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About the artist

Elise Swopes

Lo

New York City-based photographer and graphic
designer Elise Swopes manipulates the everyday into
unexpected works of art. With her mobile phone,
Adobe Photoshop, and Adobe Photoshop Lightroom,
she creates whimsical, weird, dreamlike scenes. This
piece was inspired from a recent visit to Copenhagen,
where the bold colors and shapes of Danish
architecture made quite an impression. A brilliant
yellow apartment building inspired Swopes to create
another entry in her surrealistic series featuring
giraffes in unusual settings.

Made with

. Adobe Photoshop . Adobe Photoshop Lightroom
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including objects .
integrated Development
t

YE‘K. compile, lnk. Iqm nd'un 4

struct CTutorApp : CApplication {
void ITutorApp(void);
void DoCommand(long theCommand);

struct CTutorDir : CDirector {
void ITutorDir(void):

&

struct CTutorWindow : CWindow {
void Close():

&

extern CApplication *gApplication;
extern CDesktop xgDesktop;

void main(void) {
gApplication = new(CTutorApp); |
((CTutorApp*)gApplication)—>ITutorApp();L
|
gApplication—>Run();

gApplication—>Exit();
}
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Blame it all on this guy...

Mark Wachsler
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Blame it all on this guy...

Mark Wachsler

...and his tendency to learn...

BENCHMARKED: The P6 & WINDOWS 95
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Revealed: What Microsoft‘

...and to share

Windows 95: The Numbers ............ i

BY STANFORD DIEHL
BYTE testing reveals, there are strings attached.

WINDOWS 95

Applications 95 Armive .......... e

BY STANFORD DIEHL
Programs that make Windows 95 worth the wait.

SYSTEMS

Power Mac Gets PCl .........cccivvveveenieenncnnencnnnes

BY TOM THOMPSON

Apple’s Power Mac 9500 delivers great performance and the promise of

fast, low-cost PCI peripherals.

WORD PROCESSORS

Au Revoir, Mon Ami........oceevveecnnnnnenns SRS . |

BY KENNETH M. SHELDON

Ami Pro gets a major upgrade, new workgroup features, and a new name,

Word Pro.

Core Technolog

CPUS

Is There a GLINT in Your Future?............ 167

BY TREVOR MARSHALL AND JOHN DAVEY
3Dlabs’ chip produces fast 3-D graphics. Here's how it
does those dazzling displays.

OPERATING SYSTEMS

Weaving a Thread ............. ——— sis i
BY SHASHI PRASAD

Solaris and Windows NT bring the power, speed, and
efficiency of multithreading and symmetric
multiprocessing to the desktop.

building real-time error checking into their compilers.
WINDOWS 95
We Plugged, but They Didn't

Tests of several new Plug and Play devices show that
unless you have all the required pieces in your system,
you can expect to do a lot of work.

INTERNET BROADCASTING

Radio Comes to Cyberspace......c.csceveescaneaddb
A new era in broadcasting begins on the Internet.
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............. 113
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BY RICK GREHAN

A remarkably complete embedded
development system.

FAX PROGRAMS
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Strength Fax Servers.......13]
BY REX BALDAZO, DAVID ESSEX,
AND STAN MIASTKOWSKI

After some hair-pulling, teeth-
gnashing installations, we test
network-based faxing software that
can handle the heavy loads of a
workgroup.

PROGRAMMING

The Standard Template Library............ 177
BY ALEXANDER STEPANOV

How do you build an algorithm that is both generic and
efficient?

NETWORKS

Internet Firewalls. ..............ouveenne. 179
BY STEPHEN COBB

An industry group is attempting to bring order to
firewalls, demand for which is spurred by intrusions.

Pournelle: Death Swoops and Upgrades .....181
BY JERRY POURNELLE

Jerry witnesses several test flights: First the DC/X
spacecraft, and then a new Pentium, a new hard drive,
and several builds of Windows 95.
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M"lne Il--.....-......ll.I'...Il...-.'49

BY DENNIS BARKER AND JEFF MACCLAY
A novel about working at Microsoft. Plus, a Marilyn
Monroe CD-ROM.
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BY JACQUES LESLIE
Computers are better at poetry than mathematics.

BY RAPHAEL NEEDLEMAN

mll...‘....ll'l..........ll.....‘.'...zo
Readers write about our coverage of Windows 95,
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New digital cameras from Apple, Kodak, and Logitech find a balance
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BY ANTHONY J. LENNON AND
JOHN MCDONOQUGH

These lightweight, feature-
packed tiny PCs hold some
surprises and won’t cramp your
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FTP: ftp to ftp.byte.com

From BIX: Join
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the appropriate subarea (i.e.,
“oct95."

From the BYTE BBS at 1200-9600
bps: Dial (603) 924-9820 and
follow the instructions at the
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Blame it all on this guy...

Mark Wachsler ...and his tendency to learn... ...and to share

PROGRAMMING

The Standard Template Library............ 1
BY ALEXANDER STEPANOV

How do you build an algorithm that is both generic and
efficient?
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Blame it all on this guy...

Mark Wachsler ...and his tendency to learn... ...and to share

PROGRAMMING

The Standard Template Library

BY ALEXANDER STEPANOV
How do you build an algorithm that is both generic and

efficient?
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When are exceptions generated, and what happens to STL components when they are? For a

long time during the standardization process of C++98, there was no defined behavior about this.
In fact, every exception resulted in undefined behavior.




Dave's chain of custody

Alexander Stepanov Greg Colvin Andrew Koenig

© 2021 Adobe. All Rights Reserved.




C++ Committee Papers | 1997-2013

- N1075 | STL Exception Handling Contract | Dave Abrahams | 1997

. N1086 | Making the C++ Standard Library Exception-Safe | Dave Abrahams and Greg Colvin | 1997

- N1086 | Making the C++ Standard Library Exception Safe | Dave Abrahams and Greg Colvin | 1997

- N1114 | Making the C++ Standard Library More Exception Safe | Dave Abrahams and Greg Colvin | 1997
- N1313 | Binary Search with Heterogeneous Comparison | David Abrahams | 2001

. N1356 | Predictable data layout for certain non-POD types | RW. Grosse-Kunstleve & D. Abrahams | 2002
- N1377 | A Proposal to Add Move Semantics Support to the C++ Language | H. Hinnant, P. Dimov, D.
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. N1631| Electronic review process | D. Abrahams, B. Dawes, J. Siek | 2004-04-11

- N1640 | New lterator Concepts | D. Abrahams, J. Siek, T. Witt | 2004-04-10

. N1641 | Iterator Facade and Adaptor | D. Abrahames, J. Siek, T. Witt | 2004-04-10

- N1690 | A Proposal to Add an Rvalue Reference to the C++ Language | H. Hinnant,D. Abrahams,P. Dimov |
2004-09-07

. N1691 | Explicit Namespaces | David Abrahams | 2004-09-07

- N1770 | A Proposal to Add an Rvalue Reference to the C++ Language: Proposed Wording | H. Hinnant,
D. Abrahams, J. Adamczyk, P. Dimov, A. Hommel | 2005-03-05

- N1771 | Impact of the rvalue reference on the Standard Library

- H. Hinnant, D. Abrahams, P. Dimov, D. Gregor, A. Hommel, A. Meredith | 2005-03-03

. N1773 | Proposal to add Contract Programming to C++ (revision 2) | D. Abrahams, L. Crowl, T. Ottosen,
J. Widman | 2005-03-04
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. N1855 | A Proposal to Add an Rvalue Reference to the C++ Language: Proposed Wording | D. Abrahames,

. Dimov, H. Hinnant, A. Hommel | 2005-08-25
873 | The Cursor/Property Map Abstraction | D. Kiihl, D. Abrahams | 2005-08-26

- N2786 | Simplifying unique copy (Revision 1) | D. Gregor, D. Abrahams | 2008-09-19
. N2812 | A Safety Problem with RValue References (and what to do about it) | D. Abrahams, D. Gregor |

2008-12-05

. N2831 | Fixing a Safety Problem with Rvalue References: Proposed Wording | D. Gregor, D. Abraham:s |

2009-02-07

. N2844 | Fixing a Safety Problem with Rvalue References: Proposed Wording (Revision 1) | D. Gregor,

D. Abrahams | 2009-03-05

. N2845 | Remove std::reference_closure | L. Crowl, D. Gregor, D. Abrahams | 2009-03-05

. N2855 | Rvalue References and Exception Safety | D. Gregor, D. Abrahams | 2009-03-23
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. N2983 | Allowing Move Constructors to Throw | D. Abrahams, R. Sharoni, D. Gregor | 2009-11-09

- N3050 | Allowing Move Constructors to Throw (Rev. 1) | D. Abrahams, R. Sharoni, D. Gregor | 2010-03-12
. N3153 | Implicit Move Must Go | Dave Abrahams | 2010-10-17

- N3418 | Proposal for Generic (Polymorphic) Lambda Expressions | F. Vali, H. Sutter, D. Abrahams |

2012-09-21

. N3490 | ADL Control for C++ | Dave Abrahams | 2012-10-31

. N3559 | Proposal for Generic (Polymorphic) Lambda Expressions

. F Vali, H. Sutter, D. Abrahams | 2013-03-17

. N3560 | Proposal for Assorted Extensions to Lambda Expressions | F. Vali, H. Sutter, D. Abrahams |

2013-03-17
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2013-04-19
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| was a co-founder
Spun off BoostPro Computing

Started BoostCon/C++Now conference
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| was a total C++-head...
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...and | was starting over
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The (rest of the) design team

Dave Zarzycki Doug Gregor John McCall Joe Pamer

Ted Kremenek
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Value Semantics



Spooky action at a distance

intro = "hello”
message = 1ntro
message.append(", world")
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Spooky action at a distance

intro = "hello" INtro > ""hel||0"

message = 1ntro
message.append(", world")
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Spooky action at a distance

intro = "hello” infro =———» "hello"
message = intro -/
message.append(”, world™) message

'4‘ Adobe © 2021 Adobe. All Rights Reserved.



Spooky action at a distance

intro = "hello" intro —— "hello, world"
message = intro -/
message.append(”, world™) message

'4‘ Adobe © 2021 Adobe. All Rights Reserved.



Immutable string is less spooky

intro = "hello"
message = 1ntro
message = message.concat(”, world")

'4‘ Adobe © 2021 Adobe. All Rights Reserved.



Immutable string is less spooky

intro =
message
message

F\\ Adobe

"hello”

1ntro
message.concat(", world")

INtro

— "hello"
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Immutable string is less spooky

intro = "hello" intro —— "hello"

message = intro /1
message

message = message.concat(", world")

'4‘ Adobe © 2021 Adobe. All Rights Reserved.



Immutable string is less spooky

intro = "hello” intro ————> "hell0"
message = 1ntro
message = message.concat(", world") ~ message — "hello, world"

'4‘ Adobe © 2021 Adobe. All Rights Reserved.



Philosophy of value semantics

Maybe the problem isn't mutation by itself, but mutation of shared state?

A deeper idea than | thought.
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Philosophy of value semantics

Maybe the problem isn't mutation by itself, but mutation of shared state?

A deeper idea than | thought.

Problems with the immutable string scheme:

- Creating a new string buffer for every mutation step is expensive — O(N?).
- Add StringBuilder to manage mutating string buffers in place.

- StringBuilder ends up duplicating string's non-mutating API.

- One more type for the user to learn.

'4‘ Adobe © 2021 Adobe. All Rights Reserved.



Dave's declaration

"‘Over my dead body will Swift have a StringBuilder!”
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No rule of five



Array

Was a hack for testing the compiler, but not a design.
Had reference semantics!

Copy/assignment operators not implemented... yet?
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Array

Was a hack for testing the compiler, but not a design.
Had reference semantics!
Copy/assignment operators not implemented... yet?

Time to bother Doug

'4‘ Adobe © 2021 Adobe. All Rights Reserved.



Doug Gregor's declaration

"No rule-of-five programming for you!”
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Doug Gregor's declaration

"No rule-of-five programming for you!”
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Doug Gregor's declaration

"No rule-of-five programming for you!”

<

"Use copy-on-write”
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Doug Gregor's declaration

"No rule-of-five programming for you!”

<

"Use copy-on-write”

"Go away and don't bother me; | need to code.’

F\\ Adobe © 2021 Adobe . All Rights Reserved |



https://gist.github.com/alf-p-steinbach/c53794¢3711eb74e7558bb514204e755
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Why COW was deemed ungood for std::string

<

strings 1 - Why COW is ungood for std string\strings 1 - Why COW 1is ungood for std string .md Raw

Why COW was deemed ungood for std::string.

COW, short for copy on write, is a way to implement mutable strings so that creating strings and logically copying strings, is reduced
to almost nothing; conceptually they become free operations like no-ops.

Basic idea: to share a data buffer among string instances, and only make a copy for a specific instance (the copy on write) when that
instance's data is modified. The general cost of this is only an extra indirection for accessing the value of a string, so a COW
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No rule of five | Consequences

All variable-sized value types use CoW

Copy and assignment never have to allocate memory

Copy and assignment is always O(1)

Copy and assignment can never fail

Optimizer was taught to remove redundant reference counting.
Optimizer was taught to hoist uniqueness checks

We fearlessly pass arrays, strings, and dictionaries by value
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Chris Lattner's Observation

"C++ has value semantics, but nobody uses it
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Parameter passing



Say what you mean? | Sincere parameter passing

// Returns the sum of elements in x and calls dump on each one.
auto sumAndDump(std: :vector<int> const x, void(*dump)(int)) -> int {
ranges: : for_each(x, dump);
return std::accumulate(x.begin(), x.end(), 0);
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Say what you mean? | Sincere parameter passing

// Returns the sum of elements in x and calls dump on each one.
auto sumAndDump(std: :vector<int> const x, void(*dump)(int)) -> int {
ranges: : for_each(x, dump);
return std::accumulate(x.begin(), x.end(), 0);

std::vector x = {0, 1, 2, 3};
void d(int) { x[e] += 1; %}
int main() {
std::cout << f(x, d); // Prints "o6"
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Say what you mean? | Facetious parameter passing

// Returns the sum of elements in x and calls dump on each one.
auto sumAndDump(std: :vector<int> const& x, void(*dump)(int)) -> int {
ranges: : for_each(x, dump);
return std::accumulate(x.begin(), x.end(), 0);

std::vector x = {0, 1, 2, 3};
void d(int) { x[e] += 1; }
int main() {
std::cout << f(x, d); // Prints "10"
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Say what you mean? | Facetious parameter passing

// Returns the sum of elements i1n x and calls dump on each one.
auto sumAndDump(std: :vector<int> const& x, void(*dump)(int)) -> int {
ranges: : for_each(x, dump);
return std::accumulate(x.begin(), x.end(), 0);

std::vector x = {0, 1, 2, 3};
void d(int) { x[e] += 1; }
int main() {
std: :cout << f(x, d); // Prints "10", not "6"
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Mutation

Facetious | Pass by reference Sincere | Functional update
XY; XY;
auto frob(X& y) -> void { auto frob(X y) -> X {
foo(); foo();
bar(y); bar(y);
return vy,
} }

frob(y); y = frob(y);
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Mutation

Facetious | Pass by reference Sincere | Functional update
XY; XY;
auto frob(X& y) -> void { auto frob(X y) -> X {
foo(); foo();
bar(y); bar(y);
} return y;
}

frob(y); y = frob(y);
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Mutation in Swift

var y: X;
func frob(_ y: 1nout X) -> Void {

foo();
bar(&y);

frob(y);
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Dave's last theorem

Swift's model of parameter passing can be extended to
allow noncopyable types to be efficently passed “by value”
or by move with minimal complexity, and the model could

be applied to a future version of C++.
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