
Scalable architecture from 
the ground up

Oren Eini
oren@ravendb.net



What is scalable?

• A service is said to be scalable if 
when we increase the resources in 
a system, it results in increased 
performance in a manner proportional 
to resources added.

All Things Distributed – 2006
• https://www.allthingsdistributed.com/2006/03/a_word_on_scalabilit

y.html

https://www.allthingsdistributed.com/2006/03/a_word_on_scalability.html


How to build a scalable system?

1. Invent time machine
2. Deploy service
3. Learn from your mistakes
4. Go to #2

5. TimeMachineUnavailableException…



Without a time machine?

• Learn from other people’s experiences
• Others’ pain, your gain

• Your scenario is different
• Things change over time
• Twitter features: 

#hash, @mentions were created by users, 
then adopted by Twitter



Architecture styles

• Domain Driven Design - DDD
• Command Query Responsibility Separation – CQRS

• Buzzword of the day – BOTD

• Beware of complexity



#1 rule: What is your SLA?

• Page should load in < 200ms for 
99.99% of users
• Metrics
• Ongoing feedback



#2 rule: Don’t do what you can’t guarantee to 
meet the SLA
• Don’t write checks that you can’t 

cash
• How do you implement features, 

then?



Being reckless with promises…

• Doing work in the critical path 
will kill your system

• Render a page
• Process a request

• You have ~200ms time budget
• What is involved? 

• Expensive queries
• Dynamic content
• 3rd party services

• Can you track across all of 
those?



Paying promised with a payment plan

What is cheap?
• Get data by key
• Query by simple index
• Local queries
• Bounded amount of data / work
• Put in queue

What is expensive?
• Complex queries
• 3rd party remote calls
• Processing lots of data



Don’t do the expensive things (right now)

• Cheap: Put in queue
• Trivial to scale
• Available everywhere

• Separate processing of items in 
queue
• Online operations operate over 

prepared data

• CQRS, but for speed / latency

• UX concept, we don’t do things 
right now. 
• Accept & process in backend
• Frontend does little
• Prepared in advanced



Why not auto scale?

• When web server hits 75% CPU utilization > 15 seconds
• Spin new node
• Rebalance traffic
• See latencies go down

• When web server hits < 25% CPU utilization > 30 seconds
• Rebalance traffic
• Shutdown node

• Basically available everywhere



Great idea, if cost is in serving requests

• Typical limiting factor is backend operations
• Complex queries at backend, you’ll need to scale your database
• Or add (non trivial) caching

• 3rd parties operations, you are going to wait on those
• Other side is a human, there is a timer (their patience)
• Major impact on revenue, even for 100ms additional latency

• Can you do this across the board?
• Including databases, backends, 3rd parties?



With a queue, you have time

• Put in queue, the backend will 
process
• Frontend registers acceptance, 

show in the UI
• Operation done for user (even if 

not completed) – show as such 
immediately.
• Operation accepted (will update 

when completed)

• Process message in queue
• If queue drain rate not enough
• Add more workers
• Same as auto scale?

• Temporary spikes are smoothed
• Log all queue messages long 

term?
• Note: Privacy!



With a queue, you got options

• Don’t process one message at a 
time, use batches
• Grab a bunch of messages
• Load all related data upfront
• Reduce per message costs

• Don’t use a queue, use many
• Buying from Brazil?

• /Q/Purchases/Brazil - Got a worker 
just for that

• Similar behavior and patterns

• Don’t need to scale out as often
• Spikes are smoothed

• Message processing code is 
simpler (no UI concerns, pure 
computation)
• No expected shared state to deal 

with (session, cache, etc)



To queue, or to fail, there is no try

• Retries are simple
• Debugging is trivial (you get the 

input J ).
• Operations are simple
• Need to upgrade
• Spin a new worker with new code
• Shut down old worker
• Zero downtime

• Queue are operationally simple 
to operate

• Metrics:
• Time in queue
• Drain rate
• Number of messages

• What is going on right now?
• Peek to the queue…



What about the front end?

• Pull prepared data
• Separated read mostly portion
• Some cheap operations can be 

done inline.

• Mostly concerned with 
presentation
• Actions will typically put in 

queue
• UX challenge!

• Explicitly deny complex 
operations inline
• Reports
• Dashboards

• Do them in the background



Architecture superpower: Let’s wait…

• Most operations are trivial CRUD
• Can do synchronous operation 

from frontend all the way to the 
end

• The key aspects and common 
operations? Complex
• Don’t try to do them directly

• It’s okay to make the user wait
• Not on an active request

• We got your request, we’ll 
process it
• What is reasonable?
• If < 10 seconds, users

won’t care
• Okay to slip timeline if

they aren’t actively
waiting for us



Architecture super power: Saying sorry

• I’m selling TVs
• Black Friday sale
• Lots of users want to buy

• What to do?

• Accept all orders
• Mark them as accepted

• Process them
• If run out of inventory?

• Send “sorry, do you want to buy this 
other model”?

• Lost the deal, no money down

• Really powerful technique
• Dramatically simplify apporach



Architecture superpower: 
Accepted vs. Confirmed
• Selling the Mona Lisa
• One item

• Auction style
• High concurrency
• Only single winner



Processing the sale…

• No need to deal with 
concurrency
• Audit log if contested
• Complex business rules?
• No problem!



Architecture superpower: Being stupid

• It’s easy to scale stupidly simple 
architecture
• Very possible to create 

sophisticated solutions on 
simple concepts
• Resist adding complexity
• Compounding costs

• Background processing
can do amazing things.
• Copy & paste solution for 

most issues (backend chew the 
solution the frontend)
• Frontend is simple
• Infrastructure handles 

complexity



Questions?


