
Da
ni

el
 S

te
nb

er
g

–
De

vO
op

s
- J

ul
y

8th
, 2

02
0 Going all in on

and

Daniel Stenberg
@bagderhttps://daniel.haxx.se

Daniel Stenberg
@bagder

Daniel Stenberg
@bagder

HTTP 1 to 2 to 3HTTP 1 to 2 to 3
ProblemsProblems

Why QUIC and how it worksWhy QUIC and how it works
HTTP/3HTTP/3

ChallengesChallenges
Coming soon?Coming soon?

@bagder@bagder

Q&A in the end!Q&A in the end!

@bagder@bagder

HTTP/1
HTTP/2

HTTP/3

@bagder@bagder

Under the hood
GET / HTTP/1.1

Host: www.example.com

Accept: */*

User-Agent: HTTP-eats-the-world/2020

HTTP/1.1 200 OK

Date: Thu, 09 Nov 2018 14:49:00 GMT

Server: my-favorite v3

Last-Modified: Tue, 13 Jun 2000 12:10:00 GMT

Content-Length: 12345

Set-Cookie: this-is-simple=yeah-really;

Content-Type: text/html

[content]

@bagder@bagder

HTTP started done over TCP

@bagder@bagder

TCPTCP
TCP is transport over IP

Establishes a “connection”

3-way handshake

Resends lost packages

A reliable byte stream

Clear text

@bagder@bagder

HTTPS means TCP + TLS + HTTP

@bagder@bagder

@bagder@bagder

Web pages over HTTPS in Firefox

@bagder@bagder

Web pages over HTTPS in Chrome

TLSTLS

TLS is done over TCP for HTTP/1 or 2

Transport Layer Security

Additional handshake

Privacy and security

@bagder@bagder

Classic HTTPS stack

IP

TCP

TLS

HTTP

@bagder@bagder

HTTP over TCP

@bagder@bagder

HTTP/1.1HTTP/1.1

Shipped January 1997
Many parallel TCP connections
Better but ineffective TCP use
HTTP head-of-line-blocking
Numerous work-arounds

@bagder@bagder

HTTP/2HTTP/2

Shipped May 2015

Uses single connection per host

Many parallel streams

TCP head-of-line-blocking

@bagder@bagder

OssificationOssification
Internet is full of boxes
Routers, gateways, firewalls, load balancers,
NATs...
Boxes run software to handle network data
Middle-boxes work on existing protocols
Upgrade much slower than edges

@bagder@bagder

Internet

WWW

@bagder@bagder

Ossification casualties
HTTP/2 in clear textHTTP/2 in clear text
TCP improvements like TFOTCP improvements like TFO
TCP/UDP replacementsTCP/UDP replacements
HTTP brotliHTTP brotli
Future innovationsFuture innovations

… … unless encryptedunless encrypted

@bagder@bagder

Improvement in spite of ossification

@bagder@bagder

@bagder@bagder

@bagder@bagder

QUIC is a name, not an acronym.

@bagder@bagder

A new transport protocol

@bagder@bagder

Built on experiences by Google QUIC
Google deployed “http2 frames over UDP”-QUIC in 2013Google deployed “http2 frames over UDP”-QUIC in 2013

Widely used clientWidely used client

Widely used web servicesWidely used web services

Proven to work at web scaleProven to work at web scale

Taken to the IETF in 2015Taken to the IETF in 2015

QUIC working group started 2016QUIC working group started 2016

IETF QUIC is now very different than Google QUIC wasIETF QUIC is now very different than Google QUIC was

@bagder@bagder

Improvements
TCP head of line blockingTCP head of line blocking
Faster handshakesFaster handshakes
Earlier dataEarlier data
Connection-IDConnection-ID
More encryption, alwaysMore encryption, always
Future developmentFuture development

@bagder@bagder

Build on top of UDP
TCP and UDP remain “the ones”TCP and UDP remain “the ones”
Use UDP instead of IPUse UDP instead of IP
Reliable transport protocol - in Reliable transport protocol - in
user-spaceuser-space
A little like TCP + TLSA little like TCP + TLS

@bagder@bagder

UDP isn’t reliable, QUIC is
UDP
Connectionless
No resends
No flow control
No ordering

@bagder@bagder

QUIC
Uses UDP like TCP uses IP
Adds connections
Reliability
Flow control
Security

QUIC has streamsQUIC has streams
Many logical flows within a single connectionMany logical flows within a single connection

Similar to HTTP/2 but in the transport layerSimilar to HTTP/2 but in the transport layer

Client or server initiatedClient or server initiated

Bidirectional or unidirectionalBidirectional or unidirectional

IndependentIndependent streams streams

@bagder@bagder

Independent streamsIndependent streams

TCPTCP

QUICQUIC

@bagder@bagder

Application protocols over QUICApplication protocols over QUIC

Streams for free

Could be “any protocol”

HTTP worked on as the first

Others are planned to follow

@bagder@bagder

HTTP/3 = HTTP over QUIC

@bagder@bagder

HTTP – same but different
RequestRequest

- method + path- method + path
- headers- headers
- body- body

ResponseResponse
- response code- response code
- headers- headers
- body- body

@bagder@bagder

HTTP – same but different
HTTP/1 – in ASCII over TCP

HTTP/2 – binary multiplexed over TCP

HTTP/3 – binary over multiplexed QUIC

@bagder@bagder

HTTPS stacks: old vs new

TCP

TLS

HTTP/2

UDP

HTTP/3

QUIC
TLS 1.3

IP

HTTP/1

@bagder@bagder

streams

HTTP feature comparison
@bagder@bagder

HTTP/2 HTTP/3
Transport TCP QUIC
Streams HTTP/2 QUIC
Clear-text version Yes No
Independent streams No Yes
Header compression HPACK QPACK
Server push Yes Yes
Early data In theory Yes
0-RTT Handshake No Yes
Prioritization Messy Changes

HTTP/3 is fasterHTTP/3 is faster
Faster handshakes

Early data that works

The independent streams

By how much remains to be measured!

@bagder@bagder

(Thanks to QUIC)(Thanks to QUIC)

HTTPS:// is TCP?

HTTPS:// URLs are everywhereHTTPS:// URLs are everywhere

TCP (and TLS) on TCP port 443TCP (and TLS) on TCP port 443

@bagder@bagder

This service - over there!
The Alt-Svc: response header

Another host, protocol or port number is the
same “origin”

This site also runs on HTTP/3 “over there”, for
the next NNNN seconds

@bagder@bagder

Race connections?

Might be faster

Probably needed anyway

QUIC connections verify the cert

HTTPS RR – alt-svc: done in DNS

@bagder@bagder

Will HTTP/3 deliver?

@bagder@bagder

UDP challenges
3-7% of QUIC attempts fail

Clients need fall back algorithms

QUIC looks like a DDOS attack

@bagder@bagder

CPU hog
2-3 times the CPU use

Unoptimized UDP stacks

Non-ideal UDP APIs

Missing hardware offload

@bagder@bagder

The TLS situation (1/3)
TLS was made for TCP

TLS is sent over TCP as records containing
individual messages

QUIC uses TLS messages

No TLS library support(ed) TLS messages

QUIC also needs additional secrets

@bagder@bagder

The TLS situation (2/3)
@bagder@bagder

Record 0

Message 0 Message 1

Record 1

Message 2 Message 3TCPTCP

Message 0 Message 1 Message 2 Message 3QUICQUIC

The TLS situation (3/3)
OpenSSL is the world’s leading TLS library

OpenSSL postponed QUIC work to “after 3.0”

OpenSSL was an issue already for HTTP/2
deployment while further along

@bagder@bagder

Userland
All QUIC stacks are user-land

No standard QUIC API

Will it be moved to kernels?

@bagder@bagder

Tooling
Needs new tooling

Hooray for

qlog & qvis

@bagder@bagder

Ship date
@bagder@bagder

2020?

Implementations
Over a dozen QUIC and HTTP/3 implementations

Google, Mozilla, Apple, Facebook, Microsoft, Akamai,
Fastly, Cloudflare, F5, LiteSpeed, Apache, and more

C, C++, Go, Rust, Python, Java, TypeScript, Erlang

Monthly interops

@bagder@bagder

HTTP/3 Implementation Status
curl

Chrome and Edge Canary,
Firefox Nightly, Safari 14 Beta

Caddy and LiteSpeed

NGINX “tech preview”

nginx-patch + quiche

BoringSSL and GnuTLS

Wireshark

@bagder@bagder

No Apache httpd

No IIS

No OpenSSL (PR #8797)

Browsers doing HTTP/3
@bagder@bagder

--enable-quic
--quic-version=h3-29

about:config
network.http.http3.enabled

Settings > Advanced > Experimental
WebKit Features > HTTP3

Sites on HTTP/3 – right now!
Facebook
Instagram

Google
Youtube

Cloudflare

https://bagder.github.io/HTTP3-test/

@bagder@bagder

in
ExperimentalExperimental h3-29 works!

Alt-svcAlt-svc support is there

Based on ngtcp2ngtcp2 and

FallbackFallback is tricky

@bagder@bagder

Try it!Try it!

$ curl --http3 https://example.com/

HTTP/3 200

date: Wed, 09 Oct 2019 11:16:06 GMT

content-type: text/html

content-length: 10602

set-cookie: crazy=d8bc7e7; expires=Thu, 08-Oct-22

11:16:06 GMT; path=/; domain=example.com;

alt-svc: h3-29=":443"; ma=86400

@bagder@bagder

curl HTTP/3 command line

HTTP/3 will take timeHTTP/3 will take time

HTTP/3 will grow slowerHTTP/3 will grow slower

Some will stick to HTTP/2Some will stick to HTTP/2

QUIC is for the long termQUIC is for the long term

@bagder@bagder

FutureFuture
MultipathMultipath

Forward error correctionForward error correction

Unreliable streamsUnreliable streams

More application protocolsMore application protocols

@bagder@bagder

Partial reliabilityPartial reliability

Wait a minute, what about...

@bagder@bagder

Websockets?
Not actually a part of HTTP(/3)

RFC 8441 took a long time for HTTP/2

Can probably be updated for HTTP/3

WebTransport by W3C
“It can be used like WebSockets but with support for multiple streams,
unidirectional streams, out-of-order delivery, and reliable as well as
unreliable transport.”

@bagder@bagder

Take-aways
HTTP/3 is comingHTTP/3 is coming
HTTP/3 is always encryptedHTTP/3 is always encrypted
Similar to HTTP/2 but over QUICSimilar to HTTP/2 but over QUIC
QUIC is transport over UDPQUIC is transport over UDP
Challenges to overcomeChallenges to overcome
Mid 2020?Mid 2020?

@bagder@bagder

HTTP/3 Explained
https://daniel.haxx.se/http3-explained

@bagder@bagder

Daniel Stenberg
@bagder

https://daniel.haxx.se/

Thank you!Thank you!

Questions?Questions?

@bagder@bagder

License

This presentation is provided under the Creative Commons Attribution 4.0
International Public License

@bagder@bagder

Links to data and more info
QUIC drafts: https://quicwg.github.io/
DATAGRAM: https://tools.ietf.org/html/draft-pauly-quic-datagram-05
QUIC multipath: https://tools.ietf.org/html/draft-deconinck-quic-multipath-03
HTTPS stats Firefox: https://letsencrypt.org/stats/#percent-pageloads
HTTPS stats Chrome: https://transparencyreport.google.com/https/overview?hl=en
Web Transport: https://tools.ietf.org/html/draft-vvv-webtransport-http3-01
Images: http://www.simonstalenhag.se/ and https://pixabay.com/
HTTP/3 Explained: https://http3-explained.haxx.se/
QUIC implementations: https://github.com/quicwg/base-drafts/wiki/Implementations
Nginx + quiche: https://github.com/cloudflare/quiche/tree/master/extras/nginx
HTTPSSVC: https://tools.ietf.org/html/draft-ietf-dnsop-svcb-httpssvc-01
qlog: https://github.com/quiclog/internet-drafts
qvis: https://qvis.edm.uhasselt.be
Build curl with HTTP/3: https://github.com/curl/curl/blob/master/docs/HTTP3.md

@bagder@bagder

	HTTP/3 for everyone
	Daniel Stenberg
	wolfSSL
	IETF
	Agenda
	Slide 6
	HTTP 1 - 2 - 3
	Under the hood
	HTTP 1 over TCP
	TCP
	HTTPS is TCP + TCP + HTTP
	Slide 12
	Slide 13
	TLS
	Classic HTTPS stack
	HTTP over TCP
	HTTP/1.1
	HTTP/2
	Ossification
	Middle-boxes
	Ossification casualties
	Improvement in spite of
	QUIC
	Slide 24
	QUIC WG companies
	A new transport protocol
	Google QUIC
	Improvements
	On top of UDP
	UDP isn't reliable, QUIC is
	QUIC streams
	Independent Streams
	App protocols over QUIC
	HTTP/3 over QUIC
	HTTP - same but different
	HTTP 1, 2, 3
	HTTP stacks old vs new
	HTTP feature comparison
	HTTP/3 is faster
	HTTPS is TCP?
	Alt-Svc
	Race connections
	Deliver?
	UDP challenges
	CPU hog
	The TLS situation 1
	The TLS situation 2
	Slide 49
	Userland
	Slide 51
	Slide 52
	Implementations
	Implementation status
	Slide 55
	Slide 56
	Slide 57
	curl cmdline
	HTTP/3 crystal ball
	Future
	Wait a minute
	Websockets
	Wrap up
	HTTP/3 Explained
	Questions?
	Credits
	Slide 68

