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Agreement
Many processes agree on a single value or order of events

ReplicationData structuresBlockchains
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Agreement Challenges

Varying speeds 
• Network topology 
• CongestionProcess failures 

• Software bugs 
• Overheating 
• Hackers
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Agreement
Many processes agree on a single value or order of events

ReplicationData structuresBlockchains
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Client

Consensus for Availability

Server

Server

ServerState Machine Replication (SMR) 
Goal: Masks server failures for high availability 

Cost: Overhead in normal execution
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Consensus 
among servers



Faster and faster applications 

Finance  
(e.g., high-frequency trading)

Embedded systems 
(e.g., industrial robots)

Microservices 
(e.g., key-value stores)

Requests expected to be processed within ~10μs

Availability is critical
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10μs

Latency

1 ms

Unreplicated Replicated

100x slower!

Faster solutions (e.g. APUS, DARE)  
~5μs overhead, ~30ms recovery

Classic replication (e.g., zookeeper) 
~1ms overhead, ~200ms recovery

10μs

Latency

15μs

Unreplicated Replicated

50% slower 
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How Efficiently Can We Replicate?

Zookeeper: [HuntKonarJunqueiraReed’10] DARE: [PokeHoefler’15]

APUS: [WangJiangChenYiCui’17]



Common-Case Analysis
Want algorithms to withstand 

worst-case conditions
But usually, conditions are 

much better

Perfect network conditions:

Synchrony, No Failures

Common-case running time for agreement [KR’01, BGMR’01, Lamport’06, SR’08]:  



10μs

Latency

1 ms

Unreplicated Replicated

100x slower!

Faster solutions (e.g. APUS, DARE)  
~5μs overhead, ~30ms recovery

Classic replication (e.g., zookeeper) 
~1ms overhead, ~200ms recovery

10μs

Latency

15μs

Unreplicated Replicated

50% slower 

Downtime of  
~3000 requests
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How Efficiently Can We Replicate?

Zookeeper: [HuntKonarJunqueiraReed’10] DARE: [PokeHoefler’15]

APUS: [WangJiangChenYiCui’17]



Common-Case Analysis: Drawbacks

Many systems stall completely when failures happen 
Others sacrifice throughput in common case,  

for only minor drop from failures



Create algorithms that improve on both 
best-case and worst-case performance

This Talk



Roadmap
• Case Study: Mu


• Background: SMR based on RDMA


• Best Case: ~1.3μs replication overhead


• Worst Case: <1ms recovery 

• Experimental Evaluation 

• Other best case/worst case improvements
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μ
~3x improvement 

over state of the art

~12x improvement 
over state of the art



Data Center Technology: RDMA

Memory

CPU

NICMemory

CPU

NIC

No involvement 
of CPU!

Remote Direct Memory Access (RDMA)
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One-sided operation



RDMA: More Details

CPU

NICMemory

CPU

NIC

Remote permissions:

1: read-only

2: read-write


3: No permission

RDMA can specify access 
permissions at a fine granularity

These permissions can be 
dynamically changed

Fast communication:

~1μs latency, ~100Gbps bandwidthMemory

1 2

3
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Network Communication Cost
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Send messages, 
read, write,  

change permission



Mu system goals

RDMA-based SMR system with  
optimal common-case performance and 

improved performance under failures

In terms of round trips 



Client

Replication for Availability

Server

Server

ServerState Machine Replication (SMR) 
Goal: Masks server failures for high availability 

Cost: Overhead in normal execution
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Consensus 
among servers



State Machine Replication

Consensus among servers 
to order client requests

Consensus 
Engine

Application

Consensus 
Engine

Application

Consensus 
Engine

Application

Often leader-based

Server

Server Server

Client

Client Client

Client

Leader
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Follower Follower



Basic Mu Architecture

Client

Leader Follower

Application Application

Consensus Engine Consensus Engine

RDMA
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Roadmap
• Case Study: Mu


• Background: SMR based on RDMA


• Best Case: ~1.3μs replication overhead


• Worst Case: <1ms recovery 

• Experimental Evaluation 

• Other best case/worst case improvements
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Common Case Execution

Replicate requests in a single one-sided RDMA round trip 
when there is synchrony and no failures

Bypass remote CPU for 
improved performance

~1.3μs

Where our latency 

comes from

21

Theoretical model to reason about algorithmic possibilities  



Data Center Technology: RDMA

Memory

CPU

NICMemory

CPU

NIC

RDMA: No 
involvement of 

CPU!

Remote Direct Memory Access (RDMA)

Shared-memory-like 
capability
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Crash-Tolerant Consensus in the Literature

Message Passing Shared Memory

Fault tolerance f < n/2 f < n

Common-Case  
Performance 1 Round trip ?

Can RDMA  
achieve best of  
both worlds?
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Single-Memory Abstraction

24

Memory

Process + 
memory Dynamic 

permissions



Algorithm: For a designated leader process p1

• Write your value in your slot

• Read disk; If no one else wrote anything


• Done :-)

• Else


• More complicated…

Consensus Algorithm: Disk Paxos

p1 p2 p3 p4

p1 p2 p3 p4

Write v

v

Read 
slots

Fault tolerance f < n

2 rounds trips for 
common-case 

execution

[GafniLamport’02]Output v
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Adding Permissions to Disk Paxos
Idea: leverage RDMA dynamic permissions to get rid of check.

Only one write 
permission at any 

time

Request permissionI’ve lost my 
permission

Lost permission iff  
contention Memory

p1 p2 p3 p4
2 round trips —>  

1 round trip

If wrote successfully, 
no need to read!

Fault tolerance f < n

ABGMZ [PODC’19]
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Theoretical Results
Theorem [ABGMZ’19]: 

There exists a 1 round trip consensus algorithm using reads, writes, 
and dynamic permissions tolerating f < n process crash failures.

In shared memory:

Disk Paxos: tolerates f < n crashes, but requires 2 round trips

Theorem [ABGMZ’19]: 

No consensus algorithm using only reads and writes,  
tolerating f = 1 crash failures, can terminate in 1 round trip.

Implies result for 
more failures

27



Common Case Execution

Replicate requests in a single one-sided RDMA round trip 
when there is synchrony and no failures

Bypass remote CPU for 
improved performance
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Theoretical model to reason about algorithmic possibilities  

Practical SMR algorithm



Translating Theory to Practice

• f+1 fault tolerance to process failures; what about other failures?


• Single-shot consensus to long-lived SMR
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Practical Fault Tolerance

Memory

Process + 
memory

Single memory abstraction is achieved by replication technique:

To access global memory, access all memories and wait for majority

Need 2f+1 
memories

Process-only failure: software bug, slow/busy CPU

Total failure: NIC failure, machine disconnected

Need 2f+1 memories, but only 1 active CPU 
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Multi-Instance Consensus

31

Log

One consensus 
instance per entry

Leader and other metadata are shared among multiple slots



Basic Mu Architecture

Client

Leader Follower

Application Application

Consensus Engine Consensus Engine

RDMA

Leader has 
write permission 
on follower log

Log Log
a b a b

c

c

Follower is silent 
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Common Case Execution

Replicate requests in a single one-sided RDMA round trip 
when there is synchrony and no failures

Bypass remote CPU for 
improved performance

~1.3μs

Where our latency 

comes from
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Theoretical model to reason about algorithmic possibilities  

Practical SMR algorithm



Roadmap
• Case Study: Mu


• Background: SMR based on RDMA


• Best Case: ~1.3μs replication overhead


• Worst Case: <1ms recovery 

• Experimental Evaluation 

• Other best case/worst case improvements
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Failure Recovery

Detect failures more reliably using RDMA and change 
leaders quickly by changing RDMA permissions
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Handling Failures

Leader

Non-leader failure doesn’t 
affect performance

On leader crash: 
1. Detect leader failure 
2. Initialize new leader

On leader crash: 
1. Detect leader failure 
2. Initialize new leader p1

False positive could occur 
because of slow network

Slow reads don’t affect 
heartbeat scoreChange 

permission

Need conservative timeouts

Push Mechanism

Pull-Score Mechanism

New heartbeat?

Yes - decrease score


No - Raise “bad” score

Can have aggressively low 
score threshold

36
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Basic Mu Architecture

Client

Leader Follower

Application Application

Consensus Engine Consensus Engine

RDMA

Leader has 
write permission 
on follower log

Log Log
a b a bReplication 

plane

Background 
plane 30

Heartbeat Leader Score

2
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Permission Change
Must request permission: 


giving permission to a new leader who  
didn’t request it is dangerous

38

I think I am 
the leader

Server Server

Leader

Server
I can’t tell 
anything 

happened

Permission Request Mechanism 



Basic Mu Architecture

Client

Leader Follower

Application Application

Consensus Engine Consensus Engine

RDMA

Leader has 
write permission 
on follower log

Log Log
a b a bReplication 

plane

Background 
plane 30

Heartbeat Leader Score

2
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Perm Reqs Perm Reqs

5id



Mu System Goals

RDMA-based SMR system with  
optimal common-case performance and 

improved performance under failures

1 round trip with 
silent followers

Local heartbeats for 
leader election



Roadmap
• Case Study: Mu


• Background: SMR based on RDMA


• Best Case: ~1.3μs replication overhead


• Worst Case: <1ms recovery 

• Experimental Evaluation 

• Other best case/worst case improvements
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Evaluation: Setup

Mu DARE Hermes APUS

Liquibook ✓ ✘ ✘ ✘

HERD ✓ ✘ ✘ ✘

Memcached & 
Redis

✓ ✘ ✘ ✓

•Metrics

• Latency, Throughput, Fail-over time


•Applications:

• RDMA-based: HERD

• Financial: Liquibook

• TCP/IP-based: Redis, Memcached


•Competition:

• DARE [PokeHoefler’15]

• APUS [WangJiangChenYiCui’17]


• Hermes [KatsarakisGavrielatosKatebzadeh 
JoshiDragojevicGrotNagarajan’20]

Server

Server

Server

Server100Gbps
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Replication Latency
client leader replicas

time

Replication 
Latency
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2.7x improvement
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End-to-End Latency
client leader replicas

time

Unreplicated 
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Throughput
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Two throughput optimizations:

• Batching

• Outstanding requests

Different lines

Points on lines

Setup:

Fixed number of clients 


64-byte payload 

~0.5 of network 
bandwidth

Increased throughput with 
almost no latency penalty



Failover time
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12x improvement 
over fastest 

previous work
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time

r1

r2
r3

detection switch

fail-over
Includes 2 

perm changes

99th %ile < 1ms



Roadmap
• Case Study: Mu


• Background: SMR based on RDMA


• Best Case: ~1.3μs replication overhead


• Worst Case: <1ms recovery 

• Experimental evaluation  

• Other best case/worst case improvements
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Other Approaches

• Leaderless consensus - cutting out the middle man


• Byzantine Fault Tolerance - Decreasing Signatures

48



State Machine Replication

Consensus 
Engine

Application

Consensus 
Engine

Application

Consensus 
Engine

Application

Server

Server Server

Client

Client Client

Client

Leader

49
Follower Follower

Mu’s “one round trip” only 
counted leader-follower 

communication

Can we get 1 round trip from client request to response?



Client

Leaderless Replication

Server

Server

Server
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Consensus 
among servers

Advantages: 
• Possible client-to-client one-round-trip fast path 
• No single point of failure 

Disadvantages: 
• More complicated 
• Lower fault tolerance on fast path

Stall until new 
leader is elected

Can continue with 
other servers



Other Approaches

• Leaderless consensus - cutting out the middle man


• Byzantine Fault Tolerance - Decreasing Signatures

51



Signatures
Each process p can:


• sign(v) — outputs 𝜎v,p


• verify(v, 𝜎, q) — outputs bool indicating whether 𝜎 is q’s signature of v

Value specific 
Unforgeable 
Transferable



Why do we need signatures?
Signatures are unforgeable and transferable 

p1

p2
p3

My 
value is w

w

p1 said w

Not sure who is 
lying

My 
value is v

vv, 𝜎

p1 is lying w, 𝜎

p1 said w, 𝜎

Byzantine party: can lie



Signature Cost
La

te
nc

y 
(μ

s)

0

10

20

30

40

Network Round Trip Create Signature

36.1

1.3



Byzantine Fault Tolerance

Broadcast algorithm with  
no signatures in the common case and 

optimal number of signatures in the 
worst case

Lower bound on 
signatures

Helpful for SMR, but 
needs more work



Other Approaches

• Leaderless consensus - cutting out the middle man


• Byzantine Fault Tolerance - Decreasing Signatures
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Roadmap
• Case Study: Mu


• Background: SMR based on RDMA


• Best Case: ~1.3μs replication overhead


• Worst Case: <1ms recovery 

• Experimental evaluation  

• Other best case/worst case improvements
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Create algorithms that improve on both 
best-case and worst-case performance

Summary

μ RDMA-based SMR with 1-round-trip commitment in the 
common case and better leader election mechanism 

Can leaderless approaches deliver similar or better performance? 
Byzantine-tolerant SMR with good best and worst case performance? 

Using new hardware to help: NVRAM for durability? 
How can we reliably compare approaches? Thank you!


