contact robot motion control, only the position control process (velocity and accuracy) is considered. When there is

contact with the environment, pure position control requires very high accuracy of the robot and the environment to avoid

damaging the robot and the environment due to contact forces caused by position deviation. Unlike pure position control,

robot force control adopts a force/torque feedback loop when interacting with the environment. The loop is used to change the

motion characteristics of the robot, which enables dynamic interaction with the external environment. When there is deviation

or uncertainty between the robot and the external environment, the force control will intelligently adjust the preset position

trajectory to eliminate the internal force caused by the position deviation, thus ensure a smooth and safe interaction process.

10.3.2 Impedance control

Compared with traditional industrial robots, xMate is equipped with joint torque sensors, which enable it to sense joint torque

precisely. The joint torque information allows xMate to achieve force control through impedance; this enables compliant

interactive behavior of the robot. The interaction between the robot and the environment is like a virtual spring stiffness and

damping system. At this point, the robot is sensitive to external forces, which can cause the robot to deviate from a

predetermined trajectory. When the external force disappears, the robot can rebound to some extent.

编程目标点转弯区

转弯区路径起点

转弯半径

10 Robot Motion Foundation

10.3 Robot force control

123

Copyright © ROKAE 2015-2023. All rights reserved.

In the process of impedance motion, the actual position of the robot will deviate from the desired position when affected by

the external forces in the environment. The deviation depends on the impedance stiffness and the external forces, and it can be

calculated through the ratio between the external force and the impedance stiffness. As shown above, the impedance stiffness

is set to K in the impedance control mode. Affected by external force Fext, the robot's current position Pcur will deviate from the

desired position Pdes, and the position deviation is Δx. The impedance force caused by this deviation and the external force

will eventually reach an equilibrium.

The impedance stiffness in each direction can be set individually, and the impedance force in each direction is the product of

the impedance stiffness and the position deviation in this direction. The impedance force in each direction adds to the total

impedance force. In the figure below, the robot's current position Pcur deviates from the desired position Pdes affected by

external forces in the impedance mode. The deviations in the X and Y directions are Δx and Δy, the impedance stiffnesses are

Kx and Ky, and the impedance forces are Fx and Fy, respectively. The total impedance force F = Fx + Fy.

10.3.3 Overlay

10 Robot Motion Foundation

10.3 Robot force control

124

Copyright © ROKAE 2015-2023. All rights reserved.

When assembling work objects, humans would feel the change in force. If an obstruction (the work object is stuck) is

detected, humans will try shaking to ensure a smooth installation. Force control allows xMate to do the same thing, i.e.

Motion search. xMate supports sine overlay rotating around an axis and Lissajous overlay within a plane. Overlay is an

additional motion added to the specified motions. It allows the robot to shake, which enables it to better overcome obstacles

during the assembly process. Below is a sine overlay:

1、Desired trajectory

2、Actual trajectory (desired trajectory + overlay)

3、Overlay amplitude

4、Overlay period

Lissajous overlay means a sine overlay in two perpendicular directions within the plan, and the frequencies of the two

overlays are often proportional. For example, below shows the Lissajous overlay in the XY plane, where the frequency ratio

of x- and y-direction overlay are 2:1. The center point Pstart is the desired pose, Xamp is the amplitude of the x-direction

overlay, and Yamp is the amplitude of the y-direction overlay.

10.3.4 Applications

The application scenarios of force control for industrial robots fall into two categories: constant force tracking and force-

controlled assembly.

1) Constant force tracking

Below shows a constant force tracking scenario. The robot ensures a constant contact force Fdes with the surface, while the

robot can conform to the surface curve. Main applications include grinding and deburring.

10 Robot Motion Foundation

10.3 Robot force control

125

Copyright © ROKAE 2015-2023. All rights reserved.

Example program for constant force grinding: The robot is set to Cartesian impedance mode. The impedance stiffness and

load information are set, and force control is enabled. The work object is pressed onto the grinding surface through a desired

force in the z-direction. The observed force in the z-direction is monitored during the pressing process, and when the observed

force exceeds a certain threshold, the tool is considered to have contacted the surface. At this time, a desired trajectory in the

grinding direction is applied. The robot maintains a constant force during the motion, thus allowing constant force grinding.

 VAR POSE T_POSE = PE:{0, 0, 0},{1, 0, 0, 0} //Tool frame

 VAR POSE W_POSE = PE:{0, 0, 0},{1, 0, 0, 0} //Work object frame

FcInit T_POSE, W_POSE, 0 //Force control initialization. 0 means force control frame is set as the base frame

 SetControlType 1 //Set Cartesian impedance as the impedance mode. 0: joint impedance 1: Cartesian impedance

SetCartCtrlStiffVec 500, 500, 0, 100, 100, 100 //Set the Cartesian impedance stiffness. The first three are translation

stiffness (0 ~ 1500), and the last three are rotation stiffness (0 ~ 100)

 SetCartNsStiff 2.0 //Set null-space stiffness (0~4)

 SetLoad 0.82,0,0,0.041,0,0,0 //Set load information

 FcStart //Enable force control

 SetCartForceDes 0, 0, -15, 0, 0, 0 //Set desired force in the Cartesian space. Apply -15N force in the z direction

FcCondForce -100, 100, -100, 100, -100, 10, true, 20.0 //Cartesian space force monitoring. Apply 10N force in the z

direction to trigger

FcCondWaitWhile //Enable the monitoring conditions set before

 MoveL p0,v800,z50,tool0 //Motion command (desired trajectory)

 FcStop //Disable force control

2) Assembly

If pure position control is used during the assembly, the robot may easily collide with the work object due to position and

modeling errors, which can cause damage to the work object or the robot.

But with force control, the robot will try to overlay (shake) to overcome the obstruction when it senses an external force over

the limit (work object jamming), thus allowing successful work object installation. As shown below, the position control on

the left results in a collision during assembly, while the force control on the right pushes the robot into the assembly hole

through the desired force Fdes, and the jam is prevented through overlay Foverlay.

11 Programming and Debugging

11.1 Programming preparation

126

Copyright © ROKAE 2015-2023. All rights reserved.

Example program for force-controlled assembly: The robot is set to Cartesian impedance mode. The impedance stiffness and

load information are set, and force control is enabled. The work object is pressed into the mounting hole by applying the

desired force in the z-direction. The observed force in the z-direction is monitored during the press-in process, and when the

observed force exceeds a certain threshold, the tool is considered to be stuck. At the time, the preset Lissajous overlay is

executed to ensure that the work object is successfully pressed in. The position in the z-direction is monitored to determine

whether the work object has been successfully installed.

 VAR POSE T_POSE = PE:{0, 0, 0},{1, 0, 0, 0} //Tool frame

 VAR POSE W_POSE = PE:{0, 0, 0},{1, 0, 0, 0} //Work object frame

 FcInit T_POSE, W_POSE, 0 //Force control initialization

 SetControlType 1 //Set Cartesian impedance as the impedance mode. 0: joint impedance 1: Cartesian impedance

SetCartCtrlStiffVec 500, 500, 0, 100, 100, 100 //Set the impedance stiffness. The first three are translation stiffness (0 ~

1500), and the last three are rotation stiffness (0 ~ 100)

 SetCartNsStiff 2.0 //Set null-space stiffness (0~4)

 SetLoad 0.82,0,0,0.041,0,0,0 //Set load information

SetLissajousOverlay 0, 5, 5, 5, 5, 0 //set XY plane for Lissajous overlay, 5N, 5Hz,5N, 5Hz, 0rad

 FcStart //Enable force control

SetCartForceDes0, 0, -15, 0, 0, 0 //Set desired force in the Cartesian space. There is a -15N desired force in the z

direction

FcCondForce -100, 100, -100, 100, -100, 10, true, 20.0 //Cartesian space force monitoring. Apply 10N force in the z

direction to trigger

FcCondWaitWhile //Enable the monitoring conditions set before

StartOverlay //Start overlay

 VAR fcboxvol box1 = fcbv:{-1000.0, 1000.0, -1000.0, 1000.0, 250.0, 500.0} //Define a box area

 FcCondPosBox F_POSE, box1, true, 20.0 //Box area monitoring. Triggered when the robot is out of the box area

FcCondWaitWhile //Enable the monitoring conditions set before

 FcStop //Disable force control

11 Programming and Debugging

11.1 Programming preparation

Programming Tool

You can use Robot Assist and Rokae Studio for programming. Robot Assist is suitable for online

program modification, such as position and path variables. Rokae Studio is suitable for offline

programming and simulation, including project design, model selection, trajectory generation,

trajectory optimization, simulation debugging, and code generation.

11 Programming and Debugging

11.2 Project

127

Copyright © ROKAE 2015-2023. All rights reserved.

For details on how to use Rokae Studio for offline programming, please refer to Rokae Studio User

Manual.

Define tool, payload, and work object

The tool, payload, and work object should be defined before programming. The default tool is tool0

and default work object is wobj0. Then you can define more required objects at any time.

Define frames

Confirm that the base frame is correctly set during robot installation.

You can define the tool frame and work object frame if needed before programming. Corresponding

frames should be defined when adding more objects later.

11.2 Project

11.2.1 Project introduction

Project overview

In the xCore controller, a project refers to the management collection of programs, tasks, and other

objects that control the operation of the robot. It is responsible for storing all the necessary

information needed for the robot to work, including:

➢ Task list;

➢ Variable list;

➢ Point position list;

➢ Path list;

➢ IO signal list;

➢ User frame list;

➢ Tool frame list;

➢ Work object frame list;

➢ Predefined parameters;

➢ Vision system;

Open project

Click in the upper left corner to enter the Project interface;

11 Programming and Debugging

11.2 Project

128

Copyright © ROKAE 2015-2023. All rights reserved.

11.2.2 Project configuration

Explanation

The Project Configuration interface is used for the relevant configuration of the current project,

including:

➢ Sync projects between Robot Assist and the controller;

➢ Switch between projects;

➢ Import/export projects;

➢ Create, modify, and delete projects.

Sync projects between RobotAssist and the controller

Once the connection to the controller is established, local projects will be loaded and updated

immediately to stay consistent with those in the controller. Changes to important local project files

will be immediately synchronized to the controller to ensure proper robot functions, including tools,

work objects, and user frames. As RL codes are flexible, they will only be automatically pushed to

the controller during debugging. If unfinished work should be saved, click the Push to Controller

button to manually push the project to the controller.

Switch between projects

Click the drop-down menu below the selected project to display all projects. Select the desired

project and click Reload to switch to the project.

Create project

Click to create a new project. The project name can only be a collection of letters, numbers, and

underscores "_".

After clicking the Create button, you will enter the New Project Wizard interface for easy creation

and import of related configurations. The default task for a new project is Task 0.

Modify project

Click to modify the current project.

Delete project

Click to delete the current project.

11 Programming and Debugging

11.2 Project

129

Copyright © ROKAE 2015-2023. All rights reserved.

Warning

Files cannot be recovered once deleted!

11.2.3 Task list

11.2.3.1 What is Multitasking?

Explanation

The multi-task function is for running multiple robot programs at the same time; this function is

particularly useful in the following conditions:

➢ Monitor continuously one certain signal even if the main program stops operating. It is similar to

the background PLC function, but its response speed is much lower.

➢ The robot can send or receive various information when performing the main motion program,

without any restriction on the actuating logic of the main program.

➢ Receive some inputs through the teach pendant while working.

➢ Control and activate/deactivate external device.

11.2.3.2 Task list

Overview

The xCore system provides an interface for managing parallel tasks. The interface displays the

attributes of parallel tasks. And, the control logic of each task is implemented in Task. In the

interface, users can create, set, and delete tasks.

11 Programming and Debugging

11.2 Project

130

Copyright © ROKAE 2015-2023. All rights reserved.

11.2.3.3 New task

Task attribute

Task attribute Description

Task name The task name must be unique among all tasks, it shall only be composed by numbers,

letters, or underscores.

Its initial character shall not be a number and the maximum length of the task name is 30

characters.

Task type Motion tasks refer to those that allow RL commands to control the robot motion.

There shall be only one motion task.

Autostart It is used along with the Production mode. When selected, the program starts to re-
execute when the system is restarted. Normally, it will not be stopped by the teach

pendant or emergency stop.

Priority Set the task priorities

Create file When the main function generation is checked, the main function will be generated

automatically after task creation.

The same applies to other functions.

New task

At least one project shall be ensured in the resource manager when a new task is created.

11 Programming and Debugging

11.2 Project

131

Copyright © ROKAE 2015-2023. All rights reserved.

Use restrictions

➢ Support up to 10 tasks.

➢ There shall be one motion task at most.

➢ Changes in the task type, task entry function, and whether a motion task take effect immediately.

11.2.3.4 Starting and running tasks

Explanation

Click on the RL Code interface to select the task. Use the Start/Stop button or external signal

to control the start/stop of the selected task in case of manual or automatic enabling.

Use restrictions

➢ Generally, a background task will run cyclically. If a task does not contain any wait commands,

the background task may consume too much computing resources, causing the controller to be

11 Programming and Debugging

11.2 Project

132

Copyright © ROKAE 2015-2023. All rights reserved.

unable to handle other tasks.

➢ The scopes of variable VARS and the constant CONST are limited to their respective tasks, but

the Global-level PERS variable is a global variable.

➢ When PPToMain is executing, all non-running tasks execute PPToMain.

➢ When there are tasks running, it is forbidden to modify the contents in the Task List interface.

11.2.3.5 Intertask Communication

Explanation

The intertask communication supports two methods: PERS variable and interruption.

Intertask communication by PERS variable

➢ Global-level PERS variables with the same name shall be defined in all task projects that

required communication and the type, dimension of variable data shall be identical.

➢ PERS variable shall be used to control task execution and data transmission where necessary.

Intertask coordination of execution sequence by interrupt

➢ Define interrupt and corresponding interrupt handler function in the task that requires waiting.

➢ Set interrupt trigger signal at the right place of the task being awaited.

Use restrictions

➢ Simply specify the initial value for the PERS variable in one of the tasks. If you have specified

an initial value for the same PERS variable in multiple tasks, the initial value defined in the

first running task will be used.

➢ When a task waits for another task by means of the PERS variable and the WaitUntil or WHILE

command, it is necessary to pay attention to coordinate with wait command (greater than 0.1s)

to avoid the program quickly executing the empty judgment command, and thus occupying too

much system resources.

11.2.4 List of variables

11.2.4.1 Variables

11.2.4.1.1 Basic concept

Variable naming rules

Variable names in the RL language can consist of letters, underscores, and numbers. However,

variable names cannot be the same as system keywords. See Keywords pre-definition for RL system

keywords.

In addition, there are the following precautions:

1. In the same module, GLOBAL and LOCAL level variables with duplicated names are not allowed;

2. In different modules, GLOBAL variables with duplicated names are not allowed;

3. In different modules, LOCAL variables with duplicated names are allowed;

4. In the same module, no variable (GLOBAL, LOCAL, excluding ROUTINE) is allowed to have a

name that conflicts with functions in this module;

5. In different modules, no GLOBAL level function and variable naming conflicts are allowed;

Notes

When a variable name contains two characters only, please pay attention to not name the second

character "h" or "b", otherwise, the variables may be converted to hexadecimal or binary.

For more information, please refer to the Number system conversion.

11 Programming and Debugging

11.2 Project

133

Copyright © ROKAE 2015-2023. All rights reserved.

Variable scope

The RL language system defines three scopes:

1. GLOBAL, visible to all modules in the current project, can be declared in the module declaration

area;

2. LOCAL, visible only to the current module, can be declared in the module declaration area;

3. Functions (ROUTINE), visible only within the current function, can only be declared within the

function body, and the scope type (GLOBAL or LOCAL) is not allowed to be specified when the

scope variable is declared;

Notes

Function (ROUTINE) scope applies to variables only, not to custom functions.

Storage type

Each variable is divided into variable (VAR), persistent variable (PERS), and constant (CONST),

depending on whether it can be modified during program execution.

➢ VAR (Variable), a variable that can be reassigned during a program run;

➢ CONST (Constant Variable), which cannot keep up with the change of the new value in the

process of operation, must be determined at the beginning;

➢ PERS (Persistent Variable), a continuous variable, during the execution of a program, if the value

of the variable type changes, the variable will be automatically amended from the initial value

to the current value, thus achieving the effect of "Persistent" storage.

Notes

1. Even if the value of a PERS type variable is changed while the program is running, the initial

value displayed in the program editor declaration area is not immediately refreshed, and the

initial value displayed in the program editor declaration area is updated to the latest value

only when the program reloads.

2. The latest value of the PERS variable can be viewed at any time in the "variable

management" interface, whether the program is running or not.

Keywords pre-definition

The following are reserved keywords (case insensitive) that are predefined for the RL language:

Module, EndModule, Proc, EndProc, Func, EndFunc, TRAP, ENDTRAP, SetDO, DO_ALL,

SetGO, SetAO, WaitDI, Wait, WaitUntil, WaitWObj, WBID, Q, P, J, V, W, T, S, L,

CA, DURA, IGNORELEFT, EJ, 1J, FCBV, FCCV, FCOL, FCXYZ, FCCART, PE, PER, TCP,

ORI, EXJ, CFG, PDIS, JDIS, MoveAbsJ, MoveJ, MoveL, MoveC, MoveT, LOCAL, TASK,

GLOBAL, VAR, CONST, PERS, INV, DOT, CROSS, sin, cos, tan, asin, cot, acos, atan,

atan2, sinh, cosh, tanh, ln, log10, pow, exp, sqrt, ceil, floor, abs, rand, GetCurPos,

Print, PrintToFile, ClkRead, TestAndSet, IF , Else, Endif, WHILE, ENDWHILE, for, from,

to, endfor, Break, Continue, Del, Int, Double, Bool, String, BYTE, Robtarget, Speed,

Zone, Tool, Wobj, Jointtarget, TriggData, Load, FCBoxVol, FCSphereVol, FCCylinderVol,

FCXyzNum, FCCartNum, Pose, CLOCK, INTNUM, SYNCIDENT, TASKS, Call, Return, EXIT,

Pause, StopMove, StartMove, StorePath, RestoPath, True, False, Interrupt, When, Offs,

CalcJointT, CalcRobT, CRobT, RelTool, SocketCreate, SocketClose, SocketSendByte,

SocketSendInt, SocketSendString, SocketReadString, SocketReadBit, SocketReadInt,

SocketReadDouble, AccSet, MotionSup, TriggIO, TriggJ, TriggL, TriggC, On, Off, clock,

intnum, userframe, pinf, ninf, FCFRAME_WORLD, FCFRAME_TOOL, FCFRAME_WOBJ,

FCFRAME_PATH, FCPLANE_XY, FCPLANE_XZ, FCPLANE_YZ, FC_LINE_X, FC_LINE_Y,

11 Programming and Debugging

11.2 Project

134

Copyright © ROKAE 2015-2023. All rights reserved.

FC_LINE_Z, FC_ROT_X, FC_ROT_Y, FC_ROT_Z, Offs, CalcJoinT, CalcRobT, CRobT, RelTool,

\\Start, \\Time, ClkReset, ClkStart, ClkStop, CONNECT, WITH, IDisable, IEnable,

ISignalDI, \\Single, \\SingleSafe, WaitWobj, DropWobj, WobjIdentifier, WobjAngle,

ActUnit, DeactUnit, INTNO, \\Exp, DoubleToStr, WaitSyncTask, FCAct, FCDeact,

FCLoadID, FCCalib, FCSupvForce, FCSupvTorque, FCSupvPosBox, FCSupvPosSphere,

FCSupvPosCylinder, FCSupvOrient, FCSupvOrient, FCSupvReoriSpeed, FCSupvTCPSpeed,

FCCondForce, FCCondTorque, FCCondOrient, FCCondReoriSpeed, FCCondPosBox,

FCCondPosCylinder, FCCondPosSphere, FCCondTCPSpeed, FCCondWaitWhile, FCRefLine,

FCRefRot, FCRefSpiral, FCRefCircle, FCRefForce, FCRefTorque, FCRefStart, FCRefStop,

FCSetSDPara

Number system conversion

The RL language supports direct entry of hexadecimal, binary, or values of scientific notation by

adding a number system identifier to a number or letter.

Example 1

Add the "h" suffix to 0~9, a~f, or A~F. The RL compiler treats the corresponding number or letter as

hexadecimal and converts it to decimal in the compiler, for example:

8h stands for 8 in hexadecimal and 8 in decimal;

bh stands for b in hexadecimal and 11 in decimal;

25h stands for 25 in hexadecimal and 37 in decimal;

Example 2

Add the "b" suffix to 0~9, a~f, and A~F. The RL compiler treats the corresponding number or letter

as binary, for example:

1b stands for 1 in binary and 1 in decimal;

10b stands for 10 in binary and 2 in decimal;

1010b stands for 1010 in binary and 10 in decimal;

Example 3

Add "e±x" after the number to indicate that the number is multiplied by 10 to the x power. For

example:

5e+20 represents 5×1020;

26e-15 represents 26×10-15;

112e-10 represents 112×10-10;

11.2.4.1.2 Variable declaration

Explanation

A declaration must be made before using the variable. The format of the variable declaration

command is as follows:

SCOPE STORAGE TYPE varname [= value]

Among them:

1. SCOPE is for variable scope. Please refer to Variable Scope;

2. STORAGE is for variable storage type. Please refer to Storage Types;

3. TYPE is for variable type and can be a basic type or a special type. Please refer to Variable Type;

4. varname is the variable name. Please refer to Variable Naming Rules;

The content in square bracket [] is optional and can be either initialized or not when variables are

declared. For variables that are not explicitly initialized when they are declared, the system

automatically assigns different initial values as per the type of the variable. The default initial value

may cause program execution problems in some cases. It is recommended to initialize each manually

added variable.

Example

11 Programming and Debugging

11.2 Project

135

Copyright © ROKAE 2015-2023. All rights reserved.

The followings are a few examples for variable declarations:

Example 1

VAR int counter = 8 //Declare the integer variable count and assign an initial value of 8

VAR double time = 2.5 //Declare floating-point variable time and assign an initial value of 2.5

VAR bool ifOpen = true //Declare the variable bool type ifOpen and assign the initial value to true

Example 2

In general, no duplicate names are allowed for variables:

VAR int counter = 8

VAR double counter = 2.5

The compiler will report an error at this time by prompting "Failed to add variable".

Example 3

However, global variables and local variables can have the same variable name:

VAR int counter = 1

GLOBAL int counter = 555

Although variables with different scopes allow duplicate names, it is not recommended to use

duplicate variables in order to avoid confusion and misuse, unless the variables with duplicate names

have special technological advantages.

Notes

Variables cannot be declared inside a block of while and other loop commands, otherwise,

duplicate declarations are caused when this part of the code is repeatedly executed, resulting in a

"Fail to add variable" error.

Please declare the variables outside the loop body.

Use restrictions

➢ The ROUTINE variable that declares the PERS storage type is not supported;

➢ When there is a duplicate name for variables or functions of different levels, the compiler will

decide which variable to be used based on the priority of the scope. Variables with the highest

priority order will be selected first, and those with lower priority order will be obscured and

hidden. The priority of scopes is as follows:

◼ When the variable names are duplicated, the priority of scopes is as follows: ROUTINE>

LOCAL> GLOBAL;

◼ When the function names are duplicated, the priority of scopes is as follows: LOCAL >

GLOBAL;

11.2.4.1.3 User variable hold

Explanation

Create user variable "a" with hold in an RL project. This user variable is marked as a pers variable,

then the value of this variable is held on the non-volatile storage media when RL stops, the robot

restarts, shuts down, or powers off. When the robot powers on again or RL is running again, the value

of variable a is restored to the value held. The initial value is assigned only when the variable is

created for the first time or re-edited.

Hold is available for such user variable types

 Int, byte, double, bool, string, robtarget, jointtarget, pose, speed, zone, fcboxvol,

 fcspherevol, fccylindervol, fcxyznum, fccartnum, torqueinfo, tool, wobj

User variable hold configuration

11 Programming and Debugging

11.2 Project

136

Copyright © ROKAE 2015-2023. All rights reserved.

 The variable hold is accessible on the RL project interface as shown in red box below:

Click variable, point position, tool, or work object to create user variables of that type. All variables that

support the hold property have a "persistent" drop-down box. Selecting true means that the variable is a

hold variable, i.e., marked as a pers variable. For example, to create a pers variable of type int,

configure it as follows: (and so on for other types)

11.2.4.2 List of variables

Explanation

The variable management interface allows the creation, viewing, modification, and deletion of almost

all variables in the robot system. The supported variable types include:

No. Variable type Description

1 System predefined variables
Variables that cannot be modified by

users; it is used to store certain system

parameters, such as tool0/wobj0.

11 Programming and Debugging

11.2 Project

137

Copyright © ROKAE 2015-2023. All rights reserved.

2 User predefined variables

Variables that can be modified by

users and used in multiple programs,

such as user-calibrated tools, work

objects, etc.

3 Program variables

Variables defined by the user in the

program, which are generally used
only in the current program and its

subprograms. Program variables

contain most of the types of variables

supported by the system.

For some types of variables that have specifically defined steps, such as tool/wobj (defined and

modified using the calibration interface), robtarget/jointtarget/speed/zone (defined and modified

using an auxiliary programming interface). Although variables can be viewed and modified in the

Variable View interface, it is still recommended to use the dedicated interface for modification for the

sake of convenient operation and fewer errors. You are advised to only view variables in the variable

management interface.

Notes

The variables that can be viewed and modified in the variable management interface are limited to

the variables used in the currently loaded robot program,

so the variables displayed will change after other programs are loaded.

Variable editing

If you need to add variables or modify an existing variable, you can click the "New" or "Modify"

button to enter the variable editing page for operation.

Variable type Used to select variable types when creating a new variable. All supported types are listed in

the sidebar on the left.

Variable name The name of the variable to be inserted.

Array dimension To create or modify arrays, supported up to 3D arrays.

Module name The default is main.mod, or optionally stored in other mods.

Storage type Choose between CONST, PERS, and VAR. For more information, please refer to the Variable

declaration.

Scope Choose between GLOBAL and LOCAL. For more information, please refer to the Variable

declaration.

11 Programming and Debugging

11.2 Project

138

Copyright © ROKAE 2015-2023. All rights reserved.

11.2.5 Point position list

Explanation

The xCore system provides an interface for the management of teaching point positions. The

information of point positions used in the RL program needs to be configured in the point position

list before they can be used in the program.

In both the point position editing interface and the point position list interface, the current pose can

be used to update the teaching point position.

Add, modify, and delete point positions

The information of all point positions is configured on the point position list interface as shown

below:

A Name, which can be changed when performing the "New" or "Modify" operation.

B Type, including joint space and Cartesian space.

C Position: for joint space, displays the joint angle of seven axes for joint space; for Cartesian space, displays the

xyz coordinate and manipulator angle in the base frame.

D Description: Users can describe the point position, and the description can be changed when performing the

"New" or "Modify" operation.

Edit point position

11 Programming and Debugging

11.2 Project

139

Copyright © ROKAE 2015-2023. All rights reserved.

 Operation Description

1
Use admin to log in to the system and switch to the

point position list interface

2
Click "+" in the bottom right corner to enter the

point position creation guide interface.
You can also click to modify the point position or

 to delete the point position.

3 Name the current point position in the name field.

4
Add a description to the current point position in the

description field.
Optional

5 Click to update the position. Update the teaching point with the current pose.

6 Select Cartesian or joint space point position
This is used to update the point position manually. If the

method in step 5 is used, this step can be omitted.

7
Manually enter the point position pose according to

the point position's attributes.

11.2.6 Path list

TBD

11.2.7 IO signal list

Explanation

In the xCore system, all common IO signals (including Profinet signals) can only be used in the

programs after being configured on the control panel's I/O Signal List interface, except for the default

signals.

signalxx type variables are used to store and access IO signals in the RL program. For details, refer to

the RL section.

Add, Modify, and Delete IO

The configuration of all general-purpose IO signals is done on the relevant page of the control panel,

as shown in the following figure:

11 Programming and Debugging

11.2 Project

140

Copyright © ROKAE 2015-2023. All rights reserved.

A IO signal names that can be changed at the time you press "New" or "Modify".

B The type of signals, including signaldi, signalgi, signaldo, signalgo, etc.

C IO module number, which can be a standard IO module provided by the company, or the Profinet bus or

Ethernet/IP bus

D Address number, the physical address number corresponding to the IO credit mapping, starting from 0

E Function button area, on which you can new, modify, and delete IO signals.

Warning

If there is an error in the IO configuration, for example, when the mapped IO port exceeds the

physical limits or if the port is repeatedly assigned, the control system will enter the SYS_ERR

state and give an alarm message on the HMI at the time of starting. In this case, the user is only

allowed to enter the system configuration interface, to correct the wrong configuration with no

other operation allowed.

View IO

The configured general-purpose IO can be viewed on the status monitoring interface, and only the

configured IO can be seen. The forced output or simulation input of the IO is supported.

General-purpose IO cannot be viewed in the variable management interface.

Use IO

For the input signal (DI/GI), the state of the input node can be read directly in the RL program using

the variable name of the input signal.

Example 1

//Use the state of the digital input as a criterion for judgment

IF (di1 == true)

do something…

ENDIF

For the output signal (DO/GO), special commands SetDO and SetGO can be used in the RL. See the

Explanation of each command for details.

Use restrictions

➢ User-defined IOs cannot be mapped to system outputs.

11 Programming and Debugging

11.2 Project

141

Copyright © ROKAE 2015-2023. All rights reserved.

11.2.8 User frame list

Explanation

The user frame is used as a reference frame when defining the work object frame, and it cannot be

used separately.

Calibration of the user frame

The method for calibrating the user frame is the three-point method. Its operating steps are the same

as the three-point method for calibration of the tool frame.

Before calibrating the user frame, the user needs to calibrate a tool and then use the TCP of the tool

to calibrate the user frame. For more convenient operation, it is recommended to use tools with tips.

 Operation Description

1
Use admin to log in to the system and switch to the

user frame calibration interface.

2
Name the user frame to be calibrated in the name

field.

3
Select the "Calibrate now" in the pose calibration

option.

Manual input is allowed if the user frame is known in
advance. Calibration is not mandatory, and the user

frame defaults to the world frame.

4
Jog the robot, make TCP of the calibrated tool point

at the origin of the desired work object frame, and

then click "Confirm the first point".
World frame

5

Jog the robot so that the TCP of the calibrated tool

can point at the point on the X-axis of the desired

work object frame, and then click "Confirm the

second point".

The line between the second point and the first point

is the X-axis of the work object frame.

6

Jog the robot so that the TCP of the calibrated tool

can point at the point on the XY plane of the desired

work object frame, and then click "Confirm the third

point".

The user can also select a point on the desired Y-axis

because the point on the Y-axis is also on the XY

plane.

11 Programming and Debugging

11.2 Project

142

Copyright © ROKAE 2015-2023. All rights reserved.

11.2.9 Tool frame

11.2.9.1 What is a tool?

Definition

A tool is a device mounted on the end-effector flange of the robot to complete a specific process. The

common tools include pneumatic/electric grippers, welding guns, sprinklers, etc. No tool is

attached to the robot when it is delivered from the factory, and you need to purchase or design

appropriate tools according to the actual situation to complete the installation and setup in order to

make the robot work.

Any tool should be calibrated before using it to get TCP (Tool center point) data.

When using external tools tools should be installed at the fixed position within the operating range of

the robot instead of installing on the robot.

Explanation

A new tool needs to be defined before being used. In the xCore control system, the tool is saved and

used through the data type of the tool. To define a tool means to create a tool-type variable. With

regard to the details of the tool, please refer to the section of RL Programming Language (Tool).

Simply speaking, we need to obtain the following tool-related parameters:

➢ TCP and orientation of tool (calibrating the tool frame);

➢ Mass, center of gravity, and rotational inertia (dynamics parameters of the tool);

The definition of the tool can only be modified through the HMI coordinates calibration interface.

Please refer to the Calibration of tool coordinates for detailed steps. The tool-type variables can only

be viewed but not created or modified in the variable management interface.

After the new frames are defined in the calibration interface, users can modify the tool's dynamic

parameters using the manual input function or identify the tool's dynamic parameters through the

parameter identification interface.

Notes

1. Tool0 is a tool variable pre-defined by the system. Its tool coordinates coincide with the

flange coordinates and both share the same dynamic parameter of 0.

2. The Tool0 variable is not allowed to be modified.

11.2.9.2 Tool center point

Definition

Tool Center Point (TCP) is a specific point on the tool which is normally used by a robot to carry out

processing work, such as the wire tip of a welding gun, a tip of a pneumatic gripper, etc. The robot

can rotate around the TCP and transform while keeping the position of the TCP unchanged.

Different tools may have different TCP, and determining appropriate TCP according to actual

conditions can significantly increase programming efficiency.

TCP is also the origin of the tool frame. More details can be referred to from the introduction of tool

variables.

11 Programming and Debugging

11.2 Project

143

Copyright © ROKAE 2015-2023. All rights reserved.

Notes

Unless otherwise specified, all references to "robot position, velocity, acceleration" in this Manual

refer to the position, velocity, and acceleration of TCP relative to the work object frame.

Schematic diagram

11.2.9.3 Tool frame

Explanation

The calibration of the tool frame refers to the process of measuring the position and orientation

offsets of the tool frame relative to the flange frame.

If the manufacturer of the tool you are using provides these offset data, you can select "Manual

Input" on the teach pendant and input directly without calibrating.

As to those tools without size data, the user needs to use the three methods offered by xCore to

calibrate the tool frame.

➢ Four-point method, which is used to calibrate the origin of the tool frame;

➢ Three-point method, which is used to calibrate the orientation of the frame after calibration of the

origin of the frame by the four-point method;

➢ The six-point method, which is used to calibrate the origin and orientation of the frame at the

same time, is equivalent to the integration of the four-point method and the three-point method.

Calibration of the tool frame pose

Before the calibration of the tool frame, the user needs to prepare a fixed external point, which

should be located within the robot’s working range and can be contacted by the calibrated tool in a

very flexible position and orientation. In the HMI tool calibration interface, there are detailed

diagrams for reference.

TCP

11 Programming and Debugging

11.2 Project

144

Copyright © ROKAE 2015-2023. All rights reserved.

 Operation Description

1 Select a point on the tool to be calibrated and make

this point as the origin of the tool frame, namely the

Tool Coordinates Point (TCP).

Generally, TCP is always the processing point, for

example, the wire tip of the arc welding gun, the

fingertip of the claw, etc.

It is also allowed to put the TCP on any part of the

tool according to the actual situation.

2 Click "+" in the bottom right corner of the tool list to

enter the New Tool Wizard interface.
Name the calibration tool.

3 Confirm whether the tool is a normal tool or an

external tool.
Switch between normal tool/external tool

according to different mounting method (external

or handheld).

4 Select the six-point calibration method. You can also select the four-point or three-point

method.

The four-point method calibrates only the tool
origin while the three-point method calibrates

only the tool frame orientation.

5 Select immediate load identification. If the customer does not require tool load

parameters, load identification can be omitted.

6 Jog the robot so that the selected TCP can be contacted

by the external point and then click "Confirm the first

point".

When two points are closing to each other, using

the incremental mode can better adjust positions.

7 Repeat Step 6 until the four points are all confirmed. To obtain higher calibration precision, the

orientation difference between the four points

shall be as high as possible, which means the

robot should try to contact the external point in

A B

D

11 Programming and Debugging

11.2 Project

145

Copyright © ROKAE 2015-2023. All rights reserved.

different orientations.

Warning

If the robot is installed on the track, it is prohibited to operate the track during the calibration. Otherwise, the

calibration will fail.

11.2.9.4 Tool load parameters

Explanation

As mentioned before, a complete definition of a tool needs to determine the kinematic parameter and

dynamic parameter of the tool. The xCore system uses a load type variable to save the dynamic

parameter of the object. As such the dynamic parameter of the tool is also called tool load. For details

please refer to the introduction of variables tool and wobj. In particular, when an external tool is

used, the corresponding work object load is saved in the load parameter in the tool variable.

Using the four-point method or six-point method can only determine the kinematic parameter of the

tool. The dynamic parameter of the tool needs to be defined separately and there are two methods to

define the load parameter of the tool:

➢ If there is data of tool load at hand, the user can select the manual input method on the tool frame

calibration interface to input the corresponding data directly.

➢ If the load of the tool is unknown, the user can use the load identification function of the xCore

system to identify.

Load identification

The load identification function can be conducive to the calculation of the dynamic parameters of the

tool.

Steps for tool load identification:

➢ 1. Switch the robot to the Automatic mode and power on;

➢ 2. Run the load-free identification program with no load and wait for the program to complete;

➢ 3. Mount the tool load and run the load identification program, and wait for the program to

complete;

11 Programming and Debugging

11.2 Project

146

Copyright © ROKAE 2015-2023. All rights reserved.

➢ 4. When the identification is completed, the identification result pops up. Click to save.

Notes

1. Please make sure to define the dynamic parameter of the new tool accurately. Otherwise, it will affect the

motion of the robot and even damage the robot due to excessive load on some serious occasions.

2. Before the identification, switch on and preheat the robot in advance for more than half an hour so as to raise

the identification precision.

3. Load inertia calculation is based on the flange frame.

4. Load recognition is only supported in case of floor mounting.

Notes

The following circumstances during the identification will cause the identification to stop and all the

received identification data lost. In this case, the user has to re-start the identification:

➢ User selects other tools or switches to other interfaces halfway through identification;

➢ User triggers the emergency stop or safety stop for external parts when the identification program

is running;

➢ User switches from Automatic to Manual mode when the identification program is running.

Warning

The identification program needs to be executed under the Automatic mode, therefore all prevention measures

should be effective. As the external control signal is able to start the robot at any time, please switch to the

Automatic mode after the installation with personnel evacuated to a safe area.

11.2.9.5 Use of tools

Use when robot jogs

If it is necessary to use a special tool for jog operation, select the desired tool in the drop-down list of

the 'Tool' in the menu on the upper side of the teach pendant interface.

11 Programming and Debugging

11.2 Project

147

Copyright © ROKAE 2015-2023. All rights reserved.

Use in the program

It is very simple to use a special tool in the program, simply use the desired tool in the 'Tool'

parameter of the motion command. When programming the motion command in the 'Insert

command' interface of the teach pendant, the ‘Tool’ and ‘Work object’ in default are consistent with

those used during Jog operation, which means that the 'Tool' and 'Work object' in the menu at the

upper side of the interface are currently selected. For the detailed operating steps, please refer to

Insert command.

11.2.9.6 External tools

What is an external tool?

Generally, we install tools on the robot and use them to complete the specified jobs using the robot

motion. Such tools are called normal tools and include claw, suction cup, and welding gun.

But in some special situations, installing a tool on the robot will affect the normal use, for example:

1. The tool to be used is large or heavy, difficult to be installed on the robot, or probably affects the

robot's motion.

2. The work object to be processed is large and the working range of the robot cannot cover the

whole work object in normal situations.

3. Some special processing needs to be completed, for instance, grinding a square object needs the

tool to revolve around 4 corners respectively.

Under these circumstances, the effect of installing the work object on the robot while fixing the tool

on a certain external place turns out to be better and more convenient. We call these tools that are

installed outside the robot and fixed at a certain part the external tools (some brands call them

Stationary Tool or Remote TCP).

Creation of external tool

In the xCore system, the external tool is also described through the tool-type variables. There is a

special mark robhold in the tool-type variables used to define if the tool is a normal tool or an

external tool.

It is very simple to use the teach pendant to create an external tool by selecting a certain tool in the

tool calibration interface and then selecting External for Position.

11 Programming and Debugging

11.2 Project

148

Copyright © ROKAE 2015-2023. All rights reserved.

Calibration of external tool frame

The external tool calibration is the same as the normal tool. It supports the four-point method, six-

point method, and manual input. But calibrating the external tool frame needs the normal tool that

has been already calibrated. We will take the four-point method here as an example.

 Operation Description

1 Use admin to log in to the system and switch to the

tool frame calibration interface.

2 Calibrate a normal tool with a tip, or select a calibrated
normal tool with the calibration precision as high as

possible.

This normal tool is used for the later calibration of
the external tool. This step can raise the precision

of the external tool calibration effectively.

3 Jog the robot so that the TCP of the calibrated tool can

point at the origin of the desired external tool frame

and then click "Confirm the first point".

4 Jog the robot so that the TCP of the calibrated tool can

point at the origin of the desired work object in

different orientations, and then confirm the second,

third, and fourth points respectively.

The theory of how to select four points is the same

as the four-point method for normal tool

calibration.

5 After the calibration, the system will pop up the

calibration error. Select whether to re-calibrate

according to the error.

For information on calibration precision, please

refer to Confirmation of calibration precision.

Notes

The external tool must be used together with the corresponding work object, meaning among the

robhold parameters which are selected at the same time in the tool and work object respectively, one

must be False while the other be True. Otherwise, the system will prompt an error and forbid jogging

the robot.

When using the external tool, the reference for defining the tool frame and the work object frame is

different from that for defining a normal tool. See the following form.

Frame
Definition of the normal tool

relative to …
Definition of the external tool relative to …

Work object frame User frame User frame

User frame World frame Flange frame

Tool frame Flange frame World frame

For more details, please refer to the introduction of tool variables.

11.2.10 Work object frame list

11.2.10.1 What is a work object?

Explanation

Work object refers to the object that is being processed or handled by a robot with a tool.

The xCore system uses wobj (Work Object) type variables to describe an actual work object.

The introduction of the concept of work object is to simplify the programming steps and raise

efficiency.

The motion trajectory of the robot is defined under this work object frame. There are two merits in

doing so.

➢ When the work object moves or multiple identical work objects are being processed, the user

only needs to recalibrate the work object frame instead of reprogramming since all the paths in

the program will be updated accordingly;

➢ It allows the processing of the work objects that are moved by external axis (such as track,

positioner, and so on).

Each work object actually contains two frames. One is the user frame relative to the work object,

which can be considered as the bench/table where the work object is put. This is very useful in

11 Programming and Debugging

11.2 Project

149

Copyright © ROKAE 2015-2023. All rights reserved.

processing multiple identical work objects. The other is the work object frame which is fixed on the

work object. All program paths are described under the work object frame.

11.2.10.2 Definition of work object

Explanation

It is necessary to define a new work object before using it. In the xCore system, the work object is

saved and used through wobj data. Defining a work object means creating a wobj variable.

The wobj variable does not contain any dynamic parameter, therefore the process of defining a work

object is the process of calibrating the work object frame.

Notes

1. Wobj0 is a work object variable pre-defined by the system. Its user coordinate and work

object frame are all coincided with the world frame.

2. Same as tool0, wobj0 cannot be modified as well.

3. For PCB 3- or 4-axis robots, the work object frame only supports manual input. The

components of orientation A and C are set to 0, and manual user modification is prohibited.

Calibration of work object frame

The method for calibrating the work object frame is the three-point method. Its operating steps are

the same as the three-point method for calibration of the tool frame.

11 Programming and Debugging

11.2 Project

150

Copyright © ROKAE 2015-2023. All rights reserved.

Before calibrating a work object, the user needs to calibrate a tool and then use the TCP of the tool to

calibrate the work object frame.

For more convenient operation, it is recommended to use tools with tips.

 Operation Description

1
Use admin to log in to the system and switch to the

work object list interface.

2
Name the work object frame to be calibrated in the

name field.

The user frame is not mandatory.

userframe0 is selected by default, i.e.

the world frame.

3 Select external
See below for the calibration of the

handheld work object

4
Jog the robot, make TCP of the calibrated tool point
at the origin of the desired work object frame, and

then click "Confirm the first point".
World frame

5

Jog the robot so that the TCP of the calibrated tool

can point at the point on the X-axis of the desired

work object frame, and then click "Confirm the

second point".

The line between the second point and

the first point is the X-axis of the work

object frame.

6

Jog the robot so that the TCP of the calibrated tool

can point at the point on the XY plane of the desired

work object frame, and then click "Confirm the third

point".

The user can also select a point on the

desired Y-axis because the point on

the Y-axis is also on the XY plane.

Calibration of handheld work object frame

For using the external tool function, the corresponding work object should be installed on the robot.

In this case, this is called a handheld work object.

The handheld work object also needs the calibration of the work object frame and must use the

calibrated external tool for calibration. For more details, please refer to the external tool function.

The general steps for calibration of handheld work object frame are as follows.

 Operation Description

1
Use admin to log in to the system and switch to the

work object frame calibration interface.

2
Name the work object frame to be calibrated in the

name field.

The user frame is not mandatory.
userframe0 is selected by default, i.e.

the world frame.

3 Select "Handheld"

4 Jog the robot so that the TCP of the calibrated

external tool can point at the origin of the desired

The line between the second point and

the first point is the X-axis of the work

11 Programming and Debugging

11.2 Project

151

Copyright © ROKAE 2015-2023. All rights reserved.

work object frame and then click "Confirm the first

point".
object frame.

5

Jog the robot so that the TCP of the calibrated

external tool can point at the point on the X-axis of

the desired work object frame, and then click

"Confirm the second point".

The line between the second point and

the first point is the X-axis of the work

object frame.

6

Jog the robot so that the TCP of the calibrated
external tool can point at the point on the XY plane

of the desired work object frame, and then click

"Confirm the third point".

The user can also select a point on the
desired Y-axis because the point on

the Y-axis is also on the XY plane.

11.2.10.3 Use of work object

Use when robot jogs

If it is necessary to perform Jog operation in a special work object frame, select the desired work

object in the drop-down list in the menu.

Use in the program

It is very simple to use a special work object in the program, simply use the desired work object in

the "Work object" parameter. When programming the motion command in the 'Insert command'

interface of the teach pendant, the ‘Tool’ and ‘Work object’ in default are consistent with those used

during Jog operation, which means that the 'Tool' and 'Work object' in the menu at the upper side of

the interface are currently selected. For the detailed operating steps, please refer to Insert command.

Notes

Generally, the work object parameter of the motion command is optional. As such, unless

otherwise specified, the system will use wobj0 by default.

The default wobj0 coincides with the world frame.

To use the external tool function, all work object parameters corresponding to the tools must be

designated.

11.2.10.4 Use of external tool/work object

11 Programming and Debugging

11.2 Project

152

Copyright © ROKAE 2015-2023. All rights reserved.

Definition

To reduce the definition of default tools and work objects, whether the default tool tool0 and default

work object wobj0 are handheld or not depends on the user-selected tool and work object:

1) When the user-selected tool frame, such as tool1, is handheld, the default work object frame wobj0

is automatically made external, and wobj0 coincides with the user frame; when the user-selected tool

frame, such as tool1, is external, the default work object frame wobj0 is automatically made

handheld, and wobj0 coincides with the flange frame;

2) The same goes for the work object frame. When the work object frame, such as wobj1, is external,

the default tool frame tool0 is handheld and coincides with the flange frame; when the work object

frame, such as wobj1, is handheld, the default tool frame tool0 is external and coincides with the user

frame;

3) When both default tool frame tool0 and work object frame wobj0 are selected at the same time,

tool0 is handheld and coincides with the flange frame, and wobj0 is external and coincides with the

user frame.

3D interface display

Generally, users would like to display the pose of the manipulator end-effector in different frames,

thus:

1) When using a handheld tool, the 3D interface shows the pose of the selected tool frame relative

to the base/world/work object frames.

2) In the case of an external tool, the 3D interface shows the pose of the selected (handheld) work

object frame relative to the base/world frames when the base/world frames are selected; and the

pose of the selected (external) tool frame relative to the (handheld) work object frame when the

work object frame is selected.

User frame

By definition, the user frame is also divided into two types: external and handheld, which depend on

the corresponding work object frame. For example, when an external work object is used

(corresponding tool frame is handheld), the user frame is automatically made external and

represented in the world frame; when a work object handheld is used (corresponding tool frame is

external), the user frame is automatically made handheld and represented in the flange frame.

When the user frame is used, the corresponding work object frame must be clearly distinguished. If

the user frame is calibrated in the world frame, unexpected errors may appear when a handheld work

object is used.

11.2.11 Vision System

Explanation

11 Programming and Debugging

11.2 Project

153

Copyright © ROKAE 2015-2023. All rights reserved.

Vision task programming can be considered to be on the same level as RL motion task programming.

After creating a new project, click xVision on the left side to open the vision task editing interface.

Create, open, and rename vision tasks

Vision task is also a kind of "task". Click "Task" to view, create, open, and rename visual tasks.

11 Programming and Debugging

11.2 RL Programs

154

Copyright © ROKAE 2015-2023. All rights reserved.

Visual tasks auto run on startup

Check the "Auto Start" attribute of the visual task, which is defined as the "auto run on startup" for

the visual task.After the selected project is loaded, the vision task with the "Auto Start" property

checked will be loaded and run in a loop automatically.

Note: Only one vision task can be checked.

For more information on vision functions, please refer to xVision User Manual.

11.2 RL Programs

11.2.1 About RL language

Overview

Industrial robots are programmable devices that are suitable for many application scenarios. The

language used to program robots is called Robot Language.

11 Programming and Debugging

11.2 RL Programs

155

Copyright © ROKAE 2015-2023. All rights reserved.

xCore system uses RL language as the programming language for all ROKAE robots.

RL Language is the abbreviation of ROKAE Robot Language. By using this language, users can

program to control the robot through the teach pendant.

The RL language program file has a suffix of .mod, for example, MoveObj.mod or

PickSomething.mod. Each program file forms a program module.

RL language commands are not case-sensitive. For example, MoveAbsJ, moveabsj and MOVEABSJ

are all regarded as the correct MoveAbsJ command. However, in order to maintain a uniform

language style, it is recommended to capitalize the initial letters.

Example

To demonstrate the features of the RL programming language, we can look at a simple program to

understand the basic structure and format of RL:

Among them:

➢ The entire program is divided into two major sections, the declaration section, and the

implementation section. The area before the first function in each Mod file is the declaration

section. For example, in main.mod, the part before GLOBAL PROC main is the declaration

section;

➢ VAR represents the storage type, indicating a variant. If the storage type is not declared, the RL

program defaults it to a variable;

➢ int, robtarget, speed, zone, and tool are the special variable types of the RL language;

➢ MoveJ, MoveAbsj, and MoveL are standard motion commands in the RL language;

➢ Contents after "//" and “/**/”are comments.

11.2.2 Program structure

11.2.2.1 Overview

Explanation

All program files in the xCore system are grouped according to the concept of "Project". The

following features are contained:

1. The RL program is divided into three levels according to the scope size:

a) Project, the highest level, configures the default robot parameters, manages sub-objects and tasks;

b) Task, contains several program modules;

c) Program modules, also known as the modules, are divided into program modules (.mod) and

11 Programming and Debugging

11.2 RL Programs

156

Copyright © ROKAE 2015-2023. All rights reserved.

system modules (.sys). A program file is a module;

d) Functions, also known as the ROUTINE, a program block for repeated calls that are defined by

users;

2. A project can contain multiple tasks, each of which is independent and interacts with each other by

the interfaces provided.

3. A program can contain multiple program modules, but there is only one main.mod, which contains

a GLOBAL PROC main. The GLOBAL PROC main serves as the entry function of the entire

project;

4. RL language support the function defined by users, which can either be saved in the same program

file,or be saved in a different program file

5. The robot can only select one project for execution at a time.

The relationship among the project, program files, and functions are shown in the following figure:

11.2.2.2 Program modules

Explanation

Program modules are either .mod or .sys files. Each program module contains a number of data

variables and functions that are used to implement specific robotic functions. A project can contain

multiple program files. Each program file can be copied and deleted, and other regular file operations

are also allowed.

In each project, there must be a program module that contains the main function that is used as the

entry function for the entire project. Loading and executing a project is essentially executing the main

function.

Module definition

The module is defined as:

PROC main()

…

ENDPROC

PROC test1()

…

ENDPROC

PROC test2()

…

11 Programming and Debugging

11.2 RL Programs

157

Copyright © ROKAE 2015-2023. All rights reserved.

ENDPROC

Notes

In each module, the code area located in front of the file and before the first function is called the declaration area. It

is used to store variable declarations for the GLOBAL and LOCAL scopes. Users are not allowed to directly modify

the area in the editor.

11.2.3 Program editing

11.2.3.1 Function menu

Explanation

To allow easy program debugging, the xCore system offers several powerful debugging features in

the program editor interface.

Menu function

Program pointer to

Main Click to move the program pointer to the Main function, which is

equivalent to program reset.

Program pointer to

cursor Click to move the program pointer to the line where the cursor is located.

Check program Execute the program point to the Main check program to check whether there are certain

obvious errors in the current program, such as the duplicate name of the function and

missing key identifiers. It cannot check out all syntax errors.

Insert command
Click to insert motion commands and other commands.

Search program
Click to search programs by keywords.

Comment command
Click to comment on the selected code line. Multiple lines can be commented on at the

same time.

Move down code line
Click to move the selected code line down one line. Multiple lines can be moved

down at the same time.

Move code line up
Click to move the selected code line up one line. Multiple lines can be moved up at the

same time.

Paste the entire line
Click to insert the copied or cut content into the line of the cursor.

11 Programming and Debugging

11.2 RL Programs

158

Copyright © ROKAE 2015-2023. All rights reserved.

Copy the entire line
Click to copy the selected line of code. Multiple lines can be copied at the same time.

Cut the entire line
Click to cut the selected line of code. Multiple lines can be cut at the same time.

Undo Click to undo the previous operation.

Redo Click to redo the previous operation undone.

Loop mode
Click to select loop or run only once.

Output box
Click to display the printing information and syntax information.

11.2.4 Program debugging

11.2.4.1 Program pointer

Explanation

The program pointer points to the line that has been parsed and run by the program.

On the HMI interface, the program pointer is indicated by a small green arrow (also called the green

pointer).

11.2.4.2 Motion pointer

Explanation

The motion pointer points to the current command the robot is executing;

On the HMI interface, the motion pointer is indicated by a red arrow.

11.2.4.3 Lookahead mechanism

Explanation

Lookahead means that the control system handles the subsequent program commands in advance when

the robot is executing the current command during robot movement.
The introduction of the lookahead mechanism can be advantageous in the following aspects:
➢ Obtain the speed of the front trajectory, the acceleration requirements, and the constraints of the

robot itself, so as to plan the optimal control strategy;

➢ Plan the turning trajectory of the turning zone according to the settings of the programmed

turning zone;

➢ Acquire an abnormal state near the soft limit/boundary and singular points, etc., so that it can be

processed in advance;

The lookahead mechanism cannot be turned off manually. The system automatically looks ahead when

running the program. You can use the Program Pointer to view the lookahead position.
Some RL commands will interrupt the lookahead. When the interpreter encounters such a command, it

will stop compiling until the robot executes the compilation of the corresponding command.
Only Print command, logical judgment command, and user-defined functions do not interrupt the

lookahead mechanism, and all other functions will interrupt the lookahead mechanism.

11.2.4.4 Single-step debugging

Explanation

The single-step operation status is also known as Single-step Mode, as against the Continuous Mode.

The robot can switch between the two modes in most cases.

Single-step running is mainly used for program debugging. The robot will execute commands of one

line at a time and pause the program after commands are completed, which is convenient for

11 Programming and Debugging

11.2 RL Programs

159

Copyright © ROKAE 2015-2023. All rights reserved.

confirming whether teaching points meet requirements. When a multi-task project is being debugged,

single-step debugging will only execute the tasks displayed on the HMI debugging interface, and the

rest tasks will not be called.

If the single-step debugging executes read data commands (ReadDouble, ReadString, etc.), time-

related commands (Wait, WaitUntil, etc.), and logic commands (IF, GOTO, etc.), it will take two to

three clicks to complete the command due to the command characteristics.

Use restrictions

1． In Continuous mode where programs are executed automatically and the turning zone should be

processed, motion lookahead is available.

2． In Single-step mode where commands are executed directly without processing the turn zone,

motion lookahead is not available.

3． In Continuous Mode, motion only starts when there are enough lookahead points, and the system

only continues to parse the command when the robot is in place.

4． In Single-step mode, all next-step signals are triggered by the interface, without turning zone

processing and lookahead.

5． In Single-step Mode, no response is made when "Next" is clicked during motion.

6． In Continuous mode, callbacks during motion are responded to according to the lookahead logic.

7． The next step can go to any line and execute the command literally. RL programs only process

"program commands", without distinguishing between motion commands and logic commands.

10. When the robot pauses on the turning zone in Continuous mode, the next step will go back to the

target point corresponding to the current turning zone.

11.2.4.5 Regain path

Explanation

In some specific situations, the robot's position will deviate from its programmed path, for example:

➢ During the period when the program is stopped (excepting for program stop caused by program

reset), the robot is moved to another position by Jog;

➢ The emergency stop is triggered when the program runs, and the robot executes STOP 0;

When the program starts again from the stop position, if the system detects that the robot has

deviated from the programmed path,

the robot will then first perform a Regain Path motion to return to the original programming path.

To ensure safety, the movement speed of the robot is slower when returning to the programmed path,

and the movement of the robot can be stopped at any time by pressing the "Stop" button on the teach

pendant.

Use restrictions

The robot performs a joint trajectory when returning to the path, so the path of the end-effector is

unpredictable. Please observe whether or not it collides with the surrounding environment.

Only when the robot continues to execute from stop point at the middle of the program, the control

system will detect whether it deviates from the path.

If the deviation occurs, it will perform the regain path operation.

If the program is reset, then the system will not detect if it deviates from the path but will start

executing directly from the first line.

Please be careful to prevent possible collisions.

11.2.4.6 Move program pointer

Explanation

If you need to start the program after a line from the middle of the program, you can use this function

11 Programming and Debugging

11.2 RL Programs

160

Copyright © ROKAE 2015-2023. All rights reserved.

to move the program pointer to the line where the cursor is, and then the program can be executed

from a new position.

 Operation

1 Pause the running program, click the screen and move the cursor to the desired line.

2 In the program editor interface, click the "Debug" button and select "Program Pointer to Cursor".

3 The program pointer PP will be moved to the selected line.

4 After the program pointer PP points to the target line, click the program to start or go next. The robot then will

slowly move from the current position to the target position of the specified line in the joint interpolation mode.

Use restrictions

There are the following restrictions for Move program pointer:

1. When using this function, the following commands will be ignored, and the compiler's compile

position will be directly moved to the target line. In addition, all other commands will not be

executed:

a) All motion commands;

b) SetDO, SetGO, Return, Wait, Print, and all Socket commands;

d) Function call line;

2. The condition of the flow control command is ignored when moving the program pointer.

3. Do not move the program pointer across functions. It is necessary to move the program pointer to

the beginning of a function via "program pointer to function" first, and then use the pointer function

of a program;

4. The pointer of a program can only be moved to the motion command line.

11.2.4.7 Variable management

Explanation

The variable management interface allows the creation, viewing, modification, and deletion of almost

all variables in the robot system.
Currently supported variable types include: int/ byte/ bool/ double/ string/ robtarget/ jointtarget/ speed/

zone/ clock/ pose/ fcboxvol/intnum tasks.

Explanation

Although all types of variables can be entered by users manually in the programming interface, it is

still recommended to use the dedicated interface for modification for the sake of convenient operation

and fewer errors. You are advised to view in the variable management interface only.

The variable management interface is as follows:

12 RL Programming Commands

12.1 Variables

161

Copyright © ROKAE 2015-2023. All rights reserved.

12 RL Programming Commands

12.1 Variables

12.1.1 Int

Explanation

The range of the integer int variable is -231~231. It is recommended that the value is within the

specified range. If the value is in excess of the range, it will be assigned randomly, and the maximum

value range must not be exceeded when using it.

Example

For example, in the variable list, a variable is defined as follows:

12 RL Programming Commands

12.1 Variables

162

Copyright © ROKAE 2015-2023. All rights reserved.

It represents the data counter that defines an integer global variable type, and its initial value is 4.

12.1.2 uint

Explanation

The range of the integer uint variable is 0~232-1. The maximum value range must not be exceeded

when using it.

Example

Similar to a signed integer, in the variable list:

12.1.3 Double

Explanation

Floating-point numbers are stored using 8 bytes. Do not exceed the value range when using them.

Example

For example, in the variable list, a variable is defined as follows:

12 RL Programming Commands

12.1 Variables

163

Copyright © ROKAE 2015-2023. All rights reserved.

It represents the local variable time that defines a floating-point, and its initial value is 1.5.

12.1.4 Bool

Explanation

The variable bool is mainly used for status or logic judgments. The value is true or false.

When it is assigned an int or double value, non-zero takes the value of true and zero takes the value

of false.

Example

For example, in the variable list, a variable is defined as follows:

12 RL Programming Commands

12.1 Variables

164

Copyright © ROKAE 2015-2023. All rights reserved.

It indicates that a bool type global variable ifClose is defined and the initial value is true.

12.1.5 String

Explanation

String-type variables consist of multiple letters or numbers and must be placed in double quotation

marks "" at the time of defining.

Example

For example, in the variable list, a variable is defined as follows:

It indicates that a string variable name is defined and initialized to "rokae".

String variables support the "+" operation for string concatenation.

Example: name = "Rok" + "ae"

It indicates that the variable name is assigned to "Rokae".

12.1.6 Array

Explanation

An array is a collection of variables with the same type, either one-dimensional or multi-dimensional.

The elements in the array are accessed using subscripts. The subscript of each dimension begins with 1.

Example

For example, in the variable list, a variable is defined as follows:

12 RL Programming Commands

12.1 Variables

165

Copyright © ROKAE 2015-2023. All rights reserved.

It indicates that a two-dimensional array that contains 16 integer variables is defined. The value of

the sixth element of line 1 is assigned to 8.

Notes

The total length of the array should not exceed 1000.

12.1.7 byte

Explanation

byte represents the unsigned byte in RL language, same as unsigned char in C++. The value range is

0~255, and negative values are not allowed. It is generally used in SocketSendByte command.

When the byte value exceeds the limit, the lower 8 bytes will be truncated automatically without

reporting an error.

Example

For example, in the variable list, a variable is defined as follows:

12 RL Programming Commands

12.1 Variables

166

Copyright © ROKAE 2015-2023. All rights reserved.

It defines a byte variable data, which has a value of 177.

Notes

When the byte variable's value exceeds 255, it is automatically truncated, keeping only the lower

8 bits of the value, e.g. var byte data2=288, and the value of data2 is 32 after truncation.

12.1.8 clock

Explanation

The clock is used for timing, and clock-related commands are just like a stopwatch used for timing.

The time accuracy of clock type storage is 0.001s, and the maximum time interval is 45 days (i.e., 45

x 24 x 3600 seconds).

Example

For example, in the variable list, a variable is defined as follows:

12 RL Programming Commands

12.1 Variables

167

Copyright © ROKAE 2015-2023. All rights reserved.

The following example shows how to use variable clock:

Example 1

ClkStart clock1

ClkStop clock1

interval=ClkRead(clock1)

ClkReset clock1

Interval (pre-declared double variable) reads the interval between ClkStart and ClkStop, in seconds

(s).

12.1.9 Implicit type conversion

Explanation

Currently, during data setup in the variable lists, data types are restricted. Values that do not match

the variable type cannot be successfully entered, thus avoiding type implicit conversion.

Example

For example, when defining the integer counter in the variable list, no decimals, only integers, can be

entered.

12.1.10 confdata

Explanation

The confdata (Robot Configuration Data) is used to define the morphological configuration data that

corresponds to the spatial target point.

For a 7-axis robot with redundancy, the same Cartesian space target corresponds to a maximum of 8

different inverse kinematics when the elbow is the same, therefore, it is necessary to use confdata to

specify the form to be selected.

In addition, since the robot uses revolute joints, any one of the joints exhibits the same status at 1°

and 361°. Therefore, after the form of the robot is selected, other methods are required to deal with

the multiple-loop problem of the joint. Here, we use the quadrant method to mark the approximate

range of joint angles. For example, when the joint angle is between 0 and 90 degrees, the quadrant

number is 0. When the joint angle is between 90 to 180 degrees, it is marked as 1; by analogy, for

every 90 degrees, the quadrant number is increased or decreased by 1. When the angle is negative,

the corresponding number of quadrants is also negative, as shown in the following figure (left:

12 RL Programming Commands

12.1 Variables

168

Copyright © ROKAE 2015-2023. All rights reserved.

negative joint angle; right: positive joint angle). For robot joints, the angle increases when rotating

anticlockwise and decreases when rotating clockwise. In the figure below, the joint angle decreases

when a joint rotates clockwise, and the corresponding confdata changes as -1->-2->-3->-4 and 3->2-

>1->0, respectively.

For xMate, 7 parameters are needed to complete the confdata, including:

➢ cf1, to record the number of quadrants of the Axis 1;

➢ cf2, to record the number of quadrants of the Axis 2;

➢ cf3, to record the number of quadrants of the Axis 3;

➢ cf4, to record the number of quadrants of the Axis 4;

➢ cf5, to record the number of quadrants of the Axis 5;

➢ cf6, to record the number of quadrants of the Axis 6;

➢ cf7, to record the number of quadrants of the Axis 7;

➢ cfx, to record which position the robot uses to reach the target position. See the explanation below

for details.

Definition

cf1

Data type: int

The quadrant that corresponds to the Axis 1 angle.

Cf2

Data type: int

The quadrant that corresponds to the Axis 2 angle.

Cf3

Data type: int

The quadrant that corresponds to the Axis 3 angle.

Cf4

Data type: int

The quadrant that corresponds to the Axis 4 angle.

Cf5

Data type: int

The quadrant that corresponds to the Axis 5 angle.

Cf6

Data type: int

The quadrant that corresponds to the Axis 6 angle.

Cf7

Data type: int

The quadrant that corresponds to the Axis 7 angle.

cfx

Data type: int

The configuration number of the form used by the robot, ranging from 0 to 7.

Supplementary explanation

For xMate with redundant degrees of freedom, there are up to 8 different inverse kinematics for the

same end-effector Cartesian space pose when the elbow remains the same. The values of cfx from 0

to 7 represent 8 groups of inverse kinematic solutions, which are explained in detail as follows.

0

1
2

3
-1

-2
-3

-4

12 RL Programming Commands

12.1 Variables

169

Copyright © ROKAE 2015-2023. All rights reserved.

cfx
Wrist center is on Axis

1...
Wrist center on the

lower arm…
Axis 6 angle is...

0 Front Front Positive
1 Front Front Negative
2 Front Rear Positive
3 Front Rear Negative
4 Rear Front Positive
5 Rear Front Negative
6 Rear Rear Positive
7 Rear Rear Negative

12.1.11 jointtarget

Explanation

To store the robot’s joint angle and the positions of external axes.

The unit of the joint angle is in degree, and the outer track is in mm.

Definition

robax

Angle of Robot Axis

Data type: double

robax contains 7 members of double type, which store the angle of the robot's 7 joints, in Degree.

extax

External Axis

Data type: double

The extax contains 6 members of double type and can store up to the position of 6 external axes.

If the external axis is a rotation axis, the unit is Degree; if the external axis is a linear axis, the unit is

mm.

Example

For example, in the variable list, a variable is defined as follows:

12 RL Programming Commands

12.1 Variables

170

Copyright © ROKAE 2015-2023. All rights reserved.

The above command defines a point named "jointtarget0" in the joint space. Except that the Axis 5 is

90 degrees, the other axes of the robot are all 0 degrees. The first external axis is set to 10 degrees or

10 mm, depending on the type of external axis; the remaining external axes are set to zero.

12.1.12 load

Explanation

The variable type load is used to store the dynamic parameters of the robot load.

12 RL Programming Commands

12.1 Variables

171

Copyright © ROKAE 2015-2023. All rights reserved.

There are two main types of robot loads:

➢ The tool or work object itself installed at the end-effector of the robot;

➢ Objects that the tool picks up/sucks up.

The variable load does not support individual creation. It can only be manually modified in the tool

calibration interface as a member of the tool-type variables or automatically modified by the control

system using the load identification function.

By defining the dynamic parameters of the load correctly, the robot can achieve optimal performance.

Warning

Be sure to correctly define the dynamic parameters of the end-effector load of the robot, including

the tool itself and the two parts of the object captured by the tool. The wrong definition may lead

to the following consequences:

➢ The robot cannot maximize the ability to use the servo system, resulting in degraded

performance;

➢ The accuracy of the path is reduced, and the positioning error increases;

➢ Overloading of mechanical components results in a reduction in life or damage.

Definition

In the xCore system, the load is treated as a rigid body. There are four parameters for describing the

load.

mass

Mass

Data type: double

It describes the mass of the load, in kg.

cogx

The offset of the center of mass in the X-direction.

Data type: double

If the tool is mounted on the robot, cogx records the offset of the center of mass in the X direction of

the tool frame. If the external tool function is used, the cogx records the offset of the center of mass

of the load held by the gripper in the X direction of the work object frame.

cogy

The offset of the center of mass in the Y direction.

Data type: double

If the tool is mounted on the robot, cogy records the offset of the center of gravity in the Y direction

of the tool frame. If the external tool function is used, the cogy records the offset of the center of

mass of the load held by the gripper in the Y direction of the work object frame.

cogz

The offset of the center of mass in the Z direction.

Data type: double

If the tool is mounted on the robot, cogz records the offset of the center of gravity in the Z direction

of the tool frame. If the external tool function is used, the cogz records the offset of the center of

mass of the load held by the gripper in the Z direction of the work object frame.

q1~q4

Quaternion, to record the direction of the principal axis of inertia of the load.

Data type: double

When the tool is mounted on the robot, the orientation of the principal axis of inertia is described in

the tool frame. See the figure below for details:

12 RL Programming Commands

12.1 Variables

172

Copyright © ROKAE 2015-2023. All rights reserved.

When using an external tool, the direction of the principal axis of inertia is described in the work

object frame. See the figure below:

ix

Inertia x

Data type: double

The inertia of the load along the x-axis, in kgm2.

Correctly defining the load inertia helps to improve the robot's movement accuracy, especially when

handling large objects. If ix, iy, iz are set to zero, the load will be treated as a mass point.

Usually, if the distance from the center of mass of the load to the flange center point is smaller than

the maximum size of the load itself, the load inertia should be defined, as shown in the following

figure:

12 RL Programming Commands

12.1 Variables

173

Copyright © ROKAE 2015-2023. All rights reserved.

iy

Inertia y

Data type: double

The inertia of the load along the y-axis, in kgm2.

iz

Inertia z

Data type: double

The inertia of the load along the z-axis, in kgm2.

12.1.13 orient

Explanation

To store the orientation information of the frame or space rigid body.

Variables of type orient do not support individual creation or modification and are only used as

member variables of some variables.

Definition

The RL language system uses quaternions to represent orientations, so there are a total of 4

components expressed as follows:

q1

Data type: double

The 1st component of the quaternion.

q2

Data type: double

The 2nd component of the quaternion.

q3

Data type: double

The 3rd component of the quaternion.

q4

Data type: double

The 4th component of the quaternion.

About the quaternions

We usually describe the orientation of the rigid body by using the rotation matrix. The quaternion is

another way to describe orientation more concisely.

The four components of the quaternion satisfy the following relationship:

𝑞1
2 + 𝑞2

2 + 𝑞3
2 + 𝑞4

2 = 1

The rotation matrix and the quaternion can be converted to one another. It is supposed that there is a

rotation matrix R,

R = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

]

then:

12 RL Programming Commands

12.1 Variables

174

Copyright © ROKAE 2015-2023. All rights reserved.

𝑞1 =
√𝑟11 + 𝑟22 + 𝑟33 + 1

2
 \

𝑞2 =
√𝑟11 − 𝑟22 − 𝑟33 + 1

2
 𝑠𝑖𝑔𝑛 𝑞2 = 𝑠𝑖𝑔𝑛(𝑟32 − 𝑟23)

𝑞3 =
√𝑟22 − 𝑟11 − 𝑟33 + 1

2
 𝑠𝑖𝑔𝑛 𝑞3 = 𝑠𝑖𝑔𝑛(𝑟13 − 𝑟31)

𝑞4 =
√𝑟33 − 𝑟11 − 𝑟22 + 1

2
 𝑠𝑖𝑔𝑛 𝑞4 = 𝑠𝑖𝑔𝑛(𝑟21 − 𝑟12)

12.1.14 pos

Explanation

It is used to store location information in 3D space.

Variables of pos type do not support individual creation or modification and are only used as member

variables of some variables.

Definition

As the RL language system describes three-dimensional space using the Cartesian frame, so the pos

variable has three components: x, y, and z.

x

Data type: double

The X coordinate of the position.

y

Data type: double

The Y coordinate of the position.

z

Data type: double

The Z coordinate of the position.

12.1.15 pose

Explanation

To store the position and orientation of Cartesian space.

Definition

X

Data type: double

The X coordinate of the position.

Y

Data type: double

The Y coordinate of the position.

Z

Data type: double

The Z coordinate of the position.

Q1

Data type: double

The 1st component of the quaternion.

Q2

Data type: double

The 2nd component of the quaternion.

Q3

Data type: double

The 3rd component of the quaternion.

12 RL Programming Commands

12.1 Variables

175

Copyright © ROKAE 2015-2023. All rights reserved.

Q4

Data type: double

The 4th component of the quaternion.

12.1.16 robtarget

Explanation

Cartesian positions and orientations for storing 3D space, which is used for MoveJ, MoveL, MoveC,

and MoveT commands.

Because of the multi-solvability of the inverse kinematics of the robot, the robot can arrive in many

different forms for the same target pose. In order to clearly specify the configuration form, the

robtarget variable also contains the robot configuration data.

Variables of the robtarget type are automatically created when the motion command is inserted by

auxiliary programming. Manually changing the internal value of the variable may lead to the non-

correspondence between the Pose and ConfData, and the robot cannot execute the motion command

normally.

Warning

The use of Cartesian positions and orientations in robot programs is defined in the work object

frame. If the work object used in the end is not the same as that used during the initial

programming, the robot's motion will deviate from the desired path. Therefore, it shall be

confirmed that the changes in work object will not cause danger in the following two cases:

➢ Use the "Modify Command" function to change the wobj parameter of the command;

➢ The actual work object used is different from the one used in the program commands.

Improper use can result in personal injury or equipment damage!

Definition

trans

Spatial position

Data type: pos

The position offset stored in the reference frame.

rot

Orientation

Data type: orient

The orientation stored in the reference frame.

conf

Robot Configuration

Data type: confdata

To save the configuration data of the robot. Please refer to confdata for details.

extax

External Axes

Data type: double

The extax contains 6 members of double type and can store up to the position of 6 external axes.

If the external axis is a rotation axis, the unit is Degree; if the external axis is a linear axis, the unit is

mm.

Example

For example, in the variable list, a variable is defined as follows:

12 RL Programming Commands

12.1 Variables

176

Copyright © ROKAE 2015-2023. All rights reserved.

A Cartesian space pose named p1 with the position and orientation (in quaternions) as shown above

is defined. The elbow is 10°, and the angles of the Axis 1, 3, 5, and 7 are between 0 and 90°. The

robot belongs to the first group of morphological configurations (see confdata for details), and all

external axes are in zero.

12.1.17 signalxx

Explanation

Signalxx type variables are used to describe I/O signals.

All signalxx type variables need to be defined in the "Input/Output" and then used in the program.

Direct declaration in the program is not supported.

Description

Signalxx currently only supports digital input and output, including the following variable types:

Variable type Used to describe... Description
signaldi Digital input signal The value is True or False, and only indicates the status
signaldo Digital output signal The value is True or False and is assigned to output

12 RL Programming Commands

12.1 Variables

177

Copyright © ROKAE 2015-2023. All rights reserved.

signalgi
Digit group input

signal

A segment of continuous physical input port is defined as a

binary number that can be converted to decimal for use in

RL. It supports up to 16 DIs to constitute the group input.

Therefore, the value of signalgi ranges from 0 to (2^n -1),

with n as the number of DI points contained in group input

signalgo
Digit group output

signal

A segment of continuous physical output port is defined as
a binary number that can be converted to decimal for use in

RL. It supports up to 16 DOs to constitute the group output.

Therefore, the value of signalgo ranges from 0 to (2^n -1),

with n as the number of DO points contained in the group

output

The signaldo and signalgo types contain only signal references and can be assigned using separate

commands (e.g. SetDO, SetGO, etc.).

Signaldi and signalgi can be used to directly obtain the value of the corresponding input signal in the

program.

Example

Example 1

//Use the state of the digital input as a criterion for judgment

IF (di1 == true)

 do something…

ENDIF

Example 2

//Use the state of the digital group input as a criterion for judgment

For example, if the definition group input gi2 maps the first three bits of the 1st byte of Profinet IO,

then when the values of bit0 to bit2 are 0, 1, and 1, the value of gi2 is 110 (6 after being converted to

int). The same goes for group output (signalgo) as well.

IF (gi2 == 8)

 do something…

endif

Notes

➢ It is not supported to define/declare variables of type signalxx in the program. If such usage

occurs, the program will report an error. Before using variables of signalxx type, please

configure them in the IO signal list.

Notes

1. The scope of the signalxx variable is System, and its priority, when compared with other

scope types, is System> GLOBAL> LOCAL.

2. If the variables declared in the Signal of the IO configuration interface and in the RL

programs have the same name, the variable of scope in a lower level will be selected.

12.1.18 speed

Explanation

To define the speed of the robot and the external axes.

For users' convenience, the system presets the commonly used speed variables, which can be directly

selected through auxiliary programming. For details, please refer to Insert Command.

Definition

The speed-type variable contains 5 member variables: Joint Velocity Percentage, TCP Linear

Velocity, Orientation Velocity, External Axis Linear Velocity, and External Axis Angular Velocity.

Joint Velocity Percentage

Data type: double

It is used to specify the motion speed when the joint movement command is applied. It is applicable

to the commands MoveAbsJ and MoveJ. The value ranges from 1% to 100%.

12 RL Programming Commands

12.1 Variables

178

Copyright © ROKAE 2015-2023. All rights reserved.

TCP Linear Velocity

Data type: double

It is used to define the linear velocity of the TCP. The value ranges from 0.001 mm/s to 7000 mm/s.

Orientation Velocity

Data type: double

It is used to define the rotation speed of the tool, ranging from 0.001 degrees/s to 500 degrees/s.

External Axis Linear Velocity

Data type: double

It is used to define the motion speed of the external linear axis, ranging from 0 mm/s to 5000 mm/s.

External Axis Angular Velocity

Data type: double

It is used to define the motion speed of the external rotary axes, ranging from 0 degrees/s to 1000

degrees/s.

Example

In the variable list:

The image above shows a definition of a speed variable named speed0, in which the joint rotation

speed is 40% of the maximum allowable speed, the TCP linear speed is 300 mm/s, the space rotation

speed is 100°/s, and the external axis angular velocity is 200°/s, and the external axis linear velocity

is 1,000 mm/s.

Predefined speed variables

The system predefines some common speed variables, as shown in the following table.

12 RL Programming Commands

12.1 Variables

179

Copyright © ROKAE 2015-2023. All rights reserved.

Name
Joint Velocity

Percentage
TCP Linear

Velocity
Orientation

Velocity
External Axis

Angular Velocity
External Axis

Linear Velocity
v5 1% 5 mm/s 200°/s 1000°/s 5000 mm/s
v10 3% 10 mm/s 200°/s 1000°/s 5000 mm/s
v25 5% 25 mm/s 200°/s 1000°/s 5000 mm/s
v30 5% 30 mm/s 200°/s 1000°/s 5000 mm/s
v40 5% 40 mm/s 200°/s 1000°/s 5000 mm/s
v50 8% 50 mm/s 200°/s 1000°/s 5000 mm/s
v60 8% 60 mm/s 200°/s 1000°/s 5000 mm/s
v80 8% 80 mm/s 200°/s 1000°/s 5000 mm/s
v100 10% 100 mm/s 200°/s 1000°/s 5000 mm/s
v150 15% 150 mm/s 200°/s 1000°/s 5000 mm/s
v200 20% 200 mm/s 200°/s 1000°/s 5000 mm/s
v300 30% 300 mm/s 200°/s 1000°/s 5000 mm/s
v400 40% 400 mm/s 200°/s 1000°/s 5000 mm/s
v500 50% 500 mm/s 200°/s 1000°/s 5000 mm/s
v600 60% 600 mm/s 200°/s 1000°/s 5000 mm/s
v800 70% 800 mm/s 200°/s 1000°/s 5000 mm/s
v1000 100% 1000 mm/s 200°/s 1000°/s 5000 mm/s
v1500 100% 1500 mm/s 200°/s 1000°/s 5000 mm/s
v2000 100% 2000 mm/s 200°/s 1000°/s 5000 mm/s
V3000 100% 3000 mm/s 200°/s 1000°/s 5000 mm/s
v4000 100% 4000 mm/s 200°/s 1000°/s 5000 mm/s
v5000 100% 5000 mm/s 200°/s 1000°/s 5000 mm/s
v6000 100% 6000 mm/s 200°/s 1000°/s 5000 mm/s
v7000 100% 7000 mm/s 200°/s 1000°/s 5000 mm/s
vmax 100% infinite 200°/s 1000°/s 5000 mm/s

Notes

All space rotation speeds in the system's pre-defined speed variable are 200°/s. If there are special

requirements on the rotation speed of the end-effector of the robot, a new speed variable can be

defined for use according to the process requirements.

12.1.19 tool

Explanation

The tool-type variables are used to record tool parameters, including TCP, orientation, and dynamic

parameters of the tools used by the robot.

The robot uses tools to interact with the outside world, so the tool variable will affect the motion of

the robot from the following aspects:

➢ Only the TCP will move according to the programmed path and speed. When the robot executes

a pure spatial rotation, only TCP will remain motionless;

➢ The motion path and speed specified during programming refer to the path and speed of the tool

frame relative to the work object frame. Therefore, replacing a well-calibrated tool or work

object does not affect the shape and speed of the path;

➢ When using external tools, the speed of programming refers to the speed of a work object

(relative to external tools).

Note that when using the external tool, tframe in the tool-type variable will record the zero position

and orientation offset of the external tool, while tload will record the dynamic parameters of the

gripper that is installed at the end-effector of the robot for grasping work object.

The data of the tool-type variable is stored in the database. When the program is loaded, it is read by

the program editor from the database. Therefore, do not try to modify the tool-type variable directly

in the program editor, and thus the unpredictable errors will be avoided. If you need to modify the

tool-type variable, please modify it through the calibration interface. See the Calibration of the tool

frame for details.

Warning

Be sure to correctly define the dynamic parameters of the end-effector load of the robot, including

the tool itself and the two parts of the object captured by the tool. The wrong definition may lead

12 RL Programming Commands

12.1 Variables

180

Copyright © ROKAE 2015-2023. All rights reserved.

to the following consequences:

➢ The robot cannot maximize the ability to use the servo system, resulting in degraded

performance;

➢ The accuracy of the path is reduced, and the positioning error increases;

➢ Overloading of mechanical components results in a reduction in life or damage.

Definition

robhold

Data type: bool

It is used to define whether the tool is installed on the robot. True indicates that the tool is installed

on the robot. False indicates that the tool is not installed on the robot and an external tool is being

used.

When making a jog or executing a program, only one of the robhold parameters can be True in the

tool/work object combination used at the same time. That is, if the robhold of the tool is True, the

corresponding work object robhold must be false, and vice versa, otherwise, the robot will prompt an

error, and it is impossible to make a jog or execute the corresponding program command.

tframe

Tool frame

Data type: pose

Record the tool frame of the tool used, including:

➢ TCP represents the offset in the x, y, and z directions relative to the robot end-effector flange

frame, in millimeters.

➢ The orientation offset of the tool frame relative to the flange frame is expressed in

quaternion. See the following figure for details:

Notes

When using the external tool function, the TCP and orientation are defined relative to the world

frame.

12 RL Programming Commands

12.1 Variables

181

Copyright © ROKAE 2015-2023. All rights reserved.

tload

Dynamic parameters of the tool

Data type: load

To record the dynamic parameters of the tool. For the common tool, tload describes the dynamic

parameters of the entire tool. For external tools, tload describes the dynamic parameters of the

gripper used by the robot (holding the work object).

For general tools installed on the robot, the load parameters include:

➢ The mass of the tool (weight), in kg;

➢ The center of gravity of the tool, described in the flange frame, in millimeters (mm);

➢ The direction of the principal axis of inertia, described in the flange frame; and

➢ The inertia magnitude of the tool along the principal axis of inertia, in kgm2. If all inertia

components are defined as 0 kgm2, the tool is treated as a Point Mass.

Notes

If the robot is using an external tool, then the tload member is used to record the dynamic

parameters of the gripper installed on the robot. The meaning of the specific parameters remains

unchanged.

Notes

Please note that the tload members only define the dynamic parameters of the gripper used by the

robot (holding the work object). The dynamic parameters of the gripped work object are not

included. To ensure that the robot performs optimally under all circumstances, you need to define

two tool variables to handle this situation:

➢ A tool saves all parameters of the gripper itself;

➢ Another tool saves all parameters of the gripper + gripped work object;

The use of different tools in the motion command would help implement the switching function

with or without load.

Example

12 RL Programming Commands

12.1 Variables

182

Copyright © ROKAE 2015-2023. All rights reserved.

A work object named tool2 is defined, where the parameters are:

➢ The tool is mounted on the robot;

➢ TCP offsets in the XYZ directions relative to the flange frame are 100, 0, 220, and the orientation

is the same as the flange frame.

➢ The mass of the tool is 2kg, and the offset of the center of mass relative to the origin of the flange

frame in the XYZ directions are 20, 0, 50mm, respectively;

The tool is treated as a mass point and the inertia data is zero.

12.1.20 trigdata

Explanation

trigdata is used to store information data about the trigger events during robot motion, including

trigger conditions and trigger actions.

The trigger condition is usually reaching a specified location on the path; the trigger action can be

setting IO, setting variables, etc.

Variables of type trigdata cannot be defined by the assignment operator and can only be defined by a

specific RL command, so the information stored in each trigdata variable depends on the Trig

command as used, for example, the TrigIO, etc.

12 RL Programming Commands

12.1 Variables

183

Copyright © ROKAE 2015-2023. All rights reserved.

Then, it can be used by the corresponding movement commands TrigL, TrigC, TrigJ, etc.

Example

The following example shows how to use the trigdata:

Example 1

VAR trigdata gripopen

TrigIO gripopen,0.5,do1,true

TrigL p1,v500,gripopen,fine,tool1

12.1.21 wobj

Explanation

wobj is an abbreviation for Work Object. Work object refers to an object processed, handled, or

transported by a robot.

All the positions used in the motion command are defined in the work object frame (if no work

object frame is specified, it defaults to the world frame. The world frame can be seen as a wobj0).

There are several benefits in doing this:

➢ The location of many processing points can be obtained from the design drawing of the work

object and used directly;

➢ When the robot is reinstalled or the work object is moved, you only need to re-calibrate the work

object frame to reuse the previous program and avoid reprogramming.

➢ With a suitable sensor provided, vibrations or slight movements of the work object can be

automatically compensated.

Under normal circumstances, if you do not define a specific work object frame, the control system

will then regard the world frame as the default work object frame wobj0. However, when using

external tools, the work object frame must be defined because the programming path and speed refer

to the path and speed of the work object, rather than the tool.

Usually, the work object frame is defined relative to the user frame, but if the user does not specify a

user frame, the work object frame is defined by default relative to the world frame. For details, see

the Robot's frames.

The work object actually consists of two frames, the user frame and the work object frame. Inserting

a user frame at the upper layer of the work object frame is to support the situation where multiple

identical work objects need to be machined. For an explanation of the defining relationships of the

relevant coordinates, see the explanation of oframe in the "Definitions" section.

Notes

The data of the wobj-type variable is stored in the database. When the program is loaded, it is read

by the program editor from the database. Therefore, do not try to modify the wobj-type variable

directly in the program editor, and thus the unpredictable errors will be avoided. If you need to

modify the wobj-type variable, please modify it through the Calibration interface. For details,

please refer to the Definition of the work object.

Definition

robhold

It is used to define whether the work object is mounted on the robot. True indicates that the work

object is mounted on the robot and the external tool is currently being used. False indicates that the

work object is not mounted on the robot and the normal tool is currently being used.

ufprog

User Frame Programmed

Variable type: bool

It is used to define whether the user frame is fixed or moving. True indicates that the user frame is

fixed, False indicates that the user frame is moving, e.g., defines whether it is on an external

positioner or another robot.

12 RL Programming Commands

12.1 Variables

184

Copyright © ROKAE 2015-2023. All rights reserved.

This value is mostly used when the robot is required to coordinate its movement with the positioner

or other robots.

ufmec

User Frame Mechanical Unit

Data type: string

The mechanical unit name is used to specify which mechanical unit the user frame is bound to. It is

useful only if ufprog is false.

oframe

Work Object Frame

Data type: pose

It is used to store the origin and orientation of the work object frame.

uframe_id

Id of User Frame

Data type: int

It is used to store the id of the user frame. The corresponding user frame can be found by id.

When using normal tools (non-external tools), the frame definition chain is as follows:

➢ The work object frame is defined relative to the user frame;

➢ The user frame is defined relative to the world frame.

When using external tools, the frame definition chain is as follows:

➢ The work object frame is defined relative to the user frame;

➢ The user frame is defined relative to the flange frame.

12 RL Programming Commands

12.1 Variables

185

Copyright © ROKAE 2015-2023. All rights reserved.

Example

In the variable list:

To define the work object named wobj2, where the parameters are:

➢ The work object is mounted on the robot;

➢ The work object frame is fixed and does not move with the external positioner or other robots;

➢ The coordinate values of the origin of the work object frame in the user frame are 300 mm, 600

mm, 200 mm, and the orientation is consistent with the user frame;

The user frame id is 1.

12.1.22 zone

12 RL Programming Commands

12.1 Variables

186

Copyright © ROKAE 2015-2023. All rights reserved.

Explanation

The zone variable is used to define how a certain motion ends, or to define the size of the turning

zone between two motion trajectories.

For the same target point of robot commands, there are two processing methods in the motion

command:

1. When it is processed as a stop-point, the robot will move to the target point and reach the target

point at a speed of 0 before continuing to execute the next command;

2. When it is processed as a transition point, the robot will not move to the target point but will

start proceeding to the next target point at a place that is several millimeters away from such a

target point. The turning path will deviate from the programmed path. We call the transition

area between the two trajectories a turning area. See the following figure for details:

The size of the turning zone cannot exceed half of the path length. If it is exceeded, the system will

automatically reduce the turning zone to half the total path length.

The use of turning zones prevents the robot from starting and stopping frequently, significantly

reducing the cycle time.

Definition

Joint space trajectories and Cartesian space trajectories define turning zones with different

parameters. The variable contains two parts: distance and percent.

distance

Size of turning zone in Cartesian space

Data type: double

It is used for the commands MoveL, MoveC, and MoveT to define the size of the turning zone for

Cartesian space trajectories, that is, when the robot moves to a point with a distance of several

millimeters to the target point, it starts to move to the next target point, in millimeters. The value

ranges from 0 to 200 mm.

percent

Turning percentage

Data type: double

It is used for MoveJ and MoveAbsJ, indicating how far it is to the target angle when starting turning.

100% represents half the value of the entire rotation angle. For command MoveL with pure space-

rotation, the parameter Percent is used instead of Distance.

Example

For example, in the variable list, a variable is defined as follows:

12 RL Programming Commands

12.1 Variables

187

Copyright © ROKAE 2015-2023. All rights reserved.

A zone variable is defined, in which the size of the Cartesian turning zone is 100 mm and the size of

the joint space turning zone is 50%.

Pre-defined variables of turning zone

The system predefines some common turning zone variables, as shown in the following table.

Name
Size of turning zone in

Cartesian space
Turning percentage

fine 0 mm 0%
z1 1 mm 1%
z5 5 mm 3%
z10 10 mm 5%
z15 15 mm 8%
z20 20 mm 10%
z30 30 mm 15%
z40 40 mm 20%
z50 50 mm 25%
z60 60 mm 30%
z80 80 mm 40%
z100 100 mm 50%
z150 150 mm 75%
z200 200 mm 100%

Use restrictions

In some special cases, the turning zone will be canceled. The system will report the log "Corner Path

Failed".

➢ At least one of the two trajectories is too short (1 mm/0.001 rad);

➢ The two trajectories are nearly parallel and the direction of motion is opposite;

➢ The two trajectories perform pure rotation with the motion axis reversed. Such that only the end-

effector axis rotates forward in the previous trajectory, and only the end-effector axis rotates

reverse in the latter trajectory.

When a warning for "Turning Zone Canceled" is generated, the program automatically treats the

affected command target point as a stop-point.

In addition to the special cases above, all logic commands will cancel the turning zone of the

previous motion command.

12 RL Programming Commands

12.1 Variables

188

Copyright © ROKAE 2015-2023. All rights reserved.

12.1.23 torqueinfo

Explanation

Describes the forces and torques applied to the robot

It includes joint space torque information and Cartesian space torque information

Definition

joint_torque

Data type: Joint space torque information

cart_torque

Data type: Cartesian space torque information

joint_torque.measure_torque

Data type: double array

Information of measured force in the joint space and the torque applied to each axis measured by the

force sensor

joint_torque.external_torque

Data type: double array

Information of external force in the joint space, and information of the torque applied to each axis

measured by the controller based on the robot model and measured force

cart_torque.m_force

Data type: double array

Force in all directions (xyz) in the Cartesian space

cart_torque.m_torque

Data type: double array

Torque in all directions (xyz) in the Cartesian space

Examples

The following example shows how to use variable torqueinfo:

Example 1

TorqueInfo tmp_info = GetEndtoolTorque(tool1, wobj1)

//Obtain the information architecture of the torque applied to the tool at the end-effector of the robot

in the case of tool1 wobj1

…

print(tmp_info.joint_torque.measure_torque)

print(tmp_info.joint_torque.external_torque)

//Print the measured force and external force of each axis

…

print(tmp_info.cart_torque.m_torque)

//Print Cartesian space torque

…

print(tmp_info.cart_torque.m_force[0])

print(tmp_info.cart_torque.m_torque[0])

//Print information of force and torque in X direction

12.1.24 SocketServer

Explanation

A Socket TCP server is established on the controller to listen for connections initiated by external

devices as the client. This server is only used to listen for connection requests and multiple

connections are supported. When a connection is established, a new SocketConn object is generated

for communication.

Notes

1、 Do not create (OpenDev) and destroy (CloseDev) server resources too often as it requires

time for system resource application and release. It is recommended to keep at least a

500ms time interval between creating and destroying resources, otherwise, system

resources will be overloaded and cause problems.

12 RL Programming Commands

12.1 Variables

189

Copyright © ROKAE 2015-2023. All rights reserved.

2、 This command only creates a server resource object, and the server creation is not

completed. The server needs to enter the listening state via OpenDev and SocketAccept.

3、 The server supports multiple connections.

Definition

ip

Data type: string

The control system uses the ip parameter to match the network interface controller (NIC) and uses

the corresponding NIC for network listening. If this parameter is set to "0.0.0.0", it means listening

for the connections of all NICs. In most cases, it can be set to "0.0.0.0".

port

Data type: int

Listening port. When an external client initiates a connection, specify the value of the server port set

for this purpose.

name

Data type: string

The unique identifier of the server used in the RL program. It is unique within the project and can be

shared between multiple tasks without naming conflicts.

Examples

Example 1

SocketServer ss = {"192.168.0.160", 8090, "svr"} //Only listen for NIC with ip set to 192.168.0.160

SocketConn conn = SocketAccept("svr")

Example 2

SocketServer ss = {"0.0.0.0", 8090, "svr"} //Listen for all NICs of the robot

SocketConn conn = SocketAccept("svr")

12.1.25 SocketConn

Explanation

Socket TCP connection object, used for communication to external devices. There are two types:

1） The robot, as a client, initiates a connection and communication through the object to the TCP

server of the external device.

2） The robot acts as a server for communication connections to the counterpart device generated

when a connection is initiated by a TCP client of the external device. When multiple TCP client

connections are initiated by different external devices, one connection is generated for each

connection.

Definition

ip

Data type: string

When the robot is used as a client, this parameter indicates the ip of the external device's server.

When the robot is used as a server, this parameter indicates the ip of the external client when a

connection is established by the external device.

port

Data type: int

Listening port. When the robot initiates a connection, the server port of the external device should be

specified.

name

Data type: string

The unique identifier of the connection used in the RL program. It is unique within the project and

can be shared between multiple tasks among connections and between connection and server. Server

names should not conflict within the project.

12 RL Programming Commands

12.1 Variables

190

Copyright © ROKAE 2015-2023. All rights reserved.

cache

Data type: int

Size of the cache, indicating max data received that can be cached. It can be left blank. 1 by default.

suffix

Data type: string

Terminator, indicating the end of a message. It can be left blank. "\r" by default.

attr

Data type: string

Connection attribute.

"incoming": Local server, connected by the opposite-end client. ip and port identify the client

information.

"outgoing": Local client, connected to the external server. ip and port identify the opposite-end server

connected.

"" and others: Unavailable connection, indicating that the connection has not been opened or

unestablished connection has been found.

state

Data type: string

Current communication connection status. Closed: connection closed; established: connection

established and working properly.

Notes

1、 When used as a client, the ip and port information should be set by the user. When used as

a server, the ip and port information should be automatically obtained from the accept

command. Do not modify these two values easily after the connection is established,

unless you are very clear about the use of these two values to avoid errors in program

logic and operation.

2、 suffix can be reset at any time and can take effect until the next read. Use this feature with

caution, as it can cause communication data errors. suffix should be set before

communication and should not be modified again.

Examples

Example 1
//Server ip "192.168.0.202", port 8090, connection name "clt", cache default to 1, and suffix default to "\r"

SocketConn scnn1 = {"192.168.0.202", 8090, "clt"}

Example 2
//Server ip "192.168.0.203", port 8091, connection name "clt1", cache 2, and suffix default to "\r"
SocketConn scnn2 = {"192.168.0.203", 8091, "clt1", 2}

Example 3
//Server ip "192.168.0.204", port 8092, connection name "clt2", cache 2, and suffix "\n"
SocketConn scnn3 = {"192.168.0.204", 8092, "clt2", 2, "\n"}

Example 4
//Used as server, connection established by the external device

//Server ip "192.168.0.204", port 8092, connection name "clt2", cache 2, and suffix "\n"

SocketConn conn = SocketAccept("svr1")

Print(conn.ip) //ip of the external device

Print(conn.port) //Port of the external device to establish the connection

Print(conn.cache) //Buffer queue for receiving messages

Print(conn.suffix) //Sending and receiving suffix

12 RL Programming Commands

12.2 Functions

191

Copyright © ROKAE 2015-2023. All rights reserved.

12.2 Functions

12.2.1 Functions

Explanation

Use of functions can simplify the code structure, improve the readability and reuse rate of code. The

user can define the program segment as a new function that needs to be executed frequently so that it

can be conveniently called in the main program at any time.

Function definition

The function is defined as follows:

SCOPE PROC RoutineName()

…

…

//do something

…

…

ENDPROC

Where:

1. SCOPE is the function scope, which supports both the GLOBAL and LOCAL;

2. PROC is the defining keyword of the function;

3. RoutineName is the function name. The naming rules are the same as the variable naming rules.

For details, see the Variable naming rules.

Function call

When calling a function, enter the function name directly in the program editor:

RoutineName()

Only other GLOBAL-level functions in this project or LOCAL-level functions in this module file

can be called. Recursive calls are not supported. Cross calls between two sub-functions is also not

supported.

Calling a function is treated as a separate program command in the compiler.

Notes

➢ It is not allowed to define a function in a function.

12.3 Commands

12.3.1 Variable type conversion

12.3.1.1.1 StrToByte

Explanation

StrToByte is used to convert a string with a particular format to byte data.

Return value

Data type: byte

It represents the byte data obtained from the conversion.

Definition

StrToByte (ConStr, [\Hex] | [\Okt] | [\Bin] | [\Char])

ConStr

Data type: string

12 RL Programming Commands

12.3 Commands

192

Copyright © ROKAE 2015-2023. All rights reserved.

It represents the string to be converted. If the optional parameter does not exist, it is converted to

decimal by default.

\Hex

Identifier, convert by hexadecimal.

\Okt

Identifier, convert by octal.

\Bin

Identifier, converted in binary.

\Char

Identifier, converted according to Ascii character format.

Example

Example 1

VAR byte data

data = StrToByte(“10”) //10

data = StrToByte(“AE” \Hex) //174

data = StrToByte(“176” \Okt) //126

data = StrToByte(“00001010” \Bin) //10

data = StrToByte(“A” \Char) //65

Use restrictions

➢ In the decimal system, the range cannot exceed 0-255, otherwise, an error is reported;

➢ In the hexadecimal system, the range cannot be larger than FF, otherwise, an error is reported;

➢ In the octal system, the range cannot be larger than 377, otherwise, an error is reported;

➢ In the binary system, the range cannot be larger than 11111111, otherwise, an error is reported.

12.3.1.1.2 StrToDouble

Explanation

StrToDouble is used to convert a string to floating-point data.

Return value

Data type: double

Floating-point variable converted from the string.

Definition

StrToDouble (ConStr)

ConStr

Data type: string

It represents the string to be converted.

Example

Example 1

VAR double db_data = StrToDouble("-10") // -10.0

db_data = StrToDouble("45.678") // 45.678

Use restrictions

➢ If a non-decimal floating-point number is entered, an error is reported.

12 RL Programming Commands

12.3 Commands

193

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.1.1.3 StrToInt

Explanation

StrToInt is used to convert a string to integer data.

Return value

Data type: int

Integer variable, converted from the string.

Definition

StrToInt (ConStr)

ConStr

Data type: string

It represents the decimal numeric string to be converted.

Example

Example 1

VAR int int_data = StrToInt("-10") // -10

int_data = StrToInt("45678") // 45678

Use restrictions

➢ The range of variables to be converted is -231 - 231. If the range is exceeded, an error is reported.

➢ If a non-decimal number is entered, an error is reported.

12.3.1.1.4 ByteToStr

Explanation

It is used to convert byte-type data to string-type data in a specified format.

Return value

Data type: string

The converted string-type data.

Definition

ByteToStr (BitData [\Hex] | [\Okt] | [\Bin] | [\Char])

BitData

Data type: byte

The byte-type data to be converted. Convert by decimal by default.

\Hex

Identifier, convert by hexadecimal.

\Okt

Identifier, convert by octal.

\Bin

Identifier, convert by binary.

\Char

Identifier, convert under Ascii character format.

Example

Example 1

VAR byte data1 = 122

VAR string str1

str1 = ByteToStr(data1) //”122”

12 RL Programming Commands

12.3 Commands

194

Copyright © ROKAE 2015-2023. All rights reserved.

str1 = ByteToStr(data1 \Hex) //”7A”

str1 = ByteToStr(data1 \Okt) //”172”

str1 = ByteToStr(data1 \Bin) //”01111010”

str1 = ByteToStr(data1 \Char) //”z”

Define byte-type variable data1 and assign it with 122, convert data1 to string-type data: 122 by

decimal; 7A by hexadecimal;172 by octal; 01111010 by binary; and

z by character.

12.3.1.1.5 DecToHex

Explanation

It is used to convert a decimal number to a hexadecimal number.

Return value

Data type: string

It represents the hexadecimal data obtained from the conversion, represented by 0-9, a-f, A-F.

Parameter

DecToHex(str)

str

Data type: string

It represents the decimal data to be converted, represented by 0-9.

Use restrictions

➢ Data range from 0 to 2147483647 or 0 to 7ffffffff.

12.3.1.1.6 DoubleToByte

Explanation

It is used to convert a double-type variable or a double array to a byte array.

Return value

Data type: byte array

It represents the byte array obtained from the conversion, each double data is converted to 8 byte-

type data.

Parameter

DoubleToByte(dou1)

dou1

Data type: double

The double-type variable to be converted.

12.3.1.1.7 DoubleToStr

Explanation

It is used to convert a double-type variable to a string.

Parameter

DoubleToStr(Val, Dec)

12 RL Programming Commands

12.3 Commands

195

Copyright © ROKAE 2015-2023. All rights reserved.

Val

Data type: double

The double-type variable to be converted.

Dec

Data type: int

The number of decimal places to be kept.

Use restrictions

➢ The maximum number of decimal places is 15 digits.

12.3.1.1.8 HexToDec

Explanation

It is used to convert a hexadecimal number to a decimal number.

Return value

Decimal Integer data obtained from the conversion, represented by 0-9.

Parameter

HexToDec(str)

str

Data type: string

The hexadecimal data to be converted, represented by 0-9, a-f, A-F.

Use restrictions

➢ Data range from 0 to 2147483647 or 0 to 7ffffffff.

12.3.1.1.9 IntToByte

Explanation

It is used to convert an int-type variable or an int array to a byte array.

Return value

It represents the byte array obtained from the conversion, each int data is converted to four byte data.

Data type: byte array

Parameter

IntToByte(int1)

int1

Data type: int or int array

It represents the int-type variable or int array to be converted.

Use restrictions

➢ Data range from -2147483647 to 2147483647.

12.3.1.1.10 IntToStr

Explanation

It is used to convert integer to string.

Return value

It represents the string obtained from the conversion.

12 RL Programming Commands

12.3 Commands

196

Copyright © ROKAE 2015-2023. All rights reserved.

Parameter

IntToStr(int1)

int1

Data type: int

It represents the integer to be converted.

Use restrictions

➢ Data range from -2147483647 to 2147483647.

12.3.2 Motion commands

12.3.2.1 MoveAbsJ

Explanation

MoveAbsJ (Move Absolute Joint) is used to move the robot and the external axis to a position

defined by the angle of the axis for rapid positioning or moving the robot to a precise axis angle. All

axes move synchronously and the end-effector of the robot moves along an irregular curve. Please be

aware of the risk of collision.

The tool parameter used in the MoveAbsJ command would not affect the end position of the robot,

but the tool parameters are still being used by the controller for dynamics calculations.

Parameter

MoveAbsJ ToJointPos, Speed, Zone, Tool, [Wobj]

TThe parameter in [] is optional and can be omitted.

TojointPos

Target joint angle (To Joint Position)

Data type: jointtarget

The target angle and position value of the robot and the external axis.

Speed

Motion Speed

Data type: speed

It is used to specify the motion speed of the robot when it executes MoveAbsJ, including the

translation speed of the robot end-effector, the rotation speed, and the motion speed of the external

axis.

Zone

Turning Zone

Data type: zone

It is used to define the size of the turning zone for the current trajectory.

Tool

Data type: tool

The tool used when executing the trajectory.

The command MoveAbsJ calculates the motion speed and the size of the turning zone using the tool's

TCP data.

[Wobj]

Work Object

Data type: wobj

The work object used when executing this trajectory.

When the tool is installed on the robot, this parameter can be ignored;

When using external tools, this parameter must be specified, and the robot will calculate the motion

speed and the size of the turning zone by using the data saved in wobj.

12 RL Programming Commands

12.3 Commands

197

Copyright © ROKAE 2015-2023. All rights reserved.

Example

The following are some examples for MoveAbsJ:

Example 1

MoveAbsJ j10, v500, fine, tool1

The robot moves along an irregular path at a velocity of v500 to the absolute joint angle as defined

by j10 using tool1, with a turning zone of 0.

Example 2

MoveAbsJ startpoint, v1000, z100, gripper, phone

The robot moves along the irregular path to the absolute joint angle defined by the startpoint at a

velocity of v1000 in the work object frame by using the tool gripper, with a turning zone of 100 mm.

12.3.2.2 MoveJ

Explanation

MoveJ (Move The Robot By Joint Motion) is used to move the robot from one point to another when

the motion trajectory of the robot end-effector is not required. All axes move synchronously and the

end-effector of the robot moves along an irregular curve. Please be aware of the risk of collision.

The biggest difference between the commands MoveJ and MoveAbsJ is that the given target point

format is different. The target point of MoveJ is the spatial pose of the tool (TCP) rather than the

joint axis angle.

Parameter

MoveJ ToPoint, Speed, Zone, Tool, [Wobj]

The parameter in [] is optional and can be omitted.

ToPoint

Target pose (To Point)

Data type: robtarget

The target position described in the Cartesian space.

Speed

Motion Speed

Data type: speed

It is used to specify the motion speed of the robot when it executes MoveJ, including the translation

speed of the robot end-effector, the rotation speed, and the motion speed of the external axis.

Zone

Turning Zone

Data type: zone

It is used to define the size of the turning zone for the current trajectory.

Tool

Data type: tool

The tool used when executing the trajectory.

The command MoveJ calculates the motion speed and the size of the turning zone using the tool's

TCP data.

[Wobj]

Work Object

Data type: wobj

The work object used when executing this trajectory.

When the tool is installed on the robot, this parameter can be ignored;

When using external tools, this parameter must be specified, and the robot will calculate the motion

speed and the size of the turning zone by using the data saved in wobj.

12 RL Programming Commands

12.3 Commands

198

Copyright © ROKAE 2015-2023. All rights reserved.

Example

The following are some examples for MoveJ:

Example 1

MoveJ p30, v100, z50, tool1

The robot moves the TCP along the irregular path to the target point defined by p30 at a velocity of

v100 using the tool1, with a turning zone of 50 mm.

Example 2

MoveJ endpoint, v500, z50, gripper, wobj2

The robot moves the TCP along the irregular path to the target point defined by the endpoint at a

velocity of v500 in the work object frame wobj2 by using the gripper, with a turning zone of 50 mm.

12.3.2.3 MoveL

Explanation

MoveL (Move Line) is used to move the TCP along a straight line to a given target position.

When the starting and ending orientations are different, the orientation will be rotated synchronously

with the position to the endpoint.

Since the translation and rotation speeds are specified separately, the final motion time of the MoveL

command depends on the change time of orientation, position, and elbow (whichever is longer) in

order not to exceed the specified speed limit. Therefore, when performing certain trajectories (for

example, small displacements but with large changes in orientation), if the robot is moving at a

significantly slower or faster speed, please check whether the rotation speed setting is reasonable.

When you need to keep the TCP stationary by only adjusting the tool orientation, you can achieve

this by specifying the starting point and endpoint for MoveL with the same position but with a

different orientation.

Parameter

MoveL ToPoint, Speed, Zone, Tool, [Wobj]

The parameter in [] is optional and can be omitted.

ToPoint

Target pose (To Point)

Data type: robtarget

The target position described in the Cartesian space.

Speed

Motion Speed

Data type: speed

It is used to specify the motion speed of the robot when it executes MoveL, including the translation

speed of the robot end-effector, the rotation speed, and the motion speed of the external axis.

Zone

Turning Zone

Data type: zone

It is used to define the size of the turning zone for the current trajectory.

Tool

Data type: tool

The tool used when executing the trajectory. The speed in the command refers to the tool’s TCP

speed and rotation speed.

[Wobj]

Work Object

Data type: wobj

The work object used when executing this trajectory.

When the tool is installed on the robot, this parameter can be ignored;

12 RL Programming Commands

12.3 Commands

199

Copyright © ROKAE 2015-2023. All rights reserved.

When using external tools, this parameter must be specified, and the robot will calculate the motion

speed and the size of the turning zone by using the data saved in wobj.

Example

The following are some examples for MoveL:

Example 1

MoveL p10, v1000, z50, tool0

The robot moves the TCP along the straight path to the target point defined by p10 at a velocity of

v1000 using the tool0, with a turning zone of 50 mm

Example 2

MoveL endpoint, v500, z50, gripper, wobj2

The robot moves the TCP along the straight path to the target point defined by the endpoint at a

velocity of v500 in the work object frame wobj2 by using the gripper, with a turning zone of 50 mm.

12.3.2.4 MoveC

Explanation

MoveC (Move Circle) is used to move the TCP along the arc through the middle auxiliary point to

the given target position.

When the starting and ending orientations are different, the orientation will rotate synchronously as

the position moves to the end position. The orientation at the auxiliary point does not affect the arc

motion process.

Since the translation and rotation speeds are specified separately, the final motion time of the MoveC

command depends on the change time of orientation, position, and elbow (whichever is longer) in

order not to exceed the specified speed limit. Therefore, in certain trajectories (for example, small

displacements but with large changes in orientation), if the robot is moving at a significantly slower

or faster speed, please check whether the rotation speed setting is reasonable.

Parameter

MoveC AuxPoint, ToPoint, Speed, Zone, Tool, [Wobj]

The parameter in [] is optional and can be omitted.

AuxPoint

Auxiliary Point

Data type: robtarget

The position of the auxpoint described in the Cartesian space is used to determine the size of the arc

and the direction of motion. The orientation of this point does not affect the execution of the final

trajectory.

ToPoint

Target pose (To Point)

Data type: robtarget

The target position described in the Cartesian space.

Speed

Motion Speed

Data type: speed

It is used to specify the motion speed of the robot when it executes MoveC, including the translation

speed of the robot end-effector, the rotation speed, and the motion speed of the external axis.

Zone

Turning Zone

Data type: zone

It is used to define the size of the turning zone for the current trajectory.

12 RL Programming Commands

12.3 Commands

200

Copyright © ROKAE 2015-2023. All rights reserved.

Tool

Data type: tool

The tool used when executing the trajectory. The speed in the command refers to the tool’s TCP

speed and rotation speed.

[Wobj]

Work Object

Data type: wobj

The work object used when executing this trajectory.

When the tool is installed on the robot, this parameter can be ignored;

When using external tools, this parameter must be specified, and the robot will calculate the motion

speed and the size of the turning zone by using the data saved in wobj.

Example

The following are some examples for MoveC:

Example 1

MoveC p10, p20, v1000, z50, tool0

The robot moves the TCP along the arc, passing through the p10 point to the target point defined by

p20 at a velocity of v1000 using the tool0, with a turning zone of 50 mm.

Example 2

MoveC auxpoint, endpoint, v500, z50, gripper, wobj2

The robot moves the TCP along the arc, passing through auxpoint to the target point defined by the

endpoint at a velocity of v500 in the work object frame wobj2 by using the gripper, with a turning

zone of 50 mm.

12.3.2.5 MoveT

Explanation

MoveT (Move trochoid) is used to move the TCP to a given target position through rotary stepping

with a trochoid passing through auxiliary points.

When the starting and ending orientations are different, the pose will rotate synchronously as the

position moves to the end position. The orientation at the auxiliary point does not affect the spiral

motion process.

Since the translation and rotation speeds are specified separately, the final motion time of the MoveT

command depends on the change time of orientation, position, and elbow (whichever is longer) in

order not to exceed the specified speed limit. Therefore, in certain trajectories (for example, small

displacements but with large changes in orientation), if the robot is moving at a significantly slower

or faster speed, please check whether the rotation speed setting is reasonable.

Parameter

MoveC AuxPoint, ToPoint, Radius, Step, Speed, Zone, Tool, [Wobj]

The parameter in [] is optional and can be omitted.

AuxPoint

Auxiliary Point

Data type: robtarget

The position of the auxpoint described in the Cartesian space is used to determine the size of the arc

and the direction of motion. The orientation of this point does not affect the execution of the final

trajectory.

ToPoint

Target pose (To Point)

Data type: robtarget

The target position described in the Cartesian space.

12 RL Programming Commands

12.3 Commands

201

Copyright © ROKAE 2015-2023. All rights reserved.

Radius

Cycloid radius

Data type: double

Radius of trochoid advance, in mm

Step

Step length

Data type: double

Step length of trochoid advance, in mm

Speed

Motion Speed

Data type: speed

It is used to specify the motion speed of the robot when it executes MoveT, including the translation

speed of the robot end-effector, the rotation speed, and the motion speed of the external axis.

Zone

Turning Zone

Data type: zone

It is used to define the size of the turning zone for the current trajectory.

Tool

Data type: tool

The tool used when executing the trajectory. The speed in the command refers to the tool’s TCP

speed and rotation speed.

[Wobj]

Work Object

Data type: wobj

The work object used when executing this trajectory.

When the tool is installed on the robot, this parameter can be ignored;

When using external tools, this parameter must be specified, and the robot will calculate the motion

speed and the size of the turning zone by using the data saved in wobj.

Example

The following are some examples for MoveT:

Example 1

MoveT p10, p20, 150, 50, v1000, z50, tool0

With tool0, the robot TCP draws a trochoid that passes point p10 in an arc at a velocity of v1000.

With a trochoid radius of 150 mm and a step of 50 mm, the TCP finally moves to the target position

defined by p20, with a turning zone size of 50 mm.

12.3.2.6 SearchL

Explanation

SearchL (Search Liner) is used to search the position when moving the TCP along a straight line.

During the movement, the robot will monitor a digital input (DI) signal. When the signal status

monitored matches the trigger mode, the robot immediately reads the current position.

The command can be used when the tool fixed to the manipulator is a probe used for surface

12 RL Programming Commands

12.3 Commands

202

Copyright © ROKAE 2015-2023. All rights reserved.

detection. Use the SearchL command to obtain the outline coordinates of the work object.

The command can only be used for motion tasks.

Parameter

SearchL [action,] di, [trigger_mode,] save_rob, target_rob, Speed, Tool [,Wobj]

The parameter in [] is optional and can be omitted.

action

Action after triggering DI

Data type: keyword

Blank: no stop

\Stop: quick stop, which may cause the robot to deviate from the path. But the robot stops quickly.

Only available when the speed is below v100

\PStop: planned stop. The robot will stop on the specified path, without speed limits

di

Data type: DI signal

SearchL command triggers signal of specified action, and user-defined DI signal is used

trigger_mode

DI signal trigger mode

Data type: keyword

Blank: posedge triggering by default

\Flanks: edge triggering (posedge/negedge)

\Posflank: posedge triggering

\Negflank: negedge triggering

\Highlevel: high-level triggering

\Lowlevel: low-level triggering

save_rob

Data type: robtarget

Save the point position of the position data when the robot triggers the signal

target_rob

Data type: robtarget

Target point position of linear motion

Speed

Motion Speed

Data type: speed

It is used to specify the motion speed of the robot when it executes Search, including the translation

speed of the robot end-effector, the rotation speed, and the motion speed of the external axis.

Tool

Data type: tool

The tool used when executing the trajectory. The speed in the command refers to the tool’s TCP

speed and rotation speed.

[Wobj]

Work Object

Data type: wobj

The work object used when executing this trajectory.

When the tool is installed on the robot, this parameter can be ignored;

When using external tools, this parameter must be specified, and the robot will calculate the motion

speed and the size of the turning zone by using the data saved in wobj.

Example

The following are some examples for SearchL:

Example 1

SearchL di0, save_rob, target_rob, v500, tool0

The robot uses tool0 and TCP moves towards target_rob in a straight line at v500. If di0 jumps to

high during the motion, the robot's coordinate information at the time of the signal jump is recorded

in save_rob.

12 RL Programming Commands

12.3 Commands

203

Copyright © ROKAE 2015-2023. All rights reserved.

Example 2

SearchL \PStop, di0, \Lowlevel, save_rob, target_rob, v500, tool0

The robot uses tool0 and TCP moves towards target_rob in a straight line at v500. If di0 is low during

the motion, the robot will immediately have a planned stop and record the robot's coordinate

information in save_rob when the signal is detected to be low.

12.3.2.7 SearchC

Explanation

SearchC (Search Circle) is used to search for a position when moving the TCP along a circle.

During the movement, the robot will monitor a digital input (DI) signal. When the signal status

monitored matches the trigger mode, the robot immediately reads the current position.

The command can be used when the tool fixed to the manipulator is a probe used for surface

detection. Use SearchC command

to obtain the outline coordinates of the work object.

The command can only be used for motion tasks.

Parameter

SearchC [action,] di, [trigger_mode,] save_rob, aux_rob, target_rob, Speed, Tool [,Wobj]

The parameter in [] is optional and can be omitted.

action

Action after triggering DI

Data type: keyword

Blank: no stop

\Stop: quick stop, which may cause the robot to deviate from the path. But the robot stops quickly.

Only available when the speed is below v100

\PStop: planned stop. The robot will stop on the specified path, without speed limits

di

Data type: DI signal

SearchC command triggers signal of specified action, and user-defined DI signal is used

trigger_mode

DI signal trigger mode

Data type: keyword

Blank: posedge triggering by default

\Flanks: edge triggering (posedge/negedge)

\Posflank: posedge triggering

\Negflank: negedge triggering

\Highlevel: high-level triggering

\Lowlevel: low-level triggering

save_rob

Data type: robtarget

Save the point position of the position data when the robot triggers the signal

aux_rob

Data type: robtarget

Auxiliary point during circular motion

target_rob

Data type: robtarget

Target point position of circular motion

Speed

Motion Speed

Data type: speed

12 RL Programming Commands

12.3 Commands

204

Copyright © ROKAE 2015-2023. All rights reserved.

It is used to specify the motion speed of the robot when it executes Search, including the translation

speed of the robot end-effector, the rotation speed, and the motion speed of the external axis.

Tool

Data type: tool

The tool used when executing the trajectory. The speed in the command refers to the tool’s TCP

speed and rotation speed.

[Wobj]

Work Object

Data type: wobj

The work object used when executing this trajectory.

When the tool is installed on the robot, this parameter can be ignored;

When using external tools, this parameter must be specified, and the robot will calculate the motion

speed and the size of the turning zone by using the data saved in wobj.

Example

The following are some examples for SearchC:

Example 1

SearchC di0, save_rob, aux_rob, target_rob, v500, tool0

The robot uses tool0 and TCP moves at a speed of v500 towards target_rob in a circle after passing

auxiliary point aux_rob. If di0 jumps to high during the motion, the robot's coordinate information at

the time of the signal jump is recorded in save_rob.

Example 2

SearchC \PStop, di0, \Flanks, save_rob, target_rob, v500, tool0

The robot uses tool0 and TCP moves at a speed of v500 towards target_rob in a straight line after

passing auxiliary point aux_rob. If di0 jumps from low to high or from high to low during the

motion, the robot immediately has a planned stop and the robot's coordinate information at the time

of the signal jump is recorded in save_rob.

12.3.3 Trigger command

12.3.3.1 TrigIO

Explanation

TriggIO is used to set a trigdata as an output I/O trigger during the motion. Digital output DO and

digital group output GO are supported.

Definition

TrigIO TrigData,Distance,RefStart,SignalName,Value

Parameter:

TrigData (data type: trigdata) is a variable used to store the trigger data set by this TrigIO.

Distance (data type: double, and non-negative (negative numbers are treated as 0)) defines the

location offset of the trigger event on the path. Whether the location offset is relative to the path start

or end is defined by RefStart;

RefStart (data type: bool) defines whether the trigger position is relative to the start point (true) or the

end point (false).

SignalName (data type: signaldo or signalgo) is the signal name of the digital output or digital group

output associated with this defined IO event, which must be an output signal that has been set

correctly; //add

Value (data type: bool or int) defines the target value of the output signal when an IO event is

triggered. The data type of the given value should match the SignalName type.

Example

Example 1

 Refer to the TrigL example;

12 RL Programming Commands

12.3 Commands

205

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.3.2 TrigReg

Explanation

TrigReg is used to set a trigdata to modify the register value during the motion; register types

supported include int16, bool, float, and bit.

Definition

TrigReg TrigData,Distance,RefStart,RegName,Value

Parameter:

TrigData (data type: trigdata) is a variable used to store the trigger data set by this TrigIO.

Distance (data type: double, and non-negative (negative numbers are treated as 0)) defines the

location offset of the trigger event on the path. Whether the location offset is relative to the path start

or end is defined by RefStart;

RefStart (data type: bool) defines whether the trigger position is relative to the start point (true) or the

end point (false).

RegName refers to the register name, and the data type is not available. Note: Registers can not be

created in RL. The user needs to create new registers through "Robot -> Communication ->

Register";

Value (data type int16, bool, float, or bit) defines the target value of the register when a register

modification event is triggered. The data type of the given value should match the RegName type; if

the value specified by the user mismatches with the register type, the type will be transformed

automatically.

Example

Example 1

 Refer to the TrigL example;

12.3.3.3 TrigL

Explanation

Like MoveL, TrigL is a command to perform linear motion in space. The difference is that TrigL can

perform predefined operations at several specified positions during the motion; the two commands

are the same in the number and meaning of other parameters.

Definition

TrigL ToPoint,Speed,Trigger,Zone,Tool,[Wobj]

Parameter:

ToPoint, or target pose (data type: robtarget), describes the target pose in Cartesian space;

Speed (type: speed) is used to specify the motion speed of the robot when it executes MoveL,

including the translation speed of the robot end-effector, the rotation speed, and the motion speed of

the external axis;

Trigger, or trigger condition and action, (type: trigdata; trigdata) must be the trigdata processed with

TrigX command, otherwise, the compiler will report an error when coming to this line.

Zone, or Turning zone (type: zone) is used to define the size of the turning zone for the current

trajectory;

Tool (type: tool);

[Wobj], or work object (type: wobj) refers to the work object used when executing this trajectory.

When the tool is installed on the robot, this parameter can be ignored; When using external tools, this

parameter must be specified, and the robot will calculate the motion speed and the size of the turning

zone by using the data saved in wobj.

12 RL Programming Commands

12.3 Commands

206

Copyright © ROKAE 2015-2023. All rights reserved.

Example

Example 1

VAR trigdata tc1

VAR trigdata tc2

VAR trigdata tc3

...

//Set tc1, tc2, tc3

TrigIO tc1,0,true,do2,true

TrigIO tc2,60,false,do2,false

TrigReg tc3,80,true,r0,false //r0 is a bool type register

...

//Motion

MoveL p1,v500,z50,tool1

TrigL p2,v500,tc1,z50,tool1

TrigL p3,v500,tc2,fine,tool1

TrigL p4,v500,tc3,fine,tool1

12.3.3.4 TrigC

Explanation

TriggC is similar to MoveC in that it is a command to execute circular motion. The difference is that

TriggC can perform predefined operations at several specified positions during the motion; the two

commands are the same in the number and meaning of other parameters.

Definition

TrigC AuxPoint,ToPoint,Speed,Trigger,Zone,Tool,[Wobj]

Parameter:

AuxPoint, or Auxiliary Point (data type: robtarget), describes the target pose in Cartesian space;

ToPoint, or target pose (data type: robtarget), describes the target pose in Cartesian space;

Speed (type: speed) is used to specify the motion speed of the robot when it executes MoveL,

including the translation speed of the robot end-effector, the rotation speed, and the motion speed of

the external axis;

Trigger, or trigger condition and action, (type: trigdata; trigdata) must be the trigdata processed with

TrigX command, otherwise, the compiler will report an error when coming to this line.

Zone, or Turning zone (type: zone) is used to define the size of the turning zone for the current

trajectory;

Tool (type: tool);

[Wobj], or work object (type: wobj) refers to the work object used when executing this trajectory.

12 RL Programming Commands

12.3 Commands

207

Copyright © ROKAE 2015-2023. All rights reserved.

When the tool is installed on the robot, this parameter can be ignored; When using external tools, this

parameter must be specified, and the robot will calculate the motion speed and the size of the turning

zone by using the data saved in wobj.

Example

Example 1

VAR trigdata tc1

...

//Set tc1

TrigIO tc1,0,true,do2,true

...

//Motion

MoveL p1,v500,z50,tool1

TrigC p2,p3,v500,tc1,fine,tool1

12.3.4 Force control commands

12.3.4.1 CalibSensorError

Explanation

It is used to clear the six-dimensional force measurement on the end-effector and use the current

measurement as zero point.

Definition

CalibSensorError

No parameters, and can be used directly.

Example

Example 1

FcInit Tool1, Wobj0, 0

FcStart

SetSensorUseType 1

CalibSensorError

Set software zeroing for the six-dimensional force measurement and clear the zero.

Use restrictions

➢ This interface can only be called after executing SetSensorUseType 1, i.e. set software zeroing

for the six-dimensional force measurement. If not, the end-effector six-dimensional

measurement will not be cleared successfully.

12 RL Programming Commands

12.3 Commands

208

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.4.2 FcInit

Explanation

It is used for initialization before the force control is enabled, such as setting the work object, tool,

and force control frame.

Definition

FcInit Tool, Wobj, ForceFrameRef

Tool

Data type: pose

The tool used for force control. The origin of the force control frame is the TCP of the tool (the

orientation is the same as the orientation of the frame selected in the third parameter). Note that all

adapter flanges used need to be included in the definition of the tool.

Wobj

Data type: pose

The work objects used for force control. Many force control functions are defined relative to the

work object frame, such as the orientation of the force control frame, the search mode, and

termination conditions. This parameter is Wobj0 by default.

ForceFrameRef

Data type: int

It is used to define the frame to which the force control frame is relative. It supports:

0: World frame

1: Work object frame

2: Tool frame

The default value is the work object frame (0).

Example

Example 1

FcInit Tool1, Wobj0, 0

Initialize force control, and define the tool1 and work object wobj0 used when force control is

enabled, and the definition of force control frame in relative to the world frame.

Use restrictions

➢ FcInit is not allowed to be called again between FcInit and FcStop.

12.3.4.3 SetControlType

Explanation

It is used to set the impedance control type.

Definition

SetControlType ctrl_type

ctrl_type

Data type: int

Impedance control type, including:

0: Joint impedance

1: Cartesian impedance

12 RL Programming Commands

12.3 Commands

209

Copyright © ROKAE 2015-2023. All rights reserved.

Example

Example 1

FcInit Tool1, Wobj0, 0

SetControlType 0

Set joint impedance as the impedance control mode after executing FcInit.

Use restrictions

➢ The impedance type can only be set after executing FcInit and before executing FcStart.

12.3.4.4 SetSensorUseType

Explanation

It is used to set how to use the six-dimensional force measurement on the end-effector.

Definition

SetSensorUseType sensor_use_type

sensor_use_type

Data type: int

Sensor usage method, supporting:

0: Dynamic compensation

1: Software zeroing

Example

Example 1

FcInit Tool1, Wobj0, 0

FcStart

SetSensorUseType 0

Set dynamic compensation as the six-dimensional force measurement, which means the value can be

used directly without zeroing.

Use restrictions

➢ This interface can only be called after executing FcStart and before executing FcStop. If not, the

use method of the end-effector six-dimensional measurement will not be set successfully.

12.3.4.5 SetCartNSStiff

Explanation

It is used to set the null-space impedance stiffness.

Definition

SetCartNSStiff cart_ns_stiff

cart_ns_stiff

Data type: double

Cartesian null-space impedance stiffness, range: 0~4, in N.m/rad.

Example

Example 1

FcInit Tool1, Wobj0, 0

SetControlType 1

SetCartNSStiff 2

Set Cartesian impedance as the impedance control mode and the null-space impedance stiffness as 2.

Use restrictions

12 RL Programming Commands

12.3 Commands

210

Copyright © ROKAE 2015-2023. All rights reserved.

➢ This interface can only be called after executing SetControlType 1, that is, setting Cartesian

impedance as the impedance control mode.

If not, the null-space impedance parameters will not be set successfully.

12.3.4.6 SetJntCtrlStiffVec

Explanation

It is used to set the joint impedance stiffness.

Definition

SetJntCtrlStiffVec jnt1_stiff, jnt2_stiff, jnt3_stiff, jnt4_stiff, jnt5_stiff, jnt6_stiff, jnt7_stiff

 jnt1_stiff

Data type: double

Impedance stiffness of joint 1, range: 0~1500, in Nm/rad.

 Jnt2_stiff

Data type: double

Impedance stiffness of joint 2, range: 0~1500, in Nm/rad.

 Jnt3_stiff

Data type: double

Impedance stiffness of joint 3, range: 0~1500, in Nm/rad.

 Jnt4_stiff

Data type: double

Impedance stiffness of joint 4, range: 0~1500, in Nm/rad.

 Jnt5_stiff

Data type: double

Impedance stiffness of joint 5, range: 0~100, in Nm/rad.

 Jnt6_stiff

Data type: double

Impedance stiffness of joint 6, range: 0~100, in Nm/rad.

 Jnt7_stiff

Data type: double

Impedance stiffness of joint 7, range: 0~100, in Nm/rad.

Example

Example 1

FcInit Tool1, Wobj0, 0

SetControlType 0

SetJntCtrlStiffVec 1500,1500, 1500,1500,100,100,100

Set the joint impedance as the impedance control mode and the impedance stiffness of joints 1~7 as

1500, 1500, 1500, 1500, 100, 100, 100, respectively.

Use restrictions

➢ This interface can only be called after executing SetControlType 0, that is, setting joint

impedance as the impedance control mode.

If not, the joint impedance parameters will not be set successfully.

12.3.4.7 SetCartCtrlStiffVec

Explanation

It is used to set the Cartesian impedance stiffness.

Definition

SetCartCtrlStiffVec trans_stiff_x, trans_stiff_y, trans_stiff_z, rot_stiff_x, rot_stiff_y, rot_stiff_z

trans_stiff_x

12 RL Programming Commands

12.3 Commands

211

Copyright © ROKAE 2015-2023. All rights reserved.

Data type: double

Cartesian impedance force stiffness in the x-direction, range: 0~1500, in N/m.

trans_stiff_y

Data type: double

Cartesian impedance force stiffness in the y-direction, range: 0~1500, in N/m.

trans_stiff_z

Data type: double

Cartesian impedance force stiffness in the z-direction, range: 0~1500, in N/m.

rot_stiff_x

Data type: double

Cartesian impedance torque stiffness in the x-direction, range: 0~100, in N.m/rad.

rot_stiff_y

Data type: double

Cartesian impedance torque stiffness in the y-direction, range: 0~100, in N.m/rad.

rot_stiff_z

Data type: double

Cartesian impedance torque stiffness in the z-direction, range: 0~100, in N.m/rad.

Example

Example 1

FcInit Tool1, Wobj0, 0

SetControlType 1

SetCartCtrlStiffVec 1000, 1000, 1000, 100, 100, 100

Set Cartesian impedance as the impedance control mode and the impedance force stiffness in x/y/z

direction as 1000, and the impedance torque stiffness as 100.

Use restrictions

➢ This interface can only be called after executing SetControlType 1, that is, setting Cartesian

impedance as the impedance control mode.

If not, the Cartesian impedance parameters will not be set successfully.

12.3.4.8 SetJntTrqDes

Explanation

Set the desired torque of the joint.

Definition

SetJntTrqDes tau_d1,tau_d2,tau_d3,tau_d4,tau_d5,tau_d6,tau_d7

tau_d1

Data type: double

The desired torque of joint 1, range: 0~20, in N.m.

tau_d2

Data type: double

The desired torque of joint 2, range: 0~20, in N.m.

tau_d3

Data type: double

The desired torque of joint 3, range: 0~20, in N.m.

tau_d4

Data type: double

The desired torque of joint 4, range: 0~20, in N.m.

tau_d5

Data type: double

The desired torque of joint 5, range: 0~20, in N.m.

tau_d6

Data type: double

12 RL Programming Commands

12.3 Commands

212

Copyright © ROKAE 2015-2023. All rights reserved.

The desired torque of joint 6, range: 0~20, in N.m.

tau_d7

Data type: double

The desired torque of joint 7, range: 0~20, in N.m.

Example

Example 1

FcInit Tool1, Wobj0, 0

SetControlType 0

FcStart

SetJntTrqDes 5,5,5,5,5,5,5

FcStop

Set the desired torque of all joints to 5N.m.

Use restrictions

➢ This interface can only be called after executing FcStart and before executing FcStop. If not, the

desired joint torque will not be set successfully.

12.3.4.9 SetCartForceDes

Explanation

It is used to set the desired Cartesian force/torque.

Definition

SetCartForceDes force_x, force_y, force_z, torque_x, torque_y, torque_z

force_x

Data type: double

Desired Cartesian force in the x-direction, in N.

force_y

Data type: double

Desired Cartesian force in the y-direction, in N.

force_z

Data type: double

Desired Cartesian force in the z-direction, in N.

torque_x

Data type: double

Desired Cartesian torque in the x-direction, range: 0-20, in N.m.

torque_y

Data type: double

Desired Cartesian torque in the y-direction, range: 0-20, in N.m.

torque_z

Data type: double

Desired Cartesian torque in the z-direction, range: 0-20, in N.m.

Example

Example 1

FcInit Tool1, Wobj0, 0

SetControlType 1

FcStart

SetCartForceDes 0,0,5,0,0,0

FcStop

Set the desired Cartesian force/torque. Set the desired force in the z-direction to 5N.

12 RL Programming Commands

12.3 Commands

213

Copyright © ROKAE 2015-2023. All rights reserved.

Use restrictions

➢ This interface can only be called after executing FcStart and before executing FcStop. If not, the

desired Cartesian force/torque will not be set successfully.

12.3.4.10 SetSineOverlay

Explanation

It is used to set the sine overlay rotating around a single axis.

Definition

SetSineOverlay line_dir, amplify, frequncy, phase, bias

line_dir

Data type: int

line_dir: overlay reference axis, supporting:

0: x-axis as the reference direction

1: y-axis as the reference direction

2: z-axis as the reference direction

amplify

Data type: double

Overlay amplitude, range: 0~10, in N.m.

frequncy

Data type: double

Overlay frequency, range: 0~5, in Hz.

phase

Data type: double

Overlay phase, range: 0~3.14, in rad.

bias

Data type: double

Overlay offset, range: 0~10, in N.m.

Example

Example 1

FcInit Tool1, Wobj0, 0

SetControlType 1

SetSineOverlay 0, 10, 5, 3.14, 2

Set rotary overlay around x-axis (0), amplitude: 10N.m, frequency: 5Hz, phase: 3.14, and offset:

2N.m.

Use restrictions

➢ This interface can only be called after executing SetControlType 1, that is, setting Cartesian

impedance as the impedance control mode, and before executing StartOverlay. If not, the sine

overlay will not be set successfully.

12.3.4.11 SetLissajousOverlay

Explanation

It is used to set the Lissajous overlay within a plane.

Definition

SetLissajousOverlay plane, amplify_one, frequncy_one, amplify_two, frequncy_two, phase_diff

plane

Data type: int

12 RL Programming Commands

12.3 Commands

214

Copyright © ROKAE 2015-2023. All rights reserved.

Overlay reference plane, supporting:

0: XY plane as the reference plane

1: XZ plane as the reference plane

2: YZ plane as the reference plane

amplify_one

Data type: double

amplify_one: The amplitude of overlay in Direction 1, range: 0~10, in N.m.

frequncy_one

Data type: double

frequncy_one: The frequency of overlay in Direction 1, range: 0~5, in Hz.

amplify_two

Data type: double

amplify_two: The amplitude of overlay in Direction 2, range: 0~10, in N.m.

frequncy_two

Data type: double

frequncy_two: The frequency of overlay in Direction 2, range: 0~5, in Hz.

phase_diff

Data type: double

phase_diff: The phase deviation between overlays in two directions, range: 0~3.14, in rad.

Example

Example 1

FcInit Tool1, Wobj0, 0

SetControlType 1

SetLissajousOverlay 0, 5, 2.5, 10, 5, 3.14

Set Lissajous overlay within the xy plane (0). The amplitude and frequency are 5N.m and 2.5Hz in

the x-direction, and 10N.m and 5Hz in the y-direction. The phase deviation between the y-direction

and x-direction is 3.14.

Use restrictions

➢ This interface can only be called after executing SetControlType 1, that is, setting Cartesian

impedance as the impedance control mode, and before executing StartOverlay. If not, the

overlay will not be set successfully.

12.3.4.12 SetLoad

Explanation

It is used to set the load information used by the force control module.

Definition

SetLoad m,rx,ry,rz,Ixx,Iyy,Izz

m

Data type: double

Load mass, unit: kg

rx

Data type: double

The position of the load's center of mass on the x-axis of the flange frame, in mm.

ry

Data type: double

12 RL Programming Commands

12.3 Commands

215

Copyright © ROKAE 2015-2023. All rights reserved.

The position of the load's center of mass on the y-axis of the flange frame, in mm.

rz

Data type: double

The position of the load's center of mass on the z-axis of the flange frame, in mm.

Ixx

Data type: double

The inertia of the load's center of mass along the x-axis, in kg*mm^2.

Iyy

Data type: double

The inertia of the load's center of mass along the y-axis, in kg*mm^2.

Izz

Data type: double

The inertia of the load's center of mass along the z-axis, in kg*mm^2.

Example

Example 1

FcInit Tool1, Wobj0, 0

FcStart

SetLoad 1,0,0,10,0.001,0.001,0.0001

Set the end-effector load as follows: the mass is 1kg, the component of the center of mass in the

flange frame is 0, 0, and 10 mm, and the inertia of the load relative to the load's center of mass frame

is 0.001kg*mm^2, 0.001kg*mm^2, and 0.0001kg*mm^2, respectively.

Use restrictions

➢ The interface can only be called after executing FcStart. If not, the load parameters will not be

set successfully.

12.3.4.13 FcStart

Explanation

It is used to enable force control. It switches the robot from pure position control to force control.

Definition

FcStart

No parameters, and can be used directly.

Example

Example 1

FcInit Tool1, Wobj0, 0

FcStart

Enable force control through FcStart after executing FcInit. The robot is now in force control mode.

Use restrictions

➢ This interface is called after executing FcInit. Before calling the command, the robot mechanical

zero, force sensor zero, and load information should be set correctly, and the body parameters

are identified correctly. Otherwise, the effectiveness of the force control function will be

affected or even disabled.

12.3.4.14 FcStop

Explanation

It is used to stop force control. The robot will switch from force control to position control.

Executing this command will automatically stop all overlays.

12 RL Programming Commands

12.3 Commands

216

Copyright © ROKAE 2015-2023. All rights reserved.

Definition

FcStop

No parameters, and can be used directly.

Example

Example 1

FcInit Tool1, Wobj0, 0

FcStart

FcStop

It is used to stop force control. The robot will switch from force control to position control.

Executing this command clears all force control states.

Use restrictions

➢ This interface is called after executing FcStart, and it will clear the force control state, such as

force control load information, impedance parameters, overlay, desired force, etc. To enable

force control again, FcInit should be executed again.

12.3.4.15 StartOverlay

Explanation

Enable the overlay set before.

Definition

StartOverlay

No parameters, and can be used directly.

Example

Example 1

FcInit Tool1, Wobj0, 0

SetControlType 1

SetSineOverlay 0, 10, 5, 3.14, 2

SetLissajousOverlay 0, 5, 2.5, 10, 5, 3.14

FcStart

StartOverlay

Start the superposition of overlays set before. In the example, these overlays include the sine overlay

around the x-axis and the Lissajous overlay within xy plane.

Use restrictions

➢ The interface can only be called after executing FcStart. If not, the sine overlay will not be set

successfully.

12.3.4.16 PauseOverlay

Explanation

Pause the overlay.

Definition

PauseOverlay

No parameters, and can be used directly.

Example

12 RL Programming Commands

12.3 Commands

217

Copyright © ROKAE 2015-2023. All rights reserved.

Example 1

FcInit Tool1, Wobj0, 0

SetControlType 1

SetSineOverlay 0, 10, 5, 3.14, 2

FcStart

StartOverlay

PauseOverlay

Pause the overlay.

Use restrictions

➢ The interface can only be called after executing StartOverlay.

12.3.4.17 RestartOverlay

Explanation

Restart the paused overlays.

Definition

RestartOverlay

No parameters, and can be used directly.

Example

Example 1

FcInit Tool1, Wobj0, 0

SetControlType 1

SetSineOverlay 0, 10, 5, 3.14, 2

FcStart

StartOverlay

PauseOverlay

RestartOverlay

Restart the overlays.

Use restrictions

➢ The interface can only be called after executing PauseOverlay. This interface is used in

conjunction with PauseOverlay to restart paused overlays.

12.3.4.18 StopOverlay

Explanation

Stop the overlays.

Definition

StopOverlay

No parameters, and can be used directly.

Example

Example 1

FcInit Tool1, Wobj0, 0

SetControlType 1

SetSineOverlay 0, 10, 5, 3.14, 2

FcStart

StartOverlay

StopOverlay

12 RL Programming Commands

12.3 Commands

218

Copyright © ROKAE 2015-2023. All rights reserved.

Stop the overlays.

Use restrictions

➢ The calling of the interface is of practical value can only after executing StartOverlay.

12.3.4.19 FcCondForce

Explanation

It is used to define termination conditions related to contact force.

Definition

FcCondForce xmin, xmax, ymin, ymax, zmin, zmax, IsInside, TimeOut

xmin

Define the lower limit of the force limit in the X-direction. It indicates the maximum value in the

negative X-direction if the value is negative. The unit is N and the default value is negative infinity.

Data type: double

xmax

Define the upper limit of the force limit in the X-direction. It indicates the minimum value in the

negative X direction if the value is negative. The unit is N and the default value is positive infinity.

Data type: double

ymin

Define the lower limit of the force limit in the Y-direction. It indicates the maximum value in the

negative Y direction if the value is negative. The unit is N and the default value is negative infinity.

Data type: double

ymax

Define the upper limit of the force limit in the Y-direction. It indicates the minimum value in the

negative Y direction if the value is negative. The unit is N and the default value is positive infinity.

Data type: double

zmin

Define the lower limit of the force limit in the Z-direction. It indicates the maximum value in the

negative Z direction if the value is negative. The unit is N and the default value is negative infinity.

Data type: double

zmax

Define the upper limit of the force limit in the Z-direction. It indicates the minimum value in the

negative Z direction if the value is negative. The unit is N and the default value is positive infinity.

Data type: double

IsInside

It is used to define whether the internal/external restriction condition is true.

Data type: bool

TimeOut

It is used to define the timeout period in seconds. The value taken ranges from 1 to 600.

Data type: double

Example

Example 1

FcInit Tool1, Wobj0, 0

FcStart

FcCondForce -100, 100, -100, 100, -100, 100, true, 60

Define a termination condition. The condition is true when the contact force is within plus or minus

100N in the x/y/z-axis direction of the force control frame, and terminates when it exceeds 100N.

The timeout period is 60 seconds.

Use restrictions

➢ This interface can only be called after executing FcStart and before executing FcStop. If not, the

12 RL Programming Commands

12.3 Commands

219

Copyright © ROKAE 2015-2023. All rights reserved.

termination conditions of the contact force will not be set successfully.

12.3.4.20 FcCondPosBox

Explanation

It is used to define termination conditions related to contact location.

Definition

FcCondPosBox SupvFrame, Box, IsInside, Timeout

SupvFrame

It is used to determine in which frame the monitored spatial body will be defined. The frame is

derived by converting a work object frame onto a frame. The conversion of the frame is defined by

pose. By default, pose0 is used. That is, the work object frame is used without using any conversion.

Data type: pose

Box

Define a cuboid.

Data type: fcboxvol

IsInside

It is used to define whether the internal/external restriction condition is true.

Data type: bool

TimeOut

It is used to define the timeout period in seconds. The value taken ranges from 1 to 600.

Data type: double

Example

Example 1

FcInit Tool1, Wobj0, 0

FcStart

VAR fcboxvol box1 = fcbv:{-100.0, 100.0, -200.0, 200.0, -300.0, 300.0}

VAR pose pose1 = pe:{0, 0, 0},{1, 0, 0, 0}

FCCondPosBox pose1, box1, false, 60
Define a termination condition. The termination condition is triggered when the robot TCP enters the

defined cuboid or waits more than 60 seconds.

Use restrictions

➢ This interface can only be called after executing FcStart and before executing FcStop. If not, the

termination conditions of the cuboid location will not be set successfully.

12.3.4.21 FcCondTorque

Explanation

It is used to define termination conditions related to contact torque.

Definition

FcCondTorque xmin, xmax, ymin, ymax, zmin, zmax, IsInside, TimeOut

xmin

Define the lower limit of the torque limit in the X-direction. It indicates the maximum value in the

negative X-direction if the value is negative. The unit is N.m and the default value is negative

infinity.

Data type: double

xmax

12 RL Programming Commands

12.3 Commands

220

Copyright © ROKAE 2015-2023. All rights reserved.

Define the upper limit of the torque limit in the X-direction. It indicates the minimum value in the

negative X-direction if the value is negative. The unit is N.m and the default value is positive infinity.

Data type: double

ymin

Define the lower limit of the torque limit in the Y-direction. It indicates the maximum value in the

negative Y-direction if the value is negative. The unit is N.m and the default value is negative

infinity.

Data type: double

ymax

Define the upper limit of the torque limit in the Y-direction. It indicates the minimum value in the

negative Y-direction if the value is negative. The unit is N.m and the default value is positive infinity.

Data type: double

zmin

Define the lower limit of the torque limit in the Z-direction. It indicates the maximum value in the

negative Z-direction if the value is negative. The unit is N.m and the default value is negative

infinity.

Data type: double

zmax

Define the upper limit of the torque limit in the Z-direction. It indicates the minimum value in the

negative Z-direction if the value is negative. The unit is N.m and the default value is positive infinity.

Data type: double

IsInside

It is used to define whether the internal/external restriction condition is true.

Data type: bool

TimeOut

It is used to define the timeout period in seconds. The value taken ranges from 1 to 600.

Data type: double

Example

Example 1

FcInit Tool1, Wobj0, 0

FcStart

FcCondTorque -10, 10, -10, 10, -10, 10, true, 60

Define a termination condition. When the contact torque is greater than 10 Nm in any direction of the

force control frame, or the time exceeds 60s, the termination condition is triggered.

Use restrictions

➢ This interface can only be called after executing FcStart and before executing FcStop. If not, the

termination conditions of the contact torque will not be set successfully.

12.3.4.22 FcCondWaitWhile

Explanation

It is used to activate the previously defined termination conditions and wait until these conditions

become False or timeout in the current line.

Definition

FcCondWaitWhile

No parameters, and can be used directly.

Example

Example 1

FcInit Tool1, Wobj0, 0

FcStart

12 RL Programming Commands

12.3 Commands

221

Copyright © ROKAE 2015-2023. All rights reserved.

FcCondTorque -10, 10, -10, 10, -10, 10, true, 60

FcCondForce -100, 100, -100, 100, -100, 100, true, 60

FcCondWaitWhile

Activates the termination conditions. The program blocks at the current position and waits for the

termination conditions to be triggered.

Use restrictions

➢ It can be used after the force control termination conditions are defined.

12.3.4.23 GetEndToolTorque

Explanation

It is used to get the current robot torque

Definition

GetEndToolTorque Tool, Wobj [, RefType]

The parameter in [] can be ignored.

Return value

Torque information

Data type: TorqueInfo

Parameter

Tool

The information of the tool currently in use.

Data type: Tool

Wobj

The information of the work object currently in use.

Data type: Wobj

RefType

Reference frame relative to the torque

Data type: Int

0: Default. Torque information of the end-effector relative to the world frame

1: Torque information of the end-effector relative to the flange frame

2: Torque information of the end-effector relative to the TCP

Example

Example 1

FcInit Tool1, Wobj0, 0

FcStart

FcCondTorque -10, 10, -10, 10, -10, 10, true, 60

FcCondForce -100, 100, -100, 100, -100, 100, true, 60

FcCondWaitWhile

Activates the termination conditions. The program blocks at the current position and waits for the

termination conditions to be triggered.

Use restrictions

➢ It can be used after the force control termination conditions are defined.

12.3.5 Drag and replay

12 RL Programming Commands

12.3 Commands

222

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.5.1 ReplayPath

Explanation

Replays the recorded trajectory using drag teaching. You can control the running rate during replay.

Refer to 4.2.4 Path Replay.

Definition

ReplayPath path [, rate] [, wobj/tool]

path

Data type: path

Type of playback of recorded path which is defined in the variable list generated by drag teaching.

rate

Data type: double

Replay percentage, 0.01-3.00. 0.01 means replay at 1% running rate when dragging; 1.00 at 100%

running rate; 3.00 at 300% running rate.

wobj/tool

Data type: tool|work object

Specify the end-effector for the replay command to be a tool or work object. During the replay, the

robot will change the replay control parameters according to the tool of the corresponding device to

improve the operating stability

Example

Example 1

ReplayPath path , 1, tool1

Use the original running rate to record and replay.

12.3.6 IO commands

12.3.6.1 SetDO

Explanation

It is used to set the value of a digital output signal.

Definition

SetDO DoName, Value

DoName

Data type: signaldo

Specify the name of the DO signal whose state should be changed. It must be a variable that has

already been defined on the IO interface.

Value

Data type: bool

The target state of signaldo. Only true and false are supported.

Example

Example 1

SetDO do2, true

Set the digital output point corresponding to do2 as high level.

12.3.6.2 SetAllDO

Explanation

It is used to set the value of all digital output signals.

12 RL Programming Commands

12.3 Commands

223

Copyright © ROKAE 2015-2023. All rights reserved.

Definition

SetAllDO Value

Value

Data type: bool

The target state of signaldo. Only true and false are supported.

Example

Example 1

SetAllDO true

Set all digital output voltages to a high level, except DO bound with system function.

12.3.6.3 SetGO

Explanation

It is used to set the value output of a group.

Definition

SetGO GoName, Value

GoName

Data type: signalgo

Specify the name of the go signal whose value should be changed. It must be a variable that has

already been defined on the IO interface.

Value

Data type: int

The target value of the go signal.

Example

Example 1

SetGO go3, 8

Set the value of a set of physical ports corresponding to go3 as 8.

12.3.6.4 SetAO

Explanation

It is used to set the value of an analog output signal.

Definition

SetAO AoName, Value

AoName

Data type: signalao

Specify the name of the ao signal whose value should be changed. It must be a variable that has

already been defined on the IO interface.

Value

Data type: double

The target value of the ao signal.

Example

Example 1

SetAO ao3, 5.123

Set the value of a set of physical ports corresponding to ao3 as 5.123.

12.3.6.5 PulseDO

Explanation

12 RL Programming Commands

12.3 Commands

224

Copyright © ROKAE 2015-2023. All rights reserved.

To generate a pulse of a DO signal.

Definition

PulseDO [\High,] [length,] signal

[\High]

When the command is executed, regardless of the current state, the signal state is always set to high

(1).

[length]

Specify pulse length: 0.001-2000s. Default to 0.2s when missing.

Data type: double or int

signal

The signal to generate the pulse.

Data type: signaldo

Use restrictions

➢ If SetDO/SetGO is executed during PulseDO, PulseDO will be invalid and SetDO/SetGO will be

executed.

12.3.6.6 PulseReg

Explanation

Specify a register to generate a pulse signal for a specified time period and restore the initial value of

the register after the time period ends.

Definition

PulseReg Register, Value, Time

Register

The name of the register to generate the pulse signal

Data type: Bit|Bool register

Value

Specify the value of the pulse signal.

Data type: Bool,

Time

The duration of the pulse signal in seconds, with a limit range of [0.001, 10.0].

Data type: double

Use restrictions

➢ If WriteRegByName or register equal assignment is executed during PulseReg, the valid value of

the register will take effect depending on the last executed command. But the initial value

before executing PulseReg will be restored after the time period specified by PulseReg ends.

12.3.7 Communication commands

In the RL program, the robot can communicate with external devices through both Ethernet and serial

ports. A unified set of commands is designed for resource management and data sending and

receiving, which ensures consistent use experience.

Command set TCP client TCP server Serial port

OpenDev √ √ √

SocketAccept N/A √ N/A

CloseDev √ √ √

SendString √ √ √

SendByte √ √ √

ReadBit √ √ √

ReadByte √ √ √

ReadDouble √ √ N/A

ReadInt √ √ N/A

12 RL Programming Commands

12.3 Commands

225

Copyright © ROKAE 2015-2023. All rights reserved.

ReadString √ √ √

GetSocketConn √ N/A N/A

GetSocketServer N/A √ N/A

GetBufSize N/A N/A √

ClearBuffer N/A N/A √

12.3.7.1 OpenDev

Explanation

Used to open a listening server, initiate a connection as a client, and open a serial port resource,

depending on the object indicated by the parameter.

1) When opening the SocketServer object, the robot will initiate resource and complete port

binding and port listening.

2) When opening the SocketConn object, the robot will act as a TCP client and try to connect to

the external server according to the preset ip and port.

3) When opening the serial port resource, the serial port will be initialized according to the

window parameters and communication conditions will be provided.

Return value

N/A.

Definition

OpenDev(name)

name

Data type: string

The name of the client object or server object or serial port resource.

Example

Example 1

SocketConn scnn3 = {"192.168.0.200", 8090, "clt1", 2, "\n"}

try

 OpenDev("clt1") // Try to connect to the remote server. If the connection is successful, the attr

of clt1 will be modified to outgoing automatically.

 string readstr = ReadString(30, "clt1")

 // Logic processing of readstr

 string sendstr = "hello server!"

 SendString(sendstr , "clt1") //Use clt1's client connection to send data

 ... // A series of code

 catch(ERROR e) // ERROR error type, including the file that generated the error, line number,

error code, and error content

 ... // A series of exception handling

Endtry

Example 2

SocketServer listener1 = {"192.168.0.200", 8090, "svr1"}

global pers bool exit = false

try

 OpenDev("svr1") // Bind port, listen for port

 while(exit != true)

 SocketConn conn = SocketAccept("svr1") // Client connected via blocking receive

 Endwhile

catch(ERROR e)

... // A series of exception handling

Endtry

Error handling

If an error is reported, the control system will throw an exception and report the cause of the error.

If the exception is not caught by the try block, the control system will stop the program.

12 RL Programming Commands

12.3 Commands

226

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.7.2 SocketAccept

Explanation

Blocking wait for client connections to arrive, and complete client connection. This command is only

used when the robot is acting as a TCP server.

Notes

1. The command will block the current task, so the correct way to use it is in multitasking.

There is a low-priority task continuously receiving and generating the communication

connection object SocketConn independently.

2. The command returns a connection operation object and has the ip and port information of

the client connection, which can be used by other parts of the program. The returned

connection object is a SocketConn structure with a name randomly assigned by the

system. After getting the connection object, please change the name of the connection

object to avoid connection loss.

3. The server supports multiple connections.

Return value

Data type: SocketConn

After an external device connects to the robot as a TCP client, the control system generates a

communication object that is used by the RL program to control communication read and write.

Definition

SocketConn conn = SocketAccept(name)

name

Data type: string

The name of the SocketServer object that has been prepared and opened successfully using OpenDev.

Examples

Example 1

SocketServer listener1 = {"192.168.0.200", 8090, "svr1"}

global pers bool exit = false

try

 OpenDev("svr1") // Bind port, listen for port

 while(exit != true)

 SocketConn conn = SocketAccept("svr1") // Client connected via blocking receive

conn.name = "client1" // Important! Give the communication connection a name, otherwise, it

will be difficult to read and write data by name

 conn.suffix = "\n" // Optional, set the packet terminator

 Endwhile

catch(ERROR e)

... // A series of exception handling

Endtry

Error handling

If an error is reported, the control system will throw an exception and report the cause of the error. If

the exception is not caught by the try block, the control system will stop the program.

12.3.7.3 CloseDev

Explanation

Close the resource, which can be used to close the TCP communication connection, TCP listening

server, or serial port resource.

Return value

12 RL Programming Commands

12.3 Commands

227

Copyright © ROKAE 2015-2023. All rights reserved.

N/A.

Definition

CloseDev(name)

name

Data type: string

SocketConn connection, listening server SocketServer object, or serial port resource used for

communication.

Examples

Example 1

SocketConn scnn3 = {"192.168.0.200", 8090, "clt1", 2, "\n"}

try

 OpenDev("clt1")

 string readstr = ReadString(30, "clt1")

 // Logic processing of readstr

 string sendstr = "hello server!"

 SendString (sendstr , "clt1") //Use clt1's client connection to send data

 ... // A series of code

catch(ERROR e)

 ... // A series of exception handling

endtry

CloseDev("clt") // Close the socket client at last, regardless of whether an error occurs.

Example 2

SocketServer listener1 = {"192.168.0.200", 8090, "svr1"}

global pers bool exit = false

try

 OpenDev("svr1") // Bind port, listen for port

 while(exit != true)

 SocketConn conn = SocketAccept("svr1") // Client connected via blocking receive

conn.name = "client1" // Important! Give the communication connection a name, otherwise, it

will be difficult to read and write data by name

 conn.suffix = "\n" // Optional, set the packet terminator

 Endwhile

catch(ERROR e)

... // A series of exception handling

Endtry

CloseDev("client1") // Close communication with external TCP client. Important!

CloseDev("svr1") // Close the listening server

Notes

1. In Example 2, there are two network objects, and you must close the communication

connection first and then the server object, otherwise it will generate a state of incomplete

resource release (TCP TIME_WAIT state).

2. If the robot has established multiple communication connections with external devices

when it acts as a server, you need to close these communication connections in order

before closing the server.

3. In the case of incomplete resource release, the control system needs to be restarted.

However, there is no need to worry too much, as there is redundancy in the number of

resources allowed in the control system; this ensures the program runs properly after a

small number of resources are occupied. However, it is necessary to avoid a large number

of resources being occupied due to incorrect use.

12.3.7.4 SendString

Explanation

Send a string outwards. It can be sent through the network or serial port, depending on the hardware

resource represented by the identifier in the parameter.

Definition

12 RL Programming Commands

12.3 Commands

228

Copyright © ROKAE 2015-2023. All rights reserved.

SendString(StringData, name)

StringData

Data type: string

The string data to be sent.

name

Data type: string

The name of the hardware resource used to send the data. It can be the SocketConn object with an

established TCP communication connection or the serial port resource successfully opened.

Example

Example 1

SendString("Hello World", "Socket0")

Send Hello World string outwards through Socket0. Socket0 is the SocketConn type that has been

defined and successfully connected.

Example 2

VAR String str1 = "Hello World"

SocketSendString(str1, "Serial1")

Sends the string Hello World stored in str1 outwards via Serial1. Serial1 is a defined and successfully

opened serial port.

12.3.7.5 SendByte

Explanation

To send a byte outwards. It is very useful when sending ASCII characters.

Return value

N/A.

Definition

SendByte(ByteData, name)

ByteData

Data type: int, byte, or byte array

Send an unsigned byte or array from 0 to 255, mainly used for sending ASCII codes.

name

Data type: string

The name of the socket or serial port to send data.

Example

Example 1

SendByte(13, "socket0")

Send a carriage return through Socket0.

Example 2

VAR byte data1 = 13

SendByte(data1, "serial0")

First define a byte variable data1, which is actually a carriage return. Then send the data outwards

through serial0.

Example 3

VAR byte data2[2] = {13,17}

SendByte(data2, "socket0")

Send an array variable byte data2 through socket0. Sent all in the array.

Example 4

VAR byte data2[2] = {13,17,20}

SendByte(data2[2], “socket0”)

Sends a byte variable of data2[2] through socket0, which represents the 2nd element of the array.The

value 17 of data2[2] will be sent without sending any other elements.

12.3.7.6 ReadBit

Explanation

The control system receives data by bit.

12 RL Programming Commands

12.3 Commands

229

Copyright © ROKAE 2015-2023. All rights reserved.

1) Received by TCP through network communication. The externally sent data should end with the

terminator configured by SocketConn.

2) Received by serial communication. The external device only needs to send the data, with no

requirement on the terminator.

Return value

Data type: bool array

Store the received bit data using a bool array. Each bit corresponds to a bool member.

Definition

Ret = ReadBit(BitNum, TimeOut, name)

BitNum

Data type: int

The number of bits that need to be read. The size should be an integer multiple of 8.

TimeOut

Data type: int

Timeout period, in s, ranging from 0 to 86400 and is defaulted to 60s.

name

Data type: string

The name of the communication connection SocketConn or the serial port.

Ret

Data type: bool array

Received data. The first element of the array indicates the lowest bit.

Example

Example 1

bool groupio[16]

groupio = ReadBit(16, 60, "Socket0")

16 bit data is read by the SocketReadBit command and stored in a bool array named groupio with a

timeout period of 60 seconds.

Assume that the external device sends ASCII characters, 95 + terminator, the robot receives "95". As

the hexadecimal values of "9" and "5" are 0x39 and 0x35 respectively, the data received by the user

is 0x3935. At this time the groupio array from [1] to [16] is 1001 1100 1010 1100. The [1] is the low

bit of the data, which matches with 0x3935.

12.3.7.7 ReadByte

Explanation

Receive data with a certain number of bytes. Note that the data needs to be separated by commas.

Return value

Data type: byte array

Store the received data using a byte array.

Definition

Ret = ReadByte(ByteNum, TimeOut, name)

ByteNum

Data type: int

The number of bits that need to be read. The size should be an integer multiple of 8.

TimeOut

Data type: int

Timeout period, in s, ranging from 0 to 86400 and is defaulted to 60s.

name

Data type: string

The name of the communication connection SocketConn or the serial port.

Ret

Data type: byte array

Received data.

Example

12 RL Programming Commands

12.3 Commands

230

Copyright © ROKAE 2015-2023. All rights reserved.

Example 1

byte rets[6] = {0,0,0,0,0,0}

rets = ReadByte(6,60,"clt1")

6-byte data is read and stored in a bool array named rets with a timeout period of 60 seconds.

Note that bytes from external devices need to be separated by commas, e.g. send "1,2,3,4,5,6"

When sending data via TCP, the data should end with the pre-defined terminator.

When sending data via serial port, the terminator is not required.

12.3.7.8 ReadDouble

Explanation

It is used to receive double-type data via Socket.The sent data should end with the pre-defined

terminator.

Note that this command is only valid for TCP network communication and when robots act as the

client/server, but not for serial ports.

Return value

Data type: double array

Store the received data using a double array.

Definition

Ret = ReadDouble(DoubleNum, TimeOut, name)

DoubleNum

Data type: double

The number of doubles to be read, up to 30.

TimeOut

Data type: int

Timeout period, in s, ranging from 0 to 86400 and is defaulted to 60s.

name

Data type: string

The name of the Socket used to receive the data.

Example

Example 1

double dd[10]

dd =ReadDouble(10, 60, "Socket0")

Read 10 double-type data and store them in a double array named dd with a timeout period of 60

seconds.

12.3.7.9 ReadInt

Explanation

It is used to receive int-type data via Socket. Externally sent data must end with the pre-defined

terminator.

Note that this command is only valid for TCP network communication and when robots act as the

client/server, but not for serial ports.

Return value

Data type: int

Store the received data using an int array.

Definition

Ret = ReadInt(IntNum, TimeOut, name)

IntNum

Data type: int

The number of int to be read, up to 30.

TimeOut

Data type: int

12 RL Programming Commands

12.3 Commands

231

Copyright © ROKAE 2015-2023. All rights reserved.

Timeout period, in s, ranging from 0 to 86400 and is defaulted to 60s.

name

Data type: string

The name of the Socket used to receive the data.

Example

Example 1

int ii[10]

ii = ReadInt(10, 60, "Socket0")

10 int data are read and stored in an int array named ii with a timeout period of 60 seconds.

12.3.7.10 ReadString

Explanation

It is used to read a string and return it. Externally sent data should end with the pre-defined

terminator.

Return value

Data type: string

Store the received string.

Definition

Ret = ReadString(TimeOut, name, [len])

TimeOut

Data type: int

Timeout period, in s, ranging from 0 to 86400 and is defaulted to 60s.

name

Data type: string

The name of the socket or serial port to receive data.

len

Data type: int

Optional parameter, only used when reading through the serial port. Since the terminator is not

defined in the serial port, it is necessary to specify the length before successful reading and parsing.

Example

Example 1

VAR String str1

str1 = ReadString(60, "Socket1")

Receive a string from Socket1 and store it in str1 with a timeout period of 60 seconds. Network

Communication

Example 2

VAR String str1

str1 = ReadString(60, "serial0",5)

Receive a string for a length of 5 bytes from serial0 and store it in str1 with a timeout period of 60

seconds. Serial port communication method.

12.3.7.11 GetSocketConn

Explanation

It is used to find the socket attribute set object using the socket connection name. The result obtained

by this command can be used for judgment and processing logic. It should be used only as a read-

only object. This command is only applicable to communication connections (including robot as

client, or as a server which has been connected to the channel for communication), not for listening

servers and serial ports.

Return value

Data type: SocketConn

The socket attribute object found by given name.

12 RL Programming Commands

12.3 Commands

232

Copyright © ROKAE 2015-2023. All rights reserved.

Definition

Ret = GetSocketConn(name)

name

Data type: string

Name of communication connection SocketConn.

Ret

Data type: SocketConn

The socket attribute object found by given name.

Example

Example 1

SocketConn ret= GetSocketConn("client0")

Find SocketConn object with the name "client0". You can use ret to get the attributes of this

connection, including the ip address, port number, communication terminator, and connection state.

Queryable

properties
Query method Meaning and example

ip address ret.ip String, e.g. "192.168.0.161"
Port number ret.port integer, e.g. 8090
Attribute ret.attr Robot as server: "incoming".

Robot as client: "outgoing".

If the connection is not established: "" or other value, usually

blank
Cache size ret.cache 1~100
Name ret.name In the given example, it is "client0"
Connection

state
ret.state closed, established

12.3.7.12 GetSocketServer

Explanation

Find the corresponding server attribute set object with the user-defined name. The result obtained by

this command can be used for judgment and processing logic. It should be used only as a read-only

object. This command is only applicable to listening servers (SocketServer objects), not to

communication connections (including robot as client, or as a server which has been connected to the

channel for communication) and serial ports.

Return value

Data type: SocketServer

The server attribute object found by given name.

Definition

Ret = GetSocketServer(name)

name

Data type: string

Name of communication connection SocketServer.

Ret

Data type: SocketServer

The socket attribute object found by given name.

Example

Example 1

SocketServer listener1 = {"192.168.0.200", 8090, "svr1"}

OpenDev("svr1") // Bind port, listen for port
// Get the SocketServer object using the connection identifier "svr1", at this time ret will copy all the states of

listener1 in Task 1

SocketServer ret= GetSocketServer("svr1")

if(svrfindout.state == "listening") // Use SocketServer's attr attribute to judge if listening is in

underway

 // Logic processing

endif

12 RL Programming Commands

12.3 Commands

233

Copyright © ROKAE 2015-2023. All rights reserved.

Queryable

properties
Query method Meaning and example

ip address ret.ip String, e.g. "192.168.0.161"
Port number ret.port integer, e.g. 8090
Name ret.name In the example above, it is "svr1"
Connection

state
ret.state closed, listening, error

12.3.7.13 GetBufSize

Explanation

Get the amount of data not read in the buffer of the serial port, in bytes. The command is only

applicable to the serial port, not to the TCP server and the client.

Return value

Data type: int

The amount of unprocessed data in the buffer, in bytes.

Definition

Ret = GetBufSize(name)

name

Data type: string

The name of the serial port resource.

Ret

Data type: int

The amount of unprocessed data in the buffer, in bytes.

Example

Example 1

OpenDev("serial0")

int a = GetBufSize("serial0")

print(a)

12.3.7.14 ClearBuffer

Explanation

Clear the buffer. Any unread characters will be lost. The command is only applicable to the serial

port, not to the TCP server and the client.

Return value

N/A.

Definition

ClearBuffer(name)

name

Data type: string

The name of the serial port resource.

Ret

Data type: int

The amount of unprocessed data in the buffer, in bytes.

Example

Example 1

OpenDev("serial0")

int a = GetBufSize("serial0")

print(a)

12 RL Programming Commands

12.3 Commands

234

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.8 Network command

12.3.8.1 SocketCreate (expired)

Explanation

Establish a Socket connection. By using the Socket command, the RL program can obtain data

from an external device or send out program data. The RL language supports the simultaneous

establishment of multiple different Sockets for connections of multiple external devices. Different

names should be used to distinguish between the different Sockets. The Socket command is based

on the TCP/IP protocol, so theoretically any external device that supports TCP/IP can

communicate with the RL program to exchange data. All data sent to the RL Socket command (i.e.

data received using the SocketRead series of commands) should end with a carriage return. All

data before the receipt of the carriage return will be merged into the same data processing. When

using the Socket function, the robot controller only supports connection to an external server as a

client.

Up to 10 Socket connections are supported.

Note that this command is marked as "expired" for it is used in xCore Control System version 1.3.

It is still valid in higher versions, but no longer maintained. Further use is not recommended.

Return value

Data type: bool

Return true if created successfully and false if failed

Definition

SocketCreate("ip_Address", Port, "Name" [,Cache] [, "Terminator"])

ip_Address

Data type: string Define the IPv4 address that needs to be connected to the server. The double

quotation marks shall be used to include it.

Port

Data type: int

Define the server port number.

Name

Data type: string

Define the name of a new Socket. Different names must be specified between different Sockets.

Cache

Data type: int

Define the size of the Socket cache. The communication data is stored in the cache queue and can

be omitted.

Terminator

Data type: string

Define the terminator type of socket communication, which can be omitted, default to "\r".

Example

Example 1

if (SocketCreate("10.0.6.11",8080,"S1",10,"\r"))

 // Successful creation

else

 // Error handling

endif

Notes

3、 Due to the limitation of the TCP/IP protocol resource release mechanism, do not call the

commands SocketCreate and SocketClose frequently. Otherwise, the program may run

incorrectly.

12 RL Programming Commands

12.3 Commands

235

Copyright © ROKAE 2015-2023. All rights reserved.

4、 To avoid frequent calls to the SocketCreate and SocketClose commands in loop mode, it

is best to add a time delay between the two commands, e.g.

SocketClose("S1")

wait 0.1

SocketCreate("10.0.6.11",8080,"S1",10,"\r")

12.3.8.2 SocketClose (expired)

Explanation

It is used to close the Socket.

Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It

is still valid in higher versions, but no longer maintained. Further use is not recommended.

Definition

SocketClose ("SocketName")

SocketName

Data type: string

The name of Socket to be closed.

Notes

Do not use the SocketClose command directly after the SocketSend series of commands. Failure

to do so may result in data transmission failures. Use the SocketClose command after receiving

the confirmation messages.

Example

Example 1

SocketClose("Socket0")

12.3.8.3 SocketSendString (expired)

Explanation

It is used to send a string outwards via Socket.

Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It

is still valid in higher versions, but no longer maintained. Further use is not recommended.

Definition

SocketSendString(StringData, "SocketName")

StringData

Data type: string

The string data to be sent.

SocketName

Data type: string

The name of the Socket used to send the data.

Example

Example 1

SocketSendString ("Hello World", "Socket0")

Send Hello World string outwards through Socket0.

Example 2

VAR String str1 = "Hello World"

SocketSendString(str1, "Socket0")

Send the str1 stored string via Socket0.

12 RL Programming Commands

12.3 Commands

236

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.8.4 SocketSendByte (expired)

Explanation

It is used to send a byte outwards through the Socket. It is very useful when sending ASCII

characters.

Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It

is still valid in higher versions, but no longer maintained. Further use is not recommended.

Definition

SocketSendByte(ByteData, "SocketName")

ByteData

Data type: int, byte, or byte array

Send an unsigned byte or array from 0 to 255, mainly used for sending ASCII codes.

SocketName

Data type: string

The name of the Socket used to send the data.

Example

Example 1

SocketSendByte(13, "socket0")

Send a carriage return through Socket0.

Example 2

VAR byte data1 = 13

SocketSendByte(data1, "socket0")

First define a byte variable data1, which is actually a carriage return. Then send it outwards through

Socket0.

Example 3

VAR byte data2[2] = {13,17}

SocketSendByte(data2, "socket0")

Send an array variable byte data2 through socket0.

12.3.8.5 SocketReadBit (expired)

Explanation

It is used to receive data by Bit through the Socket. Externally sent data must end with a carriage

return. Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It is still valid in

higher versions, but no longer maintained. Further use is not recommended.

Return value

Data type: bool

Store the received bit data using a bool array. Each bit corresponds to a bool member.

Definition

SocketReadBit(BitNum, TimeOut, "SocketName")

BitNum

Data type: int

The number of bits that need to be read. The size should be an integer multiple of 8.

TimeOut

Data type: int

Timeout period, in s, ranging from 0 to 86400 and is defaulted to 60s.

SocketName

Data type: string

The name of the Socket used to receive the data.

Example

Example 1

bool groupio[16]

groupio = SocketReadBit(16, 60, "Socket0")

12 RL Programming Commands

12.3 Commands

237

Copyright © ROKAE 2015-2023. All rights reserved.

16 bit data is read by the SocketReadBit command and stored in a bool array named groupio with a

timeout period of 60 seconds.

12.3.8.6 SocketReadDouble (expired)

Explanation

It is used to receive double-type data via Socket. Externally sent data must end with a carriage return.

Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It

is still valid in higher versions, but no longer maintained. Further use is not recommended.

Return value

Data type: double

Store the received data using a double array.

Definition

SocketReadDouble(DoubleNum, TimeOut, "SocketName")

DoubleNum

Data type: double

The number of doubles to be read, up to 30.

TimeOut

Data type: int

Timeout period, in s, ranging from 0 to 86400 and is defaulted to 60s.

SocketName

Data type: string

The name of the Socket used to receive the data.

Example

Example 1

double dd[10]

dd = SocketReadDouble(10, 60, "Socket0")

Read 10 double-type data using the SocketReadDouble command and store it in a double array

named dd with a timeout period of 60 seconds.

12.3.8.7 SocketReadInt (expired)

Explanation

It is used to receive int-type data via Socket. Externally sent data must end with a carriage return.

Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It

is still valid in higher versions, but no longer maintained. Further use is not recommended.

Return value

Data type: int

Store the received data using an int array.

Definition

SocketReadInt(IntNum, TimeOut, "SocketName")

IntNum

Data type: int

The number of int to be read, up to 30.

TimeOut

Data type: int

Timeout period, in s, ranging from 0 to 86400 and is defaulted to 60s.

SocketName

Data type: string

The name of the Socket used to receive the data.

Example

Example 1

12 RL Programming Commands

12.3 Commands

238

Copyright © ROKAE 2015-2023. All rights reserved.

int ii[10]

ii = SocketReadInt(10, 60, "Socket0")

10 int data is read by the SocketReadInt command and stored in an int array named ii with a timeout

period of 60 seconds.

12.3.8.8 SocketReadString (expired)

Explanation

It is used to read a string from Socket and return it. Externally sent data should end with a carriage

return.

Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It

is still valid in higher versions, but no longer maintained. Further use is not recommended.

Return value

Data type: string

Store the received string.

Definition

SocketReadString(TimeOut, "SocketName")

TimeOut

Data type: int

Timeout period, in s, ranging from 0 to 86400 and is defaulted to 60s.

SocketName

Data type: string

The name of the Socket used to receive the data.

Example

Example 1

VAR String str1

str1 = SocketReadString(60, Socket1)

Receive a string from Socket1 and store it in str1 with a timeout period of 60 seconds.

12.3.9 Logic commands

12.3.9.1 Return

Explanation

Function or TRAP return.

When the program encounters a RETURN command, if the program is currently in a subroutine or

TRAP, the program will return to the previous function. If the program is currently in the main

function, the program ends directly.

12.3.9.2 Wait

Explanation

The program waits for a period of time ranging from 0 to 2147484 seconds.

Example

Example 1

Wait 2

Indicates waiting for 2 seconds.

12 RL Programming Commands

12.3 Commands

239

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.9.3 WaitUntil

Explanation

The program waits until a certain condition is met.

Example

Example 1

WaitUntil(di2 == true)

It indicates that the second signal waiting for the second signal of the first DI module is true before

executing sentences followed.

12.3.9.4 Break

Explanation

Jumping out of the current loop, and is used in the WHILE loop in the RL language. When the

WHILE loop is executed to Break, regardless of WHILE's CONDITION, it will jump out from the

WHILE loop directly.

Example

Example 1

VAR int counter = 0

WHILE(1)

 IF(counter == 5)

 break

 Endif

counter++

ENDWHILE

The program will jump out of the WHILE loop when the counter is 5.

12.3.9.5 IF…Else if…Else

Explanation

Conditional judgment command.

Example

Example 1

IF(condition1)

//a

Else if (condition2)

//b

Else if (condition3)

//c

Else

//d

Endif

Execute logic a when condition1 is true, logic b when condition2 is true, and so on.

12 RL Programming Commands

12.3 Commands

240

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.9.6 Goto

Explanation

The Goto command allows the pointer to jump to the marked command.

Example

Example 1

int a = 0

int b = 9

Goto end

printf(a)

end:

printf(b)

Define two variables a and b, then use the printf function to print two commands. Use the Goto

command to force a jump to the end marker position of the print b command, at which point the print of

a will not be executed.

12.3.9.7 For

Explanation

Defines a loop control structure that executes a specified number of times.

Example

Example 1

For(int i from 1 to 10)

printf("i = %d\n", i)

endfor

This program prints i 10 times from 1 to 10 by adding 1 each time in sequence.

Example 2

For(int i from 1 to 10 step 3)

printf("i = %d\n", i)

Endfor

This program prints i 4 times from 1 to 10 by adding 3 each time in sequence.

Supplementary explanation

Continue and Break can be used to control the For flow. See the Continue and Break commands for

details.

12.3.9.8 Continue

Explanation

Exit this loop.

Continue executing the commands from the beginning of the loop, but just end the loop without

exiting from the loop body.

Example

Example 1

VAR int count = 0

WHILE(1)

12 RL Programming Commands

12.3 Commands

241

Copyright © ROKAE 2015-2023. All rights reserved.

count++

IF(count == 1)

Continue

Else

break

MoveAbsJ j10, v500, fine, tool1

Endif

ENDWHILE.

The code for MoveAbsJ will not be executed.

12.3.9.9 Inzone

Explanation

It is used with SetDO or modbus, cclink, and other IO operations or commands; this command can

ensure that the signal is triggered at a defined point position, instead of being triggered earlier by the

lookahead pointer.

Example

MoveL p1

MoveL p2

Inzone

 SetDO dox, true

 print(123)

EndInzone

MoveL p3

Supplementary explanation

In the example, an Inzone command is used. After the interpreter looks ahead to Inzone, instead of

executing this command immediately, it generates an additional function which includes SetDo and

print commands. This additional function takes effect when the motion command move p2 is

completed.

1. If there is a turning zone between the two motion commands p2 and p3, the additional function will

be executed at the moment when the robot reaches the turning zone

2. If there is no turning zone, the additional function will be executed at the moment the robot reaches p2

12.3.9.10 WHILE

Explanation

While loop allows you to write a loop control structure that keeps executing before conditions are

met.

Example

Example 1

int count = 0

while(count < 10)

 count++

 print(count)

endwhile

This program enables a loop that counts by 1 from 0 to 10 and prints.

Supplementary explanation

Continue and Break can be used to control the While flow. See the Continue and Break commands

for details.

12 RL Programming Commands

12.3 Commands

242

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.9.11 Pause

Explanation

It is used to pause the program.

The program enters the pause state after the command before Pause is executed. The program can

only be resumed by clicking running on the teach pendant or receiving a restart signal through an

external program.

Notes

This command does not support auxiliary programming for the moment.

12.3.9.12 try/catch

Explanation

The Try/Catch command allows the program writer to decide unique response measures after an error

occurs.

Example

Example 1

ReadOnce:

Try

 Double xyz[3] = ReadDouble(3, timeout, socketname)

Robtarget_0.trans.x = xyz[1]

Robtarget_0.trans.y = xyz[2]

Robtarget_0.trans.z = xyz[3]

 MoveL Robtarget_0, v2000, fine, tool0

Catch(error e)

 SendString("Recv rob xyz error", socketname)

 Goto ReadOnce

endtry

This program supports a simple application scenario. The communication command ReadDouble is

used to read a three-dimensional array from the TcpSocket as the xyz parameter of the motion point

position, and then the MoveL command is called to move to the corresponding Cartesian point.

If the try/catch command is not used and the point position received from the TcpSocket is wrong,

the robot will report "out of range" or "planning error" and stop the program.

If the try/catch command is used, the motion command error is still reported, but the program does

not stop. Instead, it jumps to the code segment between catch and endtry and handles the error as

desired by the user. In this example, SendString tells Socket the point position error received by the

host, and the host decides how to handle the error and calls the goto command to re-execute

ReadDouble and wait for the next position.

Commands whose errors can be caught by the try/catch command:

All motion commands (see 12.3.2 Motion commands)

All communication commands (see 12.3.7 Communication commands)

12 RL Programming Commands

12.3 Commands

243

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.9.13 SwitchCase

Explanation

SwitchCase, like the IF command, controls the flow control based on the input variable conditions.

RL interpreter will compare the variables in the Case field in order based on the input variable

(condition).

If the two variables are equal, the interpreter will enter the code branch of the corresponding Case

and stop comparing and entering other code branches.

If all conditions are not met, it will enter the Default branch;

If no Case condition matches and there is no Default branch, it will enter no branch and the Switch

command ends;

Multiple conditions can be input for the Case command (see command structure Case C1, C12, C13

and example 1).

Command structure

Switch(condition)

 Case C1,C12,C13:

 Functions1()

 Case C2:

 Functions2()

 Default:

 DefaultFunction()

EndSwitch

Example

Example 1

reg_int is a register variable, the host (PLC) will update the value of the variable through relevant

register protocols (e.g. modbus, cclink). The production project expects the robot to execute the

corresponding function branch (e.g. a blocked trajectory) according to the value of the register. If the

register inputs 1, 2, and 3, then function A will be executed; if the register inputs 4, 5, and 6, then

function B is executed. If the above conditions are not met, function C will be executed in the Default

branch.

Switch(reg_int)

 Case 1,2,3:

 FunctionsA() // The robot follows point positions related to function A

 Case 4,5,6:

 FunctionsB() // The robot follows point positions related to function B

 Default:

 FunctionC() // Execute function C if without specified input

EndSwitch

12.3.10 Home command

12.3.10.1 Home

Explanation

Make the robot return to the set Home through joint space motion.

12 RL Programming Commands

12.3 Commands

244

Copyright © ROKAE 2015-2023. All rights reserved.

Definition

Home

The command includes no input parameters

Example

Example 1

HomeSet 0,30,0,60,0,90,0

Home

Use the HomeSet command to set the Home and then the Home command to move the robot to the

drag pose in the joint space.

Use restrictions

➢ Home pose setting must be enabled on the Robot Setup > Quick Turn interface or through the

HomeSet command before the Home command can be used, otherwise, an error is reported.

12.3.10.2 HomeSet

Explanation

Sets the robot's Home in the joint space

Definition

HomeSet axis1,axis2,axis3,axis4,axis5,axis6,axis7

axisx

Data type: double

Set the angle of home on each axis

Example

Example 1

HomeSet 0,30,0,60,0,90,0

Home

Use the HomeSet command to set the Home and then the Home command to move the robot to the

drag pose in the joint space.

12.3.10.3 HomeSetAt

Explanation

Obtain the setup data of the robot's Home

Definition

HomeSetAt(index)

Return value

Data type: double

Joint angle, in °

index

Data type: int

Get the joint angle of the specified axis at Home. When the index is 0, return if HomeSet is enabled,

1 means enabled, and 0 disabled.

Example

Example 1

12 RL Programming Commands

12.3 Commands

245

Copyright © ROKAE 2015-2023. All rights reserved.

HomeSet 0,30,0,60,0,90,0

double angle2 = HomeSetAt(2)

angle2 Get the joint angle of joint 2 at 30°.

12.3.10.4 HomeDef

Explanation

Determine if the Home is set

Definition

HomeDef()

Return value

Data type: bool

true Home already set

false Home not set

12.3.10.5 HomeSpeed

Explanation

Set the running speed of Home command

Definition

HomeSpeed Speed

Example

Example 1

HomeSpeed v1000

Home

Set the Home speed to V1000. Then the Home command moves the robot to Home at the speed of

V1000.

12.3.10.6 HomeClr

Explanation

Clear Home setting

Definition

HomeClr

Example

Example 1

HomeClr

Clear Home set in the program. The Home command will not be executed if cleared.

12 RL Programming Commands

12.3 Commands

246

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.11 Math command

12.3.11.1 sin

Function definition: double sin(double x);

Description: sin() is used to calculate the sine of parameter x and return the result. x in radians;

Return value: Return the calculated result between -1 and 1.

12.3.11.2 cos

Function definition: double cos(double x);

Description: cos() is used to calculate the cosine of parameter x and return the result. x in radians;

Return value: Return the calculated result between -1 and 1.

12.3.11.3 tan

Function definition: double tan(double x);

Description: tan() is used to calculate the tangent of parameter x and return the result. x in radians;

Return value: Return the tangent of parameter x.

12.3.11.4 cot

Function definition: double cot(double x);

Description: cot() is used to calculate the cotangent of parameter x and return the result. x in radians;

Return value: Return the cotangent of the parameter x.

12.3.11.5 asin

Function definition: double asin(double x);

Description: asin() is used to calculate the arcsine of parameter x and return the result. Parameter x

ranges from -1 to 1,

beyond which error will be reported.

Return value: Return the calculated result between -PI/2 and PI/2, in radians.

12.3.11.6 acos

Function definition: double acos(double x);

Description: acos() is used to calculate the arccosine of parameter x and return the result. Parameter x

ranges from -1 to 1,

beyond which error will be reported.

Return value: Return the calculated result between 0 and PI, in radians.

12 RL Programming Commands

12.3 Commands

247

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.11.7 atan

Function definition: double atan(double x);

Description: atan() is used to calculate the arctangent value of parameter x and return the result.

Return value: Return the calculated result between -PI/2 and PI/2.

12.3.11.8 sinh

Function definition: double sinh(double x)

Description: sinh() is used to calculate the hyperbolic sine value of parameter x and return the result.

The mathematical definition is:

(exp(x) - exp(-x))/2;

Return value: Return the hyperbolic sine of parameter x.

12.3.11.9 cosh

Function definition: double cosh(double x)

Description: cosh() is used to calculate the hyperbolic cosine of parameter x and return the result.

The mathematical definition is:

(exp(x)+exp(x))/2;

Return value: Return the hyperbolic cosine of the parameter x.

12.3.11.10 tanh

Function definition: double tanh(double x);

Description: tanh() is used to calculate the hyperbolic tangent of parameter x and return the result.

The mathematical definition is:

sinh(x)/cosh(x);

Return value: Return the hyperbolic tangent of parameter x.

12.3.11.11 exp

Function definition: double exp(double x);

Description: exp() is used to calculate e to the x power, which is the ex value, and return the result;

Return value: Return the result of e to the x power.

12.3.11.12 log

Function definition: double log(double x);

Description: log() is used to calculate the logarithm value of x at the base of e and return the result.

That is, to find the natural logarithm of x,

ln(x)，x > 0；

Return value: Return the natural logarithm value of parameter x.

12 RL Programming Commands

12.3 Commands

248

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.11.13 log10

Function definition: double log10(double x);

Description: log10() is used to calculate the logarithm value of x at the base of 10, and return the

result. Where x>0;

Return value: Return the natural logarithm value of parameter x at the base of 10.

12.3.11.14 pow

Function definition: double pow(double x, double y);

Description: pow() is used to calculate x to the y power, which is the xy value, and return the result;

Return value: Return the result of x to the y power.

12.3.11.15 sqrt

Function definition: double sqrt(double x);

Description: sqrt() is used to calculate the square root of parameter x and return the result. The

parameter x must be positive;

Return value: Return the square root of parameter x.

12.3.11.16 ceil

Function definition: double ceil(double x);

Description: ceil() will return the minimum integer value no less than parameter x, and the result will

be returned in the double type.

Return value: Return a minimum integer value not less than the parameter x.

12.3.11.17 floor

Function definition: double floor(double x);

Description: floor() will return the maximum integer value not greater than the parameter x, and the

result will be returned in the double type.

Return value: Return the maximum integer value not greater than the parameter x.

12.3.11.18 abs

Function definition: int abs(int x)/double abs(double x);

Description: Find the absolute value of x, |x|;

Return value: When the input parameter is of int type, the output is also of int type. When the input

parameter is of double type, the output is also

of double type.

12 RL Programming Commands

12.3 Commands

249

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.11.19 rand

Function definition: rand()

Function description: To generate an integer random number;

Return value: An integer random number, ranging from 0 to 2147483647.

12.3.12 Bit operation

12.3.12.1 BitAnd

Explanation

BitAnd is used to generate logical conjunction (and) for byte type data. See table below:

Return value

Data type: byte

It indicates the result returned by performing logical conjunction of two byte-type data.

Definition

BitAnd (BitData1, BitData2)

BitData1

Data type: byte

The byte data 1 to be processed.

BitData2

Data type: byte

The byte data 2 to be processed.

Example

Example 1

VAR byte data1 = 34

VAR byte data2 = 38

VAR byte byte3 = BitAnd(data1, data2) //34

Define the byte-type variable data1 and data2. assign them with the value of 34 and 38, respectively;

perform logical conjunction on data1 and data2, the returned value of 34 is assigned to byte3.

12 RL Programming Commands

12.3 Commands

250

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.12.2 BitCheck

Explanation

To check whether a bit in a byte-type data is 1. If so, returns true, otherwise, false.

Return value

Data type: bool

true indicates the bit is assigned to 1, false indicates the bit is assigned to 0.

Definition

BitCheck (BitData, BitPos)

BitData

Data type: byte

Byte data to be operated.

BitPos

Data type: int

Position of byte to be operated, ranging from 1 to 8.

Example

Example 1

VAR byte data1 = 130

VAR bool b1 = BitCheck(data1, 8) //true

Definite byte data1 and assign it with 130, check if the 8th bit of data1 is 1 and return true if so.

12.3.12.3 BitClear

Explanation

To set a certain bit of byte- or int-type data to 0. The bit starts from 1.

Definition

BitClear BitData | IntData, BitPos

BitData

Data type: byte

Byte data to be operated.

IntData

Data type: int

The integer data to be operated.

BitPos

Data type: int

Position of the bit to be operated, ranging from 1 to 8 for byte data and 1 to 32 for int data.

Example

Example 1

VAR byte data1 = 255

BitClear data1 1 //254

BitClear data1 2 //252

Define byte-type variable data1 and assign it with 255, Perform BitClear on data1, set the first bit to

0, and 254 is returned, set the second bit to 0, and 252 is returned.

12 RL Programming Commands

12.3 Commands

251

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.12.4 BitLSh

Explanation

It is used to perform logical left shift on byte-type data.

Return value

Data type: byte

It represents the byte data obtained by performing the left-shift operation.

Definition

BitLSh (BitData, ShiftSteps)

BitData

Data type: byte

Byte data to be operated.

ShiftSteps

Data type: int

The bits selected for the left shift, ranging from 1 to 8.

Example

Example 1

VAR int left_shift = 3

VAR byte data1 = 38

VAR byte data2

data2 = BiLSh(data1, left_shift) //48

Define byte-type variable data1, and assign it with 38, perform 3 bits left shift on data1, and 48 is

returned.

12.3.12.5 BitNeg

Explanation

It is used to perform logical negation on byte-type data.

Return value

Data type: byte

It represents the byte data obtained by performing the logical negation.

Definition

BitNeg (BitData)

BitData

Data type: byte

Byte data to be operated.

Example

Example 1

VAR byte data1 = 38

VAR byte data2

data2 = BitNeg(data1) //217

Define byte-type variable data1, and assign it with 38, perform logical negation on data1, and 217 is

returned.

12 RL Programming Commands

12.3 Commands

252

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.12.6 BitOr

Explanation

It is used to perform logical disjunction (or) on byte-type data.

Return value

Data type: byte

It represents the byte data obtained by performing the logical disjunction.

Definition

BitOr (BitData1, BitData2)

BitData1

Data type: byte

The byte data 1 to be processed.

BitData2

Data type: byte

The byte data 2 to be processed.

Example

Example 1

VAR byte data1 = 39

VAR byte data2 = 162

VAR byte data3

data3 = BitOr(data1, data2) //167

Define the byte-type variable data1 and data2, assign them with the value of 39 and 162,

respectively; perform logical conjunction on data1 and data2, and 167 is returned.

12.3.12.7 BitRSh

Explanation

It is used to perform the logical right shift on byte-type data.

Return value

Data type: byte

It represents the byte-type data obtained by performing the right-shift operation.

Definition

BitLSh (BitData, ShiftSteps)

BitData

Data type: byte

Byte data to be operated.

ShiftSteps

Data type: int

The bits selected for the right shift, ranging from 1 to 8.

Example

Example 1

VAR int right_shift = 3

VAR byte data1 = 38

VAR byte data2

data2 = BiRSh(data1, right_shift) //4

Define byte-type variable data1, and assign it with 38, perform 3 bits right shift on data1, and 4 is

returned.

12 RL Programming Commands

12.3 Commands

253

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.12.8 BitSet

Explanation

To set a certain bit of byte- or int-type data to 1. The bit starts from 1.

Definition

BitSet BitData | IntData, BitPos

BitData

Data type: byte

Byte data to be operated.

IntData

Data type: int

The integer data to be operated.

BitPos

Data type: int

Position of the bit to be operated, ranging from 1 to 8 for byte data and 1 to 32 for int data.

Example

Example 1

VAR byte data1 = 0

BitSet data1 1 //1

BitSet data1 2 //3

Define byte-type variable data1 and assign it with 255, Perform BitSet on data1, set the first bit to 1,

and 1 is returned, set the second bit to 1, and 3 is returned.

12.3.12.9 BitXOr

Explanation

It is used to perform logical exclusive or on byte-type data.

Return value

Data type: byte

It represents the byte data obtained by performing the logical disjunction.

Definition

BitXOr (BitData1, BitData2)

BitData1

Data type: byte

The byte data 1 to be processed.

BitData2

Data type: byte

The byte data 2 to be processed.

Example

Example 1

VAR byte data1 = 39

VAR byte data2 = 162

VAR byte data3

data3 = BitOr(data1, data2) //133

Define the byte-type variable data1 and data2, assign them with the value of 39 and 162,

respectively; perform logical exclusive or on data1 and data2, and 133 is returned

12 RL Programming Commands

12.3 Commands

254

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.13 String operations

12.3.13.1 StrFind

Explanation

It is used to find the position of a particular set of characters in the string from a specific location.

Return value

Data type: int

It represents the location of the first matching character. If the location is not found, the length of the

returned string is added by 1.

Definition

StrFind (Str ChPos Set [\NotInSet])

Str

Data type: string

It represents the string to be searched.

ChPos

Data type: int

It represents the starting position, starting from 1, if the location is off the boundary, an error is

reported.

Set

Data type: string

It represents the character set to be matched.

[\NotInSet]

Identifier, which identifies the character that cannot be matched in the character set.

Example

Example 1

VAR int found

found = StrFind("Robotics", 1, "aeiou") //2

Matching from the first character "R", and finding the second character "o" in the character set

“aeiou”, return matching location 2.

found = StrFind("Robotics", 1, "aeiou" \NotInSet) //1

Matching from the first character "R", and finding the first character "R" is not in the character set

"aeiou", return matching location 1.

12.3.13.2 StrLen

Explanation

It is used to obtain the length of the string.

Return value

Data type: int

It represents the current string length, which is longer than or equal to 0.

Definition

StrLen (Str)

Str

Data type: string

It represents a string that requires the calculation of string length.

12 RL Programming Commands

12.3 Commands

255

Copyright © ROKAE 2015-2023. All rights reserved.

Example

Example 1

VAR int num

num = StrLen("Robotics") //8

The length of the string "Robotics" is 8.

12.3.13.3 StrMap

Explanation

It is used to back up a string, all characters in it are replaced according to the specified mapping

relationship. The mapped characters correspond one to one according to their position, and the

unmapped characters remain the same.

Return value

Data type: string

It represents the replaced string.

Definition

StrMap (Str, FromMap, ToMap)

Str

Data type: string

It represents the original string.

FromMap

Data type: string

It represents the index of the mapping.

ToMap

Data type: string

It represents the value of the mapping.

Example

Example 1

VAR string str

str = StrMap("Robotics", "aeiou", "AEIOU") //RObOtIcs

Maps the string "Robotics", and "aeiou" is respectively mapped to "AEIOU".

Use restrictions

➢ FromMap and ToMap have to match with each other and have to be of the same length.

12.3.13.4 StrMatch

Explanation

It is used to search in a string, starting at the specified location, search for a particular format or a

string, and return the matched location.

Return value

Data type: int

It represents the position of the first character of the matched string. If there is no match, the string

length plus one is returned.

Definition

StrMatch (Str, ChPos, Pattern)

12 RL Programming Commands

12.3 Commands

256

Copyright © ROKAE 2015-2023. All rights reserved.

Str

Data type: string

It represents the string to be searched.

ChPos

Data type: int

It represents the starting position, if the location exceeds the length range of the string, an error is

reported.

Pattern

Data type: string

It represents the format string to match.

Example

Example 1

VAR int found

Found = StrMatch(“Robotics”, 1, “bo”) //3

Search from the first character for "bo" and find a match at the third position, position 3 is returned.

12.3.13.5 StrMemb

Explanation

It is used to check whether a character in a string belongs to a specified character set.

Return value

Data type: bool

True indicates that the character in the string belongs to the specified character set. Otherwise, false

is returned.

Definition

StrMemb (Str, ChPos, Set)

Str

Data type: string

It represents the string to be checked.

ChPos

Data type: int

It represents the position of the character to be checked; if it exceeds the range of the string, an error

is reported.

Set

Data type: string

It represents the character set to be matched.

Example

Example 1

VAR bool memb

memb = StrMemb("Robotics", 2, "aeiou") //true

The second character o is a member of the character set "aeiou" and true is returned.

12.3.13.6 StrOrder

Explanation

It is used to compare two strings and return the Boolean value.

12 RL Programming Commands

12.3 Commands

257

Copyright © ROKAE 2015-2023. All rights reserved.

Return value

Data type: bool

When str1<=str2, returns true, otherwise, false.

Definition

StrOrder (Str1, Str2)

Str1

Data type: string

It represents the first string value.

Str2

Data type: string

It represents the second string value.

Example

Example 1

VAR bool le

le = StrOrder("FIRST", "SECOND") //true

le = StrOrder("FIRSTB", "FIRST") //false

12.3.13.7 StrPart

Explanation

It is used to truncate a part of a string to generate a new string.

Return value

Data type: string

It represents the truncated string, truncating a string from a specified location with a specified length.

Definition

StrPart (Str, ChPos, Len)

Str

Data type: string

It represents the original string of a truncated string.

ChPos

Data type: int

It represents the starting position, and if it exceeds the range of the string, an error is reported.

Len

Data type: int

It represents the length for truncating.

Example

Example 1

VAR string part

part = StrPart("Robotics", 1, 5) //Robot

Truncate the string for a length of 5 bits from position 1 to get "Robot".

12.3.13.8 StrSplit

Explanation

It is used to split a string into an array of strings by specifying a separator

12 RL Programming Commands

12.3 Commands

258

Copyright © ROKAE 2015-2023. All rights reserved.

Return value

Data type: string array

It represents the array of strings obtained by splitting

Definition

StrSplit (Str [, separator])

Str

Data type: string

It represents the original string to be split.

separator

Data type: string

A separator. All characters in the string are considered as a separator and can be defaulted. If no

separators exist, space can be considered as the default separator.

Example

Example

string str_arr[4] = StrSplit("test1,test2;test3\test4", "\,;")

The string is split into four substrings (test1 test2 test3 test4).

Use restrictions

➢ An error is reported when the input string is blank.

➢ If the split results do not match the length of the defined string, an error is reported.

12.3.13.9 StrToByte

Explanation

StrToByte can convert a string into byte type data

Return value

Data type: byte

The conversion result of a string.

Definition

StrToByte (Str [, trans])

Str

Data type: string

The string to be converted.

trans

Data type: enumeration

Indicates the mathematical binary format of the string. Available parameters include \Bin (binary),

\Okt (octal), \Hex (hexadecimal), \Char (character), and the default (no parameter, decimal)

Example

Example 1

Byte NumBin = StrToByte("10", \Bin)

Byte NumOkt = StrToByte("10", \Okt)

Byte NumBin = StrToByte("10")

Byte NumHex = StrToByte("10", \Hex)

The string "10" is converted to byte numbers in binary, octal, decimal, and hexadecimal in order, and

the results are:

2, 8, 10, 16.

Example 2

Byte NumChar = StrToByte("0", \Char)

12 RL Programming Commands

12.3 Commands

259

Copyright © ROKAE 2015-2023. All rights reserved.

The character "0" is converted to 48 according to the conversion relationship between characters and

ASCII.

Use restrictions

➢ An error will be reported when the input string does not conform to the specified data format.

12.3.13.10 StrToDouble

Explanation

StrToDouble can convert a string into double type data

Return value

Data type: double

The conversion result of a string.

Definition

StrToDouble (Str)

Str

Data type: string

The string to be converted.

Example

Example

Double NumDouble = StrToDouble("3.1415926")

Convert string "3.1415926" into double type data.

Use restrictions

➢ An error will be reported when the input string does not conform to the specified data format.

12.3.13.11 StrToInt

Explanation

StrToInt can convert a string into Int type data

Return value

Data type: Int

The conversion result of a string.

Definition

StrToDouble (Str)

Str

Data type: string

The string to be converted.

Example

Example

Int NumInt = StrToInt("99")

Convert string "99" into Int type data.

Use restrictions

➢ An error will be reported when the input string does not conform to the specified data format.

12.3.14 Operators

12 RL Programming Commands

12.3 Commands

260

Copyright © ROKAE 2015-2023. All rights reserved.

8.3.11.1 Basic operators

Arithmetic operators

Arithmetic operators include:

Operator Application

+ Plus

- Minus

* Multiply

/ Divide

% Modular arithmetic

-- Decrement

++ Increment

The arithmetic operators support the operation of data defined as int or double type. The examples

for arithmetic operators are as follows:

Example 1

VAR int a = 1

VAR int b = 2

VAR int c = -b //Negate

VAR int ac = a * c //Multiplication

Example 2

The two operators ++ and --, also known as unary operators, are operators that operate on an

operand. RL does not distinguish between pre and post increment or decrement:

x = n++ //Means to add n by 1 and assign the n value to x

x = --n //Means to subtract n by 1 and assign the new value to x

Logical operators

Logical operators support the operation of the basic data types, including

Operator Application

&& Logical conjunction

|| Logical disjunction

< Less than

> Greater than

<= Less than or equal to

>=
Greater than or equal

to

== Equal to

!= Not equal to

! Take logical negation

Logic and && expressions are true if the results on both sides are true, and the logic or || expression

is true if one of the conditions of the two sides is true.

Example 1

The examples for other logical operators are as follows:

VAR int res = 1

while(res < 3) //Compare to determine whether res is less than 3

res++

endwhile

di5 = !di6 // Take logical negation

VAR int counter = 4

while(di7&&di8) /Calculate logical conjunction

12 RL Programming Commands

12.3 Commands

261

Copyright © ROKAE 2015-2023. All rights reserved.

if(counter == 5) //Whether it equals to

 break

 endif

endwhile

Assignment operators

Assignment operators include:

Operator Application

= Assignment

+=
Addition

assignment

-=
Subtraction

assignment

*=
Multiplication

assignment

/=
Division

assignment

%=
Modulus

assignment

The examples for assignment operators are as follows

VAR int num1 = 3

VAR int num2 = 4

num1 += num2 //Equivalent to num1 = num1 + num2, then num1 = 7.

num1 -= num2 //Equivalent to num1 = num1 – num2, then num1 = -1.

num1 *= num2 //Equivalent to num1 = num1 * num2, then num1 = 12.

num1 /= num2 //Equivalent to num1 = num1 / num2, then num1 = 0.

num1 %= num2 //Equivalent to num1 = num1 % num2, then num1 = 3.

Other operators

Operator Application

() Parentheses

. Dot operator

The examples for the operators are as follows:

Example 1

VAR int num = arr[1] //Assign the first element of the array to num

VAR int num2 = (1+2)*3 //Using parentheses can change the order of operations, the value of num2

here is 9

Example 2

Define a robtarget variable pt1

pt1.trans.x = 200 // Change the x coordinate of the pt1 point to 200 using the "." operator

Use restrictions

➢ The "." operator does not support modifications to the A, B, C members of robtarget variables.

12 RL Programming Commands

12.3 Commands

262

Copyright © ROKAE 2015-2023. All rights reserved.

8.3.11.2 Operation priority

Priority Operator Use form
Combination

direction

1
()

(Expression)/function name (formal

parameter list)

. Variable name.

2

- -Expression
From right to

left

++ ++ Variable name/Variable name ++

-- --Variable name/Variable name --

! !Expression

3

/ Expression / Expression
From left to

right

* Expression * Expression

% Integer expression / Integer expression

4
+ Expression + Expression

From left to

right

- Expression - Expression

5

> Expression > Expression
From left to

right

>= Expression >= Expression

< Expression < Expression

<= Expression <= Expression

6
== Expression == Expression

From left to

right

!= Expression != Expression

7 && Expression && Expression
From left to

right

8 || Expression || Expression
From left to

right

9

= Variable = Expression
From right to

left

/= Variable /= Expression

*= Variable *= Expression

%= Variable % = Expression

+= Variable += Expression

-= Variable -= Expression

12.3.15 Clock commands

12.3.15.1 ClkRead

Explanation

It is used to read the value of the clock.

Return value

Data type: double

Returns the time interval between the stop time of the clock or the current time and the start of the

clock. The accuracy is 0.001s.

12 RL Programming Commands

12.3 Commands

263

Copyright © ROKAE 2015-2023. All rights reserved.

Definition

ClkRead (Clock)

Clock

Data type: clock

Name of the clock.

Example

Example 1

VAR clock clock1

ClkStart clock1

ClkStop clock1

VAR double interval=ClkRead(clock1)

interval stores the time interval between start and stop of clock1.

12.3.15.2 ClkReset

Explanation

It is used to reset a clock.

ClkReset guarantees that the count is 0 before using a clock.

Definition

ClkReset Clock

Clock

Data type: clock

Name of the clock.

Example

Example 1

VAR clock clock1

ClkReset clock1

Reset clock1.

12.3.15.3 ClkStart

Explanation

It is used to start a clock.

When a clock starts, it will continue to count until the clock stops or the program resets. The clock

will continue to operate after the program stops or the robot is powered off.

Definition

ClkStart Clock

Clock

Data type: clock

Name of the clock.

Example

Example 1

VAR clock clock1

ClkStart clock1

Declare clock1, and start clock1.

12 RL Programming Commands

12.3 Commands

264

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.15.4 ClkStop

Explanation

It is used to stop a clock.

When the clock stops, it stops counting. After the clock stops, it can be read for the interval, restarted,

or reset.

Definition

ClkStop Clock

Clock

Data type: clock

Name of the clock.

Example

Example 1

VAR clock clock1

ClkStart clock1

…

ClkStop clock1

Stop clock1.

12.3.16 Advanced commands

12.3.16.1 RelTool

Explanation

It is used to translate or rotate the spatial position in the tool frame as specified by the current

command.

There are two main differences from Offs:

➢ Offs is the offset relative to the work object frame, and RelTool is the offset relative to the tool

frame;

➢ The Offs function does not support offsets of orientations, but RelTool does.

Return value

Data type: robtarget

Return the new pose after the offset.

Definition

RelTool(Point, XOffset, YOffset, ZOffset, Rx, Ry, Rz [, Tool, Wobj])

Point

Data type: robtarget

The point to be offset, or the initial point of the offset command.

XOffset

Data type: double

Offset in the x-direction of the tool frame.

YOffset

Data type: double

Offset in the y-direction of the tool frame.

ZOffset

Data type: double

Offset in the z-direction of the tool frame.

12 RL Programming Commands

12.3 Commands

265

Copyright © ROKAE 2015-2023. All rights reserved.

Rx

Data type: double

The rotation angle around the x-axis of the tool frame.

Ry

Data type: double

The rotation angle around the y-axis of the tool frame.

Rz

Data type: double

The rotation angle around the z-axis of the tool frame.

Tool

Data type: tool

Contain tool frame information describing the Point position

Wobj

Data type: wobj

Contain work object frame information describing the Point position

Example

Example 1

p2=RelTool(p1,100,0,30,20,0,0)

Since no tool and work object is specified, tool0 and wobj0 are used by default. Offset point p1 by

100 mm in the x-direction, 0 mm in the y-direction, and 30 mm in the z-direction on the work object

frame, and then rotate 20 degrees around the x-axis. Last assign the new target point position to p2.

Example 2

p2=RelTool(p1,100,0,30,20,0,0, tool5, wobj6)

Offset point p1 by 100 mm in the x-direction, 0 mm in the y-direction, and 30 mm in the z-direction

on the wobj6 work object frame, and then rotate 20 degrees around the x-axis. Last assign the new

target point position to p2.

Example 3

MoveL RelTool(p1, 100,0,30,20,0,0), v4000, fine, tool2, wobj4

RelTool is used along with the Move command. As no tool or work object frame is specified, the tool

and wobj of the Move command will be used. Offset point p1 by 100 mm in the x-direction, 0 mm in

the y-direction, and 30 mm in the z-direction on the wobj4 work object frame, and then rotate 20

degrees around the x-axis. Last assign the new target point position to p2.

Notes

Auxiliary programming is not supported for the optional parameters (Tool and Wobj) of this

command.

12.3.16.2 Offs

Explanation

The position offset function, which is used to offset a point in the work object frame specified in the

current command by a distance and return the position value of a new point.

The translation offset is represented by x, y, and z, and the orientation rotation offset is represented

by Rx, Ry, and Rz.

Return value

Data type: robtarget

The new pose after the offset.

Definition

12 RL Programming Commands

12.3 Commands

266

Copyright © ROKAE 2015-2023. All rights reserved.

Offs (Point, XOffset, YOffset, ZOffset [, Rx, Ry, Rz])

Point

Data type: robtarget

The point to be offset, or the initial point of the offset command.

XOffset

Data type: double

Offset in the x-direction of the work object frame.

YOffset

Data type: double

Offset in the y-direction of the work object frame.

ZOffset

Data type: double

Offset in the z-direction of the work object frame.

Rx

Data type: double

The rotation angle around the x-axis of the tool frame.

Ry

Data type: double

The rotation angle around the y-axis of the tool frame.

Rz

Data type: double

The rotation angle around the z-axis of the tool frame.

Example

Example 1

p11=Offs(p10,100,200,300)

Have the point p10 offset 100 mm in the x-direction, offset 200 mm in the y-direction, offset 300 mm

in the z-direction of the work object frame, and assign the position of the new target point to p11.

Notes

This command does not support auxiliary programming for the moment.

12.3.16.3 ConfL On/Off

Explanation

There is a set of conf parameters (cf1-7, cfx) in the xMate Cartesian frame. The conf data

corresponding to the Cartesian coordinate points manually changed or written by the user may be

incorrect, which makes it impossible for the controller to resolve the path of the target point. But in

some scenarios, the user cares only about the robot's TCP location rather than the orientation. In this

case, ConfL Off can be used to remove conf limitations and the controller can try to compute a

feasible set of conf parameters (may not be calculated, resulting in failure of motion command)

Example

Example 1

p1.trans.x = ….

MoveJ p1, v1000 ….

Only the frame is modified, not the cf parameters. This command is likely to cause the execution to

fail

…

12 RL Programming Commands

12.3 Commands

267

Copyright © ROKAE 2015-2023. All rights reserved.

ConfL Off

MoveJ p1, v1000 ….

Disable conf check. The robot can move to point p1, but the orientation is uncertain

Example 2

ConfL On

Enable conf check

Notes

⚫ The conf restriction is turned on (ConfL On) by default for the "Move to" function on the HMI

point position list interface;

⚫ The conf restriction is turned off (ConfL Off) by default for RL programming.

12.3.16.4 VelSet

Explanation

The VelSet command allows for adjusting maximum motion speed for smoother motion when the

robot is handling fragile objects. Instead of being constant, the maximum velocity of each joint keeps

changing with load, body orientation, and other factors when the robot is moving. The VelSet

command scales the maximum velocity capability curve for a specific task path, and the scaled

maximum velocity capability curve is also a changing curve.

Definition

VelSet gain

gain

Data type: int

The maximum velocity capacity is specified in percentage, ranging from 1% to 100%, where 100%

means the maximum acceleration. The robot reports an error when going over the limit.

Example

Example 1

VelSet 50

Set the maximum velocity capability to half of the robot's default maximum velocity.

Notes

1. The VelSet command only affects the motion commands of the corresponding RL project, instead

of JOG, move-to, rapid motion, and other non-project functions.

2. The VelSet function will interrupt the turning zone. Please do not insert VelSet commands between

the motion commands that require a turning zone.

3. The difference between the VelSet command and the program running rate adjustment slide: the

program running rate adjustment slide modifies the user's expected velocity, for example, motion

command V4000, under 50% slide control, equals a user's expected velocity of V2000. But if the

robot is at its limits, the actual maximum velocity of this motion command is only V1000, then the

actual motion velocity of the robot does not change regardless of whether the velocity slide is at 50%

or 100%, because both V2000 and V4000 are above V1000. Changing the expected velocity during

this range will not impact the actual execution velocity; on the contrary, VelSet 50 does not change

the user's expected velocity but reduces the actual maximum velocity of the motion command by

50% during the motion planning process. Under the same motion command, the actual robot motion

velocity will be cut to half from V1000 to V500. The user should identify the difference between

these two functions.

4. Acceleration automatically reverts to the default (100%) during the following operations:

➢ RL program is reset manually (PP to Main)

➢ A new RL program is loaded

12 RL Programming Commands

12.3 Commands

268

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.16.5 AccSet

Explanation

The AccSet command allows for adjusting acceleration and deceleration for smoother movement

when the robot is handling fragile objects.

Definition

AccSet acc, ramp

acc

Data type: int

The acceleration and deceleration are specified as a percentage of the system preset value, ranging

from 30% to 100%, where 100% means the maximum acceleration, beyond which the robot will stop

and report an error.

ramp

Data type: int

The Jerk is specified as a percentage of the system preset value, ranging from 10% to 100%, where

100% means the maximum jerk, beyond which the robot will stop and report an error.

Example

Example 1

AccSet 50,15

Acceleration and jerk are set to half of the default.

Notes

Acceleration automatically reverts to the default (100%) during the following operations:

➢ RL program is reset manually (PP to Main)

➢ A new RL program is loaded

12.3.16.6 EulerToQuaternion

Explanation

It is used to convert Euler angle to quaternion.

Return value

It represents the conversion result, 0 means successful, others mean abnormal.

Parameter

EulerToQuaternion (type,A,B,C,q1,q2,q3,q4)

type

Euler angle order type, including EULER_XYZ and EULER_ZYX.

A,B,C

It represents the Euler angle to be converted.

Data type: double

q1~q4

It represents the quaternion obtained from the conversion.

Data type: double

12 RL Programming Commands

12.3 Commands

269

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.16.7 QuaternionToEuler

Explanation

It is used to convert a quaternion to an Euler angle.

Return value

It represents the conversion result, 0 means successful, others mean abnormal.

Parameter

QuaternionToEuler (type,q1,q2,q3,q4,A,B,C)

type

Euler angle order type, including EULER_XYZ and EULER_ZYX.

q1~q4

It represents the quaternion to be converted.

Data type: double

A,B,C

It represents the Euler angle obtained from the conversion.

Data type: double

12.3.16.8 GetEndtoolTorque

Explanation

Get the end-effector tool torque information in the tool frame specified by the current command,

which is used for the force control task.

Return value

Data type: TorqueInfo

End-effector torque information

Definition

GetEndtoolTorque(tool, wobj [, type])

tool

Data type: Tool parameter

This parameter should provide the current tool used by the robot, since the handheld load may

change at any time when the robot is working

wobj

Data type: Work object parameter

This parameter should provide the current work object used by the robot, since the handheld load

may change at any time when the robot is working

type

Data type: int enumeration

0 Torque of the end-effector relative to the world frame

1 Torque of the end-effector relative to the flange frame

2 Torque of the end-effector relative to the TCP

Example

Example 1

TorqueInfo tmp_info = GetEndtoolTorque(tool1, wobj1)

Obtain the information architecture of the torque applied to the tool at the end-effector of the robot in

the case of tool1 wobj1

print(tmp_info.joint_torque.measure_torque)

print(tmp_info.joint_torque.external_torque)

12 RL Programming Commands

12.3 Commands

270

Copyright © ROKAE 2015-2023. All rights reserved.

Print the measured force and external force of each axis

print(tmp_info.cart_torque.m_torque)

Print Cartesian space torque

print(tmp_info.cart_torque.m_force[0])

print(tmp_info.cart_torque.m_torque[0])

Print information of force and torque in X direction

12.3.16.9 MotionSup

Explanation

Used to turn on and off Collision Detection

Definition

MotionSup type [, level]

type

Data type: keyword

on to turn on, off to turn off

level

Data type: string

Additional parameter for MotionSup On, used to modify the collision detection sensitivity

"High" for high collision sensitivity

"Medium" for medium collision sensitivity

"Low" for low collision sensitivity

Example

Example 1

MotionSup On

//... Other commands

MotionSup Off

Turn on Collision Detection and then execute other commands. When the commands are executed,

use MotionSup Off to turn off Collision Detection

Example 2

MotionSup On, "High"

Turn on Collision Detection and set the detection sensitivity to high

12.3.16.10 MotionSupPlus

Explanation

MotionSupPlus (Motion Supervision Plus) is used to adjust the robot's joint collision detection

sensitivity in the RL program at any time.

MotionSupPlus x1,x2,x3,x4,x5,x6,x7, where x1 to x7 represent the collision detection sensitivity

thresholds in Nm for joints 1-7, respectively.

Example

Example 1

MotionSupPlus 5,20,7,20,6,20,5

Indicates the sensitivity thresholds of the 7 joints to be 5, 20, 7, 20, 6, 20, 5(Nm), respectively.

Note: For 6-axis robots, 7 parameters should be set too, where the first 6 parameters correspond to

joints 1-6.

This command is available for cobots and six-axis industrial robots, but not three- and four-axis

industrial robots.

12 RL Programming Commands

12.3 Commands

271

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.16.11 CONNECT (expired)

Explanation

To associate the interrupt identifier with the TRAP scope.

Interrupts are defined by customizing an interrupt event and assigning an interrupt identifier.

Therefore, when the event occurs, the TRAP scope executes.

Definition

CONNECT Interrupt WITH TRAP

Interrupt

Data type: intnum

An interrupt descriptor.

The interrupt descriptor must be a global variable.

TRAP

Data type: string

TRAP scope name.

Example

Example 1

VAR intnum test_int

PROC main()

CONNECT test_int WITH test_TRAP

ISignalDI di1, 1 , test_int

The interrupt description test_int is connected to the TRAP scope test_TRAP. When di1 goes high,

an interrupt will be generated. In other words, when the signal di1 goes high, the scope test_TRAP

will be executed.

12.3.16.12 BreakLookAhead

Explanation

This command informs the control system to cancel the lookahead and force the cancellation of the

turning zone between the previous motion command and the next motion command. The robot TCP

will move to the target point position of the previous motion command and then move to the next

point without the turning zone. The program pointer will also wait for the TCP to move to the target

point position of the previous motion command before continuing the lookahead scan.

Definition

BreakLookAhead

The command includes no parameters and no return value.

Example

Example 1

MoveL P1,v1000,z50,tool0

BreakLookAhead

MoveL P2,v1000,z50,tool0

MoveL P3,v1000,z50,tool0

1) The turning zone of point P1 is set to z50. Because of the BreakLookAhead command, the

lookahead and the turning zone will be canceled, and the robot TCP will move exactly to point P1

and then to P2. There is no BreakLookAhead command between P2 and P3, so the robot will look

ahead at P2 and pass the z50 turning zone before moving to P3.

2) The BreakLookAhead command has the same effect as the wait 0 command.

12 RL Programming Commands

12.3 Commands

272

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.16.13 GetRobotMaxLoad

Explanation

Get the maximum load value of the current robot model.

Definition

Ret = GetRobotMaxLoad()

Ret

Data type: int

Maximum payload

Example

Example 1

int maxload = GetRobotMaxLoad()

print(maxload)

With xMate 7 as an example, return 7.

12.3.16.14 GetRobotState

Explanation

Get the current operating state of the control system. Use the 4-byte bit information to represent the

state of the control system, including fault, emergency stop, safety gate, operation mode, servo mode,

and motion state, as shown in following table.

No. State bits Meaning
1 Byte[1].bit[1] 1: Control system is not authorized
2 Byte[1].bit[2] 1: Control system recoverable faults
3 Byte[1].bit[3] 1: Control system fatal error
4 Byte[1].bit[4] 1: Servo system failure
5 Byte[1].bit[5] 1: Servo system fatal failure
6 Byte[1].bit[6] 1: Emergency stop
7 Byte[1].bit[7] 1: Safety gate stop
8 Byte[1].bit[8] Reserved
9 Byte[2].bit[1] Power-on state, 0: motor is not powered on; 1: motor is powered on
10 Byte[2].bit[2] Robot motion state, 0: idle; 1: in motion
11 Byte[2].bit[3] Operation mode, 0: manual mode; 1: automatic mode
12 Byte[2].bit[4] Servo mode, 0: position mode; 1: torque mode
13 Byte[2].bit[5] Reserved
14 Byte[2].bit[6] Reserved
15 Byte[2].bit[7] Reserved
16 Byte[2].bit[8] Reserved
17 Byte[3] Reserved
18 Byte[4] Reserved

Definition

Ret = GetRobotState()

Ret

Data type: byte array

Use four-byte types to represent the robot state.

Example

Example 1

byte st[4] = GetRobotMaxLoad()

print(st)

Return {0,5,0,0}. According to the table, the current state is: no fault, motor powered on, automatic

mode, servo is in position mode.

12 RL Programming Commands

12.3 Commands

273

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.16.15 AutoIgnoreZone true/false

Explanation

Used to specify whether to allow the control system to automatically ignore the turning zone.

Definition

 AutoIgnoreZone true/false

AutoIgnoreZone true: allow the control system to automatically ignore the turning zone;

AutoIgnoreZone false: do not allow the control system to automatically ignore the turning zone;

As shown above: The robot runs two MoveL commands with a z50 turning zone in between. During

the motion, the robot needs lookahead from its current position for smooth and safe motion. For

example, when the robot moves to p0, it looks ahead to P1. In this process, the control system pre-

processes the information between the two points.

As the robot moves forward, the lookahead end point also moves forward. At a certain point, the

lookahead end point p1 coincides with p2, the start point of the turning zone. If the control system has

received the second motion command, it can generate a turning zone properly and control the robot

to move along the predetermined trajectory; if the control system fails to receive the second motion

command, it cannot generate the turning zone, and it will process the turning zone according to the

AutoIgnoreZone command status. See below for the logic:

AutoIgnoreZone true: Instead of waiting for the second motion command, the control system will

cancel the turning zone and control the robot to move directly toward P3.

AutoIgnoreZone false: The control system will wait for the second motion command, during which

the robot will slow down until the turning zone trajectory is generated. If the robot fails to receive the

second motion command when reaching P2, the robot will stop moving and report an error through

HMI.

The failure of the robot to receive the second motion command timely is often a result of too many

non-motion commands between two motion commands, e.g.:

Many print commands are added between two motion commands, and it takes a long time for the

control system to receive the second motion command after the first one is processed.

 Default: AutoIgnoreZone true

Example

Example 1

12 RL Programming Commands

12.3 Commands

274

Copyright © ROKAE 2015-2023. All rights reserved.

 AutoIgnoreZone true

 MoveL p3,v1000,z50,tool0

 MoveL p4,v1000,fine,tool0

 Allow the control system to automatically ignore the turning zone

Example 2

 AutoIgnoreZone false

 MoveL p3,v1000,z50,tool0

 MoveL p4,v1000,fine,tool0

 Do not allow the control system to automatically ignore the turning zone

12.3.16.16 MotionWaitAtFinePoint true/false

Explanation

When the robot is stationary and the user clicks Start, the control system will look ahead a certain

distance according to the lookahead parameter (see Chapter 10.2.2 Lookahead mechanism) before

starting the robot. This command sets whether the robot starts moving immediately when the

lookahead coincides with a fine point.

A fine point refers to the target point without a turning zone, i.e. a target point with the turning zone

parameter set to fine.

MotionWaitAtFinePoint true: The control system controls the start of the robot strictly according to

the lookahead parameters (see Chapter 10.2.2 Lookahead mechanism). The robot only starts to move

when the lookahead distance reaches the set value of the lookahead parameter or the lookahead of all

motion commands is completed. In this state, the control system can guarantee the set lookahead

distance.

MotionWaitAtFinePoint false: The control system does not strictly follow the lookahead parameters,

and the robot starts moving immediately when the lookahead coincides with the fine point. In this

state, the robot can still start smoothly when the program logic gets extremely complicated, but the

lookahead distance cannot be guaranteed.

Default: MotionWaitAtFinePoint false

Example

Example 1

 MotionWaitAtFinePoint true

 MoveL p1,v1000,fine,tool0

 MoveL p2,v1000,fine,tool0

 MoveL p3,v1000,fine,tool0

 MoveL p4,v1000,fine,tool0

 MoveL p5,v1000,fine,tool0

When the control system looks ahead to p1, it does not start the robot immediately, but checks

whether the current lookahead distance has reached the set length before deciding whether to start the

robot.

Example 2

 MotionWaitAtFinePoint false

 MoveL p1,v1000,fine,tool0

 MoveL p2,v1000,fine,tool0

 MoveL p3,v1000,fine,tool0

 MoveL p4,v1000,fine,tool0

 MoveL p5,v1000,fine,tool0

When the control system looks ahead to p1, it immediately starts the robot, instead of checking

whether the current lookahead distance has reached the set length.

12 RL Programming Commands

12.3 Commands

275

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.17 Function commands

12.3.17.1 CRobT

Explanation

It is used to get the robot pose.

When using this function, you need to give the names of the tool and the work object. Return the

pose of the specified tool frame, the current axis configuration information, and the external axis

position.

When using CRobT, the robot should be in the stop state, i.e. the turning zone of the motion

command before CRobT should be set as fine.

Return value

Data type: robtarget

Return the current robot position, orientation, axis configuration data, and external axis information.

Definition

CRobT(Tool, Wobj)

Tool

Data type: tool

The tool used when calculating the position.

Wobj

Data type: wobj

The work object used when calculating the position.

Example

Example 1

p2 = CRobT(tool1, wobj2)

12.3.17.2 CJointT

Explanation

CJointT is used to read the current angle of the robot axes and external axes.

When using CJointT, the robot should be in the stop state, i.e. the turning zone of the motion

command before CRobT should be set as fine.

Return value

Data type: jointtarget

Rotation axis unit: degree; Linear axis unit: mm

Return the current angle value of the robot axes and the external axes

Definition

CJointT ()

Data type: function

Example

Example 1

VAR jointtarget j2

j2 = CJointT ()

12 RL Programming Commands

12.3 Commands

276

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.17.3 CalcJointT

Explanation

It is used to calculate the corresponding joint angle based on the specified robtarget variable.

Return value

Data type: jointtarget

Return the positions of joint angle and external axes corresponding to the input position.

The joint angle is in Degrees, the external axis of the straight line is in millimeters (mm), and the

rotation of the external axis is in Degrees.

Definition

CalcJointT (Rob_Target, Tool, Wobj)

Rob_Target

Data type: robtarget

The specified Cartesian space target point. Please note that the tool and work object used in the

definition of this point should be consistent with the tool/work object used in the CalcJointT

command, otherwise, it may lead to results error.

Tool

Data type: tool

The tool to be used when calculating the joint angle. Note that it needs to be the same as the one used

when defining the robtarget used.

Wobj

Data type: wobj

The work object to be used when calculating the joint angle. Note that it needs to be the same as the

one used when defining the robtarget used.

Example

Example 1

jpos2 = CalcJointT(pt1, tool1,wobj2)

Calculate the joint angle corresponding to tool1 when it reaches pt1, and assign it to jpos2. pt1 is

defined under the work object wobj2.

12.3.17.4 CalcRobt

Explanation

It is used to calculate the corresponding Cartesian space pose based on the specified joint angle.

Return value

Data type: robtarget

Return the Cartesian space pose of a given joint angle.

Definition

CalcRobt (Joint_Target, Tool, Wobj)

Joint_Target

Data type: jointtarget

The given joint angle for calculating Cartesian space pose.

Tool

Data type: tool

The tool used when calculating Cartesian space pose.

12 RL Programming Commands

12.3 Commands

277

Copyright © ROKAE 2015-2023. All rights reserved.

Wobj

Data type: wobj

The work object used when calculating the Cartesian space pose.

Example

Example 1

pt1 = CalcRobT (jpos1, tool2,wobj1)

Calculate the Cartesian space pose according to the joint angle jpos1 and assign it to pt1.

pt1 is the pose described by the tool frame tool2 in the work object frame wobj1.

12.3.17.5 Print

Explanation

It is used to print and output the user-defined content to the teach pendant, and the user can then use

this function to debug the program.

The input parameters of the Print function are special, the number of input parameters is unlimited,

but there must be at least one, and each parameter must be a defined variable or a constant.

The system converts these variables into strings and concatenates them in series, and finally outputs

them to the debug window of the program editor.

Definition

Print (var1, var2,)

Example

Example 1

counter = 0

while(true)

 counter++

Print(“counter = ”,counter)

endwhile

After the program is executed, the HMI's program debug window will print the following

information:

counter = 1

counter = 2

counter = 3

counter = 4

……

Notes

When you need to output a string, you can use double quotation marks "" to include the characters

you want to display, but nested double quotation marks in double quotation marks are not

supported.

12.3.17.6 PoseMult

Explanation

PoseMult is used to calculate the product of two pose changes.

12 RL Programming Commands

12.3 Commands

278

Copyright © ROKAE 2015-2023. All rights reserved.

Definition

 pose3 = PoseMult(pose1, pose2)

Parameter explanation: pose1 and pose2 are input of the pose type, and pose3 is the return value of

the pose type.

Example

pose1 represents the pose of frame 1 relative to frame 0, and pose2 the pose of frame 2 relative to

frame 1. Pose3, the pose of frame 2 relative to frame 0 can be calculated through the following

method:

VAR pose pose1

VAR pose pose2

VAR pose pose3

...

pose3 = PoseMult(pose1, pose2)

12.3.17.7 PoseInv

Explanation

PoseInv is used to calculate the inversion of a pose change.

Definition

 pose2 = PoseInv(pose1)

Parameter explanation: pose1 is input of the pose type, and pose2 is the return value of the pose type.

Example

pose1 represents the pose of frame 1 relative to frame 0, and pose 2 the pose of frame 0 relative to

frame 1.

If pose1 is known, pose2 can be calculated through the following method:

VAR pose pose1

VAR pose pose2

...

pose2 = PoseInv(pose1)

12 RL Programming Commands

12.3 Commands

279

Copyright © ROKAE 2015-2023. All rights reserved.

12.3.17.1 GetRobAbc

Explanation

Get the Euler angle orientation ABC of the Cartesian space point P; the rotation sequence: the initial

frame (the work object frame selected in the motion command) first rotates around its own X axis,

then around its Y axis, and last around its Z axis

Definition

double db_arr[3] = GetRobABC(Point [, A, B, C])

Point

Data type: Cartesian point position

The Cartesian point position used when calculating the position.

A, B, C

Data type: double

The return value of the Euler angle orientation for the Cartesian point position.

Return value

Data type: double-type three-dimensional array

The return value of the Euler angle orientation for the Cartesian point position.

Example 1

point0 is a Cartesian point position variable. To convert the Euler angle orientation of the variable to

a Double variable of RL, use the following RL command

VAR double Rob_A

VAR double Rob_B

VAR double Rob_C

// Assign the Euler angle of point0 to Rob_A|B|C

GetRobAbc(point0, Rob_A, Rob_B, Rob_C)

Example 2

point0 is a Cartesian point position variable. To generate an array of temporary variables to store the

Euler angles of the Cartesian point position, use the following RL command

double db_arr[3] = GetRobAbc(point0)

12.3.17.2 SetRobAbc

Explanation

Get the orientation of the Cartesian space point P based on the Euler angles ABC entered; the rotation

12 RL Programming Commands

12.3 Commands

280

Copyright © ROKAE 2015-2023. All rights reserved.

sequence: the initial frame (the work object frame selected in the motion command) first rotates

around its own X axis, then around its Y axis, and last around its Z axis.

Definition

SetRobABC(Point , A, B, C)

Point

Data type: Cartesian point position

The Cartesian point position whose orientation to be modified.

A, B, C

Data type: double

Set the Euler angle orientation for the Cartesian point position, in °.

Example 1

point0 is a Cartesian point position variable. Set the Euler angles of the point to 30°, 60°, and 90°.

SetRobAbc(point0, 30, 60, 90)

12.3.17.3 RotRobAbc

Explanation

Rotate the Euler angles from the existing orientation of the Cartesian space point P based on the

Euler angles ABC entered; the rotation sequence: the initial frame (orientation of the point P) first

rotates around its own X axis, then around its Y axis, and last around its Z axis. The input angles

ABC are added to the existing Euler angles.

Definition

RotRobABC(Point , A, B, C)

Point

Data type: Cartesian point position

The Cartesian point position whose orientation to be modified.

A, B, C

Data type: double

Set the Euler angle orientation for rotating the Cartesian point position, in °.

Example 1

point0 is a Cartesian point position variable. Rotate the point position around X, Y, and Z to 30°, 60°,

90°.

RotRobAbc(point0, 30, 60, 90)

12.3.18 Register commands

12.3.18.1 ReadRegByName

Explanation

Reads the value of the corresponding register according to the register name

Definition

ReadRegByName(RegData, Value)

RegData

Data type: Readable register variable

Setup -> Communication -> Register interface function, register variable.

12 RL Programming Commands

12.3 Commands

281

Copyright © ROKAE 2015-2023. All rights reserved.

Value

Data type: bool/int/double

The register data will be written into Value, and if the register variable type mismatches with the

interpreter variable, the format will be converted automatically

Example

Example 1

int tmp_int

ReadRegByName(modbus_int_read[6], tmp_int)

Read the data named modbus_int_read with subscript 6 into tmp_int variable

12.3.18.2 WriteRegByName

Explanation

Reads the value of the corresponding register according to the register name

Definition

WriteRegByName(RegData, Value)

RegData

Data type: writable register variable

Setup -> Communication -> Register interface function, register variable.

Value

Data type: bool/int/double

The Value will be written into the register, and if the register variable type mismatches with the

interpreter variable, the format will be converted automatically

Example

Example 1

WriteRegByName(modbus_int_write[6], 200)

Write the data of INT 200 to the register corresponding to modbus_int_write[6].

12.3.19 End-effector commands

12.3.19.1 JodellGripInit

Explanation

Initialization command of Jodell electric gripper

Definition

JodellGripInit ID,wait_time

ID

Data type: Int variable

Establish communication, initialize Jodell electric gripper, parameter ID.

Wait_time

Data type: Int variable

Wait for the initialization to complete, wait time threshold, report error on timeout, in s.

12.3.19.2 JodellGripMove

Explanation

Motion command of Jodell electric gripper

Definition

JodellGripMove ID,Pos,Vel,Trq

12 RL Programming Commands

12.3 Commands

282

Copyright © ROKAE 2015-2023. All rights reserved.

ID

Data type: Int variable

The gripper ID that controls the movement of the gripper.

Pos

Data type: Int variable

Target position, unitless, range 0-255.

Vel

Data type: Int variable

Electric gripper velocity, unitless, range 0-255.

Trq

Data type: Int variable

Force detected by electric gripper operation, unitless, range 0-255.

12.3.19.3 JodellGripStatus

Explanation

Obtain the status of Jodell electric gripper

Definition

JodellGripStatus ID,Pos,Vel,Trq,Contact

ID

Data type: Int variable

The gripper ID that obtains the movement status of the gripper.

Pos

Data type: Int variable

Obtain the electric gripper’s current position, unitless, range 0-255.

Vel

Data type: Int variable

Obtain the electric gripper’s velocity, unitless, range 0-255.

Trq

Data type: Int variable

Obtain the electric gripper’s torque, unitless, range 0-255.

Contact

Data type: Int variable

Obtain the electric gripper’s state, unitless, range 0-255, where bit6-7 indicate whether the electric

gripper detects an object.
Bit Name Value/Description

0 gAct 0: the electric gripper is being reset; 1: the electric gripper is in the

enabling state
2 gMode 0: the parameter control mode; 1: the parameterless control mode
3 gGTO 0: stop; 1: moving to the target position
4-5 gSTA 0: the electric gripper is being reset or in the inspection state; 1: being

activated; 2: not used; 3: activation completed
6-7 gOBJ 0: fingers are moving to the specified position; 1: fingers stop due to

contact with an object when opening to reach the specified position; 2:

fingers stop due to contact with an object when closing to reach the
specified position; 3: fingers reach the specified position, but no object

is detected.

12.3.19.4 JodellSuckInit

Explanation

Initialization command of Jodell suction cup

Definition

JodellSuckInit ID

ID

Data type: Int variable

Initialize the suction cup of this ID and detect if the suction cup of this ID is connected correctly.

12.3.19.5 JodellSuckSet

12 RL Programming Commands

12.3 Commands

283

Copyright © ROKAE 2015-2023. All rights reserved.

Explanation

The command for Jodell suction cup to operate. When this command is given, the suction cups

immediately start operating according to the set parameters.

Definition

JodellSuckSet ID,CH1_enable,CH1_VacMin,

CH1_VacMax,CH1_Waittime,CH2_enable,CH2_VacMin,CH2_VacMax,CH2_Waittime

ID

Data type: Int variable

The ID of the suction cup being controlled.

CH1_enable

Data type: Int variable

Whether the first channel of the suction cup is working or not. 1: working; 0: not working.

CH1_VacMin

Data type: Int variable

The minimum vacuum level of the first channel of the suction cup, range 0-255. 0 means pure

vacuum, and a value over 100 means releasing the suction cup; stop pumping when the actual

vacuum level is lower than this threshold;

CH1_VacMax

Data type: Int variable

The maximum vacuum level of the first channel of the suction cup, range 0-255. 0 means pure

vacuum, and a value over 100 means releasing the suction cup; start pumping when the actual

vacuum level is higher than this threshold;

CH1_Waittime

Data type: Double variable

Timeout value of the first channel of the suction cup;

CH2_enable

Data type: Int variable

Whether the second channel of the suction cup is working or not. 1: working; 0: not working.

CH2_VacMin

Data type: Int variable

The minimum vacuum level of the second channel of the suction cup, range 0-255. 0 means pure

vacuum, and a value over 100 means releasing the suction cup; stop pumping when the actual

vacuum level is lower than this threshold;

CH2_VacMax

Data type: Int variable

The maximum vacuum level of the second channel of the suction cup, range 0-255. 0 means pure

vacuum, and a value over 100 means releasing the suction cup; start pumping when the actual

vacuum level is higher than this threshold;

CH2_Waittime

Data type: Double variable

Timeout value of the second channel of the suction cup;

12.3.19.6 JodellSuckStatus

Explanation

Obtain the status of Jodell suction cup

Definition

JodellSuckStatus ID,Vac1,Contact1,Time_Err1,Vac2,Contact2,Time_Err2

ID

Data type: Int variable

The ID of the suction cup whose status is to be obtained.

Vac1

Data type: Int variable

Current vacuum level of the suction cup’s first channel obtained, range 0-100.

Contact1

Data type: Int variable

Current status of the suction cup’s first channel obtained, range 0-255, where bit6-7 indicates whether

the an object is detected. See the table below for status details.
Bit Name Value/Description

12 RL Programming Commands

12.3 Commands

284

Copyright © ROKAE 2015-2023. All rights reserved.

0 gAct 0: the electric suction cup is not enabled; 1: the electric suction cup is

enabled
2 gMode 0: the automatic control mode; 1: the advanced control mode
3 gGTO 0: adjustment stopped; 1: the pressure or vacuum is being adjusted
4-5 gSTA 0: the electric suction cup is not activated; 1 & 2: the electric suction

cup is not used; 3: the electric suction cup is activated
6-7 gOBJ 0: below the minimum air pressure; 1: work object detected and

minimum pressure value reached; 2: work object detected and maximum

pressure value reached; 3: no object detected, object lost or detached.

Time_Err1

Data type: Int variable

Whether the suction cup's first channel obtained triggers a timeout alarm.

Vac2

Data type: Int variable

Current vacuum level of the suction cup’s second channel obtained, range 0-100.

Contact2

Data type: Int variable

Current status of the suction cup’s second channel obtained, range 0-255, where bit6-7 indicates

whether an object is detected. See the table above for status details.

Time_Err2

Data type: Int variable

Whether the suction cup's second channel obtained triggers a timeout alarm.

	Contents
	1 File list
	2 Glossary
	3 Introduction
	3.1 Main Interface
	3.1.1 Top Status Bar
	3.1.2 Bottom Status Bar

	3.2 Status Monitoring
	3.2.1 3D model monitoring
	3.2.2 Multi-task monitoring
	3.2.3 IO signal monitoring
	3.2.4 Network connection monitoring
	3.2.5 Register variable monitoring

	3.3 Operation interface
	3.4 Function module
	3.4.1 Menu module
	3.4.2 Robot programming module
	3.4.3 Robot configuration module
	3.4.4 Teach Pendant option module

	4 Connecting to the Robot
	4.1 Robot network interface and IP
	4.2 Connecting to terminal devices
	4.3 Connecting to the robot
	4.4 User login
	4.5 Disconnect and restore connection
	4.5.1 Auto reconnect
	4.5.2 Plug & play Teach Pendant xPad2

	5 Operating Mode and Safety
	5.1 Safety Management
	5.1.1 About this section
	5.1.2 Safety terms
	5.1.2.1 Safety symbols
	5.1.2.2 Safety features
	5.1.2.3 Stop
	5.1.2.4 Enabling switch

	5.1.3 Safety precautions
	5.1.3.1 Overview
	5.1.3.2 Focus on user's own safety
	5.1.3.3 Recovering from emergency stops
	5.1.3.4 Safety precautions in Manual mode
	5.1.3.5 Safety precautions in Automatic mode
	5.1.3.6 Emergency handling
	5.1.3.6.1 Fire
	5.1.3.6.2 Treatment of an electric shock

	5.2 Robot operating mode
	5.2.1 Manual mode
	5.2.2 Automatic mode
	5.2.3 Mode switching
	5.2.3.1 About mode switching
	5.2.3.2 Switching from Manual to Automatic
	5.2.3.3 Switching from Automatic to Manual

	5.3 Robot power on/off
	5.3.1 Robot power-on
	5.3.2 Robot power-off

	6 Motion control
	6.1 Jog mode
	6.2 Drag mode
	6.2.1 End-effector handle
	6.2.2 Point position teaching
	6.2.3 Continuous trajectory teaching
	6.2.4 Trajectory reproduction

	7 Robot Configuration
	7.1 Basic settings
	7.1.1 User groups and permissions
	7.1.2 Controller settings
	7.1.3 Zero Calibration
	7.1.4 Base calibration
	7.1.5 Dynamic settings
	7.1.6 Body parameters
	7.1.7 Kinematic parameters
	7.1.8 Force control parameters
	7.1.9 Quick turn settings
	7.1.10 Electronic nameplate

	7.2 Safety Features
	7.2.1 Scope
	7.2.2 Soft limit
	7.2.3 Virtual wall
	7.2.4 Collision detection
	7.2.5 Safety area
	7.2.6 Safety monitor
	7.2.7 Collaboration mode
	7.2.8 Safety position

	7.3 Communication Configuration
	7.3.1 System IO Configuration
	7.3.2 External communication
	7.3.3 Bus devices
	7.3.3.1 Modbus communication
	7.3.3.1.1 Modbus TCP configuration
	7.3.3.1.2 Modbus RTU configuration

	7.3.3.2 CC-Link communication
	7.3.3.2.1 CC-Link configuration
	7.3.3.2.2 CC-Link IE Field Basic configuration

	7.3.3.3 EtherCAT communication
	7.3.3.4 PROFINET communication

	7.3.4 Register
	7.3.5 IO device
	7.3.5.1 Register remote control
	7.3.5.2 Modbus expansion IO

	7.3.6 Serial Communication
	7.3.7 End-effector tool communication
	7.3.8 Electric gripper and suction cup
	7.3.9 RCI setting

	7.4 Process kit
	7.4.1 Laser welding
	7.4.2 Plating line tracking

	7.5 Authorization
	7.5.1 EtherCAT Authorization

	8 Menu module
	8.1 Diagnosis
	8.1.1 Teach pendant log
	8.1.2 Controller logs
	8.1.3 Log timeline
	8.1.4 Internal logs
	8.1.5 Advanced options
	8.1.6 Error recovery

	8.2 Help
	8.3 Demos
	8.3.1 Seven-axis redundant motion
	8.3.2 Obstacle avoidance
	8.3.3 Collision detection
	8.3.4 Compliance demo

	9 Teach pendant options
	9.1 Connection settings
	9.2 Basic settings
	9.2.1 Multi-language log

	9.3 Appearance settings
	9.4 File manager

	10 Robot Motion Foundation
	10.1 Frame
	10.2 Robot singularity
	10.2.1 Turning zone
	10.2.2 Lookahead mechanism

	10.3 Robot force control
	10.3.1 Introduction to force control
	10.3.2 Impedance control
	10.3.3 Overlay
	10.3.4 Applications

	11 Programming and Debugging
	11.1 Programming preparation
	11.2 Project
	11.2.1 Project introduction
	11.2.2 Project configuration
	11.2.3 Task list
	11.2.3.1 What is Multitasking?
	11.2.3.2 Task list
	11.2.3.3 New task
	11.2.3.4 Starting and running tasks
	11.2.3.5 Intertask Communication

	11.2.4 List of variables
	11.2.4.1 Variables
	11.2.4.1.1 Basic concept
	11.2.4.1.2 Variable declaration
	11.2.4.1.3 User variable hold

	11.2.4.2 List of variables

	11.2.5 Point position list
	11.2.6 Path list
	11.2.7 IO signal list
	11.2.8 User frame list
	11.2.9 Tool frame
	11.2.9.1 What is a tool?
	11.2.9.2 Tool center point
	11.2.9.3 Tool frame
	11.2.9.4 Tool load parameters
	11.2.9.5 Use of tools
	11.2.9.6 External tools

	11.2.10 Work object frame list
	11.2.10.1 What is a work object?
	11.2.10.2 Definition of work object
	11.2.10.3 Use of work object
	11.2.10.4 Use of external tool/work object

	11.2.11 Vision System

	11.2 RL Programs
	11.2.1 About RL language
	11.2.2 Program structure
	11.2.2.1 Overview
	11.2.2.2 Program modules

	11.2.3 Program editing
	11.2.3.1 Function menu

	11.2.4 Program debugging
	11.2.4.1 Program pointer
	11.2.4.2 Motion pointer
	11.2.4.3 Lookahead mechanism
	11.2.4.4 Single-step debugging
	11.2.4.5 Regain path
	11.2.4.6 Move program pointer
	11.2.4.7 Variable management

	12 RL Programming Commands
	12.1 Variables
	12.1.1 Int
	12.1.2 uint
	12.1.3 Double
	12.1.4 Bool
	12.1.5 String
	12.1.6 Array
	12.1.7 byte
	12.1.8 clock
	12.1.9 Implicit type conversion
	12.1.10 confdata
	12.1.11 jointtarget
	12.1.12 load
	12.1.13 orient
	12.1.14 pos
	12.1.15 pose
	12.1.16 robtarget
	12.1.17 signalxx
	12.1.18 speed
	12.1.19 tool
	12.1.20 trigdata
	12.1.21 wobj
	12.1.22 zone
	12.1.23 torqueinfo
	12.1.24 SocketServer
	12.1.25 SocketConn

	12.2 Functions
	12.2.1 Functions

	12.3 Commands
	12.3.1 Variable type conversion
	12.3.1.1.1 StrToByte
	12.3.1.1.2 StrToDouble
	12.3.1.1.3 StrToInt
	12.3.1.1.4 ByteToStr
	12.3.1.1.5 DecToHex
	12.3.1.1.6 DoubleToByte
	12.3.1.1.7 DoubleToStr
	12.3.1.1.8 HexToDec
	12.3.1.1.9 IntToByte
	12.3.1.1.10 IntToStr

	12.3.2 Motion commands
	12.3.2.1 MoveAbsJ
	12.3.2.2 MoveJ
	12.3.2.3 MoveL
	12.3.2.4 MoveC
	12.3.2.5 MoveT
	12.3.2.6 SearchL
	12.3.2.7 SearchC

	12.3.3 Trigger command
	12.3.3.1 TrigIO
	12.3.3.2 TrigReg
	12.3.3.3 TrigL
	12.3.3.4 TrigC

	12.3.4 Force control commands
	12.3.4.1 CalibSensorError
	12.3.4.2 FcInit
	12.3.4.3 SetControlType
	12.3.4.4 SetSensorUseType
	12.3.4.5 SetCartNSStiff
	12.3.4.6 SetJntCtrlStiffVec
	12.3.4.7 SetCartCtrlStiffVec
	12.3.4.8 SetJntTrqDes
	12.3.4.9 SetCartForceDes
	12.3.4.10 SetSineOverlay
	12.3.4.11 SetLissajousOverlay
	12.3.4.12 SetLoad
	12.3.4.13 FcStart
	12.3.4.14 FcStop
	12.3.4.15 StartOverlay
	12.3.4.16 PauseOverlay
	12.3.4.17 RestartOverlay
	12.3.4.18 StopOverlay
	12.3.4.19 FcCondForce
	12.3.4.20 FcCondPosBox
	12.3.4.21 FcCondTorque
	12.3.4.22 FcCondWaitWhile
	12.3.4.23 GetEndToolTorque

	12.3.5 Drag and replay
	12.3.5.1 ReplayPath

	12.3.6 IO commands
	12.3.6.1 SetDO
	12.3.6.2 SetAllDO
	12.3.6.3 SetGO
	12.3.6.4 SetAO
	12.3.6.5 PulseDO
	12.3.6.6 PulseReg

	12.3.7 Communication commands
	12.3.7.1 OpenDev
	12.3.7.2 SocketAccept
	12.3.7.3 CloseDev
	12.3.7.4 SendString
	12.3.7.5 SendByte
	12.3.7.6 ReadBit
	12.3.7.7 ReadByte
	12.3.7.8 ReadDouble
	12.3.7.9 ReadInt
	12.3.7.10 ReadString
	12.3.7.11 GetSocketConn
	12.3.7.12 GetSocketServer
	12.3.7.13 GetBufSize
	12.3.7.14 ClearBuffer

	12.3.8 Network command
	12.3.8.1 SocketCreate (expired)
	12.3.8.2 SocketClose (expired)
	12.3.8.3 SocketSendString (expired)
	12.3.8.4 SocketSendByte (expired)
	12.3.8.5 SocketReadBit (expired)
	12.3.8.6 SocketReadDouble (expired)
	12.3.8.7 SocketReadInt (expired)
	12.3.8.8 SocketReadString (expired)

	12.3.9 Logic commands
	12.3.9.1 Return
	12.3.9.2 Wait
	12.3.9.3 WaitUntil
	12.3.9.4 Break
	12.3.9.5 IF…Else if…Else
	12.3.9.6 Goto
	12.3.9.7 For
	12.3.9.8 Continue
	12.3.9.9 Inzone
	12.3.9.10 WHILE
	12.3.9.11 Pause
	12.3.9.12 try/catch
	12.3.9.13 SwitchCase

	12.3.10 Home command
	12.3.10.1 Home
	12.3.10.2 HomeSet
	12.3.10.3 HomeSetAt
	12.3.10.4 HomeDef
	12.3.10.5 HomeSpeed
	12.3.10.6 HomeClr

	12.3.11 Math command
	12.3.11.1 sin
	12.3.11.2 cos
	12.3.11.3 tan
	12.3.11.4 cot
	12.3.11.5 asin
	12.3.11.6 acos
	12.3.11.7 atan
	12.3.11.8 sinh
	12.3.11.9 cosh
	12.3.11.10 tanh
	12.3.11.11 exp
	12.3.11.12 log
	12.3.11.13 log10
	12.3.11.14 pow
	12.3.11.15 sqrt
	12.3.11.16 ceil
	12.3.11.17 floor
	12.3.11.18 abs
	12.3.11.19 rand

	12.3.12 Bit operation
	12.3.12.1 BitAnd
	12.3.12.2 BitCheck
	12.3.12.3 BitClear
	12.3.12.4 BitLSh
	12.3.12.5 BitNeg
	12.3.12.6 BitOr
	12.3.12.7 BitRSh
	12.3.12.8 BitSet
	12.3.12.9 BitXOr

	12.3.13 String operations
	12.3.13.1 StrFind
	12.3.13.2 StrLen
	12.3.13.3 StrMap
	12.3.13.4 StrMatch
	12.3.13.5 StrMemb
	12.3.13.6 StrOrder
	12.3.13.7 StrPart
	12.3.13.8 StrSplit
	12.3.13.9 StrToByte
	12.3.13.10 StrToDouble
	12.3.13.11 StrToInt

	12.3.14 Operators
	8.3.11.1 Basic operators
	8.3.11.2 Operation priority

	12.3.15 Clock commands
	12.3.15.1 ClkRead
	12.3.15.2 ClkReset
	12.3.15.3 ClkStart
	12.3.15.4 ClkStop

	12.3.16 Advanced commands
	12.3.16.1 RelTool
	12.3.16.2 Offs
	12.3.16.3 ConfL On/Off
	12.3.16.4 VelSet
	12.3.16.5 AccSet
	12.3.16.6 EulerToQuaternion
	12.3.16.7 QuaternionToEuler
	12.3.16.8 GetEndtoolTorque
	12.3.16.9 MotionSup
	12.3.16.10 MotionSupPlus
	12.3.16.11 CONNECT (expired)
	12.3.16.12 BreakLookAhead
	12.3.16.13 GetRobotMaxLoad
	12.3.16.14 GetRobotState
	12.3.16.15 AutoIgnoreZone true/false
	12.3.16.16 MotionWaitAtFinePoint true/false

	12.3.17 Function commands
	12.3.17.1 CRobT
	12.3.17.2 CJointT
	12.3.17.3 CalcJointT
	12.3.17.4 CalcRobt
	12.3.17.5 Print
	12.3.17.6 PoseMult
	12.3.17.7 PoseInv
	12.3.17.1 GetRobAbc
	12.3.17.2 SetRobAbc
	12.3.17.3 RotRobAbc

	12.3.18 Register commands
	12.3.18.1 ReadRegByName
	12.3.18.2 WriteRegByName

	12.3.19 End-effector commands
	12.3.19.1 JodellGripInit
	12.3.19.2 JodellGripMove
	12.3.19.3 JodellGripStatus
	12.3.19.4 JodellSuckInit
	12.3.19.5 JodellSuckSet
	12.3.19.6 JodellSuckStatus

