
Algorithms for 
Practical Distributed Agreement

Naama Ben-David  
VMware Research

Agreement
Many processes agree on a single value or order of events

ReplicationData structuresBlockchains

2

Agreement Challenges

Varying speeds
• Network topology
• CongestionProcess failures

• Software bugs
• Overheating
• Hackers

In: 1

In: 0
Out: 1

In: 1
Out: 1

In: 1
Out: 1

In: 1
Out: 1

In: 0
Out: 1

Agreement
Many processes agree on a single value or order of events

ReplicationData structuresBlockchains

4

Client

Consensus for Availability

Server

Server

ServerState Machine Replication (SMR)
Goal: Masks server failures for high availability

Cost: Overhead in normal execution

5

Consensus
among servers

Faster and faster applications

Finance
(e.g., high-frequency trading)

Embedded systems
(e.g., industrial robots)

Microservices
(e.g., key-value stores)

Requests expected to be processed within ~10μs

Availability is critical
6

10μs

Latency

1 ms

Unreplicated Replicated

100x slower!

Faster solutions (e.g. APUS, DARE)  
~5μs overhead, ~30ms recovery

Classic replication (e.g., zookeeper) 
~1ms overhead, ~200ms recovery

10μs

Latency

15μs

Unreplicated Replicated

50% slower

7

How Efficiently Can We Replicate?

Zookeeper: [HuntKonarJunqueiraReed’10] DARE: [PokeHoefler’15]

APUS: [WangJiangChenYiCui’17]

Common-Case Analysis
Want algorithms to withstand

worst-case conditions
But usually, conditions are

much better

Perfect network conditions:

Synchrony, No Failures

Common-case running time for agreement [KR’01, BGMR’01, Lamport’06, SR’08]:

10μs

Latency

1 ms

Unreplicated Replicated

100x slower!

Faster solutions (e.g. APUS, DARE)  
~5μs overhead, ~30ms recovery

Classic replication (e.g., zookeeper) 
~1ms overhead, ~200ms recovery

10μs

Latency

15μs

Unreplicated Replicated

50% slower

Downtime of  
~3000 requests

9

How Efficiently Can We Replicate?

Zookeeper: [HuntKonarJunqueiraReed’10] DARE: [PokeHoefler’15]

APUS: [WangJiangChenYiCui’17]

Common-Case Analysis: Drawbacks

Many systems stall completely when failures happen
Others sacrifice throughput in common case,  

for only minor drop from failures

Create algorithms that improve on both
best-case and worst-case performance

This Talk

Roadmap
• Case Study: Mu

• Background: SMR based on RDMA

• Best Case: ~1.3μs replication overhead

• Worst Case: <1ms recovery

• Experimental Evaluation

• Other best case/worst case improvements

12

μ
~3x improvement

over state of the art

~12x improvement
over state of the art

Data Center Technology: RDMA

Memory

CPU

NICMemory

CPU

NIC

No involvement
of CPU!

Remote Direct Memory Access (RDMA)

13

One-sided operation

RDMA: More Details

CPU

NICMemory

CPU

NIC

Remote permissions:

1: read-only

2: read-write

3: No permission

RDMA can specify access
permissions at a fine granularity

These permissions can be
dynamically changed

Fast communication:

~1μs latency, ~100Gbps bandwidthMemory

1 2

3

14

Network Communication Cost
La

te
nc

y
(n

s)

0

350

700

1050

1400

Clock Cycle Local Memory Access Network Round Trip

1,300

100
5

Send messages,
read, write,  

change permission

Mu system goals

RDMA-based SMR system with  
optimal common-case performance and

improved performance under failures

In terms of round trips

Client

Replication for Availability

Server

Server

ServerState Machine Replication (SMR)
Goal: Masks server failures for high availability

Cost: Overhead in normal execution

17

Consensus
among servers

State Machine Replication

Consensus among servers
to order client requests

Consensus
Engine

Application

Consensus
Engine

Application

Consensus
Engine

Application

Often leader-based

Server

Server Server

Client

Client Client

Client

Leader

18
Follower Follower

Basic Mu Architecture

Client

Leader Follower

Application Application

Consensus Engine Consensus Engine

RDMA

19

Roadmap
• Case Study: Mu

• Background: SMR based on RDMA

• Best Case: ~1.3μs replication overhead

• Worst Case: <1ms recovery

• Experimental Evaluation

• Other best case/worst case improvements

20

μ

Common Case Execution

Replicate requests in a single one-sided RDMA round trip
when there is synchrony and no failures

Bypass remote CPU for
improved performance

~1.3μs

Where our latency

comes from

21

Theoretical model to reason about algorithmic possibilities

Data Center Technology: RDMA

Memory

CPU

NICMemory

CPU

NIC

RDMA: No
involvement of

CPU!

Remote Direct Memory Access (RDMA)

Shared-memory-like
capability

22

Crash-Tolerant Consensus in the Literature

Message Passing Shared Memory

Fault tolerance f < n/2 f < n

Common-Case
Performance 1 Round trip ?

Can RDMA
achieve best of
both worlds?

23

Single-Memory Abstraction

24

Memory

Process +
memory Dynamic

permissions

Algorithm: For a designated leader process p1

• Write your value in your slot

• Read disk; If no one else wrote anything

• Done :-)

• Else

• More complicated…

Consensus Algorithm: Disk Paxos

p1 p2 p3 p4

p1 p2 p3 p4

Write v

v

Read
slots

Fault tolerance f < n

2 rounds trips for
common-case

execution

[GafniLamport’02]Output v

25

Adding Permissions to Disk Paxos
Idea: leverage RDMA dynamic permissions to get rid of check.

Only one write
permission at any

time

Request permissionI’ve lost my
permission

Lost permission iff
contention Memory

p1 p2 p3 p4
2 round trips —>

1 round trip

If wrote successfully,
no need to read!

Fault tolerance f < n

ABGMZ [PODC’19]
26

Theoretical Results
Theorem [ABGMZ’19]:

There exists a 1 round trip consensus algorithm using reads, writes,
and dynamic permissions tolerating f < n process crash failures.

In shared memory:

Disk Paxos: tolerates f < n crashes, but requires 2 round trips

Theorem [ABGMZ’19]:

No consensus algorithm using only reads and writes,  
tolerating f = 1 crash failures, can terminate in 1 round trip.

Implies result for
more failures

27

Common Case Execution

Replicate requests in a single one-sided RDMA round trip
when there is synchrony and no failures

Bypass remote CPU for
improved performance

28

Theoretical model to reason about algorithmic possibilities

Practical SMR algorithm

Translating Theory to Practice

• f+1 fault tolerance to process failures; what about other failures?

• Single-shot consensus to long-lived SMR

29

Practical Fault Tolerance

Memory

Process +
memory

Single memory abstraction is achieved by replication technique:

To access global memory, access all memories and wait for majority

Need 2f+1
memories

Process-only failure: software bug, slow/busy CPU

Total failure: NIC failure, machine disconnected

Need 2f+1 memories, but only 1 active CPU

30

Multi-Instance Consensus

31

Log

One consensus
instance per entry

Leader and other metadata are shared among multiple slots

Basic Mu Architecture

Client

Leader Follower

Application Application

Consensus Engine Consensus Engine

RDMA

Leader has
write permission
on follower log

Log Log
a b a b

c

c

Follower is silent

32

Common Case Execution

Replicate requests in a single one-sided RDMA round trip
when there is synchrony and no failures

Bypass remote CPU for
improved performance

~1.3μs

Where our latency

comes from

33

Theoretical model to reason about algorithmic possibilities

Practical SMR algorithm

Roadmap
• Case Study: Mu

• Background: SMR based on RDMA

• Best Case: ~1.3μs replication overhead

• Worst Case: <1ms recovery

• Experimental Evaluation

• Other best case/worst case improvements

34

μ

Failure Recovery

Detect failures more reliably using RDMA and change
leaders quickly by changing RDMA permissions

35

Handling Failures

Leader

Non-leader failure doesn’t
affect performance

On leader crash:
1. Detect leader failure
2. Initialize new leader

On leader crash:
1. Detect leader failure
2. Initialize new leader p1

False positive could occur
because of slow network

Slow reads don’t affect
heartbeat scoreChange

permission

Need conservative timeouts

Push Mechanism

Pull-Score Mechanism

New heartbeat?

Yes - decrease score

No - Raise “bad” score

Can have aggressively low
score threshold

36

Score

Basic Mu Architecture

Client

Leader Follower

Application Application

Consensus Engine Consensus Engine

RDMA

Leader has
write permission
on follower log

Log Log
a b a bReplication

plane

Background
plane 30

Heartbeat Leader Score

2

37

Permission Change
Must request permission:

giving permission to a new leader who  
didn’t request it is dangerous

38

I think I am
the leader

Server Server

Leader

Server
I can’t tell
anything

happened

Permission Request Mechanism

Basic Mu Architecture

Client

Leader Follower

Application Application

Consensus Engine Consensus Engine

RDMA

Leader has
write permission
on follower log

Log Log
a b a bReplication

plane

Background
plane 30

Heartbeat Leader Score

2

39

Perm Reqs Perm Reqs

5id

Mu System Goals

RDMA-based SMR system with  
optimal common-case performance and

improved performance under failures

1 round trip with
silent followers

Local heartbeats for
leader election

Roadmap
• Case Study: Mu

• Background: SMR based on RDMA

• Best Case: ~1.3μs replication overhead

• Worst Case: <1ms recovery

• Experimental Evaluation

• Other best case/worst case improvements

41

μ

Evaluation: Setup

Mu DARE Hermes APUS

Liquibook ✓ ✘ ✘ ✘

HERD ✓ ✘ ✘ ✘

Memcached &
Redis

✓ ✘ ✘ ✓

•Metrics

• Latency, Throughput, Fail-over time

•Applications:

• RDMA-based: HERD

• Financial: Liquibook

• TCP/IP-based: Redis, Memcached

•Competition:

• DARE [PokeHoefler’15]

• APUS [WangJiangChenYiCui’17]

• Hermes [KatsarakisGavrielatosKatebzadeh 
JoshiDragojevicGrotNagarajan’20]

Server

Server

Server

Server100Gbps

42

Replication Latency
client leader replicas

time

Replication
Latency

0

2

4

6

8

10

La
te

nc
y

(μ
s)

1.
40

1.
34 1.
68

1.
68

5.
15

4.
55

6.
80 6.
86

Mu + HERD
Mu + LiQ
Mu + mcd

Mu + rds
DARE
Hermes

Apus+mcd
Apus+rds

2.7x improvement

43

μ

0

2

4

6

8

10

La
te

nc
y

(μ
s)

1.
40

1.
34 1.
68

1.
68

5.
15

4.
55

6.
80 6.
86

Mu + HERD
Mu + LiQ
Mu + mcd

Mu + rds
DARE
Hermes

Apus+mcd
Apus+rds

0

2

4

6

8

10

La
te

nc
y

(μ
s)

1.
40

1.
34 1.
68

1.
68

5.
15

4.
55

6.
80 6.
86

Mu + HERD
Mu + LiQ
Mu + mcd

Mu + rds
DARE
Hermes

Apus+mcd
Apus+rds

0

2

4

6

8

10

La
te

nc
y

(μ
s)

1.
40

1.
34 1.
68

1.
68

5.
15

4.
55

6.
80 6.
86

Mu + HERD
Mu + LiQ
Mu + mcd

Mu + rds
DARE
Hermes

Apus+mcd
Apus+rds

0

2

4

6

8

10

La
te

nc
y

(μ
s)

1.
40

1.
34 1.
68

1.
68

5.
15

4.
55

6.
80 6.
86

Mu + HERD
Mu + LiQ
Mu + mcd

Mu + rds
DARE
Hermes

Apus+mcd
Apus+rds

0

2

4

6

8

10

La
te

nc
y

(μ
s)

1.
40

1.
34 1.
68

1.
68

5.
15

4.
55

6.
80 6.
86

Mu + HERD
Mu + LiQ
Mu + mcd

Mu + rds
DARE
Hermes

Apus+mcd
Apus+rds

HERD
 

LiQ
mcd

 

ads
Apus+ mcd

 

Apus + rds
DARE

 

Hermes

End-to-End Latency
client leader replicas

time

Unreplicated
Latency

Replicated
Latency

Unreplicated Replicated
0.0

2.5

5.0

7.5

10.0

12.5

15.0

La
te

nc
y

(μ
s)

4.
08

5.
55

Liquibook

Unreplicated Replicated
0.0

2.5

5.0

7.5

10.0

12.5

15.0

2.
25

3.
59

7.
56

RDMA KVs

Unreplicated Replicated
100

110

120

130

140

150

160

11
4.

89
11

7.
16

11
6.

32 12
1.

39
11

8.
73 12

3.
90

TCP/IP KVs

LiQ Unreplicated
LiQ Replicated
HERD Unreplicated
HERD
DARE
mcd Unreplicated
rds Unreplicated
Mu+mcd
APUS+mcd
Mu+rds
APUS+rds

Unreplicated Replicated
0.0

2.5

5.0

7.5

10.0

12.5

15.0

La
te

nc
y

(μ
s)

4.
08

5.
55

Liquibook

Unreplicated Replicated
0.0

2.5

5.0

7.5

10.0

12.5

15.0

2.
25

3.
59

7.
56

RDMA KVs

Unreplicated Replicated
100

110

120

130

140

150

160

11
4.

89
11

7.
16

11
6.

32 12
1.

39
11

8.
73 12

3.
90

TCP/IP KVs

LiQ Unreplicated
LiQ Replicated
HERD Unreplicated
HERD
DARE
mcd Unreplicated
rds Unreplicated
Mu+mcd
APUS+mcd
Mu+rds
APUS+rds

Herd

Herd + Mu

Dare
44

Throughput

10 20 30 40
Throughput (Ops/μs)

5

10

15

50
th

-%
ile

 L
at

en
cy

 (μ
s)

4 8
16

32

64

128

1 outstanding
2 outstanding

4 outstanding
8 outstanding

45

Two throughput optimizations:

• Batching

• Outstanding requests

Different lines

Points on lines

Setup:

Fixed number of clients

64-byte payload

~0.5 of network
bandwidth

Increased throughput with
almost no latency penalty

Failover time

220 240 260 280
Time (μs)

0

20

40

60

80

100

Fr
eq

ue
nc

y

Permissions switch

850 875 900 925
Time (μs)

0

20

40

60

Fail-over

12x improvement
over fastest

previous work

46

time

r1

r2
r3

detection switch

fail-over
Includes 2

perm changes

99th %ile < 1ms

Roadmap
• Case Study: Mu

• Background: SMR based on RDMA

• Best Case: ~1.3μs replication overhead

• Worst Case: <1ms recovery

• Experimental evaluation

• Other best case/worst case improvements

47

μ

Other Approaches

• Leaderless consensus - cutting out the middle man

• Byzantine Fault Tolerance - Decreasing Signatures

48

State Machine Replication

Consensus
Engine

Application

Consensus
Engine

Application

Consensus
Engine

Application

Server

Server Server

Client

Client Client

Client

Leader

49
Follower Follower

Mu’s “one round trip” only
counted leader-follower

communication

Can we get 1 round trip from client request to response?

Client

Leaderless Replication

Server

Server

Server

50

Consensus
among servers

Advantages:
• Possible client-to-client one-round-trip fast path
• No single point of failure

Disadvantages:
• More complicated
• Lower fault tolerance on fast path

Stall until new
leader is elected

Can continue with
other servers

Other Approaches

• Leaderless consensus - cutting out the middle man

• Byzantine Fault Tolerance - Decreasing Signatures

51

Signatures
Each process p can:

• sign(v) — outputs 𝜎v,p

• verify(v, 𝜎, q) — outputs bool indicating whether 𝜎 is q’s signature of v

Value specific
Unforgeable
Transferable

Why do we need signatures?
Signatures are unforgeable and transferable

p1

p2
p3

My
value is w

w

p1 said w

Not sure who is
lying

My
value is v

vv, 𝜎

p1 is lying w, 𝜎

p1 said w, 𝜎

Byzantine party: can lie

Signature Cost
La

te
nc

y
(μ

s)

0

10

20

30

40

Network Round Trip Create Signature

36.1

1.3

Byzantine Fault Tolerance

Broadcast algorithm with
no signatures in the common case and

optimal number of signatures in the
worst case

Lower bound on
signatures

Helpful for SMR, but
needs more work

Other Approaches

• Leaderless consensus - cutting out the middle man

• Byzantine Fault Tolerance - Decreasing Signatures

56

Roadmap
• Case Study: Mu

• Background: SMR based on RDMA

• Best Case: ~1.3μs replication overhead

• Worst Case: <1ms recovery

• Experimental evaluation

• Other best case/worst case improvements

57

μ

Create algorithms that improve on both
best-case and worst-case performance

Summary

μ RDMA-based SMR with 1-round-trip commitment in the
common case and better leader election mechanism

Can leaderless approaches deliver similar or better performance?
Byzantine-tolerant SMR with good best and worst case performance?

Using new hardware to help: NVRAM for durability?
How can we reliably compare approaches? Thank you!

