
Heidi Howard
University of Cambridge

heidi.howard@cl.cam.ac.uk
heidihoward.co.uk
@heidiann360

Paxos vs Raft
Have we reached consensus on distributed consensus?

1

mailto:heidi.howard@cl.cam.ac.uk
http://heidihoward.co.uk
https://twitter.com/heidiann360

Failures are inevitable

2

Email sent to a DEC SRC bulletin board

https://www.microsoft.com/en-us/research/uploads/prod/2016/12/Distribution.pdf

Many possible consistency guarantees

3

Consistency in Non-Transactional
Distributed Storage Systems

https://dl.acm.org/citation.cfm?id=2926965
https://dl.acm.org/citation.cfm?id=2926965

State machine replication

4

This approach is wide spread in production

5

Dooz

Team Paxos vs Team Raft

6

Doozer

In the blue corner, Paxos

• The classic solution

• Published in 1998 at ACM ToCS

• 3K citations

• 1K repos on GitHub

7

In the red corner, Raft

• The new solution

• Published in 2014 at ATC

• 1.2K citations

• 3K repos on GitHub

8

Which algorithm is the best
solution to distributed consensus?

9

1
DISTRIBUTED
CONSENSUS
ALGORITHM

This question is surprisingly hard to answer

10

The Raft magic

11

Presentation

Simplification

Underlying Algorithm

Our approach is to “Raft-ify” Paxos

12

How do Paxos & Raft differ in their
approach to distributed consensus?

13

High-level approach to consensus

14

High-level approach to consensus

15

High-level approach to consensus

16

High-level approach to consensus

17

High-level approach to consensus

18

High-level approach to consensus

19

High-level approach to consensus

20

High-level approach to consensus

21

High-level approach to consensus

22

High-level approach to consensus

23

How does the leader copy operations?

24

How do we handle follower failures?

25

Introducing Terms

26

• Each leader serves for one term.

• There is at most one leader per term.

• Each server stores its current term.

• Every server starts in term 1 and the
term increases over time.

• Every RPC includes the sender’s
term.

State transitions

27

State transitions

28

State transitions

29

How do we handle leader failures?

• The leader regularly sends AppendEntries RPCs to all servers.

• If a follower does not receive an AppendEntries RPC from the leader within a
timeout then it becomes a candidate.

• The candidate updates its term and solicits votes from other servers using the
RequestVotes RPC.

• If a majority of servers vote for it, then the candidate becomes the next leader.

30

Paxos & Raft must ensure that a newly elected leader has
knowledge of all previously committed operations.

Paxos leader election algorithm

• The candidate begins by updating its term to the next assigned term. Terms
are assigned round robin to servers.

• Next, the candidate sends RequestVotes RPCs to all servers. A server will
vote for the candidate provided its term is less than the candidate’s.

• The RequestVotes RPC includes the candidate’s commit index. The
RequestVotes reply includes all log entries after the commit index.

• If the candidate receives votes from a majority then it adds any commands
received to its log with the new term. If multiple commands are received then
it adds the one with a greater term. The candidate then becomes a leader.

31

Paxos - Simple example

32

Paxos - A less straightforward example

33

Raft leader election algorithm

• The candidate begins by incrementing its term and sending RequestVotes
RPCs to all servers.

• A follower will vote for the candidate provided the follower’s terms is smaller
than the candidate’s term and the candidate’s log is at least as up-to-date as
the follower’s log.

• If the candidate receives votes from the majority then it becomes a leader.

• The leader uses AppendEntries RPCs to append any uncommitted log
entries. Log entries from previous terms are not committed until at least one
log entry from the new term has been committed.

34

Raft - Example

35

How do we know that Paxos & Raft are safe?

Both guarantee that at most one operation is committed at each index.

36

Ensuring safety within terms

• We want to prove that at most one operation is committed per term per index.

• We can prove a stronger statement: at most one operation is added to any log
per term per index.

• Both Paxos & Raft ensure that each term has one leader and the leader will
not overwrite its own log.

37

Ensuring safety across terms

• If an operation is committed then it must be present at the same index in the logs
of all future leaders.

• We can prove that an if operation is committed in term t then it will be in the log
of the next leader of a term greater than t. We can use a similar argument to
prove that this applies to all future leaders.

• Paxos & Raft take different approaches:

• In Paxos, any candidate can become a leader as the leader election phase
ensures that the leader learns the latest log entries.

• In Raft, only a candidate whose log is already up-to-date can become a leader.

38

How do Paxos & Raft differ?

39

Which algorithm is the best
solution to distributed consensus?

40

How do we define best?

41

Which algorithm is more understandable?

• There is no significant difference in understandability.

• In Paxos, the leader only commits log entries from the current term. It is safe
in Paxos to commit a log entry as soon as it has been appended to a majority
of logs.

• In Raft, each command maintains the term it was assigned when it was first
added to the leader’s log.

42

Which algorithm is more efficient?

• The algorithms differ only when recovering from a failure. They are equally as efficient
in the steady state.

• If we have to choose a winner then I choose Raft.

• RequestVote RPCs in Paxos include all log entries after the leader’s commit index.
These messages could be quite large.

• Paxos sends commands unnecessarily when recovering log entries from previous
terms.

• Raft can be slower to elect a leader due to contention.

• Both algorithms are naive and can be extensively optimised.

43

Which algorithm is the best?

• It does not matter. The differences
are not significant for most use
cases.

• Out-of-box Raft is generally more
efficient at recovering from failures.

• With Paxos you can benefit from
extensive existing literature.

44

1
DISTRIBUTED
CONSENSUS
ALGORITHM

Read our paper for more details

45

Summary

• Paxos & Raft differ only in their approach to leader election.

• Raft is not significantly more understandable than Paxos. Much of the
understandability of the Raft paper comes from the excellent presentation and
focus on simplification, not from the underlying algorithm.

• Raft’s leader election mechanism is surprisingly efficient for such a simple
approach.

• Q & A

46

Heidi Howard
University of Cambridge

heidi.howard@cl.cam.ac.uk
heidihoward.co.uk

@heidiann360

mailto:heidi.howard@cl.cam.ac.uk
http://heidihoward.co.uk
https://twitter.com/heidiann360

