Algorithms for
Practical Distributed Agreement

Naama Ben-David
VMware Research

Agreement

Many processes agree on a single value or order of events

~_
Blockchains Data structures Replication

Agreement Challenges

Varying speeds
* Network topology

Process failures e Congestion

 Software bugs

 Overheating Out- 1
e Hackers .

Agreement

Many processes agree on a single value or order of events

~_
Blockchains Data structures Replication

Consensus for Availability

Consensus
4 Seover among servers
State Machine Replication (SMR)

Goal: Masks server failures for high availability
Cost: Overhead in normal execution

Faster and faster applications

BT ' il
Al BT e &Y Tan)
| E A=
5 z o
—t *
: ¥ | aee ol JAA] weou 140385
D 03050 0 2261 sSC| 261 4 09 0 "
oo RSB \ i © W
) B ! Wi e . = i
2 Ry " : -
P R
] . 1% NS
1 ‘ e & | -1
= : = 5
OESY | 215472 . 0 9 sty
N 00 Ei 11 0 ﬁ 1 SC];
e 78 o
i]
) (T b | A | f)
W
=01 T T D I » E " ml el T
= e 1 wem] 220087 E] I I T T 2 . 02258 g]]| wsoo] szsnss my o | 1] ve] s il e WDy
| weoul s7as7 6| SC] ‘ ; 261 c] 2 mi W zi1 Cc| | zzmt sc| * Figie] sc) @ Z
L9 (1 [| [] 2L | [ey [= —
- |l O "M.%WM 2]] [S TR | L e S eslme lr 8 o
= el | k) ﬁ,r) (s - — ’J Rl — g | —r
= . 121 | Leicar Mrg OBV L] LSl 13 : ol B LT WV IR VA || 0,
| R]] m] [= ==/ ! = | =1l 1 LB ;
. =l =l by Py == - N SRR “? =) | T
- o g o -
bt S0 99783 P m o ‘umu‘;ggnni = Bl |2 a I i‘m@ v
e I p 4850 § ; 2261 604407 4 SC| I
| S eyl Rom et - e F = ,
lieagh TARE {nﬁﬂ . cu.cap. | st N | | i
2 ~ - " 1 o 2 zm g = — e
] |] . - i s i
| T '
i k26 4

Finance Embedded systems Microservices
e.g., high-frequency trading e.g., industrial robots e.g., key-value stores

Requests expected to be processed within ~10us

Availability is critical

How Efficl

tly Can We Replicate?

Classic replication (e.g., zookeeper) Faster solutions (e.g. APUS, DARE)
~1ms overhead, ~5us overhead,

Latency Latency

|
100x slower! 50% slower

Unreplicated Replicated Unreplicated Replicated

DARE: [PokeHoefler’15]
APUS: [WangJiangChenYiCui’17]

Zookeeper: [HuntKonardunqueiraReed’10}

Common-Case Analysis

Want algorithms to withstand But usually, conditions are
worst-case conditions much better

Common-case running time for agreement [KR’01, BGMR’01, Lamport’06, SR’08]:

Perfect network conditions:
Synchrony, No Failures

How Efficl

tly Can We Replicate?

Classic replication (e.g., zookeeper) Faster solutions (e.qg. AP DARE)
~1ms overhead, ~5us overhead,

Downtime of
~3000 requests

Latency Latency

|
100x slower! 50% slower

Unreplicated Replicated Unreplicated Replicated

DARE: [PokeHoefler’15]
APUS: [WangJiangChenYiCui’17]

Zookeeper: [HuntKonardunqueiraReed’10}

Common-Case Analysis: Drawbacks

Making Byzantine Fault Tolerant Systems
Tolerate Byzantine Faults

Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin
The University of Texas at Austin

Mirco Marchetti

. » .
"l /1 7] nSEVae \V/iWaValWek s Wa AL Walll "s¥aNakWVa

Many systems stall completely when failures happen

Others sacrifice throughput in common case,
for only minor drop from failures

ble of rendering PBFT, Q/U, HQ, and Zyzzyva virtually DT OL dIl OX YHIIOTOI=IU LS 160 10 PIOtOCOLS v 0se
unusable. In this paper, we (1) demonstrate that exist- complexity undermines robustness in two ways: (1) the

mvwntAan~Ala? Jandne acnnlandan Lronndla Asmbtecrnsmrateneann $hhat Al

This Talk

Create algorithms that improve on both
best-case and performance

——— — —

8 ——— . ————

Background: SMR based on RDMA

~3X improvement

Best Case: ~1.3us replication overhead over state of the art

Worst Case: <1ms recovery | ~12x improvement
over state of the art

Experimental Evaluation

ther best case/worst case improvements

o .

/r o - G 3 - 9 S
A 45 l‘é/ j Copr -~ X ; o
(22 gl i e
- - - = - e . e -y ¥ ’ - Y . . 4 - . :
j.. '_.“.‘ _‘: =4 ? 'ﬁ“ ' ? ! . % ’“.' .'] - . - -’2: .13!‘.”'.' &7 Ly . % ~..; 5

5 /_~"- VR R

’ L

Data Center Technology RDMA

Remote Direct Memory Access (RDMA)

Y G T = kD A LS ERE S 5 W e
< = Lo L N P . L= N . 3

.

One-sided operation

No involvement
of CPU!

RDMA: More Detalls

Remote permissions:
1: read-only
2: read-write

3: No permission

14

Fast communication:
~1us latency, ~100Gbps bandwidth

RDMA can specify access
permissions at a fine granularity

These permissions can be
dynamically changed

Network Communication Cost

1,300

100
O I

Clock Cycle Local Memory Access Network Round Trip

Mu system goals

@ms of roun@

RDMA-based SMR system with
optlmal common-case performance and

Replication for Availability

Server

Consensus

Client —* among servers

State Machine Replication (SMR)
Goal: Masks server failures for high availability
Cost: Overhead in normal execution

17

State Machine Replication

Consensus among servers
to order client requests

Often leader-based

Leader

Server Server

Application Application

Consensus Consensus
Engine Engine

Follower Follower
18

Basic Mu Architecture

Client

RDMA

Leader Follower

 Case Study: Mu

Background: SMR based on RDMA
Best Case: ~1.3us replication overhead
e Worst Case: <ims recovery

 Experimental Evaluation

 Other best case/worst case improvements

;’(vaﬁ(% A V2 B Vi Pt . S
——— 1 s T L LR A
- ___-.,. - U?"’“‘ P—-'......_.. ’ A = &7 __[}. 1 &
¥ : "/_K-'."/ _7'—

Vo
”

-

-

Common Case Execution

Bypass remote CPU for
improved performance

Replicate requests in a single one-sided RDMA round trip
when there I1s synchrony and no failures

~1.3us
Where our latency
comes from

21

Data Center Technology RDMA

Remote Direct Memory Access (RDMA)

.

Shared-memory-like
capability

RDMA: No
iInvolvement of
CPU!

Crash-Tolerant Consensus in the Literature

Message Passing Shared Memory

- -

.
.

.

[

Can RDMA
Fault tolerance f<n/i2 _— f<n) achieve best of
both worlds?
Common-Case _
Performance trip ?

23

Single-Memory Abstraction

Process + 5 _
memory ynamic
permissions

o —

Consensus Algorithm: Disk Paxos

| Algorithm: For a designated leader process p1

j» \Write your value in your slot

i Read disk; If no one else wrote anything

i Else ff |
; e More complicated.,, e

e 2

—

Pt P2 pP3 P4

v
common-case

execution
@Jitcc
P1 P2 P3 P4

25

Adding Permissions to Disk Paxos

| Idea: leverage RDMA dynamic permissions to get rid of check. |

Only one write
permission at any
time

. Lost permission iff |
* contention ;

— e -

{ 2round trips —> |
1 round trip g

I've lost my
permission

20

Theoretical Results

Theorem [ABGMZ’19]:
There exists a 1 round trip consensus algorithm using reads, writes,
and dynamic permissions tolerating f < n process crash failures.

In shared memory:

Disk Paxos: tolerates f < n crashes, but requires 2 round trips

Theorem [ABGMZ’19]:
No consensus algorithm using only reads and writes,
tolerating f = 1 crash failures, can terminate in 1 round trip.

Implies result for
more failures
27

Common Case Execution

Bypass remote CPU for
improved performance

Replicate requests in a single one-sided RDMA round trip
when there I1s synchrony and no failures

Practical SMR algorithm

28

Translating Theory to Practice

* f+1 fault tolerance to process failures; what about other failures?

e Single-shot consensus to long-lived SMR

29

Practical Fault Tolerance

Process +
memory

Q Process-only failure: software bug, slow/busy CPU
(HHHH
x Total failure: NIC failure, machine disconnected

ey p AT

Need 2f+1 memories, but only 1 active CPU
= _
[
0/ J o ; EWQ‘

Single memory abstraction is achieved by replication technique:
To access global memory, access all memories and wait for majority

Need 21+1
memories

30

Multi-Instance Consensus

One consensus
instance per entry

Leader and other metadata are shared among multiple slots

31

Basic Mu Architecture

. C
Clien. T

m C

Follower iIs silent

Leader has
write permission

Leader on follower log Follower

32

Common Case Execution

Bypass remote CPU for
improved performance

Replicate requests in a single one-sided RDMA round trip
when there I1s synchrony and no failures

~1.3us
Where our latency
comes from

Practical SMR algorithm

33

 Case Study: Mu

ckground: SMR based on RDMA
Best Case: ~1.3us replication overhead
e |Worst Case: <1ms recovery

 Experimental Evaluation

 Other best case/worst case improvements

;’(vaﬁ(% A V2 B Vi Pt . S
——— 1 s T L LR A
- ___-.,. - U?"’“‘ P—-'......_.. ’ A = &7 __[}. 1 &
¥ : "/_K-'."/ _7'—

Vo
”

-

-

Faillure Recovery

Detect failures more reliably using RDMA and change
leaders quickly by changing RDMA permissions

35

Handling Failures

New heartbeat?
Yes - decrease score

No - Raise “bad” score E False positive could occur
because of slow network

Non-leader failure doesn’t |:
affect performance

Need conservative timeouts

]

On leader crash:
1. Detect leader fanure
2. Initialize new leader P~

Le:der
L

Slow reads don’t affect
heartbeat score

Change

permission Can have aggressively low

score threshold

36

Basic Mu Architecture

Client

Leader has
write permission

on follower log
Replication m

plane

Background -

plane

Leader Follower
37

Permission Change

| can’t tell

anything

o happened

Must request permission:
giving permission to a new leader who | think | am
didn’t request it is dangerous the leader
Leader
Server Server

Permission Request Mechanism . — .

33

Basic Mu Architecture

Client

Leader has
write permission

on follower log
Replication m

plane

Background l

plane

Leader Follower
39

Mu System Goals

1 round trip with
silent followers

\ RDMA-based SMR system with
optimal common-case performance and

Local heartbeats for
leader election

 Case Study: Mu

ckground: SMR based on RDMA
est Case: ~1.3us replication overhead
Worst Case: <ims recovery

Experimental Evaluation

 Other best case/worst case improvements

;’(vaﬁ(% A V2 B Vi Pt . S
——— 1 s T L LR A
- ___-.,. - U?"’“‘ P—-'......_.. ’ A = &7 __[}. 1 &
¥ : "/_K-'."/ _7'—

Vo
”

-

-

Evaluation: Setup

 Metrics

* Latency, Throughput, Fail-over time

* Applications:

* RDMA-based: HERD
* Financial: Liguibook
 TCP/IP-based: Redis, Memcached

* Competition: Mu |DARE |Hermes|APUS
* DARE [PokeHoefler’15] Liquibook| v | X X X
* APUS [WangJiangChenYiCui’17] HERD| v | X X X
Memcached & v | X X v
* Hermes [KatsarakisGavrielatosKatebzadeh Redis

JoshiDragojevicGrotNagarajan’20]
42

Replication Latency

HERD = mcd |XYY DARE EEE Apus+ mcd
0.0.¢. Hermes ||llIll] Apus + rds

client leader replicas //t

\A
Replication \

Latency /

X

LY
ol
YA
v
/)
¢

58
F \

58

Latency (us)
XX

7/

XORRNK
\/
AL

time

v'v
0‘:

43

End-to-End Latency

client leader

Unreplicated

Latency

Replicated

Latency

time

replicas

Latency (us)

Liquibook

15.0

—_ —_
S N
- U1

| |

~J
U1
|

4 Lo
- Lo
i 00 ml
— ()
5.00 3
2.5
0.0-

Unreplicated Replicated

44

RDMA KVs
15.0
12.57
10.0
_ \O
i X!
- O~
7.5
_ o))
i T
5.0- g
. Lo
|3 |
2.5 -
0.0-
Unreplicated Replicated
™ Herd
Herd + Mu
B Dare

Throughput

Points on lines ~0.5 of network

bandwidth
Two throghput optimizations: '—e— 1 outstanding —=— 4 outstynding
* Batching &= 2 outstanding —4— 8 outstas ng

* QOutstanding requests

)
=15
Different lines é‘
P
= 10
—
Setup: W
Fixed number of clients 5
<
64-byte payload =
LM
Increased throughput with 10 20 30 40

almost no latency penalty Throughput (Ops/ps)

45

Fallover time

Includes 2
perm changes

Permissions switch Fail-over

fall-over

detection switch
100

Iy _x____ 12x improvement
over fastest

o0
-

' >
2 = .
Iy T % 60 previous work
D 99th %ile < 1ms
40
20
0

220 240 260 230 850 3875 900 925
Time (ps) Time (ps)

46

orst Case: <1ms recovery

Experimental evaluation

| Other best case/worst case improvements

;’(vaﬁ(% A V2 B Vi Pt . S
——— 1 s T L LR A
- ___-.,. - U?"’“‘ P—-'......_.. ’ A = &7 __[}. 1 &
¥ : "/_K-'."/ _7'—

Vo
”

-

-

'y
‘4
4
/

| Leaderless consensus - cutting out the middle man

* Byzantine Fault Tolerance - Decreasing Signatures

State Machine Replication

Mu’s “one round trip” only
counted leader-follower Application

Client Client

communication
Consensus
Engine
Client
Leader

Server Server

-———

Application
Can we get 1 round trip from client request to response?

W1V TOVOUY

Engine

Application

WV IOV TOVOUVY

Engine

Follower Follower
49

| eaderless Replication

Can continue with| ..
other servers
Advantages: . ‘

L 4
4

* Possible client-to-client one-round-trip fast path Server

* No single point of failure

_ Consensus
| St er among servers
Disadvantages:

 More complicated

 Lower fault tolerance on fast path

L J)
IIIIIIIIIII

50

'y
‘4
4
/

Leaderless consensus - cutting out the middle man

| Byzantine Fault Tolerance - Decreasing Signatures

Signatures

Each process p can:

e sign(v) — outputs ovp

e verify(v, o, q) — outputs bool indicating whether ¢ is g’s signhature of v

Value specific
Unforgeable

Transferable

Why do we need signatures?

Signatures are unforgeable and transferable

Byzantine party: can lie

@Siy@iw N valul\gy@
S-. ieo

(ppbanidre)

i

Latency (ns)

1400

1050

350

Signature Cost

1,300
100
O .
Clock Cycle Local Memory Access Network Round Trip

Network Round Trip Create Signature

Byzantine Fault Tolerance

Helpful for SMR, but
needs more work

Broadcast algorithm with
no signatures in the common case and

Lower bound on
signatures

\\
- At

Leaderless consensus - cutting out the middle man

Byzantine Fault Tolerance - Decreasing Signatures

st Case: ~1.3pus replication overhead

&orst Case: <1ms recovery
E

xperimental evaluation

er best case/worst case improvements

;’(vaﬁ(% A V2 B Vi Pt . S
——— 1 s T L LR A
- ___-.,. - U?"’“‘ P—-'......_.. ’ A = &7 __[}. 1 &
¥ : "/_K-'."/ _7'—

Vo
”

-

-

Summary

Create algorithms that improve on both
best-case and performance

RDMA-based SMR with 1-round-trip commitment in the
/6 common case and mechanism

Can leaderless approaches deliver similar or better performance?

Byzantine-tolerant SMR with good best and worst case performance?

Using new hardware to help: NVRAM for durability?

How can we reliably compare approaches? fm W/

