
@jpkrohling

Juraci Paixão Kröhling
Software engineer
@jpkrohling

OpenTelemetry
Collector deep dive

@jpkrohling@jpkrohling

Juraci Paixão Kröhling
Software engineer

The basics
● What’s OpenTelemetry
● What’s OpenTelemetry Collector
● Other related projects: contrib and builder

Deployment patterns
● General purpose patterns (basic, normalizer, per-signal)
● Patterns for Kubernetes (daemonsets, sidecars)
● Enterprise patterns (multi-cluster, multitenant, load balancing)

Advanced topics
● Assembling your own distribution
● Extending with your components

Questions and answers

Presenter Agenda

@jpkrohling

What’s
OpenTelemetry

@jpkrohling@jpkrohling

OpenTelemetry is a collection of tools, APIs, and
SDKs. Use it to instrument, generate, collect, and
export telemetry data (metrics, logs, and traces)
to help you analyze your software’s performance
and behavior.

Source: https://opentelemetry.io/

@jpkrohling@jpkrohling

Standards,
specifications,

and conventions

Client
instrumentation
APIs and SDKs

Middleware

@jpkrohling@jpkrohling

OpenTelemetry
API / SDK

For people looking to
implement APIs and
SDKs

Standards, specifications, and conventions

Semantic
conventions

OpenTelemetry
Line Protocol

Which metadata to
include in which
operations

Interface description
language (IDL,
specifying how data
should look like and
what endpoints should
implement

@jpkrohling@jpkrohling

OpenTelemetry
API

What you use on a
daily basis to
instrument your
service

Client instrumentation APIs and SDKs

OpenTelemetry
SDK

Instrumentation
libraries

What to do with the
instrumentation: how
to create the data,
buffer, send out

Libraries that will hook
into parts of your stack
and instrument it

@jpkrohling@jpkrohling

Middleware

@jpkrohling

What’s
OpenTelemetry

Collector

@jpkrohling@jpkrohling

Vendor-agnostic way to receive, process
and export telemetry data.

Source: https://opentelemetry.io/docs/collector/

@jpkrohling

OpenTelemetry Collector conceptual architecture

@jpkrohling@jpkrohling

Contrib

Where non-core
components reside,
such as
vendor-specific ones

OpenTelemetry Collector - related projects

Builder Operator

Helper CLI tool to build
OpenTelemetry
Collector distributions

Kubernetes operator
managing
OpenTelemetry
Collector instances

@jpkrohling

Patterns!

@jpkrohling@jpkrohling

Pattern #1 Basic I

@jpkrohling@jpkrohling

Pattern #1 Basic I

✅ Good for:

● Abstracting where to actually send the telemetry data

● Doing extra-processing between your workload and the telemetry backend

🚨 Avoid when:

● Well, when you don’t need an extra processing layer, every extra hop is a chance

for things to go wrong 🐶

@jpkrohling@jpkrohling

Pattern #1 Basic II Fanout

@jpkrohling@jpkrohling

Pattern #1 Basic II Fanout

✅ Good for:

● Trying out different open source solutions and/or vendors

● Retaining data ownership even when your main observability tool is a SaaS

🚨 Avoid when:

● Processing tons of data: be conscious of the costs 💸

@jpkrohling@jpkrohling

Pattern #2 Normalizer

@jpkrohling@jpkrohling

Pattern #2 Normalizer

✅ Good for:

● Ensuring that different data points have the same semantics for the same things

● It’s hard or undesirable to fix the problem at the source

🚨 Avoid when:

● You have too many things to normalize. It might be better to try to 🔧 fix the

problem at the source

@jpkrohling@jpkrohling

Pattern #3 Kubernetes - Sidecars

@jpkrohling@jpkrohling

Pattern #3 Kubernetes - Sidecars

✅ Good for:

● Quickly offloading telemetry data from your application to a local process
● Fine-grained control over the configuration for each PodSpec or namespace
● Client-side load balancing is better when there are multiple of clients, especially

for long-lived connections (HTTP/2, gRPC, Thrift, …)

🚨 Avoid when:

● The overhead is not acceptable, as each sidecar needs at least ~20MiB of RAM
● You can’t use something like the operator to manage the configs

@jpkrohling@jpkrohling

Pattern #3 Kubernetes - DaemonSets

@jpkrohling@jpkrohling

Pattern #3 Kubernetes - DaemonSets

✅ Good for:

● Quickly offloading telemetry data from your application to a local process

● Less collector instances mean less maintenance and runtime overhead

🚨 Avoid when:

● You need multi-tenancy

● It’s not acceptable to lose telemetry data for all pods on a node in case of a 💥

crash with the local collector

@jpkrohling@jpkrohling

Pattern #4 Load balancing

@jpkrohling@jpkrohling

Pattern #4 Load balancing

✅ Good for:

● Load balancing whole traces to collectors that need a complete view of the trace:

span metrics processor, tail-based sampling, ...

🚨 Avoid when:

● You just need a simple load balancing, without caring about the trace ID at all. For

that, use a regular HTTP/2 or gRPC load balancer.

@jpkrohling@jpkrohling

Pattern #5 Multi-cluster

@jpkrohling@jpkrohling

Pattern #5 Multi-cluster

✅ Good for:

● Centralizing your telemetry data collection across clusters

● Running business analytics on all of your telemetry data

🚨 Avoid when:

● You can have your control plane to query data directly on individual clusters

● Networking costs are a concern

@jpkrohling@jpkrohling

Pattern #6 Multitenant

@jpkrohling@jpkrohling

Pattern #6 Multitenant

✅ Good for:

● Small deployments, where a central collector processes all the telemetry data for

all tenants

● Central teams to handle telemetry backends for multiple departments

🚨 Avoid when:

● You can have one entrypoint per tenant, avoiding a single point of failure

@jpkrohling@jpkrohling

Pattern #7 Per signal

@jpkrohling@jpkrohling

Pattern #7 Per signal

✅ Good for:

● Isolating failures on production environments

🚨 Avoid when:

● You just need a simple deployment for your local dev or staging environments

@jpkrohling

Customizing
OpenTelemetry

Collector

@jpkrohling@jpkrohling

Building your own distribution

1. manifest.yaml

2. opentelemetry-collector-builder

3. ???

4. Profit!

@jpkrohling@jpkrohling

Building a component

● Config

● The component code, implementing one or more interfaces

● Factory

@jpkrohling@jpkrohling

Building a processor

● Bootstrap go module

● Create a config.go

● Create a processor.go

● Add the processor logic

● Create a factory.go

● Bonus points: metrics.go

@jpkrohling

Key takeaways

@jpkrohling@jpkrohling

Key takeaways

● OpenTelemetry has different subprojects in different areas

● The collector works as a middleware, abstracting the telemetry backends from

your workloads

● It has tons of components for you to experiment with

● Mix and match collector instances with potentially different configurations

● Use the patterns from this presentation to derive your own patterns

● Extending the collector isn’t that hard!

● Building your own distribution might be a good idea depending on your use cases

@jpkrohling

Have more questions?

@jpkrohling at twitter and github

#otel-collector
CNCF Slack)

open-telemetry/
opentelemetry-collector

Get involved:

Thanks for attending!

