
Cloud Native
Culture

@ntschutta
ntschutta.io

Nathaniel Schutta

https://tanzu.vmware.com/
content/ebooks/thinking-

architecturally

https://tanzu.vmware.com/content/ebooks/thinking-architecturally
https://tanzu.vmware.com/content/ebooks/thinking-architecturally
https://tanzu.vmware.com/content/ebooks/thinking-architecturally

https://tanzu.vmware.com/
content/ebooks/responsible-

microservices-ebook

https://tanzu.vmware.com/content/ebooks/responsible-microservices-ebook
https://tanzu.vmware.com/content/ebooks/responsible-microservices-ebook
https://tanzu.vmware.com/content/ebooks/responsible-microservices-ebook

Ah “the cloud!”

So. Many. Options.

Microservices. Modular monoliths.

Container all the things?

What about serverless?

Functions. As a Service.

Did someone say Polycloud?

https://www.thoughtworks.com/radar/techniques/polycloud

https://www.thoughtworks.com/radar/techniques/polycloud

How do we make
sense of all this?!?

There are real engineering
issues to overcome.

Many believe in magic
sparkle ponies...

But technology isn’t the only
thing we are changing.

Our culture will have to evolve too.

Culture

Culture? What does that have
to do with technology?

Ignore culture at your own peril.

Every company has a culture.

What is yours like?

“If they don’t change the paint
once in a while...”

Culture gets formed *very*
early in a company’s existence.

Hire, attract, retain based on culture.

During hiring, often
talk about “culture fit.”

Culture informs everything we do.

In both small and large ways!

The battle over jeans…

Culture is where good
ideas go to die.

It is *really* hard to change.

People who have risen to
power or excelled in an org…

Have often gamed that culture.

Any change to that culture is a
potential threat to position.

“Middle management mafia.”

Most dangerous six words?

“That’s how we’ve always done it”.

–Upton Sinclair

“It is difficult to get a man to understand
something when his salary depends

upon his not understanding it.”

–Niccolò Machiavelli

“[T]he innovator has for enemies all
those who have done well under the old
conditions, and lukewarm defenders in
those who may do well under the new.”

The Curse of Culture.

https://stratechery.com/2016/the-curse-of-culture/

https://stratechery.com/2016/the-curse-of-culture/

–Ben Thompson

“culture is one of a company’s most
powerful assets right until it isn’t…”

Be aware of your culture.

How do we change culture?

“How did you go bankrupt?”
Bill asked.

The Sun Also Rises by Ernest Hemingway

“Two ways,” Mike said.
“Gradually and then suddenly.”

The Sun Also Rises by Ernest Hemingway

It can be done!

But it isn’t fast.

And it isn’t about buying a tool.

https://mobile.twitter.com/mattbarcomb/status/1234439273077772289

https://mobile.twitter.com/mattbarcomb/status/1234439273077772289

https://twitter.com/mstine/status/1326916377740005378

https://twitter.com/mstine/status/1326916377740005378

Agile journey…

We need project rooms.

What’s a project room?

We don’t do that, we arrange
efficiently placed felt lined boxes.

Pestered them.

They relented. We got the worst
conference room imaginable.

Interior, no windows.

No cell coverage.

But it was as a start.

Show success, build credibility.

Serves as a model.

Here’s what we’d like in
the next project room…

Grew from there.

Now? IT floors are all project rooms.

Small, medium, large.

Not even a question anymore.

But it took time. And persistence.

Simpler if you are a decision maker!

Bezos mandate.

https://plus.google.com/+RipRowan/posts/eVeouesvaVX

https://plus.google.com/+RipRowan/posts/eVeouesvaVX

All data will be exposed through
a public service interface.

Services are *the* communication
method between teams.

No other form of communication is
allowed. No direct reads, links etc.

No back doors.

All services must be designed
to be public. No exceptions.

Don’t want to do this?
You’re fired.

Unsurprisingly, things
began to change.

You probably don’t have that
kind of clout. Sorry.

There are other approaches!

–Adrian Cockcroft

“we don’t have these Netflix superstar engineers
to do the things you’re talking about”, and when

I looked around the room at the company
names my response was “we hired them from

you and got out of their way”

https://medium.com/@adrianco/you-dont-add-innovation-
to-a-culture-you-get-out-of-it-s-way-2e6148349aae

https://medium.com/@adrianco/you-dont-add-innovation-to-a-culture-you-get-out-of-it-s-way-2e6148349aae
https://medium.com/@adrianco/you-dont-add-innovation-to-a-culture-you-get-out-of-it-s-way-2e6148349aae

– Adrian Cockcroft

“You don’t add innovation to a culture,
you get out of its way.”

https://medium.com/@adrianco/you-dont-add-innovation-
to-a-culture-you-get-out-of-it-s-way-2e6148349aae

https://medium.com/@adrianco/you-dont-add-innovation-to-a-culture-you-get-out-of-it-s-way-2e6148349aae
https://medium.com/@adrianco/you-dont-add-innovation-to-a-culture-you-get-out-of-it-s-way-2e6148349aae

Sometimes, it is easier
to start a new culture.

A lab, a special floor,
a different building.

Free of typical constraints.

Allows you to start fresh. With
like minded individuals.

Chances are, our org structure
isn’t helping matters much.

– Melvin Conway

Any organization that designs a system
(defined broadly) will produce a design

whose structure is a copy of the
organization's communication structure.

https://medium.com/@adrianco/you-dont-add-innovation-to-a-culture-you-get-out-of-it-s-way-2e6148349aae

How do you create a series of
small isolated services…

If your organization isn’t a set of
small, isolated teams?

Inverse Conway’s Law.

Evolve your teams towards the
architectural end state you desire.

https://www.thoughtworks.com/radar/techniques/inverse-conway-maneuver

https://www.thoughtworks.com/radar/techniques/inverse-conway-maneuver

Leads to some interesting outcomes.

Teams are often siloed. But
microservices have to work together.

How do we get those teams to
work together effectively?

My incentives may not align with
yours…how do we solve for that?

How do we build out infrastructure
for many disparate teams?

How do we staff up the
operations team?

Application to Operations
cannot be 1-1!

Though the VP of ops may have
some thoughts on the matter…

You build it, you own it.

Are your teams ready
for pager duty?

Can’t just pitch it over the wall
to Ops anymore.

Changing technology is
(comparatively) easy.

Changing culture is
crucial to our success.

Evolving to
cloud native

Cloud computing gives us
some very interesting abilities.

Scale up. Scale down. On demand.

Limitless compute.*

* Additional fees may apply.

Said fees can be…opaque.

https://mobile.twitter.com/whereistanya/status/1080864493108776961

https://mobile.twitter.com/whereistanya/status/1080864493108776961

https://mobile.twitter.com/jpetazzo/status/1227638126602080256

https://mobile.twitter.com/jpetazzo/status/1227638126602080256

https://mobile.twitter.com/paulbiggar/status/1228385370439467009

https://mobile.twitter.com/paulbiggar/status/1228385370439467009

Cloud native isn’t just an
architectural pattern.

Combination of practices,
techniques, technologies.

Agile development.

Continuous delivery.

Automation.

Containers.

Microservices.

Functions.

Changes our culture.

DevOps.

Infrastructure is a different
game today isn’t it?

We’ve seen this massive shift.

Servers used to be home grown.

Bespoke. Artisanal.

Spent days hand crafting them.

Treated them like pets…

Did whatever it took to keep
them healthy and happy.

Servers were a heavily
constrained resource.

They were really expensive!

Had to get our money’s worth…

Thus was born app servers.

Put as many apps as
possible on a server.

Maximize the return on investment.

But that has some
unintended side effects.

Shared resources.

One application’s bug could
take down multiple apps.

Coordinating changes hurts.

“Your app can’t get this feature
until all other apps are ready.”

Currency === 18 months of
freezes, testing, frustration.

Organizations ignored currency
issues…pain wasn’t “worth it”.

–Yoda

“Fear is the path to the dark side.
Fear leads to anger. Anger leads
to hate. Hate leads to suffering.”

#YodaOps

Move code from one
server to another…

Worked in dev…but not test.

Why?!?

The environments are
the same…right?

“Patches were applied in a
different order…”

Can I change careers?

Things started to change.

Servers became commodities.

Linux and Intel chips replaced
custom OS on specialized silicon.

https://mobile.twitter.com/linux/status/936877536780283905?lang=en

https://mobile.twitter.com/linux/status/936877536780283905?lang=en

Prices dropped.

Servers were no longer the
constraining factor.

People costs eclipsed
hardware costs.

Heroku, AWS, Google App
Egine, Cloud Foundry, Azure.

Shared servers became a liability.

Treat them like cattle…when
they get sick, get a new one.

New abstractions.

Containers and PaaS
changed the game.

Package the app up with
everything it needs.

Move *that* to a
different environment.

Works in dev? You’re testing the
exact same thing in test.

So. Much. Win.

Your app needs a spiffy
new library? Go ahead!

It doesn’t impact any other app
because you are isolated.

Moves the value line.

Less “undifferentiated heavy lifting”.

Changes development.

Always be changing.

Run experiments. A/B testing.

Respond to business changes.

Deliver in days not months.

https://mobile.twitter.com/ntschutta/status/938109379995353088

https://mobile.twitter.com/ntschutta/status/938109379995353088

Speed matters.

Disruption impacts every business.

Your industry is not immune.

Amazon Prime customers can
order from Whole Foods.

Some insurance companies
view Google as a competitor.

We’re all technology
companies today.

Automation

Back in the day…

Builds were often Rube
Goldberg machines.

Lots of manual tasks.

Right click in your IDE…

Hard coded credentials,
magic drive locations.

Again, it worked. For some
definition of worked.

Besides, we didn’t do it very often.

Artisanal coffee is worth seeking out.

Bespoke builds won’t work today.

People can’t do the
same thing twice.

See golf.

People have bad days. They get
bored. They skip a step.

They fat finger a command.

https://twitter.com/editingemily/status/1405700159967678464

https://twitter.com/editingemily/status/1405700159967678464

Computers…not so much.

In computer science, there are
only three numbers.

Something we do 0 times,
1 and only 1…

And n. If you do something
more than once…

You will do it one billion times.

Anything you do more than
once should be automated.

Offload that toil to computers.

https://twitter.com/venkat_s/status/1419971848150806532

https://twitter.com/venkat_s/status/1419971848150806532

We need consistency.

We need CI and CD pipelines.

https://tanzu.vmware.com/developer/guides/ci-cd/

https://tanzu.vmware.com/developer/guides/ci-cd/

No, this doesn’t mean commits go
to production 30 seconds later.

They can mind you. But
no one starts there.

CI = Continuous Integration.

Code is merged early and often
avoiding merge conflicts.

Essential to avoid merge hell.

A commit triggers automated
tests, code quality scans, etc.

Ensures new commits don’t
break the application.

CD = Continuous Delivery.

Takes the build to the next step - how
we release changes to our customers.

Carries automation through to the
deployment & release management.

You decide how often you
want to release.

Well, your team, your customer…

Goal is to be in a releasable state.

Working in small batches.

Lowers risk!

Quarterly releases contain hundreds,
maybe thousands of changes.

The integration of which
almost always leads to breaks.

Which change caused the break?

¯_(ツ)_/¯

Push one or two changes…
much easier to debug.

Expertise grows with repetition.

Do something once or twice
and you won’t improve…

Deploy early, deploy often.

You will get better at it.

Need to develop trust
in the process.

We also need recoverability.

No such thing as zero outages.

Mistakes will be made.

Outages *will* happen.
Bugs will creep into the code.

Mean time to recovery is vital.

How do we get that fix into
production quickly?

Automation.

Gives you confidence.

Ever use undo? How would your
life change if it didn’t exist?

Imagine developing software
without version control…

We need robust pipelines.

Concourse, Circle CI, Travis CI,
Visual Studio Team Services, Jenkins.

Many are cloud based now.

GitHub actions bakes some
of this into SCM.

https://github.com/features/actions

https://github.com/features/actions

Deployment Strategies.

In the beginning..

Nuke and pave.

Overlay the current version with
the new version…

And hope for the best!

Often resulted in issues, breaks,
bugs and sleepless nights.

“The application will be down
for maintenance…”

Customers’ expectations
have changed.

Your site is down?
Your competitor’s isn’t.

Evolved to the recreate pattern.

Spin down the current version,
then spin up the new.

Simple! But. Long downtimes.

Not…ideal.

Rolling updates.

Subset of instances (defined by
window size) are updated at a time.

No downtime!

Not all users get the new
version at the same time…

Harder to rollback.

Best be backwards compatible…

Sticky affinity?
Session management…

Blue-Green Deployments.

Two (identical) deployment
environments.

One is currently serving
production traffic - call it Blue.

Actively testing the newest
version on Green.

Happy? Switch the routing table to
point production traffic at Green.

Blue is now idle.

Oh no, there’s an issue with
Green that you missed?

Update the routing table to
point back to Blue.

Everything checks out?

Blue now becomes staging.
And you alternate from there.

Essentially testing disaster
recovery on every deploy…

Databases can be tricky…

Separate schema changes from
application changes.

But. Zero downtime,
simple rollback.

Reduced risk.

Expensive - essentially running
two versions of prod.

Backwards compatibility.

Drain down transactions on
current before cutting over.

What about Red-Black?

Same thing, different colors.

Branding?

Some argue Blue-Green can have
both versions serving traffic.

Whereas Red-Black only one
version serves traffic.

Is Red-Black a specialization
of Blue-Green?

¯_(ツ)_/¯

https://mobile.twitter.com/littleidea/status/500005289241108480

https://mobile.twitter.com/littleidea/status/500005289241108480

Same concepts, different name.

Canary Releases.

If it checks out in staging, it is
going to canary - with real traffic.

Canary - aka the canary
in the coal mine.

Find out if we have issues before
we do a full production push.

Some percentage of
production - 5% or 10%.

Can be a sliding scale too - start
with 5%, move up to 20% etc.

Canaries are serving real
production traffic.

Find errors? Automated rollbacks.

How long should our canary stage
last? As long as it takes. Hours. Days.

¯_(ツ)_/¯

https://twitter.com/KentBeck/status/596007846887628801

https://twitter.com/KentBeck/status/596007846887628801

Allows us test in real production
scenarios without impact all users.

Zero downtime, simple rollback.

Better have your observability
story straight…

Can be time consuming.

Best be backwards compatible…

Sticky affinity?
Session management…

A/B Testing.

Extremely common.

Two (or more) versions of the
service are running.

Experiments!

All about testing out ideas.

Some percentage of users get
the experiments.

Compare and contrast.

Better have your observability
story straight…

Possible to break the application!

These techniques can be combined!

Rolling Blue-Green, Canary
Blue-Green…

Which approach is
right for you?

https://twitter.com/KentBeck/status/596007846887628801

https://twitter.com/KentBeck/status/596007846887628801

Do what’s right for your situation.

Different apps will have
different needs.

Whatever the approach, automate
it then automate some more.

Having a hard time convincing
people deployments matter?

May want to familiarize yourself
with the Knight Capital glitch.

https://www.sec.gov/litigation/admin/2013/34-70694.pdf

https://www.sec.gov/litigation/admin/2013/34-70694.pdf

Repurposed an old flag…

Rolling deployment…
operator missed a server.

Seven servers had the new
code, one didn’t.

#ThisIsNotFine.

Knight Capital lost $460 million
and 75% of their market value.

A week later they were acquired.

The lesson?

Releases need to be
reliable and repeatable.

Don’t rely on humans to
do things perfectly.

Automation is your friend.

Help you get a good
night’s sleep!

Another example of “shift left”.

Find issues when they
are easiest to fix.

Once the cake is baked, pretty
hard to change the recipe.

Not sure how to create a pipeline?

Spring Cloud Pipelines.

https://spring.io/blog/2018/11/13/spring-cloud-
pipelines-to-cloud-pipelines-migration

https://spring.io/blog/2018/11/13/spring-cloud-pipelines-to-cloud-pipelines-migration
https://spring.io/blog/2018/11/13/spring-cloud-pipelines-to-cloud-pipelines-migration

Opinionated build/test/
stage/prod flow.

Gives you a place to start -
modify to your hearts content.

Greater automation led to any
number of “X as code”.

Aka infrastructure as code,
configuration as code. etc.

We built bridges and
knocked down walls.

Infrastructure moved to a
self service model.

Huge win in terms of
responsiveness.

In the past, we had to
make decisions very early.

Often when we knew the least.

For example - how much
capacity will you need?

¯_(ツ)_/¯

Take worst case…double it…add
some buffer. Then a bit more.

Just in case.

We have a six week (aka month)
lead time on all requests.

Lots of tickets.

And meetings.

And email.

And followup.

(╯°□°)╯︵ ┻━┻

It was in our best interest to
over allocate resources.

Better to have it and not need it…

Difficult to add more capacity later.

Gave us single digit
resource utilization.

Cloud computing gives us
some very interesting abilities.

Scale up. Scale down. On demand.

Limitless compute.*

* Additional fees may apply.

Said fees can be…opaque.

https://mobile.twitter.com/whereistanya/status/1080864493108776961

https://mobile.twitter.com/whereistanya/status/1080864493108776961

https://mobile.twitter.com/jpetazzo/status/1227638126602080256

https://mobile.twitter.com/jpetazzo/status/1227638126602080256

Ultimately a democratization
of infrastructure.

Very easy to turn something
on…and forget about it.

https://mobile.twitter.com/paulbiggar/status/1228385370439467009

https://mobile.twitter.com/paulbiggar/status/1228385370439467009

We never had to think about
these issues in the past.

Our operators handled it.

Paradox of choice!

Democratization demands
more of all of us.

To paraphrase a Founding
Father of the United States…

Well informed developers are a
prerequisite to successful cloud…

What do you want your
developers focussed on?

“With this approach, your developers
need to be certified in the application
framework, the cloud provider and the
container orchestrator.”

–Anonymous Architect

Be prepared. Be aware.

Be careful what you wish for?

We have more control.
And more accountability.

“With great power comes
great responsibility.”

–Uncle Ben

Don’t forget about monitoring…

Monitoring is vital to a
thriving cloud architecture.

Monitor Driven Development!

http://benjiweber.co.uk/blog/2015/03/02/monitoring-check-smells/

http://benjiweber.co.uk/blog/2015/03/02/monitoring-check-smells/

What would you say your
service is doing?

Key components to monitoring:

Logging - what is your service doing?

Dashboards - health of a service.

Alerting - metric is out of band.

Tracing - context and insights
into the spinning plates.

We could spend an hour talking
about key metrics…

Sampling frequency.

Dash board design.

Pager duty.

Takes time to get monitoring
right…tweak, adjust, adapt.

Number of tools from Wavefront
to Dynatrace to New Relic.

Spring Boot Actuator!

https://docs.spring.io/spring-boot/docs/current/
reference/html/production-ready-metrics.html

https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html

Automation is table stakes today.

We can’t compete without it.

SRE anyone?

https://landing.google.com/sre/book.html

https://landing.google.com/sre/book.html

Devops/SRE

Must evolve past “DevOps fills
out tickets for developers”.

Site Reliability Engineers.

The traditional sys admin approach
doesn’t give us reliable services.

Inherent tension.

Conflicting incentives.

Developers want to release
early, release often.

Always Be Changing.

But sys admins want stability.

It works. No one touch anything.

Thus trench warfare.

Doesn’t have to be this way!

We can all get along.

What if we took a different
approach to operations?

“what happens when you
ask a software engineer to

design an operations team.”

https://landing.google.com/sre/book/chapters/introduction.html

https://landing.google.com/sre/book/chapters/introduction.html

Ultimately, this is just software
engineering applied to operations.

Replace manual tasks
with automation.

Focus on engineering.

Many SREs are software engineers.

Helps to understand UNIX
internals or the networking stack.

Our operational
approach has to evolve.

The “Review Board” meeting
once a quarter won’t cut it.

How do we move fast safely?

Operations must be able to
support a dynamic environment.

That is the core of what we mean
by site reliability engineering.

How we create a stable, reliable
environment for our services.

It doesn’t happen in spare cycles.

Make sure your SREs have time
to do actual engineering work.

On call, tickets, manual tasks -
shouldn’t eat up 100% of their day.

SREs need to focus on automating
away “toil” aka manual work.

Contain the technical sprawl.

It’s great right? Each team can use
just the right tool for the job!

Every developer will have their
favorite tools, languages, etc.

Teams will have their pipeline
preferences, meaningful metrics…

Leads to an awful lot of
ways to do a given thing.

How do we staff up? Go, Haskell,
Java, .NET, C++, Ruby, Python?

How many libraries will we
need to support all of that?

Can we stay current?

It cannot be a free for all.

You will need some guardrails.

“Use any language as long
as it runs on the JVM.”

Pick from these 3 flavors. Won’t
work for you? Let’s talk.

Focus on “paved roads.”

Here is a well worn path, we
know it works, we support it.

You build it, you own it.

Sprawl tends to exacerbate our
accumulation of technical debt.

“With great power comes
great responsibility.”

–Uncle Ben

You build it, you run it.

Isn’t this just DevOps?

Can argue it is a natural
extension of the concept.

Think of SRE as a specific
implementation of DevOps.

Establish Principles

We can’t be everywhere…

We can’t be involved
with every decision.

We must empower our teams.

Distributed decision making.

We can establish principles.

Guard rails.

Guide posts.

North stars.

Create the environment within
which our projects can thrive.

But how do we know if projects
are following our principles?

Fitness functions.

We’re all familiar with the second
law of thermodynamics…

Otherwise known as a
teenagers bedroom.

The universe really
wants to be disordered.

Software is not immune from this!

We go through the thoughtful
effort to establish an architecture…

How do we maintain it?

We can’t spend every minute of
every day on every project.

How do we ensure teams
continue to make good decisions?

We cannot predict the future.

That’s not entirely true.

One constant - change.

Architecture is often defined as the
decisions that are hard to change.

Or the decisions we
wish we got right.

But we *know* things will change!

Isn’t this approach anti agile?

Contributing factor to “we’re agile,
we don’t have architects” theory.

You definitely have people
making architectural decisions!

Sure hope they are
making good ones…

You’ll know in a year or two.

“Our app has 4 different
UI frameworks…”

🤔

What do we do about that?

Maybe we should change
our assumptions.

 https://mobile.twitter.com/martinfowler/status/949323421619548161

https://mobile.twitter.com/martinfowler/status/949323421619548161
https://mobile.twitter.com/martinfowler/status/949323421619548161

What if our architectures
expected to change?

An evolutionary architecture
supports guided, incremental

change across multiple dimensions.

Some architectures are more
evolvable than others…

ht
tp

://
ev

ol
ut

io
na

ry
ar

ch
ite

ct
ur

e.
co

m

http://evolutionaryarchitecture.com

Components are deployed,
features are enabled via toggles.

Allows us to change incrementally.

Also perform hypothesis
driven development!

But how do we ensure the
architecture still meets our needs?

How do we know if a solution
violates part of the architecture?

Fitness functions!

A todo list for developers
from architects.

Lightweight, low
ceremony, governance.

Concept comes from
evolutionary computing.

Is this mutation a success?

Are we closer to or
further from our goal?

For architecture, it is all about
protecting the ilities.

And balancing the tradeoffs.

We want to capture and preserve
the key architectural characteristics.

First, we need to identify those key
measures for project success.

Service Level Indicators if you will.

What can we measure?

Sometimes we let what we can
measure dictate too much…

Just because we can measure it
doesn’t mean it matters!

Lines of code anyone?

Once we have our metrics, we
can set some goals.

Service Level Objectives.

SLO !== SLA!

Now we can create a
fitness function!

Basically, a set of tests we execute
to validate our architecture.

How close does this particular
design get us to our objectives?

Ideally, all automated. But we may
need some manual verifications.

For example…

All service calls must
respond within 100 ms.

Cyclomatic complexity
shall not exceed X.

There are no cyclic
dependencies.

clarkware.com/software/JDepend.html

http://clarkware.com/software/JDepend.html

Directionality of imports.

persistence

web

util

packages/namespaces

persistence

web

util

packages/namespaces

Consumer Driven Contracts.

https://martinfowler.com/articles/consumerDrivenContracts.html

https://martinfowler.com/articles/consumerDrivenContracts.html

Performance - average and
maximum response times.

Average response times across
number of users and requests.

Number of timeouts and
application faults.

Nearing the next price tier with
our cloud provider.

Hard failure of an application
will spin up a new instance.

Alert when things start to
go out of band!

ht
tp

s:
//

gi
th

ub
.c

om
/N

et
fli

x/
Si

m
ia

nA
rm

y

https://github.com/Netflix/SimianArmy

Chaos Engineering.

https://medium.com/production-ready/chaos-
monkey-for-fun-and-profit-87e2f343db31

Fitness functions remind us what is
important in our architecture.

Informs our thinking about tradeoffs.

Different categories of
fitness functions.

Atomic vs. Holistic.

Some characteristics must be
tested in isolation…others cannot.

Holistic fitness functions test
combined features.

We can’t test every
possible combination!

Be selective, driven by the value of
the architectural characteristic.

Triggered vs. Continual.

Must consider
frequency of execution.

Fitness functions can be triggered
by something - checkin, QA pass…

Continual tests are just that.

Monitoring Driven
Development!

http://benjiweber.co.uk/blog/2015/03/02/monitoring-check-smells/

http://benjiweber.co.uk/blog/2015/03/02/monitoring-check-smells/

Static vs. Dynamic.

Static tests have a fixed result -
they either pass or they fail.

Nearly any test based on a metric.

Other fitness functions have a
shifting definition of success.

Generally defined within a
range of acceptable outcomes.

Automated vs. Manual.

Automation is good!

Ideally most of our fitness functions
will live in our deployment pipeline.

Not everything is amenable to
automation though…

Legal.

Existing projects.

Temporal fitness functions.

Essentially a reminder.

Check for an upgrade of library X.

Break upon upgrade tests.

Clearly we want to identify fitness
functions as early as we can.

The discussion about the tradeoffs
is invaluable to our understanding.

Help us prioritize features.

May lead us to break a system
up to isolate certain features.

We can’t know everything up front.

Fitness functions will emerge as
the system changes.

But we should strive to identify
as many as we can up front.

We can also classify fitness functions.

Key - critical decisions.

Relevant - considered but unlikely
to influence the architecture.

Not Relevant - won’t
impact our decisions.

Can still be very useful to identify
the non relevant dimensions!

Keep fitness functions visible!

Need to review the
fitness functions.

Are they still relevant?

Are there new dimensions
we need to track?

Are there better ways of measuring/
testing our current fitness functions?

Aim for at least an annual review.

Postmortems

We will make mistakes.

Outages will still happen.

Vital we learn from
those experiences.

Do not blamestorm.

“Blameless postmortems.”

Goal is to prevent it from
happening again.

Document the incident.
What happened?

What was the root cause(s)?

What can we do to prevent this
from happening in the future?

Be constructive, not sarcastic.

Consider a basic template.

Title/ID.

Authors.

Status.

Impact.

Root Causes.

Resolution.

Action Items.

Lessons Learned.

Timeline.

Whatever you think will help!

Can be difficult to create a
postmortem culture.

Consider a postmortem
of the month.

Book club.

Wheel of Misfortune.

Role play a disaster
you faced before.

Ease into it.

Recognize people for
their participation.

Senior management needs to
encourage the behavior!

Perform retros on your
postmortems!

Improve them!

– Mark Manson
The Subtle Art of Not Giving a F*ck

“We cannot learn anything without first
not knowing something.”

Moving Forward

This can all seem a bit…
overwhelming.

CHANGE BAD!

Empathy. Compassion.

How do we approach someone
new to the idea?

“I’m on one of those
agile projects…”

🙄

“OK Waterfaller…”

Technology adoption is a journey.

They are where you used to be.

You can help them, you know
where the potholes are.

But they have to walk the path.

A day in the life…

Tools will change.

Culture will change.

Be patient.

https://mobile.twitter.com/allenholub/status/1247329663568887808

https://mobile.twitter.com/allenholub/status/1247329663568887808

Positive reinforcement.

You will need some guardrails.

Focus on “paved roads.”

Here is a well worn path, we
know it works, we support it.

You build it, you own it.

You build it, you run it.

Hate to break it to you…your
systems will fail.

We cannot prevent it but we
can certainly prepare for it.

Resources do not scale to infinity.

There will be competition between
teams for hardware, staff, priorities.

Do not underestimate
the battle for headcount.

Every manager could use just
one more engineer. Or ten.

Every VP thinks their portfolio should
get the lions share of the budget.

No one could have predicted this.

Good luck!

Nathaniel T. Schutta
@ntschutta

ntschutta.io

Thanks!
I’m a Software

Architect,
Now What?

with Nate Shutta

Modeling for
Software

Architects
with Nate Shutta

Presentation
Patterns

with Neal Ford & Nate Schutta

Between Chair and Keyboard

Nate Schutta
Software Architect
VMware
@ntschutta

Most Mondays,
around noon Central
https://www.twitch.tv/vmwaretanzu

https://www.twitch.tv/vmwaretanzu

