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There has been considerable debate over the years about what
constitutes a distributed system. It would appear that the following
definition has been adopted at SRC:

A distributed system 1s one in which the failure of a computer

you didn't even know existed can render your own computer
unusable.

Email sent to a DEC SRC bulletin board



https://www.microsoft.com/en-us/research/uploads/prod/2016/12/Distribution.pdf

Many possible consistency guarantees
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State machine replication



his approach Is wide spread in production
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In the blue corner, Paxos

e The classic solution
e Published in 1998 at ACM ToCS
e 3K citations

1K repos on GitHub

The Part-Time Parliament

LESLIE LAMPORT
Digital Equipment Corporation

Recent archaeological discoveries on the island of Paxos reveal that the parliament functioned de-
spite the peripatetic propensity of its part-time legislators. The legislators maintained consistent

copies of the parliamentary record, despite their frequent forays from the chamber and the forget-
fulness of their messengers. The Paxon parliament’s protocol provides a new way of implementing

the state-machine approach to the design of distributed systems.

Categories and Subject Descriptors: C2.4 [Computer-Communications Networks|: Distributed
Systems— Network operating systems; D4.5 [Operating Systems)|: Reliability—Fault-tolerance;
J.1 [Administrative Data Processing]: Government

General Terms: Design, Reliability
Additional Key Words and Phrases: State machines, three-phase commit, voting




In the red corner, Raft

e The new solution
e Published in 2014 at ATC
e 1.2K citations

3K repos on GitHub

In Search of an Understandable Consensus Algorithm

(Extended Version)

Diego Ongaro and John Ousterhout
Stanford University

Abstract

Raft is a consensus algorithm for managing a replicated
log. It produces a result equivalent to (multi-)Paxos, and
it 1s as efficient as Paxos, but its structure is different
from Paxos; this makes Raft more understandable than
Paxos and also provides a better foundation for build-
ing practical systems. In order to enhance understandabil-
ity, Raft separates the key elements of consensus, such as
leader election, log replication, and safety, and it enforces
a stronger degree of coherency to reduce the number of
states that must be considered. Results from a user study
demonstrate that Raft is easier for students to learn than
Paxos. Raft also includes a new mechanism for changing
the cluster membership, which uses overlapping majori-
ties to guarantee safety.

state space reduction (relative to Paxos, Raft reduces the
degree of nondeterminism and the ways servers can be in-
consistent with each other). A user study with 43 students
at two universities shows that Raft is significantly easier
to understand than Paxos: after learning both algorithms,
33 of these students were able to answer questions about
Raft better than questions about Paxos.

Raft is similar in many ways to existing consensus al-
gorithms (most notably, Oki and Liskov’s Viewstamped
Replication [29, 22]), but it has several novel features:

e Strong leader: Raft uses a stronger form of leader-
ship than other consensus algorithms. For example,
log entries only flow from the leader to other servers.
This simplifies the management of the replicated log
and makes Raft easier to understand.

T .. N -l onal.... B 1 T .t



Which algorithm is the best
solution to distributed consensus?
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This question Is surprisingly hard to answer

The Part-Time Parliament . 29

I3(p) = [Associated variables: prevBal[p|, prevDec|p|, nextBal[p]]
A prevBal[p] = MazVote(oo, p, B)pai
A prevDec[p] = MazVote(oo, p, B) dec
A neztBal[p] > prevBal|p)

14(])) = [Associated variable: prevVotes|p]]
(status[p] # idle) =
Vv € prevVotes[p| : A v = MazxVote(lastTried|p], vpst, B)
A nextBal[vpg] > lastTried|p]

I5(p) = [Associated variables: quorum/[p|, voters|p|, decree[p]]
(status[p] = polling) =
A quorum[p] C {vps : v € prevVotes[p|}
A 3B € B: A quorum[p] = Bgrm
A decree[p] = B gec
A voters[p] C Biyot
A lastTried[p] = Bpai

I6 = [Associated variable: B]
A B1(B) A B2(B) A B3(B)
AVB € B : By, is a majority set

I7 = [Associated variable: M ]
A ¥YNeztBallot(b) € M : (b < lastTried[owner(b)])
A YLastVote(b, v) € M : A v = MazVote(b, vpst, B)
A nextBal[vps| > b
A Y BeginBallot(b, d) € M : 3B € B : (Bpar = b) A (Bgec = d)
A Y Voted(b, p) € M : 3B € B: (Bpat =b) A (p € Buot)
A Y Success(d) € M : Tp : outcome|[p] = d # BLANK

The Paxons had to prove that I satisfies the three conditions given above. The
first condition, that I holds initially, requires checking that each conjunct is true for
the initial values of all the variables. While not stated explicitly, these initial values
can be inferred from the variables’ descriptions, and checking the first condition is
straightforward. The second condition, that I implies consistency, follows from 71,
the first conjunct of I6, and Theorem 1. The hard part was proving the third
condition, the invariance of I, which meant proving that I is left true by every
action. This condition is proved by showing that, for each conjunct of I, executing
any action when [ is true leaves that conjunct true. The proofs are sketched below.

I1(p) B is changed only by adding a new ballot or adding a new priest to B, for
some B € B, neither of which can falsify I1(p). The value of outcome|[p] is changed
only by the Succeed and Receive Success Message actions. The enabling con-
dition and I5(p) imply that I'l1(p) is left true by the Succeed action. The enabling
condition, I1(p), and the last conjunct of I7 imply that I'1(p) is left true by the
Receive Success Message action.
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Figure 14: A scatter plot comparing 43 participants’ perfor-
mance on the Raft and Paxos quizzes. Points above the diag-
onal (33) represent participants who scored higher for Raft.

lecture covered enough material to create an equivalent
replicated state machine, including single-decree Paxos,
multi-decree Paxos, reconfiguration, and a few optimiza-
tions needed in practice (such as leader election). The
quizzes tested basic understanding of the algorithms and
also required students to reason about corner cases. Each
student watched one video, took the corresponding quiz,
watched the second video, and took the second quiz.
About half of the participants did the Paxos portion first
and the other half did the Raft portion first in order to
account for both individual differences in performance
and experience gained from the first portion of the study.
We compared participants’ scores on each quiz to deter-
mine whether participants showed a better understanding
of Raft.

We tried to make the comparison between Paxos and
Raft as fair as possible. The experiment favored Paxos in
two ways: 15 of the 43 participants reported having some
prior experience with Paxos, and the Paxos video is 14%
longer than the Raft video. As summarized in Table 1, we
have taken steps to mitigate potential sources of bias. All
of our materials are available for review [28, 31].

On average, participants scored 4.9 points higher on the
Raft quiz than on the Paxos quiz (out of a possible 60
points, the mean Raft score was 25.7 and the mean Paxos
score was 20.8); Figure 14 shows their individual scores.
A paired r-test states that, with 95% confidence, the true
distribution of Raft scores has a mean at least 2.5 points
larger than the true distribution of Paxos scores.

We also created a linear regression model that predicts
a new student’s quiz scores based on three factors: which
quiz they took, their degree of prior Paxos experience, and

a 20 - 1

c

3

s 151 7] == Paxos much easier
g 21 Paxos somewhat easier
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] =3 Raft somewhat easier
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g [
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implement explain
Figure 15: Using a S-point scale, participants were asked
(left) which algorithm they felt would be easier to implement
in a functioning, correct, and efficient system, and (right)
which would be easier to explain to a CS graduate student.

the order in which they learned the algorithms. The model
predicts that the choice of quiz produces a 12.5-point dif-
ference in favor of Raft. This is significantly higher than
the observed difference of 4.9 points, because many of the
actual students had prior Paxos experience, which helped
Paxos considerably, whereas it helped Raft slightly less.
Curiously, the model also predicts scores 6.3 points lower
on Raft for people that have already taken the Paxos quiz;
although we don’t know why, this does appear to be sta-
tistically significant.

We also surveyed participants after their quizzes to see
which algorithm they felt would be easier to implement
or explain; these results are shown in Figure 15. An over-
whelming majority of participants reported Raft would be
easier to implement and explain (33 of 41 for each ques-
tion). However, these self-reported feelings may be less
reliable than participants’ quiz scores, and participants
may have been biased by knowledge of our hypothesis
that Raft is easier to understand.

A detailed discussion of the Raft user study is available
at [31].

9.2 Correctness

We have developed a formal specification and a proof
of safety for the consensus mechanism described in Sec-
tion 5. The formal specification [31] makes the informa-
tion summarized in Figure 2 completely precise using the
TLA+ specification language [17]. It is about 400 lines
long and serves as the subject of the proof. It is also use-
ful on its own for anyone implementing Raft. We have
mechanically proven the Log Completeness Property us-
ing the TLA proof system [7]. However, this proof relies
on invariants that have not been mechanically checked
(for example, we have not proven the type safety of the
specification). Furthermore, we have written an informal
proof [31] of the State Machine Safety property which
is complete (it relies on the specification alone) and rela-

Concern Steps taken to mitigate bias

Materials for review [28, 31]

Equal lecture quality ~ Same lecturer for both. Paxos lecture based on and improved from exist-  videos
ing materials used in several universities. Paxos lecture is 14% longer.

Equal quiz difficulty  Questions grouped in difficulty and paired across exams. quizzes

Fair grading Used rubric. Graded in random order, alternating between quizzes. rubric

Table 1: Concerns of possible bias against Paxos in the study, steps taken to counter each, and additional materials available.

14



The Raft magic

Presentation

Simplification

Underlying Algorithm
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Our approach is to “Raft-ify” Paxos

A Paxos Algorithm RequestVote RPC
This summarises our simplified, Raft-style Paxos algorithm. e [ e T ey
The text in red is unique to Paxos.
Arguments:
term candidate’s term
Persistent state on all servers: (Updated on stable storage leaderCommit candidate’'s commit index
before responding to RPCs) Results: | |
currentTerm latest term server has seen (initialized to 0 on term currentTerm, for candidate to update itself
first boot, increases monotonically) voteGranted true indicates candidate received vote
log[ ] log entries; each entry contains command for state entries|] follower's log entries after leaderCommit
machine, and term when entry was received by leader | | Receiver implementation:
(first index is 1) 1. Reply false if term < currentTerm
Volatile state on all servers: 2. Grant vote and send any log entries after leaderCommit

commitIndex index of highest log entry known to be com-
mitted (initialized to 0, increases monotonically) Rules for Servers
lastApplied index of highest log entry applied to state ma- P e
chine (initialized to 0, increases monotonically)
Volatile state on candidates: (Reinitialized after election)
entries|/ ] Log entries received with votes

e If commitIndex > lastApplied: increment lastApplied and
apply log[lastApplied] to state machme




How do Paxos & Raft differ in their
approach to distributed consensus?




High-level approach to consensus
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High-level approach to consensus
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How does the leader copy operations?
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How do we handle follower failures?
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Introducing Terms

e Each leader serves for one term.

 There is at most one leader per term.

e Each server stores Its current term.

 Every server starts in term 1 and the
term increases over time.

 Every RPC includes the sender’s
term.

26



State transitions
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How do we handle leader failures?

* The leader regularly sends AppendEntries RPCs to all servers.

* |f a follower does not receive an AppendEntries RPC from the leader within a
timeout then it becomes a candidate.

 The candidate updates its term and solicits votes from other servers using the
RequestVotes RPC.

* |f a majority of servers vote for it, then the candidate becomes the next leader.

Paxos & Raft must ensure that a newly elected leader has

knowledge of all previously committed operations.

30



Paxos leader election algorithm

 [he candidate begins by updating its term to the next assigned term. Terms
are assigned round robin to servers.

 Next, the candidate sends RequestVotes RPCs to all servers. A server will
vote for the candidate provided its term is less than the candidate’s.

 The RequestVotes RPC includes the candidate’s commit index. The
RequestVotes reply includes all log entries after the commit index.

* |f the candidate receives votes from a majority then it adds any commands
received to its log with the new term. If multiple commands are received then
It adds the one with a greater term. The candidate then becomes a leader.

31
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Raft leader election algorithm

* The candidate begins by incrementing its term and sending RequestVotes
RPCs to all servers.

* A follower will vote for the candidate provided the follower’s terms is smaller
than the candidate’s term and the candidate’s log is at least as up-to-date as
the follower’s log.

* |f the candidate receives votes from the majority then it becomes a leader.

* The leader uses AppendEntries RPCs to append any uncommitted log
entries. Log entries from previous terms are not committed until at least one
log entry from the new term has been committed.

34



Raft - Example




How do we know that Paxos & Raft are safe?

Both guarantee that at most one operation is committed at each index.

<’



Ensuring safety within terms

 \WWe want to prove that at most one operation is committed per term per index.

* \We can prove a stronger statement:. at most one operation is added to any log
per term per index.

e Both Paxos & Raft ensure that each term has one leader and the leader will
not overwrite its own log.

37



Ensuring safety across terms

* |f an operation is committed then it must be present at the same index in the logs
of all future leaders.

 We can prove that an if operation is committed in term t then it will be in the log

of the next leader of a term greater than t. We can use a similar argument to
prove that this applies to all future leaders.

 Paxos & Raft take different approaches:

* |n Paxos, any candidate can become a leader as the leader election phase
ensures that the leader learns the latest log entries.

* |n Raft, only a candidate whose log Is already up-to-date can become a leader.

38



A Paxos Algorithm

This summarises our simplified, Raft-style Paxos algorithm.
The text in red is unique to Paxos.

Persistent state on all servers: (Updated on stable storage

before responding to RPCs)

currentTerm latest term server has seen (initialized to 0 on
first boot, increases monotonically)

log[ ] log entries; each entry contains command for state
machine, and term when entry was received by leader
(first index is 1)

Volatile state on all servers:

commitIndex index of highest log entry known to be com-
mitted (initialized to 0, increases monotonically)

lastApplied index of highest log entry applied to state ma-
chine (initialized to 0, increases monotonically)

Volatile state on candidates: (Reinitialized after election)

entries[] Log entries received with votes

Volatile state on leaders: (Reinitialized after election)

nextIndex[ ] for each server, index of the next log entry to
send to that server (initialized to leader commit index + 1)

matchIndex| ] for each server, index of highest log entry
known to be replicated on server (initialized to 0, increases
monotonically)

AppendEntries RPC

Invoked by leader to replicate log entries; also used as heart-

beat

Arguments:

term leader’s term

prevLogIndex index of log entry immediately preceding
new ones

prevLogTerm term of prevLogIndex entry

entries[ ]log entries to store (empty for heartbeat; may send
more than one for efficiency)

leaderCommit leader’s commitIndex

Results:

term currentTerm, for leader to update itself

success true if follower contained entry matching prevLogIn-
dex and prevLogTerm

Receiver implementation:

1. Reply false if term < currentTerm

2. Reply false if log doesn’t contain an entry at prevLogIndex
whose term matches prevLogTerm

3. If an existing entry conflicts with a new one (same index
but different terms), delete the existing entry and all that
follow it

4. Append any new entries not already in the log

5. If leaderCommit > commitIndex: set commitIndex =
min(leaderCommit, index of last new entry)

RequestVote RPC

Invoked by candidates to gather votes

Arguments:

term candidate’s term

leaderCommit candidate’s commit index

Results:

term currentTerm, for candidate to update itself
voteGranted true indicates candidate received vote
entries[] follower’s log entries after leaderCommit
Receiver implementation:

1. Reply false if term < currentTerm

2. Grant vote and send any log entries after leaderCommit

Rules for Servers

All Servers:

o If commitIndex > lastApplied: increment lastApplied and
apply log[lastApplied] to state machine

o If RPC request or response contains term T > currentTerm:
set currentTerm = T and convert to follower

Followers:

e Respond to RPCs from candidates and leaders

o If election timeout elapses without receiving AppendEn-
tries RPC from current leader or granting vote to candidate:
convert to candidate

Candidates:

e On conversion to candidate, start election: increase cur-
rentTerm to next ¢ such that t mod n = s, copy any log en-
tries after commitIndex to entries[], and send RequestVote
RPCs to all other servers

e Add any log entries received from RequestVote responses
to entries|[]

o If votes received from majority of servers: update log by
adding entries[] with currentTerm (using value with great-
est term if there are multiple entries with same index) and
become leader

Leaders:

e Upon election: send initial empty AppendEntries RPCs
(heartbeat) to each server; repeat during idle periods to
prevent election timeouts

e If command received from client: append entry to local
log, respond after entry applied to state machine

e If last log index > nextIndex for a follower: send Appen-
dEntries RPC with log entries starting at nextIndex
- If successful: update nextIndex and matchIndex for fol-

lower
- If AppendEntries fails because of log inconsistency:
decrement nextIndex and retry

e If there exists an N such that N > commitIndex and a
majority of matchIndex[i] > N: set commitIndex = N

39

How do Paxos & Raft differ?

B Raft Algorithm

This is a reproduction of Figure 2 from the Raft paper [28].
The text in red is unique to Raft.

Persistent state on all servers: (Updated on stable storage

before responding to RPCs)

currentTerm latest term server has seen (initialized to 0 on
first boot, increases monotonically)

votedFor candidateld that received vote in current term (or
null if none)

log[ ] log entries; each entry contains command for state
machine, and term when entry was received by leader
(first index is 1)

Volatile state on all servers:

commitIndex index of highest log entry known to be com-
mitted (initialized to 0, increases monotonically)

lastApplied index of highest log entry applied to state ma-
chine (initialized to 0, increases monotonically)

Volatile state on leaders: (Reinitialized after election)

nextIndex[ ] for each server, index of the next log entry to
send to that server (initialized to leader last log index + 1)

matchIndex| ] for each server, index of highest log entry
known to be replicated on server (initialized to 0, increases
monotonically)

AppendEntries RPC

Invoked by leader to replicate log entries; also used as heart-

beat

Arguments:

term leader’s term

prevLogIndex index of log entry immediately preceding
new ones

prevLogTerm term of prevLogIndex entry

entries[ ] log entries to store (empty for heartbeat; may send
more than one for efficiency)

leaderCommit leader’s commitIndex

Results:

term currentTerm, for leader to update itself

success true if follower contained entry matching prevLogIn-
dex and prevLogTerm

Receiver implementation:

1. Reply false if term < currentTerm

2. Reply false if log doesn’t contain an entry at prevLogIndex
whose term matches prevLogTerm

3. If an existing entry conflicts with a new one (same index
but different terms), delete the existing entry and all that
follow it

4. Append any new entries not already in the log

5. If leaderCommit > commitIndex: set commitIndex =

min(leaderCommit, index of last new entry)

RequestVote RPC

Invoked by candidates to gather votes

Arguments:

term candidate’s term

candidateld candidate requesting vote

lastLogIndex index of candidate’s last log entry

lastLogTerm term of candidate’s last log entry

Results:

term currentTerm, for candidate to update itself

voteGranted true indicates candidate received vote

Receiver implementation:

1. Reply false if term < currentTerm

2. If votedFor is null or candidateld, and candidate’s log is at
least as up-to-date as receiver’s log: grant vote

Rules for Servers

All Servers:

o If commitIndex > lastApplied: increment lastApplied, apply
log[lastApplied] to state machine

o If RPC request or response contains term T > currentTerm:
set currentTerm = T and convert to follower

Followers:

® Respond to RPCs from candidates and leaders

o If election timeout elapses without receiving AppendEn-
tries RPC from current leader or granting vote to candidate:
convert to candidate

Candidates:

e On conversion to candidate, start election: increment cur-
rentTerm, vote for self, reset election timer and send Re-
questVote RPCs to all other servers

o If votes received from majority of servers: become leader

o If AppendEntries RPC received from new leader: convert
to follower

o If election timeout elapses: start new election

Leaders:

e Upon election: send initial empty AppendEntries RPCs
(heartbeat) to each server; repeat during idle periods to
prevent election timeouts

o If command received from client: append entry to local
log, respond after entry applied to state machine

o If last log index > nextIndex for a follower: send Appen-
dEntries RPC with log entries starting at nextIndex
- If successful: update nextIndex and matchIndex for fol-

lower
- If AppendEntries fails because of log inconsistency:
decrement nextIndex and retry

o If there exists an N such that N > commitIndex and a major-
ity of matchIndex[i] > N, and log[N].term == currentTerm:
set commitIndex = N




Which algorithm is the best
solution to distributed consensus?




How do we define best?

In Search of an Understandable Consensus Algorithm

(Extended Version)

Diego Ongaro and John Ousterhout
Stanford University

Abstract

Raft is a consensus algorithm for managing a replicated
log. It produces a result equivalent to (multi-)Paxos, and
it 1s as efficient as Paxos, but its structure i1s different
from Paxos; this makes Raft more understandable than
Paxos and also provides a better foundation for build-
ing practical systems. In order to enhance understandabil-
ity, Raft separates the key elements of consensus, such as
leader election, log replication, and safety, and it enforces
a stronger degree of coherency to reduce the number of
states that must be considered. Results from a user study
demonstrate that Raft is easier for students to learn than
Paxos. Raft also includes a new mechanism for changing
the cluster membership, which uses overlapping majori-
ties to guarantee safety.

1 Introduction

Consensus algorithms allow a collection of machines
to work as a coherent oronin that can <nrvive the fail-

state space reduction (relative to Paxos, Raft reduces the
degree of nondeterminism and the ways servers can be in-
consistent with each other). A user study with 43 students
at two universities shows that Raft is significantly easier
to understand than Paxos: after learning both algorithms,
33 of these students were able to answer questions about
Raft better than questions about Paxos.

Raft is similar in many ways to existing consensus al-
gorithms (most notably, Oki and Liskov’s Viewstamped
Replication [29, 22]), but it has several novel features:

e Strong leader: Raft uses a stronger form of leader-
ship than other consensus algorithms. For example,
log entries only flow from the leader to other servers.
This simplifies the management of the replicated log
and makes Raft easier to understand.

e Leader election: Raft uses randomized timers to
elect leaders. This adds only a small amount of
mechanism to the heartbeats already required for any




Which algorithm is more understandable?

* There is no significant difference in understandabillity.

* |n Paxos, the leader only commits log entries from the current term. It is safe
In Paxos to commit a log entry as soon as it has been appended to a majority

of logs.

* |n Raft, each command maintains the term it was assigned when it was first
added to the leader’s log.
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Which algorithm is more efficient?

* The algorithms differ only when recovering from a failure. They are equally as efficient
IN the steady state.

e |f we have to choose a winner then | choose Raft.

 RequestVote RPCs in Paxos include all log entries after the leader’s commit index.
These messages could be quite large.

e Paxos sends commands unnecessarily when recovering log entries from previous
terms.

e Raft can be slower to elect a leader due to contention.

 Both algorithms are naive and can be extensively optimised.
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Which algorithm is the best?

Abstract

Raft 1s a consensus algorithm for managing a replicated

e |t does not matter. The differences !og. It produ‘ces a result equlvalgnt to (multl-).Pax.os, and
it 1s as efficient as Paxos, but its structure 1s different

are not S|gn|f|0ant for most use from Paxos; this makes Raft more understandable than
cases. Paxos and also provides a better foundation for build-
ing practical systems. In order to enhance understandabil-
e Out-of-box Raft is general |y more ity, Raft separates the kc.ay e.lements of consensus, sqch as
efficient at recoverin g from failures. leader election, log replication, and safety, anc
a stronger degree of coherency to reduc/ wuc # 1
_ _ states that must be considered. Results fi ym a.  DISTRIBUTED
e With Paxos yOuU can benefit from demonstrate that Raft is easier for studeniito iﬁggi:ﬁ’:
extensi|ve existing literature. Paxos. Raft also includes a new mechanism fo.

the cluster membership, which uses overlappin ;-
ties to guarantee safety.
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Paxos vs Raft: Have we reached consensus on
distributed consensus?

Heidi Howard
University of Cambridge
Cambridge, UK
first.last@cl.cam.ac.uk

Abstract

Distributed consensus is a fundamental primitive for con-
structing fault-tolerant, strongly-consistent distributed sys-
tems. Though many distributed consensus algorithms have
been proposed, just two dominate production systems: Paxos,
the traditional, famously subtle, algorithm; and Raft, a more
recent algorithm positioned as a more understandable alter-
native to Paxos.

In this paper, we consider the question of which algorithm,
Paxos or Raft, is the better solution to distributed consensus?
We analyse both to determine exactly how they differ by
describing a simplified Paxos algorithm using Raft’s termi-
nology and pragmatic abstractions.

We find that both Paxos and Raft take a very similar ap-
proach to distributed consensus, differing only in their ap-
proach to leader election. Most notably, Raft only allows
servers with up-to-date logs to become leaders, whereas
Paxos allows any server to be leader provided it then up-
dates its log to ensure it is up-to-date. Raft’s approach is
surprisingly efficient given its simplicity as, unlike Paxos, it
does not require log entries to be exchanged during leader
election. We surmise that much of the understandability of
Raft comes from the paper’s clear presentation rather than
being fundamental to the underlying algorithm being pre-
sented.

1 Introduction

State machine replication [32] is widely used to compose a
set of unreliable hosts into a single reliable service that can
provide strong consistency guarantees including lineariz-
ability [13]. As a result, programmers can treat a service
implemented using replicated state machines as a single
system, making it easy to reason about expected behaviour.
State machine replication requires that each state machine
receives the same operations in the same order, which can
be achieved by distributed consensus.

The Paxos algorithm [16] is synonymous with distributed
consensus. Despite its success, Paxos is famously difficult to
understand, making it hard to reason about, implement cor-
rectly, and safely optimise. This is evident in the numerous
attempts to explain the algorithm in simpler terms [4, 17, 22,
23, 25, 29, 35], and was the motivation behind Raft [28].

Richard Mortier
University of Cambridge
Cambridge, UK
first.last@cl.cam.ac.uk

Raft’s authors’ claim that Raft is as efficient as Paxos whilst
being more understandable and thus provides a better foun-
dation for building practical systems. Raft seeks to achieve
this in three distinct ways:

Presentation Firstly, the Raft paper introduces a new ab-
straction for describing leader-based consensus in the
context of state machine replication. This pragmatic pre-
sentation has proven incredibly popular with engineers.

Simplicity Secondly, the Raft paper prioritises simplicity
over performance. For example, Raft decides log entries
in-order whereas Paxos typically allows out-of-order de-
cisions but requires an extra protocol for filling the log
gaps which can occur as a result.

Underlying algorithm Finally, the Raft algorithm takes
a novel approach to leader election which alters how a
leader is elected and thus how safety is guaranteed.

Raft rapidly became popular [30] and production systems

today are divided between those which use Paxos [3, 5, 31,

33, 36, 38] and those which use Raft [2, 8-10, 15, 24, 34].

To answer the question of which, Paxos or Raft, is the
better solution to distributed consensus, we must first answer
the question of how exactly the two algorithms differ in their
approach to consensus? Not only will this help in evaluating
these algorithms, it may also allow Raft to benefit from the
decades of research optimising Paxos’ performance [6, 12,
14, 18-20, 26, 27] and vice versa [1, 37].

However, answering this question is not a straightforward
matter. Paxos is often regarded not as a single algorithm but
as a family of algorithms for solving distributed consensus.
Paxos’ generality (or underspecification, depending on your
point of view) means that descriptions of the algorithm vary,
sometimes considerably, from paper to paper.

To overcome this problem, we present here a simplified
version of Paxos that results from surveying the various
published descriptions of Paxos. This algorithm, which we
refer to simply as Paxos, corresponds more closely to how
Paxos is used today than to how it was first described [16]. It
has been referred to elsewhere as multi-decree Paxos, or just
MultiPaxos, to distinguish it from single-decree Paxos, which
decides a single value instead of a totally-ordered sequence
of values. We also describe our simplified algorithm using
the style and abstractions from the Raft paper, allowing a
fair comparison between the two different algorithms.

A Paxos Algorithm

This summarises our simplified, Raft-style Paxos algorithm.
The text in red is unique to Paxos.

Persistent state on all servers: (Updated on stable storage

before responding to RPCs)

currentTerm latest term server has seen (initialized to 0 on
first boot, increases monotonically)

log[ ] log entries; each entry contains command for state
machine, and term when entry was received by leader
(first index is 1)

Volatile state on all servers:

commitIndex index of highest log entry known to be com-
mitted (initialized to 0, increases monotonically)

lastApplied index of highest log entry applied to state ma-
chine (initialized to 0, increases monotonically)

Volatile state on candidates: (Reinitialized after election)

entries[] Log entries received with votes

Volatile state on leaders: (Reinitialized after election)

nextIndex|[ ] for each server, index of the next log entry to
send to that server (initialized to leader commit index + 1)

matchIndex| ] for each server, index of highest log entry
known to be replicated on server (initialized to 0, increases
monotonically)

AppendEntries RPC

Invoked by leader to replicate log entries; also used as heart-

beat

Arguments:

term leader’s term

prevLogIndex index of log entry immediately preceding
new ones

prevLogTerm term of prevLogIndex entry

entries[ ] log entries to store (empty for heartbeat; may send
more than one for efficiency)

leaderCommit leader’s commitIndex

Results:

term currentTerm, for leader to update itself

success true if follower contained entry matching prevLogIn-
dex and prevLogTerm

Receiver implementation:

1. Reply false if term < currentTerm

2. Reply false if log doesn’t contain an entry at prevLogIndex
whose term matches prevLogTerm

3. If an existing entry conflicts with a new one (same index
but different terms), delete the existing entry and all that
follow it

4. Append any new entries not already in the log

5. If leaderCommit > commitIndex: set commitIndex =
min(leaderCommit, index of last new entry)

RequestVote RPC

Invoked by candidates to gather votes

Arguments:

term candidate’s term

leaderCommit candidate’s commit index

Results:

term currentTerm, for candidate to update itself
voteGranted true indicates candidate received vote
entries[] follower’s log entries after leaderCommit
Receiver implementation:

1. Reply false if term < currentTerm

2. Grant vote and send any log entries after leaderCommit

All Servers:

o If commitIndex > lastApplied: increment lastApplied and
apply log[lastApplied] to state machine

o If RPC request or response contains term T > currentTerm:
set currentTerm = T and convert to follower

Followers:

¢ Respond to RPCs from candidates and leaders

o If election timeout elapses without receiving AppendEn-
tries RPC from current leader or granting vote to candidate:
convert to candidate

Candidates:

e On conversion to candidate, start election: increase cur-
rentTerm to next ¢ such that t mod n = s, copy any log en-
tries after commitIndex to entries[], and send RequestVote
RPCs to all other servers

e Add any log entries received from RequestVote responses
to entries[]

o If votes received from majority of servers: update log by
adding entries[] with currentTerm (using value with great-
est term if there are multiple entries with same index) and
become leader

Leaders:

e Upon election: send initial empty AppendEntries RPCs
(heartbeat) to each server; repeat during idle periods to
prevent election timeouts

¢ If command received from client: append entry to local
log, respond after entry applied to state machine

o If last log index > nextIndex for a follower: send Appen-
dEntries RPC with log entries starting at nextIndex
- If successful: update nextIndex and matchIndex for fol-

lower
- If AppendEntries fails because of log inconsistency:
decrement nextIndex and retry

o If there exists an N such that N > commitIndex and a
majority of matchIndex[i] > N: set commitIndex = N

Rules for Servers

Read our paper for more details

B Raft Algorithm

This is a reproduction of Figure 2 from the Raft paper [28].
The text in red is unique to Raft.

Persistent state on all servers: (Updated on stable storage

before responding to RPCs)

currentTerm latest term server has seen (initialized to 0 on
first boot, increases monotonically)

votedFor candidateld that received vote in current term (or
null if none)

log[ ] log entries; each entry contains command for state
machine, and term when entry was received by leader
(first index is 1)

Volatile state on all servers:

commitIndex index of highest log entry known to be com-
mitted (initialized to 0, increases monotonically)

lastApplied index of highest log entry applied to state ma-
chine (initialized to 0, increases monotonically)

Volatile state on leaders: (Reinitialized after election)

nextIndex[ ] for each server, index of the next log entry to
send to that server (initialized to leader last log index + 1)

matchIndex|[ ] for each server, index of highest log entry
known to be replicated on server (initialized to 0, increases
monotonically)

AppendEntries RPC

Invoked by leader to replicate log entries; also used as heart-

beat

Arguments:

term leader’s term

prevLogIndex index of log entry immediately preceding
new ones

prevLogTerm term of prevLogIndex entry

entries[ ] log entries to store (empty for heartbeat; may send
more than one for efficiency)

leaderCommit leader’s commitIndex

Results:

term currentTerm, for leader to update itself

success true if follower contained entry matching prevLogIn-
dex and prevLogTerm

Receiver implementation:

1. Reply false if term < currentTerm

2. Reply false if log doesn’t contain an entry at prevLogIndex
whose term matches prevLogTerm

3. If an existing entry conflicts with a new one (same index
but different terms), delete the existing entry and all that
follow it

4. Append any new entries not already in the log

5. If leaderCommit > commitIndex: set commitIndex =
min(leaderCommit, index of last new entry)

RequestVote RPC

Invoked by candidates to gather votes

Arguments:

term candidate’s term

candidateld candidate requesting vote

lastLogIndex index of candidate’s last log entry

lastLogTerm term of candidate’s last log entry

Results:

term currentTerm, for candidate to update itself

voteGranted true indicates candidate received vote

Receiver implementation:

1. Reply false if term < currentTerm

2. If votedFor is null or candidateld, and candidate’s log is at
least as up-to-date as receiver’s log: grant vote

Rules for Servers

All Servers:

e If commitIndex > lastApplied: increment lastApplied, apply
log[lastApplied] to state machine

o If RPC request or response contains term T > currentTerm:
set currentTerm = T and convert to follower

Followers:

¢ Respond to RPCs from candidates and leaders

e If election timeout elapses without receiving AppendEn-
tries RPC from current leader or granting vote to candidate:
convert to candidate

Candidates:

e On conversion to candidate, start election: increment cur-
rentTerm, vote for self, reset election timer and send Re-
questVote RPCs to all other servers

e If votes received from majority of servers: become leader

e If AppendEntries RPC received from new leader: convert
to follower

e If election timeout elapses: start new election

Leaders:

e Upon election: send initial empty AppendEntries RPCs
(heartbeat) to each server; repeat during idle periods to
prevent election timeouts

e If command received from client: append entry to local
log, respond after entry applied to state machine

e If last log index > nextIndex for a follower: send Appen-
dEntries RPC with log entries starting at nextIndex
- If successful: update nextIndex and matchIndex for fol-

lower
- If AppendEntries fails because of log inconsistency:
decrement nextIndex and retry

e If there exists an N such that N > commitIndex and a major-
ity of matchIndex[i] > N, and log[N].term == currentTerm:
set commitIndex = N




Summary

 Paxos & Raft differ only in their approach to leader election.

» Raft is not significantly more understandable than Paxos. Much of the
understandabillity of the Raft paper comes from the excellent presentation and
focus on simplification, not from the underlying algorithm.

» Raft’s leader election mechanism is surprisingly efficient for such a simple
approach.

Heidi Howard
c Q&A University of Cambridge

heidi.howard@cl.cam.ac.uk
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46


mailto:heidi.howard@cl.cam.ac.uk
http://heidihoward.co.uk
https://twitter.com/heidiann360

