
Configuration, Extension,
Maintainability

@TitusWinters

Higher Level
Abstractions

Express Intent

Centralize.
Improve Consistency.

How Are CPU vs. RAM costs evolving?

CPU is Expensive?

Update vector’s resize
factor. Maybe 3x?

RAM is Expensive?

Shrink vector’s resize
factor. Maybe 1.5x?

Less waste.

How Are CPU vs. RAM costs evolving?

CPU is Expensive?

Update vector’s resize
factor. Maybe 3x?

Fewer cycles spent
moving elements
around.

Improve through
Refactoring

Optimization through Refactoring

Centralized?

● Optimize the memory allocator
● Change vector or string

allocation strategies
● Tweak the network stack
● Optimize mutex

Change implementation of existing
abstractions

Optimization through Refactoring

Centralized?

● Optimize the memory allocator
● Change vector or string

allocation strategies
● Tweak the network stack
● Optimize mutex

Change implementation of existing
abstractions.

Distributed?

● Change from standard hashes to
Abseil

● Use string_view more
consistently

● Remove redundant string copies
● Add missing calls to std::move

Change many small things given a
general pattern.

Bad Abstractions
lead to
Bad Optimization

Configuration is an
Abstraction

Which is Easier to Optimize?

FooSystem - works on
int, double, string

Socket Reader 1 -
allocates 64K

BarSystem - works on T

Socket Reader 2 -
allocates user-provided
size

User Requests

What is the Right Size
for this buffer?

What is the Right Size
for this buffer?
In 1990?
In 2050?

The Tradeoff:
Support more uses
vs
Retain more flexibility

Three Forms:
● Configuration
● Feature-flags
● Extension

My Design Philosophy

“We Could Build X!”

“We Could Build X!”
A rarely-used feature
is a liability.

Hyrum’s Law Applies
(always)

Compile Time
Detection Is Good

Compile Time
Detection Is Good
(Shift Left)

Configuration

Configuration
Controlling Outputs

Configuration
Controlling Outputs

Configuration
Controlling Inputs?

Configuration
Controlling Outputs?

Popcorn

Configuration
Controlling Outputs?

Popcorn

Popcorn Button is Bad Today

Do it manually

● I know better than
the hardware

Use the Button

● Worse outcomes
today

● Maybe it’ll get
better?

Configuration - What Seems Good?

● We like to specify outcomes
○ We will settle for specifying inputs if those clearly map to

outcomes
● False control, or low-quality outcomes are

confusing

Configuration
(now with C++)

Compiler
Configurations:
-O, -W

Configuration for Stream / Sequence Reader

● memory_budget
● seek_back
● enable_async_io

○ buffer_size
○ lookahead_budget
○ prefetch_on_open

Configuration for Stream / Sequence Reader

● memory_budget
● seek_back
● enable_async_io

○ buffer_size
○ lookahead_budget
○ prefetch_on_open

What Outcomes Do
We Want?

Proposed Configuration for Stream / Sequence Reader

● optimize_for = {kCPU, kIO_Ops, kMem};

Proposed Configuration for Stream / Sequence Reader

● optimize_for = {kCPU, kIO_Ops, kMem};
● max_memory
● record_size_hint
● max_prefetch_threads

Time will cause
Change

Change vs. Outcomes-based Configuration

● Maintainer responsible for honoring intent (and
semantics)

● Changing implementation is more allowed

Changes vs. Granular Configuration

● We are leaking implementation details
● Users are maybe depending on those
● Users may not be expert in this configuration

Changes vs. Granular Configuration

Out of 13K uses:

● 100 set the value at all

Changes vs. Granular Configuration

Out of 13K uses:

● 100 set the value at all
● 1 sets it to 256 bytes

Changes vs. Granular Configuration

Out of 13K uses:

● 100 set the value at all
● 1 sets it to 256 bytes
● 1 sets it to 256 MB, N times

Users vs. Granular Configuration

● How often is this configuration based on
evidence/optimization?

● Is that evidence still valid?
○ How do we know?

● How many “power users” are highly sensitive to
this configuration?
○ Does their need dominate?

Users vs. Granular Configuration

r.memory_budget = k256MB;

Users vs. Granular Configuration

num_threads = 8;

Are All Knobs Bad?

Configuration Should Be

● Orthogonal
● Focused on outcomes/intents
● Minimal
● Easy to reason about

Migration

Migration: Changing Defaults

std::cout << absl::StrCat(SomeDouble());

std::cout <<
absl::StrCat(LegacyPrecision(SomeDouble());

Migration: Changing Defaults

Visibility: please choose a more appropriate default for the package,
and update any rules that should be different.
package(default_visibility = ['//visibility:legacy_public'])

Side-note: “Legacy” naming

“You probably don’t want this setting.”

● Might be around forever as “old behavior”
● Here temporarily, but don’t use it.

Avoid if you endorse the behavior.

Configuration Should Be

● Orthogonal
● Focused on outcomes/intents
● Minimal
● Easy to reason about

Experimentation, Release

Experimentation, Release

Experimentation, Release

● Functionality gated by feature flags/configuration
● Management of that flag is controlled by

○ Release engineers
○ Experimental frameworks (A/B tests)
○ Rollout systems

Configuration Should Be

● Orthogonal
● Focused on outcomes/intents
● Minimal
● Easy to reason about

For release/experiments: Clean up!

Configuration Gotchas

● Platform properties?
○ std::hardware_destructive_interference_size

● Define acceptable changes?
○ Predict acceptability

Extension

Callbacks

Be very precise about how you will invoke a
callback.

● Which thread(s)?
● Locks held?
● Order of invocation?
● Frequency of invocation?

Polymorphism

● Avoid?
● PIPML?
● Proceed very carefully.

○ An abstract interface is both requirements and affordances
- these are hard to change.

○ ABI lurks here in more ways.

Templates, Extension Points, etc

● Proceed with care
● Document intent
● Concepts may help

Templates, Extension Points, etc

std::accumulate

“Can we change this to rely on move where
appropriate?” (Yes)

Templates, Extension Points, etc

Abseil Command Line Flags

● AbslParseFlag / AbslUnparseFlag

Conclusions

Conclusions

● Configure based on outcomes and intent

Conclusions

● Configure based on outcomes and intent
● Customization fights optimization/maintenance

Conclusions

● Configure based on outcomes and intent
● Customization fights optimization/maintenance
● Extensible interfaces are hard to get right

○ And very hard to change after the fact

Conclusions

● Configure based on outcomes and intent
● Customization fights optimization/maintenance
● Extensible interfaces are hard to get right

○ And very hard to change after the fact
● The Popcorn button is a trap

Questions?

