
Your projector is working…

Your projector is working…
screenshare

@gAmUssA | #devoops | @confluentinc

Two and a half datacenter
(For Kafka)

@gAmUssA | #devoops | @confluentinc

@gAmUssA | #devoops | @confluentinc

@gAmUssA | #devoops | @confluentinc

Special thanks

@jakekorab

@gAmUssA | #devoops | @confluentinc

What are we trying
to do here?

@gAmUssA | #devoops | @confluentinc

SystemX

SystemY

SystemZ

orders

The high-level view

@gAmUssA | #devoops | @confluentinc

SystemX

SystemY:0

SystemZ

0 1 2 3 4

Partition 1

0 1 2 3 4 5 6

Partition 0

0 1 2 3 4 5

Partition 2

SystemY:1

Partitions and Consumers

@gAmUssA | #devoops | @confluentinc

Producer

1. send

2. store

3. ack

Reliable Sends

@gAmUssA | #devoops | @confluentinc

OS Buffer Cache

Drive Controller
Buffer

Drive Buffer

Operating
System

Hardware

Kafka, meet Storage

@gAmUssA | #devoops | @confluentinc

Producer

acks=all

1.send 2.write

3.a.fetch 3.b.fetch

4.ack

Reliability through Replication

@gAmUssA | #devoops | @confluentinc

Producer

Network threads

IO threads

Request queue

Response queue

Purgatory

Mechanics of Sending

@gAmUssA | #devoops | @confluentinc

0

1

2

3

4

0

1

2

3

0

1

2

3

4

5

Replica 1 Replica 2 Replica 3

L

4

High Water Mark

@gAmUssA | #devoops | @confluentinc

4321

Partition 0 L

Partition 1
L

Partition 2
L

Partition Distribution
Producer

@gAmUssA | #devoops | @confluentinc

1 432

Producer

L

L

L

Kafka Node Failure

Partition 0

Partition 1

Partition 2

@gAmUssA | #devoops | @confluentinc

ZooKeeper ZooKeeper

ZooKeeper

ZooKeeper Ensembles

@gAmUssA | #devoops | @confluentinc

ZooKeeper ZooKeeper

ZooKeeper

ZooKeeper Node Failure

@gAmUssA | #devoops | @confluentinc

SystemX

SystemYSystemY

SystemX

SystemYSystemZ

ZooKeeper

Runtime View

SystemYSystemY

SystemX

SystemYSystemZ

ZooKeeper

Replication

@gAmUssA | #devoops | @confluentinc

Three Data centers

@gAmUssA | #devoops | @confluentinc

DC1 DC2 DC3

ZooKeeper ZooKeeper ZooKeeper

3 Data Centres

@gAmUssA | #devoops | @confluentinc

DC3DC2DC1

431

2

broker.rack=DC1 broker.rack=DC2 broker.rack=DC3

LPartition 0

L

Partition 1

LPartition 2

Rack Aware Replica Assignment

@gAmUssA | #devoops | @confluentinc

DC2

DC1

DC3

DC2

DC1

DC3

Network
Provider

Network Considerations

• What are the costs associated with

data transfer?

• What is your latency? ~30ms OK

• Shared infrastructure that could

cause contention?

• Single point of failure?

@gAmUssA | #devoops | @confluentinc

DC3DC2DC1

321

L

SystemX

SystemZSystemY

4

5

1

2

3

jkorab/kafka-cloud-calculator

@gAmUssA | #devoops | @confluentinc

Broker ConfigClient Config

KIP-392: Allow consumers to fetch from
closest replica

replica.selector.class=
<ReplicaSelector impl>

Out of the box:
• LeaderSelector (default)
• RackAwareReplicaSelector

rack.id=<location>

https://cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica
https://cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica

@gAmUssA | #devoops | @confluentinc

class ClientMetadata {

 final String rackId;
 final String clientId;
 final InetAddress address;
 final KafkaPrincipal principal;
}

interface ReplicaSelector extends Configurable, Closeable {
 /**
 * Select the preferred replica a client should use for fetching.
 * If no replica is available, this method should return null.
 */
 Node select(ClientMetadata metadata, PartitionInfo partitionInfo);
}

KIP-392: Allow consumers to fetch from
closest replica

@gAmUssA | #devoops | @confluentinc

DC3DC2DC1

321

L

SystemX

SystemZSystemY

1

2

3

replica.selector.class=RackAwareReplicaSelector

rack.id=DC2 rack.id=DC3

@gAmUssA | #devoops | @confluentinc

Two Data centers

@gAmUssA | #devoops | @confluentinc

DC1 DC2

ZooKeeper

2 Data Centres

Problems:

1. ZooKeeper

2. Topic Replication

@gAmUssA | #devoops | @confluentinc

DCmaj DCmin

2DC - Naive ZooKeeper Setup

ZK1

ZK3

ZK2

DC Failure Scenarios:

1. DCmin goes down - all OK

2. DCmaj goes down - ZK3 in
quorum minority, shuts
down. Outage.

Do not do this

@gAmUssA | #devoops | @confluentinc

DC2DC1

2DC - Hierarchical Quorums in ZooKeeper

Brokers configured to talk to
local ZKs.

Tolerates outage of one
ZooKeeper per local cluster.

Trades off Availability for
Consistency.

ZK1

ZK3ZK2

ZK4

ZK6ZK5

@gAmUssA | #devoops | @confluentinc

2DC - Hierarchical Quorum Setup
Communication outage looks
just like a DC outage.

• Clients lose visibility of
partition leaders in other
DC

• Production either partially
continues or blocks,
depending on replication
settings

Manual intervention required
to resume processing

DC2DC1

ZK

ZKZK

ZK

ZKZK

DC2DC1

ZK

ZKZK

ZK

ZKZK

@gAmUssA | #devoops | @confluentinc

2DC - Replication Settings

Dabz/kafka-boom-boom

replication-
factor

min.insync
.replicas

enable.unclean
.leader

.election
Behaviour

4 3 false

Consistency over Availability
Guarantees that all data is replicated to both
DCs.
Topics need to be reconfigured during outage
to resume flow.

4 2 true

Availability over Consistency
Data not guaranteed to be replicated to both
DCs under some conditions.
No topics reconfiguration needed during
outage to resume flow.

@gAmUssA | #devoops | @confluentinc

Two and a half data centers

@gAmUssA | #devoops | @confluentinc

DC3

DC1 DC2

2.5 Data Centers

ZK3

ZK2ZK1

ZooKeeper behaviour same as
3DC setup.

Replication tradeoffs same as
2DC setup.

Mirroring

@@gAmUssA | #devoops | @confluentinc

CharacteristicsDrivers

Multi-DC via Mirroring

• Don’t have 3 Data Centers
or inter-DC latency >30ms

• Can’t accept data loss

• Can’t accept stop the world

• Uses multiple clusters

• Asynchronous

• Typical uses are uni-directional

• Typically used for inter-region
traffic

@gAmUssA | #devoops | @confluentinc

DC1

ZK

ZKZK

DC1

ZK

ZKZK

MM

MM

Mirroring - General Setup

@gAmUssA | #devoops | @confluentinc

DC2DC1

MM

MM

DC1_orders DC1_orders

DC2_orders DC2_orders

P

C P

C

Location-prefixed topics

@gAmUssA | #devoops | @confluentinc

DC2DC1

MM

MM

DC1_orders DC1_orders

DC2_orders DC2_orders

P

C P

C
Constraints:
• Consumer reconfiguration

required
• Duplicate processing likely

Dealing with DC Failure

@gAmUssA | #devoops | @confluentinc

Consumer Offsets

orders

__consumer_offsets

1. consumer.poll()

2. invoke

3. consumer.commitSync()
 consumer.commitAsync()

@gAmUssA | #devoops | @confluentinc

DC1

Replicator

DC2

DC1_orders DC1_orders

DC2_orders DC2_orders

P

P

C

__consumer_offsets
C

__consumer_offsets
Replicator

Replicator features needed:
1. Consumer offset translation
2. Message provenance

Mirroring Offsets

@gAmUssA | #devoops | @confluentinc

DC2DC1

orders orders

__consumer_offsets

P

C

P

C

Replicator

Replicator

__consumer_offsets

Do not do this

Singe Topic + Mirrored Offsets

@gAmUssA | #devoops | @confluentinc

DC2DC1

Producer

Consumer
:X

A:0

B:1

Producer

Consumer
: X

B:0

A:1

<><<A>>

What does it mean
for consumer group X
to be up to offset 1?

Inconsistent Message Ordering

@gAmUssA | #devoops | @confluentinc

The Limits of Offsets

orders

__consumer_offsets

1. consumer.poll()

2. invoke

3. consumer.commitSync()
 consumer.commitAsync()

@gAmUssA | #devoops | @confluentinc

Idempotent Consumption

orders

__consumer_offsets

orders_processed

2. extract id from event
if (id in store)
 skip
else
 write id into store
 invoke

@gAmUssA | #devoops | @confluentinc

DC2DC1

orders orders

orders_processed

P

C

P

C

Replicator

Replicator

orders_processed

Do not do this

“What if we do this…”

@gAmUssA | #devoops | @confluentinc

DC1 DC2

Duplicate

Processed

Mirroring Processed State

@gAmUssA | #devoops | @confluentinc

One last thing…

@gAmUssA | #devoops | @confluentinc
50

Multi-region
Replication -
stretch cluster
done right

Following Fetching aka KIP-392
allows consumers to read from a replica other
than the leader

Observers
Aka async replicas which are not part of ISR
and can’t be elected a leader

Replica Placement
JSON-based specification allows you to
specify replica assignment as a set of
matching constraints. For example, allows to
keep the regular replicas in a single region and
putting an observer in a different region

https://gamov.dev/mrc-demo

@@gAmUssA | #devoops | @confluentinc

What you need to know

• Stretched clusters are awesome; assuming <~30ms latency

• 3DC > 2.5DC > 2DC

• KIP-392 will make them even better
• Confluent Server takes this further

• Mirroring is an alternative
• Asynchronicity means it acts differently than a single cluster
• Think about the impacts on operations and design of your

code

@gAmUssA | #devoops | @confluentinc

