
@jpkrohling

Juraci Paixão Kröhling
Software engineer
@jpkrohling

OpenTelemetry
Collector deep dive



@jpkrohling@jpkrohling

Juraci Paixão Kröhling
Software engineer

The basics
● What’s OpenTelemetry
● What’s OpenTelemetry Collector
● Other related projects: contrib and builder

Deployment patterns
● General purpose patterns (basic, normalizer, per-signal) 
● Patterns for Kubernetes (daemonsets, sidecars)
● Enterprise patterns (multi-cluster, multitenant, load balancing)

Advanced topics
● Assembling your own distribution
● Extending with your components

Questions and answers

Presenter Agenda



@jpkrohling

What’s 
OpenTelemetry



@jpkrohling@jpkrohling

OpenTelemetry is a collection of tools, APIs, and 
SDKs. Use it to instrument, generate, collect, and 
export telemetry data (metrics, logs, and traces) 
to help you analyze your software’s performance 
and behavior.

Source: https://opentelemetry.io/



@jpkrohling@jpkrohling

Standards, 
specifications, 

and conventions

Client 
instrumentation 
APIs and SDKs

Middleware



@jpkrohling@jpkrohling

OpenTelemetry 
API / SDK

For people looking to 
implement APIs and 
SDKs

Standards, specifications, and conventions

Semantic 
conventions

OpenTelemetry 
Line Protocol

Which metadata to 
include in which 
operations

Interface description 
language (IDL, 
specifying how data 
should look like and 
what endpoints should 
implement



@jpkrohling@jpkrohling

OpenTelemetry 
API

What you use on a 
daily basis to 
instrument your 
service

Client instrumentation APIs and SDKs

OpenTelemetry 
SDK

Instrumentation 
libraries

What to do with the 
instrumentation: how 
to create the data, 
buffer, send out

Libraries that will hook 
into parts of your stack 
and instrument it



@jpkrohling@jpkrohling

Middleware



@jpkrohling

What’s 
OpenTelemetry 

Collector



@jpkrohling@jpkrohling

Vendor-agnostic way to receive, process 
and export telemetry data.

Source: https://opentelemetry.io/docs/collector/



@jpkrohling

OpenTelemetry Collector conceptual architecture



@jpkrohling@jpkrohling

Contrib

Where non-core 
components reside, 
such as 
vendor-specific ones

OpenTelemetry Collector - related projects

Builder Operator

Helper CLI tool to build 
OpenTelemetry 
Collector distributions

Kubernetes operator 
managing 
OpenTelemetry 
Collector instances



@jpkrohling

Patterns!



@jpkrohling@jpkrohling

Pattern #1  Basic I



@jpkrohling@jpkrohling

Pattern #1  Basic I

✅ Good for:

● Abstracting where to actually send the telemetry data

● Doing extra-processing between your workload and the telemetry backend

🚨 Avoid when:

● Well, when you don’t need an extra processing layer, every extra hop is a chance 

for things to go wrong 🐶



@jpkrohling@jpkrohling

Pattern #1  Basic II  Fanout



@jpkrohling@jpkrohling

Pattern #1  Basic II  Fanout

✅ Good for:

● Trying out different open source solutions and/or vendors

● Retaining data ownership even when your main observability tool is a SaaS

🚨 Avoid when:

● Processing tons of data: be conscious of the costs 💸 



@jpkrohling@jpkrohling

Pattern #2  Normalizer



@jpkrohling@jpkrohling

Pattern #2  Normalizer

✅ Good for:

● Ensuring that different data points have the same semantics for the same things

● It’s hard or undesirable to fix the problem at the source

🚨 Avoid when:

● You have too many things to normalize. It might be better to try to 🔧 fix the 

problem at the source



@jpkrohling@jpkrohling

Pattern #3  Kubernetes - Sidecars



@jpkrohling@jpkrohling

Pattern #3  Kubernetes - Sidecars

✅ Good for:

● Quickly offloading telemetry data from your application to a local process
● Fine-grained control over the configuration for each PodSpec or namespace
● Client-side load balancing is better when there are multiple of clients, especially 

for long-lived connections (HTTP/2, gRPC, Thrift, …)

🚨 Avoid when:

● The overhead is not acceptable, as each sidecar needs at least ~20MiB of RAM
● You can’t use something like the operator to manage the configs



@jpkrohling@jpkrohling

Pattern #3  Kubernetes - DaemonSets



@jpkrohling@jpkrohling

Pattern #3  Kubernetes - DaemonSets

✅ Good for:

● Quickly offloading telemetry data from your application to a local process

● Less collector instances mean less maintenance and runtime overhead

🚨 Avoid when:

● You need multi-tenancy

● It’s not acceptable to lose telemetry data for all pods on a node in case of a 💥 

crash with the local collector



@jpkrohling@jpkrohling

Pattern #4  Load balancing



@jpkrohling@jpkrohling

Pattern #4  Load balancing

✅ Good for:

● Load balancing whole traces to collectors that need a complete view of the trace: 

span metrics processor, tail-based sampling, ...

🚨 Avoid when:

● You just need a simple load balancing, without caring about the trace ID at all. For 

that, use a regular HTTP/2 or gRPC load balancer.



@jpkrohling@jpkrohling

Pattern #5  Multi-cluster



@jpkrohling@jpkrohling

Pattern #5  Multi-cluster

✅ Good for:

● Centralizing your telemetry data collection across clusters

● Running business analytics on all of your telemetry data

🚨 Avoid when:

● You can have your control plane to query data directly on individual clusters

● Networking costs are a concern



@jpkrohling@jpkrohling

Pattern #6  Multitenant



@jpkrohling@jpkrohling

Pattern #6  Multitenant

✅ Good for:

● Small deployments, where a central collector processes all the telemetry data for 

all tenants

● Central teams to handle telemetry backends for multiple departments

🚨 Avoid when:

● You can have one entrypoint per tenant, avoiding a single point of failure



@jpkrohling@jpkrohling

Pattern #7  Per signal



@jpkrohling@jpkrohling

Pattern #7  Per signal

✅ Good for:

● Isolating failures on production environments

🚨 Avoid when:

● You just need a simple deployment for your local dev or staging environments



@jpkrohling

Customizing 
OpenTelemetry 

Collector



@jpkrohling@jpkrohling

Building your own distribution

1. manifest.yaml

2. opentelemetry-collector-builder

3. ???

4. Profit!



@jpkrohling@jpkrohling

Building a component

● Config

● The component code, implementing one or more interfaces

● Factory



@jpkrohling@jpkrohling

Building a processor

● Bootstrap go module

● Create a config.go

● Create a processor.go

● Add the processor logic

● Create a factory.go

● Bonus points: metrics.go



@jpkrohling

Key takeaways



@jpkrohling@jpkrohling

Key takeaways

● OpenTelemetry has different subprojects in different areas

● The collector works as a middleware, abstracting the telemetry backends from 

your workloads

● It has tons of components for you to experiment with

● Mix and match collector instances with potentially different configurations

● Use the patterns from this presentation to derive your own patterns

● Extending the collector isn’t that hard!

● Building your own distribution might be a good idea depending on your use cases



@jpkrohling

Have more questions?

@jpkrohling at twitter and github

#otel-collector 
CNCF Slack)

open-telemetry/
opentelemetry-collector

Get involved:

Thanks for attending!


