Panel Title

0
2007-01 2007-02 2007-03 2007-04 2007-05 2007-06 2007-07

— count_Eventld Dense Fog — count_Eventld Hail

B Query 1 {3 Transform 0o a Alert 0

B Azure Data Explorer Datasource v ® > Queryoptions MD =auto=1247 Interval = 6h

v A
Database Samples
From StormEvents Format as Time series v
Where (filter) State
Where (filter) EventType in DenseFog X Hail X
Value columns Eventld aggregate by Count
Group by (summarize) StartTime 12 hours

EventType

StormEvents
. [LXJ o | where $__timeFilter(StartTime)
Juraci Paixao Krohling e
| where EventType in (‘Dense Fog', 'Hail’)

S Oft W a re e N g i N e e r | summarize count(Eventld) by bin(StartTime, 12h),EventType

| order by StartTime asc

@jpkrOhling (RELCRII]

Presenter

Juraci Paixao Krohling
Software engineer

Agenda

The basics

° What's OpenTelemetry
° What's OpenTelemetry Collector
e Other related projects: contrib and builder

Deployment patterns

. General purpose patterns (basic, normalizer, per-signal)
° Patterns for Kubernetes (daemonsets, sidecars)
. Enterprise patterns (multi-cluster, multitenant, load balancing)

Advanced topics

e Assembling your own distribution
° Extending with your components

Questions and answers

@jpkrohling

What's

OpenTelemetry

OpenTelemetry is a collection of tools, APIs, and

SDKs. Use it to instrument, generate, collect, and
export telemetry data (metrics, logs, and traces)

to help you analyze your software’s performance
and behavior.

Source: https://opentelemetry.io/

Standards, Client
specifications, instrumentation Middleware
and conventions APls and SDKs

@jpkrohling

Standards, specifications, and conventions

OpenTelemetry Semantic OpenTelemetry
API / SDK conventions Line Protocol
©@ For people looking to ©@ Which metadata to © Interface description
implement APIs and include in which language (IDL),
SDKs operations specifying how data

should look like and
what endpoints should

implement
@jpkrohling

Client instrumentation APIs and SDKs

OpenTelemetry OpenTelemetry Instrumentation
API SDK libraries
©@ What you use on a @ What to do with the @@ Libraries that will hook
daily basis to instrumentation: how into parts of your stack
instrument your to create the data, and instrument it
service buffer, send out

@jpkrohling

@jpkrohling

What's

OpenTelemetry
Collector

616

Vendor-agnostic way to receive, process
and export telemetry data.

o Source: https://opentelemetry.io/docs/collector/
) J

@jpkrohling

S
@l Otel Collector

Extensions: health, pprof, zpages

Filter

[
~
[
2
@
o
@
o

Prometheus Prometheus

§=

OpenTelemetry Collector - related projects

Contrib Builder Operator
©@ Where non-core ©@ Helper CLI tool to build ©@ Kubernetes operator
components reside, OpenTelemetry managing
such as Collector distributions OpenTelemetry
vendor-specific ones Collector instances

@jpkrohling

Pattern #1 - Basic |

my applica‘tion

OTel SDK

oteleco

—

Jaeger

@jpkrohling

Pattern #1 - Basic |

Good for:

e Abstracting where to actually send the telemetry data

e Doing extra-processing between your workload and the telemetry backend
B Avoid when:

e Well, when you don’'t need an extra processing layer, every extra hop is a chance

for things to go wrong

@jpkrohling

Pattern #1 - Basic Il - Fanout

my apphca‘tlon

OTel SDK

oteleol

f-%

Jaeger

Vendor

>

@jpkrohling

Pattern #1 - Basic Il - Fanout

"4 Good for:

e Trying out different open source solutions and/or vendors

e Retaining data ownership even when your main observability tool is a SaaS
B Avoid when:

e Processing tons of data: be conscious of the costs &

@jpkrohling

Pattern #2 - Normalizer

my applica‘tion

/metrics

Jaeger client

N\

———

ote,lcol

attributes

metrestransform

.

Jaeger

Prometheus

@jpkrohling

Pattern #2 - Normalizer

4 Good for:

e Ensuring that different data points have the same semantics for the same things

e |It's hard or undesirable to fix the problem at the source
B Avoid when:

e You have too many things to normalize. It might be better to try to . fix the

problem at the source

@jpkrohling

Pattern #3 - Kubernetes - Sidecars

namespace: app1-prod

mc/—appl?ca‘tion

my applica‘tion

! |

o‘te_lcol

L

namespace: ol:se_rVo\B?li‘tt/

o‘te,lcol

Joeger

J

@jpkrohling

Pattern #3 - Kubernetes - Sidecars

"4 Good for:

e Quickly offloading telemetry data from your application to a local process

e Fine-grained control over the configuration for each PodSpec or namespace

e Client-side load balancing is better when there are multiple of clients, especially
for long-lived connections (HTTP/2, gRPC, Thrift, ...)

A Avoid when:

e The overhead is not acceptable, as each sidecar needs at least ~20MiB of RAM
e You can't use something like the operator to manage the configs

@jpkrohling

Pattern #3 - Kubernetes - DaemonSets

node-01

node-02

my applica‘tion

namespace: appl-prod

<
W/,

my apphca‘tion

namespace: aPPQ-PmJ

<
9/,

my applica‘tion

namespace: app?;—prod

my applica‘tIon

namespace: aPPS-pr*od

I\

otelc.ol

7\

oteleol

“\

v

oteleol

@jpkrohling

Pattern #3 - Kubernetes - DaemonSets

"4 Good for:

e Quickly offloading telemetry data from your application to a local process

e Less collector instances mean less maintenance and runtime overhead
B Avoid when:

e You need multi-tenancy
e It's not acceptable to lose telemetry data for all pods on a node in case of a 3%

crash with the local collector

@jpkrohling

Pattern #4 - Load balancing

Collector

29620342 LOQO! Balomcer

e u-laaaszu
%ab2ccle —
74983ca%a ' }

@jpkrohling

GTIvesdd

Pattern #4 - Load balancing

"4 Good for:

e Load balancing whole traces to collectors that need a complete view of the trace:

span metrics processor, tail-based sampling, ..
B Avoid when:

e You just need a simple load balancing, without caring about the trace ID at all. For

that, use a regular HTTP/2 or gRPC load balancer.

@jpkrohling

Pattern #5 - Multi-cluster

cluste_r wor‘kloo«o(-eu-1

my applica‘tion

!
I 8)

‘Cﬂ_' cluster con‘trol—Plane v
| V B oteleol
OTLP SDK () L L
otelco Taeger
il

oteleol J \ : Yooz

@jpkrohling

Pattern #5 - Multi-cluster

"4 Good for:

e Centralizing your telemetry data collection across clusters

e Running business analytics on all of your telemetry data
B Avoid when:

e You can have your control plane to query data directly on individual clusters

e Networking costs are a concern

@jpkrohling

Pattern #6 - Multitenant

acme.com

e o __________

otelcol

eCOPP.COM

- XN

\ l‘\ﬁ

oteleol

otazz - otelecol as a service

oteleol 1;%
Jaeger (acme) 3

Jaeger (ecorp))

@jpkrohling

Pattern #6 - Multitenant

"4 Good for:

e Small deployments, where a central collector processes all the telemetry data for
all tenants

e Central teams to handle telemetry backends for multiple departments
B Avoid when:

e You can have one entrypoint per tenant, avoiding a single point of failure

@jpkrohling

Pattern #7 - Per signal

my applica‘tion

/metrics

Jaeger client

oteleol

L Prometheus

K

oteleol

@jpkrohling

-

Jaeger

Pattern #7 - Per signal

"4 Good for:
e Isolating failures on production environments
A Avoid when:

e You just need a simple deployment for your local dev or staging environments

@jpkrohling

Customizing

OpenTelemetry
Collector

Building your own distribution

manifest.yaml

1

2. opentelemetry-collector-builder
3. 777
4

Profit!

@jpkrohling

Building a component

e Config
e The component code, implementing one or more interfaces

e Factory

@jpkrohling

Building a processor

e Bootstrap go module

e Create a config.go

e Create a processor.go
e Add the processor logic
e Create a factory.go

e Bonus points: metrics.go

@jpkrohling

CIRELCEVEVE

Key takeaways

e OpenTelemetry has different subprojects in different areas

e The collector works as a middleware, abstracting the telemetry backends from
your workloads

e |t has tons of components for you to experiment with

e Mix and match collector instances with potentially different configurations

e Use the patterns from this presentation to derive your own patterns

e Extending the collector isn’t that hard!

e Building your own distribution might be a good idea depending on your use cases

@jpkrohling

{9 Grafanalabs

Thanks for attending!

Have more questions? Get involved:
@jpkrohling at twitter and github 2. O
#otel-collector open-telemetry/

(CNCF Slack) opentelemetry-collector

