Why You Should Upgrade Your
Java In Containers Right Now

Ben Evans, New Relic (He / Him)

Safe Harbor

This presentation and the information herein (including any information that may be incorporated by reference) is provided for informational
purposes only and should not be construed as an offer, commitment, promise or obligation on behalf of New Relic, Inc. (“New Relic”) to sell
securities or deliver any product, material, code, functionality, or other feature. Any information provided hereby is proprietary to New Relic and

may not be replicated or disclosed without New Relic’s express written permission.

Such information may contain forward-looking statements within the meaning of federal securities laws. Any statement that is not a historical
fact or refers to expectations, projections, future plans, objectives, estimates, goals, or other characterizations of future events is a forward-
looking statement. These forward-looking statements can often be identified as such because the context of the statement will include words

n i n i

such as “believes,” “anticipates,” “expects” or words of similar import.

Actual results may differ materially from those expressed in these forward-looking statements, which speak only as of the date hereof, and are
subject to change at any time without notice. Existing and prospective investors, customers and other third parties transacting business with
New Relic are cautioned not to place undue reliance on this forward-looking information. The achievement or success of the matters covered by
such forward-looking statements are based on New Relic’'s current assumptions, expectations, and beliefs and are subject to substantial risks,
uncertainties, assumptions, and changes in circumstances that may cause the actual results, performance, or achievements to differ materially
from those expressed or implied in any forward-looking statement. Further information on factors that could affect such forward-looking
statements is included in the filings New Relic makes with the SEC from time to time. Copies of these documents may be obtained by visiting

New Relic’s Investor Relations website at ir.newrelic.com or the SEC's website at www.sec.gov.

New Relic assumes no obligation and does not intend to update these forward-looking statements, except as required by law. New Relic makes
no warranties, expressed or implied, in this presentation or otherwise, with respect to the information provided.

O New Relic.

About Me - Career

New Relic, Lead Architect O New Reli(:@

+JClarity, Co-founder

+ Sold to Microsoft jClarity

Deutsche Bank

. Chief Architect (Listed Derivatives)
\" Stanl
Morgan Stanley S

- Google IPO

+ Sporting Bet

+ Chief Architect Sport'"ngt

O New Relic.

About Me - Community

Java Champion

JavaOne Rock Star Speaker

Java Community Process Java™ Champions

Executive Committee

London Java Community

Organising Team
Co-founder, AdoptOpen]DK

O New Relic.

How We Got Here

Introduction to New Relic
+ Current State of Java
+ Why is 11 better in containers?
- JFR

- Conclusions

O New Relic.

+ Java & Open]DK History

 New Release & Support Model
- Mainline dev

+ Open|DK 8 & 11

O New Relic.

- A Brief History of Java

+ Sun release Java in beta to much hype (1995)

N
2 Sun

microsystems

+ Sun fully open-source Java (2006)

O New Relic.

A Brief History of Java

+ Sun release Java in beta to much hype (1995) (
()

Java

+ Sun fully open-source Java (2006)

+ Oracle acquire Sun (2010) OIQACI—e

+ Java 7: First release based on OSS codebase (2011)

O New Relic.

A Brief History of Java

+ Sun release Java in beta to much hype (1995) (
()

Java

+ Sun fully open-source Java (2006)

+ Oracle acquire Sun (2010) OIQACI—e

+ Java 7: First release based on OSS codebase (2011)

- Java 8: "Classic" Long-Term Support Release (2014)
+ Java 9: New release model (2017)

+ Java 11: Current Long-Term Support Release (2018)

O New Relic.

New Release Model

Feature Releases
+ Every 6 months

+ Only supported for 6 months by Oracle

+ Other vendors may offer other options

Long-Term Support releases (LTS)

+ Every 3 years

+ Java 8 & 11 are LTS (& 17 will be)

- Java 9, 10, 12, 13, 14, 15 & 16 are NOT LTS

O New Relic.

Paid support options
+ Oracle (LTS only)

+ Azul, various other OpenJDK vendors

O New Relic.

- What has Changed in Java?

Paid support options
+ Oracle (LTS only)

+ Azul, various other OpenJDK vendors

Free updates are still available from:
+ Oracle (must upgrade every 6 months)

+ Open]DK vendors (for LTS versions only)

O New Relic.

What has Changed in Java?

Paid support options
+ Oracle (LTS only)

+ Azul, various other OpenJDK vendors

Free updates are still available from:
+ Oracle (must upgrade every 6 months)

+ Open]DK vendors (for LTS versions only)

Oracle’s Java market share is diminishing

+ Open]DK is gaining greater prominence

O New Relic.

+ Amazon (Corretto)

Who are the New Players?

Eclipse Adoptium (AdoptOpen)DK)

A ADOPTIUM

. Illl o
Microsoft s Microsoft | OpenJDK

Red Hat (IcedTea)

+ Azul Systems (Zulu)

+AliBaba (Dragonwell) 6’2/

Alibaba.com

IBM (Open)9)

<||I

O New Relic.

Mainline Dev

Open)]DK now uses a mainline dev model
Features are merged only when code complete
Releases occur on a strict time cadence

Late features are held over for the next release

Trunk / mainline is always releasable

+ Emergency fixes can be pushed out immediately

Longer-term projects explore / research future directions

O New Relic.

Open)DK 8 & 11 now run by the community

+ Oracle engineers no longer contribute directly

Oracle are still producing security patches for $$$

+ Same patches must also appear in Open]DK

- Adoptium have committed to support 8 until 2023
+ At least...

O New Relic.

+ “Housekeeping updates”
+ Japanese Era
+ Xcode 10+ (Mac)
+ Timezone database
+ TLS 1.3

Selected bug fixes backported (e.g. security)

Some potential for (very small) features

- Features may not change semantics
. JFR

O New Relic.

New Relic is a performance monitoring company

Billions of events handled per minute

O New Relic.

- Introduction to New Relic

New Relic is a performance monitoring company

Billions of events handled per minute

New Relic One
+ Market's first Observability Platform

Recently open-sourced $700M of our code

O New Relic.

- Introduction to New Relic -

New Relic is a performance monitoring company

Billions of events handled per day

New Relic One
+ Market's first Observability Platform

Recently open-sourced $700M of our code

+ Java is the majority of our services
+ One of the biggest Kafka installs in the world!

+ We also use the Kotlin language extensively

O New Relic.

High-Level Product Architecture

App

NR agent

v

) §

Core Data Kafka NRDB Micro
Pipeline services dashboard

O New Relic.

New Relic aggregates data from our customers

Reveals trends about the shape of the market

+ Which versions, which vendors etc people use

Live data, accurately reported from customers VMs

+ Analyst estimates: ~1% of Java SE VMs worldwide

O New Relic.

Java Versions

Since 1 week ago Share v

JVMMETADATASUMMARIES

®38 62.43 %
®11 35.87 %
®13 0.68 %
® 14 0.21 %
®9 0.18 %
®15 0.16 %
®10 0.15%
e/ 0.15%
®6 0.12 %
®12 0.056 %

O New Relic.

Java Vendors

Since 1 week ago Share v

JVMMETADATASUMMARIES

® Oracle Corporation 42.83 %
® AdoptOpen)DK 17.4 %
® Azul Systems, Inc. 7.25%
® Red Hat, Inc. 6.2 %
® Ubuntu 5.38%
® IcedTea 4.95 %
® Amazon.com Inc. 4.26 %
® BellSoft 2.87 %
® |IBM Corporation 2.15%
® Private Build 1.82%
® Tableau 1.51 %
® N/A 0.85 %
® Pivotal Software Inc 0.72 %
® Eclipse Open)9 0.57 %
® GraalVM Community 0.56 %
® Debian 0.35%
® SAP SE 0.14 %

O New Relic.

Vendors and Versions

Since 1 week ago Share v

JVMMETADATASUMMARIES

® Oracle Corporation, 8 34.49 %
® AdoptOpen)DK, 11 11.32 %
® Oracle Corporation, 11 7.27 %
® AdoptOpen)DK, 8 5.83%
® Ubuntu, 11 5.38 %
® IcedTea, 8 4.95 %
® Azul Systems, Inc., 11 4.66 %
® Red Hat, Inc., 8 4.64 %
® Amazon.com Inc., 8 2.73 %
® Azul Systems, Inc., 8 2.53 %
® BellSoft, 8 2.29 %
® IBM Corporation, 8 1.89 %
® Private Build, 8 1.81 %
® Red Hat, Inc., 11 1.56 %
® Amazon.com Inc., 11 1.52 %
® Tableau, 11 1.51 %

O New Relic.

Containers

Containerized JVMs Java Versions in Containers
Since Feb 10, 06:29 ... Since Feb 10, 06:29 am until Feb 11, 07:22 am

®3 61.19 %
® 11 33.95 %
62.92 % .12 167 %
Percentage ® 14 0.82 %
®13 0.75 %
o7 0.66 %
® 15 0.42 %

O New Relic.

CPUs & Memory In Use

CPUs in Containers -Xmx Ranges in Containers
Since Feb 10, 06:29 am until Feb 11, 07:22 am Since Feb 10, 06:29 am until Feb 11, 07:22 am

®1 59.62 %

e<=1GB 41.5 %
o2 17.38%

© Not Set 27.64 %
®8 6.51 %

<=

®4 57 % ® <=2GB 10.71 %
®3 3.09 % ® <=3GB 8.38%
® 16 2.22 % © >4GB 8.03%
® Other 1.94 % ® <=4GB 3.74%

O New Relic.

- Other GC Parameters

JVM Heap Sizing in Containers Explicitly Configured GC Threads
Since Feb 10, 06:29 am until Feb 11, 07:22 am Since Feb 10, 06:29 am until Feb 11...

72.36 %
o 6.13 %
8. 47 % Percentage

-XX:MaxRAMPercentage

O New Relic.

Who Actively Selects A GC?

Since 1 week ago Share v Since 1 week ago Share v
JVMMETADATASUMMARIES JVMMETADATASUMMARIES

® Unconfigured 68.38 % ® Unknown 28.54 %
®G1 21.28 % e Gl 27.76 %
® CMS 10.01 % ® Serial 21.7 %
® Parallel 0.18 % ® CMS 11.42 %
® ZGC 0.11 % ® Parallel 6.29 %
® Shenandoah 0.032 % ® gencon 411 %

® Other 0.18 %

O New Relic.

O New Relic.

Main reasons:

* vax
- Modules
- HTTP/2

O New Relic.

Main reasons:

* vax
- Modules
- HTTP/2

- Just Kidding...

O New Relic.

- Real Reasons for Using 11 in Containers? -

 "Container-Aware"
Decent version of G1GC
+ Compact Strings & Heap Reduction

+ JDK Flight Recorder

O New Relic.

Containers requires thought about:

+ GC algorithms and selections
- Memory usage
+ CPU Usage

What does Runtime.getAvailableProcessors () return?

O New Relic.

"GC Ergonomics”

Depends upon

* Java version

+ "Server" or "client" class determination
+ CPU count

O New Relic.

Selecting a GC

GCArgumentsx GCConfig::select_gc() {

// Fail immediately if an unsupported GC is selected

fail if _non_included_gc_is_selected();

if (is_no_gc_selected()) {
// Try select GC ergonomically

select_gc_ergonomically();

if (is_no_gc_selected()) {
// Failed to select GC ergonomically
vm_exit_during_initialization('"Garbage collector not selected "

"(default collector explicitly disabled)", NULL);

// Succeeded to select GC ergonomically

_gc_selected_ergonomically = true;

O New Relic.

Max Heap Size

By default, on bare metal, 1/4 physical memory

$ java —-XX:+PrintFlagsFinal -version | grep —-1E 'MaxHeapSize'
size_t MaxHeapSize = 4294967296 {product} {ergonomic}

But what about in a container?

O New Relic.

Max Heap Size

By default, on bare metal, 1/4 physical memory

$ java —-XX:+PrintFlagsFinal -version | grep —-1E 'MaxHeapSize'
size_t MaxHeapSize = 4294967296 {product} {ergonomic}

But what about in a container?

It depends...

+ Early versions of 8 can't see the container

+ 8u191 improves the situation somewhat

O New Relic.

- Memory in Containers

Container memory consists of:

+ Java Heap memory
+ Oftheap

- Metaspace
+ JFR data
+ General book-keeping

+ Memory for auxiliary processes

Not setting heap memory size means potential OOM

- ~20% of containers are in this situation

O New Relic.

Java 8 CPU Limits

+ Java 8 is not well-suited for deploying in containers
+ Prior to 8u131 cgroups settings are not respected at all
+ Post-8u131 a fixed approx, based on cpu_shares, is used

+ Post-8u191 more support is backported

Need to be careful of

+ # of GC threads used for parallel (& concurrent) GC phases

+ # of threads in auto-sized, VM-managed thread pools

Consider explicitly setting flags to size these exactly

O New Relic.

New Garbage Collector - G1

O New Relic.

- New version of G1GC -

“Garbage First” collector
+ experimental in 7/

+ supported in 8

+ production-quality in 8u40
+ defaultin9

+ very improved in 11

Originally intended to be low-pause
+ replacement for CMS

Ended up as a general-purpose collector
+ replacement for Parallel collectors

O New Relic.

- Tradeoffs Between Collectors -

No “one size fits all” for GC

Different metrics are important for different apps
+ Pause time

+ Throughput (%age)

+ Pause frequency

+ Reclamation efficiency

+ Pause consistency

O New Relic.

. G

+ Design aims of G1
+ scalable to larger heaps
+ better control of pause times

+ easy to tune (-XX:MaxGCPauseMillis)
- Predictable

O New Relic.

. G

+ Design aims of G1
+ scalable to larger heaps
+ better control of pause times
+ easy to tune (-XX:MaxGCPauseMillis)
+ Predictable

+As a collector, G1 is...
- Parallel
+ Concurrent (for marking)
+ Exact
+ Evacuating
+ "Statistically Compacting"

O New Relic.

- G1 - Regional Collection

G1 uses regions for collection
+ not hemispherical heap (like Parallel & CMS)

Regions

+allow GC cycles to "partially clean" & then restart app threads
+ can be 1-64M in size (1M default for small heaps)

Generational Collection

+ regions still belong to generations
+ generations are not contiguous

+ heap is still contiguous

O New Relic.

The G1 Heap

. Eden

. Survivor

. Tenured

. Humongous

Unused

G1 Heap

O New Relic.

- Remembered Sets (RSets)

Similar idea to GC "card tables"

+ track pointers between regions

If app thread mutates

+ change is put on a “refinement queue”
+ reduce work done on app thread
+ Separate threads drain refinement queues

Example of “balancing between allocator & collector”

O New Relic.

G1 - The Bad News

Can interfere with application throughput

+ Write barriers, RSet update threads and back pressure

Concurrent GC - uses cores while GC is running
+ Full STW Fallback can still occur

- e.g. if allocation greatly exceeds reclamation

Full predictability of G1 pauses is still lacking

+ 200ms goal is easy to achieve

+ GQuaranteed <50ms not at all easy

G1 not a true compacting collector

O New Relic.

Java 11 & G1

- Java 11's G1 is significantly better
- Has a Parallel fallback STW collector

- Better able to meet pause time guarantees

- Algorithm is significantly different between versions

+ Ensure that tuning advice relates to the correct version

Most apps see benefit from G1 on Java 11

+ But overall CPU utilization may increase slightly

Other changes in 11 may also help GC performance

O New Relic.

- New Default GC

+ Java 9 switched the default GC from Parallel to G1

+ This refers to the GC used to collect “old” objects

+ Both GCs use STW collection to collect “young” objects

G11s a concurrent GC
- Parallel is STW

G1 will use more CPU than Parallel

+ In exchange for shorter pause times

+ Default G1 pause is 200ms

O New Relic.

Compact Strings

O New Relic.

Before Java 9 Strings are represented as char(]
+ 2 bytes per char (UTF-16)

+ In Western European langs, this wastes 50% storage

- First byte is always zero

O New Relic.

Before Java 9 Strings are represented as char(]
+ 2 bytes per char (UTF-16)

+ In Western European langs, this wastes 50% storage

+ First byte is always zero

+ Java 9 introduces a per-string choice
+ Latin-1
- UTF-16

Internal representation moves to bytes

+ Saves space in common case

O New Relic.

Compact Strings

private final byte[] value;

*

/

LATINI
UTF16

* % X % X X X * X X

*/

private final byte coder;

static final byte LATINI
static final byte UTF16

@implNote This field is trusted by the VM,
constant folding 1f String instance 1s constant. Overwriting this
field after construction will cause problems.

The identifier of the encoding used to encode the bytes 1in
{@code value}. The supported values 1n this implementation are

and 1s a subject to

O New Relic.

- JDK Flight Recorder (JFR)

+ A profiling tool to gather diagnostics & profiling data

+ From an in-flight Java application

Proprietary tool in Java 8, OSS in Java 11
+ Now backported to Open)]DK 8u262+

Low overhead
+ Oracle claim ~1% impact to steady state performance

+ We observe ~3% on a useful data profile

GUI console available - Mission Control (JMC)

O New Relic.

Using Flight Recorder

+ JFR is started with a command line flag

Generates an output file

java -XX:+FlightRecorder
-XX:StartFlightRecording=duration=200s,filename=flight.jfr Klass

Can be challenging to work with in containers

Streaming solution exists (in Java 14, but not LTS)

O New Relic.

Using jcmd

+ The Java command - jcmd can be used to control JFR
+ Can start and stop

+ Dump a current snapshot

$ jcmd <pid> JFR.start name=Recordingl settings=default
$ jemd <pid> JFR.dump filename=recording. jfr
$ jemd <pid> JFR.stop

O New Relic.

Using Mission Control

| NON) JDK Mission Control
“# JVM Browser | 0= Outline gl <7 ¥ = 0O | e@o |ooking-for-g1-events.jfr &2 = B8
Automated Analysis Results . e o
v 53] Java Application & Java Application O 22
=
> Ogs;r:r:(:: <No Selection> Aspect: | <No Selection> | Show concurrent: Contained [v| Same threads Time Range: | Set Clear
&% Lock Instances
£ File 1/0
‘E Socket 1/0 Thread Profiling Samples v Total I/O Time Total Blocked Time Class Loading Time Total Allocation Throwal
() Method Profiling @ pool-1-thread-2 2,003 136 GiB
J1 Exceptions @ pool-1-thread-3 1,986 136 GiB
& Thread Dumps @ pool-1-thread-1 1,941 136 GiB
v é‘%JVM Internals @ pool-1-thread-4 1,898 136 GiB
[l Garbage Collections @ Thread-0 240 15.4 MiB
%GC Configuration & RMI TCP Connection(2)-192.168.0.12 53 8min12s 354 MiB
» (3, Compilations @ RMI TCP Connection(4)-192.168.0.12 53 8min22s 360 MiB
(3 Class Loading =& JFR Periodic Tasks 1 1.025 s 1.12 MiB
&% VM Operations 100 %% @ Haits
:j' TLAB Allocations [Machine Total
¥ (! Environment S0%T [l VM + Application
Cg Processes CPU Usage U [usedHeap |
™ Environment Variables 768 MIB T 0 ! Method Profiling
<[> System Properties 512 MiB T [Total Allocation
[#= Recording Heap Usage 256 MIB T ~ [l Throwables
?;" Event Browser 32 GiBES = Thread Activity
16 GiB T
Allocation |
7/10/2020 1:06:00 PM 1:08:00 PM 1:10:00 PM 1:12:00 PM 1:14:00 PM
= Stack Trace RAR = 0w = 0
Stack Trace Count
T\ void com.amazon.corretto.benchmark.heapothesys.AllocObject.<init>(int, AllocObject)
; T AllocObject com.amazon.corretto.benchmark.heapothesys.AllocObject.create(int, int, AllocObject)
O Properties 23 | @© Results ﬁ ¥ = 0 T Long com.amazon.corretto.benchmark.heapothesys.TaskBase.lambda$createSingle$0(long, long, int, int, int, ObjectStore)
Field Value T Object com.amazon.corretto.benchmark.heapothesys.TaskBase$$Lambda$92.1238959340.call()
<d*Event Type Too many values... T void java.util.concurrent.FutureTask.run()
Start Time 7/10/2020, 1:05:5... T void java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor$Worker)
@ Duration O0s-5min5ms T void java.util.concurrent.ThreadPoolExecutor$Worker.run()
End Time 7/10/2020, 1:06:5... I void java.lang.Thread.run()
@ Event Thread Too many values...
2.34 x10° events

O New Relic.

Allocation Detail (TLAB)

@0® hotspot-pid-213-2019_12_10_15_11_35.jfr @0 hotspot-pid-213-2019_12_10_17_34_33.jfr &3 =]
a .

. TLAB Allocations (]
<No Selection> Aspect: = <No Selection> | Show concurrent: v Time Range: Set Clear
Thread Countv Average TLAB Allocati Average Allocation Ou Est. TLAB Allocation Total Allocation Ot
»& KafkaConsumerAutoService 30,050 128 B 17 KiB 9.96 GiB 1.85
@ NewRelicMetricsReporter-1 4,887 59.8B 2218B 12 MiB 249
»@ NewRelicMetricsReporter-1 4,880 54 B 145 B 15.5 MiB 106

& kafka-coordinator-heartbeat-thread | bmds_core 4,637 33.3B 663 B 15.7 MiB 43.4

»@ New Relic Faster Harvest Service 4,401 394 B 11.6 KiB 59.9 MiB 16.8
»@ New Relic Harvest Service 2128B 13.4 KiB 195 MiB 5.79
..@ JFR Periodic Tasks 18.4B 1.19 KiB 10 MiB 45.2
@ kafka-producer-network-thread | bmds_core 2,195 3498B 727 B 7.03 MiB 116
@ AnalyticEventPartitioner 1,981 3308B 9.99 KiB 28.3 MiB 7/ 7/
& NewRelicMetricsReporter-1 1,638 47.6B 86.3B 5.02 MiB 15.6
..@ main 1,589 1.32 KiB 19.1 KiB 457 MiB 4.98
@ AsyncAppender-Worker-async-console-appender 782 63.9B 89.9B 2.43 MiB 17.5
& dw-179 652 99.7B 3.97 KiB 3.13 MiB 460
.,@ dw-213 382 44.3 B 4.07 KiB 3.43 MiB 330
..@ dw-58-acceptor-0@6e9ad4e3-application@4d57fc11{HTTP/1.1,[http/1.1]}{0.0.... Sb 26.4B 11174 = 1.65 MiB 6.12
- Awi-10A 297N AR 1R A RR KiR 2 7 MR 27RQ

[Est. TLAB Allocation
[[] Total Allocation Outside TLAB

3 MiB
2 MiB
1 MIiB

TLAB Allocations (1 thread)

12/10/2019 5:30:00 PM 5:45:00 PM 6:00:00 PM 6:15:00 PM 6:30:00 PM
= Stack Trace RAdR 2 |@QHW ¥~ 0O
Stack Trace Count
t\ byte[] java.util.Arrays.copyOfRange(byte[], int, int) 484
T String java.lang.StringLatin1.newString(byte[], int, int) 484
f\ String java.lang.StringBuilder.toString() 361
‘R void java.text.MessageFormat.makeFormat(int, int, StringBuilder[]) 207
T void java.text.MessageFormat.applyPattern(String) 207
T void java.text.MessageFormat.<init>(String) 207
T String java.text.MessageFormat.format(String, Object[]) 207
T void com.newrelic.agent.samplers.MemorySampler$PoolUsage.recordStats(StatsEngine) 207
T void com.newrelic.agent.samplers.MemorySampler.sampleMemoryPools(StatsEngine) 207

O New Relic.

Method Profiling

JDK Mission Control

JVM Browser‘gE Ooutine| gkt <J ¥ = O

@% hotspot-pid-213-2019_12_10_15_11_35.jfr @0 hotspot-pid-213-2019_12_10_17_34_33.jfr 23 ’

ﬂAutomated Analysis Results
v L_.{T;Java Application
= Threads
ilﬁ Memory
go Lock Instances
+= File 1/0
+= Socket 1/0
() Method Profiling
Jfé{ Exceptions
v § Thread Dumps
‘43 Live Objects
v &2 JVM Internals
[l Garbage Collections
[E GC Configuration
v (33, Compilations
(3, Code Cache
(9 Class Loading
&% VM Operations
¥4 TLAB Allocations
¥ & Environment
L_('g. Processes
Environment Variables
<> System Properties
[Recording
*I}'] Event Browser

] Properties £2 | @® Results Feg ¥ = [
Field Value
<H>Event Type Method Profiling Sa...
(1) Start Time 12/10/2019, 5:34:...
& Thread KafkaConsumerAut...
<0> Thread State STATE_RUNNABLE
9 events

() Method Profiling

<No Selection> Aspect: = <No Selection> | Show concurrent: v
Top Package Countv
java.util 176
java.lang r 83
org.apache.kafka.clients.consumer.internals 49
java.util.concurrent [29
org.apache.kafka.clients 25
org.apache.kafka.common.requests 24
org.apache.kafka.common.metrics 23
com.newrelic.agent.deps.org.objectweb.asm 19
org.apache.kafka.common.protocol.types 17
sun.security.provider 15
com.newrelic.agent 14
sun.nio.ch 14
org.eclipse.jetty.server 12
java.nio 10
Top Class Countv
® org.apache.kafka.clients.consumer.internals.SubscriptionState 9

'€’ org.apache.kafka.clients.consumer.internals.ConsumerNetworkClient

® org.apache.kafka.clients.consumer.internals.Fetcher$1

® org.apache.kafka.clients.consumer.internals.Fetcher

® org.apache.kafka.clients.consumer.internals.AbstractCoordinator$HeartbeatThread
® org.apache.kafka.clients.consumer.internals.ConsumerNetworkClient$RequestFut...
® org.apache.kafka.clients.consumer.internals.RequestFuture

C] org.apache.kafka.clients.consumer.internals.Fetcher$FetchManagerMetrics

® org.apache.kafka.clients.consumer.internals.ConsumerCoordinator

® org.apache.kafka.clients.consumer.internals.Fetcher$PartitionRecords

= NN B~ b OO N

= Stack Trace

Q »®

v = A |

Stack Trace

t\ int org.apache.kafka.clients.consumer.internals.ConsumerNetworkClient.pendingRequestCount(Node)
T Map org.apache.kafka.clients.consumer.internals.Fetcher.createFetchRequests()

T int org.apache.kafka.clients.consumer.internals.Fetcher.sendFetches()

t\ Map org.apache.kafka.clients.consumer.KafkaConsumer.pollOnce(long)

T ConsumerRecords org.apache.kafka.clients.consumer.KafkaConsumer.poll(long)

T void com.newrelic.kafka.clients.consumer.KafkaConsumer.processRecords()

T void com.newrelic.kafka.clients.consumer.KafkaConsumer.run()

T void com.newrelic.kafka.clients.consumer.KafkaConsumerAutoService.run()

T void com.google.common.util.concurrent.AbstractExecutionThreadService$1$2.run()

Count

W WwWwwwwwasds>d

O New Relic.

Use JFR as a “ring buffer”
Use jcmd to dump the file as required

+Allows you to ssh in & dump the buffer

+ Allows you to “go back in time”

Not ideal

+ Need sshd running

* Not very "DevOps Pro"

O New Relic.

- New Relic: Real-Time Profiling for Java -

New Relic released GA support for JFR

+ (Called "Real-Time Profiling For Java"

Open-source codebase

+ https://github.com/newrelic/newrelic-jfr-core

+ Version 1.1.0 out now

Support for jlink'd deployments is coming

https://newrelic.com/signup
- 100GB / month free forever

O New Relic.

https://github.com/newrelic/newrelic-jfr-core

Cluster Explorer Timeline

JVM performance
Q) ' 12201 02 03 04 0s 06 o7 o8 09 12.10 " 12 13 14 15 16 17 8 19 12:20
89xtThmm9 - I I T e N N .
89 Thmms 1> B N Y e e
B9xtThmms 12 I I
soxezimms « [N B
89 Thmm® - . 2 B 1 3
1 mere
new machines e —— —_— P E—
v JWMm - APDEX & RESPONSE TIME THROUGHPUT o CPU & MEMORY (MB) o
005dd73ff9e3
1.00 0.525 ms 11 rpm 19.3% 24,956
10.18.36.143:30652 005dd73ff9e3:11350 & P
HEIFaITaes 1.00 0.525 ms 11 rpm 19.3% 24,956
10.18.36.143:30652 005dd73ff9e3:11350
VOUSO73ITe0 1.00 0.525 ms 11 rpm 19.3% 24,956
10.18.36.143:30652 005dd73ff9e3:11350
OUSad7NT5e3 1.00 0.525 ms 11 rpm 19.3% 24,956

10.18.36.143:30652 005dd73ff9e3:11350

O New Relic.

Execution Flamegraph

flamegraph-service (staging)

6c7€67d672c0/172.17.0.21 from Oct 5, 10:50 am to Oct 5, 10:55 am

User CPU Usage %
Since Oct 5, 10:50 am until Oct 5, 10:55 am

10:50:00 AM 10:51:00 AM 10:52:00 AM 10:53:00 AM 10:54:00 AM 10:

® CPULoad.jvmSystem @ CPULoad.jvmUser

G1 Garbage Collection Duration
Since Oct 5, 10:50 am until Oct 5, 10:55 am

0.8
0.6
04

0.2

10:50:00 AM 10:51:00 AM 10:52:00 AM 10:53:00 AM 10:54:

® GC Duration (ms)

Small Object Allocation (TLAB) per Thread
Since Oct 5, 10:50 am until Oct 5, 10:55 am

60 k

AVERAGE CPU AVERAGE HEAP MEMORY

22.06% 212.62 MB

Machine CPU Usage %
Since Oct 5, 10:50 am until Oct 5, 10:55 am

30

10:50:00 AM 10:51:00 AM 10:52:00 AM 10:53:00 AM 10:54:00 AM 10:

® CPULoad.Total

Thread CPU Utilisation - User
Since Oct 5, 10:50 am until Oct 5, 10:55 am

0.008

0006 __—
0.004

0.002
\/
e

10:50:00 AM 10:51:00 AM 10:52:00 AM 10:53:00 AM 10:54:00 AM

® RMI TCP Connection(2)-172.17.0.21 ® |FR Periodic Tasks
@ JFR Recorder Thread ® New Relic Faster Harvest Service
@ Sweeper thread @ dw-227

- A 990 & r) CamnilarThrasadn

Large Object Allocation (outside TLAB) per Class
Since Oct 5, 10:50 am until Oct 5, 10:55 am

20k

N~z

B No logs found

TOTAL GC PAUSE TIME HEAP USED HEAP SIZE HEAP COMMITTED

0.29 sec 200.2MB 2,048 MB 482 MB

GC Heap Sizes
Since Oct 5, 10:50 am until Oct 5, 10:55 am

2k

1.5k
1k

500

10:50:00 AM 10:51:00 AM 10:52:00 AM 10:53:00 AM 10:54:

® Heap Used e Heap Free

Thread CPU Utilisation - System

Since Oct 5, 10:50 am until Oct 5, 10:55 am

0.004

0.003

0.002 //\/\/
w

0

10:50:00 AM 10:51:00 AM 10:52:00 AM 10:53:00 AM 10:54:00 AM

® JFR Periodic Tasks ® RMI TCP Connection(2)-172.17.0.21
@ JFR Recorder Thread ® New Relic Faster Harvest Service
® dw-233 ® dw-232

- e 92 - A 921

Network Read per Thread
Since Oct 5, 10:50 am until Oct 5, 10:55 am

1.2

O New Relic.

Deep Dive Graphs

Large Object Allocation (outside TLAB) per Class

03:08:00 PM 03:09:00 PM 03:10:00 PM 03:11:00 PM 03:12:

® pool-3-thread-1 ® New Relic Harvest Service
® New Relic Faster Harvest Serv... @ qtp1822115007-103
® qtp1822115007-176 ® qtp1822115007-112

O New Relic.

JFR & Open Instrumentation

+ Java Flight Recorder

+ Oracle technology (open-sourced as of Java 11)
+ Backport of the tech to Open]DK 8

+ JFR is key piece of the ecosystem - not all of it

+ Part of the pivot towards Open Instrumentation

+ JFR can be bridged to OpenTracing and other OSS tools

O New Relic.

Further frontiers for fast startup

- GraalVM Native mode

+ Quarkus

+ jlink'd binaries

Challenges

- Full modularization

+ Closed world assumption

O New Relic.

Upgrade to 11

Size your container correctly
Don't use single-core containers

Explicitly choose your memory & GC flags
+ Use a concurrent GC

Enable JFR

O New Relic.

- Why Are We Going to 117

It's the long-term support release (through 2023)

Move from 8 ... then don’t have to upgrade again

Smaller footprint, cloud friendly, cool new tech

+ Teams are using:
+ Version 11 for new apps

+ Version 8 for sustaining / BAU apps

Upgrades are occurring at teams own pace

+ Almost all major New Relic systems have started migration

O New Relic.

Questions & Thank You

PRACTICAL TECHNIQUES FOR IMPROVING

JVM APPLICATION PERFORMANCE

Benjamin J. Evans, James Gough & Chris Newland | FTTTHT

bevans@newrelic.com

O New Relic.

mailto:bevans@newrelic.com

New Relic

ONE

The first observability platform.

OPEN CONNECTED PROGRAMMABLE

_ #FUTURESTACK

(D) New Relic. ©20D8-19 New Relic, Inc. All rights reserve

