Your projector is working...

screenshare

Your projector is working...

Image: Construction of the second state of the second s

@gAmUssA

#devoops

@confluentinc

@confluentinc @gAmUssA #devoops

SPECIAL THANKS

#devoops @confluentinc @gAmUssA

@jakekorab

WHAT ARE WE TRYING TO DO HERE?

#devoops @confluentinc @gAmUssA

@confluentinc #devoops @gAmUssA

Partition 0

@gAmUssA | #devoops | @confluentinc

@gAmUssA

Operating System

Hardware

@confluentinc #devoops

@confluentinc @gAmUssA #devoops

@confluentinc #devoops @gAmUssA

0 1 2 3 4 5	
5	

Replica 1 Re

@gAmUssA | #devoops | @confluentinc

Replica 2 Replica 3

@confluentinc #devoops @gAmUssA

@gAmUssA #devoops @confluentinc

#devoops @confluentinc @gAmUssA

@confluentinc @gAmUssA #devoops

@confluentinc @gAmUssA #devoops

RUNTIME VIEW

Replication

@gAmUssA | #devoops | @confluentinc

#devoops @confluentinc @gAmUssA

- What are the costs associated with data transfer?
- What is your latency? ~30ms OK
- Shared infrastructure that could

cause contention?

• Single point of failure?

GitHub jkorab/kafka-cloud-calculator

@gAmUssA #devoops @confluentinc

CLOSEST REPLICA

Client Config

rack.id=<location>

@confluentinc #devoops @gAmUssA

CLOSEST REPLICA

class ClientMetadata {

final String rackId; final String clientId; final InetAddress address; final KafkaPrincipal principal;

interface ReplicaSelector **extends** Configurable, Closeable { /**

* Select the preferred replica a client should use for fetching. * If no replica is available, this method should return null. * /

Node select(ClientMetadata metadata, PartitionInfo partitionInfo);

@confluentinc @gAmUssA #devoops

replica.selector.class=RackAwareReplicaSelector

@gAmUssA

#devoops

@confluentinc

@gAmUssA #devoops @confluentinc

Problems:

- 1. ZooKeeper
- 2. Topic Replication

@gAmUssA

DC Failure Scenarios:

- **DCmin** goes down all OK 1.
- 2. DCmaj goes down ZK3 in quorum minority, shuts down. Outage.

@confluentinc #devoops

@confluentinc **@gAmUssA** #devoops

Brokers configured to talk to local ZKs.

Tolerates outage of one ZooKeeper per local cluster.

Trades off Availability for Consistency.

Communication outage looks just like a DC outage.

- Clients lose visibility of partition leaders in other DC
- Production either partially continues or blocks, depending on replication settings

Manual intervention required to resume processing

@confluentinc

replication- factor	<pre>min.insync .replicas</pre>	enable.unclean .leader .election	Behaviour
4	3	false	Consistency over Availability Guarantees that all data is replicated to both DCs. Topics need to be reconfigured during outage to resume flow.
4	2	true	Availability over Consistency Data not guaranteed to be replicated to both DCs under some conditions. No topics reconfiguration needed during outage to resume flow.

GitHub Dabz/kafka-boom-boom

@confluentinc #devoops @gAmUssA

2DC - REPLICATION SETTINGS

@gAmUssA

#devoops | @confluentinc

ZooKeeper behaviour same as 3DC setup.

Replication tradeoffs same as 2DC setup.

Mirroring

- Don't have 3 Data Centers or inter-DC latency >30ms
- Can't accept data loss
- Can't accept stop the world

@gAmUssA

- Uses <u>multiple clusters</u>
- Asynchronous
- Typical uses are uni-directional
- Typically used for inter-region traffic

#devoops | @confluentinc

LOCATION-PREFIXED TOPICS

DEALING WITH DC FAILURE

What does it mean for consumer group X to be up to offset 1?

@confluentinc

THE LIMITS OF OFFSETS

IDEMPOTENT CONSUMPTION

MIRRORING PROCESSED STATE

@confluentinc #devoops

MULTI-REGION **REPLICATION** -STRETCH CLUSTER DONE RIGHT

https://gamov.dev/mrc-demo

#devoops @confluentinc @gAmUssA

Following Fetching aka KIP-392

allows consumers to read from a replica other than the leader

Observers

Aka async replicas which are not part of ISR and can't be elected a leader

Replica Placement

JSON-based specification allows you to specify replica assignment as a set of matching constraints. For example, allows to keep the regular replicas in a single region and putting an observer in a different region

50

WHAT YOU NEED TO KNOW

• 3DC > 2.5DC > 2DC

- KIP-392 will make them even better
 - Confluent Server takes this further
- Mirroring is an alternative

 - code

• Stretched clusters are awesome; assuming <~30ms latency

• Asynchronicity means it acts differently than a single cluster Think about the impacts on operations and design of your

> @confluentinc #devoops

@confluentinc #devoops

