Getting mutually
familiar with mTLS

Alan Scherger @flyinprogrammer

Agenda

e MILS
o How did we get here?
o What could go wrong?
e Make and Investigate Certificates
e mMILS with Zookeeper
e Certificate Cross-Signing/Rotation for Great Good!

Tools we’ll use:

e FiloSottile/mkcert

e Ndginx

e OpenSSL/LibreSSL - spoiler
e /ookeeper

https://github.com/FiloSottile/mkcert
https://hub.docker.com/_/nginx
https://www.openssl.org/docs/man1.1.1/man1/
https://man.openbsd.org/openssl
https://cwiki.apache.org/confluence/display/ZOOKEEPER/ZooKeeper+SSL+User+Guide

Things you will learn:

TLS basics - the why and how.

_essons learned from others using TLS.

_ocal development with certificates is delightful.
nvestigating certificates is easy.

Writing code that uses certificates takes effort.
Cross-signing and rotation of certificates requires
thoughtful automation.

SSL Certificate
TLS Certificate

HTTPS Certificate
X.509 v3 Certificate

What could go wrong?

TL:DR - A{ Lotd",

Datadog May, 30 2020
CloudFoundry CredHub Feb 12, 2020
Microsoft Teams Feb 3, 2020
HashiCorp Nomad Jan 28, 2020
Etcd Jan 2, 2019
LinkedIn May 2019, Nov 2017
Ericsson Dec 6, 2018
Docker Sept 10, 2018

Microsoft Azure Storage

Feb 22, 2013

TL:DR - A{ Lotd",

Datadog

CloudFoundry CredHub

Microsoft Teams

HashiCorp Nomad

May, 30 2020

Feb 12, 2020

Feb 3, 2020

Etcd Jan 2, 2019
LinkedIn May 2019, Nov 2017
Ericsson Dec 6, 2018
Docker Sept 10, 2018

Microsoft Azure Storage

Feb 22, 2013

How did we get here?

Alice and Bob want to communicate...

Alice Bob

0

l((

They simply do.

Alice Bob

However, in the real world...
there are 1000s of curious robots between them.

Bob

How do we ererypt

jumble our text?

Encryption

Use mathematics to figure out how to shift our bits via RSA & ECDSA

What are
they
saying?

Alice Bob

uryyb terra svfu

What prevents Robot
from acting like Bob?

What prevents Robot
from being Bob?

uryyb terra svfu

What prevents Robot
from changing Bob’s
message?

What prevents Robot
from changing Bob’s
message?

Alice

How do we ensure
integrity of our data?

Hashing

Use mathematics to calculate a 1-way value that
representing our message via SHA-2 and SHA-3

This is
harder to

Alice Bob

uryyb terra svfu
md5:539114041f9fa30
91b405125f3d2d6b1

How do we formalize this?

Public Key
Cryptography

10q0Y

Part 1: But how will Bob talk back to Alice?

10q0Y

Part 2: But how do we know we can
trust Bob is who he claims to be?

>

8

10q0Y

Sure can!

e ¥
Great! Here’s some
Part 3: We have to fix this. SREEH Sl

Certificate
Authorities

10q0Y

Here’s my
secret
message!

Auoyiny sjeoyniad

Part 1: But how can Bob trust Alice?

Great! Here’s some
secret stuff!

Certificate Authority

Welcome to Mutual TLS

Certificate Authority

The Few Parts to mTLS

X509 v3 Certificate

e Encryption Algorithm
o RSA
o ECDSA

e Hashing Algorithms
o SHA-2
o SHA-3

Cryptographic Protocols
SSL v2/v3 & TLS 1.3/2/1

4P

X509 v3 Certificate

e Encryption Algorithm
o RSA
o ECDSA

e Hashing Algorithms
o SHA-2
o SHA-3

What could go wrong?

PR
D a ta d O g i SOLUTIONS % ABOUT BLOG DOCS LOGIN

DATADOG

CERTIFICATE_VERIFY_FAILED error

What happened?

and 7.x are fine and don’t need

May 30, 2020

https://docs.datadoghq.com/agent/faq/certificate_verify_failed-error/
https://docs.datadoghq.com/agent/faq/certificate_verify_failed-error/

Microsoft 365 Status

Microsoft 365

We've determined that an authentication certificate has
expired causing, users to have issues using the service.
We're developing a fix to apply a new certificate to the
service which will remediate impact. Further updates
can be found under TM202916 in the admin center.

Microsoft 365 Status

Microsoft 365
We've initiated the deployment of the updated certificate and are monitoring
service health as the fix progresses. Additional information can be found under
TM202916 in the admin center.

Microsoft 365 Status
HEEE We successfully deployed the fix to the affected infrastructure and conducted
additional remediation actions to resolve the issue. More information can be

found under TM202916.

Microsoft
Teams

Feb 3, 2020

https://twitter.com/MSFT365Status/status/1224351597624537088

Dec 6, 2018

Ericsson

Update on software issue impacting
certain customers

PRESS RELEASE | DEC 06, 2018 15:50 (GMT +00:00)

#Ericsson

Following network disturbances in a number of Ericsson’s (NASDAQ:ERIC) customer networks,
Ericsson has taken immediate action to minimize impact and support the restoration of services.

During December 6, 2018, Ericsson has identified an issue in certain nodes in the core network
resulting in network disturbances for a limited number of customers in multiple countries using two
specific software versions of the SGSN—MME (Serving GPRS Support Node — Mobility Management
Entity).

Borje Ekholm, President and CEO, Ericsson, says: “The faulty software that has caused these issues
is being decommissioned and we apologize not only to our customers but also to their customers. We
work hard to ensure that our customers can limit the impact and restore their services as soon as
possible.”

An initial root cause lysis indicates that the main issue was an expired certificate in the software
versions installed se customers. A complete and comprehensive root cause analysis is still in

During the course of December 6, most of the affected customers’ network services have been
successfully restored. We are working closely with the remaining customers that are still
experiencing issues.

NOTES TO EDITORS

For media kits, backgrounders and high-resolution photos, please visit www.ericsson.com/press

https://www.ericsson.com/en/press-releases/2018/12/update-on-software-issue-impacting-certain-customers
https://www.ericsson.com/en/press-releases/2018/12/update-on-software-issue-impacting-certain-customers
https://www.ericsson.com/en/press-releases/2018/12/update-on-software-issue-impacting-certain-customers

So is it just me, or did the HTTPS certificate for Azure Storage just expire?

20

General | Details 1 Certification Path

(%3 Certificate Information

This certificate has expired or is not yet valid.

Issued -

Issued by: Microsoft Secure Server Authority

valid from 2/ 23/ 2011 t

Learn more about

Might want to fix that, ASAP. It also wouldn't hurt to put a sticky note on someone's monitor so
they remember to update that before it expires next time.

UPDATE:

After reading through most of the replies here, the best solution seems to be changing your
configuration through the management portal. Change all of your storage connection strings to
use HTTP instead of HTTPS - EXCEPT for the Diagnostics connection string. That one must remain
as HTTP (thanks to @Matt in Cambridge for that detail)

Edited by Brian Reischl Saturday, February 23, 2013 12:11 AM Adding update with solution

Microsoft Azure

Storage

Feb 22, 2013

https://social.msdn.microsoft.com/Forums/en-US/751c85c5-b3b5-43ba-9d5b-770472ad79e1/storage-certificate-expired?forum=windowsazuredata
https://social.msdn.microsoft.com/Forums/en-US/751c85c5-b3b5-43ba-9d5b-770472ad79e1/storage-certificate-expired?forum=windowsazuredata

Rant mode. Activate.

So is it just me, or did the HTTPS certificate for Azure Storage just expire?

)

General | Details] Certification Path

X% Certificate Information

This certificate has expired or is not yet valid.

Issued by: Microsoft Secure Server Authority

valid from 2/ 23/ 2011 t

Learn more abo

Might want to fix that, ASAP. It also wouldn't hurt to put a sticky note on someone's monitor so
they remember to update that before it expires next time.

UPDATE:

configuration through the management portal. Change all of your storage connection strings to
use HTTP instead of HTTPS - EXCEPT for the Diagnostics connection string. That one must remain

H d 0 (@WMa ambpriag O at d

Edited by Brian Reischl Saturday, February 23, 2013 12:11 AM Adding update with solution

Microsoft Azure

Storage

Feb 22, 2013

https://social.msdn.microsoft.com/Forums/en-US/751c85c5-b3b5-43ba-9d5b-770472ad79e1/storage-certificate-expired?forum=windowsazuredata
https://social.msdn.microsoft.com/Forums/en-US/751c85c5-b3b5-43ba-9d5b-770472ad79e1/storage-certificate-expired?forum=windowsazuredata

erflow Products

1161
flow
575
votes
What's this?
¢ Trial
531
votes
(/]
\
312

votes

votes

answer

votes

1

answer

Customers Use cases (1 disable ssl

A: How can | make git accept a self signed certificate?

/SSL verification for a single git command try passing - to git with the proper config variable, or use Flow's
answer: git -c http.ssiVerify=false clone https://fexample.com/path/to/git To disable ... To permanently accept a
specific certificate Try http.ssICAPath or http.ssICAlInfo. Adam Spiers's answer gives some great examples. This
is the most secure solution to the question. To disable TLS ...

answered Jul 23 "12 by Christopher

A: Warning about SSL connection when connecting to MySQL database
Your connection URL should look like the below, jdbc:mysql://localhost:3306/Peoples?
autoReconnect=true&useSSL=false This will disable SSL and also suppress the SSL errors. ...

answered Dec 24 '15 by Priyank
Gosalia

A: How do | set GIT_SSL_NO_VERIFY for specific repos only?

You can do git config http.sslVerify false in your specific repo to disable SSL certificate checking for that repo
only. ...
answered Jan 25 '12 by Joachim
Isaksson

Q: Warning about SSL connection when connecting to MySQL database

applications not using SSL the verifyServerCertificate property is set to ‘false’. You need either to explicitly
disable SSL by setting useSSL=false, or set useSSL=true and provide truststore for server ... With the two
classes below, I've tried connect to a MySQL database. However, | always get this error: Wed Dec 09 22:46:52
CET 2015 WARN: Establishing SSL connection without server's identity ...

java ssl database-connection mysql-error-1064 asked Dec 915 by Milos86

Q: Disable SSL cert verification

| am working on an app and need to disable SSL verification to test locally. In this environment the SSL
certificate doesn't validate so | need to disable the verification. How does one do that on Windows Phone 7.17 ...

windows-phone windows-phone-7.1 asked Jun 17 "13 by Steven

Q: Disable SSL in XMPPpy?

| need to Disable SSL Connection while connecting to gmail, | had try this code : import xmpp username =
‘username’ passwd = ‘password' to="friend@gmail.com’ msg="hello :)' client = xmpp.Client ... (‘gmail.com’)
client.connect((‘talk.google.com',5223),None,"None",None) client.auth(username, passwd, ‘omar’)
client.sendInitPresence() message = xmpp.Message(to, msg) message.setAttr(‘type’, ‘chat’)
client.send(message) "None" most be ssl=None without (") but it's not working , Any Help ? ...

erflow Products Customers Use cases

1161 A:How can | make git accept a self signed certificate?

Vies ISSL verification for a single git command try passing - to git with the proper config variable, or use Flow's
answer: git -c http.ssiVerify=false clone https://fexample.com/path/to/git To disable ... To permanently accept a
specific certificate Try http.ssICAPath or http.ssICAlInfo. Adam Spiers's answer gives some great examples. This

-5 is the most secure solution to the question. To disable TLS ...
answered Jul 234 Rristopher
575 A:Warning about SSL connection when connecting to MySQ
votes Your connection URL should look like the below, jdbc:mysql://g
autoReconnect=true&useSSL=false This will disable 5§
What's this?

¢ Trial

i the two
/ ed Dec 09 22:46:52

asked Dec 9 '15 by Milos86

&0 disable SSL verification to test locally. In this environment the SSL
0 | need to disable the verification. How does one do that on Windows Phone 7.17 ...

windows-phone-7.1 asked Jun 17 '13 by Steven

0 Q: Disable SSL in XMPPpy?

votes | need to Disable SSL Connection while connecting to gmail, | had try this code : import xmpp username =
‘username’ passwd = ‘password' to="friend@gmail.com’ msg="hello :)' client = xmpp.Client ... (‘gmail.com’)
i client.connect((‘talk.google.com',5223),None,"None",None) client.auth(username, passwd, ‘omar’)

answer client.sendInitPresence() message = xmpp.Message(to, msg) message.setAttr(‘type’, ‘chat)
—— client.send(message) "None" most be ssl=None without (") but it's not working , Any Help ? ...

// Create all-trusting host name verifier
HostnameVerifier validHosts = new HostnameVerifier() {

@Override
public boolean verify(String arg0®, SSLSession argl) {
Feturn true;

}

HbstnémeVeF;r}eFQ - WA W OB pverifier() {
@Ove r ld e . \ ' g ?

publid bl ca®ver i\ LY 5550 1) ¢
return e \ - 5 |

return new okhttp3.0kHttpClient.Builder()
.sslSocketFactory(sslSocketFactory, (X509TrustManager) trustAllCerts[0])
.hostnameVerifier(new HostnameVerifier() {

@Override
public boolean verify(String hostname, SSLSession session) {
returns true’;

}
}).build();

return new ¢ http3 OkHttnfT‘ent Butlr ')f, .\ \
sslSockeL-actor/(c'Laocke+ LK 'y 509, Mal,) trustAllCerts[0])
.hostname erlfler(new N 2V ey i\ Ry ‘ P %

@verfide _ wih W \ : \ : ; ;
publi¢ bod :an Vi-iiy(§) hos @, $7L5ess Lopg@® s ion)i {
retu i e \ R g y i

}
}).build();

Is this what you
want?

~— bt 2N

A gate with no fence.

What good is this?

Sure can!

Great! Here’s some
Part 3: We have to fix this. || secretstuf

WE ~EAN MUSF
WILL “FIX “THIS.

Rant mode.
Deactivate.

Easily preventable errors.

Why do they keep
reoccurring?

Automation is hard.

& > C A NotSecure | expired.badssl.com

Your connection is not private

Attackers might be trying to steal your information from expired.badssl.com (for example, passwords,
messages, or credit cards). Learn more

NET::ERR_CERT_DATE_INVALID

Errors messages are

specific to clients,
and oftentimes

meaningless.

(V)/
#GarbagelsGarbage

badssl.com

Memorable site for testing clients against bad SSL configs.

https://badssl.com

What else could go
wrong?

CLOUDF@QUNDRY
=

Share
in ¥ &

Why Technology How To Community Events Marketplace About

Severity

High

Vendor

Cloud Foundry Foundation

Description

Cloud Foundry CredHub, versions prior to 2.5.10, connects to a MySQL database
without TLS even when configured to use TLS. A malicious user with access to the
network between CredHub and its MySQL database may eavesdrop on database
connections and thereby gain unauthorized access to CredHub and other components.

Affected Cloud Foundry Products and
Versions

Severity is high unless otherwise noted.

« CF Deployment
« All versions prior to v12.29.0
« CredHub

« All versions prior to 2.5.10

Cloud Foundry
CredHub doesn’t use
TLS despite it being

configured.

Feb 12, 2020

https://www.cloudfoundry.org/blog/cve-2020-5399/

| will just listen to this
conversation, carry on.

If only | had been configured with
require secure transport Set 10

true!

Unencrypted Database access despite configuration.

© Watch 387 % Star 5.8k

. —
I I a S h I < O r p Code (@ lssues 562 Pull requests 55 Actions Projects 0 Security Insights

CVE-2020-7956: Privilege escalation due to incorrect
certificate validation for role/region #7003

schmichael opened this issue 16 days ago - 0 comments - Fixed by #7023

Nelggtsle

schmichael commented 16 days ago + edited by preetapan v Member -« @ Start timer

Vulnerability ID: CVE-2020-7956

asi
Versions: Previous versions of Nomad and Nomad Enterprise; fixed in 0.10.3. sslonees

schmichael
Nomad 0.10.3 includes a fix for a privilege escalation vulnerability in validating TLS certificates for RPC
with mTLS. Nomad RPC endpoints validated that TLS client certificates had not expired and were signed
by the same CA as the Nomad node, but did not correctly check the certificate's name for the role and
region as described in the Securing Nomad with TLS guide. This allows trusted operators with a client None yet
certificate signed by the CA to send RPC calls as a Nomad client or server node, bypassing access control
and accessing any secrets available to a client. Projects

Labels

Nomad clusters configured for mTLS following the Securing Nomad with TLS guide or the Vault PKI Nofigyst

Secrets Engine Integration guide

should already have certificates that will pass validation. Before upgrading to Nomad 0.10.3, operators Milestone
using mTLS with verify_server_hostname = true should confirm that the common name or SAN of all
Nomad client node certs is client..nomad, and that the common name or SAN of all Nomad server node
certs is server..nomad.

No milestone

Linked pull requests

Jan 28, 2020

https://nvd.nist.gov/vuln/detail/CVE-2020-7956

Nomad Particulars

Nomad's use of mTLS provides the following properties:

e Prevent unauthorized Nomad access
e Prevent observing or tampering with Nomad communication
e Prevent client/server role or region misconfigurations

e Prevent other services from masquerading as Nomad agents

https://learn.hashicorp.com/nomad/transport-security/enable-tls

SysAdmin

verify_server_hostname = true

cn=client.region.nomad

Nomad Leaders

—_—

]

-

Nomad Client

SysAdmin

| would like to join
your cluster as a

erver!

cn=client.region.nomad

verify_server_hostname = true

e p——

-

Nomad Leaders

Nomad Client

SysAdmin‘

verify_server_hostname = true

cn=client.regionA.nomad

PASSPORT ‘
................> ﬁ
. = ——
cn=server.regionA.nomad I o T
)

©

Nomad Leaders

Nomad Client

SysAdmin

verify_server_hostname = true

|

cn=client.regionA.nomad

cn=server.regionB.nomad

—_—

]

-

Nomad Leaders

Nomad Client

SadAdmin

| found this
certificate signed
by your CA.
Let's see what |

; it for!
verify_server_hostname = true can use it for!

| am a server!

.cn=real.bad.guy

Nomad Leaders Rouge Nomad Client

Welcome! You can take control!

If an etcd client server's TLS
certificate contains a Common
Name (CN) which matches a valid
*: disable CommonName auth for gRPC-gateway #10366
IV EGECl hexfusion merged 4 commits into etcd-io:master from hexfusion:fx_cn E& on Jan 8, 2019 RBAC username’ a remOte attaCker
& Conversation 25 -o- Commits 4 #, Checks 1 @D Files changed 6 may authenticate aS that user With
hexfusion commented on Jan 2, 2019 - edited ~ Member @ -- - any Valld (trusted) Cllent Certlflcate |n

m

| etcd-io / etcd © watch~ | 1.3k % Sta

Code Issues 200 19 Pull requests 77 Actions Security 0 Insights

When client-cert-auth is enabled gRPC-gateway proxy request to etcd server will use the CN in

client server cert if populated. We should not use this for authentication. In general grRPC-gateway B 9 a R E ST A P I req u est to th e

does not support CN authentication and we also should document as such.
Assil

The check provided in this PR is based on headers send from gRPC-Gateway o g R (—g atewa y.
No on

https://github.com/grpc-ecosystem/grpc-

gateway/blob/8976e602c518589cb6d40aca52a7dd8aef83706a/runtime/context.go#L183# Labels

/cc @gyuho @mitake Relez

Jan 2, 2019

https://nvd.nist.gov/vuln/detail/CVE-2018-16886

Normal Client

How certificate authentication should work.

. -
Normal Client Our client is now

authenticated as the
REST apiserver.
Oh. No.

How certificate authentication actually worked.

Use exclusive root pools if a CA cert file is specified in the

Docker trusts Client daemon #33182

[SYVENEC mlaventure merged 1 commit into moby:master from cyli:exclusive-root-pools-in-daemon E& On May 13, 2017
L] L] L]
< e rt I fl ‘ a te S S I g n e d by t&J Conversation 5 - Commits 1 & Checks 0 Files changed 2
Q cyli commented on May 12, 2017 Contributor| @ == s
L] C \ @ ofal me
prowe A root
Reviewers
#31705 added ExclusiveRootPools: true when setting up the docker client configuration, but this A cpuguys3

C e rt i fi C a te a n d a n y should also be applied to the daemon.

If a file containing CAs for validating clients is provided, only the certs used in that file should be used Assignees
to validate client connections, and not both the certs in that file and the system root certs. No one

L] L]
S Ste m rO Ot C e rt I fl C a t e If the union of the system certs and the provided CA certs is desired, the additional CA certs should be
. added to the system pool, or the system certs added to the provided CA file. Labels

cc @dmcgowan @thaJeztah

status/0-triag
Also cc @diogomonica for visibility status/2-code
t
e Projects

None yet

© [cordonTheTurtle added the statusl0-triage label on May 12, 2017

Sept 10, 2018

https://www.cloudfoundry.org/blog/cve-2020-5399/

Single Certificate Authority

PASSPORT

Normal Client

All The Certificate Authorities!

° .
]
(1] | | PASSPORT

Who am | to
deny you?

So how do we start
learning?

bit.ly/learn-mtls

A workshop that will be much more in-depth than these slides.

https://bit.ly/learn-mtls

SSL Certificate
TLS Certificate

HTTPS Certificate
X.509 v3 Certificate

SSL Certifieat
TLS Certifieat

TIPS Certifieat
X.509 v3 Certificate

236 Pages

Blue Book
Volume VIII - Fascicle VIII.8

Data Communication Networks Directory
Recommendations X.500-X.521

A N
;
N

http://search.itu.int/history/HistoryDigitalCollectionDocLibrary/4.260.43.en.1056.pdf
http://search.itu.int/history/HistoryDigitalCollectionDocLibrary/4.260.43.en.1056.pdf

Let’'s make certificates
with

https://github.com/FiloSottile/mkcert

macOS

brew install mkcert
brew install nss # if you use Firefox

sudo port selfupdate
sudo port install mkcert
sudo port install nss # if you use Firefox

Windows

choco install mkcert
O"‘

scoop bucket add extras
scoop install mkcert

Install mkcert on your computer.

Linux

sudo apt install libnss3-tools
OI"

sudo yum install nss-tools
Or

sudo pacman -S nss
Or‘
sudo zypper install mozilla-nss-tools

The little things

@ Filosottile released this on Nov 9, 2019

Note: packagers building from source now need to set the version like -1dflags "-x
main.Version=$VERSION"

« Use sudo when necessary to install in system-wide NSS stores (#¥192)
« Adda -version flag (#191)

« Speed up macOS execution by 4x for most users (#135)
« Minor usability improvements (#182, #178, #188)

~ Assets 6

@ mkcert-vl.4.1-darwin-amdé4

@ mkcert-vi.4.1-linux-amdé4

@ mkcert-vi.4.1-linux-arm
@ mkcert-vl.4.1-windows-amd64.exe
[3) Source code (zip)

[) Source code (tar.gz)

https://github.com/FiloSottile/mkcert/releases

Linux

mkcert -install

Run mkcert -install

Linux

mkcert -install

Run mkcert -install

Linux

mkcert -install

Only works if you have NSS installed.

Run mkcert -install

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS

ls -al /home/ascherger/.local/share/mkcert

FOOtCATkeyIpean is the private key.
FootCANpem is the public certificate.

Let’'s see what certificates were created.

macOS Linux

openssl version

openssl version

Sometimes OpenSSL is LibreSSL

https://www.libressl.org/

. > man ODEH‘SSL

OPENSSL(OpenSSL
OPENSSL(

NAME
sl - OpenSSL command line tool

SYNOPSIS
openssl command [command_opts] [command_args |

0 ssl list [standard-commands | digest-commands | cipher-commands | cipher-a
digest-algorithms | public

ssl no-XXX [arbitrary options]

~ Security (TLS v1)
required by them.

am is a command line tool for ust cryp hy functions of
from the shell. It can be u

atior
CSRs and CRLs

gned or encrypted mail
s, generation and verification

OpenSSL man page is your friend!

https://www.openssl.org/docs/manpages.html

openssl rsa -help

Usage: rsa [options]

Valid options are:
-help Display this summary
-inform format Input format, one of DER PEM
-outform format Output format, one of DER PEM PVK
-in val Input file
-out outfile Output file
-pubin Expect a public key in input file
-pubout Output a public key
-passout val Output file pass phrase source
-passin val Input file pass phrase source
-RSAPublicKey_1in Input is an RSAPublicKey
-RSAPublicKey_out Output is an RSAPublicKey

-noout Don't print key out

-text Print the key in text
-modulus Print the RSA key modulus

-check Verify key consistency
=5 Any supported cipher

-pvk-strong Enable 'Strong' PVK encoding level (default)
-pvk-weak Enable 'Weak' PVK encoding level
-pvk-none Don't enforce PVK encoding
-engine val Use engine, possibly a hardware device

OpenSSL RSA man page

https://www.openssl.org/docs/man1.1.1/man1/rsa.html

o . openssl rsa -help

llcage- rca lontioncl

Valid options are:
-help Display this summary
-inform format Input format, one of DER PEM

PN N VR W T

SerCroTTroer e T T T e et et
o . -in val Input file
S Al antfaiis nll‘f'lhllf file
-pubin Expect a public key in input file
-pubout Output a public key
-passout val Output file pass phrase source
-passin val Input file pass phrase source
-RSAPublicKey_1in Input is an RSAPublicKey
ARQADIIh.|‘ir‘KQ§17r\II+ nll‘f'lhllf ic_an DQADHh'Iiery

@ . -noout Don't print key out

-text Print the key in text

-modulus Print the RSA key modulus

-check Verify key consistency

- Any supported cipher

-pvk-strong Enable 'Strong' PVK encoding level (default)
Enable 'Weak' PVK encoding level
Don't enforce PVK encoding

-engine val Use engine, possibly a hardware device

OpenSSL RSA man page

https://www.openssl.org/docs/man1.1.1/man1/rsa.html

openssl rsa -in rootCA-key.pem -text -noout
RSA Private-Key: (3072 bit, primes)
modulus:

S0 v s
publicExponent: (0x10001)
privateExponent:

5 £ T
primel:

3G B 66 ¢

prime2:
difsin

exponentl:
Zchii

exponent2:
=il ific i
coefficient:
69 I

Let’s examine at our rootCA-key.pem

RFC 3447 Section 3.2 openssl rsa -in rootCA-key.pem -text -noout
RSA Private-Key: (3072 bit, primes)

modulus:
Discussion oo
publicExponent: (0x10001)
privateExponent:
Just large numbers 25l

primel:
He it
prime2:
difsin
exponentl:
Zchii
exponent2:
i
coefficient:
609

Let’s examine at our rootCA-key.pem

https://crypto.stackexchange.com/questions/3110/impacts-of-not-using-rsa-exponent-of-65537
https://tools.ietf.org/html/rfc3447#section-3.2

openssl x509 -help
Usage: x509 [options]
Valid options are:

-help

-inform format

-in infile

-outform format

-out outfile
-keyform PEM|DER
-passin val
-serial
-subject_hash
-issuer_hash
-hash

OpenSSL x509 help

Display this summary

Input format - default PEM (one of DER or PEM)
Input file - default stdin

Output format - default PEM (one of DER or PEM)
OQutput file - default stdout

Private key format - default PEM

Private key password/pass-phrase source

Print serial number value

Print subject hash value

Print issuer hash value

Synonym for -subject_hash

openssl x509 -in rootCA.pem -text -noout
Certificate:
DENE-H
Version: (0x2)
Serial Number:
ba:26:56:af:26:bd:3c:1a:e5:05:9d:fa:0b:83:40:26
Signature Algorithm: sha256WithRSAEncryption
Issuer: 0 = mkcert development CA, OU = ascherger@incontrol (Alan Scherger), CN = mkcert
ascherger@incontrol (Alan Scherger)
Validity
Not Before: Feb $34:27 GMT
Not After : Feb 2 2 GMT
Subject: 0 = mkcert development CA, OU = ascherger@incontrol (Alan Scherger), CN = mkcert
ascherger@incontrol (Alan Scherger)
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public-Key: (3072 bit)
Modulus:

Exponent: (0x10001)
X509v3 extensions:

X509v3 Key Usage: critical
Certificate Sign

X509v3 Basic Constraints: critical
CA:TRUE, pathlen:0

X509v3 Subject Key Identifier:
B9:D5:B3:06:55:B4:E6:CE:CB:CB:56:B3:4A:35:96:A3:AA:5F:2D:C4

Signature Algorithm: sha256WithRSAEncryption
@ILEES & 5

Let’s examine at our rootCA.pem public certificate.

openssl x509 -in rootCA.pem -noout -serial

serial=BA2656AF26BD3C1AE5059DFA0B834026

Serial Number - Unique per Certificate Authority

openssl x509 -in rootCA.pem -noout -dates
notBefore=Feb «34:27 GMT

notAfter=Feb :34: 27 GMT

Validity Dates - “Expired Certificates”

Quick Q/A

Tangent Time

10S 13 and macOS 10.15 - Gotchya

https://support.apple.com/en-us/HT210176

Support

Requirements for trusted certificates in iOS 13
and macOS 10.15

Learn about new security requirements for TLS server certificates in iOS 13 and macOS
10.15.

All TLS server certificates must comply with these new security requirements in iOS 13 and macOS 10.15:

o© o TLS server certificates and issuing CAs using RSA keys must use key sizes greater than or equal to
2048 bits. Certificates using RSA key sizes smaller than 2048 bits are no longer trusted for TLS.

« TLS server certificates and issuing CAs must use a hash algorithm from the SHA-2 family in the
signature algorithm. SHA-1 signed certificates are no longer trusted for TLS.

o TLS server certificates must present the DNS name of the server in the Subject Alternative Name
extension of the certificate. DNS names in the CommonName of a certificate are no longer trusted.

https://support.apple.com/en-us/HT210176

10S 13 and macOS 10.15 - Gotchya

https://support.apple.com/en-us/HT210176

.3 Pt

Why must we play these games? &

0@ < @

Additionally, all TLS server certificates issued after July 1, 2019 (as indicated in the NotBefore field of the
certificate) must follow these guidelines:

o TLS server certificates must contain an ExtendedKeyUsage (EKU) extension containing the id-kp-
serverAuth OID.

o o TLS server certificates must have a validity period of 825 days or fewer (as expressed in the NotBefore
and NotAfter fields of the certificate).

Connections to TLS servers violating these new requirements will fail and may cause network failures,
apps to fail, and websites to not load in Safari in iOS 13 and macOS 10.15.

Published Date: November 03, 2019

Helpful? Yes] [No

https://support.apple.com/en-us/HT210176

Shorter Certification Expiration

Pros What about?

e Limit damage from: e Wildcard usage
o Key compromise o *.example.com
o Mis-issuance e Host security

e Encourage Automation ® |[ssuer security

e Transparency in the industry

https://letsencrypt.ora/2015/11/09/why-90-days.html

https://letsencrypt.org/2015/11/09/why-90-days.html

#GarbagelsGarbage
X X

$ openssl x509 -in /Users/ascherger/Library/Application\ Support/mkcert/rootCA.pem -noout -startdate
notBefore=Apr 3158 GMT

$ openssl x509 -in /Users/ascherger/Library/Application\ Support/mkcert/rootCA.pem -noout -enddate
notAfter=Apr 15 GMT

$ openssl x509 -in localhost+1l.pem -noout -startdate
notBefore=Jun :00: GMT

$ openssl x509 -in localhost+l.pem -noout -enddate
notAfter=Jun 213 GMT

FiloSottile/mkcert GH-174

https://github.com/FiloSottile/mkcert/issues/174

All better.

openssl x509 -in rootCA.pem -noout -i1ssuer
issuer=0 = mkcert development CA,

OU = ascherger@incontrol (Alan Scherger),
CN = mkcert ascherger@incontrol (Alan Scherger)

Issuer - who created the cert

openssl x509 -in rootCA.pem -noout -subject
subject=0 = mkcert development CA,

OU = ascherger@incontrol (Alan Scherger),
CN = mkcert ascherger@incontrol (Alan Scherger)

Subject - who is the cert

openssl x509 -in rootCA.pem -noout -1issuer
issuer=0 = mkcert development CA,
OU = ascherger@incontrol (Alan Scherger),
CN = mkcert ascherger@incontrol (Alan Scherger)

openssl x509 -in rootCA.pem -noout -subject
subject=0 = mkcert development CA,
OU = ascherger@incontrol (Alan Scherger),
CN = mkcert ascherger@incontrol (Alan Scherger)

For Root Certificates, they should always be the same.

openssl x509 -in rootCA.pem -noout -ext keyUsage

X509v3 Key Usage: critical
oY | Certificate Sign

Key Usage

openssl x509 -in rootCA.pem -noout -ext subjectKeylIdentifier

X509v3 Subject Key Identifier:
B9:D5:B3 755:B4:E6:CE:CB:CB:56:B3:4A:35:96: A3 AN:

Subject Key Identifier

Offroad Time

End-entity Certificate
Owner's name

Owner's public key

Issuer's (CA's) reference
name
Issuer's signature Intermediate Certificate
‘ Owner's (CA's) name
sign :
d Owner's public key

Issuer's (root CA's) reference

name

Issuer's signature

‘ . Root CA's name
sign

. Root CA's public key

Root CA's signature

self-sign

Root Certificate

Certificate Chain of Trust

And we’re back.

mkcert localhost

Using the local CA at "/home/ascherger/.local/share/mkcert" +}

Created a new certificate valid for the following names B

- "localhost"
- "127.0.0.1"

The certificate is at "./localhost+l.pem" and the key at "./localhost+l-key.pem"

Create End-Entity/Leaf Certificate

openssl x509 -in localhost+1l.pem -noout -dates

notBefore=Jun 1 00:00:00 2019 GMT
notAfter=Jun 8 22:47:51 2030 GMT

Dates

openssl x509 -in_localhost+1l.pem -noout -issuer
@8 1issuer=0 = mkcert development CA,
00 = ascherger@wncontroC (Alan SCherger),
CN = mkcert ascherger@incontrol (Alan Scherger)

openssl x509 -in_localhost+l.pem -noout -subject
@8 subject=0 = mkcert development certificate,
OU = ascherger@incontrol (Alan Scherger)

Issuer (who created the cert) & Subject (who is the cert)

Root Cert: _ , e
openssl x509 -in rootCA.pem -noout -ext subjectKeylIdentifier

X509v3 Subject Key Identifier:
@. B9:D5:B3:06:55:B4:E6:CE:CB:CB:56:B3:4A:35:96:A3:AA:

Localhost Cert:
openssl x509 -in localhost+ -noout -ext authorityKeyIdentifier
X500y 3 AHThm‘iTy pr Tdentifier:

@- keyid:B9:D5:B3:06:55:B4:E6:CE:CB:CB:56:B3:4A:35:96:A3:AA:5F:2D:C4

Authority Key ldentifier matches CA Subject Key Identifier

openssl x509 -in localhost+l.pem -noout -ext basicConstraints

X509v3 Basic Constraints: critical
CA: FALSE

Basic Constraints - this is not a CA.

openssl x5®9 -in localhost+1.pem -noout -ext keyUsage

1O} X509v3 Key | ritical
Dlgltal Slgnature Key Encipherment

openssl x509 -in localhost+1.pem -noout -ext extendedKeyUsage
o X509v3 Extended Key Usage:
TLS Web Server Authentication

Key Usage and Extended Key Usage

© . mkcert -client localhost
UStng tne tocal CA at /nome/ascnerger/.local/share/mkcert" +

Created a new certificate valid for the following names T8

- "localhost"
- "127.0.0.1"

The certificate is at "./localhost+l-client.pem" and the key at "./localhost+l-client-key.pem" y/

openssl x509 -in localhost+l-client.pem -noout -ext extendedKeyUsage
X509v3 Extended Key Usage:
@- TLS Web Client Authentication,|TLS Web Server Authentication

Let’s make a Client cert, and see the difference.

openssl x509 -in localhost+1l.pem -noout -serial

()I serial=A75854C9A247F4B969C0699F5020C932

Remember the Web Server Serial Number.

docker run -p 4448:443 -v " pwd :/etc/nginx/conf.d"

server {

iListentis: 1% =0n;
listen http2;
server name localhost:
ssl_certificate /etc/nginx/conf.d/localhost+1.pem;
ssl_certificate_key /etc/nginx/conf.d/localhost+

ocation / 1

root /usr/share/nginx/html;

index 1index. .htm;
b
error_page /50x.html;
1L on = /50x. {

root /usr/share/nginx/html;

Spin up a web server!

& - C @& localhost:4448

|

\

© Guest

Certificate Viewer: OU=ascherger@incontrol (Alan
Scherger),0=mkcert development certificate

General Details
Certificate Hierarchy

~ mkcert development CA 247435472660762231041133176134008258598

OU=ascherger@incontrol (Alan Scherger),0=mkcert development certificate

Certificate Fields

= Certificate
Version
Serial Number
Certificate Signature Algorithm
Issuer
~ Validity
Not Before

Not After

Saldailis

00:A7:58:54:C9:A2:47:F4:89:69:C0:69:9F:50:20:C9:32

We see the serial number matches.

& - C & localhost:4448

) Gue

General = Details

‘ Certificate Viewer: OU=ascherger@incontrol (Alan
Scherger),0=mkcert development certificate

This certificate has been verified for the following usages:

I
W
F
C
b SSL Server Certificate
@ Common Name (CN)
e

<Not Part OF Certificate>

Organizational Unit (OU)

Issued By
Common Name (CN)
Organization (O)
Organizational Unit (OU)
Validity Period
Issued On
Expires On
Fingerprints

SHA-256 Fingerprint

SHA-1 Fingerprint

ascherger@incontrol (Alan Scherger)

mkcert ascherger@incontrol (Alan Scherger)
mkcert development CA
ascherger@incontrol (Alan Scherger)

Friday, May 31, 2019 at 7:00:00 PM
Saturday, June 8, 2030 at 5:47:51 PM

6F 39 59 5F 74 EB 45 91 D2 30 5E 37 D9 27 60 5D
S5B6FBD 5D 79212DAADBB3 ED 5A06 A0 37 08
9B F5 D6 EF OF 7A 67 DD 13 78 3F 95 OF F8 6B DF
66 FED278B

No Common Name

P WEIOme Lo nginas | .

- C @& localhost:4448

‘ Certificate Viewer: OU=ascherger@incontrol (Alan
Scherger),0=mkcert development certificate

General Details

Certificate Hierarchy

-~ o 5 T

Certificate Fields

Certificate Key Usage

Extended Key Usage

Certificate Basic Constraints

Certification Authority Key ID

Certificate Subject Alternative Name
Certificate Signature Algorithm
Certificate Signature Value

« Fingerprints

Field Value

Not Critical
@ DNS Name: localhost
IP Address: 127.0.0.1

~ mkcert development CA 247435472660762231041133176134008258598

OU=ascherger@incontrol (Alan Scherger),0=mkcert development certificate

O «

Localhost is listed in Subject Alternative

mkcert :
Using the local CA at "/home/ascherger/.local/share/mkcert" +

Created a new certificate valid for the following names B
"192.168.1.100"

The certificate is at "./192.168.1.100.pem" and the key at "./192.168.1.100-key

server {
IListen [e =0ni;
listen http2;
server pname localhost;:
ssl_certificate /etc/nginx/conf.d/192.168.1.100.pem;
ssl_certificate_key /etc/nginx/conf.d/192.168.1.
tocaccon /7 3
root /usr/share/nginx/html;
index index. .htm;
}
error_page /50x.html;
location = /50x. {
root /usr/share/nginx/html;
I
5

Make a bogus cert.

@ A Notsecure | localhost:4448

A

Your connection is not private

Attackers might be trying to steal your information from localhost (for example,
passwords, messages, or credit cards). Learn more

NET:ERR_CERT_COMMON_NAME_INVALID

This server could not prove that it is localhost; its security certificate does not specify
Subject Alternative Names. This may be caused by a misconfiguration or an attacker
intercepting your connection.

Proceed to localhost (unsafe)

Common Name in invalid. #GarbagelsGarbage

@ A Notsecure | localhost:4448

Yo

Atte
pass

NET{

Certificate Viewer: OU=ascherger@incontrol (Alan
Scherger),0=mkcert development certificate

General | Details
Certificate Hierarchy

= mkeert development CA 247435472660762231041133176134008258598

OU=ascherger@incontrol (Alan Scherger),0=mkcert development certificate

Certificate Fields

Certificate Key Usage

Extended Key Usage

Certificate Basic Constraints

Certification Authority Key ID

Certificate Subject Alternative Name
Certificate Signature Algorithm
Certificate Signature Value

 Fingerprints

Not Critical
IP Address: 192.168.1.100

Address not found in Subject Alternative

Name either.

But wait...
This is not our final form.

$ openssl s_client -connect google.com:443

CONNECTED(00000003)

depth=2 0U = GlobalSign Root CA - R2, 0 = GlobalSign, CN = GlobalSign

verify return:1

depth=1 C = US, 0 = Google Trust Services, CN = GTS CA 101

verify return:1

depth=0 C = US, ST = California, L = Mountain View, 0 = Google LLC, CN = *.google.com
verify return:1

Certificate chain

0 s: US, ST = California, L = Mountain View, 0 = Google LLC, CN = *.google.com
US, 0 = Google Trust Services, CN = GTS CA 101

s:C = US, 0 = Google Trust Services, CN = GTS CA 101

1:0U = GlobalSign Root CA - R2, 0 = GlobalSign, CN = GlobalSign

il

ver certificate
-----BEGIN CERTIFICATE
<certificate content>

subject=C = US, ST = California, L = Mountain View, 0 = Google LLC, CN = *.google.com

= US, 0 = Google Trust Services, CN GTS CA 101

No client certificate CA names sent
: SHA256
: ECDSA
SX25510 825 38bits

<:> SSL handshake has read 3798 bytes and written 392 bytes
: 0K
New, TLSv1.3, Cipher is TLS_AES_256_GCM_SHA384
SETVETD pupitic REy LS5 250 DLL
Secure Renegotiation IS NOT supported
: NONE
: NONE
No ALPN negotiated
Early data was not sent
: 0 (ok)

openssl s_client -connect google.com:443

openssl s_client -connect localhost:4448

CONNECTED(00000003)

Can't use SSL_get_servername

depth=0 0 = mkcert development certificate, OU = ascherger@incontrol (Alan Scherger)

verify error:num=20:unable to get local issuer certificate

verify return:1

depth=0 0 = mkcert development certificate, OU = ascherger@incontrol (Alan Scherger)

verify error:num=21:unable to verify the first certificate

verify return:1

Certificate chain

0 s:0 = mkcert development certificate, OU = ascherger@incontrol (Alan Scherger)
1:0 = mkcert development CA, OU = ascherger@incontrol (Alan Scherger), CN = mkcert

ascherger@incontrol (Alan Scherger)

Server certificate

<cert>

subject=0 = mkcert development certificate, OU = ascherger@incontrol (Alan Scherger)

issuer=0 = mkcert development CA, OU = ascherger@incontrol (Alan Scherger), CN = mkcert
ascherger@incontrol (Alan Scherger)

No client certificate CA names sent
: SHA256
: RSA-PSS
SEX25519582530biits
SSL handshake has read 1757 bytes and written 386 bytes
: unable to verify the first certificate

Certificate cannot be verified - because the CA was not installed.

@. openssl version -d
OPENSSLDIR:

"/home/ascherger/miniconda3/ssl"

$ 1s -al /home/ascherger/miniconda3/ssl/

total 264
drwxrwxr-x
drwxrwxr-x
-rw-rw-r--
Lrwxrwxrwx
-rw-rw-r--
-rw-rw-r--
drwxrwxr-x
-rw-rw-r--
-rw-rw-r--

NNNNMNNREFEO OULW

ascherger
ascherger
ascherger
ascherger
ascherger
ascherger
ascherger
ascherger
ascherger

ascherger
ascherger
ascherger
ascherger
ascherger
ascherger
ascherger
ascherger
ascherger

4096
4096
223687
10

412
412
4096
10909
10909

cacert.pem
cert.pem ->
¢t log list.
ct_log_list.
misc
openssl.cnf
openssl.cnf.

cacert.pem
cnf
cnf.dist

dist

Newer versions of OpenSSL can show you its current dir,

openssl s_client -connect localhos

CONNECTED(00000003)

Can't C rve &

depth: mkcert development CA, OU = ascherger@incontrol (Alan Scherger), CN = mkcert
ascherger@incontrol (Alan Scherger)

verify return:1

depth=0 0 = mkcert development certificate, OU = ascherger@incontrol (Alan Scherger)
verify return:1

Certificate chain
0 s:0 = mkcert development certificate, OU = ascherger@incontrol (Alan Scherger)
1:0 = mkcert development CA, OU = ascherger@incontrol (Alan Scherger), CN = mkcert
ascherger@incontrol (Alan Scherger)
Server certificate
<certificate>
subject=0 = mkcert development certificate, OU = ascherger@incontrol (Alan Scherger)

issuer=0 = mkcert development CA, OU = ascherger@incontrol (Alan Scherger), CN = mkcert
dincontrol (Alan Scherger)

No client certificate CA names sent
SHA256
: RSA-PSS
: X25519, 253 bits

SSL handshake has read 1757 bytes and written 386 bytes

New, TLSv1.2, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Server public key is 2048 bit
Secure Renegotiation IS supported
: NONE
: NONE
No ALPN negotiated
: <session data>

Adding the certificate, gets us a valid connection.

But wait...
We don’t even need NGINX.

openssl s_server \
-key localhost+1l-key.pem \
-cert localhost+1.pem \
-CAfile ~/Library/Application\ Support/mkcert/rootCA.pem \
-www -accept -Verify

openssl s_client \
-CAfile ~/Library/Application\ Support/mkcert/rootCA.pem \
-connect localhost:4448

OpenSSL has an s_server

ACCEPT

depth=1 0 = mkcert development CA, OU = ascherger@MacBook-Pro.localdomain (Alan Scherger), CN = mkcert
ascherger@MacBook-Pro.localdomain (Alan Scherger)

verify return:

depth=0 0 = mkcert development certificate, OU = ascherger@acBook-Pro.localdomain (Alan Scherger)
verify return:

OpenSSL can validate Client certificates.

openssl pkcs12 -export \
-inkey ./localhost+1-client-key.pem \
-in ./localhost+1-client.pem \
-certfile ~/Library/Application\ Support/mkcert/rootCA.pem \
-out local.pfx

® O ® @ iocalhost X Wk
Keychain > <« C ([® localhost:4448) Guest
login > My Certificates >

File > Import Items
This site can't provide a secure connection

localhost didn’t accept your login certificate, or one may not have been provided.

Try contacting the system admin.

ERR_BAD_SSL_CLIENT_AUTH_CERT

OpenSSL can validate Client certificates.

Name

ascherger@MacBook-Pro.localdomain (Alan Scherger)
Issued by: mkcert ascherger@MacBook-Pro.localdomain (Alan Scherger)
Expires: Saturday, June 8, 2030 at 9:17:43 PM Central Daylight Time

@ This certificate is valid

> ascherger@MacBook-Pro.localdomain (Alan Scherger)

[NON) ascherger@MacBook-Pro.localdomain (Alan S
= » ascherger@MacBook-Pro.localdomain (Alan Scherger)
Cerlificale

CHandeard

b

¥V Trust

When using this certificate:

Issued by: mkcert ascherger@MacBook-Pro.localdomain (Alan Scherger)
¢ 0 Expires: Saturday, June 8, 2030 at 9:17:43 PM Central Daylight Time
@ This certificate was signed by an untrusted issuer

Use Custom Settings ?

Secure Sockets Layer (SSL)

Always Trust SSL

Extensible Authentication (EAP)
IP Security (IPsec)

Code Signing

Time Stamping

X.509 Basic Policy

Always Trust

no value specitie

no value specified
no value specified
no value specified
no value specified

no value specified

o] o of of o

® ©®® (localhost X +

@ localhost:4448 e Guest
N\ Select a certificate

Select a certificate to authenticate yourself to localhost:4448
é’ O

ascherger@MacBook-Pro.localdomain (Alan Scherger) (mkcert ascherger@Mac...

This sit¢

localhost d

Try contact Certificate Information:

ascherger@MacBook-Pro.localdomain (Alan Scherger
ERR_BAD_SS| | |G gere (Alaw.Scherget)
i Issued by: mkcert ascherger@MacBook-Pro.localdomain (Alan Scherger)
. ¢ Expires: Saturday, June 8, 2030 at 9:17:43 PM Central Daylight Time

© This certificate is marked as trusted for this account

R VPP

Hide Certificate Cancel

Processing request...

Select our Client Certificate

© ® e https://localhost:4448 X -

@ localhost:4448

s_server -key localhost+l-key.pem -cert localhos L&) mkeert ascherger@MacBook-Pro.localdomain (Alan Scherger) ‘ /rootCA.pem -
Secure Renegotiation IS supported
Ciphers supported in s_server binary

TLSv1/SSLv3:ECDHE-RSA-AES256-GCM-SHA384TLSv1/SSL -
TLSv1/SSLv3:ECDHE-RSA-AES256-SHA384 TLSv1/SSLv3

TLSv1/SSLv3:ECDHE-RSA-AES256-SHA TLSv1/SSLv3 = ascherger@MacBook-Pro.l Id. in (Alan Scherger)
TLSv1/SSLv3:DHE-RSA-AES256-GCM-SHA384TLSv1/SSLv3 ("M/”;”/ﬁ Issued by: mkcert ascherger@MacBook-Pro.localdomain (Alan Scherger)
TLSv1/SSLv3:DHE-RSA-AES256-SHA TLSv1/SSLv3 =t 4| Expires: Saturday, June 8, 2030 at 9:00:43 PM Central Daylight Time
TLSv1/SSLv3:ECDHE-RSA-CHACHA20-POLY1305TLSv1/SSL @ This certificate is valid
TLSv1/SSLv3:GOST2012256-GOST89-GOST89TLSv1/SSLv3 v Details

TLSv1/SSLv3:DHE-RSA-CAMELLIA256-SHA TLSv1/SSLv3

TLSv1/SSLv3:AES256-GCM-SHA384 TLSv1/SSLv3 Subject Name

TLSv1/SSLv3:AES256-SHA TLSv1/SSLv3 Organization mkcert development certificate
TLSv1/SSLv3:CAMELLIA256-SHA TLSv1/SSLv3 Organizational Unit ascherger@MacBook-Pro.localdomain (Alan Scherger)
TLSv1/SSLv3:ECDHE-ECDSA-AES128-GCM-SHA256TLSv1/S

TLSv1/SSLv3:ECDHE-ECDSA-AES128-SHA256TLSv1/SSLv3 R —

TLSv1/SSLv3:ECDHE-ECDSA-AES128-SHA TLSv1/SSLv3 L.

TLSv1/SSLv3:DHE-RSA-AES128-SHA256 TLSv1/SSLv3 Organization, mkcert;development CA
TLSv1/SSLv3:DHE-RSA-CAMELLIA128-SHA256TLSv1/SSLv Organizational Unit ascherger@MacBook-Pro.localdomain (Alan Scherger)
TLSv1/SSLv3:AES128-GCM-SHA256 TLSv1/SSLv3 Common Name mkcert ascherger@MacBook-Pro.localdomain (Alan
TLSv1/SSLv3:AES128-SHA TLSv1/SSLv3 Scherger)

TLSv1/SSLv3:CAMELLIA128-SHA TLSv1/SSLv3

TLSv1/SSLv3:ECDHE-ECDSA-RC4-SHA TLSv1/SSLv3 S ———
TLSv1/SSLv3:RC4-MD5 TLSv1/SSLv3

TLSv1/SSLv3:ECDHE-ECDSA-DES-CBC3-SHA TLSv1/SSLv3

TLSv1/SSLv3:DES-CBC3-SHA

Ciphers common between both SSL end points:

ECDHE-ECDSA-AES128-GCM-SHA256 ECDHE-RSA-AES128-GCM-SHA256 ECDHE-ECDSA-AES256-GCM-SHA384
ECDHE-RSA-AES256-GCM-SHA384 ECDHE-ECDSA-CHACHA20-POLY1305 ECDHE-RSA-CHACHA20-POLY1305
ECDHE-RSA-AES128-SHA ECDHE-RSA-AES256-SHA AES128-GCM-SHA256
AES256-GCM-SHA384 AES128-SHA AES256-SHA

New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES128-GCM-SHA256
SSL-Session:
Protocol
Cipher
Session-ID:
Session-ID-ctx: 01000000
Master-Key: 688223D6E3B399DBBOF1BB06DA40D45CBE04645E55318E1FAF155ECB67569233817FE48B7824C75C241B1B4B8EE25271
Start Time: 1591670159
Timeout : 7200 (sec)

Enjoy that sweet sweet Client Verification.

TLSv1.2
ECDHE-RSA-AES128-GCM-SHA256

To Recap

mkcert to create local certs
OpenSSL to Debug Certs
Nginx to play with certs
OpenSSL CLI can be a server

and a client
Error messages:
#GarbagelsGarbage

o badssl.com

Quick Q/A

/Zookeeper gets
MTLS support!

Architecture Overview

Minimum 3 node Ensemble
Hierarchical Key-Value Store

- -
-
k' Y ’ ~
- N ’ ~
s N v N
x LN e N4

The Ensemble forms a Quorum, and elects a Leader.

https://github.com/flyinprogrammer/learn-mtls-the-hard-way/blob/master/examples/zookeeper-digitalocean/cloudinit.sh#L55-L57

https://github.com/flyinprogrammer/learn-mtls-the-hard-way/blob/master/examples/zookeeper-digitalocean/cloudinit.sh#L55-L57

And Clients connect to the servers.

=-—-m
=

=
=

Admins connect to them.

—-—-m
=

Admin HTTP API

=
=

Why do we care about mTLS?

e Can you trust your hypervisor?
o XEN CVE Count: 296
e Canyou trust all the hardware in your

Datacenter? H OW,S yo u r

o Intel Management Engine
o AWS Nitro

o Google Titan M ‘d h
e Can you trust the other VMs running next to you I n S I e r t re at

in hardware?

o Meltdown and Spectre tra i n i n g?

e How do you know you aren’t currently being
owned by a Zero-day?
o New threats that your monitoring cannot detect
e How do you know the coffee pot on a

misconfigured VLAN isn’t stealing your data?

Build a chain of trust.

Protect the server
communication.

We can protect Quorum traffic.

-
=

Admin HTTP API

=
=

Protect the client
communication.

We can protect Client traffic.

&--—-
=

Admin HTTP API

=
=

Protect how the
Admins administrate
the cluster.

We can protect Admin access.

&--—-
=

/‘

i Admin HTTP API Q

Zookeeper Quorum Code act as Servers & Clients

(KeyStore - Server E< 4
Certificates

Netty Server
Netty Server TLS Web server y

Authorities

KeyStore - Server
Certificates

- Netty Client
Netty Client y TrsiSioe - Eamiesis

Authorities

J -

Zookeeper Quorum Code act as Servers & Clients

(KeyStore - Server
Certificates

KeyStore - Server
Certificates

o

Netty Server

Netty Client

)

TLS Web Client

Netty Client

\

Netty Server

ssssssss

TrustStore - Certificate
Authorities

Zookeeper Configuration

(KeyStore - Server
Certificates

ssssssss

Everything Else

TrustStore - Certlflcate
Authorities

)

Quorum (Server <-> Server) for Netty Server & Client

keytool -genkeypair -alias zk-1.private.zkocean.hpy.dev \
-keyalg RSA -keysize -dname "cn=zk-1.private.zkocean.hpy.dev" \
-keypass password \

-keystore /opt/zookeeper/conf/keystore.jks \
-storepass password \
-storetype pkcsl2

zk-1.private.zkocean.hpy.dev 10.10.20.4

zk-1.zkocean.hpy.dev 64.227.26.221

Make some servers, setup some DNS - use
private IPs and addresses for hostnames.

e Caused by: java.security.cert.CertificateException: Failed to verify both host address and host name
at org.apache.zookeeper.common.ZKTrustManager.performHostVerification(ZKTrustManager. java:)
at org.apache.zookeeper.common.ZKTrustManager.checkClientTrusted(ZKTrustManager.java:79)
at sun.security.ssl.ServerHandshaker.clientCertificate(ServerHandshaker.java:)

e more
Caused by: javax.net.ssl.SSLPeerUnverifiedException: Certificate for < > doesn't match common
name of the certificate subject: zk-2.private.zkocean.hpy.dev

at org.apache.zookeeper.common.ZKHostnameVerifier.matchCN(ZKHostnameVerifier. java:)
at org.apache.zookeeper.common.ZKHostnameVerifier.verify(ZKHostnameVerifier. java:)

| agree - 10.10.20.2 = zk-2.private.zkocean.hpy.dev
But why do we think it ever would?

matchCN does throw this error, now let’s go UP the stack.

private static void matchCN(final String host, final String cn) throws SSLException {
final String normalizedHost = host.tolLowerCase(Locale.R0O0T);
final String normalizedCn = cn.tolLowerCase(Locale.ROOT);
if (!matchIdentityStrict(normalizedHost, normalizedCn)) {
throw new SSLPeerUnverifiedException("Certificate for <
+ "common name of the certificate subject:

" 1.

+ host + "> doesn't match

+ cn);

https://github.com/apache/zookeeper/blob/79a99ac97cea942967a2a08e7873a0ceafa2e046/z
ookeeper-server/src/main/javal/org/apache/zookeeper/common/ZKHostnameVerifier.java#L23
4-L.241

https://github.com/apache/zookeeper/blob/79a99ac97cea942967a2a08e7873a0cea9a2e046/zookeeper-server/src/main/java/org/apache/zookeeper/common/ZKHostnameVerifier.java#L234-L241
https://github.com/apache/zookeeper/blob/79a99ac97cea942967a2a08e7873a0cea9a2e046/zookeeper-server/src/main/java/org/apache/zookeeper/common/ZKHostnameVerifier.java#L234-L241
https://github.com/apache/zookeeper/blob/79a99ac97cea942967a2a08e7873a0cea9a2e046/zookeeper-server/src/main/java/org/apache/zookeeper/common/ZKHostnameVerifier.java#L234-L241

Turns out CN matching is a thing of the past.

final X500Principal subjectPrincipal = cert.getSubjectX500Principal();
final String cn = extractCN(subjectPrincipal.getName(X500Principal.RFC2253));
if (cn ==) {

throw new SSLException("Certificate subject for <"

3

+ host
+ "> doesn't contain "
+ "a common name and does not have alternative names");

k

matchCN(host, cn);

https://github.com/apache/zookeeper/blob/79a99ac97ceaf42967a2a08e7873a0ceafa2e046/z
ookeeper-server/src/main/javal/org/apache/zookeeper/common/ZKHostnameVerifier.java#L17
3-L.186

https://github.com/apache/zookeeper/blob/79a99ac97cea942967a2a08e7873a0cea9a2e046/zookeeper-server/src/main/java/org/apache/zookeeper/common/ZKHostnameVerifier.java#L173-L186
https://github.com/apache/zookeeper/blob/79a99ac97cea942967a2a08e7873a0cea9a2e046/zookeeper-server/src/main/java/org/apache/zookeeper/common/ZKHostnameVerifier.java#L173-L186
https://github.com/apache/zookeeper/blob/79a99ac97cea942967a2a08e7873a0cea9a2e046/zookeeper-server/src/main/java/org/apache/zookeeper/common/ZKHostnameVerifier.java#L173-L186

Wait wut... RFC 2818 - May 2000

3.1 Server Identity

If a subjectAltName extension of type dNSName is present, that MUST
be used as the identity. Otherwise, the (most specific) Common Name
field in the Subject field of the certificate MUST be used. Although
the use of the Common Name is existing practice, it is deprecated and

Certification Authorities are encouraged to use the dNSName instead.

© Caused by:
at
at
at

Caused by:
name of the certificate subject: zk-2.private.zkocean.hpy.dev

at
at

java.security.cert.CertificateException: Failed to verify both host address and host name
O0rg.apache.zooKeeper .common.ZKIrustManager .pertormHoStVer ur tcat ton(ZKIrustManager . java.
org.apache.zookeeper.common.ZKTrustManager.checkClientTrusted(ZKTrustManager. java:79)
sun.security.ssl.ServerHandshaker.clientCertificate(ServerHandshaker. java:)

more
javax.net.ssl.SSLPeerUnverifiedException: Certificate for < > doesn't match common

org.apache.zookeeper.common.ZKHostnameVerifier.matchCN(ZKHostnameVerifier. java:)
org.apache.zookeeper.common.ZKHostnameVerifier.verify(ZKHostnameVerifier. java:)

Turns out the fact that it doesn’t match Host Address or Host
Name is actually the bigger problem.

> B@ conf @0verride

S B An 3 4 public void checkClientTrusted(

avorites § -

X589Certificate[] chain, chain: X509Certificate[1]@3750

String authType, authType: "RSA"
Socket socket) throws CertificateException { socket: "3¢3ff5fd[SSL_NULL_WITH_NULL_NULL: Socket[addr=/10.10.20.2,port=36766,localport=3888]1]"
x589ExtendedTrustManager.checkClientTrusted(chain, authType, socket); chain: X509Certificate[1]@3750 authType: "RSA" socket: "3c3ff5fd[SSL_NULL_WITF

- Bookmarks - if (clientHostname{[8jicationEnabled) {

parent auto-added

@ Breakpoints 9 performHostVerification(socket.getInetAddress(), chain[@]);
+
ebug: T, Unnamed
k Debugger [Console = ~» ¥ B » B2
Frames Variables
1 "ListenerHandler-zk-1.private.zkoc...888"@3,747 in group "main": RUNNING ~ Y | + | > {.}this = {ZKTrustManager@3749}

» I e lo G pee oo aepe MO > <1 1 = (x505Certificate[1]@3750)
IS A o e v an ocypity col)

ot s

processMessage:233, ServerHandshaker (sun.security.ssl)
v it socket ={SSLSocketimpl@3752} "3¢3fF5Fd[SSL_NULL_WITH_NULL_NULL: Socket[addr=/10.10.20.2,port=36766,localport=3888]]"

1 processLoop:1082, Handshaker (sun.security.ssl)

=

T =
readRecord: 1079, SSLSocketimpl (sun.security.ssl) ¥ expectir
performinitialHandshake:1388, SSLSocketimpl (sun.security.ssl)
startHandshake: 1416, SSLSocketimpl (sun.security.ss()
getSession:2309, SSLSocketimpl (sun.security.ssl)
detectMode:269, UnifiedServerSocketSUnifiedSocket (org.apache.zookeeper.server.quorum) ¥ rolelsServer =true
getSocket:298, UnifiedServerSocketSunifiedSocket (org.apache.zookeeper.server.quorum)
access$400:172, UnifiedServerSocketSUnifiedSocket (org.apache.zookeeper.server.quorum)
getRealinputStream:699, UnifiedServerSocketSuUnifiedinputStream (org.apache.zookeeper.sery
read:693, UnifiedServerSocketSUnifiedinputStream (org.apache.zookeeper.server.quorum) @ autoC
fill:246, BufferedinputStream (java.io) ® acc ={AccessControlContext@3800}

read1:286; Bufferedinputstream;(java./o) o5 = [CipherSuiteList@3801) "[TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, TLS_ECI
read:345, BufferedinputStream (java.io)
readFullv:195. DatalnputStream fiava.io)

Finished =false

¥ closeReason =null

¥ docClientAuth =

¥ enableSessionCreation =true

¥ hos!

null

= =true

v v

¥ enabledCiphersuit

¥ iden

cationProtocol = null

Turns out the fact that it doesn’t match Host Address or
Host Name is actually the bigger problem.

@Override

public void checkClientTrusted(
X509Certificate[] chain,
String authType,
Socket socket) throws CertificateException {

x509ExtendedTrustManager.checkClientTrusted(chain, authType, socket);
if (clientHostnameVerificationEnabled) {

performHostVerification(socket.getInetAddress(), chain[0]);

s

We will always use IP addresses to validate Client certificates.
Because the socket only ever has the address. @

public class QuorumX509Util extends X509Util {

@override
protected String getConfigPrefix() {
return "zookeeper.ssl.quorum.";

}

@Override

protected boolean shouldVerifyClientHostname() {
return 3

¥

Turns out we also FORCE verifying Client HostName -
however the method name is misleading because the
socket only ever has an Address.

Client Hosthname verification is based on
sslServerHostnameVerificationEnabled &&
effectively a hardcoded true.

boolean sslServerHostnameVerificationEnabled =
confia.aetBoolean(this.aetSslHostnameVerificationEnabledPropertv(),)i

boolean sslClientHostnameVerificationEnabled = sslServerHostnameVerificationEnabled &&
shouldVerifyClientHostname();

https://github.com/apache/zookeeper/blob/79a99ac97cea942967a2a08e7873a0ceafa2e046/z
ookeeper-server/src/main/java/org/apache/zookeeper/common/X509Util.java#L362-L363

https://github.com/apache/zookeeper/blob/79a99ac97cea942967a2a08e7873a0cea9a2e046/zookeeper-server/src/main/java/org/apache/zookeeper/common/X509Util.java#L362-L363
https://github.com/apache/zookeeper/blob/79a99ac97cea942967a2a08e7873a0cea9a2e046/zookeeper-server/src/main/java/org/apache/zookeeper/common/X509Util.java#L362-L363

But wait...

The docs reference this

ssl.quorum.clientAuth
thing.

There’s also ssl.quorum.clientAuth=none
which controls netty’s configuration.

if (!isClientSocket) {
switch (clientAuth) {
case NEED:
sslParameters.setNeedClientAuth(
break;
case WANT:

sslParameters.setWantClientAuth(
break;

default:
sslParameters.setNeedClientAuth(

break;

https://github.com/apache/zookeeper/blob/11c07921c15e2fb7692375327b53f26a583b77ca/zo
okeeper-server/src/main/java/org/apache/zookeeper/common/SSLContextAndOptions.java#L
155-L167

https://github.com/apache/zookeeper/blob/11c07921c15e2fb7692375327b53f26a583b77ca/zookeeper-server/src/main/java/org/apache/zookeeper/common/SSLContextAndOptions.java#L155-L167
https://github.com/apache/zookeeper/blob/11c07921c15e2fb7692375327b53f26a583b77ca/zookeeper-server/src/main/java/org/apache/zookeeper/common/SSLContextAndOptions.java#L155-L167
https://github.com/apache/zookeeper/blob/11c07921c15e2fb7692375327b53f26a583b77ca/zookeeper-server/src/main/java/org/apache/zookeeper/common/SSLContextAndOptions.java#L155-L167

LD ZVLL):

LULU-UU-UT UII9Li97,00L |myluil] - WARN LLAISLENCINAIULET LR~ L. PILVALE., ZRULEdITL TIPY . UEV/ LU, 1U. £LU. 9120000 QUUI UNILITAINAIIAYEI @WOULT] - CALEpPLLIUN fTaQulin

sh[2622]: javax.net.ssl.SSLException: Connection has been shutdown: javax.net.ssl.SSLHandshakeException: Received fatal alert: certificate unknown

sun.security.ssl.SSLSocketImpl.checkEOF(SSLSocketImpl.java:1554)
sun.security.ssl.AppInputStream.read(AppInputStream.java:95)
org.apache.zookeeper.server.quorum.UnifiedServerSocket$uUnifiedInputStream.read(UnifiedServerSocket.java:693)
java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
java.io.BufferedInputStream.readl(BufferedInputStream.java:286)

java.io.BufferedInputStream.read(BufferedInputStream.java:345)

java.lo.DataInputStream.readFully(DataInputStream.java:195)

java.io.DataInputStream.readLong(DataInputStream.java:416)
org.apache.zookeeper.server.quorum.QuorumCnxManager.handleConnection(QuorumCnxManager.java:601)
org.apache.zookeeper.server.quorum.QuorumCnxManager.receiveConnection(QuorumCnxManager.java:554)
org.apache.zookeeper.server.quorum.QuorumCnxManager$Listener$ListenerHandler.acceptConnections(QuorumCnxManager.java:1079)
org.apache.zookeeper.server.quorum.QuorumCnxManager$Listener$ListenerHandler. run(QuorumCnxManager.java:1033)
java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
java.util.concurrent.FutureTask.run(FutureTask.java:266)

java.util.concurrent.ThreadPoolExecutor. runwWorker(ThreadPoolExecutor.java:1149)
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)

javax.net.ssl.SSLHandshakeException: Received fatal alert: certificate unknown

1

I

r.sh[2622]: at

r.sh[2622]: at

r.sh[2622]: at

r.sh[2622]: at

r.sh[2622]: at

r.sh[2622]: at

r.sh[2622]: at

r.sh[2622]: at

r.sh[2622]: at

r.sh[2622]: at

r.sh[2622]: at

r.sh[2622]: at

r.sh[2622]: at

r.sh[2622]: at

r.sh[2622]: at

r.sh[2622]: at

T.oN12022]: at)

r.sh[2622]: Caused by:

r shi2622]. at cun
r.sh[2622]: at sun.security.
r.sh[2622]: at sun.security.
r.sh[2622]: at sun.security.
r.sh[2622]: at sun.security.
r.sh[26221: at sun.securitv.

.]ava:i/4o])

)
ssl.Alerts.getSSLException(Alerts.java:159)
ssl.SSLSocketImpl.recvAlert(SSLSocketImpl.java:2041)
ss1.SSLSocketImpl.readRecord(SSLSocketImpl.java:1145)
ssl.SSLSocketImpl.performInitialHandshake(SSLSocketImpl.java:1388)
ss1.SSLSocketImpl.startHandshake(SSLSocketImpl.iava:1416)

This configuration does work, as a client cert is never
returned, however our verification logic (hard coded True)
still explodes because there’s now no certificate to check.

Quorum Certificates
therefore must have
IPs in them.

keytool -genkeypair -alias zk-1.private.zkocean.hpy.dev \
-keyalg RSA -keysize -dname "cn=zk-1l.private.zkocean.hpy.dev" \
-keypass password \

-keystore /opt/zookeeper/conf/keystore.jks \
-storepass _password \

@I -ext san=1ip:
-storetype pkcle

Add IP addresses to certs.

root@z 2 root@zk
i
"is_leader": . "is_leader": ,
"leader_1id": "leader_id": 3,
"leader_ip": 3.private.zkocean.hpy.dev", "leader_1ip": "zk-3.private.zkocean.hpy.dev",
“command" : ! “command": " leader,
LEeRROR": YehRRORY:

root@z

{
<:> "is_leader": s
"leader_id": 3,
"leader_1ip

"zk-3.private.zkocean.hpy.dev",

Tmmertmeimra e st b=l

Yerror’:

Success... well almost... Admin is over HTTP...

curl -V https 1/ : : /commands/leader

*

) port

N, offering h2

ALPN, offering http/
successfully set certificate verify locations:
le: /etc/ssl/certs/ca-certificates.crt
: /etc/ssl/certs
TLS handshake, C t hello (1):
handshake, S hello (2):
handshake, te
. [LS alert, unknown
certificate problem: self signed certificate
sing connection
(60) SSL certificate problem: self signed certificate
> details here: https://curl.haxx.se/docs/sslcerts.html

* X% X X X X

Use HTTPS to connect to the API via IP Address.

curl -V https 1/ : : /commands/leader

:) port
N, offering h2
ALPN, offering http/

successfully set certificate verify locations:
le: /etc/ssl/certs/ca-certificates.crt
: /etc/ssl/certs
TLS handshake, C t hello (1):
handshake, S hello (2):
handshake, te
. [LS alert, unknown
certlflcate problem: self signed certificate
hlala connection
) SSL certificate problem: self signed certificate
3 details here: https://curl.haxx.se/docs/sslcerts.html

curl explodes because we never added the certs
to our CApath or CAfile.

curl -v https 1/ : : /commands/leader

to : :) port
\, offering h2
PN, offering http/
successfully set certificate verify locations:
CAfile: /etc/ssl/certs/ca-certificates.crt
s/ etic/ssl/certs
(OUT), TLS handshake, Client hello (1):
(IN), TLS handshake, S hello (2):
(IN handshake, ate
. ouT S alert, unknown CA
certlflcate problem: self signed certificate
Closing connection
url: (60) SSL certificate problem: self signed certificate
re details here: https://curl.haxx.se/docs/sslcerts.html

* XX X X X X
o e e

curl politely tells us where those are.

url --cacert /usr/local/share/ca-certificates/zk-all.crt -v https://10.10.20.4:8080/commands/leader
Trying 10.10.20.4:8080. ..
TCP_NODELAY set

Connected to 10.10.20.4 (10.10.20.4) port 8080 (#0)
ALPN, offering h2
ALPN, offering http/1.1

/usr/local/share/ca-certificates/zk-all.crt
: /etc/ssl/certs

SSL connection using TLSv1.2 / ECDHE-RSA-AES256-SHA384
ALPN, server did not agree to a protocol
: CN=zk-1.private.zkocean.hpy.dev
Jun 9 06: 08 2020 GMT
: Sep 7 06:08:08 2020 GMT
: host "10.10.20.4"

matched cert's IP z
CN=zk-1.private.zkocean.hpy.dev
SSL certificate verify ok.

GET /commands/leader HTTP/1.1
: 10.10.20.4:

: curl/7.68.0

L ox/%

Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
Tue, 09 Jun 2020 06:23:27 GMT
: max-age=86400; includeSubDomains
: application/json

: Jetty(9.4.24.v20191120)

: false,

: null
Connection

Adding --cacert flag gets our cert to work.

) port

ocean.hpy

MT

GM

1 localk
ate subject name matches target host name 'loc

failed to verify the legitimac ore could not
t ish a i nection to i rn mor t L t and
how to fix it ease visit the web page mentioned :

Using localhost doesn’t work.

t hello (
hello (

on using .2 / ECDHE
did not agree to a protocol

* 1
* T
%
x0T
*
05
*
* T
*
*
o
*
*
*
e
*
*

t name matches tar

lcerts.html

Using DNS doesn’t work either, despite CN being set.

k)rivate.zkocean.hpy.dev \
-dname "cn=zk-1l.private.zkocean.hpy.dev" \

re

onf/keystore.jks \
dns:zk-1.private.zkocean.hpy.dev,dns:localhost

Add more addresses to our SAN field.

export CLIENT_JVMFLAGS="
-Dzookeeper.clientCnxnSocket=org.apache.zookeeper.ClientCnxnSocketNetty
-Dzookeeper.client.secure=true
-Dzookeeper.ssl.keyStore.location=/opt/zookeeper/conf/keystore. jks
-Dzookeeper.ssl.keyStore.password=password

-Dzookeeper.ssl.trustStore. location=/opt/zookeeper/conf/truststore. jks
-Dzookeeper.ssl.trustStore.password=password"

/opt/zookeeper/bin/zkCli.sh -server 127.0.0.1:2281

/usr/bin/java

Connecting to 127.0.0.1:2281

<redacted>

2020-06-09 06:45:58,987 [myid:] - INFO [main:X509Util@77] - Setting
jdk.tls.rejectClientInitiatedRenegotiation=true to disable client-initiated TLS renegotiation
2020-06-09 06:45:59,408 [myid:] - INFO [main:ClientCnxnSocket@239] - jute.maxbuffer value is 1048575
Bytes

2020-06-09 06:45:59,418 [myid:] - INFO [main:ClientCnxn@l703] - zookeeper.request.timeout value is 0.
feature enabled=false

Welcome to ZooKeeper!

2020-06-09 06:45:59,440 [myid:127.0.0.1:2281] - INFO [main-
SendThread(127.0.0.1:2281):ClientCnxn$SendThread@1154] - Opening socket connection to server
localhost/127.0.0.1:2281

: Will not attempt to
authenticate using SASL (unknown error)
JLine support is enabled
[zk: 127.0.0.1:2281(CONNECTING) 0] 2020-06-09 06:46:00,007 [myid:127.0.0.1:2281] - INFO
[nioEventLoopGroup-2-1:ClientCnxnSocketNetty$ZKClientPipelineFactory@454] - SSL handler added for
channel: [id: Ox4ece59bc]

¢ /127.0.0.1:36126, server:
localhost/127.0.0.1:

[id: Ox4ece59bc, L:/127.0.0.1:36126 -
R:localhost/127.0.0.1:2281
2020-06-09 06:46:00,587 [myid:127.0.0.1:2281] - INFO [nioEventLoopGroup-2-
1:ClientCnxn$SendThread@1420] - Session establishment complete on server localhost/127.0.0.1:2281,
session id = 0x10000a76d880001, negotiated timeout = 30000

WatchedEvent state:SyncConnected type:None path:null

[zk: 127.0.0.1:2281(CONNECTED) 0]

Now zkCli.sh even works.

But how do we make
Client certs that
other applications
can use?

X509v3 extensions:
X509v3 Subject Alternative Name:
IP Address: , DNS:zk-1.private.zkocean.hpy.dev, DNS:localhost

X509v3 Subject Key Identifier:
*DE:DDIE6: 79:EAZEB:52:68 215:DC:8E 1D A5 :D9: C7:CE:22:FA4:B0O

Well this is awkward, there is no Root Certificate Authority.

mkcert -client zk-1.private.zkocean.hpy.dev zk-1.zkocean.hpy.dev localhost
mkcert -client zk-2.private.zkocean.hpy.dev zk-2.zkocean.hpy.dev localhost
mkcert -client zk-3.private.zkocean.hpy.dev zk-3.zkocean.hpy.dev localhost

openssl pkcsl2 -export -in zk-1.private.zkocean.hpy.dev+4-client.pem -inkey zk-
1l.private.zkocean.hpy.dev+4-client-key.pem -name zk-1.private.zkocean.hpy.dev -out zk-1-keystore.pl2
openssl pkcsl2 -export -in zk-2.private.zkocean.hpy.dev+4-client.pem -inkey zk-
2.private.zkocean.hpy.dev+4-client-key.pem -name zk-2.private.zkocean.hpy.dev -out zk-2-keystore.pl2
openssl pkcsl2 -export -in zk-3.private.zkocean.hpy.dev+4-client.pem -inkey zk-
3.private.zkocean.hpy.dev+4-client-key.pem -name zk-3.private.zkocean.hpy.dev -out zk-3-keystore.pl2

keytool -importkeystore -destkeystore zk-1-keystore.jks -srckeystore zk-1l-keystore.pl2 -srcstoretype
pkcsl2 -deststoretype pkcsl2 -srcstorepass password -deststorepass password
keytool -importkeystore -destkeystore zk-2-keystore.jks -srckeystore zk-2-keystore.pl2 -srcstoretype
pkcsl2 -deststoretype pkcsl2 -srcstorepass password -deststorepass password
keytool -importkeystore -destkeystore zk-3-keystore.jks -srckeystore zk-3-keystore.pl2 -srcstoretype
pkcsl2 -deststoretype pkcsl2 -srcstorepass password -deststorepass password

keytool -keystore truststore.jks -storepass password -trustcacerts -importcert -alias bundle
~/.local/share/mkcert/rootCA.pem -noprompt

Create keystores with mkcert!

openssl s_client -connect zk-1.zkocean.hpy.dev:

ERROR [nioEventLoopGroup-7-1:NettyServerCnxnFactory$CertificateVerifier@434] - Unsuccessful handshake
with session

WARN [nioEventLoopGroup-7-1:NettyServerCnxnFactory$CnxnChannelHandler@273] - Exception caught
i1o.netty.handler.codec.DecoderException: javax.net.ssl.SSLHandshakeException: null cert chain

ZK requests Client certificates, and we never
provide one. Let’s make one.

mkcert foobar
Using the local CA at "/home/ascherger/.local/share/mkcert" +

Created a new certificate valid for the following names B
- "foobar"

The certificate is at "./foobar.pem" and the key at "./foobar-key.pem" y/

openssl ient -CAfile ~/.local/share/mkcert/rootCA.pem -cert ./foobar.pem -key ./foobar-key.pem -
connect

CONNECTED()

mkcert development CA, OU = ascher ncontrol (Alan Scherger), CN = mkcer
ascherg incontrol (Alan Scherger)
verify Irn:
depth= mkcert development certificate, OU = ascherger@incontrol (Alan Scherger)
verify return

terro :SSL routines:ss13_read_bytes:sslv3 alert certificate

unknown:ssl/record/rec_layer_s3.c: :SSL alert number

Caused by: sun.security.validator.ValidatorException: Extended key usage does not permit use for TLS
client authentication

at sun.security.validator.EndEntityChecker.checkTLSClient(EndEntityChecker. java:

at sun.security.validator.EndEntityChecker.check(EndEntityChecker. java:)

ZK rejects our certificate because it wasn’t created with
the correct TLS Web Client Key Usage extenion.

mkcert -client foobar
Using the local CA at "/home/ascherger/.local/share/mkcert" +

Created a new certificate valid for the following names B
- "foobar"

The certificate is at "./foobar-client.pem" and the key at "./foobar-client-key.pem" v/

Adding -client creates the proper certificate.

But wait... Why did it
let “foobar” join, it
never verified my
hosthname?

Our non-quroum sockets are configured to never verify client Hostname #GarbagelsGarbage

public class ClientX509Util extends X509Util {

private final String sslAuthProviderProperty = getConfigPrefix() + "authProvider";

@Override
protected String getConfigPrefix() {
return "zookeeper.ssl.";

}

@Override
protected boolean shouldVerifyClientHostname() {
return s

}

public String getSslAuthProviderProperty() {
return sslAuthProviderProperty;

}

https://github.com/apache/zookeeper/blob/79a99ac97cea942967a2a08e7873a0ceafa2e046/zookeeper-server
/src/main/javal/orag/apache/zookeeper/common/ClientX509Util.java#L31-L33

https://github.com/apache/zookeeper/blob/79a99ac97cea942967a2a08e7873a0cea9a2e046/zookeeper-server/src/main/java/org/apache/zookeeper/common/ClientX509Util.java#L31-L33
https://github.com/apache/zookeeper/blob/79a99ac97cea942967a2a08e7873a0cea9a2e046/zookeeper-server/src/main/java/org/apache/zookeeper/common/ClientX509Util.java#L31-L33

Certificate Rotation

Expiring Certificate

Root Certificate Web Server Certificate
Issuer Name: ROOT > Issuer Name: ROOT
Issuer Sig: 12:34:56 Issuer Sig: 12:34:56
Valid Not After: 01/01/2030 Subject Name: foo.com

Subject Sig: 00:00:01

Today’s Date: 12/01/2021 Valid Not After: 01/01/2021

LPT: Create and deploy a new certificate.

Root Certificate Web Server Certificate
Issuer Name: ROOT > Issuer Name: ROOT
Issuer Sig: 12:34:56 Issuer Sig: 12:34:56
Valid Not After: 01/01/2030 Subject Name: foo.com

Subject Sig: 00:00:02

Today’s Date: 12/01/2021 Valid Not After: 01/01/2022

. . Root Certificate(s) Expiration
Basic Things to Date
. Intermediate Certificate(s)
M O n |tO r Expiration Date

End-entity Certificate(s)
Expiration Date
Issuer and Subject Identifiers

Ut-Oh - now what?

Root Certificate Web Server Certificate
Issuer Name: ROOT > Issuer Name: ROOT
Issuer Sig: 12:34:56 Issuer Sig: 12:34:56
Valid Not After: 01/01/2030 Subject Name: foo.com

Subject Sig: 00:00:02

Today’s Date: 12/01/2029 Valid Not After: 01/01/2022

1. Create New Root Certificate

Today’s Date: 12/01/2029

Root Certificate
Issuer Name: ROOT
Issuer Sig: 12:34:56

Valid Not After: 01/01/2030

Root Certificate 2
Issuer Name: ROOT2
Issuer Sig: 78:90:12

Valid Not After: 01/01/2040

1. Deploy ROOT2 to trust stores - everywhere.

Root Certificate
| will make light work

Issuer Name: ROOT of this!

Issuer Sig: 12:34:56

Valid Not After: 01/01/2030

Root Certificate 2
Issuer Name: ROOT2

Issuer Sig: 78:90:12

Valid Not After: 01/01/2040

Today’s Date: 12/01/2029

LPT: Create and deploy a new certificate.

Root Certificate 2 Web Server Certificate
Issuer Name: ROOT?2 P> Issuer Name: ROOT2
Issuer Sig: 78:90:12 Issuer Sig: 78:90:12
Valid Not After: 01/01/2040 Subject Name: foo.com

Subject Sig: 00:10:00

Valid Not After: 01/01/2031

Today’s Date: 12/01/2029

1. Delete ROOT from trust stores - everywhere.

| will make light work
of this!

Root Certificate 2
Issuer Name: ROOT2
Issuer Sig: 78:90:12

Valid Not After: 01/01/2040

Today’s Date: 12/01/2029

But what about
Certificate
Cross-signing?

TL;DR - Not the droids
you are looking for.

Remember, you can only have 1lssuer Signature.

Root Certificate Root Certificate 2

Issuer Name: ROOT Issuer Name: ROOT2
Issuer Sig: 12:34:56 Issuer Sig: 78:90:12

Subject Name: ROOT Subject Name: ROOT2

Subject Sig: 12:34:56 Subject Sig: 78:90:12

Valid Not After: 01/01/2030 Valid Not After: 01/01/2040

Cross-sign Root 2 by 1.

Root Certificate

Issuer Name: ROOT
Issuer Sig: 12:34:56
Subject Name: ROOT
Subject Sig: 12:34:56

Valid Not After: 01/01/2030

Root Certificate 2
Issuer Name: ROOT2
Issuer Sig: 78:90:12

Subject Name: ROOT2

Subject Sig: 78:90:12

Root Certificate 2 - By 1
Issuer Name: ROOT
Issuer Sig: 12:34:56
Subject Name: ROOT2
Subject Sig: 78:90:12

Valid Not After: 01/01/2040

Both Certs have same Subject Signature/Name

Root Certificate 2

Root Certificate 2 - Signed By 1

Issuer Name: ROOT2

Issuer Name: ROOT

Issuer Sig: 78:90:12

Issuer Sig: 12:34:56

Subject Name: ROOT2

Subject Name: ROOT2

Subject Sig: 78:90:12

Subject Sig: 78:90:12

Valid Not After: 01/01/2040

Valid Not After: 01/01/2040

Both Certs have different Issuer Signature/Name

Root Certificate 2

Root Certificate 2 - Signed By 1

Issuer Name: ROOT2

Issuer Name: ROOT

Issuer Siqg: 78:90:12

Issuer Sig: 12:34:56

Subject Name: ROOT2

Subject Name: ROOT2

Subject Sig: 78:90:12

Subject Sig: 78:90:12

Valid Not After: 01/01/2040

Valid Not After: 01/01/2040

Create a Cert:

Root Certificate
Issuer Name: ROOT
Issuer Sig: 12:34:56 -~
Root Certificate 2 - Signed By 1
Subject Name: ROOT
Issuer Name: ROOT

Subject Sig: 12:34:56 Web Server Certificate
. g ————— Issuer Sig: 12:34:56

Valid Not After: 01/01/2030 I \ ROOT2
Subject Name: ROOT2 ssuer Name

Issuer Sig: 78:90:12

Subject Sig: 78:90:12 -

i N : foo.
Valid Not After: 01/01/2040 Subject Name: foo.com

Subject Sig: 00:10:00

Valid Not After: 01/01/2031

Cross-signing does not fix the expiration of Root.

Root Certificate
Issuer Name: ROOT

Issuer Sig: 12:34:56 -~
Root Certificate 2 - Signed By 1

Subject Name: ROOT
Issuer Name: ROOT

Subject Sig: 12:34:56 Web Server Certificate
) g —_———— Issuer Sig: 12:34:56

O Valid Not After: 01/01/2030 I N : ROOT2
] Subject Name: ROOT?2 SsHer Tame

Issuer Sig: 78:90:12

Subject Sig: 78:90:12 -

i N : foo.
Valid Not After: 01/01/2040 Subject Name: foo.com

Subject Sig: 00:10:00

Valid Not After: 01/01/2031

Certificate
Cross-Signing

The myth, the legend.

Must deploy Root2 somehow:
o Bundle in new server deployment
o Deploy to trust stores

At some point you must rotate

off the “by-1” cert
o Expiration didn’t change
o More redeploys

What did any of this buy you?

Things we covered today.

e mILS combines multiple technologies to e Writing software to use mTLS takes effort
enable us to allow create secure o Hard coding configuration is bad

o Different aspects of your software might
need to use different certificates with
different configuration.

connections between our software.
e Certificate expiration dates should be

monitored with automation o Clients must be able to validate Servers
e Inspecting and validating certificates can o Servers must be able to validate Clients
all be done with OpenSSL CLI utilities o Rich error handling goes a long way
e Sometimes OpenSSL is LibreSSL towards making things debuggable.

e Shorter Certificate Expiration is important, e Certificate rotation requires automation.

but also security theater.
e (Castle & moat security is dead.

Things not
covered.

Revocation Lists
Onboarding existing clusters to
mTLS

Running PKI infrastructure
o HashiCorp Vault
o AWS Certificate Manager Private
Certificate Authority

bit.ly/learn-mtls

A workshop that will be much more in-depth than these slides.

https://bit.ly/learn-mtls

Thanks!

Alan Scherger @flyinprogrammer

