What | learned about language and
library design by working on Swift

N

Adobe

Dave Abrahams | Principal Scientist | STLab

Artwork by Elise Swopes / USA

About the artist

Elise Swopes

Lo

New York City-based photographer and graphic
designer Elise Swopes manipulates the everyday into
unexpected works of art. With her mobile phone,
Adobe Photoshop, and Adobe Photoshop Lightroom,
she creates whimsical, weird, dreamlike scenes. This
piece was inspired from a recent visit to Copenhagen,
where the bold colors and shapes of Danish
architecture made quite an impression. A brilliant
yellow apartment building inspired Swopes to create
another entry in her surrealistic series featuring
giraffes in unusual settings.

Made with

. Adobe Photoshop . Adobe Photoshop Lightroom

Mark of the Unicorn | 1988

F\\ Adobe

w File Edit Region Format Text Windows Palettes

(%)

#

®

(%

el wl=x | Bla|sy

0\0000‘0

SINI{ Mo r|e (o]0

<lele|>]-

v

wnlZT|alev|a]»

Al 2N4]3

+/

N

fr

‘ 'ﬁ@lc]BO !'{s*@.'f-ﬂltt.z “’\\\J/\ ,?*'”"'m
iy N ESEIF SRR SE GO Rn O Enn e Fly la|v ||z
N NN Page Uiew/Score (15t Movement) 5/ S Uiews (15t Movement)

Calley View/Scere | @ | 20 pt Stavesr
Pagr View /Soore |} 16 pt Staves < F
i | '

First movement . Vieka Il !
Vila '

Potormance Time 4 54 Stnng Quanet #1 3 :

("A Schoolboy’s Dream”) VR Ao Uiolin 1 (15t Movement)
Gary Eskow
AL VIOLIN 1 1
| Jm 168 2o String Quartet #1
£ | A Sy Ny St
YOLON 8 2
~
/ -
Lsns
VLA = =
1 g > “%‘ :
VIOLDNC ELLO : — w :

Cello

\\\\\\\

\\\\\\\
tttttttttttttttttttt

-
\\\\\

o —])C

W’

& Hoone

LSRN AT v

VAP b P e

© 2021 Adobe. All Rights Reserved.

Mark of the Unicorn | 1991

w Flle Edit Region Format Text Windows Palelte

/
..... ¥ s i [~ :ﬁ" (ilinfes|e 5 I {0 : ’7{‘? % elwlalilvig|a S i b ket IR AN B / \ =S 3 FI718]=]|r ||z J ‘- ’
e AT RIEEE L "ME O nan e Enannenm Flyl=|v ||z J .
$ld L s O Page Dilew/Score (15t Movement) BS 7 oy Views (15t Movement) —; / J ! " ’
4|0 Calley View /Sccre | @ 20 pt Staves ’ ‘ 4
Pagr View /Soere ' 16 pt Staves = F /
Bt art Wi | >
= First movement : Viahin I ; ’—{
ela -
AL e String Quartet #1 Prehneali -
i@ \
i T UL oo iolin | (15t Movement))
W [%
| & |~ VIOLIN 1 Stn'ng Quartet #1 ‘
..
; : Time
raas D‘“:r t::l'i-tumlv
o |0 | Compile n 56 Ul
: ' Mbs:ri'::n‘;:':'u- expcutiaon
.n '::n‘-mudnomv afl vanables
; ncluding abpects
: y Integrated Development
- V mmw:n debuy and run
/ 0 m:‘;’.:“'“‘. G"!N'VMMI
. . Pm‘essioml-nuamv Code
| : fﬁ:::cc:::‘:l"u creates nhq\un
: ':;::nct. commaercial- quality
: Obpc t-Oriented
: - Programming Support
- -M'Ga extensions fof flexible,
~ ~ extensible and reusable code
; 3 rlul Class Library
: :wa‘ Macintosh user mter
: face buikding blocks tor quickly
s developing object-oriented
’ applications
o
F "
|/
1\
o |f2
kel B
-

»N

“ !* ek 5 atel
Cello

F\\ Adobe

© 2021 Adobe. All Rights Reserved.

Mark of the Unicorn | 1991

w Hle Edit Region Format Test Windows Paleltes

CINJE A C s @L =] e A e = 227 IR =1 [
B el e | Kol » @] 2c| % [Rksl | [111 NE ArNaNCOnEr /N YR T T =1 (-7
MTL NN oossssors s Page Diew/Score (15t Movement) 5/ SO Diews (1t Movement)
40 Calley View/Scere | @ | 20 pt $taver
Pagt View /Soere |} 16 pt Staves < F
el I Vet | '
w ™ First movement : Viedin Il '
Vel !

= Potermance Tined 24 String Quartet #1 3N \
L
b b ("4 Schoolboy’s Dream”) N A A Ao Uiolin | (15t Movement)
[o%
o e String Quartet #1
e Rk L
N
o |xe
°|®
* "
Ala
ale
x|/
/

»
L
*
vin

b
Al
7| ¢
§

P
P |y

, .-"-
a4 I .
af | fa 7
| fp r3 ’J j)

7 =<

F\\ Adobe

including objects .
integrated Development
t

YE‘K. compile, lnk. Iqm nd'un 4

struct CTutorApp : CApplication {
void ITutorApp(void);
void DoCommand(long theCommand);

struct CTutorDir : CDirector {
void ITutorDir(void):

&

struct CTutorWindow : CWindow {
void Close():

&

extern CApplication *gApplication;
extern CDesktop xgDesktop;

void main(void) {
gApplication = new(CTutorApp); |
((CTutorApp*)gApplication)—>ITutorApp();L
|
gApplication—>Run();

gApplication—>Exit();
}

© 2021 Adobe. All Rights Reserved.

Mark of the Unicorn | 1995

| View: [My Grammy~_ Status: [Time: 2lzl240 ‘ érjr’ AW_Wl

1
il

|

3

..

\\ﬂﬂ\

..

i

|

a

=

2000 - 0000

.f'i'l.-" lf" IJ I"| If’l‘iésflf'l I'"‘ I."l |"| |"|‘_2 3 f’v

([p[if®]

VERSION 8

POWER MACINTOSH/
MACINTOSH

F\\ Adobe © 2021 Adobe. All Rights Reserved.

Blame it all on this guy...

Mark Wachsler

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Blame it all on this guy...

Mark Wachsler

...and his tendency to learn...

BENCHMARKED: The P6 & WINDOWS 95

F e

OCTOBER 1995
' ——

. VReviewed:gThe Best Porhlgjes

Left Out of Windows 95 »

IF U CNT RD THS CR
ENCRPTN STRY r.77

F\\ Adobe

|
Revealed: What Microsoft‘

...and to share

Windows 95: The Numbers i

BY STANFORD DIEHL
BYTE testing reveals, there are strings attached.

WINDOWS 95

Applications 95 Armive e

BY STANFORD DIEHL
Programs that make Windows 95 worth the wait.

SYSTEMS

Power Mac Gets PClcccivvveveenieenncnnencnnnes

BY TOM THOMPSON

Apple’s Power Mac 9500 delivers great performance and the promise of

fast, low-cost PCI peripherals.

WORD PROCESSORS

Au Revoir, Mon Ami........oceevveecnnnnnenns SRS . |

BY KENNETH M. SHELDON

Ami Pro gets a major upgrade, new workgroup features, and a new name,

Word Pro.

Core Technolog

CPUS

Is There a GLINT in Your Future?............ 167

BY TREVOR MARSHALL AND JOHN DAVEY
3Dlabs’ chip produces fast 3-D graphics. Here's how it
does those dazzling displays.

OPERATING SYSTEMS

Weaving a Thread ——— sis i
BY SHASHI PRASAD

Solaris and Windows NT bring the power, speed, and
efficiency of multithreading and symmetric
multiprocessing to the desktop.

building real-time error checking into their compilers.
WINDOWS 95
We Plugged, but They Didn't

Tests of several new Plug and Play devices show that
unless you have all the required pieces in your system,
you can expect to do a lot of work.

INTERNET BROADCASTING

Radio Comes to Cyberspace......c.csceveescaneaddb
A new era in broadcasting begins on the Internet.

FUTURE DISPLAY TECHNOLOGIES

3-D Images That Float in Alr................ sRavesed 4
A new system can project images from a PC so that
they appear to be solid objects suspended in air.

NEW PRODUCTS

Apple’s PowerBook 5300c combines RISC processing
power with great battery life; Intuit’s QuickBooks Pro

............. 113

The new Windows architecture delivers enhanced performance, but as

SRRRMMY. |

Digital Cameras for Real Workcc.cvuveneenn... 129

BY ALAN MORGAN AND SCOTT WALLACE

between price and image quality.

EMBEDDED DESIGN

Let’s Get Small133
BY RICK GREHAN

A remarkably complete embedded
development system.

FAX PROGRAMS

Software Roundup: Industrial-
Strength Fax Servers.......13]
BY REX BALDAZO, DAVID ESSEX,
AND STAN MIASTKOWSKI

After some hair-pulling, teeth-
gnashing installations, we test
network-based faxing software that
can handle the heavy loads of a
workgroup.

PROGRAMMING

The Standard Template Library............ 177
BY ALEXANDER STEPANOV

How do you build an algorithm that is both generic and
efficient?

NETWORKS

Internet Firewalls.ouveenne. 179
BY STEPHEN COBB

An industry group is attempting to bring order to
firewalls, demand for which is spurred by intrusions.

Pournelle: Death Swoops and Upgrades181
BY JERRY POURNELLE

Jerry witnesses several test flights: First the DC/X
spacecraft, and then a new Pentium, a new hard drive,
and several builds of Windows 95.

Books & CD-ROMs: Working in the
M"lne Il--.....-......ll.I'...Il...-.'49

BY DENNIS BARKER AND JEFF MACCLAY
A novel about working at Microsoft. Plus, a Marilyn
Monroe CD-ROM.

Commentary: Ambiguity Machines.........250
BY JACQUES LESLIE
Computers are better at poetry than mathematics.

BY RAPHAEL NEEDLEMAN

mll...‘....ll'l..........ll.....‘.'...zo
Readers write about our coverage of Windows 95,

e v

New digital cameras from Apple, Kodak, and Logitech find a balance

NOTEBOQOK COMPUTERS

11 Ultraportables
Go the Distance146

BY ANTHONY J. LENNON AND
JOHN MCDONOQUGH

These lightweight, feature-
packed tiny PCs hold some
surprises and won’t cramp your

style.

High-End Ultraportables—148
Lower-Cost Altemnatives—150
How We Tested—156

Hot CPU Chips Keep Thelr
Cool—156

Apple's Dynamic Duo—160
Color for the Road—160
Honorable Mentions—161

Zinc-Air Batteries
Last All Day—161

Reader Survey...............19

READER SERVICE

Editorial Index by Company......... N8
Alphubetical Index 1o Advertisers.,. 2

index to Advertisers by

BUYER'SGUIDE.............cocivnnenne mn

Mail Order
Hardware/Software Showcase
Buyer's Mart

PROGRAM LISTINGS

FTP: ftp to ftp.byte.com

From BIX: Join
“listings/frombyte95™ and sclect
the appropriate subarea (i.e.,
“oct95."

From the BYTE BBS at 1200-9600
bps: Dial (603) 924-9820 and
follow the instructions at the

© 2021 Adobe. All Rights Reserved.

Blame it all on this guy...

Mark Wachsler ...and his tendency to learn... ...and to share

PROGRAMMING

The Standard Template Library............ 1
BY ALEXANDER STEPANOV

How do you build an algorithm that is both generic and
efficient?

© 2021 Adobe. All Rights Reserved.

Blame it all on this guy...

Mark Wachsler ...and his tendency to learn... ...and to share

PROGRAMMING

The Standard Template Library

BY ALEXANDER STEPANOV
How do you build an algorithm that is both generic and

efficient?

© 2021 Adobe. All Rights Reserved.

A fly in the ointment

248

6.12.2 Excep

checks for 1%
0 a logical prob
1t might cause an e
e subscript operato
han that, the stz
L oc for lack

The STL almost nev
the STL 1itself owin
standard requires th
checked version of
max_size(). Othe
occur, such as bad_z2

When are exceptid
long time during the s
In fact, every exception
resulted in undefined beha¥
STL was useless when you nec
to unwind the stack.

ess of C++498.

uaranteed and defined

F\\ Adobe

() if the passed si:

defined behavior. EvVE
exception was thrown dul

e Standard Template Library

10

. the at () membe

behav]

ns are generated by
calls for which the
nction, which 1s the

of elements exceeds
lard exceptions may
berations.

when they are”? For a
ed behavior about this.
tion of an STL container
f 1ts operations. Thus, the
ecause 1t was not even possible

© 2021 Adobe. All Rights Reserved.

When are exceptions generated, and what happens to STL components when they are? For a

long time during the standardization process of C++98, there was no defined behavior about this.
In fact, every exception resulted in undefined behavior.

Dave's chain of custody

Alexander Stepanov Greg Colvin Andrew Koenig

© 2021 Adobe. All Rights Reserved.

C++ Committee Papers | 1997-2013

- N1075 | STL Exception Handling Contract | Dave Abrahams | 1997

. N1086 | Making the C++ Standard Library Exception-Safe | Dave Abrahams and Greg Colvin | 1997

- N1086 | Making the C++ Standard Library Exception Safe | Dave Abrahams and Greg Colvin | 1997

- N1114 | Making the C++ Standard Library More Exception Safe | Dave Abrahams and Greg Colvin | 1997
- N1313 | Binary Search with Heterogeneous Comparison | David Abrahams | 2001

. N1356 | Predictable data layout for certain non-POD types | RW. Grosse-Kunstleve & D. Abrahams | 2002
- N1377 | A Proposal to Add Move Semantics Support to the C++ Language | H. Hinnant, P. Dimov, D.
Abrahams 2002

- N1408 | Qualified Namespaces | David Abrahams | 2002

- N1476 | Iterator Facade and Adaptor | D. Abrahams, J. Siek, T. Witt | 2003

- N1477 | New Iterator Concepts | D. Abrahams, J. Siek, T. Witt | 2003

- N1530 | Iterator Facade and Adaptor | D. Abrahams, J. Siek, T. Witt | 2003

- N1531| New lterator Concepts | D. Abrahams, J. Siek, T. Witt | 2003

. N1550 | New lIterator Concepts | D. Abrahams, J. Siek, T. Witt | 2003

- N1610 | Clarification of Initialization of Class Objects by rvalues | D. Abrahams, G. Powell | 2004-02-14

. N1631| Electronic review process | D. Abrahams, B. Dawes, J. Siek | 2004-04-11

- N1640 | New lterator Concepts | D. Abrahams, J. Siek, T. Witt | 2004-04-10

. N1641 | Iterator Facade and Adaptor | D. Abrahames, J. Siek, T. Witt | 2004-04-10

- N1690 | A Proposal to Add an Rvalue Reference to the C++ Language | H. Hinnant,D. Abrahams,P. Dimov |
2004-09-07

. N1691 | Explicit Namespaces | David Abrahams | 2004-09-07

- N1770 | A Proposal to Add an Rvalue Reference to the C++ Language: Proposed Wording | H. Hinnant,
D. Abrahams, J. Adamczyk, P. Dimov, A. Hommel | 2005-03-05

- N1771 | Impact of the rvalue reference on the Standard Library

- H. Hinnant, D. Abrahams, P. Dimov, D. Gregor, A. Hommel, A. Meredith | 2005-03-03

. N1773 | Proposal to add Contract Programming to C++ (revision 2) | D. Abrahams, L. Crowl, T. Ottosen,
J. Widman | 2005-03-04

F\\ Adobe

. N1855 | A Proposal to Add an Rvalue Reference to the C++ Language: Proposed Wording | D. Abrahames,

. Dimov, H. Hinnant, A. Hommel | 2005-08-25
873 | The Cursor/Property Map Abstraction | D. Kiihl, D. Abrahams | 2005-08-26

- N2786 | Simplifying unique copy (Revision 1) | D. Gregor, D. Abrahams | 2008-09-19
. N2812 | A Safety Problem with RValue References (and what to do about it) | D. Abrahams, D. Gregor |

2008-12-05

. N2831 | Fixing a Safety Problem with Rvalue References: Proposed Wording | D. Gregor, D. Abraham:s |

2009-02-07

. N2844 | Fixing a Safety Problem with Rvalue References: Proposed Wording (Revision 1) | D. Gregor,

D. Abrahams | 2009-03-05

. N2845 | Remove std::reference_closure | L. Crowl, D. Gregor, D. Abrahams | 2009-03-05

. N2855 | Rvalue References and Exception Safety | D. Gregor, D. Abrahams | 2009-03-23

. N2916 | Intentional Concept Mapping | D. Abrahams, B. Dawes | 2009-06-22

. N2918 | Exported Concept Maps | D. Abrahams, D. Gregor | 2009-06-22

. N2983 | Allowing Move Constructors to Throw | D. Abrahams, R. Sharoni, D. Gregor | 2009-11-09

- N3050 | Allowing Move Constructors to Throw (Rev. 1) | D. Abrahams, R. Sharoni, D. Gregor | 2010-03-12
. N3153 | Implicit Move Must Go | Dave Abrahams | 2010-10-17

- N3418 | Proposal for Generic (Polymorphic) Lambda Expressions | F. Vali, H. Sutter, D. Abrahams |

2012-09-21

. N3490 | ADL Control for C++ | Dave Abrahams | 2012-10-31

. N3559 | Proposal for Generic (Polymorphic) Lambda Expressions

. F Vali, H. Sutter, D. Abrahams | 2013-03-17

. N3560 | Proposal for Assorted Extensions to Lambda Expressions | F. Vali, H. Sutter, D. Abrahams |

2013-03-17

. N3649 Generic (Polymorphic) Lambda Expressions (Revision 3) | F. Vali, H. Sutter, D. Abrahams |

2013-04-19

© 2021 Adobe. All Rights Reserved.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1997/N1075.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1997/N1086.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1997/N1086.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1997/N1114.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2001/n1313.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1356.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1377.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1408.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1476.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1477.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1530.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1531.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1550.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1610.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1631.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1640.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1641.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1690.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1691.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1770.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1771.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1773.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1855.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1873.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2786.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2812.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2831.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2844.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2845.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2855.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2916.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2918.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2983.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3050.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3153.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3418.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3490.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3559.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3560.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3649.html

a® bOOSt 1998-2

+ LIBRARIES Beman Dawes, R.I.P.

Brainchild of Beman Dawes
| was a co-founder
Spun off BoostPro Computing

Started BoostCon/C++Now conference

'\‘ Adobe © 2021 Adobe. All Rights Reserved.

| was a total C++-head...

'4‘ Adobe ©2021 Adobe. All Rights Reserved.

...and | was starting over

'4‘ Adobe ©2021 Adobe. All Rights Reserved.

The (rest of the) design team

Dave Zarzycki Doug Gregor John McCall Joe Pamer

Ted Kremenek

© 2021 Adobe. All Rights Reserved.

0 GGG G < < < << G GG GGG &G
C$ (GGG << < <SG G G &G & &
QG < < < G GG GG GG
C$ C$ GGG << < < GG G &G & &
{99 GG Q<SG G G
S G QCSCCCQQQ<<S<E<CCECCGG
S S G Q(Q<99 << GGG <

Value Semantics

Spooky action at a distance

intro = "hello”
message = 1ntro
message.append(", world")

'4‘ Adobe © 2021 Adobe. All Rights Reserved.

Spooky action at a distance

intro = "hello" INtro > ""hel||0"

message = 1ntro
message.append(", world")

'4‘ Adobe © 2021 Adobe. All Rights Reserved.

Spooky action at a distance

intro = "hello” infro =———» "hello"
message = intro -/
message.append(”, world™) message

'4‘ Adobe © 2021 Adobe. All Rights Reserved.

Spooky action at a distance

intro = "hello" intro —— "hello, world"
message = intro -/
message.append(”, world™) message

'4‘ Adobe © 2021 Adobe. All Rights Reserved.

Immutable string is less spooky

intro = "hello"
message = 1ntro
message = message.concat(”, world")

'4‘ Adobe © 2021 Adobe. All Rights Reserved.

Immutable string is less spooky

intro =
message
message

F\\ Adobe

"hello”

1ntro
message.concat(", world")

INtro

— "hello"

© 2021 Adobe. All Rights Reserved.

Immutable string is less spooky

intro = "hello" intro —— "hello"

message = intro /1
message

message = message.concat(", world")

'4‘ Adobe © 2021 Adobe. All Rights Reserved.

Immutable string is less spooky

intro = "hello” intro ————> "hell0"
message = 1ntro
message = message.concat(", world") ~ message — "hello, world"

'4‘ Adobe © 2021 Adobe. All Rights Reserved.

Philosophy of value semantics

Maybe the problem isn't mutation by itself, but mutation of shared state?

A deeper idea than | thought.

'4‘ Adobe © 2021 Adobe. All Rights Reserved.

Philosophy of value semantics

Maybe the problem isn't mutation by itself, but mutation of shared state?

A deeper idea than | thought.

Problems with the immutable string scheme:

- Creating a new string buffer for every mutation step is expensive — O(N?).
- Add StringBuilder to manage mutating string buffers in place.

- StringBuilder ends up duplicating string's non-mutating API.

- One more type for the user to learn.

'4‘ Adobe © 2021 Adobe. All Rights Reserved.

Dave's declaration

"‘Over my dead body will Swift have a StringBuilder!”

F\\ Adobe © 2021 Adobe . All Rights Reserved |

0 GGG G < < < << G GG GGG &G
C$ (GGG << < <SG G G &G & &
QG < < < G GG GG GG
C$ C$ GGG << < < GG G &G & &
{99 GG Q<SG G G
S G QCSCCCQQQ<<S<E<CCECCGG
S S G Q(Q<99 << GGG <

No rule of five

Array

Was a hack for testing the compiler, but not a design.
Had reference semantics!

Copy/assignment operators not implemented... yet?

'4‘ Adobe © 2021 Adobe. All Rights Reserved.

Array

Was a hack for testing the compiler, but not a design.
Had reference semantics!
Copy/assignment operators not implemented... yet?

Time to bother Doug

'4‘ Adobe © 2021 Adobe. All Rights Reserved.

Doug Gregor's declaration

"No rule-of-five programming for you!”

F\\ Adobe © 2021 Adobe . All Rights Reserved |

Doug Gregor's declaration

"No rule-of-five programming for you!”

F\\ Adobe © 2021 Adobe . All Rights Reserved |

Doug Gregor's declaration

"No rule-of-five programming for you!”

<

"Use copy-on-write”

F\\ Adobe © 2021 Adobe . All Rights Reserved |

Doug Gregor's declaration

"No rule-of-five programming for you!”

<

"Use copy-on-write”

"Go away and don't bother me; | need to code.’

F\\ Adobe © 2021 Adobe . All Rights Reserved |

https://gist.github.com/alf-p-steinbach/c53794¢3711eb74e7558bb514204e755

alf-p-steinbach [strings 1 - Why COW is ungood for std string\strings 1 - Why COW is A\ Unsubscribe Yy Star
ungood for std string .md 7

Created 3 years ago - Report abuse

<> Code

F\\ Adobe

-O- Revisions 1 vy Stars 7 P Forks 1 Embed~ <script src="https:// (L B4

Why COW was deemed ungood for std::string

<

strings 1 - Why COW is ungood for std string\strings 1 - Why COW 1is ungood for std string .md Raw

Why COW was deemed ungood for std::string.

COW, short for copy on write, is a way to implement mutable strings so that creating strings and logically copying strings, is reduced
to almost nothing; conceptually they become free operations like no-ops.

Basic idea: to share a data buffer among string instances, and only make a copy for a specific instance (the copy on write) when that
instance's data is modified. The general cost of this is only an extra indirection for accessing the value of a string, so a COW

© 2021 Adobe. All Rights Reserved.

Dc

No rule of five | Consequences

All variable-sized value types use CoW

Copy and assignment never have to allocate memory

Copy and assignment is always O(1)

Copy and assignment can never fail

Optimizer was taught to remove redundant reference counting.
Optimizer was taught to hoist uniqueness checks

We fearlessly pass arrays, strings, and dictionaries by value

'4‘ Adobe © 2021 Adobe. All Rights Reserved.

Chris Lattner's Observation

"C++ has value semantics, but nobody uses it

F\\ Adobe © 2021 Adobe . All Rights Reserved |

0 GGG G < < < << G GG GGG &G
C$ (GGG << < <SG G G &G & &
QG < < < G GG GG GG
C$ C$ GGG << < < GG G &G & &
{99 GG Q<SG G G
S G QCSCCCQQQ<<S<E<CCECCGG
S S G Q(Q<99 << GGG <

Parameter passing

Say what you mean? | Sincere parameter passing

// Returns the sum of elements in x and calls dump on each one.
auto sumAndDump(std: :vector<int> const x, void(*dump)(int)) -> int {
ranges: : for_each(x, dump);
return std::accumulate(x.begin(), x.end(), 0);

'4‘ Adobe © 2021 Adobe. All Rights Reserved.

Say what you mean? | Sincere parameter passing

// Returns the sum of elements in x and calls dump on each one.
auto sumAndDump(std: :vector<int> const x, void(*dump)(int)) -> int {
ranges: : for_each(x, dump);
return std::accumulate(x.begin(), x.end(), 0);

std::vector x = {0, 1, 2, 3};
void d(int) { x[e] += 1; %}
int main() {
std::cout << f(x, d); // Prints "o6"

'4‘ Adobe © 2021 Adobe. All Rights Reserved.

Say what you mean? | Facetious parameter passing

// Returns the sum of elements in x and calls dump on each one.
auto sumAndDump(std: :vector<int> const& x, void(*dump)(int)) -> int {
ranges: : for_each(x, dump);
return std::accumulate(x.begin(), x.end(), 0);

std::vector x = {0, 1, 2, 3};
void d(int) { x[e] += 1; }
int main() {
std::cout << f(x, d); // Prints "10"

'4‘ Adobe © 2021 Adobe. All Rights Reserved.

Say what you mean? | Facetious parameter passing

// Returns the sum of elements i1n x and calls dump on each one.
auto sumAndDump(std: :vector<int> const& x, void(*dump)(int)) -> int {
ranges: : for_each(x, dump);
return std::accumulate(x.begin(), x.end(), 0);

std::vector x = {0, 1, 2, 3};
void d(int) { x[e] += 1; }
int main() {
std: :cout << f(x, d); // Prints "10", not "6"

'4‘ Adobe © 2021 Adobe. All Rights Reserved.

Mutation

Facetious | Pass by reference Sincere | Functional update
XY; XY;
auto frob(X& y) -> void { auto frob(X y) -> X {
foo(); foo();
bar(y); bar(y);
return vy,
} }

frob(y); y = frob(y);

'4‘ Adobe © 2021 Adobe. All Rights Reserved.

Mutation

Facetious | Pass by reference Sincere | Functional update
XY; XY;
auto frob(X& y) -> void { auto frob(X y) -> X {
foo(); foo();
bar(y); bar(y);
} return y;
}

frob(y); y = frob(y);

'4‘ Adobe © 2021 Adobe. All Rights Reserved.

Mutation in Swift

var y: X;
func frob(_ y: 1nout X) -> Void {

foo();
bar(&y);

frob(y);

'4‘ Adobe © 2021 Adobe. All Rights Reserved.

Dave's last theorem

Swift's model of parameter passing can be extended to
allow noncopyable types to be efficently passed “by value”
or by move with minimal complexity, and the model could

be applied to a future version of C++.

F\\ Adobe © 2021 Adobe . All Rights Reserved |

